xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 532c2919)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_deferred_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
270 }
271 
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		WRITE_ONCE(sk->sk_sndbuf,
363 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
364 }
365 
366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367  *
368  * All tcp_full_space() is split to two parts: "network" buffer, allocated
369  * forward and advertised in receiver window (tp->rcv_wnd) and
370  * "application buffer", required to isolate scheduling/application
371  * latencies from network.
372  * window_clamp is maximal advertised window. It can be less than
373  * tcp_full_space(), in this case tcp_full_space() - window_clamp
374  * is reserved for "application" buffer. The less window_clamp is
375  * the smoother our behaviour from viewpoint of network, but the lower
376  * throughput and the higher sensitivity of the connection to losses. 8)
377  *
378  * rcv_ssthresh is more strict window_clamp used at "slow start"
379  * phase to predict further behaviour of this connection.
380  * It is used for two goals:
381  * - to enforce header prediction at sender, even when application
382  *   requires some significant "application buffer". It is check #1.
383  * - to prevent pruning of receive queue because of misprediction
384  *   of receiver window. Check #2.
385  *
386  * The scheme does not work when sender sends good segments opening
387  * window and then starts to feed us spaghetti. But it should work
388  * in common situations. Otherwise, we have to rely on queue collapsing.
389  */
390 
391 /* Slow part of check#2. */
392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	/* Optimize this! */
396 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
397 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398 
399 	while (tp->rcv_ssthresh <= window) {
400 		if (truesize <= skb->len)
401 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402 
403 		truesize >>= 1;
404 		window >>= 1;
405 	}
406 	return 0;
407 }
408 
409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	int room;
413 
414 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415 
416 	/* Check #1 */
417 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
418 		int incr;
419 
420 		/* Check #2. Increase window, if skb with such overhead
421 		 * will fit to rcvbuf in future.
422 		 */
423 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
424 			incr = 2 * tp->advmss;
425 		else
426 			incr = __tcp_grow_window(sk, skb);
427 
428 		if (incr) {
429 			incr = max_t(int, incr, 2 * skb->len);
430 			tp->rcv_ssthresh += min(room, incr);
431 			inet_csk(sk)->icsk_ack.quick |= 1;
432 		}
433 	}
434 }
435 
436 /* 3. Try to fixup all. It is made immediately after connection enters
437  *    established state.
438  */
439 void tcp_init_buffer_space(struct sock *sk)
440 {
441 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	int maxwin;
444 
445 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 		tcp_sndbuf_expand(sk);
447 
448 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
449 	tcp_mstamp_refresh(tp);
450 	tp->rcvq_space.time = tp->tcp_mstamp;
451 	tp->rcvq_space.seq = tp->copied_seq;
452 
453 	maxwin = tcp_full_space(sk);
454 
455 	if (tp->window_clamp >= maxwin) {
456 		tp->window_clamp = maxwin;
457 
458 		if (tcp_app_win && maxwin > 4 * tp->advmss)
459 			tp->window_clamp = max(maxwin -
460 					       (maxwin >> tcp_app_win),
461 					       4 * tp->advmss);
462 	}
463 
464 	/* Force reservation of one segment. */
465 	if (tcp_app_win &&
466 	    tp->window_clamp > 2 * tp->advmss &&
467 	    tp->window_clamp + tp->advmss > maxwin)
468 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469 
470 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 	tp->snd_cwnd_stamp = tcp_jiffies32;
472 }
473 
474 /* 4. Recalculate window clamp after socket hit its memory bounds. */
475 static void tcp_clamp_window(struct sock *sk)
476 {
477 	struct tcp_sock *tp = tcp_sk(sk);
478 	struct inet_connection_sock *icsk = inet_csk(sk);
479 	struct net *net = sock_net(sk);
480 
481 	icsk->icsk_ack.quick = 0;
482 
483 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
484 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 	    !tcp_under_memory_pressure(sk) &&
486 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 		WRITE_ONCE(sk->sk_rcvbuf,
488 			   min(atomic_read(&sk->sk_rmem_alloc),
489 			       net->ipv4.sysctl_tcp_rmem[2]));
490 	}
491 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 }
494 
495 /* Initialize RCV_MSS value.
496  * RCV_MSS is an our guess about MSS used by the peer.
497  * We haven't any direct information about the MSS.
498  * It's better to underestimate the RCV_MSS rather than overestimate.
499  * Overestimations make us ACKing less frequently than needed.
500  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501  */
502 void tcp_initialize_rcv_mss(struct sock *sk)
503 {
504 	const struct tcp_sock *tp = tcp_sk(sk);
505 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506 
507 	hint = min(hint, tp->rcv_wnd / 2);
508 	hint = min(hint, TCP_MSS_DEFAULT);
509 	hint = max(hint, TCP_MIN_MSS);
510 
511 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
512 }
513 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514 
515 /* Receiver "autotuning" code.
516  *
517  * The algorithm for RTT estimation w/o timestamps is based on
518  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519  * <http://public.lanl.gov/radiant/pubs.html#DRS>
520  *
521  * More detail on this code can be found at
522  * <http://staff.psc.edu/jheffner/>,
523  * though this reference is out of date.  A new paper
524  * is pending.
525  */
526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527 {
528 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 	long m = sample;
530 
531 	if (new_sample != 0) {
532 		/* If we sample in larger samples in the non-timestamp
533 		 * case, we could grossly overestimate the RTT especially
534 		 * with chatty applications or bulk transfer apps which
535 		 * are stalled on filesystem I/O.
536 		 *
537 		 * Also, since we are only going for a minimum in the
538 		 * non-timestamp case, we do not smooth things out
539 		 * else with timestamps disabled convergence takes too
540 		 * long.
541 		 */
542 		if (!win_dep) {
543 			m -= (new_sample >> 3);
544 			new_sample += m;
545 		} else {
546 			m <<= 3;
547 			if (m < new_sample)
548 				new_sample = m;
549 		}
550 	} else {
551 		/* No previous measure. */
552 		new_sample = m << 3;
553 	}
554 
555 	tp->rcv_rtt_est.rtt_us = new_sample;
556 }
557 
558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559 {
560 	u32 delta_us;
561 
562 	if (tp->rcv_rtt_est.time == 0)
563 		goto new_measure;
564 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 		return;
566 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 	if (!delta_us)
568 		delta_us = 1;
569 	tcp_rcv_rtt_update(tp, delta_us, 1);
570 
571 new_measure:
572 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 }
575 
576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 					  const struct sk_buff *skb)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 
581 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 		return;
583 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584 
585 	if (TCP_SKB_CB(skb)->end_seq -
586 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
587 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
588 		u32 delta_us;
589 
590 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 			if (!delta)
592 				delta = 1;
593 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 			tcp_rcv_rtt_update(tp, delta_us, 0);
595 		}
596 	}
597 }
598 
599 /*
600  * This function should be called every time data is copied to user space.
601  * It calculates the appropriate TCP receive buffer space.
602  */
603 void tcp_rcv_space_adjust(struct sock *sk)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	u32 copied;
607 	int time;
608 
609 	trace_tcp_rcv_space_adjust(sk);
610 
611 	tcp_mstamp_refresh(tp);
612 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 		return;
615 
616 	/* Number of bytes copied to user in last RTT */
617 	copied = tp->copied_seq - tp->rcvq_space.seq;
618 	if (copied <= tp->rcvq_space.space)
619 		goto new_measure;
620 
621 	/* A bit of theory :
622 	 * copied = bytes received in previous RTT, our base window
623 	 * To cope with packet losses, we need a 2x factor
624 	 * To cope with slow start, and sender growing its cwin by 100 %
625 	 * every RTT, we need a 4x factor, because the ACK we are sending
626 	 * now is for the next RTT, not the current one :
627 	 * <prev RTT . ><current RTT .. ><next RTT .... >
628 	 */
629 
630 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 		int rcvmem, rcvbuf;
633 		u64 rcvwin, grow;
634 
635 		/* minimal window to cope with packet losses, assuming
636 		 * steady state. Add some cushion because of small variations.
637 		 */
638 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639 
640 		/* Accommodate for sender rate increase (eg. slow start) */
641 		grow = rcvwin * (copied - tp->rcvq_space.space);
642 		do_div(grow, tp->rcvq_space.space);
643 		rcvwin += (grow << 1);
644 
645 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 			rcvmem += 128;
648 
649 		do_div(rcvwin, tp->advmss);
650 		rcvbuf = min_t(u64, rcvwin * rcvmem,
651 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 		if (rcvbuf > sk->sk_rcvbuf) {
653 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
654 
655 			/* Make the window clamp follow along.  */
656 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 		}
658 	}
659 	tp->rcvq_space.space = copied;
660 
661 new_measure:
662 	tp->rcvq_space.seq = tp->copied_seq;
663 	tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665 
666 /* There is something which you must keep in mind when you analyze the
667  * behavior of the tp->ato delayed ack timeout interval.  When a
668  * connection starts up, we want to ack as quickly as possible.  The
669  * problem is that "good" TCP's do slow start at the beginning of data
670  * transmission.  The means that until we send the first few ACK's the
671  * sender will sit on his end and only queue most of his data, because
672  * he can only send snd_cwnd unacked packets at any given time.  For
673  * each ACK we send, he increments snd_cwnd and transmits more of his
674  * queue.  -DaveM
675  */
676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct inet_connection_sock *icsk = inet_csk(sk);
680 	u32 now;
681 
682 	inet_csk_schedule_ack(sk);
683 
684 	tcp_measure_rcv_mss(sk, skb);
685 
686 	tcp_rcv_rtt_measure(tp);
687 
688 	now = tcp_jiffies32;
689 
690 	if (!icsk->icsk_ack.ato) {
691 		/* The _first_ data packet received, initialize
692 		 * delayed ACK engine.
693 		 */
694 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 		icsk->icsk_ack.ato = TCP_ATO_MIN;
696 	} else {
697 		int m = now - icsk->icsk_ack.lrcvtime;
698 
699 		if (m <= TCP_ATO_MIN / 2) {
700 			/* The fastest case is the first. */
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 		} else if (m < icsk->icsk_ack.ato) {
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 				icsk->icsk_ack.ato = icsk->icsk_rto;
706 		} else if (m > icsk->icsk_rto) {
707 			/* Too long gap. Apparently sender failed to
708 			 * restart window, so that we send ACKs quickly.
709 			 */
710 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 			sk_mem_reclaim(sk);
712 		}
713 	}
714 	icsk->icsk_ack.lrcvtime = now;
715 
716 	tcp_ecn_check_ce(sk, skb);
717 
718 	if (skb->len >= 128)
719 		tcp_grow_window(sk, skb);
720 }
721 
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723  * routine either comes from timestamps, or from segments that were
724  * known _not_ to have been retransmitted [see Karn/Partridge
725  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726  * piece by Van Jacobson.
727  * NOTE: the next three routines used to be one big routine.
728  * To save cycles in the RFC 1323 implementation it was better to break
729  * it up into three procedures. -- erics
730  */
731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 	struct tcp_sock *tp = tcp_sk(sk);
734 	long m = mrtt_us; /* RTT */
735 	u32 srtt = tp->srtt_us;
736 
737 	/*	The following amusing code comes from Jacobson's
738 	 *	article in SIGCOMM '88.  Note that rtt and mdev
739 	 *	are scaled versions of rtt and mean deviation.
740 	 *	This is designed to be as fast as possible
741 	 *	m stands for "measurement".
742 	 *
743 	 *	On a 1990 paper the rto value is changed to:
744 	 *	RTO = rtt + 4 * mdev
745 	 *
746 	 * Funny. This algorithm seems to be very broken.
747 	 * These formulae increase RTO, when it should be decreased, increase
748 	 * too slowly, when it should be increased quickly, decrease too quickly
749 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 	 * does not matter how to _calculate_ it. Seems, it was trap
751 	 * that VJ failed to avoid. 8)
752 	 */
753 	if (srtt != 0) {
754 		m -= (srtt >> 3);	/* m is now error in rtt est */
755 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
756 		if (m < 0) {
757 			m = -m;		/* m is now abs(error) */
758 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
759 			/* This is similar to one of Eifel findings.
760 			 * Eifel blocks mdev updates when rtt decreases.
761 			 * This solution is a bit different: we use finer gain
762 			 * for mdev in this case (alpha*beta).
763 			 * Like Eifel it also prevents growth of rto,
764 			 * but also it limits too fast rto decreases,
765 			 * happening in pure Eifel.
766 			 */
767 			if (m > 0)
768 				m >>= 3;
769 		} else {
770 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
771 		}
772 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
773 		if (tp->mdev_us > tp->mdev_max_us) {
774 			tp->mdev_max_us = tp->mdev_us;
775 			if (tp->mdev_max_us > tp->rttvar_us)
776 				tp->rttvar_us = tp->mdev_max_us;
777 		}
778 		if (after(tp->snd_una, tp->rtt_seq)) {
779 			if (tp->mdev_max_us < tp->rttvar_us)
780 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 			tp->rtt_seq = tp->snd_nxt;
782 			tp->mdev_max_us = tcp_rto_min_us(sk);
783 
784 			tcp_bpf_rtt(sk);
785 		}
786 	} else {
787 		/* no previous measure. */
788 		srtt = m << 3;		/* take the measured time to be rtt */
789 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
790 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 		tp->mdev_max_us = tp->rttvar_us;
792 		tp->rtt_seq = tp->snd_nxt;
793 
794 		tcp_bpf_rtt(sk);
795 	}
796 	tp->srtt_us = max(1U, srtt);
797 }
798 
799 static void tcp_update_pacing_rate(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	u64 rate;
803 
804 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
805 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806 
807 	/* current rate is (cwnd * mss) / srtt
808 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 	 *
811 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 	 *	 end of slow start and should slow down.
814 	 */
815 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
816 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
817 	else
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
819 
820 	rate *= max(tp->snd_cwnd, tp->packets_out);
821 
822 	if (likely(tp->srtt_us))
823 		do_div(rate, tp->srtt_us);
824 
825 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
826 	 * without any lock. We want to make sure compiler wont store
827 	 * intermediate values in this location.
828 	 */
829 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 					     sk->sk_max_pacing_rate));
831 }
832 
833 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
834  * routine referred to above.
835  */
836 static void tcp_set_rto(struct sock *sk)
837 {
838 	const struct tcp_sock *tp = tcp_sk(sk);
839 	/* Old crap is replaced with new one. 8)
840 	 *
841 	 * More seriously:
842 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 	 *    It cannot be less due to utterly erratic ACK generation made
844 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
846 	 *    is invisible. Actually, Linux-2.4 also generates erratic
847 	 *    ACKs in some circumstances.
848 	 */
849 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
850 
851 	/* 2. Fixups made earlier cannot be right.
852 	 *    If we do not estimate RTO correctly without them,
853 	 *    all the algo is pure shit and should be replaced
854 	 *    with correct one. It is exactly, which we pretend to do.
855 	 */
856 
857 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 	 * guarantees that rto is higher.
859 	 */
860 	tcp_bound_rto(sk);
861 }
862 
863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
864 {
865 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866 
867 	if (!cwnd)
868 		cwnd = TCP_INIT_CWND;
869 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870 }
871 
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 	tp->rack.dsack_seen = 1;
877 	tp->dsack_dups++;
878 }
879 
880 /* It's reordering when higher sequence was delivered (i.e. sacked) before
881  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882  * distance is approximated in full-mss packet distance ("reordering").
883  */
884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 				      const int ts)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	const u32 mss = tp->mss_cache;
889 	u32 fack, metric;
890 
891 	fack = tcp_highest_sack_seq(tp);
892 	if (!before(low_seq, fack))
893 		return;
894 
895 	metric = fack - low_seq;
896 	if ((metric > tp->reordering * mss) && mss) {
897 #if FASTRETRANS_DEBUG > 1
898 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 			 tp->reordering,
901 			 0,
902 			 tp->sacked_out,
903 			 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
907 	}
908 
909 	/* This exciting event is worth to be remembered. 8) */
910 	tp->reord_seen++;
911 	NET_INC_STATS(sock_net(sk),
912 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
913 }
914 
915 /* This must be called before lost_out is incremented */
916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917 {
918 	if (!tp->retransmit_skb_hint ||
919 	    before(TCP_SKB_CB(skb)->seq,
920 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
921 		tp->retransmit_skb_hint = skb;
922 }
923 
924 /* Sum the number of packets on the wire we have marked as lost.
925  * There are two cases we care about here:
926  * a) Packet hasn't been marked lost (nor retransmitted),
927  *    and this is the first loss.
928  * b) Packet has been marked both lost and retransmitted,
929  *    and this means we think it was lost again.
930  */
931 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
934 
935 	if (!(sacked & TCPCB_LOST) ||
936 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
937 		tp->lost += tcp_skb_pcount(skb);
938 }
939 
940 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
941 {
942 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
943 		tcp_verify_retransmit_hint(tp, skb);
944 
945 		tp->lost_out += tcp_skb_pcount(skb);
946 		tcp_sum_lost(tp, skb);
947 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
948 	}
949 }
950 
951 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
952 {
953 	tcp_verify_retransmit_hint(tp, skb);
954 
955 	tcp_sum_lost(tp, skb);
956 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
957 		tp->lost_out += tcp_skb_pcount(skb);
958 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
959 	}
960 }
961 
962 /* This procedure tags the retransmission queue when SACKs arrive.
963  *
964  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
965  * Packets in queue with these bits set are counted in variables
966  * sacked_out, retrans_out and lost_out, correspondingly.
967  *
968  * Valid combinations are:
969  * Tag  InFlight	Description
970  * 0	1		- orig segment is in flight.
971  * S	0		- nothing flies, orig reached receiver.
972  * L	0		- nothing flies, orig lost by net.
973  * R	2		- both orig and retransmit are in flight.
974  * L|R	1		- orig is lost, retransmit is in flight.
975  * S|R  1		- orig reached receiver, retrans is still in flight.
976  * (L|S|R is logically valid, it could occur when L|R is sacked,
977  *  but it is equivalent to plain S and code short-curcuits it to S.
978  *  L|S is logically invalid, it would mean -1 packet in flight 8))
979  *
980  * These 6 states form finite state machine, controlled by the following events:
981  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
982  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
983  * 3. Loss detection event of two flavors:
984  *	A. Scoreboard estimator decided the packet is lost.
985  *	   A'. Reno "three dupacks" marks head of queue lost.
986  *	B. SACK arrives sacking SND.NXT at the moment, when the
987  *	   segment was retransmitted.
988  * 4. D-SACK added new rule: D-SACK changes any tag to S.
989  *
990  * It is pleasant to note, that state diagram turns out to be commutative,
991  * so that we are allowed not to be bothered by order of our actions,
992  * when multiple events arrive simultaneously. (see the function below).
993  *
994  * Reordering detection.
995  * --------------------
996  * Reordering metric is maximal distance, which a packet can be displaced
997  * in packet stream. With SACKs we can estimate it:
998  *
999  * 1. SACK fills old hole and the corresponding segment was not
1000  *    ever retransmitted -> reordering. Alas, we cannot use it
1001  *    when segment was retransmitted.
1002  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1003  *    for retransmitted and already SACKed segment -> reordering..
1004  * Both of these heuristics are not used in Loss state, when we cannot
1005  * account for retransmits accurately.
1006  *
1007  * SACK block validation.
1008  * ----------------------
1009  *
1010  * SACK block range validation checks that the received SACK block fits to
1011  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1012  * Note that SND.UNA is not included to the range though being valid because
1013  * it means that the receiver is rather inconsistent with itself reporting
1014  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1015  * perfectly valid, however, in light of RFC2018 which explicitly states
1016  * that "SACK block MUST reflect the newest segment.  Even if the newest
1017  * segment is going to be discarded ...", not that it looks very clever
1018  * in case of head skb. Due to potentional receiver driven attacks, we
1019  * choose to avoid immediate execution of a walk in write queue due to
1020  * reneging and defer head skb's loss recovery to standard loss recovery
1021  * procedure that will eventually trigger (nothing forbids us doing this).
1022  *
1023  * Implements also blockage to start_seq wrap-around. Problem lies in the
1024  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1025  * there's no guarantee that it will be before snd_nxt (n). The problem
1026  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027  * wrap (s_w):
1028  *
1029  *         <- outs wnd ->                          <- wrapzone ->
1030  *         u     e      n                         u_w   e_w  s n_w
1031  *         |     |      |                          |     |   |  |
1032  * |<------------+------+----- TCP seqno space --------------+---------->|
1033  * ...-- <2^31 ->|                                           |<--------...
1034  * ...---- >2^31 ------>|                                    |<--------...
1035  *
1036  * Current code wouldn't be vulnerable but it's better still to discard such
1037  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1038  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1039  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1040  * equal to the ideal case (infinite seqno space without wrap caused issues).
1041  *
1042  * With D-SACK the lower bound is extended to cover sequence space below
1043  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1044  * again, D-SACK block must not to go across snd_una (for the same reason as
1045  * for the normal SACK blocks, explained above). But there all simplicity
1046  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1047  * fully below undo_marker they do not affect behavior in anyway and can
1048  * therefore be safely ignored. In rare cases (which are more or less
1049  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1050  * fragmentation and packet reordering past skb's retransmission. To consider
1051  * them correctly, the acceptable range must be extended even more though
1052  * the exact amount is rather hard to quantify. However, tp->max_window can
1053  * be used as an exaggerated estimate.
1054  */
1055 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1056 				   u32 start_seq, u32 end_seq)
1057 {
1058 	/* Too far in future, or reversed (interpretation is ambiguous) */
1059 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1060 		return false;
1061 
1062 	/* Nasty start_seq wrap-around check (see comments above) */
1063 	if (!before(start_seq, tp->snd_nxt))
1064 		return false;
1065 
1066 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1067 	 * start_seq == snd_una is non-sensical (see comments above)
1068 	 */
1069 	if (after(start_seq, tp->snd_una))
1070 		return true;
1071 
1072 	if (!is_dsack || !tp->undo_marker)
1073 		return false;
1074 
1075 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1076 	if (after(end_seq, tp->snd_una))
1077 		return false;
1078 
1079 	if (!before(start_seq, tp->undo_marker))
1080 		return true;
1081 
1082 	/* Too old */
1083 	if (!after(end_seq, tp->undo_marker))
1084 		return false;
1085 
1086 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1087 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1088 	 */
1089 	return !before(start_seq, end_seq - tp->max_window);
1090 }
1091 
1092 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093 			    struct tcp_sack_block_wire *sp, int num_sacks,
1094 			    u32 prior_snd_una)
1095 {
1096 	struct tcp_sock *tp = tcp_sk(sk);
1097 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1099 	bool dup_sack = false;
1100 
1101 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1102 		dup_sack = true;
1103 		tcp_dsack_seen(tp);
1104 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1105 	} else if (num_sacks > 1) {
1106 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1108 
1109 		if (!after(end_seq_0, end_seq_1) &&
1110 		    !before(start_seq_0, start_seq_1)) {
1111 			dup_sack = true;
1112 			tcp_dsack_seen(tp);
1113 			NET_INC_STATS(sock_net(sk),
1114 					LINUX_MIB_TCPDSACKOFORECV);
1115 		}
1116 	}
1117 
1118 	/* D-SACK for already forgotten data... Do dumb counting. */
1119 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1120 	    !after(end_seq_0, prior_snd_una) &&
1121 	    after(end_seq_0, tp->undo_marker))
1122 		tp->undo_retrans--;
1123 
1124 	return dup_sack;
1125 }
1126 
1127 struct tcp_sacktag_state {
1128 	u32	reord;
1129 	/* Timestamps for earliest and latest never-retransmitted segment
1130 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1131 	 * but congestion control should still get an accurate delay signal.
1132 	 */
1133 	u64	first_sackt;
1134 	u64	last_sackt;
1135 	struct rate_sample *rate;
1136 	int	flag;
1137 	unsigned int mss_now;
1138 };
1139 
1140 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1141  * the incoming SACK may not exactly match but we can find smaller MSS
1142  * aligned portion of it that matches. Therefore we might need to fragment
1143  * which may fail and creates some hassle (caller must handle error case
1144  * returns).
1145  *
1146  * FIXME: this could be merged to shift decision code
1147  */
1148 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1149 				  u32 start_seq, u32 end_seq)
1150 {
1151 	int err;
1152 	bool in_sack;
1153 	unsigned int pkt_len;
1154 	unsigned int mss;
1155 
1156 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1157 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158 
1159 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1160 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1161 		mss = tcp_skb_mss(skb);
1162 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163 
1164 		if (!in_sack) {
1165 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1166 			if (pkt_len < mss)
1167 				pkt_len = mss;
1168 		} else {
1169 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1170 			if (pkt_len < mss)
1171 				return -EINVAL;
1172 		}
1173 
1174 		/* Round if necessary so that SACKs cover only full MSSes
1175 		 * and/or the remaining small portion (if present)
1176 		 */
1177 		if (pkt_len > mss) {
1178 			unsigned int new_len = (pkt_len / mss) * mss;
1179 			if (!in_sack && new_len < pkt_len)
1180 				new_len += mss;
1181 			pkt_len = new_len;
1182 		}
1183 
1184 		if (pkt_len >= skb->len && !in_sack)
1185 			return 0;
1186 
1187 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1188 				   pkt_len, mss, GFP_ATOMIC);
1189 		if (err < 0)
1190 			return err;
1191 	}
1192 
1193 	return in_sack;
1194 }
1195 
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8 tcp_sacktag_one(struct sock *sk,
1198 			  struct tcp_sacktag_state *state, u8 sacked,
1199 			  u32 start_seq, u32 end_seq,
1200 			  int dup_sack, int pcount,
1201 			  u64 xmit_time)
1202 {
1203 	struct tcp_sock *tp = tcp_sk(sk);
1204 
1205 	/* Account D-SACK for retransmitted packet. */
1206 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1207 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1208 		    after(end_seq, tp->undo_marker))
1209 			tp->undo_retrans--;
1210 		if ((sacked & TCPCB_SACKED_ACKED) &&
1211 		    before(start_seq, state->reord))
1212 				state->reord = start_seq;
1213 	}
1214 
1215 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 	if (!after(end_seq, tp->snd_una))
1217 		return sacked;
1218 
1219 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1221 
1222 		if (sacked & TCPCB_SACKED_RETRANS) {
1223 			/* If the segment is not tagged as lost,
1224 			 * we do not clear RETRANS, believing
1225 			 * that retransmission is still in flight.
1226 			 */
1227 			if (sacked & TCPCB_LOST) {
1228 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229 				tp->lost_out -= pcount;
1230 				tp->retrans_out -= pcount;
1231 			}
1232 		} else {
1233 			if (!(sacked & TCPCB_RETRANS)) {
1234 				/* New sack for not retransmitted frame,
1235 				 * which was in hole. It is reordering.
1236 				 */
1237 				if (before(start_seq,
1238 					   tcp_highest_sack_seq(tp)) &&
1239 				    before(start_seq, state->reord))
1240 					state->reord = start_seq;
1241 
1242 				if (!after(end_seq, tp->high_seq))
1243 					state->flag |= FLAG_ORIG_SACK_ACKED;
1244 				if (state->first_sackt == 0)
1245 					state->first_sackt = xmit_time;
1246 				state->last_sackt = xmit_time;
1247 			}
1248 
1249 			if (sacked & TCPCB_LOST) {
1250 				sacked &= ~TCPCB_LOST;
1251 				tp->lost_out -= pcount;
1252 			}
1253 		}
1254 
1255 		sacked |= TCPCB_SACKED_ACKED;
1256 		state->flag |= FLAG_DATA_SACKED;
1257 		tp->sacked_out += pcount;
1258 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1259 
1260 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1261 		if (tp->lost_skb_hint &&
1262 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1263 			tp->lost_cnt_hint += pcount;
1264 	}
1265 
1266 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 	 * are accounted above as well.
1269 	 */
1270 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271 		sacked &= ~TCPCB_SACKED_RETRANS;
1272 		tp->retrans_out -= pcount;
1273 	}
1274 
1275 	return sacked;
1276 }
1277 
1278 /* Shift newly-SACKed bytes from this skb to the immediately previous
1279  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280  */
1281 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1282 			    struct sk_buff *skb,
1283 			    struct tcp_sacktag_state *state,
1284 			    unsigned int pcount, int shifted, int mss,
1285 			    bool dup_sack)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1289 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1290 
1291 	BUG_ON(!pcount);
1292 
1293 	/* Adjust counters and hints for the newly sacked sequence
1294 	 * range but discard the return value since prev is already
1295 	 * marked. We must tag the range first because the seq
1296 	 * advancement below implicitly advances
1297 	 * tcp_highest_sack_seq() when skb is highest_sack.
1298 	 */
1299 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1300 			start_seq, end_seq, dup_sack, pcount,
1301 			tcp_skb_timestamp_us(skb));
1302 	tcp_rate_skb_delivered(sk, skb, state->rate);
1303 
1304 	if (skb == tp->lost_skb_hint)
1305 		tp->lost_cnt_hint += pcount;
1306 
1307 	TCP_SKB_CB(prev)->end_seq += shifted;
1308 	TCP_SKB_CB(skb)->seq += shifted;
1309 
1310 	tcp_skb_pcount_add(prev, pcount);
1311 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1312 	tcp_skb_pcount_add(skb, -pcount);
1313 
1314 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315 	 * in theory this shouldn't be necessary but as long as DSACK
1316 	 * code can come after this skb later on it's better to keep
1317 	 * setting gso_size to something.
1318 	 */
1319 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321 
1322 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 	if (tcp_skb_pcount(skb) <= 1)
1324 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325 
1326 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328 
1329 	if (skb->len > 0) {
1330 		BUG_ON(!tcp_skb_pcount(skb));
1331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 		return false;
1333 	}
1334 
1335 	/* Whole SKB was eaten :-) */
1336 
1337 	if (skb == tp->retransmit_skb_hint)
1338 		tp->retransmit_skb_hint = prev;
1339 	if (skb == tp->lost_skb_hint) {
1340 		tp->lost_skb_hint = prev;
1341 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 	}
1343 
1344 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1346 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347 		TCP_SKB_CB(prev)->end_seq++;
1348 
1349 	if (skb == tcp_highest_sack(sk))
1350 		tcp_advance_highest_sack(sk, skb);
1351 
1352 	tcp_skb_collapse_tstamp(prev, skb);
1353 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1354 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1355 
1356 	tcp_rtx_queue_unlink_and_free(skb, sk);
1357 
1358 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1359 
1360 	return true;
1361 }
1362 
1363 /* I wish gso_size would have a bit more sane initialization than
1364  * something-or-zero which complicates things
1365  */
1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370 
1371 /* Shifting pages past head area doesn't work */
1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376 
1377 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1378 		  int pcount, int shiftlen)
1379 {
1380 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1381 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1382 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1383 	 * even if current MSS is bigger.
1384 	 */
1385 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1386 		return 0;
1387 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1388 		return 0;
1389 	return skb_shift(to, from, shiftlen);
1390 }
1391 
1392 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1393  * skb.
1394  */
1395 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1396 					  struct tcp_sacktag_state *state,
1397 					  u32 start_seq, u32 end_seq,
1398 					  bool dup_sack)
1399 {
1400 	struct tcp_sock *tp = tcp_sk(sk);
1401 	struct sk_buff *prev;
1402 	int mss;
1403 	int pcount = 0;
1404 	int len;
1405 	int in_sack;
1406 
1407 	/* Normally R but no L won't result in plain S */
1408 	if (!dup_sack &&
1409 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410 		goto fallback;
1411 	if (!skb_can_shift(skb))
1412 		goto fallback;
1413 	/* This frame is about to be dropped (was ACKed). */
1414 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 		goto fallback;
1416 
1417 	/* Can only happen with delayed DSACK + discard craziness */
1418 	prev = skb_rb_prev(skb);
1419 	if (!prev)
1420 		goto fallback;
1421 
1422 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 		goto fallback;
1424 
1425 	if (!tcp_skb_can_collapse_to(prev))
1426 		goto fallback;
1427 
1428 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430 
1431 	if (in_sack) {
1432 		len = skb->len;
1433 		pcount = tcp_skb_pcount(skb);
1434 		mss = tcp_skb_seglen(skb);
1435 
1436 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 		 * drop this restriction as unnecessary
1438 		 */
1439 		if (mss != tcp_skb_seglen(prev))
1440 			goto fallback;
1441 	} else {
1442 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 			goto noop;
1444 		/* CHECKME: This is non-MSS split case only?, this will
1445 		 * cause skipped skbs due to advancing loop btw, original
1446 		 * has that feature too
1447 		 */
1448 		if (tcp_skb_pcount(skb) <= 1)
1449 			goto noop;
1450 
1451 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 		if (!in_sack) {
1453 			/* TODO: head merge to next could be attempted here
1454 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 			 * though it might not be worth of the additional hassle
1456 			 *
1457 			 * ...we can probably just fallback to what was done
1458 			 * previously. We could try merging non-SACKed ones
1459 			 * as well but it probably isn't going to buy off
1460 			 * because later SACKs might again split them, and
1461 			 * it would make skb timestamp tracking considerably
1462 			 * harder problem.
1463 			 */
1464 			goto fallback;
1465 		}
1466 
1467 		len = end_seq - TCP_SKB_CB(skb)->seq;
1468 		BUG_ON(len < 0);
1469 		BUG_ON(len > skb->len);
1470 
1471 		/* MSS boundaries should be honoured or else pcount will
1472 		 * severely break even though it makes things bit trickier.
1473 		 * Optimize common case to avoid most of the divides
1474 		 */
1475 		mss = tcp_skb_mss(skb);
1476 
1477 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 		 * drop this restriction as unnecessary
1479 		 */
1480 		if (mss != tcp_skb_seglen(prev))
1481 			goto fallback;
1482 
1483 		if (len == mss) {
1484 			pcount = 1;
1485 		} else if (len < mss) {
1486 			goto noop;
1487 		} else {
1488 			pcount = len / mss;
1489 			len = pcount * mss;
1490 		}
1491 	}
1492 
1493 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 		goto fallback;
1496 
1497 	if (!tcp_skb_shift(prev, skb, pcount, len))
1498 		goto fallback;
1499 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1500 		goto out;
1501 
1502 	/* Hole filled allows collapsing with the next as well, this is very
1503 	 * useful when hole on every nth skb pattern happens
1504 	 */
1505 	skb = skb_rb_next(prev);
1506 	if (!skb)
1507 		goto out;
1508 
1509 	if (!skb_can_shift(skb) ||
1510 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511 	    (mss != tcp_skb_seglen(skb)))
1512 		goto out;
1513 
1514 	len = skb->len;
1515 	pcount = tcp_skb_pcount(skb);
1516 	if (tcp_skb_shift(prev, skb, pcount, len))
1517 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1518 				len, mss, 0);
1519 
1520 out:
1521 	return prev;
1522 
1523 noop:
1524 	return skb;
1525 
1526 fallback:
1527 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1528 	return NULL;
1529 }
1530 
1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532 					struct tcp_sack_block *next_dup,
1533 					struct tcp_sacktag_state *state,
1534 					u32 start_seq, u32 end_seq,
1535 					bool dup_sack_in)
1536 {
1537 	struct tcp_sock *tp = tcp_sk(sk);
1538 	struct sk_buff *tmp;
1539 
1540 	skb_rbtree_walk_from(skb) {
1541 		int in_sack = 0;
1542 		bool dup_sack = dup_sack_in;
1543 
1544 		/* queue is in-order => we can short-circuit the walk early */
1545 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 			break;
1547 
1548 		if (next_dup  &&
1549 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 			in_sack = tcp_match_skb_to_sack(sk, skb,
1551 							next_dup->start_seq,
1552 							next_dup->end_seq);
1553 			if (in_sack > 0)
1554 				dup_sack = true;
1555 		}
1556 
1557 		/* skb reference here is a bit tricky to get right, since
1558 		 * shifting can eat and free both this skb and the next,
1559 		 * so not even _safe variant of the loop is enough.
1560 		 */
1561 		if (in_sack <= 0) {
1562 			tmp = tcp_shift_skb_data(sk, skb, state,
1563 						 start_seq, end_seq, dup_sack);
1564 			if (tmp) {
1565 				if (tmp != skb) {
1566 					skb = tmp;
1567 					continue;
1568 				}
1569 
1570 				in_sack = 0;
1571 			} else {
1572 				in_sack = tcp_match_skb_to_sack(sk, skb,
1573 								start_seq,
1574 								end_seq);
1575 			}
1576 		}
1577 
1578 		if (unlikely(in_sack < 0))
1579 			break;
1580 
1581 		if (in_sack) {
1582 			TCP_SKB_CB(skb)->sacked =
1583 				tcp_sacktag_one(sk,
1584 						state,
1585 						TCP_SKB_CB(skb)->sacked,
1586 						TCP_SKB_CB(skb)->seq,
1587 						TCP_SKB_CB(skb)->end_seq,
1588 						dup_sack,
1589 						tcp_skb_pcount(skb),
1590 						tcp_skb_timestamp_us(skb));
1591 			tcp_rate_skb_delivered(sk, skb, state->rate);
1592 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1593 				list_del_init(&skb->tcp_tsorted_anchor);
1594 
1595 			if (!before(TCP_SKB_CB(skb)->seq,
1596 				    tcp_highest_sack_seq(tp)))
1597 				tcp_advance_highest_sack(sk, skb);
1598 		}
1599 	}
1600 	return skb;
1601 }
1602 
1603 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1604 {
1605 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1606 	struct sk_buff *skb;
1607 
1608 	while (*p) {
1609 		parent = *p;
1610 		skb = rb_to_skb(parent);
1611 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1612 			p = &parent->rb_left;
1613 			continue;
1614 		}
1615 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1616 			p = &parent->rb_right;
1617 			continue;
1618 		}
1619 		return skb;
1620 	}
1621 	return NULL;
1622 }
1623 
1624 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1625 					u32 skip_to_seq)
1626 {
1627 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1628 		return skb;
1629 
1630 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1631 }
1632 
1633 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1634 						struct sock *sk,
1635 						struct tcp_sack_block *next_dup,
1636 						struct tcp_sacktag_state *state,
1637 						u32 skip_to_seq)
1638 {
1639 	if (!next_dup)
1640 		return skb;
1641 
1642 	if (before(next_dup->start_seq, skip_to_seq)) {
1643 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1644 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1645 				       next_dup->start_seq, next_dup->end_seq,
1646 				       1);
1647 	}
1648 
1649 	return skb;
1650 }
1651 
1652 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1653 {
1654 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1655 }
1656 
1657 static int
1658 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1659 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1660 {
1661 	struct tcp_sock *tp = tcp_sk(sk);
1662 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1663 				    TCP_SKB_CB(ack_skb)->sacked);
1664 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1665 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1666 	struct tcp_sack_block *cache;
1667 	struct sk_buff *skb;
1668 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1669 	int used_sacks;
1670 	bool found_dup_sack = false;
1671 	int i, j;
1672 	int first_sack_index;
1673 
1674 	state->flag = 0;
1675 	state->reord = tp->snd_nxt;
1676 
1677 	if (!tp->sacked_out)
1678 		tcp_highest_sack_reset(sk);
1679 
1680 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1681 					 num_sacks, prior_snd_una);
1682 	if (found_dup_sack) {
1683 		state->flag |= FLAG_DSACKING_ACK;
1684 		tp->delivered++; /* A spurious retransmission is delivered */
1685 	}
1686 
1687 	/* Eliminate too old ACKs, but take into
1688 	 * account more or less fresh ones, they can
1689 	 * contain valid SACK info.
1690 	 */
1691 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1692 		return 0;
1693 
1694 	if (!tp->packets_out)
1695 		goto out;
1696 
1697 	used_sacks = 0;
1698 	first_sack_index = 0;
1699 	for (i = 0; i < num_sacks; i++) {
1700 		bool dup_sack = !i && found_dup_sack;
1701 
1702 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1703 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1704 
1705 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1706 					    sp[used_sacks].start_seq,
1707 					    sp[used_sacks].end_seq)) {
1708 			int mib_idx;
1709 
1710 			if (dup_sack) {
1711 				if (!tp->undo_marker)
1712 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1713 				else
1714 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1715 			} else {
1716 				/* Don't count olds caused by ACK reordering */
1717 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1718 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1719 					continue;
1720 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1721 			}
1722 
1723 			NET_INC_STATS(sock_net(sk), mib_idx);
1724 			if (i == 0)
1725 				first_sack_index = -1;
1726 			continue;
1727 		}
1728 
1729 		/* Ignore very old stuff early */
1730 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1731 			if (i == 0)
1732 				first_sack_index = -1;
1733 			continue;
1734 		}
1735 
1736 		used_sacks++;
1737 	}
1738 
1739 	/* order SACK blocks to allow in order walk of the retrans queue */
1740 	for (i = used_sacks - 1; i > 0; i--) {
1741 		for (j = 0; j < i; j++) {
1742 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1743 				swap(sp[j], sp[j + 1]);
1744 
1745 				/* Track where the first SACK block goes to */
1746 				if (j == first_sack_index)
1747 					first_sack_index = j + 1;
1748 			}
1749 		}
1750 	}
1751 
1752 	state->mss_now = tcp_current_mss(sk);
1753 	skb = NULL;
1754 	i = 0;
1755 
1756 	if (!tp->sacked_out) {
1757 		/* It's already past, so skip checking against it */
1758 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1759 	} else {
1760 		cache = tp->recv_sack_cache;
1761 		/* Skip empty blocks in at head of the cache */
1762 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1763 		       !cache->end_seq)
1764 			cache++;
1765 	}
1766 
1767 	while (i < used_sacks) {
1768 		u32 start_seq = sp[i].start_seq;
1769 		u32 end_seq = sp[i].end_seq;
1770 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1771 		struct tcp_sack_block *next_dup = NULL;
1772 
1773 		if (found_dup_sack && ((i + 1) == first_sack_index))
1774 			next_dup = &sp[i + 1];
1775 
1776 		/* Skip too early cached blocks */
1777 		while (tcp_sack_cache_ok(tp, cache) &&
1778 		       !before(start_seq, cache->end_seq))
1779 			cache++;
1780 
1781 		/* Can skip some work by looking recv_sack_cache? */
1782 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1783 		    after(end_seq, cache->start_seq)) {
1784 
1785 			/* Head todo? */
1786 			if (before(start_seq, cache->start_seq)) {
1787 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1788 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1789 						       state,
1790 						       start_seq,
1791 						       cache->start_seq,
1792 						       dup_sack);
1793 			}
1794 
1795 			/* Rest of the block already fully processed? */
1796 			if (!after(end_seq, cache->end_seq))
1797 				goto advance_sp;
1798 
1799 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1800 						       state,
1801 						       cache->end_seq);
1802 
1803 			/* ...tail remains todo... */
1804 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1805 				/* ...but better entrypoint exists! */
1806 				skb = tcp_highest_sack(sk);
1807 				if (!skb)
1808 					break;
1809 				cache++;
1810 				goto walk;
1811 			}
1812 
1813 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1814 			/* Check overlap against next cached too (past this one already) */
1815 			cache++;
1816 			continue;
1817 		}
1818 
1819 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1820 			skb = tcp_highest_sack(sk);
1821 			if (!skb)
1822 				break;
1823 		}
1824 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1825 
1826 walk:
1827 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1828 				       start_seq, end_seq, dup_sack);
1829 
1830 advance_sp:
1831 		i++;
1832 	}
1833 
1834 	/* Clear the head of the cache sack blocks so we can skip it next time */
1835 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1836 		tp->recv_sack_cache[i].start_seq = 0;
1837 		tp->recv_sack_cache[i].end_seq = 0;
1838 	}
1839 	for (j = 0; j < used_sacks; j++)
1840 		tp->recv_sack_cache[i++] = sp[j];
1841 
1842 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1843 		tcp_check_sack_reordering(sk, state->reord, 0);
1844 
1845 	tcp_verify_left_out(tp);
1846 out:
1847 
1848 #if FASTRETRANS_DEBUG > 0
1849 	WARN_ON((int)tp->sacked_out < 0);
1850 	WARN_ON((int)tp->lost_out < 0);
1851 	WARN_ON((int)tp->retrans_out < 0);
1852 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1853 #endif
1854 	return state->flag;
1855 }
1856 
1857 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1858  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1859  */
1860 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1861 {
1862 	u32 holes;
1863 
1864 	holes = max(tp->lost_out, 1U);
1865 	holes = min(holes, tp->packets_out);
1866 
1867 	if ((tp->sacked_out + holes) > tp->packets_out) {
1868 		tp->sacked_out = tp->packets_out - holes;
1869 		return true;
1870 	}
1871 	return false;
1872 }
1873 
1874 /* If we receive more dupacks than we expected counting segments
1875  * in assumption of absent reordering, interpret this as reordering.
1876  * The only another reason could be bug in receiver TCP.
1877  */
1878 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1879 {
1880 	struct tcp_sock *tp = tcp_sk(sk);
1881 
1882 	if (!tcp_limit_reno_sacked(tp))
1883 		return;
1884 
1885 	tp->reordering = min_t(u32, tp->packets_out + addend,
1886 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1887 	tp->reord_seen++;
1888 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1889 }
1890 
1891 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1892 
1893 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1894 {
1895 	if (num_dupack) {
1896 		struct tcp_sock *tp = tcp_sk(sk);
1897 		u32 prior_sacked = tp->sacked_out;
1898 		s32 delivered;
1899 
1900 		tp->sacked_out += num_dupack;
1901 		tcp_check_reno_reordering(sk, 0);
1902 		delivered = tp->sacked_out - prior_sacked;
1903 		if (delivered > 0)
1904 			tp->delivered += delivered;
1905 		tcp_verify_left_out(tp);
1906 	}
1907 }
1908 
1909 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1910 
1911 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1912 {
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 
1915 	if (acked > 0) {
1916 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1917 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1918 		if (acked - 1 >= tp->sacked_out)
1919 			tp->sacked_out = 0;
1920 		else
1921 			tp->sacked_out -= acked - 1;
1922 	}
1923 	tcp_check_reno_reordering(sk, acked);
1924 	tcp_verify_left_out(tp);
1925 }
1926 
1927 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1928 {
1929 	tp->sacked_out = 0;
1930 }
1931 
1932 void tcp_clear_retrans(struct tcp_sock *tp)
1933 {
1934 	tp->retrans_out = 0;
1935 	tp->lost_out = 0;
1936 	tp->undo_marker = 0;
1937 	tp->undo_retrans = -1;
1938 	tp->sacked_out = 0;
1939 }
1940 
1941 static inline void tcp_init_undo(struct tcp_sock *tp)
1942 {
1943 	tp->undo_marker = tp->snd_una;
1944 	/* Retransmission still in flight may cause DSACKs later. */
1945 	tp->undo_retrans = tp->retrans_out ? : -1;
1946 }
1947 
1948 static bool tcp_is_rack(const struct sock *sk)
1949 {
1950 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1951 }
1952 
1953 /* If we detect SACK reneging, forget all SACK information
1954  * and reset tags completely, otherwise preserve SACKs. If receiver
1955  * dropped its ofo queue, we will know this due to reneging detection.
1956  */
1957 static void tcp_timeout_mark_lost(struct sock *sk)
1958 {
1959 	struct tcp_sock *tp = tcp_sk(sk);
1960 	struct sk_buff *skb, *head;
1961 	bool is_reneg;			/* is receiver reneging on SACKs? */
1962 
1963 	head = tcp_rtx_queue_head(sk);
1964 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1965 	if (is_reneg) {
1966 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1967 		tp->sacked_out = 0;
1968 		/* Mark SACK reneging until we recover from this loss event. */
1969 		tp->is_sack_reneg = 1;
1970 	} else if (tcp_is_reno(tp)) {
1971 		tcp_reset_reno_sack(tp);
1972 	}
1973 
1974 	skb = head;
1975 	skb_rbtree_walk_from(skb) {
1976 		if (is_reneg)
1977 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1978 		else if (tcp_is_rack(sk) && skb != head &&
1979 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1980 			continue; /* Don't mark recently sent ones lost yet */
1981 		tcp_mark_skb_lost(sk, skb);
1982 	}
1983 	tcp_verify_left_out(tp);
1984 	tcp_clear_all_retrans_hints(tp);
1985 }
1986 
1987 /* Enter Loss state. */
1988 void tcp_enter_loss(struct sock *sk)
1989 {
1990 	const struct inet_connection_sock *icsk = inet_csk(sk);
1991 	struct tcp_sock *tp = tcp_sk(sk);
1992 	struct net *net = sock_net(sk);
1993 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1994 
1995 	tcp_timeout_mark_lost(sk);
1996 
1997 	/* Reduce ssthresh if it has not yet been made inside this window. */
1998 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1999 	    !after(tp->high_seq, tp->snd_una) ||
2000 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2001 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2002 		tp->prior_cwnd = tp->snd_cwnd;
2003 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2004 		tcp_ca_event(sk, CA_EVENT_LOSS);
2005 		tcp_init_undo(tp);
2006 	}
2007 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2008 	tp->snd_cwnd_cnt   = 0;
2009 	tp->snd_cwnd_stamp = tcp_jiffies32;
2010 
2011 	/* Timeout in disordered state after receiving substantial DUPACKs
2012 	 * suggests that the degree of reordering is over-estimated.
2013 	 */
2014 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2015 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2016 		tp->reordering = min_t(unsigned int, tp->reordering,
2017 				       net->ipv4.sysctl_tcp_reordering);
2018 	tcp_set_ca_state(sk, TCP_CA_Loss);
2019 	tp->high_seq = tp->snd_nxt;
2020 	tcp_ecn_queue_cwr(tp);
2021 
2022 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2023 	 * loss recovery is underway except recurring timeout(s) on
2024 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2025 	 */
2026 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2027 		   (new_recovery || icsk->icsk_retransmits) &&
2028 		   !inet_csk(sk)->icsk_mtup.probe_size;
2029 }
2030 
2031 /* If ACK arrived pointing to a remembered SACK, it means that our
2032  * remembered SACKs do not reflect real state of receiver i.e.
2033  * receiver _host_ is heavily congested (or buggy).
2034  *
2035  * To avoid big spurious retransmission bursts due to transient SACK
2036  * scoreboard oddities that look like reneging, we give the receiver a
2037  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2038  * restore sanity to the SACK scoreboard. If the apparent reneging
2039  * persists until this RTO then we'll clear the SACK scoreboard.
2040  */
2041 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2042 {
2043 	if (flag & FLAG_SACK_RENEGING) {
2044 		struct tcp_sock *tp = tcp_sk(sk);
2045 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2046 					  msecs_to_jiffies(10));
2047 
2048 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2049 					  delay, TCP_RTO_MAX);
2050 		return true;
2051 	}
2052 	return false;
2053 }
2054 
2055 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2056  * counter when SACK is enabled (without SACK, sacked_out is used for
2057  * that purpose).
2058  *
2059  * With reordering, holes may still be in flight, so RFC3517 recovery
2060  * uses pure sacked_out (total number of SACKed segments) even though
2061  * it violates the RFC that uses duplicate ACKs, often these are equal
2062  * but when e.g. out-of-window ACKs or packet duplication occurs,
2063  * they differ. Since neither occurs due to loss, TCP should really
2064  * ignore them.
2065  */
2066 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2067 {
2068 	return tp->sacked_out + 1;
2069 }
2070 
2071 /* Linux NewReno/SACK/ECN state machine.
2072  * --------------------------------------
2073  *
2074  * "Open"	Normal state, no dubious events, fast path.
2075  * "Disorder"   In all the respects it is "Open",
2076  *		but requires a bit more attention. It is entered when
2077  *		we see some SACKs or dupacks. It is split of "Open"
2078  *		mainly to move some processing from fast path to slow one.
2079  * "CWR"	CWND was reduced due to some Congestion Notification event.
2080  *		It can be ECN, ICMP source quench, local device congestion.
2081  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2082  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2083  *
2084  * tcp_fastretrans_alert() is entered:
2085  * - each incoming ACK, if state is not "Open"
2086  * - when arrived ACK is unusual, namely:
2087  *	* SACK
2088  *	* Duplicate ACK.
2089  *	* ECN ECE.
2090  *
2091  * Counting packets in flight is pretty simple.
2092  *
2093  *	in_flight = packets_out - left_out + retrans_out
2094  *
2095  *	packets_out is SND.NXT-SND.UNA counted in packets.
2096  *
2097  *	retrans_out is number of retransmitted segments.
2098  *
2099  *	left_out is number of segments left network, but not ACKed yet.
2100  *
2101  *		left_out = sacked_out + lost_out
2102  *
2103  *     sacked_out: Packets, which arrived to receiver out of order
2104  *		   and hence not ACKed. With SACKs this number is simply
2105  *		   amount of SACKed data. Even without SACKs
2106  *		   it is easy to give pretty reliable estimate of this number,
2107  *		   counting duplicate ACKs.
2108  *
2109  *       lost_out: Packets lost by network. TCP has no explicit
2110  *		   "loss notification" feedback from network (for now).
2111  *		   It means that this number can be only _guessed_.
2112  *		   Actually, it is the heuristics to predict lossage that
2113  *		   distinguishes different algorithms.
2114  *
2115  *	F.e. after RTO, when all the queue is considered as lost,
2116  *	lost_out = packets_out and in_flight = retrans_out.
2117  *
2118  *		Essentially, we have now a few algorithms detecting
2119  *		lost packets.
2120  *
2121  *		If the receiver supports SACK:
2122  *
2123  *		RFC6675/3517: It is the conventional algorithm. A packet is
2124  *		considered lost if the number of higher sequence packets
2125  *		SACKed is greater than or equal the DUPACK thoreshold
2126  *		(reordering). This is implemented in tcp_mark_head_lost and
2127  *		tcp_update_scoreboard.
2128  *
2129  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2130  *		(2017-) that checks timing instead of counting DUPACKs.
2131  *		Essentially a packet is considered lost if it's not S/ACKed
2132  *		after RTT + reordering_window, where both metrics are
2133  *		dynamically measured and adjusted. This is implemented in
2134  *		tcp_rack_mark_lost.
2135  *
2136  *		If the receiver does not support SACK:
2137  *
2138  *		NewReno (RFC6582): in Recovery we assume that one segment
2139  *		is lost (classic Reno). While we are in Recovery and
2140  *		a partial ACK arrives, we assume that one more packet
2141  *		is lost (NewReno). This heuristics are the same in NewReno
2142  *		and SACK.
2143  *
2144  * Really tricky (and requiring careful tuning) part of algorithm
2145  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2146  * The first determines the moment _when_ we should reduce CWND and,
2147  * hence, slow down forward transmission. In fact, it determines the moment
2148  * when we decide that hole is caused by loss, rather than by a reorder.
2149  *
2150  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2151  * holes, caused by lost packets.
2152  *
2153  * And the most logically complicated part of algorithm is undo
2154  * heuristics. We detect false retransmits due to both too early
2155  * fast retransmit (reordering) and underestimated RTO, analyzing
2156  * timestamps and D-SACKs. When we detect that some segments were
2157  * retransmitted by mistake and CWND reduction was wrong, we undo
2158  * window reduction and abort recovery phase. This logic is hidden
2159  * inside several functions named tcp_try_undo_<something>.
2160  */
2161 
2162 /* This function decides, when we should leave Disordered state
2163  * and enter Recovery phase, reducing congestion window.
2164  *
2165  * Main question: may we further continue forward transmission
2166  * with the same cwnd?
2167  */
2168 static bool tcp_time_to_recover(struct sock *sk, int flag)
2169 {
2170 	struct tcp_sock *tp = tcp_sk(sk);
2171 
2172 	/* Trick#1: The loss is proven. */
2173 	if (tp->lost_out)
2174 		return true;
2175 
2176 	/* Not-A-Trick#2 : Classic rule... */
2177 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2178 		return true;
2179 
2180 	return false;
2181 }
2182 
2183 /* Detect loss in event "A" above by marking head of queue up as lost.
2184  * For non-SACK(Reno) senders, the first "packets" number of segments
2185  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2186  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2187  * the maximum SACKed segments to pass before reaching this limit.
2188  */
2189 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2190 {
2191 	struct tcp_sock *tp = tcp_sk(sk);
2192 	struct sk_buff *skb;
2193 	int cnt, oldcnt, lost;
2194 	unsigned int mss;
2195 	/* Use SACK to deduce losses of new sequences sent during recovery */
2196 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2197 
2198 	WARN_ON(packets > tp->packets_out);
2199 	skb = tp->lost_skb_hint;
2200 	if (skb) {
2201 		/* Head already handled? */
2202 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2203 			return;
2204 		cnt = tp->lost_cnt_hint;
2205 	} else {
2206 		skb = tcp_rtx_queue_head(sk);
2207 		cnt = 0;
2208 	}
2209 
2210 	skb_rbtree_walk_from(skb) {
2211 		/* TODO: do this better */
2212 		/* this is not the most efficient way to do this... */
2213 		tp->lost_skb_hint = skb;
2214 		tp->lost_cnt_hint = cnt;
2215 
2216 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2217 			break;
2218 
2219 		oldcnt = cnt;
2220 		if (tcp_is_reno(tp) ||
2221 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2222 			cnt += tcp_skb_pcount(skb);
2223 
2224 		if (cnt > packets) {
2225 			if (tcp_is_sack(tp) ||
2226 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2227 			    (oldcnt >= packets))
2228 				break;
2229 
2230 			mss = tcp_skb_mss(skb);
2231 			/* If needed, chop off the prefix to mark as lost. */
2232 			lost = (packets - oldcnt) * mss;
2233 			if (lost < skb->len &&
2234 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2235 					 lost, mss, GFP_ATOMIC) < 0)
2236 				break;
2237 			cnt = packets;
2238 		}
2239 
2240 		tcp_skb_mark_lost(tp, skb);
2241 
2242 		if (mark_head)
2243 			break;
2244 	}
2245 	tcp_verify_left_out(tp);
2246 }
2247 
2248 /* Account newly detected lost packet(s) */
2249 
2250 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2251 {
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 
2254 	if (tcp_is_sack(tp)) {
2255 		int sacked_upto = tp->sacked_out - tp->reordering;
2256 		if (sacked_upto >= 0)
2257 			tcp_mark_head_lost(sk, sacked_upto, 0);
2258 		else if (fast_rexmit)
2259 			tcp_mark_head_lost(sk, 1, 1);
2260 	}
2261 }
2262 
2263 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2264 {
2265 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2266 	       before(tp->rx_opt.rcv_tsecr, when);
2267 }
2268 
2269 /* skb is spurious retransmitted if the returned timestamp echo
2270  * reply is prior to the skb transmission time
2271  */
2272 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2273 				     const struct sk_buff *skb)
2274 {
2275 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2276 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2277 }
2278 
2279 /* Nothing was retransmitted or returned timestamp is less
2280  * than timestamp of the first retransmission.
2281  */
2282 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2283 {
2284 	return tp->retrans_stamp &&
2285 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2286 }
2287 
2288 /* Undo procedures. */
2289 
2290 /* We can clear retrans_stamp when there are no retransmissions in the
2291  * window. It would seem that it is trivially available for us in
2292  * tp->retrans_out, however, that kind of assumptions doesn't consider
2293  * what will happen if errors occur when sending retransmission for the
2294  * second time. ...It could the that such segment has only
2295  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2296  * the head skb is enough except for some reneging corner cases that
2297  * are not worth the effort.
2298  *
2299  * Main reason for all this complexity is the fact that connection dying
2300  * time now depends on the validity of the retrans_stamp, in particular,
2301  * that successive retransmissions of a segment must not advance
2302  * retrans_stamp under any conditions.
2303  */
2304 static bool tcp_any_retrans_done(const struct sock *sk)
2305 {
2306 	const struct tcp_sock *tp = tcp_sk(sk);
2307 	struct sk_buff *skb;
2308 
2309 	if (tp->retrans_out)
2310 		return true;
2311 
2312 	skb = tcp_rtx_queue_head(sk);
2313 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2314 		return true;
2315 
2316 	return false;
2317 }
2318 
2319 static void DBGUNDO(struct sock *sk, const char *msg)
2320 {
2321 #if FASTRETRANS_DEBUG > 1
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 	struct inet_sock *inet = inet_sk(sk);
2324 
2325 	if (sk->sk_family == AF_INET) {
2326 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2327 			 msg,
2328 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2329 			 tp->snd_cwnd, tcp_left_out(tp),
2330 			 tp->snd_ssthresh, tp->prior_ssthresh,
2331 			 tp->packets_out);
2332 	}
2333 #if IS_ENABLED(CONFIG_IPV6)
2334 	else if (sk->sk_family == AF_INET6) {
2335 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2336 			 msg,
2337 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2338 			 tp->snd_cwnd, tcp_left_out(tp),
2339 			 tp->snd_ssthresh, tp->prior_ssthresh,
2340 			 tp->packets_out);
2341 	}
2342 #endif
2343 #endif
2344 }
2345 
2346 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2347 {
2348 	struct tcp_sock *tp = tcp_sk(sk);
2349 
2350 	if (unmark_loss) {
2351 		struct sk_buff *skb;
2352 
2353 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2354 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2355 		}
2356 		tp->lost_out = 0;
2357 		tcp_clear_all_retrans_hints(tp);
2358 	}
2359 
2360 	if (tp->prior_ssthresh) {
2361 		const struct inet_connection_sock *icsk = inet_csk(sk);
2362 
2363 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2364 
2365 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366 			tp->snd_ssthresh = tp->prior_ssthresh;
2367 			tcp_ecn_withdraw_cwr(tp);
2368 		}
2369 	}
2370 	tp->snd_cwnd_stamp = tcp_jiffies32;
2371 	tp->undo_marker = 0;
2372 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2373 }
2374 
2375 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2376 {
2377 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2378 }
2379 
2380 /* People celebrate: "We love our President!" */
2381 static bool tcp_try_undo_recovery(struct sock *sk)
2382 {
2383 	struct tcp_sock *tp = tcp_sk(sk);
2384 
2385 	if (tcp_may_undo(tp)) {
2386 		int mib_idx;
2387 
2388 		/* Happy end! We did not retransmit anything
2389 		 * or our original transmission succeeded.
2390 		 */
2391 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2392 		tcp_undo_cwnd_reduction(sk, false);
2393 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2394 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2395 		else
2396 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2397 
2398 		NET_INC_STATS(sock_net(sk), mib_idx);
2399 	} else if (tp->rack.reo_wnd_persist) {
2400 		tp->rack.reo_wnd_persist--;
2401 	}
2402 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2403 		/* Hold old state until something *above* high_seq
2404 		 * is ACKed. For Reno it is MUST to prevent false
2405 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2406 		if (!tcp_any_retrans_done(sk))
2407 			tp->retrans_stamp = 0;
2408 		return true;
2409 	}
2410 	tcp_set_ca_state(sk, TCP_CA_Open);
2411 	tp->is_sack_reneg = 0;
2412 	return false;
2413 }
2414 
2415 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2416 static bool tcp_try_undo_dsack(struct sock *sk)
2417 {
2418 	struct tcp_sock *tp = tcp_sk(sk);
2419 
2420 	if (tp->undo_marker && !tp->undo_retrans) {
2421 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2422 					       tp->rack.reo_wnd_persist + 1);
2423 		DBGUNDO(sk, "D-SACK");
2424 		tcp_undo_cwnd_reduction(sk, false);
2425 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2426 		return true;
2427 	}
2428 	return false;
2429 }
2430 
2431 /* Undo during loss recovery after partial ACK or using F-RTO. */
2432 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2433 {
2434 	struct tcp_sock *tp = tcp_sk(sk);
2435 
2436 	if (frto_undo || tcp_may_undo(tp)) {
2437 		tcp_undo_cwnd_reduction(sk, true);
2438 
2439 		DBGUNDO(sk, "partial loss");
2440 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2441 		if (frto_undo)
2442 			NET_INC_STATS(sock_net(sk),
2443 					LINUX_MIB_TCPSPURIOUSRTOS);
2444 		inet_csk(sk)->icsk_retransmits = 0;
2445 		if (frto_undo || tcp_is_sack(tp)) {
2446 			tcp_set_ca_state(sk, TCP_CA_Open);
2447 			tp->is_sack_reneg = 0;
2448 		}
2449 		return true;
2450 	}
2451 	return false;
2452 }
2453 
2454 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2455  * It computes the number of packets to send (sndcnt) based on packets newly
2456  * delivered:
2457  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2458  *	cwnd reductions across a full RTT.
2459  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2460  *      But when the retransmits are acked without further losses, PRR
2461  *      slow starts cwnd up to ssthresh to speed up the recovery.
2462  */
2463 static void tcp_init_cwnd_reduction(struct sock *sk)
2464 {
2465 	struct tcp_sock *tp = tcp_sk(sk);
2466 
2467 	tp->high_seq = tp->snd_nxt;
2468 	tp->tlp_high_seq = 0;
2469 	tp->snd_cwnd_cnt = 0;
2470 	tp->prior_cwnd = tp->snd_cwnd;
2471 	tp->prr_delivered = 0;
2472 	tp->prr_out = 0;
2473 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2474 	tcp_ecn_queue_cwr(tp);
2475 }
2476 
2477 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	int sndcnt = 0;
2481 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2482 
2483 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2484 		return;
2485 
2486 	tp->prr_delivered += newly_acked_sacked;
2487 	if (delta < 0) {
2488 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2489 			       tp->prior_cwnd - 1;
2490 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2491 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2492 		   FLAG_RETRANS_DATA_ACKED) {
2493 		sndcnt = min_t(int, delta,
2494 			       max_t(int, tp->prr_delivered - tp->prr_out,
2495 				     newly_acked_sacked) + 1);
2496 	} else {
2497 		sndcnt = min(delta, newly_acked_sacked);
2498 	}
2499 	/* Force a fast retransmit upon entering fast recovery */
2500 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2501 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2502 }
2503 
2504 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2505 {
2506 	struct tcp_sock *tp = tcp_sk(sk);
2507 
2508 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2509 		return;
2510 
2511 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2512 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2513 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2514 		tp->snd_cwnd = tp->snd_ssthresh;
2515 		tp->snd_cwnd_stamp = tcp_jiffies32;
2516 	}
2517 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2518 }
2519 
2520 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2521 void tcp_enter_cwr(struct sock *sk)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	tp->prior_ssthresh = 0;
2526 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2527 		tp->undo_marker = 0;
2528 		tcp_init_cwnd_reduction(sk);
2529 		tcp_set_ca_state(sk, TCP_CA_CWR);
2530 	}
2531 }
2532 EXPORT_SYMBOL(tcp_enter_cwr);
2533 
2534 static void tcp_try_keep_open(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 	int state = TCP_CA_Open;
2538 
2539 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2540 		state = TCP_CA_Disorder;
2541 
2542 	if (inet_csk(sk)->icsk_ca_state != state) {
2543 		tcp_set_ca_state(sk, state);
2544 		tp->high_seq = tp->snd_nxt;
2545 	}
2546 }
2547 
2548 static void tcp_try_to_open(struct sock *sk, int flag)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	tcp_verify_left_out(tp);
2553 
2554 	if (!tcp_any_retrans_done(sk))
2555 		tp->retrans_stamp = 0;
2556 
2557 	if (flag & FLAG_ECE)
2558 		tcp_enter_cwr(sk);
2559 
2560 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2561 		tcp_try_keep_open(sk);
2562 	}
2563 }
2564 
2565 static void tcp_mtup_probe_failed(struct sock *sk)
2566 {
2567 	struct inet_connection_sock *icsk = inet_csk(sk);
2568 
2569 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2570 	icsk->icsk_mtup.probe_size = 0;
2571 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2572 }
2573 
2574 static void tcp_mtup_probe_success(struct sock *sk)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 	struct inet_connection_sock *icsk = inet_csk(sk);
2578 
2579 	/* FIXME: breaks with very large cwnd */
2580 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2581 	tp->snd_cwnd = tp->snd_cwnd *
2582 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2583 		       icsk->icsk_mtup.probe_size;
2584 	tp->snd_cwnd_cnt = 0;
2585 	tp->snd_cwnd_stamp = tcp_jiffies32;
2586 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2587 
2588 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2589 	icsk->icsk_mtup.probe_size = 0;
2590 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2591 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2592 }
2593 
2594 /* Do a simple retransmit without using the backoff mechanisms in
2595  * tcp_timer. This is used for path mtu discovery.
2596  * The socket is already locked here.
2597  */
2598 void tcp_simple_retransmit(struct sock *sk)
2599 {
2600 	const struct inet_connection_sock *icsk = inet_csk(sk);
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	struct sk_buff *skb;
2603 	unsigned int mss = tcp_current_mss(sk);
2604 
2605 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2606 		if (tcp_skb_seglen(skb) > mss &&
2607 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2608 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2609 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2610 				tp->retrans_out -= tcp_skb_pcount(skb);
2611 			}
2612 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2613 		}
2614 	}
2615 
2616 	tcp_clear_retrans_hints_partial(tp);
2617 
2618 	if (!tp->lost_out)
2619 		return;
2620 
2621 	if (tcp_is_reno(tp))
2622 		tcp_limit_reno_sacked(tp);
2623 
2624 	tcp_verify_left_out(tp);
2625 
2626 	/* Don't muck with the congestion window here.
2627 	 * Reason is that we do not increase amount of _data_
2628 	 * in network, but units changed and effective
2629 	 * cwnd/ssthresh really reduced now.
2630 	 */
2631 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2632 		tp->high_seq = tp->snd_nxt;
2633 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2634 		tp->prior_ssthresh = 0;
2635 		tp->undo_marker = 0;
2636 		tcp_set_ca_state(sk, TCP_CA_Loss);
2637 	}
2638 	tcp_xmit_retransmit_queue(sk);
2639 }
2640 EXPORT_SYMBOL(tcp_simple_retransmit);
2641 
2642 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2643 {
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 	int mib_idx;
2646 
2647 	if (tcp_is_reno(tp))
2648 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2649 	else
2650 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2651 
2652 	NET_INC_STATS(sock_net(sk), mib_idx);
2653 
2654 	tp->prior_ssthresh = 0;
2655 	tcp_init_undo(tp);
2656 
2657 	if (!tcp_in_cwnd_reduction(sk)) {
2658 		if (!ece_ack)
2659 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2660 		tcp_init_cwnd_reduction(sk);
2661 	}
2662 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2663 }
2664 
2665 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2666  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2667  */
2668 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2669 			     int *rexmit)
2670 {
2671 	struct tcp_sock *tp = tcp_sk(sk);
2672 	bool recovered = !before(tp->snd_una, tp->high_seq);
2673 
2674 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2675 	    tcp_try_undo_loss(sk, false))
2676 		return;
2677 
2678 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2679 		/* Step 3.b. A timeout is spurious if not all data are
2680 		 * lost, i.e., never-retransmitted data are (s)acked.
2681 		 */
2682 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2683 		    tcp_try_undo_loss(sk, true))
2684 			return;
2685 
2686 		if (after(tp->snd_nxt, tp->high_seq)) {
2687 			if (flag & FLAG_DATA_SACKED || num_dupack)
2688 				tp->frto = 0; /* Step 3.a. loss was real */
2689 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2690 			tp->high_seq = tp->snd_nxt;
2691 			/* Step 2.b. Try send new data (but deferred until cwnd
2692 			 * is updated in tcp_ack()). Otherwise fall back to
2693 			 * the conventional recovery.
2694 			 */
2695 			if (!tcp_write_queue_empty(sk) &&
2696 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2697 				*rexmit = REXMIT_NEW;
2698 				return;
2699 			}
2700 			tp->frto = 0;
2701 		}
2702 	}
2703 
2704 	if (recovered) {
2705 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2706 		tcp_try_undo_recovery(sk);
2707 		return;
2708 	}
2709 	if (tcp_is_reno(tp)) {
2710 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2711 		 * delivered. Lower inflight to clock out (re)tranmissions.
2712 		 */
2713 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2714 			tcp_add_reno_sack(sk, num_dupack);
2715 		else if (flag & FLAG_SND_UNA_ADVANCED)
2716 			tcp_reset_reno_sack(tp);
2717 	}
2718 	*rexmit = REXMIT_LOST;
2719 }
2720 
2721 /* Undo during fast recovery after partial ACK. */
2722 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2723 {
2724 	struct tcp_sock *tp = tcp_sk(sk);
2725 
2726 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2727 		/* Plain luck! Hole if filled with delayed
2728 		 * packet, rather than with a retransmit. Check reordering.
2729 		 */
2730 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2731 
2732 		/* We are getting evidence that the reordering degree is higher
2733 		 * than we realized. If there are no retransmits out then we
2734 		 * can undo. Otherwise we clock out new packets but do not
2735 		 * mark more packets lost or retransmit more.
2736 		 */
2737 		if (tp->retrans_out)
2738 			return true;
2739 
2740 		if (!tcp_any_retrans_done(sk))
2741 			tp->retrans_stamp = 0;
2742 
2743 		DBGUNDO(sk, "partial recovery");
2744 		tcp_undo_cwnd_reduction(sk, true);
2745 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2746 		tcp_try_keep_open(sk);
2747 		return true;
2748 	}
2749 	return false;
2750 }
2751 
2752 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2753 {
2754 	struct tcp_sock *tp = tcp_sk(sk);
2755 
2756 	if (tcp_rtx_queue_empty(sk))
2757 		return;
2758 
2759 	if (unlikely(tcp_is_reno(tp))) {
2760 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2761 	} else if (tcp_is_rack(sk)) {
2762 		u32 prior_retrans = tp->retrans_out;
2763 
2764 		tcp_rack_mark_lost(sk);
2765 		if (prior_retrans > tp->retrans_out)
2766 			*ack_flag |= FLAG_LOST_RETRANS;
2767 	}
2768 }
2769 
2770 static bool tcp_force_fast_retransmit(struct sock *sk)
2771 {
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 
2774 	return after(tcp_highest_sack_seq(tp),
2775 		     tp->snd_una + tp->reordering * tp->mss_cache);
2776 }
2777 
2778 /* Process an event, which can update packets-in-flight not trivially.
2779  * Main goal of this function is to calculate new estimate for left_out,
2780  * taking into account both packets sitting in receiver's buffer and
2781  * packets lost by network.
2782  *
2783  * Besides that it updates the congestion state when packet loss or ECN
2784  * is detected. But it does not reduce the cwnd, it is done by the
2785  * congestion control later.
2786  *
2787  * It does _not_ decide what to send, it is made in function
2788  * tcp_xmit_retransmit_queue().
2789  */
2790 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2791 				  int num_dupack, int *ack_flag, int *rexmit)
2792 {
2793 	struct inet_connection_sock *icsk = inet_csk(sk);
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 	int fast_rexmit = 0, flag = *ack_flag;
2796 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2797 				      tcp_force_fast_retransmit(sk));
2798 
2799 	if (!tp->packets_out && tp->sacked_out)
2800 		tp->sacked_out = 0;
2801 
2802 	/* Now state machine starts.
2803 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2804 	if (flag & FLAG_ECE)
2805 		tp->prior_ssthresh = 0;
2806 
2807 	/* B. In all the states check for reneging SACKs. */
2808 	if (tcp_check_sack_reneging(sk, flag))
2809 		return;
2810 
2811 	/* C. Check consistency of the current state. */
2812 	tcp_verify_left_out(tp);
2813 
2814 	/* D. Check state exit conditions. State can be terminated
2815 	 *    when high_seq is ACKed. */
2816 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2817 		WARN_ON(tp->retrans_out != 0);
2818 		tp->retrans_stamp = 0;
2819 	} else if (!before(tp->snd_una, tp->high_seq)) {
2820 		switch (icsk->icsk_ca_state) {
2821 		case TCP_CA_CWR:
2822 			/* CWR is to be held something *above* high_seq
2823 			 * is ACKed for CWR bit to reach receiver. */
2824 			if (tp->snd_una != tp->high_seq) {
2825 				tcp_end_cwnd_reduction(sk);
2826 				tcp_set_ca_state(sk, TCP_CA_Open);
2827 			}
2828 			break;
2829 
2830 		case TCP_CA_Recovery:
2831 			if (tcp_is_reno(tp))
2832 				tcp_reset_reno_sack(tp);
2833 			if (tcp_try_undo_recovery(sk))
2834 				return;
2835 			tcp_end_cwnd_reduction(sk);
2836 			break;
2837 		}
2838 	}
2839 
2840 	/* E. Process state. */
2841 	switch (icsk->icsk_ca_state) {
2842 	case TCP_CA_Recovery:
2843 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2844 			if (tcp_is_reno(tp))
2845 				tcp_add_reno_sack(sk, num_dupack);
2846 		} else {
2847 			if (tcp_try_undo_partial(sk, prior_snd_una))
2848 				return;
2849 			/* Partial ACK arrived. Force fast retransmit. */
2850 			do_lost = tcp_is_reno(tp) ||
2851 				  tcp_force_fast_retransmit(sk);
2852 		}
2853 		if (tcp_try_undo_dsack(sk)) {
2854 			tcp_try_keep_open(sk);
2855 			return;
2856 		}
2857 		tcp_identify_packet_loss(sk, ack_flag);
2858 		break;
2859 	case TCP_CA_Loss:
2860 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2861 		tcp_identify_packet_loss(sk, ack_flag);
2862 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2863 		      (*ack_flag & FLAG_LOST_RETRANS)))
2864 			return;
2865 		/* Change state if cwnd is undone or retransmits are lost */
2866 		/* fall through */
2867 	default:
2868 		if (tcp_is_reno(tp)) {
2869 			if (flag & FLAG_SND_UNA_ADVANCED)
2870 				tcp_reset_reno_sack(tp);
2871 			tcp_add_reno_sack(sk, num_dupack);
2872 		}
2873 
2874 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2875 			tcp_try_undo_dsack(sk);
2876 
2877 		tcp_identify_packet_loss(sk, ack_flag);
2878 		if (!tcp_time_to_recover(sk, flag)) {
2879 			tcp_try_to_open(sk, flag);
2880 			return;
2881 		}
2882 
2883 		/* MTU probe failure: don't reduce cwnd */
2884 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2885 		    icsk->icsk_mtup.probe_size &&
2886 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2887 			tcp_mtup_probe_failed(sk);
2888 			/* Restores the reduction we did in tcp_mtup_probe() */
2889 			tp->snd_cwnd++;
2890 			tcp_simple_retransmit(sk);
2891 			return;
2892 		}
2893 
2894 		/* Otherwise enter Recovery state */
2895 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2896 		fast_rexmit = 1;
2897 	}
2898 
2899 	if (!tcp_is_rack(sk) && do_lost)
2900 		tcp_update_scoreboard(sk, fast_rexmit);
2901 	*rexmit = REXMIT_LOST;
2902 }
2903 
2904 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2905 {
2906 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2907 	struct tcp_sock *tp = tcp_sk(sk);
2908 
2909 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2910 		/* If the remote keeps returning delayed ACKs, eventually
2911 		 * the min filter would pick it up and overestimate the
2912 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2913 		 */
2914 		return;
2915 	}
2916 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2917 			   rtt_us ? : jiffies_to_usecs(1));
2918 }
2919 
2920 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2921 			       long seq_rtt_us, long sack_rtt_us,
2922 			       long ca_rtt_us, struct rate_sample *rs)
2923 {
2924 	const struct tcp_sock *tp = tcp_sk(sk);
2925 
2926 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2927 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2928 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2929 	 * is acked (RFC6298).
2930 	 */
2931 	if (seq_rtt_us < 0)
2932 		seq_rtt_us = sack_rtt_us;
2933 
2934 	/* RTTM Rule: A TSecr value received in a segment is used to
2935 	 * update the averaged RTT measurement only if the segment
2936 	 * acknowledges some new data, i.e., only if it advances the
2937 	 * left edge of the send window.
2938 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2939 	 */
2940 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2941 	    flag & FLAG_ACKED) {
2942 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2943 
2944 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2945 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2946 			ca_rtt_us = seq_rtt_us;
2947 		}
2948 	}
2949 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2950 	if (seq_rtt_us < 0)
2951 		return false;
2952 
2953 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2954 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2955 	 * values will be skipped with the seq_rtt_us < 0 check above.
2956 	 */
2957 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2958 	tcp_rtt_estimator(sk, seq_rtt_us);
2959 	tcp_set_rto(sk);
2960 
2961 	/* RFC6298: only reset backoff on valid RTT measurement. */
2962 	inet_csk(sk)->icsk_backoff = 0;
2963 	return true;
2964 }
2965 
2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2968 {
2969 	struct rate_sample rs;
2970 	long rtt_us = -1L;
2971 
2972 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2973 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2974 
2975 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2976 }
2977 
2978 
2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2980 {
2981 	const struct inet_connection_sock *icsk = inet_csk(sk);
2982 
2983 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2984 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2985 }
2986 
2987 /* Restart timer after forward progress on connection.
2988  * RFC2988 recommends to restart timer to now+rto.
2989  */
2990 void tcp_rearm_rto(struct sock *sk)
2991 {
2992 	const struct inet_connection_sock *icsk = inet_csk(sk);
2993 	struct tcp_sock *tp = tcp_sk(sk);
2994 
2995 	/* If the retrans timer is currently being used by Fast Open
2996 	 * for SYN-ACK retrans purpose, stay put.
2997 	 */
2998 	if (rcu_access_pointer(tp->fastopen_rsk))
2999 		return;
3000 
3001 	if (!tp->packets_out) {
3002 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3003 	} else {
3004 		u32 rto = inet_csk(sk)->icsk_rto;
3005 		/* Offset the time elapsed after installing regular RTO */
3006 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3007 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3008 			s64 delta_us = tcp_rto_delta_us(sk);
3009 			/* delta_us may not be positive if the socket is locked
3010 			 * when the retrans timer fires and is rescheduled.
3011 			 */
3012 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3013 		}
3014 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3015 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3016 	}
3017 }
3018 
3019 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3020 static void tcp_set_xmit_timer(struct sock *sk)
3021 {
3022 	if (!tcp_schedule_loss_probe(sk, true))
3023 		tcp_rearm_rto(sk);
3024 }
3025 
3026 /* If we get here, the whole TSO packet has not been acked. */
3027 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3028 {
3029 	struct tcp_sock *tp = tcp_sk(sk);
3030 	u32 packets_acked;
3031 
3032 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3033 
3034 	packets_acked = tcp_skb_pcount(skb);
3035 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3036 		return 0;
3037 	packets_acked -= tcp_skb_pcount(skb);
3038 
3039 	if (packets_acked) {
3040 		BUG_ON(tcp_skb_pcount(skb) == 0);
3041 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3042 	}
3043 
3044 	return packets_acked;
3045 }
3046 
3047 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3048 			   u32 prior_snd_una)
3049 {
3050 	const struct skb_shared_info *shinfo;
3051 
3052 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3053 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3054 		return;
3055 
3056 	shinfo = skb_shinfo(skb);
3057 	if (!before(shinfo->tskey, prior_snd_una) &&
3058 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3059 		tcp_skb_tsorted_save(skb) {
3060 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3061 		} tcp_skb_tsorted_restore(skb);
3062 	}
3063 }
3064 
3065 /* Remove acknowledged frames from the retransmission queue. If our packet
3066  * is before the ack sequence we can discard it as it's confirmed to have
3067  * arrived at the other end.
3068  */
3069 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3070 			       u32 prior_snd_una,
3071 			       struct tcp_sacktag_state *sack)
3072 {
3073 	const struct inet_connection_sock *icsk = inet_csk(sk);
3074 	u64 first_ackt, last_ackt;
3075 	struct tcp_sock *tp = tcp_sk(sk);
3076 	u32 prior_sacked = tp->sacked_out;
3077 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3078 	struct sk_buff *skb, *next;
3079 	bool fully_acked = true;
3080 	long sack_rtt_us = -1L;
3081 	long seq_rtt_us = -1L;
3082 	long ca_rtt_us = -1L;
3083 	u32 pkts_acked = 0;
3084 	u32 last_in_flight = 0;
3085 	bool rtt_update;
3086 	int flag = 0;
3087 
3088 	first_ackt = 0;
3089 
3090 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3091 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3092 		const u32 start_seq = scb->seq;
3093 		u8 sacked = scb->sacked;
3094 		u32 acked_pcount;
3095 
3096 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3097 
3098 		/* Determine how many packets and what bytes were acked, tso and else */
3099 		if (after(scb->end_seq, tp->snd_una)) {
3100 			if (tcp_skb_pcount(skb) == 1 ||
3101 			    !after(tp->snd_una, scb->seq))
3102 				break;
3103 
3104 			acked_pcount = tcp_tso_acked(sk, skb);
3105 			if (!acked_pcount)
3106 				break;
3107 			fully_acked = false;
3108 		} else {
3109 			acked_pcount = tcp_skb_pcount(skb);
3110 		}
3111 
3112 		if (unlikely(sacked & TCPCB_RETRANS)) {
3113 			if (sacked & TCPCB_SACKED_RETRANS)
3114 				tp->retrans_out -= acked_pcount;
3115 			flag |= FLAG_RETRANS_DATA_ACKED;
3116 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3117 			last_ackt = tcp_skb_timestamp_us(skb);
3118 			WARN_ON_ONCE(last_ackt == 0);
3119 			if (!first_ackt)
3120 				first_ackt = last_ackt;
3121 
3122 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3123 			if (before(start_seq, reord))
3124 				reord = start_seq;
3125 			if (!after(scb->end_seq, tp->high_seq))
3126 				flag |= FLAG_ORIG_SACK_ACKED;
3127 		}
3128 
3129 		if (sacked & TCPCB_SACKED_ACKED) {
3130 			tp->sacked_out -= acked_pcount;
3131 		} else if (tcp_is_sack(tp)) {
3132 			tp->delivered += acked_pcount;
3133 			if (!tcp_skb_spurious_retrans(tp, skb))
3134 				tcp_rack_advance(tp, sacked, scb->end_seq,
3135 						 tcp_skb_timestamp_us(skb));
3136 		}
3137 		if (sacked & TCPCB_LOST)
3138 			tp->lost_out -= acked_pcount;
3139 
3140 		tp->packets_out -= acked_pcount;
3141 		pkts_acked += acked_pcount;
3142 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3143 
3144 		/* Initial outgoing SYN's get put onto the write_queue
3145 		 * just like anything else we transmit.  It is not
3146 		 * true data, and if we misinform our callers that
3147 		 * this ACK acks real data, we will erroneously exit
3148 		 * connection startup slow start one packet too
3149 		 * quickly.  This is severely frowned upon behavior.
3150 		 */
3151 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3152 			flag |= FLAG_DATA_ACKED;
3153 		} else {
3154 			flag |= FLAG_SYN_ACKED;
3155 			tp->retrans_stamp = 0;
3156 		}
3157 
3158 		if (!fully_acked)
3159 			break;
3160 
3161 		next = skb_rb_next(skb);
3162 		if (unlikely(skb == tp->retransmit_skb_hint))
3163 			tp->retransmit_skb_hint = NULL;
3164 		if (unlikely(skb == tp->lost_skb_hint))
3165 			tp->lost_skb_hint = NULL;
3166 		tcp_rtx_queue_unlink_and_free(skb, sk);
3167 	}
3168 
3169 	if (!skb)
3170 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3171 
3172 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3173 		tp->snd_up = tp->snd_una;
3174 
3175 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3176 		flag |= FLAG_SACK_RENEGING;
3177 
3178 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3179 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3180 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3181 
3182 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3183 		    last_in_flight && !prior_sacked && fully_acked &&
3184 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3185 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3186 			/* Conservatively mark a delayed ACK. It's typically
3187 			 * from a lone runt packet over the round trip to
3188 			 * a receiver w/o out-of-order or CE events.
3189 			 */
3190 			flag |= FLAG_ACK_MAYBE_DELAYED;
3191 		}
3192 	}
3193 	if (sack->first_sackt) {
3194 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3195 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3196 	}
3197 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3198 					ca_rtt_us, sack->rate);
3199 
3200 	if (flag & FLAG_ACKED) {
3201 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3202 		if (unlikely(icsk->icsk_mtup.probe_size &&
3203 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3204 			tcp_mtup_probe_success(sk);
3205 		}
3206 
3207 		if (tcp_is_reno(tp)) {
3208 			tcp_remove_reno_sacks(sk, pkts_acked);
3209 
3210 			/* If any of the cumulatively ACKed segments was
3211 			 * retransmitted, non-SACK case cannot confirm that
3212 			 * progress was due to original transmission due to
3213 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3214 			 * the packets may have been never retransmitted.
3215 			 */
3216 			if (flag & FLAG_RETRANS_DATA_ACKED)
3217 				flag &= ~FLAG_ORIG_SACK_ACKED;
3218 		} else {
3219 			int delta;
3220 
3221 			/* Non-retransmitted hole got filled? That's reordering */
3222 			if (before(reord, prior_fack))
3223 				tcp_check_sack_reordering(sk, reord, 0);
3224 
3225 			delta = prior_sacked - tp->sacked_out;
3226 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3227 		}
3228 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3229 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3230 						    tcp_skb_timestamp_us(skb))) {
3231 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3232 		 * after when the head was last (re)transmitted. Otherwise the
3233 		 * timeout may continue to extend in loss recovery.
3234 		 */
3235 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3236 	}
3237 
3238 	if (icsk->icsk_ca_ops->pkts_acked) {
3239 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3240 					     .rtt_us = sack->rate->rtt_us,
3241 					     .in_flight = last_in_flight };
3242 
3243 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3244 	}
3245 
3246 #if FASTRETRANS_DEBUG > 0
3247 	WARN_ON((int)tp->sacked_out < 0);
3248 	WARN_ON((int)tp->lost_out < 0);
3249 	WARN_ON((int)tp->retrans_out < 0);
3250 	if (!tp->packets_out && tcp_is_sack(tp)) {
3251 		icsk = inet_csk(sk);
3252 		if (tp->lost_out) {
3253 			pr_debug("Leak l=%u %d\n",
3254 				 tp->lost_out, icsk->icsk_ca_state);
3255 			tp->lost_out = 0;
3256 		}
3257 		if (tp->sacked_out) {
3258 			pr_debug("Leak s=%u %d\n",
3259 				 tp->sacked_out, icsk->icsk_ca_state);
3260 			tp->sacked_out = 0;
3261 		}
3262 		if (tp->retrans_out) {
3263 			pr_debug("Leak r=%u %d\n",
3264 				 tp->retrans_out, icsk->icsk_ca_state);
3265 			tp->retrans_out = 0;
3266 		}
3267 	}
3268 #endif
3269 	return flag;
3270 }
3271 
3272 static void tcp_ack_probe(struct sock *sk)
3273 {
3274 	struct inet_connection_sock *icsk = inet_csk(sk);
3275 	struct sk_buff *head = tcp_send_head(sk);
3276 	const struct tcp_sock *tp = tcp_sk(sk);
3277 
3278 	/* Was it a usable window open? */
3279 	if (!head)
3280 		return;
3281 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3282 		icsk->icsk_backoff = 0;
3283 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3284 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3285 		 * This function is not for random using!
3286 		 */
3287 	} else {
3288 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3289 
3290 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3291 				     when, TCP_RTO_MAX, NULL);
3292 	}
3293 }
3294 
3295 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3296 {
3297 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3298 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3299 }
3300 
3301 /* Decide wheather to run the increase function of congestion control. */
3302 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3303 {
3304 	/* If reordering is high then always grow cwnd whenever data is
3305 	 * delivered regardless of its ordering. Otherwise stay conservative
3306 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3307 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3308 	 * cwnd in tcp_fastretrans_alert() based on more states.
3309 	 */
3310 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3311 		return flag & FLAG_FORWARD_PROGRESS;
3312 
3313 	return flag & FLAG_DATA_ACKED;
3314 }
3315 
3316 /* The "ultimate" congestion control function that aims to replace the rigid
3317  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3318  * It's called toward the end of processing an ACK with precise rate
3319  * information. All transmission or retransmission are delayed afterwards.
3320  */
3321 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3322 			     int flag, const struct rate_sample *rs)
3323 {
3324 	const struct inet_connection_sock *icsk = inet_csk(sk);
3325 
3326 	if (icsk->icsk_ca_ops->cong_control) {
3327 		icsk->icsk_ca_ops->cong_control(sk, rs);
3328 		return;
3329 	}
3330 
3331 	if (tcp_in_cwnd_reduction(sk)) {
3332 		/* Reduce cwnd if state mandates */
3333 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3334 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3335 		/* Advance cwnd if state allows */
3336 		tcp_cong_avoid(sk, ack, acked_sacked);
3337 	}
3338 	tcp_update_pacing_rate(sk);
3339 }
3340 
3341 /* Check that window update is acceptable.
3342  * The function assumes that snd_una<=ack<=snd_next.
3343  */
3344 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3345 					const u32 ack, const u32 ack_seq,
3346 					const u32 nwin)
3347 {
3348 	return	after(ack, tp->snd_una) ||
3349 		after(ack_seq, tp->snd_wl1) ||
3350 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3351 }
3352 
3353 /* If we update tp->snd_una, also update tp->bytes_acked */
3354 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3355 {
3356 	u32 delta = ack - tp->snd_una;
3357 
3358 	sock_owned_by_me((struct sock *)tp);
3359 	tp->bytes_acked += delta;
3360 	tp->snd_una = ack;
3361 }
3362 
3363 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3364 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3365 {
3366 	u32 delta = seq - tp->rcv_nxt;
3367 
3368 	sock_owned_by_me((struct sock *)tp);
3369 	tp->bytes_received += delta;
3370 	WRITE_ONCE(tp->rcv_nxt, seq);
3371 }
3372 
3373 /* Update our send window.
3374  *
3375  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3376  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3377  */
3378 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3379 				 u32 ack_seq)
3380 {
3381 	struct tcp_sock *tp = tcp_sk(sk);
3382 	int flag = 0;
3383 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3384 
3385 	if (likely(!tcp_hdr(skb)->syn))
3386 		nwin <<= tp->rx_opt.snd_wscale;
3387 
3388 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3389 		flag |= FLAG_WIN_UPDATE;
3390 		tcp_update_wl(tp, ack_seq);
3391 
3392 		if (tp->snd_wnd != nwin) {
3393 			tp->snd_wnd = nwin;
3394 
3395 			/* Note, it is the only place, where
3396 			 * fast path is recovered for sending TCP.
3397 			 */
3398 			tp->pred_flags = 0;
3399 			tcp_fast_path_check(sk);
3400 
3401 			if (!tcp_write_queue_empty(sk))
3402 				tcp_slow_start_after_idle_check(sk);
3403 
3404 			if (nwin > tp->max_window) {
3405 				tp->max_window = nwin;
3406 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3407 			}
3408 		}
3409 	}
3410 
3411 	tcp_snd_una_update(tp, ack);
3412 
3413 	return flag;
3414 }
3415 
3416 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3417 				   u32 *last_oow_ack_time)
3418 {
3419 	if (*last_oow_ack_time) {
3420 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3421 
3422 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3423 			NET_INC_STATS(net, mib_idx);
3424 			return true;	/* rate-limited: don't send yet! */
3425 		}
3426 	}
3427 
3428 	*last_oow_ack_time = tcp_jiffies32;
3429 
3430 	return false;	/* not rate-limited: go ahead, send dupack now! */
3431 }
3432 
3433 /* Return true if we're currently rate-limiting out-of-window ACKs and
3434  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3435  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3436  * attacks that send repeated SYNs or ACKs for the same connection. To
3437  * do this, we do not send a duplicate SYNACK or ACK if the remote
3438  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3439  */
3440 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3441 			  int mib_idx, u32 *last_oow_ack_time)
3442 {
3443 	/* Data packets without SYNs are not likely part of an ACK loop. */
3444 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3445 	    !tcp_hdr(skb)->syn)
3446 		return false;
3447 
3448 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3449 }
3450 
3451 /* RFC 5961 7 [ACK Throttling] */
3452 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3453 {
3454 	/* unprotected vars, we dont care of overwrites */
3455 	static u32 challenge_timestamp;
3456 	static unsigned int challenge_count;
3457 	struct tcp_sock *tp = tcp_sk(sk);
3458 	struct net *net = sock_net(sk);
3459 	u32 count, now;
3460 
3461 	/* First check our per-socket dupack rate limit. */
3462 	if (__tcp_oow_rate_limited(net,
3463 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3464 				   &tp->last_oow_ack_time))
3465 		return;
3466 
3467 	/* Then check host-wide RFC 5961 rate limit. */
3468 	now = jiffies / HZ;
3469 	if (now != challenge_timestamp) {
3470 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3471 		u32 half = (ack_limit + 1) >> 1;
3472 
3473 		challenge_timestamp = now;
3474 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3475 	}
3476 	count = READ_ONCE(challenge_count);
3477 	if (count > 0) {
3478 		WRITE_ONCE(challenge_count, count - 1);
3479 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3480 		tcp_send_ack(sk);
3481 	}
3482 }
3483 
3484 static void tcp_store_ts_recent(struct tcp_sock *tp)
3485 {
3486 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3487 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3488 }
3489 
3490 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3491 {
3492 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3493 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3494 		 * extra check below makes sure this can only happen
3495 		 * for pure ACK frames.  -DaveM
3496 		 *
3497 		 * Not only, also it occurs for expired timestamps.
3498 		 */
3499 
3500 		if (tcp_paws_check(&tp->rx_opt, 0))
3501 			tcp_store_ts_recent(tp);
3502 	}
3503 }
3504 
3505 /* This routine deals with acks during a TLP episode.
3506  * We mark the end of a TLP episode on receiving TLP dupack or when
3507  * ack is after tlp_high_seq.
3508  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3509  */
3510 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3511 {
3512 	struct tcp_sock *tp = tcp_sk(sk);
3513 
3514 	if (before(ack, tp->tlp_high_seq))
3515 		return;
3516 
3517 	if (flag & FLAG_DSACKING_ACK) {
3518 		/* This DSACK means original and TLP probe arrived; no loss */
3519 		tp->tlp_high_seq = 0;
3520 	} else if (after(ack, tp->tlp_high_seq)) {
3521 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3522 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3523 		 */
3524 		tcp_init_cwnd_reduction(sk);
3525 		tcp_set_ca_state(sk, TCP_CA_CWR);
3526 		tcp_end_cwnd_reduction(sk);
3527 		tcp_try_keep_open(sk);
3528 		NET_INC_STATS(sock_net(sk),
3529 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3530 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3531 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3532 		/* Pure dupack: original and TLP probe arrived; no loss */
3533 		tp->tlp_high_seq = 0;
3534 	}
3535 }
3536 
3537 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3538 {
3539 	const struct inet_connection_sock *icsk = inet_csk(sk);
3540 
3541 	if (icsk->icsk_ca_ops->in_ack_event)
3542 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3543 }
3544 
3545 /* Congestion control has updated the cwnd already. So if we're in
3546  * loss recovery then now we do any new sends (for FRTO) or
3547  * retransmits (for CA_Loss or CA_recovery) that make sense.
3548  */
3549 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3550 {
3551 	struct tcp_sock *tp = tcp_sk(sk);
3552 
3553 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3554 		return;
3555 
3556 	if (unlikely(rexmit == 2)) {
3557 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3558 					  TCP_NAGLE_OFF);
3559 		if (after(tp->snd_nxt, tp->high_seq))
3560 			return;
3561 		tp->frto = 0;
3562 	}
3563 	tcp_xmit_retransmit_queue(sk);
3564 }
3565 
3566 /* Returns the number of packets newly acked or sacked by the current ACK */
3567 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3568 {
3569 	const struct net *net = sock_net(sk);
3570 	struct tcp_sock *tp = tcp_sk(sk);
3571 	u32 delivered;
3572 
3573 	delivered = tp->delivered - prior_delivered;
3574 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3575 	if (flag & FLAG_ECE) {
3576 		tp->delivered_ce += delivered;
3577 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3578 	}
3579 	return delivered;
3580 }
3581 
3582 /* This routine deals with incoming acks, but not outgoing ones. */
3583 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3584 {
3585 	struct inet_connection_sock *icsk = inet_csk(sk);
3586 	struct tcp_sock *tp = tcp_sk(sk);
3587 	struct tcp_sacktag_state sack_state;
3588 	struct rate_sample rs = { .prior_delivered = 0 };
3589 	u32 prior_snd_una = tp->snd_una;
3590 	bool is_sack_reneg = tp->is_sack_reneg;
3591 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3592 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3593 	int num_dupack = 0;
3594 	int prior_packets = tp->packets_out;
3595 	u32 delivered = tp->delivered;
3596 	u32 lost = tp->lost;
3597 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3598 	u32 prior_fack;
3599 
3600 	sack_state.first_sackt = 0;
3601 	sack_state.rate = &rs;
3602 
3603 	/* We very likely will need to access rtx queue. */
3604 	prefetch(sk->tcp_rtx_queue.rb_node);
3605 
3606 	/* If the ack is older than previous acks
3607 	 * then we can probably ignore it.
3608 	 */
3609 	if (before(ack, prior_snd_una)) {
3610 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3611 		if (before(ack, prior_snd_una - tp->max_window)) {
3612 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3613 				tcp_send_challenge_ack(sk, skb);
3614 			return -1;
3615 		}
3616 		goto old_ack;
3617 	}
3618 
3619 	/* If the ack includes data we haven't sent yet, discard
3620 	 * this segment (RFC793 Section 3.9).
3621 	 */
3622 	if (after(ack, tp->snd_nxt))
3623 		return -1;
3624 
3625 	if (after(ack, prior_snd_una)) {
3626 		flag |= FLAG_SND_UNA_ADVANCED;
3627 		icsk->icsk_retransmits = 0;
3628 
3629 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3630 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3631 			if (icsk->icsk_clean_acked)
3632 				icsk->icsk_clean_acked(sk, ack);
3633 #endif
3634 	}
3635 
3636 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3637 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3638 
3639 	/* ts_recent update must be made after we are sure that the packet
3640 	 * is in window.
3641 	 */
3642 	if (flag & FLAG_UPDATE_TS_RECENT)
3643 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3644 
3645 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3646 	    FLAG_SND_UNA_ADVANCED) {
3647 		/* Window is constant, pure forward advance.
3648 		 * No more checks are required.
3649 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3650 		 */
3651 		tcp_update_wl(tp, ack_seq);
3652 		tcp_snd_una_update(tp, ack);
3653 		flag |= FLAG_WIN_UPDATE;
3654 
3655 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3656 
3657 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3658 	} else {
3659 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3660 
3661 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3662 			flag |= FLAG_DATA;
3663 		else
3664 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3665 
3666 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3667 
3668 		if (TCP_SKB_CB(skb)->sacked)
3669 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3670 							&sack_state);
3671 
3672 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3673 			flag |= FLAG_ECE;
3674 			ack_ev_flags |= CA_ACK_ECE;
3675 		}
3676 
3677 		if (flag & FLAG_WIN_UPDATE)
3678 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3679 
3680 		tcp_in_ack_event(sk, ack_ev_flags);
3681 	}
3682 
3683 	/* We passed data and got it acked, remove any soft error
3684 	 * log. Something worked...
3685 	 */
3686 	sk->sk_err_soft = 0;
3687 	icsk->icsk_probes_out = 0;
3688 	tp->rcv_tstamp = tcp_jiffies32;
3689 	if (!prior_packets)
3690 		goto no_queue;
3691 
3692 	/* See if we can take anything off of the retransmit queue. */
3693 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3694 
3695 	tcp_rack_update_reo_wnd(sk, &rs);
3696 
3697 	if (tp->tlp_high_seq)
3698 		tcp_process_tlp_ack(sk, ack, flag);
3699 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3700 	if (flag & FLAG_SET_XMIT_TIMER)
3701 		tcp_set_xmit_timer(sk);
3702 
3703 	if (tcp_ack_is_dubious(sk, flag)) {
3704 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3705 			num_dupack = 1;
3706 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3707 			if (!(flag & FLAG_DATA))
3708 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3709 		}
3710 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3711 				      &rexmit);
3712 	}
3713 
3714 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3715 		sk_dst_confirm(sk);
3716 
3717 	delivered = tcp_newly_delivered(sk, delivered, flag);
3718 	lost = tp->lost - lost;			/* freshly marked lost */
3719 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3720 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3721 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3722 	tcp_xmit_recovery(sk, rexmit);
3723 	return 1;
3724 
3725 no_queue:
3726 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3727 	if (flag & FLAG_DSACKING_ACK) {
3728 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3729 				      &rexmit);
3730 		tcp_newly_delivered(sk, delivered, flag);
3731 	}
3732 	/* If this ack opens up a zero window, clear backoff.  It was
3733 	 * being used to time the probes, and is probably far higher than
3734 	 * it needs to be for normal retransmission.
3735 	 */
3736 	tcp_ack_probe(sk);
3737 
3738 	if (tp->tlp_high_seq)
3739 		tcp_process_tlp_ack(sk, ack, flag);
3740 	return 1;
3741 
3742 old_ack:
3743 	/* If data was SACKed, tag it and see if we should send more data.
3744 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3745 	 */
3746 	if (TCP_SKB_CB(skb)->sacked) {
3747 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3748 						&sack_state);
3749 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3750 				      &rexmit);
3751 		tcp_newly_delivered(sk, delivered, flag);
3752 		tcp_xmit_recovery(sk, rexmit);
3753 	}
3754 
3755 	return 0;
3756 }
3757 
3758 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3759 				      bool syn, struct tcp_fastopen_cookie *foc,
3760 				      bool exp_opt)
3761 {
3762 	/* Valid only in SYN or SYN-ACK with an even length.  */
3763 	if (!foc || !syn || len < 0 || (len & 1))
3764 		return;
3765 
3766 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3767 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3768 		memcpy(foc->val, cookie, len);
3769 	else if (len != 0)
3770 		len = -1;
3771 	foc->len = len;
3772 	foc->exp = exp_opt;
3773 }
3774 
3775 static void smc_parse_options(const struct tcphdr *th,
3776 			      struct tcp_options_received *opt_rx,
3777 			      const unsigned char *ptr,
3778 			      int opsize)
3779 {
3780 #if IS_ENABLED(CONFIG_SMC)
3781 	if (static_branch_unlikely(&tcp_have_smc)) {
3782 		if (th->syn && !(opsize & 1) &&
3783 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3784 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3785 			opt_rx->smc_ok = 1;
3786 	}
3787 #endif
3788 }
3789 
3790 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3791  * value on success.
3792  */
3793 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3794 {
3795 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3796 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3797 	u16 mss = 0;
3798 
3799 	while (length > 0) {
3800 		int opcode = *ptr++;
3801 		int opsize;
3802 
3803 		switch (opcode) {
3804 		case TCPOPT_EOL:
3805 			return mss;
3806 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3807 			length--;
3808 			continue;
3809 		default:
3810 			if (length < 2)
3811 				return mss;
3812 			opsize = *ptr++;
3813 			if (opsize < 2) /* "silly options" */
3814 				return mss;
3815 			if (opsize > length)
3816 				return mss;	/* fail on partial options */
3817 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3818 				u16 in_mss = get_unaligned_be16(ptr);
3819 
3820 				if (in_mss) {
3821 					if (user_mss && user_mss < in_mss)
3822 						in_mss = user_mss;
3823 					mss = in_mss;
3824 				}
3825 			}
3826 			ptr += opsize - 2;
3827 			length -= opsize;
3828 		}
3829 	}
3830 	return mss;
3831 }
3832 
3833 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3834  * But, this can also be called on packets in the established flow when
3835  * the fast version below fails.
3836  */
3837 void tcp_parse_options(const struct net *net,
3838 		       const struct sk_buff *skb,
3839 		       struct tcp_options_received *opt_rx, int estab,
3840 		       struct tcp_fastopen_cookie *foc)
3841 {
3842 	const unsigned char *ptr;
3843 	const struct tcphdr *th = tcp_hdr(skb);
3844 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3845 
3846 	ptr = (const unsigned char *)(th + 1);
3847 	opt_rx->saw_tstamp = 0;
3848 
3849 	while (length > 0) {
3850 		int opcode = *ptr++;
3851 		int opsize;
3852 
3853 		switch (opcode) {
3854 		case TCPOPT_EOL:
3855 			return;
3856 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3857 			length--;
3858 			continue;
3859 		default:
3860 			if (length < 2)
3861 				return;
3862 			opsize = *ptr++;
3863 			if (opsize < 2) /* "silly options" */
3864 				return;
3865 			if (opsize > length)
3866 				return;	/* don't parse partial options */
3867 			switch (opcode) {
3868 			case TCPOPT_MSS:
3869 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3870 					u16 in_mss = get_unaligned_be16(ptr);
3871 					if (in_mss) {
3872 						if (opt_rx->user_mss &&
3873 						    opt_rx->user_mss < in_mss)
3874 							in_mss = opt_rx->user_mss;
3875 						opt_rx->mss_clamp = in_mss;
3876 					}
3877 				}
3878 				break;
3879 			case TCPOPT_WINDOW:
3880 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3881 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3882 					__u8 snd_wscale = *(__u8 *)ptr;
3883 					opt_rx->wscale_ok = 1;
3884 					if (snd_wscale > TCP_MAX_WSCALE) {
3885 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3886 								     __func__,
3887 								     snd_wscale,
3888 								     TCP_MAX_WSCALE);
3889 						snd_wscale = TCP_MAX_WSCALE;
3890 					}
3891 					opt_rx->snd_wscale = snd_wscale;
3892 				}
3893 				break;
3894 			case TCPOPT_TIMESTAMP:
3895 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3896 				    ((estab && opt_rx->tstamp_ok) ||
3897 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3898 					opt_rx->saw_tstamp = 1;
3899 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3900 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3901 				}
3902 				break;
3903 			case TCPOPT_SACK_PERM:
3904 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3905 				    !estab && net->ipv4.sysctl_tcp_sack) {
3906 					opt_rx->sack_ok = TCP_SACK_SEEN;
3907 					tcp_sack_reset(opt_rx);
3908 				}
3909 				break;
3910 
3911 			case TCPOPT_SACK:
3912 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3913 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3914 				   opt_rx->sack_ok) {
3915 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3916 				}
3917 				break;
3918 #ifdef CONFIG_TCP_MD5SIG
3919 			case TCPOPT_MD5SIG:
3920 				/*
3921 				 * The MD5 Hash has already been
3922 				 * checked (see tcp_v{4,6}_do_rcv()).
3923 				 */
3924 				break;
3925 #endif
3926 			case TCPOPT_FASTOPEN:
3927 				tcp_parse_fastopen_option(
3928 					opsize - TCPOLEN_FASTOPEN_BASE,
3929 					ptr, th->syn, foc, false);
3930 				break;
3931 
3932 			case TCPOPT_EXP:
3933 				/* Fast Open option shares code 254 using a
3934 				 * 16 bits magic number.
3935 				 */
3936 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3937 				    get_unaligned_be16(ptr) ==
3938 				    TCPOPT_FASTOPEN_MAGIC)
3939 					tcp_parse_fastopen_option(opsize -
3940 						TCPOLEN_EXP_FASTOPEN_BASE,
3941 						ptr + 2, th->syn, foc, true);
3942 				else
3943 					smc_parse_options(th, opt_rx, ptr,
3944 							  opsize);
3945 				break;
3946 
3947 			}
3948 			ptr += opsize-2;
3949 			length -= opsize;
3950 		}
3951 	}
3952 }
3953 EXPORT_SYMBOL(tcp_parse_options);
3954 
3955 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3956 {
3957 	const __be32 *ptr = (const __be32 *)(th + 1);
3958 
3959 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3960 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3961 		tp->rx_opt.saw_tstamp = 1;
3962 		++ptr;
3963 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3964 		++ptr;
3965 		if (*ptr)
3966 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3967 		else
3968 			tp->rx_opt.rcv_tsecr = 0;
3969 		return true;
3970 	}
3971 	return false;
3972 }
3973 
3974 /* Fast parse options. This hopes to only see timestamps.
3975  * If it is wrong it falls back on tcp_parse_options().
3976  */
3977 static bool tcp_fast_parse_options(const struct net *net,
3978 				   const struct sk_buff *skb,
3979 				   const struct tcphdr *th, struct tcp_sock *tp)
3980 {
3981 	/* In the spirit of fast parsing, compare doff directly to constant
3982 	 * values.  Because equality is used, short doff can be ignored here.
3983 	 */
3984 	if (th->doff == (sizeof(*th) / 4)) {
3985 		tp->rx_opt.saw_tstamp = 0;
3986 		return false;
3987 	} else if (tp->rx_opt.tstamp_ok &&
3988 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3989 		if (tcp_parse_aligned_timestamp(tp, th))
3990 			return true;
3991 	}
3992 
3993 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3994 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3995 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3996 
3997 	return true;
3998 }
3999 
4000 #ifdef CONFIG_TCP_MD5SIG
4001 /*
4002  * Parse MD5 Signature option
4003  */
4004 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4005 {
4006 	int length = (th->doff << 2) - sizeof(*th);
4007 	const u8 *ptr = (const u8 *)(th + 1);
4008 
4009 	/* If not enough data remaining, we can short cut */
4010 	while (length >= TCPOLEN_MD5SIG) {
4011 		int opcode = *ptr++;
4012 		int opsize;
4013 
4014 		switch (opcode) {
4015 		case TCPOPT_EOL:
4016 			return NULL;
4017 		case TCPOPT_NOP:
4018 			length--;
4019 			continue;
4020 		default:
4021 			opsize = *ptr++;
4022 			if (opsize < 2 || opsize > length)
4023 				return NULL;
4024 			if (opcode == TCPOPT_MD5SIG)
4025 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4026 		}
4027 		ptr += opsize - 2;
4028 		length -= opsize;
4029 	}
4030 	return NULL;
4031 }
4032 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4033 #endif
4034 
4035 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4036  *
4037  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4038  * it can pass through stack. So, the following predicate verifies that
4039  * this segment is not used for anything but congestion avoidance or
4040  * fast retransmit. Moreover, we even are able to eliminate most of such
4041  * second order effects, if we apply some small "replay" window (~RTO)
4042  * to timestamp space.
4043  *
4044  * All these measures still do not guarantee that we reject wrapped ACKs
4045  * on networks with high bandwidth, when sequence space is recycled fastly,
4046  * but it guarantees that such events will be very rare and do not affect
4047  * connection seriously. This doesn't look nice, but alas, PAWS is really
4048  * buggy extension.
4049  *
4050  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4051  * states that events when retransmit arrives after original data are rare.
4052  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4053  * the biggest problem on large power networks even with minor reordering.
4054  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4055  * up to bandwidth of 18Gigabit/sec. 8) ]
4056  */
4057 
4058 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4059 {
4060 	const struct tcp_sock *tp = tcp_sk(sk);
4061 	const struct tcphdr *th = tcp_hdr(skb);
4062 	u32 seq = TCP_SKB_CB(skb)->seq;
4063 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4064 
4065 	return (/* 1. Pure ACK with correct sequence number. */
4066 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4067 
4068 		/* 2. ... and duplicate ACK. */
4069 		ack == tp->snd_una &&
4070 
4071 		/* 3. ... and does not update window. */
4072 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4073 
4074 		/* 4. ... and sits in replay window. */
4075 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4076 }
4077 
4078 static inline bool tcp_paws_discard(const struct sock *sk,
4079 				   const struct sk_buff *skb)
4080 {
4081 	const struct tcp_sock *tp = tcp_sk(sk);
4082 
4083 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4084 	       !tcp_disordered_ack(sk, skb);
4085 }
4086 
4087 /* Check segment sequence number for validity.
4088  *
4089  * Segment controls are considered valid, if the segment
4090  * fits to the window after truncation to the window. Acceptability
4091  * of data (and SYN, FIN, of course) is checked separately.
4092  * See tcp_data_queue(), for example.
4093  *
4094  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4095  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4096  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4097  * (borrowed from freebsd)
4098  */
4099 
4100 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4101 {
4102 	return	!before(end_seq, tp->rcv_wup) &&
4103 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4104 }
4105 
4106 /* When we get a reset we do this. */
4107 void tcp_reset(struct sock *sk)
4108 {
4109 	trace_tcp_receive_reset(sk);
4110 
4111 	/* We want the right error as BSD sees it (and indeed as we do). */
4112 	switch (sk->sk_state) {
4113 	case TCP_SYN_SENT:
4114 		sk->sk_err = ECONNREFUSED;
4115 		break;
4116 	case TCP_CLOSE_WAIT:
4117 		sk->sk_err = EPIPE;
4118 		break;
4119 	case TCP_CLOSE:
4120 		return;
4121 	default:
4122 		sk->sk_err = ECONNRESET;
4123 	}
4124 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4125 	smp_wmb();
4126 
4127 	tcp_write_queue_purge(sk);
4128 	tcp_done(sk);
4129 
4130 	if (!sock_flag(sk, SOCK_DEAD))
4131 		sk->sk_error_report(sk);
4132 }
4133 
4134 /*
4135  * 	Process the FIN bit. This now behaves as it is supposed to work
4136  *	and the FIN takes effect when it is validly part of sequence
4137  *	space. Not before when we get holes.
4138  *
4139  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4140  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4141  *	TIME-WAIT)
4142  *
4143  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4144  *	close and we go into CLOSING (and later onto TIME-WAIT)
4145  *
4146  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4147  */
4148 void tcp_fin(struct sock *sk)
4149 {
4150 	struct tcp_sock *tp = tcp_sk(sk);
4151 
4152 	inet_csk_schedule_ack(sk);
4153 
4154 	sk->sk_shutdown |= RCV_SHUTDOWN;
4155 	sock_set_flag(sk, SOCK_DONE);
4156 
4157 	switch (sk->sk_state) {
4158 	case TCP_SYN_RECV:
4159 	case TCP_ESTABLISHED:
4160 		/* Move to CLOSE_WAIT */
4161 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4162 		inet_csk_enter_pingpong_mode(sk);
4163 		break;
4164 
4165 	case TCP_CLOSE_WAIT:
4166 	case TCP_CLOSING:
4167 		/* Received a retransmission of the FIN, do
4168 		 * nothing.
4169 		 */
4170 		break;
4171 	case TCP_LAST_ACK:
4172 		/* RFC793: Remain in the LAST-ACK state. */
4173 		break;
4174 
4175 	case TCP_FIN_WAIT1:
4176 		/* This case occurs when a simultaneous close
4177 		 * happens, we must ack the received FIN and
4178 		 * enter the CLOSING state.
4179 		 */
4180 		tcp_send_ack(sk);
4181 		tcp_set_state(sk, TCP_CLOSING);
4182 		break;
4183 	case TCP_FIN_WAIT2:
4184 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4185 		tcp_send_ack(sk);
4186 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4187 		break;
4188 	default:
4189 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4190 		 * cases we should never reach this piece of code.
4191 		 */
4192 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4193 		       __func__, sk->sk_state);
4194 		break;
4195 	}
4196 
4197 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4198 	 * Probably, we should reset in this case. For now drop them.
4199 	 */
4200 	skb_rbtree_purge(&tp->out_of_order_queue);
4201 	if (tcp_is_sack(tp))
4202 		tcp_sack_reset(&tp->rx_opt);
4203 	sk_mem_reclaim(sk);
4204 
4205 	if (!sock_flag(sk, SOCK_DEAD)) {
4206 		sk->sk_state_change(sk);
4207 
4208 		/* Do not send POLL_HUP for half duplex close. */
4209 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4210 		    sk->sk_state == TCP_CLOSE)
4211 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4212 		else
4213 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4214 	}
4215 }
4216 
4217 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4218 				  u32 end_seq)
4219 {
4220 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4221 		if (before(seq, sp->start_seq))
4222 			sp->start_seq = seq;
4223 		if (after(end_seq, sp->end_seq))
4224 			sp->end_seq = end_seq;
4225 		return true;
4226 	}
4227 	return false;
4228 }
4229 
4230 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4231 {
4232 	struct tcp_sock *tp = tcp_sk(sk);
4233 
4234 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4235 		int mib_idx;
4236 
4237 		if (before(seq, tp->rcv_nxt))
4238 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4239 		else
4240 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4241 
4242 		NET_INC_STATS(sock_net(sk), mib_idx);
4243 
4244 		tp->rx_opt.dsack = 1;
4245 		tp->duplicate_sack[0].start_seq = seq;
4246 		tp->duplicate_sack[0].end_seq = end_seq;
4247 	}
4248 }
4249 
4250 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4251 {
4252 	struct tcp_sock *tp = tcp_sk(sk);
4253 
4254 	if (!tp->rx_opt.dsack)
4255 		tcp_dsack_set(sk, seq, end_seq);
4256 	else
4257 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4258 }
4259 
4260 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4261 {
4262 	/* When the ACK path fails or drops most ACKs, the sender would
4263 	 * timeout and spuriously retransmit the same segment repeatedly.
4264 	 * The receiver remembers and reflects via DSACKs. Leverage the
4265 	 * DSACK state and change the txhash to re-route speculatively.
4266 	 */
4267 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4268 		sk_rethink_txhash(sk);
4269 }
4270 
4271 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4272 {
4273 	struct tcp_sock *tp = tcp_sk(sk);
4274 
4275 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4276 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4277 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4278 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4279 
4280 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4281 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4282 
4283 			tcp_rcv_spurious_retrans(sk, skb);
4284 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4285 				end_seq = tp->rcv_nxt;
4286 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4287 		}
4288 	}
4289 
4290 	tcp_send_ack(sk);
4291 }
4292 
4293 /* These routines update the SACK block as out-of-order packets arrive or
4294  * in-order packets close up the sequence space.
4295  */
4296 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4297 {
4298 	int this_sack;
4299 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4300 	struct tcp_sack_block *swalk = sp + 1;
4301 
4302 	/* See if the recent change to the first SACK eats into
4303 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4304 	 */
4305 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4306 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4307 			int i;
4308 
4309 			/* Zap SWALK, by moving every further SACK up by one slot.
4310 			 * Decrease num_sacks.
4311 			 */
4312 			tp->rx_opt.num_sacks--;
4313 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4314 				sp[i] = sp[i + 1];
4315 			continue;
4316 		}
4317 		this_sack++, swalk++;
4318 	}
4319 }
4320 
4321 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4322 {
4323 	struct tcp_sock *tp = tcp_sk(sk);
4324 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4325 	int cur_sacks = tp->rx_opt.num_sacks;
4326 	int this_sack;
4327 
4328 	if (!cur_sacks)
4329 		goto new_sack;
4330 
4331 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4332 		if (tcp_sack_extend(sp, seq, end_seq)) {
4333 			/* Rotate this_sack to the first one. */
4334 			for (; this_sack > 0; this_sack--, sp--)
4335 				swap(*sp, *(sp - 1));
4336 			if (cur_sacks > 1)
4337 				tcp_sack_maybe_coalesce(tp);
4338 			return;
4339 		}
4340 	}
4341 
4342 	/* Could not find an adjacent existing SACK, build a new one,
4343 	 * put it at the front, and shift everyone else down.  We
4344 	 * always know there is at least one SACK present already here.
4345 	 *
4346 	 * If the sack array is full, forget about the last one.
4347 	 */
4348 	if (this_sack >= TCP_NUM_SACKS) {
4349 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4350 			tcp_send_ack(sk);
4351 		this_sack--;
4352 		tp->rx_opt.num_sacks--;
4353 		sp--;
4354 	}
4355 	for (; this_sack > 0; this_sack--, sp--)
4356 		*sp = *(sp - 1);
4357 
4358 new_sack:
4359 	/* Build the new head SACK, and we're done. */
4360 	sp->start_seq = seq;
4361 	sp->end_seq = end_seq;
4362 	tp->rx_opt.num_sacks++;
4363 }
4364 
4365 /* RCV.NXT advances, some SACKs should be eaten. */
4366 
4367 static void tcp_sack_remove(struct tcp_sock *tp)
4368 {
4369 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4370 	int num_sacks = tp->rx_opt.num_sacks;
4371 	int this_sack;
4372 
4373 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4374 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4375 		tp->rx_opt.num_sacks = 0;
4376 		return;
4377 	}
4378 
4379 	for (this_sack = 0; this_sack < num_sacks;) {
4380 		/* Check if the start of the sack is covered by RCV.NXT. */
4381 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4382 			int i;
4383 
4384 			/* RCV.NXT must cover all the block! */
4385 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4386 
4387 			/* Zap this SACK, by moving forward any other SACKS. */
4388 			for (i = this_sack+1; i < num_sacks; i++)
4389 				tp->selective_acks[i-1] = tp->selective_acks[i];
4390 			num_sacks--;
4391 			continue;
4392 		}
4393 		this_sack++;
4394 		sp++;
4395 	}
4396 	tp->rx_opt.num_sacks = num_sacks;
4397 }
4398 
4399 /**
4400  * tcp_try_coalesce - try to merge skb to prior one
4401  * @sk: socket
4402  * @dest: destination queue
4403  * @to: prior buffer
4404  * @from: buffer to add in queue
4405  * @fragstolen: pointer to boolean
4406  *
4407  * Before queueing skb @from after @to, try to merge them
4408  * to reduce overall memory use and queue lengths, if cost is small.
4409  * Packets in ofo or receive queues can stay a long time.
4410  * Better try to coalesce them right now to avoid future collapses.
4411  * Returns true if caller should free @from instead of queueing it
4412  */
4413 static bool tcp_try_coalesce(struct sock *sk,
4414 			     struct sk_buff *to,
4415 			     struct sk_buff *from,
4416 			     bool *fragstolen)
4417 {
4418 	int delta;
4419 
4420 	*fragstolen = false;
4421 
4422 	/* Its possible this segment overlaps with prior segment in queue */
4423 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4424 		return false;
4425 
4426 #ifdef CONFIG_TLS_DEVICE
4427 	if (from->decrypted != to->decrypted)
4428 		return false;
4429 #endif
4430 
4431 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4432 		return false;
4433 
4434 	atomic_add(delta, &sk->sk_rmem_alloc);
4435 	sk_mem_charge(sk, delta);
4436 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4437 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4438 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4439 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4440 
4441 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4442 		TCP_SKB_CB(to)->has_rxtstamp = true;
4443 		to->tstamp = from->tstamp;
4444 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4445 	}
4446 
4447 	return true;
4448 }
4449 
4450 static bool tcp_ooo_try_coalesce(struct sock *sk,
4451 			     struct sk_buff *to,
4452 			     struct sk_buff *from,
4453 			     bool *fragstolen)
4454 {
4455 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4456 
4457 	/* In case tcp_drop() is called later, update to->gso_segs */
4458 	if (res) {
4459 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4460 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4461 
4462 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4463 	}
4464 	return res;
4465 }
4466 
4467 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4468 {
4469 	sk_drops_add(sk, skb);
4470 	__kfree_skb(skb);
4471 }
4472 
4473 /* This one checks to see if we can put data from the
4474  * out_of_order queue into the receive_queue.
4475  */
4476 static void tcp_ofo_queue(struct sock *sk)
4477 {
4478 	struct tcp_sock *tp = tcp_sk(sk);
4479 	__u32 dsack_high = tp->rcv_nxt;
4480 	bool fin, fragstolen, eaten;
4481 	struct sk_buff *skb, *tail;
4482 	struct rb_node *p;
4483 
4484 	p = rb_first(&tp->out_of_order_queue);
4485 	while (p) {
4486 		skb = rb_to_skb(p);
4487 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4488 			break;
4489 
4490 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4491 			__u32 dsack = dsack_high;
4492 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4493 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4494 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4495 		}
4496 		p = rb_next(p);
4497 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4498 
4499 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4500 			tcp_drop(sk, skb);
4501 			continue;
4502 		}
4503 
4504 		tail = skb_peek_tail(&sk->sk_receive_queue);
4505 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4506 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4507 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4508 		if (!eaten)
4509 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4510 		else
4511 			kfree_skb_partial(skb, fragstolen);
4512 
4513 		if (unlikely(fin)) {
4514 			tcp_fin(sk);
4515 			/* tcp_fin() purges tp->out_of_order_queue,
4516 			 * so we must end this loop right now.
4517 			 */
4518 			break;
4519 		}
4520 	}
4521 }
4522 
4523 static bool tcp_prune_ofo_queue(struct sock *sk);
4524 static int tcp_prune_queue(struct sock *sk);
4525 
4526 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4527 				 unsigned int size)
4528 {
4529 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4530 	    !sk_rmem_schedule(sk, skb, size)) {
4531 
4532 		if (tcp_prune_queue(sk) < 0)
4533 			return -1;
4534 
4535 		while (!sk_rmem_schedule(sk, skb, size)) {
4536 			if (!tcp_prune_ofo_queue(sk))
4537 				return -1;
4538 		}
4539 	}
4540 	return 0;
4541 }
4542 
4543 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4544 {
4545 	struct tcp_sock *tp = tcp_sk(sk);
4546 	struct rb_node **p, *parent;
4547 	struct sk_buff *skb1;
4548 	u32 seq, end_seq;
4549 	bool fragstolen;
4550 
4551 	tcp_ecn_check_ce(sk, skb);
4552 
4553 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4554 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4555 		tcp_drop(sk, skb);
4556 		return;
4557 	}
4558 
4559 	/* Disable header prediction. */
4560 	tp->pred_flags = 0;
4561 	inet_csk_schedule_ack(sk);
4562 
4563 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4564 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4565 	seq = TCP_SKB_CB(skb)->seq;
4566 	end_seq = TCP_SKB_CB(skb)->end_seq;
4567 
4568 	p = &tp->out_of_order_queue.rb_node;
4569 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4570 		/* Initial out of order segment, build 1 SACK. */
4571 		if (tcp_is_sack(tp)) {
4572 			tp->rx_opt.num_sacks = 1;
4573 			tp->selective_acks[0].start_seq = seq;
4574 			tp->selective_acks[0].end_seq = end_seq;
4575 		}
4576 		rb_link_node(&skb->rbnode, NULL, p);
4577 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4578 		tp->ooo_last_skb = skb;
4579 		goto end;
4580 	}
4581 
4582 	/* In the typical case, we are adding an skb to the end of the list.
4583 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4584 	 */
4585 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4586 				 skb, &fragstolen)) {
4587 coalesce_done:
4588 		tcp_grow_window(sk, skb);
4589 		kfree_skb_partial(skb, fragstolen);
4590 		skb = NULL;
4591 		goto add_sack;
4592 	}
4593 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4594 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4595 		parent = &tp->ooo_last_skb->rbnode;
4596 		p = &parent->rb_right;
4597 		goto insert;
4598 	}
4599 
4600 	/* Find place to insert this segment. Handle overlaps on the way. */
4601 	parent = NULL;
4602 	while (*p) {
4603 		parent = *p;
4604 		skb1 = rb_to_skb(parent);
4605 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4606 			p = &parent->rb_left;
4607 			continue;
4608 		}
4609 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4610 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4611 				/* All the bits are present. Drop. */
4612 				NET_INC_STATS(sock_net(sk),
4613 					      LINUX_MIB_TCPOFOMERGE);
4614 				tcp_drop(sk, skb);
4615 				skb = NULL;
4616 				tcp_dsack_set(sk, seq, end_seq);
4617 				goto add_sack;
4618 			}
4619 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4620 				/* Partial overlap. */
4621 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4622 			} else {
4623 				/* skb's seq == skb1's seq and skb covers skb1.
4624 				 * Replace skb1 with skb.
4625 				 */
4626 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4627 						&tp->out_of_order_queue);
4628 				tcp_dsack_extend(sk,
4629 						 TCP_SKB_CB(skb1)->seq,
4630 						 TCP_SKB_CB(skb1)->end_seq);
4631 				NET_INC_STATS(sock_net(sk),
4632 					      LINUX_MIB_TCPOFOMERGE);
4633 				tcp_drop(sk, skb1);
4634 				goto merge_right;
4635 			}
4636 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4637 						skb, &fragstolen)) {
4638 			goto coalesce_done;
4639 		}
4640 		p = &parent->rb_right;
4641 	}
4642 insert:
4643 	/* Insert segment into RB tree. */
4644 	rb_link_node(&skb->rbnode, parent, p);
4645 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4646 
4647 merge_right:
4648 	/* Remove other segments covered by skb. */
4649 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4650 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4651 			break;
4652 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4653 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4654 					 end_seq);
4655 			break;
4656 		}
4657 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4658 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4659 				 TCP_SKB_CB(skb1)->end_seq);
4660 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4661 		tcp_drop(sk, skb1);
4662 	}
4663 	/* If there is no skb after us, we are the last_skb ! */
4664 	if (!skb1)
4665 		tp->ooo_last_skb = skb;
4666 
4667 add_sack:
4668 	if (tcp_is_sack(tp))
4669 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4670 end:
4671 	if (skb) {
4672 		tcp_grow_window(sk, skb);
4673 		skb_condense(skb);
4674 		skb_set_owner_r(skb, sk);
4675 	}
4676 }
4677 
4678 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4679 				      bool *fragstolen)
4680 {
4681 	int eaten;
4682 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4683 
4684 	eaten = (tail &&
4685 		 tcp_try_coalesce(sk, tail,
4686 				  skb, fragstolen)) ? 1 : 0;
4687 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4688 	if (!eaten) {
4689 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4690 		skb_set_owner_r(skb, sk);
4691 	}
4692 	return eaten;
4693 }
4694 
4695 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4696 {
4697 	struct sk_buff *skb;
4698 	int err = -ENOMEM;
4699 	int data_len = 0;
4700 	bool fragstolen;
4701 
4702 	if (size == 0)
4703 		return 0;
4704 
4705 	if (size > PAGE_SIZE) {
4706 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4707 
4708 		data_len = npages << PAGE_SHIFT;
4709 		size = data_len + (size & ~PAGE_MASK);
4710 	}
4711 	skb = alloc_skb_with_frags(size - data_len, data_len,
4712 				   PAGE_ALLOC_COSTLY_ORDER,
4713 				   &err, sk->sk_allocation);
4714 	if (!skb)
4715 		goto err;
4716 
4717 	skb_put(skb, size - data_len);
4718 	skb->data_len = data_len;
4719 	skb->len = size;
4720 
4721 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4722 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4723 		goto err_free;
4724 	}
4725 
4726 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4727 	if (err)
4728 		goto err_free;
4729 
4730 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4731 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4732 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4733 
4734 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4735 		WARN_ON_ONCE(fragstolen); /* should not happen */
4736 		__kfree_skb(skb);
4737 	}
4738 	return size;
4739 
4740 err_free:
4741 	kfree_skb(skb);
4742 err:
4743 	return err;
4744 
4745 }
4746 
4747 void tcp_data_ready(struct sock *sk)
4748 {
4749 	const struct tcp_sock *tp = tcp_sk(sk);
4750 	int avail = tp->rcv_nxt - tp->copied_seq;
4751 
4752 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4753 		return;
4754 
4755 	sk->sk_data_ready(sk);
4756 }
4757 
4758 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4759 {
4760 	struct tcp_sock *tp = tcp_sk(sk);
4761 	bool fragstolen;
4762 	int eaten;
4763 
4764 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4765 		__kfree_skb(skb);
4766 		return;
4767 	}
4768 	skb_dst_drop(skb);
4769 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4770 
4771 	tcp_ecn_accept_cwr(sk, skb);
4772 
4773 	tp->rx_opt.dsack = 0;
4774 
4775 	/*  Queue data for delivery to the user.
4776 	 *  Packets in sequence go to the receive queue.
4777 	 *  Out of sequence packets to the out_of_order_queue.
4778 	 */
4779 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4780 		if (tcp_receive_window(tp) == 0) {
4781 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4782 			goto out_of_window;
4783 		}
4784 
4785 		/* Ok. In sequence. In window. */
4786 queue_and_out:
4787 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4788 			sk_forced_mem_schedule(sk, skb->truesize);
4789 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4790 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4791 			goto drop;
4792 		}
4793 
4794 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4795 		if (skb->len)
4796 			tcp_event_data_recv(sk, skb);
4797 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4798 			tcp_fin(sk);
4799 
4800 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4801 			tcp_ofo_queue(sk);
4802 
4803 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4804 			 * gap in queue is filled.
4805 			 */
4806 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4807 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4808 		}
4809 
4810 		if (tp->rx_opt.num_sacks)
4811 			tcp_sack_remove(tp);
4812 
4813 		tcp_fast_path_check(sk);
4814 
4815 		if (eaten > 0)
4816 			kfree_skb_partial(skb, fragstolen);
4817 		if (!sock_flag(sk, SOCK_DEAD))
4818 			tcp_data_ready(sk);
4819 		return;
4820 	}
4821 
4822 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4823 		tcp_rcv_spurious_retrans(sk, skb);
4824 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4825 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4826 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4827 
4828 out_of_window:
4829 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4830 		inet_csk_schedule_ack(sk);
4831 drop:
4832 		tcp_drop(sk, skb);
4833 		return;
4834 	}
4835 
4836 	/* Out of window. F.e. zero window probe. */
4837 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4838 		goto out_of_window;
4839 
4840 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4841 		/* Partial packet, seq < rcv_next < end_seq */
4842 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4843 
4844 		/* If window is closed, drop tail of packet. But after
4845 		 * remembering D-SACK for its head made in previous line.
4846 		 */
4847 		if (!tcp_receive_window(tp)) {
4848 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4849 			goto out_of_window;
4850 		}
4851 		goto queue_and_out;
4852 	}
4853 
4854 	tcp_data_queue_ofo(sk, skb);
4855 }
4856 
4857 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4858 {
4859 	if (list)
4860 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4861 
4862 	return skb_rb_next(skb);
4863 }
4864 
4865 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4866 					struct sk_buff_head *list,
4867 					struct rb_root *root)
4868 {
4869 	struct sk_buff *next = tcp_skb_next(skb, list);
4870 
4871 	if (list)
4872 		__skb_unlink(skb, list);
4873 	else
4874 		rb_erase(&skb->rbnode, root);
4875 
4876 	__kfree_skb(skb);
4877 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4878 
4879 	return next;
4880 }
4881 
4882 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4883 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4884 {
4885 	struct rb_node **p = &root->rb_node;
4886 	struct rb_node *parent = NULL;
4887 	struct sk_buff *skb1;
4888 
4889 	while (*p) {
4890 		parent = *p;
4891 		skb1 = rb_to_skb(parent);
4892 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4893 			p = &parent->rb_left;
4894 		else
4895 			p = &parent->rb_right;
4896 	}
4897 	rb_link_node(&skb->rbnode, parent, p);
4898 	rb_insert_color(&skb->rbnode, root);
4899 }
4900 
4901 /* Collapse contiguous sequence of skbs head..tail with
4902  * sequence numbers start..end.
4903  *
4904  * If tail is NULL, this means until the end of the queue.
4905  *
4906  * Segments with FIN/SYN are not collapsed (only because this
4907  * simplifies code)
4908  */
4909 static void
4910 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4911 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4912 {
4913 	struct sk_buff *skb = head, *n;
4914 	struct sk_buff_head tmp;
4915 	bool end_of_skbs;
4916 
4917 	/* First, check that queue is collapsible and find
4918 	 * the point where collapsing can be useful.
4919 	 */
4920 restart:
4921 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4922 		n = tcp_skb_next(skb, list);
4923 
4924 		/* No new bits? It is possible on ofo queue. */
4925 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4926 			skb = tcp_collapse_one(sk, skb, list, root);
4927 			if (!skb)
4928 				break;
4929 			goto restart;
4930 		}
4931 
4932 		/* The first skb to collapse is:
4933 		 * - not SYN/FIN and
4934 		 * - bloated or contains data before "start" or
4935 		 *   overlaps to the next one.
4936 		 */
4937 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4938 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4939 		     before(TCP_SKB_CB(skb)->seq, start))) {
4940 			end_of_skbs = false;
4941 			break;
4942 		}
4943 
4944 		if (n && n != tail &&
4945 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4946 			end_of_skbs = false;
4947 			break;
4948 		}
4949 
4950 		/* Decided to skip this, advance start seq. */
4951 		start = TCP_SKB_CB(skb)->end_seq;
4952 	}
4953 	if (end_of_skbs ||
4954 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4955 		return;
4956 
4957 	__skb_queue_head_init(&tmp);
4958 
4959 	while (before(start, end)) {
4960 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4961 		struct sk_buff *nskb;
4962 
4963 		nskb = alloc_skb(copy, GFP_ATOMIC);
4964 		if (!nskb)
4965 			break;
4966 
4967 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4968 #ifdef CONFIG_TLS_DEVICE
4969 		nskb->decrypted = skb->decrypted;
4970 #endif
4971 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4972 		if (list)
4973 			__skb_queue_before(list, skb, nskb);
4974 		else
4975 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4976 		skb_set_owner_r(nskb, sk);
4977 
4978 		/* Copy data, releasing collapsed skbs. */
4979 		while (copy > 0) {
4980 			int offset = start - TCP_SKB_CB(skb)->seq;
4981 			int size = TCP_SKB_CB(skb)->end_seq - start;
4982 
4983 			BUG_ON(offset < 0);
4984 			if (size > 0) {
4985 				size = min(copy, size);
4986 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4987 					BUG();
4988 				TCP_SKB_CB(nskb)->end_seq += size;
4989 				copy -= size;
4990 				start += size;
4991 			}
4992 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4993 				skb = tcp_collapse_one(sk, skb, list, root);
4994 				if (!skb ||
4995 				    skb == tail ||
4996 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4997 					goto end;
4998 #ifdef CONFIG_TLS_DEVICE
4999 				if (skb->decrypted != nskb->decrypted)
5000 					goto end;
5001 #endif
5002 			}
5003 		}
5004 	}
5005 end:
5006 	skb_queue_walk_safe(&tmp, skb, n)
5007 		tcp_rbtree_insert(root, skb);
5008 }
5009 
5010 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5011  * and tcp_collapse() them until all the queue is collapsed.
5012  */
5013 static void tcp_collapse_ofo_queue(struct sock *sk)
5014 {
5015 	struct tcp_sock *tp = tcp_sk(sk);
5016 	u32 range_truesize, sum_tiny = 0;
5017 	struct sk_buff *skb, *head;
5018 	u32 start, end;
5019 
5020 	skb = skb_rb_first(&tp->out_of_order_queue);
5021 new_range:
5022 	if (!skb) {
5023 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5024 		return;
5025 	}
5026 	start = TCP_SKB_CB(skb)->seq;
5027 	end = TCP_SKB_CB(skb)->end_seq;
5028 	range_truesize = skb->truesize;
5029 
5030 	for (head = skb;;) {
5031 		skb = skb_rb_next(skb);
5032 
5033 		/* Range is terminated when we see a gap or when
5034 		 * we are at the queue end.
5035 		 */
5036 		if (!skb ||
5037 		    after(TCP_SKB_CB(skb)->seq, end) ||
5038 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5039 			/* Do not attempt collapsing tiny skbs */
5040 			if (range_truesize != head->truesize ||
5041 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5042 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5043 					     head, skb, start, end);
5044 			} else {
5045 				sum_tiny += range_truesize;
5046 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5047 					return;
5048 			}
5049 			goto new_range;
5050 		}
5051 
5052 		range_truesize += skb->truesize;
5053 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5054 			start = TCP_SKB_CB(skb)->seq;
5055 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5056 			end = TCP_SKB_CB(skb)->end_seq;
5057 	}
5058 }
5059 
5060 /*
5061  * Clean the out-of-order queue to make room.
5062  * We drop high sequences packets to :
5063  * 1) Let a chance for holes to be filled.
5064  * 2) not add too big latencies if thousands of packets sit there.
5065  *    (But if application shrinks SO_RCVBUF, we could still end up
5066  *     freeing whole queue here)
5067  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5068  *
5069  * Return true if queue has shrunk.
5070  */
5071 static bool tcp_prune_ofo_queue(struct sock *sk)
5072 {
5073 	struct tcp_sock *tp = tcp_sk(sk);
5074 	struct rb_node *node, *prev;
5075 	int goal;
5076 
5077 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5078 		return false;
5079 
5080 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5081 	goal = sk->sk_rcvbuf >> 3;
5082 	node = &tp->ooo_last_skb->rbnode;
5083 	do {
5084 		prev = rb_prev(node);
5085 		rb_erase(node, &tp->out_of_order_queue);
5086 		goal -= rb_to_skb(node)->truesize;
5087 		tcp_drop(sk, rb_to_skb(node));
5088 		if (!prev || goal <= 0) {
5089 			sk_mem_reclaim(sk);
5090 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5091 			    !tcp_under_memory_pressure(sk))
5092 				break;
5093 			goal = sk->sk_rcvbuf >> 3;
5094 		}
5095 		node = prev;
5096 	} while (node);
5097 	tp->ooo_last_skb = rb_to_skb(prev);
5098 
5099 	/* Reset SACK state.  A conforming SACK implementation will
5100 	 * do the same at a timeout based retransmit.  When a connection
5101 	 * is in a sad state like this, we care only about integrity
5102 	 * of the connection not performance.
5103 	 */
5104 	if (tp->rx_opt.sack_ok)
5105 		tcp_sack_reset(&tp->rx_opt);
5106 	return true;
5107 }
5108 
5109 /* Reduce allocated memory if we can, trying to get
5110  * the socket within its memory limits again.
5111  *
5112  * Return less than zero if we should start dropping frames
5113  * until the socket owning process reads some of the data
5114  * to stabilize the situation.
5115  */
5116 static int tcp_prune_queue(struct sock *sk)
5117 {
5118 	struct tcp_sock *tp = tcp_sk(sk);
5119 
5120 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5121 
5122 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5123 		tcp_clamp_window(sk);
5124 	else if (tcp_under_memory_pressure(sk))
5125 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5126 
5127 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5128 		return 0;
5129 
5130 	tcp_collapse_ofo_queue(sk);
5131 	if (!skb_queue_empty(&sk->sk_receive_queue))
5132 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5133 			     skb_peek(&sk->sk_receive_queue),
5134 			     NULL,
5135 			     tp->copied_seq, tp->rcv_nxt);
5136 	sk_mem_reclaim(sk);
5137 
5138 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5139 		return 0;
5140 
5141 	/* Collapsing did not help, destructive actions follow.
5142 	 * This must not ever occur. */
5143 
5144 	tcp_prune_ofo_queue(sk);
5145 
5146 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5147 		return 0;
5148 
5149 	/* If we are really being abused, tell the caller to silently
5150 	 * drop receive data on the floor.  It will get retransmitted
5151 	 * and hopefully then we'll have sufficient space.
5152 	 */
5153 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5154 
5155 	/* Massive buffer overcommit. */
5156 	tp->pred_flags = 0;
5157 	return -1;
5158 }
5159 
5160 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5161 {
5162 	const struct tcp_sock *tp = tcp_sk(sk);
5163 
5164 	/* If the user specified a specific send buffer setting, do
5165 	 * not modify it.
5166 	 */
5167 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5168 		return false;
5169 
5170 	/* If we are under global TCP memory pressure, do not expand.  */
5171 	if (tcp_under_memory_pressure(sk))
5172 		return false;
5173 
5174 	/* If we are under soft global TCP memory pressure, do not expand.  */
5175 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5176 		return false;
5177 
5178 	/* If we filled the congestion window, do not expand.  */
5179 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5180 		return false;
5181 
5182 	return true;
5183 }
5184 
5185 /* When incoming ACK allowed to free some skb from write_queue,
5186  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5187  * on the exit from tcp input handler.
5188  *
5189  * PROBLEM: sndbuf expansion does not work well with largesend.
5190  */
5191 static void tcp_new_space(struct sock *sk)
5192 {
5193 	struct tcp_sock *tp = tcp_sk(sk);
5194 
5195 	if (tcp_should_expand_sndbuf(sk)) {
5196 		tcp_sndbuf_expand(sk);
5197 		tp->snd_cwnd_stamp = tcp_jiffies32;
5198 	}
5199 
5200 	sk->sk_write_space(sk);
5201 }
5202 
5203 static void tcp_check_space(struct sock *sk)
5204 {
5205 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5206 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5207 		/* pairs with tcp_poll() */
5208 		smp_mb();
5209 		if (sk->sk_socket &&
5210 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5211 			tcp_new_space(sk);
5212 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5213 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5214 		}
5215 	}
5216 }
5217 
5218 static inline void tcp_data_snd_check(struct sock *sk)
5219 {
5220 	tcp_push_pending_frames(sk);
5221 	tcp_check_space(sk);
5222 }
5223 
5224 /*
5225  * Check if sending an ack is needed.
5226  */
5227 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5228 {
5229 	struct tcp_sock *tp = tcp_sk(sk);
5230 	unsigned long rtt, delay;
5231 
5232 	    /* More than one full frame received... */
5233 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5234 	     /* ... and right edge of window advances far enough.
5235 	      * (tcp_recvmsg() will send ACK otherwise).
5236 	      * If application uses SO_RCVLOWAT, we want send ack now if
5237 	      * we have not received enough bytes to satisfy the condition.
5238 	      */
5239 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5240 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5241 	    /* We ACK each frame or... */
5242 	    tcp_in_quickack_mode(sk) ||
5243 	    /* Protocol state mandates a one-time immediate ACK */
5244 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5245 send_now:
5246 		tcp_send_ack(sk);
5247 		return;
5248 	}
5249 
5250 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5251 		tcp_send_delayed_ack(sk);
5252 		return;
5253 	}
5254 
5255 	if (!tcp_is_sack(tp) ||
5256 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5257 		goto send_now;
5258 
5259 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5260 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5261 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5262 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5263 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5264 		tp->compressed_ack = 0;
5265 	}
5266 
5267 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5268 		goto send_now;
5269 
5270 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5271 		return;
5272 
5273 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5274 
5275 	rtt = tp->rcv_rtt_est.rtt_us;
5276 	if (tp->srtt_us && tp->srtt_us < rtt)
5277 		rtt = tp->srtt_us;
5278 
5279 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5280 		      rtt * (NSEC_PER_USEC >> 3)/20);
5281 	sock_hold(sk);
5282 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5283 		      HRTIMER_MODE_REL_PINNED_SOFT);
5284 }
5285 
5286 static inline void tcp_ack_snd_check(struct sock *sk)
5287 {
5288 	if (!inet_csk_ack_scheduled(sk)) {
5289 		/* We sent a data segment already. */
5290 		return;
5291 	}
5292 	__tcp_ack_snd_check(sk, 1);
5293 }
5294 
5295 /*
5296  *	This routine is only called when we have urgent data
5297  *	signaled. Its the 'slow' part of tcp_urg. It could be
5298  *	moved inline now as tcp_urg is only called from one
5299  *	place. We handle URGent data wrong. We have to - as
5300  *	BSD still doesn't use the correction from RFC961.
5301  *	For 1003.1g we should support a new option TCP_STDURG to permit
5302  *	either form (or just set the sysctl tcp_stdurg).
5303  */
5304 
5305 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5306 {
5307 	struct tcp_sock *tp = tcp_sk(sk);
5308 	u32 ptr = ntohs(th->urg_ptr);
5309 
5310 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5311 		ptr--;
5312 	ptr += ntohl(th->seq);
5313 
5314 	/* Ignore urgent data that we've already seen and read. */
5315 	if (after(tp->copied_seq, ptr))
5316 		return;
5317 
5318 	/* Do not replay urg ptr.
5319 	 *
5320 	 * NOTE: interesting situation not covered by specs.
5321 	 * Misbehaving sender may send urg ptr, pointing to segment,
5322 	 * which we already have in ofo queue. We are not able to fetch
5323 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5324 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5325 	 * situations. But it is worth to think about possibility of some
5326 	 * DoSes using some hypothetical application level deadlock.
5327 	 */
5328 	if (before(ptr, tp->rcv_nxt))
5329 		return;
5330 
5331 	/* Do we already have a newer (or duplicate) urgent pointer? */
5332 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5333 		return;
5334 
5335 	/* Tell the world about our new urgent pointer. */
5336 	sk_send_sigurg(sk);
5337 
5338 	/* We may be adding urgent data when the last byte read was
5339 	 * urgent. To do this requires some care. We cannot just ignore
5340 	 * tp->copied_seq since we would read the last urgent byte again
5341 	 * as data, nor can we alter copied_seq until this data arrives
5342 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5343 	 *
5344 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5345 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5346 	 * and expect that both A and B disappear from stream. This is _wrong_.
5347 	 * Though this happens in BSD with high probability, this is occasional.
5348 	 * Any application relying on this is buggy. Note also, that fix "works"
5349 	 * only in this artificial test. Insert some normal data between A and B and we will
5350 	 * decline of BSD again. Verdict: it is better to remove to trap
5351 	 * buggy users.
5352 	 */
5353 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5354 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5355 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5356 		tp->copied_seq++;
5357 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5358 			__skb_unlink(skb, &sk->sk_receive_queue);
5359 			__kfree_skb(skb);
5360 		}
5361 	}
5362 
5363 	tp->urg_data = TCP_URG_NOTYET;
5364 	WRITE_ONCE(tp->urg_seq, ptr);
5365 
5366 	/* Disable header prediction. */
5367 	tp->pred_flags = 0;
5368 }
5369 
5370 /* This is the 'fast' part of urgent handling. */
5371 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5372 {
5373 	struct tcp_sock *tp = tcp_sk(sk);
5374 
5375 	/* Check if we get a new urgent pointer - normally not. */
5376 	if (th->urg)
5377 		tcp_check_urg(sk, th);
5378 
5379 	/* Do we wait for any urgent data? - normally not... */
5380 	if (tp->urg_data == TCP_URG_NOTYET) {
5381 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5382 			  th->syn;
5383 
5384 		/* Is the urgent pointer pointing into this packet? */
5385 		if (ptr < skb->len) {
5386 			u8 tmp;
5387 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5388 				BUG();
5389 			tp->urg_data = TCP_URG_VALID | tmp;
5390 			if (!sock_flag(sk, SOCK_DEAD))
5391 				sk->sk_data_ready(sk);
5392 		}
5393 	}
5394 }
5395 
5396 /* Accept RST for rcv_nxt - 1 after a FIN.
5397  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5398  * FIN is sent followed by a RST packet. The RST is sent with the same
5399  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5400  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5401  * ACKs on the closed socket. In addition middleboxes can drop either the
5402  * challenge ACK or a subsequent RST.
5403  */
5404 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5405 {
5406 	struct tcp_sock *tp = tcp_sk(sk);
5407 
5408 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5409 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5410 					       TCPF_CLOSING));
5411 }
5412 
5413 /* Does PAWS and seqno based validation of an incoming segment, flags will
5414  * play significant role here.
5415  */
5416 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5417 				  const struct tcphdr *th, int syn_inerr)
5418 {
5419 	struct tcp_sock *tp = tcp_sk(sk);
5420 	bool rst_seq_match = false;
5421 
5422 	/* RFC1323: H1. Apply PAWS check first. */
5423 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5424 	    tp->rx_opt.saw_tstamp &&
5425 	    tcp_paws_discard(sk, skb)) {
5426 		if (!th->rst) {
5427 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5428 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5429 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5430 						  &tp->last_oow_ack_time))
5431 				tcp_send_dupack(sk, skb);
5432 			goto discard;
5433 		}
5434 		/* Reset is accepted even if it did not pass PAWS. */
5435 	}
5436 
5437 	/* Step 1: check sequence number */
5438 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5439 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5440 		 * (RST) segments are validated by checking their SEQ-fields."
5441 		 * And page 69: "If an incoming segment is not acceptable,
5442 		 * an acknowledgment should be sent in reply (unless the RST
5443 		 * bit is set, if so drop the segment and return)".
5444 		 */
5445 		if (!th->rst) {
5446 			if (th->syn)
5447 				goto syn_challenge;
5448 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5449 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5450 						  &tp->last_oow_ack_time))
5451 				tcp_send_dupack(sk, skb);
5452 		} else if (tcp_reset_check(sk, skb)) {
5453 			tcp_reset(sk);
5454 		}
5455 		goto discard;
5456 	}
5457 
5458 	/* Step 2: check RST bit */
5459 	if (th->rst) {
5460 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5461 		 * FIN and SACK too if available):
5462 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5463 		 * the right-most SACK block,
5464 		 * then
5465 		 *     RESET the connection
5466 		 * else
5467 		 *     Send a challenge ACK
5468 		 */
5469 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5470 		    tcp_reset_check(sk, skb)) {
5471 			rst_seq_match = true;
5472 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5473 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5474 			int max_sack = sp[0].end_seq;
5475 			int this_sack;
5476 
5477 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5478 			     ++this_sack) {
5479 				max_sack = after(sp[this_sack].end_seq,
5480 						 max_sack) ?
5481 					sp[this_sack].end_seq : max_sack;
5482 			}
5483 
5484 			if (TCP_SKB_CB(skb)->seq == max_sack)
5485 				rst_seq_match = true;
5486 		}
5487 
5488 		if (rst_seq_match)
5489 			tcp_reset(sk);
5490 		else {
5491 			/* Disable TFO if RST is out-of-order
5492 			 * and no data has been received
5493 			 * for current active TFO socket
5494 			 */
5495 			if (tp->syn_fastopen && !tp->data_segs_in &&
5496 			    sk->sk_state == TCP_ESTABLISHED)
5497 				tcp_fastopen_active_disable(sk);
5498 			tcp_send_challenge_ack(sk, skb);
5499 		}
5500 		goto discard;
5501 	}
5502 
5503 	/* step 3: check security and precedence [ignored] */
5504 
5505 	/* step 4: Check for a SYN
5506 	 * RFC 5961 4.2 : Send a challenge ack
5507 	 */
5508 	if (th->syn) {
5509 syn_challenge:
5510 		if (syn_inerr)
5511 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5512 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5513 		tcp_send_challenge_ack(sk, skb);
5514 		goto discard;
5515 	}
5516 
5517 	return true;
5518 
5519 discard:
5520 	tcp_drop(sk, skb);
5521 	return false;
5522 }
5523 
5524 /*
5525  *	TCP receive function for the ESTABLISHED state.
5526  *
5527  *	It is split into a fast path and a slow path. The fast path is
5528  * 	disabled when:
5529  *	- A zero window was announced from us - zero window probing
5530  *        is only handled properly in the slow path.
5531  *	- Out of order segments arrived.
5532  *	- Urgent data is expected.
5533  *	- There is no buffer space left
5534  *	- Unexpected TCP flags/window values/header lengths are received
5535  *	  (detected by checking the TCP header against pred_flags)
5536  *	- Data is sent in both directions. Fast path only supports pure senders
5537  *	  or pure receivers (this means either the sequence number or the ack
5538  *	  value must stay constant)
5539  *	- Unexpected TCP option.
5540  *
5541  *	When these conditions are not satisfied it drops into a standard
5542  *	receive procedure patterned after RFC793 to handle all cases.
5543  *	The first three cases are guaranteed by proper pred_flags setting,
5544  *	the rest is checked inline. Fast processing is turned on in
5545  *	tcp_data_queue when everything is OK.
5546  */
5547 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5548 {
5549 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5550 	struct tcp_sock *tp = tcp_sk(sk);
5551 	unsigned int len = skb->len;
5552 
5553 	/* TCP congestion window tracking */
5554 	trace_tcp_probe(sk, skb);
5555 
5556 	tcp_mstamp_refresh(tp);
5557 	if (unlikely(!sk->sk_rx_dst))
5558 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5559 	/*
5560 	 *	Header prediction.
5561 	 *	The code loosely follows the one in the famous
5562 	 *	"30 instruction TCP receive" Van Jacobson mail.
5563 	 *
5564 	 *	Van's trick is to deposit buffers into socket queue
5565 	 *	on a device interrupt, to call tcp_recv function
5566 	 *	on the receive process context and checksum and copy
5567 	 *	the buffer to user space. smart...
5568 	 *
5569 	 *	Our current scheme is not silly either but we take the
5570 	 *	extra cost of the net_bh soft interrupt processing...
5571 	 *	We do checksum and copy also but from device to kernel.
5572 	 */
5573 
5574 	tp->rx_opt.saw_tstamp = 0;
5575 
5576 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5577 	 *	if header_prediction is to be made
5578 	 *	'S' will always be tp->tcp_header_len >> 2
5579 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5580 	 *  turn it off	(when there are holes in the receive
5581 	 *	 space for instance)
5582 	 *	PSH flag is ignored.
5583 	 */
5584 
5585 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5586 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5587 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5588 		int tcp_header_len = tp->tcp_header_len;
5589 
5590 		/* Timestamp header prediction: tcp_header_len
5591 		 * is automatically equal to th->doff*4 due to pred_flags
5592 		 * match.
5593 		 */
5594 
5595 		/* Check timestamp */
5596 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5597 			/* No? Slow path! */
5598 			if (!tcp_parse_aligned_timestamp(tp, th))
5599 				goto slow_path;
5600 
5601 			/* If PAWS failed, check it more carefully in slow path */
5602 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5603 				goto slow_path;
5604 
5605 			/* DO NOT update ts_recent here, if checksum fails
5606 			 * and timestamp was corrupted part, it will result
5607 			 * in a hung connection since we will drop all
5608 			 * future packets due to the PAWS test.
5609 			 */
5610 		}
5611 
5612 		if (len <= tcp_header_len) {
5613 			/* Bulk data transfer: sender */
5614 			if (len == tcp_header_len) {
5615 				/* Predicted packet is in window by definition.
5616 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5617 				 * Hence, check seq<=rcv_wup reduces to:
5618 				 */
5619 				if (tcp_header_len ==
5620 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5621 				    tp->rcv_nxt == tp->rcv_wup)
5622 					tcp_store_ts_recent(tp);
5623 
5624 				/* We know that such packets are checksummed
5625 				 * on entry.
5626 				 */
5627 				tcp_ack(sk, skb, 0);
5628 				__kfree_skb(skb);
5629 				tcp_data_snd_check(sk);
5630 				/* When receiving pure ack in fast path, update
5631 				 * last ts ecr directly instead of calling
5632 				 * tcp_rcv_rtt_measure_ts()
5633 				 */
5634 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5635 				return;
5636 			} else { /* Header too small */
5637 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5638 				goto discard;
5639 			}
5640 		} else {
5641 			int eaten = 0;
5642 			bool fragstolen = false;
5643 
5644 			if (tcp_checksum_complete(skb))
5645 				goto csum_error;
5646 
5647 			if ((int)skb->truesize > sk->sk_forward_alloc)
5648 				goto step5;
5649 
5650 			/* Predicted packet is in window by definition.
5651 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5652 			 * Hence, check seq<=rcv_wup reduces to:
5653 			 */
5654 			if (tcp_header_len ==
5655 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5656 			    tp->rcv_nxt == tp->rcv_wup)
5657 				tcp_store_ts_recent(tp);
5658 
5659 			tcp_rcv_rtt_measure_ts(sk, skb);
5660 
5661 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5662 
5663 			/* Bulk data transfer: receiver */
5664 			__skb_pull(skb, tcp_header_len);
5665 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5666 
5667 			tcp_event_data_recv(sk, skb);
5668 
5669 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5670 				/* Well, only one small jumplet in fast path... */
5671 				tcp_ack(sk, skb, FLAG_DATA);
5672 				tcp_data_snd_check(sk);
5673 				if (!inet_csk_ack_scheduled(sk))
5674 					goto no_ack;
5675 			}
5676 
5677 			__tcp_ack_snd_check(sk, 0);
5678 no_ack:
5679 			if (eaten)
5680 				kfree_skb_partial(skb, fragstolen);
5681 			tcp_data_ready(sk);
5682 			return;
5683 		}
5684 	}
5685 
5686 slow_path:
5687 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5688 		goto csum_error;
5689 
5690 	if (!th->ack && !th->rst && !th->syn)
5691 		goto discard;
5692 
5693 	/*
5694 	 *	Standard slow path.
5695 	 */
5696 
5697 	if (!tcp_validate_incoming(sk, skb, th, 1))
5698 		return;
5699 
5700 step5:
5701 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5702 		goto discard;
5703 
5704 	tcp_rcv_rtt_measure_ts(sk, skb);
5705 
5706 	/* Process urgent data. */
5707 	tcp_urg(sk, skb, th);
5708 
5709 	/* step 7: process the segment text */
5710 	tcp_data_queue(sk, skb);
5711 
5712 	tcp_data_snd_check(sk);
5713 	tcp_ack_snd_check(sk);
5714 	return;
5715 
5716 csum_error:
5717 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5718 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5719 
5720 discard:
5721 	tcp_drop(sk, skb);
5722 }
5723 EXPORT_SYMBOL(tcp_rcv_established);
5724 
5725 void tcp_init_transfer(struct sock *sk, int bpf_op)
5726 {
5727 	struct inet_connection_sock *icsk = inet_csk(sk);
5728 	struct tcp_sock *tp = tcp_sk(sk);
5729 
5730 	tcp_mtup_init(sk);
5731 	icsk->icsk_af_ops->rebuild_header(sk);
5732 	tcp_init_metrics(sk);
5733 
5734 	/* Initialize the congestion window to start the transfer.
5735 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5736 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5737 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5738 	 * retransmission has occurred.
5739 	 */
5740 	if (tp->total_retrans > 1 && tp->undo_marker)
5741 		tp->snd_cwnd = 1;
5742 	else
5743 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5744 	tp->snd_cwnd_stamp = tcp_jiffies32;
5745 
5746 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5747 	tcp_init_congestion_control(sk);
5748 	tcp_init_buffer_space(sk);
5749 }
5750 
5751 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5752 {
5753 	struct tcp_sock *tp = tcp_sk(sk);
5754 	struct inet_connection_sock *icsk = inet_csk(sk);
5755 
5756 	tcp_set_state(sk, TCP_ESTABLISHED);
5757 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5758 
5759 	if (skb) {
5760 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5761 		security_inet_conn_established(sk, skb);
5762 		sk_mark_napi_id(sk, skb);
5763 	}
5764 
5765 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5766 
5767 	/* Prevent spurious tcp_cwnd_restart() on first data
5768 	 * packet.
5769 	 */
5770 	tp->lsndtime = tcp_jiffies32;
5771 
5772 	if (sock_flag(sk, SOCK_KEEPOPEN))
5773 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5774 
5775 	if (!tp->rx_opt.snd_wscale)
5776 		__tcp_fast_path_on(tp, tp->snd_wnd);
5777 	else
5778 		tp->pred_flags = 0;
5779 }
5780 
5781 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5782 				    struct tcp_fastopen_cookie *cookie)
5783 {
5784 	struct tcp_sock *tp = tcp_sk(sk);
5785 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5786 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5787 	bool syn_drop = false;
5788 
5789 	if (mss == tp->rx_opt.user_mss) {
5790 		struct tcp_options_received opt;
5791 
5792 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5793 		tcp_clear_options(&opt);
5794 		opt.user_mss = opt.mss_clamp = 0;
5795 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5796 		mss = opt.mss_clamp;
5797 	}
5798 
5799 	if (!tp->syn_fastopen) {
5800 		/* Ignore an unsolicited cookie */
5801 		cookie->len = -1;
5802 	} else if (tp->total_retrans) {
5803 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5804 		 * acknowledges data. Presumably the remote received only
5805 		 * the retransmitted (regular) SYNs: either the original
5806 		 * SYN-data or the corresponding SYN-ACK was dropped.
5807 		 */
5808 		syn_drop = (cookie->len < 0 && data);
5809 	} else if (cookie->len < 0 && !tp->syn_data) {
5810 		/* We requested a cookie but didn't get it. If we did not use
5811 		 * the (old) exp opt format then try so next time (try_exp=1).
5812 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5813 		 */
5814 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5815 	}
5816 
5817 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5818 
5819 	if (data) { /* Retransmit unacked data in SYN */
5820 		if (tp->total_retrans)
5821 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5822 		else
5823 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5824 		skb_rbtree_walk_from(data) {
5825 			if (__tcp_retransmit_skb(sk, data, 1))
5826 				break;
5827 		}
5828 		tcp_rearm_rto(sk);
5829 		NET_INC_STATS(sock_net(sk),
5830 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5831 		return true;
5832 	}
5833 	tp->syn_data_acked = tp->syn_data;
5834 	if (tp->syn_data_acked) {
5835 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5836 		/* SYN-data is counted as two separate packets in tcp_ack() */
5837 		if (tp->delivered > 1)
5838 			--tp->delivered;
5839 	}
5840 
5841 	tcp_fastopen_add_skb(sk, synack);
5842 
5843 	return false;
5844 }
5845 
5846 static void smc_check_reset_syn(struct tcp_sock *tp)
5847 {
5848 #if IS_ENABLED(CONFIG_SMC)
5849 	if (static_branch_unlikely(&tcp_have_smc)) {
5850 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5851 			tp->syn_smc = 0;
5852 	}
5853 #endif
5854 }
5855 
5856 static void tcp_try_undo_spurious_syn(struct sock *sk)
5857 {
5858 	struct tcp_sock *tp = tcp_sk(sk);
5859 	u32 syn_stamp;
5860 
5861 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5862 	 * spurious if the ACK's timestamp option echo value matches the
5863 	 * original SYN timestamp.
5864 	 */
5865 	syn_stamp = tp->retrans_stamp;
5866 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5867 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5868 		tp->undo_marker = 0;
5869 }
5870 
5871 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5872 					 const struct tcphdr *th)
5873 {
5874 	struct inet_connection_sock *icsk = inet_csk(sk);
5875 	struct tcp_sock *tp = tcp_sk(sk);
5876 	struct tcp_fastopen_cookie foc = { .len = -1 };
5877 	int saved_clamp = tp->rx_opt.mss_clamp;
5878 	bool fastopen_fail;
5879 
5880 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5881 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5882 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5883 
5884 	if (th->ack) {
5885 		/* rfc793:
5886 		 * "If the state is SYN-SENT then
5887 		 *    first check the ACK bit
5888 		 *      If the ACK bit is set
5889 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5890 		 *        a reset (unless the RST bit is set, if so drop
5891 		 *        the segment and return)"
5892 		 */
5893 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5894 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5895 			goto reset_and_undo;
5896 
5897 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5898 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5899 			     tcp_time_stamp(tp))) {
5900 			NET_INC_STATS(sock_net(sk),
5901 					LINUX_MIB_PAWSACTIVEREJECTED);
5902 			goto reset_and_undo;
5903 		}
5904 
5905 		/* Now ACK is acceptable.
5906 		 *
5907 		 * "If the RST bit is set
5908 		 *    If the ACK was acceptable then signal the user "error:
5909 		 *    connection reset", drop the segment, enter CLOSED state,
5910 		 *    delete TCB, and return."
5911 		 */
5912 
5913 		if (th->rst) {
5914 			tcp_reset(sk);
5915 			goto discard;
5916 		}
5917 
5918 		/* rfc793:
5919 		 *   "fifth, if neither of the SYN or RST bits is set then
5920 		 *    drop the segment and return."
5921 		 *
5922 		 *    See note below!
5923 		 *                                        --ANK(990513)
5924 		 */
5925 		if (!th->syn)
5926 			goto discard_and_undo;
5927 
5928 		/* rfc793:
5929 		 *   "If the SYN bit is on ...
5930 		 *    are acceptable then ...
5931 		 *    (our SYN has been ACKed), change the connection
5932 		 *    state to ESTABLISHED..."
5933 		 */
5934 
5935 		tcp_ecn_rcv_synack(tp, th);
5936 
5937 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5938 		tcp_try_undo_spurious_syn(sk);
5939 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5940 
5941 		/* Ok.. it's good. Set up sequence numbers and
5942 		 * move to established.
5943 		 */
5944 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5945 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5946 
5947 		/* RFC1323: The window in SYN & SYN/ACK segments is
5948 		 * never scaled.
5949 		 */
5950 		tp->snd_wnd = ntohs(th->window);
5951 
5952 		if (!tp->rx_opt.wscale_ok) {
5953 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5954 			tp->window_clamp = min(tp->window_clamp, 65535U);
5955 		}
5956 
5957 		if (tp->rx_opt.saw_tstamp) {
5958 			tp->rx_opt.tstamp_ok	   = 1;
5959 			tp->tcp_header_len =
5960 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5961 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5962 			tcp_store_ts_recent(tp);
5963 		} else {
5964 			tp->tcp_header_len = sizeof(struct tcphdr);
5965 		}
5966 
5967 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5968 		tcp_initialize_rcv_mss(sk);
5969 
5970 		/* Remember, tcp_poll() does not lock socket!
5971 		 * Change state from SYN-SENT only after copied_seq
5972 		 * is initialized. */
5973 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5974 
5975 		smc_check_reset_syn(tp);
5976 
5977 		smp_mb();
5978 
5979 		tcp_finish_connect(sk, skb);
5980 
5981 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5982 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5983 
5984 		if (!sock_flag(sk, SOCK_DEAD)) {
5985 			sk->sk_state_change(sk);
5986 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5987 		}
5988 		if (fastopen_fail)
5989 			return -1;
5990 		if (sk->sk_write_pending ||
5991 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5992 		    inet_csk_in_pingpong_mode(sk)) {
5993 			/* Save one ACK. Data will be ready after
5994 			 * several ticks, if write_pending is set.
5995 			 *
5996 			 * It may be deleted, but with this feature tcpdumps
5997 			 * look so _wonderfully_ clever, that I was not able
5998 			 * to stand against the temptation 8)     --ANK
5999 			 */
6000 			inet_csk_schedule_ack(sk);
6001 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6002 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6003 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6004 
6005 discard:
6006 			tcp_drop(sk, skb);
6007 			return 0;
6008 		} else {
6009 			tcp_send_ack(sk);
6010 		}
6011 		return -1;
6012 	}
6013 
6014 	/* No ACK in the segment */
6015 
6016 	if (th->rst) {
6017 		/* rfc793:
6018 		 * "If the RST bit is set
6019 		 *
6020 		 *      Otherwise (no ACK) drop the segment and return."
6021 		 */
6022 
6023 		goto discard_and_undo;
6024 	}
6025 
6026 	/* PAWS check. */
6027 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6028 	    tcp_paws_reject(&tp->rx_opt, 0))
6029 		goto discard_and_undo;
6030 
6031 	if (th->syn) {
6032 		/* We see SYN without ACK. It is attempt of
6033 		 * simultaneous connect with crossed SYNs.
6034 		 * Particularly, it can be connect to self.
6035 		 */
6036 		tcp_set_state(sk, TCP_SYN_RECV);
6037 
6038 		if (tp->rx_opt.saw_tstamp) {
6039 			tp->rx_opt.tstamp_ok = 1;
6040 			tcp_store_ts_recent(tp);
6041 			tp->tcp_header_len =
6042 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6043 		} else {
6044 			tp->tcp_header_len = sizeof(struct tcphdr);
6045 		}
6046 
6047 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6048 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6049 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6050 
6051 		/* RFC1323: The window in SYN & SYN/ACK segments is
6052 		 * never scaled.
6053 		 */
6054 		tp->snd_wnd    = ntohs(th->window);
6055 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6056 		tp->max_window = tp->snd_wnd;
6057 
6058 		tcp_ecn_rcv_syn(tp, th);
6059 
6060 		tcp_mtup_init(sk);
6061 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6062 		tcp_initialize_rcv_mss(sk);
6063 
6064 		tcp_send_synack(sk);
6065 #if 0
6066 		/* Note, we could accept data and URG from this segment.
6067 		 * There are no obstacles to make this (except that we must
6068 		 * either change tcp_recvmsg() to prevent it from returning data
6069 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6070 		 *
6071 		 * However, if we ignore data in ACKless segments sometimes,
6072 		 * we have no reasons to accept it sometimes.
6073 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6074 		 * is not flawless. So, discard packet for sanity.
6075 		 * Uncomment this return to process the data.
6076 		 */
6077 		return -1;
6078 #else
6079 		goto discard;
6080 #endif
6081 	}
6082 	/* "fifth, if neither of the SYN or RST bits is set then
6083 	 * drop the segment and return."
6084 	 */
6085 
6086 discard_and_undo:
6087 	tcp_clear_options(&tp->rx_opt);
6088 	tp->rx_opt.mss_clamp = saved_clamp;
6089 	goto discard;
6090 
6091 reset_and_undo:
6092 	tcp_clear_options(&tp->rx_opt);
6093 	tp->rx_opt.mss_clamp = saved_clamp;
6094 	return 1;
6095 }
6096 
6097 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6098 {
6099 	struct request_sock *req;
6100 
6101 	tcp_try_undo_loss(sk, false);
6102 
6103 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6104 	tcp_sk(sk)->retrans_stamp = 0;
6105 	inet_csk(sk)->icsk_retransmits = 0;
6106 
6107 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6108 	 * we no longer need req so release it.
6109 	 */
6110 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6111 					lockdep_sock_is_held(sk));
6112 	reqsk_fastopen_remove(sk, req, false);
6113 
6114 	/* Re-arm the timer because data may have been sent out.
6115 	 * This is similar to the regular data transmission case
6116 	 * when new data has just been ack'ed.
6117 	 *
6118 	 * (TFO) - we could try to be more aggressive and
6119 	 * retransmitting any data sooner based on when they
6120 	 * are sent out.
6121 	 */
6122 	tcp_rearm_rto(sk);
6123 }
6124 
6125 /*
6126  *	This function implements the receiving procedure of RFC 793 for
6127  *	all states except ESTABLISHED and TIME_WAIT.
6128  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6129  *	address independent.
6130  */
6131 
6132 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6133 {
6134 	struct tcp_sock *tp = tcp_sk(sk);
6135 	struct inet_connection_sock *icsk = inet_csk(sk);
6136 	const struct tcphdr *th = tcp_hdr(skb);
6137 	struct request_sock *req;
6138 	int queued = 0;
6139 	bool acceptable;
6140 
6141 	switch (sk->sk_state) {
6142 	case TCP_CLOSE:
6143 		goto discard;
6144 
6145 	case TCP_LISTEN:
6146 		if (th->ack)
6147 			return 1;
6148 
6149 		if (th->rst)
6150 			goto discard;
6151 
6152 		if (th->syn) {
6153 			if (th->fin)
6154 				goto discard;
6155 			/* It is possible that we process SYN packets from backlog,
6156 			 * so we need to make sure to disable BH and RCU right there.
6157 			 */
6158 			rcu_read_lock();
6159 			local_bh_disable();
6160 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6161 			local_bh_enable();
6162 			rcu_read_unlock();
6163 
6164 			if (!acceptable)
6165 				return 1;
6166 			consume_skb(skb);
6167 			return 0;
6168 		}
6169 		goto discard;
6170 
6171 	case TCP_SYN_SENT:
6172 		tp->rx_opt.saw_tstamp = 0;
6173 		tcp_mstamp_refresh(tp);
6174 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6175 		if (queued >= 0)
6176 			return queued;
6177 
6178 		/* Do step6 onward by hand. */
6179 		tcp_urg(sk, skb, th);
6180 		__kfree_skb(skb);
6181 		tcp_data_snd_check(sk);
6182 		return 0;
6183 	}
6184 
6185 	tcp_mstamp_refresh(tp);
6186 	tp->rx_opt.saw_tstamp = 0;
6187 	req = rcu_dereference_protected(tp->fastopen_rsk,
6188 					lockdep_sock_is_held(sk));
6189 	if (req) {
6190 		bool req_stolen;
6191 
6192 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6193 		    sk->sk_state != TCP_FIN_WAIT1);
6194 
6195 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6196 			goto discard;
6197 	}
6198 
6199 	if (!th->ack && !th->rst && !th->syn)
6200 		goto discard;
6201 
6202 	if (!tcp_validate_incoming(sk, skb, th, 0))
6203 		return 0;
6204 
6205 	/* step 5: check the ACK field */
6206 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6207 				      FLAG_UPDATE_TS_RECENT |
6208 				      FLAG_NO_CHALLENGE_ACK) > 0;
6209 
6210 	if (!acceptable) {
6211 		if (sk->sk_state == TCP_SYN_RECV)
6212 			return 1;	/* send one RST */
6213 		tcp_send_challenge_ack(sk, skb);
6214 		goto discard;
6215 	}
6216 	switch (sk->sk_state) {
6217 	case TCP_SYN_RECV:
6218 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6219 		if (!tp->srtt_us)
6220 			tcp_synack_rtt_meas(sk, req);
6221 
6222 		if (req) {
6223 			tcp_rcv_synrecv_state_fastopen(sk);
6224 		} else {
6225 			tcp_try_undo_spurious_syn(sk);
6226 			tp->retrans_stamp = 0;
6227 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6228 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6229 		}
6230 		smp_mb();
6231 		tcp_set_state(sk, TCP_ESTABLISHED);
6232 		sk->sk_state_change(sk);
6233 
6234 		/* Note, that this wakeup is only for marginal crossed SYN case.
6235 		 * Passively open sockets are not waked up, because
6236 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6237 		 */
6238 		if (sk->sk_socket)
6239 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6240 
6241 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6242 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6243 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6244 
6245 		if (tp->rx_opt.tstamp_ok)
6246 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6247 
6248 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6249 			tcp_update_pacing_rate(sk);
6250 
6251 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6252 		tp->lsndtime = tcp_jiffies32;
6253 
6254 		tcp_initialize_rcv_mss(sk);
6255 		tcp_fast_path_on(tp);
6256 		break;
6257 
6258 	case TCP_FIN_WAIT1: {
6259 		int tmo;
6260 
6261 		if (req)
6262 			tcp_rcv_synrecv_state_fastopen(sk);
6263 
6264 		if (tp->snd_una != tp->write_seq)
6265 			break;
6266 
6267 		tcp_set_state(sk, TCP_FIN_WAIT2);
6268 		sk->sk_shutdown |= SEND_SHUTDOWN;
6269 
6270 		sk_dst_confirm(sk);
6271 
6272 		if (!sock_flag(sk, SOCK_DEAD)) {
6273 			/* Wake up lingering close() */
6274 			sk->sk_state_change(sk);
6275 			break;
6276 		}
6277 
6278 		if (tp->linger2 < 0) {
6279 			tcp_done(sk);
6280 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6281 			return 1;
6282 		}
6283 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6284 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6285 			/* Receive out of order FIN after close() */
6286 			if (tp->syn_fastopen && th->fin)
6287 				tcp_fastopen_active_disable(sk);
6288 			tcp_done(sk);
6289 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6290 			return 1;
6291 		}
6292 
6293 		tmo = tcp_fin_time(sk);
6294 		if (tmo > TCP_TIMEWAIT_LEN) {
6295 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6296 		} else if (th->fin || sock_owned_by_user(sk)) {
6297 			/* Bad case. We could lose such FIN otherwise.
6298 			 * It is not a big problem, but it looks confusing
6299 			 * and not so rare event. We still can lose it now,
6300 			 * if it spins in bh_lock_sock(), but it is really
6301 			 * marginal case.
6302 			 */
6303 			inet_csk_reset_keepalive_timer(sk, tmo);
6304 		} else {
6305 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6306 			goto discard;
6307 		}
6308 		break;
6309 	}
6310 
6311 	case TCP_CLOSING:
6312 		if (tp->snd_una == tp->write_seq) {
6313 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6314 			goto discard;
6315 		}
6316 		break;
6317 
6318 	case TCP_LAST_ACK:
6319 		if (tp->snd_una == tp->write_seq) {
6320 			tcp_update_metrics(sk);
6321 			tcp_done(sk);
6322 			goto discard;
6323 		}
6324 		break;
6325 	}
6326 
6327 	/* step 6: check the URG bit */
6328 	tcp_urg(sk, skb, th);
6329 
6330 	/* step 7: process the segment text */
6331 	switch (sk->sk_state) {
6332 	case TCP_CLOSE_WAIT:
6333 	case TCP_CLOSING:
6334 	case TCP_LAST_ACK:
6335 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6336 			break;
6337 		/* fall through */
6338 	case TCP_FIN_WAIT1:
6339 	case TCP_FIN_WAIT2:
6340 		/* RFC 793 says to queue data in these states,
6341 		 * RFC 1122 says we MUST send a reset.
6342 		 * BSD 4.4 also does reset.
6343 		 */
6344 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6345 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6346 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6347 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6348 				tcp_reset(sk);
6349 				return 1;
6350 			}
6351 		}
6352 		/* Fall through */
6353 	case TCP_ESTABLISHED:
6354 		tcp_data_queue(sk, skb);
6355 		queued = 1;
6356 		break;
6357 	}
6358 
6359 	/* tcp_data could move socket to TIME-WAIT */
6360 	if (sk->sk_state != TCP_CLOSE) {
6361 		tcp_data_snd_check(sk);
6362 		tcp_ack_snd_check(sk);
6363 	}
6364 
6365 	if (!queued) {
6366 discard:
6367 		tcp_drop(sk, skb);
6368 	}
6369 	return 0;
6370 }
6371 EXPORT_SYMBOL(tcp_rcv_state_process);
6372 
6373 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6374 {
6375 	struct inet_request_sock *ireq = inet_rsk(req);
6376 
6377 	if (family == AF_INET)
6378 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6379 				    &ireq->ir_rmt_addr, port);
6380 #if IS_ENABLED(CONFIG_IPV6)
6381 	else if (family == AF_INET6)
6382 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6383 				    &ireq->ir_v6_rmt_addr, port);
6384 #endif
6385 }
6386 
6387 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6388  *
6389  * If we receive a SYN packet with these bits set, it means a
6390  * network is playing bad games with TOS bits. In order to
6391  * avoid possible false congestion notifications, we disable
6392  * TCP ECN negotiation.
6393  *
6394  * Exception: tcp_ca wants ECN. This is required for DCTCP
6395  * congestion control: Linux DCTCP asserts ECT on all packets,
6396  * including SYN, which is most optimal solution; however,
6397  * others, such as FreeBSD do not.
6398  *
6399  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6400  * set, indicating the use of a future TCP extension (such as AccECN). See
6401  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6402  * extensions.
6403  */
6404 static void tcp_ecn_create_request(struct request_sock *req,
6405 				   const struct sk_buff *skb,
6406 				   const struct sock *listen_sk,
6407 				   const struct dst_entry *dst)
6408 {
6409 	const struct tcphdr *th = tcp_hdr(skb);
6410 	const struct net *net = sock_net(listen_sk);
6411 	bool th_ecn = th->ece && th->cwr;
6412 	bool ect, ecn_ok;
6413 	u32 ecn_ok_dst;
6414 
6415 	if (!th_ecn)
6416 		return;
6417 
6418 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6419 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6420 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6421 
6422 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6423 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6424 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6425 		inet_rsk(req)->ecn_ok = 1;
6426 }
6427 
6428 static void tcp_openreq_init(struct request_sock *req,
6429 			     const struct tcp_options_received *rx_opt,
6430 			     struct sk_buff *skb, const struct sock *sk)
6431 {
6432 	struct inet_request_sock *ireq = inet_rsk(req);
6433 
6434 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6435 	req->cookie_ts = 0;
6436 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6437 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6438 	tcp_rsk(req)->snt_synack = 0;
6439 	tcp_rsk(req)->last_oow_ack_time = 0;
6440 	req->mss = rx_opt->mss_clamp;
6441 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6442 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6443 	ireq->sack_ok = rx_opt->sack_ok;
6444 	ireq->snd_wscale = rx_opt->snd_wscale;
6445 	ireq->wscale_ok = rx_opt->wscale_ok;
6446 	ireq->acked = 0;
6447 	ireq->ecn_ok = 0;
6448 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6449 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6450 	ireq->ir_mark = inet_request_mark(sk, skb);
6451 #if IS_ENABLED(CONFIG_SMC)
6452 	ireq->smc_ok = rx_opt->smc_ok;
6453 #endif
6454 }
6455 
6456 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6457 				      struct sock *sk_listener,
6458 				      bool attach_listener)
6459 {
6460 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6461 					       attach_listener);
6462 
6463 	if (req) {
6464 		struct inet_request_sock *ireq = inet_rsk(req);
6465 
6466 		ireq->ireq_opt = NULL;
6467 #if IS_ENABLED(CONFIG_IPV6)
6468 		ireq->pktopts = NULL;
6469 #endif
6470 		atomic64_set(&ireq->ir_cookie, 0);
6471 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6472 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6473 		ireq->ireq_family = sk_listener->sk_family;
6474 	}
6475 
6476 	return req;
6477 }
6478 EXPORT_SYMBOL(inet_reqsk_alloc);
6479 
6480 /*
6481  * Return true if a syncookie should be sent
6482  */
6483 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6484 {
6485 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6486 	const char *msg = "Dropping request";
6487 	bool want_cookie = false;
6488 	struct net *net = sock_net(sk);
6489 
6490 #ifdef CONFIG_SYN_COOKIES
6491 	if (net->ipv4.sysctl_tcp_syncookies) {
6492 		msg = "Sending cookies";
6493 		want_cookie = true;
6494 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6495 	} else
6496 #endif
6497 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6498 
6499 	if (!queue->synflood_warned &&
6500 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6501 	    xchg(&queue->synflood_warned, 1) == 0)
6502 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6503 				     proto, sk->sk_num, msg);
6504 
6505 	return want_cookie;
6506 }
6507 
6508 static void tcp_reqsk_record_syn(const struct sock *sk,
6509 				 struct request_sock *req,
6510 				 const struct sk_buff *skb)
6511 {
6512 	if (tcp_sk(sk)->save_syn) {
6513 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6514 		u32 *copy;
6515 
6516 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6517 		if (copy) {
6518 			copy[0] = len;
6519 			memcpy(&copy[1], skb_network_header(skb), len);
6520 			req->saved_syn = copy;
6521 		}
6522 	}
6523 }
6524 
6525 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6526  * used for SYN cookie generation.
6527  */
6528 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6529 			  const struct tcp_request_sock_ops *af_ops,
6530 			  struct sock *sk, struct tcphdr *th)
6531 {
6532 	struct tcp_sock *tp = tcp_sk(sk);
6533 	u16 mss;
6534 
6535 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6536 	    !inet_csk_reqsk_queue_is_full(sk))
6537 		return 0;
6538 
6539 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6540 		return 0;
6541 
6542 	if (sk_acceptq_is_full(sk)) {
6543 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6544 		return 0;
6545 	}
6546 
6547 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6548 	if (!mss)
6549 		mss = af_ops->mss_clamp;
6550 
6551 	return mss;
6552 }
6553 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6554 
6555 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6556 		     const struct tcp_request_sock_ops *af_ops,
6557 		     struct sock *sk, struct sk_buff *skb)
6558 {
6559 	struct tcp_fastopen_cookie foc = { .len = -1 };
6560 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6561 	struct tcp_options_received tmp_opt;
6562 	struct tcp_sock *tp = tcp_sk(sk);
6563 	struct net *net = sock_net(sk);
6564 	struct sock *fastopen_sk = NULL;
6565 	struct request_sock *req;
6566 	bool want_cookie = false;
6567 	struct dst_entry *dst;
6568 	struct flowi fl;
6569 
6570 	/* TW buckets are converted to open requests without
6571 	 * limitations, they conserve resources and peer is
6572 	 * evidently real one.
6573 	 */
6574 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6575 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6576 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6577 		if (!want_cookie)
6578 			goto drop;
6579 	}
6580 
6581 	if (sk_acceptq_is_full(sk)) {
6582 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6583 		goto drop;
6584 	}
6585 
6586 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6587 	if (!req)
6588 		goto drop;
6589 
6590 	tcp_rsk(req)->af_specific = af_ops;
6591 	tcp_rsk(req)->ts_off = 0;
6592 
6593 	tcp_clear_options(&tmp_opt);
6594 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6595 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6596 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6597 			  want_cookie ? NULL : &foc);
6598 
6599 	if (want_cookie && !tmp_opt.saw_tstamp)
6600 		tcp_clear_options(&tmp_opt);
6601 
6602 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6603 		tmp_opt.smc_ok = 0;
6604 
6605 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6606 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6607 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6608 
6609 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6610 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6611 
6612 	af_ops->init_req(req, sk, skb);
6613 
6614 	if (security_inet_conn_request(sk, skb, req))
6615 		goto drop_and_free;
6616 
6617 	if (tmp_opt.tstamp_ok)
6618 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6619 
6620 	dst = af_ops->route_req(sk, &fl, req);
6621 	if (!dst)
6622 		goto drop_and_free;
6623 
6624 	if (!want_cookie && !isn) {
6625 		/* Kill the following clause, if you dislike this way. */
6626 		if (!net->ipv4.sysctl_tcp_syncookies &&
6627 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6628 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6629 		    !tcp_peer_is_proven(req, dst)) {
6630 			/* Without syncookies last quarter of
6631 			 * backlog is filled with destinations,
6632 			 * proven to be alive.
6633 			 * It means that we continue to communicate
6634 			 * to destinations, already remembered
6635 			 * to the moment of synflood.
6636 			 */
6637 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6638 				    rsk_ops->family);
6639 			goto drop_and_release;
6640 		}
6641 
6642 		isn = af_ops->init_seq(skb);
6643 	}
6644 
6645 	tcp_ecn_create_request(req, skb, sk, dst);
6646 
6647 	if (want_cookie) {
6648 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6649 		req->cookie_ts = tmp_opt.tstamp_ok;
6650 		if (!tmp_opt.tstamp_ok)
6651 			inet_rsk(req)->ecn_ok = 0;
6652 	}
6653 
6654 	tcp_rsk(req)->snt_isn = isn;
6655 	tcp_rsk(req)->txhash = net_tx_rndhash();
6656 	tcp_openreq_init_rwin(req, sk, dst);
6657 	sk_rx_queue_set(req_to_sk(req), skb);
6658 	if (!want_cookie) {
6659 		tcp_reqsk_record_syn(sk, req, skb);
6660 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6661 	}
6662 	if (fastopen_sk) {
6663 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6664 				    &foc, TCP_SYNACK_FASTOPEN);
6665 		/* Add the child socket directly into the accept queue */
6666 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6667 			reqsk_fastopen_remove(fastopen_sk, req, false);
6668 			bh_unlock_sock(fastopen_sk);
6669 			sock_put(fastopen_sk);
6670 			goto drop_and_free;
6671 		}
6672 		sk->sk_data_ready(sk);
6673 		bh_unlock_sock(fastopen_sk);
6674 		sock_put(fastopen_sk);
6675 	} else {
6676 		tcp_rsk(req)->tfo_listener = false;
6677 		if (!want_cookie)
6678 			inet_csk_reqsk_queue_hash_add(sk, req,
6679 				tcp_timeout_init((struct sock *)req));
6680 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6681 				    !want_cookie ? TCP_SYNACK_NORMAL :
6682 						   TCP_SYNACK_COOKIE);
6683 		if (want_cookie) {
6684 			reqsk_free(req);
6685 			return 0;
6686 		}
6687 	}
6688 	reqsk_put(req);
6689 	return 0;
6690 
6691 drop_and_release:
6692 	dst_release(dst);
6693 drop_and_free:
6694 	__reqsk_free(req);
6695 drop:
6696 	tcp_listendrop(sk);
6697 	return 0;
6698 }
6699 EXPORT_SYMBOL(tcp_conn_request);
6700