1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_deferred_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 133 void clean_acked_data_flush(void) 134 { 135 static_key_deferred_flush(&clean_acked_data_enabled); 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 138 #endif 139 140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 141 unsigned int len) 142 { 143 static bool __once __read_mostly; 144 145 if (!__once) { 146 struct net_device *dev; 147 148 __once = true; 149 150 rcu_read_lock(); 151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 152 if (!dev || len >= dev->mtu) 153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 154 dev ? dev->name : "Unknown driver"); 155 rcu_read_unlock(); 156 } 157 } 158 159 /* Adapt the MSS value used to make delayed ack decision to the 160 * real world. 161 */ 162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const unsigned int lss = icsk->icsk_ack.last_seg_size; 166 unsigned int len; 167 168 icsk->icsk_ack.last_seg_size = 0; 169 170 /* skb->len may jitter because of SACKs, even if peer 171 * sends good full-sized frames. 172 */ 173 len = skb_shinfo(skb)->gso_size ? : skb->len; 174 if (len >= icsk->icsk_ack.rcv_mss) { 175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 176 tcp_sk(sk)->advmss); 177 /* Account for possibly-removed options */ 178 if (unlikely(len > icsk->icsk_ack.rcv_mss + 179 MAX_TCP_OPTION_SPACE)) 180 tcp_gro_dev_warn(sk, skb, len); 181 } else { 182 /* Otherwise, we make more careful check taking into account, 183 * that SACKs block is variable. 184 * 185 * "len" is invariant segment length, including TCP header. 186 */ 187 len += skb->data - skb_transport_header(skb); 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 189 /* If PSH is not set, packet should be 190 * full sized, provided peer TCP is not badly broken. 191 * This observation (if it is correct 8)) allows 192 * to handle super-low mtu links fairly. 193 */ 194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 196 /* Subtract also invariant (if peer is RFC compliant), 197 * tcp header plus fixed timestamp option length. 198 * Resulting "len" is MSS free of SACK jitter. 199 */ 200 len -= tcp_sk(sk)->tcp_header_len; 201 icsk->icsk_ack.last_seg_size = len; 202 if (len == lss) { 203 icsk->icsk_ack.rcv_mss = len; 204 return; 205 } 206 } 207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 210 } 211 } 212 213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 217 218 if (quickacks == 0) 219 quickacks = 2; 220 quickacks = min(quickacks, max_quickacks); 221 if (quickacks > icsk->icsk_ack.quick) 222 icsk->icsk_ack.quick = quickacks; 223 } 224 225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 229 tcp_incr_quickack(sk, max_quickacks); 230 inet_csk_exit_pingpong_mode(sk); 231 icsk->icsk_ack.ato = TCP_ATO_MIN; 232 } 233 EXPORT_SYMBOL(tcp_enter_quickack_mode); 234 235 /* Send ACKs quickly, if "quick" count is not exhausted 236 * and the session is not interactive. 237 */ 238 239 static bool tcp_in_quickack_mode(struct sock *sk) 240 { 241 const struct inet_connection_sock *icsk = inet_csk(sk); 242 const struct dst_entry *dst = __sk_dst_get(sk); 243 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 246 } 247 248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 249 { 250 if (tp->ecn_flags & TCP_ECN_OK) 251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 252 } 253 254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 255 { 256 if (tcp_hdr(skb)->cwr) { 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 258 259 /* If the sender is telling us it has entered CWR, then its 260 * cwnd may be very low (even just 1 packet), so we should ACK 261 * immediately. 262 */ 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 264 } 265 } 266 267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 268 { 269 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 270 } 271 272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 277 case INET_ECN_NOT_ECT: 278 /* Funny extension: if ECT is not set on a segment, 279 * and we already seen ECT on a previous segment, 280 * it is probably a retransmit. 281 */ 282 if (tp->ecn_flags & TCP_ECN_SEEN) 283 tcp_enter_quickack_mode(sk, 2); 284 break; 285 case INET_ECN_CE: 286 if (tcp_ca_needs_ecn(sk)) 287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 288 289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 290 /* Better not delay acks, sender can have a very low cwnd */ 291 tcp_enter_quickack_mode(sk, 2); 292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 293 } 294 tp->ecn_flags |= TCP_ECN_SEEN; 295 break; 296 default: 297 if (tcp_ca_needs_ecn(sk)) 298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 299 tp->ecn_flags |= TCP_ECN_SEEN; 300 break; 301 } 302 } 303 304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 305 { 306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 307 __tcp_ecn_check_ce(sk, skb); 308 } 309 310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 319 tp->ecn_flags &= ~TCP_ECN_OK; 320 } 321 322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 323 { 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 325 return true; 326 return false; 327 } 328 329 /* Buffer size and advertised window tuning. 330 * 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 332 */ 333 334 static void tcp_sndbuf_expand(struct sock *sk) 335 { 336 const struct tcp_sock *tp = tcp_sk(sk); 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 338 int sndmem, per_mss; 339 u32 nr_segs; 340 341 /* Worst case is non GSO/TSO : each frame consumes one skb 342 * and skb->head is kmalloced using power of two area of memory 343 */ 344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 345 MAX_TCP_HEADER + 346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 347 348 per_mss = roundup_pow_of_two(per_mss) + 349 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 350 351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 353 354 /* Fast Recovery (RFC 5681 3.2) : 355 * Cubic needs 1.7 factor, rounded to 2 to include 356 * extra cushion (application might react slowly to EPOLLOUT) 357 */ 358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 359 sndmem *= nr_segs * per_mss; 360 361 if (sk->sk_sndbuf < sndmem) 362 WRITE_ONCE(sk->sk_sndbuf, 363 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 364 } 365 366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 367 * 368 * All tcp_full_space() is split to two parts: "network" buffer, allocated 369 * forward and advertised in receiver window (tp->rcv_wnd) and 370 * "application buffer", required to isolate scheduling/application 371 * latencies from network. 372 * window_clamp is maximal advertised window. It can be less than 373 * tcp_full_space(), in this case tcp_full_space() - window_clamp 374 * is reserved for "application" buffer. The less window_clamp is 375 * the smoother our behaviour from viewpoint of network, but the lower 376 * throughput and the higher sensitivity of the connection to losses. 8) 377 * 378 * rcv_ssthresh is more strict window_clamp used at "slow start" 379 * phase to predict further behaviour of this connection. 380 * It is used for two goals: 381 * - to enforce header prediction at sender, even when application 382 * requires some significant "application buffer". It is check #1. 383 * - to prevent pruning of receive queue because of misprediction 384 * of receiver window. Check #2. 385 * 386 * The scheme does not work when sender sends good segments opening 387 * window and then starts to feed us spaghetti. But it should work 388 * in common situations. Otherwise, we have to rely on queue collapsing. 389 */ 390 391 /* Slow part of check#2. */ 392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 /* Optimize this! */ 396 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 397 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 398 399 while (tp->rcv_ssthresh <= window) { 400 if (truesize <= skb->len) 401 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 402 403 truesize >>= 1; 404 window >>= 1; 405 } 406 return 0; 407 } 408 409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 410 { 411 struct tcp_sock *tp = tcp_sk(sk); 412 int room; 413 414 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 415 416 /* Check #1 */ 417 if (room > 0 && !tcp_under_memory_pressure(sk)) { 418 int incr; 419 420 /* Check #2. Increase window, if skb with such overhead 421 * will fit to rcvbuf in future. 422 */ 423 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 424 incr = 2 * tp->advmss; 425 else 426 incr = __tcp_grow_window(sk, skb); 427 428 if (incr) { 429 incr = max_t(int, incr, 2 * skb->len); 430 tp->rcv_ssthresh += min(room, incr); 431 inet_csk(sk)->icsk_ack.quick |= 1; 432 } 433 } 434 } 435 436 /* 3. Try to fixup all. It is made immediately after connection enters 437 * established state. 438 */ 439 void tcp_init_buffer_space(struct sock *sk) 440 { 441 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 442 struct tcp_sock *tp = tcp_sk(sk); 443 int maxwin; 444 445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 446 tcp_sndbuf_expand(sk); 447 448 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 449 tcp_mstamp_refresh(tp); 450 tp->rcvq_space.time = tp->tcp_mstamp; 451 tp->rcvq_space.seq = tp->copied_seq; 452 453 maxwin = tcp_full_space(sk); 454 455 if (tp->window_clamp >= maxwin) { 456 tp->window_clamp = maxwin; 457 458 if (tcp_app_win && maxwin > 4 * tp->advmss) 459 tp->window_clamp = max(maxwin - 460 (maxwin >> tcp_app_win), 461 4 * tp->advmss); 462 } 463 464 /* Force reservation of one segment. */ 465 if (tcp_app_win && 466 tp->window_clamp > 2 * tp->advmss && 467 tp->window_clamp + tp->advmss > maxwin) 468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 469 470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 471 tp->snd_cwnd_stamp = tcp_jiffies32; 472 } 473 474 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 475 static void tcp_clamp_window(struct sock *sk) 476 { 477 struct tcp_sock *tp = tcp_sk(sk); 478 struct inet_connection_sock *icsk = inet_csk(sk); 479 struct net *net = sock_net(sk); 480 481 icsk->icsk_ack.quick = 0; 482 483 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 485 !tcp_under_memory_pressure(sk) && 486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 487 WRITE_ONCE(sk->sk_rcvbuf, 488 min(atomic_read(&sk->sk_rmem_alloc), 489 net->ipv4.sysctl_tcp_rmem[2])); 490 } 491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 493 } 494 495 /* Initialize RCV_MSS value. 496 * RCV_MSS is an our guess about MSS used by the peer. 497 * We haven't any direct information about the MSS. 498 * It's better to underestimate the RCV_MSS rather than overestimate. 499 * Overestimations make us ACKing less frequently than needed. 500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 501 */ 502 void tcp_initialize_rcv_mss(struct sock *sk) 503 { 504 const struct tcp_sock *tp = tcp_sk(sk); 505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 506 507 hint = min(hint, tp->rcv_wnd / 2); 508 hint = min(hint, TCP_MSS_DEFAULT); 509 hint = max(hint, TCP_MIN_MSS); 510 511 inet_csk(sk)->icsk_ack.rcv_mss = hint; 512 } 513 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 514 515 /* Receiver "autotuning" code. 516 * 517 * The algorithm for RTT estimation w/o timestamps is based on 518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 519 * <http://public.lanl.gov/radiant/pubs.html#DRS> 520 * 521 * More detail on this code can be found at 522 * <http://staff.psc.edu/jheffner/>, 523 * though this reference is out of date. A new paper 524 * is pending. 525 */ 526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 527 { 528 u32 new_sample = tp->rcv_rtt_est.rtt_us; 529 long m = sample; 530 531 if (new_sample != 0) { 532 /* If we sample in larger samples in the non-timestamp 533 * case, we could grossly overestimate the RTT especially 534 * with chatty applications or bulk transfer apps which 535 * are stalled on filesystem I/O. 536 * 537 * Also, since we are only going for a minimum in the 538 * non-timestamp case, we do not smooth things out 539 * else with timestamps disabled convergence takes too 540 * long. 541 */ 542 if (!win_dep) { 543 m -= (new_sample >> 3); 544 new_sample += m; 545 } else { 546 m <<= 3; 547 if (m < new_sample) 548 new_sample = m; 549 } 550 } else { 551 /* No previous measure. */ 552 new_sample = m << 3; 553 } 554 555 tp->rcv_rtt_est.rtt_us = new_sample; 556 } 557 558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 559 { 560 u32 delta_us; 561 562 if (tp->rcv_rtt_est.time == 0) 563 goto new_measure; 564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 565 return; 566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 567 if (!delta_us) 568 delta_us = 1; 569 tcp_rcv_rtt_update(tp, delta_us, 1); 570 571 new_measure: 572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 573 tp->rcv_rtt_est.time = tp->tcp_mstamp; 574 } 575 576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 577 const struct sk_buff *skb) 578 { 579 struct tcp_sock *tp = tcp_sk(sk); 580 581 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 582 return; 583 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 584 585 if (TCP_SKB_CB(skb)->end_seq - 586 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 587 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 588 u32 delta_us; 589 590 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 591 if (!delta) 592 delta = 1; 593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 594 tcp_rcv_rtt_update(tp, delta_us, 0); 595 } 596 } 597 } 598 599 /* 600 * This function should be called every time data is copied to user space. 601 * It calculates the appropriate TCP receive buffer space. 602 */ 603 void tcp_rcv_space_adjust(struct sock *sk) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 u32 copied; 607 int time; 608 609 trace_tcp_rcv_space_adjust(sk); 610 611 tcp_mstamp_refresh(tp); 612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 614 return; 615 616 /* Number of bytes copied to user in last RTT */ 617 copied = tp->copied_seq - tp->rcvq_space.seq; 618 if (copied <= tp->rcvq_space.space) 619 goto new_measure; 620 621 /* A bit of theory : 622 * copied = bytes received in previous RTT, our base window 623 * To cope with packet losses, we need a 2x factor 624 * To cope with slow start, and sender growing its cwin by 100 % 625 * every RTT, we need a 4x factor, because the ACK we are sending 626 * now is for the next RTT, not the current one : 627 * <prev RTT . ><current RTT .. ><next RTT .... > 628 */ 629 630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 632 int rcvmem, rcvbuf; 633 u64 rcvwin, grow; 634 635 /* minimal window to cope with packet losses, assuming 636 * steady state. Add some cushion because of small variations. 637 */ 638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 639 640 /* Accommodate for sender rate increase (eg. slow start) */ 641 grow = rcvwin * (copied - tp->rcvq_space.space); 642 do_div(grow, tp->rcvq_space.space); 643 rcvwin += (grow << 1); 644 645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 647 rcvmem += 128; 648 649 do_div(rcvwin, tp->advmss); 650 rcvbuf = min_t(u64, rcvwin * rcvmem, 651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 652 if (rcvbuf > sk->sk_rcvbuf) { 653 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 654 655 /* Make the window clamp follow along. */ 656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 657 } 658 } 659 tp->rcvq_space.space = copied; 660 661 new_measure: 662 tp->rcvq_space.seq = tp->copied_seq; 663 tp->rcvq_space.time = tp->tcp_mstamp; 664 } 665 666 /* There is something which you must keep in mind when you analyze the 667 * behavior of the tp->ato delayed ack timeout interval. When a 668 * connection starts up, we want to ack as quickly as possible. The 669 * problem is that "good" TCP's do slow start at the beginning of data 670 * transmission. The means that until we send the first few ACK's the 671 * sender will sit on his end and only queue most of his data, because 672 * he can only send snd_cwnd unacked packets at any given time. For 673 * each ACK we send, he increments snd_cwnd and transmits more of his 674 * queue. -DaveM 675 */ 676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 677 { 678 struct tcp_sock *tp = tcp_sk(sk); 679 struct inet_connection_sock *icsk = inet_csk(sk); 680 u32 now; 681 682 inet_csk_schedule_ack(sk); 683 684 tcp_measure_rcv_mss(sk, skb); 685 686 tcp_rcv_rtt_measure(tp); 687 688 now = tcp_jiffies32; 689 690 if (!icsk->icsk_ack.ato) { 691 /* The _first_ data packet received, initialize 692 * delayed ACK engine. 693 */ 694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 695 icsk->icsk_ack.ato = TCP_ATO_MIN; 696 } else { 697 int m = now - icsk->icsk_ack.lrcvtime; 698 699 if (m <= TCP_ATO_MIN / 2) { 700 /* The fastest case is the first. */ 701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 702 } else if (m < icsk->icsk_ack.ato) { 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 704 if (icsk->icsk_ack.ato > icsk->icsk_rto) 705 icsk->icsk_ack.ato = icsk->icsk_rto; 706 } else if (m > icsk->icsk_rto) { 707 /* Too long gap. Apparently sender failed to 708 * restart window, so that we send ACKs quickly. 709 */ 710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 711 sk_mem_reclaim(sk); 712 } 713 } 714 icsk->icsk_ack.lrcvtime = now; 715 716 tcp_ecn_check_ce(sk, skb); 717 718 if (skb->len >= 128) 719 tcp_grow_window(sk, skb); 720 } 721 722 /* Called to compute a smoothed rtt estimate. The data fed to this 723 * routine either comes from timestamps, or from segments that were 724 * known _not_ to have been retransmitted [see Karn/Partridge 725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 726 * piece by Van Jacobson. 727 * NOTE: the next three routines used to be one big routine. 728 * To save cycles in the RFC 1323 implementation it was better to break 729 * it up into three procedures. -- erics 730 */ 731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 732 { 733 struct tcp_sock *tp = tcp_sk(sk); 734 long m = mrtt_us; /* RTT */ 735 u32 srtt = tp->srtt_us; 736 737 /* The following amusing code comes from Jacobson's 738 * article in SIGCOMM '88. Note that rtt and mdev 739 * are scaled versions of rtt and mean deviation. 740 * This is designed to be as fast as possible 741 * m stands for "measurement". 742 * 743 * On a 1990 paper the rto value is changed to: 744 * RTO = rtt + 4 * mdev 745 * 746 * Funny. This algorithm seems to be very broken. 747 * These formulae increase RTO, when it should be decreased, increase 748 * too slowly, when it should be increased quickly, decrease too quickly 749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 750 * does not matter how to _calculate_ it. Seems, it was trap 751 * that VJ failed to avoid. 8) 752 */ 753 if (srtt != 0) { 754 m -= (srtt >> 3); /* m is now error in rtt est */ 755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 756 if (m < 0) { 757 m = -m; /* m is now abs(error) */ 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 /* This is similar to one of Eifel findings. 760 * Eifel blocks mdev updates when rtt decreases. 761 * This solution is a bit different: we use finer gain 762 * for mdev in this case (alpha*beta). 763 * Like Eifel it also prevents growth of rto, 764 * but also it limits too fast rto decreases, 765 * happening in pure Eifel. 766 */ 767 if (m > 0) 768 m >>= 3; 769 } else { 770 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 771 } 772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 773 if (tp->mdev_us > tp->mdev_max_us) { 774 tp->mdev_max_us = tp->mdev_us; 775 if (tp->mdev_max_us > tp->rttvar_us) 776 tp->rttvar_us = tp->mdev_max_us; 777 } 778 if (after(tp->snd_una, tp->rtt_seq)) { 779 if (tp->mdev_max_us < tp->rttvar_us) 780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 781 tp->rtt_seq = tp->snd_nxt; 782 tp->mdev_max_us = tcp_rto_min_us(sk); 783 784 tcp_bpf_rtt(sk); 785 } 786 } else { 787 /* no previous measure. */ 788 srtt = m << 3; /* take the measured time to be rtt */ 789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 791 tp->mdev_max_us = tp->rttvar_us; 792 tp->rtt_seq = tp->snd_nxt; 793 794 tcp_bpf_rtt(sk); 795 } 796 tp->srtt_us = max(1U, srtt); 797 } 798 799 static void tcp_update_pacing_rate(struct sock *sk) 800 { 801 const struct tcp_sock *tp = tcp_sk(sk); 802 u64 rate; 803 804 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 805 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 806 807 /* current rate is (cwnd * mss) / srtt 808 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 809 * In Congestion Avoidance phase, set it to 120 % the current rate. 810 * 811 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 812 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 813 * end of slow start and should slow down. 814 */ 815 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 817 else 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 819 820 rate *= max(tp->snd_cwnd, tp->packets_out); 821 822 if (likely(tp->srtt_us)) 823 do_div(rate, tp->srtt_us); 824 825 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 826 * without any lock. We want to make sure compiler wont store 827 * intermediate values in this location. 828 */ 829 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 830 sk->sk_max_pacing_rate)); 831 } 832 833 /* Calculate rto without backoff. This is the second half of Van Jacobson's 834 * routine referred to above. 835 */ 836 static void tcp_set_rto(struct sock *sk) 837 { 838 const struct tcp_sock *tp = tcp_sk(sk); 839 /* Old crap is replaced with new one. 8) 840 * 841 * More seriously: 842 * 1. If rtt variance happened to be less 50msec, it is hallucination. 843 * It cannot be less due to utterly erratic ACK generation made 844 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 845 * to do with delayed acks, because at cwnd>2 true delack timeout 846 * is invisible. Actually, Linux-2.4 also generates erratic 847 * ACKs in some circumstances. 848 */ 849 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 850 851 /* 2. Fixups made earlier cannot be right. 852 * If we do not estimate RTO correctly without them, 853 * all the algo is pure shit and should be replaced 854 * with correct one. It is exactly, which we pretend to do. 855 */ 856 857 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 858 * guarantees that rto is higher. 859 */ 860 tcp_bound_rto(sk); 861 } 862 863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 864 { 865 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 866 867 if (!cwnd) 868 cwnd = TCP_INIT_CWND; 869 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 870 } 871 872 /* Take a notice that peer is sending D-SACKs */ 873 static void tcp_dsack_seen(struct tcp_sock *tp) 874 { 875 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 876 tp->rack.dsack_seen = 1; 877 tp->dsack_dups++; 878 } 879 880 /* It's reordering when higher sequence was delivered (i.e. sacked) before 881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 882 * distance is approximated in full-mss packet distance ("reordering"). 883 */ 884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 885 const int ts) 886 { 887 struct tcp_sock *tp = tcp_sk(sk); 888 const u32 mss = tp->mss_cache; 889 u32 fack, metric; 890 891 fack = tcp_highest_sack_seq(tp); 892 if (!before(low_seq, fack)) 893 return; 894 895 metric = fack - low_seq; 896 if ((metric > tp->reordering * mss) && mss) { 897 #if FASTRETRANS_DEBUG > 1 898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 900 tp->reordering, 901 0, 902 tp->sacked_out, 903 tp->undo_marker ? tp->undo_retrans : 0); 904 #endif 905 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 906 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 907 } 908 909 /* This exciting event is worth to be remembered. 8) */ 910 tp->reord_seen++; 911 NET_INC_STATS(sock_net(sk), 912 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 913 } 914 915 /* This must be called before lost_out is incremented */ 916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 917 { 918 if (!tp->retransmit_skb_hint || 919 before(TCP_SKB_CB(skb)->seq, 920 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 921 tp->retransmit_skb_hint = skb; 922 } 923 924 /* Sum the number of packets on the wire we have marked as lost. 925 * There are two cases we care about here: 926 * a) Packet hasn't been marked lost (nor retransmitted), 927 * and this is the first loss. 928 * b) Packet has been marked both lost and retransmitted, 929 * and this means we think it was lost again. 930 */ 931 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 932 { 933 __u8 sacked = TCP_SKB_CB(skb)->sacked; 934 935 if (!(sacked & TCPCB_LOST) || 936 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 937 tp->lost += tcp_skb_pcount(skb); 938 } 939 940 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 941 { 942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 943 tcp_verify_retransmit_hint(tp, skb); 944 945 tp->lost_out += tcp_skb_pcount(skb); 946 tcp_sum_lost(tp, skb); 947 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 948 } 949 } 950 951 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 952 { 953 tcp_verify_retransmit_hint(tp, skb); 954 955 tcp_sum_lost(tp, skb); 956 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 957 tp->lost_out += tcp_skb_pcount(skb); 958 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 959 } 960 } 961 962 /* This procedure tags the retransmission queue when SACKs arrive. 963 * 964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 965 * Packets in queue with these bits set are counted in variables 966 * sacked_out, retrans_out and lost_out, correspondingly. 967 * 968 * Valid combinations are: 969 * Tag InFlight Description 970 * 0 1 - orig segment is in flight. 971 * S 0 - nothing flies, orig reached receiver. 972 * L 0 - nothing flies, orig lost by net. 973 * R 2 - both orig and retransmit are in flight. 974 * L|R 1 - orig is lost, retransmit is in flight. 975 * S|R 1 - orig reached receiver, retrans is still in flight. 976 * (L|S|R is logically valid, it could occur when L|R is sacked, 977 * but it is equivalent to plain S and code short-curcuits it to S. 978 * L|S is logically invalid, it would mean -1 packet in flight 8)) 979 * 980 * These 6 states form finite state machine, controlled by the following events: 981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 983 * 3. Loss detection event of two flavors: 984 * A. Scoreboard estimator decided the packet is lost. 985 * A'. Reno "three dupacks" marks head of queue lost. 986 * B. SACK arrives sacking SND.NXT at the moment, when the 987 * segment was retransmitted. 988 * 4. D-SACK added new rule: D-SACK changes any tag to S. 989 * 990 * It is pleasant to note, that state diagram turns out to be commutative, 991 * so that we are allowed not to be bothered by order of our actions, 992 * when multiple events arrive simultaneously. (see the function below). 993 * 994 * Reordering detection. 995 * -------------------- 996 * Reordering metric is maximal distance, which a packet can be displaced 997 * in packet stream. With SACKs we can estimate it: 998 * 999 * 1. SACK fills old hole and the corresponding segment was not 1000 * ever retransmitted -> reordering. Alas, we cannot use it 1001 * when segment was retransmitted. 1002 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1003 * for retransmitted and already SACKed segment -> reordering.. 1004 * Both of these heuristics are not used in Loss state, when we cannot 1005 * account for retransmits accurately. 1006 * 1007 * SACK block validation. 1008 * ---------------------- 1009 * 1010 * SACK block range validation checks that the received SACK block fits to 1011 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1012 * Note that SND.UNA is not included to the range though being valid because 1013 * it means that the receiver is rather inconsistent with itself reporting 1014 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1015 * perfectly valid, however, in light of RFC2018 which explicitly states 1016 * that "SACK block MUST reflect the newest segment. Even if the newest 1017 * segment is going to be discarded ...", not that it looks very clever 1018 * in case of head skb. Due to potentional receiver driven attacks, we 1019 * choose to avoid immediate execution of a walk in write queue due to 1020 * reneging and defer head skb's loss recovery to standard loss recovery 1021 * procedure that will eventually trigger (nothing forbids us doing this). 1022 * 1023 * Implements also blockage to start_seq wrap-around. Problem lies in the 1024 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1025 * there's no guarantee that it will be before snd_nxt (n). The problem 1026 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1027 * wrap (s_w): 1028 * 1029 * <- outs wnd -> <- wrapzone -> 1030 * u e n u_w e_w s n_w 1031 * | | | | | | | 1032 * |<------------+------+----- TCP seqno space --------------+---------->| 1033 * ...-- <2^31 ->| |<--------... 1034 * ...---- >2^31 ------>| |<--------... 1035 * 1036 * Current code wouldn't be vulnerable but it's better still to discard such 1037 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1038 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1039 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1040 * equal to the ideal case (infinite seqno space without wrap caused issues). 1041 * 1042 * With D-SACK the lower bound is extended to cover sequence space below 1043 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1044 * again, D-SACK block must not to go across snd_una (for the same reason as 1045 * for the normal SACK blocks, explained above). But there all simplicity 1046 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1047 * fully below undo_marker they do not affect behavior in anyway and can 1048 * therefore be safely ignored. In rare cases (which are more or less 1049 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1050 * fragmentation and packet reordering past skb's retransmission. To consider 1051 * them correctly, the acceptable range must be extended even more though 1052 * the exact amount is rather hard to quantify. However, tp->max_window can 1053 * be used as an exaggerated estimate. 1054 */ 1055 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1056 u32 start_seq, u32 end_seq) 1057 { 1058 /* Too far in future, or reversed (interpretation is ambiguous) */ 1059 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1060 return false; 1061 1062 /* Nasty start_seq wrap-around check (see comments above) */ 1063 if (!before(start_seq, tp->snd_nxt)) 1064 return false; 1065 1066 /* In outstanding window? ...This is valid exit for D-SACKs too. 1067 * start_seq == snd_una is non-sensical (see comments above) 1068 */ 1069 if (after(start_seq, tp->snd_una)) 1070 return true; 1071 1072 if (!is_dsack || !tp->undo_marker) 1073 return false; 1074 1075 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1076 if (after(end_seq, tp->snd_una)) 1077 return false; 1078 1079 if (!before(start_seq, tp->undo_marker)) 1080 return true; 1081 1082 /* Too old */ 1083 if (!after(end_seq, tp->undo_marker)) 1084 return false; 1085 1086 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1087 * start_seq < undo_marker and end_seq >= undo_marker. 1088 */ 1089 return !before(start_seq, end_seq - tp->max_window); 1090 } 1091 1092 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1093 struct tcp_sack_block_wire *sp, int num_sacks, 1094 u32 prior_snd_una) 1095 { 1096 struct tcp_sock *tp = tcp_sk(sk); 1097 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1098 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1099 bool dup_sack = false; 1100 1101 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1102 dup_sack = true; 1103 tcp_dsack_seen(tp); 1104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1105 } else if (num_sacks > 1) { 1106 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1107 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1108 1109 if (!after(end_seq_0, end_seq_1) && 1110 !before(start_seq_0, start_seq_1)) { 1111 dup_sack = true; 1112 tcp_dsack_seen(tp); 1113 NET_INC_STATS(sock_net(sk), 1114 LINUX_MIB_TCPDSACKOFORECV); 1115 } 1116 } 1117 1118 /* D-SACK for already forgotten data... Do dumb counting. */ 1119 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1120 !after(end_seq_0, prior_snd_una) && 1121 after(end_seq_0, tp->undo_marker)) 1122 tp->undo_retrans--; 1123 1124 return dup_sack; 1125 } 1126 1127 struct tcp_sacktag_state { 1128 u32 reord; 1129 /* Timestamps for earliest and latest never-retransmitted segment 1130 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1131 * but congestion control should still get an accurate delay signal. 1132 */ 1133 u64 first_sackt; 1134 u64 last_sackt; 1135 struct rate_sample *rate; 1136 int flag; 1137 unsigned int mss_now; 1138 }; 1139 1140 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1141 * the incoming SACK may not exactly match but we can find smaller MSS 1142 * aligned portion of it that matches. Therefore we might need to fragment 1143 * which may fail and creates some hassle (caller must handle error case 1144 * returns). 1145 * 1146 * FIXME: this could be merged to shift decision code 1147 */ 1148 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1149 u32 start_seq, u32 end_seq) 1150 { 1151 int err; 1152 bool in_sack; 1153 unsigned int pkt_len; 1154 unsigned int mss; 1155 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1157 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1158 1159 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1160 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1161 mss = tcp_skb_mss(skb); 1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1163 1164 if (!in_sack) { 1165 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1166 if (pkt_len < mss) 1167 pkt_len = mss; 1168 } else { 1169 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1170 if (pkt_len < mss) 1171 return -EINVAL; 1172 } 1173 1174 /* Round if necessary so that SACKs cover only full MSSes 1175 * and/or the remaining small portion (if present) 1176 */ 1177 if (pkt_len > mss) { 1178 unsigned int new_len = (pkt_len / mss) * mss; 1179 if (!in_sack && new_len < pkt_len) 1180 new_len += mss; 1181 pkt_len = new_len; 1182 } 1183 1184 if (pkt_len >= skb->len && !in_sack) 1185 return 0; 1186 1187 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1188 pkt_len, mss, GFP_ATOMIC); 1189 if (err < 0) 1190 return err; 1191 } 1192 1193 return in_sack; 1194 } 1195 1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1197 static u8 tcp_sacktag_one(struct sock *sk, 1198 struct tcp_sacktag_state *state, u8 sacked, 1199 u32 start_seq, u32 end_seq, 1200 int dup_sack, int pcount, 1201 u64 xmit_time) 1202 { 1203 struct tcp_sock *tp = tcp_sk(sk); 1204 1205 /* Account D-SACK for retransmitted packet. */ 1206 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1207 if (tp->undo_marker && tp->undo_retrans > 0 && 1208 after(end_seq, tp->undo_marker)) 1209 tp->undo_retrans--; 1210 if ((sacked & TCPCB_SACKED_ACKED) && 1211 before(start_seq, state->reord)) 1212 state->reord = start_seq; 1213 } 1214 1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1216 if (!after(end_seq, tp->snd_una)) 1217 return sacked; 1218 1219 if (!(sacked & TCPCB_SACKED_ACKED)) { 1220 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1221 1222 if (sacked & TCPCB_SACKED_RETRANS) { 1223 /* If the segment is not tagged as lost, 1224 * we do not clear RETRANS, believing 1225 * that retransmission is still in flight. 1226 */ 1227 if (sacked & TCPCB_LOST) { 1228 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1229 tp->lost_out -= pcount; 1230 tp->retrans_out -= pcount; 1231 } 1232 } else { 1233 if (!(sacked & TCPCB_RETRANS)) { 1234 /* New sack for not retransmitted frame, 1235 * which was in hole. It is reordering. 1236 */ 1237 if (before(start_seq, 1238 tcp_highest_sack_seq(tp)) && 1239 before(start_seq, state->reord)) 1240 state->reord = start_seq; 1241 1242 if (!after(end_seq, tp->high_seq)) 1243 state->flag |= FLAG_ORIG_SACK_ACKED; 1244 if (state->first_sackt == 0) 1245 state->first_sackt = xmit_time; 1246 state->last_sackt = xmit_time; 1247 } 1248 1249 if (sacked & TCPCB_LOST) { 1250 sacked &= ~TCPCB_LOST; 1251 tp->lost_out -= pcount; 1252 } 1253 } 1254 1255 sacked |= TCPCB_SACKED_ACKED; 1256 state->flag |= FLAG_DATA_SACKED; 1257 tp->sacked_out += pcount; 1258 tp->delivered += pcount; /* Out-of-order packets delivered */ 1259 1260 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1261 if (tp->lost_skb_hint && 1262 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1263 tp->lost_cnt_hint += pcount; 1264 } 1265 1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1267 * frames and clear it. undo_retrans is decreased above, L|R frames 1268 * are accounted above as well. 1269 */ 1270 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1271 sacked &= ~TCPCB_SACKED_RETRANS; 1272 tp->retrans_out -= pcount; 1273 } 1274 1275 return sacked; 1276 } 1277 1278 /* Shift newly-SACKed bytes from this skb to the immediately previous 1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1280 */ 1281 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1282 struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1289 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1290 1291 BUG_ON(!pcount); 1292 1293 /* Adjust counters and hints for the newly sacked sequence 1294 * range but discard the return value since prev is already 1295 * marked. We must tag the range first because the seq 1296 * advancement below implicitly advances 1297 * tcp_highest_sack_seq() when skb is highest_sack. 1298 */ 1299 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1300 start_seq, end_seq, dup_sack, pcount, 1301 tcp_skb_timestamp_us(skb)); 1302 tcp_rate_skb_delivered(sk, skb, state->rate); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1320 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1321 1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1323 if (tcp_skb_pcount(skb) <= 1) 1324 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1325 1326 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1327 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1328 1329 if (skb->len > 0) { 1330 BUG_ON(!tcp_skb_pcount(skb)); 1331 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1332 return false; 1333 } 1334 1335 /* Whole SKB was eaten :-) */ 1336 1337 if (skb == tp->retransmit_skb_hint) 1338 tp->retransmit_skb_hint = prev; 1339 if (skb == tp->lost_skb_hint) { 1340 tp->lost_skb_hint = prev; 1341 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1342 } 1343 1344 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1345 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1347 TCP_SKB_CB(prev)->end_seq++; 1348 1349 if (skb == tcp_highest_sack(sk)) 1350 tcp_advance_highest_sack(sk, skb); 1351 1352 tcp_skb_collapse_tstamp(prev, skb); 1353 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1354 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1355 1356 tcp_rtx_queue_unlink_and_free(skb, sk); 1357 1358 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1359 1360 return true; 1361 } 1362 1363 /* I wish gso_size would have a bit more sane initialization than 1364 * something-or-zero which complicates things 1365 */ 1366 static int tcp_skb_seglen(const struct sk_buff *skb) 1367 { 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1369 } 1370 1371 /* Shifting pages past head area doesn't work */ 1372 static int skb_can_shift(const struct sk_buff *skb) 1373 { 1374 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1375 } 1376 1377 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1378 int pcount, int shiftlen) 1379 { 1380 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1381 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1382 * to make sure not storing more than 65535 * 8 bytes per skb, 1383 * even if current MSS is bigger. 1384 */ 1385 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1386 return 0; 1387 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1388 return 0; 1389 return skb_shift(to, from, shiftlen); 1390 } 1391 1392 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1393 * skb. 1394 */ 1395 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1396 struct tcp_sacktag_state *state, 1397 u32 start_seq, u32 end_seq, 1398 bool dup_sack) 1399 { 1400 struct tcp_sock *tp = tcp_sk(sk); 1401 struct sk_buff *prev; 1402 int mss; 1403 int pcount = 0; 1404 int len; 1405 int in_sack; 1406 1407 /* Normally R but no L won't result in plain S */ 1408 if (!dup_sack && 1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1410 goto fallback; 1411 if (!skb_can_shift(skb)) 1412 goto fallback; 1413 /* This frame is about to be dropped (was ACKed). */ 1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1415 goto fallback; 1416 1417 /* Can only happen with delayed DSACK + discard craziness */ 1418 prev = skb_rb_prev(skb); 1419 if (!prev) 1420 goto fallback; 1421 1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1423 goto fallback; 1424 1425 if (!tcp_skb_can_collapse_to(prev)) 1426 goto fallback; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1430 1431 if (in_sack) { 1432 len = skb->len; 1433 pcount = tcp_skb_pcount(skb); 1434 mss = tcp_skb_seglen(skb); 1435 1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1437 * drop this restriction as unnecessary 1438 */ 1439 if (mss != tcp_skb_seglen(prev)) 1440 goto fallback; 1441 } else { 1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1443 goto noop; 1444 /* CHECKME: This is non-MSS split case only?, this will 1445 * cause skipped skbs due to advancing loop btw, original 1446 * has that feature too 1447 */ 1448 if (tcp_skb_pcount(skb) <= 1) 1449 goto noop; 1450 1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1452 if (!in_sack) { 1453 /* TODO: head merge to next could be attempted here 1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1455 * though it might not be worth of the additional hassle 1456 * 1457 * ...we can probably just fallback to what was done 1458 * previously. We could try merging non-SACKed ones 1459 * as well but it probably isn't going to buy off 1460 * because later SACKs might again split them, and 1461 * it would make skb timestamp tracking considerably 1462 * harder problem. 1463 */ 1464 goto fallback; 1465 } 1466 1467 len = end_seq - TCP_SKB_CB(skb)->seq; 1468 BUG_ON(len < 0); 1469 BUG_ON(len > skb->len); 1470 1471 /* MSS boundaries should be honoured or else pcount will 1472 * severely break even though it makes things bit trickier. 1473 * Optimize common case to avoid most of the divides 1474 */ 1475 mss = tcp_skb_mss(skb); 1476 1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1478 * drop this restriction as unnecessary 1479 */ 1480 if (mss != tcp_skb_seglen(prev)) 1481 goto fallback; 1482 1483 if (len == mss) { 1484 pcount = 1; 1485 } else if (len < mss) { 1486 goto noop; 1487 } else { 1488 pcount = len / mss; 1489 len = pcount * mss; 1490 } 1491 } 1492 1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1495 goto fallback; 1496 1497 if (!tcp_skb_shift(prev, skb, pcount, len)) 1498 goto fallback; 1499 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1500 goto out; 1501 1502 /* Hole filled allows collapsing with the next as well, this is very 1503 * useful when hole on every nth skb pattern happens 1504 */ 1505 skb = skb_rb_next(prev); 1506 if (!skb) 1507 goto out; 1508 1509 if (!skb_can_shift(skb) || 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1511 (mss != tcp_skb_seglen(skb))) 1512 goto out; 1513 1514 len = skb->len; 1515 pcount = tcp_skb_pcount(skb); 1516 if (tcp_skb_shift(prev, skb, pcount, len)) 1517 tcp_shifted_skb(sk, prev, skb, state, pcount, 1518 len, mss, 0); 1519 1520 out: 1521 return prev; 1522 1523 noop: 1524 return skb; 1525 1526 fallback: 1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1528 return NULL; 1529 } 1530 1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1532 struct tcp_sack_block *next_dup, 1533 struct tcp_sacktag_state *state, 1534 u32 start_seq, u32 end_seq, 1535 bool dup_sack_in) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct sk_buff *tmp; 1539 1540 skb_rbtree_walk_from(skb) { 1541 int in_sack = 0; 1542 bool dup_sack = dup_sack_in; 1543 1544 /* queue is in-order => we can short-circuit the walk early */ 1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1546 break; 1547 1548 if (next_dup && 1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1550 in_sack = tcp_match_skb_to_sack(sk, skb, 1551 next_dup->start_seq, 1552 next_dup->end_seq); 1553 if (in_sack > 0) 1554 dup_sack = true; 1555 } 1556 1557 /* skb reference here is a bit tricky to get right, since 1558 * shifting can eat and free both this skb and the next, 1559 * so not even _safe variant of the loop is enough. 1560 */ 1561 if (in_sack <= 0) { 1562 tmp = tcp_shift_skb_data(sk, skb, state, 1563 start_seq, end_seq, dup_sack); 1564 if (tmp) { 1565 if (tmp != skb) { 1566 skb = tmp; 1567 continue; 1568 } 1569 1570 in_sack = 0; 1571 } else { 1572 in_sack = tcp_match_skb_to_sack(sk, skb, 1573 start_seq, 1574 end_seq); 1575 } 1576 } 1577 1578 if (unlikely(in_sack < 0)) 1579 break; 1580 1581 if (in_sack) { 1582 TCP_SKB_CB(skb)->sacked = 1583 tcp_sacktag_one(sk, 1584 state, 1585 TCP_SKB_CB(skb)->sacked, 1586 TCP_SKB_CB(skb)->seq, 1587 TCP_SKB_CB(skb)->end_seq, 1588 dup_sack, 1589 tcp_skb_pcount(skb), 1590 tcp_skb_timestamp_us(skb)); 1591 tcp_rate_skb_delivered(sk, skb, state->rate); 1592 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1593 list_del_init(&skb->tcp_tsorted_anchor); 1594 1595 if (!before(TCP_SKB_CB(skb)->seq, 1596 tcp_highest_sack_seq(tp))) 1597 tcp_advance_highest_sack(sk, skb); 1598 } 1599 } 1600 return skb; 1601 } 1602 1603 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1604 { 1605 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1606 struct sk_buff *skb; 1607 1608 while (*p) { 1609 parent = *p; 1610 skb = rb_to_skb(parent); 1611 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1612 p = &parent->rb_left; 1613 continue; 1614 } 1615 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1616 p = &parent->rb_right; 1617 continue; 1618 } 1619 return skb; 1620 } 1621 return NULL; 1622 } 1623 1624 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1625 u32 skip_to_seq) 1626 { 1627 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1628 return skb; 1629 1630 return tcp_sacktag_bsearch(sk, skip_to_seq); 1631 } 1632 1633 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1634 struct sock *sk, 1635 struct tcp_sack_block *next_dup, 1636 struct tcp_sacktag_state *state, 1637 u32 skip_to_seq) 1638 { 1639 if (!next_dup) 1640 return skb; 1641 1642 if (before(next_dup->start_seq, skip_to_seq)) { 1643 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1644 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1645 next_dup->start_seq, next_dup->end_seq, 1646 1); 1647 } 1648 1649 return skb; 1650 } 1651 1652 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1653 { 1654 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1655 } 1656 1657 static int 1658 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1659 u32 prior_snd_una, struct tcp_sacktag_state *state) 1660 { 1661 struct tcp_sock *tp = tcp_sk(sk); 1662 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1663 TCP_SKB_CB(ack_skb)->sacked); 1664 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1665 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1666 struct tcp_sack_block *cache; 1667 struct sk_buff *skb; 1668 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1669 int used_sacks; 1670 bool found_dup_sack = false; 1671 int i, j; 1672 int first_sack_index; 1673 1674 state->flag = 0; 1675 state->reord = tp->snd_nxt; 1676 1677 if (!tp->sacked_out) 1678 tcp_highest_sack_reset(sk); 1679 1680 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1681 num_sacks, prior_snd_una); 1682 if (found_dup_sack) { 1683 state->flag |= FLAG_DSACKING_ACK; 1684 tp->delivered++; /* A spurious retransmission is delivered */ 1685 } 1686 1687 /* Eliminate too old ACKs, but take into 1688 * account more or less fresh ones, they can 1689 * contain valid SACK info. 1690 */ 1691 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1692 return 0; 1693 1694 if (!tp->packets_out) 1695 goto out; 1696 1697 used_sacks = 0; 1698 first_sack_index = 0; 1699 for (i = 0; i < num_sacks; i++) { 1700 bool dup_sack = !i && found_dup_sack; 1701 1702 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1703 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1704 1705 if (!tcp_is_sackblock_valid(tp, dup_sack, 1706 sp[used_sacks].start_seq, 1707 sp[used_sacks].end_seq)) { 1708 int mib_idx; 1709 1710 if (dup_sack) { 1711 if (!tp->undo_marker) 1712 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1713 else 1714 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1715 } else { 1716 /* Don't count olds caused by ACK reordering */ 1717 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1718 !after(sp[used_sacks].end_seq, tp->snd_una)) 1719 continue; 1720 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1721 } 1722 1723 NET_INC_STATS(sock_net(sk), mib_idx); 1724 if (i == 0) 1725 first_sack_index = -1; 1726 continue; 1727 } 1728 1729 /* Ignore very old stuff early */ 1730 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1731 if (i == 0) 1732 first_sack_index = -1; 1733 continue; 1734 } 1735 1736 used_sacks++; 1737 } 1738 1739 /* order SACK blocks to allow in order walk of the retrans queue */ 1740 for (i = used_sacks - 1; i > 0; i--) { 1741 for (j = 0; j < i; j++) { 1742 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1743 swap(sp[j], sp[j + 1]); 1744 1745 /* Track where the first SACK block goes to */ 1746 if (j == first_sack_index) 1747 first_sack_index = j + 1; 1748 } 1749 } 1750 } 1751 1752 state->mss_now = tcp_current_mss(sk); 1753 skb = NULL; 1754 i = 0; 1755 1756 if (!tp->sacked_out) { 1757 /* It's already past, so skip checking against it */ 1758 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1759 } else { 1760 cache = tp->recv_sack_cache; 1761 /* Skip empty blocks in at head of the cache */ 1762 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1763 !cache->end_seq) 1764 cache++; 1765 } 1766 1767 while (i < used_sacks) { 1768 u32 start_seq = sp[i].start_seq; 1769 u32 end_seq = sp[i].end_seq; 1770 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1771 struct tcp_sack_block *next_dup = NULL; 1772 1773 if (found_dup_sack && ((i + 1) == first_sack_index)) 1774 next_dup = &sp[i + 1]; 1775 1776 /* Skip too early cached blocks */ 1777 while (tcp_sack_cache_ok(tp, cache) && 1778 !before(start_seq, cache->end_seq)) 1779 cache++; 1780 1781 /* Can skip some work by looking recv_sack_cache? */ 1782 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1783 after(end_seq, cache->start_seq)) { 1784 1785 /* Head todo? */ 1786 if (before(start_seq, cache->start_seq)) { 1787 skb = tcp_sacktag_skip(skb, sk, start_seq); 1788 skb = tcp_sacktag_walk(skb, sk, next_dup, 1789 state, 1790 start_seq, 1791 cache->start_seq, 1792 dup_sack); 1793 } 1794 1795 /* Rest of the block already fully processed? */ 1796 if (!after(end_seq, cache->end_seq)) 1797 goto advance_sp; 1798 1799 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1800 state, 1801 cache->end_seq); 1802 1803 /* ...tail remains todo... */ 1804 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1805 /* ...but better entrypoint exists! */ 1806 skb = tcp_highest_sack(sk); 1807 if (!skb) 1808 break; 1809 cache++; 1810 goto walk; 1811 } 1812 1813 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1814 /* Check overlap against next cached too (past this one already) */ 1815 cache++; 1816 continue; 1817 } 1818 1819 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1820 skb = tcp_highest_sack(sk); 1821 if (!skb) 1822 break; 1823 } 1824 skb = tcp_sacktag_skip(skb, sk, start_seq); 1825 1826 walk: 1827 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1828 start_seq, end_seq, dup_sack); 1829 1830 advance_sp: 1831 i++; 1832 } 1833 1834 /* Clear the head of the cache sack blocks so we can skip it next time */ 1835 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1836 tp->recv_sack_cache[i].start_seq = 0; 1837 tp->recv_sack_cache[i].end_seq = 0; 1838 } 1839 for (j = 0; j < used_sacks; j++) 1840 tp->recv_sack_cache[i++] = sp[j]; 1841 1842 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1843 tcp_check_sack_reordering(sk, state->reord, 0); 1844 1845 tcp_verify_left_out(tp); 1846 out: 1847 1848 #if FASTRETRANS_DEBUG > 0 1849 WARN_ON((int)tp->sacked_out < 0); 1850 WARN_ON((int)tp->lost_out < 0); 1851 WARN_ON((int)tp->retrans_out < 0); 1852 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1853 #endif 1854 return state->flag; 1855 } 1856 1857 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1858 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1859 */ 1860 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1861 { 1862 u32 holes; 1863 1864 holes = max(tp->lost_out, 1U); 1865 holes = min(holes, tp->packets_out); 1866 1867 if ((tp->sacked_out + holes) > tp->packets_out) { 1868 tp->sacked_out = tp->packets_out - holes; 1869 return true; 1870 } 1871 return false; 1872 } 1873 1874 /* If we receive more dupacks than we expected counting segments 1875 * in assumption of absent reordering, interpret this as reordering. 1876 * The only another reason could be bug in receiver TCP. 1877 */ 1878 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1879 { 1880 struct tcp_sock *tp = tcp_sk(sk); 1881 1882 if (!tcp_limit_reno_sacked(tp)) 1883 return; 1884 1885 tp->reordering = min_t(u32, tp->packets_out + addend, 1886 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1887 tp->reord_seen++; 1888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1889 } 1890 1891 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1892 1893 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1894 { 1895 if (num_dupack) { 1896 struct tcp_sock *tp = tcp_sk(sk); 1897 u32 prior_sacked = tp->sacked_out; 1898 s32 delivered; 1899 1900 tp->sacked_out += num_dupack; 1901 tcp_check_reno_reordering(sk, 0); 1902 delivered = tp->sacked_out - prior_sacked; 1903 if (delivered > 0) 1904 tp->delivered += delivered; 1905 tcp_verify_left_out(tp); 1906 } 1907 } 1908 1909 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1910 1911 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1912 { 1913 struct tcp_sock *tp = tcp_sk(sk); 1914 1915 if (acked > 0) { 1916 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1917 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1918 if (acked - 1 >= tp->sacked_out) 1919 tp->sacked_out = 0; 1920 else 1921 tp->sacked_out -= acked - 1; 1922 } 1923 tcp_check_reno_reordering(sk, acked); 1924 tcp_verify_left_out(tp); 1925 } 1926 1927 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1928 { 1929 tp->sacked_out = 0; 1930 } 1931 1932 void tcp_clear_retrans(struct tcp_sock *tp) 1933 { 1934 tp->retrans_out = 0; 1935 tp->lost_out = 0; 1936 tp->undo_marker = 0; 1937 tp->undo_retrans = -1; 1938 tp->sacked_out = 0; 1939 } 1940 1941 static inline void tcp_init_undo(struct tcp_sock *tp) 1942 { 1943 tp->undo_marker = tp->snd_una; 1944 /* Retransmission still in flight may cause DSACKs later. */ 1945 tp->undo_retrans = tp->retrans_out ? : -1; 1946 } 1947 1948 static bool tcp_is_rack(const struct sock *sk) 1949 { 1950 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1951 } 1952 1953 /* If we detect SACK reneging, forget all SACK information 1954 * and reset tags completely, otherwise preserve SACKs. If receiver 1955 * dropped its ofo queue, we will know this due to reneging detection. 1956 */ 1957 static void tcp_timeout_mark_lost(struct sock *sk) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 struct sk_buff *skb, *head; 1961 bool is_reneg; /* is receiver reneging on SACKs? */ 1962 1963 head = tcp_rtx_queue_head(sk); 1964 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1965 if (is_reneg) { 1966 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1967 tp->sacked_out = 0; 1968 /* Mark SACK reneging until we recover from this loss event. */ 1969 tp->is_sack_reneg = 1; 1970 } else if (tcp_is_reno(tp)) { 1971 tcp_reset_reno_sack(tp); 1972 } 1973 1974 skb = head; 1975 skb_rbtree_walk_from(skb) { 1976 if (is_reneg) 1977 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1978 else if (tcp_is_rack(sk) && skb != head && 1979 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1980 continue; /* Don't mark recently sent ones lost yet */ 1981 tcp_mark_skb_lost(sk, skb); 1982 } 1983 tcp_verify_left_out(tp); 1984 tcp_clear_all_retrans_hints(tp); 1985 } 1986 1987 /* Enter Loss state. */ 1988 void tcp_enter_loss(struct sock *sk) 1989 { 1990 const struct inet_connection_sock *icsk = inet_csk(sk); 1991 struct tcp_sock *tp = tcp_sk(sk); 1992 struct net *net = sock_net(sk); 1993 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1994 1995 tcp_timeout_mark_lost(sk); 1996 1997 /* Reduce ssthresh if it has not yet been made inside this window. */ 1998 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1999 !after(tp->high_seq, tp->snd_una) || 2000 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2001 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2002 tp->prior_cwnd = tp->snd_cwnd; 2003 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2004 tcp_ca_event(sk, CA_EVENT_LOSS); 2005 tcp_init_undo(tp); 2006 } 2007 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2008 tp->snd_cwnd_cnt = 0; 2009 tp->snd_cwnd_stamp = tcp_jiffies32; 2010 2011 /* Timeout in disordered state after receiving substantial DUPACKs 2012 * suggests that the degree of reordering is over-estimated. 2013 */ 2014 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2015 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2016 tp->reordering = min_t(unsigned int, tp->reordering, 2017 net->ipv4.sysctl_tcp_reordering); 2018 tcp_set_ca_state(sk, TCP_CA_Loss); 2019 tp->high_seq = tp->snd_nxt; 2020 tcp_ecn_queue_cwr(tp); 2021 2022 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2023 * loss recovery is underway except recurring timeout(s) on 2024 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2025 */ 2026 tp->frto = net->ipv4.sysctl_tcp_frto && 2027 (new_recovery || icsk->icsk_retransmits) && 2028 !inet_csk(sk)->icsk_mtup.probe_size; 2029 } 2030 2031 /* If ACK arrived pointing to a remembered SACK, it means that our 2032 * remembered SACKs do not reflect real state of receiver i.e. 2033 * receiver _host_ is heavily congested (or buggy). 2034 * 2035 * To avoid big spurious retransmission bursts due to transient SACK 2036 * scoreboard oddities that look like reneging, we give the receiver a 2037 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2038 * restore sanity to the SACK scoreboard. If the apparent reneging 2039 * persists until this RTO then we'll clear the SACK scoreboard. 2040 */ 2041 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2042 { 2043 if (flag & FLAG_SACK_RENEGING) { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2046 msecs_to_jiffies(10)); 2047 2048 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2049 delay, TCP_RTO_MAX); 2050 return true; 2051 } 2052 return false; 2053 } 2054 2055 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2056 * counter when SACK is enabled (without SACK, sacked_out is used for 2057 * that purpose). 2058 * 2059 * With reordering, holes may still be in flight, so RFC3517 recovery 2060 * uses pure sacked_out (total number of SACKed segments) even though 2061 * it violates the RFC that uses duplicate ACKs, often these are equal 2062 * but when e.g. out-of-window ACKs or packet duplication occurs, 2063 * they differ. Since neither occurs due to loss, TCP should really 2064 * ignore them. 2065 */ 2066 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2067 { 2068 return tp->sacked_out + 1; 2069 } 2070 2071 /* Linux NewReno/SACK/ECN state machine. 2072 * -------------------------------------- 2073 * 2074 * "Open" Normal state, no dubious events, fast path. 2075 * "Disorder" In all the respects it is "Open", 2076 * but requires a bit more attention. It is entered when 2077 * we see some SACKs or dupacks. It is split of "Open" 2078 * mainly to move some processing from fast path to slow one. 2079 * "CWR" CWND was reduced due to some Congestion Notification event. 2080 * It can be ECN, ICMP source quench, local device congestion. 2081 * "Recovery" CWND was reduced, we are fast-retransmitting. 2082 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2083 * 2084 * tcp_fastretrans_alert() is entered: 2085 * - each incoming ACK, if state is not "Open" 2086 * - when arrived ACK is unusual, namely: 2087 * * SACK 2088 * * Duplicate ACK. 2089 * * ECN ECE. 2090 * 2091 * Counting packets in flight is pretty simple. 2092 * 2093 * in_flight = packets_out - left_out + retrans_out 2094 * 2095 * packets_out is SND.NXT-SND.UNA counted in packets. 2096 * 2097 * retrans_out is number of retransmitted segments. 2098 * 2099 * left_out is number of segments left network, but not ACKed yet. 2100 * 2101 * left_out = sacked_out + lost_out 2102 * 2103 * sacked_out: Packets, which arrived to receiver out of order 2104 * and hence not ACKed. With SACKs this number is simply 2105 * amount of SACKed data. Even without SACKs 2106 * it is easy to give pretty reliable estimate of this number, 2107 * counting duplicate ACKs. 2108 * 2109 * lost_out: Packets lost by network. TCP has no explicit 2110 * "loss notification" feedback from network (for now). 2111 * It means that this number can be only _guessed_. 2112 * Actually, it is the heuristics to predict lossage that 2113 * distinguishes different algorithms. 2114 * 2115 * F.e. after RTO, when all the queue is considered as lost, 2116 * lost_out = packets_out and in_flight = retrans_out. 2117 * 2118 * Essentially, we have now a few algorithms detecting 2119 * lost packets. 2120 * 2121 * If the receiver supports SACK: 2122 * 2123 * RFC6675/3517: It is the conventional algorithm. A packet is 2124 * considered lost if the number of higher sequence packets 2125 * SACKed is greater than or equal the DUPACK thoreshold 2126 * (reordering). This is implemented in tcp_mark_head_lost and 2127 * tcp_update_scoreboard. 2128 * 2129 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2130 * (2017-) that checks timing instead of counting DUPACKs. 2131 * Essentially a packet is considered lost if it's not S/ACKed 2132 * after RTT + reordering_window, where both metrics are 2133 * dynamically measured and adjusted. This is implemented in 2134 * tcp_rack_mark_lost. 2135 * 2136 * If the receiver does not support SACK: 2137 * 2138 * NewReno (RFC6582): in Recovery we assume that one segment 2139 * is lost (classic Reno). While we are in Recovery and 2140 * a partial ACK arrives, we assume that one more packet 2141 * is lost (NewReno). This heuristics are the same in NewReno 2142 * and SACK. 2143 * 2144 * Really tricky (and requiring careful tuning) part of algorithm 2145 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2146 * The first determines the moment _when_ we should reduce CWND and, 2147 * hence, slow down forward transmission. In fact, it determines the moment 2148 * when we decide that hole is caused by loss, rather than by a reorder. 2149 * 2150 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2151 * holes, caused by lost packets. 2152 * 2153 * And the most logically complicated part of algorithm is undo 2154 * heuristics. We detect false retransmits due to both too early 2155 * fast retransmit (reordering) and underestimated RTO, analyzing 2156 * timestamps and D-SACKs. When we detect that some segments were 2157 * retransmitted by mistake and CWND reduction was wrong, we undo 2158 * window reduction and abort recovery phase. This logic is hidden 2159 * inside several functions named tcp_try_undo_<something>. 2160 */ 2161 2162 /* This function decides, when we should leave Disordered state 2163 * and enter Recovery phase, reducing congestion window. 2164 * 2165 * Main question: may we further continue forward transmission 2166 * with the same cwnd? 2167 */ 2168 static bool tcp_time_to_recover(struct sock *sk, int flag) 2169 { 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 2172 /* Trick#1: The loss is proven. */ 2173 if (tp->lost_out) 2174 return true; 2175 2176 /* Not-A-Trick#2 : Classic rule... */ 2177 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2178 return true; 2179 2180 return false; 2181 } 2182 2183 /* Detect loss in event "A" above by marking head of queue up as lost. 2184 * For non-SACK(Reno) senders, the first "packets" number of segments 2185 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2186 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2187 * the maximum SACKed segments to pass before reaching this limit. 2188 */ 2189 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2190 { 2191 struct tcp_sock *tp = tcp_sk(sk); 2192 struct sk_buff *skb; 2193 int cnt, oldcnt, lost; 2194 unsigned int mss; 2195 /* Use SACK to deduce losses of new sequences sent during recovery */ 2196 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2197 2198 WARN_ON(packets > tp->packets_out); 2199 skb = tp->lost_skb_hint; 2200 if (skb) { 2201 /* Head already handled? */ 2202 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2203 return; 2204 cnt = tp->lost_cnt_hint; 2205 } else { 2206 skb = tcp_rtx_queue_head(sk); 2207 cnt = 0; 2208 } 2209 2210 skb_rbtree_walk_from(skb) { 2211 /* TODO: do this better */ 2212 /* this is not the most efficient way to do this... */ 2213 tp->lost_skb_hint = skb; 2214 tp->lost_cnt_hint = cnt; 2215 2216 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2217 break; 2218 2219 oldcnt = cnt; 2220 if (tcp_is_reno(tp) || 2221 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2222 cnt += tcp_skb_pcount(skb); 2223 2224 if (cnt > packets) { 2225 if (tcp_is_sack(tp) || 2226 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2227 (oldcnt >= packets)) 2228 break; 2229 2230 mss = tcp_skb_mss(skb); 2231 /* If needed, chop off the prefix to mark as lost. */ 2232 lost = (packets - oldcnt) * mss; 2233 if (lost < skb->len && 2234 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2235 lost, mss, GFP_ATOMIC) < 0) 2236 break; 2237 cnt = packets; 2238 } 2239 2240 tcp_skb_mark_lost(tp, skb); 2241 2242 if (mark_head) 2243 break; 2244 } 2245 tcp_verify_left_out(tp); 2246 } 2247 2248 /* Account newly detected lost packet(s) */ 2249 2250 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2251 { 2252 struct tcp_sock *tp = tcp_sk(sk); 2253 2254 if (tcp_is_sack(tp)) { 2255 int sacked_upto = tp->sacked_out - tp->reordering; 2256 if (sacked_upto >= 0) 2257 tcp_mark_head_lost(sk, sacked_upto, 0); 2258 else if (fast_rexmit) 2259 tcp_mark_head_lost(sk, 1, 1); 2260 } 2261 } 2262 2263 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2264 { 2265 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2266 before(tp->rx_opt.rcv_tsecr, when); 2267 } 2268 2269 /* skb is spurious retransmitted if the returned timestamp echo 2270 * reply is prior to the skb transmission time 2271 */ 2272 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2273 const struct sk_buff *skb) 2274 { 2275 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2276 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2277 } 2278 2279 /* Nothing was retransmitted or returned timestamp is less 2280 * than timestamp of the first retransmission. 2281 */ 2282 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2283 { 2284 return tp->retrans_stamp && 2285 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2286 } 2287 2288 /* Undo procedures. */ 2289 2290 /* We can clear retrans_stamp when there are no retransmissions in the 2291 * window. It would seem that it is trivially available for us in 2292 * tp->retrans_out, however, that kind of assumptions doesn't consider 2293 * what will happen if errors occur when sending retransmission for the 2294 * second time. ...It could the that such segment has only 2295 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2296 * the head skb is enough except for some reneging corner cases that 2297 * are not worth the effort. 2298 * 2299 * Main reason for all this complexity is the fact that connection dying 2300 * time now depends on the validity of the retrans_stamp, in particular, 2301 * that successive retransmissions of a segment must not advance 2302 * retrans_stamp under any conditions. 2303 */ 2304 static bool tcp_any_retrans_done(const struct sock *sk) 2305 { 2306 const struct tcp_sock *tp = tcp_sk(sk); 2307 struct sk_buff *skb; 2308 2309 if (tp->retrans_out) 2310 return true; 2311 2312 skb = tcp_rtx_queue_head(sk); 2313 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2314 return true; 2315 2316 return false; 2317 } 2318 2319 static void DBGUNDO(struct sock *sk, const char *msg) 2320 { 2321 #if FASTRETRANS_DEBUG > 1 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 struct inet_sock *inet = inet_sk(sk); 2324 2325 if (sk->sk_family == AF_INET) { 2326 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2327 msg, 2328 &inet->inet_daddr, ntohs(inet->inet_dport), 2329 tp->snd_cwnd, tcp_left_out(tp), 2330 tp->snd_ssthresh, tp->prior_ssthresh, 2331 tp->packets_out); 2332 } 2333 #if IS_ENABLED(CONFIG_IPV6) 2334 else if (sk->sk_family == AF_INET6) { 2335 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2336 msg, 2337 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2338 tp->snd_cwnd, tcp_left_out(tp), 2339 tp->snd_ssthresh, tp->prior_ssthresh, 2340 tp->packets_out); 2341 } 2342 #endif 2343 #endif 2344 } 2345 2346 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2347 { 2348 struct tcp_sock *tp = tcp_sk(sk); 2349 2350 if (unmark_loss) { 2351 struct sk_buff *skb; 2352 2353 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2354 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2355 } 2356 tp->lost_out = 0; 2357 tcp_clear_all_retrans_hints(tp); 2358 } 2359 2360 if (tp->prior_ssthresh) { 2361 const struct inet_connection_sock *icsk = inet_csk(sk); 2362 2363 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2364 2365 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2366 tp->snd_ssthresh = tp->prior_ssthresh; 2367 tcp_ecn_withdraw_cwr(tp); 2368 } 2369 } 2370 tp->snd_cwnd_stamp = tcp_jiffies32; 2371 tp->undo_marker = 0; 2372 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2373 } 2374 2375 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2376 { 2377 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2378 } 2379 2380 /* People celebrate: "We love our President!" */ 2381 static bool tcp_try_undo_recovery(struct sock *sk) 2382 { 2383 struct tcp_sock *tp = tcp_sk(sk); 2384 2385 if (tcp_may_undo(tp)) { 2386 int mib_idx; 2387 2388 /* Happy end! We did not retransmit anything 2389 * or our original transmission succeeded. 2390 */ 2391 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2392 tcp_undo_cwnd_reduction(sk, false); 2393 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2394 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2395 else 2396 mib_idx = LINUX_MIB_TCPFULLUNDO; 2397 2398 NET_INC_STATS(sock_net(sk), mib_idx); 2399 } else if (tp->rack.reo_wnd_persist) { 2400 tp->rack.reo_wnd_persist--; 2401 } 2402 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2403 /* Hold old state until something *above* high_seq 2404 * is ACKed. For Reno it is MUST to prevent false 2405 * fast retransmits (RFC2582). SACK TCP is safe. */ 2406 if (!tcp_any_retrans_done(sk)) 2407 tp->retrans_stamp = 0; 2408 return true; 2409 } 2410 tcp_set_ca_state(sk, TCP_CA_Open); 2411 tp->is_sack_reneg = 0; 2412 return false; 2413 } 2414 2415 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2416 static bool tcp_try_undo_dsack(struct sock *sk) 2417 { 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 2420 if (tp->undo_marker && !tp->undo_retrans) { 2421 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2422 tp->rack.reo_wnd_persist + 1); 2423 DBGUNDO(sk, "D-SACK"); 2424 tcp_undo_cwnd_reduction(sk, false); 2425 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2432 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 if (frto_undo || tcp_may_undo(tp)) { 2437 tcp_undo_cwnd_reduction(sk, true); 2438 2439 DBGUNDO(sk, "partial loss"); 2440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2441 if (frto_undo) 2442 NET_INC_STATS(sock_net(sk), 2443 LINUX_MIB_TCPSPURIOUSRTOS); 2444 inet_csk(sk)->icsk_retransmits = 0; 2445 if (frto_undo || tcp_is_sack(tp)) { 2446 tcp_set_ca_state(sk, TCP_CA_Open); 2447 tp->is_sack_reneg = 0; 2448 } 2449 return true; 2450 } 2451 return false; 2452 } 2453 2454 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2455 * It computes the number of packets to send (sndcnt) based on packets newly 2456 * delivered: 2457 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2458 * cwnd reductions across a full RTT. 2459 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2460 * But when the retransmits are acked without further losses, PRR 2461 * slow starts cwnd up to ssthresh to speed up the recovery. 2462 */ 2463 static void tcp_init_cwnd_reduction(struct sock *sk) 2464 { 2465 struct tcp_sock *tp = tcp_sk(sk); 2466 2467 tp->high_seq = tp->snd_nxt; 2468 tp->tlp_high_seq = 0; 2469 tp->snd_cwnd_cnt = 0; 2470 tp->prior_cwnd = tp->snd_cwnd; 2471 tp->prr_delivered = 0; 2472 tp->prr_out = 0; 2473 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2474 tcp_ecn_queue_cwr(tp); 2475 } 2476 2477 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 int sndcnt = 0; 2481 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2482 2483 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2484 return; 2485 2486 tp->prr_delivered += newly_acked_sacked; 2487 if (delta < 0) { 2488 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2489 tp->prior_cwnd - 1; 2490 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2491 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2492 FLAG_RETRANS_DATA_ACKED) { 2493 sndcnt = min_t(int, delta, 2494 max_t(int, tp->prr_delivered - tp->prr_out, 2495 newly_acked_sacked) + 1); 2496 } else { 2497 sndcnt = min(delta, newly_acked_sacked); 2498 } 2499 /* Force a fast retransmit upon entering fast recovery */ 2500 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2501 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2502 } 2503 2504 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2505 { 2506 struct tcp_sock *tp = tcp_sk(sk); 2507 2508 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2509 return; 2510 2511 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2512 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2513 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2514 tp->snd_cwnd = tp->snd_ssthresh; 2515 tp->snd_cwnd_stamp = tcp_jiffies32; 2516 } 2517 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2518 } 2519 2520 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2521 void tcp_enter_cwr(struct sock *sk) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 tp->prior_ssthresh = 0; 2526 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2527 tp->undo_marker = 0; 2528 tcp_init_cwnd_reduction(sk); 2529 tcp_set_ca_state(sk, TCP_CA_CWR); 2530 } 2531 } 2532 EXPORT_SYMBOL(tcp_enter_cwr); 2533 2534 static void tcp_try_keep_open(struct sock *sk) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 int state = TCP_CA_Open; 2538 2539 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2540 state = TCP_CA_Disorder; 2541 2542 if (inet_csk(sk)->icsk_ca_state != state) { 2543 tcp_set_ca_state(sk, state); 2544 tp->high_seq = tp->snd_nxt; 2545 } 2546 } 2547 2548 static void tcp_try_to_open(struct sock *sk, int flag) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 2552 tcp_verify_left_out(tp); 2553 2554 if (!tcp_any_retrans_done(sk)) 2555 tp->retrans_stamp = 0; 2556 2557 if (flag & FLAG_ECE) 2558 tcp_enter_cwr(sk); 2559 2560 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2561 tcp_try_keep_open(sk); 2562 } 2563 } 2564 2565 static void tcp_mtup_probe_failed(struct sock *sk) 2566 { 2567 struct inet_connection_sock *icsk = inet_csk(sk); 2568 2569 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2570 icsk->icsk_mtup.probe_size = 0; 2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2572 } 2573 2574 static void tcp_mtup_probe_success(struct sock *sk) 2575 { 2576 struct tcp_sock *tp = tcp_sk(sk); 2577 struct inet_connection_sock *icsk = inet_csk(sk); 2578 2579 /* FIXME: breaks with very large cwnd */ 2580 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2581 tp->snd_cwnd = tp->snd_cwnd * 2582 tcp_mss_to_mtu(sk, tp->mss_cache) / 2583 icsk->icsk_mtup.probe_size; 2584 tp->snd_cwnd_cnt = 0; 2585 tp->snd_cwnd_stamp = tcp_jiffies32; 2586 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2587 2588 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2589 icsk->icsk_mtup.probe_size = 0; 2590 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2592 } 2593 2594 /* Do a simple retransmit without using the backoff mechanisms in 2595 * tcp_timer. This is used for path mtu discovery. 2596 * The socket is already locked here. 2597 */ 2598 void tcp_simple_retransmit(struct sock *sk) 2599 { 2600 const struct inet_connection_sock *icsk = inet_csk(sk); 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 struct sk_buff *skb; 2603 unsigned int mss = tcp_current_mss(sk); 2604 2605 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2606 if (tcp_skb_seglen(skb) > mss && 2607 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2608 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2609 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2610 tp->retrans_out -= tcp_skb_pcount(skb); 2611 } 2612 tcp_skb_mark_lost_uncond_verify(tp, skb); 2613 } 2614 } 2615 2616 tcp_clear_retrans_hints_partial(tp); 2617 2618 if (!tp->lost_out) 2619 return; 2620 2621 if (tcp_is_reno(tp)) 2622 tcp_limit_reno_sacked(tp); 2623 2624 tcp_verify_left_out(tp); 2625 2626 /* Don't muck with the congestion window here. 2627 * Reason is that we do not increase amount of _data_ 2628 * in network, but units changed and effective 2629 * cwnd/ssthresh really reduced now. 2630 */ 2631 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2632 tp->high_seq = tp->snd_nxt; 2633 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2634 tp->prior_ssthresh = 0; 2635 tp->undo_marker = 0; 2636 tcp_set_ca_state(sk, TCP_CA_Loss); 2637 } 2638 tcp_xmit_retransmit_queue(sk); 2639 } 2640 EXPORT_SYMBOL(tcp_simple_retransmit); 2641 2642 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2643 { 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 int mib_idx; 2646 2647 if (tcp_is_reno(tp)) 2648 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2649 else 2650 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2651 2652 NET_INC_STATS(sock_net(sk), mib_idx); 2653 2654 tp->prior_ssthresh = 0; 2655 tcp_init_undo(tp); 2656 2657 if (!tcp_in_cwnd_reduction(sk)) { 2658 if (!ece_ack) 2659 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2660 tcp_init_cwnd_reduction(sk); 2661 } 2662 tcp_set_ca_state(sk, TCP_CA_Recovery); 2663 } 2664 2665 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2666 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2667 */ 2668 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2669 int *rexmit) 2670 { 2671 struct tcp_sock *tp = tcp_sk(sk); 2672 bool recovered = !before(tp->snd_una, tp->high_seq); 2673 2674 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2675 tcp_try_undo_loss(sk, false)) 2676 return; 2677 2678 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2679 /* Step 3.b. A timeout is spurious if not all data are 2680 * lost, i.e., never-retransmitted data are (s)acked. 2681 */ 2682 if ((flag & FLAG_ORIG_SACK_ACKED) && 2683 tcp_try_undo_loss(sk, true)) 2684 return; 2685 2686 if (after(tp->snd_nxt, tp->high_seq)) { 2687 if (flag & FLAG_DATA_SACKED || num_dupack) 2688 tp->frto = 0; /* Step 3.a. loss was real */ 2689 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2690 tp->high_seq = tp->snd_nxt; 2691 /* Step 2.b. Try send new data (but deferred until cwnd 2692 * is updated in tcp_ack()). Otherwise fall back to 2693 * the conventional recovery. 2694 */ 2695 if (!tcp_write_queue_empty(sk) && 2696 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2697 *rexmit = REXMIT_NEW; 2698 return; 2699 } 2700 tp->frto = 0; 2701 } 2702 } 2703 2704 if (recovered) { 2705 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2706 tcp_try_undo_recovery(sk); 2707 return; 2708 } 2709 if (tcp_is_reno(tp)) { 2710 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2711 * delivered. Lower inflight to clock out (re)tranmissions. 2712 */ 2713 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2714 tcp_add_reno_sack(sk, num_dupack); 2715 else if (flag & FLAG_SND_UNA_ADVANCED) 2716 tcp_reset_reno_sack(tp); 2717 } 2718 *rexmit = REXMIT_LOST; 2719 } 2720 2721 /* Undo during fast recovery after partial ACK. */ 2722 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2723 { 2724 struct tcp_sock *tp = tcp_sk(sk); 2725 2726 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2727 /* Plain luck! Hole if filled with delayed 2728 * packet, rather than with a retransmit. Check reordering. 2729 */ 2730 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2731 2732 /* We are getting evidence that the reordering degree is higher 2733 * than we realized. If there are no retransmits out then we 2734 * can undo. Otherwise we clock out new packets but do not 2735 * mark more packets lost or retransmit more. 2736 */ 2737 if (tp->retrans_out) 2738 return true; 2739 2740 if (!tcp_any_retrans_done(sk)) 2741 tp->retrans_stamp = 0; 2742 2743 DBGUNDO(sk, "partial recovery"); 2744 tcp_undo_cwnd_reduction(sk, true); 2745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2746 tcp_try_keep_open(sk); 2747 return true; 2748 } 2749 return false; 2750 } 2751 2752 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2753 { 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 2756 if (tcp_rtx_queue_empty(sk)) 2757 return; 2758 2759 if (unlikely(tcp_is_reno(tp))) { 2760 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2761 } else if (tcp_is_rack(sk)) { 2762 u32 prior_retrans = tp->retrans_out; 2763 2764 tcp_rack_mark_lost(sk); 2765 if (prior_retrans > tp->retrans_out) 2766 *ack_flag |= FLAG_LOST_RETRANS; 2767 } 2768 } 2769 2770 static bool tcp_force_fast_retransmit(struct sock *sk) 2771 { 2772 struct tcp_sock *tp = tcp_sk(sk); 2773 2774 return after(tcp_highest_sack_seq(tp), 2775 tp->snd_una + tp->reordering * tp->mss_cache); 2776 } 2777 2778 /* Process an event, which can update packets-in-flight not trivially. 2779 * Main goal of this function is to calculate new estimate for left_out, 2780 * taking into account both packets sitting in receiver's buffer and 2781 * packets lost by network. 2782 * 2783 * Besides that it updates the congestion state when packet loss or ECN 2784 * is detected. But it does not reduce the cwnd, it is done by the 2785 * congestion control later. 2786 * 2787 * It does _not_ decide what to send, it is made in function 2788 * tcp_xmit_retransmit_queue(). 2789 */ 2790 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2791 int num_dupack, int *ack_flag, int *rexmit) 2792 { 2793 struct inet_connection_sock *icsk = inet_csk(sk); 2794 struct tcp_sock *tp = tcp_sk(sk); 2795 int fast_rexmit = 0, flag = *ack_flag; 2796 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2797 tcp_force_fast_retransmit(sk)); 2798 2799 if (!tp->packets_out && tp->sacked_out) 2800 tp->sacked_out = 0; 2801 2802 /* Now state machine starts. 2803 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2804 if (flag & FLAG_ECE) 2805 tp->prior_ssthresh = 0; 2806 2807 /* B. In all the states check for reneging SACKs. */ 2808 if (tcp_check_sack_reneging(sk, flag)) 2809 return; 2810 2811 /* C. Check consistency of the current state. */ 2812 tcp_verify_left_out(tp); 2813 2814 /* D. Check state exit conditions. State can be terminated 2815 * when high_seq is ACKed. */ 2816 if (icsk->icsk_ca_state == TCP_CA_Open) { 2817 WARN_ON(tp->retrans_out != 0); 2818 tp->retrans_stamp = 0; 2819 } else if (!before(tp->snd_una, tp->high_seq)) { 2820 switch (icsk->icsk_ca_state) { 2821 case TCP_CA_CWR: 2822 /* CWR is to be held something *above* high_seq 2823 * is ACKed for CWR bit to reach receiver. */ 2824 if (tp->snd_una != tp->high_seq) { 2825 tcp_end_cwnd_reduction(sk); 2826 tcp_set_ca_state(sk, TCP_CA_Open); 2827 } 2828 break; 2829 2830 case TCP_CA_Recovery: 2831 if (tcp_is_reno(tp)) 2832 tcp_reset_reno_sack(tp); 2833 if (tcp_try_undo_recovery(sk)) 2834 return; 2835 tcp_end_cwnd_reduction(sk); 2836 break; 2837 } 2838 } 2839 2840 /* E. Process state. */ 2841 switch (icsk->icsk_ca_state) { 2842 case TCP_CA_Recovery: 2843 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2844 if (tcp_is_reno(tp)) 2845 tcp_add_reno_sack(sk, num_dupack); 2846 } else { 2847 if (tcp_try_undo_partial(sk, prior_snd_una)) 2848 return; 2849 /* Partial ACK arrived. Force fast retransmit. */ 2850 do_lost = tcp_is_reno(tp) || 2851 tcp_force_fast_retransmit(sk); 2852 } 2853 if (tcp_try_undo_dsack(sk)) { 2854 tcp_try_keep_open(sk); 2855 return; 2856 } 2857 tcp_identify_packet_loss(sk, ack_flag); 2858 break; 2859 case TCP_CA_Loss: 2860 tcp_process_loss(sk, flag, num_dupack, rexmit); 2861 tcp_identify_packet_loss(sk, ack_flag); 2862 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2863 (*ack_flag & FLAG_LOST_RETRANS))) 2864 return; 2865 /* Change state if cwnd is undone or retransmits are lost */ 2866 /* fall through */ 2867 default: 2868 if (tcp_is_reno(tp)) { 2869 if (flag & FLAG_SND_UNA_ADVANCED) 2870 tcp_reset_reno_sack(tp); 2871 tcp_add_reno_sack(sk, num_dupack); 2872 } 2873 2874 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2875 tcp_try_undo_dsack(sk); 2876 2877 tcp_identify_packet_loss(sk, ack_flag); 2878 if (!tcp_time_to_recover(sk, flag)) { 2879 tcp_try_to_open(sk, flag); 2880 return; 2881 } 2882 2883 /* MTU probe failure: don't reduce cwnd */ 2884 if (icsk->icsk_ca_state < TCP_CA_CWR && 2885 icsk->icsk_mtup.probe_size && 2886 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2887 tcp_mtup_probe_failed(sk); 2888 /* Restores the reduction we did in tcp_mtup_probe() */ 2889 tp->snd_cwnd++; 2890 tcp_simple_retransmit(sk); 2891 return; 2892 } 2893 2894 /* Otherwise enter Recovery state */ 2895 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2896 fast_rexmit = 1; 2897 } 2898 2899 if (!tcp_is_rack(sk) && do_lost) 2900 tcp_update_scoreboard(sk, fast_rexmit); 2901 *rexmit = REXMIT_LOST; 2902 } 2903 2904 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2905 { 2906 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2907 struct tcp_sock *tp = tcp_sk(sk); 2908 2909 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2910 /* If the remote keeps returning delayed ACKs, eventually 2911 * the min filter would pick it up and overestimate the 2912 * prop. delay when it expires. Skip suspected delayed ACKs. 2913 */ 2914 return; 2915 } 2916 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2917 rtt_us ? : jiffies_to_usecs(1)); 2918 } 2919 2920 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2921 long seq_rtt_us, long sack_rtt_us, 2922 long ca_rtt_us, struct rate_sample *rs) 2923 { 2924 const struct tcp_sock *tp = tcp_sk(sk); 2925 2926 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2927 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2928 * Karn's algorithm forbids taking RTT if some retransmitted data 2929 * is acked (RFC6298). 2930 */ 2931 if (seq_rtt_us < 0) 2932 seq_rtt_us = sack_rtt_us; 2933 2934 /* RTTM Rule: A TSecr value received in a segment is used to 2935 * update the averaged RTT measurement only if the segment 2936 * acknowledges some new data, i.e., only if it advances the 2937 * left edge of the send window. 2938 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2939 */ 2940 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2941 flag & FLAG_ACKED) { 2942 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2943 2944 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2945 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2946 ca_rtt_us = seq_rtt_us; 2947 } 2948 } 2949 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2950 if (seq_rtt_us < 0) 2951 return false; 2952 2953 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2954 * always taken together with ACK, SACK, or TS-opts. Any negative 2955 * values will be skipped with the seq_rtt_us < 0 check above. 2956 */ 2957 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2958 tcp_rtt_estimator(sk, seq_rtt_us); 2959 tcp_set_rto(sk); 2960 2961 /* RFC6298: only reset backoff on valid RTT measurement. */ 2962 inet_csk(sk)->icsk_backoff = 0; 2963 return true; 2964 } 2965 2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2968 { 2969 struct rate_sample rs; 2970 long rtt_us = -1L; 2971 2972 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2973 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2974 2975 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2976 } 2977 2978 2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 2983 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2984 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2985 } 2986 2987 /* Restart timer after forward progress on connection. 2988 * RFC2988 recommends to restart timer to now+rto. 2989 */ 2990 void tcp_rearm_rto(struct sock *sk) 2991 { 2992 const struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 2995 /* If the retrans timer is currently being used by Fast Open 2996 * for SYN-ACK retrans purpose, stay put. 2997 */ 2998 if (rcu_access_pointer(tp->fastopen_rsk)) 2999 return; 3000 3001 if (!tp->packets_out) { 3002 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3003 } else { 3004 u32 rto = inet_csk(sk)->icsk_rto; 3005 /* Offset the time elapsed after installing regular RTO */ 3006 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3007 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3008 s64 delta_us = tcp_rto_delta_us(sk); 3009 /* delta_us may not be positive if the socket is locked 3010 * when the retrans timer fires and is rescheduled. 3011 */ 3012 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3013 } 3014 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3015 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 3016 } 3017 } 3018 3019 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3020 static void tcp_set_xmit_timer(struct sock *sk) 3021 { 3022 if (!tcp_schedule_loss_probe(sk, true)) 3023 tcp_rearm_rto(sk); 3024 } 3025 3026 /* If we get here, the whole TSO packet has not been acked. */ 3027 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3028 { 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 u32 packets_acked; 3031 3032 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3033 3034 packets_acked = tcp_skb_pcount(skb); 3035 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3036 return 0; 3037 packets_acked -= tcp_skb_pcount(skb); 3038 3039 if (packets_acked) { 3040 BUG_ON(tcp_skb_pcount(skb) == 0); 3041 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3042 } 3043 3044 return packets_acked; 3045 } 3046 3047 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3048 u32 prior_snd_una) 3049 { 3050 const struct skb_shared_info *shinfo; 3051 3052 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3053 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3054 return; 3055 3056 shinfo = skb_shinfo(skb); 3057 if (!before(shinfo->tskey, prior_snd_una) && 3058 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3059 tcp_skb_tsorted_save(skb) { 3060 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3061 } tcp_skb_tsorted_restore(skb); 3062 } 3063 } 3064 3065 /* Remove acknowledged frames from the retransmission queue. If our packet 3066 * is before the ack sequence we can discard it as it's confirmed to have 3067 * arrived at the other end. 3068 */ 3069 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3070 u32 prior_snd_una, 3071 struct tcp_sacktag_state *sack) 3072 { 3073 const struct inet_connection_sock *icsk = inet_csk(sk); 3074 u64 first_ackt, last_ackt; 3075 struct tcp_sock *tp = tcp_sk(sk); 3076 u32 prior_sacked = tp->sacked_out; 3077 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3078 struct sk_buff *skb, *next; 3079 bool fully_acked = true; 3080 long sack_rtt_us = -1L; 3081 long seq_rtt_us = -1L; 3082 long ca_rtt_us = -1L; 3083 u32 pkts_acked = 0; 3084 u32 last_in_flight = 0; 3085 bool rtt_update; 3086 int flag = 0; 3087 3088 first_ackt = 0; 3089 3090 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3091 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3092 const u32 start_seq = scb->seq; 3093 u8 sacked = scb->sacked; 3094 u32 acked_pcount; 3095 3096 tcp_ack_tstamp(sk, skb, prior_snd_una); 3097 3098 /* Determine how many packets and what bytes were acked, tso and else */ 3099 if (after(scb->end_seq, tp->snd_una)) { 3100 if (tcp_skb_pcount(skb) == 1 || 3101 !after(tp->snd_una, scb->seq)) 3102 break; 3103 3104 acked_pcount = tcp_tso_acked(sk, skb); 3105 if (!acked_pcount) 3106 break; 3107 fully_acked = false; 3108 } else { 3109 acked_pcount = tcp_skb_pcount(skb); 3110 } 3111 3112 if (unlikely(sacked & TCPCB_RETRANS)) { 3113 if (sacked & TCPCB_SACKED_RETRANS) 3114 tp->retrans_out -= acked_pcount; 3115 flag |= FLAG_RETRANS_DATA_ACKED; 3116 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3117 last_ackt = tcp_skb_timestamp_us(skb); 3118 WARN_ON_ONCE(last_ackt == 0); 3119 if (!first_ackt) 3120 first_ackt = last_ackt; 3121 3122 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3123 if (before(start_seq, reord)) 3124 reord = start_seq; 3125 if (!after(scb->end_seq, tp->high_seq)) 3126 flag |= FLAG_ORIG_SACK_ACKED; 3127 } 3128 3129 if (sacked & TCPCB_SACKED_ACKED) { 3130 tp->sacked_out -= acked_pcount; 3131 } else if (tcp_is_sack(tp)) { 3132 tp->delivered += acked_pcount; 3133 if (!tcp_skb_spurious_retrans(tp, skb)) 3134 tcp_rack_advance(tp, sacked, scb->end_seq, 3135 tcp_skb_timestamp_us(skb)); 3136 } 3137 if (sacked & TCPCB_LOST) 3138 tp->lost_out -= acked_pcount; 3139 3140 tp->packets_out -= acked_pcount; 3141 pkts_acked += acked_pcount; 3142 tcp_rate_skb_delivered(sk, skb, sack->rate); 3143 3144 /* Initial outgoing SYN's get put onto the write_queue 3145 * just like anything else we transmit. It is not 3146 * true data, and if we misinform our callers that 3147 * this ACK acks real data, we will erroneously exit 3148 * connection startup slow start one packet too 3149 * quickly. This is severely frowned upon behavior. 3150 */ 3151 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3152 flag |= FLAG_DATA_ACKED; 3153 } else { 3154 flag |= FLAG_SYN_ACKED; 3155 tp->retrans_stamp = 0; 3156 } 3157 3158 if (!fully_acked) 3159 break; 3160 3161 next = skb_rb_next(skb); 3162 if (unlikely(skb == tp->retransmit_skb_hint)) 3163 tp->retransmit_skb_hint = NULL; 3164 if (unlikely(skb == tp->lost_skb_hint)) 3165 tp->lost_skb_hint = NULL; 3166 tcp_rtx_queue_unlink_and_free(skb, sk); 3167 } 3168 3169 if (!skb) 3170 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3171 3172 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3173 tp->snd_up = tp->snd_una; 3174 3175 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3176 flag |= FLAG_SACK_RENEGING; 3177 3178 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3179 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3180 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3181 3182 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3183 last_in_flight && !prior_sacked && fully_acked && 3184 sack->rate->prior_delivered + 1 == tp->delivered && 3185 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3186 /* Conservatively mark a delayed ACK. It's typically 3187 * from a lone runt packet over the round trip to 3188 * a receiver w/o out-of-order or CE events. 3189 */ 3190 flag |= FLAG_ACK_MAYBE_DELAYED; 3191 } 3192 } 3193 if (sack->first_sackt) { 3194 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3195 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3196 } 3197 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3198 ca_rtt_us, sack->rate); 3199 3200 if (flag & FLAG_ACKED) { 3201 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3202 if (unlikely(icsk->icsk_mtup.probe_size && 3203 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3204 tcp_mtup_probe_success(sk); 3205 } 3206 3207 if (tcp_is_reno(tp)) { 3208 tcp_remove_reno_sacks(sk, pkts_acked); 3209 3210 /* If any of the cumulatively ACKed segments was 3211 * retransmitted, non-SACK case cannot confirm that 3212 * progress was due to original transmission due to 3213 * lack of TCPCB_SACKED_ACKED bits even if some of 3214 * the packets may have been never retransmitted. 3215 */ 3216 if (flag & FLAG_RETRANS_DATA_ACKED) 3217 flag &= ~FLAG_ORIG_SACK_ACKED; 3218 } else { 3219 int delta; 3220 3221 /* Non-retransmitted hole got filled? That's reordering */ 3222 if (before(reord, prior_fack)) 3223 tcp_check_sack_reordering(sk, reord, 0); 3224 3225 delta = prior_sacked - tp->sacked_out; 3226 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3227 } 3228 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3229 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3230 tcp_skb_timestamp_us(skb))) { 3231 /* Do not re-arm RTO if the sack RTT is measured from data sent 3232 * after when the head was last (re)transmitted. Otherwise the 3233 * timeout may continue to extend in loss recovery. 3234 */ 3235 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3236 } 3237 3238 if (icsk->icsk_ca_ops->pkts_acked) { 3239 struct ack_sample sample = { .pkts_acked = pkts_acked, 3240 .rtt_us = sack->rate->rtt_us, 3241 .in_flight = last_in_flight }; 3242 3243 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3244 } 3245 3246 #if FASTRETRANS_DEBUG > 0 3247 WARN_ON((int)tp->sacked_out < 0); 3248 WARN_ON((int)tp->lost_out < 0); 3249 WARN_ON((int)tp->retrans_out < 0); 3250 if (!tp->packets_out && tcp_is_sack(tp)) { 3251 icsk = inet_csk(sk); 3252 if (tp->lost_out) { 3253 pr_debug("Leak l=%u %d\n", 3254 tp->lost_out, icsk->icsk_ca_state); 3255 tp->lost_out = 0; 3256 } 3257 if (tp->sacked_out) { 3258 pr_debug("Leak s=%u %d\n", 3259 tp->sacked_out, icsk->icsk_ca_state); 3260 tp->sacked_out = 0; 3261 } 3262 if (tp->retrans_out) { 3263 pr_debug("Leak r=%u %d\n", 3264 tp->retrans_out, icsk->icsk_ca_state); 3265 tp->retrans_out = 0; 3266 } 3267 } 3268 #endif 3269 return flag; 3270 } 3271 3272 static void tcp_ack_probe(struct sock *sk) 3273 { 3274 struct inet_connection_sock *icsk = inet_csk(sk); 3275 struct sk_buff *head = tcp_send_head(sk); 3276 const struct tcp_sock *tp = tcp_sk(sk); 3277 3278 /* Was it a usable window open? */ 3279 if (!head) 3280 return; 3281 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3282 icsk->icsk_backoff = 0; 3283 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3284 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3285 * This function is not for random using! 3286 */ 3287 } else { 3288 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3289 3290 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3291 when, TCP_RTO_MAX, NULL); 3292 } 3293 } 3294 3295 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3296 { 3297 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3298 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3299 } 3300 3301 /* Decide wheather to run the increase function of congestion control. */ 3302 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3303 { 3304 /* If reordering is high then always grow cwnd whenever data is 3305 * delivered regardless of its ordering. Otherwise stay conservative 3306 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3307 * new SACK or ECE mark may first advance cwnd here and later reduce 3308 * cwnd in tcp_fastretrans_alert() based on more states. 3309 */ 3310 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3311 return flag & FLAG_FORWARD_PROGRESS; 3312 3313 return flag & FLAG_DATA_ACKED; 3314 } 3315 3316 /* The "ultimate" congestion control function that aims to replace the rigid 3317 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3318 * It's called toward the end of processing an ACK with precise rate 3319 * information. All transmission or retransmission are delayed afterwards. 3320 */ 3321 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3322 int flag, const struct rate_sample *rs) 3323 { 3324 const struct inet_connection_sock *icsk = inet_csk(sk); 3325 3326 if (icsk->icsk_ca_ops->cong_control) { 3327 icsk->icsk_ca_ops->cong_control(sk, rs); 3328 return; 3329 } 3330 3331 if (tcp_in_cwnd_reduction(sk)) { 3332 /* Reduce cwnd if state mandates */ 3333 tcp_cwnd_reduction(sk, acked_sacked, flag); 3334 } else if (tcp_may_raise_cwnd(sk, flag)) { 3335 /* Advance cwnd if state allows */ 3336 tcp_cong_avoid(sk, ack, acked_sacked); 3337 } 3338 tcp_update_pacing_rate(sk); 3339 } 3340 3341 /* Check that window update is acceptable. 3342 * The function assumes that snd_una<=ack<=snd_next. 3343 */ 3344 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3345 const u32 ack, const u32 ack_seq, 3346 const u32 nwin) 3347 { 3348 return after(ack, tp->snd_una) || 3349 after(ack_seq, tp->snd_wl1) || 3350 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3351 } 3352 3353 /* If we update tp->snd_una, also update tp->bytes_acked */ 3354 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3355 { 3356 u32 delta = ack - tp->snd_una; 3357 3358 sock_owned_by_me((struct sock *)tp); 3359 tp->bytes_acked += delta; 3360 tp->snd_una = ack; 3361 } 3362 3363 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3364 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3365 { 3366 u32 delta = seq - tp->rcv_nxt; 3367 3368 sock_owned_by_me((struct sock *)tp); 3369 tp->bytes_received += delta; 3370 WRITE_ONCE(tp->rcv_nxt, seq); 3371 } 3372 3373 /* Update our send window. 3374 * 3375 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3376 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3377 */ 3378 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3379 u32 ack_seq) 3380 { 3381 struct tcp_sock *tp = tcp_sk(sk); 3382 int flag = 0; 3383 u32 nwin = ntohs(tcp_hdr(skb)->window); 3384 3385 if (likely(!tcp_hdr(skb)->syn)) 3386 nwin <<= tp->rx_opt.snd_wscale; 3387 3388 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3389 flag |= FLAG_WIN_UPDATE; 3390 tcp_update_wl(tp, ack_seq); 3391 3392 if (tp->snd_wnd != nwin) { 3393 tp->snd_wnd = nwin; 3394 3395 /* Note, it is the only place, where 3396 * fast path is recovered for sending TCP. 3397 */ 3398 tp->pred_flags = 0; 3399 tcp_fast_path_check(sk); 3400 3401 if (!tcp_write_queue_empty(sk)) 3402 tcp_slow_start_after_idle_check(sk); 3403 3404 if (nwin > tp->max_window) { 3405 tp->max_window = nwin; 3406 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3407 } 3408 } 3409 } 3410 3411 tcp_snd_una_update(tp, ack); 3412 3413 return flag; 3414 } 3415 3416 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3417 u32 *last_oow_ack_time) 3418 { 3419 if (*last_oow_ack_time) { 3420 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3421 3422 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3423 NET_INC_STATS(net, mib_idx); 3424 return true; /* rate-limited: don't send yet! */ 3425 } 3426 } 3427 3428 *last_oow_ack_time = tcp_jiffies32; 3429 3430 return false; /* not rate-limited: go ahead, send dupack now! */ 3431 } 3432 3433 /* Return true if we're currently rate-limiting out-of-window ACKs and 3434 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3435 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3436 * attacks that send repeated SYNs or ACKs for the same connection. To 3437 * do this, we do not send a duplicate SYNACK or ACK if the remote 3438 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3439 */ 3440 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3441 int mib_idx, u32 *last_oow_ack_time) 3442 { 3443 /* Data packets without SYNs are not likely part of an ACK loop. */ 3444 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3445 !tcp_hdr(skb)->syn) 3446 return false; 3447 3448 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3449 } 3450 3451 /* RFC 5961 7 [ACK Throttling] */ 3452 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3453 { 3454 /* unprotected vars, we dont care of overwrites */ 3455 static u32 challenge_timestamp; 3456 static unsigned int challenge_count; 3457 struct tcp_sock *tp = tcp_sk(sk); 3458 struct net *net = sock_net(sk); 3459 u32 count, now; 3460 3461 /* First check our per-socket dupack rate limit. */ 3462 if (__tcp_oow_rate_limited(net, 3463 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3464 &tp->last_oow_ack_time)) 3465 return; 3466 3467 /* Then check host-wide RFC 5961 rate limit. */ 3468 now = jiffies / HZ; 3469 if (now != challenge_timestamp) { 3470 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3471 u32 half = (ack_limit + 1) >> 1; 3472 3473 challenge_timestamp = now; 3474 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3475 } 3476 count = READ_ONCE(challenge_count); 3477 if (count > 0) { 3478 WRITE_ONCE(challenge_count, count - 1); 3479 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3480 tcp_send_ack(sk); 3481 } 3482 } 3483 3484 static void tcp_store_ts_recent(struct tcp_sock *tp) 3485 { 3486 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3487 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3488 } 3489 3490 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3491 { 3492 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3493 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3494 * extra check below makes sure this can only happen 3495 * for pure ACK frames. -DaveM 3496 * 3497 * Not only, also it occurs for expired timestamps. 3498 */ 3499 3500 if (tcp_paws_check(&tp->rx_opt, 0)) 3501 tcp_store_ts_recent(tp); 3502 } 3503 } 3504 3505 /* This routine deals with acks during a TLP episode. 3506 * We mark the end of a TLP episode on receiving TLP dupack or when 3507 * ack is after tlp_high_seq. 3508 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3509 */ 3510 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3511 { 3512 struct tcp_sock *tp = tcp_sk(sk); 3513 3514 if (before(ack, tp->tlp_high_seq)) 3515 return; 3516 3517 if (flag & FLAG_DSACKING_ACK) { 3518 /* This DSACK means original and TLP probe arrived; no loss */ 3519 tp->tlp_high_seq = 0; 3520 } else if (after(ack, tp->tlp_high_seq)) { 3521 /* ACK advances: there was a loss, so reduce cwnd. Reset 3522 * tlp_high_seq in tcp_init_cwnd_reduction() 3523 */ 3524 tcp_init_cwnd_reduction(sk); 3525 tcp_set_ca_state(sk, TCP_CA_CWR); 3526 tcp_end_cwnd_reduction(sk); 3527 tcp_try_keep_open(sk); 3528 NET_INC_STATS(sock_net(sk), 3529 LINUX_MIB_TCPLOSSPROBERECOVERY); 3530 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3531 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3532 /* Pure dupack: original and TLP probe arrived; no loss */ 3533 tp->tlp_high_seq = 0; 3534 } 3535 } 3536 3537 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3538 { 3539 const struct inet_connection_sock *icsk = inet_csk(sk); 3540 3541 if (icsk->icsk_ca_ops->in_ack_event) 3542 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3543 } 3544 3545 /* Congestion control has updated the cwnd already. So if we're in 3546 * loss recovery then now we do any new sends (for FRTO) or 3547 * retransmits (for CA_Loss or CA_recovery) that make sense. 3548 */ 3549 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3550 { 3551 struct tcp_sock *tp = tcp_sk(sk); 3552 3553 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3554 return; 3555 3556 if (unlikely(rexmit == 2)) { 3557 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3558 TCP_NAGLE_OFF); 3559 if (after(tp->snd_nxt, tp->high_seq)) 3560 return; 3561 tp->frto = 0; 3562 } 3563 tcp_xmit_retransmit_queue(sk); 3564 } 3565 3566 /* Returns the number of packets newly acked or sacked by the current ACK */ 3567 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3568 { 3569 const struct net *net = sock_net(sk); 3570 struct tcp_sock *tp = tcp_sk(sk); 3571 u32 delivered; 3572 3573 delivered = tp->delivered - prior_delivered; 3574 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3575 if (flag & FLAG_ECE) { 3576 tp->delivered_ce += delivered; 3577 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3578 } 3579 return delivered; 3580 } 3581 3582 /* This routine deals with incoming acks, but not outgoing ones. */ 3583 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3584 { 3585 struct inet_connection_sock *icsk = inet_csk(sk); 3586 struct tcp_sock *tp = tcp_sk(sk); 3587 struct tcp_sacktag_state sack_state; 3588 struct rate_sample rs = { .prior_delivered = 0 }; 3589 u32 prior_snd_una = tp->snd_una; 3590 bool is_sack_reneg = tp->is_sack_reneg; 3591 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3592 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3593 int num_dupack = 0; 3594 int prior_packets = tp->packets_out; 3595 u32 delivered = tp->delivered; 3596 u32 lost = tp->lost; 3597 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3598 u32 prior_fack; 3599 3600 sack_state.first_sackt = 0; 3601 sack_state.rate = &rs; 3602 3603 /* We very likely will need to access rtx queue. */ 3604 prefetch(sk->tcp_rtx_queue.rb_node); 3605 3606 /* If the ack is older than previous acks 3607 * then we can probably ignore it. 3608 */ 3609 if (before(ack, prior_snd_una)) { 3610 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3611 if (before(ack, prior_snd_una - tp->max_window)) { 3612 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3613 tcp_send_challenge_ack(sk, skb); 3614 return -1; 3615 } 3616 goto old_ack; 3617 } 3618 3619 /* If the ack includes data we haven't sent yet, discard 3620 * this segment (RFC793 Section 3.9). 3621 */ 3622 if (after(ack, tp->snd_nxt)) 3623 return -1; 3624 3625 if (after(ack, prior_snd_una)) { 3626 flag |= FLAG_SND_UNA_ADVANCED; 3627 icsk->icsk_retransmits = 0; 3628 3629 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3630 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3631 if (icsk->icsk_clean_acked) 3632 icsk->icsk_clean_acked(sk, ack); 3633 #endif 3634 } 3635 3636 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3637 rs.prior_in_flight = tcp_packets_in_flight(tp); 3638 3639 /* ts_recent update must be made after we are sure that the packet 3640 * is in window. 3641 */ 3642 if (flag & FLAG_UPDATE_TS_RECENT) 3643 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3644 3645 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3646 FLAG_SND_UNA_ADVANCED) { 3647 /* Window is constant, pure forward advance. 3648 * No more checks are required. 3649 * Note, we use the fact that SND.UNA>=SND.WL2. 3650 */ 3651 tcp_update_wl(tp, ack_seq); 3652 tcp_snd_una_update(tp, ack); 3653 flag |= FLAG_WIN_UPDATE; 3654 3655 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3656 3657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3658 } else { 3659 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3660 3661 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3662 flag |= FLAG_DATA; 3663 else 3664 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3665 3666 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3667 3668 if (TCP_SKB_CB(skb)->sacked) 3669 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3670 &sack_state); 3671 3672 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3673 flag |= FLAG_ECE; 3674 ack_ev_flags |= CA_ACK_ECE; 3675 } 3676 3677 if (flag & FLAG_WIN_UPDATE) 3678 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3679 3680 tcp_in_ack_event(sk, ack_ev_flags); 3681 } 3682 3683 /* We passed data and got it acked, remove any soft error 3684 * log. Something worked... 3685 */ 3686 sk->sk_err_soft = 0; 3687 icsk->icsk_probes_out = 0; 3688 tp->rcv_tstamp = tcp_jiffies32; 3689 if (!prior_packets) 3690 goto no_queue; 3691 3692 /* See if we can take anything off of the retransmit queue. */ 3693 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3694 3695 tcp_rack_update_reo_wnd(sk, &rs); 3696 3697 if (tp->tlp_high_seq) 3698 tcp_process_tlp_ack(sk, ack, flag); 3699 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3700 if (flag & FLAG_SET_XMIT_TIMER) 3701 tcp_set_xmit_timer(sk); 3702 3703 if (tcp_ack_is_dubious(sk, flag)) { 3704 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3705 num_dupack = 1; 3706 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3707 if (!(flag & FLAG_DATA)) 3708 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3709 } 3710 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3711 &rexmit); 3712 } 3713 3714 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3715 sk_dst_confirm(sk); 3716 3717 delivered = tcp_newly_delivered(sk, delivered, flag); 3718 lost = tp->lost - lost; /* freshly marked lost */ 3719 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3720 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3721 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3722 tcp_xmit_recovery(sk, rexmit); 3723 return 1; 3724 3725 no_queue: 3726 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3727 if (flag & FLAG_DSACKING_ACK) { 3728 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3729 &rexmit); 3730 tcp_newly_delivered(sk, delivered, flag); 3731 } 3732 /* If this ack opens up a zero window, clear backoff. It was 3733 * being used to time the probes, and is probably far higher than 3734 * it needs to be for normal retransmission. 3735 */ 3736 tcp_ack_probe(sk); 3737 3738 if (tp->tlp_high_seq) 3739 tcp_process_tlp_ack(sk, ack, flag); 3740 return 1; 3741 3742 old_ack: 3743 /* If data was SACKed, tag it and see if we should send more data. 3744 * If data was DSACKed, see if we can undo a cwnd reduction. 3745 */ 3746 if (TCP_SKB_CB(skb)->sacked) { 3747 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3748 &sack_state); 3749 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3750 &rexmit); 3751 tcp_newly_delivered(sk, delivered, flag); 3752 tcp_xmit_recovery(sk, rexmit); 3753 } 3754 3755 return 0; 3756 } 3757 3758 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3759 bool syn, struct tcp_fastopen_cookie *foc, 3760 bool exp_opt) 3761 { 3762 /* Valid only in SYN or SYN-ACK with an even length. */ 3763 if (!foc || !syn || len < 0 || (len & 1)) 3764 return; 3765 3766 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3767 len <= TCP_FASTOPEN_COOKIE_MAX) 3768 memcpy(foc->val, cookie, len); 3769 else if (len != 0) 3770 len = -1; 3771 foc->len = len; 3772 foc->exp = exp_opt; 3773 } 3774 3775 static void smc_parse_options(const struct tcphdr *th, 3776 struct tcp_options_received *opt_rx, 3777 const unsigned char *ptr, 3778 int opsize) 3779 { 3780 #if IS_ENABLED(CONFIG_SMC) 3781 if (static_branch_unlikely(&tcp_have_smc)) { 3782 if (th->syn && !(opsize & 1) && 3783 opsize >= TCPOLEN_EXP_SMC_BASE && 3784 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3785 opt_rx->smc_ok = 1; 3786 } 3787 #endif 3788 } 3789 3790 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3791 * value on success. 3792 */ 3793 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3794 { 3795 const unsigned char *ptr = (const unsigned char *)(th + 1); 3796 int length = (th->doff * 4) - sizeof(struct tcphdr); 3797 u16 mss = 0; 3798 3799 while (length > 0) { 3800 int opcode = *ptr++; 3801 int opsize; 3802 3803 switch (opcode) { 3804 case TCPOPT_EOL: 3805 return mss; 3806 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3807 length--; 3808 continue; 3809 default: 3810 if (length < 2) 3811 return mss; 3812 opsize = *ptr++; 3813 if (opsize < 2) /* "silly options" */ 3814 return mss; 3815 if (opsize > length) 3816 return mss; /* fail on partial options */ 3817 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3818 u16 in_mss = get_unaligned_be16(ptr); 3819 3820 if (in_mss) { 3821 if (user_mss && user_mss < in_mss) 3822 in_mss = user_mss; 3823 mss = in_mss; 3824 } 3825 } 3826 ptr += opsize - 2; 3827 length -= opsize; 3828 } 3829 } 3830 return mss; 3831 } 3832 3833 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3834 * But, this can also be called on packets in the established flow when 3835 * the fast version below fails. 3836 */ 3837 void tcp_parse_options(const struct net *net, 3838 const struct sk_buff *skb, 3839 struct tcp_options_received *opt_rx, int estab, 3840 struct tcp_fastopen_cookie *foc) 3841 { 3842 const unsigned char *ptr; 3843 const struct tcphdr *th = tcp_hdr(skb); 3844 int length = (th->doff * 4) - sizeof(struct tcphdr); 3845 3846 ptr = (const unsigned char *)(th + 1); 3847 opt_rx->saw_tstamp = 0; 3848 3849 while (length > 0) { 3850 int opcode = *ptr++; 3851 int opsize; 3852 3853 switch (opcode) { 3854 case TCPOPT_EOL: 3855 return; 3856 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3857 length--; 3858 continue; 3859 default: 3860 if (length < 2) 3861 return; 3862 opsize = *ptr++; 3863 if (opsize < 2) /* "silly options" */ 3864 return; 3865 if (opsize > length) 3866 return; /* don't parse partial options */ 3867 switch (opcode) { 3868 case TCPOPT_MSS: 3869 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3870 u16 in_mss = get_unaligned_be16(ptr); 3871 if (in_mss) { 3872 if (opt_rx->user_mss && 3873 opt_rx->user_mss < in_mss) 3874 in_mss = opt_rx->user_mss; 3875 opt_rx->mss_clamp = in_mss; 3876 } 3877 } 3878 break; 3879 case TCPOPT_WINDOW: 3880 if (opsize == TCPOLEN_WINDOW && th->syn && 3881 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3882 __u8 snd_wscale = *(__u8 *)ptr; 3883 opt_rx->wscale_ok = 1; 3884 if (snd_wscale > TCP_MAX_WSCALE) { 3885 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3886 __func__, 3887 snd_wscale, 3888 TCP_MAX_WSCALE); 3889 snd_wscale = TCP_MAX_WSCALE; 3890 } 3891 opt_rx->snd_wscale = snd_wscale; 3892 } 3893 break; 3894 case TCPOPT_TIMESTAMP: 3895 if ((opsize == TCPOLEN_TIMESTAMP) && 3896 ((estab && opt_rx->tstamp_ok) || 3897 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3898 opt_rx->saw_tstamp = 1; 3899 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3900 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3901 } 3902 break; 3903 case TCPOPT_SACK_PERM: 3904 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3905 !estab && net->ipv4.sysctl_tcp_sack) { 3906 opt_rx->sack_ok = TCP_SACK_SEEN; 3907 tcp_sack_reset(opt_rx); 3908 } 3909 break; 3910 3911 case TCPOPT_SACK: 3912 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3913 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3914 opt_rx->sack_ok) { 3915 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3916 } 3917 break; 3918 #ifdef CONFIG_TCP_MD5SIG 3919 case TCPOPT_MD5SIG: 3920 /* 3921 * The MD5 Hash has already been 3922 * checked (see tcp_v{4,6}_do_rcv()). 3923 */ 3924 break; 3925 #endif 3926 case TCPOPT_FASTOPEN: 3927 tcp_parse_fastopen_option( 3928 opsize - TCPOLEN_FASTOPEN_BASE, 3929 ptr, th->syn, foc, false); 3930 break; 3931 3932 case TCPOPT_EXP: 3933 /* Fast Open option shares code 254 using a 3934 * 16 bits magic number. 3935 */ 3936 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3937 get_unaligned_be16(ptr) == 3938 TCPOPT_FASTOPEN_MAGIC) 3939 tcp_parse_fastopen_option(opsize - 3940 TCPOLEN_EXP_FASTOPEN_BASE, 3941 ptr + 2, th->syn, foc, true); 3942 else 3943 smc_parse_options(th, opt_rx, ptr, 3944 opsize); 3945 break; 3946 3947 } 3948 ptr += opsize-2; 3949 length -= opsize; 3950 } 3951 } 3952 } 3953 EXPORT_SYMBOL(tcp_parse_options); 3954 3955 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3956 { 3957 const __be32 *ptr = (const __be32 *)(th + 1); 3958 3959 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3960 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3961 tp->rx_opt.saw_tstamp = 1; 3962 ++ptr; 3963 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3964 ++ptr; 3965 if (*ptr) 3966 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3967 else 3968 tp->rx_opt.rcv_tsecr = 0; 3969 return true; 3970 } 3971 return false; 3972 } 3973 3974 /* Fast parse options. This hopes to only see timestamps. 3975 * If it is wrong it falls back on tcp_parse_options(). 3976 */ 3977 static bool tcp_fast_parse_options(const struct net *net, 3978 const struct sk_buff *skb, 3979 const struct tcphdr *th, struct tcp_sock *tp) 3980 { 3981 /* In the spirit of fast parsing, compare doff directly to constant 3982 * values. Because equality is used, short doff can be ignored here. 3983 */ 3984 if (th->doff == (sizeof(*th) / 4)) { 3985 tp->rx_opt.saw_tstamp = 0; 3986 return false; 3987 } else if (tp->rx_opt.tstamp_ok && 3988 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3989 if (tcp_parse_aligned_timestamp(tp, th)) 3990 return true; 3991 } 3992 3993 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3994 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3995 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3996 3997 return true; 3998 } 3999 4000 #ifdef CONFIG_TCP_MD5SIG 4001 /* 4002 * Parse MD5 Signature option 4003 */ 4004 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4005 { 4006 int length = (th->doff << 2) - sizeof(*th); 4007 const u8 *ptr = (const u8 *)(th + 1); 4008 4009 /* If not enough data remaining, we can short cut */ 4010 while (length >= TCPOLEN_MD5SIG) { 4011 int opcode = *ptr++; 4012 int opsize; 4013 4014 switch (opcode) { 4015 case TCPOPT_EOL: 4016 return NULL; 4017 case TCPOPT_NOP: 4018 length--; 4019 continue; 4020 default: 4021 opsize = *ptr++; 4022 if (opsize < 2 || opsize > length) 4023 return NULL; 4024 if (opcode == TCPOPT_MD5SIG) 4025 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4026 } 4027 ptr += opsize - 2; 4028 length -= opsize; 4029 } 4030 return NULL; 4031 } 4032 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4033 #endif 4034 4035 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4036 * 4037 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4038 * it can pass through stack. So, the following predicate verifies that 4039 * this segment is not used for anything but congestion avoidance or 4040 * fast retransmit. Moreover, we even are able to eliminate most of such 4041 * second order effects, if we apply some small "replay" window (~RTO) 4042 * to timestamp space. 4043 * 4044 * All these measures still do not guarantee that we reject wrapped ACKs 4045 * on networks with high bandwidth, when sequence space is recycled fastly, 4046 * but it guarantees that such events will be very rare and do not affect 4047 * connection seriously. This doesn't look nice, but alas, PAWS is really 4048 * buggy extension. 4049 * 4050 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4051 * states that events when retransmit arrives after original data are rare. 4052 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4053 * the biggest problem on large power networks even with minor reordering. 4054 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4055 * up to bandwidth of 18Gigabit/sec. 8) ] 4056 */ 4057 4058 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4059 { 4060 const struct tcp_sock *tp = tcp_sk(sk); 4061 const struct tcphdr *th = tcp_hdr(skb); 4062 u32 seq = TCP_SKB_CB(skb)->seq; 4063 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4064 4065 return (/* 1. Pure ACK with correct sequence number. */ 4066 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4067 4068 /* 2. ... and duplicate ACK. */ 4069 ack == tp->snd_una && 4070 4071 /* 3. ... and does not update window. */ 4072 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4073 4074 /* 4. ... and sits in replay window. */ 4075 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4076 } 4077 4078 static inline bool tcp_paws_discard(const struct sock *sk, 4079 const struct sk_buff *skb) 4080 { 4081 const struct tcp_sock *tp = tcp_sk(sk); 4082 4083 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4084 !tcp_disordered_ack(sk, skb); 4085 } 4086 4087 /* Check segment sequence number for validity. 4088 * 4089 * Segment controls are considered valid, if the segment 4090 * fits to the window after truncation to the window. Acceptability 4091 * of data (and SYN, FIN, of course) is checked separately. 4092 * See tcp_data_queue(), for example. 4093 * 4094 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4095 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4096 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4097 * (borrowed from freebsd) 4098 */ 4099 4100 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4101 { 4102 return !before(end_seq, tp->rcv_wup) && 4103 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4104 } 4105 4106 /* When we get a reset we do this. */ 4107 void tcp_reset(struct sock *sk) 4108 { 4109 trace_tcp_receive_reset(sk); 4110 4111 /* We want the right error as BSD sees it (and indeed as we do). */ 4112 switch (sk->sk_state) { 4113 case TCP_SYN_SENT: 4114 sk->sk_err = ECONNREFUSED; 4115 break; 4116 case TCP_CLOSE_WAIT: 4117 sk->sk_err = EPIPE; 4118 break; 4119 case TCP_CLOSE: 4120 return; 4121 default: 4122 sk->sk_err = ECONNRESET; 4123 } 4124 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4125 smp_wmb(); 4126 4127 tcp_write_queue_purge(sk); 4128 tcp_done(sk); 4129 4130 if (!sock_flag(sk, SOCK_DEAD)) 4131 sk->sk_error_report(sk); 4132 } 4133 4134 /* 4135 * Process the FIN bit. This now behaves as it is supposed to work 4136 * and the FIN takes effect when it is validly part of sequence 4137 * space. Not before when we get holes. 4138 * 4139 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4140 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4141 * TIME-WAIT) 4142 * 4143 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4144 * close and we go into CLOSING (and later onto TIME-WAIT) 4145 * 4146 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4147 */ 4148 void tcp_fin(struct sock *sk) 4149 { 4150 struct tcp_sock *tp = tcp_sk(sk); 4151 4152 inet_csk_schedule_ack(sk); 4153 4154 sk->sk_shutdown |= RCV_SHUTDOWN; 4155 sock_set_flag(sk, SOCK_DONE); 4156 4157 switch (sk->sk_state) { 4158 case TCP_SYN_RECV: 4159 case TCP_ESTABLISHED: 4160 /* Move to CLOSE_WAIT */ 4161 tcp_set_state(sk, TCP_CLOSE_WAIT); 4162 inet_csk_enter_pingpong_mode(sk); 4163 break; 4164 4165 case TCP_CLOSE_WAIT: 4166 case TCP_CLOSING: 4167 /* Received a retransmission of the FIN, do 4168 * nothing. 4169 */ 4170 break; 4171 case TCP_LAST_ACK: 4172 /* RFC793: Remain in the LAST-ACK state. */ 4173 break; 4174 4175 case TCP_FIN_WAIT1: 4176 /* This case occurs when a simultaneous close 4177 * happens, we must ack the received FIN and 4178 * enter the CLOSING state. 4179 */ 4180 tcp_send_ack(sk); 4181 tcp_set_state(sk, TCP_CLOSING); 4182 break; 4183 case TCP_FIN_WAIT2: 4184 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4185 tcp_send_ack(sk); 4186 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4187 break; 4188 default: 4189 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4190 * cases we should never reach this piece of code. 4191 */ 4192 pr_err("%s: Impossible, sk->sk_state=%d\n", 4193 __func__, sk->sk_state); 4194 break; 4195 } 4196 4197 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4198 * Probably, we should reset in this case. For now drop them. 4199 */ 4200 skb_rbtree_purge(&tp->out_of_order_queue); 4201 if (tcp_is_sack(tp)) 4202 tcp_sack_reset(&tp->rx_opt); 4203 sk_mem_reclaim(sk); 4204 4205 if (!sock_flag(sk, SOCK_DEAD)) { 4206 sk->sk_state_change(sk); 4207 4208 /* Do not send POLL_HUP for half duplex close. */ 4209 if (sk->sk_shutdown == SHUTDOWN_MASK || 4210 sk->sk_state == TCP_CLOSE) 4211 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4212 else 4213 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4214 } 4215 } 4216 4217 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4218 u32 end_seq) 4219 { 4220 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4221 if (before(seq, sp->start_seq)) 4222 sp->start_seq = seq; 4223 if (after(end_seq, sp->end_seq)) 4224 sp->end_seq = end_seq; 4225 return true; 4226 } 4227 return false; 4228 } 4229 4230 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4231 { 4232 struct tcp_sock *tp = tcp_sk(sk); 4233 4234 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4235 int mib_idx; 4236 4237 if (before(seq, tp->rcv_nxt)) 4238 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4239 else 4240 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4241 4242 NET_INC_STATS(sock_net(sk), mib_idx); 4243 4244 tp->rx_opt.dsack = 1; 4245 tp->duplicate_sack[0].start_seq = seq; 4246 tp->duplicate_sack[0].end_seq = end_seq; 4247 } 4248 } 4249 4250 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4251 { 4252 struct tcp_sock *tp = tcp_sk(sk); 4253 4254 if (!tp->rx_opt.dsack) 4255 tcp_dsack_set(sk, seq, end_seq); 4256 else 4257 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4258 } 4259 4260 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4261 { 4262 /* When the ACK path fails or drops most ACKs, the sender would 4263 * timeout and spuriously retransmit the same segment repeatedly. 4264 * The receiver remembers and reflects via DSACKs. Leverage the 4265 * DSACK state and change the txhash to re-route speculatively. 4266 */ 4267 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4268 sk_rethink_txhash(sk); 4269 } 4270 4271 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4272 { 4273 struct tcp_sock *tp = tcp_sk(sk); 4274 4275 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4276 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4277 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4278 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4279 4280 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4281 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4282 4283 tcp_rcv_spurious_retrans(sk, skb); 4284 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4285 end_seq = tp->rcv_nxt; 4286 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4287 } 4288 } 4289 4290 tcp_send_ack(sk); 4291 } 4292 4293 /* These routines update the SACK block as out-of-order packets arrive or 4294 * in-order packets close up the sequence space. 4295 */ 4296 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4297 { 4298 int this_sack; 4299 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4300 struct tcp_sack_block *swalk = sp + 1; 4301 4302 /* See if the recent change to the first SACK eats into 4303 * or hits the sequence space of other SACK blocks, if so coalesce. 4304 */ 4305 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4306 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4307 int i; 4308 4309 /* Zap SWALK, by moving every further SACK up by one slot. 4310 * Decrease num_sacks. 4311 */ 4312 tp->rx_opt.num_sacks--; 4313 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4314 sp[i] = sp[i + 1]; 4315 continue; 4316 } 4317 this_sack++, swalk++; 4318 } 4319 } 4320 4321 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4322 { 4323 struct tcp_sock *tp = tcp_sk(sk); 4324 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4325 int cur_sacks = tp->rx_opt.num_sacks; 4326 int this_sack; 4327 4328 if (!cur_sacks) 4329 goto new_sack; 4330 4331 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4332 if (tcp_sack_extend(sp, seq, end_seq)) { 4333 /* Rotate this_sack to the first one. */ 4334 for (; this_sack > 0; this_sack--, sp--) 4335 swap(*sp, *(sp - 1)); 4336 if (cur_sacks > 1) 4337 tcp_sack_maybe_coalesce(tp); 4338 return; 4339 } 4340 } 4341 4342 /* Could not find an adjacent existing SACK, build a new one, 4343 * put it at the front, and shift everyone else down. We 4344 * always know there is at least one SACK present already here. 4345 * 4346 * If the sack array is full, forget about the last one. 4347 */ 4348 if (this_sack >= TCP_NUM_SACKS) { 4349 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4350 tcp_send_ack(sk); 4351 this_sack--; 4352 tp->rx_opt.num_sacks--; 4353 sp--; 4354 } 4355 for (; this_sack > 0; this_sack--, sp--) 4356 *sp = *(sp - 1); 4357 4358 new_sack: 4359 /* Build the new head SACK, and we're done. */ 4360 sp->start_seq = seq; 4361 sp->end_seq = end_seq; 4362 tp->rx_opt.num_sacks++; 4363 } 4364 4365 /* RCV.NXT advances, some SACKs should be eaten. */ 4366 4367 static void tcp_sack_remove(struct tcp_sock *tp) 4368 { 4369 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4370 int num_sacks = tp->rx_opt.num_sacks; 4371 int this_sack; 4372 4373 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4374 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4375 tp->rx_opt.num_sacks = 0; 4376 return; 4377 } 4378 4379 for (this_sack = 0; this_sack < num_sacks;) { 4380 /* Check if the start of the sack is covered by RCV.NXT. */ 4381 if (!before(tp->rcv_nxt, sp->start_seq)) { 4382 int i; 4383 4384 /* RCV.NXT must cover all the block! */ 4385 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4386 4387 /* Zap this SACK, by moving forward any other SACKS. */ 4388 for (i = this_sack+1; i < num_sacks; i++) 4389 tp->selective_acks[i-1] = tp->selective_acks[i]; 4390 num_sacks--; 4391 continue; 4392 } 4393 this_sack++; 4394 sp++; 4395 } 4396 tp->rx_opt.num_sacks = num_sacks; 4397 } 4398 4399 /** 4400 * tcp_try_coalesce - try to merge skb to prior one 4401 * @sk: socket 4402 * @dest: destination queue 4403 * @to: prior buffer 4404 * @from: buffer to add in queue 4405 * @fragstolen: pointer to boolean 4406 * 4407 * Before queueing skb @from after @to, try to merge them 4408 * to reduce overall memory use and queue lengths, if cost is small. 4409 * Packets in ofo or receive queues can stay a long time. 4410 * Better try to coalesce them right now to avoid future collapses. 4411 * Returns true if caller should free @from instead of queueing it 4412 */ 4413 static bool tcp_try_coalesce(struct sock *sk, 4414 struct sk_buff *to, 4415 struct sk_buff *from, 4416 bool *fragstolen) 4417 { 4418 int delta; 4419 4420 *fragstolen = false; 4421 4422 /* Its possible this segment overlaps with prior segment in queue */ 4423 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4424 return false; 4425 4426 #ifdef CONFIG_TLS_DEVICE 4427 if (from->decrypted != to->decrypted) 4428 return false; 4429 #endif 4430 4431 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4432 return false; 4433 4434 atomic_add(delta, &sk->sk_rmem_alloc); 4435 sk_mem_charge(sk, delta); 4436 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4437 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4438 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4439 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4440 4441 if (TCP_SKB_CB(from)->has_rxtstamp) { 4442 TCP_SKB_CB(to)->has_rxtstamp = true; 4443 to->tstamp = from->tstamp; 4444 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4445 } 4446 4447 return true; 4448 } 4449 4450 static bool tcp_ooo_try_coalesce(struct sock *sk, 4451 struct sk_buff *to, 4452 struct sk_buff *from, 4453 bool *fragstolen) 4454 { 4455 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4456 4457 /* In case tcp_drop() is called later, update to->gso_segs */ 4458 if (res) { 4459 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4460 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4461 4462 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4463 } 4464 return res; 4465 } 4466 4467 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4468 { 4469 sk_drops_add(sk, skb); 4470 __kfree_skb(skb); 4471 } 4472 4473 /* This one checks to see if we can put data from the 4474 * out_of_order queue into the receive_queue. 4475 */ 4476 static void tcp_ofo_queue(struct sock *sk) 4477 { 4478 struct tcp_sock *tp = tcp_sk(sk); 4479 __u32 dsack_high = tp->rcv_nxt; 4480 bool fin, fragstolen, eaten; 4481 struct sk_buff *skb, *tail; 4482 struct rb_node *p; 4483 4484 p = rb_first(&tp->out_of_order_queue); 4485 while (p) { 4486 skb = rb_to_skb(p); 4487 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4488 break; 4489 4490 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4491 __u32 dsack = dsack_high; 4492 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4493 dsack_high = TCP_SKB_CB(skb)->end_seq; 4494 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4495 } 4496 p = rb_next(p); 4497 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4498 4499 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4500 tcp_drop(sk, skb); 4501 continue; 4502 } 4503 4504 tail = skb_peek_tail(&sk->sk_receive_queue); 4505 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4506 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4507 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4508 if (!eaten) 4509 __skb_queue_tail(&sk->sk_receive_queue, skb); 4510 else 4511 kfree_skb_partial(skb, fragstolen); 4512 4513 if (unlikely(fin)) { 4514 tcp_fin(sk); 4515 /* tcp_fin() purges tp->out_of_order_queue, 4516 * so we must end this loop right now. 4517 */ 4518 break; 4519 } 4520 } 4521 } 4522 4523 static bool tcp_prune_ofo_queue(struct sock *sk); 4524 static int tcp_prune_queue(struct sock *sk); 4525 4526 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4527 unsigned int size) 4528 { 4529 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4530 !sk_rmem_schedule(sk, skb, size)) { 4531 4532 if (tcp_prune_queue(sk) < 0) 4533 return -1; 4534 4535 while (!sk_rmem_schedule(sk, skb, size)) { 4536 if (!tcp_prune_ofo_queue(sk)) 4537 return -1; 4538 } 4539 } 4540 return 0; 4541 } 4542 4543 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4544 { 4545 struct tcp_sock *tp = tcp_sk(sk); 4546 struct rb_node **p, *parent; 4547 struct sk_buff *skb1; 4548 u32 seq, end_seq; 4549 bool fragstolen; 4550 4551 tcp_ecn_check_ce(sk, skb); 4552 4553 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4554 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4555 tcp_drop(sk, skb); 4556 return; 4557 } 4558 4559 /* Disable header prediction. */ 4560 tp->pred_flags = 0; 4561 inet_csk_schedule_ack(sk); 4562 4563 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4564 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4565 seq = TCP_SKB_CB(skb)->seq; 4566 end_seq = TCP_SKB_CB(skb)->end_seq; 4567 4568 p = &tp->out_of_order_queue.rb_node; 4569 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4570 /* Initial out of order segment, build 1 SACK. */ 4571 if (tcp_is_sack(tp)) { 4572 tp->rx_opt.num_sacks = 1; 4573 tp->selective_acks[0].start_seq = seq; 4574 tp->selective_acks[0].end_seq = end_seq; 4575 } 4576 rb_link_node(&skb->rbnode, NULL, p); 4577 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4578 tp->ooo_last_skb = skb; 4579 goto end; 4580 } 4581 4582 /* In the typical case, we are adding an skb to the end of the list. 4583 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4584 */ 4585 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4586 skb, &fragstolen)) { 4587 coalesce_done: 4588 tcp_grow_window(sk, skb); 4589 kfree_skb_partial(skb, fragstolen); 4590 skb = NULL; 4591 goto add_sack; 4592 } 4593 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4594 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4595 parent = &tp->ooo_last_skb->rbnode; 4596 p = &parent->rb_right; 4597 goto insert; 4598 } 4599 4600 /* Find place to insert this segment. Handle overlaps on the way. */ 4601 parent = NULL; 4602 while (*p) { 4603 parent = *p; 4604 skb1 = rb_to_skb(parent); 4605 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4606 p = &parent->rb_left; 4607 continue; 4608 } 4609 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4610 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4611 /* All the bits are present. Drop. */ 4612 NET_INC_STATS(sock_net(sk), 4613 LINUX_MIB_TCPOFOMERGE); 4614 tcp_drop(sk, skb); 4615 skb = NULL; 4616 tcp_dsack_set(sk, seq, end_seq); 4617 goto add_sack; 4618 } 4619 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4620 /* Partial overlap. */ 4621 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4622 } else { 4623 /* skb's seq == skb1's seq and skb covers skb1. 4624 * Replace skb1 with skb. 4625 */ 4626 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4627 &tp->out_of_order_queue); 4628 tcp_dsack_extend(sk, 4629 TCP_SKB_CB(skb1)->seq, 4630 TCP_SKB_CB(skb1)->end_seq); 4631 NET_INC_STATS(sock_net(sk), 4632 LINUX_MIB_TCPOFOMERGE); 4633 tcp_drop(sk, skb1); 4634 goto merge_right; 4635 } 4636 } else if (tcp_ooo_try_coalesce(sk, skb1, 4637 skb, &fragstolen)) { 4638 goto coalesce_done; 4639 } 4640 p = &parent->rb_right; 4641 } 4642 insert: 4643 /* Insert segment into RB tree. */ 4644 rb_link_node(&skb->rbnode, parent, p); 4645 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4646 4647 merge_right: 4648 /* Remove other segments covered by skb. */ 4649 while ((skb1 = skb_rb_next(skb)) != NULL) { 4650 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4651 break; 4652 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4653 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4654 end_seq); 4655 break; 4656 } 4657 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4658 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4659 TCP_SKB_CB(skb1)->end_seq); 4660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4661 tcp_drop(sk, skb1); 4662 } 4663 /* If there is no skb after us, we are the last_skb ! */ 4664 if (!skb1) 4665 tp->ooo_last_skb = skb; 4666 4667 add_sack: 4668 if (tcp_is_sack(tp)) 4669 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4670 end: 4671 if (skb) { 4672 tcp_grow_window(sk, skb); 4673 skb_condense(skb); 4674 skb_set_owner_r(skb, sk); 4675 } 4676 } 4677 4678 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4679 bool *fragstolen) 4680 { 4681 int eaten; 4682 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4683 4684 eaten = (tail && 4685 tcp_try_coalesce(sk, tail, 4686 skb, fragstolen)) ? 1 : 0; 4687 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4688 if (!eaten) { 4689 __skb_queue_tail(&sk->sk_receive_queue, skb); 4690 skb_set_owner_r(skb, sk); 4691 } 4692 return eaten; 4693 } 4694 4695 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4696 { 4697 struct sk_buff *skb; 4698 int err = -ENOMEM; 4699 int data_len = 0; 4700 bool fragstolen; 4701 4702 if (size == 0) 4703 return 0; 4704 4705 if (size > PAGE_SIZE) { 4706 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4707 4708 data_len = npages << PAGE_SHIFT; 4709 size = data_len + (size & ~PAGE_MASK); 4710 } 4711 skb = alloc_skb_with_frags(size - data_len, data_len, 4712 PAGE_ALLOC_COSTLY_ORDER, 4713 &err, sk->sk_allocation); 4714 if (!skb) 4715 goto err; 4716 4717 skb_put(skb, size - data_len); 4718 skb->data_len = data_len; 4719 skb->len = size; 4720 4721 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4723 goto err_free; 4724 } 4725 4726 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4727 if (err) 4728 goto err_free; 4729 4730 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4731 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4732 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4733 4734 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4735 WARN_ON_ONCE(fragstolen); /* should not happen */ 4736 __kfree_skb(skb); 4737 } 4738 return size; 4739 4740 err_free: 4741 kfree_skb(skb); 4742 err: 4743 return err; 4744 4745 } 4746 4747 void tcp_data_ready(struct sock *sk) 4748 { 4749 const struct tcp_sock *tp = tcp_sk(sk); 4750 int avail = tp->rcv_nxt - tp->copied_seq; 4751 4752 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4753 return; 4754 4755 sk->sk_data_ready(sk); 4756 } 4757 4758 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4759 { 4760 struct tcp_sock *tp = tcp_sk(sk); 4761 bool fragstolen; 4762 int eaten; 4763 4764 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4765 __kfree_skb(skb); 4766 return; 4767 } 4768 skb_dst_drop(skb); 4769 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4770 4771 tcp_ecn_accept_cwr(sk, skb); 4772 4773 tp->rx_opt.dsack = 0; 4774 4775 /* Queue data for delivery to the user. 4776 * Packets in sequence go to the receive queue. 4777 * Out of sequence packets to the out_of_order_queue. 4778 */ 4779 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4780 if (tcp_receive_window(tp) == 0) { 4781 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4782 goto out_of_window; 4783 } 4784 4785 /* Ok. In sequence. In window. */ 4786 queue_and_out: 4787 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4788 sk_forced_mem_schedule(sk, skb->truesize); 4789 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4790 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4791 goto drop; 4792 } 4793 4794 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4795 if (skb->len) 4796 tcp_event_data_recv(sk, skb); 4797 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4798 tcp_fin(sk); 4799 4800 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4801 tcp_ofo_queue(sk); 4802 4803 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4804 * gap in queue is filled. 4805 */ 4806 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4807 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4808 } 4809 4810 if (tp->rx_opt.num_sacks) 4811 tcp_sack_remove(tp); 4812 4813 tcp_fast_path_check(sk); 4814 4815 if (eaten > 0) 4816 kfree_skb_partial(skb, fragstolen); 4817 if (!sock_flag(sk, SOCK_DEAD)) 4818 tcp_data_ready(sk); 4819 return; 4820 } 4821 4822 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4823 tcp_rcv_spurious_retrans(sk, skb); 4824 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4825 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4826 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4827 4828 out_of_window: 4829 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4830 inet_csk_schedule_ack(sk); 4831 drop: 4832 tcp_drop(sk, skb); 4833 return; 4834 } 4835 4836 /* Out of window. F.e. zero window probe. */ 4837 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4838 goto out_of_window; 4839 4840 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4841 /* Partial packet, seq < rcv_next < end_seq */ 4842 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4843 4844 /* If window is closed, drop tail of packet. But after 4845 * remembering D-SACK for its head made in previous line. 4846 */ 4847 if (!tcp_receive_window(tp)) { 4848 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4849 goto out_of_window; 4850 } 4851 goto queue_and_out; 4852 } 4853 4854 tcp_data_queue_ofo(sk, skb); 4855 } 4856 4857 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4858 { 4859 if (list) 4860 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4861 4862 return skb_rb_next(skb); 4863 } 4864 4865 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4866 struct sk_buff_head *list, 4867 struct rb_root *root) 4868 { 4869 struct sk_buff *next = tcp_skb_next(skb, list); 4870 4871 if (list) 4872 __skb_unlink(skb, list); 4873 else 4874 rb_erase(&skb->rbnode, root); 4875 4876 __kfree_skb(skb); 4877 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4878 4879 return next; 4880 } 4881 4882 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4883 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4884 { 4885 struct rb_node **p = &root->rb_node; 4886 struct rb_node *parent = NULL; 4887 struct sk_buff *skb1; 4888 4889 while (*p) { 4890 parent = *p; 4891 skb1 = rb_to_skb(parent); 4892 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4893 p = &parent->rb_left; 4894 else 4895 p = &parent->rb_right; 4896 } 4897 rb_link_node(&skb->rbnode, parent, p); 4898 rb_insert_color(&skb->rbnode, root); 4899 } 4900 4901 /* Collapse contiguous sequence of skbs head..tail with 4902 * sequence numbers start..end. 4903 * 4904 * If tail is NULL, this means until the end of the queue. 4905 * 4906 * Segments with FIN/SYN are not collapsed (only because this 4907 * simplifies code) 4908 */ 4909 static void 4910 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4911 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4912 { 4913 struct sk_buff *skb = head, *n; 4914 struct sk_buff_head tmp; 4915 bool end_of_skbs; 4916 4917 /* First, check that queue is collapsible and find 4918 * the point where collapsing can be useful. 4919 */ 4920 restart: 4921 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4922 n = tcp_skb_next(skb, list); 4923 4924 /* No new bits? It is possible on ofo queue. */ 4925 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4926 skb = tcp_collapse_one(sk, skb, list, root); 4927 if (!skb) 4928 break; 4929 goto restart; 4930 } 4931 4932 /* The first skb to collapse is: 4933 * - not SYN/FIN and 4934 * - bloated or contains data before "start" or 4935 * overlaps to the next one. 4936 */ 4937 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4938 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4939 before(TCP_SKB_CB(skb)->seq, start))) { 4940 end_of_skbs = false; 4941 break; 4942 } 4943 4944 if (n && n != tail && 4945 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4946 end_of_skbs = false; 4947 break; 4948 } 4949 4950 /* Decided to skip this, advance start seq. */ 4951 start = TCP_SKB_CB(skb)->end_seq; 4952 } 4953 if (end_of_skbs || 4954 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4955 return; 4956 4957 __skb_queue_head_init(&tmp); 4958 4959 while (before(start, end)) { 4960 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4961 struct sk_buff *nskb; 4962 4963 nskb = alloc_skb(copy, GFP_ATOMIC); 4964 if (!nskb) 4965 break; 4966 4967 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4968 #ifdef CONFIG_TLS_DEVICE 4969 nskb->decrypted = skb->decrypted; 4970 #endif 4971 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4972 if (list) 4973 __skb_queue_before(list, skb, nskb); 4974 else 4975 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4976 skb_set_owner_r(nskb, sk); 4977 4978 /* Copy data, releasing collapsed skbs. */ 4979 while (copy > 0) { 4980 int offset = start - TCP_SKB_CB(skb)->seq; 4981 int size = TCP_SKB_CB(skb)->end_seq - start; 4982 4983 BUG_ON(offset < 0); 4984 if (size > 0) { 4985 size = min(copy, size); 4986 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4987 BUG(); 4988 TCP_SKB_CB(nskb)->end_seq += size; 4989 copy -= size; 4990 start += size; 4991 } 4992 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4993 skb = tcp_collapse_one(sk, skb, list, root); 4994 if (!skb || 4995 skb == tail || 4996 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4997 goto end; 4998 #ifdef CONFIG_TLS_DEVICE 4999 if (skb->decrypted != nskb->decrypted) 5000 goto end; 5001 #endif 5002 } 5003 } 5004 } 5005 end: 5006 skb_queue_walk_safe(&tmp, skb, n) 5007 tcp_rbtree_insert(root, skb); 5008 } 5009 5010 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5011 * and tcp_collapse() them until all the queue is collapsed. 5012 */ 5013 static void tcp_collapse_ofo_queue(struct sock *sk) 5014 { 5015 struct tcp_sock *tp = tcp_sk(sk); 5016 u32 range_truesize, sum_tiny = 0; 5017 struct sk_buff *skb, *head; 5018 u32 start, end; 5019 5020 skb = skb_rb_first(&tp->out_of_order_queue); 5021 new_range: 5022 if (!skb) { 5023 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5024 return; 5025 } 5026 start = TCP_SKB_CB(skb)->seq; 5027 end = TCP_SKB_CB(skb)->end_seq; 5028 range_truesize = skb->truesize; 5029 5030 for (head = skb;;) { 5031 skb = skb_rb_next(skb); 5032 5033 /* Range is terminated when we see a gap or when 5034 * we are at the queue end. 5035 */ 5036 if (!skb || 5037 after(TCP_SKB_CB(skb)->seq, end) || 5038 before(TCP_SKB_CB(skb)->end_seq, start)) { 5039 /* Do not attempt collapsing tiny skbs */ 5040 if (range_truesize != head->truesize || 5041 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5042 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5043 head, skb, start, end); 5044 } else { 5045 sum_tiny += range_truesize; 5046 if (sum_tiny > sk->sk_rcvbuf >> 3) 5047 return; 5048 } 5049 goto new_range; 5050 } 5051 5052 range_truesize += skb->truesize; 5053 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5054 start = TCP_SKB_CB(skb)->seq; 5055 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5056 end = TCP_SKB_CB(skb)->end_seq; 5057 } 5058 } 5059 5060 /* 5061 * Clean the out-of-order queue to make room. 5062 * We drop high sequences packets to : 5063 * 1) Let a chance for holes to be filled. 5064 * 2) not add too big latencies if thousands of packets sit there. 5065 * (But if application shrinks SO_RCVBUF, we could still end up 5066 * freeing whole queue here) 5067 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5068 * 5069 * Return true if queue has shrunk. 5070 */ 5071 static bool tcp_prune_ofo_queue(struct sock *sk) 5072 { 5073 struct tcp_sock *tp = tcp_sk(sk); 5074 struct rb_node *node, *prev; 5075 int goal; 5076 5077 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5078 return false; 5079 5080 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5081 goal = sk->sk_rcvbuf >> 3; 5082 node = &tp->ooo_last_skb->rbnode; 5083 do { 5084 prev = rb_prev(node); 5085 rb_erase(node, &tp->out_of_order_queue); 5086 goal -= rb_to_skb(node)->truesize; 5087 tcp_drop(sk, rb_to_skb(node)); 5088 if (!prev || goal <= 0) { 5089 sk_mem_reclaim(sk); 5090 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5091 !tcp_under_memory_pressure(sk)) 5092 break; 5093 goal = sk->sk_rcvbuf >> 3; 5094 } 5095 node = prev; 5096 } while (node); 5097 tp->ooo_last_skb = rb_to_skb(prev); 5098 5099 /* Reset SACK state. A conforming SACK implementation will 5100 * do the same at a timeout based retransmit. When a connection 5101 * is in a sad state like this, we care only about integrity 5102 * of the connection not performance. 5103 */ 5104 if (tp->rx_opt.sack_ok) 5105 tcp_sack_reset(&tp->rx_opt); 5106 return true; 5107 } 5108 5109 /* Reduce allocated memory if we can, trying to get 5110 * the socket within its memory limits again. 5111 * 5112 * Return less than zero if we should start dropping frames 5113 * until the socket owning process reads some of the data 5114 * to stabilize the situation. 5115 */ 5116 static int tcp_prune_queue(struct sock *sk) 5117 { 5118 struct tcp_sock *tp = tcp_sk(sk); 5119 5120 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5121 5122 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5123 tcp_clamp_window(sk); 5124 else if (tcp_under_memory_pressure(sk)) 5125 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5126 5127 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5128 return 0; 5129 5130 tcp_collapse_ofo_queue(sk); 5131 if (!skb_queue_empty(&sk->sk_receive_queue)) 5132 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5133 skb_peek(&sk->sk_receive_queue), 5134 NULL, 5135 tp->copied_seq, tp->rcv_nxt); 5136 sk_mem_reclaim(sk); 5137 5138 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5139 return 0; 5140 5141 /* Collapsing did not help, destructive actions follow. 5142 * This must not ever occur. */ 5143 5144 tcp_prune_ofo_queue(sk); 5145 5146 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5147 return 0; 5148 5149 /* If we are really being abused, tell the caller to silently 5150 * drop receive data on the floor. It will get retransmitted 5151 * and hopefully then we'll have sufficient space. 5152 */ 5153 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5154 5155 /* Massive buffer overcommit. */ 5156 tp->pred_flags = 0; 5157 return -1; 5158 } 5159 5160 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5161 { 5162 const struct tcp_sock *tp = tcp_sk(sk); 5163 5164 /* If the user specified a specific send buffer setting, do 5165 * not modify it. 5166 */ 5167 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5168 return false; 5169 5170 /* If we are under global TCP memory pressure, do not expand. */ 5171 if (tcp_under_memory_pressure(sk)) 5172 return false; 5173 5174 /* If we are under soft global TCP memory pressure, do not expand. */ 5175 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5176 return false; 5177 5178 /* If we filled the congestion window, do not expand. */ 5179 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5180 return false; 5181 5182 return true; 5183 } 5184 5185 /* When incoming ACK allowed to free some skb from write_queue, 5186 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5187 * on the exit from tcp input handler. 5188 * 5189 * PROBLEM: sndbuf expansion does not work well with largesend. 5190 */ 5191 static void tcp_new_space(struct sock *sk) 5192 { 5193 struct tcp_sock *tp = tcp_sk(sk); 5194 5195 if (tcp_should_expand_sndbuf(sk)) { 5196 tcp_sndbuf_expand(sk); 5197 tp->snd_cwnd_stamp = tcp_jiffies32; 5198 } 5199 5200 sk->sk_write_space(sk); 5201 } 5202 5203 static void tcp_check_space(struct sock *sk) 5204 { 5205 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5206 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5207 /* pairs with tcp_poll() */ 5208 smp_mb(); 5209 if (sk->sk_socket && 5210 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5211 tcp_new_space(sk); 5212 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5213 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5214 } 5215 } 5216 } 5217 5218 static inline void tcp_data_snd_check(struct sock *sk) 5219 { 5220 tcp_push_pending_frames(sk); 5221 tcp_check_space(sk); 5222 } 5223 5224 /* 5225 * Check if sending an ack is needed. 5226 */ 5227 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5228 { 5229 struct tcp_sock *tp = tcp_sk(sk); 5230 unsigned long rtt, delay; 5231 5232 /* More than one full frame received... */ 5233 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5234 /* ... and right edge of window advances far enough. 5235 * (tcp_recvmsg() will send ACK otherwise). 5236 * If application uses SO_RCVLOWAT, we want send ack now if 5237 * we have not received enough bytes to satisfy the condition. 5238 */ 5239 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5240 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5241 /* We ACK each frame or... */ 5242 tcp_in_quickack_mode(sk) || 5243 /* Protocol state mandates a one-time immediate ACK */ 5244 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5245 send_now: 5246 tcp_send_ack(sk); 5247 return; 5248 } 5249 5250 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5251 tcp_send_delayed_ack(sk); 5252 return; 5253 } 5254 5255 if (!tcp_is_sack(tp) || 5256 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5257 goto send_now; 5258 5259 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5260 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5261 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5262 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5263 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5264 tp->compressed_ack = 0; 5265 } 5266 5267 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5268 goto send_now; 5269 5270 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5271 return; 5272 5273 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5274 5275 rtt = tp->rcv_rtt_est.rtt_us; 5276 if (tp->srtt_us && tp->srtt_us < rtt) 5277 rtt = tp->srtt_us; 5278 5279 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5280 rtt * (NSEC_PER_USEC >> 3)/20); 5281 sock_hold(sk); 5282 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5283 HRTIMER_MODE_REL_PINNED_SOFT); 5284 } 5285 5286 static inline void tcp_ack_snd_check(struct sock *sk) 5287 { 5288 if (!inet_csk_ack_scheduled(sk)) { 5289 /* We sent a data segment already. */ 5290 return; 5291 } 5292 __tcp_ack_snd_check(sk, 1); 5293 } 5294 5295 /* 5296 * This routine is only called when we have urgent data 5297 * signaled. Its the 'slow' part of tcp_urg. It could be 5298 * moved inline now as tcp_urg is only called from one 5299 * place. We handle URGent data wrong. We have to - as 5300 * BSD still doesn't use the correction from RFC961. 5301 * For 1003.1g we should support a new option TCP_STDURG to permit 5302 * either form (or just set the sysctl tcp_stdurg). 5303 */ 5304 5305 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5306 { 5307 struct tcp_sock *tp = tcp_sk(sk); 5308 u32 ptr = ntohs(th->urg_ptr); 5309 5310 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5311 ptr--; 5312 ptr += ntohl(th->seq); 5313 5314 /* Ignore urgent data that we've already seen and read. */ 5315 if (after(tp->copied_seq, ptr)) 5316 return; 5317 5318 /* Do not replay urg ptr. 5319 * 5320 * NOTE: interesting situation not covered by specs. 5321 * Misbehaving sender may send urg ptr, pointing to segment, 5322 * which we already have in ofo queue. We are not able to fetch 5323 * such data and will stay in TCP_URG_NOTYET until will be eaten 5324 * by recvmsg(). Seems, we are not obliged to handle such wicked 5325 * situations. But it is worth to think about possibility of some 5326 * DoSes using some hypothetical application level deadlock. 5327 */ 5328 if (before(ptr, tp->rcv_nxt)) 5329 return; 5330 5331 /* Do we already have a newer (or duplicate) urgent pointer? */ 5332 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5333 return; 5334 5335 /* Tell the world about our new urgent pointer. */ 5336 sk_send_sigurg(sk); 5337 5338 /* We may be adding urgent data when the last byte read was 5339 * urgent. To do this requires some care. We cannot just ignore 5340 * tp->copied_seq since we would read the last urgent byte again 5341 * as data, nor can we alter copied_seq until this data arrives 5342 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5343 * 5344 * NOTE. Double Dutch. Rendering to plain English: author of comment 5345 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5346 * and expect that both A and B disappear from stream. This is _wrong_. 5347 * Though this happens in BSD with high probability, this is occasional. 5348 * Any application relying on this is buggy. Note also, that fix "works" 5349 * only in this artificial test. Insert some normal data between A and B and we will 5350 * decline of BSD again. Verdict: it is better to remove to trap 5351 * buggy users. 5352 */ 5353 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5354 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5355 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5356 tp->copied_seq++; 5357 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5358 __skb_unlink(skb, &sk->sk_receive_queue); 5359 __kfree_skb(skb); 5360 } 5361 } 5362 5363 tp->urg_data = TCP_URG_NOTYET; 5364 WRITE_ONCE(tp->urg_seq, ptr); 5365 5366 /* Disable header prediction. */ 5367 tp->pred_flags = 0; 5368 } 5369 5370 /* This is the 'fast' part of urgent handling. */ 5371 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5372 { 5373 struct tcp_sock *tp = tcp_sk(sk); 5374 5375 /* Check if we get a new urgent pointer - normally not. */ 5376 if (th->urg) 5377 tcp_check_urg(sk, th); 5378 5379 /* Do we wait for any urgent data? - normally not... */ 5380 if (tp->urg_data == TCP_URG_NOTYET) { 5381 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5382 th->syn; 5383 5384 /* Is the urgent pointer pointing into this packet? */ 5385 if (ptr < skb->len) { 5386 u8 tmp; 5387 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5388 BUG(); 5389 tp->urg_data = TCP_URG_VALID | tmp; 5390 if (!sock_flag(sk, SOCK_DEAD)) 5391 sk->sk_data_ready(sk); 5392 } 5393 } 5394 } 5395 5396 /* Accept RST for rcv_nxt - 1 after a FIN. 5397 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5398 * FIN is sent followed by a RST packet. The RST is sent with the same 5399 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5400 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5401 * ACKs on the closed socket. In addition middleboxes can drop either the 5402 * challenge ACK or a subsequent RST. 5403 */ 5404 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5405 { 5406 struct tcp_sock *tp = tcp_sk(sk); 5407 5408 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5409 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5410 TCPF_CLOSING)); 5411 } 5412 5413 /* Does PAWS and seqno based validation of an incoming segment, flags will 5414 * play significant role here. 5415 */ 5416 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5417 const struct tcphdr *th, int syn_inerr) 5418 { 5419 struct tcp_sock *tp = tcp_sk(sk); 5420 bool rst_seq_match = false; 5421 5422 /* RFC1323: H1. Apply PAWS check first. */ 5423 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5424 tp->rx_opt.saw_tstamp && 5425 tcp_paws_discard(sk, skb)) { 5426 if (!th->rst) { 5427 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5428 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5429 LINUX_MIB_TCPACKSKIPPEDPAWS, 5430 &tp->last_oow_ack_time)) 5431 tcp_send_dupack(sk, skb); 5432 goto discard; 5433 } 5434 /* Reset is accepted even if it did not pass PAWS. */ 5435 } 5436 5437 /* Step 1: check sequence number */ 5438 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5439 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5440 * (RST) segments are validated by checking their SEQ-fields." 5441 * And page 69: "If an incoming segment is not acceptable, 5442 * an acknowledgment should be sent in reply (unless the RST 5443 * bit is set, if so drop the segment and return)". 5444 */ 5445 if (!th->rst) { 5446 if (th->syn) 5447 goto syn_challenge; 5448 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5449 LINUX_MIB_TCPACKSKIPPEDSEQ, 5450 &tp->last_oow_ack_time)) 5451 tcp_send_dupack(sk, skb); 5452 } else if (tcp_reset_check(sk, skb)) { 5453 tcp_reset(sk); 5454 } 5455 goto discard; 5456 } 5457 5458 /* Step 2: check RST bit */ 5459 if (th->rst) { 5460 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5461 * FIN and SACK too if available): 5462 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5463 * the right-most SACK block, 5464 * then 5465 * RESET the connection 5466 * else 5467 * Send a challenge ACK 5468 */ 5469 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5470 tcp_reset_check(sk, skb)) { 5471 rst_seq_match = true; 5472 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5473 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5474 int max_sack = sp[0].end_seq; 5475 int this_sack; 5476 5477 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5478 ++this_sack) { 5479 max_sack = after(sp[this_sack].end_seq, 5480 max_sack) ? 5481 sp[this_sack].end_seq : max_sack; 5482 } 5483 5484 if (TCP_SKB_CB(skb)->seq == max_sack) 5485 rst_seq_match = true; 5486 } 5487 5488 if (rst_seq_match) 5489 tcp_reset(sk); 5490 else { 5491 /* Disable TFO if RST is out-of-order 5492 * and no data has been received 5493 * for current active TFO socket 5494 */ 5495 if (tp->syn_fastopen && !tp->data_segs_in && 5496 sk->sk_state == TCP_ESTABLISHED) 5497 tcp_fastopen_active_disable(sk); 5498 tcp_send_challenge_ack(sk, skb); 5499 } 5500 goto discard; 5501 } 5502 5503 /* step 3: check security and precedence [ignored] */ 5504 5505 /* step 4: Check for a SYN 5506 * RFC 5961 4.2 : Send a challenge ack 5507 */ 5508 if (th->syn) { 5509 syn_challenge: 5510 if (syn_inerr) 5511 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5512 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5513 tcp_send_challenge_ack(sk, skb); 5514 goto discard; 5515 } 5516 5517 return true; 5518 5519 discard: 5520 tcp_drop(sk, skb); 5521 return false; 5522 } 5523 5524 /* 5525 * TCP receive function for the ESTABLISHED state. 5526 * 5527 * It is split into a fast path and a slow path. The fast path is 5528 * disabled when: 5529 * - A zero window was announced from us - zero window probing 5530 * is only handled properly in the slow path. 5531 * - Out of order segments arrived. 5532 * - Urgent data is expected. 5533 * - There is no buffer space left 5534 * - Unexpected TCP flags/window values/header lengths are received 5535 * (detected by checking the TCP header against pred_flags) 5536 * - Data is sent in both directions. Fast path only supports pure senders 5537 * or pure receivers (this means either the sequence number or the ack 5538 * value must stay constant) 5539 * - Unexpected TCP option. 5540 * 5541 * When these conditions are not satisfied it drops into a standard 5542 * receive procedure patterned after RFC793 to handle all cases. 5543 * The first three cases are guaranteed by proper pred_flags setting, 5544 * the rest is checked inline. Fast processing is turned on in 5545 * tcp_data_queue when everything is OK. 5546 */ 5547 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5548 { 5549 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5550 struct tcp_sock *tp = tcp_sk(sk); 5551 unsigned int len = skb->len; 5552 5553 /* TCP congestion window tracking */ 5554 trace_tcp_probe(sk, skb); 5555 5556 tcp_mstamp_refresh(tp); 5557 if (unlikely(!sk->sk_rx_dst)) 5558 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5559 /* 5560 * Header prediction. 5561 * The code loosely follows the one in the famous 5562 * "30 instruction TCP receive" Van Jacobson mail. 5563 * 5564 * Van's trick is to deposit buffers into socket queue 5565 * on a device interrupt, to call tcp_recv function 5566 * on the receive process context and checksum and copy 5567 * the buffer to user space. smart... 5568 * 5569 * Our current scheme is not silly either but we take the 5570 * extra cost of the net_bh soft interrupt processing... 5571 * We do checksum and copy also but from device to kernel. 5572 */ 5573 5574 tp->rx_opt.saw_tstamp = 0; 5575 5576 /* pred_flags is 0xS?10 << 16 + snd_wnd 5577 * if header_prediction is to be made 5578 * 'S' will always be tp->tcp_header_len >> 2 5579 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5580 * turn it off (when there are holes in the receive 5581 * space for instance) 5582 * PSH flag is ignored. 5583 */ 5584 5585 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5586 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5587 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5588 int tcp_header_len = tp->tcp_header_len; 5589 5590 /* Timestamp header prediction: tcp_header_len 5591 * is automatically equal to th->doff*4 due to pred_flags 5592 * match. 5593 */ 5594 5595 /* Check timestamp */ 5596 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5597 /* No? Slow path! */ 5598 if (!tcp_parse_aligned_timestamp(tp, th)) 5599 goto slow_path; 5600 5601 /* If PAWS failed, check it more carefully in slow path */ 5602 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5603 goto slow_path; 5604 5605 /* DO NOT update ts_recent here, if checksum fails 5606 * and timestamp was corrupted part, it will result 5607 * in a hung connection since we will drop all 5608 * future packets due to the PAWS test. 5609 */ 5610 } 5611 5612 if (len <= tcp_header_len) { 5613 /* Bulk data transfer: sender */ 5614 if (len == tcp_header_len) { 5615 /* Predicted packet is in window by definition. 5616 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5617 * Hence, check seq<=rcv_wup reduces to: 5618 */ 5619 if (tcp_header_len == 5620 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5621 tp->rcv_nxt == tp->rcv_wup) 5622 tcp_store_ts_recent(tp); 5623 5624 /* We know that such packets are checksummed 5625 * on entry. 5626 */ 5627 tcp_ack(sk, skb, 0); 5628 __kfree_skb(skb); 5629 tcp_data_snd_check(sk); 5630 /* When receiving pure ack in fast path, update 5631 * last ts ecr directly instead of calling 5632 * tcp_rcv_rtt_measure_ts() 5633 */ 5634 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5635 return; 5636 } else { /* Header too small */ 5637 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5638 goto discard; 5639 } 5640 } else { 5641 int eaten = 0; 5642 bool fragstolen = false; 5643 5644 if (tcp_checksum_complete(skb)) 5645 goto csum_error; 5646 5647 if ((int)skb->truesize > sk->sk_forward_alloc) 5648 goto step5; 5649 5650 /* Predicted packet is in window by definition. 5651 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5652 * Hence, check seq<=rcv_wup reduces to: 5653 */ 5654 if (tcp_header_len == 5655 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5656 tp->rcv_nxt == tp->rcv_wup) 5657 tcp_store_ts_recent(tp); 5658 5659 tcp_rcv_rtt_measure_ts(sk, skb); 5660 5661 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5662 5663 /* Bulk data transfer: receiver */ 5664 __skb_pull(skb, tcp_header_len); 5665 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5666 5667 tcp_event_data_recv(sk, skb); 5668 5669 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5670 /* Well, only one small jumplet in fast path... */ 5671 tcp_ack(sk, skb, FLAG_DATA); 5672 tcp_data_snd_check(sk); 5673 if (!inet_csk_ack_scheduled(sk)) 5674 goto no_ack; 5675 } 5676 5677 __tcp_ack_snd_check(sk, 0); 5678 no_ack: 5679 if (eaten) 5680 kfree_skb_partial(skb, fragstolen); 5681 tcp_data_ready(sk); 5682 return; 5683 } 5684 } 5685 5686 slow_path: 5687 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5688 goto csum_error; 5689 5690 if (!th->ack && !th->rst && !th->syn) 5691 goto discard; 5692 5693 /* 5694 * Standard slow path. 5695 */ 5696 5697 if (!tcp_validate_incoming(sk, skb, th, 1)) 5698 return; 5699 5700 step5: 5701 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5702 goto discard; 5703 5704 tcp_rcv_rtt_measure_ts(sk, skb); 5705 5706 /* Process urgent data. */ 5707 tcp_urg(sk, skb, th); 5708 5709 /* step 7: process the segment text */ 5710 tcp_data_queue(sk, skb); 5711 5712 tcp_data_snd_check(sk); 5713 tcp_ack_snd_check(sk); 5714 return; 5715 5716 csum_error: 5717 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5718 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5719 5720 discard: 5721 tcp_drop(sk, skb); 5722 } 5723 EXPORT_SYMBOL(tcp_rcv_established); 5724 5725 void tcp_init_transfer(struct sock *sk, int bpf_op) 5726 { 5727 struct inet_connection_sock *icsk = inet_csk(sk); 5728 struct tcp_sock *tp = tcp_sk(sk); 5729 5730 tcp_mtup_init(sk); 5731 icsk->icsk_af_ops->rebuild_header(sk); 5732 tcp_init_metrics(sk); 5733 5734 /* Initialize the congestion window to start the transfer. 5735 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5736 * retransmitted. In light of RFC6298 more aggressive 1sec 5737 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5738 * retransmission has occurred. 5739 */ 5740 if (tp->total_retrans > 1 && tp->undo_marker) 5741 tp->snd_cwnd = 1; 5742 else 5743 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5744 tp->snd_cwnd_stamp = tcp_jiffies32; 5745 5746 tcp_call_bpf(sk, bpf_op, 0, NULL); 5747 tcp_init_congestion_control(sk); 5748 tcp_init_buffer_space(sk); 5749 } 5750 5751 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5752 { 5753 struct tcp_sock *tp = tcp_sk(sk); 5754 struct inet_connection_sock *icsk = inet_csk(sk); 5755 5756 tcp_set_state(sk, TCP_ESTABLISHED); 5757 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5758 5759 if (skb) { 5760 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5761 security_inet_conn_established(sk, skb); 5762 sk_mark_napi_id(sk, skb); 5763 } 5764 5765 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5766 5767 /* Prevent spurious tcp_cwnd_restart() on first data 5768 * packet. 5769 */ 5770 tp->lsndtime = tcp_jiffies32; 5771 5772 if (sock_flag(sk, SOCK_KEEPOPEN)) 5773 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5774 5775 if (!tp->rx_opt.snd_wscale) 5776 __tcp_fast_path_on(tp, tp->snd_wnd); 5777 else 5778 tp->pred_flags = 0; 5779 } 5780 5781 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5782 struct tcp_fastopen_cookie *cookie) 5783 { 5784 struct tcp_sock *tp = tcp_sk(sk); 5785 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5786 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5787 bool syn_drop = false; 5788 5789 if (mss == tp->rx_opt.user_mss) { 5790 struct tcp_options_received opt; 5791 5792 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5793 tcp_clear_options(&opt); 5794 opt.user_mss = opt.mss_clamp = 0; 5795 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5796 mss = opt.mss_clamp; 5797 } 5798 5799 if (!tp->syn_fastopen) { 5800 /* Ignore an unsolicited cookie */ 5801 cookie->len = -1; 5802 } else if (tp->total_retrans) { 5803 /* SYN timed out and the SYN-ACK neither has a cookie nor 5804 * acknowledges data. Presumably the remote received only 5805 * the retransmitted (regular) SYNs: either the original 5806 * SYN-data or the corresponding SYN-ACK was dropped. 5807 */ 5808 syn_drop = (cookie->len < 0 && data); 5809 } else if (cookie->len < 0 && !tp->syn_data) { 5810 /* We requested a cookie but didn't get it. If we did not use 5811 * the (old) exp opt format then try so next time (try_exp=1). 5812 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5813 */ 5814 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5815 } 5816 5817 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5818 5819 if (data) { /* Retransmit unacked data in SYN */ 5820 if (tp->total_retrans) 5821 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5822 else 5823 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5824 skb_rbtree_walk_from(data) { 5825 if (__tcp_retransmit_skb(sk, data, 1)) 5826 break; 5827 } 5828 tcp_rearm_rto(sk); 5829 NET_INC_STATS(sock_net(sk), 5830 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5831 return true; 5832 } 5833 tp->syn_data_acked = tp->syn_data; 5834 if (tp->syn_data_acked) { 5835 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5836 /* SYN-data is counted as two separate packets in tcp_ack() */ 5837 if (tp->delivered > 1) 5838 --tp->delivered; 5839 } 5840 5841 tcp_fastopen_add_skb(sk, synack); 5842 5843 return false; 5844 } 5845 5846 static void smc_check_reset_syn(struct tcp_sock *tp) 5847 { 5848 #if IS_ENABLED(CONFIG_SMC) 5849 if (static_branch_unlikely(&tcp_have_smc)) { 5850 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5851 tp->syn_smc = 0; 5852 } 5853 #endif 5854 } 5855 5856 static void tcp_try_undo_spurious_syn(struct sock *sk) 5857 { 5858 struct tcp_sock *tp = tcp_sk(sk); 5859 u32 syn_stamp; 5860 5861 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5862 * spurious if the ACK's timestamp option echo value matches the 5863 * original SYN timestamp. 5864 */ 5865 syn_stamp = tp->retrans_stamp; 5866 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5867 syn_stamp == tp->rx_opt.rcv_tsecr) 5868 tp->undo_marker = 0; 5869 } 5870 5871 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5872 const struct tcphdr *th) 5873 { 5874 struct inet_connection_sock *icsk = inet_csk(sk); 5875 struct tcp_sock *tp = tcp_sk(sk); 5876 struct tcp_fastopen_cookie foc = { .len = -1 }; 5877 int saved_clamp = tp->rx_opt.mss_clamp; 5878 bool fastopen_fail; 5879 5880 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5881 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5882 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5883 5884 if (th->ack) { 5885 /* rfc793: 5886 * "If the state is SYN-SENT then 5887 * first check the ACK bit 5888 * If the ACK bit is set 5889 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5890 * a reset (unless the RST bit is set, if so drop 5891 * the segment and return)" 5892 */ 5893 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5894 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5895 goto reset_and_undo; 5896 5897 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5898 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5899 tcp_time_stamp(tp))) { 5900 NET_INC_STATS(sock_net(sk), 5901 LINUX_MIB_PAWSACTIVEREJECTED); 5902 goto reset_and_undo; 5903 } 5904 5905 /* Now ACK is acceptable. 5906 * 5907 * "If the RST bit is set 5908 * If the ACK was acceptable then signal the user "error: 5909 * connection reset", drop the segment, enter CLOSED state, 5910 * delete TCB, and return." 5911 */ 5912 5913 if (th->rst) { 5914 tcp_reset(sk); 5915 goto discard; 5916 } 5917 5918 /* rfc793: 5919 * "fifth, if neither of the SYN or RST bits is set then 5920 * drop the segment and return." 5921 * 5922 * See note below! 5923 * --ANK(990513) 5924 */ 5925 if (!th->syn) 5926 goto discard_and_undo; 5927 5928 /* rfc793: 5929 * "If the SYN bit is on ... 5930 * are acceptable then ... 5931 * (our SYN has been ACKed), change the connection 5932 * state to ESTABLISHED..." 5933 */ 5934 5935 tcp_ecn_rcv_synack(tp, th); 5936 5937 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5938 tcp_try_undo_spurious_syn(sk); 5939 tcp_ack(sk, skb, FLAG_SLOWPATH); 5940 5941 /* Ok.. it's good. Set up sequence numbers and 5942 * move to established. 5943 */ 5944 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 5945 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5946 5947 /* RFC1323: The window in SYN & SYN/ACK segments is 5948 * never scaled. 5949 */ 5950 tp->snd_wnd = ntohs(th->window); 5951 5952 if (!tp->rx_opt.wscale_ok) { 5953 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5954 tp->window_clamp = min(tp->window_clamp, 65535U); 5955 } 5956 5957 if (tp->rx_opt.saw_tstamp) { 5958 tp->rx_opt.tstamp_ok = 1; 5959 tp->tcp_header_len = 5960 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5961 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5962 tcp_store_ts_recent(tp); 5963 } else { 5964 tp->tcp_header_len = sizeof(struct tcphdr); 5965 } 5966 5967 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5968 tcp_initialize_rcv_mss(sk); 5969 5970 /* Remember, tcp_poll() does not lock socket! 5971 * Change state from SYN-SENT only after copied_seq 5972 * is initialized. */ 5973 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 5974 5975 smc_check_reset_syn(tp); 5976 5977 smp_mb(); 5978 5979 tcp_finish_connect(sk, skb); 5980 5981 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5982 tcp_rcv_fastopen_synack(sk, skb, &foc); 5983 5984 if (!sock_flag(sk, SOCK_DEAD)) { 5985 sk->sk_state_change(sk); 5986 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5987 } 5988 if (fastopen_fail) 5989 return -1; 5990 if (sk->sk_write_pending || 5991 icsk->icsk_accept_queue.rskq_defer_accept || 5992 inet_csk_in_pingpong_mode(sk)) { 5993 /* Save one ACK. Data will be ready after 5994 * several ticks, if write_pending is set. 5995 * 5996 * It may be deleted, but with this feature tcpdumps 5997 * look so _wonderfully_ clever, that I was not able 5998 * to stand against the temptation 8) --ANK 5999 */ 6000 inet_csk_schedule_ack(sk); 6001 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6003 TCP_DELACK_MAX, TCP_RTO_MAX); 6004 6005 discard: 6006 tcp_drop(sk, skb); 6007 return 0; 6008 } else { 6009 tcp_send_ack(sk); 6010 } 6011 return -1; 6012 } 6013 6014 /* No ACK in the segment */ 6015 6016 if (th->rst) { 6017 /* rfc793: 6018 * "If the RST bit is set 6019 * 6020 * Otherwise (no ACK) drop the segment and return." 6021 */ 6022 6023 goto discard_and_undo; 6024 } 6025 6026 /* PAWS check. */ 6027 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6028 tcp_paws_reject(&tp->rx_opt, 0)) 6029 goto discard_and_undo; 6030 6031 if (th->syn) { 6032 /* We see SYN without ACK. It is attempt of 6033 * simultaneous connect with crossed SYNs. 6034 * Particularly, it can be connect to self. 6035 */ 6036 tcp_set_state(sk, TCP_SYN_RECV); 6037 6038 if (tp->rx_opt.saw_tstamp) { 6039 tp->rx_opt.tstamp_ok = 1; 6040 tcp_store_ts_recent(tp); 6041 tp->tcp_header_len = 6042 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6043 } else { 6044 tp->tcp_header_len = sizeof(struct tcphdr); 6045 } 6046 6047 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6048 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6049 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6050 6051 /* RFC1323: The window in SYN & SYN/ACK segments is 6052 * never scaled. 6053 */ 6054 tp->snd_wnd = ntohs(th->window); 6055 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6056 tp->max_window = tp->snd_wnd; 6057 6058 tcp_ecn_rcv_syn(tp, th); 6059 6060 tcp_mtup_init(sk); 6061 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6062 tcp_initialize_rcv_mss(sk); 6063 6064 tcp_send_synack(sk); 6065 #if 0 6066 /* Note, we could accept data and URG from this segment. 6067 * There are no obstacles to make this (except that we must 6068 * either change tcp_recvmsg() to prevent it from returning data 6069 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6070 * 6071 * However, if we ignore data in ACKless segments sometimes, 6072 * we have no reasons to accept it sometimes. 6073 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6074 * is not flawless. So, discard packet for sanity. 6075 * Uncomment this return to process the data. 6076 */ 6077 return -1; 6078 #else 6079 goto discard; 6080 #endif 6081 } 6082 /* "fifth, if neither of the SYN or RST bits is set then 6083 * drop the segment and return." 6084 */ 6085 6086 discard_and_undo: 6087 tcp_clear_options(&tp->rx_opt); 6088 tp->rx_opt.mss_clamp = saved_clamp; 6089 goto discard; 6090 6091 reset_and_undo: 6092 tcp_clear_options(&tp->rx_opt); 6093 tp->rx_opt.mss_clamp = saved_clamp; 6094 return 1; 6095 } 6096 6097 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6098 { 6099 struct request_sock *req; 6100 6101 tcp_try_undo_loss(sk, false); 6102 6103 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6104 tcp_sk(sk)->retrans_stamp = 0; 6105 inet_csk(sk)->icsk_retransmits = 0; 6106 6107 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6108 * we no longer need req so release it. 6109 */ 6110 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6111 lockdep_sock_is_held(sk)); 6112 reqsk_fastopen_remove(sk, req, false); 6113 6114 /* Re-arm the timer because data may have been sent out. 6115 * This is similar to the regular data transmission case 6116 * when new data has just been ack'ed. 6117 * 6118 * (TFO) - we could try to be more aggressive and 6119 * retransmitting any data sooner based on when they 6120 * are sent out. 6121 */ 6122 tcp_rearm_rto(sk); 6123 } 6124 6125 /* 6126 * This function implements the receiving procedure of RFC 793 for 6127 * all states except ESTABLISHED and TIME_WAIT. 6128 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6129 * address independent. 6130 */ 6131 6132 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6133 { 6134 struct tcp_sock *tp = tcp_sk(sk); 6135 struct inet_connection_sock *icsk = inet_csk(sk); 6136 const struct tcphdr *th = tcp_hdr(skb); 6137 struct request_sock *req; 6138 int queued = 0; 6139 bool acceptable; 6140 6141 switch (sk->sk_state) { 6142 case TCP_CLOSE: 6143 goto discard; 6144 6145 case TCP_LISTEN: 6146 if (th->ack) 6147 return 1; 6148 6149 if (th->rst) 6150 goto discard; 6151 6152 if (th->syn) { 6153 if (th->fin) 6154 goto discard; 6155 /* It is possible that we process SYN packets from backlog, 6156 * so we need to make sure to disable BH and RCU right there. 6157 */ 6158 rcu_read_lock(); 6159 local_bh_disable(); 6160 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6161 local_bh_enable(); 6162 rcu_read_unlock(); 6163 6164 if (!acceptable) 6165 return 1; 6166 consume_skb(skb); 6167 return 0; 6168 } 6169 goto discard; 6170 6171 case TCP_SYN_SENT: 6172 tp->rx_opt.saw_tstamp = 0; 6173 tcp_mstamp_refresh(tp); 6174 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6175 if (queued >= 0) 6176 return queued; 6177 6178 /* Do step6 onward by hand. */ 6179 tcp_urg(sk, skb, th); 6180 __kfree_skb(skb); 6181 tcp_data_snd_check(sk); 6182 return 0; 6183 } 6184 6185 tcp_mstamp_refresh(tp); 6186 tp->rx_opt.saw_tstamp = 0; 6187 req = rcu_dereference_protected(tp->fastopen_rsk, 6188 lockdep_sock_is_held(sk)); 6189 if (req) { 6190 bool req_stolen; 6191 6192 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6193 sk->sk_state != TCP_FIN_WAIT1); 6194 6195 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6196 goto discard; 6197 } 6198 6199 if (!th->ack && !th->rst && !th->syn) 6200 goto discard; 6201 6202 if (!tcp_validate_incoming(sk, skb, th, 0)) 6203 return 0; 6204 6205 /* step 5: check the ACK field */ 6206 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6207 FLAG_UPDATE_TS_RECENT | 6208 FLAG_NO_CHALLENGE_ACK) > 0; 6209 6210 if (!acceptable) { 6211 if (sk->sk_state == TCP_SYN_RECV) 6212 return 1; /* send one RST */ 6213 tcp_send_challenge_ack(sk, skb); 6214 goto discard; 6215 } 6216 switch (sk->sk_state) { 6217 case TCP_SYN_RECV: 6218 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6219 if (!tp->srtt_us) 6220 tcp_synack_rtt_meas(sk, req); 6221 6222 if (req) { 6223 tcp_rcv_synrecv_state_fastopen(sk); 6224 } else { 6225 tcp_try_undo_spurious_syn(sk); 6226 tp->retrans_stamp = 0; 6227 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6228 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6229 } 6230 smp_mb(); 6231 tcp_set_state(sk, TCP_ESTABLISHED); 6232 sk->sk_state_change(sk); 6233 6234 /* Note, that this wakeup is only for marginal crossed SYN case. 6235 * Passively open sockets are not waked up, because 6236 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6237 */ 6238 if (sk->sk_socket) 6239 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6240 6241 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6242 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6243 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6244 6245 if (tp->rx_opt.tstamp_ok) 6246 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6247 6248 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6249 tcp_update_pacing_rate(sk); 6250 6251 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6252 tp->lsndtime = tcp_jiffies32; 6253 6254 tcp_initialize_rcv_mss(sk); 6255 tcp_fast_path_on(tp); 6256 break; 6257 6258 case TCP_FIN_WAIT1: { 6259 int tmo; 6260 6261 if (req) 6262 tcp_rcv_synrecv_state_fastopen(sk); 6263 6264 if (tp->snd_una != tp->write_seq) 6265 break; 6266 6267 tcp_set_state(sk, TCP_FIN_WAIT2); 6268 sk->sk_shutdown |= SEND_SHUTDOWN; 6269 6270 sk_dst_confirm(sk); 6271 6272 if (!sock_flag(sk, SOCK_DEAD)) { 6273 /* Wake up lingering close() */ 6274 sk->sk_state_change(sk); 6275 break; 6276 } 6277 6278 if (tp->linger2 < 0) { 6279 tcp_done(sk); 6280 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6281 return 1; 6282 } 6283 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6284 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6285 /* Receive out of order FIN after close() */ 6286 if (tp->syn_fastopen && th->fin) 6287 tcp_fastopen_active_disable(sk); 6288 tcp_done(sk); 6289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6290 return 1; 6291 } 6292 6293 tmo = tcp_fin_time(sk); 6294 if (tmo > TCP_TIMEWAIT_LEN) { 6295 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6296 } else if (th->fin || sock_owned_by_user(sk)) { 6297 /* Bad case. We could lose such FIN otherwise. 6298 * It is not a big problem, but it looks confusing 6299 * and not so rare event. We still can lose it now, 6300 * if it spins in bh_lock_sock(), but it is really 6301 * marginal case. 6302 */ 6303 inet_csk_reset_keepalive_timer(sk, tmo); 6304 } else { 6305 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6306 goto discard; 6307 } 6308 break; 6309 } 6310 6311 case TCP_CLOSING: 6312 if (tp->snd_una == tp->write_seq) { 6313 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6314 goto discard; 6315 } 6316 break; 6317 6318 case TCP_LAST_ACK: 6319 if (tp->snd_una == tp->write_seq) { 6320 tcp_update_metrics(sk); 6321 tcp_done(sk); 6322 goto discard; 6323 } 6324 break; 6325 } 6326 6327 /* step 6: check the URG bit */ 6328 tcp_urg(sk, skb, th); 6329 6330 /* step 7: process the segment text */ 6331 switch (sk->sk_state) { 6332 case TCP_CLOSE_WAIT: 6333 case TCP_CLOSING: 6334 case TCP_LAST_ACK: 6335 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6336 break; 6337 /* fall through */ 6338 case TCP_FIN_WAIT1: 6339 case TCP_FIN_WAIT2: 6340 /* RFC 793 says to queue data in these states, 6341 * RFC 1122 says we MUST send a reset. 6342 * BSD 4.4 also does reset. 6343 */ 6344 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6345 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6346 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6347 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6348 tcp_reset(sk); 6349 return 1; 6350 } 6351 } 6352 /* Fall through */ 6353 case TCP_ESTABLISHED: 6354 tcp_data_queue(sk, skb); 6355 queued = 1; 6356 break; 6357 } 6358 6359 /* tcp_data could move socket to TIME-WAIT */ 6360 if (sk->sk_state != TCP_CLOSE) { 6361 tcp_data_snd_check(sk); 6362 tcp_ack_snd_check(sk); 6363 } 6364 6365 if (!queued) { 6366 discard: 6367 tcp_drop(sk, skb); 6368 } 6369 return 0; 6370 } 6371 EXPORT_SYMBOL(tcp_rcv_state_process); 6372 6373 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6374 { 6375 struct inet_request_sock *ireq = inet_rsk(req); 6376 6377 if (family == AF_INET) 6378 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6379 &ireq->ir_rmt_addr, port); 6380 #if IS_ENABLED(CONFIG_IPV6) 6381 else if (family == AF_INET6) 6382 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6383 &ireq->ir_v6_rmt_addr, port); 6384 #endif 6385 } 6386 6387 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6388 * 6389 * If we receive a SYN packet with these bits set, it means a 6390 * network is playing bad games with TOS bits. In order to 6391 * avoid possible false congestion notifications, we disable 6392 * TCP ECN negotiation. 6393 * 6394 * Exception: tcp_ca wants ECN. This is required for DCTCP 6395 * congestion control: Linux DCTCP asserts ECT on all packets, 6396 * including SYN, which is most optimal solution; however, 6397 * others, such as FreeBSD do not. 6398 * 6399 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6400 * set, indicating the use of a future TCP extension (such as AccECN). See 6401 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6402 * extensions. 6403 */ 6404 static void tcp_ecn_create_request(struct request_sock *req, 6405 const struct sk_buff *skb, 6406 const struct sock *listen_sk, 6407 const struct dst_entry *dst) 6408 { 6409 const struct tcphdr *th = tcp_hdr(skb); 6410 const struct net *net = sock_net(listen_sk); 6411 bool th_ecn = th->ece && th->cwr; 6412 bool ect, ecn_ok; 6413 u32 ecn_ok_dst; 6414 6415 if (!th_ecn) 6416 return; 6417 6418 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6419 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6420 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6421 6422 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6423 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6424 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6425 inet_rsk(req)->ecn_ok = 1; 6426 } 6427 6428 static void tcp_openreq_init(struct request_sock *req, 6429 const struct tcp_options_received *rx_opt, 6430 struct sk_buff *skb, const struct sock *sk) 6431 { 6432 struct inet_request_sock *ireq = inet_rsk(req); 6433 6434 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6435 req->cookie_ts = 0; 6436 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6437 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6438 tcp_rsk(req)->snt_synack = 0; 6439 tcp_rsk(req)->last_oow_ack_time = 0; 6440 req->mss = rx_opt->mss_clamp; 6441 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6442 ireq->tstamp_ok = rx_opt->tstamp_ok; 6443 ireq->sack_ok = rx_opt->sack_ok; 6444 ireq->snd_wscale = rx_opt->snd_wscale; 6445 ireq->wscale_ok = rx_opt->wscale_ok; 6446 ireq->acked = 0; 6447 ireq->ecn_ok = 0; 6448 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6449 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6450 ireq->ir_mark = inet_request_mark(sk, skb); 6451 #if IS_ENABLED(CONFIG_SMC) 6452 ireq->smc_ok = rx_opt->smc_ok; 6453 #endif 6454 } 6455 6456 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6457 struct sock *sk_listener, 6458 bool attach_listener) 6459 { 6460 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6461 attach_listener); 6462 6463 if (req) { 6464 struct inet_request_sock *ireq = inet_rsk(req); 6465 6466 ireq->ireq_opt = NULL; 6467 #if IS_ENABLED(CONFIG_IPV6) 6468 ireq->pktopts = NULL; 6469 #endif 6470 atomic64_set(&ireq->ir_cookie, 0); 6471 ireq->ireq_state = TCP_NEW_SYN_RECV; 6472 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6473 ireq->ireq_family = sk_listener->sk_family; 6474 } 6475 6476 return req; 6477 } 6478 EXPORT_SYMBOL(inet_reqsk_alloc); 6479 6480 /* 6481 * Return true if a syncookie should be sent 6482 */ 6483 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6484 { 6485 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6486 const char *msg = "Dropping request"; 6487 bool want_cookie = false; 6488 struct net *net = sock_net(sk); 6489 6490 #ifdef CONFIG_SYN_COOKIES 6491 if (net->ipv4.sysctl_tcp_syncookies) { 6492 msg = "Sending cookies"; 6493 want_cookie = true; 6494 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6495 } else 6496 #endif 6497 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6498 6499 if (!queue->synflood_warned && 6500 net->ipv4.sysctl_tcp_syncookies != 2 && 6501 xchg(&queue->synflood_warned, 1) == 0) 6502 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6503 proto, sk->sk_num, msg); 6504 6505 return want_cookie; 6506 } 6507 6508 static void tcp_reqsk_record_syn(const struct sock *sk, 6509 struct request_sock *req, 6510 const struct sk_buff *skb) 6511 { 6512 if (tcp_sk(sk)->save_syn) { 6513 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6514 u32 *copy; 6515 6516 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6517 if (copy) { 6518 copy[0] = len; 6519 memcpy(©[1], skb_network_header(skb), len); 6520 req->saved_syn = copy; 6521 } 6522 } 6523 } 6524 6525 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6526 * used for SYN cookie generation. 6527 */ 6528 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6529 const struct tcp_request_sock_ops *af_ops, 6530 struct sock *sk, struct tcphdr *th) 6531 { 6532 struct tcp_sock *tp = tcp_sk(sk); 6533 u16 mss; 6534 6535 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6536 !inet_csk_reqsk_queue_is_full(sk)) 6537 return 0; 6538 6539 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6540 return 0; 6541 6542 if (sk_acceptq_is_full(sk)) { 6543 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6544 return 0; 6545 } 6546 6547 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6548 if (!mss) 6549 mss = af_ops->mss_clamp; 6550 6551 return mss; 6552 } 6553 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6554 6555 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6556 const struct tcp_request_sock_ops *af_ops, 6557 struct sock *sk, struct sk_buff *skb) 6558 { 6559 struct tcp_fastopen_cookie foc = { .len = -1 }; 6560 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6561 struct tcp_options_received tmp_opt; 6562 struct tcp_sock *tp = tcp_sk(sk); 6563 struct net *net = sock_net(sk); 6564 struct sock *fastopen_sk = NULL; 6565 struct request_sock *req; 6566 bool want_cookie = false; 6567 struct dst_entry *dst; 6568 struct flowi fl; 6569 6570 /* TW buckets are converted to open requests without 6571 * limitations, they conserve resources and peer is 6572 * evidently real one. 6573 */ 6574 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6575 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6576 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6577 if (!want_cookie) 6578 goto drop; 6579 } 6580 6581 if (sk_acceptq_is_full(sk)) { 6582 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6583 goto drop; 6584 } 6585 6586 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6587 if (!req) 6588 goto drop; 6589 6590 tcp_rsk(req)->af_specific = af_ops; 6591 tcp_rsk(req)->ts_off = 0; 6592 6593 tcp_clear_options(&tmp_opt); 6594 tmp_opt.mss_clamp = af_ops->mss_clamp; 6595 tmp_opt.user_mss = tp->rx_opt.user_mss; 6596 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6597 want_cookie ? NULL : &foc); 6598 6599 if (want_cookie && !tmp_opt.saw_tstamp) 6600 tcp_clear_options(&tmp_opt); 6601 6602 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6603 tmp_opt.smc_ok = 0; 6604 6605 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6606 tcp_openreq_init(req, &tmp_opt, skb, sk); 6607 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6608 6609 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6610 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6611 6612 af_ops->init_req(req, sk, skb); 6613 6614 if (security_inet_conn_request(sk, skb, req)) 6615 goto drop_and_free; 6616 6617 if (tmp_opt.tstamp_ok) 6618 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6619 6620 dst = af_ops->route_req(sk, &fl, req); 6621 if (!dst) 6622 goto drop_and_free; 6623 6624 if (!want_cookie && !isn) { 6625 /* Kill the following clause, if you dislike this way. */ 6626 if (!net->ipv4.sysctl_tcp_syncookies && 6627 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6628 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6629 !tcp_peer_is_proven(req, dst)) { 6630 /* Without syncookies last quarter of 6631 * backlog is filled with destinations, 6632 * proven to be alive. 6633 * It means that we continue to communicate 6634 * to destinations, already remembered 6635 * to the moment of synflood. 6636 */ 6637 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6638 rsk_ops->family); 6639 goto drop_and_release; 6640 } 6641 6642 isn = af_ops->init_seq(skb); 6643 } 6644 6645 tcp_ecn_create_request(req, skb, sk, dst); 6646 6647 if (want_cookie) { 6648 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6649 req->cookie_ts = tmp_opt.tstamp_ok; 6650 if (!tmp_opt.tstamp_ok) 6651 inet_rsk(req)->ecn_ok = 0; 6652 } 6653 6654 tcp_rsk(req)->snt_isn = isn; 6655 tcp_rsk(req)->txhash = net_tx_rndhash(); 6656 tcp_openreq_init_rwin(req, sk, dst); 6657 sk_rx_queue_set(req_to_sk(req), skb); 6658 if (!want_cookie) { 6659 tcp_reqsk_record_syn(sk, req, skb); 6660 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6661 } 6662 if (fastopen_sk) { 6663 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6664 &foc, TCP_SYNACK_FASTOPEN); 6665 /* Add the child socket directly into the accept queue */ 6666 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6667 reqsk_fastopen_remove(fastopen_sk, req, false); 6668 bh_unlock_sock(fastopen_sk); 6669 sock_put(fastopen_sk); 6670 goto drop_and_free; 6671 } 6672 sk->sk_data_ready(sk); 6673 bh_unlock_sock(fastopen_sk); 6674 sock_put(fastopen_sk); 6675 } else { 6676 tcp_rsk(req)->tfo_listener = false; 6677 if (!want_cookie) 6678 inet_csk_reqsk_queue_hash_add(sk, req, 6679 tcp_timeout_init((struct sock *)req)); 6680 af_ops->send_synack(sk, dst, &fl, req, &foc, 6681 !want_cookie ? TCP_SYNACK_NORMAL : 6682 TCP_SYNACK_COOKIE); 6683 if (want_cookie) { 6684 reqsk_free(req); 6685 return 0; 6686 } 6687 } 6688 reqsk_put(req); 6689 return 0; 6690 6691 drop_and_release: 6692 dst_release(dst); 6693 drop_and_free: 6694 __reqsk_free(req); 6695 drop: 6696 tcp_listendrop(sk); 6697 return 0; 6698 } 6699 EXPORT_SYMBOL(tcp_conn_request); 6700