1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/slab.h> 66 #include <linux/module.h> 67 #include <linux/sysctl.h> 68 #include <linux/kernel.h> 69 #include <net/dst.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps __read_mostly = 1; 77 int sysctl_tcp_window_scaling __read_mostly = 1; 78 int sysctl_tcp_sack __read_mostly = 1; 79 int sysctl_tcp_fack __read_mostly = 1; 80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 81 EXPORT_SYMBOL(sysctl_tcp_reordering); 82 int sysctl_tcp_ecn __read_mostly = 2; 83 EXPORT_SYMBOL(sysctl_tcp_ecn); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 2; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_frto_response __read_mostly; 94 int sysctl_tcp_nometrics_save __read_mostly; 95 96 int sysctl_tcp_thin_dupack __read_mostly; 97 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_abc __read_mostly; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 static void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline int tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 221 { 222 if (tp->ecn_flags & TCP_ECN_OK) { 223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 225 /* Funny extension: if ECT is not set on a segment, 226 * it is surely retransmit. It is not in ECN RFC, 227 * but Linux follows this rule. */ 228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 229 tcp_enter_quickack_mode((struct sock *)tp); 230 } 231 } 232 233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 242 tp->ecn_flags &= ~TCP_ECN_OK; 243 } 244 245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 246 { 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 248 return 1; 249 return 0; 250 } 251 252 /* Buffer size and advertised window tuning. 253 * 254 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 255 */ 256 257 static void tcp_fixup_sndbuf(struct sock *sk) 258 { 259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 260 sizeof(struct sk_buff); 261 262 if (sk->sk_sndbuf < 3 * sndmem) { 263 sk->sk_sndbuf = 3 * sndmem; 264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2]) 265 sk->sk_sndbuf = sysctl_tcp_wmem[2]; 266 } 267 } 268 269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 270 * 271 * All tcp_full_space() is split to two parts: "network" buffer, allocated 272 * forward and advertised in receiver window (tp->rcv_wnd) and 273 * "application buffer", required to isolate scheduling/application 274 * latencies from network. 275 * window_clamp is maximal advertised window. It can be less than 276 * tcp_full_space(), in this case tcp_full_space() - window_clamp 277 * is reserved for "application" buffer. The less window_clamp is 278 * the smoother our behaviour from viewpoint of network, but the lower 279 * throughput and the higher sensitivity of the connection to losses. 8) 280 * 281 * rcv_ssthresh is more strict window_clamp used at "slow start" 282 * phase to predict further behaviour of this connection. 283 * It is used for two goals: 284 * - to enforce header prediction at sender, even when application 285 * requires some significant "application buffer". It is check #1. 286 * - to prevent pruning of receive queue because of misprediction 287 * of receiver window. Check #2. 288 * 289 * The scheme does not work when sender sends good segments opening 290 * window and then starts to feed us spaghetti. But it should work 291 * in common situations. Otherwise, we have to rely on queue collapsing. 292 */ 293 294 /* Slow part of check#2. */ 295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 296 { 297 struct tcp_sock *tp = tcp_sk(sk); 298 /* Optimize this! */ 299 int truesize = tcp_win_from_space(skb->truesize) >> 1; 300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 301 302 while (tp->rcv_ssthresh <= window) { 303 if (truesize <= skb->len) 304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 305 306 truesize >>= 1; 307 window >>= 1; 308 } 309 return 0; 310 } 311 312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 313 { 314 struct tcp_sock *tp = tcp_sk(sk); 315 316 /* Check #1 */ 317 if (tp->rcv_ssthresh < tp->window_clamp && 318 (int)tp->rcv_ssthresh < tcp_space(sk) && 319 !tcp_memory_pressure) { 320 int incr; 321 322 /* Check #2. Increase window, if skb with such overhead 323 * will fit to rcvbuf in future. 324 */ 325 if (tcp_win_from_space(skb->truesize) <= skb->len) 326 incr = 2 * tp->advmss; 327 else 328 incr = __tcp_grow_window(sk, skb); 329 330 if (incr) { 331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 332 tp->window_clamp); 333 inet_csk(sk)->icsk_ack.quick |= 1; 334 } 335 } 336 } 337 338 /* 3. Tuning rcvbuf, when connection enters established state. */ 339 340 static void tcp_fixup_rcvbuf(struct sock *sk) 341 { 342 struct tcp_sock *tp = tcp_sk(sk); 343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 344 345 /* Try to select rcvbuf so that 4 mss-sized segments 346 * will fit to window and corresponding skbs will fit to our rcvbuf. 347 * (was 3; 4 is minimum to allow fast retransmit to work.) 348 */ 349 while (tcp_win_from_space(rcvmem) < tp->advmss) 350 rcvmem += 128; 351 if (sk->sk_rcvbuf < 4 * rcvmem) 352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 353 } 354 355 /* 4. Try to fixup all. It is made immediately after connection enters 356 * established state. 357 */ 358 static void tcp_init_buffer_space(struct sock *sk) 359 { 360 struct tcp_sock *tp = tcp_sk(sk); 361 int maxwin; 362 363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 364 tcp_fixup_rcvbuf(sk); 365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 366 tcp_fixup_sndbuf(sk); 367 368 tp->rcvq_space.space = tp->rcv_wnd; 369 370 maxwin = tcp_full_space(sk); 371 372 if (tp->window_clamp >= maxwin) { 373 tp->window_clamp = maxwin; 374 375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 376 tp->window_clamp = max(maxwin - 377 (maxwin >> sysctl_tcp_app_win), 378 4 * tp->advmss); 379 } 380 381 /* Force reservation of one segment. */ 382 if (sysctl_tcp_app_win && 383 tp->window_clamp > 2 * tp->advmss && 384 tp->window_clamp + tp->advmss > maxwin) 385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 386 387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 388 tp->snd_cwnd_stamp = tcp_time_stamp; 389 } 390 391 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 392 static void tcp_clamp_window(struct sock *sk) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 397 icsk->icsk_ack.quick = 0; 398 399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 401 !tcp_memory_pressure && 402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 404 sysctl_tcp_rmem[2]); 405 } 406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 408 } 409 410 /* Initialize RCV_MSS value. 411 * RCV_MSS is an our guess about MSS used by the peer. 412 * We haven't any direct information about the MSS. 413 * It's better to underestimate the RCV_MSS rather than overestimate. 414 * Overestimations make us ACKing less frequently than needed. 415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 416 */ 417 void tcp_initialize_rcv_mss(struct sock *sk) 418 { 419 struct tcp_sock *tp = tcp_sk(sk); 420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 421 422 hint = min(hint, tp->rcv_wnd / 2); 423 hint = min(hint, TCP_MSS_DEFAULT); 424 hint = max(hint, TCP_MIN_MSS); 425 426 inet_csk(sk)->icsk_ack.rcv_mss = hint; 427 } 428 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 429 430 /* Receiver "autotuning" code. 431 * 432 * The algorithm for RTT estimation w/o timestamps is based on 433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 434 * <http://public.lanl.gov/radiant/pubs.html#DRS> 435 * 436 * More detail on this code can be found at 437 * <http://staff.psc.edu/jheffner/>, 438 * though this reference is out of date. A new paper 439 * is pending. 440 */ 441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 442 { 443 u32 new_sample = tp->rcv_rtt_est.rtt; 444 long m = sample; 445 446 if (m == 0) 447 m = 1; 448 449 if (new_sample != 0) { 450 /* If we sample in larger samples in the non-timestamp 451 * case, we could grossly overestimate the RTT especially 452 * with chatty applications or bulk transfer apps which 453 * are stalled on filesystem I/O. 454 * 455 * Also, since we are only going for a minimum in the 456 * non-timestamp case, we do not smooth things out 457 * else with timestamps disabled convergence takes too 458 * long. 459 */ 460 if (!win_dep) { 461 m -= (new_sample >> 3); 462 new_sample += m; 463 } else if (m < new_sample) 464 new_sample = m << 3; 465 } else { 466 /* No previous measure. */ 467 new_sample = m << 3; 468 } 469 470 if (tp->rcv_rtt_est.rtt != new_sample) 471 tp->rcv_rtt_est.rtt = new_sample; 472 } 473 474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 475 { 476 if (tp->rcv_rtt_est.time == 0) 477 goto new_measure; 478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 479 return; 480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 481 482 new_measure: 483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 484 tp->rcv_rtt_est.time = tcp_time_stamp; 485 } 486 487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 488 const struct sk_buff *skb) 489 { 490 struct tcp_sock *tp = tcp_sk(sk); 491 if (tp->rx_opt.rcv_tsecr && 492 (TCP_SKB_CB(skb)->end_seq - 493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 495 } 496 497 /* 498 * This function should be called every time data is copied to user space. 499 * It calculates the appropriate TCP receive buffer space. 500 */ 501 void tcp_rcv_space_adjust(struct sock *sk) 502 { 503 struct tcp_sock *tp = tcp_sk(sk); 504 int time; 505 int space; 506 507 if (tp->rcvq_space.time == 0) 508 goto new_measure; 509 510 time = tcp_time_stamp - tp->rcvq_space.time; 511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 512 return; 513 514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 515 516 space = max(tp->rcvq_space.space, space); 517 518 if (tp->rcvq_space.space != space) { 519 int rcvmem; 520 521 tp->rcvq_space.space = space; 522 523 if (sysctl_tcp_moderate_rcvbuf && 524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 525 int new_clamp = space; 526 527 /* Receive space grows, normalize in order to 528 * take into account packet headers and sk_buff 529 * structure overhead. 530 */ 531 space /= tp->advmss; 532 if (!space) 533 space = 1; 534 rcvmem = (tp->advmss + MAX_TCP_HEADER + 535 16 + sizeof(struct sk_buff)); 536 while (tcp_win_from_space(rcvmem) < tp->advmss) 537 rcvmem += 128; 538 space *= rcvmem; 539 space = min(space, sysctl_tcp_rmem[2]); 540 if (space > sk->sk_rcvbuf) { 541 sk->sk_rcvbuf = space; 542 543 /* Make the window clamp follow along. */ 544 tp->window_clamp = new_clamp; 545 } 546 } 547 } 548 549 new_measure: 550 tp->rcvq_space.seq = tp->copied_seq; 551 tp->rcvq_space.time = tcp_time_stamp; 552 } 553 554 /* There is something which you must keep in mind when you analyze the 555 * behavior of the tp->ato delayed ack timeout interval. When a 556 * connection starts up, we want to ack as quickly as possible. The 557 * problem is that "good" TCP's do slow start at the beginning of data 558 * transmission. The means that until we send the first few ACK's the 559 * sender will sit on his end and only queue most of his data, because 560 * he can only send snd_cwnd unacked packets at any given time. For 561 * each ACK we send, he increments snd_cwnd and transmits more of his 562 * queue. -DaveM 563 */ 564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 struct inet_connection_sock *icsk = inet_csk(sk); 568 u32 now; 569 570 inet_csk_schedule_ack(sk); 571 572 tcp_measure_rcv_mss(sk, skb); 573 574 tcp_rcv_rtt_measure(tp); 575 576 now = tcp_time_stamp; 577 578 if (!icsk->icsk_ack.ato) { 579 /* The _first_ data packet received, initialize 580 * delayed ACK engine. 581 */ 582 tcp_incr_quickack(sk); 583 icsk->icsk_ack.ato = TCP_ATO_MIN; 584 } else { 585 int m = now - icsk->icsk_ack.lrcvtime; 586 587 if (m <= TCP_ATO_MIN / 2) { 588 /* The fastest case is the first. */ 589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 590 } else if (m < icsk->icsk_ack.ato) { 591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 592 if (icsk->icsk_ack.ato > icsk->icsk_rto) 593 icsk->icsk_ack.ato = icsk->icsk_rto; 594 } else if (m > icsk->icsk_rto) { 595 /* Too long gap. Apparently sender failed to 596 * restart window, so that we send ACKs quickly. 597 */ 598 tcp_incr_quickack(sk); 599 sk_mem_reclaim(sk); 600 } 601 } 602 icsk->icsk_ack.lrcvtime = now; 603 604 TCP_ECN_check_ce(tp, skb); 605 606 if (skb->len >= 128) 607 tcp_grow_window(sk, skb); 608 } 609 610 /* Called to compute a smoothed rtt estimate. The data fed to this 611 * routine either comes from timestamps, or from segments that were 612 * known _not_ to have been retransmitted [see Karn/Partridge 613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 614 * piece by Van Jacobson. 615 * NOTE: the next three routines used to be one big routine. 616 * To save cycles in the RFC 1323 implementation it was better to break 617 * it up into three procedures. -- erics 618 */ 619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 620 { 621 struct tcp_sock *tp = tcp_sk(sk); 622 long m = mrtt; /* RTT */ 623 624 /* The following amusing code comes from Jacobson's 625 * article in SIGCOMM '88. Note that rtt and mdev 626 * are scaled versions of rtt and mean deviation. 627 * This is designed to be as fast as possible 628 * m stands for "measurement". 629 * 630 * On a 1990 paper the rto value is changed to: 631 * RTO = rtt + 4 * mdev 632 * 633 * Funny. This algorithm seems to be very broken. 634 * These formulae increase RTO, when it should be decreased, increase 635 * too slowly, when it should be increased quickly, decrease too quickly 636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 637 * does not matter how to _calculate_ it. Seems, it was trap 638 * that VJ failed to avoid. 8) 639 */ 640 if (m == 0) 641 m = 1; 642 if (tp->srtt != 0) { 643 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 645 if (m < 0) { 646 m = -m; /* m is now abs(error) */ 647 m -= (tp->mdev >> 2); /* similar update on mdev */ 648 /* This is similar to one of Eifel findings. 649 * Eifel blocks mdev updates when rtt decreases. 650 * This solution is a bit different: we use finer gain 651 * for mdev in this case (alpha*beta). 652 * Like Eifel it also prevents growth of rto, 653 * but also it limits too fast rto decreases, 654 * happening in pure Eifel. 655 */ 656 if (m > 0) 657 m >>= 3; 658 } else { 659 m -= (tp->mdev >> 2); /* similar update on mdev */ 660 } 661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 662 if (tp->mdev > tp->mdev_max) { 663 tp->mdev_max = tp->mdev; 664 if (tp->mdev_max > tp->rttvar) 665 tp->rttvar = tp->mdev_max; 666 } 667 if (after(tp->snd_una, tp->rtt_seq)) { 668 if (tp->mdev_max < tp->rttvar) 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 670 tp->rtt_seq = tp->snd_nxt; 671 tp->mdev_max = tcp_rto_min(sk); 672 } 673 } else { 674 /* no previous measure. */ 675 tp->srtt = m << 3; /* take the measured time to be rtt */ 676 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 678 tp->rtt_seq = tp->snd_nxt; 679 } 680 } 681 682 /* Calculate rto without backoff. This is the second half of Van Jacobson's 683 * routine referred to above. 684 */ 685 static inline void tcp_set_rto(struct sock *sk) 686 { 687 const struct tcp_sock *tp = tcp_sk(sk); 688 /* Old crap is replaced with new one. 8) 689 * 690 * More seriously: 691 * 1. If rtt variance happened to be less 50msec, it is hallucination. 692 * It cannot be less due to utterly erratic ACK generation made 693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 694 * to do with delayed acks, because at cwnd>2 true delack timeout 695 * is invisible. Actually, Linux-2.4 also generates erratic 696 * ACKs in some circumstances. 697 */ 698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 699 700 /* 2. Fixups made earlier cannot be right. 701 * If we do not estimate RTO correctly without them, 702 * all the algo is pure shit and should be replaced 703 * with correct one. It is exactly, which we pretend to do. 704 */ 705 706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 707 * guarantees that rto is higher. 708 */ 709 tcp_bound_rto(sk); 710 } 711 712 /* Save metrics learned by this TCP session. 713 This function is called only, when TCP finishes successfully 714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 715 */ 716 void tcp_update_metrics(struct sock *sk) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 struct dst_entry *dst = __sk_dst_get(sk); 720 721 if (sysctl_tcp_nometrics_save) 722 return; 723 724 dst_confirm(dst); 725 726 if (dst && (dst->flags & DST_HOST)) { 727 const struct inet_connection_sock *icsk = inet_csk(sk); 728 int m; 729 unsigned long rtt; 730 731 if (icsk->icsk_backoff || !tp->srtt) { 732 /* This session failed to estimate rtt. Why? 733 * Probably, no packets returned in time. 734 * Reset our results. 735 */ 736 if (!(dst_metric_locked(dst, RTAX_RTT))) 737 dst_metric_set(dst, RTAX_RTT, 0); 738 return; 739 } 740 741 rtt = dst_metric_rtt(dst, RTAX_RTT); 742 m = rtt - tp->srtt; 743 744 /* If newly calculated rtt larger than stored one, 745 * store new one. Otherwise, use EWMA. Remember, 746 * rtt overestimation is always better than underestimation. 747 */ 748 if (!(dst_metric_locked(dst, RTAX_RTT))) { 749 if (m <= 0) 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 751 else 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 753 } 754 755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 756 unsigned long var; 757 if (m < 0) 758 m = -m; 759 760 /* Scale deviation to rttvar fixed point */ 761 m >>= 1; 762 if (m < tp->mdev) 763 m = tp->mdev; 764 765 var = dst_metric_rtt(dst, RTAX_RTTVAR); 766 if (m >= var) 767 var = m; 768 else 769 var -= (var - m) >> 2; 770 771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 772 } 773 774 if (tcp_in_initial_slowstart(tp)) { 775 /* Slow start still did not finish. */ 776 if (dst_metric(dst, RTAX_SSTHRESH) && 777 !dst_metric_locked(dst, RTAX_SSTHRESH) && 778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1); 780 if (!dst_metric_locked(dst, RTAX_CWND) && 781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd); 783 } else if (tp->snd_cwnd > tp->snd_ssthresh && 784 icsk->icsk_ca_state == TCP_CA_Open) { 785 /* Cong. avoidance phase, cwnd is reliable. */ 786 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 787 dst_metric_set(dst, RTAX_SSTHRESH, 788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh)); 789 if (!dst_metric_locked(dst, RTAX_CWND)) 790 dst_metric_set(dst, RTAX_CWND, 791 (dst_metric(dst, RTAX_CWND) + 792 tp->snd_cwnd) >> 1); 793 } else { 794 /* Else slow start did not finish, cwnd is non-sense, 795 ssthresh may be also invalid. 796 */ 797 if (!dst_metric_locked(dst, RTAX_CWND)) 798 dst_metric_set(dst, RTAX_CWND, 799 (dst_metric(dst, RTAX_CWND) + 800 tp->snd_ssthresh) >> 1); 801 if (dst_metric(dst, RTAX_SSTHRESH) && 802 !dst_metric_locked(dst, RTAX_SSTHRESH) && 803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh); 805 } 806 807 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 809 tp->reordering != sysctl_tcp_reordering) 810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering); 811 } 812 } 813 } 814 815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 816 { 817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 818 819 if (!cwnd) 820 cwnd = TCP_INIT_CWND; 821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 822 } 823 824 /* Set slow start threshold and cwnd not falling to slow start */ 825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 826 { 827 struct tcp_sock *tp = tcp_sk(sk); 828 const struct inet_connection_sock *icsk = inet_csk(sk); 829 830 tp->prior_ssthresh = 0; 831 tp->bytes_acked = 0; 832 if (icsk->icsk_ca_state < TCP_CA_CWR) { 833 tp->undo_marker = 0; 834 if (set_ssthresh) 835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 836 tp->snd_cwnd = min(tp->snd_cwnd, 837 tcp_packets_in_flight(tp) + 1U); 838 tp->snd_cwnd_cnt = 0; 839 tp->high_seq = tp->snd_nxt; 840 tp->snd_cwnd_stamp = tcp_time_stamp; 841 TCP_ECN_queue_cwr(tp); 842 843 tcp_set_ca_state(sk, TCP_CA_CWR); 844 } 845 } 846 847 /* 848 * Packet counting of FACK is based on in-order assumptions, therefore TCP 849 * disables it when reordering is detected 850 */ 851 static void tcp_disable_fack(struct tcp_sock *tp) 852 { 853 /* RFC3517 uses different metric in lost marker => reset on change */ 854 if (tcp_is_fack(tp)) 855 tp->lost_skb_hint = NULL; 856 tp->rx_opt.sack_ok &= ~2; 857 } 858 859 /* Take a notice that peer is sending D-SACKs */ 860 static void tcp_dsack_seen(struct tcp_sock *tp) 861 { 862 tp->rx_opt.sack_ok |= 4; 863 } 864 865 /* Initialize metrics on socket. */ 866 867 static void tcp_init_metrics(struct sock *sk) 868 { 869 struct tcp_sock *tp = tcp_sk(sk); 870 struct dst_entry *dst = __sk_dst_get(sk); 871 872 if (dst == NULL) 873 goto reset; 874 875 dst_confirm(dst); 876 877 if (dst_metric_locked(dst, RTAX_CWND)) 878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 879 if (dst_metric(dst, RTAX_SSTHRESH)) { 880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 882 tp->snd_ssthresh = tp->snd_cwnd_clamp; 883 } 884 if (dst_metric(dst, RTAX_REORDERING) && 885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 886 tcp_disable_fack(tp); 887 tp->reordering = dst_metric(dst, RTAX_REORDERING); 888 } 889 890 if (dst_metric(dst, RTAX_RTT) == 0) 891 goto reset; 892 893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 894 goto reset; 895 896 /* Initial rtt is determined from SYN,SYN-ACK. 897 * The segment is small and rtt may appear much 898 * less than real one. Use per-dst memory 899 * to make it more realistic. 900 * 901 * A bit of theory. RTT is time passed after "normal" sized packet 902 * is sent until it is ACKed. In normal circumstances sending small 903 * packets force peer to delay ACKs and calculation is correct too. 904 * The algorithm is adaptive and, provided we follow specs, it 905 * NEVER underestimate RTT. BUT! If peer tries to make some clever 906 * tricks sort of "quick acks" for time long enough to decrease RTT 907 * to low value, and then abruptly stops to do it and starts to delay 908 * ACKs, wait for troubles. 909 */ 910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 912 tp->rtt_seq = tp->snd_nxt; 913 } 914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 917 } 918 tcp_set_rto(sk); 919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) { 920 reset: 921 /* Play conservative. If timestamps are not 922 * supported, TCP will fail to recalculate correct 923 * rtt, if initial rto is too small. FORGET ALL AND RESET! 924 */ 925 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 926 tp->srtt = 0; 927 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 929 } 930 } 931 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 932 tp->snd_cwnd_stamp = tcp_time_stamp; 933 } 934 935 static void tcp_update_reordering(struct sock *sk, const int metric, 936 const int ts) 937 { 938 struct tcp_sock *tp = tcp_sk(sk); 939 if (metric > tp->reordering) { 940 int mib_idx; 941 942 tp->reordering = min(TCP_MAX_REORDERING, metric); 943 944 /* This exciting event is worth to be remembered. 8) */ 945 if (ts) 946 mib_idx = LINUX_MIB_TCPTSREORDER; 947 else if (tcp_is_reno(tp)) 948 mib_idx = LINUX_MIB_TCPRENOREORDER; 949 else if (tcp_is_fack(tp)) 950 mib_idx = LINUX_MIB_TCPFACKREORDER; 951 else 952 mib_idx = LINUX_MIB_TCPSACKREORDER; 953 954 NET_INC_STATS_BH(sock_net(sk), mib_idx); 955 #if FASTRETRANS_DEBUG > 1 956 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 957 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 958 tp->reordering, 959 tp->fackets_out, 960 tp->sacked_out, 961 tp->undo_marker ? tp->undo_retrans : 0); 962 #endif 963 tcp_disable_fack(tp); 964 } 965 } 966 967 /* This must be called before lost_out is incremented */ 968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 969 { 970 if ((tp->retransmit_skb_hint == NULL) || 971 before(TCP_SKB_CB(skb)->seq, 972 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 973 tp->retransmit_skb_hint = skb; 974 975 if (!tp->lost_out || 976 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 977 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 978 } 979 980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 981 { 982 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 983 tcp_verify_retransmit_hint(tp, skb); 984 985 tp->lost_out += tcp_skb_pcount(skb); 986 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 987 } 988 } 989 990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 991 struct sk_buff *skb) 992 { 993 tcp_verify_retransmit_hint(tp, skb); 994 995 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 996 tp->lost_out += tcp_skb_pcount(skb); 997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 998 } 999 } 1000 1001 /* This procedure tags the retransmission queue when SACKs arrive. 1002 * 1003 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1004 * Packets in queue with these bits set are counted in variables 1005 * sacked_out, retrans_out and lost_out, correspondingly. 1006 * 1007 * Valid combinations are: 1008 * Tag InFlight Description 1009 * 0 1 - orig segment is in flight. 1010 * S 0 - nothing flies, orig reached receiver. 1011 * L 0 - nothing flies, orig lost by net. 1012 * R 2 - both orig and retransmit are in flight. 1013 * L|R 1 - orig is lost, retransmit is in flight. 1014 * S|R 1 - orig reached receiver, retrans is still in flight. 1015 * (L|S|R is logically valid, it could occur when L|R is sacked, 1016 * but it is equivalent to plain S and code short-curcuits it to S. 1017 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1018 * 1019 * These 6 states form finite state machine, controlled by the following events: 1020 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1021 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1022 * 3. Loss detection event of one of three flavors: 1023 * A. Scoreboard estimator decided the packet is lost. 1024 * A'. Reno "three dupacks" marks head of queue lost. 1025 * A''. Its FACK modfication, head until snd.fack is lost. 1026 * B. SACK arrives sacking data transmitted after never retransmitted 1027 * hole was sent out. 1028 * C. SACK arrives sacking SND.NXT at the moment, when the 1029 * segment was retransmitted. 1030 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1031 * 1032 * It is pleasant to note, that state diagram turns out to be commutative, 1033 * so that we are allowed not to be bothered by order of our actions, 1034 * when multiple events arrive simultaneously. (see the function below). 1035 * 1036 * Reordering detection. 1037 * -------------------- 1038 * Reordering metric is maximal distance, which a packet can be displaced 1039 * in packet stream. With SACKs we can estimate it: 1040 * 1041 * 1. SACK fills old hole and the corresponding segment was not 1042 * ever retransmitted -> reordering. Alas, we cannot use it 1043 * when segment was retransmitted. 1044 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1045 * for retransmitted and already SACKed segment -> reordering.. 1046 * Both of these heuristics are not used in Loss state, when we cannot 1047 * account for retransmits accurately. 1048 * 1049 * SACK block validation. 1050 * ---------------------- 1051 * 1052 * SACK block range validation checks that the received SACK block fits to 1053 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1054 * Note that SND.UNA is not included to the range though being valid because 1055 * it means that the receiver is rather inconsistent with itself reporting 1056 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1057 * perfectly valid, however, in light of RFC2018 which explicitly states 1058 * that "SACK block MUST reflect the newest segment. Even if the newest 1059 * segment is going to be discarded ...", not that it looks very clever 1060 * in case of head skb. Due to potentional receiver driven attacks, we 1061 * choose to avoid immediate execution of a walk in write queue due to 1062 * reneging and defer head skb's loss recovery to standard loss recovery 1063 * procedure that will eventually trigger (nothing forbids us doing this). 1064 * 1065 * Implements also blockage to start_seq wrap-around. Problem lies in the 1066 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1067 * there's no guarantee that it will be before snd_nxt (n). The problem 1068 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1069 * wrap (s_w): 1070 * 1071 * <- outs wnd -> <- wrapzone -> 1072 * u e n u_w e_w s n_w 1073 * | | | | | | | 1074 * |<------------+------+----- TCP seqno space --------------+---------->| 1075 * ...-- <2^31 ->| |<--------... 1076 * ...---- >2^31 ------>| |<--------... 1077 * 1078 * Current code wouldn't be vulnerable but it's better still to discard such 1079 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1080 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1081 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1082 * equal to the ideal case (infinite seqno space without wrap caused issues). 1083 * 1084 * With D-SACK the lower bound is extended to cover sequence space below 1085 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1086 * again, D-SACK block must not to go across snd_una (for the same reason as 1087 * for the normal SACK blocks, explained above). But there all simplicity 1088 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1089 * fully below undo_marker they do not affect behavior in anyway and can 1090 * therefore be safely ignored. In rare cases (which are more or less 1091 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1092 * fragmentation and packet reordering past skb's retransmission. To consider 1093 * them correctly, the acceptable range must be extended even more though 1094 * the exact amount is rather hard to quantify. However, tp->max_window can 1095 * be used as an exaggerated estimate. 1096 */ 1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1098 u32 start_seq, u32 end_seq) 1099 { 1100 /* Too far in future, or reversed (interpretation is ambiguous) */ 1101 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1102 return 0; 1103 1104 /* Nasty start_seq wrap-around check (see comments above) */ 1105 if (!before(start_seq, tp->snd_nxt)) 1106 return 0; 1107 1108 /* In outstanding window? ...This is valid exit for D-SACKs too. 1109 * start_seq == snd_una is non-sensical (see comments above) 1110 */ 1111 if (after(start_seq, tp->snd_una)) 1112 return 1; 1113 1114 if (!is_dsack || !tp->undo_marker) 1115 return 0; 1116 1117 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1118 if (!after(end_seq, tp->snd_una)) 1119 return 0; 1120 1121 if (!before(start_seq, tp->undo_marker)) 1122 return 1; 1123 1124 /* Too old */ 1125 if (!after(end_seq, tp->undo_marker)) 1126 return 0; 1127 1128 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1129 * start_seq < undo_marker and end_seq >= undo_marker. 1130 */ 1131 return !before(start_seq, end_seq - tp->max_window); 1132 } 1133 1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1135 * Event "C". Later note: FACK people cheated me again 8), we have to account 1136 * for reordering! Ugly, but should help. 1137 * 1138 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1139 * less than what is now known to be received by the other end (derived from 1140 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1141 * retransmitted skbs to avoid some costly processing per ACKs. 1142 */ 1143 static void tcp_mark_lost_retrans(struct sock *sk) 1144 { 1145 const struct inet_connection_sock *icsk = inet_csk(sk); 1146 struct tcp_sock *tp = tcp_sk(sk); 1147 struct sk_buff *skb; 1148 int cnt = 0; 1149 u32 new_low_seq = tp->snd_nxt; 1150 u32 received_upto = tcp_highest_sack_seq(tp); 1151 1152 if (!tcp_is_fack(tp) || !tp->retrans_out || 1153 !after(received_upto, tp->lost_retrans_low) || 1154 icsk->icsk_ca_state != TCP_CA_Recovery) 1155 return; 1156 1157 tcp_for_write_queue(skb, sk) { 1158 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1159 1160 if (skb == tcp_send_head(sk)) 1161 break; 1162 if (cnt == tp->retrans_out) 1163 break; 1164 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1165 continue; 1166 1167 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1168 continue; 1169 1170 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1171 * constraint here (see above) but figuring out that at 1172 * least tp->reordering SACK blocks reside between ack_seq 1173 * and received_upto is not easy task to do cheaply with 1174 * the available datastructures. 1175 * 1176 * Whether FACK should check here for tp->reordering segs 1177 * in-between one could argue for either way (it would be 1178 * rather simple to implement as we could count fack_count 1179 * during the walk and do tp->fackets_out - fack_count). 1180 */ 1181 if (after(received_upto, ack_seq)) { 1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1183 tp->retrans_out -= tcp_skb_pcount(skb); 1184 1185 tcp_skb_mark_lost_uncond_verify(tp, skb); 1186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1187 } else { 1188 if (before(ack_seq, new_low_seq)) 1189 new_low_seq = ack_seq; 1190 cnt += tcp_skb_pcount(skb); 1191 } 1192 } 1193 1194 if (tp->retrans_out) 1195 tp->lost_retrans_low = new_low_seq; 1196 } 1197 1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1199 struct tcp_sack_block_wire *sp, int num_sacks, 1200 u32 prior_snd_una) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1204 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1205 int dup_sack = 0; 1206 1207 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1208 dup_sack = 1; 1209 tcp_dsack_seen(tp); 1210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1211 } else if (num_sacks > 1) { 1212 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1213 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1214 1215 if (!after(end_seq_0, end_seq_1) && 1216 !before(start_seq_0, start_seq_1)) { 1217 dup_sack = 1; 1218 tcp_dsack_seen(tp); 1219 NET_INC_STATS_BH(sock_net(sk), 1220 LINUX_MIB_TCPDSACKOFORECV); 1221 } 1222 } 1223 1224 /* D-SACK for already forgotten data... Do dumb counting. */ 1225 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1226 !after(end_seq_0, prior_snd_una) && 1227 after(end_seq_0, tp->undo_marker)) 1228 tp->undo_retrans--; 1229 1230 return dup_sack; 1231 } 1232 1233 struct tcp_sacktag_state { 1234 int reord; 1235 int fack_count; 1236 int flag; 1237 }; 1238 1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1240 * the incoming SACK may not exactly match but we can find smaller MSS 1241 * aligned portion of it that matches. Therefore we might need to fragment 1242 * which may fail and creates some hassle (caller must handle error case 1243 * returns). 1244 * 1245 * FIXME: this could be merged to shift decision code 1246 */ 1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1248 u32 start_seq, u32 end_seq) 1249 { 1250 int in_sack, err; 1251 unsigned int pkt_len; 1252 unsigned int mss; 1253 1254 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1255 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1256 1257 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1258 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1259 mss = tcp_skb_mss(skb); 1260 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1261 1262 if (!in_sack) { 1263 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1264 if (pkt_len < mss) 1265 pkt_len = mss; 1266 } else { 1267 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1268 if (pkt_len < mss) 1269 return -EINVAL; 1270 } 1271 1272 /* Round if necessary so that SACKs cover only full MSSes 1273 * and/or the remaining small portion (if present) 1274 */ 1275 if (pkt_len > mss) { 1276 unsigned int new_len = (pkt_len / mss) * mss; 1277 if (!in_sack && new_len < pkt_len) { 1278 new_len += mss; 1279 if (new_len > skb->len) 1280 return 0; 1281 } 1282 pkt_len = new_len; 1283 } 1284 err = tcp_fragment(sk, skb, pkt_len, mss); 1285 if (err < 0) 1286 return err; 1287 } 1288 1289 return in_sack; 1290 } 1291 1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1293 struct tcp_sacktag_state *state, 1294 int dup_sack, int pcount) 1295 { 1296 struct tcp_sock *tp = tcp_sk(sk); 1297 u8 sacked = TCP_SKB_CB(skb)->sacked; 1298 int fack_count = state->fack_count; 1299 1300 /* Account D-SACK for retransmitted packet. */ 1301 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1302 if (tp->undo_marker && tp->undo_retrans && 1303 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1304 tp->undo_retrans--; 1305 if (sacked & TCPCB_SACKED_ACKED) 1306 state->reord = min(fack_count, state->reord); 1307 } 1308 1309 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1310 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1311 return sacked; 1312 1313 if (!(sacked & TCPCB_SACKED_ACKED)) { 1314 if (sacked & TCPCB_SACKED_RETRANS) { 1315 /* If the segment is not tagged as lost, 1316 * we do not clear RETRANS, believing 1317 * that retransmission is still in flight. 1318 */ 1319 if (sacked & TCPCB_LOST) { 1320 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1321 tp->lost_out -= pcount; 1322 tp->retrans_out -= pcount; 1323 } 1324 } else { 1325 if (!(sacked & TCPCB_RETRANS)) { 1326 /* New sack for not retransmitted frame, 1327 * which was in hole. It is reordering. 1328 */ 1329 if (before(TCP_SKB_CB(skb)->seq, 1330 tcp_highest_sack_seq(tp))) 1331 state->reord = min(fack_count, 1332 state->reord); 1333 1334 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1335 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1336 state->flag |= FLAG_ONLY_ORIG_SACKED; 1337 } 1338 1339 if (sacked & TCPCB_LOST) { 1340 sacked &= ~TCPCB_LOST; 1341 tp->lost_out -= pcount; 1342 } 1343 } 1344 1345 sacked |= TCPCB_SACKED_ACKED; 1346 state->flag |= FLAG_DATA_SACKED; 1347 tp->sacked_out += pcount; 1348 1349 fack_count += pcount; 1350 1351 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1352 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1353 before(TCP_SKB_CB(skb)->seq, 1354 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1355 tp->lost_cnt_hint += pcount; 1356 1357 if (fack_count > tp->fackets_out) 1358 tp->fackets_out = fack_count; 1359 } 1360 1361 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1362 * frames and clear it. undo_retrans is decreased above, L|R frames 1363 * are accounted above as well. 1364 */ 1365 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1366 sacked &= ~TCPCB_SACKED_RETRANS; 1367 tp->retrans_out -= pcount; 1368 } 1369 1370 return sacked; 1371 } 1372 1373 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1374 struct tcp_sacktag_state *state, 1375 unsigned int pcount, int shifted, int mss, 1376 int dup_sack) 1377 { 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1380 1381 BUG_ON(!pcount); 1382 1383 /* Tweak before seqno plays */ 1384 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1385 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1386 tp->lost_cnt_hint += pcount; 1387 1388 TCP_SKB_CB(prev)->end_seq += shifted; 1389 TCP_SKB_CB(skb)->seq += shifted; 1390 1391 skb_shinfo(prev)->gso_segs += pcount; 1392 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1393 skb_shinfo(skb)->gso_segs -= pcount; 1394 1395 /* When we're adding to gso_segs == 1, gso_size will be zero, 1396 * in theory this shouldn't be necessary but as long as DSACK 1397 * code can come after this skb later on it's better to keep 1398 * setting gso_size to something. 1399 */ 1400 if (!skb_shinfo(prev)->gso_size) { 1401 skb_shinfo(prev)->gso_size = mss; 1402 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1403 } 1404 1405 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1406 if (skb_shinfo(skb)->gso_segs <= 1) { 1407 skb_shinfo(skb)->gso_size = 0; 1408 skb_shinfo(skb)->gso_type = 0; 1409 } 1410 1411 /* We discard results */ 1412 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1413 1414 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1415 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1416 1417 if (skb->len > 0) { 1418 BUG_ON(!tcp_skb_pcount(skb)); 1419 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1420 return 0; 1421 } 1422 1423 /* Whole SKB was eaten :-) */ 1424 1425 if (skb == tp->retransmit_skb_hint) 1426 tp->retransmit_skb_hint = prev; 1427 if (skb == tp->scoreboard_skb_hint) 1428 tp->scoreboard_skb_hint = prev; 1429 if (skb == tp->lost_skb_hint) { 1430 tp->lost_skb_hint = prev; 1431 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1432 } 1433 1434 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1435 if (skb == tcp_highest_sack(sk)) 1436 tcp_advance_highest_sack(sk, skb); 1437 1438 tcp_unlink_write_queue(skb, sk); 1439 sk_wmem_free_skb(sk, skb); 1440 1441 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1442 1443 return 1; 1444 } 1445 1446 /* I wish gso_size would have a bit more sane initialization than 1447 * something-or-zero which complicates things 1448 */ 1449 static int tcp_skb_seglen(struct sk_buff *skb) 1450 { 1451 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1452 } 1453 1454 /* Shifting pages past head area doesn't work */ 1455 static int skb_can_shift(struct sk_buff *skb) 1456 { 1457 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1458 } 1459 1460 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1461 * skb. 1462 */ 1463 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1464 struct tcp_sacktag_state *state, 1465 u32 start_seq, u32 end_seq, 1466 int dup_sack) 1467 { 1468 struct tcp_sock *tp = tcp_sk(sk); 1469 struct sk_buff *prev; 1470 int mss; 1471 int pcount = 0; 1472 int len; 1473 int in_sack; 1474 1475 if (!sk_can_gso(sk)) 1476 goto fallback; 1477 1478 /* Normally R but no L won't result in plain S */ 1479 if (!dup_sack && 1480 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1481 goto fallback; 1482 if (!skb_can_shift(skb)) 1483 goto fallback; 1484 /* This frame is about to be dropped (was ACKed). */ 1485 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1486 goto fallback; 1487 1488 /* Can only happen with delayed DSACK + discard craziness */ 1489 if (unlikely(skb == tcp_write_queue_head(sk))) 1490 goto fallback; 1491 prev = tcp_write_queue_prev(sk, skb); 1492 1493 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1494 goto fallback; 1495 1496 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1497 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1498 1499 if (in_sack) { 1500 len = skb->len; 1501 pcount = tcp_skb_pcount(skb); 1502 mss = tcp_skb_seglen(skb); 1503 1504 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1505 * drop this restriction as unnecessary 1506 */ 1507 if (mss != tcp_skb_seglen(prev)) 1508 goto fallback; 1509 } else { 1510 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1511 goto noop; 1512 /* CHECKME: This is non-MSS split case only?, this will 1513 * cause skipped skbs due to advancing loop btw, original 1514 * has that feature too 1515 */ 1516 if (tcp_skb_pcount(skb) <= 1) 1517 goto noop; 1518 1519 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1520 if (!in_sack) { 1521 /* TODO: head merge to next could be attempted here 1522 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1523 * though it might not be worth of the additional hassle 1524 * 1525 * ...we can probably just fallback to what was done 1526 * previously. We could try merging non-SACKed ones 1527 * as well but it probably isn't going to buy off 1528 * because later SACKs might again split them, and 1529 * it would make skb timestamp tracking considerably 1530 * harder problem. 1531 */ 1532 goto fallback; 1533 } 1534 1535 len = end_seq - TCP_SKB_CB(skb)->seq; 1536 BUG_ON(len < 0); 1537 BUG_ON(len > skb->len); 1538 1539 /* MSS boundaries should be honoured or else pcount will 1540 * severely break even though it makes things bit trickier. 1541 * Optimize common case to avoid most of the divides 1542 */ 1543 mss = tcp_skb_mss(skb); 1544 1545 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1546 * drop this restriction as unnecessary 1547 */ 1548 if (mss != tcp_skb_seglen(prev)) 1549 goto fallback; 1550 1551 if (len == mss) { 1552 pcount = 1; 1553 } else if (len < mss) { 1554 goto noop; 1555 } else { 1556 pcount = len / mss; 1557 len = pcount * mss; 1558 } 1559 } 1560 1561 if (!skb_shift(prev, skb, len)) 1562 goto fallback; 1563 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1564 goto out; 1565 1566 /* Hole filled allows collapsing with the next as well, this is very 1567 * useful when hole on every nth skb pattern happens 1568 */ 1569 if (prev == tcp_write_queue_tail(sk)) 1570 goto out; 1571 skb = tcp_write_queue_next(sk, prev); 1572 1573 if (!skb_can_shift(skb) || 1574 (skb == tcp_send_head(sk)) || 1575 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1576 (mss != tcp_skb_seglen(skb))) 1577 goto out; 1578 1579 len = skb->len; 1580 if (skb_shift(prev, skb, len)) { 1581 pcount += tcp_skb_pcount(skb); 1582 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1583 } 1584 1585 out: 1586 state->fack_count += pcount; 1587 return prev; 1588 1589 noop: 1590 return skb; 1591 1592 fallback: 1593 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1594 return NULL; 1595 } 1596 1597 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1598 struct tcp_sack_block *next_dup, 1599 struct tcp_sacktag_state *state, 1600 u32 start_seq, u32 end_seq, 1601 int dup_sack_in) 1602 { 1603 struct tcp_sock *tp = tcp_sk(sk); 1604 struct sk_buff *tmp; 1605 1606 tcp_for_write_queue_from(skb, sk) { 1607 int in_sack = 0; 1608 int dup_sack = dup_sack_in; 1609 1610 if (skb == tcp_send_head(sk)) 1611 break; 1612 1613 /* queue is in-order => we can short-circuit the walk early */ 1614 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1615 break; 1616 1617 if ((next_dup != NULL) && 1618 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1619 in_sack = tcp_match_skb_to_sack(sk, skb, 1620 next_dup->start_seq, 1621 next_dup->end_seq); 1622 if (in_sack > 0) 1623 dup_sack = 1; 1624 } 1625 1626 /* skb reference here is a bit tricky to get right, since 1627 * shifting can eat and free both this skb and the next, 1628 * so not even _safe variant of the loop is enough. 1629 */ 1630 if (in_sack <= 0) { 1631 tmp = tcp_shift_skb_data(sk, skb, state, 1632 start_seq, end_seq, dup_sack); 1633 if (tmp != NULL) { 1634 if (tmp != skb) { 1635 skb = tmp; 1636 continue; 1637 } 1638 1639 in_sack = 0; 1640 } else { 1641 in_sack = tcp_match_skb_to_sack(sk, skb, 1642 start_seq, 1643 end_seq); 1644 } 1645 } 1646 1647 if (unlikely(in_sack < 0)) 1648 break; 1649 1650 if (in_sack) { 1651 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1652 state, 1653 dup_sack, 1654 tcp_skb_pcount(skb)); 1655 1656 if (!before(TCP_SKB_CB(skb)->seq, 1657 tcp_highest_sack_seq(tp))) 1658 tcp_advance_highest_sack(sk, skb); 1659 } 1660 1661 state->fack_count += tcp_skb_pcount(skb); 1662 } 1663 return skb; 1664 } 1665 1666 /* Avoid all extra work that is being done by sacktag while walking in 1667 * a normal way 1668 */ 1669 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1670 struct tcp_sacktag_state *state, 1671 u32 skip_to_seq) 1672 { 1673 tcp_for_write_queue_from(skb, sk) { 1674 if (skb == tcp_send_head(sk)) 1675 break; 1676 1677 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1678 break; 1679 1680 state->fack_count += tcp_skb_pcount(skb); 1681 } 1682 return skb; 1683 } 1684 1685 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1686 struct sock *sk, 1687 struct tcp_sack_block *next_dup, 1688 struct tcp_sacktag_state *state, 1689 u32 skip_to_seq) 1690 { 1691 if (next_dup == NULL) 1692 return skb; 1693 1694 if (before(next_dup->start_seq, skip_to_seq)) { 1695 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1696 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1697 next_dup->start_seq, next_dup->end_seq, 1698 1); 1699 } 1700 1701 return skb; 1702 } 1703 1704 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1705 { 1706 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1707 } 1708 1709 static int 1710 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1711 u32 prior_snd_una) 1712 { 1713 const struct inet_connection_sock *icsk = inet_csk(sk); 1714 struct tcp_sock *tp = tcp_sk(sk); 1715 unsigned char *ptr = (skb_transport_header(ack_skb) + 1716 TCP_SKB_CB(ack_skb)->sacked); 1717 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1718 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1719 struct tcp_sack_block *cache; 1720 struct tcp_sacktag_state state; 1721 struct sk_buff *skb; 1722 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1723 int used_sacks; 1724 int found_dup_sack = 0; 1725 int i, j; 1726 int first_sack_index; 1727 1728 state.flag = 0; 1729 state.reord = tp->packets_out; 1730 1731 if (!tp->sacked_out) { 1732 if (WARN_ON(tp->fackets_out)) 1733 tp->fackets_out = 0; 1734 tcp_highest_sack_reset(sk); 1735 } 1736 1737 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1738 num_sacks, prior_snd_una); 1739 if (found_dup_sack) 1740 state.flag |= FLAG_DSACKING_ACK; 1741 1742 /* Eliminate too old ACKs, but take into 1743 * account more or less fresh ones, they can 1744 * contain valid SACK info. 1745 */ 1746 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1747 return 0; 1748 1749 if (!tp->packets_out) 1750 goto out; 1751 1752 used_sacks = 0; 1753 first_sack_index = 0; 1754 for (i = 0; i < num_sacks; i++) { 1755 int dup_sack = !i && found_dup_sack; 1756 1757 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1758 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1759 1760 if (!tcp_is_sackblock_valid(tp, dup_sack, 1761 sp[used_sacks].start_seq, 1762 sp[used_sacks].end_seq)) { 1763 int mib_idx; 1764 1765 if (dup_sack) { 1766 if (!tp->undo_marker) 1767 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1768 else 1769 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1770 } else { 1771 /* Don't count olds caused by ACK reordering */ 1772 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1773 !after(sp[used_sacks].end_seq, tp->snd_una)) 1774 continue; 1775 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1776 } 1777 1778 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1779 if (i == 0) 1780 first_sack_index = -1; 1781 continue; 1782 } 1783 1784 /* Ignore very old stuff early */ 1785 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1786 continue; 1787 1788 used_sacks++; 1789 } 1790 1791 /* order SACK blocks to allow in order walk of the retrans queue */ 1792 for (i = used_sacks - 1; i > 0; i--) { 1793 for (j = 0; j < i; j++) { 1794 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1795 swap(sp[j], sp[j + 1]); 1796 1797 /* Track where the first SACK block goes to */ 1798 if (j == first_sack_index) 1799 first_sack_index = j + 1; 1800 } 1801 } 1802 } 1803 1804 skb = tcp_write_queue_head(sk); 1805 state.fack_count = 0; 1806 i = 0; 1807 1808 if (!tp->sacked_out) { 1809 /* It's already past, so skip checking against it */ 1810 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1811 } else { 1812 cache = tp->recv_sack_cache; 1813 /* Skip empty blocks in at head of the cache */ 1814 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1815 !cache->end_seq) 1816 cache++; 1817 } 1818 1819 while (i < used_sacks) { 1820 u32 start_seq = sp[i].start_seq; 1821 u32 end_seq = sp[i].end_seq; 1822 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1823 struct tcp_sack_block *next_dup = NULL; 1824 1825 if (found_dup_sack && ((i + 1) == first_sack_index)) 1826 next_dup = &sp[i + 1]; 1827 1828 /* Event "B" in the comment above. */ 1829 if (after(end_seq, tp->high_seq)) 1830 state.flag |= FLAG_DATA_LOST; 1831 1832 /* Skip too early cached blocks */ 1833 while (tcp_sack_cache_ok(tp, cache) && 1834 !before(start_seq, cache->end_seq)) 1835 cache++; 1836 1837 /* Can skip some work by looking recv_sack_cache? */ 1838 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1839 after(end_seq, cache->start_seq)) { 1840 1841 /* Head todo? */ 1842 if (before(start_seq, cache->start_seq)) { 1843 skb = tcp_sacktag_skip(skb, sk, &state, 1844 start_seq); 1845 skb = tcp_sacktag_walk(skb, sk, next_dup, 1846 &state, 1847 start_seq, 1848 cache->start_seq, 1849 dup_sack); 1850 } 1851 1852 /* Rest of the block already fully processed? */ 1853 if (!after(end_seq, cache->end_seq)) 1854 goto advance_sp; 1855 1856 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1857 &state, 1858 cache->end_seq); 1859 1860 /* ...tail remains todo... */ 1861 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1862 /* ...but better entrypoint exists! */ 1863 skb = tcp_highest_sack(sk); 1864 if (skb == NULL) 1865 break; 1866 state.fack_count = tp->fackets_out; 1867 cache++; 1868 goto walk; 1869 } 1870 1871 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1872 /* Check overlap against next cached too (past this one already) */ 1873 cache++; 1874 continue; 1875 } 1876 1877 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1878 skb = tcp_highest_sack(sk); 1879 if (skb == NULL) 1880 break; 1881 state.fack_count = tp->fackets_out; 1882 } 1883 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1884 1885 walk: 1886 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1887 start_seq, end_seq, dup_sack); 1888 1889 advance_sp: 1890 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1891 * due to in-order walk 1892 */ 1893 if (after(end_seq, tp->frto_highmark)) 1894 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1895 1896 i++; 1897 } 1898 1899 /* Clear the head of the cache sack blocks so we can skip it next time */ 1900 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1901 tp->recv_sack_cache[i].start_seq = 0; 1902 tp->recv_sack_cache[i].end_seq = 0; 1903 } 1904 for (j = 0; j < used_sacks; j++) 1905 tp->recv_sack_cache[i++] = sp[j]; 1906 1907 tcp_mark_lost_retrans(sk); 1908 1909 tcp_verify_left_out(tp); 1910 1911 if ((state.reord < tp->fackets_out) && 1912 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1913 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1914 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1915 1916 out: 1917 1918 #if FASTRETRANS_DEBUG > 0 1919 WARN_ON((int)tp->sacked_out < 0); 1920 WARN_ON((int)tp->lost_out < 0); 1921 WARN_ON((int)tp->retrans_out < 0); 1922 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1923 #endif 1924 return state.flag; 1925 } 1926 1927 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1928 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1929 */ 1930 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1931 { 1932 u32 holes; 1933 1934 holes = max(tp->lost_out, 1U); 1935 holes = min(holes, tp->packets_out); 1936 1937 if ((tp->sacked_out + holes) > tp->packets_out) { 1938 tp->sacked_out = tp->packets_out - holes; 1939 return 1; 1940 } 1941 return 0; 1942 } 1943 1944 /* If we receive more dupacks than we expected counting segments 1945 * in assumption of absent reordering, interpret this as reordering. 1946 * The only another reason could be bug in receiver TCP. 1947 */ 1948 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1949 { 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 if (tcp_limit_reno_sacked(tp)) 1952 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1953 } 1954 1955 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1956 1957 static void tcp_add_reno_sack(struct sock *sk) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 tp->sacked_out++; 1961 tcp_check_reno_reordering(sk, 0); 1962 tcp_verify_left_out(tp); 1963 } 1964 1965 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1966 1967 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1968 { 1969 struct tcp_sock *tp = tcp_sk(sk); 1970 1971 if (acked > 0) { 1972 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1973 if (acked - 1 >= tp->sacked_out) 1974 tp->sacked_out = 0; 1975 else 1976 tp->sacked_out -= acked - 1; 1977 } 1978 tcp_check_reno_reordering(sk, acked); 1979 tcp_verify_left_out(tp); 1980 } 1981 1982 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1983 { 1984 tp->sacked_out = 0; 1985 } 1986 1987 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1988 { 1989 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1990 } 1991 1992 /* F-RTO can only be used if TCP has never retransmitted anything other than 1993 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1994 */ 1995 int tcp_use_frto(struct sock *sk) 1996 { 1997 const struct tcp_sock *tp = tcp_sk(sk); 1998 const struct inet_connection_sock *icsk = inet_csk(sk); 1999 struct sk_buff *skb; 2000 2001 if (!sysctl_tcp_frto) 2002 return 0; 2003 2004 /* MTU probe and F-RTO won't really play nicely along currently */ 2005 if (icsk->icsk_mtup.probe_size) 2006 return 0; 2007 2008 if (tcp_is_sackfrto(tp)) 2009 return 1; 2010 2011 /* Avoid expensive walking of rexmit queue if possible */ 2012 if (tp->retrans_out > 1) 2013 return 0; 2014 2015 skb = tcp_write_queue_head(sk); 2016 if (tcp_skb_is_last(sk, skb)) 2017 return 1; 2018 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2019 tcp_for_write_queue_from(skb, sk) { 2020 if (skb == tcp_send_head(sk)) 2021 break; 2022 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2023 return 0; 2024 /* Short-circuit when first non-SACKed skb has been checked */ 2025 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2026 break; 2027 } 2028 return 1; 2029 } 2030 2031 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2032 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2033 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2034 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2035 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2036 * bits are handled if the Loss state is really to be entered (in 2037 * tcp_enter_frto_loss). 2038 * 2039 * Do like tcp_enter_loss() would; when RTO expires the second time it 2040 * does: 2041 * "Reduce ssthresh if it has not yet been made inside this window." 2042 */ 2043 void tcp_enter_frto(struct sock *sk) 2044 { 2045 const struct inet_connection_sock *icsk = inet_csk(sk); 2046 struct tcp_sock *tp = tcp_sk(sk); 2047 struct sk_buff *skb; 2048 2049 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2050 tp->snd_una == tp->high_seq || 2051 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2052 !icsk->icsk_retransmits)) { 2053 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2054 /* Our state is too optimistic in ssthresh() call because cwnd 2055 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2056 * recovery has not yet completed. Pattern would be this: RTO, 2057 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2058 * up here twice). 2059 * RFC4138 should be more specific on what to do, even though 2060 * RTO is quite unlikely to occur after the first Cumulative ACK 2061 * due to back-off and complexity of triggering events ... 2062 */ 2063 if (tp->frto_counter) { 2064 u32 stored_cwnd; 2065 stored_cwnd = tp->snd_cwnd; 2066 tp->snd_cwnd = 2; 2067 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2068 tp->snd_cwnd = stored_cwnd; 2069 } else { 2070 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2071 } 2072 /* ... in theory, cong.control module could do "any tricks" in 2073 * ssthresh(), which means that ca_state, lost bits and lost_out 2074 * counter would have to be faked before the call occurs. We 2075 * consider that too expensive, unlikely and hacky, so modules 2076 * using these in ssthresh() must deal these incompatibility 2077 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2078 */ 2079 tcp_ca_event(sk, CA_EVENT_FRTO); 2080 } 2081 2082 tp->undo_marker = tp->snd_una; 2083 tp->undo_retrans = 0; 2084 2085 skb = tcp_write_queue_head(sk); 2086 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2087 tp->undo_marker = 0; 2088 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2089 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2090 tp->retrans_out -= tcp_skb_pcount(skb); 2091 } 2092 tcp_verify_left_out(tp); 2093 2094 /* Too bad if TCP was application limited */ 2095 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2096 2097 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2098 * The last condition is necessary at least in tp->frto_counter case. 2099 */ 2100 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2101 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2102 after(tp->high_seq, tp->snd_una)) { 2103 tp->frto_highmark = tp->high_seq; 2104 } else { 2105 tp->frto_highmark = tp->snd_nxt; 2106 } 2107 tcp_set_ca_state(sk, TCP_CA_Disorder); 2108 tp->high_seq = tp->snd_nxt; 2109 tp->frto_counter = 1; 2110 } 2111 2112 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2113 * which indicates that we should follow the traditional RTO recovery, 2114 * i.e. mark everything lost and do go-back-N retransmission. 2115 */ 2116 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2117 { 2118 struct tcp_sock *tp = tcp_sk(sk); 2119 struct sk_buff *skb; 2120 2121 tp->lost_out = 0; 2122 tp->retrans_out = 0; 2123 if (tcp_is_reno(tp)) 2124 tcp_reset_reno_sack(tp); 2125 2126 tcp_for_write_queue(skb, sk) { 2127 if (skb == tcp_send_head(sk)) 2128 break; 2129 2130 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2131 /* 2132 * Count the retransmission made on RTO correctly (only when 2133 * waiting for the first ACK and did not get it)... 2134 */ 2135 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2136 /* For some reason this R-bit might get cleared? */ 2137 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2138 tp->retrans_out += tcp_skb_pcount(skb); 2139 /* ...enter this if branch just for the first segment */ 2140 flag |= FLAG_DATA_ACKED; 2141 } else { 2142 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2143 tp->undo_marker = 0; 2144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2145 } 2146 2147 /* Marking forward transmissions that were made after RTO lost 2148 * can cause unnecessary retransmissions in some scenarios, 2149 * SACK blocks will mitigate that in some but not in all cases. 2150 * We used to not mark them but it was causing break-ups with 2151 * receivers that do only in-order receival. 2152 * 2153 * TODO: we could detect presence of such receiver and select 2154 * different behavior per flow. 2155 */ 2156 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2157 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2158 tp->lost_out += tcp_skb_pcount(skb); 2159 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2160 } 2161 } 2162 tcp_verify_left_out(tp); 2163 2164 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2165 tp->snd_cwnd_cnt = 0; 2166 tp->snd_cwnd_stamp = tcp_time_stamp; 2167 tp->frto_counter = 0; 2168 tp->bytes_acked = 0; 2169 2170 tp->reordering = min_t(unsigned int, tp->reordering, 2171 sysctl_tcp_reordering); 2172 tcp_set_ca_state(sk, TCP_CA_Loss); 2173 tp->high_seq = tp->snd_nxt; 2174 TCP_ECN_queue_cwr(tp); 2175 2176 tcp_clear_all_retrans_hints(tp); 2177 } 2178 2179 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2180 { 2181 tp->retrans_out = 0; 2182 tp->lost_out = 0; 2183 2184 tp->undo_marker = 0; 2185 tp->undo_retrans = 0; 2186 } 2187 2188 void tcp_clear_retrans(struct tcp_sock *tp) 2189 { 2190 tcp_clear_retrans_partial(tp); 2191 2192 tp->fackets_out = 0; 2193 tp->sacked_out = 0; 2194 } 2195 2196 /* Enter Loss state. If "how" is not zero, forget all SACK information 2197 * and reset tags completely, otherwise preserve SACKs. If receiver 2198 * dropped its ofo queue, we will know this due to reneging detection. 2199 */ 2200 void tcp_enter_loss(struct sock *sk, int how) 2201 { 2202 const struct inet_connection_sock *icsk = inet_csk(sk); 2203 struct tcp_sock *tp = tcp_sk(sk); 2204 struct sk_buff *skb; 2205 2206 /* Reduce ssthresh if it has not yet been made inside this window. */ 2207 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2208 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2209 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2210 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2211 tcp_ca_event(sk, CA_EVENT_LOSS); 2212 } 2213 tp->snd_cwnd = 1; 2214 tp->snd_cwnd_cnt = 0; 2215 tp->snd_cwnd_stamp = tcp_time_stamp; 2216 2217 tp->bytes_acked = 0; 2218 tcp_clear_retrans_partial(tp); 2219 2220 if (tcp_is_reno(tp)) 2221 tcp_reset_reno_sack(tp); 2222 2223 if (!how) { 2224 /* Push undo marker, if it was plain RTO and nothing 2225 * was retransmitted. */ 2226 tp->undo_marker = tp->snd_una; 2227 } else { 2228 tp->sacked_out = 0; 2229 tp->fackets_out = 0; 2230 } 2231 tcp_clear_all_retrans_hints(tp); 2232 2233 tcp_for_write_queue(skb, sk) { 2234 if (skb == tcp_send_head(sk)) 2235 break; 2236 2237 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2238 tp->undo_marker = 0; 2239 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2240 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2241 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2242 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2243 tp->lost_out += tcp_skb_pcount(skb); 2244 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2245 } 2246 } 2247 tcp_verify_left_out(tp); 2248 2249 tp->reordering = min_t(unsigned int, tp->reordering, 2250 sysctl_tcp_reordering); 2251 tcp_set_ca_state(sk, TCP_CA_Loss); 2252 tp->high_seq = tp->snd_nxt; 2253 TCP_ECN_queue_cwr(tp); 2254 /* Abort F-RTO algorithm if one is in progress */ 2255 tp->frto_counter = 0; 2256 } 2257 2258 /* If ACK arrived pointing to a remembered SACK, it means that our 2259 * remembered SACKs do not reflect real state of receiver i.e. 2260 * receiver _host_ is heavily congested (or buggy). 2261 * 2262 * Do processing similar to RTO timeout. 2263 */ 2264 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2265 { 2266 if (flag & FLAG_SACK_RENEGING) { 2267 struct inet_connection_sock *icsk = inet_csk(sk); 2268 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2269 2270 tcp_enter_loss(sk, 1); 2271 icsk->icsk_retransmits++; 2272 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2273 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2274 icsk->icsk_rto, TCP_RTO_MAX); 2275 return 1; 2276 } 2277 return 0; 2278 } 2279 2280 static inline int tcp_fackets_out(struct tcp_sock *tp) 2281 { 2282 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2283 } 2284 2285 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2286 * counter when SACK is enabled (without SACK, sacked_out is used for 2287 * that purpose). 2288 * 2289 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2290 * segments up to the highest received SACK block so far and holes in 2291 * between them. 2292 * 2293 * With reordering, holes may still be in flight, so RFC3517 recovery 2294 * uses pure sacked_out (total number of SACKed segments) even though 2295 * it violates the RFC that uses duplicate ACKs, often these are equal 2296 * but when e.g. out-of-window ACKs or packet duplication occurs, 2297 * they differ. Since neither occurs due to loss, TCP should really 2298 * ignore them. 2299 */ 2300 static inline int tcp_dupack_heuristics(struct tcp_sock *tp) 2301 { 2302 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2303 } 2304 2305 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2306 { 2307 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2308 } 2309 2310 static inline int tcp_head_timedout(struct sock *sk) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 2314 return tp->packets_out && 2315 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2316 } 2317 2318 /* Linux NewReno/SACK/FACK/ECN state machine. 2319 * -------------------------------------- 2320 * 2321 * "Open" Normal state, no dubious events, fast path. 2322 * "Disorder" In all the respects it is "Open", 2323 * but requires a bit more attention. It is entered when 2324 * we see some SACKs or dupacks. It is split of "Open" 2325 * mainly to move some processing from fast path to slow one. 2326 * "CWR" CWND was reduced due to some Congestion Notification event. 2327 * It can be ECN, ICMP source quench, local device congestion. 2328 * "Recovery" CWND was reduced, we are fast-retransmitting. 2329 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2330 * 2331 * tcp_fastretrans_alert() is entered: 2332 * - each incoming ACK, if state is not "Open" 2333 * - when arrived ACK is unusual, namely: 2334 * * SACK 2335 * * Duplicate ACK. 2336 * * ECN ECE. 2337 * 2338 * Counting packets in flight is pretty simple. 2339 * 2340 * in_flight = packets_out - left_out + retrans_out 2341 * 2342 * packets_out is SND.NXT-SND.UNA counted in packets. 2343 * 2344 * retrans_out is number of retransmitted segments. 2345 * 2346 * left_out is number of segments left network, but not ACKed yet. 2347 * 2348 * left_out = sacked_out + lost_out 2349 * 2350 * sacked_out: Packets, which arrived to receiver out of order 2351 * and hence not ACKed. With SACKs this number is simply 2352 * amount of SACKed data. Even without SACKs 2353 * it is easy to give pretty reliable estimate of this number, 2354 * counting duplicate ACKs. 2355 * 2356 * lost_out: Packets lost by network. TCP has no explicit 2357 * "loss notification" feedback from network (for now). 2358 * It means that this number can be only _guessed_. 2359 * Actually, it is the heuristics to predict lossage that 2360 * distinguishes different algorithms. 2361 * 2362 * F.e. after RTO, when all the queue is considered as lost, 2363 * lost_out = packets_out and in_flight = retrans_out. 2364 * 2365 * Essentially, we have now two algorithms counting 2366 * lost packets. 2367 * 2368 * FACK: It is the simplest heuristics. As soon as we decided 2369 * that something is lost, we decide that _all_ not SACKed 2370 * packets until the most forward SACK are lost. I.e. 2371 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2372 * It is absolutely correct estimate, if network does not reorder 2373 * packets. And it loses any connection to reality when reordering 2374 * takes place. We use FACK by default until reordering 2375 * is suspected on the path to this destination. 2376 * 2377 * NewReno: when Recovery is entered, we assume that one segment 2378 * is lost (classic Reno). While we are in Recovery and 2379 * a partial ACK arrives, we assume that one more packet 2380 * is lost (NewReno). This heuristics are the same in NewReno 2381 * and SACK. 2382 * 2383 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2384 * deflation etc. CWND is real congestion window, never inflated, changes 2385 * only according to classic VJ rules. 2386 * 2387 * Really tricky (and requiring careful tuning) part of algorithm 2388 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2389 * The first determines the moment _when_ we should reduce CWND and, 2390 * hence, slow down forward transmission. In fact, it determines the moment 2391 * when we decide that hole is caused by loss, rather than by a reorder. 2392 * 2393 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2394 * holes, caused by lost packets. 2395 * 2396 * And the most logically complicated part of algorithm is undo 2397 * heuristics. We detect false retransmits due to both too early 2398 * fast retransmit (reordering) and underestimated RTO, analyzing 2399 * timestamps and D-SACKs. When we detect that some segments were 2400 * retransmitted by mistake and CWND reduction was wrong, we undo 2401 * window reduction and abort recovery phase. This logic is hidden 2402 * inside several functions named tcp_try_undo_<something>. 2403 */ 2404 2405 /* This function decides, when we should leave Disordered state 2406 * and enter Recovery phase, reducing congestion window. 2407 * 2408 * Main question: may we further continue forward transmission 2409 * with the same cwnd? 2410 */ 2411 static int tcp_time_to_recover(struct sock *sk) 2412 { 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 __u32 packets_out; 2415 2416 /* Do not perform any recovery during F-RTO algorithm */ 2417 if (tp->frto_counter) 2418 return 0; 2419 2420 /* Trick#1: The loss is proven. */ 2421 if (tp->lost_out) 2422 return 1; 2423 2424 /* Not-A-Trick#2 : Classic rule... */ 2425 if (tcp_dupack_heuristics(tp) > tp->reordering) 2426 return 1; 2427 2428 /* Trick#3 : when we use RFC2988 timer restart, fast 2429 * retransmit can be triggered by timeout of queue head. 2430 */ 2431 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2432 return 1; 2433 2434 /* Trick#4: It is still not OK... But will it be useful to delay 2435 * recovery more? 2436 */ 2437 packets_out = tp->packets_out; 2438 if (packets_out <= tp->reordering && 2439 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2440 !tcp_may_send_now(sk)) { 2441 /* We have nothing to send. This connection is limited 2442 * either by receiver window or by application. 2443 */ 2444 return 1; 2445 } 2446 2447 /* If a thin stream is detected, retransmit after first 2448 * received dupack. Employ only if SACK is supported in order 2449 * to avoid possible corner-case series of spurious retransmissions 2450 * Use only if there are no unsent data. 2451 */ 2452 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2453 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2454 tcp_is_sack(tp) && !tcp_send_head(sk)) 2455 return 1; 2456 2457 return 0; 2458 } 2459 2460 /* New heuristics: it is possible only after we switched to restart timer 2461 * each time when something is ACKed. Hence, we can detect timed out packets 2462 * during fast retransmit without falling to slow start. 2463 * 2464 * Usefulness of this as is very questionable, since we should know which of 2465 * the segments is the next to timeout which is relatively expensive to find 2466 * in general case unless we add some data structure just for that. The 2467 * current approach certainly won't find the right one too often and when it 2468 * finally does find _something_ it usually marks large part of the window 2469 * right away (because a retransmission with a larger timestamp blocks the 2470 * loop from advancing). -ij 2471 */ 2472 static void tcp_timeout_skbs(struct sock *sk) 2473 { 2474 struct tcp_sock *tp = tcp_sk(sk); 2475 struct sk_buff *skb; 2476 2477 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2478 return; 2479 2480 skb = tp->scoreboard_skb_hint; 2481 if (tp->scoreboard_skb_hint == NULL) 2482 skb = tcp_write_queue_head(sk); 2483 2484 tcp_for_write_queue_from(skb, sk) { 2485 if (skb == tcp_send_head(sk)) 2486 break; 2487 if (!tcp_skb_timedout(sk, skb)) 2488 break; 2489 2490 tcp_skb_mark_lost(tp, skb); 2491 } 2492 2493 tp->scoreboard_skb_hint = skb; 2494 2495 tcp_verify_left_out(tp); 2496 } 2497 2498 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2499 * is against sacked "cnt", otherwise it's against facked "cnt" 2500 */ 2501 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 struct sk_buff *skb; 2505 int cnt, oldcnt; 2506 int err; 2507 unsigned int mss; 2508 2509 WARN_ON(packets > tp->packets_out); 2510 if (tp->lost_skb_hint) { 2511 skb = tp->lost_skb_hint; 2512 cnt = tp->lost_cnt_hint; 2513 /* Head already handled? */ 2514 if (mark_head && skb != tcp_write_queue_head(sk)) 2515 return; 2516 } else { 2517 skb = tcp_write_queue_head(sk); 2518 cnt = 0; 2519 } 2520 2521 tcp_for_write_queue_from(skb, sk) { 2522 if (skb == tcp_send_head(sk)) 2523 break; 2524 /* TODO: do this better */ 2525 /* this is not the most efficient way to do this... */ 2526 tp->lost_skb_hint = skb; 2527 tp->lost_cnt_hint = cnt; 2528 2529 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2530 break; 2531 2532 oldcnt = cnt; 2533 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2534 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2535 cnt += tcp_skb_pcount(skb); 2536 2537 if (cnt > packets) { 2538 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2539 (oldcnt >= packets)) 2540 break; 2541 2542 mss = skb_shinfo(skb)->gso_size; 2543 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2544 if (err < 0) 2545 break; 2546 cnt = packets; 2547 } 2548 2549 tcp_skb_mark_lost(tp, skb); 2550 2551 if (mark_head) 2552 break; 2553 } 2554 tcp_verify_left_out(tp); 2555 } 2556 2557 /* Account newly detected lost packet(s) */ 2558 2559 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 2563 if (tcp_is_reno(tp)) { 2564 tcp_mark_head_lost(sk, 1, 1); 2565 } else if (tcp_is_fack(tp)) { 2566 int lost = tp->fackets_out - tp->reordering; 2567 if (lost <= 0) 2568 lost = 1; 2569 tcp_mark_head_lost(sk, lost, 0); 2570 } else { 2571 int sacked_upto = tp->sacked_out - tp->reordering; 2572 if (sacked_upto >= 0) 2573 tcp_mark_head_lost(sk, sacked_upto, 0); 2574 else if (fast_rexmit) 2575 tcp_mark_head_lost(sk, 1, 1); 2576 } 2577 2578 tcp_timeout_skbs(sk); 2579 } 2580 2581 /* CWND moderation, preventing bursts due to too big ACKs 2582 * in dubious situations. 2583 */ 2584 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2585 { 2586 tp->snd_cwnd = min(tp->snd_cwnd, 2587 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2588 tp->snd_cwnd_stamp = tcp_time_stamp; 2589 } 2590 2591 /* Lower bound on congestion window is slow start threshold 2592 * unless congestion avoidance choice decides to overide it. 2593 */ 2594 static inline u32 tcp_cwnd_min(const struct sock *sk) 2595 { 2596 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2597 2598 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2599 } 2600 2601 /* Decrease cwnd each second ack. */ 2602 static void tcp_cwnd_down(struct sock *sk, int flag) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 int decr = tp->snd_cwnd_cnt + 1; 2606 2607 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2608 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2609 tp->snd_cwnd_cnt = decr & 1; 2610 decr >>= 1; 2611 2612 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2613 tp->snd_cwnd -= decr; 2614 2615 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2616 tp->snd_cwnd_stamp = tcp_time_stamp; 2617 } 2618 } 2619 2620 /* Nothing was retransmitted or returned timestamp is less 2621 * than timestamp of the first retransmission. 2622 */ 2623 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2624 { 2625 return !tp->retrans_stamp || 2626 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2627 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2628 } 2629 2630 /* Undo procedures. */ 2631 2632 #if FASTRETRANS_DEBUG > 1 2633 static void DBGUNDO(struct sock *sk, const char *msg) 2634 { 2635 struct tcp_sock *tp = tcp_sk(sk); 2636 struct inet_sock *inet = inet_sk(sk); 2637 2638 if (sk->sk_family == AF_INET) { 2639 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2640 msg, 2641 &inet->inet_daddr, ntohs(inet->inet_dport), 2642 tp->snd_cwnd, tcp_left_out(tp), 2643 tp->snd_ssthresh, tp->prior_ssthresh, 2644 tp->packets_out); 2645 } 2646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2647 else if (sk->sk_family == AF_INET6) { 2648 struct ipv6_pinfo *np = inet6_sk(sk); 2649 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2650 msg, 2651 &np->daddr, ntohs(inet->inet_dport), 2652 tp->snd_cwnd, tcp_left_out(tp), 2653 tp->snd_ssthresh, tp->prior_ssthresh, 2654 tp->packets_out); 2655 } 2656 #endif 2657 } 2658 #else 2659 #define DBGUNDO(x...) do { } while (0) 2660 #endif 2661 2662 static void tcp_undo_cwr(struct sock *sk, const int undo) 2663 { 2664 struct tcp_sock *tp = tcp_sk(sk); 2665 2666 if (tp->prior_ssthresh) { 2667 const struct inet_connection_sock *icsk = inet_csk(sk); 2668 2669 if (icsk->icsk_ca_ops->undo_cwnd) 2670 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2671 else 2672 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2673 2674 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2675 tp->snd_ssthresh = tp->prior_ssthresh; 2676 TCP_ECN_withdraw_cwr(tp); 2677 } 2678 } else { 2679 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2680 } 2681 tcp_moderate_cwnd(tp); 2682 tp->snd_cwnd_stamp = tcp_time_stamp; 2683 } 2684 2685 static inline int tcp_may_undo(struct tcp_sock *tp) 2686 { 2687 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2688 } 2689 2690 /* People celebrate: "We love our President!" */ 2691 static int tcp_try_undo_recovery(struct sock *sk) 2692 { 2693 struct tcp_sock *tp = tcp_sk(sk); 2694 2695 if (tcp_may_undo(tp)) { 2696 int mib_idx; 2697 2698 /* Happy end! We did not retransmit anything 2699 * or our original transmission succeeded. 2700 */ 2701 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2702 tcp_undo_cwr(sk, 1); 2703 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2704 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2705 else 2706 mib_idx = LINUX_MIB_TCPFULLUNDO; 2707 2708 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2709 tp->undo_marker = 0; 2710 } 2711 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2712 /* Hold old state until something *above* high_seq 2713 * is ACKed. For Reno it is MUST to prevent false 2714 * fast retransmits (RFC2582). SACK TCP is safe. */ 2715 tcp_moderate_cwnd(tp); 2716 return 1; 2717 } 2718 tcp_set_ca_state(sk, TCP_CA_Open); 2719 return 0; 2720 } 2721 2722 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2723 static void tcp_try_undo_dsack(struct sock *sk) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 2727 if (tp->undo_marker && !tp->undo_retrans) { 2728 DBGUNDO(sk, "D-SACK"); 2729 tcp_undo_cwr(sk, 1); 2730 tp->undo_marker = 0; 2731 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2732 } 2733 } 2734 2735 /* We can clear retrans_stamp when there are no retransmissions in the 2736 * window. It would seem that it is trivially available for us in 2737 * tp->retrans_out, however, that kind of assumptions doesn't consider 2738 * what will happen if errors occur when sending retransmission for the 2739 * second time. ...It could the that such segment has only 2740 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2741 * the head skb is enough except for some reneging corner cases that 2742 * are not worth the effort. 2743 * 2744 * Main reason for all this complexity is the fact that connection dying 2745 * time now depends on the validity of the retrans_stamp, in particular, 2746 * that successive retransmissions of a segment must not advance 2747 * retrans_stamp under any conditions. 2748 */ 2749 static int tcp_any_retrans_done(struct sock *sk) 2750 { 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 struct sk_buff *skb; 2753 2754 if (tp->retrans_out) 2755 return 1; 2756 2757 skb = tcp_write_queue_head(sk); 2758 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2759 return 1; 2760 2761 return 0; 2762 } 2763 2764 /* Undo during fast recovery after partial ACK. */ 2765 2766 static int tcp_try_undo_partial(struct sock *sk, int acked) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 /* Partial ACK arrived. Force Hoe's retransmit. */ 2770 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2771 2772 if (tcp_may_undo(tp)) { 2773 /* Plain luck! Hole if filled with delayed 2774 * packet, rather than with a retransmit. 2775 */ 2776 if (!tcp_any_retrans_done(sk)) 2777 tp->retrans_stamp = 0; 2778 2779 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2780 2781 DBGUNDO(sk, "Hoe"); 2782 tcp_undo_cwr(sk, 0); 2783 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2784 2785 /* So... Do not make Hoe's retransmit yet. 2786 * If the first packet was delayed, the rest 2787 * ones are most probably delayed as well. 2788 */ 2789 failed = 0; 2790 } 2791 return failed; 2792 } 2793 2794 /* Undo during loss recovery after partial ACK. */ 2795 static int tcp_try_undo_loss(struct sock *sk) 2796 { 2797 struct tcp_sock *tp = tcp_sk(sk); 2798 2799 if (tcp_may_undo(tp)) { 2800 struct sk_buff *skb; 2801 tcp_for_write_queue(skb, sk) { 2802 if (skb == tcp_send_head(sk)) 2803 break; 2804 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2805 } 2806 2807 tcp_clear_all_retrans_hints(tp); 2808 2809 DBGUNDO(sk, "partial loss"); 2810 tp->lost_out = 0; 2811 tcp_undo_cwr(sk, 1); 2812 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2813 inet_csk(sk)->icsk_retransmits = 0; 2814 tp->undo_marker = 0; 2815 if (tcp_is_sack(tp)) 2816 tcp_set_ca_state(sk, TCP_CA_Open); 2817 return 1; 2818 } 2819 return 0; 2820 } 2821 2822 static inline void tcp_complete_cwr(struct sock *sk) 2823 { 2824 struct tcp_sock *tp = tcp_sk(sk); 2825 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2826 tp->snd_cwnd_stamp = tcp_time_stamp; 2827 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2828 } 2829 2830 static void tcp_try_keep_open(struct sock *sk) 2831 { 2832 struct tcp_sock *tp = tcp_sk(sk); 2833 int state = TCP_CA_Open; 2834 2835 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker) 2836 state = TCP_CA_Disorder; 2837 2838 if (inet_csk(sk)->icsk_ca_state != state) { 2839 tcp_set_ca_state(sk, state); 2840 tp->high_seq = tp->snd_nxt; 2841 } 2842 } 2843 2844 static void tcp_try_to_open(struct sock *sk, int flag) 2845 { 2846 struct tcp_sock *tp = tcp_sk(sk); 2847 2848 tcp_verify_left_out(tp); 2849 2850 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2851 tp->retrans_stamp = 0; 2852 2853 if (flag & FLAG_ECE) 2854 tcp_enter_cwr(sk, 1); 2855 2856 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2857 tcp_try_keep_open(sk); 2858 tcp_moderate_cwnd(tp); 2859 } else { 2860 tcp_cwnd_down(sk, flag); 2861 } 2862 } 2863 2864 static void tcp_mtup_probe_failed(struct sock *sk) 2865 { 2866 struct inet_connection_sock *icsk = inet_csk(sk); 2867 2868 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2869 icsk->icsk_mtup.probe_size = 0; 2870 } 2871 2872 static void tcp_mtup_probe_success(struct sock *sk) 2873 { 2874 struct tcp_sock *tp = tcp_sk(sk); 2875 struct inet_connection_sock *icsk = inet_csk(sk); 2876 2877 /* FIXME: breaks with very large cwnd */ 2878 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2879 tp->snd_cwnd = tp->snd_cwnd * 2880 tcp_mss_to_mtu(sk, tp->mss_cache) / 2881 icsk->icsk_mtup.probe_size; 2882 tp->snd_cwnd_cnt = 0; 2883 tp->snd_cwnd_stamp = tcp_time_stamp; 2884 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2885 2886 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2887 icsk->icsk_mtup.probe_size = 0; 2888 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2889 } 2890 2891 /* Do a simple retransmit without using the backoff mechanisms in 2892 * tcp_timer. This is used for path mtu discovery. 2893 * The socket is already locked here. 2894 */ 2895 void tcp_simple_retransmit(struct sock *sk) 2896 { 2897 const struct inet_connection_sock *icsk = inet_csk(sk); 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 struct sk_buff *skb; 2900 unsigned int mss = tcp_current_mss(sk); 2901 u32 prior_lost = tp->lost_out; 2902 2903 tcp_for_write_queue(skb, sk) { 2904 if (skb == tcp_send_head(sk)) 2905 break; 2906 if (tcp_skb_seglen(skb) > mss && 2907 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2908 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2909 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2910 tp->retrans_out -= tcp_skb_pcount(skb); 2911 } 2912 tcp_skb_mark_lost_uncond_verify(tp, skb); 2913 } 2914 } 2915 2916 tcp_clear_retrans_hints_partial(tp); 2917 2918 if (prior_lost == tp->lost_out) 2919 return; 2920 2921 if (tcp_is_reno(tp)) 2922 tcp_limit_reno_sacked(tp); 2923 2924 tcp_verify_left_out(tp); 2925 2926 /* Don't muck with the congestion window here. 2927 * Reason is that we do not increase amount of _data_ 2928 * in network, but units changed and effective 2929 * cwnd/ssthresh really reduced now. 2930 */ 2931 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2932 tp->high_seq = tp->snd_nxt; 2933 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2934 tp->prior_ssthresh = 0; 2935 tp->undo_marker = 0; 2936 tcp_set_ca_state(sk, TCP_CA_Loss); 2937 } 2938 tcp_xmit_retransmit_queue(sk); 2939 } 2940 EXPORT_SYMBOL(tcp_simple_retransmit); 2941 2942 /* Process an event, which can update packets-in-flight not trivially. 2943 * Main goal of this function is to calculate new estimate for left_out, 2944 * taking into account both packets sitting in receiver's buffer and 2945 * packets lost by network. 2946 * 2947 * Besides that it does CWND reduction, when packet loss is detected 2948 * and changes state of machine. 2949 * 2950 * It does _not_ decide what to send, it is made in function 2951 * tcp_xmit_retransmit_queue(). 2952 */ 2953 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2954 { 2955 struct inet_connection_sock *icsk = inet_csk(sk); 2956 struct tcp_sock *tp = tcp_sk(sk); 2957 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2958 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2959 (tcp_fackets_out(tp) > tp->reordering)); 2960 int fast_rexmit = 0, mib_idx; 2961 2962 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2963 tp->sacked_out = 0; 2964 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2965 tp->fackets_out = 0; 2966 2967 /* Now state machine starts. 2968 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2969 if (flag & FLAG_ECE) 2970 tp->prior_ssthresh = 0; 2971 2972 /* B. In all the states check for reneging SACKs. */ 2973 if (tcp_check_sack_reneging(sk, flag)) 2974 return; 2975 2976 /* C. Process data loss notification, provided it is valid. */ 2977 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2978 before(tp->snd_una, tp->high_seq) && 2979 icsk->icsk_ca_state != TCP_CA_Open && 2980 tp->fackets_out > tp->reordering) { 2981 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0); 2982 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2983 } 2984 2985 /* D. Check consistency of the current state. */ 2986 tcp_verify_left_out(tp); 2987 2988 /* E. Check state exit conditions. State can be terminated 2989 * when high_seq is ACKed. */ 2990 if (icsk->icsk_ca_state == TCP_CA_Open) { 2991 WARN_ON(tp->retrans_out != 0); 2992 tp->retrans_stamp = 0; 2993 } else if (!before(tp->snd_una, tp->high_seq)) { 2994 switch (icsk->icsk_ca_state) { 2995 case TCP_CA_Loss: 2996 icsk->icsk_retransmits = 0; 2997 if (tcp_try_undo_recovery(sk)) 2998 return; 2999 break; 3000 3001 case TCP_CA_CWR: 3002 /* CWR is to be held something *above* high_seq 3003 * is ACKed for CWR bit to reach receiver. */ 3004 if (tp->snd_una != tp->high_seq) { 3005 tcp_complete_cwr(sk); 3006 tcp_set_ca_state(sk, TCP_CA_Open); 3007 } 3008 break; 3009 3010 case TCP_CA_Disorder: 3011 tcp_try_undo_dsack(sk); 3012 if (!tp->undo_marker || 3013 /* For SACK case do not Open to allow to undo 3014 * catching for all duplicate ACKs. */ 3015 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 3016 tp->undo_marker = 0; 3017 tcp_set_ca_state(sk, TCP_CA_Open); 3018 } 3019 break; 3020 3021 case TCP_CA_Recovery: 3022 if (tcp_is_reno(tp)) 3023 tcp_reset_reno_sack(tp); 3024 if (tcp_try_undo_recovery(sk)) 3025 return; 3026 tcp_complete_cwr(sk); 3027 break; 3028 } 3029 } 3030 3031 /* F. Process state. */ 3032 switch (icsk->icsk_ca_state) { 3033 case TCP_CA_Recovery: 3034 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3035 if (tcp_is_reno(tp) && is_dupack) 3036 tcp_add_reno_sack(sk); 3037 } else 3038 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3039 break; 3040 case TCP_CA_Loss: 3041 if (flag & FLAG_DATA_ACKED) 3042 icsk->icsk_retransmits = 0; 3043 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3044 tcp_reset_reno_sack(tp); 3045 if (!tcp_try_undo_loss(sk)) { 3046 tcp_moderate_cwnd(tp); 3047 tcp_xmit_retransmit_queue(sk); 3048 return; 3049 } 3050 if (icsk->icsk_ca_state != TCP_CA_Open) 3051 return; 3052 /* Loss is undone; fall through to processing in Open state. */ 3053 default: 3054 if (tcp_is_reno(tp)) { 3055 if (flag & FLAG_SND_UNA_ADVANCED) 3056 tcp_reset_reno_sack(tp); 3057 if (is_dupack) 3058 tcp_add_reno_sack(sk); 3059 } 3060 3061 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3062 tcp_try_undo_dsack(sk); 3063 3064 if (!tcp_time_to_recover(sk)) { 3065 tcp_try_to_open(sk, flag); 3066 return; 3067 } 3068 3069 /* MTU probe failure: don't reduce cwnd */ 3070 if (icsk->icsk_ca_state < TCP_CA_CWR && 3071 icsk->icsk_mtup.probe_size && 3072 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3073 tcp_mtup_probe_failed(sk); 3074 /* Restores the reduction we did in tcp_mtup_probe() */ 3075 tp->snd_cwnd++; 3076 tcp_simple_retransmit(sk); 3077 return; 3078 } 3079 3080 /* Otherwise enter Recovery state */ 3081 3082 if (tcp_is_reno(tp)) 3083 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3084 else 3085 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3086 3087 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3088 3089 tp->high_seq = tp->snd_nxt; 3090 tp->prior_ssthresh = 0; 3091 tp->undo_marker = tp->snd_una; 3092 tp->undo_retrans = tp->retrans_out; 3093 3094 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3095 if (!(flag & FLAG_ECE)) 3096 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3097 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3098 TCP_ECN_queue_cwr(tp); 3099 } 3100 3101 tp->bytes_acked = 0; 3102 tp->snd_cwnd_cnt = 0; 3103 tcp_set_ca_state(sk, TCP_CA_Recovery); 3104 fast_rexmit = 1; 3105 } 3106 3107 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3108 tcp_update_scoreboard(sk, fast_rexmit); 3109 tcp_cwnd_down(sk, flag); 3110 tcp_xmit_retransmit_queue(sk); 3111 } 3112 3113 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3114 { 3115 tcp_rtt_estimator(sk, seq_rtt); 3116 tcp_set_rto(sk); 3117 inet_csk(sk)->icsk_backoff = 0; 3118 } 3119 3120 /* Read draft-ietf-tcplw-high-performance before mucking 3121 * with this code. (Supersedes RFC1323) 3122 */ 3123 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3124 { 3125 /* RTTM Rule: A TSecr value received in a segment is used to 3126 * update the averaged RTT measurement only if the segment 3127 * acknowledges some new data, i.e., only if it advances the 3128 * left edge of the send window. 3129 * 3130 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3131 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3132 * 3133 * Changed: reset backoff as soon as we see the first valid sample. 3134 * If we do not, we get strongly overestimated rto. With timestamps 3135 * samples are accepted even from very old segments: f.e., when rtt=1 3136 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3137 * answer arrives rto becomes 120 seconds! If at least one of segments 3138 * in window is lost... Voila. --ANK (010210) 3139 */ 3140 struct tcp_sock *tp = tcp_sk(sk); 3141 3142 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3143 } 3144 3145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3146 { 3147 /* We don't have a timestamp. Can only use 3148 * packets that are not retransmitted to determine 3149 * rtt estimates. Also, we must not reset the 3150 * backoff for rto until we get a non-retransmitted 3151 * packet. This allows us to deal with a situation 3152 * where the network delay has increased suddenly. 3153 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3154 */ 3155 3156 if (flag & FLAG_RETRANS_DATA_ACKED) 3157 return; 3158 3159 tcp_valid_rtt_meas(sk, seq_rtt); 3160 } 3161 3162 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3163 const s32 seq_rtt) 3164 { 3165 const struct tcp_sock *tp = tcp_sk(sk); 3166 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3167 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3168 tcp_ack_saw_tstamp(sk, flag); 3169 else if (seq_rtt >= 0) 3170 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3171 } 3172 3173 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3174 { 3175 const struct inet_connection_sock *icsk = inet_csk(sk); 3176 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3177 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3178 } 3179 3180 /* Restart timer after forward progress on connection. 3181 * RFC2988 recommends to restart timer to now+rto. 3182 */ 3183 static void tcp_rearm_rto(struct sock *sk) 3184 { 3185 struct tcp_sock *tp = tcp_sk(sk); 3186 3187 if (!tp->packets_out) { 3188 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3189 } else { 3190 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3191 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3192 } 3193 } 3194 3195 /* If we get here, the whole TSO packet has not been acked. */ 3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3197 { 3198 struct tcp_sock *tp = tcp_sk(sk); 3199 u32 packets_acked; 3200 3201 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3202 3203 packets_acked = tcp_skb_pcount(skb); 3204 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3205 return 0; 3206 packets_acked -= tcp_skb_pcount(skb); 3207 3208 if (packets_acked) { 3209 BUG_ON(tcp_skb_pcount(skb) == 0); 3210 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3211 } 3212 3213 return packets_acked; 3214 } 3215 3216 /* Remove acknowledged frames from the retransmission queue. If our packet 3217 * is before the ack sequence we can discard it as it's confirmed to have 3218 * arrived at the other end. 3219 */ 3220 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3221 u32 prior_snd_una) 3222 { 3223 struct tcp_sock *tp = tcp_sk(sk); 3224 const struct inet_connection_sock *icsk = inet_csk(sk); 3225 struct sk_buff *skb; 3226 u32 now = tcp_time_stamp; 3227 int fully_acked = 1; 3228 int flag = 0; 3229 u32 pkts_acked = 0; 3230 u32 reord = tp->packets_out; 3231 u32 prior_sacked = tp->sacked_out; 3232 s32 seq_rtt = -1; 3233 s32 ca_seq_rtt = -1; 3234 ktime_t last_ackt = net_invalid_timestamp(); 3235 3236 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3237 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3238 u32 acked_pcount; 3239 u8 sacked = scb->sacked; 3240 3241 /* Determine how many packets and what bytes were acked, tso and else */ 3242 if (after(scb->end_seq, tp->snd_una)) { 3243 if (tcp_skb_pcount(skb) == 1 || 3244 !after(tp->snd_una, scb->seq)) 3245 break; 3246 3247 acked_pcount = tcp_tso_acked(sk, skb); 3248 if (!acked_pcount) 3249 break; 3250 3251 fully_acked = 0; 3252 } else { 3253 acked_pcount = tcp_skb_pcount(skb); 3254 } 3255 3256 if (sacked & TCPCB_RETRANS) { 3257 if (sacked & TCPCB_SACKED_RETRANS) 3258 tp->retrans_out -= acked_pcount; 3259 flag |= FLAG_RETRANS_DATA_ACKED; 3260 ca_seq_rtt = -1; 3261 seq_rtt = -1; 3262 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3263 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3264 } else { 3265 ca_seq_rtt = now - scb->when; 3266 last_ackt = skb->tstamp; 3267 if (seq_rtt < 0) { 3268 seq_rtt = ca_seq_rtt; 3269 } 3270 if (!(sacked & TCPCB_SACKED_ACKED)) 3271 reord = min(pkts_acked, reord); 3272 } 3273 3274 if (sacked & TCPCB_SACKED_ACKED) 3275 tp->sacked_out -= acked_pcount; 3276 if (sacked & TCPCB_LOST) 3277 tp->lost_out -= acked_pcount; 3278 3279 tp->packets_out -= acked_pcount; 3280 pkts_acked += acked_pcount; 3281 3282 /* Initial outgoing SYN's get put onto the write_queue 3283 * just like anything else we transmit. It is not 3284 * true data, and if we misinform our callers that 3285 * this ACK acks real data, we will erroneously exit 3286 * connection startup slow start one packet too 3287 * quickly. This is severely frowned upon behavior. 3288 */ 3289 if (!(scb->flags & TCPHDR_SYN)) { 3290 flag |= FLAG_DATA_ACKED; 3291 } else { 3292 flag |= FLAG_SYN_ACKED; 3293 tp->retrans_stamp = 0; 3294 } 3295 3296 if (!fully_acked) 3297 break; 3298 3299 tcp_unlink_write_queue(skb, sk); 3300 sk_wmem_free_skb(sk, skb); 3301 tp->scoreboard_skb_hint = NULL; 3302 if (skb == tp->retransmit_skb_hint) 3303 tp->retransmit_skb_hint = NULL; 3304 if (skb == tp->lost_skb_hint) 3305 tp->lost_skb_hint = NULL; 3306 } 3307 3308 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3309 tp->snd_up = tp->snd_una; 3310 3311 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3312 flag |= FLAG_SACK_RENEGING; 3313 3314 if (flag & FLAG_ACKED) { 3315 const struct tcp_congestion_ops *ca_ops 3316 = inet_csk(sk)->icsk_ca_ops; 3317 3318 if (unlikely(icsk->icsk_mtup.probe_size && 3319 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3320 tcp_mtup_probe_success(sk); 3321 } 3322 3323 tcp_ack_update_rtt(sk, flag, seq_rtt); 3324 tcp_rearm_rto(sk); 3325 3326 if (tcp_is_reno(tp)) { 3327 tcp_remove_reno_sacks(sk, pkts_acked); 3328 } else { 3329 int delta; 3330 3331 /* Non-retransmitted hole got filled? That's reordering */ 3332 if (reord < prior_fackets) 3333 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3334 3335 delta = tcp_is_fack(tp) ? pkts_acked : 3336 prior_sacked - tp->sacked_out; 3337 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3338 } 3339 3340 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3341 3342 if (ca_ops->pkts_acked) { 3343 s32 rtt_us = -1; 3344 3345 /* Is the ACK triggering packet unambiguous? */ 3346 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3347 /* High resolution needed and available? */ 3348 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3349 !ktime_equal(last_ackt, 3350 net_invalid_timestamp())) 3351 rtt_us = ktime_us_delta(ktime_get_real(), 3352 last_ackt); 3353 else if (ca_seq_rtt >= 0) 3354 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3355 } 3356 3357 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3358 } 3359 } 3360 3361 #if FASTRETRANS_DEBUG > 0 3362 WARN_ON((int)tp->sacked_out < 0); 3363 WARN_ON((int)tp->lost_out < 0); 3364 WARN_ON((int)tp->retrans_out < 0); 3365 if (!tp->packets_out && tcp_is_sack(tp)) { 3366 icsk = inet_csk(sk); 3367 if (tp->lost_out) { 3368 printk(KERN_DEBUG "Leak l=%u %d\n", 3369 tp->lost_out, icsk->icsk_ca_state); 3370 tp->lost_out = 0; 3371 } 3372 if (tp->sacked_out) { 3373 printk(KERN_DEBUG "Leak s=%u %d\n", 3374 tp->sacked_out, icsk->icsk_ca_state); 3375 tp->sacked_out = 0; 3376 } 3377 if (tp->retrans_out) { 3378 printk(KERN_DEBUG "Leak r=%u %d\n", 3379 tp->retrans_out, icsk->icsk_ca_state); 3380 tp->retrans_out = 0; 3381 } 3382 } 3383 #endif 3384 return flag; 3385 } 3386 3387 static void tcp_ack_probe(struct sock *sk) 3388 { 3389 const struct tcp_sock *tp = tcp_sk(sk); 3390 struct inet_connection_sock *icsk = inet_csk(sk); 3391 3392 /* Was it a usable window open? */ 3393 3394 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3395 icsk->icsk_backoff = 0; 3396 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3397 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3398 * This function is not for random using! 3399 */ 3400 } else { 3401 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3402 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3403 TCP_RTO_MAX); 3404 } 3405 } 3406 3407 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3408 { 3409 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3410 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3411 } 3412 3413 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3414 { 3415 const struct tcp_sock *tp = tcp_sk(sk); 3416 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3417 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3418 } 3419 3420 /* Check that window update is acceptable. 3421 * The function assumes that snd_una<=ack<=snd_next. 3422 */ 3423 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3424 const u32 ack, const u32 ack_seq, 3425 const u32 nwin) 3426 { 3427 return after(ack, tp->snd_una) || 3428 after(ack_seq, tp->snd_wl1) || 3429 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3430 } 3431 3432 /* Update our send window. 3433 * 3434 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3435 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3436 */ 3437 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3438 u32 ack_seq) 3439 { 3440 struct tcp_sock *tp = tcp_sk(sk); 3441 int flag = 0; 3442 u32 nwin = ntohs(tcp_hdr(skb)->window); 3443 3444 if (likely(!tcp_hdr(skb)->syn)) 3445 nwin <<= tp->rx_opt.snd_wscale; 3446 3447 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3448 flag |= FLAG_WIN_UPDATE; 3449 tcp_update_wl(tp, ack_seq); 3450 3451 if (tp->snd_wnd != nwin) { 3452 tp->snd_wnd = nwin; 3453 3454 /* Note, it is the only place, where 3455 * fast path is recovered for sending TCP. 3456 */ 3457 tp->pred_flags = 0; 3458 tcp_fast_path_check(sk); 3459 3460 if (nwin > tp->max_window) { 3461 tp->max_window = nwin; 3462 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3463 } 3464 } 3465 } 3466 3467 tp->snd_una = ack; 3468 3469 return flag; 3470 } 3471 3472 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3473 * continue in congestion avoidance. 3474 */ 3475 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3476 { 3477 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3478 tp->snd_cwnd_cnt = 0; 3479 tp->bytes_acked = 0; 3480 TCP_ECN_queue_cwr(tp); 3481 tcp_moderate_cwnd(tp); 3482 } 3483 3484 /* A conservative spurious RTO response algorithm: reduce cwnd using 3485 * rate halving and continue in congestion avoidance. 3486 */ 3487 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3488 { 3489 tcp_enter_cwr(sk, 0); 3490 } 3491 3492 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3493 { 3494 if (flag & FLAG_ECE) 3495 tcp_ratehalving_spur_to_response(sk); 3496 else 3497 tcp_undo_cwr(sk, 1); 3498 } 3499 3500 /* F-RTO spurious RTO detection algorithm (RFC4138) 3501 * 3502 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3503 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3504 * window (but not to or beyond highest sequence sent before RTO): 3505 * On First ACK, send two new segments out. 3506 * On Second ACK, RTO was likely spurious. Do spurious response (response 3507 * algorithm is not part of the F-RTO detection algorithm 3508 * given in RFC4138 but can be selected separately). 3509 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3510 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3511 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3512 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3513 * 3514 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3515 * original window even after we transmit two new data segments. 3516 * 3517 * SACK version: 3518 * on first step, wait until first cumulative ACK arrives, then move to 3519 * the second step. In second step, the next ACK decides. 3520 * 3521 * F-RTO is implemented (mainly) in four functions: 3522 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3523 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3524 * called when tcp_use_frto() showed green light 3525 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3526 * - tcp_enter_frto_loss() is called if there is not enough evidence 3527 * to prove that the RTO is indeed spurious. It transfers the control 3528 * from F-RTO to the conventional RTO recovery 3529 */ 3530 static int tcp_process_frto(struct sock *sk, int flag) 3531 { 3532 struct tcp_sock *tp = tcp_sk(sk); 3533 3534 tcp_verify_left_out(tp); 3535 3536 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3537 if (flag & FLAG_DATA_ACKED) 3538 inet_csk(sk)->icsk_retransmits = 0; 3539 3540 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3541 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3542 tp->undo_marker = 0; 3543 3544 if (!before(tp->snd_una, tp->frto_highmark)) { 3545 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3546 return 1; 3547 } 3548 3549 if (!tcp_is_sackfrto(tp)) { 3550 /* RFC4138 shortcoming in step 2; should also have case c): 3551 * ACK isn't duplicate nor advances window, e.g., opposite dir 3552 * data, winupdate 3553 */ 3554 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3555 return 1; 3556 3557 if (!(flag & FLAG_DATA_ACKED)) { 3558 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3559 flag); 3560 return 1; 3561 } 3562 } else { 3563 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3564 /* Prevent sending of new data. */ 3565 tp->snd_cwnd = min(tp->snd_cwnd, 3566 tcp_packets_in_flight(tp)); 3567 return 1; 3568 } 3569 3570 if ((tp->frto_counter >= 2) && 3571 (!(flag & FLAG_FORWARD_PROGRESS) || 3572 ((flag & FLAG_DATA_SACKED) && 3573 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3574 /* RFC4138 shortcoming (see comment above) */ 3575 if (!(flag & FLAG_FORWARD_PROGRESS) && 3576 (flag & FLAG_NOT_DUP)) 3577 return 1; 3578 3579 tcp_enter_frto_loss(sk, 3, flag); 3580 return 1; 3581 } 3582 } 3583 3584 if (tp->frto_counter == 1) { 3585 /* tcp_may_send_now needs to see updated state */ 3586 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3587 tp->frto_counter = 2; 3588 3589 if (!tcp_may_send_now(sk)) 3590 tcp_enter_frto_loss(sk, 2, flag); 3591 3592 return 1; 3593 } else { 3594 switch (sysctl_tcp_frto_response) { 3595 case 2: 3596 tcp_undo_spur_to_response(sk, flag); 3597 break; 3598 case 1: 3599 tcp_conservative_spur_to_response(tp); 3600 break; 3601 default: 3602 tcp_ratehalving_spur_to_response(sk); 3603 break; 3604 } 3605 tp->frto_counter = 0; 3606 tp->undo_marker = 0; 3607 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3608 } 3609 return 0; 3610 } 3611 3612 /* This routine deals with incoming acks, but not outgoing ones. */ 3613 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3614 { 3615 struct inet_connection_sock *icsk = inet_csk(sk); 3616 struct tcp_sock *tp = tcp_sk(sk); 3617 u32 prior_snd_una = tp->snd_una; 3618 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3619 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3620 u32 prior_in_flight; 3621 u32 prior_fackets; 3622 int prior_packets; 3623 int frto_cwnd = 0; 3624 3625 /* If the ack is older than previous acks 3626 * then we can probably ignore it. 3627 */ 3628 if (before(ack, prior_snd_una)) 3629 goto old_ack; 3630 3631 /* If the ack includes data we haven't sent yet, discard 3632 * this segment (RFC793 Section 3.9). 3633 */ 3634 if (after(ack, tp->snd_nxt)) 3635 goto invalid_ack; 3636 3637 if (after(ack, prior_snd_una)) 3638 flag |= FLAG_SND_UNA_ADVANCED; 3639 3640 if (sysctl_tcp_abc) { 3641 if (icsk->icsk_ca_state < TCP_CA_CWR) 3642 tp->bytes_acked += ack - prior_snd_una; 3643 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3644 /* we assume just one segment left network */ 3645 tp->bytes_acked += min(ack - prior_snd_una, 3646 tp->mss_cache); 3647 } 3648 3649 prior_fackets = tp->fackets_out; 3650 prior_in_flight = tcp_packets_in_flight(tp); 3651 3652 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3653 /* Window is constant, pure forward advance. 3654 * No more checks are required. 3655 * Note, we use the fact that SND.UNA>=SND.WL2. 3656 */ 3657 tcp_update_wl(tp, ack_seq); 3658 tp->snd_una = ack; 3659 flag |= FLAG_WIN_UPDATE; 3660 3661 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3662 3663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3664 } else { 3665 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3666 flag |= FLAG_DATA; 3667 else 3668 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3669 3670 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3671 3672 if (TCP_SKB_CB(skb)->sacked) 3673 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3674 3675 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3676 flag |= FLAG_ECE; 3677 3678 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3679 } 3680 3681 /* We passed data and got it acked, remove any soft error 3682 * log. Something worked... 3683 */ 3684 sk->sk_err_soft = 0; 3685 icsk->icsk_probes_out = 0; 3686 tp->rcv_tstamp = tcp_time_stamp; 3687 prior_packets = tp->packets_out; 3688 if (!prior_packets) 3689 goto no_queue; 3690 3691 /* See if we can take anything off of the retransmit queue. */ 3692 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3693 3694 if (tp->frto_counter) 3695 frto_cwnd = tcp_process_frto(sk, flag); 3696 /* Guarantee sacktag reordering detection against wrap-arounds */ 3697 if (before(tp->frto_highmark, tp->snd_una)) 3698 tp->frto_highmark = 0; 3699 3700 if (tcp_ack_is_dubious(sk, flag)) { 3701 /* Advance CWND, if state allows this. */ 3702 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3703 tcp_may_raise_cwnd(sk, flag)) 3704 tcp_cong_avoid(sk, ack, prior_in_flight); 3705 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3706 flag); 3707 } else { 3708 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3709 tcp_cong_avoid(sk, ack, prior_in_flight); 3710 } 3711 3712 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3713 dst_confirm(__sk_dst_get(sk)); 3714 3715 return 1; 3716 3717 no_queue: 3718 /* If this ack opens up a zero window, clear backoff. It was 3719 * being used to time the probes, and is probably far higher than 3720 * it needs to be for normal retransmission. 3721 */ 3722 if (tcp_send_head(sk)) 3723 tcp_ack_probe(sk); 3724 return 1; 3725 3726 invalid_ack: 3727 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3728 return -1; 3729 3730 old_ack: 3731 if (TCP_SKB_CB(skb)->sacked) { 3732 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3733 if (icsk->icsk_ca_state == TCP_CA_Open) 3734 tcp_try_keep_open(sk); 3735 } 3736 3737 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3738 return 0; 3739 } 3740 3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3742 * But, this can also be called on packets in the established flow when 3743 * the fast version below fails. 3744 */ 3745 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3746 u8 **hvpp, int estab) 3747 { 3748 unsigned char *ptr; 3749 struct tcphdr *th = tcp_hdr(skb); 3750 int length = (th->doff * 4) - sizeof(struct tcphdr); 3751 3752 ptr = (unsigned char *)(th + 1); 3753 opt_rx->saw_tstamp = 0; 3754 3755 while (length > 0) { 3756 int opcode = *ptr++; 3757 int opsize; 3758 3759 switch (opcode) { 3760 case TCPOPT_EOL: 3761 return; 3762 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3763 length--; 3764 continue; 3765 default: 3766 opsize = *ptr++; 3767 if (opsize < 2) /* "silly options" */ 3768 return; 3769 if (opsize > length) 3770 return; /* don't parse partial options */ 3771 switch (opcode) { 3772 case TCPOPT_MSS: 3773 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3774 u16 in_mss = get_unaligned_be16(ptr); 3775 if (in_mss) { 3776 if (opt_rx->user_mss && 3777 opt_rx->user_mss < in_mss) 3778 in_mss = opt_rx->user_mss; 3779 opt_rx->mss_clamp = in_mss; 3780 } 3781 } 3782 break; 3783 case TCPOPT_WINDOW: 3784 if (opsize == TCPOLEN_WINDOW && th->syn && 3785 !estab && sysctl_tcp_window_scaling) { 3786 __u8 snd_wscale = *(__u8 *)ptr; 3787 opt_rx->wscale_ok = 1; 3788 if (snd_wscale > 14) { 3789 if (net_ratelimit()) 3790 printk(KERN_INFO "tcp_parse_options: Illegal window " 3791 "scaling value %d >14 received.\n", 3792 snd_wscale); 3793 snd_wscale = 14; 3794 } 3795 opt_rx->snd_wscale = snd_wscale; 3796 } 3797 break; 3798 case TCPOPT_TIMESTAMP: 3799 if ((opsize == TCPOLEN_TIMESTAMP) && 3800 ((estab && opt_rx->tstamp_ok) || 3801 (!estab && sysctl_tcp_timestamps))) { 3802 opt_rx->saw_tstamp = 1; 3803 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3804 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3805 } 3806 break; 3807 case TCPOPT_SACK_PERM: 3808 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3809 !estab && sysctl_tcp_sack) { 3810 opt_rx->sack_ok = 1; 3811 tcp_sack_reset(opt_rx); 3812 } 3813 break; 3814 3815 case TCPOPT_SACK: 3816 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3817 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3818 opt_rx->sack_ok) { 3819 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3820 } 3821 break; 3822 #ifdef CONFIG_TCP_MD5SIG 3823 case TCPOPT_MD5SIG: 3824 /* 3825 * The MD5 Hash has already been 3826 * checked (see tcp_v{4,6}_do_rcv()). 3827 */ 3828 break; 3829 #endif 3830 case TCPOPT_COOKIE: 3831 /* This option is variable length. 3832 */ 3833 switch (opsize) { 3834 case TCPOLEN_COOKIE_BASE: 3835 /* not yet implemented */ 3836 break; 3837 case TCPOLEN_COOKIE_PAIR: 3838 /* not yet implemented */ 3839 break; 3840 case TCPOLEN_COOKIE_MIN+0: 3841 case TCPOLEN_COOKIE_MIN+2: 3842 case TCPOLEN_COOKIE_MIN+4: 3843 case TCPOLEN_COOKIE_MIN+6: 3844 case TCPOLEN_COOKIE_MAX: 3845 /* 16-bit multiple */ 3846 opt_rx->cookie_plus = opsize; 3847 *hvpp = ptr; 3848 break; 3849 default: 3850 /* ignore option */ 3851 break; 3852 } 3853 break; 3854 } 3855 3856 ptr += opsize-2; 3857 length -= opsize; 3858 } 3859 } 3860 } 3861 EXPORT_SYMBOL(tcp_parse_options); 3862 3863 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3864 { 3865 __be32 *ptr = (__be32 *)(th + 1); 3866 3867 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3868 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3869 tp->rx_opt.saw_tstamp = 1; 3870 ++ptr; 3871 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3872 ++ptr; 3873 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3874 return 1; 3875 } 3876 return 0; 3877 } 3878 3879 /* Fast parse options. This hopes to only see timestamps. 3880 * If it is wrong it falls back on tcp_parse_options(). 3881 */ 3882 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3883 struct tcp_sock *tp, u8 **hvpp) 3884 { 3885 /* In the spirit of fast parsing, compare doff directly to constant 3886 * values. Because equality is used, short doff can be ignored here. 3887 */ 3888 if (th->doff == (sizeof(*th) / 4)) { 3889 tp->rx_opt.saw_tstamp = 0; 3890 return 0; 3891 } else if (tp->rx_opt.tstamp_ok && 3892 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3893 if (tcp_parse_aligned_timestamp(tp, th)) 3894 return 1; 3895 } 3896 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3897 return 1; 3898 } 3899 3900 #ifdef CONFIG_TCP_MD5SIG 3901 /* 3902 * Parse MD5 Signature option 3903 */ 3904 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3905 { 3906 int length = (th->doff << 2) - sizeof (*th); 3907 u8 *ptr = (u8*)(th + 1); 3908 3909 /* If the TCP option is too short, we can short cut */ 3910 if (length < TCPOLEN_MD5SIG) 3911 return NULL; 3912 3913 while (length > 0) { 3914 int opcode = *ptr++; 3915 int opsize; 3916 3917 switch(opcode) { 3918 case TCPOPT_EOL: 3919 return NULL; 3920 case TCPOPT_NOP: 3921 length--; 3922 continue; 3923 default: 3924 opsize = *ptr++; 3925 if (opsize < 2 || opsize > length) 3926 return NULL; 3927 if (opcode == TCPOPT_MD5SIG) 3928 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3929 } 3930 ptr += opsize - 2; 3931 length -= opsize; 3932 } 3933 return NULL; 3934 } 3935 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3936 #endif 3937 3938 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3939 { 3940 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3941 tp->rx_opt.ts_recent_stamp = get_seconds(); 3942 } 3943 3944 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3945 { 3946 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3947 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3948 * extra check below makes sure this can only happen 3949 * for pure ACK frames. -DaveM 3950 * 3951 * Not only, also it occurs for expired timestamps. 3952 */ 3953 3954 if (tcp_paws_check(&tp->rx_opt, 0)) 3955 tcp_store_ts_recent(tp); 3956 } 3957 } 3958 3959 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3960 * 3961 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3962 * it can pass through stack. So, the following predicate verifies that 3963 * this segment is not used for anything but congestion avoidance or 3964 * fast retransmit. Moreover, we even are able to eliminate most of such 3965 * second order effects, if we apply some small "replay" window (~RTO) 3966 * to timestamp space. 3967 * 3968 * All these measures still do not guarantee that we reject wrapped ACKs 3969 * on networks with high bandwidth, when sequence space is recycled fastly, 3970 * but it guarantees that such events will be very rare and do not affect 3971 * connection seriously. This doesn't look nice, but alas, PAWS is really 3972 * buggy extension. 3973 * 3974 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3975 * states that events when retransmit arrives after original data are rare. 3976 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3977 * the biggest problem on large power networks even with minor reordering. 3978 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3979 * up to bandwidth of 18Gigabit/sec. 8) ] 3980 */ 3981 3982 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3983 { 3984 struct tcp_sock *tp = tcp_sk(sk); 3985 struct tcphdr *th = tcp_hdr(skb); 3986 u32 seq = TCP_SKB_CB(skb)->seq; 3987 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3988 3989 return (/* 1. Pure ACK with correct sequence number. */ 3990 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3991 3992 /* 2. ... and duplicate ACK. */ 3993 ack == tp->snd_una && 3994 3995 /* 3. ... and does not update window. */ 3996 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3997 3998 /* 4. ... and sits in replay window. */ 3999 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4000 } 4001 4002 static inline int tcp_paws_discard(const struct sock *sk, 4003 const struct sk_buff *skb) 4004 { 4005 const struct tcp_sock *tp = tcp_sk(sk); 4006 4007 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4008 !tcp_disordered_ack(sk, skb); 4009 } 4010 4011 /* Check segment sequence number for validity. 4012 * 4013 * Segment controls are considered valid, if the segment 4014 * fits to the window after truncation to the window. Acceptability 4015 * of data (and SYN, FIN, of course) is checked separately. 4016 * See tcp_data_queue(), for example. 4017 * 4018 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4019 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4020 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4021 * (borrowed from freebsd) 4022 */ 4023 4024 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 4025 { 4026 return !before(end_seq, tp->rcv_wup) && 4027 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4028 } 4029 4030 /* When we get a reset we do this. */ 4031 static void tcp_reset(struct sock *sk) 4032 { 4033 /* We want the right error as BSD sees it (and indeed as we do). */ 4034 switch (sk->sk_state) { 4035 case TCP_SYN_SENT: 4036 sk->sk_err = ECONNREFUSED; 4037 break; 4038 case TCP_CLOSE_WAIT: 4039 sk->sk_err = EPIPE; 4040 break; 4041 case TCP_CLOSE: 4042 return; 4043 default: 4044 sk->sk_err = ECONNRESET; 4045 } 4046 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4047 smp_wmb(); 4048 4049 if (!sock_flag(sk, SOCK_DEAD)) 4050 sk->sk_error_report(sk); 4051 4052 tcp_done(sk); 4053 } 4054 4055 /* 4056 * Process the FIN bit. This now behaves as it is supposed to work 4057 * and the FIN takes effect when it is validly part of sequence 4058 * space. Not before when we get holes. 4059 * 4060 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4061 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4062 * TIME-WAIT) 4063 * 4064 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4065 * close and we go into CLOSING (and later onto TIME-WAIT) 4066 * 4067 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4068 */ 4069 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4070 { 4071 struct tcp_sock *tp = tcp_sk(sk); 4072 4073 inet_csk_schedule_ack(sk); 4074 4075 sk->sk_shutdown |= RCV_SHUTDOWN; 4076 sock_set_flag(sk, SOCK_DONE); 4077 4078 switch (sk->sk_state) { 4079 case TCP_SYN_RECV: 4080 case TCP_ESTABLISHED: 4081 /* Move to CLOSE_WAIT */ 4082 tcp_set_state(sk, TCP_CLOSE_WAIT); 4083 inet_csk(sk)->icsk_ack.pingpong = 1; 4084 break; 4085 4086 case TCP_CLOSE_WAIT: 4087 case TCP_CLOSING: 4088 /* Received a retransmission of the FIN, do 4089 * nothing. 4090 */ 4091 break; 4092 case TCP_LAST_ACK: 4093 /* RFC793: Remain in the LAST-ACK state. */ 4094 break; 4095 4096 case TCP_FIN_WAIT1: 4097 /* This case occurs when a simultaneous close 4098 * happens, we must ack the received FIN and 4099 * enter the CLOSING state. 4100 */ 4101 tcp_send_ack(sk); 4102 tcp_set_state(sk, TCP_CLOSING); 4103 break; 4104 case TCP_FIN_WAIT2: 4105 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4106 tcp_send_ack(sk); 4107 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4108 break; 4109 default: 4110 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4111 * cases we should never reach this piece of code. 4112 */ 4113 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4114 __func__, sk->sk_state); 4115 break; 4116 } 4117 4118 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4119 * Probably, we should reset in this case. For now drop them. 4120 */ 4121 __skb_queue_purge(&tp->out_of_order_queue); 4122 if (tcp_is_sack(tp)) 4123 tcp_sack_reset(&tp->rx_opt); 4124 sk_mem_reclaim(sk); 4125 4126 if (!sock_flag(sk, SOCK_DEAD)) { 4127 sk->sk_state_change(sk); 4128 4129 /* Do not send POLL_HUP for half duplex close. */ 4130 if (sk->sk_shutdown == SHUTDOWN_MASK || 4131 sk->sk_state == TCP_CLOSE) 4132 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4133 else 4134 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4135 } 4136 } 4137 4138 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4139 u32 end_seq) 4140 { 4141 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4142 if (before(seq, sp->start_seq)) 4143 sp->start_seq = seq; 4144 if (after(end_seq, sp->end_seq)) 4145 sp->end_seq = end_seq; 4146 return 1; 4147 } 4148 return 0; 4149 } 4150 4151 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4152 { 4153 struct tcp_sock *tp = tcp_sk(sk); 4154 4155 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4156 int mib_idx; 4157 4158 if (before(seq, tp->rcv_nxt)) 4159 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4160 else 4161 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4162 4163 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4164 4165 tp->rx_opt.dsack = 1; 4166 tp->duplicate_sack[0].start_seq = seq; 4167 tp->duplicate_sack[0].end_seq = end_seq; 4168 } 4169 } 4170 4171 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4172 { 4173 struct tcp_sock *tp = tcp_sk(sk); 4174 4175 if (!tp->rx_opt.dsack) 4176 tcp_dsack_set(sk, seq, end_seq); 4177 else 4178 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4179 } 4180 4181 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4182 { 4183 struct tcp_sock *tp = tcp_sk(sk); 4184 4185 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4186 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4188 tcp_enter_quickack_mode(sk); 4189 4190 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4191 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4192 4193 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4194 end_seq = tp->rcv_nxt; 4195 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4196 } 4197 } 4198 4199 tcp_send_ack(sk); 4200 } 4201 4202 /* These routines update the SACK block as out-of-order packets arrive or 4203 * in-order packets close up the sequence space. 4204 */ 4205 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4206 { 4207 int this_sack; 4208 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4209 struct tcp_sack_block *swalk = sp + 1; 4210 4211 /* See if the recent change to the first SACK eats into 4212 * or hits the sequence space of other SACK blocks, if so coalesce. 4213 */ 4214 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4215 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4216 int i; 4217 4218 /* Zap SWALK, by moving every further SACK up by one slot. 4219 * Decrease num_sacks. 4220 */ 4221 tp->rx_opt.num_sacks--; 4222 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4223 sp[i] = sp[i + 1]; 4224 continue; 4225 } 4226 this_sack++, swalk++; 4227 } 4228 } 4229 4230 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4231 { 4232 struct tcp_sock *tp = tcp_sk(sk); 4233 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4234 int cur_sacks = tp->rx_opt.num_sacks; 4235 int this_sack; 4236 4237 if (!cur_sacks) 4238 goto new_sack; 4239 4240 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4241 if (tcp_sack_extend(sp, seq, end_seq)) { 4242 /* Rotate this_sack to the first one. */ 4243 for (; this_sack > 0; this_sack--, sp--) 4244 swap(*sp, *(sp - 1)); 4245 if (cur_sacks > 1) 4246 tcp_sack_maybe_coalesce(tp); 4247 return; 4248 } 4249 } 4250 4251 /* Could not find an adjacent existing SACK, build a new one, 4252 * put it at the front, and shift everyone else down. We 4253 * always know there is at least one SACK present already here. 4254 * 4255 * If the sack array is full, forget about the last one. 4256 */ 4257 if (this_sack >= TCP_NUM_SACKS) { 4258 this_sack--; 4259 tp->rx_opt.num_sacks--; 4260 sp--; 4261 } 4262 for (; this_sack > 0; this_sack--, sp--) 4263 *sp = *(sp - 1); 4264 4265 new_sack: 4266 /* Build the new head SACK, and we're done. */ 4267 sp->start_seq = seq; 4268 sp->end_seq = end_seq; 4269 tp->rx_opt.num_sacks++; 4270 } 4271 4272 /* RCV.NXT advances, some SACKs should be eaten. */ 4273 4274 static void tcp_sack_remove(struct tcp_sock *tp) 4275 { 4276 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4277 int num_sacks = tp->rx_opt.num_sacks; 4278 int this_sack; 4279 4280 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4281 if (skb_queue_empty(&tp->out_of_order_queue)) { 4282 tp->rx_opt.num_sacks = 0; 4283 return; 4284 } 4285 4286 for (this_sack = 0; this_sack < num_sacks;) { 4287 /* Check if the start of the sack is covered by RCV.NXT. */ 4288 if (!before(tp->rcv_nxt, sp->start_seq)) { 4289 int i; 4290 4291 /* RCV.NXT must cover all the block! */ 4292 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4293 4294 /* Zap this SACK, by moving forward any other SACKS. */ 4295 for (i=this_sack+1; i < num_sacks; i++) 4296 tp->selective_acks[i-1] = tp->selective_acks[i]; 4297 num_sacks--; 4298 continue; 4299 } 4300 this_sack++; 4301 sp++; 4302 } 4303 tp->rx_opt.num_sacks = num_sacks; 4304 } 4305 4306 /* This one checks to see if we can put data from the 4307 * out_of_order queue into the receive_queue. 4308 */ 4309 static void tcp_ofo_queue(struct sock *sk) 4310 { 4311 struct tcp_sock *tp = tcp_sk(sk); 4312 __u32 dsack_high = tp->rcv_nxt; 4313 struct sk_buff *skb; 4314 4315 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4316 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4317 break; 4318 4319 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4320 __u32 dsack = dsack_high; 4321 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4322 dsack_high = TCP_SKB_CB(skb)->end_seq; 4323 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4324 } 4325 4326 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4327 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4328 __skb_unlink(skb, &tp->out_of_order_queue); 4329 __kfree_skb(skb); 4330 continue; 4331 } 4332 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4333 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4334 TCP_SKB_CB(skb)->end_seq); 4335 4336 __skb_unlink(skb, &tp->out_of_order_queue); 4337 __skb_queue_tail(&sk->sk_receive_queue, skb); 4338 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4339 if (tcp_hdr(skb)->fin) 4340 tcp_fin(skb, sk, tcp_hdr(skb)); 4341 } 4342 } 4343 4344 static int tcp_prune_ofo_queue(struct sock *sk); 4345 static int tcp_prune_queue(struct sock *sk); 4346 4347 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4348 { 4349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4350 !sk_rmem_schedule(sk, size)) { 4351 4352 if (tcp_prune_queue(sk) < 0) 4353 return -1; 4354 4355 if (!sk_rmem_schedule(sk, size)) { 4356 if (!tcp_prune_ofo_queue(sk)) 4357 return -1; 4358 4359 if (!sk_rmem_schedule(sk, size)) 4360 return -1; 4361 } 4362 } 4363 return 0; 4364 } 4365 4366 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4367 { 4368 struct tcphdr *th = tcp_hdr(skb); 4369 struct tcp_sock *tp = tcp_sk(sk); 4370 int eaten = -1; 4371 4372 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4373 goto drop; 4374 4375 skb_dst_drop(skb); 4376 __skb_pull(skb, th->doff * 4); 4377 4378 TCP_ECN_accept_cwr(tp, skb); 4379 4380 tp->rx_opt.dsack = 0; 4381 4382 /* Queue data for delivery to the user. 4383 * Packets in sequence go to the receive queue. 4384 * Out of sequence packets to the out_of_order_queue. 4385 */ 4386 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4387 if (tcp_receive_window(tp) == 0) 4388 goto out_of_window; 4389 4390 /* Ok. In sequence. In window. */ 4391 if (tp->ucopy.task == current && 4392 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4393 sock_owned_by_user(sk) && !tp->urg_data) { 4394 int chunk = min_t(unsigned int, skb->len, 4395 tp->ucopy.len); 4396 4397 __set_current_state(TASK_RUNNING); 4398 4399 local_bh_enable(); 4400 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4401 tp->ucopy.len -= chunk; 4402 tp->copied_seq += chunk; 4403 eaten = (chunk == skb->len); 4404 tcp_rcv_space_adjust(sk); 4405 } 4406 local_bh_disable(); 4407 } 4408 4409 if (eaten <= 0) { 4410 queue_and_out: 4411 if (eaten < 0 && 4412 tcp_try_rmem_schedule(sk, skb->truesize)) 4413 goto drop; 4414 4415 skb_set_owner_r(skb, sk); 4416 __skb_queue_tail(&sk->sk_receive_queue, skb); 4417 } 4418 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4419 if (skb->len) 4420 tcp_event_data_recv(sk, skb); 4421 if (th->fin) 4422 tcp_fin(skb, sk, th); 4423 4424 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4425 tcp_ofo_queue(sk); 4426 4427 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4428 * gap in queue is filled. 4429 */ 4430 if (skb_queue_empty(&tp->out_of_order_queue)) 4431 inet_csk(sk)->icsk_ack.pingpong = 0; 4432 } 4433 4434 if (tp->rx_opt.num_sacks) 4435 tcp_sack_remove(tp); 4436 4437 tcp_fast_path_check(sk); 4438 4439 if (eaten > 0) 4440 __kfree_skb(skb); 4441 else if (!sock_flag(sk, SOCK_DEAD)) 4442 sk->sk_data_ready(sk, 0); 4443 return; 4444 } 4445 4446 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4447 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4448 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4449 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4450 4451 out_of_window: 4452 tcp_enter_quickack_mode(sk); 4453 inet_csk_schedule_ack(sk); 4454 drop: 4455 __kfree_skb(skb); 4456 return; 4457 } 4458 4459 /* Out of window. F.e. zero window probe. */ 4460 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4461 goto out_of_window; 4462 4463 tcp_enter_quickack_mode(sk); 4464 4465 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4466 /* Partial packet, seq < rcv_next < end_seq */ 4467 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4468 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4469 TCP_SKB_CB(skb)->end_seq); 4470 4471 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4472 4473 /* If window is closed, drop tail of packet. But after 4474 * remembering D-SACK for its head made in previous line. 4475 */ 4476 if (!tcp_receive_window(tp)) 4477 goto out_of_window; 4478 goto queue_and_out; 4479 } 4480 4481 TCP_ECN_check_ce(tp, skb); 4482 4483 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4484 goto drop; 4485 4486 /* Disable header prediction. */ 4487 tp->pred_flags = 0; 4488 inet_csk_schedule_ack(sk); 4489 4490 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4491 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4492 4493 skb_set_owner_r(skb, sk); 4494 4495 if (!skb_peek(&tp->out_of_order_queue)) { 4496 /* Initial out of order segment, build 1 SACK. */ 4497 if (tcp_is_sack(tp)) { 4498 tp->rx_opt.num_sacks = 1; 4499 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4500 tp->selective_acks[0].end_seq = 4501 TCP_SKB_CB(skb)->end_seq; 4502 } 4503 __skb_queue_head(&tp->out_of_order_queue, skb); 4504 } else { 4505 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4506 u32 seq = TCP_SKB_CB(skb)->seq; 4507 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4508 4509 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4510 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4511 4512 if (!tp->rx_opt.num_sacks || 4513 tp->selective_acks[0].end_seq != seq) 4514 goto add_sack; 4515 4516 /* Common case: data arrive in order after hole. */ 4517 tp->selective_acks[0].end_seq = end_seq; 4518 return; 4519 } 4520 4521 /* Find place to insert this segment. */ 4522 while (1) { 4523 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4524 break; 4525 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4526 skb1 = NULL; 4527 break; 4528 } 4529 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4530 } 4531 4532 /* Do skb overlap to previous one? */ 4533 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4534 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4535 /* All the bits are present. Drop. */ 4536 __kfree_skb(skb); 4537 tcp_dsack_set(sk, seq, end_seq); 4538 goto add_sack; 4539 } 4540 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4541 /* Partial overlap. */ 4542 tcp_dsack_set(sk, seq, 4543 TCP_SKB_CB(skb1)->end_seq); 4544 } else { 4545 if (skb_queue_is_first(&tp->out_of_order_queue, 4546 skb1)) 4547 skb1 = NULL; 4548 else 4549 skb1 = skb_queue_prev( 4550 &tp->out_of_order_queue, 4551 skb1); 4552 } 4553 } 4554 if (!skb1) 4555 __skb_queue_head(&tp->out_of_order_queue, skb); 4556 else 4557 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4558 4559 /* And clean segments covered by new one as whole. */ 4560 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4561 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4562 4563 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4564 break; 4565 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4566 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4567 end_seq); 4568 break; 4569 } 4570 __skb_unlink(skb1, &tp->out_of_order_queue); 4571 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4572 TCP_SKB_CB(skb1)->end_seq); 4573 __kfree_skb(skb1); 4574 } 4575 4576 add_sack: 4577 if (tcp_is_sack(tp)) 4578 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4579 } 4580 } 4581 4582 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4583 struct sk_buff_head *list) 4584 { 4585 struct sk_buff *next = NULL; 4586 4587 if (!skb_queue_is_last(list, skb)) 4588 next = skb_queue_next(list, skb); 4589 4590 __skb_unlink(skb, list); 4591 __kfree_skb(skb); 4592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4593 4594 return next; 4595 } 4596 4597 /* Collapse contiguous sequence of skbs head..tail with 4598 * sequence numbers start..end. 4599 * 4600 * If tail is NULL, this means until the end of the list. 4601 * 4602 * Segments with FIN/SYN are not collapsed (only because this 4603 * simplifies code) 4604 */ 4605 static void 4606 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4607 struct sk_buff *head, struct sk_buff *tail, 4608 u32 start, u32 end) 4609 { 4610 struct sk_buff *skb, *n; 4611 bool end_of_skbs; 4612 4613 /* First, check that queue is collapsible and find 4614 * the point where collapsing can be useful. */ 4615 skb = head; 4616 restart: 4617 end_of_skbs = true; 4618 skb_queue_walk_from_safe(list, skb, n) { 4619 if (skb == tail) 4620 break; 4621 /* No new bits? It is possible on ofo queue. */ 4622 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4623 skb = tcp_collapse_one(sk, skb, list); 4624 if (!skb) 4625 break; 4626 goto restart; 4627 } 4628 4629 /* The first skb to collapse is: 4630 * - not SYN/FIN and 4631 * - bloated or contains data before "start" or 4632 * overlaps to the next one. 4633 */ 4634 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4635 (tcp_win_from_space(skb->truesize) > skb->len || 4636 before(TCP_SKB_CB(skb)->seq, start))) { 4637 end_of_skbs = false; 4638 break; 4639 } 4640 4641 if (!skb_queue_is_last(list, skb)) { 4642 struct sk_buff *next = skb_queue_next(list, skb); 4643 if (next != tail && 4644 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4645 end_of_skbs = false; 4646 break; 4647 } 4648 } 4649 4650 /* Decided to skip this, advance start seq. */ 4651 start = TCP_SKB_CB(skb)->end_seq; 4652 } 4653 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4654 return; 4655 4656 while (before(start, end)) { 4657 struct sk_buff *nskb; 4658 unsigned int header = skb_headroom(skb); 4659 int copy = SKB_MAX_ORDER(header, 0); 4660 4661 /* Too big header? This can happen with IPv6. */ 4662 if (copy < 0) 4663 return; 4664 if (end - start < copy) 4665 copy = end - start; 4666 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4667 if (!nskb) 4668 return; 4669 4670 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4671 skb_set_network_header(nskb, (skb_network_header(skb) - 4672 skb->head)); 4673 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4674 skb->head)); 4675 skb_reserve(nskb, header); 4676 memcpy(nskb->head, skb->head, header); 4677 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4678 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4679 __skb_queue_before(list, skb, nskb); 4680 skb_set_owner_r(nskb, sk); 4681 4682 /* Copy data, releasing collapsed skbs. */ 4683 while (copy > 0) { 4684 int offset = start - TCP_SKB_CB(skb)->seq; 4685 int size = TCP_SKB_CB(skb)->end_seq - start; 4686 4687 BUG_ON(offset < 0); 4688 if (size > 0) { 4689 size = min(copy, size); 4690 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4691 BUG(); 4692 TCP_SKB_CB(nskb)->end_seq += size; 4693 copy -= size; 4694 start += size; 4695 } 4696 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4697 skb = tcp_collapse_one(sk, skb, list); 4698 if (!skb || 4699 skb == tail || 4700 tcp_hdr(skb)->syn || 4701 tcp_hdr(skb)->fin) 4702 return; 4703 } 4704 } 4705 } 4706 } 4707 4708 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4709 * and tcp_collapse() them until all the queue is collapsed. 4710 */ 4711 static void tcp_collapse_ofo_queue(struct sock *sk) 4712 { 4713 struct tcp_sock *tp = tcp_sk(sk); 4714 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4715 struct sk_buff *head; 4716 u32 start, end; 4717 4718 if (skb == NULL) 4719 return; 4720 4721 start = TCP_SKB_CB(skb)->seq; 4722 end = TCP_SKB_CB(skb)->end_seq; 4723 head = skb; 4724 4725 for (;;) { 4726 struct sk_buff *next = NULL; 4727 4728 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4729 next = skb_queue_next(&tp->out_of_order_queue, skb); 4730 skb = next; 4731 4732 /* Segment is terminated when we see gap or when 4733 * we are at the end of all the queue. */ 4734 if (!skb || 4735 after(TCP_SKB_CB(skb)->seq, end) || 4736 before(TCP_SKB_CB(skb)->end_seq, start)) { 4737 tcp_collapse(sk, &tp->out_of_order_queue, 4738 head, skb, start, end); 4739 head = skb; 4740 if (!skb) 4741 break; 4742 /* Start new segment */ 4743 start = TCP_SKB_CB(skb)->seq; 4744 end = TCP_SKB_CB(skb)->end_seq; 4745 } else { 4746 if (before(TCP_SKB_CB(skb)->seq, start)) 4747 start = TCP_SKB_CB(skb)->seq; 4748 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4749 end = TCP_SKB_CB(skb)->end_seq; 4750 } 4751 } 4752 } 4753 4754 /* 4755 * Purge the out-of-order queue. 4756 * Return true if queue was pruned. 4757 */ 4758 static int tcp_prune_ofo_queue(struct sock *sk) 4759 { 4760 struct tcp_sock *tp = tcp_sk(sk); 4761 int res = 0; 4762 4763 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4764 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4765 __skb_queue_purge(&tp->out_of_order_queue); 4766 4767 /* Reset SACK state. A conforming SACK implementation will 4768 * do the same at a timeout based retransmit. When a connection 4769 * is in a sad state like this, we care only about integrity 4770 * of the connection not performance. 4771 */ 4772 if (tp->rx_opt.sack_ok) 4773 tcp_sack_reset(&tp->rx_opt); 4774 sk_mem_reclaim(sk); 4775 res = 1; 4776 } 4777 return res; 4778 } 4779 4780 /* Reduce allocated memory if we can, trying to get 4781 * the socket within its memory limits again. 4782 * 4783 * Return less than zero if we should start dropping frames 4784 * until the socket owning process reads some of the data 4785 * to stabilize the situation. 4786 */ 4787 static int tcp_prune_queue(struct sock *sk) 4788 { 4789 struct tcp_sock *tp = tcp_sk(sk); 4790 4791 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4792 4793 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4794 4795 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4796 tcp_clamp_window(sk); 4797 else if (tcp_memory_pressure) 4798 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4799 4800 tcp_collapse_ofo_queue(sk); 4801 if (!skb_queue_empty(&sk->sk_receive_queue)) 4802 tcp_collapse(sk, &sk->sk_receive_queue, 4803 skb_peek(&sk->sk_receive_queue), 4804 NULL, 4805 tp->copied_seq, tp->rcv_nxt); 4806 sk_mem_reclaim(sk); 4807 4808 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4809 return 0; 4810 4811 /* Collapsing did not help, destructive actions follow. 4812 * This must not ever occur. */ 4813 4814 tcp_prune_ofo_queue(sk); 4815 4816 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4817 return 0; 4818 4819 /* If we are really being abused, tell the caller to silently 4820 * drop receive data on the floor. It will get retransmitted 4821 * and hopefully then we'll have sufficient space. 4822 */ 4823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4824 4825 /* Massive buffer overcommit. */ 4826 tp->pred_flags = 0; 4827 return -1; 4828 } 4829 4830 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4831 * As additional protections, we do not touch cwnd in retransmission phases, 4832 * and if application hit its sndbuf limit recently. 4833 */ 4834 void tcp_cwnd_application_limited(struct sock *sk) 4835 { 4836 struct tcp_sock *tp = tcp_sk(sk); 4837 4838 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4839 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4840 /* Limited by application or receiver window. */ 4841 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4842 u32 win_used = max(tp->snd_cwnd_used, init_win); 4843 if (win_used < tp->snd_cwnd) { 4844 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4845 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4846 } 4847 tp->snd_cwnd_used = 0; 4848 } 4849 tp->snd_cwnd_stamp = tcp_time_stamp; 4850 } 4851 4852 static int tcp_should_expand_sndbuf(struct sock *sk) 4853 { 4854 struct tcp_sock *tp = tcp_sk(sk); 4855 4856 /* If the user specified a specific send buffer setting, do 4857 * not modify it. 4858 */ 4859 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4860 return 0; 4861 4862 /* If we are under global TCP memory pressure, do not expand. */ 4863 if (tcp_memory_pressure) 4864 return 0; 4865 4866 /* If we are under soft global TCP memory pressure, do not expand. */ 4867 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4868 return 0; 4869 4870 /* If we filled the congestion window, do not expand. */ 4871 if (tp->packets_out >= tp->snd_cwnd) 4872 return 0; 4873 4874 return 1; 4875 } 4876 4877 /* When incoming ACK allowed to free some skb from write_queue, 4878 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4879 * on the exit from tcp input handler. 4880 * 4881 * PROBLEM: sndbuf expansion does not work well with largesend. 4882 */ 4883 static void tcp_new_space(struct sock *sk) 4884 { 4885 struct tcp_sock *tp = tcp_sk(sk); 4886 4887 if (tcp_should_expand_sndbuf(sk)) { 4888 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4889 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4890 int demanded = max_t(unsigned int, tp->snd_cwnd, 4891 tp->reordering + 1); 4892 sndmem *= 2 * demanded; 4893 if (sndmem > sk->sk_sndbuf) 4894 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4895 tp->snd_cwnd_stamp = tcp_time_stamp; 4896 } 4897 4898 sk->sk_write_space(sk); 4899 } 4900 4901 static void tcp_check_space(struct sock *sk) 4902 { 4903 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4904 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4905 if (sk->sk_socket && 4906 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4907 tcp_new_space(sk); 4908 } 4909 } 4910 4911 static inline void tcp_data_snd_check(struct sock *sk) 4912 { 4913 tcp_push_pending_frames(sk); 4914 tcp_check_space(sk); 4915 } 4916 4917 /* 4918 * Check if sending an ack is needed. 4919 */ 4920 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4921 { 4922 struct tcp_sock *tp = tcp_sk(sk); 4923 4924 /* More than one full frame received... */ 4925 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4926 /* ... and right edge of window advances far enough. 4927 * (tcp_recvmsg() will send ACK otherwise). Or... 4928 */ 4929 __tcp_select_window(sk) >= tp->rcv_wnd) || 4930 /* We ACK each frame or... */ 4931 tcp_in_quickack_mode(sk) || 4932 /* We have out of order data. */ 4933 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4934 /* Then ack it now */ 4935 tcp_send_ack(sk); 4936 } else { 4937 /* Else, send delayed ack. */ 4938 tcp_send_delayed_ack(sk); 4939 } 4940 } 4941 4942 static inline void tcp_ack_snd_check(struct sock *sk) 4943 { 4944 if (!inet_csk_ack_scheduled(sk)) { 4945 /* We sent a data segment already. */ 4946 return; 4947 } 4948 __tcp_ack_snd_check(sk, 1); 4949 } 4950 4951 /* 4952 * This routine is only called when we have urgent data 4953 * signaled. Its the 'slow' part of tcp_urg. It could be 4954 * moved inline now as tcp_urg is only called from one 4955 * place. We handle URGent data wrong. We have to - as 4956 * BSD still doesn't use the correction from RFC961. 4957 * For 1003.1g we should support a new option TCP_STDURG to permit 4958 * either form (or just set the sysctl tcp_stdurg). 4959 */ 4960 4961 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4962 { 4963 struct tcp_sock *tp = tcp_sk(sk); 4964 u32 ptr = ntohs(th->urg_ptr); 4965 4966 if (ptr && !sysctl_tcp_stdurg) 4967 ptr--; 4968 ptr += ntohl(th->seq); 4969 4970 /* Ignore urgent data that we've already seen and read. */ 4971 if (after(tp->copied_seq, ptr)) 4972 return; 4973 4974 /* Do not replay urg ptr. 4975 * 4976 * NOTE: interesting situation not covered by specs. 4977 * Misbehaving sender may send urg ptr, pointing to segment, 4978 * which we already have in ofo queue. We are not able to fetch 4979 * such data and will stay in TCP_URG_NOTYET until will be eaten 4980 * by recvmsg(). Seems, we are not obliged to handle such wicked 4981 * situations. But it is worth to think about possibility of some 4982 * DoSes using some hypothetical application level deadlock. 4983 */ 4984 if (before(ptr, tp->rcv_nxt)) 4985 return; 4986 4987 /* Do we already have a newer (or duplicate) urgent pointer? */ 4988 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4989 return; 4990 4991 /* Tell the world about our new urgent pointer. */ 4992 sk_send_sigurg(sk); 4993 4994 /* We may be adding urgent data when the last byte read was 4995 * urgent. To do this requires some care. We cannot just ignore 4996 * tp->copied_seq since we would read the last urgent byte again 4997 * as data, nor can we alter copied_seq until this data arrives 4998 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4999 * 5000 * NOTE. Double Dutch. Rendering to plain English: author of comment 5001 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5002 * and expect that both A and B disappear from stream. This is _wrong_. 5003 * Though this happens in BSD with high probability, this is occasional. 5004 * Any application relying on this is buggy. Note also, that fix "works" 5005 * only in this artificial test. Insert some normal data between A and B and we will 5006 * decline of BSD again. Verdict: it is better to remove to trap 5007 * buggy users. 5008 */ 5009 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5010 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5011 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5012 tp->copied_seq++; 5013 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5014 __skb_unlink(skb, &sk->sk_receive_queue); 5015 __kfree_skb(skb); 5016 } 5017 } 5018 5019 tp->urg_data = TCP_URG_NOTYET; 5020 tp->urg_seq = ptr; 5021 5022 /* Disable header prediction. */ 5023 tp->pred_flags = 0; 5024 } 5025 5026 /* This is the 'fast' part of urgent handling. */ 5027 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 5028 { 5029 struct tcp_sock *tp = tcp_sk(sk); 5030 5031 /* Check if we get a new urgent pointer - normally not. */ 5032 if (th->urg) 5033 tcp_check_urg(sk, th); 5034 5035 /* Do we wait for any urgent data? - normally not... */ 5036 if (tp->urg_data == TCP_URG_NOTYET) { 5037 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5038 th->syn; 5039 5040 /* Is the urgent pointer pointing into this packet? */ 5041 if (ptr < skb->len) { 5042 u8 tmp; 5043 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5044 BUG(); 5045 tp->urg_data = TCP_URG_VALID | tmp; 5046 if (!sock_flag(sk, SOCK_DEAD)) 5047 sk->sk_data_ready(sk, 0); 5048 } 5049 } 5050 } 5051 5052 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5053 { 5054 struct tcp_sock *tp = tcp_sk(sk); 5055 int chunk = skb->len - hlen; 5056 int err; 5057 5058 local_bh_enable(); 5059 if (skb_csum_unnecessary(skb)) 5060 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5061 else 5062 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5063 tp->ucopy.iov); 5064 5065 if (!err) { 5066 tp->ucopy.len -= chunk; 5067 tp->copied_seq += chunk; 5068 tcp_rcv_space_adjust(sk); 5069 } 5070 5071 local_bh_disable(); 5072 return err; 5073 } 5074 5075 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5076 struct sk_buff *skb) 5077 { 5078 __sum16 result; 5079 5080 if (sock_owned_by_user(sk)) { 5081 local_bh_enable(); 5082 result = __tcp_checksum_complete(skb); 5083 local_bh_disable(); 5084 } else { 5085 result = __tcp_checksum_complete(skb); 5086 } 5087 return result; 5088 } 5089 5090 static inline int tcp_checksum_complete_user(struct sock *sk, 5091 struct sk_buff *skb) 5092 { 5093 return !skb_csum_unnecessary(skb) && 5094 __tcp_checksum_complete_user(sk, skb); 5095 } 5096 5097 #ifdef CONFIG_NET_DMA 5098 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5099 int hlen) 5100 { 5101 struct tcp_sock *tp = tcp_sk(sk); 5102 int chunk = skb->len - hlen; 5103 int dma_cookie; 5104 int copied_early = 0; 5105 5106 if (tp->ucopy.wakeup) 5107 return 0; 5108 5109 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5110 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5111 5112 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5113 5114 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5115 skb, hlen, 5116 tp->ucopy.iov, chunk, 5117 tp->ucopy.pinned_list); 5118 5119 if (dma_cookie < 0) 5120 goto out; 5121 5122 tp->ucopy.dma_cookie = dma_cookie; 5123 copied_early = 1; 5124 5125 tp->ucopy.len -= chunk; 5126 tp->copied_seq += chunk; 5127 tcp_rcv_space_adjust(sk); 5128 5129 if ((tp->ucopy.len == 0) || 5130 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5131 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5132 tp->ucopy.wakeup = 1; 5133 sk->sk_data_ready(sk, 0); 5134 } 5135 } else if (chunk > 0) { 5136 tp->ucopy.wakeup = 1; 5137 sk->sk_data_ready(sk, 0); 5138 } 5139 out: 5140 return copied_early; 5141 } 5142 #endif /* CONFIG_NET_DMA */ 5143 5144 /* Does PAWS and seqno based validation of an incoming segment, flags will 5145 * play significant role here. 5146 */ 5147 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5148 struct tcphdr *th, int syn_inerr) 5149 { 5150 u8 *hash_location; 5151 struct tcp_sock *tp = tcp_sk(sk); 5152 5153 /* RFC1323: H1. Apply PAWS check first. */ 5154 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5155 tp->rx_opt.saw_tstamp && 5156 tcp_paws_discard(sk, skb)) { 5157 if (!th->rst) { 5158 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5159 tcp_send_dupack(sk, skb); 5160 goto discard; 5161 } 5162 /* Reset is accepted even if it did not pass PAWS. */ 5163 } 5164 5165 /* Step 1: check sequence number */ 5166 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5167 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5168 * (RST) segments are validated by checking their SEQ-fields." 5169 * And page 69: "If an incoming segment is not acceptable, 5170 * an acknowledgment should be sent in reply (unless the RST 5171 * bit is set, if so drop the segment and return)". 5172 */ 5173 if (!th->rst) 5174 tcp_send_dupack(sk, skb); 5175 goto discard; 5176 } 5177 5178 /* Step 2: check RST bit */ 5179 if (th->rst) { 5180 tcp_reset(sk); 5181 goto discard; 5182 } 5183 5184 /* ts_recent update must be made after we are sure that the packet 5185 * is in window. 5186 */ 5187 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5188 5189 /* step 3: check security and precedence [ignored] */ 5190 5191 /* step 4: Check for a SYN in window. */ 5192 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5193 if (syn_inerr) 5194 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5195 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5196 tcp_reset(sk); 5197 return -1; 5198 } 5199 5200 return 1; 5201 5202 discard: 5203 __kfree_skb(skb); 5204 return 0; 5205 } 5206 5207 /* 5208 * TCP receive function for the ESTABLISHED state. 5209 * 5210 * It is split into a fast path and a slow path. The fast path is 5211 * disabled when: 5212 * - A zero window was announced from us - zero window probing 5213 * is only handled properly in the slow path. 5214 * - Out of order segments arrived. 5215 * - Urgent data is expected. 5216 * - There is no buffer space left 5217 * - Unexpected TCP flags/window values/header lengths are received 5218 * (detected by checking the TCP header against pred_flags) 5219 * - Data is sent in both directions. Fast path only supports pure senders 5220 * or pure receivers (this means either the sequence number or the ack 5221 * value must stay constant) 5222 * - Unexpected TCP option. 5223 * 5224 * When these conditions are not satisfied it drops into a standard 5225 * receive procedure patterned after RFC793 to handle all cases. 5226 * The first three cases are guaranteed by proper pred_flags setting, 5227 * the rest is checked inline. Fast processing is turned on in 5228 * tcp_data_queue when everything is OK. 5229 */ 5230 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5231 struct tcphdr *th, unsigned len) 5232 { 5233 struct tcp_sock *tp = tcp_sk(sk); 5234 int res; 5235 5236 /* 5237 * Header prediction. 5238 * The code loosely follows the one in the famous 5239 * "30 instruction TCP receive" Van Jacobson mail. 5240 * 5241 * Van's trick is to deposit buffers into socket queue 5242 * on a device interrupt, to call tcp_recv function 5243 * on the receive process context and checksum and copy 5244 * the buffer to user space. smart... 5245 * 5246 * Our current scheme is not silly either but we take the 5247 * extra cost of the net_bh soft interrupt processing... 5248 * We do checksum and copy also but from device to kernel. 5249 */ 5250 5251 tp->rx_opt.saw_tstamp = 0; 5252 5253 /* pred_flags is 0xS?10 << 16 + snd_wnd 5254 * if header_prediction is to be made 5255 * 'S' will always be tp->tcp_header_len >> 2 5256 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5257 * turn it off (when there are holes in the receive 5258 * space for instance) 5259 * PSH flag is ignored. 5260 */ 5261 5262 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5263 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5264 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5265 int tcp_header_len = tp->tcp_header_len; 5266 5267 /* Timestamp header prediction: tcp_header_len 5268 * is automatically equal to th->doff*4 due to pred_flags 5269 * match. 5270 */ 5271 5272 /* Check timestamp */ 5273 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5274 /* No? Slow path! */ 5275 if (!tcp_parse_aligned_timestamp(tp, th)) 5276 goto slow_path; 5277 5278 /* If PAWS failed, check it more carefully in slow path */ 5279 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5280 goto slow_path; 5281 5282 /* DO NOT update ts_recent here, if checksum fails 5283 * and timestamp was corrupted part, it will result 5284 * in a hung connection since we will drop all 5285 * future packets due to the PAWS test. 5286 */ 5287 } 5288 5289 if (len <= tcp_header_len) { 5290 /* Bulk data transfer: sender */ 5291 if (len == tcp_header_len) { 5292 /* Predicted packet is in window by definition. 5293 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5294 * Hence, check seq<=rcv_wup reduces to: 5295 */ 5296 if (tcp_header_len == 5297 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5298 tp->rcv_nxt == tp->rcv_wup) 5299 tcp_store_ts_recent(tp); 5300 5301 /* We know that such packets are checksummed 5302 * on entry. 5303 */ 5304 tcp_ack(sk, skb, 0); 5305 __kfree_skb(skb); 5306 tcp_data_snd_check(sk); 5307 return 0; 5308 } else { /* Header too small */ 5309 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5310 goto discard; 5311 } 5312 } else { 5313 int eaten = 0; 5314 int copied_early = 0; 5315 5316 if (tp->copied_seq == tp->rcv_nxt && 5317 len - tcp_header_len <= tp->ucopy.len) { 5318 #ifdef CONFIG_NET_DMA 5319 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5320 copied_early = 1; 5321 eaten = 1; 5322 } 5323 #endif 5324 if (tp->ucopy.task == current && 5325 sock_owned_by_user(sk) && !copied_early) { 5326 __set_current_state(TASK_RUNNING); 5327 5328 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5329 eaten = 1; 5330 } 5331 if (eaten) { 5332 /* Predicted packet is in window by definition. 5333 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5334 * Hence, check seq<=rcv_wup reduces to: 5335 */ 5336 if (tcp_header_len == 5337 (sizeof(struct tcphdr) + 5338 TCPOLEN_TSTAMP_ALIGNED) && 5339 tp->rcv_nxt == tp->rcv_wup) 5340 tcp_store_ts_recent(tp); 5341 5342 tcp_rcv_rtt_measure_ts(sk, skb); 5343 5344 __skb_pull(skb, tcp_header_len); 5345 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5347 } 5348 if (copied_early) 5349 tcp_cleanup_rbuf(sk, skb->len); 5350 } 5351 if (!eaten) { 5352 if (tcp_checksum_complete_user(sk, skb)) 5353 goto csum_error; 5354 5355 /* Predicted packet is in window by definition. 5356 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5357 * Hence, check seq<=rcv_wup reduces to: 5358 */ 5359 if (tcp_header_len == 5360 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5361 tp->rcv_nxt == tp->rcv_wup) 5362 tcp_store_ts_recent(tp); 5363 5364 tcp_rcv_rtt_measure_ts(sk, skb); 5365 5366 if ((int)skb->truesize > sk->sk_forward_alloc) 5367 goto step5; 5368 5369 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5370 5371 /* Bulk data transfer: receiver */ 5372 __skb_pull(skb, tcp_header_len); 5373 __skb_queue_tail(&sk->sk_receive_queue, skb); 5374 skb_set_owner_r(skb, sk); 5375 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5376 } 5377 5378 tcp_event_data_recv(sk, skb); 5379 5380 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5381 /* Well, only one small jumplet in fast path... */ 5382 tcp_ack(sk, skb, FLAG_DATA); 5383 tcp_data_snd_check(sk); 5384 if (!inet_csk_ack_scheduled(sk)) 5385 goto no_ack; 5386 } 5387 5388 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5389 __tcp_ack_snd_check(sk, 0); 5390 no_ack: 5391 #ifdef CONFIG_NET_DMA 5392 if (copied_early) 5393 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5394 else 5395 #endif 5396 if (eaten) 5397 __kfree_skb(skb); 5398 else 5399 sk->sk_data_ready(sk, 0); 5400 return 0; 5401 } 5402 } 5403 5404 slow_path: 5405 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5406 goto csum_error; 5407 5408 /* 5409 * Standard slow path. 5410 */ 5411 5412 res = tcp_validate_incoming(sk, skb, th, 1); 5413 if (res <= 0) 5414 return -res; 5415 5416 step5: 5417 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5418 goto discard; 5419 5420 tcp_rcv_rtt_measure_ts(sk, skb); 5421 5422 /* Process urgent data. */ 5423 tcp_urg(sk, skb, th); 5424 5425 /* step 7: process the segment text */ 5426 tcp_data_queue(sk, skb); 5427 5428 tcp_data_snd_check(sk); 5429 tcp_ack_snd_check(sk); 5430 return 0; 5431 5432 csum_error: 5433 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5434 5435 discard: 5436 __kfree_skb(skb); 5437 return 0; 5438 } 5439 EXPORT_SYMBOL(tcp_rcv_established); 5440 5441 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5442 struct tcphdr *th, unsigned len) 5443 { 5444 u8 *hash_location; 5445 struct inet_connection_sock *icsk = inet_csk(sk); 5446 struct tcp_sock *tp = tcp_sk(sk); 5447 struct tcp_cookie_values *cvp = tp->cookie_values; 5448 int saved_clamp = tp->rx_opt.mss_clamp; 5449 5450 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5451 5452 if (th->ack) { 5453 /* rfc793: 5454 * "If the state is SYN-SENT then 5455 * first check the ACK bit 5456 * If the ACK bit is set 5457 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5458 * a reset (unless the RST bit is set, if so drop 5459 * the segment and return)" 5460 * 5461 * We do not send data with SYN, so that RFC-correct 5462 * test reduces to: 5463 */ 5464 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5465 goto reset_and_undo; 5466 5467 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5468 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5469 tcp_time_stamp)) { 5470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5471 goto reset_and_undo; 5472 } 5473 5474 /* Now ACK is acceptable. 5475 * 5476 * "If the RST bit is set 5477 * If the ACK was acceptable then signal the user "error: 5478 * connection reset", drop the segment, enter CLOSED state, 5479 * delete TCB, and return." 5480 */ 5481 5482 if (th->rst) { 5483 tcp_reset(sk); 5484 goto discard; 5485 } 5486 5487 /* rfc793: 5488 * "fifth, if neither of the SYN or RST bits is set then 5489 * drop the segment and return." 5490 * 5491 * See note below! 5492 * --ANK(990513) 5493 */ 5494 if (!th->syn) 5495 goto discard_and_undo; 5496 5497 /* rfc793: 5498 * "If the SYN bit is on ... 5499 * are acceptable then ... 5500 * (our SYN has been ACKed), change the connection 5501 * state to ESTABLISHED..." 5502 */ 5503 5504 TCP_ECN_rcv_synack(tp, th); 5505 5506 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5507 tcp_ack(sk, skb, FLAG_SLOWPATH); 5508 5509 /* Ok.. it's good. Set up sequence numbers and 5510 * move to established. 5511 */ 5512 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5513 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5514 5515 /* RFC1323: The window in SYN & SYN/ACK segments is 5516 * never scaled. 5517 */ 5518 tp->snd_wnd = ntohs(th->window); 5519 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5520 5521 if (!tp->rx_opt.wscale_ok) { 5522 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5523 tp->window_clamp = min(tp->window_clamp, 65535U); 5524 } 5525 5526 if (tp->rx_opt.saw_tstamp) { 5527 tp->rx_opt.tstamp_ok = 1; 5528 tp->tcp_header_len = 5529 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5530 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5531 tcp_store_ts_recent(tp); 5532 } else { 5533 tp->tcp_header_len = sizeof(struct tcphdr); 5534 } 5535 5536 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5537 tcp_enable_fack(tp); 5538 5539 tcp_mtup_init(sk); 5540 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5541 tcp_initialize_rcv_mss(sk); 5542 5543 /* Remember, tcp_poll() does not lock socket! 5544 * Change state from SYN-SENT only after copied_seq 5545 * is initialized. */ 5546 tp->copied_seq = tp->rcv_nxt; 5547 5548 if (cvp != NULL && 5549 cvp->cookie_pair_size > 0 && 5550 tp->rx_opt.cookie_plus > 0) { 5551 int cookie_size = tp->rx_opt.cookie_plus 5552 - TCPOLEN_COOKIE_BASE; 5553 int cookie_pair_size = cookie_size 5554 + cvp->cookie_desired; 5555 5556 /* A cookie extension option was sent and returned. 5557 * Note that each incoming SYNACK replaces the 5558 * Responder cookie. The initial exchange is most 5559 * fragile, as protection against spoofing relies 5560 * entirely upon the sequence and timestamp (above). 5561 * This replacement strategy allows the correct pair to 5562 * pass through, while any others will be filtered via 5563 * Responder verification later. 5564 */ 5565 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5566 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5567 hash_location, cookie_size); 5568 cvp->cookie_pair_size = cookie_pair_size; 5569 } 5570 } 5571 5572 smp_mb(); 5573 tcp_set_state(sk, TCP_ESTABLISHED); 5574 5575 security_inet_conn_established(sk, skb); 5576 5577 /* Make sure socket is routed, for correct metrics. */ 5578 icsk->icsk_af_ops->rebuild_header(sk); 5579 5580 tcp_init_metrics(sk); 5581 5582 tcp_init_congestion_control(sk); 5583 5584 /* Prevent spurious tcp_cwnd_restart() on first data 5585 * packet. 5586 */ 5587 tp->lsndtime = tcp_time_stamp; 5588 5589 tcp_init_buffer_space(sk); 5590 5591 if (sock_flag(sk, SOCK_KEEPOPEN)) 5592 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5593 5594 if (!tp->rx_opt.snd_wscale) 5595 __tcp_fast_path_on(tp, tp->snd_wnd); 5596 else 5597 tp->pred_flags = 0; 5598 5599 if (!sock_flag(sk, SOCK_DEAD)) { 5600 sk->sk_state_change(sk); 5601 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5602 } 5603 5604 if (sk->sk_write_pending || 5605 icsk->icsk_accept_queue.rskq_defer_accept || 5606 icsk->icsk_ack.pingpong) { 5607 /* Save one ACK. Data will be ready after 5608 * several ticks, if write_pending is set. 5609 * 5610 * It may be deleted, but with this feature tcpdumps 5611 * look so _wonderfully_ clever, that I was not able 5612 * to stand against the temptation 8) --ANK 5613 */ 5614 inet_csk_schedule_ack(sk); 5615 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5616 icsk->icsk_ack.ato = TCP_ATO_MIN; 5617 tcp_incr_quickack(sk); 5618 tcp_enter_quickack_mode(sk); 5619 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5620 TCP_DELACK_MAX, TCP_RTO_MAX); 5621 5622 discard: 5623 __kfree_skb(skb); 5624 return 0; 5625 } else { 5626 tcp_send_ack(sk); 5627 } 5628 return -1; 5629 } 5630 5631 /* No ACK in the segment */ 5632 5633 if (th->rst) { 5634 /* rfc793: 5635 * "If the RST bit is set 5636 * 5637 * Otherwise (no ACK) drop the segment and return." 5638 */ 5639 5640 goto discard_and_undo; 5641 } 5642 5643 /* PAWS check. */ 5644 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5645 tcp_paws_reject(&tp->rx_opt, 0)) 5646 goto discard_and_undo; 5647 5648 if (th->syn) { 5649 /* We see SYN without ACK. It is attempt of 5650 * simultaneous connect with crossed SYNs. 5651 * Particularly, it can be connect to self. 5652 */ 5653 tcp_set_state(sk, TCP_SYN_RECV); 5654 5655 if (tp->rx_opt.saw_tstamp) { 5656 tp->rx_opt.tstamp_ok = 1; 5657 tcp_store_ts_recent(tp); 5658 tp->tcp_header_len = 5659 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5660 } else { 5661 tp->tcp_header_len = sizeof(struct tcphdr); 5662 } 5663 5664 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5665 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5666 5667 /* RFC1323: The window in SYN & SYN/ACK segments is 5668 * never scaled. 5669 */ 5670 tp->snd_wnd = ntohs(th->window); 5671 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5672 tp->max_window = tp->snd_wnd; 5673 5674 TCP_ECN_rcv_syn(tp, th); 5675 5676 tcp_mtup_init(sk); 5677 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5678 tcp_initialize_rcv_mss(sk); 5679 5680 tcp_send_synack(sk); 5681 #if 0 5682 /* Note, we could accept data and URG from this segment. 5683 * There are no obstacles to make this. 5684 * 5685 * However, if we ignore data in ACKless segments sometimes, 5686 * we have no reasons to accept it sometimes. 5687 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5688 * is not flawless. So, discard packet for sanity. 5689 * Uncomment this return to process the data. 5690 */ 5691 return -1; 5692 #else 5693 goto discard; 5694 #endif 5695 } 5696 /* "fifth, if neither of the SYN or RST bits is set then 5697 * drop the segment and return." 5698 */ 5699 5700 discard_and_undo: 5701 tcp_clear_options(&tp->rx_opt); 5702 tp->rx_opt.mss_clamp = saved_clamp; 5703 goto discard; 5704 5705 reset_and_undo: 5706 tcp_clear_options(&tp->rx_opt); 5707 tp->rx_opt.mss_clamp = saved_clamp; 5708 return 1; 5709 } 5710 5711 /* 5712 * This function implements the receiving procedure of RFC 793 for 5713 * all states except ESTABLISHED and TIME_WAIT. 5714 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5715 * address independent. 5716 */ 5717 5718 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5719 struct tcphdr *th, unsigned len) 5720 { 5721 struct tcp_sock *tp = tcp_sk(sk); 5722 struct inet_connection_sock *icsk = inet_csk(sk); 5723 int queued = 0; 5724 int res; 5725 5726 tp->rx_opt.saw_tstamp = 0; 5727 5728 switch (sk->sk_state) { 5729 case TCP_CLOSE: 5730 goto discard; 5731 5732 case TCP_LISTEN: 5733 if (th->ack) 5734 return 1; 5735 5736 if (th->rst) 5737 goto discard; 5738 5739 if (th->syn) { 5740 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5741 return 1; 5742 5743 /* Now we have several options: In theory there is 5744 * nothing else in the frame. KA9Q has an option to 5745 * send data with the syn, BSD accepts data with the 5746 * syn up to the [to be] advertised window and 5747 * Solaris 2.1 gives you a protocol error. For now 5748 * we just ignore it, that fits the spec precisely 5749 * and avoids incompatibilities. It would be nice in 5750 * future to drop through and process the data. 5751 * 5752 * Now that TTCP is starting to be used we ought to 5753 * queue this data. 5754 * But, this leaves one open to an easy denial of 5755 * service attack, and SYN cookies can't defend 5756 * against this problem. So, we drop the data 5757 * in the interest of security over speed unless 5758 * it's still in use. 5759 */ 5760 kfree_skb(skb); 5761 return 0; 5762 } 5763 goto discard; 5764 5765 case TCP_SYN_SENT: 5766 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5767 if (queued >= 0) 5768 return queued; 5769 5770 /* Do step6 onward by hand. */ 5771 tcp_urg(sk, skb, th); 5772 __kfree_skb(skb); 5773 tcp_data_snd_check(sk); 5774 return 0; 5775 } 5776 5777 res = tcp_validate_incoming(sk, skb, th, 0); 5778 if (res <= 0) 5779 return -res; 5780 5781 /* step 5: check the ACK field */ 5782 if (th->ack) { 5783 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5784 5785 switch (sk->sk_state) { 5786 case TCP_SYN_RECV: 5787 if (acceptable) { 5788 tp->copied_seq = tp->rcv_nxt; 5789 smp_mb(); 5790 tcp_set_state(sk, TCP_ESTABLISHED); 5791 sk->sk_state_change(sk); 5792 5793 /* Note, that this wakeup is only for marginal 5794 * crossed SYN case. Passively open sockets 5795 * are not waked up, because sk->sk_sleep == 5796 * NULL and sk->sk_socket == NULL. 5797 */ 5798 if (sk->sk_socket) 5799 sk_wake_async(sk, 5800 SOCK_WAKE_IO, POLL_OUT); 5801 5802 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5803 tp->snd_wnd = ntohs(th->window) << 5804 tp->rx_opt.snd_wscale; 5805 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5806 5807 /* tcp_ack considers this ACK as duplicate 5808 * and does not calculate rtt. 5809 * Force it here. 5810 */ 5811 tcp_ack_update_rtt(sk, 0, 0); 5812 5813 if (tp->rx_opt.tstamp_ok) 5814 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5815 5816 /* Make sure socket is routed, for 5817 * correct metrics. 5818 */ 5819 icsk->icsk_af_ops->rebuild_header(sk); 5820 5821 tcp_init_metrics(sk); 5822 5823 tcp_init_congestion_control(sk); 5824 5825 /* Prevent spurious tcp_cwnd_restart() on 5826 * first data packet. 5827 */ 5828 tp->lsndtime = tcp_time_stamp; 5829 5830 tcp_mtup_init(sk); 5831 tcp_initialize_rcv_mss(sk); 5832 tcp_init_buffer_space(sk); 5833 tcp_fast_path_on(tp); 5834 } else { 5835 return 1; 5836 } 5837 break; 5838 5839 case TCP_FIN_WAIT1: 5840 if (tp->snd_una == tp->write_seq) { 5841 tcp_set_state(sk, TCP_FIN_WAIT2); 5842 sk->sk_shutdown |= SEND_SHUTDOWN; 5843 dst_confirm(__sk_dst_get(sk)); 5844 5845 if (!sock_flag(sk, SOCK_DEAD)) 5846 /* Wake up lingering close() */ 5847 sk->sk_state_change(sk); 5848 else { 5849 int tmo; 5850 5851 if (tp->linger2 < 0 || 5852 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5853 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5854 tcp_done(sk); 5855 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5856 return 1; 5857 } 5858 5859 tmo = tcp_fin_time(sk); 5860 if (tmo > TCP_TIMEWAIT_LEN) { 5861 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5862 } else if (th->fin || sock_owned_by_user(sk)) { 5863 /* Bad case. We could lose such FIN otherwise. 5864 * It is not a big problem, but it looks confusing 5865 * and not so rare event. We still can lose it now, 5866 * if it spins in bh_lock_sock(), but it is really 5867 * marginal case. 5868 */ 5869 inet_csk_reset_keepalive_timer(sk, tmo); 5870 } else { 5871 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5872 goto discard; 5873 } 5874 } 5875 } 5876 break; 5877 5878 case TCP_CLOSING: 5879 if (tp->snd_una == tp->write_seq) { 5880 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5881 goto discard; 5882 } 5883 break; 5884 5885 case TCP_LAST_ACK: 5886 if (tp->snd_una == tp->write_seq) { 5887 tcp_update_metrics(sk); 5888 tcp_done(sk); 5889 goto discard; 5890 } 5891 break; 5892 } 5893 } else 5894 goto discard; 5895 5896 /* step 6: check the URG bit */ 5897 tcp_urg(sk, skb, th); 5898 5899 /* step 7: process the segment text */ 5900 switch (sk->sk_state) { 5901 case TCP_CLOSE_WAIT: 5902 case TCP_CLOSING: 5903 case TCP_LAST_ACK: 5904 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5905 break; 5906 case TCP_FIN_WAIT1: 5907 case TCP_FIN_WAIT2: 5908 /* RFC 793 says to queue data in these states, 5909 * RFC 1122 says we MUST send a reset. 5910 * BSD 4.4 also does reset. 5911 */ 5912 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5913 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5914 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5915 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5916 tcp_reset(sk); 5917 return 1; 5918 } 5919 } 5920 /* Fall through */ 5921 case TCP_ESTABLISHED: 5922 tcp_data_queue(sk, skb); 5923 queued = 1; 5924 break; 5925 } 5926 5927 /* tcp_data could move socket to TIME-WAIT */ 5928 if (sk->sk_state != TCP_CLOSE) { 5929 tcp_data_snd_check(sk); 5930 tcp_ack_snd_check(sk); 5931 } 5932 5933 if (!queued) { 5934 discard: 5935 __kfree_skb(skb); 5936 } 5937 return 0; 5938 } 5939 EXPORT_SYMBOL(tcp_rcv_state_process); 5940