xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 565d76cb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 	if (tp->ecn_flags & TCP_ECN_OK) {
223 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 		/* Funny extension: if ECT is not set on a segment,
226 		 * it is surely retransmit. It is not in ECN RFC,
227 		 * but Linux follows this rule. */
228 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 			tcp_enter_quickack_mode((struct sock *)tp);
230 	}
231 }
232 
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 		tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244 
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 		return 1;
249 	return 0;
250 }
251 
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256 
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 		     sizeof(struct sk_buff);
261 
262 	if (sk->sk_sndbuf < 3 * sndmem) {
263 		sk->sk_sndbuf = 3 * sndmem;
264 		if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 			sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 	}
267 }
268 
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293 
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	/* Optimize this! */
299 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301 
302 	while (tp->rcv_ssthresh <= window) {
303 		if (truesize <= skb->len)
304 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305 
306 		truesize >>= 1;
307 		window >>= 1;
308 	}
309 	return 0;
310 }
311 
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314 	struct tcp_sock *tp = tcp_sk(sk);
315 
316 	/* Check #1 */
317 	if (tp->rcv_ssthresh < tp->window_clamp &&
318 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 	    !tcp_memory_pressure) {
320 		int incr;
321 
322 		/* Check #2. Increase window, if skb with such overhead
323 		 * will fit to rcvbuf in future.
324 		 */
325 		if (tcp_win_from_space(skb->truesize) <= skb->len)
326 			incr = 2 * tp->advmss;
327 		else
328 			incr = __tcp_grow_window(sk, skb);
329 
330 		if (incr) {
331 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 					       tp->window_clamp);
333 			inet_csk(sk)->icsk_ack.quick |= 1;
334 		}
335 	}
336 }
337 
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339 
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342 	struct tcp_sock *tp = tcp_sk(sk);
343 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344 
345 	/* Try to select rcvbuf so that 4 mss-sized segments
346 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 	 */
349 	while (tcp_win_from_space(rcvmem) < tp->advmss)
350 		rcvmem += 128;
351 	if (sk->sk_rcvbuf < 4 * rcvmem)
352 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354 
355 /* 4. Try to fixup all. It is made immediately after connection enters
356  *    established state.
357  */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360 	struct tcp_sock *tp = tcp_sk(sk);
361 	int maxwin;
362 
363 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 		tcp_fixup_rcvbuf(sk);
365 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 		tcp_fixup_sndbuf(sk);
367 
368 	tp->rcvq_space.space = tp->rcv_wnd;
369 
370 	maxwin = tcp_full_space(sk);
371 
372 	if (tp->window_clamp >= maxwin) {
373 		tp->window_clamp = maxwin;
374 
375 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 			tp->window_clamp = max(maxwin -
377 					       (maxwin >> sysctl_tcp_app_win),
378 					       4 * tp->advmss);
379 	}
380 
381 	/* Force reservation of one segment. */
382 	if (sysctl_tcp_app_win &&
383 	    tp->window_clamp > 2 * tp->advmss &&
384 	    tp->window_clamp + tp->advmss > maxwin)
385 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386 
387 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 	tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390 
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	struct inet_connection_sock *icsk = inet_csk(sk);
396 
397 	icsk->icsk_ack.quick = 0;
398 
399 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 	    !tcp_memory_pressure &&
402 	    atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 				    sysctl_tcp_rmem[2]);
405 	}
406 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409 
410 /* Initialize RCV_MSS value.
411  * RCV_MSS is an our guess about MSS used by the peer.
412  * We haven't any direct information about the MSS.
413  * It's better to underestimate the RCV_MSS rather than overestimate.
414  * Overestimations make us ACKing less frequently than needed.
415  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416  */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419 	struct tcp_sock *tp = tcp_sk(sk);
420 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421 
422 	hint = min(hint, tp->rcv_wnd / 2);
423 	hint = min(hint, TCP_MSS_DEFAULT);
424 	hint = max(hint, TCP_MIN_MSS);
425 
426 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429 
430 /* Receiver "autotuning" code.
431  *
432  * The algorithm for RTT estimation w/o timestamps is based on
433  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434  * <http://public.lanl.gov/radiant/pubs.html#DRS>
435  *
436  * More detail on this code can be found at
437  * <http://staff.psc.edu/jheffner/>,
438  * though this reference is out of date.  A new paper
439  * is pending.
440  */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443 	u32 new_sample = tp->rcv_rtt_est.rtt;
444 	long m = sample;
445 
446 	if (m == 0)
447 		m = 1;
448 
449 	if (new_sample != 0) {
450 		/* If we sample in larger samples in the non-timestamp
451 		 * case, we could grossly overestimate the RTT especially
452 		 * with chatty applications or bulk transfer apps which
453 		 * are stalled on filesystem I/O.
454 		 *
455 		 * Also, since we are only going for a minimum in the
456 		 * non-timestamp case, we do not smooth things out
457 		 * else with timestamps disabled convergence takes too
458 		 * long.
459 		 */
460 		if (!win_dep) {
461 			m -= (new_sample >> 3);
462 			new_sample += m;
463 		} else if (m < new_sample)
464 			new_sample = m << 3;
465 	} else {
466 		/* No previous measure. */
467 		new_sample = m << 3;
468 	}
469 
470 	if (tp->rcv_rtt_est.rtt != new_sample)
471 		tp->rcv_rtt_est.rtt = new_sample;
472 }
473 
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476 	if (tp->rcv_rtt_est.time == 0)
477 		goto new_measure;
478 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 		return;
480 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481 
482 new_measure:
483 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 	tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486 
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 					  const struct sk_buff *skb)
489 {
490 	struct tcp_sock *tp = tcp_sk(sk);
491 	if (tp->rx_opt.rcv_tsecr &&
492 	    (TCP_SKB_CB(skb)->end_seq -
493 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496 
497 /*
498  * This function should be called every time data is copied to user space.
499  * It calculates the appropriate TCP receive buffer space.
500  */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503 	struct tcp_sock *tp = tcp_sk(sk);
504 	int time;
505 	int space;
506 
507 	if (tp->rcvq_space.time == 0)
508 		goto new_measure;
509 
510 	time = tcp_time_stamp - tp->rcvq_space.time;
511 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512 		return;
513 
514 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515 
516 	space = max(tp->rcvq_space.space, space);
517 
518 	if (tp->rcvq_space.space != space) {
519 		int rcvmem;
520 
521 		tp->rcvq_space.space = space;
522 
523 		if (sysctl_tcp_moderate_rcvbuf &&
524 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525 			int new_clamp = space;
526 
527 			/* Receive space grows, normalize in order to
528 			 * take into account packet headers and sk_buff
529 			 * structure overhead.
530 			 */
531 			space /= tp->advmss;
532 			if (!space)
533 				space = 1;
534 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 				  16 + sizeof(struct sk_buff));
536 			while (tcp_win_from_space(rcvmem) < tp->advmss)
537 				rcvmem += 128;
538 			space *= rcvmem;
539 			space = min(space, sysctl_tcp_rmem[2]);
540 			if (space > sk->sk_rcvbuf) {
541 				sk->sk_rcvbuf = space;
542 
543 				/* Make the window clamp follow along.  */
544 				tp->window_clamp = new_clamp;
545 			}
546 		}
547 	}
548 
549 new_measure:
550 	tp->rcvq_space.seq = tp->copied_seq;
551 	tp->rcvq_space.time = tcp_time_stamp;
552 }
553 
554 /* There is something which you must keep in mind when you analyze the
555  * behavior of the tp->ato delayed ack timeout interval.  When a
556  * connection starts up, we want to ack as quickly as possible.  The
557  * problem is that "good" TCP's do slow start at the beginning of data
558  * transmission.  The means that until we send the first few ACK's the
559  * sender will sit on his end and only queue most of his data, because
560  * he can only send snd_cwnd unacked packets at any given time.  For
561  * each ACK we send, he increments snd_cwnd and transmits more of his
562  * queue.  -DaveM
563  */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	struct inet_connection_sock *icsk = inet_csk(sk);
568 	u32 now;
569 
570 	inet_csk_schedule_ack(sk);
571 
572 	tcp_measure_rcv_mss(sk, skb);
573 
574 	tcp_rcv_rtt_measure(tp);
575 
576 	now = tcp_time_stamp;
577 
578 	if (!icsk->icsk_ack.ato) {
579 		/* The _first_ data packet received, initialize
580 		 * delayed ACK engine.
581 		 */
582 		tcp_incr_quickack(sk);
583 		icsk->icsk_ack.ato = TCP_ATO_MIN;
584 	} else {
585 		int m = now - icsk->icsk_ack.lrcvtime;
586 
587 		if (m <= TCP_ATO_MIN / 2) {
588 			/* The fastest case is the first. */
589 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 		} else if (m < icsk->icsk_ack.ato) {
591 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 				icsk->icsk_ack.ato = icsk->icsk_rto;
594 		} else if (m > icsk->icsk_rto) {
595 			/* Too long gap. Apparently sender failed to
596 			 * restart window, so that we send ACKs quickly.
597 			 */
598 			tcp_incr_quickack(sk);
599 			sk_mem_reclaim(sk);
600 		}
601 	}
602 	icsk->icsk_ack.lrcvtime = now;
603 
604 	TCP_ECN_check_ce(tp, skb);
605 
606 	if (skb->len >= 128)
607 		tcp_grow_window(sk, skb);
608 }
609 
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 	struct tcp_sock *tp = tcp_sk(sk);
622 	long m = mrtt; /* RTT */
623 
624 	/*	The following amusing code comes from Jacobson's
625 	 *	article in SIGCOMM '88.  Note that rtt and mdev
626 	 *	are scaled versions of rtt and mean deviation.
627 	 *	This is designed to be as fast as possible
628 	 *	m stands for "measurement".
629 	 *
630 	 *	On a 1990 paper the rto value is changed to:
631 	 *	RTO = rtt + 4 * mdev
632 	 *
633 	 * Funny. This algorithm seems to be very broken.
634 	 * These formulae increase RTO, when it should be decreased, increase
635 	 * too slowly, when it should be increased quickly, decrease too quickly
636 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 	 * does not matter how to _calculate_ it. Seems, it was trap
638 	 * that VJ failed to avoid. 8)
639 	 */
640 	if (m == 0)
641 		m = 1;
642 	if (tp->srtt != 0) {
643 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
644 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
645 		if (m < 0) {
646 			m = -m;		/* m is now abs(error) */
647 			m -= (tp->mdev >> 2);   /* similar update on mdev */
648 			/* This is similar to one of Eifel findings.
649 			 * Eifel blocks mdev updates when rtt decreases.
650 			 * This solution is a bit different: we use finer gain
651 			 * for mdev in this case (alpha*beta).
652 			 * Like Eifel it also prevents growth of rto,
653 			 * but also it limits too fast rto decreases,
654 			 * happening in pure Eifel.
655 			 */
656 			if (m > 0)
657 				m >>= 3;
658 		} else {
659 			m -= (tp->mdev >> 2);   /* similar update on mdev */
660 		}
661 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
662 		if (tp->mdev > tp->mdev_max) {
663 			tp->mdev_max = tp->mdev;
664 			if (tp->mdev_max > tp->rttvar)
665 				tp->rttvar = tp->mdev_max;
666 		}
667 		if (after(tp->snd_una, tp->rtt_seq)) {
668 			if (tp->mdev_max < tp->rttvar)
669 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 			tp->rtt_seq = tp->snd_nxt;
671 			tp->mdev_max = tcp_rto_min(sk);
672 		}
673 	} else {
674 		/* no previous measure. */
675 		tp->srtt = m << 3;	/* take the measured time to be rtt */
676 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
677 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 		tp->rtt_seq = tp->snd_nxt;
679 	}
680 }
681 
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 	const struct tcp_sock *tp = tcp_sk(sk);
688 	/* Old crap is replaced with new one. 8)
689 	 *
690 	 * More seriously:
691 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 	 *    It cannot be less due to utterly erratic ACK generation made
693 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
695 	 *    is invisible. Actually, Linux-2.4 also generates erratic
696 	 *    ACKs in some circumstances.
697 	 */
698 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699 
700 	/* 2. Fixups made earlier cannot be right.
701 	 *    If we do not estimate RTO correctly without them,
702 	 *    all the algo is pure shit and should be replaced
703 	 *    with correct one. It is exactly, which we pretend to do.
704 	 */
705 
706 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 	 * guarantees that rto is higher.
708 	 */
709 	tcp_bound_rto(sk);
710 }
711 
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct dst_entry *dst = __sk_dst_get(sk);
720 
721 	if (sysctl_tcp_nometrics_save)
722 		return;
723 
724 	dst_confirm(dst);
725 
726 	if (dst && (dst->flags & DST_HOST)) {
727 		const struct inet_connection_sock *icsk = inet_csk(sk);
728 		int m;
729 		unsigned long rtt;
730 
731 		if (icsk->icsk_backoff || !tp->srtt) {
732 			/* This session failed to estimate rtt. Why?
733 			 * Probably, no packets returned in time.
734 			 * Reset our results.
735 			 */
736 			if (!(dst_metric_locked(dst, RTAX_RTT)))
737 				dst_metric_set(dst, RTAX_RTT, 0);
738 			return;
739 		}
740 
741 		rtt = dst_metric_rtt(dst, RTAX_RTT);
742 		m = rtt - tp->srtt;
743 
744 		/* If newly calculated rtt larger than stored one,
745 		 * store new one. Otherwise, use EWMA. Remember,
746 		 * rtt overestimation is always better than underestimation.
747 		 */
748 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 			if (m <= 0)
750 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 			else
752 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 		}
754 
755 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 			unsigned long var;
757 			if (m < 0)
758 				m = -m;
759 
760 			/* Scale deviation to rttvar fixed point */
761 			m >>= 1;
762 			if (m < tp->mdev)
763 				m = tp->mdev;
764 
765 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 			if (m >= var)
767 				var = m;
768 			else
769 				var -= (var - m) >> 2;
770 
771 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 		}
773 
774 		if (tcp_in_initial_slowstart(tp)) {
775 			/* Slow start still did not finish. */
776 			if (dst_metric(dst, RTAX_SSTHRESH) &&
777 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780 			if (!dst_metric_locked(dst, RTAX_CWND) &&
781 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 			   icsk->icsk_ca_state == TCP_CA_Open) {
785 			/* Cong. avoidance phase, cwnd is reliable. */
786 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 				dst_metric_set(dst, RTAX_SSTHRESH,
788 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789 			if (!dst_metric_locked(dst, RTAX_CWND))
790 				dst_metric_set(dst, RTAX_CWND,
791 					       (dst_metric(dst, RTAX_CWND) +
792 						tp->snd_cwnd) >> 1);
793 		} else {
794 			/* Else slow start did not finish, cwnd is non-sense,
795 			   ssthresh may be also invalid.
796 			 */
797 			if (!dst_metric_locked(dst, RTAX_CWND))
798 				dst_metric_set(dst, RTAX_CWND,
799 					       (dst_metric(dst, RTAX_CWND) +
800 						tp->snd_ssthresh) >> 1);
801 			if (dst_metric(dst, RTAX_SSTHRESH) &&
802 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805 		}
806 
807 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809 			    tp->reordering != sysctl_tcp_reordering)
810 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811 		}
812 	}
813 }
814 
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818 
819 	if (!cwnd)
820 		cwnd = TCP_INIT_CWND;
821 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823 
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827 	struct tcp_sock *tp = tcp_sk(sk);
828 	const struct inet_connection_sock *icsk = inet_csk(sk);
829 
830 	tp->prior_ssthresh = 0;
831 	tp->bytes_acked = 0;
832 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 		tp->undo_marker = 0;
834 		if (set_ssthresh)
835 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 		tp->snd_cwnd = min(tp->snd_cwnd,
837 				   tcp_packets_in_flight(tp) + 1U);
838 		tp->snd_cwnd_cnt = 0;
839 		tp->high_seq = tp->snd_nxt;
840 		tp->snd_cwnd_stamp = tcp_time_stamp;
841 		TCP_ECN_queue_cwr(tp);
842 
843 		tcp_set_ca_state(sk, TCP_CA_CWR);
844 	}
845 }
846 
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853 	/* RFC3517 uses different metric in lost marker => reset on change */
854 	if (tcp_is_fack(tp))
855 		tp->lost_skb_hint = NULL;
856 	tp->rx_opt.sack_ok &= ~2;
857 }
858 
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 	tp->rx_opt.sack_ok |= 4;
863 }
864 
865 /* Initialize metrics on socket. */
866 
867 static void tcp_init_metrics(struct sock *sk)
868 {
869 	struct tcp_sock *tp = tcp_sk(sk);
870 	struct dst_entry *dst = __sk_dst_get(sk);
871 
872 	if (dst == NULL)
873 		goto reset;
874 
875 	dst_confirm(dst);
876 
877 	if (dst_metric_locked(dst, RTAX_CWND))
878 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 	if (dst_metric(dst, RTAX_SSTHRESH)) {
880 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 	}
884 	if (dst_metric(dst, RTAX_REORDERING) &&
885 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886 		tcp_disable_fack(tp);
887 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
888 	}
889 
890 	if (dst_metric(dst, RTAX_RTT) == 0)
891 		goto reset;
892 
893 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894 		goto reset;
895 
896 	/* Initial rtt is determined from SYN,SYN-ACK.
897 	 * The segment is small and rtt may appear much
898 	 * less than real one. Use per-dst memory
899 	 * to make it more realistic.
900 	 *
901 	 * A bit of theory. RTT is time passed after "normal" sized packet
902 	 * is sent until it is ACKed. In normal circumstances sending small
903 	 * packets force peer to delay ACKs and calculation is correct too.
904 	 * The algorithm is adaptive and, provided we follow specs, it
905 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 	 * tricks sort of "quick acks" for time long enough to decrease RTT
907 	 * to low value, and then abruptly stops to do it and starts to delay
908 	 * ACKs, wait for troubles.
909 	 */
910 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912 		tp->rtt_seq = tp->snd_nxt;
913 	}
914 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917 	}
918 	tcp_set_rto(sk);
919 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
920 reset:
921 		/* Play conservative. If timestamps are not
922 		 * supported, TCP will fail to recalculate correct
923 		 * rtt, if initial rto is too small. FORGET ALL AND RESET!
924 		 */
925 		if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926 			tp->srtt = 0;
927 			tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928 			inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929 		}
930 	}
931 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 	tp->snd_cwnd_stamp = tcp_time_stamp;
933 }
934 
935 static void tcp_update_reordering(struct sock *sk, const int metric,
936 				  const int ts)
937 {
938 	struct tcp_sock *tp = tcp_sk(sk);
939 	if (metric > tp->reordering) {
940 		int mib_idx;
941 
942 		tp->reordering = min(TCP_MAX_REORDERING, metric);
943 
944 		/* This exciting event is worth to be remembered. 8) */
945 		if (ts)
946 			mib_idx = LINUX_MIB_TCPTSREORDER;
947 		else if (tcp_is_reno(tp))
948 			mib_idx = LINUX_MIB_TCPRENOREORDER;
949 		else if (tcp_is_fack(tp))
950 			mib_idx = LINUX_MIB_TCPFACKREORDER;
951 		else
952 			mib_idx = LINUX_MIB_TCPSACKREORDER;
953 
954 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
955 #if FASTRETRANS_DEBUG > 1
956 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
957 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
958 		       tp->reordering,
959 		       tp->fackets_out,
960 		       tp->sacked_out,
961 		       tp->undo_marker ? tp->undo_retrans : 0);
962 #endif
963 		tcp_disable_fack(tp);
964 	}
965 }
966 
967 /* This must be called before lost_out is incremented */
968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
969 {
970 	if ((tp->retransmit_skb_hint == NULL) ||
971 	    before(TCP_SKB_CB(skb)->seq,
972 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
973 		tp->retransmit_skb_hint = skb;
974 
975 	if (!tp->lost_out ||
976 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
977 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
978 }
979 
980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
981 {
982 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
983 		tcp_verify_retransmit_hint(tp, skb);
984 
985 		tp->lost_out += tcp_skb_pcount(skb);
986 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
987 	}
988 }
989 
990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991 					    struct sk_buff *skb)
992 {
993 	tcp_verify_retransmit_hint(tp, skb);
994 
995 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
996 		tp->lost_out += tcp_skb_pcount(skb);
997 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 	}
999 }
1000 
1001 /* This procedure tags the retransmission queue when SACKs arrive.
1002  *
1003  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004  * Packets in queue with these bits set are counted in variables
1005  * sacked_out, retrans_out and lost_out, correspondingly.
1006  *
1007  * Valid combinations are:
1008  * Tag  InFlight	Description
1009  * 0	1		- orig segment is in flight.
1010  * S	0		- nothing flies, orig reached receiver.
1011  * L	0		- nothing flies, orig lost by net.
1012  * R	2		- both orig and retransmit are in flight.
1013  * L|R	1		- orig is lost, retransmit is in flight.
1014  * S|R  1		- orig reached receiver, retrans is still in flight.
1015  * (L|S|R is logically valid, it could occur when L|R is sacked,
1016  *  but it is equivalent to plain S and code short-curcuits it to S.
1017  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1018  *
1019  * These 6 states form finite state machine, controlled by the following events:
1020  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022  * 3. Loss detection event of one of three flavors:
1023  *	A. Scoreboard estimator decided the packet is lost.
1024  *	   A'. Reno "three dupacks" marks head of queue lost.
1025  *	   A''. Its FACK modfication, head until snd.fack is lost.
1026  *	B. SACK arrives sacking data transmitted after never retransmitted
1027  *	   hole was sent out.
1028  *	C. SACK arrives sacking SND.NXT at the moment, when the
1029  *	   segment was retransmitted.
1030  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1031  *
1032  * It is pleasant to note, that state diagram turns out to be commutative,
1033  * so that we are allowed not to be bothered by order of our actions,
1034  * when multiple events arrive simultaneously. (see the function below).
1035  *
1036  * Reordering detection.
1037  * --------------------
1038  * Reordering metric is maximal distance, which a packet can be displaced
1039  * in packet stream. With SACKs we can estimate it:
1040  *
1041  * 1. SACK fills old hole and the corresponding segment was not
1042  *    ever retransmitted -> reordering. Alas, we cannot use it
1043  *    when segment was retransmitted.
1044  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045  *    for retransmitted and already SACKed segment -> reordering..
1046  * Both of these heuristics are not used in Loss state, when we cannot
1047  * account for retransmits accurately.
1048  *
1049  * SACK block validation.
1050  * ----------------------
1051  *
1052  * SACK block range validation checks that the received SACK block fits to
1053  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054  * Note that SND.UNA is not included to the range though being valid because
1055  * it means that the receiver is rather inconsistent with itself reporting
1056  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057  * perfectly valid, however, in light of RFC2018 which explicitly states
1058  * that "SACK block MUST reflect the newest segment.  Even if the newest
1059  * segment is going to be discarded ...", not that it looks very clever
1060  * in case of head skb. Due to potentional receiver driven attacks, we
1061  * choose to avoid immediate execution of a walk in write queue due to
1062  * reneging and defer head skb's loss recovery to standard loss recovery
1063  * procedure that will eventually trigger (nothing forbids us doing this).
1064  *
1065  * Implements also blockage to start_seq wrap-around. Problem lies in the
1066  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067  * there's no guarantee that it will be before snd_nxt (n). The problem
1068  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069  * wrap (s_w):
1070  *
1071  *         <- outs wnd ->                          <- wrapzone ->
1072  *         u     e      n                         u_w   e_w  s n_w
1073  *         |     |      |                          |     |   |  |
1074  * |<------------+------+----- TCP seqno space --------------+---------->|
1075  * ...-- <2^31 ->|                                           |<--------...
1076  * ...---- >2^31 ------>|                                    |<--------...
1077  *
1078  * Current code wouldn't be vulnerable but it's better still to discard such
1079  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082  * equal to the ideal case (infinite seqno space without wrap caused issues).
1083  *
1084  * With D-SACK the lower bound is extended to cover sequence space below
1085  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086  * again, D-SACK block must not to go across snd_una (for the same reason as
1087  * for the normal SACK blocks, explained above). But there all simplicity
1088  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089  * fully below undo_marker they do not affect behavior in anyway and can
1090  * therefore be safely ignored. In rare cases (which are more or less
1091  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092  * fragmentation and packet reordering past skb's retransmission. To consider
1093  * them correctly, the acceptable range must be extended even more though
1094  * the exact amount is rather hard to quantify. However, tp->max_window can
1095  * be used as an exaggerated estimate.
1096  */
1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1098 				  u32 start_seq, u32 end_seq)
1099 {
1100 	/* Too far in future, or reversed (interpretation is ambiguous) */
1101 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102 		return 0;
1103 
1104 	/* Nasty start_seq wrap-around check (see comments above) */
1105 	if (!before(start_seq, tp->snd_nxt))
1106 		return 0;
1107 
1108 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1109 	 * start_seq == snd_una is non-sensical (see comments above)
1110 	 */
1111 	if (after(start_seq, tp->snd_una))
1112 		return 1;
1113 
1114 	if (!is_dsack || !tp->undo_marker)
1115 		return 0;
1116 
1117 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1118 	if (!after(end_seq, tp->snd_una))
1119 		return 0;
1120 
1121 	if (!before(start_seq, tp->undo_marker))
1122 		return 1;
1123 
1124 	/* Too old */
1125 	if (!after(end_seq, tp->undo_marker))
1126 		return 0;
1127 
1128 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1129 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1130 	 */
1131 	return !before(start_seq, end_seq - tp->max_window);
1132 }
1133 
1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135  * Event "C". Later note: FACK people cheated me again 8), we have to account
1136  * for reordering! Ugly, but should help.
1137  *
1138  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139  * less than what is now known to be received by the other end (derived from
1140  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141  * retransmitted skbs to avoid some costly processing per ACKs.
1142  */
1143 static void tcp_mark_lost_retrans(struct sock *sk)
1144 {
1145 	const struct inet_connection_sock *icsk = inet_csk(sk);
1146 	struct tcp_sock *tp = tcp_sk(sk);
1147 	struct sk_buff *skb;
1148 	int cnt = 0;
1149 	u32 new_low_seq = tp->snd_nxt;
1150 	u32 received_upto = tcp_highest_sack_seq(tp);
1151 
1152 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1153 	    !after(received_upto, tp->lost_retrans_low) ||
1154 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1155 		return;
1156 
1157 	tcp_for_write_queue(skb, sk) {
1158 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1159 
1160 		if (skb == tcp_send_head(sk))
1161 			break;
1162 		if (cnt == tp->retrans_out)
1163 			break;
1164 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165 			continue;
1166 
1167 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168 			continue;
1169 
1170 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1171 		 * constraint here (see above) but figuring out that at
1172 		 * least tp->reordering SACK blocks reside between ack_seq
1173 		 * and received_upto is not easy task to do cheaply with
1174 		 * the available datastructures.
1175 		 *
1176 		 * Whether FACK should check here for tp->reordering segs
1177 		 * in-between one could argue for either way (it would be
1178 		 * rather simple to implement as we could count fack_count
1179 		 * during the walk and do tp->fackets_out - fack_count).
1180 		 */
1181 		if (after(received_upto, ack_seq)) {
1182 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 			tp->retrans_out -= tcp_skb_pcount(skb);
1184 
1185 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1186 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1187 		} else {
1188 			if (before(ack_seq, new_low_seq))
1189 				new_low_seq = ack_seq;
1190 			cnt += tcp_skb_pcount(skb);
1191 		}
1192 	}
1193 
1194 	if (tp->retrans_out)
1195 		tp->lost_retrans_low = new_low_seq;
1196 }
1197 
1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1199 			   struct tcp_sack_block_wire *sp, int num_sacks,
1200 			   u32 prior_snd_una)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1204 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205 	int dup_sack = 0;
1206 
1207 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208 		dup_sack = 1;
1209 		tcp_dsack_seen(tp);
1210 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1211 	} else if (num_sacks > 1) {
1212 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1213 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1214 
1215 		if (!after(end_seq_0, end_seq_1) &&
1216 		    !before(start_seq_0, start_seq_1)) {
1217 			dup_sack = 1;
1218 			tcp_dsack_seen(tp);
1219 			NET_INC_STATS_BH(sock_net(sk),
1220 					LINUX_MIB_TCPDSACKOFORECV);
1221 		}
1222 	}
1223 
1224 	/* D-SACK for already forgotten data... Do dumb counting. */
1225 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1226 	    !after(end_seq_0, prior_snd_una) &&
1227 	    after(end_seq_0, tp->undo_marker))
1228 		tp->undo_retrans--;
1229 
1230 	return dup_sack;
1231 }
1232 
1233 struct tcp_sacktag_state {
1234 	int reord;
1235 	int fack_count;
1236 	int flag;
1237 };
1238 
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  *
1245  * FIXME: this could be merged to shift decision code
1246  */
1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1248 				 u32 start_seq, u32 end_seq)
1249 {
1250 	int in_sack, err;
1251 	unsigned int pkt_len;
1252 	unsigned int mss;
1253 
1254 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1255 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1256 
1257 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1258 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1259 		mss = tcp_skb_mss(skb);
1260 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1261 
1262 		if (!in_sack) {
1263 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1264 			if (pkt_len < mss)
1265 				pkt_len = mss;
1266 		} else {
1267 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1268 			if (pkt_len < mss)
1269 				return -EINVAL;
1270 		}
1271 
1272 		/* Round if necessary so that SACKs cover only full MSSes
1273 		 * and/or the remaining small portion (if present)
1274 		 */
1275 		if (pkt_len > mss) {
1276 			unsigned int new_len = (pkt_len / mss) * mss;
1277 			if (!in_sack && new_len < pkt_len) {
1278 				new_len += mss;
1279 				if (new_len > skb->len)
1280 					return 0;
1281 			}
1282 			pkt_len = new_len;
1283 		}
1284 		err = tcp_fragment(sk, skb, pkt_len, mss);
1285 		if (err < 0)
1286 			return err;
1287 	}
1288 
1289 	return in_sack;
1290 }
1291 
1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1293 			  struct tcp_sacktag_state *state,
1294 			  int dup_sack, int pcount)
1295 {
1296 	struct tcp_sock *tp = tcp_sk(sk);
1297 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1298 	int fack_count = state->fack_count;
1299 
1300 	/* Account D-SACK for retransmitted packet. */
1301 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1302 		if (tp->undo_marker && tp->undo_retrans &&
1303 		    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304 			tp->undo_retrans--;
1305 		if (sacked & TCPCB_SACKED_ACKED)
1306 			state->reord = min(fack_count, state->reord);
1307 	}
1308 
1309 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311 		return sacked;
1312 
1313 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1314 		if (sacked & TCPCB_SACKED_RETRANS) {
1315 			/* If the segment is not tagged as lost,
1316 			 * we do not clear RETRANS, believing
1317 			 * that retransmission is still in flight.
1318 			 */
1319 			if (sacked & TCPCB_LOST) {
1320 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321 				tp->lost_out -= pcount;
1322 				tp->retrans_out -= pcount;
1323 			}
1324 		} else {
1325 			if (!(sacked & TCPCB_RETRANS)) {
1326 				/* New sack for not retransmitted frame,
1327 				 * which was in hole. It is reordering.
1328 				 */
1329 				if (before(TCP_SKB_CB(skb)->seq,
1330 					   tcp_highest_sack_seq(tp)))
1331 					state->reord = min(fack_count,
1332 							   state->reord);
1333 
1334 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1335 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1336 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1337 			}
1338 
1339 			if (sacked & TCPCB_LOST) {
1340 				sacked &= ~TCPCB_LOST;
1341 				tp->lost_out -= pcount;
1342 			}
1343 		}
1344 
1345 		sacked |= TCPCB_SACKED_ACKED;
1346 		state->flag |= FLAG_DATA_SACKED;
1347 		tp->sacked_out += pcount;
1348 
1349 		fack_count += pcount;
1350 
1351 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1352 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1353 		    before(TCP_SKB_CB(skb)->seq,
1354 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1355 			tp->lost_cnt_hint += pcount;
1356 
1357 		if (fack_count > tp->fackets_out)
1358 			tp->fackets_out = fack_count;
1359 	}
1360 
1361 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1362 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1363 	 * are accounted above as well.
1364 	 */
1365 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1366 		sacked &= ~TCPCB_SACKED_RETRANS;
1367 		tp->retrans_out -= pcount;
1368 	}
1369 
1370 	return sacked;
1371 }
1372 
1373 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1374 			   struct tcp_sacktag_state *state,
1375 			   unsigned int pcount, int shifted, int mss,
1376 			   int dup_sack)
1377 {
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1380 
1381 	BUG_ON(!pcount);
1382 
1383 	/* Tweak before seqno plays */
1384 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1385 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1386 		tp->lost_cnt_hint += pcount;
1387 
1388 	TCP_SKB_CB(prev)->end_seq += shifted;
1389 	TCP_SKB_CB(skb)->seq += shifted;
1390 
1391 	skb_shinfo(prev)->gso_segs += pcount;
1392 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1393 	skb_shinfo(skb)->gso_segs -= pcount;
1394 
1395 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1396 	 * in theory this shouldn't be necessary but as long as DSACK
1397 	 * code can come after this skb later on it's better to keep
1398 	 * setting gso_size to something.
1399 	 */
1400 	if (!skb_shinfo(prev)->gso_size) {
1401 		skb_shinfo(prev)->gso_size = mss;
1402 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1403 	}
1404 
1405 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1406 	if (skb_shinfo(skb)->gso_segs <= 1) {
1407 		skb_shinfo(skb)->gso_size = 0;
1408 		skb_shinfo(skb)->gso_type = 0;
1409 	}
1410 
1411 	/* We discard results */
1412 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1413 
1414 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1415 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1416 
1417 	if (skb->len > 0) {
1418 		BUG_ON(!tcp_skb_pcount(skb));
1419 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1420 		return 0;
1421 	}
1422 
1423 	/* Whole SKB was eaten :-) */
1424 
1425 	if (skb == tp->retransmit_skb_hint)
1426 		tp->retransmit_skb_hint = prev;
1427 	if (skb == tp->scoreboard_skb_hint)
1428 		tp->scoreboard_skb_hint = prev;
1429 	if (skb == tp->lost_skb_hint) {
1430 		tp->lost_skb_hint = prev;
1431 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1432 	}
1433 
1434 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1435 	if (skb == tcp_highest_sack(sk))
1436 		tcp_advance_highest_sack(sk, skb);
1437 
1438 	tcp_unlink_write_queue(skb, sk);
1439 	sk_wmem_free_skb(sk, skb);
1440 
1441 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1442 
1443 	return 1;
1444 }
1445 
1446 /* I wish gso_size would have a bit more sane initialization than
1447  * something-or-zero which complicates things
1448  */
1449 static int tcp_skb_seglen(struct sk_buff *skb)
1450 {
1451 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1452 }
1453 
1454 /* Shifting pages past head area doesn't work */
1455 static int skb_can_shift(struct sk_buff *skb)
1456 {
1457 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1458 }
1459 
1460 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1461  * skb.
1462  */
1463 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1464 					  struct tcp_sacktag_state *state,
1465 					  u32 start_seq, u32 end_seq,
1466 					  int dup_sack)
1467 {
1468 	struct tcp_sock *tp = tcp_sk(sk);
1469 	struct sk_buff *prev;
1470 	int mss;
1471 	int pcount = 0;
1472 	int len;
1473 	int in_sack;
1474 
1475 	if (!sk_can_gso(sk))
1476 		goto fallback;
1477 
1478 	/* Normally R but no L won't result in plain S */
1479 	if (!dup_sack &&
1480 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1481 		goto fallback;
1482 	if (!skb_can_shift(skb))
1483 		goto fallback;
1484 	/* This frame is about to be dropped (was ACKed). */
1485 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1486 		goto fallback;
1487 
1488 	/* Can only happen with delayed DSACK + discard craziness */
1489 	if (unlikely(skb == tcp_write_queue_head(sk)))
1490 		goto fallback;
1491 	prev = tcp_write_queue_prev(sk, skb);
1492 
1493 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1494 		goto fallback;
1495 
1496 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1497 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1498 
1499 	if (in_sack) {
1500 		len = skb->len;
1501 		pcount = tcp_skb_pcount(skb);
1502 		mss = tcp_skb_seglen(skb);
1503 
1504 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1505 		 * drop this restriction as unnecessary
1506 		 */
1507 		if (mss != tcp_skb_seglen(prev))
1508 			goto fallback;
1509 	} else {
1510 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1511 			goto noop;
1512 		/* CHECKME: This is non-MSS split case only?, this will
1513 		 * cause skipped skbs due to advancing loop btw, original
1514 		 * has that feature too
1515 		 */
1516 		if (tcp_skb_pcount(skb) <= 1)
1517 			goto noop;
1518 
1519 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1520 		if (!in_sack) {
1521 			/* TODO: head merge to next could be attempted here
1522 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1523 			 * though it might not be worth of the additional hassle
1524 			 *
1525 			 * ...we can probably just fallback to what was done
1526 			 * previously. We could try merging non-SACKed ones
1527 			 * as well but it probably isn't going to buy off
1528 			 * because later SACKs might again split them, and
1529 			 * it would make skb timestamp tracking considerably
1530 			 * harder problem.
1531 			 */
1532 			goto fallback;
1533 		}
1534 
1535 		len = end_seq - TCP_SKB_CB(skb)->seq;
1536 		BUG_ON(len < 0);
1537 		BUG_ON(len > skb->len);
1538 
1539 		/* MSS boundaries should be honoured or else pcount will
1540 		 * severely break even though it makes things bit trickier.
1541 		 * Optimize common case to avoid most of the divides
1542 		 */
1543 		mss = tcp_skb_mss(skb);
1544 
1545 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 		 * drop this restriction as unnecessary
1547 		 */
1548 		if (mss != tcp_skb_seglen(prev))
1549 			goto fallback;
1550 
1551 		if (len == mss) {
1552 			pcount = 1;
1553 		} else if (len < mss) {
1554 			goto noop;
1555 		} else {
1556 			pcount = len / mss;
1557 			len = pcount * mss;
1558 		}
1559 	}
1560 
1561 	if (!skb_shift(prev, skb, len))
1562 		goto fallback;
1563 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1564 		goto out;
1565 
1566 	/* Hole filled allows collapsing with the next as well, this is very
1567 	 * useful when hole on every nth skb pattern happens
1568 	 */
1569 	if (prev == tcp_write_queue_tail(sk))
1570 		goto out;
1571 	skb = tcp_write_queue_next(sk, prev);
1572 
1573 	if (!skb_can_shift(skb) ||
1574 	    (skb == tcp_send_head(sk)) ||
1575 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1576 	    (mss != tcp_skb_seglen(skb)))
1577 		goto out;
1578 
1579 	len = skb->len;
1580 	if (skb_shift(prev, skb, len)) {
1581 		pcount += tcp_skb_pcount(skb);
1582 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1583 	}
1584 
1585 out:
1586 	state->fack_count += pcount;
1587 	return prev;
1588 
1589 noop:
1590 	return skb;
1591 
1592 fallback:
1593 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1594 	return NULL;
1595 }
1596 
1597 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1598 					struct tcp_sack_block *next_dup,
1599 					struct tcp_sacktag_state *state,
1600 					u32 start_seq, u32 end_seq,
1601 					int dup_sack_in)
1602 {
1603 	struct tcp_sock *tp = tcp_sk(sk);
1604 	struct sk_buff *tmp;
1605 
1606 	tcp_for_write_queue_from(skb, sk) {
1607 		int in_sack = 0;
1608 		int dup_sack = dup_sack_in;
1609 
1610 		if (skb == tcp_send_head(sk))
1611 			break;
1612 
1613 		/* queue is in-order => we can short-circuit the walk early */
1614 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1615 			break;
1616 
1617 		if ((next_dup != NULL) &&
1618 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1619 			in_sack = tcp_match_skb_to_sack(sk, skb,
1620 							next_dup->start_seq,
1621 							next_dup->end_seq);
1622 			if (in_sack > 0)
1623 				dup_sack = 1;
1624 		}
1625 
1626 		/* skb reference here is a bit tricky to get right, since
1627 		 * shifting can eat and free both this skb and the next,
1628 		 * so not even _safe variant of the loop is enough.
1629 		 */
1630 		if (in_sack <= 0) {
1631 			tmp = tcp_shift_skb_data(sk, skb, state,
1632 						 start_seq, end_seq, dup_sack);
1633 			if (tmp != NULL) {
1634 				if (tmp != skb) {
1635 					skb = tmp;
1636 					continue;
1637 				}
1638 
1639 				in_sack = 0;
1640 			} else {
1641 				in_sack = tcp_match_skb_to_sack(sk, skb,
1642 								start_seq,
1643 								end_seq);
1644 			}
1645 		}
1646 
1647 		if (unlikely(in_sack < 0))
1648 			break;
1649 
1650 		if (in_sack) {
1651 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1652 								  state,
1653 								  dup_sack,
1654 								  tcp_skb_pcount(skb));
1655 
1656 			if (!before(TCP_SKB_CB(skb)->seq,
1657 				    tcp_highest_sack_seq(tp)))
1658 				tcp_advance_highest_sack(sk, skb);
1659 		}
1660 
1661 		state->fack_count += tcp_skb_pcount(skb);
1662 	}
1663 	return skb;
1664 }
1665 
1666 /* Avoid all extra work that is being done by sacktag while walking in
1667  * a normal way
1668  */
1669 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1670 					struct tcp_sacktag_state *state,
1671 					u32 skip_to_seq)
1672 {
1673 	tcp_for_write_queue_from(skb, sk) {
1674 		if (skb == tcp_send_head(sk))
1675 			break;
1676 
1677 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1678 			break;
1679 
1680 		state->fack_count += tcp_skb_pcount(skb);
1681 	}
1682 	return skb;
1683 }
1684 
1685 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1686 						struct sock *sk,
1687 						struct tcp_sack_block *next_dup,
1688 						struct tcp_sacktag_state *state,
1689 						u32 skip_to_seq)
1690 {
1691 	if (next_dup == NULL)
1692 		return skb;
1693 
1694 	if (before(next_dup->start_seq, skip_to_seq)) {
1695 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1696 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1697 				       next_dup->start_seq, next_dup->end_seq,
1698 				       1);
1699 	}
1700 
1701 	return skb;
1702 }
1703 
1704 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1705 {
1706 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1707 }
1708 
1709 static int
1710 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1711 			u32 prior_snd_una)
1712 {
1713 	const struct inet_connection_sock *icsk = inet_csk(sk);
1714 	struct tcp_sock *tp = tcp_sk(sk);
1715 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1716 			      TCP_SKB_CB(ack_skb)->sacked);
1717 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1718 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1719 	struct tcp_sack_block *cache;
1720 	struct tcp_sacktag_state state;
1721 	struct sk_buff *skb;
1722 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1723 	int used_sacks;
1724 	int found_dup_sack = 0;
1725 	int i, j;
1726 	int first_sack_index;
1727 
1728 	state.flag = 0;
1729 	state.reord = tp->packets_out;
1730 
1731 	if (!tp->sacked_out) {
1732 		if (WARN_ON(tp->fackets_out))
1733 			tp->fackets_out = 0;
1734 		tcp_highest_sack_reset(sk);
1735 	}
1736 
1737 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1738 					 num_sacks, prior_snd_una);
1739 	if (found_dup_sack)
1740 		state.flag |= FLAG_DSACKING_ACK;
1741 
1742 	/* Eliminate too old ACKs, but take into
1743 	 * account more or less fresh ones, they can
1744 	 * contain valid SACK info.
1745 	 */
1746 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1747 		return 0;
1748 
1749 	if (!tp->packets_out)
1750 		goto out;
1751 
1752 	used_sacks = 0;
1753 	first_sack_index = 0;
1754 	for (i = 0; i < num_sacks; i++) {
1755 		int dup_sack = !i && found_dup_sack;
1756 
1757 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1758 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1759 
1760 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1761 					    sp[used_sacks].start_seq,
1762 					    sp[used_sacks].end_seq)) {
1763 			int mib_idx;
1764 
1765 			if (dup_sack) {
1766 				if (!tp->undo_marker)
1767 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1768 				else
1769 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1770 			} else {
1771 				/* Don't count olds caused by ACK reordering */
1772 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1773 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1774 					continue;
1775 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1776 			}
1777 
1778 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1779 			if (i == 0)
1780 				first_sack_index = -1;
1781 			continue;
1782 		}
1783 
1784 		/* Ignore very old stuff early */
1785 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1786 			continue;
1787 
1788 		used_sacks++;
1789 	}
1790 
1791 	/* order SACK blocks to allow in order walk of the retrans queue */
1792 	for (i = used_sacks - 1; i > 0; i--) {
1793 		for (j = 0; j < i; j++) {
1794 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1795 				swap(sp[j], sp[j + 1]);
1796 
1797 				/* Track where the first SACK block goes to */
1798 				if (j == first_sack_index)
1799 					first_sack_index = j + 1;
1800 			}
1801 		}
1802 	}
1803 
1804 	skb = tcp_write_queue_head(sk);
1805 	state.fack_count = 0;
1806 	i = 0;
1807 
1808 	if (!tp->sacked_out) {
1809 		/* It's already past, so skip checking against it */
1810 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1811 	} else {
1812 		cache = tp->recv_sack_cache;
1813 		/* Skip empty blocks in at head of the cache */
1814 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1815 		       !cache->end_seq)
1816 			cache++;
1817 	}
1818 
1819 	while (i < used_sacks) {
1820 		u32 start_seq = sp[i].start_seq;
1821 		u32 end_seq = sp[i].end_seq;
1822 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1823 		struct tcp_sack_block *next_dup = NULL;
1824 
1825 		if (found_dup_sack && ((i + 1) == first_sack_index))
1826 			next_dup = &sp[i + 1];
1827 
1828 		/* Event "B" in the comment above. */
1829 		if (after(end_seq, tp->high_seq))
1830 			state.flag |= FLAG_DATA_LOST;
1831 
1832 		/* Skip too early cached blocks */
1833 		while (tcp_sack_cache_ok(tp, cache) &&
1834 		       !before(start_seq, cache->end_seq))
1835 			cache++;
1836 
1837 		/* Can skip some work by looking recv_sack_cache? */
1838 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1839 		    after(end_seq, cache->start_seq)) {
1840 
1841 			/* Head todo? */
1842 			if (before(start_seq, cache->start_seq)) {
1843 				skb = tcp_sacktag_skip(skb, sk, &state,
1844 						       start_seq);
1845 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1846 						       &state,
1847 						       start_seq,
1848 						       cache->start_seq,
1849 						       dup_sack);
1850 			}
1851 
1852 			/* Rest of the block already fully processed? */
1853 			if (!after(end_seq, cache->end_seq))
1854 				goto advance_sp;
1855 
1856 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1857 						       &state,
1858 						       cache->end_seq);
1859 
1860 			/* ...tail remains todo... */
1861 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1862 				/* ...but better entrypoint exists! */
1863 				skb = tcp_highest_sack(sk);
1864 				if (skb == NULL)
1865 					break;
1866 				state.fack_count = tp->fackets_out;
1867 				cache++;
1868 				goto walk;
1869 			}
1870 
1871 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1872 			/* Check overlap against next cached too (past this one already) */
1873 			cache++;
1874 			continue;
1875 		}
1876 
1877 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1878 			skb = tcp_highest_sack(sk);
1879 			if (skb == NULL)
1880 				break;
1881 			state.fack_count = tp->fackets_out;
1882 		}
1883 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1884 
1885 walk:
1886 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1887 				       start_seq, end_seq, dup_sack);
1888 
1889 advance_sp:
1890 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1891 		 * due to in-order walk
1892 		 */
1893 		if (after(end_seq, tp->frto_highmark))
1894 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1895 
1896 		i++;
1897 	}
1898 
1899 	/* Clear the head of the cache sack blocks so we can skip it next time */
1900 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1901 		tp->recv_sack_cache[i].start_seq = 0;
1902 		tp->recv_sack_cache[i].end_seq = 0;
1903 	}
1904 	for (j = 0; j < used_sacks; j++)
1905 		tp->recv_sack_cache[i++] = sp[j];
1906 
1907 	tcp_mark_lost_retrans(sk);
1908 
1909 	tcp_verify_left_out(tp);
1910 
1911 	if ((state.reord < tp->fackets_out) &&
1912 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1913 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1914 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1915 
1916 out:
1917 
1918 #if FASTRETRANS_DEBUG > 0
1919 	WARN_ON((int)tp->sacked_out < 0);
1920 	WARN_ON((int)tp->lost_out < 0);
1921 	WARN_ON((int)tp->retrans_out < 0);
1922 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1923 #endif
1924 	return state.flag;
1925 }
1926 
1927 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1928  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1929  */
1930 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1931 {
1932 	u32 holes;
1933 
1934 	holes = max(tp->lost_out, 1U);
1935 	holes = min(holes, tp->packets_out);
1936 
1937 	if ((tp->sacked_out + holes) > tp->packets_out) {
1938 		tp->sacked_out = tp->packets_out - holes;
1939 		return 1;
1940 	}
1941 	return 0;
1942 }
1943 
1944 /* If we receive more dupacks than we expected counting segments
1945  * in assumption of absent reordering, interpret this as reordering.
1946  * The only another reason could be bug in receiver TCP.
1947  */
1948 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1949 {
1950 	struct tcp_sock *tp = tcp_sk(sk);
1951 	if (tcp_limit_reno_sacked(tp))
1952 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1953 }
1954 
1955 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1956 
1957 static void tcp_add_reno_sack(struct sock *sk)
1958 {
1959 	struct tcp_sock *tp = tcp_sk(sk);
1960 	tp->sacked_out++;
1961 	tcp_check_reno_reordering(sk, 0);
1962 	tcp_verify_left_out(tp);
1963 }
1964 
1965 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1966 
1967 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1968 {
1969 	struct tcp_sock *tp = tcp_sk(sk);
1970 
1971 	if (acked > 0) {
1972 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1973 		if (acked - 1 >= tp->sacked_out)
1974 			tp->sacked_out = 0;
1975 		else
1976 			tp->sacked_out -= acked - 1;
1977 	}
1978 	tcp_check_reno_reordering(sk, acked);
1979 	tcp_verify_left_out(tp);
1980 }
1981 
1982 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1983 {
1984 	tp->sacked_out = 0;
1985 }
1986 
1987 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1988 {
1989 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1990 }
1991 
1992 /* F-RTO can only be used if TCP has never retransmitted anything other than
1993  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1994  */
1995 int tcp_use_frto(struct sock *sk)
1996 {
1997 	const struct tcp_sock *tp = tcp_sk(sk);
1998 	const struct inet_connection_sock *icsk = inet_csk(sk);
1999 	struct sk_buff *skb;
2000 
2001 	if (!sysctl_tcp_frto)
2002 		return 0;
2003 
2004 	/* MTU probe and F-RTO won't really play nicely along currently */
2005 	if (icsk->icsk_mtup.probe_size)
2006 		return 0;
2007 
2008 	if (tcp_is_sackfrto(tp))
2009 		return 1;
2010 
2011 	/* Avoid expensive walking of rexmit queue if possible */
2012 	if (tp->retrans_out > 1)
2013 		return 0;
2014 
2015 	skb = tcp_write_queue_head(sk);
2016 	if (tcp_skb_is_last(sk, skb))
2017 		return 1;
2018 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2019 	tcp_for_write_queue_from(skb, sk) {
2020 		if (skb == tcp_send_head(sk))
2021 			break;
2022 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2023 			return 0;
2024 		/* Short-circuit when first non-SACKed skb has been checked */
2025 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2026 			break;
2027 	}
2028 	return 1;
2029 }
2030 
2031 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2032  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2033  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2034  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2035  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2036  * bits are handled if the Loss state is really to be entered (in
2037  * tcp_enter_frto_loss).
2038  *
2039  * Do like tcp_enter_loss() would; when RTO expires the second time it
2040  * does:
2041  *  "Reduce ssthresh if it has not yet been made inside this window."
2042  */
2043 void tcp_enter_frto(struct sock *sk)
2044 {
2045 	const struct inet_connection_sock *icsk = inet_csk(sk);
2046 	struct tcp_sock *tp = tcp_sk(sk);
2047 	struct sk_buff *skb;
2048 
2049 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2050 	    tp->snd_una == tp->high_seq ||
2051 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2052 	     !icsk->icsk_retransmits)) {
2053 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2054 		/* Our state is too optimistic in ssthresh() call because cwnd
2055 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2056 		 * recovery has not yet completed. Pattern would be this: RTO,
2057 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2058 		 * up here twice).
2059 		 * RFC4138 should be more specific on what to do, even though
2060 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2061 		 * due to back-off and complexity of triggering events ...
2062 		 */
2063 		if (tp->frto_counter) {
2064 			u32 stored_cwnd;
2065 			stored_cwnd = tp->snd_cwnd;
2066 			tp->snd_cwnd = 2;
2067 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2068 			tp->snd_cwnd = stored_cwnd;
2069 		} else {
2070 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071 		}
2072 		/* ... in theory, cong.control module could do "any tricks" in
2073 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2074 		 * counter would have to be faked before the call occurs. We
2075 		 * consider that too expensive, unlikely and hacky, so modules
2076 		 * using these in ssthresh() must deal these incompatibility
2077 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2078 		 */
2079 		tcp_ca_event(sk, CA_EVENT_FRTO);
2080 	}
2081 
2082 	tp->undo_marker = tp->snd_una;
2083 	tp->undo_retrans = 0;
2084 
2085 	skb = tcp_write_queue_head(sk);
2086 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2087 		tp->undo_marker = 0;
2088 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2089 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2090 		tp->retrans_out -= tcp_skb_pcount(skb);
2091 	}
2092 	tcp_verify_left_out(tp);
2093 
2094 	/* Too bad if TCP was application limited */
2095 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2096 
2097 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2098 	 * The last condition is necessary at least in tp->frto_counter case.
2099 	 */
2100 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2101 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2102 	    after(tp->high_seq, tp->snd_una)) {
2103 		tp->frto_highmark = tp->high_seq;
2104 	} else {
2105 		tp->frto_highmark = tp->snd_nxt;
2106 	}
2107 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2108 	tp->high_seq = tp->snd_nxt;
2109 	tp->frto_counter = 1;
2110 }
2111 
2112 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2113  * which indicates that we should follow the traditional RTO recovery,
2114  * i.e. mark everything lost and do go-back-N retransmission.
2115  */
2116 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2117 {
2118 	struct tcp_sock *tp = tcp_sk(sk);
2119 	struct sk_buff *skb;
2120 
2121 	tp->lost_out = 0;
2122 	tp->retrans_out = 0;
2123 	if (tcp_is_reno(tp))
2124 		tcp_reset_reno_sack(tp);
2125 
2126 	tcp_for_write_queue(skb, sk) {
2127 		if (skb == tcp_send_head(sk))
2128 			break;
2129 
2130 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2131 		/*
2132 		 * Count the retransmission made on RTO correctly (only when
2133 		 * waiting for the first ACK and did not get it)...
2134 		 */
2135 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2136 			/* For some reason this R-bit might get cleared? */
2137 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2138 				tp->retrans_out += tcp_skb_pcount(skb);
2139 			/* ...enter this if branch just for the first segment */
2140 			flag |= FLAG_DATA_ACKED;
2141 		} else {
2142 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2143 				tp->undo_marker = 0;
2144 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2145 		}
2146 
2147 		/* Marking forward transmissions that were made after RTO lost
2148 		 * can cause unnecessary retransmissions in some scenarios,
2149 		 * SACK blocks will mitigate that in some but not in all cases.
2150 		 * We used to not mark them but it was causing break-ups with
2151 		 * receivers that do only in-order receival.
2152 		 *
2153 		 * TODO: we could detect presence of such receiver and select
2154 		 * different behavior per flow.
2155 		 */
2156 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2157 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2158 			tp->lost_out += tcp_skb_pcount(skb);
2159 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2160 		}
2161 	}
2162 	tcp_verify_left_out(tp);
2163 
2164 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2165 	tp->snd_cwnd_cnt = 0;
2166 	tp->snd_cwnd_stamp = tcp_time_stamp;
2167 	tp->frto_counter = 0;
2168 	tp->bytes_acked = 0;
2169 
2170 	tp->reordering = min_t(unsigned int, tp->reordering,
2171 			       sysctl_tcp_reordering);
2172 	tcp_set_ca_state(sk, TCP_CA_Loss);
2173 	tp->high_seq = tp->snd_nxt;
2174 	TCP_ECN_queue_cwr(tp);
2175 
2176 	tcp_clear_all_retrans_hints(tp);
2177 }
2178 
2179 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2180 {
2181 	tp->retrans_out = 0;
2182 	tp->lost_out = 0;
2183 
2184 	tp->undo_marker = 0;
2185 	tp->undo_retrans = 0;
2186 }
2187 
2188 void tcp_clear_retrans(struct tcp_sock *tp)
2189 {
2190 	tcp_clear_retrans_partial(tp);
2191 
2192 	tp->fackets_out = 0;
2193 	tp->sacked_out = 0;
2194 }
2195 
2196 /* Enter Loss state. If "how" is not zero, forget all SACK information
2197  * and reset tags completely, otherwise preserve SACKs. If receiver
2198  * dropped its ofo queue, we will know this due to reneging detection.
2199  */
2200 void tcp_enter_loss(struct sock *sk, int how)
2201 {
2202 	const struct inet_connection_sock *icsk = inet_csk(sk);
2203 	struct tcp_sock *tp = tcp_sk(sk);
2204 	struct sk_buff *skb;
2205 
2206 	/* Reduce ssthresh if it has not yet been made inside this window. */
2207 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2208 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2209 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2210 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2211 		tcp_ca_event(sk, CA_EVENT_LOSS);
2212 	}
2213 	tp->snd_cwnd	   = 1;
2214 	tp->snd_cwnd_cnt   = 0;
2215 	tp->snd_cwnd_stamp = tcp_time_stamp;
2216 
2217 	tp->bytes_acked = 0;
2218 	tcp_clear_retrans_partial(tp);
2219 
2220 	if (tcp_is_reno(tp))
2221 		tcp_reset_reno_sack(tp);
2222 
2223 	if (!how) {
2224 		/* Push undo marker, if it was plain RTO and nothing
2225 		 * was retransmitted. */
2226 		tp->undo_marker = tp->snd_una;
2227 	} else {
2228 		tp->sacked_out = 0;
2229 		tp->fackets_out = 0;
2230 	}
2231 	tcp_clear_all_retrans_hints(tp);
2232 
2233 	tcp_for_write_queue(skb, sk) {
2234 		if (skb == tcp_send_head(sk))
2235 			break;
2236 
2237 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2238 			tp->undo_marker = 0;
2239 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2240 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2241 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2242 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2243 			tp->lost_out += tcp_skb_pcount(skb);
2244 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2245 		}
2246 	}
2247 	tcp_verify_left_out(tp);
2248 
2249 	tp->reordering = min_t(unsigned int, tp->reordering,
2250 			       sysctl_tcp_reordering);
2251 	tcp_set_ca_state(sk, TCP_CA_Loss);
2252 	tp->high_seq = tp->snd_nxt;
2253 	TCP_ECN_queue_cwr(tp);
2254 	/* Abort F-RTO algorithm if one is in progress */
2255 	tp->frto_counter = 0;
2256 }
2257 
2258 /* If ACK arrived pointing to a remembered SACK, it means that our
2259  * remembered SACKs do not reflect real state of receiver i.e.
2260  * receiver _host_ is heavily congested (or buggy).
2261  *
2262  * Do processing similar to RTO timeout.
2263  */
2264 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2265 {
2266 	if (flag & FLAG_SACK_RENEGING) {
2267 		struct inet_connection_sock *icsk = inet_csk(sk);
2268 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2269 
2270 		tcp_enter_loss(sk, 1);
2271 		icsk->icsk_retransmits++;
2272 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2273 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2274 					  icsk->icsk_rto, TCP_RTO_MAX);
2275 		return 1;
2276 	}
2277 	return 0;
2278 }
2279 
2280 static inline int tcp_fackets_out(struct tcp_sock *tp)
2281 {
2282 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2283 }
2284 
2285 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2286  * counter when SACK is enabled (without SACK, sacked_out is used for
2287  * that purpose).
2288  *
2289  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2290  * segments up to the highest received SACK block so far and holes in
2291  * between them.
2292  *
2293  * With reordering, holes may still be in flight, so RFC3517 recovery
2294  * uses pure sacked_out (total number of SACKed segments) even though
2295  * it violates the RFC that uses duplicate ACKs, often these are equal
2296  * but when e.g. out-of-window ACKs or packet duplication occurs,
2297  * they differ. Since neither occurs due to loss, TCP should really
2298  * ignore them.
2299  */
2300 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2301 {
2302 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2303 }
2304 
2305 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2306 {
2307 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2308 }
2309 
2310 static inline int tcp_head_timedout(struct sock *sk)
2311 {
2312 	struct tcp_sock *tp = tcp_sk(sk);
2313 
2314 	return tp->packets_out &&
2315 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2316 }
2317 
2318 /* Linux NewReno/SACK/FACK/ECN state machine.
2319  * --------------------------------------
2320  *
2321  * "Open"	Normal state, no dubious events, fast path.
2322  * "Disorder"   In all the respects it is "Open",
2323  *		but requires a bit more attention. It is entered when
2324  *		we see some SACKs or dupacks. It is split of "Open"
2325  *		mainly to move some processing from fast path to slow one.
2326  * "CWR"	CWND was reduced due to some Congestion Notification event.
2327  *		It can be ECN, ICMP source quench, local device congestion.
2328  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2329  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2330  *
2331  * tcp_fastretrans_alert() is entered:
2332  * - each incoming ACK, if state is not "Open"
2333  * - when arrived ACK is unusual, namely:
2334  *	* SACK
2335  *	* Duplicate ACK.
2336  *	* ECN ECE.
2337  *
2338  * Counting packets in flight is pretty simple.
2339  *
2340  *	in_flight = packets_out - left_out + retrans_out
2341  *
2342  *	packets_out is SND.NXT-SND.UNA counted in packets.
2343  *
2344  *	retrans_out is number of retransmitted segments.
2345  *
2346  *	left_out is number of segments left network, but not ACKed yet.
2347  *
2348  *		left_out = sacked_out + lost_out
2349  *
2350  *     sacked_out: Packets, which arrived to receiver out of order
2351  *		   and hence not ACKed. With SACKs this number is simply
2352  *		   amount of SACKed data. Even without SACKs
2353  *		   it is easy to give pretty reliable estimate of this number,
2354  *		   counting duplicate ACKs.
2355  *
2356  *       lost_out: Packets lost by network. TCP has no explicit
2357  *		   "loss notification" feedback from network (for now).
2358  *		   It means that this number can be only _guessed_.
2359  *		   Actually, it is the heuristics to predict lossage that
2360  *		   distinguishes different algorithms.
2361  *
2362  *	F.e. after RTO, when all the queue is considered as lost,
2363  *	lost_out = packets_out and in_flight = retrans_out.
2364  *
2365  *		Essentially, we have now two algorithms counting
2366  *		lost packets.
2367  *
2368  *		FACK: It is the simplest heuristics. As soon as we decided
2369  *		that something is lost, we decide that _all_ not SACKed
2370  *		packets until the most forward SACK are lost. I.e.
2371  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2372  *		It is absolutely correct estimate, if network does not reorder
2373  *		packets. And it loses any connection to reality when reordering
2374  *		takes place. We use FACK by default until reordering
2375  *		is suspected on the path to this destination.
2376  *
2377  *		NewReno: when Recovery is entered, we assume that one segment
2378  *		is lost (classic Reno). While we are in Recovery and
2379  *		a partial ACK arrives, we assume that one more packet
2380  *		is lost (NewReno). This heuristics are the same in NewReno
2381  *		and SACK.
2382  *
2383  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2384  *  deflation etc. CWND is real congestion window, never inflated, changes
2385  *  only according to classic VJ rules.
2386  *
2387  * Really tricky (and requiring careful tuning) part of algorithm
2388  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2389  * The first determines the moment _when_ we should reduce CWND and,
2390  * hence, slow down forward transmission. In fact, it determines the moment
2391  * when we decide that hole is caused by loss, rather than by a reorder.
2392  *
2393  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2394  * holes, caused by lost packets.
2395  *
2396  * And the most logically complicated part of algorithm is undo
2397  * heuristics. We detect false retransmits due to both too early
2398  * fast retransmit (reordering) and underestimated RTO, analyzing
2399  * timestamps and D-SACKs. When we detect that some segments were
2400  * retransmitted by mistake and CWND reduction was wrong, we undo
2401  * window reduction and abort recovery phase. This logic is hidden
2402  * inside several functions named tcp_try_undo_<something>.
2403  */
2404 
2405 /* This function decides, when we should leave Disordered state
2406  * and enter Recovery phase, reducing congestion window.
2407  *
2408  * Main question: may we further continue forward transmission
2409  * with the same cwnd?
2410  */
2411 static int tcp_time_to_recover(struct sock *sk)
2412 {
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 	__u32 packets_out;
2415 
2416 	/* Do not perform any recovery during F-RTO algorithm */
2417 	if (tp->frto_counter)
2418 		return 0;
2419 
2420 	/* Trick#1: The loss is proven. */
2421 	if (tp->lost_out)
2422 		return 1;
2423 
2424 	/* Not-A-Trick#2 : Classic rule... */
2425 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2426 		return 1;
2427 
2428 	/* Trick#3 : when we use RFC2988 timer restart, fast
2429 	 * retransmit can be triggered by timeout of queue head.
2430 	 */
2431 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2432 		return 1;
2433 
2434 	/* Trick#4: It is still not OK... But will it be useful to delay
2435 	 * recovery more?
2436 	 */
2437 	packets_out = tp->packets_out;
2438 	if (packets_out <= tp->reordering &&
2439 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2440 	    !tcp_may_send_now(sk)) {
2441 		/* We have nothing to send. This connection is limited
2442 		 * either by receiver window or by application.
2443 		 */
2444 		return 1;
2445 	}
2446 
2447 	/* If a thin stream is detected, retransmit after first
2448 	 * received dupack. Employ only if SACK is supported in order
2449 	 * to avoid possible corner-case series of spurious retransmissions
2450 	 * Use only if there are no unsent data.
2451 	 */
2452 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2453 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2454 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2455 		return 1;
2456 
2457 	return 0;
2458 }
2459 
2460 /* New heuristics: it is possible only after we switched to restart timer
2461  * each time when something is ACKed. Hence, we can detect timed out packets
2462  * during fast retransmit without falling to slow start.
2463  *
2464  * Usefulness of this as is very questionable, since we should know which of
2465  * the segments is the next to timeout which is relatively expensive to find
2466  * in general case unless we add some data structure just for that. The
2467  * current approach certainly won't find the right one too often and when it
2468  * finally does find _something_ it usually marks large part of the window
2469  * right away (because a retransmission with a larger timestamp blocks the
2470  * loop from advancing). -ij
2471  */
2472 static void tcp_timeout_skbs(struct sock *sk)
2473 {
2474 	struct tcp_sock *tp = tcp_sk(sk);
2475 	struct sk_buff *skb;
2476 
2477 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2478 		return;
2479 
2480 	skb = tp->scoreboard_skb_hint;
2481 	if (tp->scoreboard_skb_hint == NULL)
2482 		skb = tcp_write_queue_head(sk);
2483 
2484 	tcp_for_write_queue_from(skb, sk) {
2485 		if (skb == tcp_send_head(sk))
2486 			break;
2487 		if (!tcp_skb_timedout(sk, skb))
2488 			break;
2489 
2490 		tcp_skb_mark_lost(tp, skb);
2491 	}
2492 
2493 	tp->scoreboard_skb_hint = skb;
2494 
2495 	tcp_verify_left_out(tp);
2496 }
2497 
2498 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2499  * is against sacked "cnt", otherwise it's against facked "cnt"
2500  */
2501 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 	struct sk_buff *skb;
2505 	int cnt, oldcnt;
2506 	int err;
2507 	unsigned int mss;
2508 
2509 	WARN_ON(packets > tp->packets_out);
2510 	if (tp->lost_skb_hint) {
2511 		skb = tp->lost_skb_hint;
2512 		cnt = tp->lost_cnt_hint;
2513 		/* Head already handled? */
2514 		if (mark_head && skb != tcp_write_queue_head(sk))
2515 			return;
2516 	} else {
2517 		skb = tcp_write_queue_head(sk);
2518 		cnt = 0;
2519 	}
2520 
2521 	tcp_for_write_queue_from(skb, sk) {
2522 		if (skb == tcp_send_head(sk))
2523 			break;
2524 		/* TODO: do this better */
2525 		/* this is not the most efficient way to do this... */
2526 		tp->lost_skb_hint = skb;
2527 		tp->lost_cnt_hint = cnt;
2528 
2529 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2530 			break;
2531 
2532 		oldcnt = cnt;
2533 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2534 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2535 			cnt += tcp_skb_pcount(skb);
2536 
2537 		if (cnt > packets) {
2538 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2539 			    (oldcnt >= packets))
2540 				break;
2541 
2542 			mss = skb_shinfo(skb)->gso_size;
2543 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2544 			if (err < 0)
2545 				break;
2546 			cnt = packets;
2547 		}
2548 
2549 		tcp_skb_mark_lost(tp, skb);
2550 
2551 		if (mark_head)
2552 			break;
2553 	}
2554 	tcp_verify_left_out(tp);
2555 }
2556 
2557 /* Account newly detected lost packet(s) */
2558 
2559 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 
2563 	if (tcp_is_reno(tp)) {
2564 		tcp_mark_head_lost(sk, 1, 1);
2565 	} else if (tcp_is_fack(tp)) {
2566 		int lost = tp->fackets_out - tp->reordering;
2567 		if (lost <= 0)
2568 			lost = 1;
2569 		tcp_mark_head_lost(sk, lost, 0);
2570 	} else {
2571 		int sacked_upto = tp->sacked_out - tp->reordering;
2572 		if (sacked_upto >= 0)
2573 			tcp_mark_head_lost(sk, sacked_upto, 0);
2574 		else if (fast_rexmit)
2575 			tcp_mark_head_lost(sk, 1, 1);
2576 	}
2577 
2578 	tcp_timeout_skbs(sk);
2579 }
2580 
2581 /* CWND moderation, preventing bursts due to too big ACKs
2582  * in dubious situations.
2583  */
2584 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2585 {
2586 	tp->snd_cwnd = min(tp->snd_cwnd,
2587 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2588 	tp->snd_cwnd_stamp = tcp_time_stamp;
2589 }
2590 
2591 /* Lower bound on congestion window is slow start threshold
2592  * unless congestion avoidance choice decides to overide it.
2593  */
2594 static inline u32 tcp_cwnd_min(const struct sock *sk)
2595 {
2596 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2597 
2598 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2599 }
2600 
2601 /* Decrease cwnd each second ack. */
2602 static void tcp_cwnd_down(struct sock *sk, int flag)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 	int decr = tp->snd_cwnd_cnt + 1;
2606 
2607 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2608 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2609 		tp->snd_cwnd_cnt = decr & 1;
2610 		decr >>= 1;
2611 
2612 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2613 			tp->snd_cwnd -= decr;
2614 
2615 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2616 		tp->snd_cwnd_stamp = tcp_time_stamp;
2617 	}
2618 }
2619 
2620 /* Nothing was retransmitted or returned timestamp is less
2621  * than timestamp of the first retransmission.
2622  */
2623 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2624 {
2625 	return !tp->retrans_stamp ||
2626 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2627 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2628 }
2629 
2630 /* Undo procedures. */
2631 
2632 #if FASTRETRANS_DEBUG > 1
2633 static void DBGUNDO(struct sock *sk, const char *msg)
2634 {
2635 	struct tcp_sock *tp = tcp_sk(sk);
2636 	struct inet_sock *inet = inet_sk(sk);
2637 
2638 	if (sk->sk_family == AF_INET) {
2639 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2640 		       msg,
2641 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2642 		       tp->snd_cwnd, tcp_left_out(tp),
2643 		       tp->snd_ssthresh, tp->prior_ssthresh,
2644 		       tp->packets_out);
2645 	}
2646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2647 	else if (sk->sk_family == AF_INET6) {
2648 		struct ipv6_pinfo *np = inet6_sk(sk);
2649 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2650 		       msg,
2651 		       &np->daddr, ntohs(inet->inet_dport),
2652 		       tp->snd_cwnd, tcp_left_out(tp),
2653 		       tp->snd_ssthresh, tp->prior_ssthresh,
2654 		       tp->packets_out);
2655 	}
2656 #endif
2657 }
2658 #else
2659 #define DBGUNDO(x...) do { } while (0)
2660 #endif
2661 
2662 static void tcp_undo_cwr(struct sock *sk, const int undo)
2663 {
2664 	struct tcp_sock *tp = tcp_sk(sk);
2665 
2666 	if (tp->prior_ssthresh) {
2667 		const struct inet_connection_sock *icsk = inet_csk(sk);
2668 
2669 		if (icsk->icsk_ca_ops->undo_cwnd)
2670 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2671 		else
2672 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2673 
2674 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2675 			tp->snd_ssthresh = tp->prior_ssthresh;
2676 			TCP_ECN_withdraw_cwr(tp);
2677 		}
2678 	} else {
2679 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2680 	}
2681 	tcp_moderate_cwnd(tp);
2682 	tp->snd_cwnd_stamp = tcp_time_stamp;
2683 }
2684 
2685 static inline int tcp_may_undo(struct tcp_sock *tp)
2686 {
2687 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2688 }
2689 
2690 /* People celebrate: "We love our President!" */
2691 static int tcp_try_undo_recovery(struct sock *sk)
2692 {
2693 	struct tcp_sock *tp = tcp_sk(sk);
2694 
2695 	if (tcp_may_undo(tp)) {
2696 		int mib_idx;
2697 
2698 		/* Happy end! We did not retransmit anything
2699 		 * or our original transmission succeeded.
2700 		 */
2701 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2702 		tcp_undo_cwr(sk, 1);
2703 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2704 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2705 		else
2706 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2707 
2708 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2709 		tp->undo_marker = 0;
2710 	}
2711 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2712 		/* Hold old state until something *above* high_seq
2713 		 * is ACKed. For Reno it is MUST to prevent false
2714 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2715 		tcp_moderate_cwnd(tp);
2716 		return 1;
2717 	}
2718 	tcp_set_ca_state(sk, TCP_CA_Open);
2719 	return 0;
2720 }
2721 
2722 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2723 static void tcp_try_undo_dsack(struct sock *sk)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 
2727 	if (tp->undo_marker && !tp->undo_retrans) {
2728 		DBGUNDO(sk, "D-SACK");
2729 		tcp_undo_cwr(sk, 1);
2730 		tp->undo_marker = 0;
2731 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2732 	}
2733 }
2734 
2735 /* We can clear retrans_stamp when there are no retransmissions in the
2736  * window. It would seem that it is trivially available for us in
2737  * tp->retrans_out, however, that kind of assumptions doesn't consider
2738  * what will happen if errors occur when sending retransmission for the
2739  * second time. ...It could the that such segment has only
2740  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2741  * the head skb is enough except for some reneging corner cases that
2742  * are not worth the effort.
2743  *
2744  * Main reason for all this complexity is the fact that connection dying
2745  * time now depends on the validity of the retrans_stamp, in particular,
2746  * that successive retransmissions of a segment must not advance
2747  * retrans_stamp under any conditions.
2748  */
2749 static int tcp_any_retrans_done(struct sock *sk)
2750 {
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 	struct sk_buff *skb;
2753 
2754 	if (tp->retrans_out)
2755 		return 1;
2756 
2757 	skb = tcp_write_queue_head(sk);
2758 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2759 		return 1;
2760 
2761 	return 0;
2762 }
2763 
2764 /* Undo during fast recovery after partial ACK. */
2765 
2766 static int tcp_try_undo_partial(struct sock *sk, int acked)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 	/* Partial ACK arrived. Force Hoe's retransmit. */
2770 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2771 
2772 	if (tcp_may_undo(tp)) {
2773 		/* Plain luck! Hole if filled with delayed
2774 		 * packet, rather than with a retransmit.
2775 		 */
2776 		if (!tcp_any_retrans_done(sk))
2777 			tp->retrans_stamp = 0;
2778 
2779 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2780 
2781 		DBGUNDO(sk, "Hoe");
2782 		tcp_undo_cwr(sk, 0);
2783 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2784 
2785 		/* So... Do not make Hoe's retransmit yet.
2786 		 * If the first packet was delayed, the rest
2787 		 * ones are most probably delayed as well.
2788 		 */
2789 		failed = 0;
2790 	}
2791 	return failed;
2792 }
2793 
2794 /* Undo during loss recovery after partial ACK. */
2795 static int tcp_try_undo_loss(struct sock *sk)
2796 {
2797 	struct tcp_sock *tp = tcp_sk(sk);
2798 
2799 	if (tcp_may_undo(tp)) {
2800 		struct sk_buff *skb;
2801 		tcp_for_write_queue(skb, sk) {
2802 			if (skb == tcp_send_head(sk))
2803 				break;
2804 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2805 		}
2806 
2807 		tcp_clear_all_retrans_hints(tp);
2808 
2809 		DBGUNDO(sk, "partial loss");
2810 		tp->lost_out = 0;
2811 		tcp_undo_cwr(sk, 1);
2812 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2813 		inet_csk(sk)->icsk_retransmits = 0;
2814 		tp->undo_marker = 0;
2815 		if (tcp_is_sack(tp))
2816 			tcp_set_ca_state(sk, TCP_CA_Open);
2817 		return 1;
2818 	}
2819 	return 0;
2820 }
2821 
2822 static inline void tcp_complete_cwr(struct sock *sk)
2823 {
2824 	struct tcp_sock *tp = tcp_sk(sk);
2825 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2826 	tp->snd_cwnd_stamp = tcp_time_stamp;
2827 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2828 }
2829 
2830 static void tcp_try_keep_open(struct sock *sk)
2831 {
2832 	struct tcp_sock *tp = tcp_sk(sk);
2833 	int state = TCP_CA_Open;
2834 
2835 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2836 		state = TCP_CA_Disorder;
2837 
2838 	if (inet_csk(sk)->icsk_ca_state != state) {
2839 		tcp_set_ca_state(sk, state);
2840 		tp->high_seq = tp->snd_nxt;
2841 	}
2842 }
2843 
2844 static void tcp_try_to_open(struct sock *sk, int flag)
2845 {
2846 	struct tcp_sock *tp = tcp_sk(sk);
2847 
2848 	tcp_verify_left_out(tp);
2849 
2850 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2851 		tp->retrans_stamp = 0;
2852 
2853 	if (flag & FLAG_ECE)
2854 		tcp_enter_cwr(sk, 1);
2855 
2856 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2857 		tcp_try_keep_open(sk);
2858 		tcp_moderate_cwnd(tp);
2859 	} else {
2860 		tcp_cwnd_down(sk, flag);
2861 	}
2862 }
2863 
2864 static void tcp_mtup_probe_failed(struct sock *sk)
2865 {
2866 	struct inet_connection_sock *icsk = inet_csk(sk);
2867 
2868 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2869 	icsk->icsk_mtup.probe_size = 0;
2870 }
2871 
2872 static void tcp_mtup_probe_success(struct sock *sk)
2873 {
2874 	struct tcp_sock *tp = tcp_sk(sk);
2875 	struct inet_connection_sock *icsk = inet_csk(sk);
2876 
2877 	/* FIXME: breaks with very large cwnd */
2878 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2879 	tp->snd_cwnd = tp->snd_cwnd *
2880 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2881 		       icsk->icsk_mtup.probe_size;
2882 	tp->snd_cwnd_cnt = 0;
2883 	tp->snd_cwnd_stamp = tcp_time_stamp;
2884 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2885 
2886 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2887 	icsk->icsk_mtup.probe_size = 0;
2888 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2889 }
2890 
2891 /* Do a simple retransmit without using the backoff mechanisms in
2892  * tcp_timer. This is used for path mtu discovery.
2893  * The socket is already locked here.
2894  */
2895 void tcp_simple_retransmit(struct sock *sk)
2896 {
2897 	const struct inet_connection_sock *icsk = inet_csk(sk);
2898 	struct tcp_sock *tp = tcp_sk(sk);
2899 	struct sk_buff *skb;
2900 	unsigned int mss = tcp_current_mss(sk);
2901 	u32 prior_lost = tp->lost_out;
2902 
2903 	tcp_for_write_queue(skb, sk) {
2904 		if (skb == tcp_send_head(sk))
2905 			break;
2906 		if (tcp_skb_seglen(skb) > mss &&
2907 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2908 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2909 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2910 				tp->retrans_out -= tcp_skb_pcount(skb);
2911 			}
2912 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2913 		}
2914 	}
2915 
2916 	tcp_clear_retrans_hints_partial(tp);
2917 
2918 	if (prior_lost == tp->lost_out)
2919 		return;
2920 
2921 	if (tcp_is_reno(tp))
2922 		tcp_limit_reno_sacked(tp);
2923 
2924 	tcp_verify_left_out(tp);
2925 
2926 	/* Don't muck with the congestion window here.
2927 	 * Reason is that we do not increase amount of _data_
2928 	 * in network, but units changed and effective
2929 	 * cwnd/ssthresh really reduced now.
2930 	 */
2931 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2932 		tp->high_seq = tp->snd_nxt;
2933 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2934 		tp->prior_ssthresh = 0;
2935 		tp->undo_marker = 0;
2936 		tcp_set_ca_state(sk, TCP_CA_Loss);
2937 	}
2938 	tcp_xmit_retransmit_queue(sk);
2939 }
2940 EXPORT_SYMBOL(tcp_simple_retransmit);
2941 
2942 /* Process an event, which can update packets-in-flight not trivially.
2943  * Main goal of this function is to calculate new estimate for left_out,
2944  * taking into account both packets sitting in receiver's buffer and
2945  * packets lost by network.
2946  *
2947  * Besides that it does CWND reduction, when packet loss is detected
2948  * and changes state of machine.
2949  *
2950  * It does _not_ decide what to send, it is made in function
2951  * tcp_xmit_retransmit_queue().
2952  */
2953 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2954 {
2955 	struct inet_connection_sock *icsk = inet_csk(sk);
2956 	struct tcp_sock *tp = tcp_sk(sk);
2957 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2958 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2959 				    (tcp_fackets_out(tp) > tp->reordering));
2960 	int fast_rexmit = 0, mib_idx;
2961 
2962 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2963 		tp->sacked_out = 0;
2964 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2965 		tp->fackets_out = 0;
2966 
2967 	/* Now state machine starts.
2968 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2969 	if (flag & FLAG_ECE)
2970 		tp->prior_ssthresh = 0;
2971 
2972 	/* B. In all the states check for reneging SACKs. */
2973 	if (tcp_check_sack_reneging(sk, flag))
2974 		return;
2975 
2976 	/* C. Process data loss notification, provided it is valid. */
2977 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2978 	    before(tp->snd_una, tp->high_seq) &&
2979 	    icsk->icsk_ca_state != TCP_CA_Open &&
2980 	    tp->fackets_out > tp->reordering) {
2981 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2982 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2983 	}
2984 
2985 	/* D. Check consistency of the current state. */
2986 	tcp_verify_left_out(tp);
2987 
2988 	/* E. Check state exit conditions. State can be terminated
2989 	 *    when high_seq is ACKed. */
2990 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2991 		WARN_ON(tp->retrans_out != 0);
2992 		tp->retrans_stamp = 0;
2993 	} else if (!before(tp->snd_una, tp->high_seq)) {
2994 		switch (icsk->icsk_ca_state) {
2995 		case TCP_CA_Loss:
2996 			icsk->icsk_retransmits = 0;
2997 			if (tcp_try_undo_recovery(sk))
2998 				return;
2999 			break;
3000 
3001 		case TCP_CA_CWR:
3002 			/* CWR is to be held something *above* high_seq
3003 			 * is ACKed for CWR bit to reach receiver. */
3004 			if (tp->snd_una != tp->high_seq) {
3005 				tcp_complete_cwr(sk);
3006 				tcp_set_ca_state(sk, TCP_CA_Open);
3007 			}
3008 			break;
3009 
3010 		case TCP_CA_Disorder:
3011 			tcp_try_undo_dsack(sk);
3012 			if (!tp->undo_marker ||
3013 			    /* For SACK case do not Open to allow to undo
3014 			     * catching for all duplicate ACKs. */
3015 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3016 				tp->undo_marker = 0;
3017 				tcp_set_ca_state(sk, TCP_CA_Open);
3018 			}
3019 			break;
3020 
3021 		case TCP_CA_Recovery:
3022 			if (tcp_is_reno(tp))
3023 				tcp_reset_reno_sack(tp);
3024 			if (tcp_try_undo_recovery(sk))
3025 				return;
3026 			tcp_complete_cwr(sk);
3027 			break;
3028 		}
3029 	}
3030 
3031 	/* F. Process state. */
3032 	switch (icsk->icsk_ca_state) {
3033 	case TCP_CA_Recovery:
3034 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3035 			if (tcp_is_reno(tp) && is_dupack)
3036 				tcp_add_reno_sack(sk);
3037 		} else
3038 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3039 		break;
3040 	case TCP_CA_Loss:
3041 		if (flag & FLAG_DATA_ACKED)
3042 			icsk->icsk_retransmits = 0;
3043 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3044 			tcp_reset_reno_sack(tp);
3045 		if (!tcp_try_undo_loss(sk)) {
3046 			tcp_moderate_cwnd(tp);
3047 			tcp_xmit_retransmit_queue(sk);
3048 			return;
3049 		}
3050 		if (icsk->icsk_ca_state != TCP_CA_Open)
3051 			return;
3052 		/* Loss is undone; fall through to processing in Open state. */
3053 	default:
3054 		if (tcp_is_reno(tp)) {
3055 			if (flag & FLAG_SND_UNA_ADVANCED)
3056 				tcp_reset_reno_sack(tp);
3057 			if (is_dupack)
3058 				tcp_add_reno_sack(sk);
3059 		}
3060 
3061 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3062 			tcp_try_undo_dsack(sk);
3063 
3064 		if (!tcp_time_to_recover(sk)) {
3065 			tcp_try_to_open(sk, flag);
3066 			return;
3067 		}
3068 
3069 		/* MTU probe failure: don't reduce cwnd */
3070 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3071 		    icsk->icsk_mtup.probe_size &&
3072 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3073 			tcp_mtup_probe_failed(sk);
3074 			/* Restores the reduction we did in tcp_mtup_probe() */
3075 			tp->snd_cwnd++;
3076 			tcp_simple_retransmit(sk);
3077 			return;
3078 		}
3079 
3080 		/* Otherwise enter Recovery state */
3081 
3082 		if (tcp_is_reno(tp))
3083 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3084 		else
3085 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3086 
3087 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3088 
3089 		tp->high_seq = tp->snd_nxt;
3090 		tp->prior_ssthresh = 0;
3091 		tp->undo_marker = tp->snd_una;
3092 		tp->undo_retrans = tp->retrans_out;
3093 
3094 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3095 			if (!(flag & FLAG_ECE))
3096 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3097 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3098 			TCP_ECN_queue_cwr(tp);
3099 		}
3100 
3101 		tp->bytes_acked = 0;
3102 		tp->snd_cwnd_cnt = 0;
3103 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3104 		fast_rexmit = 1;
3105 	}
3106 
3107 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3108 		tcp_update_scoreboard(sk, fast_rexmit);
3109 	tcp_cwnd_down(sk, flag);
3110 	tcp_xmit_retransmit_queue(sk);
3111 }
3112 
3113 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3114 {
3115 	tcp_rtt_estimator(sk, seq_rtt);
3116 	tcp_set_rto(sk);
3117 	inet_csk(sk)->icsk_backoff = 0;
3118 }
3119 
3120 /* Read draft-ietf-tcplw-high-performance before mucking
3121  * with this code. (Supersedes RFC1323)
3122  */
3123 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3124 {
3125 	/* RTTM Rule: A TSecr value received in a segment is used to
3126 	 * update the averaged RTT measurement only if the segment
3127 	 * acknowledges some new data, i.e., only if it advances the
3128 	 * left edge of the send window.
3129 	 *
3130 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3131 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 	 *
3133 	 * Changed: reset backoff as soon as we see the first valid sample.
3134 	 * If we do not, we get strongly overestimated rto. With timestamps
3135 	 * samples are accepted even from very old segments: f.e., when rtt=1
3136 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3137 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3138 	 * in window is lost... Voila.	 			--ANK (010210)
3139 	 */
3140 	struct tcp_sock *tp = tcp_sk(sk);
3141 
3142 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3143 }
3144 
3145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3146 {
3147 	/* We don't have a timestamp. Can only use
3148 	 * packets that are not retransmitted to determine
3149 	 * rtt estimates. Also, we must not reset the
3150 	 * backoff for rto until we get a non-retransmitted
3151 	 * packet. This allows us to deal with a situation
3152 	 * where the network delay has increased suddenly.
3153 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3154 	 */
3155 
3156 	if (flag & FLAG_RETRANS_DATA_ACKED)
3157 		return;
3158 
3159 	tcp_valid_rtt_meas(sk, seq_rtt);
3160 }
3161 
3162 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3163 				      const s32 seq_rtt)
3164 {
3165 	const struct tcp_sock *tp = tcp_sk(sk);
3166 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3167 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3168 		tcp_ack_saw_tstamp(sk, flag);
3169 	else if (seq_rtt >= 0)
3170 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3171 }
3172 
3173 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3174 {
3175 	const struct inet_connection_sock *icsk = inet_csk(sk);
3176 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3177 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3178 }
3179 
3180 /* Restart timer after forward progress on connection.
3181  * RFC2988 recommends to restart timer to now+rto.
3182  */
3183 static void tcp_rearm_rto(struct sock *sk)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 
3187 	if (!tp->packets_out) {
3188 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3189 	} else {
3190 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3191 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3192 	}
3193 }
3194 
3195 /* If we get here, the whole TSO packet has not been acked. */
3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 {
3198 	struct tcp_sock *tp = tcp_sk(sk);
3199 	u32 packets_acked;
3200 
3201 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202 
3203 	packets_acked = tcp_skb_pcount(skb);
3204 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205 		return 0;
3206 	packets_acked -= tcp_skb_pcount(skb);
3207 
3208 	if (packets_acked) {
3209 		BUG_ON(tcp_skb_pcount(skb) == 0);
3210 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211 	}
3212 
3213 	return packets_acked;
3214 }
3215 
3216 /* Remove acknowledged frames from the retransmission queue. If our packet
3217  * is before the ack sequence we can discard it as it's confirmed to have
3218  * arrived at the other end.
3219  */
3220 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3221 			       u32 prior_snd_una)
3222 {
3223 	struct tcp_sock *tp = tcp_sk(sk);
3224 	const struct inet_connection_sock *icsk = inet_csk(sk);
3225 	struct sk_buff *skb;
3226 	u32 now = tcp_time_stamp;
3227 	int fully_acked = 1;
3228 	int flag = 0;
3229 	u32 pkts_acked = 0;
3230 	u32 reord = tp->packets_out;
3231 	u32 prior_sacked = tp->sacked_out;
3232 	s32 seq_rtt = -1;
3233 	s32 ca_seq_rtt = -1;
3234 	ktime_t last_ackt = net_invalid_timestamp();
3235 
3236 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3237 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3238 		u32 acked_pcount;
3239 		u8 sacked = scb->sacked;
3240 
3241 		/* Determine how many packets and what bytes were acked, tso and else */
3242 		if (after(scb->end_seq, tp->snd_una)) {
3243 			if (tcp_skb_pcount(skb) == 1 ||
3244 			    !after(tp->snd_una, scb->seq))
3245 				break;
3246 
3247 			acked_pcount = tcp_tso_acked(sk, skb);
3248 			if (!acked_pcount)
3249 				break;
3250 
3251 			fully_acked = 0;
3252 		} else {
3253 			acked_pcount = tcp_skb_pcount(skb);
3254 		}
3255 
3256 		if (sacked & TCPCB_RETRANS) {
3257 			if (sacked & TCPCB_SACKED_RETRANS)
3258 				tp->retrans_out -= acked_pcount;
3259 			flag |= FLAG_RETRANS_DATA_ACKED;
3260 			ca_seq_rtt = -1;
3261 			seq_rtt = -1;
3262 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3263 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3264 		} else {
3265 			ca_seq_rtt = now - scb->when;
3266 			last_ackt = skb->tstamp;
3267 			if (seq_rtt < 0) {
3268 				seq_rtt = ca_seq_rtt;
3269 			}
3270 			if (!(sacked & TCPCB_SACKED_ACKED))
3271 				reord = min(pkts_acked, reord);
3272 		}
3273 
3274 		if (sacked & TCPCB_SACKED_ACKED)
3275 			tp->sacked_out -= acked_pcount;
3276 		if (sacked & TCPCB_LOST)
3277 			tp->lost_out -= acked_pcount;
3278 
3279 		tp->packets_out -= acked_pcount;
3280 		pkts_acked += acked_pcount;
3281 
3282 		/* Initial outgoing SYN's get put onto the write_queue
3283 		 * just like anything else we transmit.  It is not
3284 		 * true data, and if we misinform our callers that
3285 		 * this ACK acks real data, we will erroneously exit
3286 		 * connection startup slow start one packet too
3287 		 * quickly.  This is severely frowned upon behavior.
3288 		 */
3289 		if (!(scb->flags & TCPHDR_SYN)) {
3290 			flag |= FLAG_DATA_ACKED;
3291 		} else {
3292 			flag |= FLAG_SYN_ACKED;
3293 			tp->retrans_stamp = 0;
3294 		}
3295 
3296 		if (!fully_acked)
3297 			break;
3298 
3299 		tcp_unlink_write_queue(skb, sk);
3300 		sk_wmem_free_skb(sk, skb);
3301 		tp->scoreboard_skb_hint = NULL;
3302 		if (skb == tp->retransmit_skb_hint)
3303 			tp->retransmit_skb_hint = NULL;
3304 		if (skb == tp->lost_skb_hint)
3305 			tp->lost_skb_hint = NULL;
3306 	}
3307 
3308 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3309 		tp->snd_up = tp->snd_una;
3310 
3311 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3312 		flag |= FLAG_SACK_RENEGING;
3313 
3314 	if (flag & FLAG_ACKED) {
3315 		const struct tcp_congestion_ops *ca_ops
3316 			= inet_csk(sk)->icsk_ca_ops;
3317 
3318 		if (unlikely(icsk->icsk_mtup.probe_size &&
3319 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3320 			tcp_mtup_probe_success(sk);
3321 		}
3322 
3323 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3324 		tcp_rearm_rto(sk);
3325 
3326 		if (tcp_is_reno(tp)) {
3327 			tcp_remove_reno_sacks(sk, pkts_acked);
3328 		} else {
3329 			int delta;
3330 
3331 			/* Non-retransmitted hole got filled? That's reordering */
3332 			if (reord < prior_fackets)
3333 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3334 
3335 			delta = tcp_is_fack(tp) ? pkts_acked :
3336 						  prior_sacked - tp->sacked_out;
3337 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3338 		}
3339 
3340 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3341 
3342 		if (ca_ops->pkts_acked) {
3343 			s32 rtt_us = -1;
3344 
3345 			/* Is the ACK triggering packet unambiguous? */
3346 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3347 				/* High resolution needed and available? */
3348 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3349 				    !ktime_equal(last_ackt,
3350 						 net_invalid_timestamp()))
3351 					rtt_us = ktime_us_delta(ktime_get_real(),
3352 								last_ackt);
3353 				else if (ca_seq_rtt >= 0)
3354 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3355 			}
3356 
3357 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3358 		}
3359 	}
3360 
3361 #if FASTRETRANS_DEBUG > 0
3362 	WARN_ON((int)tp->sacked_out < 0);
3363 	WARN_ON((int)tp->lost_out < 0);
3364 	WARN_ON((int)tp->retrans_out < 0);
3365 	if (!tp->packets_out && tcp_is_sack(tp)) {
3366 		icsk = inet_csk(sk);
3367 		if (tp->lost_out) {
3368 			printk(KERN_DEBUG "Leak l=%u %d\n",
3369 			       tp->lost_out, icsk->icsk_ca_state);
3370 			tp->lost_out = 0;
3371 		}
3372 		if (tp->sacked_out) {
3373 			printk(KERN_DEBUG "Leak s=%u %d\n",
3374 			       tp->sacked_out, icsk->icsk_ca_state);
3375 			tp->sacked_out = 0;
3376 		}
3377 		if (tp->retrans_out) {
3378 			printk(KERN_DEBUG "Leak r=%u %d\n",
3379 			       tp->retrans_out, icsk->icsk_ca_state);
3380 			tp->retrans_out = 0;
3381 		}
3382 	}
3383 #endif
3384 	return flag;
3385 }
3386 
3387 static void tcp_ack_probe(struct sock *sk)
3388 {
3389 	const struct tcp_sock *tp = tcp_sk(sk);
3390 	struct inet_connection_sock *icsk = inet_csk(sk);
3391 
3392 	/* Was it a usable window open? */
3393 
3394 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3395 		icsk->icsk_backoff = 0;
3396 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3398 		 * This function is not for random using!
3399 		 */
3400 	} else {
3401 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3402 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3403 					  TCP_RTO_MAX);
3404 	}
3405 }
3406 
3407 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3408 {
3409 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3410 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3411 }
3412 
3413 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3414 {
3415 	const struct tcp_sock *tp = tcp_sk(sk);
3416 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3417 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3418 }
3419 
3420 /* Check that window update is acceptable.
3421  * The function assumes that snd_una<=ack<=snd_next.
3422  */
3423 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3424 					const u32 ack, const u32 ack_seq,
3425 					const u32 nwin)
3426 {
3427 	return	after(ack, tp->snd_una) ||
3428 		after(ack_seq, tp->snd_wl1) ||
3429 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3430 }
3431 
3432 /* Update our send window.
3433  *
3434  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3435  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436  */
3437 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3438 				 u32 ack_seq)
3439 {
3440 	struct tcp_sock *tp = tcp_sk(sk);
3441 	int flag = 0;
3442 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3443 
3444 	if (likely(!tcp_hdr(skb)->syn))
3445 		nwin <<= tp->rx_opt.snd_wscale;
3446 
3447 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3448 		flag |= FLAG_WIN_UPDATE;
3449 		tcp_update_wl(tp, ack_seq);
3450 
3451 		if (tp->snd_wnd != nwin) {
3452 			tp->snd_wnd = nwin;
3453 
3454 			/* Note, it is the only place, where
3455 			 * fast path is recovered for sending TCP.
3456 			 */
3457 			tp->pred_flags = 0;
3458 			tcp_fast_path_check(sk);
3459 
3460 			if (nwin > tp->max_window) {
3461 				tp->max_window = nwin;
3462 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3463 			}
3464 		}
3465 	}
3466 
3467 	tp->snd_una = ack;
3468 
3469 	return flag;
3470 }
3471 
3472 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3473  * continue in congestion avoidance.
3474  */
3475 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3476 {
3477 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3478 	tp->snd_cwnd_cnt = 0;
3479 	tp->bytes_acked = 0;
3480 	TCP_ECN_queue_cwr(tp);
3481 	tcp_moderate_cwnd(tp);
3482 }
3483 
3484 /* A conservative spurious RTO response algorithm: reduce cwnd using
3485  * rate halving and continue in congestion avoidance.
3486  */
3487 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3488 {
3489 	tcp_enter_cwr(sk, 0);
3490 }
3491 
3492 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3493 {
3494 	if (flag & FLAG_ECE)
3495 		tcp_ratehalving_spur_to_response(sk);
3496 	else
3497 		tcp_undo_cwr(sk, 1);
3498 }
3499 
3500 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501  *
3502  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3503  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3504  * window (but not to or beyond highest sequence sent before RTO):
3505  *   On First ACK,  send two new segments out.
3506  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3507  *                  algorithm is not part of the F-RTO detection algorithm
3508  *                  given in RFC4138 but can be selected separately).
3509  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3510  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3511  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3512  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513  *
3514  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3515  * original window even after we transmit two new data segments.
3516  *
3517  * SACK version:
3518  *   on first step, wait until first cumulative ACK arrives, then move to
3519  *   the second step. In second step, the next ACK decides.
3520  *
3521  * F-RTO is implemented (mainly) in four functions:
3522  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3523  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3524  *     called when tcp_use_frto() showed green light
3525  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3526  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3527  *     to prove that the RTO is indeed spurious. It transfers the control
3528  *     from F-RTO to the conventional RTO recovery
3529  */
3530 static int tcp_process_frto(struct sock *sk, int flag)
3531 {
3532 	struct tcp_sock *tp = tcp_sk(sk);
3533 
3534 	tcp_verify_left_out(tp);
3535 
3536 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3537 	if (flag & FLAG_DATA_ACKED)
3538 		inet_csk(sk)->icsk_retransmits = 0;
3539 
3540 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3541 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3542 		tp->undo_marker = 0;
3543 
3544 	if (!before(tp->snd_una, tp->frto_highmark)) {
3545 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3546 		return 1;
3547 	}
3548 
3549 	if (!tcp_is_sackfrto(tp)) {
3550 		/* RFC4138 shortcoming in step 2; should also have case c):
3551 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3552 		 * data, winupdate
3553 		 */
3554 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3555 			return 1;
3556 
3557 		if (!(flag & FLAG_DATA_ACKED)) {
3558 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3559 					    flag);
3560 			return 1;
3561 		}
3562 	} else {
3563 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3564 			/* Prevent sending of new data. */
3565 			tp->snd_cwnd = min(tp->snd_cwnd,
3566 					   tcp_packets_in_flight(tp));
3567 			return 1;
3568 		}
3569 
3570 		if ((tp->frto_counter >= 2) &&
3571 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3572 		     ((flag & FLAG_DATA_SACKED) &&
3573 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3574 			/* RFC4138 shortcoming (see comment above) */
3575 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3576 			    (flag & FLAG_NOT_DUP))
3577 				return 1;
3578 
3579 			tcp_enter_frto_loss(sk, 3, flag);
3580 			return 1;
3581 		}
3582 	}
3583 
3584 	if (tp->frto_counter == 1) {
3585 		/* tcp_may_send_now needs to see updated state */
3586 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3587 		tp->frto_counter = 2;
3588 
3589 		if (!tcp_may_send_now(sk))
3590 			tcp_enter_frto_loss(sk, 2, flag);
3591 
3592 		return 1;
3593 	} else {
3594 		switch (sysctl_tcp_frto_response) {
3595 		case 2:
3596 			tcp_undo_spur_to_response(sk, flag);
3597 			break;
3598 		case 1:
3599 			tcp_conservative_spur_to_response(tp);
3600 			break;
3601 		default:
3602 			tcp_ratehalving_spur_to_response(sk);
3603 			break;
3604 		}
3605 		tp->frto_counter = 0;
3606 		tp->undo_marker = 0;
3607 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3608 	}
3609 	return 0;
3610 }
3611 
3612 /* This routine deals with incoming acks, but not outgoing ones. */
3613 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3614 {
3615 	struct inet_connection_sock *icsk = inet_csk(sk);
3616 	struct tcp_sock *tp = tcp_sk(sk);
3617 	u32 prior_snd_una = tp->snd_una;
3618 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3619 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3620 	u32 prior_in_flight;
3621 	u32 prior_fackets;
3622 	int prior_packets;
3623 	int frto_cwnd = 0;
3624 
3625 	/* If the ack is older than previous acks
3626 	 * then we can probably ignore it.
3627 	 */
3628 	if (before(ack, prior_snd_una))
3629 		goto old_ack;
3630 
3631 	/* If the ack includes data we haven't sent yet, discard
3632 	 * this segment (RFC793 Section 3.9).
3633 	 */
3634 	if (after(ack, tp->snd_nxt))
3635 		goto invalid_ack;
3636 
3637 	if (after(ack, prior_snd_una))
3638 		flag |= FLAG_SND_UNA_ADVANCED;
3639 
3640 	if (sysctl_tcp_abc) {
3641 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3642 			tp->bytes_acked += ack - prior_snd_una;
3643 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3644 			/* we assume just one segment left network */
3645 			tp->bytes_acked += min(ack - prior_snd_una,
3646 					       tp->mss_cache);
3647 	}
3648 
3649 	prior_fackets = tp->fackets_out;
3650 	prior_in_flight = tcp_packets_in_flight(tp);
3651 
3652 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3653 		/* Window is constant, pure forward advance.
3654 		 * No more checks are required.
3655 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 		 */
3657 		tcp_update_wl(tp, ack_seq);
3658 		tp->snd_una = ack;
3659 		flag |= FLAG_WIN_UPDATE;
3660 
3661 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3662 
3663 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3664 	} else {
3665 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3666 			flag |= FLAG_DATA;
3667 		else
3668 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3669 
3670 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3671 
3672 		if (TCP_SKB_CB(skb)->sacked)
3673 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3674 
3675 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3676 			flag |= FLAG_ECE;
3677 
3678 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3679 	}
3680 
3681 	/* We passed data and got it acked, remove any soft error
3682 	 * log. Something worked...
3683 	 */
3684 	sk->sk_err_soft = 0;
3685 	icsk->icsk_probes_out = 0;
3686 	tp->rcv_tstamp = tcp_time_stamp;
3687 	prior_packets = tp->packets_out;
3688 	if (!prior_packets)
3689 		goto no_queue;
3690 
3691 	/* See if we can take anything off of the retransmit queue. */
3692 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3693 
3694 	if (tp->frto_counter)
3695 		frto_cwnd = tcp_process_frto(sk, flag);
3696 	/* Guarantee sacktag reordering detection against wrap-arounds */
3697 	if (before(tp->frto_highmark, tp->snd_una))
3698 		tp->frto_highmark = 0;
3699 
3700 	if (tcp_ack_is_dubious(sk, flag)) {
3701 		/* Advance CWND, if state allows this. */
3702 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3703 		    tcp_may_raise_cwnd(sk, flag))
3704 			tcp_cong_avoid(sk, ack, prior_in_flight);
3705 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3706 				      flag);
3707 	} else {
3708 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3709 			tcp_cong_avoid(sk, ack, prior_in_flight);
3710 	}
3711 
3712 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3713 		dst_confirm(__sk_dst_get(sk));
3714 
3715 	return 1;
3716 
3717 no_queue:
3718 	/* If this ack opens up a zero window, clear backoff.  It was
3719 	 * being used to time the probes, and is probably far higher than
3720 	 * it needs to be for normal retransmission.
3721 	 */
3722 	if (tcp_send_head(sk))
3723 		tcp_ack_probe(sk);
3724 	return 1;
3725 
3726 invalid_ack:
3727 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3728 	return -1;
3729 
3730 old_ack:
3731 	if (TCP_SKB_CB(skb)->sacked) {
3732 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3733 		if (icsk->icsk_ca_state == TCP_CA_Open)
3734 			tcp_try_keep_open(sk);
3735 	}
3736 
3737 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3738 	return 0;
3739 }
3740 
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742  * But, this can also be called on packets in the established flow when
3743  * the fast version below fails.
3744  */
3745 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3746 		       u8 **hvpp, int estab)
3747 {
3748 	unsigned char *ptr;
3749 	struct tcphdr *th = tcp_hdr(skb);
3750 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3751 
3752 	ptr = (unsigned char *)(th + 1);
3753 	opt_rx->saw_tstamp = 0;
3754 
3755 	while (length > 0) {
3756 		int opcode = *ptr++;
3757 		int opsize;
3758 
3759 		switch (opcode) {
3760 		case TCPOPT_EOL:
3761 			return;
3762 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3763 			length--;
3764 			continue;
3765 		default:
3766 			opsize = *ptr++;
3767 			if (opsize < 2) /* "silly options" */
3768 				return;
3769 			if (opsize > length)
3770 				return;	/* don't parse partial options */
3771 			switch (opcode) {
3772 			case TCPOPT_MSS:
3773 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3774 					u16 in_mss = get_unaligned_be16(ptr);
3775 					if (in_mss) {
3776 						if (opt_rx->user_mss &&
3777 						    opt_rx->user_mss < in_mss)
3778 							in_mss = opt_rx->user_mss;
3779 						opt_rx->mss_clamp = in_mss;
3780 					}
3781 				}
3782 				break;
3783 			case TCPOPT_WINDOW:
3784 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3785 				    !estab && sysctl_tcp_window_scaling) {
3786 					__u8 snd_wscale = *(__u8 *)ptr;
3787 					opt_rx->wscale_ok = 1;
3788 					if (snd_wscale > 14) {
3789 						if (net_ratelimit())
3790 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3791 							       "scaling value %d >14 received.\n",
3792 							       snd_wscale);
3793 						snd_wscale = 14;
3794 					}
3795 					opt_rx->snd_wscale = snd_wscale;
3796 				}
3797 				break;
3798 			case TCPOPT_TIMESTAMP:
3799 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3800 				    ((estab && opt_rx->tstamp_ok) ||
3801 				     (!estab && sysctl_tcp_timestamps))) {
3802 					opt_rx->saw_tstamp = 1;
3803 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805 				}
3806 				break;
3807 			case TCPOPT_SACK_PERM:
3808 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809 				    !estab && sysctl_tcp_sack) {
3810 					opt_rx->sack_ok = 1;
3811 					tcp_sack_reset(opt_rx);
3812 				}
3813 				break;
3814 
3815 			case TCPOPT_SACK:
3816 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818 				   opt_rx->sack_ok) {
3819 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820 				}
3821 				break;
3822 #ifdef CONFIG_TCP_MD5SIG
3823 			case TCPOPT_MD5SIG:
3824 				/*
3825 				 * The MD5 Hash has already been
3826 				 * checked (see tcp_v{4,6}_do_rcv()).
3827 				 */
3828 				break;
3829 #endif
3830 			case TCPOPT_COOKIE:
3831 				/* This option is variable length.
3832 				 */
3833 				switch (opsize) {
3834 				case TCPOLEN_COOKIE_BASE:
3835 					/* not yet implemented */
3836 					break;
3837 				case TCPOLEN_COOKIE_PAIR:
3838 					/* not yet implemented */
3839 					break;
3840 				case TCPOLEN_COOKIE_MIN+0:
3841 				case TCPOLEN_COOKIE_MIN+2:
3842 				case TCPOLEN_COOKIE_MIN+4:
3843 				case TCPOLEN_COOKIE_MIN+6:
3844 				case TCPOLEN_COOKIE_MAX:
3845 					/* 16-bit multiple */
3846 					opt_rx->cookie_plus = opsize;
3847 					*hvpp = ptr;
3848 					break;
3849 				default:
3850 					/* ignore option */
3851 					break;
3852 				}
3853 				break;
3854 			}
3855 
3856 			ptr += opsize-2;
3857 			length -= opsize;
3858 		}
3859 	}
3860 }
3861 EXPORT_SYMBOL(tcp_parse_options);
3862 
3863 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3864 {
3865 	__be32 *ptr = (__be32 *)(th + 1);
3866 
3867 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3868 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3869 		tp->rx_opt.saw_tstamp = 1;
3870 		++ptr;
3871 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3872 		++ptr;
3873 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3874 		return 1;
3875 	}
3876 	return 0;
3877 }
3878 
3879 /* Fast parse options. This hopes to only see timestamps.
3880  * If it is wrong it falls back on tcp_parse_options().
3881  */
3882 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3883 				  struct tcp_sock *tp, u8 **hvpp)
3884 {
3885 	/* In the spirit of fast parsing, compare doff directly to constant
3886 	 * values.  Because equality is used, short doff can be ignored here.
3887 	 */
3888 	if (th->doff == (sizeof(*th) / 4)) {
3889 		tp->rx_opt.saw_tstamp = 0;
3890 		return 0;
3891 	} else if (tp->rx_opt.tstamp_ok &&
3892 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3893 		if (tcp_parse_aligned_timestamp(tp, th))
3894 			return 1;
3895 	}
3896 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3897 	return 1;
3898 }
3899 
3900 #ifdef CONFIG_TCP_MD5SIG
3901 /*
3902  * Parse MD5 Signature option
3903  */
3904 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3905 {
3906 	int length = (th->doff << 2) - sizeof (*th);
3907 	u8 *ptr = (u8*)(th + 1);
3908 
3909 	/* If the TCP option is too short, we can short cut */
3910 	if (length < TCPOLEN_MD5SIG)
3911 		return NULL;
3912 
3913 	while (length > 0) {
3914 		int opcode = *ptr++;
3915 		int opsize;
3916 
3917 		switch(opcode) {
3918 		case TCPOPT_EOL:
3919 			return NULL;
3920 		case TCPOPT_NOP:
3921 			length--;
3922 			continue;
3923 		default:
3924 			opsize = *ptr++;
3925 			if (opsize < 2 || opsize > length)
3926 				return NULL;
3927 			if (opcode == TCPOPT_MD5SIG)
3928 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929 		}
3930 		ptr += opsize - 2;
3931 		length -= opsize;
3932 	}
3933 	return NULL;
3934 }
3935 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936 #endif
3937 
3938 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3939 {
3940 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3941 	tp->rx_opt.ts_recent_stamp = get_seconds();
3942 }
3943 
3944 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3945 {
3946 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3947 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3948 		 * extra check below makes sure this can only happen
3949 		 * for pure ACK frames.  -DaveM
3950 		 *
3951 		 * Not only, also it occurs for expired timestamps.
3952 		 */
3953 
3954 		if (tcp_paws_check(&tp->rx_opt, 0))
3955 			tcp_store_ts_recent(tp);
3956 	}
3957 }
3958 
3959 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3960  *
3961  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3962  * it can pass through stack. So, the following predicate verifies that
3963  * this segment is not used for anything but congestion avoidance or
3964  * fast retransmit. Moreover, we even are able to eliminate most of such
3965  * second order effects, if we apply some small "replay" window (~RTO)
3966  * to timestamp space.
3967  *
3968  * All these measures still do not guarantee that we reject wrapped ACKs
3969  * on networks with high bandwidth, when sequence space is recycled fastly,
3970  * but it guarantees that such events will be very rare and do not affect
3971  * connection seriously. This doesn't look nice, but alas, PAWS is really
3972  * buggy extension.
3973  *
3974  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3975  * states that events when retransmit arrives after original data are rare.
3976  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3977  * the biggest problem on large power networks even with minor reordering.
3978  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3979  * up to bandwidth of 18Gigabit/sec. 8) ]
3980  */
3981 
3982 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3983 {
3984 	struct tcp_sock *tp = tcp_sk(sk);
3985 	struct tcphdr *th = tcp_hdr(skb);
3986 	u32 seq = TCP_SKB_CB(skb)->seq;
3987 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3988 
3989 	return (/* 1. Pure ACK with correct sequence number. */
3990 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3991 
3992 		/* 2. ... and duplicate ACK. */
3993 		ack == tp->snd_una &&
3994 
3995 		/* 3. ... and does not update window. */
3996 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3997 
3998 		/* 4. ... and sits in replay window. */
3999 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4000 }
4001 
4002 static inline int tcp_paws_discard(const struct sock *sk,
4003 				   const struct sk_buff *skb)
4004 {
4005 	const struct tcp_sock *tp = tcp_sk(sk);
4006 
4007 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4008 	       !tcp_disordered_ack(sk, skb);
4009 }
4010 
4011 /* Check segment sequence number for validity.
4012  *
4013  * Segment controls are considered valid, if the segment
4014  * fits to the window after truncation to the window. Acceptability
4015  * of data (and SYN, FIN, of course) is checked separately.
4016  * See tcp_data_queue(), for example.
4017  *
4018  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4019  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4020  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4021  * (borrowed from freebsd)
4022  */
4023 
4024 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4025 {
4026 	return	!before(end_seq, tp->rcv_wup) &&
4027 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4028 }
4029 
4030 /* When we get a reset we do this. */
4031 static void tcp_reset(struct sock *sk)
4032 {
4033 	/* We want the right error as BSD sees it (and indeed as we do). */
4034 	switch (sk->sk_state) {
4035 	case TCP_SYN_SENT:
4036 		sk->sk_err = ECONNREFUSED;
4037 		break;
4038 	case TCP_CLOSE_WAIT:
4039 		sk->sk_err = EPIPE;
4040 		break;
4041 	case TCP_CLOSE:
4042 		return;
4043 	default:
4044 		sk->sk_err = ECONNRESET;
4045 	}
4046 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4047 	smp_wmb();
4048 
4049 	if (!sock_flag(sk, SOCK_DEAD))
4050 		sk->sk_error_report(sk);
4051 
4052 	tcp_done(sk);
4053 }
4054 
4055 /*
4056  * 	Process the FIN bit. This now behaves as it is supposed to work
4057  *	and the FIN takes effect when it is validly part of sequence
4058  *	space. Not before when we get holes.
4059  *
4060  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4061  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4062  *	TIME-WAIT)
4063  *
4064  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4065  *	close and we go into CLOSING (and later onto TIME-WAIT)
4066  *
4067  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4068  */
4069 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4070 {
4071 	struct tcp_sock *tp = tcp_sk(sk);
4072 
4073 	inet_csk_schedule_ack(sk);
4074 
4075 	sk->sk_shutdown |= RCV_SHUTDOWN;
4076 	sock_set_flag(sk, SOCK_DONE);
4077 
4078 	switch (sk->sk_state) {
4079 	case TCP_SYN_RECV:
4080 	case TCP_ESTABLISHED:
4081 		/* Move to CLOSE_WAIT */
4082 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4083 		inet_csk(sk)->icsk_ack.pingpong = 1;
4084 		break;
4085 
4086 	case TCP_CLOSE_WAIT:
4087 	case TCP_CLOSING:
4088 		/* Received a retransmission of the FIN, do
4089 		 * nothing.
4090 		 */
4091 		break;
4092 	case TCP_LAST_ACK:
4093 		/* RFC793: Remain in the LAST-ACK state. */
4094 		break;
4095 
4096 	case TCP_FIN_WAIT1:
4097 		/* This case occurs when a simultaneous close
4098 		 * happens, we must ack the received FIN and
4099 		 * enter the CLOSING state.
4100 		 */
4101 		tcp_send_ack(sk);
4102 		tcp_set_state(sk, TCP_CLOSING);
4103 		break;
4104 	case TCP_FIN_WAIT2:
4105 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4106 		tcp_send_ack(sk);
4107 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4108 		break;
4109 	default:
4110 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4111 		 * cases we should never reach this piece of code.
4112 		 */
4113 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4114 		       __func__, sk->sk_state);
4115 		break;
4116 	}
4117 
4118 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4119 	 * Probably, we should reset in this case. For now drop them.
4120 	 */
4121 	__skb_queue_purge(&tp->out_of_order_queue);
4122 	if (tcp_is_sack(tp))
4123 		tcp_sack_reset(&tp->rx_opt);
4124 	sk_mem_reclaim(sk);
4125 
4126 	if (!sock_flag(sk, SOCK_DEAD)) {
4127 		sk->sk_state_change(sk);
4128 
4129 		/* Do not send POLL_HUP for half duplex close. */
4130 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4131 		    sk->sk_state == TCP_CLOSE)
4132 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4133 		else
4134 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4135 	}
4136 }
4137 
4138 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4139 				  u32 end_seq)
4140 {
4141 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4142 		if (before(seq, sp->start_seq))
4143 			sp->start_seq = seq;
4144 		if (after(end_seq, sp->end_seq))
4145 			sp->end_seq = end_seq;
4146 		return 1;
4147 	}
4148 	return 0;
4149 }
4150 
4151 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4152 {
4153 	struct tcp_sock *tp = tcp_sk(sk);
4154 
4155 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4156 		int mib_idx;
4157 
4158 		if (before(seq, tp->rcv_nxt))
4159 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4160 		else
4161 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4162 
4163 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4164 
4165 		tp->rx_opt.dsack = 1;
4166 		tp->duplicate_sack[0].start_seq = seq;
4167 		tp->duplicate_sack[0].end_seq = end_seq;
4168 	}
4169 }
4170 
4171 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4172 {
4173 	struct tcp_sock *tp = tcp_sk(sk);
4174 
4175 	if (!tp->rx_opt.dsack)
4176 		tcp_dsack_set(sk, seq, end_seq);
4177 	else
4178 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4179 }
4180 
4181 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4182 {
4183 	struct tcp_sock *tp = tcp_sk(sk);
4184 
4185 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4186 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4187 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4188 		tcp_enter_quickack_mode(sk);
4189 
4190 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4191 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4192 
4193 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4194 				end_seq = tp->rcv_nxt;
4195 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4196 		}
4197 	}
4198 
4199 	tcp_send_ack(sk);
4200 }
4201 
4202 /* These routines update the SACK block as out-of-order packets arrive or
4203  * in-order packets close up the sequence space.
4204  */
4205 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4206 {
4207 	int this_sack;
4208 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4209 	struct tcp_sack_block *swalk = sp + 1;
4210 
4211 	/* See if the recent change to the first SACK eats into
4212 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4213 	 */
4214 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4215 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4216 			int i;
4217 
4218 			/* Zap SWALK, by moving every further SACK up by one slot.
4219 			 * Decrease num_sacks.
4220 			 */
4221 			tp->rx_opt.num_sacks--;
4222 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4223 				sp[i] = sp[i + 1];
4224 			continue;
4225 		}
4226 		this_sack++, swalk++;
4227 	}
4228 }
4229 
4230 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4231 {
4232 	struct tcp_sock *tp = tcp_sk(sk);
4233 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4234 	int cur_sacks = tp->rx_opt.num_sacks;
4235 	int this_sack;
4236 
4237 	if (!cur_sacks)
4238 		goto new_sack;
4239 
4240 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4241 		if (tcp_sack_extend(sp, seq, end_seq)) {
4242 			/* Rotate this_sack to the first one. */
4243 			for (; this_sack > 0; this_sack--, sp--)
4244 				swap(*sp, *(sp - 1));
4245 			if (cur_sacks > 1)
4246 				tcp_sack_maybe_coalesce(tp);
4247 			return;
4248 		}
4249 	}
4250 
4251 	/* Could not find an adjacent existing SACK, build a new one,
4252 	 * put it at the front, and shift everyone else down.  We
4253 	 * always know there is at least one SACK present already here.
4254 	 *
4255 	 * If the sack array is full, forget about the last one.
4256 	 */
4257 	if (this_sack >= TCP_NUM_SACKS) {
4258 		this_sack--;
4259 		tp->rx_opt.num_sacks--;
4260 		sp--;
4261 	}
4262 	for (; this_sack > 0; this_sack--, sp--)
4263 		*sp = *(sp - 1);
4264 
4265 new_sack:
4266 	/* Build the new head SACK, and we're done. */
4267 	sp->start_seq = seq;
4268 	sp->end_seq = end_seq;
4269 	tp->rx_opt.num_sacks++;
4270 }
4271 
4272 /* RCV.NXT advances, some SACKs should be eaten. */
4273 
4274 static void tcp_sack_remove(struct tcp_sock *tp)
4275 {
4276 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4277 	int num_sacks = tp->rx_opt.num_sacks;
4278 	int this_sack;
4279 
4280 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4281 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4282 		tp->rx_opt.num_sacks = 0;
4283 		return;
4284 	}
4285 
4286 	for (this_sack = 0; this_sack < num_sacks;) {
4287 		/* Check if the start of the sack is covered by RCV.NXT. */
4288 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4289 			int i;
4290 
4291 			/* RCV.NXT must cover all the block! */
4292 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4293 
4294 			/* Zap this SACK, by moving forward any other SACKS. */
4295 			for (i=this_sack+1; i < num_sacks; i++)
4296 				tp->selective_acks[i-1] = tp->selective_acks[i];
4297 			num_sacks--;
4298 			continue;
4299 		}
4300 		this_sack++;
4301 		sp++;
4302 	}
4303 	tp->rx_opt.num_sacks = num_sacks;
4304 }
4305 
4306 /* This one checks to see if we can put data from the
4307  * out_of_order queue into the receive_queue.
4308  */
4309 static void tcp_ofo_queue(struct sock *sk)
4310 {
4311 	struct tcp_sock *tp = tcp_sk(sk);
4312 	__u32 dsack_high = tp->rcv_nxt;
4313 	struct sk_buff *skb;
4314 
4315 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4316 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4317 			break;
4318 
4319 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4320 			__u32 dsack = dsack_high;
4321 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4322 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4323 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4324 		}
4325 
4326 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4327 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4328 			__skb_unlink(skb, &tp->out_of_order_queue);
4329 			__kfree_skb(skb);
4330 			continue;
4331 		}
4332 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4333 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4334 			   TCP_SKB_CB(skb)->end_seq);
4335 
4336 		__skb_unlink(skb, &tp->out_of_order_queue);
4337 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4338 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4339 		if (tcp_hdr(skb)->fin)
4340 			tcp_fin(skb, sk, tcp_hdr(skb));
4341 	}
4342 }
4343 
4344 static int tcp_prune_ofo_queue(struct sock *sk);
4345 static int tcp_prune_queue(struct sock *sk);
4346 
4347 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4348 {
4349 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4350 	    !sk_rmem_schedule(sk, size)) {
4351 
4352 		if (tcp_prune_queue(sk) < 0)
4353 			return -1;
4354 
4355 		if (!sk_rmem_schedule(sk, size)) {
4356 			if (!tcp_prune_ofo_queue(sk))
4357 				return -1;
4358 
4359 			if (!sk_rmem_schedule(sk, size))
4360 				return -1;
4361 		}
4362 	}
4363 	return 0;
4364 }
4365 
4366 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4367 {
4368 	struct tcphdr *th = tcp_hdr(skb);
4369 	struct tcp_sock *tp = tcp_sk(sk);
4370 	int eaten = -1;
4371 
4372 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4373 		goto drop;
4374 
4375 	skb_dst_drop(skb);
4376 	__skb_pull(skb, th->doff * 4);
4377 
4378 	TCP_ECN_accept_cwr(tp, skb);
4379 
4380 	tp->rx_opt.dsack = 0;
4381 
4382 	/*  Queue data for delivery to the user.
4383 	 *  Packets in sequence go to the receive queue.
4384 	 *  Out of sequence packets to the out_of_order_queue.
4385 	 */
4386 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4387 		if (tcp_receive_window(tp) == 0)
4388 			goto out_of_window;
4389 
4390 		/* Ok. In sequence. In window. */
4391 		if (tp->ucopy.task == current &&
4392 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4393 		    sock_owned_by_user(sk) && !tp->urg_data) {
4394 			int chunk = min_t(unsigned int, skb->len,
4395 					  tp->ucopy.len);
4396 
4397 			__set_current_state(TASK_RUNNING);
4398 
4399 			local_bh_enable();
4400 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4401 				tp->ucopy.len -= chunk;
4402 				tp->copied_seq += chunk;
4403 				eaten = (chunk == skb->len);
4404 				tcp_rcv_space_adjust(sk);
4405 			}
4406 			local_bh_disable();
4407 		}
4408 
4409 		if (eaten <= 0) {
4410 queue_and_out:
4411 			if (eaten < 0 &&
4412 			    tcp_try_rmem_schedule(sk, skb->truesize))
4413 				goto drop;
4414 
4415 			skb_set_owner_r(skb, sk);
4416 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4417 		}
4418 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4419 		if (skb->len)
4420 			tcp_event_data_recv(sk, skb);
4421 		if (th->fin)
4422 			tcp_fin(skb, sk, th);
4423 
4424 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4425 			tcp_ofo_queue(sk);
4426 
4427 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4428 			 * gap in queue is filled.
4429 			 */
4430 			if (skb_queue_empty(&tp->out_of_order_queue))
4431 				inet_csk(sk)->icsk_ack.pingpong = 0;
4432 		}
4433 
4434 		if (tp->rx_opt.num_sacks)
4435 			tcp_sack_remove(tp);
4436 
4437 		tcp_fast_path_check(sk);
4438 
4439 		if (eaten > 0)
4440 			__kfree_skb(skb);
4441 		else if (!sock_flag(sk, SOCK_DEAD))
4442 			sk->sk_data_ready(sk, 0);
4443 		return;
4444 	}
4445 
4446 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4447 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4448 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4449 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4450 
4451 out_of_window:
4452 		tcp_enter_quickack_mode(sk);
4453 		inet_csk_schedule_ack(sk);
4454 drop:
4455 		__kfree_skb(skb);
4456 		return;
4457 	}
4458 
4459 	/* Out of window. F.e. zero window probe. */
4460 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4461 		goto out_of_window;
4462 
4463 	tcp_enter_quickack_mode(sk);
4464 
4465 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4466 		/* Partial packet, seq < rcv_next < end_seq */
4467 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4468 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4469 			   TCP_SKB_CB(skb)->end_seq);
4470 
4471 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4472 
4473 		/* If window is closed, drop tail of packet. But after
4474 		 * remembering D-SACK for its head made in previous line.
4475 		 */
4476 		if (!tcp_receive_window(tp))
4477 			goto out_of_window;
4478 		goto queue_and_out;
4479 	}
4480 
4481 	TCP_ECN_check_ce(tp, skb);
4482 
4483 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4484 		goto drop;
4485 
4486 	/* Disable header prediction. */
4487 	tp->pred_flags = 0;
4488 	inet_csk_schedule_ack(sk);
4489 
4490 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4491 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4492 
4493 	skb_set_owner_r(skb, sk);
4494 
4495 	if (!skb_peek(&tp->out_of_order_queue)) {
4496 		/* Initial out of order segment, build 1 SACK. */
4497 		if (tcp_is_sack(tp)) {
4498 			tp->rx_opt.num_sacks = 1;
4499 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4500 			tp->selective_acks[0].end_seq =
4501 						TCP_SKB_CB(skb)->end_seq;
4502 		}
4503 		__skb_queue_head(&tp->out_of_order_queue, skb);
4504 	} else {
4505 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4506 		u32 seq = TCP_SKB_CB(skb)->seq;
4507 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4508 
4509 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4510 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4511 
4512 			if (!tp->rx_opt.num_sacks ||
4513 			    tp->selective_acks[0].end_seq != seq)
4514 				goto add_sack;
4515 
4516 			/* Common case: data arrive in order after hole. */
4517 			tp->selective_acks[0].end_seq = end_seq;
4518 			return;
4519 		}
4520 
4521 		/* Find place to insert this segment. */
4522 		while (1) {
4523 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4524 				break;
4525 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4526 				skb1 = NULL;
4527 				break;
4528 			}
4529 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4530 		}
4531 
4532 		/* Do skb overlap to previous one? */
4533 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4534 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4535 				/* All the bits are present. Drop. */
4536 				__kfree_skb(skb);
4537 				tcp_dsack_set(sk, seq, end_seq);
4538 				goto add_sack;
4539 			}
4540 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4541 				/* Partial overlap. */
4542 				tcp_dsack_set(sk, seq,
4543 					      TCP_SKB_CB(skb1)->end_seq);
4544 			} else {
4545 				if (skb_queue_is_first(&tp->out_of_order_queue,
4546 						       skb1))
4547 					skb1 = NULL;
4548 				else
4549 					skb1 = skb_queue_prev(
4550 						&tp->out_of_order_queue,
4551 						skb1);
4552 			}
4553 		}
4554 		if (!skb1)
4555 			__skb_queue_head(&tp->out_of_order_queue, skb);
4556 		else
4557 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4558 
4559 		/* And clean segments covered by new one as whole. */
4560 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4561 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4562 
4563 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4564 				break;
4565 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4566 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4567 						 end_seq);
4568 				break;
4569 			}
4570 			__skb_unlink(skb1, &tp->out_of_order_queue);
4571 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4572 					 TCP_SKB_CB(skb1)->end_seq);
4573 			__kfree_skb(skb1);
4574 		}
4575 
4576 add_sack:
4577 		if (tcp_is_sack(tp))
4578 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4579 	}
4580 }
4581 
4582 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4583 					struct sk_buff_head *list)
4584 {
4585 	struct sk_buff *next = NULL;
4586 
4587 	if (!skb_queue_is_last(list, skb))
4588 		next = skb_queue_next(list, skb);
4589 
4590 	__skb_unlink(skb, list);
4591 	__kfree_skb(skb);
4592 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4593 
4594 	return next;
4595 }
4596 
4597 /* Collapse contiguous sequence of skbs head..tail with
4598  * sequence numbers start..end.
4599  *
4600  * If tail is NULL, this means until the end of the list.
4601  *
4602  * Segments with FIN/SYN are not collapsed (only because this
4603  * simplifies code)
4604  */
4605 static void
4606 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4607 	     struct sk_buff *head, struct sk_buff *tail,
4608 	     u32 start, u32 end)
4609 {
4610 	struct sk_buff *skb, *n;
4611 	bool end_of_skbs;
4612 
4613 	/* First, check that queue is collapsible and find
4614 	 * the point where collapsing can be useful. */
4615 	skb = head;
4616 restart:
4617 	end_of_skbs = true;
4618 	skb_queue_walk_from_safe(list, skb, n) {
4619 		if (skb == tail)
4620 			break;
4621 		/* No new bits? It is possible on ofo queue. */
4622 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4623 			skb = tcp_collapse_one(sk, skb, list);
4624 			if (!skb)
4625 				break;
4626 			goto restart;
4627 		}
4628 
4629 		/* The first skb to collapse is:
4630 		 * - not SYN/FIN and
4631 		 * - bloated or contains data before "start" or
4632 		 *   overlaps to the next one.
4633 		 */
4634 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4635 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4636 		     before(TCP_SKB_CB(skb)->seq, start))) {
4637 			end_of_skbs = false;
4638 			break;
4639 		}
4640 
4641 		if (!skb_queue_is_last(list, skb)) {
4642 			struct sk_buff *next = skb_queue_next(list, skb);
4643 			if (next != tail &&
4644 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4645 				end_of_skbs = false;
4646 				break;
4647 			}
4648 		}
4649 
4650 		/* Decided to skip this, advance start seq. */
4651 		start = TCP_SKB_CB(skb)->end_seq;
4652 	}
4653 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4654 		return;
4655 
4656 	while (before(start, end)) {
4657 		struct sk_buff *nskb;
4658 		unsigned int header = skb_headroom(skb);
4659 		int copy = SKB_MAX_ORDER(header, 0);
4660 
4661 		/* Too big header? This can happen with IPv6. */
4662 		if (copy < 0)
4663 			return;
4664 		if (end - start < copy)
4665 			copy = end - start;
4666 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4667 		if (!nskb)
4668 			return;
4669 
4670 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4671 		skb_set_network_header(nskb, (skb_network_header(skb) -
4672 					      skb->head));
4673 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4674 						skb->head));
4675 		skb_reserve(nskb, header);
4676 		memcpy(nskb->head, skb->head, header);
4677 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4678 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4679 		__skb_queue_before(list, skb, nskb);
4680 		skb_set_owner_r(nskb, sk);
4681 
4682 		/* Copy data, releasing collapsed skbs. */
4683 		while (copy > 0) {
4684 			int offset = start - TCP_SKB_CB(skb)->seq;
4685 			int size = TCP_SKB_CB(skb)->end_seq - start;
4686 
4687 			BUG_ON(offset < 0);
4688 			if (size > 0) {
4689 				size = min(copy, size);
4690 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4691 					BUG();
4692 				TCP_SKB_CB(nskb)->end_seq += size;
4693 				copy -= size;
4694 				start += size;
4695 			}
4696 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4697 				skb = tcp_collapse_one(sk, skb, list);
4698 				if (!skb ||
4699 				    skb == tail ||
4700 				    tcp_hdr(skb)->syn ||
4701 				    tcp_hdr(skb)->fin)
4702 					return;
4703 			}
4704 		}
4705 	}
4706 }
4707 
4708 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4709  * and tcp_collapse() them until all the queue is collapsed.
4710  */
4711 static void tcp_collapse_ofo_queue(struct sock *sk)
4712 {
4713 	struct tcp_sock *tp = tcp_sk(sk);
4714 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4715 	struct sk_buff *head;
4716 	u32 start, end;
4717 
4718 	if (skb == NULL)
4719 		return;
4720 
4721 	start = TCP_SKB_CB(skb)->seq;
4722 	end = TCP_SKB_CB(skb)->end_seq;
4723 	head = skb;
4724 
4725 	for (;;) {
4726 		struct sk_buff *next = NULL;
4727 
4728 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4729 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4730 		skb = next;
4731 
4732 		/* Segment is terminated when we see gap or when
4733 		 * we are at the end of all the queue. */
4734 		if (!skb ||
4735 		    after(TCP_SKB_CB(skb)->seq, end) ||
4736 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4737 			tcp_collapse(sk, &tp->out_of_order_queue,
4738 				     head, skb, start, end);
4739 			head = skb;
4740 			if (!skb)
4741 				break;
4742 			/* Start new segment */
4743 			start = TCP_SKB_CB(skb)->seq;
4744 			end = TCP_SKB_CB(skb)->end_seq;
4745 		} else {
4746 			if (before(TCP_SKB_CB(skb)->seq, start))
4747 				start = TCP_SKB_CB(skb)->seq;
4748 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4749 				end = TCP_SKB_CB(skb)->end_seq;
4750 		}
4751 	}
4752 }
4753 
4754 /*
4755  * Purge the out-of-order queue.
4756  * Return true if queue was pruned.
4757  */
4758 static int tcp_prune_ofo_queue(struct sock *sk)
4759 {
4760 	struct tcp_sock *tp = tcp_sk(sk);
4761 	int res = 0;
4762 
4763 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4764 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4765 		__skb_queue_purge(&tp->out_of_order_queue);
4766 
4767 		/* Reset SACK state.  A conforming SACK implementation will
4768 		 * do the same at a timeout based retransmit.  When a connection
4769 		 * is in a sad state like this, we care only about integrity
4770 		 * of the connection not performance.
4771 		 */
4772 		if (tp->rx_opt.sack_ok)
4773 			tcp_sack_reset(&tp->rx_opt);
4774 		sk_mem_reclaim(sk);
4775 		res = 1;
4776 	}
4777 	return res;
4778 }
4779 
4780 /* Reduce allocated memory if we can, trying to get
4781  * the socket within its memory limits again.
4782  *
4783  * Return less than zero if we should start dropping frames
4784  * until the socket owning process reads some of the data
4785  * to stabilize the situation.
4786  */
4787 static int tcp_prune_queue(struct sock *sk)
4788 {
4789 	struct tcp_sock *tp = tcp_sk(sk);
4790 
4791 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4792 
4793 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4794 
4795 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4796 		tcp_clamp_window(sk);
4797 	else if (tcp_memory_pressure)
4798 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4799 
4800 	tcp_collapse_ofo_queue(sk);
4801 	if (!skb_queue_empty(&sk->sk_receive_queue))
4802 		tcp_collapse(sk, &sk->sk_receive_queue,
4803 			     skb_peek(&sk->sk_receive_queue),
4804 			     NULL,
4805 			     tp->copied_seq, tp->rcv_nxt);
4806 	sk_mem_reclaim(sk);
4807 
4808 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4809 		return 0;
4810 
4811 	/* Collapsing did not help, destructive actions follow.
4812 	 * This must not ever occur. */
4813 
4814 	tcp_prune_ofo_queue(sk);
4815 
4816 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4817 		return 0;
4818 
4819 	/* If we are really being abused, tell the caller to silently
4820 	 * drop receive data on the floor.  It will get retransmitted
4821 	 * and hopefully then we'll have sufficient space.
4822 	 */
4823 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4824 
4825 	/* Massive buffer overcommit. */
4826 	tp->pred_flags = 0;
4827 	return -1;
4828 }
4829 
4830 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4831  * As additional protections, we do not touch cwnd in retransmission phases,
4832  * and if application hit its sndbuf limit recently.
4833  */
4834 void tcp_cwnd_application_limited(struct sock *sk)
4835 {
4836 	struct tcp_sock *tp = tcp_sk(sk);
4837 
4838 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4839 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4840 		/* Limited by application or receiver window. */
4841 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4842 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4843 		if (win_used < tp->snd_cwnd) {
4844 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4845 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4846 		}
4847 		tp->snd_cwnd_used = 0;
4848 	}
4849 	tp->snd_cwnd_stamp = tcp_time_stamp;
4850 }
4851 
4852 static int tcp_should_expand_sndbuf(struct sock *sk)
4853 {
4854 	struct tcp_sock *tp = tcp_sk(sk);
4855 
4856 	/* If the user specified a specific send buffer setting, do
4857 	 * not modify it.
4858 	 */
4859 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4860 		return 0;
4861 
4862 	/* If we are under global TCP memory pressure, do not expand.  */
4863 	if (tcp_memory_pressure)
4864 		return 0;
4865 
4866 	/* If we are under soft global TCP memory pressure, do not expand.  */
4867 	if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4868 		return 0;
4869 
4870 	/* If we filled the congestion window, do not expand.  */
4871 	if (tp->packets_out >= tp->snd_cwnd)
4872 		return 0;
4873 
4874 	return 1;
4875 }
4876 
4877 /* When incoming ACK allowed to free some skb from write_queue,
4878  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4879  * on the exit from tcp input handler.
4880  *
4881  * PROBLEM: sndbuf expansion does not work well with largesend.
4882  */
4883 static void tcp_new_space(struct sock *sk)
4884 {
4885 	struct tcp_sock *tp = tcp_sk(sk);
4886 
4887 	if (tcp_should_expand_sndbuf(sk)) {
4888 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4889 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4890 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4891 				     tp->reordering + 1);
4892 		sndmem *= 2 * demanded;
4893 		if (sndmem > sk->sk_sndbuf)
4894 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4895 		tp->snd_cwnd_stamp = tcp_time_stamp;
4896 	}
4897 
4898 	sk->sk_write_space(sk);
4899 }
4900 
4901 static void tcp_check_space(struct sock *sk)
4902 {
4903 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4904 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4905 		if (sk->sk_socket &&
4906 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4907 			tcp_new_space(sk);
4908 	}
4909 }
4910 
4911 static inline void tcp_data_snd_check(struct sock *sk)
4912 {
4913 	tcp_push_pending_frames(sk);
4914 	tcp_check_space(sk);
4915 }
4916 
4917 /*
4918  * Check if sending an ack is needed.
4919  */
4920 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4921 {
4922 	struct tcp_sock *tp = tcp_sk(sk);
4923 
4924 	    /* More than one full frame received... */
4925 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4926 	     /* ... and right edge of window advances far enough.
4927 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4928 	      */
4929 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4930 	    /* We ACK each frame or... */
4931 	    tcp_in_quickack_mode(sk) ||
4932 	    /* We have out of order data. */
4933 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4934 		/* Then ack it now */
4935 		tcp_send_ack(sk);
4936 	} else {
4937 		/* Else, send delayed ack. */
4938 		tcp_send_delayed_ack(sk);
4939 	}
4940 }
4941 
4942 static inline void tcp_ack_snd_check(struct sock *sk)
4943 {
4944 	if (!inet_csk_ack_scheduled(sk)) {
4945 		/* We sent a data segment already. */
4946 		return;
4947 	}
4948 	__tcp_ack_snd_check(sk, 1);
4949 }
4950 
4951 /*
4952  *	This routine is only called when we have urgent data
4953  *	signaled. Its the 'slow' part of tcp_urg. It could be
4954  *	moved inline now as tcp_urg is only called from one
4955  *	place. We handle URGent data wrong. We have to - as
4956  *	BSD still doesn't use the correction from RFC961.
4957  *	For 1003.1g we should support a new option TCP_STDURG to permit
4958  *	either form (or just set the sysctl tcp_stdurg).
4959  */
4960 
4961 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4962 {
4963 	struct tcp_sock *tp = tcp_sk(sk);
4964 	u32 ptr = ntohs(th->urg_ptr);
4965 
4966 	if (ptr && !sysctl_tcp_stdurg)
4967 		ptr--;
4968 	ptr += ntohl(th->seq);
4969 
4970 	/* Ignore urgent data that we've already seen and read. */
4971 	if (after(tp->copied_seq, ptr))
4972 		return;
4973 
4974 	/* Do not replay urg ptr.
4975 	 *
4976 	 * NOTE: interesting situation not covered by specs.
4977 	 * Misbehaving sender may send urg ptr, pointing to segment,
4978 	 * which we already have in ofo queue. We are not able to fetch
4979 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4980 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4981 	 * situations. But it is worth to think about possibility of some
4982 	 * DoSes using some hypothetical application level deadlock.
4983 	 */
4984 	if (before(ptr, tp->rcv_nxt))
4985 		return;
4986 
4987 	/* Do we already have a newer (or duplicate) urgent pointer? */
4988 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4989 		return;
4990 
4991 	/* Tell the world about our new urgent pointer. */
4992 	sk_send_sigurg(sk);
4993 
4994 	/* We may be adding urgent data when the last byte read was
4995 	 * urgent. To do this requires some care. We cannot just ignore
4996 	 * tp->copied_seq since we would read the last urgent byte again
4997 	 * as data, nor can we alter copied_seq until this data arrives
4998 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4999 	 *
5000 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5001 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5002 	 * and expect that both A and B disappear from stream. This is _wrong_.
5003 	 * Though this happens in BSD with high probability, this is occasional.
5004 	 * Any application relying on this is buggy. Note also, that fix "works"
5005 	 * only in this artificial test. Insert some normal data between A and B and we will
5006 	 * decline of BSD again. Verdict: it is better to remove to trap
5007 	 * buggy users.
5008 	 */
5009 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5010 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5011 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5012 		tp->copied_seq++;
5013 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5014 			__skb_unlink(skb, &sk->sk_receive_queue);
5015 			__kfree_skb(skb);
5016 		}
5017 	}
5018 
5019 	tp->urg_data = TCP_URG_NOTYET;
5020 	tp->urg_seq = ptr;
5021 
5022 	/* Disable header prediction. */
5023 	tp->pred_flags = 0;
5024 }
5025 
5026 /* This is the 'fast' part of urgent handling. */
5027 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5028 {
5029 	struct tcp_sock *tp = tcp_sk(sk);
5030 
5031 	/* Check if we get a new urgent pointer - normally not. */
5032 	if (th->urg)
5033 		tcp_check_urg(sk, th);
5034 
5035 	/* Do we wait for any urgent data? - normally not... */
5036 	if (tp->urg_data == TCP_URG_NOTYET) {
5037 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5038 			  th->syn;
5039 
5040 		/* Is the urgent pointer pointing into this packet? */
5041 		if (ptr < skb->len) {
5042 			u8 tmp;
5043 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5044 				BUG();
5045 			tp->urg_data = TCP_URG_VALID | tmp;
5046 			if (!sock_flag(sk, SOCK_DEAD))
5047 				sk->sk_data_ready(sk, 0);
5048 		}
5049 	}
5050 }
5051 
5052 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5053 {
5054 	struct tcp_sock *tp = tcp_sk(sk);
5055 	int chunk = skb->len - hlen;
5056 	int err;
5057 
5058 	local_bh_enable();
5059 	if (skb_csum_unnecessary(skb))
5060 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5061 	else
5062 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5063 						       tp->ucopy.iov);
5064 
5065 	if (!err) {
5066 		tp->ucopy.len -= chunk;
5067 		tp->copied_seq += chunk;
5068 		tcp_rcv_space_adjust(sk);
5069 	}
5070 
5071 	local_bh_disable();
5072 	return err;
5073 }
5074 
5075 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5076 					    struct sk_buff *skb)
5077 {
5078 	__sum16 result;
5079 
5080 	if (sock_owned_by_user(sk)) {
5081 		local_bh_enable();
5082 		result = __tcp_checksum_complete(skb);
5083 		local_bh_disable();
5084 	} else {
5085 		result = __tcp_checksum_complete(skb);
5086 	}
5087 	return result;
5088 }
5089 
5090 static inline int tcp_checksum_complete_user(struct sock *sk,
5091 					     struct sk_buff *skb)
5092 {
5093 	return !skb_csum_unnecessary(skb) &&
5094 	       __tcp_checksum_complete_user(sk, skb);
5095 }
5096 
5097 #ifdef CONFIG_NET_DMA
5098 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5099 				  int hlen)
5100 {
5101 	struct tcp_sock *tp = tcp_sk(sk);
5102 	int chunk = skb->len - hlen;
5103 	int dma_cookie;
5104 	int copied_early = 0;
5105 
5106 	if (tp->ucopy.wakeup)
5107 		return 0;
5108 
5109 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5110 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5111 
5112 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5113 
5114 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5115 							 skb, hlen,
5116 							 tp->ucopy.iov, chunk,
5117 							 tp->ucopy.pinned_list);
5118 
5119 		if (dma_cookie < 0)
5120 			goto out;
5121 
5122 		tp->ucopy.dma_cookie = dma_cookie;
5123 		copied_early = 1;
5124 
5125 		tp->ucopy.len -= chunk;
5126 		tp->copied_seq += chunk;
5127 		tcp_rcv_space_adjust(sk);
5128 
5129 		if ((tp->ucopy.len == 0) ||
5130 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5131 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5132 			tp->ucopy.wakeup = 1;
5133 			sk->sk_data_ready(sk, 0);
5134 		}
5135 	} else if (chunk > 0) {
5136 		tp->ucopy.wakeup = 1;
5137 		sk->sk_data_ready(sk, 0);
5138 	}
5139 out:
5140 	return copied_early;
5141 }
5142 #endif /* CONFIG_NET_DMA */
5143 
5144 /* Does PAWS and seqno based validation of an incoming segment, flags will
5145  * play significant role here.
5146  */
5147 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5148 			      struct tcphdr *th, int syn_inerr)
5149 {
5150 	u8 *hash_location;
5151 	struct tcp_sock *tp = tcp_sk(sk);
5152 
5153 	/* RFC1323: H1. Apply PAWS check first. */
5154 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5155 	    tp->rx_opt.saw_tstamp &&
5156 	    tcp_paws_discard(sk, skb)) {
5157 		if (!th->rst) {
5158 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5159 			tcp_send_dupack(sk, skb);
5160 			goto discard;
5161 		}
5162 		/* Reset is accepted even if it did not pass PAWS. */
5163 	}
5164 
5165 	/* Step 1: check sequence number */
5166 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5167 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5168 		 * (RST) segments are validated by checking their SEQ-fields."
5169 		 * And page 69: "If an incoming segment is not acceptable,
5170 		 * an acknowledgment should be sent in reply (unless the RST
5171 		 * bit is set, if so drop the segment and return)".
5172 		 */
5173 		if (!th->rst)
5174 			tcp_send_dupack(sk, skb);
5175 		goto discard;
5176 	}
5177 
5178 	/* Step 2: check RST bit */
5179 	if (th->rst) {
5180 		tcp_reset(sk);
5181 		goto discard;
5182 	}
5183 
5184 	/* ts_recent update must be made after we are sure that the packet
5185 	 * is in window.
5186 	 */
5187 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5188 
5189 	/* step 3: check security and precedence [ignored] */
5190 
5191 	/* step 4: Check for a SYN in window. */
5192 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5193 		if (syn_inerr)
5194 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5195 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5196 		tcp_reset(sk);
5197 		return -1;
5198 	}
5199 
5200 	return 1;
5201 
5202 discard:
5203 	__kfree_skb(skb);
5204 	return 0;
5205 }
5206 
5207 /*
5208  *	TCP receive function for the ESTABLISHED state.
5209  *
5210  *	It is split into a fast path and a slow path. The fast path is
5211  * 	disabled when:
5212  *	- A zero window was announced from us - zero window probing
5213  *        is only handled properly in the slow path.
5214  *	- Out of order segments arrived.
5215  *	- Urgent data is expected.
5216  *	- There is no buffer space left
5217  *	- Unexpected TCP flags/window values/header lengths are received
5218  *	  (detected by checking the TCP header against pred_flags)
5219  *	- Data is sent in both directions. Fast path only supports pure senders
5220  *	  or pure receivers (this means either the sequence number or the ack
5221  *	  value must stay constant)
5222  *	- Unexpected TCP option.
5223  *
5224  *	When these conditions are not satisfied it drops into a standard
5225  *	receive procedure patterned after RFC793 to handle all cases.
5226  *	The first three cases are guaranteed by proper pred_flags setting,
5227  *	the rest is checked inline. Fast processing is turned on in
5228  *	tcp_data_queue when everything is OK.
5229  */
5230 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5231 			struct tcphdr *th, unsigned len)
5232 {
5233 	struct tcp_sock *tp = tcp_sk(sk);
5234 	int res;
5235 
5236 	/*
5237 	 *	Header prediction.
5238 	 *	The code loosely follows the one in the famous
5239 	 *	"30 instruction TCP receive" Van Jacobson mail.
5240 	 *
5241 	 *	Van's trick is to deposit buffers into socket queue
5242 	 *	on a device interrupt, to call tcp_recv function
5243 	 *	on the receive process context and checksum and copy
5244 	 *	the buffer to user space. smart...
5245 	 *
5246 	 *	Our current scheme is not silly either but we take the
5247 	 *	extra cost of the net_bh soft interrupt processing...
5248 	 *	We do checksum and copy also but from device to kernel.
5249 	 */
5250 
5251 	tp->rx_opt.saw_tstamp = 0;
5252 
5253 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5254 	 *	if header_prediction is to be made
5255 	 *	'S' will always be tp->tcp_header_len >> 2
5256 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5257 	 *  turn it off	(when there are holes in the receive
5258 	 *	 space for instance)
5259 	 *	PSH flag is ignored.
5260 	 */
5261 
5262 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5263 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5264 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5265 		int tcp_header_len = tp->tcp_header_len;
5266 
5267 		/* Timestamp header prediction: tcp_header_len
5268 		 * is automatically equal to th->doff*4 due to pred_flags
5269 		 * match.
5270 		 */
5271 
5272 		/* Check timestamp */
5273 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5274 			/* No? Slow path! */
5275 			if (!tcp_parse_aligned_timestamp(tp, th))
5276 				goto slow_path;
5277 
5278 			/* If PAWS failed, check it more carefully in slow path */
5279 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5280 				goto slow_path;
5281 
5282 			/* DO NOT update ts_recent here, if checksum fails
5283 			 * and timestamp was corrupted part, it will result
5284 			 * in a hung connection since we will drop all
5285 			 * future packets due to the PAWS test.
5286 			 */
5287 		}
5288 
5289 		if (len <= tcp_header_len) {
5290 			/* Bulk data transfer: sender */
5291 			if (len == tcp_header_len) {
5292 				/* Predicted packet is in window by definition.
5293 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5294 				 * Hence, check seq<=rcv_wup reduces to:
5295 				 */
5296 				if (tcp_header_len ==
5297 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5298 				    tp->rcv_nxt == tp->rcv_wup)
5299 					tcp_store_ts_recent(tp);
5300 
5301 				/* We know that such packets are checksummed
5302 				 * on entry.
5303 				 */
5304 				tcp_ack(sk, skb, 0);
5305 				__kfree_skb(skb);
5306 				tcp_data_snd_check(sk);
5307 				return 0;
5308 			} else { /* Header too small */
5309 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5310 				goto discard;
5311 			}
5312 		} else {
5313 			int eaten = 0;
5314 			int copied_early = 0;
5315 
5316 			if (tp->copied_seq == tp->rcv_nxt &&
5317 			    len - tcp_header_len <= tp->ucopy.len) {
5318 #ifdef CONFIG_NET_DMA
5319 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5320 					copied_early = 1;
5321 					eaten = 1;
5322 				}
5323 #endif
5324 				if (tp->ucopy.task == current &&
5325 				    sock_owned_by_user(sk) && !copied_early) {
5326 					__set_current_state(TASK_RUNNING);
5327 
5328 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5329 						eaten = 1;
5330 				}
5331 				if (eaten) {
5332 					/* Predicted packet is in window by definition.
5333 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5334 					 * Hence, check seq<=rcv_wup reduces to:
5335 					 */
5336 					if (tcp_header_len ==
5337 					    (sizeof(struct tcphdr) +
5338 					     TCPOLEN_TSTAMP_ALIGNED) &&
5339 					    tp->rcv_nxt == tp->rcv_wup)
5340 						tcp_store_ts_recent(tp);
5341 
5342 					tcp_rcv_rtt_measure_ts(sk, skb);
5343 
5344 					__skb_pull(skb, tcp_header_len);
5345 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5346 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5347 				}
5348 				if (copied_early)
5349 					tcp_cleanup_rbuf(sk, skb->len);
5350 			}
5351 			if (!eaten) {
5352 				if (tcp_checksum_complete_user(sk, skb))
5353 					goto csum_error;
5354 
5355 				/* Predicted packet is in window by definition.
5356 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5357 				 * Hence, check seq<=rcv_wup reduces to:
5358 				 */
5359 				if (tcp_header_len ==
5360 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5361 				    tp->rcv_nxt == tp->rcv_wup)
5362 					tcp_store_ts_recent(tp);
5363 
5364 				tcp_rcv_rtt_measure_ts(sk, skb);
5365 
5366 				if ((int)skb->truesize > sk->sk_forward_alloc)
5367 					goto step5;
5368 
5369 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5370 
5371 				/* Bulk data transfer: receiver */
5372 				__skb_pull(skb, tcp_header_len);
5373 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5374 				skb_set_owner_r(skb, sk);
5375 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5376 			}
5377 
5378 			tcp_event_data_recv(sk, skb);
5379 
5380 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5381 				/* Well, only one small jumplet in fast path... */
5382 				tcp_ack(sk, skb, FLAG_DATA);
5383 				tcp_data_snd_check(sk);
5384 				if (!inet_csk_ack_scheduled(sk))
5385 					goto no_ack;
5386 			}
5387 
5388 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5389 				__tcp_ack_snd_check(sk, 0);
5390 no_ack:
5391 #ifdef CONFIG_NET_DMA
5392 			if (copied_early)
5393 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5394 			else
5395 #endif
5396 			if (eaten)
5397 				__kfree_skb(skb);
5398 			else
5399 				sk->sk_data_ready(sk, 0);
5400 			return 0;
5401 		}
5402 	}
5403 
5404 slow_path:
5405 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5406 		goto csum_error;
5407 
5408 	/*
5409 	 *	Standard slow path.
5410 	 */
5411 
5412 	res = tcp_validate_incoming(sk, skb, th, 1);
5413 	if (res <= 0)
5414 		return -res;
5415 
5416 step5:
5417 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5418 		goto discard;
5419 
5420 	tcp_rcv_rtt_measure_ts(sk, skb);
5421 
5422 	/* Process urgent data. */
5423 	tcp_urg(sk, skb, th);
5424 
5425 	/* step 7: process the segment text */
5426 	tcp_data_queue(sk, skb);
5427 
5428 	tcp_data_snd_check(sk);
5429 	tcp_ack_snd_check(sk);
5430 	return 0;
5431 
5432 csum_error:
5433 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5434 
5435 discard:
5436 	__kfree_skb(skb);
5437 	return 0;
5438 }
5439 EXPORT_SYMBOL(tcp_rcv_established);
5440 
5441 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5442 					 struct tcphdr *th, unsigned len)
5443 {
5444 	u8 *hash_location;
5445 	struct inet_connection_sock *icsk = inet_csk(sk);
5446 	struct tcp_sock *tp = tcp_sk(sk);
5447 	struct tcp_cookie_values *cvp = tp->cookie_values;
5448 	int saved_clamp = tp->rx_opt.mss_clamp;
5449 
5450 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5451 
5452 	if (th->ack) {
5453 		/* rfc793:
5454 		 * "If the state is SYN-SENT then
5455 		 *    first check the ACK bit
5456 		 *      If the ACK bit is set
5457 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5458 		 *        a reset (unless the RST bit is set, if so drop
5459 		 *        the segment and return)"
5460 		 *
5461 		 *  We do not send data with SYN, so that RFC-correct
5462 		 *  test reduces to:
5463 		 */
5464 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5465 			goto reset_and_undo;
5466 
5467 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5468 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5469 			     tcp_time_stamp)) {
5470 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5471 			goto reset_and_undo;
5472 		}
5473 
5474 		/* Now ACK is acceptable.
5475 		 *
5476 		 * "If the RST bit is set
5477 		 *    If the ACK was acceptable then signal the user "error:
5478 		 *    connection reset", drop the segment, enter CLOSED state,
5479 		 *    delete TCB, and return."
5480 		 */
5481 
5482 		if (th->rst) {
5483 			tcp_reset(sk);
5484 			goto discard;
5485 		}
5486 
5487 		/* rfc793:
5488 		 *   "fifth, if neither of the SYN or RST bits is set then
5489 		 *    drop the segment and return."
5490 		 *
5491 		 *    See note below!
5492 		 *                                        --ANK(990513)
5493 		 */
5494 		if (!th->syn)
5495 			goto discard_and_undo;
5496 
5497 		/* rfc793:
5498 		 *   "If the SYN bit is on ...
5499 		 *    are acceptable then ...
5500 		 *    (our SYN has been ACKed), change the connection
5501 		 *    state to ESTABLISHED..."
5502 		 */
5503 
5504 		TCP_ECN_rcv_synack(tp, th);
5505 
5506 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5507 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5508 
5509 		/* Ok.. it's good. Set up sequence numbers and
5510 		 * move to established.
5511 		 */
5512 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5513 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5514 
5515 		/* RFC1323: The window in SYN & SYN/ACK segments is
5516 		 * never scaled.
5517 		 */
5518 		tp->snd_wnd = ntohs(th->window);
5519 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5520 
5521 		if (!tp->rx_opt.wscale_ok) {
5522 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5523 			tp->window_clamp = min(tp->window_clamp, 65535U);
5524 		}
5525 
5526 		if (tp->rx_opt.saw_tstamp) {
5527 			tp->rx_opt.tstamp_ok	   = 1;
5528 			tp->tcp_header_len =
5529 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5530 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5531 			tcp_store_ts_recent(tp);
5532 		} else {
5533 			tp->tcp_header_len = sizeof(struct tcphdr);
5534 		}
5535 
5536 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5537 			tcp_enable_fack(tp);
5538 
5539 		tcp_mtup_init(sk);
5540 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5541 		tcp_initialize_rcv_mss(sk);
5542 
5543 		/* Remember, tcp_poll() does not lock socket!
5544 		 * Change state from SYN-SENT only after copied_seq
5545 		 * is initialized. */
5546 		tp->copied_seq = tp->rcv_nxt;
5547 
5548 		if (cvp != NULL &&
5549 		    cvp->cookie_pair_size > 0 &&
5550 		    tp->rx_opt.cookie_plus > 0) {
5551 			int cookie_size = tp->rx_opt.cookie_plus
5552 					- TCPOLEN_COOKIE_BASE;
5553 			int cookie_pair_size = cookie_size
5554 					     + cvp->cookie_desired;
5555 
5556 			/* A cookie extension option was sent and returned.
5557 			 * Note that each incoming SYNACK replaces the
5558 			 * Responder cookie.  The initial exchange is most
5559 			 * fragile, as protection against spoofing relies
5560 			 * entirely upon the sequence and timestamp (above).
5561 			 * This replacement strategy allows the correct pair to
5562 			 * pass through, while any others will be filtered via
5563 			 * Responder verification later.
5564 			 */
5565 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5566 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5567 				       hash_location, cookie_size);
5568 				cvp->cookie_pair_size = cookie_pair_size;
5569 			}
5570 		}
5571 
5572 		smp_mb();
5573 		tcp_set_state(sk, TCP_ESTABLISHED);
5574 
5575 		security_inet_conn_established(sk, skb);
5576 
5577 		/* Make sure socket is routed, for correct metrics.  */
5578 		icsk->icsk_af_ops->rebuild_header(sk);
5579 
5580 		tcp_init_metrics(sk);
5581 
5582 		tcp_init_congestion_control(sk);
5583 
5584 		/* Prevent spurious tcp_cwnd_restart() on first data
5585 		 * packet.
5586 		 */
5587 		tp->lsndtime = tcp_time_stamp;
5588 
5589 		tcp_init_buffer_space(sk);
5590 
5591 		if (sock_flag(sk, SOCK_KEEPOPEN))
5592 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5593 
5594 		if (!tp->rx_opt.snd_wscale)
5595 			__tcp_fast_path_on(tp, tp->snd_wnd);
5596 		else
5597 			tp->pred_flags = 0;
5598 
5599 		if (!sock_flag(sk, SOCK_DEAD)) {
5600 			sk->sk_state_change(sk);
5601 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5602 		}
5603 
5604 		if (sk->sk_write_pending ||
5605 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5606 		    icsk->icsk_ack.pingpong) {
5607 			/* Save one ACK. Data will be ready after
5608 			 * several ticks, if write_pending is set.
5609 			 *
5610 			 * It may be deleted, but with this feature tcpdumps
5611 			 * look so _wonderfully_ clever, that I was not able
5612 			 * to stand against the temptation 8)     --ANK
5613 			 */
5614 			inet_csk_schedule_ack(sk);
5615 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5616 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5617 			tcp_incr_quickack(sk);
5618 			tcp_enter_quickack_mode(sk);
5619 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5620 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5621 
5622 discard:
5623 			__kfree_skb(skb);
5624 			return 0;
5625 		} else {
5626 			tcp_send_ack(sk);
5627 		}
5628 		return -1;
5629 	}
5630 
5631 	/* No ACK in the segment */
5632 
5633 	if (th->rst) {
5634 		/* rfc793:
5635 		 * "If the RST bit is set
5636 		 *
5637 		 *      Otherwise (no ACK) drop the segment and return."
5638 		 */
5639 
5640 		goto discard_and_undo;
5641 	}
5642 
5643 	/* PAWS check. */
5644 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5645 	    tcp_paws_reject(&tp->rx_opt, 0))
5646 		goto discard_and_undo;
5647 
5648 	if (th->syn) {
5649 		/* We see SYN without ACK. It is attempt of
5650 		 * simultaneous connect with crossed SYNs.
5651 		 * Particularly, it can be connect to self.
5652 		 */
5653 		tcp_set_state(sk, TCP_SYN_RECV);
5654 
5655 		if (tp->rx_opt.saw_tstamp) {
5656 			tp->rx_opt.tstamp_ok = 1;
5657 			tcp_store_ts_recent(tp);
5658 			tp->tcp_header_len =
5659 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5660 		} else {
5661 			tp->tcp_header_len = sizeof(struct tcphdr);
5662 		}
5663 
5664 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5665 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5666 
5667 		/* RFC1323: The window in SYN & SYN/ACK segments is
5668 		 * never scaled.
5669 		 */
5670 		tp->snd_wnd    = ntohs(th->window);
5671 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5672 		tp->max_window = tp->snd_wnd;
5673 
5674 		TCP_ECN_rcv_syn(tp, th);
5675 
5676 		tcp_mtup_init(sk);
5677 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5678 		tcp_initialize_rcv_mss(sk);
5679 
5680 		tcp_send_synack(sk);
5681 #if 0
5682 		/* Note, we could accept data and URG from this segment.
5683 		 * There are no obstacles to make this.
5684 		 *
5685 		 * However, if we ignore data in ACKless segments sometimes,
5686 		 * we have no reasons to accept it sometimes.
5687 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5688 		 * is not flawless. So, discard packet for sanity.
5689 		 * Uncomment this return to process the data.
5690 		 */
5691 		return -1;
5692 #else
5693 		goto discard;
5694 #endif
5695 	}
5696 	/* "fifth, if neither of the SYN or RST bits is set then
5697 	 * drop the segment and return."
5698 	 */
5699 
5700 discard_and_undo:
5701 	tcp_clear_options(&tp->rx_opt);
5702 	tp->rx_opt.mss_clamp = saved_clamp;
5703 	goto discard;
5704 
5705 reset_and_undo:
5706 	tcp_clear_options(&tp->rx_opt);
5707 	tp->rx_opt.mss_clamp = saved_clamp;
5708 	return 1;
5709 }
5710 
5711 /*
5712  *	This function implements the receiving procedure of RFC 793 for
5713  *	all states except ESTABLISHED and TIME_WAIT.
5714  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5715  *	address independent.
5716  */
5717 
5718 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5719 			  struct tcphdr *th, unsigned len)
5720 {
5721 	struct tcp_sock *tp = tcp_sk(sk);
5722 	struct inet_connection_sock *icsk = inet_csk(sk);
5723 	int queued = 0;
5724 	int res;
5725 
5726 	tp->rx_opt.saw_tstamp = 0;
5727 
5728 	switch (sk->sk_state) {
5729 	case TCP_CLOSE:
5730 		goto discard;
5731 
5732 	case TCP_LISTEN:
5733 		if (th->ack)
5734 			return 1;
5735 
5736 		if (th->rst)
5737 			goto discard;
5738 
5739 		if (th->syn) {
5740 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5741 				return 1;
5742 
5743 			/* Now we have several options: In theory there is
5744 			 * nothing else in the frame. KA9Q has an option to
5745 			 * send data with the syn, BSD accepts data with the
5746 			 * syn up to the [to be] advertised window and
5747 			 * Solaris 2.1 gives you a protocol error. For now
5748 			 * we just ignore it, that fits the spec precisely
5749 			 * and avoids incompatibilities. It would be nice in
5750 			 * future to drop through and process the data.
5751 			 *
5752 			 * Now that TTCP is starting to be used we ought to
5753 			 * queue this data.
5754 			 * But, this leaves one open to an easy denial of
5755 			 * service attack, and SYN cookies can't defend
5756 			 * against this problem. So, we drop the data
5757 			 * in the interest of security over speed unless
5758 			 * it's still in use.
5759 			 */
5760 			kfree_skb(skb);
5761 			return 0;
5762 		}
5763 		goto discard;
5764 
5765 	case TCP_SYN_SENT:
5766 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5767 		if (queued >= 0)
5768 			return queued;
5769 
5770 		/* Do step6 onward by hand. */
5771 		tcp_urg(sk, skb, th);
5772 		__kfree_skb(skb);
5773 		tcp_data_snd_check(sk);
5774 		return 0;
5775 	}
5776 
5777 	res = tcp_validate_incoming(sk, skb, th, 0);
5778 	if (res <= 0)
5779 		return -res;
5780 
5781 	/* step 5: check the ACK field */
5782 	if (th->ack) {
5783 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5784 
5785 		switch (sk->sk_state) {
5786 		case TCP_SYN_RECV:
5787 			if (acceptable) {
5788 				tp->copied_seq = tp->rcv_nxt;
5789 				smp_mb();
5790 				tcp_set_state(sk, TCP_ESTABLISHED);
5791 				sk->sk_state_change(sk);
5792 
5793 				/* Note, that this wakeup is only for marginal
5794 				 * crossed SYN case. Passively open sockets
5795 				 * are not waked up, because sk->sk_sleep ==
5796 				 * NULL and sk->sk_socket == NULL.
5797 				 */
5798 				if (sk->sk_socket)
5799 					sk_wake_async(sk,
5800 						      SOCK_WAKE_IO, POLL_OUT);
5801 
5802 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5803 				tp->snd_wnd = ntohs(th->window) <<
5804 					      tp->rx_opt.snd_wscale;
5805 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5806 
5807 				/* tcp_ack considers this ACK as duplicate
5808 				 * and does not calculate rtt.
5809 				 * Force it here.
5810 				 */
5811 				tcp_ack_update_rtt(sk, 0, 0);
5812 
5813 				if (tp->rx_opt.tstamp_ok)
5814 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5815 
5816 				/* Make sure socket is routed, for
5817 				 * correct metrics.
5818 				 */
5819 				icsk->icsk_af_ops->rebuild_header(sk);
5820 
5821 				tcp_init_metrics(sk);
5822 
5823 				tcp_init_congestion_control(sk);
5824 
5825 				/* Prevent spurious tcp_cwnd_restart() on
5826 				 * first data packet.
5827 				 */
5828 				tp->lsndtime = tcp_time_stamp;
5829 
5830 				tcp_mtup_init(sk);
5831 				tcp_initialize_rcv_mss(sk);
5832 				tcp_init_buffer_space(sk);
5833 				tcp_fast_path_on(tp);
5834 			} else {
5835 				return 1;
5836 			}
5837 			break;
5838 
5839 		case TCP_FIN_WAIT1:
5840 			if (tp->snd_una == tp->write_seq) {
5841 				tcp_set_state(sk, TCP_FIN_WAIT2);
5842 				sk->sk_shutdown |= SEND_SHUTDOWN;
5843 				dst_confirm(__sk_dst_get(sk));
5844 
5845 				if (!sock_flag(sk, SOCK_DEAD))
5846 					/* Wake up lingering close() */
5847 					sk->sk_state_change(sk);
5848 				else {
5849 					int tmo;
5850 
5851 					if (tp->linger2 < 0 ||
5852 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5853 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5854 						tcp_done(sk);
5855 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5856 						return 1;
5857 					}
5858 
5859 					tmo = tcp_fin_time(sk);
5860 					if (tmo > TCP_TIMEWAIT_LEN) {
5861 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5862 					} else if (th->fin || sock_owned_by_user(sk)) {
5863 						/* Bad case. We could lose such FIN otherwise.
5864 						 * It is not a big problem, but it looks confusing
5865 						 * and not so rare event. We still can lose it now,
5866 						 * if it spins in bh_lock_sock(), but it is really
5867 						 * marginal case.
5868 						 */
5869 						inet_csk_reset_keepalive_timer(sk, tmo);
5870 					} else {
5871 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5872 						goto discard;
5873 					}
5874 				}
5875 			}
5876 			break;
5877 
5878 		case TCP_CLOSING:
5879 			if (tp->snd_una == tp->write_seq) {
5880 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5881 				goto discard;
5882 			}
5883 			break;
5884 
5885 		case TCP_LAST_ACK:
5886 			if (tp->snd_una == tp->write_seq) {
5887 				tcp_update_metrics(sk);
5888 				tcp_done(sk);
5889 				goto discard;
5890 			}
5891 			break;
5892 		}
5893 	} else
5894 		goto discard;
5895 
5896 	/* step 6: check the URG bit */
5897 	tcp_urg(sk, skb, th);
5898 
5899 	/* step 7: process the segment text */
5900 	switch (sk->sk_state) {
5901 	case TCP_CLOSE_WAIT:
5902 	case TCP_CLOSING:
5903 	case TCP_LAST_ACK:
5904 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5905 			break;
5906 	case TCP_FIN_WAIT1:
5907 	case TCP_FIN_WAIT2:
5908 		/* RFC 793 says to queue data in these states,
5909 		 * RFC 1122 says we MUST send a reset.
5910 		 * BSD 4.4 also does reset.
5911 		 */
5912 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5913 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5914 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5915 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5916 				tcp_reset(sk);
5917 				return 1;
5918 			}
5919 		}
5920 		/* Fall through */
5921 	case TCP_ESTABLISHED:
5922 		tcp_data_queue(sk, skb);
5923 		queued = 1;
5924 		break;
5925 	}
5926 
5927 	/* tcp_data could move socket to TIME-WAIT */
5928 	if (sk->sk_state != TCP_CLOSE) {
5929 		tcp_data_snd_check(sk);
5930 		tcp_ack_snd_check(sk);
5931 	}
5932 
5933 	if (!queued) {
5934 discard:
5935 		__kfree_skb(skb);
5936 	}
5937 	return 0;
5938 }
5939 EXPORT_SYMBOL(tcp_rcv_state_process);
5940