xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 5a244f48)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_fack __read_mostly;
80 int sysctl_tcp_max_reordering __read_mostly = 300;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 1;
84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
85 
86 /* rfc5961 challenge ack rate limiting */
87 int sysctl_tcp_challenge_ack_limit = 1000;
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_early_retrans __read_mostly = 3;
96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
97 
98 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
99 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
100 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
101 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
102 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
103 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
104 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
105 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
106 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
108 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
111 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
112 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
113 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
114 
115 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
119 
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
122 
123 #define REXMIT_NONE	0 /* no loss recovery to do */
124 #define REXMIT_LOST	1 /* retransmit packets marked lost */
125 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
126 
127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
128 			     unsigned int len)
129 {
130 	static bool __once __read_mostly;
131 
132 	if (!__once) {
133 		struct net_device *dev;
134 
135 		__once = true;
136 
137 		rcu_read_lock();
138 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
139 		if (!dev || len >= dev->mtu)
140 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 				dev ? dev->name : "Unknown driver");
142 		rcu_read_unlock();
143 	}
144 }
145 
146 /* Adapt the MSS value used to make delayed ack decision to the
147  * real world.
148  */
149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
150 {
151 	struct inet_connection_sock *icsk = inet_csk(sk);
152 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
153 	unsigned int len;
154 
155 	icsk->icsk_ack.last_seg_size = 0;
156 
157 	/* skb->len may jitter because of SACKs, even if peer
158 	 * sends good full-sized frames.
159 	 */
160 	len = skb_shinfo(skb)->gso_size ? : skb->len;
161 	if (len >= icsk->icsk_ack.rcv_mss) {
162 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 					       tcp_sk(sk)->advmss);
164 		/* Account for possibly-removed options */
165 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
166 				   MAX_TCP_OPTION_SPACE))
167 			tcp_gro_dev_warn(sk, skb, len);
168 	} else {
169 		/* Otherwise, we make more careful check taking into account,
170 		 * that SACKs block is variable.
171 		 *
172 		 * "len" is invariant segment length, including TCP header.
173 		 */
174 		len += skb->data - skb_transport_header(skb);
175 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
176 		    /* If PSH is not set, packet should be
177 		     * full sized, provided peer TCP is not badly broken.
178 		     * This observation (if it is correct 8)) allows
179 		     * to handle super-low mtu links fairly.
180 		     */
181 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
182 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
183 			/* Subtract also invariant (if peer is RFC compliant),
184 			 * tcp header plus fixed timestamp option length.
185 			 * Resulting "len" is MSS free of SACK jitter.
186 			 */
187 			len -= tcp_sk(sk)->tcp_header_len;
188 			icsk->icsk_ack.last_seg_size = len;
189 			if (len == lss) {
190 				icsk->icsk_ack.rcv_mss = len;
191 				return;
192 			}
193 		}
194 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
195 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
196 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
197 	}
198 }
199 
200 static void tcp_incr_quickack(struct sock *sk)
201 {
202 	struct inet_connection_sock *icsk = inet_csk(sk);
203 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
204 
205 	if (quickacks == 0)
206 		quickacks = 2;
207 	if (quickacks > icsk->icsk_ack.quick)
208 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
209 }
210 
211 static void tcp_enter_quickack_mode(struct sock *sk)
212 {
213 	struct inet_connection_sock *icsk = inet_csk(sk);
214 	tcp_incr_quickack(sk);
215 	icsk->icsk_ack.pingpong = 0;
216 	icsk->icsk_ack.ato = TCP_ATO_MIN;
217 }
218 
219 /* Send ACKs quickly, if "quick" count is not exhausted
220  * and the session is not interactive.
221  */
222 
223 static bool tcp_in_quickack_mode(struct sock *sk)
224 {
225 	const struct inet_connection_sock *icsk = inet_csk(sk);
226 	const struct dst_entry *dst = __sk_dst_get(sk);
227 
228 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
229 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
230 }
231 
232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
233 {
234 	if (tp->ecn_flags & TCP_ECN_OK)
235 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
236 }
237 
238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
239 {
240 	if (tcp_hdr(skb)->cwr)
241 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
242 }
243 
244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
245 {
246 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
247 }
248 
249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
250 {
251 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
252 	case INET_ECN_NOT_ECT:
253 		/* Funny extension: if ECT is not set on a segment,
254 		 * and we already seen ECT on a previous segment,
255 		 * it is probably a retransmit.
256 		 */
257 		if (tp->ecn_flags & TCP_ECN_SEEN)
258 			tcp_enter_quickack_mode((struct sock *)tp);
259 		break;
260 	case INET_ECN_CE:
261 		if (tcp_ca_needs_ecn((struct sock *)tp))
262 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
263 
264 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
265 			/* Better not delay acks, sender can have a very low cwnd */
266 			tcp_enter_quickack_mode((struct sock *)tp);
267 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
268 		}
269 		tp->ecn_flags |= TCP_ECN_SEEN;
270 		break;
271 	default:
272 		if (tcp_ca_needs_ecn((struct sock *)tp))
273 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
274 		tp->ecn_flags |= TCP_ECN_SEEN;
275 		break;
276 	}
277 }
278 
279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
280 {
281 	if (tp->ecn_flags & TCP_ECN_OK)
282 		__tcp_ecn_check_ce(tp, skb);
283 }
284 
285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
286 {
287 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
288 		tp->ecn_flags &= ~TCP_ECN_OK;
289 }
290 
291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
292 {
293 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
294 		tp->ecn_flags &= ~TCP_ECN_OK;
295 }
296 
297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
298 {
299 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
300 		return true;
301 	return false;
302 }
303 
304 /* Buffer size and advertised window tuning.
305  *
306  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
307  */
308 
309 static void tcp_sndbuf_expand(struct sock *sk)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
313 	int sndmem, per_mss;
314 	u32 nr_segs;
315 
316 	/* Worst case is non GSO/TSO : each frame consumes one skb
317 	 * and skb->head is kmalloced using power of two area of memory
318 	 */
319 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
320 		  MAX_TCP_HEADER +
321 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
322 
323 	per_mss = roundup_pow_of_two(per_mss) +
324 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
325 
326 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
327 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
328 
329 	/* Fast Recovery (RFC 5681 3.2) :
330 	 * Cubic needs 1.7 factor, rounded to 2 to include
331 	 * extra cushion (application might react slowly to POLLOUT)
332 	 */
333 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
334 	sndmem *= nr_segs * per_mss;
335 
336 	if (sk->sk_sndbuf < sndmem)
337 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
338 }
339 
340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
341  *
342  * All tcp_full_space() is split to two parts: "network" buffer, allocated
343  * forward and advertised in receiver window (tp->rcv_wnd) and
344  * "application buffer", required to isolate scheduling/application
345  * latencies from network.
346  * window_clamp is maximal advertised window. It can be less than
347  * tcp_full_space(), in this case tcp_full_space() - window_clamp
348  * is reserved for "application" buffer. The less window_clamp is
349  * the smoother our behaviour from viewpoint of network, but the lower
350  * throughput and the higher sensitivity of the connection to losses. 8)
351  *
352  * rcv_ssthresh is more strict window_clamp used at "slow start"
353  * phase to predict further behaviour of this connection.
354  * It is used for two goals:
355  * - to enforce header prediction at sender, even when application
356  *   requires some significant "application buffer". It is check #1.
357  * - to prevent pruning of receive queue because of misprediction
358  *   of receiver window. Check #2.
359  *
360  * The scheme does not work when sender sends good segments opening
361  * window and then starts to feed us spaghetti. But it should work
362  * in common situations. Otherwise, we have to rely on queue collapsing.
363  */
364 
365 /* Slow part of check#2. */
366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 	/* Optimize this! */
370 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
371 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
372 
373 	while (tp->rcv_ssthresh <= window) {
374 		if (truesize <= skb->len)
375 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
376 
377 		truesize >>= 1;
378 		window >>= 1;
379 	}
380 	return 0;
381 }
382 
383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
384 {
385 	struct tcp_sock *tp = tcp_sk(sk);
386 
387 	/* Check #1 */
388 	if (tp->rcv_ssthresh < tp->window_clamp &&
389 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
390 	    !tcp_under_memory_pressure(sk)) {
391 		int incr;
392 
393 		/* Check #2. Increase window, if skb with such overhead
394 		 * will fit to rcvbuf in future.
395 		 */
396 		if (tcp_win_from_space(skb->truesize) <= skb->len)
397 			incr = 2 * tp->advmss;
398 		else
399 			incr = __tcp_grow_window(sk, skb);
400 
401 		if (incr) {
402 			incr = max_t(int, incr, 2 * skb->len);
403 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
404 					       tp->window_clamp);
405 			inet_csk(sk)->icsk_ack.quick |= 1;
406 		}
407 	}
408 }
409 
410 /* 3. Tuning rcvbuf, when connection enters established state. */
411 static void tcp_fixup_rcvbuf(struct sock *sk)
412 {
413 	u32 mss = tcp_sk(sk)->advmss;
414 	int rcvmem;
415 
416 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
417 		 tcp_default_init_rwnd(mss);
418 
419 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
420 	 * Allow enough cushion so that sender is not limited by our window
421 	 */
422 	if (sysctl_tcp_moderate_rcvbuf)
423 		rcvmem <<= 2;
424 
425 	if (sk->sk_rcvbuf < rcvmem)
426 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
427 }
428 
429 /* 4. Try to fixup all. It is made immediately after connection enters
430  *    established state.
431  */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 	struct tcp_sock *tp = tcp_sk(sk);
435 	int maxwin;
436 
437 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
438 		tcp_fixup_rcvbuf(sk);
439 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
440 		tcp_sndbuf_expand(sk);
441 
442 	tp->rcvq_space.space = tp->rcv_wnd;
443 	tcp_mstamp_refresh(tp);
444 	tp->rcvq_space.time = tp->tcp_mstamp;
445 	tp->rcvq_space.seq = tp->copied_seq;
446 
447 	maxwin = tcp_full_space(sk);
448 
449 	if (tp->window_clamp >= maxwin) {
450 		tp->window_clamp = maxwin;
451 
452 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
453 			tp->window_clamp = max(maxwin -
454 					       (maxwin >> sysctl_tcp_app_win),
455 					       4 * tp->advmss);
456 	}
457 
458 	/* Force reservation of one segment. */
459 	if (sysctl_tcp_app_win &&
460 	    tp->window_clamp > 2 * tp->advmss &&
461 	    tp->window_clamp + tp->advmss > maxwin)
462 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463 
464 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 	tp->snd_cwnd_stamp = tcp_jiffies32;
466 }
467 
468 /* 5. Recalculate window clamp after socket hit its memory bounds. */
469 static void tcp_clamp_window(struct sock *sk)
470 {
471 	struct tcp_sock *tp = tcp_sk(sk);
472 	struct inet_connection_sock *icsk = inet_csk(sk);
473 
474 	icsk->icsk_ack.quick = 0;
475 
476 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
477 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 	    !tcp_under_memory_pressure(sk) &&
479 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 				    sysctl_tcp_rmem[2]);
482 	}
483 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486 
487 /* Initialize RCV_MSS value.
488  * RCV_MSS is an our guess about MSS used by the peer.
489  * We haven't any direct information about the MSS.
490  * It's better to underestimate the RCV_MSS rather than overestimate.
491  * Overestimations make us ACKing less frequently than needed.
492  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493  */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498 
499 	hint = min(hint, tp->rcv_wnd / 2);
500 	hint = min(hint, TCP_MSS_DEFAULT);
501 	hint = max(hint, TCP_MIN_MSS);
502 
503 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506 
507 /* Receiver "autotuning" code.
508  *
509  * The algorithm for RTT estimation w/o timestamps is based on
510  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511  * <http://public.lanl.gov/radiant/pubs.html#DRS>
512  *
513  * More detail on this code can be found at
514  * <http://staff.psc.edu/jheffner/>,
515  * though this reference is out of date.  A new paper
516  * is pending.
517  */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 	long m = sample;
522 
523 	if (m == 0)
524 		m = 1;
525 
526 	if (new_sample != 0) {
527 		/* If we sample in larger samples in the non-timestamp
528 		 * case, we could grossly overestimate the RTT especially
529 		 * with chatty applications or bulk transfer apps which
530 		 * are stalled on filesystem I/O.
531 		 *
532 		 * Also, since we are only going for a minimum in the
533 		 * non-timestamp case, we do not smooth things out
534 		 * else with timestamps disabled convergence takes too
535 		 * long.
536 		 */
537 		if (!win_dep) {
538 			m -= (new_sample >> 3);
539 			new_sample += m;
540 		} else {
541 			m <<= 3;
542 			if (m < new_sample)
543 				new_sample = m;
544 		}
545 	} else {
546 		/* No previous measure. */
547 		new_sample = m << 3;
548 	}
549 
550 	tp->rcv_rtt_est.rtt_us = new_sample;
551 }
552 
553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
554 {
555 	u32 delta_us;
556 
557 	if (tp->rcv_rtt_est.time == 0)
558 		goto new_measure;
559 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 		return;
561 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
562 	tcp_rcv_rtt_update(tp, delta_us, 1);
563 
564 new_measure:
565 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
566 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
567 }
568 
569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
570 					  const struct sk_buff *skb)
571 {
572 	struct tcp_sock *tp = tcp_sk(sk);
573 
574 	if (tp->rx_opt.rcv_tsecr &&
575 	    (TCP_SKB_CB(skb)->end_seq -
576 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
577 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
578 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
579 
580 		tcp_rcv_rtt_update(tp, delta_us, 0);
581 	}
582 }
583 
584 /*
585  * This function should be called every time data is copied to user space.
586  * It calculates the appropriate TCP receive buffer space.
587  */
588 void tcp_rcv_space_adjust(struct sock *sk)
589 {
590 	struct tcp_sock *tp = tcp_sk(sk);
591 	int time;
592 	int copied;
593 
594 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
595 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
596 		return;
597 
598 	/* Number of bytes copied to user in last RTT */
599 	copied = tp->copied_seq - tp->rcvq_space.seq;
600 	if (copied <= tp->rcvq_space.space)
601 		goto new_measure;
602 
603 	/* A bit of theory :
604 	 * copied = bytes received in previous RTT, our base window
605 	 * To cope with packet losses, we need a 2x factor
606 	 * To cope with slow start, and sender growing its cwin by 100 %
607 	 * every RTT, we need a 4x factor, because the ACK we are sending
608 	 * now is for the next RTT, not the current one :
609 	 * <prev RTT . ><current RTT .. ><next RTT .... >
610 	 */
611 
612 	if (sysctl_tcp_moderate_rcvbuf &&
613 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
614 		int rcvwin, rcvmem, rcvbuf;
615 
616 		/* minimal window to cope with packet losses, assuming
617 		 * steady state. Add some cushion because of small variations.
618 		 */
619 		rcvwin = (copied << 1) + 16 * tp->advmss;
620 
621 		/* If rate increased by 25%,
622 		 *	assume slow start, rcvwin = 3 * copied
623 		 * If rate increased by 50%,
624 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
625 		 */
626 		if (copied >=
627 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
628 			if (copied >=
629 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
630 				rcvwin <<= 1;
631 			else
632 				rcvwin += (rcvwin >> 1);
633 		}
634 
635 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
636 		while (tcp_win_from_space(rcvmem) < tp->advmss)
637 			rcvmem += 128;
638 
639 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
640 		if (rcvbuf > sk->sk_rcvbuf) {
641 			sk->sk_rcvbuf = rcvbuf;
642 
643 			/* Make the window clamp follow along.  */
644 			tp->window_clamp = rcvwin;
645 		}
646 	}
647 	tp->rcvq_space.space = copied;
648 
649 new_measure:
650 	tp->rcvq_space.seq = tp->copied_seq;
651 	tp->rcvq_space.time = tp->tcp_mstamp;
652 }
653 
654 /* There is something which you must keep in mind when you analyze the
655  * behavior of the tp->ato delayed ack timeout interval.  When a
656  * connection starts up, we want to ack as quickly as possible.  The
657  * problem is that "good" TCP's do slow start at the beginning of data
658  * transmission.  The means that until we send the first few ACK's the
659  * sender will sit on his end and only queue most of his data, because
660  * he can only send snd_cwnd unacked packets at any given time.  For
661  * each ACK we send, he increments snd_cwnd and transmits more of his
662  * queue.  -DaveM
663  */
664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
665 {
666 	struct tcp_sock *tp = tcp_sk(sk);
667 	struct inet_connection_sock *icsk = inet_csk(sk);
668 	u32 now;
669 
670 	inet_csk_schedule_ack(sk);
671 
672 	tcp_measure_rcv_mss(sk, skb);
673 
674 	tcp_rcv_rtt_measure(tp);
675 
676 	now = tcp_jiffies32;
677 
678 	if (!icsk->icsk_ack.ato) {
679 		/* The _first_ data packet received, initialize
680 		 * delayed ACK engine.
681 		 */
682 		tcp_incr_quickack(sk);
683 		icsk->icsk_ack.ato = TCP_ATO_MIN;
684 	} else {
685 		int m = now - icsk->icsk_ack.lrcvtime;
686 
687 		if (m <= TCP_ATO_MIN / 2) {
688 			/* The fastest case is the first. */
689 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
690 		} else if (m < icsk->icsk_ack.ato) {
691 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
692 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
693 				icsk->icsk_ack.ato = icsk->icsk_rto;
694 		} else if (m > icsk->icsk_rto) {
695 			/* Too long gap. Apparently sender failed to
696 			 * restart window, so that we send ACKs quickly.
697 			 */
698 			tcp_incr_quickack(sk);
699 			sk_mem_reclaim(sk);
700 		}
701 	}
702 	icsk->icsk_ack.lrcvtime = now;
703 
704 	tcp_ecn_check_ce(tp, skb);
705 
706 	if (skb->len >= 128)
707 		tcp_grow_window(sk, skb);
708 }
709 
710 /* Called to compute a smoothed rtt estimate. The data fed to this
711  * routine either comes from timestamps, or from segments that were
712  * known _not_ to have been retransmitted [see Karn/Partridge
713  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
714  * piece by Van Jacobson.
715  * NOTE: the next three routines used to be one big routine.
716  * To save cycles in the RFC 1323 implementation it was better to break
717  * it up into three procedures. -- erics
718  */
719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
720 {
721 	struct tcp_sock *tp = tcp_sk(sk);
722 	long m = mrtt_us; /* RTT */
723 	u32 srtt = tp->srtt_us;
724 
725 	/*	The following amusing code comes from Jacobson's
726 	 *	article in SIGCOMM '88.  Note that rtt and mdev
727 	 *	are scaled versions of rtt and mean deviation.
728 	 *	This is designed to be as fast as possible
729 	 *	m stands for "measurement".
730 	 *
731 	 *	On a 1990 paper the rto value is changed to:
732 	 *	RTO = rtt + 4 * mdev
733 	 *
734 	 * Funny. This algorithm seems to be very broken.
735 	 * These formulae increase RTO, when it should be decreased, increase
736 	 * too slowly, when it should be increased quickly, decrease too quickly
737 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
738 	 * does not matter how to _calculate_ it. Seems, it was trap
739 	 * that VJ failed to avoid. 8)
740 	 */
741 	if (srtt != 0) {
742 		m -= (srtt >> 3);	/* m is now error in rtt est */
743 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
744 		if (m < 0) {
745 			m = -m;		/* m is now abs(error) */
746 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
747 			/* This is similar to one of Eifel findings.
748 			 * Eifel blocks mdev updates when rtt decreases.
749 			 * This solution is a bit different: we use finer gain
750 			 * for mdev in this case (alpha*beta).
751 			 * Like Eifel it also prevents growth of rto,
752 			 * but also it limits too fast rto decreases,
753 			 * happening in pure Eifel.
754 			 */
755 			if (m > 0)
756 				m >>= 3;
757 		} else {
758 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
759 		}
760 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
761 		if (tp->mdev_us > tp->mdev_max_us) {
762 			tp->mdev_max_us = tp->mdev_us;
763 			if (tp->mdev_max_us > tp->rttvar_us)
764 				tp->rttvar_us = tp->mdev_max_us;
765 		}
766 		if (after(tp->snd_una, tp->rtt_seq)) {
767 			if (tp->mdev_max_us < tp->rttvar_us)
768 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
769 			tp->rtt_seq = tp->snd_nxt;
770 			tp->mdev_max_us = tcp_rto_min_us(sk);
771 		}
772 	} else {
773 		/* no previous measure. */
774 		srtt = m << 3;		/* take the measured time to be rtt */
775 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
776 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
777 		tp->mdev_max_us = tp->rttvar_us;
778 		tp->rtt_seq = tp->snd_nxt;
779 	}
780 	tp->srtt_us = max(1U, srtt);
781 }
782 
783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
784  * Note: TCP stack does not yet implement pacing.
785  * FQ packet scheduler can be used to implement cheap but effective
786  * TCP pacing, to smooth the burst on large writes when packets
787  * in flight is significantly lower than cwnd (or rwin)
788  */
789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
791 
792 static void tcp_update_pacing_rate(struct sock *sk)
793 {
794 	const struct tcp_sock *tp = tcp_sk(sk);
795 	u64 rate;
796 
797 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
798 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
799 
800 	/* current rate is (cwnd * mss) / srtt
801 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
802 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 	 *
804 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
805 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
806 	 *	 end of slow start and should slow down.
807 	 */
808 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
809 		rate *= sysctl_tcp_pacing_ss_ratio;
810 	else
811 		rate *= sysctl_tcp_pacing_ca_ratio;
812 
813 	rate *= max(tp->snd_cwnd, tp->packets_out);
814 
815 	if (likely(tp->srtt_us))
816 		do_div(rate, tp->srtt_us);
817 
818 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
819 	 * without any lock. We want to make sure compiler wont store
820 	 * intermediate values in this location.
821 	 */
822 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
823 						sk->sk_max_pacing_rate);
824 }
825 
826 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
827  * routine referred to above.
828  */
829 static void tcp_set_rto(struct sock *sk)
830 {
831 	const struct tcp_sock *tp = tcp_sk(sk);
832 	/* Old crap is replaced with new one. 8)
833 	 *
834 	 * More seriously:
835 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
836 	 *    It cannot be less due to utterly erratic ACK generation made
837 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
838 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
839 	 *    is invisible. Actually, Linux-2.4 also generates erratic
840 	 *    ACKs in some circumstances.
841 	 */
842 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
843 
844 	/* 2. Fixups made earlier cannot be right.
845 	 *    If we do not estimate RTO correctly without them,
846 	 *    all the algo is pure shit and should be replaced
847 	 *    with correct one. It is exactly, which we pretend to do.
848 	 */
849 
850 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
851 	 * guarantees that rto is higher.
852 	 */
853 	tcp_bound_rto(sk);
854 }
855 
856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
857 {
858 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
859 
860 	if (!cwnd)
861 		cwnd = TCP_INIT_CWND;
862 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
863 }
864 
865 /*
866  * Packet counting of FACK is based on in-order assumptions, therefore TCP
867  * disables it when reordering is detected
868  */
869 void tcp_disable_fack(struct tcp_sock *tp)
870 {
871 	/* RFC3517 uses different metric in lost marker => reset on change */
872 	if (tcp_is_fack(tp))
873 		tp->lost_skb_hint = NULL;
874 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875 }
876 
877 /* Take a notice that peer is sending D-SACKs */
878 static void tcp_dsack_seen(struct tcp_sock *tp)
879 {
880 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881 }
882 
883 static void tcp_update_reordering(struct sock *sk, const int metric,
884 				  const int ts)
885 {
886 	struct tcp_sock *tp = tcp_sk(sk);
887 	int mib_idx;
888 
889 	if (WARN_ON_ONCE(metric < 0))
890 		return;
891 
892 	if (metric > tp->reordering) {
893 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
894 
895 #if FASTRETRANS_DEBUG > 1
896 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 			 tp->reordering,
899 			 tp->fackets_out,
900 			 tp->sacked_out,
901 			 tp->undo_marker ? tp->undo_retrans : 0);
902 #endif
903 		tcp_disable_fack(tp);
904 	}
905 
906 	tp->rack.reord = 1;
907 
908 	/* This exciting event is worth to be remembered. 8) */
909 	if (ts)
910 		mib_idx = LINUX_MIB_TCPTSREORDER;
911 	else if (tcp_is_reno(tp))
912 		mib_idx = LINUX_MIB_TCPRENOREORDER;
913 	else if (tcp_is_fack(tp))
914 		mib_idx = LINUX_MIB_TCPFACKREORDER;
915 	else
916 		mib_idx = LINUX_MIB_TCPSACKREORDER;
917 
918 	NET_INC_STATS(sock_net(sk), mib_idx);
919 }
920 
921 /* This must be called before lost_out is incremented */
922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
923 {
924 	if (!tp->retransmit_skb_hint ||
925 	    before(TCP_SKB_CB(skb)->seq,
926 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
927 		tp->retransmit_skb_hint = skb;
928 }
929 
930 /* Sum the number of packets on the wire we have marked as lost.
931  * There are two cases we care about here:
932  * a) Packet hasn't been marked lost (nor retransmitted),
933  *    and this is the first loss.
934  * b) Packet has been marked both lost and retransmitted,
935  *    and this means we think it was lost again.
936  */
937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
940 
941 	if (!(sacked & TCPCB_LOST) ||
942 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
943 		tp->lost += tcp_skb_pcount(skb);
944 }
945 
946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
947 {
948 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 		tcp_verify_retransmit_hint(tp, skb);
950 
951 		tp->lost_out += tcp_skb_pcount(skb);
952 		tcp_sum_lost(tp, skb);
953 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
954 	}
955 }
956 
957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
958 {
959 	tcp_verify_retransmit_hint(tp, skb);
960 
961 	tcp_sum_lost(tp, skb);
962 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
963 		tp->lost_out += tcp_skb_pcount(skb);
964 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
965 	}
966 }
967 
968 /* This procedure tags the retransmission queue when SACKs arrive.
969  *
970  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
971  * Packets in queue with these bits set are counted in variables
972  * sacked_out, retrans_out and lost_out, correspondingly.
973  *
974  * Valid combinations are:
975  * Tag  InFlight	Description
976  * 0	1		- orig segment is in flight.
977  * S	0		- nothing flies, orig reached receiver.
978  * L	0		- nothing flies, orig lost by net.
979  * R	2		- both orig and retransmit are in flight.
980  * L|R	1		- orig is lost, retransmit is in flight.
981  * S|R  1		- orig reached receiver, retrans is still in flight.
982  * (L|S|R is logically valid, it could occur when L|R is sacked,
983  *  but it is equivalent to plain S and code short-curcuits it to S.
984  *  L|S is logically invalid, it would mean -1 packet in flight 8))
985  *
986  * These 6 states form finite state machine, controlled by the following events:
987  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
988  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
989  * 3. Loss detection event of two flavors:
990  *	A. Scoreboard estimator decided the packet is lost.
991  *	   A'. Reno "three dupacks" marks head of queue lost.
992  *	   A''. Its FACK modification, head until snd.fack is lost.
993  *	B. SACK arrives sacking SND.NXT at the moment, when the
994  *	   segment was retransmitted.
995  * 4. D-SACK added new rule: D-SACK changes any tag to S.
996  *
997  * It is pleasant to note, that state diagram turns out to be commutative,
998  * so that we are allowed not to be bothered by order of our actions,
999  * when multiple events arrive simultaneously. (see the function below).
1000  *
1001  * Reordering detection.
1002  * --------------------
1003  * Reordering metric is maximal distance, which a packet can be displaced
1004  * in packet stream. With SACKs we can estimate it:
1005  *
1006  * 1. SACK fills old hole and the corresponding segment was not
1007  *    ever retransmitted -> reordering. Alas, we cannot use it
1008  *    when segment was retransmitted.
1009  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1010  *    for retransmitted and already SACKed segment -> reordering..
1011  * Both of these heuristics are not used in Loss state, when we cannot
1012  * account for retransmits accurately.
1013  *
1014  * SACK block validation.
1015  * ----------------------
1016  *
1017  * SACK block range validation checks that the received SACK block fits to
1018  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1019  * Note that SND.UNA is not included to the range though being valid because
1020  * it means that the receiver is rather inconsistent with itself reporting
1021  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1022  * perfectly valid, however, in light of RFC2018 which explicitly states
1023  * that "SACK block MUST reflect the newest segment.  Even if the newest
1024  * segment is going to be discarded ...", not that it looks very clever
1025  * in case of head skb. Due to potentional receiver driven attacks, we
1026  * choose to avoid immediate execution of a walk in write queue due to
1027  * reneging and defer head skb's loss recovery to standard loss recovery
1028  * procedure that will eventually trigger (nothing forbids us doing this).
1029  *
1030  * Implements also blockage to start_seq wrap-around. Problem lies in the
1031  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1032  * there's no guarantee that it will be before snd_nxt (n). The problem
1033  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1034  * wrap (s_w):
1035  *
1036  *         <- outs wnd ->                          <- wrapzone ->
1037  *         u     e      n                         u_w   e_w  s n_w
1038  *         |     |      |                          |     |   |  |
1039  * |<------------+------+----- TCP seqno space --------------+---------->|
1040  * ...-- <2^31 ->|                                           |<--------...
1041  * ...---- >2^31 ------>|                                    |<--------...
1042  *
1043  * Current code wouldn't be vulnerable but it's better still to discard such
1044  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1045  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1046  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1047  * equal to the ideal case (infinite seqno space without wrap caused issues).
1048  *
1049  * With D-SACK the lower bound is extended to cover sequence space below
1050  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1051  * again, D-SACK block must not to go across snd_una (for the same reason as
1052  * for the normal SACK blocks, explained above). But there all simplicity
1053  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1054  * fully below undo_marker they do not affect behavior in anyway and can
1055  * therefore be safely ignored. In rare cases (which are more or less
1056  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1057  * fragmentation and packet reordering past skb's retransmission. To consider
1058  * them correctly, the acceptable range must be extended even more though
1059  * the exact amount is rather hard to quantify. However, tp->max_window can
1060  * be used as an exaggerated estimate.
1061  */
1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1063 				   u32 start_seq, u32 end_seq)
1064 {
1065 	/* Too far in future, or reversed (interpretation is ambiguous) */
1066 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1067 		return false;
1068 
1069 	/* Nasty start_seq wrap-around check (see comments above) */
1070 	if (!before(start_seq, tp->snd_nxt))
1071 		return false;
1072 
1073 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1074 	 * start_seq == snd_una is non-sensical (see comments above)
1075 	 */
1076 	if (after(start_seq, tp->snd_una))
1077 		return true;
1078 
1079 	if (!is_dsack || !tp->undo_marker)
1080 		return false;
1081 
1082 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1083 	if (after(end_seq, tp->snd_una))
1084 		return false;
1085 
1086 	if (!before(start_seq, tp->undo_marker))
1087 		return true;
1088 
1089 	/* Too old */
1090 	if (!after(end_seq, tp->undo_marker))
1091 		return false;
1092 
1093 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1094 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1095 	 */
1096 	return !before(start_seq, end_seq - tp->max_window);
1097 }
1098 
1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1100 			    struct tcp_sack_block_wire *sp, int num_sacks,
1101 			    u32 prior_snd_una)
1102 {
1103 	struct tcp_sock *tp = tcp_sk(sk);
1104 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1105 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1106 	bool dup_sack = false;
1107 
1108 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1109 		dup_sack = true;
1110 		tcp_dsack_seen(tp);
1111 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1112 	} else if (num_sacks > 1) {
1113 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1114 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1115 
1116 		if (!after(end_seq_0, end_seq_1) &&
1117 		    !before(start_seq_0, start_seq_1)) {
1118 			dup_sack = true;
1119 			tcp_dsack_seen(tp);
1120 			NET_INC_STATS(sock_net(sk),
1121 					LINUX_MIB_TCPDSACKOFORECV);
1122 		}
1123 	}
1124 
1125 	/* D-SACK for already forgotten data... Do dumb counting. */
1126 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1127 	    !after(end_seq_0, prior_snd_una) &&
1128 	    after(end_seq_0, tp->undo_marker))
1129 		tp->undo_retrans--;
1130 
1131 	return dup_sack;
1132 }
1133 
1134 struct tcp_sacktag_state {
1135 	int	reord;
1136 	int	fack_count;
1137 	/* Timestamps for earliest and latest never-retransmitted segment
1138 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1139 	 * but congestion control should still get an accurate delay signal.
1140 	 */
1141 	u64	first_sackt;
1142 	u64	last_sackt;
1143 	struct rate_sample *rate;
1144 	int	flag;
1145 };
1146 
1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1148  * the incoming SACK may not exactly match but we can find smaller MSS
1149  * aligned portion of it that matches. Therefore we might need to fragment
1150  * which may fail and creates some hassle (caller must handle error case
1151  * returns).
1152  *
1153  * FIXME: this could be merged to shift decision code
1154  */
1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1156 				  u32 start_seq, u32 end_seq)
1157 {
1158 	int err;
1159 	bool in_sack;
1160 	unsigned int pkt_len;
1161 	unsigned int mss;
1162 
1163 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1164 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1165 
1166 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1167 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1168 		mss = tcp_skb_mss(skb);
1169 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1170 
1171 		if (!in_sack) {
1172 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1173 			if (pkt_len < mss)
1174 				pkt_len = mss;
1175 		} else {
1176 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1177 			if (pkt_len < mss)
1178 				return -EINVAL;
1179 		}
1180 
1181 		/* Round if necessary so that SACKs cover only full MSSes
1182 		 * and/or the remaining small portion (if present)
1183 		 */
1184 		if (pkt_len > mss) {
1185 			unsigned int new_len = (pkt_len / mss) * mss;
1186 			if (!in_sack && new_len < pkt_len)
1187 				new_len += mss;
1188 			pkt_len = new_len;
1189 		}
1190 
1191 		if (pkt_len >= skb->len && !in_sack)
1192 			return 0;
1193 
1194 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1195 		if (err < 0)
1196 			return err;
1197 	}
1198 
1199 	return in_sack;
1200 }
1201 
1202 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1203 static u8 tcp_sacktag_one(struct sock *sk,
1204 			  struct tcp_sacktag_state *state, u8 sacked,
1205 			  u32 start_seq, u32 end_seq,
1206 			  int dup_sack, int pcount,
1207 			  u64 xmit_time)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 	int fack_count = state->fack_count;
1211 
1212 	/* Account D-SACK for retransmitted packet. */
1213 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1214 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1215 		    after(end_seq, tp->undo_marker))
1216 			tp->undo_retrans--;
1217 		if (sacked & TCPCB_SACKED_ACKED)
1218 			state->reord = min(fack_count, state->reord);
1219 	}
1220 
1221 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1222 	if (!after(end_seq, tp->snd_una))
1223 		return sacked;
1224 
1225 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1226 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1227 
1228 		if (sacked & TCPCB_SACKED_RETRANS) {
1229 			/* If the segment is not tagged as lost,
1230 			 * we do not clear RETRANS, believing
1231 			 * that retransmission is still in flight.
1232 			 */
1233 			if (sacked & TCPCB_LOST) {
1234 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1235 				tp->lost_out -= pcount;
1236 				tp->retrans_out -= pcount;
1237 			}
1238 		} else {
1239 			if (!(sacked & TCPCB_RETRANS)) {
1240 				/* New sack for not retransmitted frame,
1241 				 * which was in hole. It is reordering.
1242 				 */
1243 				if (before(start_seq,
1244 					   tcp_highest_sack_seq(tp)))
1245 					state->reord = min(fack_count,
1246 							   state->reord);
1247 				if (!after(end_seq, tp->high_seq))
1248 					state->flag |= FLAG_ORIG_SACK_ACKED;
1249 				if (state->first_sackt == 0)
1250 					state->first_sackt = xmit_time;
1251 				state->last_sackt = xmit_time;
1252 			}
1253 
1254 			if (sacked & TCPCB_LOST) {
1255 				sacked &= ~TCPCB_LOST;
1256 				tp->lost_out -= pcount;
1257 			}
1258 		}
1259 
1260 		sacked |= TCPCB_SACKED_ACKED;
1261 		state->flag |= FLAG_DATA_SACKED;
1262 		tp->sacked_out += pcount;
1263 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1264 
1265 		fack_count += pcount;
1266 
1267 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1268 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1269 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1270 			tp->lost_cnt_hint += pcount;
1271 
1272 		if (fack_count > tp->fackets_out)
1273 			tp->fackets_out = fack_count;
1274 	}
1275 
1276 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1277 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1278 	 * are accounted above as well.
1279 	 */
1280 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1281 		sacked &= ~TCPCB_SACKED_RETRANS;
1282 		tp->retrans_out -= pcount;
1283 	}
1284 
1285 	return sacked;
1286 }
1287 
1288 /* Shift newly-SACKed bytes from this skb to the immediately previous
1289  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1290  */
1291 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1292 			    struct tcp_sacktag_state *state,
1293 			    unsigned int pcount, int shifted, int mss,
1294 			    bool dup_sack)
1295 {
1296 	struct tcp_sock *tp = tcp_sk(sk);
1297 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1298 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1299 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1300 
1301 	BUG_ON(!pcount);
1302 
1303 	/* Adjust counters and hints for the newly sacked sequence
1304 	 * range but discard the return value since prev is already
1305 	 * marked. We must tag the range first because the seq
1306 	 * advancement below implicitly advances
1307 	 * tcp_highest_sack_seq() when skb is highest_sack.
1308 	 */
1309 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1310 			start_seq, end_seq, dup_sack, pcount,
1311 			skb->skb_mstamp);
1312 	tcp_rate_skb_delivered(sk, skb, state->rate);
1313 
1314 	if (skb == tp->lost_skb_hint)
1315 		tp->lost_cnt_hint += pcount;
1316 
1317 	TCP_SKB_CB(prev)->end_seq += shifted;
1318 	TCP_SKB_CB(skb)->seq += shifted;
1319 
1320 	tcp_skb_pcount_add(prev, pcount);
1321 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1322 	tcp_skb_pcount_add(skb, -pcount);
1323 
1324 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1325 	 * in theory this shouldn't be necessary but as long as DSACK
1326 	 * code can come after this skb later on it's better to keep
1327 	 * setting gso_size to something.
1328 	 */
1329 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1330 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1331 
1332 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1333 	if (tcp_skb_pcount(skb) <= 1)
1334 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1335 
1336 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1337 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1338 
1339 	if (skb->len > 0) {
1340 		BUG_ON(!tcp_skb_pcount(skb));
1341 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1342 		return false;
1343 	}
1344 
1345 	/* Whole SKB was eaten :-) */
1346 
1347 	if (skb == tp->retransmit_skb_hint)
1348 		tp->retransmit_skb_hint = prev;
1349 	if (skb == tp->lost_skb_hint) {
1350 		tp->lost_skb_hint = prev;
1351 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1352 	}
1353 
1354 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1355 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1356 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1357 		TCP_SKB_CB(prev)->end_seq++;
1358 
1359 	if (skb == tcp_highest_sack(sk))
1360 		tcp_advance_highest_sack(sk, skb);
1361 
1362 	tcp_skb_collapse_tstamp(prev, skb);
1363 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1364 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1365 
1366 	tcp_unlink_write_queue(skb, sk);
1367 	sk_wmem_free_skb(sk, skb);
1368 
1369 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1370 
1371 	return true;
1372 }
1373 
1374 /* I wish gso_size would have a bit more sane initialization than
1375  * something-or-zero which complicates things
1376  */
1377 static int tcp_skb_seglen(const struct sk_buff *skb)
1378 {
1379 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1380 }
1381 
1382 /* Shifting pages past head area doesn't work */
1383 static int skb_can_shift(const struct sk_buff *skb)
1384 {
1385 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1386 }
1387 
1388 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1389  * skb.
1390  */
1391 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1392 					  struct tcp_sacktag_state *state,
1393 					  u32 start_seq, u32 end_seq,
1394 					  bool dup_sack)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 	struct sk_buff *prev;
1398 	int mss;
1399 	int pcount = 0;
1400 	int len;
1401 	int in_sack;
1402 
1403 	if (!sk_can_gso(sk))
1404 		goto fallback;
1405 
1406 	/* Normally R but no L won't result in plain S */
1407 	if (!dup_sack &&
1408 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1409 		goto fallback;
1410 	if (!skb_can_shift(skb))
1411 		goto fallback;
1412 	/* This frame is about to be dropped (was ACKed). */
1413 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1414 		goto fallback;
1415 
1416 	/* Can only happen with delayed DSACK + discard craziness */
1417 	if (unlikely(skb == tcp_write_queue_head(sk)))
1418 		goto fallback;
1419 	prev = tcp_write_queue_prev(sk, skb);
1420 
1421 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1422 		goto fallback;
1423 
1424 	if (!tcp_skb_can_collapse_to(prev))
1425 		goto fallback;
1426 
1427 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1428 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1429 
1430 	if (in_sack) {
1431 		len = skb->len;
1432 		pcount = tcp_skb_pcount(skb);
1433 		mss = tcp_skb_seglen(skb);
1434 
1435 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1436 		 * drop this restriction as unnecessary
1437 		 */
1438 		if (mss != tcp_skb_seglen(prev))
1439 			goto fallback;
1440 	} else {
1441 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1442 			goto noop;
1443 		/* CHECKME: This is non-MSS split case only?, this will
1444 		 * cause skipped skbs due to advancing loop btw, original
1445 		 * has that feature too
1446 		 */
1447 		if (tcp_skb_pcount(skb) <= 1)
1448 			goto noop;
1449 
1450 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1451 		if (!in_sack) {
1452 			/* TODO: head merge to next could be attempted here
1453 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1454 			 * though it might not be worth of the additional hassle
1455 			 *
1456 			 * ...we can probably just fallback to what was done
1457 			 * previously. We could try merging non-SACKed ones
1458 			 * as well but it probably isn't going to buy off
1459 			 * because later SACKs might again split them, and
1460 			 * it would make skb timestamp tracking considerably
1461 			 * harder problem.
1462 			 */
1463 			goto fallback;
1464 		}
1465 
1466 		len = end_seq - TCP_SKB_CB(skb)->seq;
1467 		BUG_ON(len < 0);
1468 		BUG_ON(len > skb->len);
1469 
1470 		/* MSS boundaries should be honoured or else pcount will
1471 		 * severely break even though it makes things bit trickier.
1472 		 * Optimize common case to avoid most of the divides
1473 		 */
1474 		mss = tcp_skb_mss(skb);
1475 
1476 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1477 		 * drop this restriction as unnecessary
1478 		 */
1479 		if (mss != tcp_skb_seglen(prev))
1480 			goto fallback;
1481 
1482 		if (len == mss) {
1483 			pcount = 1;
1484 		} else if (len < mss) {
1485 			goto noop;
1486 		} else {
1487 			pcount = len / mss;
1488 			len = pcount * mss;
1489 		}
1490 	}
1491 
1492 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1493 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1494 		goto fallback;
1495 
1496 	if (!skb_shift(prev, skb, len))
1497 		goto fallback;
1498 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1499 		goto out;
1500 
1501 	/* Hole filled allows collapsing with the next as well, this is very
1502 	 * useful when hole on every nth skb pattern happens
1503 	 */
1504 	if (prev == tcp_write_queue_tail(sk))
1505 		goto out;
1506 	skb = tcp_write_queue_next(sk, prev);
1507 
1508 	if (!skb_can_shift(skb) ||
1509 	    (skb == tcp_send_head(sk)) ||
1510 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511 	    (mss != tcp_skb_seglen(skb)))
1512 		goto out;
1513 
1514 	len = skb->len;
1515 	if (skb_shift(prev, skb, len)) {
1516 		pcount += tcp_skb_pcount(skb);
1517 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1518 	}
1519 
1520 out:
1521 	state->fack_count += pcount;
1522 	return prev;
1523 
1524 noop:
1525 	return skb;
1526 
1527 fallback:
1528 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1529 	return NULL;
1530 }
1531 
1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 					struct tcp_sack_block *next_dup,
1534 					struct tcp_sacktag_state *state,
1535 					u32 start_seq, u32 end_seq,
1536 					bool dup_sack_in)
1537 {
1538 	struct tcp_sock *tp = tcp_sk(sk);
1539 	struct sk_buff *tmp;
1540 
1541 	tcp_for_write_queue_from(skb, sk) {
1542 		int in_sack = 0;
1543 		bool dup_sack = dup_sack_in;
1544 
1545 		if (skb == tcp_send_head(sk))
1546 			break;
1547 
1548 		/* queue is in-order => we can short-circuit the walk early */
1549 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1550 			break;
1551 
1552 		if (next_dup  &&
1553 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1554 			in_sack = tcp_match_skb_to_sack(sk, skb,
1555 							next_dup->start_seq,
1556 							next_dup->end_seq);
1557 			if (in_sack > 0)
1558 				dup_sack = true;
1559 		}
1560 
1561 		/* skb reference here is a bit tricky to get right, since
1562 		 * shifting can eat and free both this skb and the next,
1563 		 * so not even _safe variant of the loop is enough.
1564 		 */
1565 		if (in_sack <= 0) {
1566 			tmp = tcp_shift_skb_data(sk, skb, state,
1567 						 start_seq, end_seq, dup_sack);
1568 			if (tmp) {
1569 				if (tmp != skb) {
1570 					skb = tmp;
1571 					continue;
1572 				}
1573 
1574 				in_sack = 0;
1575 			} else {
1576 				in_sack = tcp_match_skb_to_sack(sk, skb,
1577 								start_seq,
1578 								end_seq);
1579 			}
1580 		}
1581 
1582 		if (unlikely(in_sack < 0))
1583 			break;
1584 
1585 		if (in_sack) {
1586 			TCP_SKB_CB(skb)->sacked =
1587 				tcp_sacktag_one(sk,
1588 						state,
1589 						TCP_SKB_CB(skb)->sacked,
1590 						TCP_SKB_CB(skb)->seq,
1591 						TCP_SKB_CB(skb)->end_seq,
1592 						dup_sack,
1593 						tcp_skb_pcount(skb),
1594 						skb->skb_mstamp);
1595 			tcp_rate_skb_delivered(sk, skb, state->rate);
1596 
1597 			if (!before(TCP_SKB_CB(skb)->seq,
1598 				    tcp_highest_sack_seq(tp)))
1599 				tcp_advance_highest_sack(sk, skb);
1600 		}
1601 
1602 		state->fack_count += tcp_skb_pcount(skb);
1603 	}
1604 	return skb;
1605 }
1606 
1607 /* Avoid all extra work that is being done by sacktag while walking in
1608  * a normal way
1609  */
1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1611 					struct tcp_sacktag_state *state,
1612 					u32 skip_to_seq)
1613 {
1614 	tcp_for_write_queue_from(skb, sk) {
1615 		if (skb == tcp_send_head(sk))
1616 			break;
1617 
1618 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1619 			break;
1620 
1621 		state->fack_count += tcp_skb_pcount(skb);
1622 	}
1623 	return skb;
1624 }
1625 
1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1627 						struct sock *sk,
1628 						struct tcp_sack_block *next_dup,
1629 						struct tcp_sacktag_state *state,
1630 						u32 skip_to_seq)
1631 {
1632 	if (!next_dup)
1633 		return skb;
1634 
1635 	if (before(next_dup->start_seq, skip_to_seq)) {
1636 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1637 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1638 				       next_dup->start_seq, next_dup->end_seq,
1639 				       1);
1640 	}
1641 
1642 	return skb;
1643 }
1644 
1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1646 {
1647 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1648 }
1649 
1650 static int
1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1652 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1653 {
1654 	struct tcp_sock *tp = tcp_sk(sk);
1655 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1656 				    TCP_SKB_CB(ack_skb)->sacked);
1657 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1658 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1659 	struct tcp_sack_block *cache;
1660 	struct sk_buff *skb;
1661 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1662 	int used_sacks;
1663 	bool found_dup_sack = false;
1664 	int i, j;
1665 	int first_sack_index;
1666 
1667 	state->flag = 0;
1668 	state->reord = tp->packets_out;
1669 
1670 	if (!tp->sacked_out) {
1671 		if (WARN_ON(tp->fackets_out))
1672 			tp->fackets_out = 0;
1673 		tcp_highest_sack_reset(sk);
1674 	}
1675 
1676 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1677 					 num_sacks, prior_snd_una);
1678 	if (found_dup_sack) {
1679 		state->flag |= FLAG_DSACKING_ACK;
1680 		tp->delivered++; /* A spurious retransmission is delivered */
1681 	}
1682 
1683 	/* Eliminate too old ACKs, but take into
1684 	 * account more or less fresh ones, they can
1685 	 * contain valid SACK info.
1686 	 */
1687 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688 		return 0;
1689 
1690 	if (!tp->packets_out)
1691 		goto out;
1692 
1693 	used_sacks = 0;
1694 	first_sack_index = 0;
1695 	for (i = 0; i < num_sacks; i++) {
1696 		bool dup_sack = !i && found_dup_sack;
1697 
1698 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1699 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1700 
1701 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1702 					    sp[used_sacks].start_seq,
1703 					    sp[used_sacks].end_seq)) {
1704 			int mib_idx;
1705 
1706 			if (dup_sack) {
1707 				if (!tp->undo_marker)
1708 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1709 				else
1710 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1711 			} else {
1712 				/* Don't count olds caused by ACK reordering */
1713 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1714 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1715 					continue;
1716 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717 			}
1718 
1719 			NET_INC_STATS(sock_net(sk), mib_idx);
1720 			if (i == 0)
1721 				first_sack_index = -1;
1722 			continue;
1723 		}
1724 
1725 		/* Ignore very old stuff early */
1726 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1727 			continue;
1728 
1729 		used_sacks++;
1730 	}
1731 
1732 	/* order SACK blocks to allow in order walk of the retrans queue */
1733 	for (i = used_sacks - 1; i > 0; i--) {
1734 		for (j = 0; j < i; j++) {
1735 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1736 				swap(sp[j], sp[j + 1]);
1737 
1738 				/* Track where the first SACK block goes to */
1739 				if (j == first_sack_index)
1740 					first_sack_index = j + 1;
1741 			}
1742 		}
1743 	}
1744 
1745 	skb = tcp_write_queue_head(sk);
1746 	state->fack_count = 0;
1747 	i = 0;
1748 
1749 	if (!tp->sacked_out) {
1750 		/* It's already past, so skip checking against it */
1751 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1752 	} else {
1753 		cache = tp->recv_sack_cache;
1754 		/* Skip empty blocks in at head of the cache */
1755 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1756 		       !cache->end_seq)
1757 			cache++;
1758 	}
1759 
1760 	while (i < used_sacks) {
1761 		u32 start_seq = sp[i].start_seq;
1762 		u32 end_seq = sp[i].end_seq;
1763 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1764 		struct tcp_sack_block *next_dup = NULL;
1765 
1766 		if (found_dup_sack && ((i + 1) == first_sack_index))
1767 			next_dup = &sp[i + 1];
1768 
1769 		/* Skip too early cached blocks */
1770 		while (tcp_sack_cache_ok(tp, cache) &&
1771 		       !before(start_seq, cache->end_seq))
1772 			cache++;
1773 
1774 		/* Can skip some work by looking recv_sack_cache? */
1775 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1776 		    after(end_seq, cache->start_seq)) {
1777 
1778 			/* Head todo? */
1779 			if (before(start_seq, cache->start_seq)) {
1780 				skb = tcp_sacktag_skip(skb, sk, state,
1781 						       start_seq);
1782 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1783 						       state,
1784 						       start_seq,
1785 						       cache->start_seq,
1786 						       dup_sack);
1787 			}
1788 
1789 			/* Rest of the block already fully processed? */
1790 			if (!after(end_seq, cache->end_seq))
1791 				goto advance_sp;
1792 
1793 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1794 						       state,
1795 						       cache->end_seq);
1796 
1797 			/* ...tail remains todo... */
1798 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1799 				/* ...but better entrypoint exists! */
1800 				skb = tcp_highest_sack(sk);
1801 				if (!skb)
1802 					break;
1803 				state->fack_count = tp->fackets_out;
1804 				cache++;
1805 				goto walk;
1806 			}
1807 
1808 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1809 			/* Check overlap against next cached too (past this one already) */
1810 			cache++;
1811 			continue;
1812 		}
1813 
1814 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1815 			skb = tcp_highest_sack(sk);
1816 			if (!skb)
1817 				break;
1818 			state->fack_count = tp->fackets_out;
1819 		}
1820 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1821 
1822 walk:
1823 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1824 				       start_seq, end_seq, dup_sack);
1825 
1826 advance_sp:
1827 		i++;
1828 	}
1829 
1830 	/* Clear the head of the cache sack blocks so we can skip it next time */
1831 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1832 		tp->recv_sack_cache[i].start_seq = 0;
1833 		tp->recv_sack_cache[i].end_seq = 0;
1834 	}
1835 	for (j = 0; j < used_sacks; j++)
1836 		tp->recv_sack_cache[i++] = sp[j];
1837 
1838 	if ((state->reord < tp->fackets_out) &&
1839 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1840 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1841 
1842 	tcp_verify_left_out(tp);
1843 out:
1844 
1845 #if FASTRETRANS_DEBUG > 0
1846 	WARN_ON((int)tp->sacked_out < 0);
1847 	WARN_ON((int)tp->lost_out < 0);
1848 	WARN_ON((int)tp->retrans_out < 0);
1849 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850 #endif
1851 	return state->flag;
1852 }
1853 
1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1855  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856  */
1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858 {
1859 	u32 holes;
1860 
1861 	holes = max(tp->lost_out, 1U);
1862 	holes = min(holes, tp->packets_out);
1863 
1864 	if ((tp->sacked_out + holes) > tp->packets_out) {
1865 		tp->sacked_out = tp->packets_out - holes;
1866 		return true;
1867 	}
1868 	return false;
1869 }
1870 
1871 /* If we receive more dupacks than we expected counting segments
1872  * in assumption of absent reordering, interpret this as reordering.
1873  * The only another reason could be bug in receiver TCP.
1874  */
1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876 {
1877 	struct tcp_sock *tp = tcp_sk(sk);
1878 	if (tcp_limit_reno_sacked(tp))
1879 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1880 }
1881 
1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1883 
1884 static void tcp_add_reno_sack(struct sock *sk)
1885 {
1886 	struct tcp_sock *tp = tcp_sk(sk);
1887 	u32 prior_sacked = tp->sacked_out;
1888 
1889 	tp->sacked_out++;
1890 	tcp_check_reno_reordering(sk, 0);
1891 	if (tp->sacked_out > prior_sacked)
1892 		tp->delivered++; /* Some out-of-order packet is delivered */
1893 	tcp_verify_left_out(tp);
1894 }
1895 
1896 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1897 
1898 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1899 {
1900 	struct tcp_sock *tp = tcp_sk(sk);
1901 
1902 	if (acked > 0) {
1903 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1904 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1905 		if (acked - 1 >= tp->sacked_out)
1906 			tp->sacked_out = 0;
1907 		else
1908 			tp->sacked_out -= acked - 1;
1909 	}
1910 	tcp_check_reno_reordering(sk, acked);
1911 	tcp_verify_left_out(tp);
1912 }
1913 
1914 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1915 {
1916 	tp->sacked_out = 0;
1917 }
1918 
1919 void tcp_clear_retrans(struct tcp_sock *tp)
1920 {
1921 	tp->retrans_out = 0;
1922 	tp->lost_out = 0;
1923 	tp->undo_marker = 0;
1924 	tp->undo_retrans = -1;
1925 	tp->fackets_out = 0;
1926 	tp->sacked_out = 0;
1927 }
1928 
1929 static inline void tcp_init_undo(struct tcp_sock *tp)
1930 {
1931 	tp->undo_marker = tp->snd_una;
1932 	/* Retransmission still in flight may cause DSACKs later. */
1933 	tp->undo_retrans = tp->retrans_out ? : -1;
1934 }
1935 
1936 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1937  * and reset tags completely, otherwise preserve SACKs. If receiver
1938  * dropped its ofo queue, we will know this due to reneging detection.
1939  */
1940 void tcp_enter_loss(struct sock *sk)
1941 {
1942 	const struct inet_connection_sock *icsk = inet_csk(sk);
1943 	struct tcp_sock *tp = tcp_sk(sk);
1944 	struct net *net = sock_net(sk);
1945 	struct sk_buff *skb;
1946 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1947 	bool is_reneg;			/* is receiver reneging on SACKs? */
1948 	bool mark_lost;
1949 
1950 	/* Reduce ssthresh if it has not yet been made inside this window. */
1951 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1952 	    !after(tp->high_seq, tp->snd_una) ||
1953 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1954 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1955 		tp->prior_cwnd = tp->snd_cwnd;
1956 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1957 		tcp_ca_event(sk, CA_EVENT_LOSS);
1958 		tcp_init_undo(tp);
1959 	}
1960 	tp->snd_cwnd	   = 1;
1961 	tp->snd_cwnd_cnt   = 0;
1962 	tp->snd_cwnd_stamp = tcp_jiffies32;
1963 
1964 	tp->retrans_out = 0;
1965 	tp->lost_out = 0;
1966 
1967 	if (tcp_is_reno(tp))
1968 		tcp_reset_reno_sack(tp);
1969 
1970 	skb = tcp_write_queue_head(sk);
1971 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1972 	if (is_reneg) {
1973 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1974 		tp->sacked_out = 0;
1975 		tp->fackets_out = 0;
1976 	}
1977 	tcp_clear_all_retrans_hints(tp);
1978 
1979 	tcp_for_write_queue(skb, sk) {
1980 		if (skb == tcp_send_head(sk))
1981 			break;
1982 
1983 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1984 			     is_reneg);
1985 		if (mark_lost)
1986 			tcp_sum_lost(tp, skb);
1987 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1988 		if (mark_lost) {
1989 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1990 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1991 			tp->lost_out += tcp_skb_pcount(skb);
1992 		}
1993 	}
1994 	tcp_verify_left_out(tp);
1995 
1996 	/* Timeout in disordered state after receiving substantial DUPACKs
1997 	 * suggests that the degree of reordering is over-estimated.
1998 	 */
1999 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2000 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2001 		tp->reordering = min_t(unsigned int, tp->reordering,
2002 				       net->ipv4.sysctl_tcp_reordering);
2003 	tcp_set_ca_state(sk, TCP_CA_Loss);
2004 	tp->high_seq = tp->snd_nxt;
2005 	tcp_ecn_queue_cwr(tp);
2006 
2007 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2008 	 * loss recovery is underway except recurring timeout(s) on
2009 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2010 	 *
2011 	 * In theory F-RTO can be used repeatedly during loss recovery.
2012 	 * In practice this interacts badly with broken middle-boxes that
2013 	 * falsely raise the receive window, which results in repeated
2014 	 * timeouts and stop-and-go behavior.
2015 	 */
2016 	tp->frto = sysctl_tcp_frto &&
2017 		   (new_recovery || icsk->icsk_retransmits) &&
2018 		   !inet_csk(sk)->icsk_mtup.probe_size;
2019 }
2020 
2021 /* If ACK arrived pointing to a remembered SACK, it means that our
2022  * remembered SACKs do not reflect real state of receiver i.e.
2023  * receiver _host_ is heavily congested (or buggy).
2024  *
2025  * To avoid big spurious retransmission bursts due to transient SACK
2026  * scoreboard oddities that look like reneging, we give the receiver a
2027  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2028  * restore sanity to the SACK scoreboard. If the apparent reneging
2029  * persists until this RTO then we'll clear the SACK scoreboard.
2030  */
2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2032 {
2033 	if (flag & FLAG_SACK_RENEGING) {
2034 		struct tcp_sock *tp = tcp_sk(sk);
2035 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2036 					  msecs_to_jiffies(10));
2037 
2038 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2039 					  delay, TCP_RTO_MAX);
2040 		return true;
2041 	}
2042 	return false;
2043 }
2044 
2045 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2046 {
2047 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2048 }
2049 
2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2051  * counter when SACK is enabled (without SACK, sacked_out is used for
2052  * that purpose).
2053  *
2054  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2055  * segments up to the highest received SACK block so far and holes in
2056  * between them.
2057  *
2058  * With reordering, holes may still be in flight, so RFC3517 recovery
2059  * uses pure sacked_out (total number of SACKed segments) even though
2060  * it violates the RFC that uses duplicate ACKs, often these are equal
2061  * but when e.g. out-of-window ACKs or packet duplication occurs,
2062  * they differ. Since neither occurs due to loss, TCP should really
2063  * ignore them.
2064  */
2065 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2066 {
2067 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2068 }
2069 
2070 /* Linux NewReno/SACK/FACK/ECN state machine.
2071  * --------------------------------------
2072  *
2073  * "Open"	Normal state, no dubious events, fast path.
2074  * "Disorder"   In all the respects it is "Open",
2075  *		but requires a bit more attention. It is entered when
2076  *		we see some SACKs or dupacks. It is split of "Open"
2077  *		mainly to move some processing from fast path to slow one.
2078  * "CWR"	CWND was reduced due to some Congestion Notification event.
2079  *		It can be ECN, ICMP source quench, local device congestion.
2080  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2081  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2082  *
2083  * tcp_fastretrans_alert() is entered:
2084  * - each incoming ACK, if state is not "Open"
2085  * - when arrived ACK is unusual, namely:
2086  *	* SACK
2087  *	* Duplicate ACK.
2088  *	* ECN ECE.
2089  *
2090  * Counting packets in flight is pretty simple.
2091  *
2092  *	in_flight = packets_out - left_out + retrans_out
2093  *
2094  *	packets_out is SND.NXT-SND.UNA counted in packets.
2095  *
2096  *	retrans_out is number of retransmitted segments.
2097  *
2098  *	left_out is number of segments left network, but not ACKed yet.
2099  *
2100  *		left_out = sacked_out + lost_out
2101  *
2102  *     sacked_out: Packets, which arrived to receiver out of order
2103  *		   and hence not ACKed. With SACKs this number is simply
2104  *		   amount of SACKed data. Even without SACKs
2105  *		   it is easy to give pretty reliable estimate of this number,
2106  *		   counting duplicate ACKs.
2107  *
2108  *       lost_out: Packets lost by network. TCP has no explicit
2109  *		   "loss notification" feedback from network (for now).
2110  *		   It means that this number can be only _guessed_.
2111  *		   Actually, it is the heuristics to predict lossage that
2112  *		   distinguishes different algorithms.
2113  *
2114  *	F.e. after RTO, when all the queue is considered as lost,
2115  *	lost_out = packets_out and in_flight = retrans_out.
2116  *
2117  *		Essentially, we have now a few algorithms detecting
2118  *		lost packets.
2119  *
2120  *		If the receiver supports SACK:
2121  *
2122  *		RFC6675/3517: It is the conventional algorithm. A packet is
2123  *		considered lost if the number of higher sequence packets
2124  *		SACKed is greater than or equal the DUPACK thoreshold
2125  *		(reordering). This is implemented in tcp_mark_head_lost and
2126  *		tcp_update_scoreboard.
2127  *
2128  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2129  *		(2017-) that checks timing instead of counting DUPACKs.
2130  *		Essentially a packet is considered lost if it's not S/ACKed
2131  *		after RTT + reordering_window, where both metrics are
2132  *		dynamically measured and adjusted. This is implemented in
2133  *		tcp_rack_mark_lost.
2134  *
2135  *		FACK (Disabled by default. Subsumbed by RACK):
2136  *		It is the simplest heuristics. As soon as we decided
2137  *		that something is lost, we decide that _all_ not SACKed
2138  *		packets until the most forward SACK are lost. I.e.
2139  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2140  *		It is absolutely correct estimate, if network does not reorder
2141  *		packets. And it loses any connection to reality when reordering
2142  *		takes place. We use FACK by default until reordering
2143  *		is suspected on the path to this destination.
2144  *
2145  *		If the receiver does not support SACK:
2146  *
2147  *		NewReno (RFC6582): in Recovery we assume that one segment
2148  *		is lost (classic Reno). While we are in Recovery and
2149  *		a partial ACK arrives, we assume that one more packet
2150  *		is lost (NewReno). This heuristics are the same in NewReno
2151  *		and SACK.
2152  *
2153  * Really tricky (and requiring careful tuning) part of algorithm
2154  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2155  * The first determines the moment _when_ we should reduce CWND and,
2156  * hence, slow down forward transmission. In fact, it determines the moment
2157  * when we decide that hole is caused by loss, rather than by a reorder.
2158  *
2159  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2160  * holes, caused by lost packets.
2161  *
2162  * And the most logically complicated part of algorithm is undo
2163  * heuristics. We detect false retransmits due to both too early
2164  * fast retransmit (reordering) and underestimated RTO, analyzing
2165  * timestamps and D-SACKs. When we detect that some segments were
2166  * retransmitted by mistake and CWND reduction was wrong, we undo
2167  * window reduction and abort recovery phase. This logic is hidden
2168  * inside several functions named tcp_try_undo_<something>.
2169  */
2170 
2171 /* This function decides, when we should leave Disordered state
2172  * and enter Recovery phase, reducing congestion window.
2173  *
2174  * Main question: may we further continue forward transmission
2175  * with the same cwnd?
2176  */
2177 static bool tcp_time_to_recover(struct sock *sk, int flag)
2178 {
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 
2181 	/* Trick#1: The loss is proven. */
2182 	if (tp->lost_out)
2183 		return true;
2184 
2185 	/* Not-A-Trick#2 : Classic rule... */
2186 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2187 		return true;
2188 
2189 	return false;
2190 }
2191 
2192 /* Detect loss in event "A" above by marking head of queue up as lost.
2193  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2194  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2195  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2196  * the maximum SACKed segments to pass before reaching this limit.
2197  */
2198 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2199 {
2200 	struct tcp_sock *tp = tcp_sk(sk);
2201 	struct sk_buff *skb;
2202 	int cnt, oldcnt, lost;
2203 	unsigned int mss;
2204 	/* Use SACK to deduce losses of new sequences sent during recovery */
2205 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2206 
2207 	WARN_ON(packets > tp->packets_out);
2208 	if (tp->lost_skb_hint) {
2209 		skb = tp->lost_skb_hint;
2210 		cnt = tp->lost_cnt_hint;
2211 		/* Head already handled? */
2212 		if (mark_head && skb != tcp_write_queue_head(sk))
2213 			return;
2214 	} else {
2215 		skb = tcp_write_queue_head(sk);
2216 		cnt = 0;
2217 	}
2218 
2219 	tcp_for_write_queue_from(skb, sk) {
2220 		if (skb == tcp_send_head(sk))
2221 			break;
2222 		/* TODO: do this better */
2223 		/* this is not the most efficient way to do this... */
2224 		tp->lost_skb_hint = skb;
2225 		tp->lost_cnt_hint = cnt;
2226 
2227 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2228 			break;
2229 
2230 		oldcnt = cnt;
2231 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2232 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2233 			cnt += tcp_skb_pcount(skb);
2234 
2235 		if (cnt > packets) {
2236 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2237 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2238 			    (oldcnt >= packets))
2239 				break;
2240 
2241 			mss = tcp_skb_mss(skb);
2242 			/* If needed, chop off the prefix to mark as lost. */
2243 			lost = (packets - oldcnt) * mss;
2244 			if (lost < skb->len &&
2245 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2246 				break;
2247 			cnt = packets;
2248 		}
2249 
2250 		tcp_skb_mark_lost(tp, skb);
2251 
2252 		if (mark_head)
2253 			break;
2254 	}
2255 	tcp_verify_left_out(tp);
2256 }
2257 
2258 /* Account newly detected lost packet(s) */
2259 
2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 
2264 	if (tcp_is_reno(tp)) {
2265 		tcp_mark_head_lost(sk, 1, 1);
2266 	} else if (tcp_is_fack(tp)) {
2267 		int lost = tp->fackets_out - tp->reordering;
2268 		if (lost <= 0)
2269 			lost = 1;
2270 		tcp_mark_head_lost(sk, lost, 0);
2271 	} else {
2272 		int sacked_upto = tp->sacked_out - tp->reordering;
2273 		if (sacked_upto >= 0)
2274 			tcp_mark_head_lost(sk, sacked_upto, 0);
2275 		else if (fast_rexmit)
2276 			tcp_mark_head_lost(sk, 1, 1);
2277 	}
2278 }
2279 
2280 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2281 {
2282 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2283 	       before(tp->rx_opt.rcv_tsecr, when);
2284 }
2285 
2286 /* skb is spurious retransmitted if the returned timestamp echo
2287  * reply is prior to the skb transmission time
2288  */
2289 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2290 				     const struct sk_buff *skb)
2291 {
2292 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2293 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2294 }
2295 
2296 /* Nothing was retransmitted or returned timestamp is less
2297  * than timestamp of the first retransmission.
2298  */
2299 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2300 {
2301 	return !tp->retrans_stamp ||
2302 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2303 }
2304 
2305 /* Undo procedures. */
2306 
2307 /* We can clear retrans_stamp when there are no retransmissions in the
2308  * window. It would seem that it is trivially available for us in
2309  * tp->retrans_out, however, that kind of assumptions doesn't consider
2310  * what will happen if errors occur when sending retransmission for the
2311  * second time. ...It could the that such segment has only
2312  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2313  * the head skb is enough except for some reneging corner cases that
2314  * are not worth the effort.
2315  *
2316  * Main reason for all this complexity is the fact that connection dying
2317  * time now depends on the validity of the retrans_stamp, in particular,
2318  * that successive retransmissions of a segment must not advance
2319  * retrans_stamp under any conditions.
2320  */
2321 static bool tcp_any_retrans_done(const struct sock *sk)
2322 {
2323 	const struct tcp_sock *tp = tcp_sk(sk);
2324 	struct sk_buff *skb;
2325 
2326 	if (tp->retrans_out)
2327 		return true;
2328 
2329 	skb = tcp_write_queue_head(sk);
2330 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2331 		return true;
2332 
2333 	return false;
2334 }
2335 
2336 #if FASTRETRANS_DEBUG > 1
2337 static void DBGUNDO(struct sock *sk, const char *msg)
2338 {
2339 	struct tcp_sock *tp = tcp_sk(sk);
2340 	struct inet_sock *inet = inet_sk(sk);
2341 
2342 	if (sk->sk_family == AF_INET) {
2343 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2344 			 msg,
2345 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2346 			 tp->snd_cwnd, tcp_left_out(tp),
2347 			 tp->snd_ssthresh, tp->prior_ssthresh,
2348 			 tp->packets_out);
2349 	}
2350 #if IS_ENABLED(CONFIG_IPV6)
2351 	else if (sk->sk_family == AF_INET6) {
2352 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2353 			 msg,
2354 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2355 			 tp->snd_cwnd, tcp_left_out(tp),
2356 			 tp->snd_ssthresh, tp->prior_ssthresh,
2357 			 tp->packets_out);
2358 	}
2359 #endif
2360 }
2361 #else
2362 #define DBGUNDO(x...) do { } while (0)
2363 #endif
2364 
2365 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 
2369 	if (unmark_loss) {
2370 		struct sk_buff *skb;
2371 
2372 		tcp_for_write_queue(skb, sk) {
2373 			if (skb == tcp_send_head(sk))
2374 				break;
2375 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2376 		}
2377 		tp->lost_out = 0;
2378 		tcp_clear_all_retrans_hints(tp);
2379 	}
2380 
2381 	if (tp->prior_ssthresh) {
2382 		const struct inet_connection_sock *icsk = inet_csk(sk);
2383 
2384 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2385 
2386 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2387 			tp->snd_ssthresh = tp->prior_ssthresh;
2388 			tcp_ecn_withdraw_cwr(tp);
2389 		}
2390 	}
2391 	tp->snd_cwnd_stamp = tcp_jiffies32;
2392 	tp->undo_marker = 0;
2393 }
2394 
2395 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2396 {
2397 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2398 }
2399 
2400 /* People celebrate: "We love our President!" */
2401 static bool tcp_try_undo_recovery(struct sock *sk)
2402 {
2403 	struct tcp_sock *tp = tcp_sk(sk);
2404 
2405 	if (tcp_may_undo(tp)) {
2406 		int mib_idx;
2407 
2408 		/* Happy end! We did not retransmit anything
2409 		 * or our original transmission succeeded.
2410 		 */
2411 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2412 		tcp_undo_cwnd_reduction(sk, false);
2413 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2414 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2415 		else
2416 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2417 
2418 		NET_INC_STATS(sock_net(sk), mib_idx);
2419 	}
2420 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2421 		/* Hold old state until something *above* high_seq
2422 		 * is ACKed. For Reno it is MUST to prevent false
2423 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2424 		if (!tcp_any_retrans_done(sk))
2425 			tp->retrans_stamp = 0;
2426 		return true;
2427 	}
2428 	tcp_set_ca_state(sk, TCP_CA_Open);
2429 	return false;
2430 }
2431 
2432 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2433 static bool tcp_try_undo_dsack(struct sock *sk)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 
2437 	if (tp->undo_marker && !tp->undo_retrans) {
2438 		DBGUNDO(sk, "D-SACK");
2439 		tcp_undo_cwnd_reduction(sk, false);
2440 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2441 		return true;
2442 	}
2443 	return false;
2444 }
2445 
2446 /* Undo during loss recovery after partial ACK or using F-RTO. */
2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 
2451 	if (frto_undo || tcp_may_undo(tp)) {
2452 		tcp_undo_cwnd_reduction(sk, true);
2453 
2454 		DBGUNDO(sk, "partial loss");
2455 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 		if (frto_undo)
2457 			NET_INC_STATS(sock_net(sk),
2458 					LINUX_MIB_TCPSPURIOUSRTOS);
2459 		inet_csk(sk)->icsk_retransmits = 0;
2460 		if (frto_undo || tcp_is_sack(tp))
2461 			tcp_set_ca_state(sk, TCP_CA_Open);
2462 		return true;
2463 	}
2464 	return false;
2465 }
2466 
2467 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2468  * It computes the number of packets to send (sndcnt) based on packets newly
2469  * delivered:
2470  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2471  *	cwnd reductions across a full RTT.
2472  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2473  *      But when the retransmits are acked without further losses, PRR
2474  *      slow starts cwnd up to ssthresh to speed up the recovery.
2475  */
2476 static void tcp_init_cwnd_reduction(struct sock *sk)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 
2480 	tp->high_seq = tp->snd_nxt;
2481 	tp->tlp_high_seq = 0;
2482 	tp->snd_cwnd_cnt = 0;
2483 	tp->prior_cwnd = tp->snd_cwnd;
2484 	tp->prr_delivered = 0;
2485 	tp->prr_out = 0;
2486 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2487 	tcp_ecn_queue_cwr(tp);
2488 }
2489 
2490 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 	int sndcnt = 0;
2494 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2495 
2496 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2497 		return;
2498 
2499 	tp->prr_delivered += newly_acked_sacked;
2500 	if (delta < 0) {
2501 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2502 			       tp->prior_cwnd - 1;
2503 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2504 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2505 		   !(flag & FLAG_LOST_RETRANS)) {
2506 		sndcnt = min_t(int, delta,
2507 			       max_t(int, tp->prr_delivered - tp->prr_out,
2508 				     newly_acked_sacked) + 1);
2509 	} else {
2510 		sndcnt = min(delta, newly_acked_sacked);
2511 	}
2512 	/* Force a fast retransmit upon entering fast recovery */
2513 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2514 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2515 }
2516 
2517 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2522 		return;
2523 
2524 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2525 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2526 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2527 		tp->snd_cwnd = tp->snd_ssthresh;
2528 		tp->snd_cwnd_stamp = tcp_jiffies32;
2529 	}
2530 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2531 }
2532 
2533 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2534 void tcp_enter_cwr(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	tp->prior_ssthresh = 0;
2539 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2540 		tp->undo_marker = 0;
2541 		tcp_init_cwnd_reduction(sk);
2542 		tcp_set_ca_state(sk, TCP_CA_CWR);
2543 	}
2544 }
2545 EXPORT_SYMBOL(tcp_enter_cwr);
2546 
2547 static void tcp_try_keep_open(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 	int state = TCP_CA_Open;
2551 
2552 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2553 		state = TCP_CA_Disorder;
2554 
2555 	if (inet_csk(sk)->icsk_ca_state != state) {
2556 		tcp_set_ca_state(sk, state);
2557 		tp->high_seq = tp->snd_nxt;
2558 	}
2559 }
2560 
2561 static void tcp_try_to_open(struct sock *sk, int flag)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	tcp_verify_left_out(tp);
2566 
2567 	if (!tcp_any_retrans_done(sk))
2568 		tp->retrans_stamp = 0;
2569 
2570 	if (flag & FLAG_ECE)
2571 		tcp_enter_cwr(sk);
2572 
2573 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2574 		tcp_try_keep_open(sk);
2575 	}
2576 }
2577 
2578 static void tcp_mtup_probe_failed(struct sock *sk)
2579 {
2580 	struct inet_connection_sock *icsk = inet_csk(sk);
2581 
2582 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2583 	icsk->icsk_mtup.probe_size = 0;
2584 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2585 }
2586 
2587 static void tcp_mtup_probe_success(struct sock *sk)
2588 {
2589 	struct tcp_sock *tp = tcp_sk(sk);
2590 	struct inet_connection_sock *icsk = inet_csk(sk);
2591 
2592 	/* FIXME: breaks with very large cwnd */
2593 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2594 	tp->snd_cwnd = tp->snd_cwnd *
2595 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2596 		       icsk->icsk_mtup.probe_size;
2597 	tp->snd_cwnd_cnt = 0;
2598 	tp->snd_cwnd_stamp = tcp_jiffies32;
2599 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2600 
2601 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2602 	icsk->icsk_mtup.probe_size = 0;
2603 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2604 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2605 }
2606 
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608  * tcp_timer. This is used for path mtu discovery.
2609  * The socket is already locked here.
2610  */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 	const struct inet_connection_sock *icsk = inet_csk(sk);
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	struct sk_buff *skb;
2616 	unsigned int mss = tcp_current_mss(sk);
2617 	u32 prior_lost = tp->lost_out;
2618 
2619 	tcp_for_write_queue(skb, sk) {
2620 		if (skb == tcp_send_head(sk))
2621 			break;
2622 		if (tcp_skb_seglen(skb) > mss &&
2623 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 				tp->retrans_out -= tcp_skb_pcount(skb);
2627 			}
2628 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 		}
2630 	}
2631 
2632 	tcp_clear_retrans_hints_partial(tp);
2633 
2634 	if (prior_lost == tp->lost_out)
2635 		return;
2636 
2637 	if (tcp_is_reno(tp))
2638 		tcp_limit_reno_sacked(tp);
2639 
2640 	tcp_verify_left_out(tp);
2641 
2642 	/* Don't muck with the congestion window here.
2643 	 * Reason is that we do not increase amount of _data_
2644 	 * in network, but units changed and effective
2645 	 * cwnd/ssthresh really reduced now.
2646 	 */
2647 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 		tp->high_seq = tp->snd_nxt;
2649 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 		tp->prior_ssthresh = 0;
2651 		tp->undo_marker = 0;
2652 		tcp_set_ca_state(sk, TCP_CA_Loss);
2653 	}
2654 	tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657 
2658 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 	int mib_idx;
2662 
2663 	if (tcp_is_reno(tp))
2664 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 	else
2666 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667 
2668 	NET_INC_STATS(sock_net(sk), mib_idx);
2669 
2670 	tp->prior_ssthresh = 0;
2671 	tcp_init_undo(tp);
2672 
2673 	if (!tcp_in_cwnd_reduction(sk)) {
2674 		if (!ece_ack)
2675 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2676 		tcp_init_cwnd_reduction(sk);
2677 	}
2678 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2679 }
2680 
2681 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2682  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2683  */
2684 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2685 			     int *rexmit)
2686 {
2687 	struct tcp_sock *tp = tcp_sk(sk);
2688 	bool recovered = !before(tp->snd_una, tp->high_seq);
2689 
2690 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2691 	    tcp_try_undo_loss(sk, false))
2692 		return;
2693 
2694 	/* The ACK (s)acks some never-retransmitted data meaning not all
2695 	 * the data packets before the timeout were lost. Therefore we
2696 	 * undo the congestion window and state. This is essentially
2697 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2698 	 * a retransmitted skb is permantly marked, we can apply such an
2699 	 * operation even if F-RTO was not used.
2700 	 */
2701 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2702 	    tcp_try_undo_loss(sk, tp->undo_marker))
2703 		return;
2704 
2705 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 		if (after(tp->snd_nxt, tp->high_seq)) {
2707 			if (flag & FLAG_DATA_SACKED || is_dupack)
2708 				tp->frto = 0; /* Step 3.a. loss was real */
2709 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2710 			tp->high_seq = tp->snd_nxt;
2711 			/* Step 2.b. Try send new data (but deferred until cwnd
2712 			 * is updated in tcp_ack()). Otherwise fall back to
2713 			 * the conventional recovery.
2714 			 */
2715 			if (tcp_send_head(sk) &&
2716 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2717 				*rexmit = REXMIT_NEW;
2718 				return;
2719 			}
2720 			tp->frto = 0;
2721 		}
2722 	}
2723 
2724 	if (recovered) {
2725 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2726 		tcp_try_undo_recovery(sk);
2727 		return;
2728 	}
2729 	if (tcp_is_reno(tp)) {
2730 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2731 		 * delivered. Lower inflight to clock out (re)tranmissions.
2732 		 */
2733 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2734 			tcp_add_reno_sack(sk);
2735 		else if (flag & FLAG_SND_UNA_ADVANCED)
2736 			tcp_reset_reno_sack(tp);
2737 	}
2738 	*rexmit = REXMIT_LOST;
2739 }
2740 
2741 /* Undo during fast recovery after partial ACK. */
2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2743 {
2744 	struct tcp_sock *tp = tcp_sk(sk);
2745 
2746 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2747 		/* Plain luck! Hole if filled with delayed
2748 		 * packet, rather than with a retransmit.
2749 		 */
2750 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2751 
2752 		/* We are getting evidence that the reordering degree is higher
2753 		 * than we realized. If there are no retransmits out then we
2754 		 * can undo. Otherwise we clock out new packets but do not
2755 		 * mark more packets lost or retransmit more.
2756 		 */
2757 		if (tp->retrans_out)
2758 			return true;
2759 
2760 		if (!tcp_any_retrans_done(sk))
2761 			tp->retrans_stamp = 0;
2762 
2763 		DBGUNDO(sk, "partial recovery");
2764 		tcp_undo_cwnd_reduction(sk, true);
2765 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2766 		tcp_try_keep_open(sk);
2767 		return true;
2768 	}
2769 	return false;
2770 }
2771 
2772 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2773 {
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 
2776 	/* Use RACK to detect loss */
2777 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2778 		u32 prior_retrans = tp->retrans_out;
2779 
2780 		tcp_rack_mark_lost(sk);
2781 		if (prior_retrans > tp->retrans_out)
2782 			*ack_flag |= FLAG_LOST_RETRANS;
2783 	}
2784 }
2785 
2786 /* Process an event, which can update packets-in-flight not trivially.
2787  * Main goal of this function is to calculate new estimate for left_out,
2788  * taking into account both packets sitting in receiver's buffer and
2789  * packets lost by network.
2790  *
2791  * Besides that it updates the congestion state when packet loss or ECN
2792  * is detected. But it does not reduce the cwnd, it is done by the
2793  * congestion control later.
2794  *
2795  * It does _not_ decide what to send, it is made in function
2796  * tcp_xmit_retransmit_queue().
2797  */
2798 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2799 				  bool is_dupack, int *ack_flag, int *rexmit)
2800 {
2801 	struct inet_connection_sock *icsk = inet_csk(sk);
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	int fast_rexmit = 0, flag = *ack_flag;
2804 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2805 				    (tcp_fackets_out(tp) > tp->reordering));
2806 
2807 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2808 		tp->sacked_out = 0;
2809 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2810 		tp->fackets_out = 0;
2811 
2812 	/* Now state machine starts.
2813 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2814 	if (flag & FLAG_ECE)
2815 		tp->prior_ssthresh = 0;
2816 
2817 	/* B. In all the states check for reneging SACKs. */
2818 	if (tcp_check_sack_reneging(sk, flag))
2819 		return;
2820 
2821 	/* C. Check consistency of the current state. */
2822 	tcp_verify_left_out(tp);
2823 
2824 	/* D. Check state exit conditions. State can be terminated
2825 	 *    when high_seq is ACKed. */
2826 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2827 		WARN_ON(tp->retrans_out != 0);
2828 		tp->retrans_stamp = 0;
2829 	} else if (!before(tp->snd_una, tp->high_seq)) {
2830 		switch (icsk->icsk_ca_state) {
2831 		case TCP_CA_CWR:
2832 			/* CWR is to be held something *above* high_seq
2833 			 * is ACKed for CWR bit to reach receiver. */
2834 			if (tp->snd_una != tp->high_seq) {
2835 				tcp_end_cwnd_reduction(sk);
2836 				tcp_set_ca_state(sk, TCP_CA_Open);
2837 			}
2838 			break;
2839 
2840 		case TCP_CA_Recovery:
2841 			if (tcp_is_reno(tp))
2842 				tcp_reset_reno_sack(tp);
2843 			if (tcp_try_undo_recovery(sk))
2844 				return;
2845 			tcp_end_cwnd_reduction(sk);
2846 			break;
2847 		}
2848 	}
2849 
2850 	/* E. Process state. */
2851 	switch (icsk->icsk_ca_state) {
2852 	case TCP_CA_Recovery:
2853 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2854 			if (tcp_is_reno(tp) && is_dupack)
2855 				tcp_add_reno_sack(sk);
2856 		} else {
2857 			if (tcp_try_undo_partial(sk, acked))
2858 				return;
2859 			/* Partial ACK arrived. Force fast retransmit. */
2860 			do_lost = tcp_is_reno(tp) ||
2861 				  tcp_fackets_out(tp) > tp->reordering;
2862 		}
2863 		if (tcp_try_undo_dsack(sk)) {
2864 			tcp_try_keep_open(sk);
2865 			return;
2866 		}
2867 		tcp_rack_identify_loss(sk, ack_flag);
2868 		break;
2869 	case TCP_CA_Loss:
2870 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2871 		tcp_rack_identify_loss(sk, ack_flag);
2872 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2873 		      (*ack_flag & FLAG_LOST_RETRANS)))
2874 			return;
2875 		/* Change state if cwnd is undone or retransmits are lost */
2876 	default:
2877 		if (tcp_is_reno(tp)) {
2878 			if (flag & FLAG_SND_UNA_ADVANCED)
2879 				tcp_reset_reno_sack(tp);
2880 			if (is_dupack)
2881 				tcp_add_reno_sack(sk);
2882 		}
2883 
2884 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2885 			tcp_try_undo_dsack(sk);
2886 
2887 		tcp_rack_identify_loss(sk, ack_flag);
2888 		if (!tcp_time_to_recover(sk, flag)) {
2889 			tcp_try_to_open(sk, flag);
2890 			return;
2891 		}
2892 
2893 		/* MTU probe failure: don't reduce cwnd */
2894 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2895 		    icsk->icsk_mtup.probe_size &&
2896 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2897 			tcp_mtup_probe_failed(sk);
2898 			/* Restores the reduction we did in tcp_mtup_probe() */
2899 			tp->snd_cwnd++;
2900 			tcp_simple_retransmit(sk);
2901 			return;
2902 		}
2903 
2904 		/* Otherwise enter Recovery state */
2905 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2906 		fast_rexmit = 1;
2907 	}
2908 
2909 	if (do_lost)
2910 		tcp_update_scoreboard(sk, fast_rexmit);
2911 	*rexmit = REXMIT_LOST;
2912 }
2913 
2914 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2915 {
2916 	struct tcp_sock *tp = tcp_sk(sk);
2917 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2918 
2919 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2920 			   rtt_us ? : jiffies_to_usecs(1));
2921 }
2922 
2923 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2924 			       long seq_rtt_us, long sack_rtt_us,
2925 			       long ca_rtt_us, struct rate_sample *rs)
2926 {
2927 	const struct tcp_sock *tp = tcp_sk(sk);
2928 
2929 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2930 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2931 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2932 	 * is acked (RFC6298).
2933 	 */
2934 	if (seq_rtt_us < 0)
2935 		seq_rtt_us = sack_rtt_us;
2936 
2937 	/* RTTM Rule: A TSecr value received in a segment is used to
2938 	 * update the averaged RTT measurement only if the segment
2939 	 * acknowledges some new data, i.e., only if it advances the
2940 	 * left edge of the send window.
2941 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2942 	 */
2943 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2944 	    flag & FLAG_ACKED) {
2945 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2946 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2947 
2948 		seq_rtt_us = ca_rtt_us = delta_us;
2949 	}
2950 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2951 	if (seq_rtt_us < 0)
2952 		return false;
2953 
2954 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2955 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2956 	 * values will be skipped with the seq_rtt_us < 0 check above.
2957 	 */
2958 	tcp_update_rtt_min(sk, ca_rtt_us);
2959 	tcp_rtt_estimator(sk, seq_rtt_us);
2960 	tcp_set_rto(sk);
2961 
2962 	/* RFC6298: only reset backoff on valid RTT measurement. */
2963 	inet_csk(sk)->icsk_backoff = 0;
2964 	return true;
2965 }
2966 
2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2969 {
2970 	struct rate_sample rs;
2971 	long rtt_us = -1L;
2972 
2973 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2974 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2975 
2976 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2977 }
2978 
2979 
2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 	const struct inet_connection_sock *icsk = inet_csk(sk);
2983 
2984 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2986 }
2987 
2988 /* Restart timer after forward progress on connection.
2989  * RFC2988 recommends to restart timer to now+rto.
2990  */
2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 	const struct inet_connection_sock *icsk = inet_csk(sk);
2994 	struct tcp_sock *tp = tcp_sk(sk);
2995 
2996 	/* If the retrans timer is currently being used by Fast Open
2997 	 * for SYN-ACK retrans purpose, stay put.
2998 	 */
2999 	if (tp->fastopen_rsk)
3000 		return;
3001 
3002 	if (!tp->packets_out) {
3003 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 	} else {
3005 		u32 rto = inet_csk(sk)->icsk_rto;
3006 		/* Offset the time elapsed after installing regular RTO */
3007 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3008 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 			s64 delta_us = tcp_rto_delta_us(sk);
3010 			/* delta_us may not be positive if the socket is locked
3011 			 * when the retrans timer fires and is rescheduled.
3012 			 */
3013 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3014 		}
3015 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3016 					  TCP_RTO_MAX);
3017 	}
3018 }
3019 
3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3021 static void tcp_set_xmit_timer(struct sock *sk)
3022 {
3023 	if (!tcp_schedule_loss_probe(sk))
3024 		tcp_rearm_rto(sk);
3025 }
3026 
3027 /* If we get here, the whole TSO packet has not been acked. */
3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3029 {
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	u32 packets_acked;
3032 
3033 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3034 
3035 	packets_acked = tcp_skb_pcount(skb);
3036 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3037 		return 0;
3038 	packets_acked -= tcp_skb_pcount(skb);
3039 
3040 	if (packets_acked) {
3041 		BUG_ON(tcp_skb_pcount(skb) == 0);
3042 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3043 	}
3044 
3045 	return packets_acked;
3046 }
3047 
3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3049 			   u32 prior_snd_una)
3050 {
3051 	const struct skb_shared_info *shinfo;
3052 
3053 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3054 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3055 		return;
3056 
3057 	shinfo = skb_shinfo(skb);
3058 	if (!before(shinfo->tskey, prior_snd_una) &&
3059 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3060 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3061 }
3062 
3063 /* Remove acknowledged frames from the retransmission queue. If our packet
3064  * is before the ack sequence we can discard it as it's confirmed to have
3065  * arrived at the other end.
3066  */
3067 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3068 			       u32 prior_snd_una, int *acked,
3069 			       struct tcp_sacktag_state *sack)
3070 {
3071 	const struct inet_connection_sock *icsk = inet_csk(sk);
3072 	u64 first_ackt, last_ackt;
3073 	struct tcp_sock *tp = tcp_sk(sk);
3074 	u32 prior_sacked = tp->sacked_out;
3075 	u32 reord = tp->packets_out;
3076 	bool fully_acked = true;
3077 	long sack_rtt_us = -1L;
3078 	long seq_rtt_us = -1L;
3079 	long ca_rtt_us = -1L;
3080 	struct sk_buff *skb;
3081 	u32 pkts_acked = 0;
3082 	u32 last_in_flight = 0;
3083 	bool rtt_update;
3084 	int flag = 0;
3085 
3086 	first_ackt = 0;
3087 
3088 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3089 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3090 		u8 sacked = scb->sacked;
3091 		u32 acked_pcount;
3092 
3093 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3094 
3095 		/* Determine how many packets and what bytes were acked, tso and else */
3096 		if (after(scb->end_seq, tp->snd_una)) {
3097 			if (tcp_skb_pcount(skb) == 1 ||
3098 			    !after(tp->snd_una, scb->seq))
3099 				break;
3100 
3101 			acked_pcount = tcp_tso_acked(sk, skb);
3102 			if (!acked_pcount)
3103 				break;
3104 			fully_acked = false;
3105 		} else {
3106 			/* Speedup tcp_unlink_write_queue() and next loop */
3107 			prefetchw(skb->next);
3108 			acked_pcount = tcp_skb_pcount(skb);
3109 		}
3110 
3111 		if (unlikely(sacked & TCPCB_RETRANS)) {
3112 			if (sacked & TCPCB_SACKED_RETRANS)
3113 				tp->retrans_out -= acked_pcount;
3114 			flag |= FLAG_RETRANS_DATA_ACKED;
3115 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3116 			last_ackt = skb->skb_mstamp;
3117 			WARN_ON_ONCE(last_ackt == 0);
3118 			if (!first_ackt)
3119 				first_ackt = last_ackt;
3120 
3121 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3122 			reord = min(pkts_acked, reord);
3123 			if (!after(scb->end_seq, tp->high_seq))
3124 				flag |= FLAG_ORIG_SACK_ACKED;
3125 		}
3126 
3127 		if (sacked & TCPCB_SACKED_ACKED) {
3128 			tp->sacked_out -= acked_pcount;
3129 		} else if (tcp_is_sack(tp)) {
3130 			tp->delivered += acked_pcount;
3131 			if (!tcp_skb_spurious_retrans(tp, skb))
3132 				tcp_rack_advance(tp, sacked, scb->end_seq,
3133 						 skb->skb_mstamp);
3134 		}
3135 		if (sacked & TCPCB_LOST)
3136 			tp->lost_out -= acked_pcount;
3137 
3138 		tp->packets_out -= acked_pcount;
3139 		pkts_acked += acked_pcount;
3140 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3141 
3142 		/* Initial outgoing SYN's get put onto the write_queue
3143 		 * just like anything else we transmit.  It is not
3144 		 * true data, and if we misinform our callers that
3145 		 * this ACK acks real data, we will erroneously exit
3146 		 * connection startup slow start one packet too
3147 		 * quickly.  This is severely frowned upon behavior.
3148 		 */
3149 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3150 			flag |= FLAG_DATA_ACKED;
3151 		} else {
3152 			flag |= FLAG_SYN_ACKED;
3153 			tp->retrans_stamp = 0;
3154 		}
3155 
3156 		if (!fully_acked)
3157 			break;
3158 
3159 		tcp_unlink_write_queue(skb, sk);
3160 		sk_wmem_free_skb(sk, skb);
3161 		if (unlikely(skb == tp->retransmit_skb_hint))
3162 			tp->retransmit_skb_hint = NULL;
3163 		if (unlikely(skb == tp->lost_skb_hint))
3164 			tp->lost_skb_hint = NULL;
3165 	}
3166 
3167 	if (!skb)
3168 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3169 
3170 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3171 		tp->snd_up = tp->snd_una;
3172 
3173 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3174 		flag |= FLAG_SACK_RENEGING;
3175 
3176 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3177 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3178 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3179 	}
3180 	if (sack->first_sackt) {
3181 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3182 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3183 	}
3184 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3185 					ca_rtt_us, sack->rate);
3186 
3187 	if (flag & FLAG_ACKED) {
3188 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3189 		if (unlikely(icsk->icsk_mtup.probe_size &&
3190 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3191 			tcp_mtup_probe_success(sk);
3192 		}
3193 
3194 		if (tcp_is_reno(tp)) {
3195 			tcp_remove_reno_sacks(sk, pkts_acked);
3196 		} else {
3197 			int delta;
3198 
3199 			/* Non-retransmitted hole got filled? That's reordering */
3200 			if (reord < prior_fackets && reord <= tp->fackets_out)
3201 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3202 
3203 			delta = tcp_is_fack(tp) ? pkts_acked :
3204 						  prior_sacked - tp->sacked_out;
3205 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3206 		}
3207 
3208 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3209 
3210 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3211 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3212 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3213 		 * after when the head was last (re)transmitted. Otherwise the
3214 		 * timeout may continue to extend in loss recovery.
3215 		 */
3216 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3217 	}
3218 
3219 	if (icsk->icsk_ca_ops->pkts_acked) {
3220 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3221 					     .rtt_us = sack->rate->rtt_us,
3222 					     .in_flight = last_in_flight };
3223 
3224 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3225 	}
3226 
3227 #if FASTRETRANS_DEBUG > 0
3228 	WARN_ON((int)tp->sacked_out < 0);
3229 	WARN_ON((int)tp->lost_out < 0);
3230 	WARN_ON((int)tp->retrans_out < 0);
3231 	if (!tp->packets_out && tcp_is_sack(tp)) {
3232 		icsk = inet_csk(sk);
3233 		if (tp->lost_out) {
3234 			pr_debug("Leak l=%u %d\n",
3235 				 tp->lost_out, icsk->icsk_ca_state);
3236 			tp->lost_out = 0;
3237 		}
3238 		if (tp->sacked_out) {
3239 			pr_debug("Leak s=%u %d\n",
3240 				 tp->sacked_out, icsk->icsk_ca_state);
3241 			tp->sacked_out = 0;
3242 		}
3243 		if (tp->retrans_out) {
3244 			pr_debug("Leak r=%u %d\n",
3245 				 tp->retrans_out, icsk->icsk_ca_state);
3246 			tp->retrans_out = 0;
3247 		}
3248 	}
3249 #endif
3250 	*acked = pkts_acked;
3251 	return flag;
3252 }
3253 
3254 static void tcp_ack_probe(struct sock *sk)
3255 {
3256 	const struct tcp_sock *tp = tcp_sk(sk);
3257 	struct inet_connection_sock *icsk = inet_csk(sk);
3258 
3259 	/* Was it a usable window open? */
3260 
3261 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3262 		icsk->icsk_backoff = 0;
3263 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3264 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3265 		 * This function is not for random using!
3266 		 */
3267 	} else {
3268 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3269 
3270 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3271 					  when, TCP_RTO_MAX);
3272 	}
3273 }
3274 
3275 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3276 {
3277 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3278 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3279 }
3280 
3281 /* Decide wheather to run the increase function of congestion control. */
3282 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3283 {
3284 	/* If reordering is high then always grow cwnd whenever data is
3285 	 * delivered regardless of its ordering. Otherwise stay conservative
3286 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3287 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3288 	 * cwnd in tcp_fastretrans_alert() based on more states.
3289 	 */
3290 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3291 		return flag & FLAG_FORWARD_PROGRESS;
3292 
3293 	return flag & FLAG_DATA_ACKED;
3294 }
3295 
3296 /* The "ultimate" congestion control function that aims to replace the rigid
3297  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3298  * It's called toward the end of processing an ACK with precise rate
3299  * information. All transmission or retransmission are delayed afterwards.
3300  */
3301 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3302 			     int flag, const struct rate_sample *rs)
3303 {
3304 	const struct inet_connection_sock *icsk = inet_csk(sk);
3305 
3306 	if (icsk->icsk_ca_ops->cong_control) {
3307 		icsk->icsk_ca_ops->cong_control(sk, rs);
3308 		return;
3309 	}
3310 
3311 	if (tcp_in_cwnd_reduction(sk)) {
3312 		/* Reduce cwnd if state mandates */
3313 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3314 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3315 		/* Advance cwnd if state allows */
3316 		tcp_cong_avoid(sk, ack, acked_sacked);
3317 	}
3318 	tcp_update_pacing_rate(sk);
3319 }
3320 
3321 /* Check that window update is acceptable.
3322  * The function assumes that snd_una<=ack<=snd_next.
3323  */
3324 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3325 					const u32 ack, const u32 ack_seq,
3326 					const u32 nwin)
3327 {
3328 	return	after(ack, tp->snd_una) ||
3329 		after(ack_seq, tp->snd_wl1) ||
3330 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3331 }
3332 
3333 /* If we update tp->snd_una, also update tp->bytes_acked */
3334 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3335 {
3336 	u32 delta = ack - tp->snd_una;
3337 
3338 	sock_owned_by_me((struct sock *)tp);
3339 	tp->bytes_acked += delta;
3340 	tp->snd_una = ack;
3341 }
3342 
3343 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3344 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3345 {
3346 	u32 delta = seq - tp->rcv_nxt;
3347 
3348 	sock_owned_by_me((struct sock *)tp);
3349 	tp->bytes_received += delta;
3350 	tp->rcv_nxt = seq;
3351 }
3352 
3353 /* Update our send window.
3354  *
3355  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3356  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3357  */
3358 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3359 				 u32 ack_seq)
3360 {
3361 	struct tcp_sock *tp = tcp_sk(sk);
3362 	int flag = 0;
3363 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3364 
3365 	if (likely(!tcp_hdr(skb)->syn))
3366 		nwin <<= tp->rx_opt.snd_wscale;
3367 
3368 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3369 		flag |= FLAG_WIN_UPDATE;
3370 		tcp_update_wl(tp, ack_seq);
3371 
3372 		if (tp->snd_wnd != nwin) {
3373 			tp->snd_wnd = nwin;
3374 
3375 			/* Note, it is the only place, where
3376 			 * fast path is recovered for sending TCP.
3377 			 */
3378 			tp->pred_flags = 0;
3379 			tcp_fast_path_check(sk);
3380 
3381 			if (tcp_send_head(sk))
3382 				tcp_slow_start_after_idle_check(sk);
3383 
3384 			if (nwin > tp->max_window) {
3385 				tp->max_window = nwin;
3386 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3387 			}
3388 		}
3389 	}
3390 
3391 	tcp_snd_una_update(tp, ack);
3392 
3393 	return flag;
3394 }
3395 
3396 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3397 				   u32 *last_oow_ack_time)
3398 {
3399 	if (*last_oow_ack_time) {
3400 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3401 
3402 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3403 			NET_INC_STATS(net, mib_idx);
3404 			return true;	/* rate-limited: don't send yet! */
3405 		}
3406 	}
3407 
3408 	*last_oow_ack_time = tcp_jiffies32;
3409 
3410 	return false;	/* not rate-limited: go ahead, send dupack now! */
3411 }
3412 
3413 /* Return true if we're currently rate-limiting out-of-window ACKs and
3414  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3415  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3416  * attacks that send repeated SYNs or ACKs for the same connection. To
3417  * do this, we do not send a duplicate SYNACK or ACK if the remote
3418  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3419  */
3420 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3421 			  int mib_idx, u32 *last_oow_ack_time)
3422 {
3423 	/* Data packets without SYNs are not likely part of an ACK loop. */
3424 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3425 	    !tcp_hdr(skb)->syn)
3426 		return false;
3427 
3428 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3429 }
3430 
3431 /* RFC 5961 7 [ACK Throttling] */
3432 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3433 {
3434 	/* unprotected vars, we dont care of overwrites */
3435 	static u32 challenge_timestamp;
3436 	static unsigned int challenge_count;
3437 	struct tcp_sock *tp = tcp_sk(sk);
3438 	u32 count, now;
3439 
3440 	/* First check our per-socket dupack rate limit. */
3441 	if (__tcp_oow_rate_limited(sock_net(sk),
3442 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3443 				   &tp->last_oow_ack_time))
3444 		return;
3445 
3446 	/* Then check host-wide RFC 5961 rate limit. */
3447 	now = jiffies / HZ;
3448 	if (now != challenge_timestamp) {
3449 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3450 
3451 		challenge_timestamp = now;
3452 		WRITE_ONCE(challenge_count, half +
3453 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3454 	}
3455 	count = READ_ONCE(challenge_count);
3456 	if (count > 0) {
3457 		WRITE_ONCE(challenge_count, count - 1);
3458 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3459 		tcp_send_ack(sk);
3460 	}
3461 }
3462 
3463 static void tcp_store_ts_recent(struct tcp_sock *tp)
3464 {
3465 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3466 	tp->rx_opt.ts_recent_stamp = get_seconds();
3467 }
3468 
3469 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3470 {
3471 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3472 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3473 		 * extra check below makes sure this can only happen
3474 		 * for pure ACK frames.  -DaveM
3475 		 *
3476 		 * Not only, also it occurs for expired timestamps.
3477 		 */
3478 
3479 		if (tcp_paws_check(&tp->rx_opt, 0))
3480 			tcp_store_ts_recent(tp);
3481 	}
3482 }
3483 
3484 /* This routine deals with acks during a TLP episode.
3485  * We mark the end of a TLP episode on receiving TLP dupack or when
3486  * ack is after tlp_high_seq.
3487  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3488  */
3489 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3490 {
3491 	struct tcp_sock *tp = tcp_sk(sk);
3492 
3493 	if (before(ack, tp->tlp_high_seq))
3494 		return;
3495 
3496 	if (flag & FLAG_DSACKING_ACK) {
3497 		/* This DSACK means original and TLP probe arrived; no loss */
3498 		tp->tlp_high_seq = 0;
3499 	} else if (after(ack, tp->tlp_high_seq)) {
3500 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3501 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3502 		 */
3503 		tcp_init_cwnd_reduction(sk);
3504 		tcp_set_ca_state(sk, TCP_CA_CWR);
3505 		tcp_end_cwnd_reduction(sk);
3506 		tcp_try_keep_open(sk);
3507 		NET_INC_STATS(sock_net(sk),
3508 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3509 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3510 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3511 		/* Pure dupack: original and TLP probe arrived; no loss */
3512 		tp->tlp_high_seq = 0;
3513 	}
3514 }
3515 
3516 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3517 {
3518 	const struct inet_connection_sock *icsk = inet_csk(sk);
3519 
3520 	if (icsk->icsk_ca_ops->in_ack_event)
3521 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3522 }
3523 
3524 /* Congestion control has updated the cwnd already. So if we're in
3525  * loss recovery then now we do any new sends (for FRTO) or
3526  * retransmits (for CA_Loss or CA_recovery) that make sense.
3527  */
3528 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3529 {
3530 	struct tcp_sock *tp = tcp_sk(sk);
3531 
3532 	if (rexmit == REXMIT_NONE)
3533 		return;
3534 
3535 	if (unlikely(rexmit == 2)) {
3536 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3537 					  TCP_NAGLE_OFF);
3538 		if (after(tp->snd_nxt, tp->high_seq))
3539 			return;
3540 		tp->frto = 0;
3541 	}
3542 	tcp_xmit_retransmit_queue(sk);
3543 }
3544 
3545 /* This routine deals with incoming acks, but not outgoing ones. */
3546 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3547 {
3548 	struct inet_connection_sock *icsk = inet_csk(sk);
3549 	struct tcp_sock *tp = tcp_sk(sk);
3550 	struct tcp_sacktag_state sack_state;
3551 	struct rate_sample rs = { .prior_delivered = 0 };
3552 	u32 prior_snd_una = tp->snd_una;
3553 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3554 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3555 	bool is_dupack = false;
3556 	u32 prior_fackets;
3557 	int prior_packets = tp->packets_out;
3558 	u32 delivered = tp->delivered;
3559 	u32 lost = tp->lost;
3560 	int acked = 0; /* Number of packets newly acked */
3561 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3562 
3563 	sack_state.first_sackt = 0;
3564 	sack_state.rate = &rs;
3565 
3566 	/* We very likely will need to access write queue head. */
3567 	prefetchw(sk->sk_write_queue.next);
3568 
3569 	/* If the ack is older than previous acks
3570 	 * then we can probably ignore it.
3571 	 */
3572 	if (before(ack, prior_snd_una)) {
3573 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3574 		if (before(ack, prior_snd_una - tp->max_window)) {
3575 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3576 				tcp_send_challenge_ack(sk, skb);
3577 			return -1;
3578 		}
3579 		goto old_ack;
3580 	}
3581 
3582 	/* If the ack includes data we haven't sent yet, discard
3583 	 * this segment (RFC793 Section 3.9).
3584 	 */
3585 	if (after(ack, tp->snd_nxt))
3586 		goto invalid_ack;
3587 
3588 	if (after(ack, prior_snd_una)) {
3589 		flag |= FLAG_SND_UNA_ADVANCED;
3590 		icsk->icsk_retransmits = 0;
3591 	}
3592 
3593 	prior_fackets = tp->fackets_out;
3594 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3595 
3596 	/* ts_recent update must be made after we are sure that the packet
3597 	 * is in window.
3598 	 */
3599 	if (flag & FLAG_UPDATE_TS_RECENT)
3600 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3601 
3602 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3603 		/* Window is constant, pure forward advance.
3604 		 * No more checks are required.
3605 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3606 		 */
3607 		tcp_update_wl(tp, ack_seq);
3608 		tcp_snd_una_update(tp, ack);
3609 		flag |= FLAG_WIN_UPDATE;
3610 
3611 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3612 
3613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3614 	} else {
3615 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3616 
3617 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3618 			flag |= FLAG_DATA;
3619 		else
3620 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3621 
3622 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3623 
3624 		if (TCP_SKB_CB(skb)->sacked)
3625 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3626 							&sack_state);
3627 
3628 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3629 			flag |= FLAG_ECE;
3630 			ack_ev_flags |= CA_ACK_ECE;
3631 		}
3632 
3633 		if (flag & FLAG_WIN_UPDATE)
3634 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3635 
3636 		tcp_in_ack_event(sk, ack_ev_flags);
3637 	}
3638 
3639 	/* We passed data and got it acked, remove any soft error
3640 	 * log. Something worked...
3641 	 */
3642 	sk->sk_err_soft = 0;
3643 	icsk->icsk_probes_out = 0;
3644 	tp->rcv_tstamp = tcp_jiffies32;
3645 	if (!prior_packets)
3646 		goto no_queue;
3647 
3648 	/* See if we can take anything off of the retransmit queue. */
3649 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3650 				    &sack_state);
3651 
3652 	if (tp->tlp_high_seq)
3653 		tcp_process_tlp_ack(sk, ack, flag);
3654 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3655 	if (flag & FLAG_SET_XMIT_TIMER)
3656 		tcp_set_xmit_timer(sk);
3657 
3658 	if (tcp_ack_is_dubious(sk, flag)) {
3659 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3660 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3661 	}
3662 
3663 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3664 		sk_dst_confirm(sk);
3665 
3666 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3667 	lost = tp->lost - lost;			/* freshly marked lost */
3668 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3669 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3670 	tcp_xmit_recovery(sk, rexmit);
3671 	return 1;
3672 
3673 no_queue:
3674 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3675 	if (flag & FLAG_DSACKING_ACK)
3676 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3677 	/* If this ack opens up a zero window, clear backoff.  It was
3678 	 * being used to time the probes, and is probably far higher than
3679 	 * it needs to be for normal retransmission.
3680 	 */
3681 	if (tcp_send_head(sk))
3682 		tcp_ack_probe(sk);
3683 
3684 	if (tp->tlp_high_seq)
3685 		tcp_process_tlp_ack(sk, ack, flag);
3686 	return 1;
3687 
3688 invalid_ack:
3689 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3690 	return -1;
3691 
3692 old_ack:
3693 	/* If data was SACKed, tag it and see if we should send more data.
3694 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3695 	 */
3696 	if (TCP_SKB_CB(skb)->sacked) {
3697 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3698 						&sack_state);
3699 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3700 		tcp_xmit_recovery(sk, rexmit);
3701 	}
3702 
3703 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3704 	return 0;
3705 }
3706 
3707 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3708 				      bool syn, struct tcp_fastopen_cookie *foc,
3709 				      bool exp_opt)
3710 {
3711 	/* Valid only in SYN or SYN-ACK with an even length.  */
3712 	if (!foc || !syn || len < 0 || (len & 1))
3713 		return;
3714 
3715 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3716 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3717 		memcpy(foc->val, cookie, len);
3718 	else if (len != 0)
3719 		len = -1;
3720 	foc->len = len;
3721 	foc->exp = exp_opt;
3722 }
3723 
3724 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3725  * But, this can also be called on packets in the established flow when
3726  * the fast version below fails.
3727  */
3728 void tcp_parse_options(const struct net *net,
3729 		       const struct sk_buff *skb,
3730 		       struct tcp_options_received *opt_rx, int estab,
3731 		       struct tcp_fastopen_cookie *foc)
3732 {
3733 	const unsigned char *ptr;
3734 	const struct tcphdr *th = tcp_hdr(skb);
3735 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3736 
3737 	ptr = (const unsigned char *)(th + 1);
3738 	opt_rx->saw_tstamp = 0;
3739 
3740 	while (length > 0) {
3741 		int opcode = *ptr++;
3742 		int opsize;
3743 
3744 		switch (opcode) {
3745 		case TCPOPT_EOL:
3746 			return;
3747 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3748 			length--;
3749 			continue;
3750 		default:
3751 			opsize = *ptr++;
3752 			if (opsize < 2) /* "silly options" */
3753 				return;
3754 			if (opsize > length)
3755 				return;	/* don't parse partial options */
3756 			switch (opcode) {
3757 			case TCPOPT_MSS:
3758 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3759 					u16 in_mss = get_unaligned_be16(ptr);
3760 					if (in_mss) {
3761 						if (opt_rx->user_mss &&
3762 						    opt_rx->user_mss < in_mss)
3763 							in_mss = opt_rx->user_mss;
3764 						opt_rx->mss_clamp = in_mss;
3765 					}
3766 				}
3767 				break;
3768 			case TCPOPT_WINDOW:
3769 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3770 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3771 					__u8 snd_wscale = *(__u8 *)ptr;
3772 					opt_rx->wscale_ok = 1;
3773 					if (snd_wscale > TCP_MAX_WSCALE) {
3774 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3775 								     __func__,
3776 								     snd_wscale,
3777 								     TCP_MAX_WSCALE);
3778 						snd_wscale = TCP_MAX_WSCALE;
3779 					}
3780 					opt_rx->snd_wscale = snd_wscale;
3781 				}
3782 				break;
3783 			case TCPOPT_TIMESTAMP:
3784 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3785 				    ((estab && opt_rx->tstamp_ok) ||
3786 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3787 					opt_rx->saw_tstamp = 1;
3788 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3789 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3790 				}
3791 				break;
3792 			case TCPOPT_SACK_PERM:
3793 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3794 				    !estab && net->ipv4.sysctl_tcp_sack) {
3795 					opt_rx->sack_ok = TCP_SACK_SEEN;
3796 					tcp_sack_reset(opt_rx);
3797 				}
3798 				break;
3799 
3800 			case TCPOPT_SACK:
3801 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3802 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3803 				   opt_rx->sack_ok) {
3804 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3805 				}
3806 				break;
3807 #ifdef CONFIG_TCP_MD5SIG
3808 			case TCPOPT_MD5SIG:
3809 				/*
3810 				 * The MD5 Hash has already been
3811 				 * checked (see tcp_v{4,6}_do_rcv()).
3812 				 */
3813 				break;
3814 #endif
3815 			case TCPOPT_FASTOPEN:
3816 				tcp_parse_fastopen_option(
3817 					opsize - TCPOLEN_FASTOPEN_BASE,
3818 					ptr, th->syn, foc, false);
3819 				break;
3820 
3821 			case TCPOPT_EXP:
3822 				/* Fast Open option shares code 254 using a
3823 				 * 16 bits magic number.
3824 				 */
3825 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3826 				    get_unaligned_be16(ptr) ==
3827 				    TCPOPT_FASTOPEN_MAGIC)
3828 					tcp_parse_fastopen_option(opsize -
3829 						TCPOLEN_EXP_FASTOPEN_BASE,
3830 						ptr + 2, th->syn, foc, true);
3831 				break;
3832 
3833 			}
3834 			ptr += opsize-2;
3835 			length -= opsize;
3836 		}
3837 	}
3838 }
3839 EXPORT_SYMBOL(tcp_parse_options);
3840 
3841 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3842 {
3843 	const __be32 *ptr = (const __be32 *)(th + 1);
3844 
3845 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3846 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3847 		tp->rx_opt.saw_tstamp = 1;
3848 		++ptr;
3849 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3850 		++ptr;
3851 		if (*ptr)
3852 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3853 		else
3854 			tp->rx_opt.rcv_tsecr = 0;
3855 		return true;
3856 	}
3857 	return false;
3858 }
3859 
3860 /* Fast parse options. This hopes to only see timestamps.
3861  * If it is wrong it falls back on tcp_parse_options().
3862  */
3863 static bool tcp_fast_parse_options(const struct net *net,
3864 				   const struct sk_buff *skb,
3865 				   const struct tcphdr *th, struct tcp_sock *tp)
3866 {
3867 	/* In the spirit of fast parsing, compare doff directly to constant
3868 	 * values.  Because equality is used, short doff can be ignored here.
3869 	 */
3870 	if (th->doff == (sizeof(*th) / 4)) {
3871 		tp->rx_opt.saw_tstamp = 0;
3872 		return false;
3873 	} else if (tp->rx_opt.tstamp_ok &&
3874 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3875 		if (tcp_parse_aligned_timestamp(tp, th))
3876 			return true;
3877 	}
3878 
3879 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3880 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3881 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3882 
3883 	return true;
3884 }
3885 
3886 #ifdef CONFIG_TCP_MD5SIG
3887 /*
3888  * Parse MD5 Signature option
3889  */
3890 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3891 {
3892 	int length = (th->doff << 2) - sizeof(*th);
3893 	const u8 *ptr = (const u8 *)(th + 1);
3894 
3895 	/* If the TCP option is too short, we can short cut */
3896 	if (length < TCPOLEN_MD5SIG)
3897 		return NULL;
3898 
3899 	while (length > 0) {
3900 		int opcode = *ptr++;
3901 		int opsize;
3902 
3903 		switch (opcode) {
3904 		case TCPOPT_EOL:
3905 			return NULL;
3906 		case TCPOPT_NOP:
3907 			length--;
3908 			continue;
3909 		default:
3910 			opsize = *ptr++;
3911 			if (opsize < 2 || opsize > length)
3912 				return NULL;
3913 			if (opcode == TCPOPT_MD5SIG)
3914 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3915 		}
3916 		ptr += opsize - 2;
3917 		length -= opsize;
3918 	}
3919 	return NULL;
3920 }
3921 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3922 #endif
3923 
3924 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3925  *
3926  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3927  * it can pass through stack. So, the following predicate verifies that
3928  * this segment is not used for anything but congestion avoidance or
3929  * fast retransmit. Moreover, we even are able to eliminate most of such
3930  * second order effects, if we apply some small "replay" window (~RTO)
3931  * to timestamp space.
3932  *
3933  * All these measures still do not guarantee that we reject wrapped ACKs
3934  * on networks with high bandwidth, when sequence space is recycled fastly,
3935  * but it guarantees that such events will be very rare and do not affect
3936  * connection seriously. This doesn't look nice, but alas, PAWS is really
3937  * buggy extension.
3938  *
3939  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3940  * states that events when retransmit arrives after original data are rare.
3941  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3942  * the biggest problem on large power networks even with minor reordering.
3943  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3944  * up to bandwidth of 18Gigabit/sec. 8) ]
3945  */
3946 
3947 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3948 {
3949 	const struct tcp_sock *tp = tcp_sk(sk);
3950 	const struct tcphdr *th = tcp_hdr(skb);
3951 	u32 seq = TCP_SKB_CB(skb)->seq;
3952 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3953 
3954 	return (/* 1. Pure ACK with correct sequence number. */
3955 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3956 
3957 		/* 2. ... and duplicate ACK. */
3958 		ack == tp->snd_una &&
3959 
3960 		/* 3. ... and does not update window. */
3961 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3962 
3963 		/* 4. ... and sits in replay window. */
3964 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3965 }
3966 
3967 static inline bool tcp_paws_discard(const struct sock *sk,
3968 				   const struct sk_buff *skb)
3969 {
3970 	const struct tcp_sock *tp = tcp_sk(sk);
3971 
3972 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3973 	       !tcp_disordered_ack(sk, skb);
3974 }
3975 
3976 /* Check segment sequence number for validity.
3977  *
3978  * Segment controls are considered valid, if the segment
3979  * fits to the window after truncation to the window. Acceptability
3980  * of data (and SYN, FIN, of course) is checked separately.
3981  * See tcp_data_queue(), for example.
3982  *
3983  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3984  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3985  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3986  * (borrowed from freebsd)
3987  */
3988 
3989 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3990 {
3991 	return	!before(end_seq, tp->rcv_wup) &&
3992 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3993 }
3994 
3995 /* When we get a reset we do this. */
3996 void tcp_reset(struct sock *sk)
3997 {
3998 	/* We want the right error as BSD sees it (and indeed as we do). */
3999 	switch (sk->sk_state) {
4000 	case TCP_SYN_SENT:
4001 		sk->sk_err = ECONNREFUSED;
4002 		break;
4003 	case TCP_CLOSE_WAIT:
4004 		sk->sk_err = EPIPE;
4005 		break;
4006 	case TCP_CLOSE:
4007 		return;
4008 	default:
4009 		sk->sk_err = ECONNRESET;
4010 	}
4011 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4012 	smp_wmb();
4013 
4014 	tcp_done(sk);
4015 
4016 	if (!sock_flag(sk, SOCK_DEAD))
4017 		sk->sk_error_report(sk);
4018 }
4019 
4020 /*
4021  * 	Process the FIN bit. This now behaves as it is supposed to work
4022  *	and the FIN takes effect when it is validly part of sequence
4023  *	space. Not before when we get holes.
4024  *
4025  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4026  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4027  *	TIME-WAIT)
4028  *
4029  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4030  *	close and we go into CLOSING (and later onto TIME-WAIT)
4031  *
4032  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4033  */
4034 void tcp_fin(struct sock *sk)
4035 {
4036 	struct tcp_sock *tp = tcp_sk(sk);
4037 
4038 	inet_csk_schedule_ack(sk);
4039 
4040 	sk->sk_shutdown |= RCV_SHUTDOWN;
4041 	sock_set_flag(sk, SOCK_DONE);
4042 
4043 	switch (sk->sk_state) {
4044 	case TCP_SYN_RECV:
4045 	case TCP_ESTABLISHED:
4046 		/* Move to CLOSE_WAIT */
4047 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4048 		inet_csk(sk)->icsk_ack.pingpong = 1;
4049 		break;
4050 
4051 	case TCP_CLOSE_WAIT:
4052 	case TCP_CLOSING:
4053 		/* Received a retransmission of the FIN, do
4054 		 * nothing.
4055 		 */
4056 		break;
4057 	case TCP_LAST_ACK:
4058 		/* RFC793: Remain in the LAST-ACK state. */
4059 		break;
4060 
4061 	case TCP_FIN_WAIT1:
4062 		/* This case occurs when a simultaneous close
4063 		 * happens, we must ack the received FIN and
4064 		 * enter the CLOSING state.
4065 		 */
4066 		tcp_send_ack(sk);
4067 		tcp_set_state(sk, TCP_CLOSING);
4068 		break;
4069 	case TCP_FIN_WAIT2:
4070 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4071 		tcp_send_ack(sk);
4072 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4073 		break;
4074 	default:
4075 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4076 		 * cases we should never reach this piece of code.
4077 		 */
4078 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4079 		       __func__, sk->sk_state);
4080 		break;
4081 	}
4082 
4083 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4084 	 * Probably, we should reset in this case. For now drop them.
4085 	 */
4086 	skb_rbtree_purge(&tp->out_of_order_queue);
4087 	if (tcp_is_sack(tp))
4088 		tcp_sack_reset(&tp->rx_opt);
4089 	sk_mem_reclaim(sk);
4090 
4091 	if (!sock_flag(sk, SOCK_DEAD)) {
4092 		sk->sk_state_change(sk);
4093 
4094 		/* Do not send POLL_HUP for half duplex close. */
4095 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4096 		    sk->sk_state == TCP_CLOSE)
4097 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4098 		else
4099 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4100 	}
4101 }
4102 
4103 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4104 				  u32 end_seq)
4105 {
4106 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4107 		if (before(seq, sp->start_seq))
4108 			sp->start_seq = seq;
4109 		if (after(end_seq, sp->end_seq))
4110 			sp->end_seq = end_seq;
4111 		return true;
4112 	}
4113 	return false;
4114 }
4115 
4116 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4117 {
4118 	struct tcp_sock *tp = tcp_sk(sk);
4119 
4120 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4121 		int mib_idx;
4122 
4123 		if (before(seq, tp->rcv_nxt))
4124 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4125 		else
4126 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4127 
4128 		NET_INC_STATS(sock_net(sk), mib_idx);
4129 
4130 		tp->rx_opt.dsack = 1;
4131 		tp->duplicate_sack[0].start_seq = seq;
4132 		tp->duplicate_sack[0].end_seq = end_seq;
4133 	}
4134 }
4135 
4136 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4137 {
4138 	struct tcp_sock *tp = tcp_sk(sk);
4139 
4140 	if (!tp->rx_opt.dsack)
4141 		tcp_dsack_set(sk, seq, end_seq);
4142 	else
4143 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4144 }
4145 
4146 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4147 {
4148 	struct tcp_sock *tp = tcp_sk(sk);
4149 
4150 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4151 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4152 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4153 		tcp_enter_quickack_mode(sk);
4154 
4155 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4156 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4157 
4158 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4159 				end_seq = tp->rcv_nxt;
4160 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4161 		}
4162 	}
4163 
4164 	tcp_send_ack(sk);
4165 }
4166 
4167 /* These routines update the SACK block as out-of-order packets arrive or
4168  * in-order packets close up the sequence space.
4169  */
4170 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4171 {
4172 	int this_sack;
4173 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4174 	struct tcp_sack_block *swalk = sp + 1;
4175 
4176 	/* See if the recent change to the first SACK eats into
4177 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4178 	 */
4179 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4180 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4181 			int i;
4182 
4183 			/* Zap SWALK, by moving every further SACK up by one slot.
4184 			 * Decrease num_sacks.
4185 			 */
4186 			tp->rx_opt.num_sacks--;
4187 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4188 				sp[i] = sp[i + 1];
4189 			continue;
4190 		}
4191 		this_sack++, swalk++;
4192 	}
4193 }
4194 
4195 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4196 {
4197 	struct tcp_sock *tp = tcp_sk(sk);
4198 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4199 	int cur_sacks = tp->rx_opt.num_sacks;
4200 	int this_sack;
4201 
4202 	if (!cur_sacks)
4203 		goto new_sack;
4204 
4205 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4206 		if (tcp_sack_extend(sp, seq, end_seq)) {
4207 			/* Rotate this_sack to the first one. */
4208 			for (; this_sack > 0; this_sack--, sp--)
4209 				swap(*sp, *(sp - 1));
4210 			if (cur_sacks > 1)
4211 				tcp_sack_maybe_coalesce(tp);
4212 			return;
4213 		}
4214 	}
4215 
4216 	/* Could not find an adjacent existing SACK, build a new one,
4217 	 * put it at the front, and shift everyone else down.  We
4218 	 * always know there is at least one SACK present already here.
4219 	 *
4220 	 * If the sack array is full, forget about the last one.
4221 	 */
4222 	if (this_sack >= TCP_NUM_SACKS) {
4223 		this_sack--;
4224 		tp->rx_opt.num_sacks--;
4225 		sp--;
4226 	}
4227 	for (; this_sack > 0; this_sack--, sp--)
4228 		*sp = *(sp - 1);
4229 
4230 new_sack:
4231 	/* Build the new head SACK, and we're done. */
4232 	sp->start_seq = seq;
4233 	sp->end_seq = end_seq;
4234 	tp->rx_opt.num_sacks++;
4235 }
4236 
4237 /* RCV.NXT advances, some SACKs should be eaten. */
4238 
4239 static void tcp_sack_remove(struct tcp_sock *tp)
4240 {
4241 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4242 	int num_sacks = tp->rx_opt.num_sacks;
4243 	int this_sack;
4244 
4245 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4246 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4247 		tp->rx_opt.num_sacks = 0;
4248 		return;
4249 	}
4250 
4251 	for (this_sack = 0; this_sack < num_sacks;) {
4252 		/* Check if the start of the sack is covered by RCV.NXT. */
4253 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4254 			int i;
4255 
4256 			/* RCV.NXT must cover all the block! */
4257 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4258 
4259 			/* Zap this SACK, by moving forward any other SACKS. */
4260 			for (i = this_sack+1; i < num_sacks; i++)
4261 				tp->selective_acks[i-1] = tp->selective_acks[i];
4262 			num_sacks--;
4263 			continue;
4264 		}
4265 		this_sack++;
4266 		sp++;
4267 	}
4268 	tp->rx_opt.num_sacks = num_sacks;
4269 }
4270 
4271 enum tcp_queue {
4272 	OOO_QUEUE,
4273 	RCV_QUEUE,
4274 };
4275 
4276 /**
4277  * tcp_try_coalesce - try to merge skb to prior one
4278  * @sk: socket
4279  * @dest: destination queue
4280  * @to: prior buffer
4281  * @from: buffer to add in queue
4282  * @fragstolen: pointer to boolean
4283  *
4284  * Before queueing skb @from after @to, try to merge them
4285  * to reduce overall memory use and queue lengths, if cost is small.
4286  * Packets in ofo or receive queues can stay a long time.
4287  * Better try to coalesce them right now to avoid future collapses.
4288  * Returns true if caller should free @from instead of queueing it
4289  */
4290 static bool tcp_try_coalesce(struct sock *sk,
4291 			     enum tcp_queue dest,
4292 			     struct sk_buff *to,
4293 			     struct sk_buff *from,
4294 			     bool *fragstolen)
4295 {
4296 	int delta;
4297 
4298 	*fragstolen = false;
4299 
4300 	/* Its possible this segment overlaps with prior segment in queue */
4301 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4302 		return false;
4303 
4304 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4305 		return false;
4306 
4307 	atomic_add(delta, &sk->sk_rmem_alloc);
4308 	sk_mem_charge(sk, delta);
4309 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4310 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4311 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4312 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4313 
4314 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4315 		TCP_SKB_CB(to)->has_rxtstamp = true;
4316 		if (dest == OOO_QUEUE)
4317 			TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
4318 		else
4319 			to->tstamp = from->tstamp;
4320 	}
4321 
4322 	return true;
4323 }
4324 
4325 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4326 {
4327 	sk_drops_add(sk, skb);
4328 	__kfree_skb(skb);
4329 }
4330 
4331 /* This one checks to see if we can put data from the
4332  * out_of_order queue into the receive_queue.
4333  */
4334 static void tcp_ofo_queue(struct sock *sk)
4335 {
4336 	struct tcp_sock *tp = tcp_sk(sk);
4337 	__u32 dsack_high = tp->rcv_nxt;
4338 	bool fin, fragstolen, eaten;
4339 	struct sk_buff *skb, *tail;
4340 	struct rb_node *p;
4341 
4342 	p = rb_first(&tp->out_of_order_queue);
4343 	while (p) {
4344 		skb = rb_entry(p, struct sk_buff, rbnode);
4345 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4346 			break;
4347 
4348 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4349 			__u32 dsack = dsack_high;
4350 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4351 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4352 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4353 		}
4354 		p = rb_next(p);
4355 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4356 		/* Replace tstamp which was stomped by rbnode */
4357 		if (TCP_SKB_CB(skb)->has_rxtstamp)
4358 			skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
4359 
4360 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4361 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4362 			tcp_drop(sk, skb);
4363 			continue;
4364 		}
4365 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4366 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4367 			   TCP_SKB_CB(skb)->end_seq);
4368 
4369 		tail = skb_peek_tail(&sk->sk_receive_queue);
4370 		eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
4371 						 tail, skb, &fragstolen);
4372 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4374 		if (!eaten)
4375 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4376 		else
4377 			kfree_skb_partial(skb, fragstolen);
4378 
4379 		if (unlikely(fin)) {
4380 			tcp_fin(sk);
4381 			/* tcp_fin() purges tp->out_of_order_queue,
4382 			 * so we must end this loop right now.
4383 			 */
4384 			break;
4385 		}
4386 	}
4387 }
4388 
4389 static bool tcp_prune_ofo_queue(struct sock *sk);
4390 static int tcp_prune_queue(struct sock *sk);
4391 
4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4393 				 unsigned int size)
4394 {
4395 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4396 	    !sk_rmem_schedule(sk, skb, size)) {
4397 
4398 		if (tcp_prune_queue(sk) < 0)
4399 			return -1;
4400 
4401 		while (!sk_rmem_schedule(sk, skb, size)) {
4402 			if (!tcp_prune_ofo_queue(sk))
4403 				return -1;
4404 		}
4405 	}
4406 	return 0;
4407 }
4408 
4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4410 {
4411 	struct tcp_sock *tp = tcp_sk(sk);
4412 	struct rb_node **p, *q, *parent;
4413 	struct sk_buff *skb1;
4414 	u32 seq, end_seq;
4415 	bool fragstolen;
4416 
4417 	tcp_ecn_check_ce(tp, skb);
4418 
4419 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4420 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4421 		tcp_drop(sk, skb);
4422 		return;
4423 	}
4424 
4425 	/* Stash tstamp to avoid being stomped on by rbnode */
4426 	if (TCP_SKB_CB(skb)->has_rxtstamp)
4427 		TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
4428 
4429 	/* Disable header prediction. */
4430 	tp->pred_flags = 0;
4431 	inet_csk_schedule_ack(sk);
4432 
4433 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4434 	seq = TCP_SKB_CB(skb)->seq;
4435 	end_seq = TCP_SKB_CB(skb)->end_seq;
4436 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4437 		   tp->rcv_nxt, seq, end_seq);
4438 
4439 	p = &tp->out_of_order_queue.rb_node;
4440 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4441 		/* Initial out of order segment, build 1 SACK. */
4442 		if (tcp_is_sack(tp)) {
4443 			tp->rx_opt.num_sacks = 1;
4444 			tp->selective_acks[0].start_seq = seq;
4445 			tp->selective_acks[0].end_seq = end_seq;
4446 		}
4447 		rb_link_node(&skb->rbnode, NULL, p);
4448 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4449 		tp->ooo_last_skb = skb;
4450 		goto end;
4451 	}
4452 
4453 	/* In the typical case, we are adding an skb to the end of the list.
4454 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4455 	 */
4456 	if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
4457 			     skb, &fragstolen)) {
4458 coalesce_done:
4459 		tcp_grow_window(sk, skb);
4460 		kfree_skb_partial(skb, fragstolen);
4461 		skb = NULL;
4462 		goto add_sack;
4463 	}
4464 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4465 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4466 		parent = &tp->ooo_last_skb->rbnode;
4467 		p = &parent->rb_right;
4468 		goto insert;
4469 	}
4470 
4471 	/* Find place to insert this segment. Handle overlaps on the way. */
4472 	parent = NULL;
4473 	while (*p) {
4474 		parent = *p;
4475 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4476 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4477 			p = &parent->rb_left;
4478 			continue;
4479 		}
4480 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4481 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4482 				/* All the bits are present. Drop. */
4483 				NET_INC_STATS(sock_net(sk),
4484 					      LINUX_MIB_TCPOFOMERGE);
4485 				__kfree_skb(skb);
4486 				skb = NULL;
4487 				tcp_dsack_set(sk, seq, end_seq);
4488 				goto add_sack;
4489 			}
4490 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4491 				/* Partial overlap. */
4492 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4493 			} else {
4494 				/* skb's seq == skb1's seq and skb covers skb1.
4495 				 * Replace skb1 with skb.
4496 				 */
4497 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4498 						&tp->out_of_order_queue);
4499 				tcp_dsack_extend(sk,
4500 						 TCP_SKB_CB(skb1)->seq,
4501 						 TCP_SKB_CB(skb1)->end_seq);
4502 				NET_INC_STATS(sock_net(sk),
4503 					      LINUX_MIB_TCPOFOMERGE);
4504 				__kfree_skb(skb1);
4505 				goto merge_right;
4506 			}
4507 		} else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
4508 					    skb, &fragstolen)) {
4509 			goto coalesce_done;
4510 		}
4511 		p = &parent->rb_right;
4512 	}
4513 insert:
4514 	/* Insert segment into RB tree. */
4515 	rb_link_node(&skb->rbnode, parent, p);
4516 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4517 
4518 merge_right:
4519 	/* Remove other segments covered by skb. */
4520 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4521 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4522 
4523 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4524 			break;
4525 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4526 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4527 					 end_seq);
4528 			break;
4529 		}
4530 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4531 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4532 				 TCP_SKB_CB(skb1)->end_seq);
4533 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4534 		tcp_drop(sk, skb1);
4535 	}
4536 	/* If there is no skb after us, we are the last_skb ! */
4537 	if (!q)
4538 		tp->ooo_last_skb = skb;
4539 
4540 add_sack:
4541 	if (tcp_is_sack(tp))
4542 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4543 end:
4544 	if (skb) {
4545 		tcp_grow_window(sk, skb);
4546 		skb_condense(skb);
4547 		skb_set_owner_r(skb, sk);
4548 	}
4549 }
4550 
4551 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4552 		  bool *fragstolen)
4553 {
4554 	int eaten;
4555 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4556 
4557 	__skb_pull(skb, hdrlen);
4558 	eaten = (tail &&
4559 		 tcp_try_coalesce(sk, RCV_QUEUE, tail,
4560 				  skb, fragstolen)) ? 1 : 0;
4561 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4562 	if (!eaten) {
4563 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4564 		skb_set_owner_r(skb, sk);
4565 	}
4566 	return eaten;
4567 }
4568 
4569 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4570 {
4571 	struct sk_buff *skb;
4572 	int err = -ENOMEM;
4573 	int data_len = 0;
4574 	bool fragstolen;
4575 
4576 	if (size == 0)
4577 		return 0;
4578 
4579 	if (size > PAGE_SIZE) {
4580 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4581 
4582 		data_len = npages << PAGE_SHIFT;
4583 		size = data_len + (size & ~PAGE_MASK);
4584 	}
4585 	skb = alloc_skb_with_frags(size - data_len, data_len,
4586 				   PAGE_ALLOC_COSTLY_ORDER,
4587 				   &err, sk->sk_allocation);
4588 	if (!skb)
4589 		goto err;
4590 
4591 	skb_put(skb, size - data_len);
4592 	skb->data_len = data_len;
4593 	skb->len = size;
4594 
4595 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4596 		goto err_free;
4597 
4598 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4599 	if (err)
4600 		goto err_free;
4601 
4602 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4603 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4604 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4605 
4606 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4607 		WARN_ON_ONCE(fragstolen); /* should not happen */
4608 		__kfree_skb(skb);
4609 	}
4610 	return size;
4611 
4612 err_free:
4613 	kfree_skb(skb);
4614 err:
4615 	return err;
4616 
4617 }
4618 
4619 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4620 {
4621 	struct tcp_sock *tp = tcp_sk(sk);
4622 	bool fragstolen;
4623 	int eaten;
4624 
4625 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4626 		__kfree_skb(skb);
4627 		return;
4628 	}
4629 	skb_dst_drop(skb);
4630 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4631 
4632 	tcp_ecn_accept_cwr(tp, skb);
4633 
4634 	tp->rx_opt.dsack = 0;
4635 
4636 	/*  Queue data for delivery to the user.
4637 	 *  Packets in sequence go to the receive queue.
4638 	 *  Out of sequence packets to the out_of_order_queue.
4639 	 */
4640 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4641 		if (tcp_receive_window(tp) == 0)
4642 			goto out_of_window;
4643 
4644 		/* Ok. In sequence. In window. */
4645 queue_and_out:
4646 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4647 			sk_forced_mem_schedule(sk, skb->truesize);
4648 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4649 			goto drop;
4650 
4651 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4652 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4653 		if (skb->len)
4654 			tcp_event_data_recv(sk, skb);
4655 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4656 			tcp_fin(sk);
4657 
4658 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4659 			tcp_ofo_queue(sk);
4660 
4661 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4662 			 * gap in queue is filled.
4663 			 */
4664 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4665 				inet_csk(sk)->icsk_ack.pingpong = 0;
4666 		}
4667 
4668 		if (tp->rx_opt.num_sacks)
4669 			tcp_sack_remove(tp);
4670 
4671 		tcp_fast_path_check(sk);
4672 
4673 		if (eaten > 0)
4674 			kfree_skb_partial(skb, fragstolen);
4675 		if (!sock_flag(sk, SOCK_DEAD))
4676 			sk->sk_data_ready(sk);
4677 		return;
4678 	}
4679 
4680 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4681 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4682 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4683 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4684 
4685 out_of_window:
4686 		tcp_enter_quickack_mode(sk);
4687 		inet_csk_schedule_ack(sk);
4688 drop:
4689 		tcp_drop(sk, skb);
4690 		return;
4691 	}
4692 
4693 	/* Out of window. F.e. zero window probe. */
4694 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4695 		goto out_of_window;
4696 
4697 	tcp_enter_quickack_mode(sk);
4698 
4699 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4700 		/* Partial packet, seq < rcv_next < end_seq */
4701 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4702 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4703 			   TCP_SKB_CB(skb)->end_seq);
4704 
4705 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4706 
4707 		/* If window is closed, drop tail of packet. But after
4708 		 * remembering D-SACK for its head made in previous line.
4709 		 */
4710 		if (!tcp_receive_window(tp))
4711 			goto out_of_window;
4712 		goto queue_and_out;
4713 	}
4714 
4715 	tcp_data_queue_ofo(sk, skb);
4716 }
4717 
4718 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4719 {
4720 	if (list)
4721 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4722 
4723 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4724 }
4725 
4726 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4727 					struct sk_buff_head *list,
4728 					struct rb_root *root)
4729 {
4730 	struct sk_buff *next = tcp_skb_next(skb, list);
4731 
4732 	if (list)
4733 		__skb_unlink(skb, list);
4734 	else
4735 		rb_erase(&skb->rbnode, root);
4736 
4737 	__kfree_skb(skb);
4738 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4739 
4740 	return next;
4741 }
4742 
4743 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4744 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4745 {
4746 	struct rb_node **p = &root->rb_node;
4747 	struct rb_node *parent = NULL;
4748 	struct sk_buff *skb1;
4749 
4750 	while (*p) {
4751 		parent = *p;
4752 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4753 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4754 			p = &parent->rb_left;
4755 		else
4756 			p = &parent->rb_right;
4757 	}
4758 	rb_link_node(&skb->rbnode, parent, p);
4759 	rb_insert_color(&skb->rbnode, root);
4760 }
4761 
4762 /* Collapse contiguous sequence of skbs head..tail with
4763  * sequence numbers start..end.
4764  *
4765  * If tail is NULL, this means until the end of the queue.
4766  *
4767  * Segments with FIN/SYN are not collapsed (only because this
4768  * simplifies code)
4769  */
4770 static void
4771 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4772 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4773 {
4774 	struct sk_buff *skb = head, *n;
4775 	struct sk_buff_head tmp;
4776 	bool end_of_skbs;
4777 
4778 	/* First, check that queue is collapsible and find
4779 	 * the point where collapsing can be useful.
4780 	 */
4781 restart:
4782 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4783 		n = tcp_skb_next(skb, list);
4784 
4785 		/* No new bits? It is possible on ofo queue. */
4786 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4787 			skb = tcp_collapse_one(sk, skb, list, root);
4788 			if (!skb)
4789 				break;
4790 			goto restart;
4791 		}
4792 
4793 		/* The first skb to collapse is:
4794 		 * - not SYN/FIN and
4795 		 * - bloated or contains data before "start" or
4796 		 *   overlaps to the next one.
4797 		 */
4798 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4799 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4800 		     before(TCP_SKB_CB(skb)->seq, start))) {
4801 			end_of_skbs = false;
4802 			break;
4803 		}
4804 
4805 		if (n && n != tail &&
4806 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4807 			end_of_skbs = false;
4808 			break;
4809 		}
4810 
4811 		/* Decided to skip this, advance start seq. */
4812 		start = TCP_SKB_CB(skb)->end_seq;
4813 	}
4814 	if (end_of_skbs ||
4815 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4816 		return;
4817 
4818 	__skb_queue_head_init(&tmp);
4819 
4820 	while (before(start, end)) {
4821 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4822 		struct sk_buff *nskb;
4823 
4824 		nskb = alloc_skb(copy, GFP_ATOMIC);
4825 		if (!nskb)
4826 			break;
4827 
4828 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4829 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4830 		if (list)
4831 			__skb_queue_before(list, skb, nskb);
4832 		else
4833 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4834 		skb_set_owner_r(nskb, sk);
4835 
4836 		/* Copy data, releasing collapsed skbs. */
4837 		while (copy > 0) {
4838 			int offset = start - TCP_SKB_CB(skb)->seq;
4839 			int size = TCP_SKB_CB(skb)->end_seq - start;
4840 
4841 			BUG_ON(offset < 0);
4842 			if (size > 0) {
4843 				size = min(copy, size);
4844 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4845 					BUG();
4846 				TCP_SKB_CB(nskb)->end_seq += size;
4847 				copy -= size;
4848 				start += size;
4849 			}
4850 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4851 				skb = tcp_collapse_one(sk, skb, list, root);
4852 				if (!skb ||
4853 				    skb == tail ||
4854 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4855 					goto end;
4856 			}
4857 		}
4858 	}
4859 end:
4860 	skb_queue_walk_safe(&tmp, skb, n)
4861 		tcp_rbtree_insert(root, skb);
4862 }
4863 
4864 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4865  * and tcp_collapse() them until all the queue is collapsed.
4866  */
4867 static void tcp_collapse_ofo_queue(struct sock *sk)
4868 {
4869 	struct tcp_sock *tp = tcp_sk(sk);
4870 	struct sk_buff *skb, *head;
4871 	struct rb_node *p;
4872 	u32 start, end;
4873 
4874 	p = rb_first(&tp->out_of_order_queue);
4875 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4876 new_range:
4877 	if (!skb) {
4878 		p = rb_last(&tp->out_of_order_queue);
4879 		/* Note: This is possible p is NULL here. We do not
4880 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4881 		 * if rbtree is not empty.
4882 		 */
4883 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4884 		return;
4885 	}
4886 	start = TCP_SKB_CB(skb)->seq;
4887 	end = TCP_SKB_CB(skb)->end_seq;
4888 
4889 	for (head = skb;;) {
4890 		skb = tcp_skb_next(skb, NULL);
4891 
4892 		/* Range is terminated when we see a gap or when
4893 		 * we are at the queue end.
4894 		 */
4895 		if (!skb ||
4896 		    after(TCP_SKB_CB(skb)->seq, end) ||
4897 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4898 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4899 				     head, skb, start, end);
4900 			goto new_range;
4901 		}
4902 
4903 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4904 			start = TCP_SKB_CB(skb)->seq;
4905 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4906 			end = TCP_SKB_CB(skb)->end_seq;
4907 	}
4908 }
4909 
4910 /*
4911  * Clean the out-of-order queue to make room.
4912  * We drop high sequences packets to :
4913  * 1) Let a chance for holes to be filled.
4914  * 2) not add too big latencies if thousands of packets sit there.
4915  *    (But if application shrinks SO_RCVBUF, we could still end up
4916  *     freeing whole queue here)
4917  *
4918  * Return true if queue has shrunk.
4919  */
4920 static bool tcp_prune_ofo_queue(struct sock *sk)
4921 {
4922 	struct tcp_sock *tp = tcp_sk(sk);
4923 	struct rb_node *node, *prev;
4924 
4925 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4926 		return false;
4927 
4928 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4929 	node = &tp->ooo_last_skb->rbnode;
4930 	do {
4931 		prev = rb_prev(node);
4932 		rb_erase(node, &tp->out_of_order_queue);
4933 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4934 		sk_mem_reclaim(sk);
4935 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4936 		    !tcp_under_memory_pressure(sk))
4937 			break;
4938 		node = prev;
4939 	} while (node);
4940 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4941 
4942 	/* Reset SACK state.  A conforming SACK implementation will
4943 	 * do the same at a timeout based retransmit.  When a connection
4944 	 * is in a sad state like this, we care only about integrity
4945 	 * of the connection not performance.
4946 	 */
4947 	if (tp->rx_opt.sack_ok)
4948 		tcp_sack_reset(&tp->rx_opt);
4949 	return true;
4950 }
4951 
4952 /* Reduce allocated memory if we can, trying to get
4953  * the socket within its memory limits again.
4954  *
4955  * Return less than zero if we should start dropping frames
4956  * until the socket owning process reads some of the data
4957  * to stabilize the situation.
4958  */
4959 static int tcp_prune_queue(struct sock *sk)
4960 {
4961 	struct tcp_sock *tp = tcp_sk(sk);
4962 
4963 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4964 
4965 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4966 
4967 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4968 		tcp_clamp_window(sk);
4969 	else if (tcp_under_memory_pressure(sk))
4970 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4971 
4972 	tcp_collapse_ofo_queue(sk);
4973 	if (!skb_queue_empty(&sk->sk_receive_queue))
4974 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4975 			     skb_peek(&sk->sk_receive_queue),
4976 			     NULL,
4977 			     tp->copied_seq, tp->rcv_nxt);
4978 	sk_mem_reclaim(sk);
4979 
4980 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4981 		return 0;
4982 
4983 	/* Collapsing did not help, destructive actions follow.
4984 	 * This must not ever occur. */
4985 
4986 	tcp_prune_ofo_queue(sk);
4987 
4988 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4989 		return 0;
4990 
4991 	/* If we are really being abused, tell the caller to silently
4992 	 * drop receive data on the floor.  It will get retransmitted
4993 	 * and hopefully then we'll have sufficient space.
4994 	 */
4995 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4996 
4997 	/* Massive buffer overcommit. */
4998 	tp->pred_flags = 0;
4999 	return -1;
5000 }
5001 
5002 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5003 {
5004 	const struct tcp_sock *tp = tcp_sk(sk);
5005 
5006 	/* If the user specified a specific send buffer setting, do
5007 	 * not modify it.
5008 	 */
5009 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5010 		return false;
5011 
5012 	/* If we are under global TCP memory pressure, do not expand.  */
5013 	if (tcp_under_memory_pressure(sk))
5014 		return false;
5015 
5016 	/* If we are under soft global TCP memory pressure, do not expand.  */
5017 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5018 		return false;
5019 
5020 	/* If we filled the congestion window, do not expand.  */
5021 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5022 		return false;
5023 
5024 	return true;
5025 }
5026 
5027 /* When incoming ACK allowed to free some skb from write_queue,
5028  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5029  * on the exit from tcp input handler.
5030  *
5031  * PROBLEM: sndbuf expansion does not work well with largesend.
5032  */
5033 static void tcp_new_space(struct sock *sk)
5034 {
5035 	struct tcp_sock *tp = tcp_sk(sk);
5036 
5037 	if (tcp_should_expand_sndbuf(sk)) {
5038 		tcp_sndbuf_expand(sk);
5039 		tp->snd_cwnd_stamp = tcp_jiffies32;
5040 	}
5041 
5042 	sk->sk_write_space(sk);
5043 }
5044 
5045 static void tcp_check_space(struct sock *sk)
5046 {
5047 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5048 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5049 		/* pairs with tcp_poll() */
5050 		smp_mb();
5051 		if (sk->sk_socket &&
5052 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5053 			tcp_new_space(sk);
5054 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5055 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5056 		}
5057 	}
5058 }
5059 
5060 static inline void tcp_data_snd_check(struct sock *sk)
5061 {
5062 	tcp_push_pending_frames(sk);
5063 	tcp_check_space(sk);
5064 }
5065 
5066 /*
5067  * Check if sending an ack is needed.
5068  */
5069 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5070 {
5071 	struct tcp_sock *tp = tcp_sk(sk);
5072 
5073 	    /* More than one full frame received... */
5074 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5075 	     /* ... and right edge of window advances far enough.
5076 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5077 	      */
5078 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5079 	    /* We ACK each frame or... */
5080 	    tcp_in_quickack_mode(sk) ||
5081 	    /* We have out of order data. */
5082 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5083 		/* Then ack it now */
5084 		tcp_send_ack(sk);
5085 	} else {
5086 		/* Else, send delayed ack. */
5087 		tcp_send_delayed_ack(sk);
5088 	}
5089 }
5090 
5091 static inline void tcp_ack_snd_check(struct sock *sk)
5092 {
5093 	if (!inet_csk_ack_scheduled(sk)) {
5094 		/* We sent a data segment already. */
5095 		return;
5096 	}
5097 	__tcp_ack_snd_check(sk, 1);
5098 }
5099 
5100 /*
5101  *	This routine is only called when we have urgent data
5102  *	signaled. Its the 'slow' part of tcp_urg. It could be
5103  *	moved inline now as tcp_urg is only called from one
5104  *	place. We handle URGent data wrong. We have to - as
5105  *	BSD still doesn't use the correction from RFC961.
5106  *	For 1003.1g we should support a new option TCP_STDURG to permit
5107  *	either form (or just set the sysctl tcp_stdurg).
5108  */
5109 
5110 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5111 {
5112 	struct tcp_sock *tp = tcp_sk(sk);
5113 	u32 ptr = ntohs(th->urg_ptr);
5114 
5115 	if (ptr && !sysctl_tcp_stdurg)
5116 		ptr--;
5117 	ptr += ntohl(th->seq);
5118 
5119 	/* Ignore urgent data that we've already seen and read. */
5120 	if (after(tp->copied_seq, ptr))
5121 		return;
5122 
5123 	/* Do not replay urg ptr.
5124 	 *
5125 	 * NOTE: interesting situation not covered by specs.
5126 	 * Misbehaving sender may send urg ptr, pointing to segment,
5127 	 * which we already have in ofo queue. We are not able to fetch
5128 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5129 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5130 	 * situations. But it is worth to think about possibility of some
5131 	 * DoSes using some hypothetical application level deadlock.
5132 	 */
5133 	if (before(ptr, tp->rcv_nxt))
5134 		return;
5135 
5136 	/* Do we already have a newer (or duplicate) urgent pointer? */
5137 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5138 		return;
5139 
5140 	/* Tell the world about our new urgent pointer. */
5141 	sk_send_sigurg(sk);
5142 
5143 	/* We may be adding urgent data when the last byte read was
5144 	 * urgent. To do this requires some care. We cannot just ignore
5145 	 * tp->copied_seq since we would read the last urgent byte again
5146 	 * as data, nor can we alter copied_seq until this data arrives
5147 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5148 	 *
5149 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5150 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5151 	 * and expect that both A and B disappear from stream. This is _wrong_.
5152 	 * Though this happens in BSD with high probability, this is occasional.
5153 	 * Any application relying on this is buggy. Note also, that fix "works"
5154 	 * only in this artificial test. Insert some normal data between A and B and we will
5155 	 * decline of BSD again. Verdict: it is better to remove to trap
5156 	 * buggy users.
5157 	 */
5158 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5159 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5160 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5161 		tp->copied_seq++;
5162 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5163 			__skb_unlink(skb, &sk->sk_receive_queue);
5164 			__kfree_skb(skb);
5165 		}
5166 	}
5167 
5168 	tp->urg_data = TCP_URG_NOTYET;
5169 	tp->urg_seq = ptr;
5170 
5171 	/* Disable header prediction. */
5172 	tp->pred_flags = 0;
5173 }
5174 
5175 /* This is the 'fast' part of urgent handling. */
5176 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5177 {
5178 	struct tcp_sock *tp = tcp_sk(sk);
5179 
5180 	/* Check if we get a new urgent pointer - normally not. */
5181 	if (th->urg)
5182 		tcp_check_urg(sk, th);
5183 
5184 	/* Do we wait for any urgent data? - normally not... */
5185 	if (tp->urg_data == TCP_URG_NOTYET) {
5186 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5187 			  th->syn;
5188 
5189 		/* Is the urgent pointer pointing into this packet? */
5190 		if (ptr < skb->len) {
5191 			u8 tmp;
5192 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5193 				BUG();
5194 			tp->urg_data = TCP_URG_VALID | tmp;
5195 			if (!sock_flag(sk, SOCK_DEAD))
5196 				sk->sk_data_ready(sk);
5197 		}
5198 	}
5199 }
5200 
5201 /* Accept RST for rcv_nxt - 1 after a FIN.
5202  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5203  * FIN is sent followed by a RST packet. The RST is sent with the same
5204  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5205  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5206  * ACKs on the closed socket. In addition middleboxes can drop either the
5207  * challenge ACK or a subsequent RST.
5208  */
5209 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5210 {
5211 	struct tcp_sock *tp = tcp_sk(sk);
5212 
5213 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5214 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5215 					       TCPF_CLOSING));
5216 }
5217 
5218 /* Does PAWS and seqno based validation of an incoming segment, flags will
5219  * play significant role here.
5220  */
5221 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5222 				  const struct tcphdr *th, int syn_inerr)
5223 {
5224 	struct tcp_sock *tp = tcp_sk(sk);
5225 	bool rst_seq_match = false;
5226 
5227 	/* RFC1323: H1. Apply PAWS check first. */
5228 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5229 	    tp->rx_opt.saw_tstamp &&
5230 	    tcp_paws_discard(sk, skb)) {
5231 		if (!th->rst) {
5232 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5233 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5234 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5235 						  &tp->last_oow_ack_time))
5236 				tcp_send_dupack(sk, skb);
5237 			goto discard;
5238 		}
5239 		/* Reset is accepted even if it did not pass PAWS. */
5240 	}
5241 
5242 	/* Step 1: check sequence number */
5243 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5244 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5245 		 * (RST) segments are validated by checking their SEQ-fields."
5246 		 * And page 69: "If an incoming segment is not acceptable,
5247 		 * an acknowledgment should be sent in reply (unless the RST
5248 		 * bit is set, if so drop the segment and return)".
5249 		 */
5250 		if (!th->rst) {
5251 			if (th->syn)
5252 				goto syn_challenge;
5253 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5254 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5255 						  &tp->last_oow_ack_time))
5256 				tcp_send_dupack(sk, skb);
5257 		} else if (tcp_reset_check(sk, skb)) {
5258 			tcp_reset(sk);
5259 		}
5260 		goto discard;
5261 	}
5262 
5263 	/* Step 2: check RST bit */
5264 	if (th->rst) {
5265 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5266 		 * FIN and SACK too if available):
5267 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5268 		 * the right-most SACK block,
5269 		 * then
5270 		 *     RESET the connection
5271 		 * else
5272 		 *     Send a challenge ACK
5273 		 */
5274 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5275 		    tcp_reset_check(sk, skb)) {
5276 			rst_seq_match = true;
5277 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5278 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5279 			int max_sack = sp[0].end_seq;
5280 			int this_sack;
5281 
5282 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5283 			     ++this_sack) {
5284 				max_sack = after(sp[this_sack].end_seq,
5285 						 max_sack) ?
5286 					sp[this_sack].end_seq : max_sack;
5287 			}
5288 
5289 			if (TCP_SKB_CB(skb)->seq == max_sack)
5290 				rst_seq_match = true;
5291 		}
5292 
5293 		if (rst_seq_match)
5294 			tcp_reset(sk);
5295 		else {
5296 			/* Disable TFO if RST is out-of-order
5297 			 * and no data has been received
5298 			 * for current active TFO socket
5299 			 */
5300 			if (tp->syn_fastopen && !tp->data_segs_in &&
5301 			    sk->sk_state == TCP_ESTABLISHED)
5302 				tcp_fastopen_active_disable(sk);
5303 			tcp_send_challenge_ack(sk, skb);
5304 		}
5305 		goto discard;
5306 	}
5307 
5308 	/* step 3: check security and precedence [ignored] */
5309 
5310 	/* step 4: Check for a SYN
5311 	 * RFC 5961 4.2 : Send a challenge ack
5312 	 */
5313 	if (th->syn) {
5314 syn_challenge:
5315 		if (syn_inerr)
5316 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5317 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5318 		tcp_send_challenge_ack(sk, skb);
5319 		goto discard;
5320 	}
5321 
5322 	return true;
5323 
5324 discard:
5325 	tcp_drop(sk, skb);
5326 	return false;
5327 }
5328 
5329 /*
5330  *	TCP receive function for the ESTABLISHED state.
5331  *
5332  *	It is split into a fast path and a slow path. The fast path is
5333  * 	disabled when:
5334  *	- A zero window was announced from us - zero window probing
5335  *        is only handled properly in the slow path.
5336  *	- Out of order segments arrived.
5337  *	- Urgent data is expected.
5338  *	- There is no buffer space left
5339  *	- Unexpected TCP flags/window values/header lengths are received
5340  *	  (detected by checking the TCP header against pred_flags)
5341  *	- Data is sent in both directions. Fast path only supports pure senders
5342  *	  or pure receivers (this means either the sequence number or the ack
5343  *	  value must stay constant)
5344  *	- Unexpected TCP option.
5345  *
5346  *	When these conditions are not satisfied it drops into a standard
5347  *	receive procedure patterned after RFC793 to handle all cases.
5348  *	The first three cases are guaranteed by proper pred_flags setting,
5349  *	the rest is checked inline. Fast processing is turned on in
5350  *	tcp_data_queue when everything is OK.
5351  */
5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 			 const struct tcphdr *th)
5354 {
5355 	unsigned int len = skb->len;
5356 	struct tcp_sock *tp = tcp_sk(sk);
5357 
5358 	tcp_mstamp_refresh(tp);
5359 	if (unlikely(!sk->sk_rx_dst))
5360 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5361 	/*
5362 	 *	Header prediction.
5363 	 *	The code loosely follows the one in the famous
5364 	 *	"30 instruction TCP receive" Van Jacobson mail.
5365 	 *
5366 	 *	Van's trick is to deposit buffers into socket queue
5367 	 *	on a device interrupt, to call tcp_recv function
5368 	 *	on the receive process context and checksum and copy
5369 	 *	the buffer to user space. smart...
5370 	 *
5371 	 *	Our current scheme is not silly either but we take the
5372 	 *	extra cost of the net_bh soft interrupt processing...
5373 	 *	We do checksum and copy also but from device to kernel.
5374 	 */
5375 
5376 	tp->rx_opt.saw_tstamp = 0;
5377 
5378 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5379 	 *	if header_prediction is to be made
5380 	 *	'S' will always be tp->tcp_header_len >> 2
5381 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5382 	 *  turn it off	(when there are holes in the receive
5383 	 *	 space for instance)
5384 	 *	PSH flag is ignored.
5385 	 */
5386 
5387 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5388 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5389 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5390 		int tcp_header_len = tp->tcp_header_len;
5391 
5392 		/* Timestamp header prediction: tcp_header_len
5393 		 * is automatically equal to th->doff*4 due to pred_flags
5394 		 * match.
5395 		 */
5396 
5397 		/* Check timestamp */
5398 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5399 			/* No? Slow path! */
5400 			if (!tcp_parse_aligned_timestamp(tp, th))
5401 				goto slow_path;
5402 
5403 			/* If PAWS failed, check it more carefully in slow path */
5404 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5405 				goto slow_path;
5406 
5407 			/* DO NOT update ts_recent here, if checksum fails
5408 			 * and timestamp was corrupted part, it will result
5409 			 * in a hung connection since we will drop all
5410 			 * future packets due to the PAWS test.
5411 			 */
5412 		}
5413 
5414 		if (len <= tcp_header_len) {
5415 			/* Bulk data transfer: sender */
5416 			if (len == tcp_header_len) {
5417 				/* Predicted packet is in window by definition.
5418 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419 				 * Hence, check seq<=rcv_wup reduces to:
5420 				 */
5421 				if (tcp_header_len ==
5422 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5423 				    tp->rcv_nxt == tp->rcv_wup)
5424 					tcp_store_ts_recent(tp);
5425 
5426 				/* We know that such packets are checksummed
5427 				 * on entry.
5428 				 */
5429 				tcp_ack(sk, skb, 0);
5430 				__kfree_skb(skb);
5431 				tcp_data_snd_check(sk);
5432 				return;
5433 			} else { /* Header too small */
5434 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5435 				goto discard;
5436 			}
5437 		} else {
5438 			int eaten = 0;
5439 			bool fragstolen = false;
5440 
5441 			if (tcp_checksum_complete(skb))
5442 				goto csum_error;
5443 
5444 			if ((int)skb->truesize > sk->sk_forward_alloc)
5445 				goto step5;
5446 
5447 			/* Predicted packet is in window by definition.
5448 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5449 			 * Hence, check seq<=rcv_wup reduces to:
5450 			 */
5451 			if (tcp_header_len ==
5452 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5453 			    tp->rcv_nxt == tp->rcv_wup)
5454 				tcp_store_ts_recent(tp);
5455 
5456 			tcp_rcv_rtt_measure_ts(sk, skb);
5457 
5458 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5459 
5460 			/* Bulk data transfer: receiver */
5461 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5462 					      &fragstolen);
5463 
5464 			tcp_event_data_recv(sk, skb);
5465 
5466 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5467 				/* Well, only one small jumplet in fast path... */
5468 				tcp_ack(sk, skb, FLAG_DATA);
5469 				tcp_data_snd_check(sk);
5470 				if (!inet_csk_ack_scheduled(sk))
5471 					goto no_ack;
5472 			}
5473 
5474 			__tcp_ack_snd_check(sk, 0);
5475 no_ack:
5476 			if (eaten)
5477 				kfree_skb_partial(skb, fragstolen);
5478 			sk->sk_data_ready(sk);
5479 			return;
5480 		}
5481 	}
5482 
5483 slow_path:
5484 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5485 		goto csum_error;
5486 
5487 	if (!th->ack && !th->rst && !th->syn)
5488 		goto discard;
5489 
5490 	/*
5491 	 *	Standard slow path.
5492 	 */
5493 
5494 	if (!tcp_validate_incoming(sk, skb, th, 1))
5495 		return;
5496 
5497 step5:
5498 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5499 		goto discard;
5500 
5501 	tcp_rcv_rtt_measure_ts(sk, skb);
5502 
5503 	/* Process urgent data. */
5504 	tcp_urg(sk, skb, th);
5505 
5506 	/* step 7: process the segment text */
5507 	tcp_data_queue(sk, skb);
5508 
5509 	tcp_data_snd_check(sk);
5510 	tcp_ack_snd_check(sk);
5511 	return;
5512 
5513 csum_error:
5514 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5515 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5516 
5517 discard:
5518 	tcp_drop(sk, skb);
5519 }
5520 EXPORT_SYMBOL(tcp_rcv_established);
5521 
5522 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5523 {
5524 	struct tcp_sock *tp = tcp_sk(sk);
5525 	struct inet_connection_sock *icsk = inet_csk(sk);
5526 
5527 	tcp_set_state(sk, TCP_ESTABLISHED);
5528 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5529 
5530 	if (skb) {
5531 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5532 		security_inet_conn_established(sk, skb);
5533 	}
5534 
5535 	/* Make sure socket is routed, for correct metrics.  */
5536 	icsk->icsk_af_ops->rebuild_header(sk);
5537 
5538 	tcp_init_metrics(sk);
5539 	tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5540 	tcp_init_congestion_control(sk);
5541 
5542 	/* Prevent spurious tcp_cwnd_restart() on first data
5543 	 * packet.
5544 	 */
5545 	tp->lsndtime = tcp_jiffies32;
5546 
5547 	tcp_init_buffer_space(sk);
5548 
5549 	if (sock_flag(sk, SOCK_KEEPOPEN))
5550 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5551 
5552 	if (!tp->rx_opt.snd_wscale)
5553 		__tcp_fast_path_on(tp, tp->snd_wnd);
5554 	else
5555 		tp->pred_flags = 0;
5556 }
5557 
5558 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5559 				    struct tcp_fastopen_cookie *cookie)
5560 {
5561 	struct tcp_sock *tp = tcp_sk(sk);
5562 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5563 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5564 	bool syn_drop = false;
5565 
5566 	if (mss == tp->rx_opt.user_mss) {
5567 		struct tcp_options_received opt;
5568 
5569 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5570 		tcp_clear_options(&opt);
5571 		opt.user_mss = opt.mss_clamp = 0;
5572 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5573 		mss = opt.mss_clamp;
5574 	}
5575 
5576 	if (!tp->syn_fastopen) {
5577 		/* Ignore an unsolicited cookie */
5578 		cookie->len = -1;
5579 	} else if (tp->total_retrans) {
5580 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5581 		 * acknowledges data. Presumably the remote received only
5582 		 * the retransmitted (regular) SYNs: either the original
5583 		 * SYN-data or the corresponding SYN-ACK was dropped.
5584 		 */
5585 		syn_drop = (cookie->len < 0 && data);
5586 	} else if (cookie->len < 0 && !tp->syn_data) {
5587 		/* We requested a cookie but didn't get it. If we did not use
5588 		 * the (old) exp opt format then try so next time (try_exp=1).
5589 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5590 		 */
5591 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5592 	}
5593 
5594 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5595 
5596 	if (data) { /* Retransmit unacked data in SYN */
5597 		tcp_for_write_queue_from(data, sk) {
5598 			if (data == tcp_send_head(sk) ||
5599 			    __tcp_retransmit_skb(sk, data, 1))
5600 				break;
5601 		}
5602 		tcp_rearm_rto(sk);
5603 		NET_INC_STATS(sock_net(sk),
5604 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5605 		return true;
5606 	}
5607 	tp->syn_data_acked = tp->syn_data;
5608 	if (tp->syn_data_acked)
5609 		NET_INC_STATS(sock_net(sk),
5610 				LINUX_MIB_TCPFASTOPENACTIVE);
5611 
5612 	tcp_fastopen_add_skb(sk, synack);
5613 
5614 	return false;
5615 }
5616 
5617 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5618 					 const struct tcphdr *th)
5619 {
5620 	struct inet_connection_sock *icsk = inet_csk(sk);
5621 	struct tcp_sock *tp = tcp_sk(sk);
5622 	struct tcp_fastopen_cookie foc = { .len = -1 };
5623 	int saved_clamp = tp->rx_opt.mss_clamp;
5624 	bool fastopen_fail;
5625 
5626 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5627 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5628 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5629 
5630 	if (th->ack) {
5631 		/* rfc793:
5632 		 * "If the state is SYN-SENT then
5633 		 *    first check the ACK bit
5634 		 *      If the ACK bit is set
5635 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5636 		 *        a reset (unless the RST bit is set, if so drop
5637 		 *        the segment and return)"
5638 		 */
5639 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5640 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5641 			goto reset_and_undo;
5642 
5643 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5644 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5645 			     tcp_time_stamp(tp))) {
5646 			NET_INC_STATS(sock_net(sk),
5647 					LINUX_MIB_PAWSACTIVEREJECTED);
5648 			goto reset_and_undo;
5649 		}
5650 
5651 		/* Now ACK is acceptable.
5652 		 *
5653 		 * "If the RST bit is set
5654 		 *    If the ACK was acceptable then signal the user "error:
5655 		 *    connection reset", drop the segment, enter CLOSED state,
5656 		 *    delete TCB, and return."
5657 		 */
5658 
5659 		if (th->rst) {
5660 			tcp_reset(sk);
5661 			goto discard;
5662 		}
5663 
5664 		/* rfc793:
5665 		 *   "fifth, if neither of the SYN or RST bits is set then
5666 		 *    drop the segment and return."
5667 		 *
5668 		 *    See note below!
5669 		 *                                        --ANK(990513)
5670 		 */
5671 		if (!th->syn)
5672 			goto discard_and_undo;
5673 
5674 		/* rfc793:
5675 		 *   "If the SYN bit is on ...
5676 		 *    are acceptable then ...
5677 		 *    (our SYN has been ACKed), change the connection
5678 		 *    state to ESTABLISHED..."
5679 		 */
5680 
5681 		tcp_ecn_rcv_synack(tp, th);
5682 
5683 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5684 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5685 
5686 		/* Ok.. it's good. Set up sequence numbers and
5687 		 * move to established.
5688 		 */
5689 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5690 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5691 
5692 		/* RFC1323: The window in SYN & SYN/ACK segments is
5693 		 * never scaled.
5694 		 */
5695 		tp->snd_wnd = ntohs(th->window);
5696 
5697 		if (!tp->rx_opt.wscale_ok) {
5698 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5699 			tp->window_clamp = min(tp->window_clamp, 65535U);
5700 		}
5701 
5702 		if (tp->rx_opt.saw_tstamp) {
5703 			tp->rx_opt.tstamp_ok	   = 1;
5704 			tp->tcp_header_len =
5705 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5706 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5707 			tcp_store_ts_recent(tp);
5708 		} else {
5709 			tp->tcp_header_len = sizeof(struct tcphdr);
5710 		}
5711 
5712 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5713 			tcp_enable_fack(tp);
5714 
5715 		tcp_mtup_init(sk);
5716 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5717 		tcp_initialize_rcv_mss(sk);
5718 
5719 		/* Remember, tcp_poll() does not lock socket!
5720 		 * Change state from SYN-SENT only after copied_seq
5721 		 * is initialized. */
5722 		tp->copied_seq = tp->rcv_nxt;
5723 
5724 		smp_mb();
5725 
5726 		tcp_finish_connect(sk, skb);
5727 
5728 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5729 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5730 
5731 		if (!sock_flag(sk, SOCK_DEAD)) {
5732 			sk->sk_state_change(sk);
5733 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5734 		}
5735 		if (fastopen_fail)
5736 			return -1;
5737 		if (sk->sk_write_pending ||
5738 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5739 		    icsk->icsk_ack.pingpong) {
5740 			/* Save one ACK. Data will be ready after
5741 			 * several ticks, if write_pending is set.
5742 			 *
5743 			 * It may be deleted, but with this feature tcpdumps
5744 			 * look so _wonderfully_ clever, that I was not able
5745 			 * to stand against the temptation 8)     --ANK
5746 			 */
5747 			inet_csk_schedule_ack(sk);
5748 			tcp_enter_quickack_mode(sk);
5749 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5750 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5751 
5752 discard:
5753 			tcp_drop(sk, skb);
5754 			return 0;
5755 		} else {
5756 			tcp_send_ack(sk);
5757 		}
5758 		return -1;
5759 	}
5760 
5761 	/* No ACK in the segment */
5762 
5763 	if (th->rst) {
5764 		/* rfc793:
5765 		 * "If the RST bit is set
5766 		 *
5767 		 *      Otherwise (no ACK) drop the segment and return."
5768 		 */
5769 
5770 		goto discard_and_undo;
5771 	}
5772 
5773 	/* PAWS check. */
5774 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5775 	    tcp_paws_reject(&tp->rx_opt, 0))
5776 		goto discard_and_undo;
5777 
5778 	if (th->syn) {
5779 		/* We see SYN without ACK. It is attempt of
5780 		 * simultaneous connect with crossed SYNs.
5781 		 * Particularly, it can be connect to self.
5782 		 */
5783 		tcp_set_state(sk, TCP_SYN_RECV);
5784 
5785 		if (tp->rx_opt.saw_tstamp) {
5786 			tp->rx_opt.tstamp_ok = 1;
5787 			tcp_store_ts_recent(tp);
5788 			tp->tcp_header_len =
5789 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5790 		} else {
5791 			tp->tcp_header_len = sizeof(struct tcphdr);
5792 		}
5793 
5794 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5795 		tp->copied_seq = tp->rcv_nxt;
5796 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5797 
5798 		/* RFC1323: The window in SYN & SYN/ACK segments is
5799 		 * never scaled.
5800 		 */
5801 		tp->snd_wnd    = ntohs(th->window);
5802 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5803 		tp->max_window = tp->snd_wnd;
5804 
5805 		tcp_ecn_rcv_syn(tp, th);
5806 
5807 		tcp_mtup_init(sk);
5808 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5809 		tcp_initialize_rcv_mss(sk);
5810 
5811 		tcp_send_synack(sk);
5812 #if 0
5813 		/* Note, we could accept data and URG from this segment.
5814 		 * There are no obstacles to make this (except that we must
5815 		 * either change tcp_recvmsg() to prevent it from returning data
5816 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5817 		 *
5818 		 * However, if we ignore data in ACKless segments sometimes,
5819 		 * we have no reasons to accept it sometimes.
5820 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5821 		 * is not flawless. So, discard packet for sanity.
5822 		 * Uncomment this return to process the data.
5823 		 */
5824 		return -1;
5825 #else
5826 		goto discard;
5827 #endif
5828 	}
5829 	/* "fifth, if neither of the SYN or RST bits is set then
5830 	 * drop the segment and return."
5831 	 */
5832 
5833 discard_and_undo:
5834 	tcp_clear_options(&tp->rx_opt);
5835 	tp->rx_opt.mss_clamp = saved_clamp;
5836 	goto discard;
5837 
5838 reset_and_undo:
5839 	tcp_clear_options(&tp->rx_opt);
5840 	tp->rx_opt.mss_clamp = saved_clamp;
5841 	return 1;
5842 }
5843 
5844 /*
5845  *	This function implements the receiving procedure of RFC 793 for
5846  *	all states except ESTABLISHED and TIME_WAIT.
5847  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5848  *	address independent.
5849  */
5850 
5851 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5852 {
5853 	struct tcp_sock *tp = tcp_sk(sk);
5854 	struct inet_connection_sock *icsk = inet_csk(sk);
5855 	const struct tcphdr *th = tcp_hdr(skb);
5856 	struct request_sock *req;
5857 	int queued = 0;
5858 	bool acceptable;
5859 
5860 	switch (sk->sk_state) {
5861 	case TCP_CLOSE:
5862 		goto discard;
5863 
5864 	case TCP_LISTEN:
5865 		if (th->ack)
5866 			return 1;
5867 
5868 		if (th->rst)
5869 			goto discard;
5870 
5871 		if (th->syn) {
5872 			if (th->fin)
5873 				goto discard;
5874 			/* It is possible that we process SYN packets from backlog,
5875 			 * so we need to make sure to disable BH right there.
5876 			 */
5877 			local_bh_disable();
5878 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5879 			local_bh_enable();
5880 
5881 			if (!acceptable)
5882 				return 1;
5883 			consume_skb(skb);
5884 			return 0;
5885 		}
5886 		goto discard;
5887 
5888 	case TCP_SYN_SENT:
5889 		tp->rx_opt.saw_tstamp = 0;
5890 		tcp_mstamp_refresh(tp);
5891 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5892 		if (queued >= 0)
5893 			return queued;
5894 
5895 		/* Do step6 onward by hand. */
5896 		tcp_urg(sk, skb, th);
5897 		__kfree_skb(skb);
5898 		tcp_data_snd_check(sk);
5899 		return 0;
5900 	}
5901 
5902 	tcp_mstamp_refresh(tp);
5903 	tp->rx_opt.saw_tstamp = 0;
5904 	req = tp->fastopen_rsk;
5905 	if (req) {
5906 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5907 		    sk->sk_state != TCP_FIN_WAIT1);
5908 
5909 		if (!tcp_check_req(sk, skb, req, true))
5910 			goto discard;
5911 	}
5912 
5913 	if (!th->ack && !th->rst && !th->syn)
5914 		goto discard;
5915 
5916 	if (!tcp_validate_incoming(sk, skb, th, 0))
5917 		return 0;
5918 
5919 	/* step 5: check the ACK field */
5920 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5921 				      FLAG_UPDATE_TS_RECENT |
5922 				      FLAG_NO_CHALLENGE_ACK) > 0;
5923 
5924 	if (!acceptable) {
5925 		if (sk->sk_state == TCP_SYN_RECV)
5926 			return 1;	/* send one RST */
5927 		tcp_send_challenge_ack(sk, skb);
5928 		goto discard;
5929 	}
5930 	switch (sk->sk_state) {
5931 	case TCP_SYN_RECV:
5932 		if (!tp->srtt_us)
5933 			tcp_synack_rtt_meas(sk, req);
5934 
5935 		/* Once we leave TCP_SYN_RECV, we no longer need req
5936 		 * so release it.
5937 		 */
5938 		if (req) {
5939 			inet_csk(sk)->icsk_retransmits = 0;
5940 			reqsk_fastopen_remove(sk, req, false);
5941 		} else {
5942 			/* Make sure socket is routed, for correct metrics. */
5943 			icsk->icsk_af_ops->rebuild_header(sk);
5944 			tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5945 			tcp_init_congestion_control(sk);
5946 
5947 			tcp_mtup_init(sk);
5948 			tp->copied_seq = tp->rcv_nxt;
5949 			tcp_init_buffer_space(sk);
5950 		}
5951 		smp_mb();
5952 		tcp_set_state(sk, TCP_ESTABLISHED);
5953 		sk->sk_state_change(sk);
5954 
5955 		/* Note, that this wakeup is only for marginal crossed SYN case.
5956 		 * Passively open sockets are not waked up, because
5957 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5958 		 */
5959 		if (sk->sk_socket)
5960 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5961 
5962 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5963 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5964 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5965 
5966 		if (tp->rx_opt.tstamp_ok)
5967 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5968 
5969 		if (req) {
5970 			/* Re-arm the timer because data may have been sent out.
5971 			 * This is similar to the regular data transmission case
5972 			 * when new data has just been ack'ed.
5973 			 *
5974 			 * (TFO) - we could try to be more aggressive and
5975 			 * retransmitting any data sooner based on when they
5976 			 * are sent out.
5977 			 */
5978 			tcp_rearm_rto(sk);
5979 		} else
5980 			tcp_init_metrics(sk);
5981 
5982 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5983 			tcp_update_pacing_rate(sk);
5984 
5985 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5986 		tp->lsndtime = tcp_jiffies32;
5987 
5988 		tcp_initialize_rcv_mss(sk);
5989 		tcp_fast_path_on(tp);
5990 		break;
5991 
5992 	case TCP_FIN_WAIT1: {
5993 		int tmo;
5994 
5995 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5996 		 * Fast Open socket and this is the first acceptable
5997 		 * ACK we have received, this would have acknowledged
5998 		 * our SYNACK so stop the SYNACK timer.
5999 		 */
6000 		if (req) {
6001 			/* We no longer need the request sock. */
6002 			reqsk_fastopen_remove(sk, req, false);
6003 			tcp_rearm_rto(sk);
6004 		}
6005 		if (tp->snd_una != tp->write_seq)
6006 			break;
6007 
6008 		tcp_set_state(sk, TCP_FIN_WAIT2);
6009 		sk->sk_shutdown |= SEND_SHUTDOWN;
6010 
6011 		sk_dst_confirm(sk);
6012 
6013 		if (!sock_flag(sk, SOCK_DEAD)) {
6014 			/* Wake up lingering close() */
6015 			sk->sk_state_change(sk);
6016 			break;
6017 		}
6018 
6019 		if (tp->linger2 < 0) {
6020 			tcp_done(sk);
6021 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6022 			return 1;
6023 		}
6024 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6025 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6026 			/* Receive out of order FIN after close() */
6027 			if (tp->syn_fastopen && th->fin)
6028 				tcp_fastopen_active_disable(sk);
6029 			tcp_done(sk);
6030 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6031 			return 1;
6032 		}
6033 
6034 		tmo = tcp_fin_time(sk);
6035 		if (tmo > TCP_TIMEWAIT_LEN) {
6036 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6037 		} else if (th->fin || sock_owned_by_user(sk)) {
6038 			/* Bad case. We could lose such FIN otherwise.
6039 			 * It is not a big problem, but it looks confusing
6040 			 * and not so rare event. We still can lose it now,
6041 			 * if it spins in bh_lock_sock(), but it is really
6042 			 * marginal case.
6043 			 */
6044 			inet_csk_reset_keepalive_timer(sk, tmo);
6045 		} else {
6046 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6047 			goto discard;
6048 		}
6049 		break;
6050 	}
6051 
6052 	case TCP_CLOSING:
6053 		if (tp->snd_una == tp->write_seq) {
6054 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6055 			goto discard;
6056 		}
6057 		break;
6058 
6059 	case TCP_LAST_ACK:
6060 		if (tp->snd_una == tp->write_seq) {
6061 			tcp_update_metrics(sk);
6062 			tcp_done(sk);
6063 			goto discard;
6064 		}
6065 		break;
6066 	}
6067 
6068 	/* step 6: check the URG bit */
6069 	tcp_urg(sk, skb, th);
6070 
6071 	/* step 7: process the segment text */
6072 	switch (sk->sk_state) {
6073 	case TCP_CLOSE_WAIT:
6074 	case TCP_CLOSING:
6075 	case TCP_LAST_ACK:
6076 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6077 			break;
6078 	case TCP_FIN_WAIT1:
6079 	case TCP_FIN_WAIT2:
6080 		/* RFC 793 says to queue data in these states,
6081 		 * RFC 1122 says we MUST send a reset.
6082 		 * BSD 4.4 also does reset.
6083 		 */
6084 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6085 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6086 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6087 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6088 				tcp_reset(sk);
6089 				return 1;
6090 			}
6091 		}
6092 		/* Fall through */
6093 	case TCP_ESTABLISHED:
6094 		tcp_data_queue(sk, skb);
6095 		queued = 1;
6096 		break;
6097 	}
6098 
6099 	/* tcp_data could move socket to TIME-WAIT */
6100 	if (sk->sk_state != TCP_CLOSE) {
6101 		tcp_data_snd_check(sk);
6102 		tcp_ack_snd_check(sk);
6103 	}
6104 
6105 	if (!queued) {
6106 discard:
6107 		tcp_drop(sk, skb);
6108 	}
6109 	return 0;
6110 }
6111 EXPORT_SYMBOL(tcp_rcv_state_process);
6112 
6113 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6114 {
6115 	struct inet_request_sock *ireq = inet_rsk(req);
6116 
6117 	if (family == AF_INET)
6118 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6119 				    &ireq->ir_rmt_addr, port);
6120 #if IS_ENABLED(CONFIG_IPV6)
6121 	else if (family == AF_INET6)
6122 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6123 				    &ireq->ir_v6_rmt_addr, port);
6124 #endif
6125 }
6126 
6127 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6128  *
6129  * If we receive a SYN packet with these bits set, it means a
6130  * network is playing bad games with TOS bits. In order to
6131  * avoid possible false congestion notifications, we disable
6132  * TCP ECN negotiation.
6133  *
6134  * Exception: tcp_ca wants ECN. This is required for DCTCP
6135  * congestion control: Linux DCTCP asserts ECT on all packets,
6136  * including SYN, which is most optimal solution; however,
6137  * others, such as FreeBSD do not.
6138  */
6139 static void tcp_ecn_create_request(struct request_sock *req,
6140 				   const struct sk_buff *skb,
6141 				   const struct sock *listen_sk,
6142 				   const struct dst_entry *dst)
6143 {
6144 	const struct tcphdr *th = tcp_hdr(skb);
6145 	const struct net *net = sock_net(listen_sk);
6146 	bool th_ecn = th->ece && th->cwr;
6147 	bool ect, ecn_ok;
6148 	u32 ecn_ok_dst;
6149 
6150 	if (!th_ecn)
6151 		return;
6152 
6153 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6154 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6155 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6156 
6157 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6158 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6159 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6160 		inet_rsk(req)->ecn_ok = 1;
6161 }
6162 
6163 static void tcp_openreq_init(struct request_sock *req,
6164 			     const struct tcp_options_received *rx_opt,
6165 			     struct sk_buff *skb, const struct sock *sk)
6166 {
6167 	struct inet_request_sock *ireq = inet_rsk(req);
6168 
6169 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6170 	req->cookie_ts = 0;
6171 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6172 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6173 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6174 	tcp_rsk(req)->last_oow_ack_time = 0;
6175 	req->mss = rx_opt->mss_clamp;
6176 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6177 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6178 	ireq->sack_ok = rx_opt->sack_ok;
6179 	ireq->snd_wscale = rx_opt->snd_wscale;
6180 	ireq->wscale_ok = rx_opt->wscale_ok;
6181 	ireq->acked = 0;
6182 	ireq->ecn_ok = 0;
6183 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6184 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6185 	ireq->ir_mark = inet_request_mark(sk, skb);
6186 }
6187 
6188 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6189 				      struct sock *sk_listener,
6190 				      bool attach_listener)
6191 {
6192 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6193 					       attach_listener);
6194 
6195 	if (req) {
6196 		struct inet_request_sock *ireq = inet_rsk(req);
6197 
6198 		kmemcheck_annotate_bitfield(ireq, flags);
6199 		ireq->opt = NULL;
6200 #if IS_ENABLED(CONFIG_IPV6)
6201 		ireq->pktopts = NULL;
6202 #endif
6203 		atomic64_set(&ireq->ir_cookie, 0);
6204 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6205 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6206 		ireq->ireq_family = sk_listener->sk_family;
6207 	}
6208 
6209 	return req;
6210 }
6211 EXPORT_SYMBOL(inet_reqsk_alloc);
6212 
6213 /*
6214  * Return true if a syncookie should be sent
6215  */
6216 static bool tcp_syn_flood_action(const struct sock *sk,
6217 				 const struct sk_buff *skb,
6218 				 const char *proto)
6219 {
6220 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6221 	const char *msg = "Dropping request";
6222 	bool want_cookie = false;
6223 	struct net *net = sock_net(sk);
6224 
6225 #ifdef CONFIG_SYN_COOKIES
6226 	if (net->ipv4.sysctl_tcp_syncookies) {
6227 		msg = "Sending cookies";
6228 		want_cookie = true;
6229 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6230 	} else
6231 #endif
6232 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6233 
6234 	if (!queue->synflood_warned &&
6235 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6236 	    xchg(&queue->synflood_warned, 1) == 0)
6237 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6238 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6239 
6240 	return want_cookie;
6241 }
6242 
6243 static void tcp_reqsk_record_syn(const struct sock *sk,
6244 				 struct request_sock *req,
6245 				 const struct sk_buff *skb)
6246 {
6247 	if (tcp_sk(sk)->save_syn) {
6248 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6249 		u32 *copy;
6250 
6251 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6252 		if (copy) {
6253 			copy[0] = len;
6254 			memcpy(&copy[1], skb_network_header(skb), len);
6255 			req->saved_syn = copy;
6256 		}
6257 	}
6258 }
6259 
6260 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6261 		     const struct tcp_request_sock_ops *af_ops,
6262 		     struct sock *sk, struct sk_buff *skb)
6263 {
6264 	struct tcp_fastopen_cookie foc = { .len = -1 };
6265 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6266 	struct tcp_options_received tmp_opt;
6267 	struct tcp_sock *tp = tcp_sk(sk);
6268 	struct net *net = sock_net(sk);
6269 	struct sock *fastopen_sk = NULL;
6270 	struct request_sock *req;
6271 	bool want_cookie = false;
6272 	struct dst_entry *dst;
6273 	struct flowi fl;
6274 
6275 	/* TW buckets are converted to open requests without
6276 	 * limitations, they conserve resources and peer is
6277 	 * evidently real one.
6278 	 */
6279 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6280 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6281 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6282 		if (!want_cookie)
6283 			goto drop;
6284 	}
6285 
6286 	if (sk_acceptq_is_full(sk)) {
6287 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6288 		goto drop;
6289 	}
6290 
6291 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6292 	if (!req)
6293 		goto drop;
6294 
6295 	tcp_rsk(req)->af_specific = af_ops;
6296 	tcp_rsk(req)->ts_off = 0;
6297 
6298 	tcp_clear_options(&tmp_opt);
6299 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6300 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6301 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6302 			  want_cookie ? NULL : &foc);
6303 
6304 	if (want_cookie && !tmp_opt.saw_tstamp)
6305 		tcp_clear_options(&tmp_opt);
6306 
6307 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6308 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6309 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6310 
6311 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6312 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6313 
6314 	af_ops->init_req(req, sk, skb);
6315 
6316 	if (security_inet_conn_request(sk, skb, req))
6317 		goto drop_and_free;
6318 
6319 	if (tmp_opt.tstamp_ok)
6320 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6321 
6322 	dst = af_ops->route_req(sk, &fl, req);
6323 	if (!dst)
6324 		goto drop_and_free;
6325 
6326 	if (!want_cookie && !isn) {
6327 		/* Kill the following clause, if you dislike this way. */
6328 		if (!net->ipv4.sysctl_tcp_syncookies &&
6329 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6330 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6331 		    !tcp_peer_is_proven(req, dst)) {
6332 			/* Without syncookies last quarter of
6333 			 * backlog is filled with destinations,
6334 			 * proven to be alive.
6335 			 * It means that we continue to communicate
6336 			 * to destinations, already remembered
6337 			 * to the moment of synflood.
6338 			 */
6339 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6340 				    rsk_ops->family);
6341 			goto drop_and_release;
6342 		}
6343 
6344 		isn = af_ops->init_seq(skb);
6345 	}
6346 
6347 	tcp_ecn_create_request(req, skb, sk, dst);
6348 
6349 	if (want_cookie) {
6350 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6351 		req->cookie_ts = tmp_opt.tstamp_ok;
6352 		if (!tmp_opt.tstamp_ok)
6353 			inet_rsk(req)->ecn_ok = 0;
6354 	}
6355 
6356 	tcp_rsk(req)->snt_isn = isn;
6357 	tcp_rsk(req)->txhash = net_tx_rndhash();
6358 	tcp_openreq_init_rwin(req, sk, dst);
6359 	if (!want_cookie) {
6360 		tcp_reqsk_record_syn(sk, req, skb);
6361 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
6362 	}
6363 	if (fastopen_sk) {
6364 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6365 				    &foc, TCP_SYNACK_FASTOPEN);
6366 		/* Add the child socket directly into the accept queue */
6367 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6368 		sk->sk_data_ready(sk);
6369 		bh_unlock_sock(fastopen_sk);
6370 		sock_put(fastopen_sk);
6371 	} else {
6372 		tcp_rsk(req)->tfo_listener = false;
6373 		if (!want_cookie)
6374 			inet_csk_reqsk_queue_hash_add(sk, req,
6375 				tcp_timeout_init((struct sock *)req));
6376 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6377 				    !want_cookie ? TCP_SYNACK_NORMAL :
6378 						   TCP_SYNACK_COOKIE);
6379 		if (want_cookie) {
6380 			reqsk_free(req);
6381 			return 0;
6382 		}
6383 	}
6384 	reqsk_put(req);
6385 	return 0;
6386 
6387 drop_and_release:
6388 	dst_release(dst);
6389 drop_and_free:
6390 	reqsk_free(req);
6391 drop:
6392 	tcp_listendrop(sk);
6393 	return 0;
6394 }
6395 EXPORT_SYMBOL(tcp_conn_request);
6396