xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89 
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92 
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_early_retrans __read_mostly = 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 #define REXMIT_NONE	0 /* no loss recovery to do */
126 #define REXMIT_LOST	1 /* retransmit packets marked lost */
127 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
128 
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
130 			     unsigned int len)
131 {
132 	static bool __once __read_mostly;
133 
134 	if (!__once) {
135 		struct net_device *dev;
136 
137 		__once = true;
138 
139 		rcu_read_lock();
140 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
141 		if (!dev || len >= dev->mtu)
142 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 				dev ? dev->name : "Unknown driver");
144 		rcu_read_unlock();
145 	}
146 }
147 
148 /* Adapt the MSS value used to make delayed ack decision to the
149  * real world.
150  */
151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
152 {
153 	struct inet_connection_sock *icsk = inet_csk(sk);
154 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
155 	unsigned int len;
156 
157 	icsk->icsk_ack.last_seg_size = 0;
158 
159 	/* skb->len may jitter because of SACKs, even if peer
160 	 * sends good full-sized frames.
161 	 */
162 	len = skb_shinfo(skb)->gso_size ? : skb->len;
163 	if (len >= icsk->icsk_ack.rcv_mss) {
164 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
165 					       tcp_sk(sk)->advmss);
166 		/* Account for possibly-removed options */
167 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
168 				   MAX_TCP_OPTION_SPACE))
169 			tcp_gro_dev_warn(sk, skb, len);
170 	} else {
171 		/* Otherwise, we make more careful check taking into account,
172 		 * that SACKs block is variable.
173 		 *
174 		 * "len" is invariant segment length, including TCP header.
175 		 */
176 		len += skb->data - skb_transport_header(skb);
177 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
178 		    /* If PSH is not set, packet should be
179 		     * full sized, provided peer TCP is not badly broken.
180 		     * This observation (if it is correct 8)) allows
181 		     * to handle super-low mtu links fairly.
182 		     */
183 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
184 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
185 			/* Subtract also invariant (if peer is RFC compliant),
186 			 * tcp header plus fixed timestamp option length.
187 			 * Resulting "len" is MSS free of SACK jitter.
188 			 */
189 			len -= tcp_sk(sk)->tcp_header_len;
190 			icsk->icsk_ack.last_seg_size = len;
191 			if (len == lss) {
192 				icsk->icsk_ack.rcv_mss = len;
193 				return;
194 			}
195 		}
196 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
198 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
199 	}
200 }
201 
202 static void tcp_incr_quickack(struct sock *sk)
203 {
204 	struct inet_connection_sock *icsk = inet_csk(sk);
205 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
206 
207 	if (quickacks == 0)
208 		quickacks = 2;
209 	if (quickacks > icsk->icsk_ack.quick)
210 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
211 }
212 
213 static void tcp_enter_quickack_mode(struct sock *sk)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	tcp_incr_quickack(sk);
217 	icsk->icsk_ack.pingpong = 0;
218 	icsk->icsk_ack.ato = TCP_ATO_MIN;
219 }
220 
221 /* Send ACKs quickly, if "quick" count is not exhausted
222  * and the session is not interactive.
223  */
224 
225 static bool tcp_in_quickack_mode(struct sock *sk)
226 {
227 	const struct inet_connection_sock *icsk = inet_csk(sk);
228 	const struct dst_entry *dst = __sk_dst_get(sk);
229 
230 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
231 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
232 }
233 
234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
235 {
236 	if (tp->ecn_flags & TCP_ECN_OK)
237 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
238 }
239 
240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
241 {
242 	if (tcp_hdr(skb)->cwr)
243 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
244 }
245 
246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
247 {
248 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
249 }
250 
251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252 {
253 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
254 	case INET_ECN_NOT_ECT:
255 		/* Funny extension: if ECT is not set on a segment,
256 		 * and we already seen ECT on a previous segment,
257 		 * it is probably a retransmit.
258 		 */
259 		if (tp->ecn_flags & TCP_ECN_SEEN)
260 			tcp_enter_quickack_mode((struct sock *)tp);
261 		break;
262 	case INET_ECN_CE:
263 		if (tcp_ca_needs_ecn((struct sock *)tp))
264 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
265 
266 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
267 			/* Better not delay acks, sender can have a very low cwnd */
268 			tcp_enter_quickack_mode((struct sock *)tp);
269 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
270 		}
271 		tp->ecn_flags |= TCP_ECN_SEEN;
272 		break;
273 	default:
274 		if (tcp_ca_needs_ecn((struct sock *)tp))
275 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
276 		tp->ecn_flags |= TCP_ECN_SEEN;
277 		break;
278 	}
279 }
280 
281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
282 {
283 	if (tp->ecn_flags & TCP_ECN_OK)
284 		__tcp_ecn_check_ce(tp, skb);
285 }
286 
287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
288 {
289 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
290 		tp->ecn_flags &= ~TCP_ECN_OK;
291 }
292 
293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
294 {
295 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
296 		tp->ecn_flags &= ~TCP_ECN_OK;
297 }
298 
299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
300 {
301 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
302 		return true;
303 	return false;
304 }
305 
306 /* Buffer size and advertised window tuning.
307  *
308  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
309  */
310 
311 static void tcp_sndbuf_expand(struct sock *sk)
312 {
313 	const struct tcp_sock *tp = tcp_sk(sk);
314 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
315 	int sndmem, per_mss;
316 	u32 nr_segs;
317 
318 	/* Worst case is non GSO/TSO : each frame consumes one skb
319 	 * and skb->head is kmalloced using power of two area of memory
320 	 */
321 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 		  MAX_TCP_HEADER +
323 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
324 
325 	per_mss = roundup_pow_of_two(per_mss) +
326 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
327 
328 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
329 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
330 
331 	/* Fast Recovery (RFC 5681 3.2) :
332 	 * Cubic needs 1.7 factor, rounded to 2 to include
333 	 * extra cushion (application might react slowly to POLLOUT)
334 	 */
335 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
336 	sndmem *= nr_segs * per_mss;
337 
338 	if (sk->sk_sndbuf < sndmem)
339 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
340 }
341 
342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343  *
344  * All tcp_full_space() is split to two parts: "network" buffer, allocated
345  * forward and advertised in receiver window (tp->rcv_wnd) and
346  * "application buffer", required to isolate scheduling/application
347  * latencies from network.
348  * window_clamp is maximal advertised window. It can be less than
349  * tcp_full_space(), in this case tcp_full_space() - window_clamp
350  * is reserved for "application" buffer. The less window_clamp is
351  * the smoother our behaviour from viewpoint of network, but the lower
352  * throughput and the higher sensitivity of the connection to losses. 8)
353  *
354  * rcv_ssthresh is more strict window_clamp used at "slow start"
355  * phase to predict further behaviour of this connection.
356  * It is used for two goals:
357  * - to enforce header prediction at sender, even when application
358  *   requires some significant "application buffer". It is check #1.
359  * - to prevent pruning of receive queue because of misprediction
360  *   of receiver window. Check #2.
361  *
362  * The scheme does not work when sender sends good segments opening
363  * window and then starts to feed us spaghetti. But it should work
364  * in common situations. Otherwise, we have to rely on queue collapsing.
365  */
366 
367 /* Slow part of check#2. */
368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 	/* Optimize this! */
372 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
373 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
374 
375 	while (tp->rcv_ssthresh <= window) {
376 		if (truesize <= skb->len)
377 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
378 
379 		truesize >>= 1;
380 		window >>= 1;
381 	}
382 	return 0;
383 }
384 
385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 
389 	/* Check #1 */
390 	if (tp->rcv_ssthresh < tp->window_clamp &&
391 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
392 	    !tcp_under_memory_pressure(sk)) {
393 		int incr;
394 
395 		/* Check #2. Increase window, if skb with such overhead
396 		 * will fit to rcvbuf in future.
397 		 */
398 		if (tcp_win_from_space(skb->truesize) <= skb->len)
399 			incr = 2 * tp->advmss;
400 		else
401 			incr = __tcp_grow_window(sk, skb);
402 
403 		if (incr) {
404 			incr = max_t(int, incr, 2 * skb->len);
405 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 					       tp->window_clamp);
407 			inet_csk(sk)->icsk_ack.quick |= 1;
408 		}
409 	}
410 }
411 
412 /* 3. Tuning rcvbuf, when connection enters established state. */
413 static void tcp_fixup_rcvbuf(struct sock *sk)
414 {
415 	u32 mss = tcp_sk(sk)->advmss;
416 	int rcvmem;
417 
418 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
419 		 tcp_default_init_rwnd(mss);
420 
421 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 	 * Allow enough cushion so that sender is not limited by our window
423 	 */
424 	if (sysctl_tcp_moderate_rcvbuf)
425 		rcvmem <<= 2;
426 
427 	if (sk->sk_rcvbuf < rcvmem)
428 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
429 }
430 
431 /* 4. Try to fixup all. It is made immediately after connection enters
432  *    established state.
433  */
434 void tcp_init_buffer_space(struct sock *sk)
435 {
436 	struct tcp_sock *tp = tcp_sk(sk);
437 	int maxwin;
438 
439 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
440 		tcp_fixup_rcvbuf(sk);
441 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
442 		tcp_sndbuf_expand(sk);
443 
444 	tp->rcvq_space.space = tp->rcv_wnd;
445 	tp->rcvq_space.time = tcp_time_stamp;
446 	tp->rcvq_space.seq = tp->copied_seq;
447 
448 	maxwin = tcp_full_space(sk);
449 
450 	if (tp->window_clamp >= maxwin) {
451 		tp->window_clamp = maxwin;
452 
453 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 			tp->window_clamp = max(maxwin -
455 					       (maxwin >> sysctl_tcp_app_win),
456 					       4 * tp->advmss);
457 	}
458 
459 	/* Force reservation of one segment. */
460 	if (sysctl_tcp_app_win &&
461 	    tp->window_clamp > 2 * tp->advmss &&
462 	    tp->window_clamp + tp->advmss > maxwin)
463 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464 
465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 	tp->snd_cwnd_stamp = tcp_time_stamp;
467 }
468 
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 	struct tcp_sock *tp = tcp_sk(sk);
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt;
522 	long m = sample;
523 
524 	if (m == 0)
525 		m = 1;
526 
527 	if (new_sample != 0) {
528 		/* If we sample in larger samples in the non-timestamp
529 		 * case, we could grossly overestimate the RTT especially
530 		 * with chatty applications or bulk transfer apps which
531 		 * are stalled on filesystem I/O.
532 		 *
533 		 * Also, since we are only going for a minimum in the
534 		 * non-timestamp case, we do not smooth things out
535 		 * else with timestamps disabled convergence takes too
536 		 * long.
537 		 */
538 		if (!win_dep) {
539 			m -= (new_sample >> 3);
540 			new_sample += m;
541 		} else {
542 			m <<= 3;
543 			if (m < new_sample)
544 				new_sample = m;
545 		}
546 	} else {
547 		/* No previous measure. */
548 		new_sample = m << 3;
549 	}
550 
551 	if (tp->rcv_rtt_est.rtt != new_sample)
552 		tp->rcv_rtt_est.rtt = new_sample;
553 }
554 
555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
556 {
557 	if (tp->rcv_rtt_est.time == 0)
558 		goto new_measure;
559 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 		return;
561 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
562 
563 new_measure:
564 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 	tp->rcv_rtt_est.time = tcp_time_stamp;
566 }
567 
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 					  const struct sk_buff *skb)
570 {
571 	struct tcp_sock *tp = tcp_sk(sk);
572 	if (tp->rx_opt.rcv_tsecr &&
573 	    (TCP_SKB_CB(skb)->end_seq -
574 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
575 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
576 }
577 
578 /*
579  * This function should be called every time data is copied to user space.
580  * It calculates the appropriate TCP receive buffer space.
581  */
582 void tcp_rcv_space_adjust(struct sock *sk)
583 {
584 	struct tcp_sock *tp = tcp_sk(sk);
585 	int time;
586 	int copied;
587 
588 	time = tcp_time_stamp - tp->rcvq_space.time;
589 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
590 		return;
591 
592 	/* Number of bytes copied to user in last RTT */
593 	copied = tp->copied_seq - tp->rcvq_space.seq;
594 	if (copied <= tp->rcvq_space.space)
595 		goto new_measure;
596 
597 	/* A bit of theory :
598 	 * copied = bytes received in previous RTT, our base window
599 	 * To cope with packet losses, we need a 2x factor
600 	 * To cope with slow start, and sender growing its cwin by 100 %
601 	 * every RTT, we need a 4x factor, because the ACK we are sending
602 	 * now is for the next RTT, not the current one :
603 	 * <prev RTT . ><current RTT .. ><next RTT .... >
604 	 */
605 
606 	if (sysctl_tcp_moderate_rcvbuf &&
607 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 		int rcvwin, rcvmem, rcvbuf;
609 
610 		/* minimal window to cope with packet losses, assuming
611 		 * steady state. Add some cushion because of small variations.
612 		 */
613 		rcvwin = (copied << 1) + 16 * tp->advmss;
614 
615 		/* If rate increased by 25%,
616 		 *	assume slow start, rcvwin = 3 * copied
617 		 * If rate increased by 50%,
618 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
619 		 */
620 		if (copied >=
621 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
622 			if (copied >=
623 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
624 				rcvwin <<= 1;
625 			else
626 				rcvwin += (rcvwin >> 1);
627 		}
628 
629 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
630 		while (tcp_win_from_space(rcvmem) < tp->advmss)
631 			rcvmem += 128;
632 
633 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
634 		if (rcvbuf > sk->sk_rcvbuf) {
635 			sk->sk_rcvbuf = rcvbuf;
636 
637 			/* Make the window clamp follow along.  */
638 			tp->window_clamp = rcvwin;
639 		}
640 	}
641 	tp->rcvq_space.space = copied;
642 
643 new_measure:
644 	tp->rcvq_space.seq = tp->copied_seq;
645 	tp->rcvq_space.time = tcp_time_stamp;
646 }
647 
648 /* There is something which you must keep in mind when you analyze the
649  * behavior of the tp->ato delayed ack timeout interval.  When a
650  * connection starts up, we want to ack as quickly as possible.  The
651  * problem is that "good" TCP's do slow start at the beginning of data
652  * transmission.  The means that until we send the first few ACK's the
653  * sender will sit on his end and only queue most of his data, because
654  * he can only send snd_cwnd unacked packets at any given time.  For
655  * each ACK we send, he increments snd_cwnd and transmits more of his
656  * queue.  -DaveM
657  */
658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	struct inet_connection_sock *icsk = inet_csk(sk);
662 	u32 now;
663 
664 	inet_csk_schedule_ack(sk);
665 
666 	tcp_measure_rcv_mss(sk, skb);
667 
668 	tcp_rcv_rtt_measure(tp);
669 
670 	now = tcp_time_stamp;
671 
672 	if (!icsk->icsk_ack.ato) {
673 		/* The _first_ data packet received, initialize
674 		 * delayed ACK engine.
675 		 */
676 		tcp_incr_quickack(sk);
677 		icsk->icsk_ack.ato = TCP_ATO_MIN;
678 	} else {
679 		int m = now - icsk->icsk_ack.lrcvtime;
680 
681 		if (m <= TCP_ATO_MIN / 2) {
682 			/* The fastest case is the first. */
683 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 		} else if (m < icsk->icsk_ack.ato) {
685 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 				icsk->icsk_ack.ato = icsk->icsk_rto;
688 		} else if (m > icsk->icsk_rto) {
689 			/* Too long gap. Apparently sender failed to
690 			 * restart window, so that we send ACKs quickly.
691 			 */
692 			tcp_incr_quickack(sk);
693 			sk_mem_reclaim(sk);
694 		}
695 	}
696 	icsk->icsk_ack.lrcvtime = now;
697 
698 	tcp_ecn_check_ce(tp, skb);
699 
700 	if (skb->len >= 128)
701 		tcp_grow_window(sk, skb);
702 }
703 
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705  * routine either comes from timestamps, or from segments that were
706  * known _not_ to have been retransmitted [see Karn/Partridge
707  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708  * piece by Van Jacobson.
709  * NOTE: the next three routines used to be one big routine.
710  * To save cycles in the RFC 1323 implementation it was better to break
711  * it up into three procedures. -- erics
712  */
713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	long m = mrtt_us; /* RTT */
717 	u32 srtt = tp->srtt_us;
718 
719 	/*	The following amusing code comes from Jacobson's
720 	 *	article in SIGCOMM '88.  Note that rtt and mdev
721 	 *	are scaled versions of rtt and mean deviation.
722 	 *	This is designed to be as fast as possible
723 	 *	m stands for "measurement".
724 	 *
725 	 *	On a 1990 paper the rto value is changed to:
726 	 *	RTO = rtt + 4 * mdev
727 	 *
728 	 * Funny. This algorithm seems to be very broken.
729 	 * These formulae increase RTO, when it should be decreased, increase
730 	 * too slowly, when it should be increased quickly, decrease too quickly
731 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 	 * does not matter how to _calculate_ it. Seems, it was trap
733 	 * that VJ failed to avoid. 8)
734 	 */
735 	if (srtt != 0) {
736 		m -= (srtt >> 3);	/* m is now error in rtt est */
737 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
738 		if (m < 0) {
739 			m = -m;		/* m is now abs(error) */
740 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
741 			/* This is similar to one of Eifel findings.
742 			 * Eifel blocks mdev updates when rtt decreases.
743 			 * This solution is a bit different: we use finer gain
744 			 * for mdev in this case (alpha*beta).
745 			 * Like Eifel it also prevents growth of rto,
746 			 * but also it limits too fast rto decreases,
747 			 * happening in pure Eifel.
748 			 */
749 			if (m > 0)
750 				m >>= 3;
751 		} else {
752 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
753 		}
754 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
755 		if (tp->mdev_us > tp->mdev_max_us) {
756 			tp->mdev_max_us = tp->mdev_us;
757 			if (tp->mdev_max_us > tp->rttvar_us)
758 				tp->rttvar_us = tp->mdev_max_us;
759 		}
760 		if (after(tp->snd_una, tp->rtt_seq)) {
761 			if (tp->mdev_max_us < tp->rttvar_us)
762 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
763 			tp->rtt_seq = tp->snd_nxt;
764 			tp->mdev_max_us = tcp_rto_min_us(sk);
765 		}
766 	} else {
767 		/* no previous measure. */
768 		srtt = m << 3;		/* take the measured time to be rtt */
769 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
770 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 		tp->mdev_max_us = tp->rttvar_us;
772 		tp->rtt_seq = tp->snd_nxt;
773 	}
774 	tp->srtt_us = max(1U, srtt);
775 }
776 
777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778  * Note: TCP stack does not yet implement pacing.
779  * FQ packet scheduler can be used to implement cheap but effective
780  * TCP pacing, to smooth the burst on large writes when packets
781  * in flight is significantly lower than cwnd (or rwin)
782  */
783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
785 
786 static void tcp_update_pacing_rate(struct sock *sk)
787 {
788 	const struct tcp_sock *tp = tcp_sk(sk);
789 	u64 rate;
790 
791 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793 
794 	/* current rate is (cwnd * mss) / srtt
795 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 	 *
798 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 	 *	 end of slow start and should slow down.
801 	 */
802 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 		rate *= sysctl_tcp_pacing_ss_ratio;
804 	else
805 		rate *= sysctl_tcp_pacing_ca_ratio;
806 
807 	rate *= max(tp->snd_cwnd, tp->packets_out);
808 
809 	if (likely(tp->srtt_us))
810 		do_div(rate, tp->srtt_us);
811 
812 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 	 * without any lock. We want to make sure compiler wont store
814 	 * intermediate values in this location.
815 	 */
816 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
817 						sk->sk_max_pacing_rate);
818 }
819 
820 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
821  * routine referred to above.
822  */
823 static void tcp_set_rto(struct sock *sk)
824 {
825 	const struct tcp_sock *tp = tcp_sk(sk);
826 	/* Old crap is replaced with new one. 8)
827 	 *
828 	 * More seriously:
829 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 	 *    It cannot be less due to utterly erratic ACK generation made
831 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
833 	 *    is invisible. Actually, Linux-2.4 also generates erratic
834 	 *    ACKs in some circumstances.
835 	 */
836 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
837 
838 	/* 2. Fixups made earlier cannot be right.
839 	 *    If we do not estimate RTO correctly without them,
840 	 *    all the algo is pure shit and should be replaced
841 	 *    with correct one. It is exactly, which we pretend to do.
842 	 */
843 
844 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 	 * guarantees that rto is higher.
846 	 */
847 	tcp_bound_rto(sk);
848 }
849 
850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
851 {
852 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853 
854 	if (!cwnd)
855 		cwnd = TCP_INIT_CWND;
856 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857 }
858 
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 	/* RFC3517 uses different metric in lost marker => reset on change */
866 	if (tcp_is_fack(tp))
867 		tp->lost_skb_hint = NULL;
868 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
869 }
870 
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
875 }
876 
877 static void tcp_update_reordering(struct sock *sk, const int metric,
878 				  const int ts)
879 {
880 	struct tcp_sock *tp = tcp_sk(sk);
881 	int mib_idx;
882 
883 	if (metric > tp->reordering) {
884 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
885 
886 #if FASTRETRANS_DEBUG > 1
887 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
888 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
889 			 tp->reordering,
890 			 tp->fackets_out,
891 			 tp->sacked_out,
892 			 tp->undo_marker ? tp->undo_retrans : 0);
893 #endif
894 		tcp_disable_fack(tp);
895 	}
896 
897 	tp->rack.reord = 1;
898 
899 	/* This exciting event is worth to be remembered. 8) */
900 	if (ts)
901 		mib_idx = LINUX_MIB_TCPTSREORDER;
902 	else if (tcp_is_reno(tp))
903 		mib_idx = LINUX_MIB_TCPRENOREORDER;
904 	else if (tcp_is_fack(tp))
905 		mib_idx = LINUX_MIB_TCPFACKREORDER;
906 	else
907 		mib_idx = LINUX_MIB_TCPSACKREORDER;
908 
909 	NET_INC_STATS(sock_net(sk), mib_idx);
910 }
911 
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
914 {
915 	if (!tp->retransmit_skb_hint ||
916 	    before(TCP_SKB_CB(skb)->seq,
917 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
918 		tp->retransmit_skb_hint = skb;
919 }
920 
921 /* Sum the number of packets on the wire we have marked as lost.
922  * There are two cases we care about here:
923  * a) Packet hasn't been marked lost (nor retransmitted),
924  *    and this is the first loss.
925  * b) Packet has been marked both lost and retransmitted,
926  *    and this means we think it was lost again.
927  */
928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
931 
932 	if (!(sacked & TCPCB_LOST) ||
933 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
934 		tp->lost += tcp_skb_pcount(skb);
935 }
936 
937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
940 		tcp_verify_retransmit_hint(tp, skb);
941 
942 		tp->lost_out += tcp_skb_pcount(skb);
943 		tcp_sum_lost(tp, skb);
944 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 	}
946 }
947 
948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
949 {
950 	tcp_verify_retransmit_hint(tp, skb);
951 
952 	tcp_sum_lost(tp, skb);
953 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
954 		tp->lost_out += tcp_skb_pcount(skb);
955 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
956 	}
957 }
958 
959 /* This procedure tags the retransmission queue when SACKs arrive.
960  *
961  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
962  * Packets in queue with these bits set are counted in variables
963  * sacked_out, retrans_out and lost_out, correspondingly.
964  *
965  * Valid combinations are:
966  * Tag  InFlight	Description
967  * 0	1		- orig segment is in flight.
968  * S	0		- nothing flies, orig reached receiver.
969  * L	0		- nothing flies, orig lost by net.
970  * R	2		- both orig and retransmit are in flight.
971  * L|R	1		- orig is lost, retransmit is in flight.
972  * S|R  1		- orig reached receiver, retrans is still in flight.
973  * (L|S|R is logically valid, it could occur when L|R is sacked,
974  *  but it is equivalent to plain S and code short-curcuits it to S.
975  *  L|S is logically invalid, it would mean -1 packet in flight 8))
976  *
977  * These 6 states form finite state machine, controlled by the following events:
978  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
979  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
980  * 3. Loss detection event of two flavors:
981  *	A. Scoreboard estimator decided the packet is lost.
982  *	   A'. Reno "three dupacks" marks head of queue lost.
983  *	   A''. Its FACK modification, head until snd.fack is lost.
984  *	B. SACK arrives sacking SND.NXT at the moment, when the
985  *	   segment was retransmitted.
986  * 4. D-SACK added new rule: D-SACK changes any tag to S.
987  *
988  * It is pleasant to note, that state diagram turns out to be commutative,
989  * so that we are allowed not to be bothered by order of our actions,
990  * when multiple events arrive simultaneously. (see the function below).
991  *
992  * Reordering detection.
993  * --------------------
994  * Reordering metric is maximal distance, which a packet can be displaced
995  * in packet stream. With SACKs we can estimate it:
996  *
997  * 1. SACK fills old hole and the corresponding segment was not
998  *    ever retransmitted -> reordering. Alas, we cannot use it
999  *    when segment was retransmitted.
1000  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001  *    for retransmitted and already SACKed segment -> reordering..
1002  * Both of these heuristics are not used in Loss state, when we cannot
1003  * account for retransmits accurately.
1004  *
1005  * SACK block validation.
1006  * ----------------------
1007  *
1008  * SACK block range validation checks that the received SACK block fits to
1009  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010  * Note that SND.UNA is not included to the range though being valid because
1011  * it means that the receiver is rather inconsistent with itself reporting
1012  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013  * perfectly valid, however, in light of RFC2018 which explicitly states
1014  * that "SACK block MUST reflect the newest segment.  Even if the newest
1015  * segment is going to be discarded ...", not that it looks very clever
1016  * in case of head skb. Due to potentional receiver driven attacks, we
1017  * choose to avoid immediate execution of a walk in write queue due to
1018  * reneging and defer head skb's loss recovery to standard loss recovery
1019  * procedure that will eventually trigger (nothing forbids us doing this).
1020  *
1021  * Implements also blockage to start_seq wrap-around. Problem lies in the
1022  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023  * there's no guarantee that it will be before snd_nxt (n). The problem
1024  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025  * wrap (s_w):
1026  *
1027  *         <- outs wnd ->                          <- wrapzone ->
1028  *         u     e      n                         u_w   e_w  s n_w
1029  *         |     |      |                          |     |   |  |
1030  * |<------------+------+----- TCP seqno space --------------+---------->|
1031  * ...-- <2^31 ->|                                           |<--------...
1032  * ...---- >2^31 ------>|                                    |<--------...
1033  *
1034  * Current code wouldn't be vulnerable but it's better still to discard such
1035  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038  * equal to the ideal case (infinite seqno space without wrap caused issues).
1039  *
1040  * With D-SACK the lower bound is extended to cover sequence space below
1041  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042  * again, D-SACK block must not to go across snd_una (for the same reason as
1043  * for the normal SACK blocks, explained above). But there all simplicity
1044  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045  * fully below undo_marker they do not affect behavior in anyway and can
1046  * therefore be safely ignored. In rare cases (which are more or less
1047  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048  * fragmentation and packet reordering past skb's retransmission. To consider
1049  * them correctly, the acceptable range must be extended even more though
1050  * the exact amount is rather hard to quantify. However, tp->max_window can
1051  * be used as an exaggerated estimate.
1052  */
1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 				   u32 start_seq, u32 end_seq)
1055 {
1056 	/* Too far in future, or reversed (interpretation is ambiguous) */
1057 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1058 		return false;
1059 
1060 	/* Nasty start_seq wrap-around check (see comments above) */
1061 	if (!before(start_seq, tp->snd_nxt))
1062 		return false;
1063 
1064 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1065 	 * start_seq == snd_una is non-sensical (see comments above)
1066 	 */
1067 	if (after(start_seq, tp->snd_una))
1068 		return true;
1069 
1070 	if (!is_dsack || !tp->undo_marker)
1071 		return false;
1072 
1073 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1074 	if (after(end_seq, tp->snd_una))
1075 		return false;
1076 
1077 	if (!before(start_seq, tp->undo_marker))
1078 		return true;
1079 
1080 	/* Too old */
1081 	if (!after(end_seq, tp->undo_marker))
1082 		return false;
1083 
1084 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1086 	 */
1087 	return !before(start_seq, end_seq - tp->max_window);
1088 }
1089 
1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 			    struct tcp_sack_block_wire *sp, int num_sacks,
1092 			    u32 prior_snd_una)
1093 {
1094 	struct tcp_sock *tp = tcp_sk(sk);
1095 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1097 	bool dup_sack = false;
1098 
1099 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1100 		dup_sack = true;
1101 		tcp_dsack_seen(tp);
1102 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1103 	} else if (num_sacks > 1) {
1104 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1106 
1107 		if (!after(end_seq_0, end_seq_1) &&
1108 		    !before(start_seq_0, start_seq_1)) {
1109 			dup_sack = true;
1110 			tcp_dsack_seen(tp);
1111 			NET_INC_STATS(sock_net(sk),
1112 					LINUX_MIB_TCPDSACKOFORECV);
1113 		}
1114 	}
1115 
1116 	/* D-SACK for already forgotten data... Do dumb counting. */
1117 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1118 	    !after(end_seq_0, prior_snd_una) &&
1119 	    after(end_seq_0, tp->undo_marker))
1120 		tp->undo_retrans--;
1121 
1122 	return dup_sack;
1123 }
1124 
1125 struct tcp_sacktag_state {
1126 	int	reord;
1127 	int	fack_count;
1128 	/* Timestamps for earliest and latest never-retransmitted segment
1129 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1130 	 * but congestion control should still get an accurate delay signal.
1131 	 */
1132 	struct skb_mstamp first_sackt;
1133 	struct skb_mstamp last_sackt;
1134 	struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
1135 	struct rate_sample *rate;
1136 	int	flag;
1137 };
1138 
1139 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1140  * the incoming SACK may not exactly match but we can find smaller MSS
1141  * aligned portion of it that matches. Therefore we might need to fragment
1142  * which may fail and creates some hassle (caller must handle error case
1143  * returns).
1144  *
1145  * FIXME: this could be merged to shift decision code
1146  */
1147 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1148 				  u32 start_seq, u32 end_seq)
1149 {
1150 	int err;
1151 	bool in_sack;
1152 	unsigned int pkt_len;
1153 	unsigned int mss;
1154 
1155 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1156 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1157 
1158 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1159 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1160 		mss = tcp_skb_mss(skb);
1161 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1162 
1163 		if (!in_sack) {
1164 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1165 			if (pkt_len < mss)
1166 				pkt_len = mss;
1167 		} else {
1168 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1169 			if (pkt_len < mss)
1170 				return -EINVAL;
1171 		}
1172 
1173 		/* Round if necessary so that SACKs cover only full MSSes
1174 		 * and/or the remaining small portion (if present)
1175 		 */
1176 		if (pkt_len > mss) {
1177 			unsigned int new_len = (pkt_len / mss) * mss;
1178 			if (!in_sack && new_len < pkt_len) {
1179 				new_len += mss;
1180 				if (new_len >= skb->len)
1181 					return 0;
1182 			}
1183 			pkt_len = new_len;
1184 		}
1185 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1186 		if (err < 0)
1187 			return err;
1188 	}
1189 
1190 	return in_sack;
1191 }
1192 
1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194 static u8 tcp_sacktag_one(struct sock *sk,
1195 			  struct tcp_sacktag_state *state, u8 sacked,
1196 			  u32 start_seq, u32 end_seq,
1197 			  int dup_sack, int pcount,
1198 			  const struct skb_mstamp *xmit_time)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 	int fack_count = state->fack_count;
1202 
1203 	/* Account D-SACK for retransmitted packet. */
1204 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1205 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1206 		    after(end_seq, tp->undo_marker))
1207 			tp->undo_retrans--;
1208 		if (sacked & TCPCB_SACKED_ACKED)
1209 			state->reord = min(fack_count, state->reord);
1210 	}
1211 
1212 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1213 	if (!after(end_seq, tp->snd_una))
1214 		return sacked;
1215 
1216 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1217 		tcp_rack_advance(tp, sacked, end_seq,
1218 				 xmit_time, &state->ack_time);
1219 
1220 		if (sacked & TCPCB_SACKED_RETRANS) {
1221 			/* If the segment is not tagged as lost,
1222 			 * we do not clear RETRANS, believing
1223 			 * that retransmission is still in flight.
1224 			 */
1225 			if (sacked & TCPCB_LOST) {
1226 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 				tp->lost_out -= pcount;
1228 				tp->retrans_out -= pcount;
1229 			}
1230 		} else {
1231 			if (!(sacked & TCPCB_RETRANS)) {
1232 				/* New sack for not retransmitted frame,
1233 				 * which was in hole. It is reordering.
1234 				 */
1235 				if (before(start_seq,
1236 					   tcp_highest_sack_seq(tp)))
1237 					state->reord = min(fack_count,
1238 							   state->reord);
1239 				if (!after(end_seq, tp->high_seq))
1240 					state->flag |= FLAG_ORIG_SACK_ACKED;
1241 				if (state->first_sackt.v64 == 0)
1242 					state->first_sackt = *xmit_time;
1243 				state->last_sackt = *xmit_time;
1244 			}
1245 
1246 			if (sacked & TCPCB_LOST) {
1247 				sacked &= ~TCPCB_LOST;
1248 				tp->lost_out -= pcount;
1249 			}
1250 		}
1251 
1252 		sacked |= TCPCB_SACKED_ACKED;
1253 		state->flag |= FLAG_DATA_SACKED;
1254 		tp->sacked_out += pcount;
1255 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1256 
1257 		fack_count += pcount;
1258 
1259 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1260 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1261 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1262 			tp->lost_cnt_hint += pcount;
1263 
1264 		if (fack_count > tp->fackets_out)
1265 			tp->fackets_out = fack_count;
1266 	}
1267 
1268 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 	 * are accounted above as well.
1271 	 */
1272 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 		sacked &= ~TCPCB_SACKED_RETRANS;
1274 		tp->retrans_out -= pcount;
1275 	}
1276 
1277 	return sacked;
1278 }
1279 
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282  */
1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1284 			    struct tcp_sacktag_state *state,
1285 			    unsigned int pcount, int shifted, int mss,
1286 			    bool dup_sack)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1290 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1291 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1292 
1293 	BUG_ON(!pcount);
1294 
1295 	/* Adjust counters and hints for the newly sacked sequence
1296 	 * range but discard the return value since prev is already
1297 	 * marked. We must tag the range first because the seq
1298 	 * advancement below implicitly advances
1299 	 * tcp_highest_sack_seq() when skb is highest_sack.
1300 	 */
1301 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1302 			start_seq, end_seq, dup_sack, pcount,
1303 			&skb->skb_mstamp);
1304 	tcp_rate_skb_delivered(sk, skb, state->rate);
1305 
1306 	if (skb == tp->lost_skb_hint)
1307 		tp->lost_cnt_hint += pcount;
1308 
1309 	TCP_SKB_CB(prev)->end_seq += shifted;
1310 	TCP_SKB_CB(skb)->seq += shifted;
1311 
1312 	tcp_skb_pcount_add(prev, pcount);
1313 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1314 	tcp_skb_pcount_add(skb, -pcount);
1315 
1316 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1317 	 * in theory this shouldn't be necessary but as long as DSACK
1318 	 * code can come after this skb later on it's better to keep
1319 	 * setting gso_size to something.
1320 	 */
1321 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1323 
1324 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 	if (tcp_skb_pcount(skb) <= 1)
1326 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1327 
1328 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330 
1331 	if (skb->len > 0) {
1332 		BUG_ON(!tcp_skb_pcount(skb));
1333 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 		return false;
1335 	}
1336 
1337 	/* Whole SKB was eaten :-) */
1338 
1339 	if (skb == tp->retransmit_skb_hint)
1340 		tp->retransmit_skb_hint = prev;
1341 	if (skb == tp->lost_skb_hint) {
1342 		tp->lost_skb_hint = prev;
1343 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 	}
1345 
1346 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1348 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 		TCP_SKB_CB(prev)->end_seq++;
1350 
1351 	if (skb == tcp_highest_sack(sk))
1352 		tcp_advance_highest_sack(sk, skb);
1353 
1354 	tcp_skb_collapse_tstamp(prev, skb);
1355 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1356 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1357 
1358 	tcp_unlink_write_queue(skb, sk);
1359 	sk_wmem_free_skb(sk, skb);
1360 
1361 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1362 
1363 	return true;
1364 }
1365 
1366 /* I wish gso_size would have a bit more sane initialization than
1367  * something-or-zero which complicates things
1368  */
1369 static int tcp_skb_seglen(const struct sk_buff *skb)
1370 {
1371 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1372 }
1373 
1374 /* Shifting pages past head area doesn't work */
1375 static int skb_can_shift(const struct sk_buff *skb)
1376 {
1377 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1378 }
1379 
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1381  * skb.
1382  */
1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1384 					  struct tcp_sacktag_state *state,
1385 					  u32 start_seq, u32 end_seq,
1386 					  bool dup_sack)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 	struct sk_buff *prev;
1390 	int mss;
1391 	int pcount = 0;
1392 	int len;
1393 	int in_sack;
1394 
1395 	if (!sk_can_gso(sk))
1396 		goto fallback;
1397 
1398 	/* Normally R but no L won't result in plain S */
1399 	if (!dup_sack &&
1400 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1401 		goto fallback;
1402 	if (!skb_can_shift(skb))
1403 		goto fallback;
1404 	/* This frame is about to be dropped (was ACKed). */
1405 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1406 		goto fallback;
1407 
1408 	/* Can only happen with delayed DSACK + discard craziness */
1409 	if (unlikely(skb == tcp_write_queue_head(sk)))
1410 		goto fallback;
1411 	prev = tcp_write_queue_prev(sk, skb);
1412 
1413 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1414 		goto fallback;
1415 
1416 	if (!tcp_skb_can_collapse_to(prev))
1417 		goto fallback;
1418 
1419 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1420 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1421 
1422 	if (in_sack) {
1423 		len = skb->len;
1424 		pcount = tcp_skb_pcount(skb);
1425 		mss = tcp_skb_seglen(skb);
1426 
1427 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 		 * drop this restriction as unnecessary
1429 		 */
1430 		if (mss != tcp_skb_seglen(prev))
1431 			goto fallback;
1432 	} else {
1433 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1434 			goto noop;
1435 		/* CHECKME: This is non-MSS split case only?, this will
1436 		 * cause skipped skbs due to advancing loop btw, original
1437 		 * has that feature too
1438 		 */
1439 		if (tcp_skb_pcount(skb) <= 1)
1440 			goto noop;
1441 
1442 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1443 		if (!in_sack) {
1444 			/* TODO: head merge to next could be attempted here
1445 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 			 * though it might not be worth of the additional hassle
1447 			 *
1448 			 * ...we can probably just fallback to what was done
1449 			 * previously. We could try merging non-SACKed ones
1450 			 * as well but it probably isn't going to buy off
1451 			 * because later SACKs might again split them, and
1452 			 * it would make skb timestamp tracking considerably
1453 			 * harder problem.
1454 			 */
1455 			goto fallback;
1456 		}
1457 
1458 		len = end_seq - TCP_SKB_CB(skb)->seq;
1459 		BUG_ON(len < 0);
1460 		BUG_ON(len > skb->len);
1461 
1462 		/* MSS boundaries should be honoured or else pcount will
1463 		 * severely break even though it makes things bit trickier.
1464 		 * Optimize common case to avoid most of the divides
1465 		 */
1466 		mss = tcp_skb_mss(skb);
1467 
1468 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 		 * drop this restriction as unnecessary
1470 		 */
1471 		if (mss != tcp_skb_seglen(prev))
1472 			goto fallback;
1473 
1474 		if (len == mss) {
1475 			pcount = 1;
1476 		} else if (len < mss) {
1477 			goto noop;
1478 		} else {
1479 			pcount = len / mss;
1480 			len = pcount * mss;
1481 		}
1482 	}
1483 
1484 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1486 		goto fallback;
1487 
1488 	if (!skb_shift(prev, skb, len))
1489 		goto fallback;
1490 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1491 		goto out;
1492 
1493 	/* Hole filled allows collapsing with the next as well, this is very
1494 	 * useful when hole on every nth skb pattern happens
1495 	 */
1496 	if (prev == tcp_write_queue_tail(sk))
1497 		goto out;
1498 	skb = tcp_write_queue_next(sk, prev);
1499 
1500 	if (!skb_can_shift(skb) ||
1501 	    (skb == tcp_send_head(sk)) ||
1502 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1503 	    (mss != tcp_skb_seglen(skb)))
1504 		goto out;
1505 
1506 	len = skb->len;
1507 	if (skb_shift(prev, skb, len)) {
1508 		pcount += tcp_skb_pcount(skb);
1509 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1510 	}
1511 
1512 out:
1513 	state->fack_count += pcount;
1514 	return prev;
1515 
1516 noop:
1517 	return skb;
1518 
1519 fallback:
1520 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1521 	return NULL;
1522 }
1523 
1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1525 					struct tcp_sack_block *next_dup,
1526 					struct tcp_sacktag_state *state,
1527 					u32 start_seq, u32 end_seq,
1528 					bool dup_sack_in)
1529 {
1530 	struct tcp_sock *tp = tcp_sk(sk);
1531 	struct sk_buff *tmp;
1532 
1533 	tcp_for_write_queue_from(skb, sk) {
1534 		int in_sack = 0;
1535 		bool dup_sack = dup_sack_in;
1536 
1537 		if (skb == tcp_send_head(sk))
1538 			break;
1539 
1540 		/* queue is in-order => we can short-circuit the walk early */
1541 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1542 			break;
1543 
1544 		if (next_dup  &&
1545 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1546 			in_sack = tcp_match_skb_to_sack(sk, skb,
1547 							next_dup->start_seq,
1548 							next_dup->end_seq);
1549 			if (in_sack > 0)
1550 				dup_sack = true;
1551 		}
1552 
1553 		/* skb reference here is a bit tricky to get right, since
1554 		 * shifting can eat and free both this skb and the next,
1555 		 * so not even _safe variant of the loop is enough.
1556 		 */
1557 		if (in_sack <= 0) {
1558 			tmp = tcp_shift_skb_data(sk, skb, state,
1559 						 start_seq, end_seq, dup_sack);
1560 			if (tmp) {
1561 				if (tmp != skb) {
1562 					skb = tmp;
1563 					continue;
1564 				}
1565 
1566 				in_sack = 0;
1567 			} else {
1568 				in_sack = tcp_match_skb_to_sack(sk, skb,
1569 								start_seq,
1570 								end_seq);
1571 			}
1572 		}
1573 
1574 		if (unlikely(in_sack < 0))
1575 			break;
1576 
1577 		if (in_sack) {
1578 			TCP_SKB_CB(skb)->sacked =
1579 				tcp_sacktag_one(sk,
1580 						state,
1581 						TCP_SKB_CB(skb)->sacked,
1582 						TCP_SKB_CB(skb)->seq,
1583 						TCP_SKB_CB(skb)->end_seq,
1584 						dup_sack,
1585 						tcp_skb_pcount(skb),
1586 						&skb->skb_mstamp);
1587 			tcp_rate_skb_delivered(sk, skb, state->rate);
1588 
1589 			if (!before(TCP_SKB_CB(skb)->seq,
1590 				    tcp_highest_sack_seq(tp)))
1591 				tcp_advance_highest_sack(sk, skb);
1592 		}
1593 
1594 		state->fack_count += tcp_skb_pcount(skb);
1595 	}
1596 	return skb;
1597 }
1598 
1599 /* Avoid all extra work that is being done by sacktag while walking in
1600  * a normal way
1601  */
1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1603 					struct tcp_sacktag_state *state,
1604 					u32 skip_to_seq)
1605 {
1606 	tcp_for_write_queue_from(skb, sk) {
1607 		if (skb == tcp_send_head(sk))
1608 			break;
1609 
1610 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1611 			break;
1612 
1613 		state->fack_count += tcp_skb_pcount(skb);
1614 	}
1615 	return skb;
1616 }
1617 
1618 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1619 						struct sock *sk,
1620 						struct tcp_sack_block *next_dup,
1621 						struct tcp_sacktag_state *state,
1622 						u32 skip_to_seq)
1623 {
1624 	if (!next_dup)
1625 		return skb;
1626 
1627 	if (before(next_dup->start_seq, skip_to_seq)) {
1628 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1629 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1630 				       next_dup->start_seq, next_dup->end_seq,
1631 				       1);
1632 	}
1633 
1634 	return skb;
1635 }
1636 
1637 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1638 {
1639 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1640 }
1641 
1642 static int
1643 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1644 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1645 {
1646 	struct tcp_sock *tp = tcp_sk(sk);
1647 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1648 				    TCP_SKB_CB(ack_skb)->sacked);
1649 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1650 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1651 	struct tcp_sack_block *cache;
1652 	struct sk_buff *skb;
1653 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1654 	int used_sacks;
1655 	bool found_dup_sack = false;
1656 	int i, j;
1657 	int first_sack_index;
1658 
1659 	state->flag = 0;
1660 	state->reord = tp->packets_out;
1661 
1662 	if (!tp->sacked_out) {
1663 		if (WARN_ON(tp->fackets_out))
1664 			tp->fackets_out = 0;
1665 		tcp_highest_sack_reset(sk);
1666 	}
1667 
1668 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1669 					 num_sacks, prior_snd_una);
1670 	if (found_dup_sack) {
1671 		state->flag |= FLAG_DSACKING_ACK;
1672 		tp->delivered++; /* A spurious retransmission is delivered */
1673 	}
1674 
1675 	/* Eliminate too old ACKs, but take into
1676 	 * account more or less fresh ones, they can
1677 	 * contain valid SACK info.
1678 	 */
1679 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1680 		return 0;
1681 
1682 	if (!tp->packets_out)
1683 		goto out;
1684 
1685 	used_sacks = 0;
1686 	first_sack_index = 0;
1687 	for (i = 0; i < num_sacks; i++) {
1688 		bool dup_sack = !i && found_dup_sack;
1689 
1690 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1691 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1692 
1693 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1694 					    sp[used_sacks].start_seq,
1695 					    sp[used_sacks].end_seq)) {
1696 			int mib_idx;
1697 
1698 			if (dup_sack) {
1699 				if (!tp->undo_marker)
1700 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1701 				else
1702 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1703 			} else {
1704 				/* Don't count olds caused by ACK reordering */
1705 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1706 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1707 					continue;
1708 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1709 			}
1710 
1711 			NET_INC_STATS(sock_net(sk), mib_idx);
1712 			if (i == 0)
1713 				first_sack_index = -1;
1714 			continue;
1715 		}
1716 
1717 		/* Ignore very old stuff early */
1718 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1719 			continue;
1720 
1721 		used_sacks++;
1722 	}
1723 
1724 	/* order SACK blocks to allow in order walk of the retrans queue */
1725 	for (i = used_sacks - 1; i > 0; i--) {
1726 		for (j = 0; j < i; j++) {
1727 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1728 				swap(sp[j], sp[j + 1]);
1729 
1730 				/* Track where the first SACK block goes to */
1731 				if (j == first_sack_index)
1732 					first_sack_index = j + 1;
1733 			}
1734 		}
1735 	}
1736 
1737 	skb = tcp_write_queue_head(sk);
1738 	state->fack_count = 0;
1739 	i = 0;
1740 
1741 	if (!tp->sacked_out) {
1742 		/* It's already past, so skip checking against it */
1743 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1744 	} else {
1745 		cache = tp->recv_sack_cache;
1746 		/* Skip empty blocks in at head of the cache */
1747 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1748 		       !cache->end_seq)
1749 			cache++;
1750 	}
1751 
1752 	while (i < used_sacks) {
1753 		u32 start_seq = sp[i].start_seq;
1754 		u32 end_seq = sp[i].end_seq;
1755 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1756 		struct tcp_sack_block *next_dup = NULL;
1757 
1758 		if (found_dup_sack && ((i + 1) == first_sack_index))
1759 			next_dup = &sp[i + 1];
1760 
1761 		/* Skip too early cached blocks */
1762 		while (tcp_sack_cache_ok(tp, cache) &&
1763 		       !before(start_seq, cache->end_seq))
1764 			cache++;
1765 
1766 		/* Can skip some work by looking recv_sack_cache? */
1767 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1768 		    after(end_seq, cache->start_seq)) {
1769 
1770 			/* Head todo? */
1771 			if (before(start_seq, cache->start_seq)) {
1772 				skb = tcp_sacktag_skip(skb, sk, state,
1773 						       start_seq);
1774 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1775 						       state,
1776 						       start_seq,
1777 						       cache->start_seq,
1778 						       dup_sack);
1779 			}
1780 
1781 			/* Rest of the block already fully processed? */
1782 			if (!after(end_seq, cache->end_seq))
1783 				goto advance_sp;
1784 
1785 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1786 						       state,
1787 						       cache->end_seq);
1788 
1789 			/* ...tail remains todo... */
1790 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1791 				/* ...but better entrypoint exists! */
1792 				skb = tcp_highest_sack(sk);
1793 				if (!skb)
1794 					break;
1795 				state->fack_count = tp->fackets_out;
1796 				cache++;
1797 				goto walk;
1798 			}
1799 
1800 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1801 			/* Check overlap against next cached too (past this one already) */
1802 			cache++;
1803 			continue;
1804 		}
1805 
1806 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1807 			skb = tcp_highest_sack(sk);
1808 			if (!skb)
1809 				break;
1810 			state->fack_count = tp->fackets_out;
1811 		}
1812 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1813 
1814 walk:
1815 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1816 				       start_seq, end_seq, dup_sack);
1817 
1818 advance_sp:
1819 		i++;
1820 	}
1821 
1822 	/* Clear the head of the cache sack blocks so we can skip it next time */
1823 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1824 		tp->recv_sack_cache[i].start_seq = 0;
1825 		tp->recv_sack_cache[i].end_seq = 0;
1826 	}
1827 	for (j = 0; j < used_sacks; j++)
1828 		tp->recv_sack_cache[i++] = sp[j];
1829 
1830 	if ((state->reord < tp->fackets_out) &&
1831 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1832 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1833 
1834 	tcp_verify_left_out(tp);
1835 out:
1836 
1837 #if FASTRETRANS_DEBUG > 0
1838 	WARN_ON((int)tp->sacked_out < 0);
1839 	WARN_ON((int)tp->lost_out < 0);
1840 	WARN_ON((int)tp->retrans_out < 0);
1841 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1842 #endif
1843 	return state->flag;
1844 }
1845 
1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1847  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1848  */
1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1850 {
1851 	u32 holes;
1852 
1853 	holes = max(tp->lost_out, 1U);
1854 	holes = min(holes, tp->packets_out);
1855 
1856 	if ((tp->sacked_out + holes) > tp->packets_out) {
1857 		tp->sacked_out = tp->packets_out - holes;
1858 		return true;
1859 	}
1860 	return false;
1861 }
1862 
1863 /* If we receive more dupacks than we expected counting segments
1864  * in assumption of absent reordering, interpret this as reordering.
1865  * The only another reason could be bug in receiver TCP.
1866  */
1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1868 {
1869 	struct tcp_sock *tp = tcp_sk(sk);
1870 	if (tcp_limit_reno_sacked(tp))
1871 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1872 }
1873 
1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1875 
1876 static void tcp_add_reno_sack(struct sock *sk)
1877 {
1878 	struct tcp_sock *tp = tcp_sk(sk);
1879 	u32 prior_sacked = tp->sacked_out;
1880 
1881 	tp->sacked_out++;
1882 	tcp_check_reno_reordering(sk, 0);
1883 	if (tp->sacked_out > prior_sacked)
1884 		tp->delivered++; /* Some out-of-order packet is delivered */
1885 	tcp_verify_left_out(tp);
1886 }
1887 
1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1889 
1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1891 {
1892 	struct tcp_sock *tp = tcp_sk(sk);
1893 
1894 	if (acked > 0) {
1895 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1896 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1897 		if (acked - 1 >= tp->sacked_out)
1898 			tp->sacked_out = 0;
1899 		else
1900 			tp->sacked_out -= acked - 1;
1901 	}
1902 	tcp_check_reno_reordering(sk, acked);
1903 	tcp_verify_left_out(tp);
1904 }
1905 
1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1907 {
1908 	tp->sacked_out = 0;
1909 }
1910 
1911 void tcp_clear_retrans(struct tcp_sock *tp)
1912 {
1913 	tp->retrans_out = 0;
1914 	tp->lost_out = 0;
1915 	tp->undo_marker = 0;
1916 	tp->undo_retrans = -1;
1917 	tp->fackets_out = 0;
1918 	tp->sacked_out = 0;
1919 }
1920 
1921 static inline void tcp_init_undo(struct tcp_sock *tp)
1922 {
1923 	tp->undo_marker = tp->snd_una;
1924 	/* Retransmission still in flight may cause DSACKs later. */
1925 	tp->undo_retrans = tp->retrans_out ? : -1;
1926 }
1927 
1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1929  * and reset tags completely, otherwise preserve SACKs. If receiver
1930  * dropped its ofo queue, we will know this due to reneging detection.
1931  */
1932 void tcp_enter_loss(struct sock *sk)
1933 {
1934 	const struct inet_connection_sock *icsk = inet_csk(sk);
1935 	struct tcp_sock *tp = tcp_sk(sk);
1936 	struct net *net = sock_net(sk);
1937 	struct sk_buff *skb;
1938 	bool is_reneg;			/* is receiver reneging on SACKs? */
1939 	bool mark_lost;
1940 
1941 	/* Reduce ssthresh if it has not yet been made inside this window. */
1942 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1943 	    !after(tp->high_seq, tp->snd_una) ||
1944 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1945 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1946 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1947 		tcp_ca_event(sk, CA_EVENT_LOSS);
1948 		tcp_init_undo(tp);
1949 	}
1950 	tp->snd_cwnd	   = 1;
1951 	tp->snd_cwnd_cnt   = 0;
1952 	tp->snd_cwnd_stamp = tcp_time_stamp;
1953 
1954 	tp->retrans_out = 0;
1955 	tp->lost_out = 0;
1956 
1957 	if (tcp_is_reno(tp))
1958 		tcp_reset_reno_sack(tp);
1959 
1960 	skb = tcp_write_queue_head(sk);
1961 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1962 	if (is_reneg) {
1963 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1964 		tp->sacked_out = 0;
1965 		tp->fackets_out = 0;
1966 	}
1967 	tcp_clear_all_retrans_hints(tp);
1968 
1969 	tcp_for_write_queue(skb, sk) {
1970 		if (skb == tcp_send_head(sk))
1971 			break;
1972 
1973 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1974 			     is_reneg);
1975 		if (mark_lost)
1976 			tcp_sum_lost(tp, skb);
1977 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1978 		if (mark_lost) {
1979 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1980 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1981 			tp->lost_out += tcp_skb_pcount(skb);
1982 		}
1983 	}
1984 	tcp_verify_left_out(tp);
1985 
1986 	/* Timeout in disordered state after receiving substantial DUPACKs
1987 	 * suggests that the degree of reordering is over-estimated.
1988 	 */
1989 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1990 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1991 		tp->reordering = min_t(unsigned int, tp->reordering,
1992 				       net->ipv4.sysctl_tcp_reordering);
1993 	tcp_set_ca_state(sk, TCP_CA_Loss);
1994 	tp->high_seq = tp->snd_nxt;
1995 	tcp_ecn_queue_cwr(tp);
1996 
1997 	/* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1998 	 * if a previous recovery is underway, otherwise it may incorrectly
1999 	 * call a timeout spurious if some previously retransmitted packets
2000 	 * are s/acked (sec 3.2). We do not apply that retriction since
2001 	 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
2002 	 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
2003 	 * on PTMU discovery to avoid sending new data.
2004 	 */
2005 	tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size;
2006 }
2007 
2008 /* If ACK arrived pointing to a remembered SACK, it means that our
2009  * remembered SACKs do not reflect real state of receiver i.e.
2010  * receiver _host_ is heavily congested (or buggy).
2011  *
2012  * To avoid big spurious retransmission bursts due to transient SACK
2013  * scoreboard oddities that look like reneging, we give the receiver a
2014  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2015  * restore sanity to the SACK scoreboard. If the apparent reneging
2016  * persists until this RTO then we'll clear the SACK scoreboard.
2017  */
2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2019 {
2020 	if (flag & FLAG_SACK_RENEGING) {
2021 		struct tcp_sock *tp = tcp_sk(sk);
2022 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2023 					  msecs_to_jiffies(10));
2024 
2025 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2026 					  delay, TCP_RTO_MAX);
2027 		return true;
2028 	}
2029 	return false;
2030 }
2031 
2032 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2033 {
2034 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2035 }
2036 
2037 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2038  * counter when SACK is enabled (without SACK, sacked_out is used for
2039  * that purpose).
2040  *
2041  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2042  * segments up to the highest received SACK block so far and holes in
2043  * between them.
2044  *
2045  * With reordering, holes may still be in flight, so RFC3517 recovery
2046  * uses pure sacked_out (total number of SACKed segments) even though
2047  * it violates the RFC that uses duplicate ACKs, often these are equal
2048  * but when e.g. out-of-window ACKs or packet duplication occurs,
2049  * they differ. Since neither occurs due to loss, TCP should really
2050  * ignore them.
2051  */
2052 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2053 {
2054 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2055 }
2056 
2057 /* Linux NewReno/SACK/FACK/ECN state machine.
2058  * --------------------------------------
2059  *
2060  * "Open"	Normal state, no dubious events, fast path.
2061  * "Disorder"   In all the respects it is "Open",
2062  *		but requires a bit more attention. It is entered when
2063  *		we see some SACKs or dupacks. It is split of "Open"
2064  *		mainly to move some processing from fast path to slow one.
2065  * "CWR"	CWND was reduced due to some Congestion Notification event.
2066  *		It can be ECN, ICMP source quench, local device congestion.
2067  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2068  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2069  *
2070  * tcp_fastretrans_alert() is entered:
2071  * - each incoming ACK, if state is not "Open"
2072  * - when arrived ACK is unusual, namely:
2073  *	* SACK
2074  *	* Duplicate ACK.
2075  *	* ECN ECE.
2076  *
2077  * Counting packets in flight is pretty simple.
2078  *
2079  *	in_flight = packets_out - left_out + retrans_out
2080  *
2081  *	packets_out is SND.NXT-SND.UNA counted in packets.
2082  *
2083  *	retrans_out is number of retransmitted segments.
2084  *
2085  *	left_out is number of segments left network, but not ACKed yet.
2086  *
2087  *		left_out = sacked_out + lost_out
2088  *
2089  *     sacked_out: Packets, which arrived to receiver out of order
2090  *		   and hence not ACKed. With SACKs this number is simply
2091  *		   amount of SACKed data. Even without SACKs
2092  *		   it is easy to give pretty reliable estimate of this number,
2093  *		   counting duplicate ACKs.
2094  *
2095  *       lost_out: Packets lost by network. TCP has no explicit
2096  *		   "loss notification" feedback from network (for now).
2097  *		   It means that this number can be only _guessed_.
2098  *		   Actually, it is the heuristics to predict lossage that
2099  *		   distinguishes different algorithms.
2100  *
2101  *	F.e. after RTO, when all the queue is considered as lost,
2102  *	lost_out = packets_out and in_flight = retrans_out.
2103  *
2104  *		Essentially, we have now a few algorithms detecting
2105  *		lost packets.
2106  *
2107  *		If the receiver supports SACK:
2108  *
2109  *		RFC6675/3517: It is the conventional algorithm. A packet is
2110  *		considered lost if the number of higher sequence packets
2111  *		SACKed is greater than or equal the DUPACK thoreshold
2112  *		(reordering). This is implemented in tcp_mark_head_lost and
2113  *		tcp_update_scoreboard.
2114  *
2115  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2116  *		(2017-) that checks timing instead of counting DUPACKs.
2117  *		Essentially a packet is considered lost if it's not S/ACKed
2118  *		after RTT + reordering_window, where both metrics are
2119  *		dynamically measured and adjusted. This is implemented in
2120  *		tcp_rack_mark_lost.
2121  *
2122  *		FACK (Disabled by default. Subsumbed by RACK):
2123  *		It is the simplest heuristics. As soon as we decided
2124  *		that something is lost, we decide that _all_ not SACKed
2125  *		packets until the most forward SACK are lost. I.e.
2126  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2127  *		It is absolutely correct estimate, if network does not reorder
2128  *		packets. And it loses any connection to reality when reordering
2129  *		takes place. We use FACK by default until reordering
2130  *		is suspected on the path to this destination.
2131  *
2132  *		If the receiver does not support SACK:
2133  *
2134  *		NewReno (RFC6582): in Recovery we assume that one segment
2135  *		is lost (classic Reno). While we are in Recovery and
2136  *		a partial ACK arrives, we assume that one more packet
2137  *		is lost (NewReno). This heuristics are the same in NewReno
2138  *		and SACK.
2139  *
2140  * Really tricky (and requiring careful tuning) part of algorithm
2141  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2142  * The first determines the moment _when_ we should reduce CWND and,
2143  * hence, slow down forward transmission. In fact, it determines the moment
2144  * when we decide that hole is caused by loss, rather than by a reorder.
2145  *
2146  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2147  * holes, caused by lost packets.
2148  *
2149  * And the most logically complicated part of algorithm is undo
2150  * heuristics. We detect false retransmits due to both too early
2151  * fast retransmit (reordering) and underestimated RTO, analyzing
2152  * timestamps and D-SACKs. When we detect that some segments were
2153  * retransmitted by mistake and CWND reduction was wrong, we undo
2154  * window reduction and abort recovery phase. This logic is hidden
2155  * inside several functions named tcp_try_undo_<something>.
2156  */
2157 
2158 /* This function decides, when we should leave Disordered state
2159  * and enter Recovery phase, reducing congestion window.
2160  *
2161  * Main question: may we further continue forward transmission
2162  * with the same cwnd?
2163  */
2164 static bool tcp_time_to_recover(struct sock *sk, int flag)
2165 {
2166 	struct tcp_sock *tp = tcp_sk(sk);
2167 
2168 	/* Trick#1: The loss is proven. */
2169 	if (tp->lost_out)
2170 		return true;
2171 
2172 	/* Not-A-Trick#2 : Classic rule... */
2173 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2174 		return true;
2175 
2176 	return false;
2177 }
2178 
2179 /* Detect loss in event "A" above by marking head of queue up as lost.
2180  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2181  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2182  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2183  * the maximum SACKed segments to pass before reaching this limit.
2184  */
2185 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2186 {
2187 	struct tcp_sock *tp = tcp_sk(sk);
2188 	struct sk_buff *skb;
2189 	int cnt, oldcnt, lost;
2190 	unsigned int mss;
2191 	/* Use SACK to deduce losses of new sequences sent during recovery */
2192 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2193 
2194 	WARN_ON(packets > tp->packets_out);
2195 	if (tp->lost_skb_hint) {
2196 		skb = tp->lost_skb_hint;
2197 		cnt = tp->lost_cnt_hint;
2198 		/* Head already handled? */
2199 		if (mark_head && skb != tcp_write_queue_head(sk))
2200 			return;
2201 	} else {
2202 		skb = tcp_write_queue_head(sk);
2203 		cnt = 0;
2204 	}
2205 
2206 	tcp_for_write_queue_from(skb, sk) {
2207 		if (skb == tcp_send_head(sk))
2208 			break;
2209 		/* TODO: do this better */
2210 		/* this is not the most efficient way to do this... */
2211 		tp->lost_skb_hint = skb;
2212 		tp->lost_cnt_hint = cnt;
2213 
2214 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2215 			break;
2216 
2217 		oldcnt = cnt;
2218 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2219 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2220 			cnt += tcp_skb_pcount(skb);
2221 
2222 		if (cnt > packets) {
2223 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2224 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2225 			    (oldcnt >= packets))
2226 				break;
2227 
2228 			mss = tcp_skb_mss(skb);
2229 			/* If needed, chop off the prefix to mark as lost. */
2230 			lost = (packets - oldcnt) * mss;
2231 			if (lost < skb->len &&
2232 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2233 				break;
2234 			cnt = packets;
2235 		}
2236 
2237 		tcp_skb_mark_lost(tp, skb);
2238 
2239 		if (mark_head)
2240 			break;
2241 	}
2242 	tcp_verify_left_out(tp);
2243 }
2244 
2245 /* Account newly detected lost packet(s) */
2246 
2247 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2248 {
2249 	struct tcp_sock *tp = tcp_sk(sk);
2250 
2251 	if (tcp_is_reno(tp)) {
2252 		tcp_mark_head_lost(sk, 1, 1);
2253 	} else if (tcp_is_fack(tp)) {
2254 		int lost = tp->fackets_out - tp->reordering;
2255 		if (lost <= 0)
2256 			lost = 1;
2257 		tcp_mark_head_lost(sk, lost, 0);
2258 	} else {
2259 		int sacked_upto = tp->sacked_out - tp->reordering;
2260 		if (sacked_upto >= 0)
2261 			tcp_mark_head_lost(sk, sacked_upto, 0);
2262 		else if (fast_rexmit)
2263 			tcp_mark_head_lost(sk, 1, 1);
2264 	}
2265 }
2266 
2267 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2268 {
2269 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2270 	       before(tp->rx_opt.rcv_tsecr, when);
2271 }
2272 
2273 /* skb is spurious retransmitted if the returned timestamp echo
2274  * reply is prior to the skb transmission time
2275  */
2276 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2277 				     const struct sk_buff *skb)
2278 {
2279 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2280 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2281 }
2282 
2283 /* Nothing was retransmitted or returned timestamp is less
2284  * than timestamp of the first retransmission.
2285  */
2286 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2287 {
2288 	return !tp->retrans_stamp ||
2289 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2290 }
2291 
2292 /* Undo procedures. */
2293 
2294 /* We can clear retrans_stamp when there are no retransmissions in the
2295  * window. It would seem that it is trivially available for us in
2296  * tp->retrans_out, however, that kind of assumptions doesn't consider
2297  * what will happen if errors occur when sending retransmission for the
2298  * second time. ...It could the that such segment has only
2299  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2300  * the head skb is enough except for some reneging corner cases that
2301  * are not worth the effort.
2302  *
2303  * Main reason for all this complexity is the fact that connection dying
2304  * time now depends on the validity of the retrans_stamp, in particular,
2305  * that successive retransmissions of a segment must not advance
2306  * retrans_stamp under any conditions.
2307  */
2308 static bool tcp_any_retrans_done(const struct sock *sk)
2309 {
2310 	const struct tcp_sock *tp = tcp_sk(sk);
2311 	struct sk_buff *skb;
2312 
2313 	if (tp->retrans_out)
2314 		return true;
2315 
2316 	skb = tcp_write_queue_head(sk);
2317 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2318 		return true;
2319 
2320 	return false;
2321 }
2322 
2323 #if FASTRETRANS_DEBUG > 1
2324 static void DBGUNDO(struct sock *sk, const char *msg)
2325 {
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 	struct inet_sock *inet = inet_sk(sk);
2328 
2329 	if (sk->sk_family == AF_INET) {
2330 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2331 			 msg,
2332 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2333 			 tp->snd_cwnd, tcp_left_out(tp),
2334 			 tp->snd_ssthresh, tp->prior_ssthresh,
2335 			 tp->packets_out);
2336 	}
2337 #if IS_ENABLED(CONFIG_IPV6)
2338 	else if (sk->sk_family == AF_INET6) {
2339 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340 			 msg,
2341 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2342 			 tp->snd_cwnd, tcp_left_out(tp),
2343 			 tp->snd_ssthresh, tp->prior_ssthresh,
2344 			 tp->packets_out);
2345 	}
2346 #endif
2347 }
2348 #else
2349 #define DBGUNDO(x...) do { } while (0)
2350 #endif
2351 
2352 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2353 {
2354 	struct tcp_sock *tp = tcp_sk(sk);
2355 
2356 	if (unmark_loss) {
2357 		struct sk_buff *skb;
2358 
2359 		tcp_for_write_queue(skb, sk) {
2360 			if (skb == tcp_send_head(sk))
2361 				break;
2362 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363 		}
2364 		tp->lost_out = 0;
2365 		tcp_clear_all_retrans_hints(tp);
2366 	}
2367 
2368 	if (tp->prior_ssthresh) {
2369 		const struct inet_connection_sock *icsk = inet_csk(sk);
2370 
2371 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2372 
2373 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2374 			tp->snd_ssthresh = tp->prior_ssthresh;
2375 			tcp_ecn_withdraw_cwr(tp);
2376 		}
2377 	}
2378 	tp->snd_cwnd_stamp = tcp_time_stamp;
2379 	tp->undo_marker = 0;
2380 }
2381 
2382 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2383 {
2384 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2385 }
2386 
2387 /* People celebrate: "We love our President!" */
2388 static bool tcp_try_undo_recovery(struct sock *sk)
2389 {
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 
2392 	if (tcp_may_undo(tp)) {
2393 		int mib_idx;
2394 
2395 		/* Happy end! We did not retransmit anything
2396 		 * or our original transmission succeeded.
2397 		 */
2398 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2399 		tcp_undo_cwnd_reduction(sk, false);
2400 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2401 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2402 		else
2403 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2404 
2405 		NET_INC_STATS(sock_net(sk), mib_idx);
2406 	}
2407 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2408 		/* Hold old state until something *above* high_seq
2409 		 * is ACKed. For Reno it is MUST to prevent false
2410 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2411 		if (!tcp_any_retrans_done(sk))
2412 			tp->retrans_stamp = 0;
2413 		return true;
2414 	}
2415 	tcp_set_ca_state(sk, TCP_CA_Open);
2416 	return false;
2417 }
2418 
2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2420 static bool tcp_try_undo_dsack(struct sock *sk)
2421 {
2422 	struct tcp_sock *tp = tcp_sk(sk);
2423 
2424 	if (tp->undo_marker && !tp->undo_retrans) {
2425 		DBGUNDO(sk, "D-SACK");
2426 		tcp_undo_cwnd_reduction(sk, false);
2427 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2428 		return true;
2429 	}
2430 	return false;
2431 }
2432 
2433 /* Undo during loss recovery after partial ACK or using F-RTO. */
2434 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 
2438 	if (frto_undo || tcp_may_undo(tp)) {
2439 		tcp_undo_cwnd_reduction(sk, true);
2440 
2441 		DBGUNDO(sk, "partial loss");
2442 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2443 		if (frto_undo)
2444 			NET_INC_STATS(sock_net(sk),
2445 					LINUX_MIB_TCPSPURIOUSRTOS);
2446 		inet_csk(sk)->icsk_retransmits = 0;
2447 		if (frto_undo || tcp_is_sack(tp))
2448 			tcp_set_ca_state(sk, TCP_CA_Open);
2449 		return true;
2450 	}
2451 	return false;
2452 }
2453 
2454 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2455  * It computes the number of packets to send (sndcnt) based on packets newly
2456  * delivered:
2457  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2458  *	cwnd reductions across a full RTT.
2459  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2460  *      But when the retransmits are acked without further losses, PRR
2461  *      slow starts cwnd up to ssthresh to speed up the recovery.
2462  */
2463 static void tcp_init_cwnd_reduction(struct sock *sk)
2464 {
2465 	struct tcp_sock *tp = tcp_sk(sk);
2466 
2467 	tp->high_seq = tp->snd_nxt;
2468 	tp->tlp_high_seq = 0;
2469 	tp->snd_cwnd_cnt = 0;
2470 	tp->prior_cwnd = tp->snd_cwnd;
2471 	tp->prr_delivered = 0;
2472 	tp->prr_out = 0;
2473 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2474 	tcp_ecn_queue_cwr(tp);
2475 }
2476 
2477 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	int sndcnt = 0;
2481 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2482 
2483 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2484 		return;
2485 
2486 	tp->prr_delivered += newly_acked_sacked;
2487 	if (delta < 0) {
2488 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2489 			       tp->prior_cwnd - 1;
2490 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2491 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2492 		   !(flag & FLAG_LOST_RETRANS)) {
2493 		sndcnt = min_t(int, delta,
2494 			       max_t(int, tp->prr_delivered - tp->prr_out,
2495 				     newly_acked_sacked) + 1);
2496 	} else {
2497 		sndcnt = min(delta, newly_acked_sacked);
2498 	}
2499 	/* Force a fast retransmit upon entering fast recovery */
2500 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2501 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2502 }
2503 
2504 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2505 {
2506 	struct tcp_sock *tp = tcp_sk(sk);
2507 
2508 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2509 		return;
2510 
2511 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2512 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2513 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2514 		tp->snd_cwnd = tp->snd_ssthresh;
2515 		tp->snd_cwnd_stamp = tcp_time_stamp;
2516 	}
2517 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2518 }
2519 
2520 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2521 void tcp_enter_cwr(struct sock *sk)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	tp->prior_ssthresh = 0;
2526 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2527 		tp->undo_marker = 0;
2528 		tcp_init_cwnd_reduction(sk);
2529 		tcp_set_ca_state(sk, TCP_CA_CWR);
2530 	}
2531 }
2532 EXPORT_SYMBOL(tcp_enter_cwr);
2533 
2534 static void tcp_try_keep_open(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 	int state = TCP_CA_Open;
2538 
2539 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2540 		state = TCP_CA_Disorder;
2541 
2542 	if (inet_csk(sk)->icsk_ca_state != state) {
2543 		tcp_set_ca_state(sk, state);
2544 		tp->high_seq = tp->snd_nxt;
2545 	}
2546 }
2547 
2548 static void tcp_try_to_open(struct sock *sk, int flag)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	tcp_verify_left_out(tp);
2553 
2554 	if (!tcp_any_retrans_done(sk))
2555 		tp->retrans_stamp = 0;
2556 
2557 	if (flag & FLAG_ECE)
2558 		tcp_enter_cwr(sk);
2559 
2560 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2561 		tcp_try_keep_open(sk);
2562 	}
2563 }
2564 
2565 static void tcp_mtup_probe_failed(struct sock *sk)
2566 {
2567 	struct inet_connection_sock *icsk = inet_csk(sk);
2568 
2569 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2570 	icsk->icsk_mtup.probe_size = 0;
2571 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2572 }
2573 
2574 static void tcp_mtup_probe_success(struct sock *sk)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 	struct inet_connection_sock *icsk = inet_csk(sk);
2578 
2579 	/* FIXME: breaks with very large cwnd */
2580 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2581 	tp->snd_cwnd = tp->snd_cwnd *
2582 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2583 		       icsk->icsk_mtup.probe_size;
2584 	tp->snd_cwnd_cnt = 0;
2585 	tp->snd_cwnd_stamp = tcp_time_stamp;
2586 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2587 
2588 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2589 	icsk->icsk_mtup.probe_size = 0;
2590 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2591 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2592 }
2593 
2594 /* Do a simple retransmit without using the backoff mechanisms in
2595  * tcp_timer. This is used for path mtu discovery.
2596  * The socket is already locked here.
2597  */
2598 void tcp_simple_retransmit(struct sock *sk)
2599 {
2600 	const struct inet_connection_sock *icsk = inet_csk(sk);
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	struct sk_buff *skb;
2603 	unsigned int mss = tcp_current_mss(sk);
2604 	u32 prior_lost = tp->lost_out;
2605 
2606 	tcp_for_write_queue(skb, sk) {
2607 		if (skb == tcp_send_head(sk))
2608 			break;
2609 		if (tcp_skb_seglen(skb) > mss &&
2610 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2611 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2612 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2613 				tp->retrans_out -= tcp_skb_pcount(skb);
2614 			}
2615 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2616 		}
2617 	}
2618 
2619 	tcp_clear_retrans_hints_partial(tp);
2620 
2621 	if (prior_lost == tp->lost_out)
2622 		return;
2623 
2624 	if (tcp_is_reno(tp))
2625 		tcp_limit_reno_sacked(tp);
2626 
2627 	tcp_verify_left_out(tp);
2628 
2629 	/* Don't muck with the congestion window here.
2630 	 * Reason is that we do not increase amount of _data_
2631 	 * in network, but units changed and effective
2632 	 * cwnd/ssthresh really reduced now.
2633 	 */
2634 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2635 		tp->high_seq = tp->snd_nxt;
2636 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2637 		tp->prior_ssthresh = 0;
2638 		tp->undo_marker = 0;
2639 		tcp_set_ca_state(sk, TCP_CA_Loss);
2640 	}
2641 	tcp_xmit_retransmit_queue(sk);
2642 }
2643 EXPORT_SYMBOL(tcp_simple_retransmit);
2644 
2645 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2646 {
2647 	struct tcp_sock *tp = tcp_sk(sk);
2648 	int mib_idx;
2649 
2650 	if (tcp_is_reno(tp))
2651 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2652 	else
2653 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2654 
2655 	NET_INC_STATS(sock_net(sk), mib_idx);
2656 
2657 	tp->prior_ssthresh = 0;
2658 	tcp_init_undo(tp);
2659 
2660 	if (!tcp_in_cwnd_reduction(sk)) {
2661 		if (!ece_ack)
2662 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2663 		tcp_init_cwnd_reduction(sk);
2664 	}
2665 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2666 }
2667 
2668 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2669  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2670  */
2671 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2672 			     int *rexmit)
2673 {
2674 	struct tcp_sock *tp = tcp_sk(sk);
2675 	bool recovered = !before(tp->snd_una, tp->high_seq);
2676 
2677 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2678 	    tcp_try_undo_loss(sk, false))
2679 		return;
2680 
2681 	/* The ACK (s)acks some never-retransmitted data meaning not all
2682 	 * the data packets before the timeout were lost. Therefore we
2683 	 * undo the congestion window and state. This is essentially
2684 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2685 	 * a retransmitted skb is permantly marked, we can apply such an
2686 	 * operation even if F-RTO was not used.
2687 	 */
2688 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2689 	    tcp_try_undo_loss(sk, tp->undo_marker))
2690 		return;
2691 
2692 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2693 		if (after(tp->snd_nxt, tp->high_seq)) {
2694 			if (flag & FLAG_DATA_SACKED || is_dupack)
2695 				tp->frto = 0; /* Step 3.a. loss was real */
2696 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2697 			tp->high_seq = tp->snd_nxt;
2698 			/* Step 2.b. Try send new data (but deferred until cwnd
2699 			 * is updated in tcp_ack()). Otherwise fall back to
2700 			 * the conventional recovery.
2701 			 */
2702 			if (tcp_send_head(sk) &&
2703 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2704 				*rexmit = REXMIT_NEW;
2705 				return;
2706 			}
2707 			tp->frto = 0;
2708 		}
2709 	}
2710 
2711 	if (recovered) {
2712 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2713 		tcp_try_undo_recovery(sk);
2714 		return;
2715 	}
2716 	if (tcp_is_reno(tp)) {
2717 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2718 		 * delivered. Lower inflight to clock out (re)tranmissions.
2719 		 */
2720 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2721 			tcp_add_reno_sack(sk);
2722 		else if (flag & FLAG_SND_UNA_ADVANCED)
2723 			tcp_reset_reno_sack(tp);
2724 	}
2725 	*rexmit = REXMIT_LOST;
2726 }
2727 
2728 /* Undo during fast recovery after partial ACK. */
2729 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2730 {
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 
2733 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2734 		/* Plain luck! Hole if filled with delayed
2735 		 * packet, rather than with a retransmit.
2736 		 */
2737 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2738 
2739 		/* We are getting evidence that the reordering degree is higher
2740 		 * than we realized. If there are no retransmits out then we
2741 		 * can undo. Otherwise we clock out new packets but do not
2742 		 * mark more packets lost or retransmit more.
2743 		 */
2744 		if (tp->retrans_out)
2745 			return true;
2746 
2747 		if (!tcp_any_retrans_done(sk))
2748 			tp->retrans_stamp = 0;
2749 
2750 		DBGUNDO(sk, "partial recovery");
2751 		tcp_undo_cwnd_reduction(sk, true);
2752 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2753 		tcp_try_keep_open(sk);
2754 		return true;
2755 	}
2756 	return false;
2757 }
2758 
2759 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag,
2760 				   const struct skb_mstamp *ack_time)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 
2764 	/* Use RACK to detect loss */
2765 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2766 		u32 prior_retrans = tp->retrans_out;
2767 
2768 		tcp_rack_mark_lost(sk, ack_time);
2769 		if (prior_retrans > tp->retrans_out)
2770 			*ack_flag |= FLAG_LOST_RETRANS;
2771 	}
2772 }
2773 
2774 /* Process an event, which can update packets-in-flight not trivially.
2775  * Main goal of this function is to calculate new estimate for left_out,
2776  * taking into account both packets sitting in receiver's buffer and
2777  * packets lost by network.
2778  *
2779  * Besides that it updates the congestion state when packet loss or ECN
2780  * is detected. But it does not reduce the cwnd, it is done by the
2781  * congestion control later.
2782  *
2783  * It does _not_ decide what to send, it is made in function
2784  * tcp_xmit_retransmit_queue().
2785  */
2786 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2787 				  bool is_dupack, int *ack_flag, int *rexmit,
2788 				  const struct skb_mstamp *ack_time)
2789 {
2790 	struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	int fast_rexmit = 0, flag = *ack_flag;
2793 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 				    (tcp_fackets_out(tp) > tp->reordering));
2795 
2796 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2797 		tp->sacked_out = 0;
2798 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2799 		tp->fackets_out = 0;
2800 
2801 	/* Now state machine starts.
2802 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 	if (flag & FLAG_ECE)
2804 		tp->prior_ssthresh = 0;
2805 
2806 	/* B. In all the states check for reneging SACKs. */
2807 	if (tcp_check_sack_reneging(sk, flag))
2808 		return;
2809 
2810 	/* C. Check consistency of the current state. */
2811 	tcp_verify_left_out(tp);
2812 
2813 	/* D. Check state exit conditions. State can be terminated
2814 	 *    when high_seq is ACKed. */
2815 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2816 		WARN_ON(tp->retrans_out != 0);
2817 		tp->retrans_stamp = 0;
2818 	} else if (!before(tp->snd_una, tp->high_seq)) {
2819 		switch (icsk->icsk_ca_state) {
2820 		case TCP_CA_CWR:
2821 			/* CWR is to be held something *above* high_seq
2822 			 * is ACKed for CWR bit to reach receiver. */
2823 			if (tp->snd_una != tp->high_seq) {
2824 				tcp_end_cwnd_reduction(sk);
2825 				tcp_set_ca_state(sk, TCP_CA_Open);
2826 			}
2827 			break;
2828 
2829 		case TCP_CA_Recovery:
2830 			if (tcp_is_reno(tp))
2831 				tcp_reset_reno_sack(tp);
2832 			if (tcp_try_undo_recovery(sk))
2833 				return;
2834 			tcp_end_cwnd_reduction(sk);
2835 			break;
2836 		}
2837 	}
2838 
2839 	/* E. Process state. */
2840 	switch (icsk->icsk_ca_state) {
2841 	case TCP_CA_Recovery:
2842 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2843 			if (tcp_is_reno(tp) && is_dupack)
2844 				tcp_add_reno_sack(sk);
2845 		} else {
2846 			if (tcp_try_undo_partial(sk, acked))
2847 				return;
2848 			/* Partial ACK arrived. Force fast retransmit. */
2849 			do_lost = tcp_is_reno(tp) ||
2850 				  tcp_fackets_out(tp) > tp->reordering;
2851 		}
2852 		if (tcp_try_undo_dsack(sk)) {
2853 			tcp_try_keep_open(sk);
2854 			return;
2855 		}
2856 		tcp_rack_identify_loss(sk, ack_flag, ack_time);
2857 		break;
2858 	case TCP_CA_Loss:
2859 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2860 		tcp_rack_identify_loss(sk, ack_flag, ack_time);
2861 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2862 		      (*ack_flag & FLAG_LOST_RETRANS)))
2863 			return;
2864 		/* Change state if cwnd is undone or retransmits are lost */
2865 	default:
2866 		if (tcp_is_reno(tp)) {
2867 			if (flag & FLAG_SND_UNA_ADVANCED)
2868 				tcp_reset_reno_sack(tp);
2869 			if (is_dupack)
2870 				tcp_add_reno_sack(sk);
2871 		}
2872 
2873 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2874 			tcp_try_undo_dsack(sk);
2875 
2876 		tcp_rack_identify_loss(sk, ack_flag, ack_time);
2877 		if (!tcp_time_to_recover(sk, flag)) {
2878 			tcp_try_to_open(sk, flag);
2879 			return;
2880 		}
2881 
2882 		/* MTU probe failure: don't reduce cwnd */
2883 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2884 		    icsk->icsk_mtup.probe_size &&
2885 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2886 			tcp_mtup_probe_failed(sk);
2887 			/* Restores the reduction we did in tcp_mtup_probe() */
2888 			tp->snd_cwnd++;
2889 			tcp_simple_retransmit(sk);
2890 			return;
2891 		}
2892 
2893 		/* Otherwise enter Recovery state */
2894 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2895 		fast_rexmit = 1;
2896 	}
2897 
2898 	if (do_lost)
2899 		tcp_update_scoreboard(sk, fast_rexmit);
2900 	*rexmit = REXMIT_LOST;
2901 }
2902 
2903 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2904 {
2905 	struct tcp_sock *tp = tcp_sk(sk);
2906 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2907 
2908 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2909 			   rtt_us ? : jiffies_to_usecs(1));
2910 }
2911 
2912 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2913 				      long seq_rtt_us, long sack_rtt_us,
2914 				      long ca_rtt_us)
2915 {
2916 	const struct tcp_sock *tp = tcp_sk(sk);
2917 
2918 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2919 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2920 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2921 	 * is acked (RFC6298).
2922 	 */
2923 	if (seq_rtt_us < 0)
2924 		seq_rtt_us = sack_rtt_us;
2925 
2926 	/* RTTM Rule: A TSecr value received in a segment is used to
2927 	 * update the averaged RTT measurement only if the segment
2928 	 * acknowledges some new data, i.e., only if it advances the
2929 	 * left edge of the send window.
2930 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2931 	 */
2932 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2933 	    flag & FLAG_ACKED)
2934 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2935 							  tp->rx_opt.rcv_tsecr);
2936 	if (seq_rtt_us < 0)
2937 		return false;
2938 
2939 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2940 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2941 	 * values will be skipped with the seq_rtt_us < 0 check above.
2942 	 */
2943 	tcp_update_rtt_min(sk, ca_rtt_us);
2944 	tcp_rtt_estimator(sk, seq_rtt_us);
2945 	tcp_set_rto(sk);
2946 
2947 	/* RFC6298: only reset backoff on valid RTT measurement. */
2948 	inet_csk(sk)->icsk_backoff = 0;
2949 	return true;
2950 }
2951 
2952 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2953 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2954 {
2955 	long rtt_us = -1L;
2956 
2957 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2958 		struct skb_mstamp now;
2959 
2960 		skb_mstamp_get(&now);
2961 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2962 	}
2963 
2964 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2965 }
2966 
2967 
2968 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2969 {
2970 	const struct inet_connection_sock *icsk = inet_csk(sk);
2971 
2972 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2973 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2974 }
2975 
2976 /* Restart timer after forward progress on connection.
2977  * RFC2988 recommends to restart timer to now+rto.
2978  */
2979 void tcp_rearm_rto(struct sock *sk)
2980 {
2981 	const struct inet_connection_sock *icsk = inet_csk(sk);
2982 	struct tcp_sock *tp = tcp_sk(sk);
2983 
2984 	/* If the retrans timer is currently being used by Fast Open
2985 	 * for SYN-ACK retrans purpose, stay put.
2986 	 */
2987 	if (tp->fastopen_rsk)
2988 		return;
2989 
2990 	if (!tp->packets_out) {
2991 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2992 	} else {
2993 		u32 rto = inet_csk(sk)->icsk_rto;
2994 		/* Offset the time elapsed after installing regular RTO */
2995 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2996 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2997 			struct sk_buff *skb = tcp_write_queue_head(sk);
2998 			const u32 rto_time_stamp =
2999 				tcp_skb_timestamp(skb) + rto;
3000 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3001 			/* delta may not be positive if the socket is locked
3002 			 * when the retrans timer fires and is rescheduled.
3003 			 */
3004 			if (delta > 0)
3005 				rto = delta;
3006 		}
3007 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3008 					  TCP_RTO_MAX);
3009 	}
3010 }
3011 
3012 /* If we get here, the whole TSO packet has not been acked. */
3013 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3014 {
3015 	struct tcp_sock *tp = tcp_sk(sk);
3016 	u32 packets_acked;
3017 
3018 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3019 
3020 	packets_acked = tcp_skb_pcount(skb);
3021 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3022 		return 0;
3023 	packets_acked -= tcp_skb_pcount(skb);
3024 
3025 	if (packets_acked) {
3026 		BUG_ON(tcp_skb_pcount(skb) == 0);
3027 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3028 	}
3029 
3030 	return packets_acked;
3031 }
3032 
3033 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3034 			   u32 prior_snd_una)
3035 {
3036 	const struct skb_shared_info *shinfo;
3037 
3038 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3039 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3040 		return;
3041 
3042 	shinfo = skb_shinfo(skb);
3043 	if (!before(shinfo->tskey, prior_snd_una) &&
3044 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3045 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3046 }
3047 
3048 /* Remove acknowledged frames from the retransmission queue. If our packet
3049  * is before the ack sequence we can discard it as it's confirmed to have
3050  * arrived at the other end.
3051  */
3052 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3053 			       u32 prior_snd_una, int *acked,
3054 			       struct tcp_sacktag_state *sack)
3055 {
3056 	const struct inet_connection_sock *icsk = inet_csk(sk);
3057 	struct skb_mstamp first_ackt, last_ackt;
3058 	struct skb_mstamp *now = &sack->ack_time;
3059 	struct tcp_sock *tp = tcp_sk(sk);
3060 	u32 prior_sacked = tp->sacked_out;
3061 	u32 reord = tp->packets_out;
3062 	bool fully_acked = true;
3063 	long sack_rtt_us = -1L;
3064 	long seq_rtt_us = -1L;
3065 	long ca_rtt_us = -1L;
3066 	struct sk_buff *skb;
3067 	u32 pkts_acked = 0;
3068 	u32 last_in_flight = 0;
3069 	bool rtt_update;
3070 	int flag = 0;
3071 
3072 	first_ackt.v64 = 0;
3073 
3074 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3075 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3076 		u8 sacked = scb->sacked;
3077 		u32 acked_pcount;
3078 
3079 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3080 
3081 		/* Determine how many packets and what bytes were acked, tso and else */
3082 		if (after(scb->end_seq, tp->snd_una)) {
3083 			if (tcp_skb_pcount(skb) == 1 ||
3084 			    !after(tp->snd_una, scb->seq))
3085 				break;
3086 
3087 			acked_pcount = tcp_tso_acked(sk, skb);
3088 			if (!acked_pcount)
3089 				break;
3090 			fully_acked = false;
3091 		} else {
3092 			/* Speedup tcp_unlink_write_queue() and next loop */
3093 			prefetchw(skb->next);
3094 			acked_pcount = tcp_skb_pcount(skb);
3095 		}
3096 
3097 		if (unlikely(sacked & TCPCB_RETRANS)) {
3098 			if (sacked & TCPCB_SACKED_RETRANS)
3099 				tp->retrans_out -= acked_pcount;
3100 			flag |= FLAG_RETRANS_DATA_ACKED;
3101 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3102 			last_ackt = skb->skb_mstamp;
3103 			WARN_ON_ONCE(last_ackt.v64 == 0);
3104 			if (!first_ackt.v64)
3105 				first_ackt = last_ackt;
3106 
3107 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3108 			reord = min(pkts_acked, reord);
3109 			if (!after(scb->end_seq, tp->high_seq))
3110 				flag |= FLAG_ORIG_SACK_ACKED;
3111 		}
3112 
3113 		if (sacked & TCPCB_SACKED_ACKED) {
3114 			tp->sacked_out -= acked_pcount;
3115 		} else if (tcp_is_sack(tp)) {
3116 			tp->delivered += acked_pcount;
3117 			if (!tcp_skb_spurious_retrans(tp, skb))
3118 				tcp_rack_advance(tp, sacked, scb->end_seq,
3119 						 &skb->skb_mstamp,
3120 						 &sack->ack_time);
3121 		}
3122 		if (sacked & TCPCB_LOST)
3123 			tp->lost_out -= acked_pcount;
3124 
3125 		tp->packets_out -= acked_pcount;
3126 		pkts_acked += acked_pcount;
3127 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3128 
3129 		/* Initial outgoing SYN's get put onto the write_queue
3130 		 * just like anything else we transmit.  It is not
3131 		 * true data, and if we misinform our callers that
3132 		 * this ACK acks real data, we will erroneously exit
3133 		 * connection startup slow start one packet too
3134 		 * quickly.  This is severely frowned upon behavior.
3135 		 */
3136 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3137 			flag |= FLAG_DATA_ACKED;
3138 		} else {
3139 			flag |= FLAG_SYN_ACKED;
3140 			tp->retrans_stamp = 0;
3141 		}
3142 
3143 		if (!fully_acked)
3144 			break;
3145 
3146 		tcp_unlink_write_queue(skb, sk);
3147 		sk_wmem_free_skb(sk, skb);
3148 		if (unlikely(skb == tp->retransmit_skb_hint))
3149 			tp->retransmit_skb_hint = NULL;
3150 		if (unlikely(skb == tp->lost_skb_hint))
3151 			tp->lost_skb_hint = NULL;
3152 	}
3153 
3154 	if (!skb)
3155 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3156 
3157 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3158 		tp->snd_up = tp->snd_una;
3159 
3160 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3161 		flag |= FLAG_SACK_RENEGING;
3162 
3163 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3164 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3165 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3166 	}
3167 	if (sack->first_sackt.v64) {
3168 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3169 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3170 	}
3171 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3172 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3173 					ca_rtt_us);
3174 
3175 	if (flag & FLAG_ACKED) {
3176 		tcp_rearm_rto(sk);
3177 		if (unlikely(icsk->icsk_mtup.probe_size &&
3178 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3179 			tcp_mtup_probe_success(sk);
3180 		}
3181 
3182 		if (tcp_is_reno(tp)) {
3183 			tcp_remove_reno_sacks(sk, pkts_acked);
3184 		} else {
3185 			int delta;
3186 
3187 			/* Non-retransmitted hole got filled? That's reordering */
3188 			if (reord < prior_fackets)
3189 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3190 
3191 			delta = tcp_is_fack(tp) ? pkts_acked :
3192 						  prior_sacked - tp->sacked_out;
3193 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3194 		}
3195 
3196 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3197 
3198 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3199 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3200 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3201 		 * after when the head was last (re)transmitted. Otherwise the
3202 		 * timeout may continue to extend in loss recovery.
3203 		 */
3204 		tcp_rearm_rto(sk);
3205 	}
3206 
3207 	if (icsk->icsk_ca_ops->pkts_acked) {
3208 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3209 					     .rtt_us = ca_rtt_us,
3210 					     .in_flight = last_in_flight };
3211 
3212 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3213 	}
3214 
3215 #if FASTRETRANS_DEBUG > 0
3216 	WARN_ON((int)tp->sacked_out < 0);
3217 	WARN_ON((int)tp->lost_out < 0);
3218 	WARN_ON((int)tp->retrans_out < 0);
3219 	if (!tp->packets_out && tcp_is_sack(tp)) {
3220 		icsk = inet_csk(sk);
3221 		if (tp->lost_out) {
3222 			pr_debug("Leak l=%u %d\n",
3223 				 tp->lost_out, icsk->icsk_ca_state);
3224 			tp->lost_out = 0;
3225 		}
3226 		if (tp->sacked_out) {
3227 			pr_debug("Leak s=%u %d\n",
3228 				 tp->sacked_out, icsk->icsk_ca_state);
3229 			tp->sacked_out = 0;
3230 		}
3231 		if (tp->retrans_out) {
3232 			pr_debug("Leak r=%u %d\n",
3233 				 tp->retrans_out, icsk->icsk_ca_state);
3234 			tp->retrans_out = 0;
3235 		}
3236 	}
3237 #endif
3238 	*acked = pkts_acked;
3239 	return flag;
3240 }
3241 
3242 static void tcp_ack_probe(struct sock *sk)
3243 {
3244 	const struct tcp_sock *tp = tcp_sk(sk);
3245 	struct inet_connection_sock *icsk = inet_csk(sk);
3246 
3247 	/* Was it a usable window open? */
3248 
3249 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3250 		icsk->icsk_backoff = 0;
3251 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3252 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3253 		 * This function is not for random using!
3254 		 */
3255 	} else {
3256 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3257 
3258 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3259 					  when, TCP_RTO_MAX);
3260 	}
3261 }
3262 
3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3264 {
3265 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3266 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3267 }
3268 
3269 /* Decide wheather to run the increase function of congestion control. */
3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3271 {
3272 	/* If reordering is high then always grow cwnd whenever data is
3273 	 * delivered regardless of its ordering. Otherwise stay conservative
3274 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3275 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3276 	 * cwnd in tcp_fastretrans_alert() based on more states.
3277 	 */
3278 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3279 		return flag & FLAG_FORWARD_PROGRESS;
3280 
3281 	return flag & FLAG_DATA_ACKED;
3282 }
3283 
3284 /* The "ultimate" congestion control function that aims to replace the rigid
3285  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3286  * It's called toward the end of processing an ACK with precise rate
3287  * information. All transmission or retransmission are delayed afterwards.
3288  */
3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3290 			     int flag, const struct rate_sample *rs)
3291 {
3292 	const struct inet_connection_sock *icsk = inet_csk(sk);
3293 
3294 	if (icsk->icsk_ca_ops->cong_control) {
3295 		icsk->icsk_ca_ops->cong_control(sk, rs);
3296 		return;
3297 	}
3298 
3299 	if (tcp_in_cwnd_reduction(sk)) {
3300 		/* Reduce cwnd if state mandates */
3301 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3302 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3303 		/* Advance cwnd if state allows */
3304 		tcp_cong_avoid(sk, ack, acked_sacked);
3305 	}
3306 	tcp_update_pacing_rate(sk);
3307 }
3308 
3309 /* Check that window update is acceptable.
3310  * The function assumes that snd_una<=ack<=snd_next.
3311  */
3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3313 					const u32 ack, const u32 ack_seq,
3314 					const u32 nwin)
3315 {
3316 	return	after(ack, tp->snd_una) ||
3317 		after(ack_seq, tp->snd_wl1) ||
3318 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3319 }
3320 
3321 /* If we update tp->snd_una, also update tp->bytes_acked */
3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3323 {
3324 	u32 delta = ack - tp->snd_una;
3325 
3326 	sock_owned_by_me((struct sock *)tp);
3327 	tp->bytes_acked += delta;
3328 	tp->snd_una = ack;
3329 }
3330 
3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3333 {
3334 	u32 delta = seq - tp->rcv_nxt;
3335 
3336 	sock_owned_by_me((struct sock *)tp);
3337 	tp->bytes_received += delta;
3338 	tp->rcv_nxt = seq;
3339 }
3340 
3341 /* Update our send window.
3342  *
3343  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3344  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3345  */
3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3347 				 u32 ack_seq)
3348 {
3349 	struct tcp_sock *tp = tcp_sk(sk);
3350 	int flag = 0;
3351 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3352 
3353 	if (likely(!tcp_hdr(skb)->syn))
3354 		nwin <<= tp->rx_opt.snd_wscale;
3355 
3356 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3357 		flag |= FLAG_WIN_UPDATE;
3358 		tcp_update_wl(tp, ack_seq);
3359 
3360 		if (tp->snd_wnd != nwin) {
3361 			tp->snd_wnd = nwin;
3362 
3363 			/* Note, it is the only place, where
3364 			 * fast path is recovered for sending TCP.
3365 			 */
3366 			tp->pred_flags = 0;
3367 			tcp_fast_path_check(sk);
3368 
3369 			if (tcp_send_head(sk))
3370 				tcp_slow_start_after_idle_check(sk);
3371 
3372 			if (nwin > tp->max_window) {
3373 				tp->max_window = nwin;
3374 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3375 			}
3376 		}
3377 	}
3378 
3379 	tcp_snd_una_update(tp, ack);
3380 
3381 	return flag;
3382 }
3383 
3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3385 				   u32 *last_oow_ack_time)
3386 {
3387 	if (*last_oow_ack_time) {
3388 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3389 
3390 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3391 			NET_INC_STATS(net, mib_idx);
3392 			return true;	/* rate-limited: don't send yet! */
3393 		}
3394 	}
3395 
3396 	*last_oow_ack_time = tcp_time_stamp;
3397 
3398 	return false;	/* not rate-limited: go ahead, send dupack now! */
3399 }
3400 
3401 /* Return true if we're currently rate-limiting out-of-window ACKs and
3402  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3403  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3404  * attacks that send repeated SYNs or ACKs for the same connection. To
3405  * do this, we do not send a duplicate SYNACK or ACK if the remote
3406  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3407  */
3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3409 			  int mib_idx, u32 *last_oow_ack_time)
3410 {
3411 	/* Data packets without SYNs are not likely part of an ACK loop. */
3412 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3413 	    !tcp_hdr(skb)->syn)
3414 		return false;
3415 
3416 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3417 }
3418 
3419 /* RFC 5961 7 [ACK Throttling] */
3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3421 {
3422 	/* unprotected vars, we dont care of overwrites */
3423 	static u32 challenge_timestamp;
3424 	static unsigned int challenge_count;
3425 	struct tcp_sock *tp = tcp_sk(sk);
3426 	u32 count, now;
3427 
3428 	/* First check our per-socket dupack rate limit. */
3429 	if (__tcp_oow_rate_limited(sock_net(sk),
3430 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3431 				   &tp->last_oow_ack_time))
3432 		return;
3433 
3434 	/* Then check host-wide RFC 5961 rate limit. */
3435 	now = jiffies / HZ;
3436 	if (now != challenge_timestamp) {
3437 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3438 
3439 		challenge_timestamp = now;
3440 		WRITE_ONCE(challenge_count, half +
3441 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3442 	}
3443 	count = READ_ONCE(challenge_count);
3444 	if (count > 0) {
3445 		WRITE_ONCE(challenge_count, count - 1);
3446 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3447 		tcp_send_ack(sk);
3448 	}
3449 }
3450 
3451 static void tcp_store_ts_recent(struct tcp_sock *tp)
3452 {
3453 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3454 	tp->rx_opt.ts_recent_stamp = get_seconds();
3455 }
3456 
3457 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3458 {
3459 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3460 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3461 		 * extra check below makes sure this can only happen
3462 		 * for pure ACK frames.  -DaveM
3463 		 *
3464 		 * Not only, also it occurs for expired timestamps.
3465 		 */
3466 
3467 		if (tcp_paws_check(&tp->rx_opt, 0))
3468 			tcp_store_ts_recent(tp);
3469 	}
3470 }
3471 
3472 /* This routine deals with acks during a TLP episode.
3473  * We mark the end of a TLP episode on receiving TLP dupack or when
3474  * ack is after tlp_high_seq.
3475  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3476  */
3477 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3478 {
3479 	struct tcp_sock *tp = tcp_sk(sk);
3480 
3481 	if (before(ack, tp->tlp_high_seq))
3482 		return;
3483 
3484 	if (flag & FLAG_DSACKING_ACK) {
3485 		/* This DSACK means original and TLP probe arrived; no loss */
3486 		tp->tlp_high_seq = 0;
3487 	} else if (after(ack, tp->tlp_high_seq)) {
3488 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3489 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3490 		 */
3491 		tcp_init_cwnd_reduction(sk);
3492 		tcp_set_ca_state(sk, TCP_CA_CWR);
3493 		tcp_end_cwnd_reduction(sk);
3494 		tcp_try_keep_open(sk);
3495 		NET_INC_STATS(sock_net(sk),
3496 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3497 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3498 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3499 		/* Pure dupack: original and TLP probe arrived; no loss */
3500 		tp->tlp_high_seq = 0;
3501 	}
3502 }
3503 
3504 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3505 {
3506 	const struct inet_connection_sock *icsk = inet_csk(sk);
3507 
3508 	if (icsk->icsk_ca_ops->in_ack_event)
3509 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3510 }
3511 
3512 /* Congestion control has updated the cwnd already. So if we're in
3513  * loss recovery then now we do any new sends (for FRTO) or
3514  * retransmits (for CA_Loss or CA_recovery) that make sense.
3515  */
3516 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3517 {
3518 	struct tcp_sock *tp = tcp_sk(sk);
3519 
3520 	if (rexmit == REXMIT_NONE)
3521 		return;
3522 
3523 	if (unlikely(rexmit == 2)) {
3524 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3525 					  TCP_NAGLE_OFF);
3526 		if (after(tp->snd_nxt, tp->high_seq))
3527 			return;
3528 		tp->frto = 0;
3529 	}
3530 	tcp_xmit_retransmit_queue(sk);
3531 }
3532 
3533 /* This routine deals with incoming acks, but not outgoing ones. */
3534 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3535 {
3536 	struct inet_connection_sock *icsk = inet_csk(sk);
3537 	struct tcp_sock *tp = tcp_sk(sk);
3538 	struct tcp_sacktag_state sack_state;
3539 	struct rate_sample rs = { .prior_delivered = 0 };
3540 	u32 prior_snd_una = tp->snd_una;
3541 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3542 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3543 	bool is_dupack = false;
3544 	u32 prior_fackets;
3545 	int prior_packets = tp->packets_out;
3546 	u32 delivered = tp->delivered;
3547 	u32 lost = tp->lost;
3548 	int acked = 0; /* Number of packets newly acked */
3549 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3550 
3551 	sack_state.first_sackt.v64 = 0;
3552 	sack_state.rate = &rs;
3553 
3554 	/* We very likely will need to access write queue head. */
3555 	prefetchw(sk->sk_write_queue.next);
3556 
3557 	/* If the ack is older than previous acks
3558 	 * then we can probably ignore it.
3559 	 */
3560 	if (before(ack, prior_snd_una)) {
3561 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3562 		if (before(ack, prior_snd_una - tp->max_window)) {
3563 			tcp_send_challenge_ack(sk, skb);
3564 			return -1;
3565 		}
3566 		goto old_ack;
3567 	}
3568 
3569 	/* If the ack includes data we haven't sent yet, discard
3570 	 * this segment (RFC793 Section 3.9).
3571 	 */
3572 	if (after(ack, tp->snd_nxt))
3573 		goto invalid_ack;
3574 
3575 	skb_mstamp_get(&sack_state.ack_time);
3576 
3577 	if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3578 		tcp_rearm_rto(sk);
3579 
3580 	if (after(ack, prior_snd_una)) {
3581 		flag |= FLAG_SND_UNA_ADVANCED;
3582 		icsk->icsk_retransmits = 0;
3583 	}
3584 
3585 	prior_fackets = tp->fackets_out;
3586 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3587 
3588 	/* ts_recent update must be made after we are sure that the packet
3589 	 * is in window.
3590 	 */
3591 	if (flag & FLAG_UPDATE_TS_RECENT)
3592 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3593 
3594 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3595 		/* Window is constant, pure forward advance.
3596 		 * No more checks are required.
3597 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3598 		 */
3599 		tcp_update_wl(tp, ack_seq);
3600 		tcp_snd_una_update(tp, ack);
3601 		flag |= FLAG_WIN_UPDATE;
3602 
3603 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3604 
3605 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3606 	} else {
3607 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3608 
3609 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3610 			flag |= FLAG_DATA;
3611 		else
3612 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3613 
3614 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3615 
3616 		if (TCP_SKB_CB(skb)->sacked)
3617 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3618 							&sack_state);
3619 
3620 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3621 			flag |= FLAG_ECE;
3622 			ack_ev_flags |= CA_ACK_ECE;
3623 		}
3624 
3625 		if (flag & FLAG_WIN_UPDATE)
3626 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3627 
3628 		tcp_in_ack_event(sk, ack_ev_flags);
3629 	}
3630 
3631 	/* We passed data and got it acked, remove any soft error
3632 	 * log. Something worked...
3633 	 */
3634 	sk->sk_err_soft = 0;
3635 	icsk->icsk_probes_out = 0;
3636 	tp->rcv_tstamp = tcp_time_stamp;
3637 	if (!prior_packets)
3638 		goto no_queue;
3639 
3640 	/* See if we can take anything off of the retransmit queue. */
3641 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3642 				    &sack_state);
3643 
3644 	if (tcp_ack_is_dubious(sk, flag)) {
3645 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3646 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3647 				      &sack_state.ack_time);
3648 	}
3649 	if (tp->tlp_high_seq)
3650 		tcp_process_tlp_ack(sk, ack, flag);
3651 
3652 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3653 		sk_dst_confirm(sk);
3654 
3655 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3656 		tcp_schedule_loss_probe(sk);
3657 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3658 	lost = tp->lost - lost;			/* freshly marked lost */
3659 	tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time,
3660 		     sack_state.rate);
3661 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3662 	tcp_xmit_recovery(sk, rexmit);
3663 	return 1;
3664 
3665 no_queue:
3666 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3667 	if (flag & FLAG_DSACKING_ACK)
3668 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3669 				      &sack_state.ack_time);
3670 	/* If this ack opens up a zero window, clear backoff.  It was
3671 	 * being used to time the probes, and is probably far higher than
3672 	 * it needs to be for normal retransmission.
3673 	 */
3674 	if (tcp_send_head(sk))
3675 		tcp_ack_probe(sk);
3676 
3677 	if (tp->tlp_high_seq)
3678 		tcp_process_tlp_ack(sk, ack, flag);
3679 	return 1;
3680 
3681 invalid_ack:
3682 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683 	return -1;
3684 
3685 old_ack:
3686 	/* If data was SACKed, tag it and see if we should send more data.
3687 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3688 	 */
3689 	if (TCP_SKB_CB(skb)->sacked) {
3690 		skb_mstamp_get(&sack_state.ack_time);
3691 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3692 						&sack_state);
3693 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3694 				      &sack_state.ack_time);
3695 		tcp_xmit_recovery(sk, rexmit);
3696 	}
3697 
3698 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3699 	return 0;
3700 }
3701 
3702 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3703 				      bool syn, struct tcp_fastopen_cookie *foc,
3704 				      bool exp_opt)
3705 {
3706 	/* Valid only in SYN or SYN-ACK with an even length.  */
3707 	if (!foc || !syn || len < 0 || (len & 1))
3708 		return;
3709 
3710 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3711 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3712 		memcpy(foc->val, cookie, len);
3713 	else if (len != 0)
3714 		len = -1;
3715 	foc->len = len;
3716 	foc->exp = exp_opt;
3717 }
3718 
3719 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3720  * But, this can also be called on packets in the established flow when
3721  * the fast version below fails.
3722  */
3723 void tcp_parse_options(const struct sk_buff *skb,
3724 		       struct tcp_options_received *opt_rx, int estab,
3725 		       struct tcp_fastopen_cookie *foc)
3726 {
3727 	const unsigned char *ptr;
3728 	const struct tcphdr *th = tcp_hdr(skb);
3729 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3730 
3731 	ptr = (const unsigned char *)(th + 1);
3732 	opt_rx->saw_tstamp = 0;
3733 
3734 	while (length > 0) {
3735 		int opcode = *ptr++;
3736 		int opsize;
3737 
3738 		switch (opcode) {
3739 		case TCPOPT_EOL:
3740 			return;
3741 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3742 			length--;
3743 			continue;
3744 		default:
3745 			opsize = *ptr++;
3746 			if (opsize < 2) /* "silly options" */
3747 				return;
3748 			if (opsize > length)
3749 				return;	/* don't parse partial options */
3750 			switch (opcode) {
3751 			case TCPOPT_MSS:
3752 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3753 					u16 in_mss = get_unaligned_be16(ptr);
3754 					if (in_mss) {
3755 						if (opt_rx->user_mss &&
3756 						    opt_rx->user_mss < in_mss)
3757 							in_mss = opt_rx->user_mss;
3758 						opt_rx->mss_clamp = in_mss;
3759 					}
3760 				}
3761 				break;
3762 			case TCPOPT_WINDOW:
3763 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3764 				    !estab && sysctl_tcp_window_scaling) {
3765 					__u8 snd_wscale = *(__u8 *)ptr;
3766 					opt_rx->wscale_ok = 1;
3767 					if (snd_wscale > TCP_MAX_WSCALE) {
3768 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3769 								     __func__,
3770 								     snd_wscale,
3771 								     TCP_MAX_WSCALE);
3772 						snd_wscale = TCP_MAX_WSCALE;
3773 					}
3774 					opt_rx->snd_wscale = snd_wscale;
3775 				}
3776 				break;
3777 			case TCPOPT_TIMESTAMP:
3778 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3779 				    ((estab && opt_rx->tstamp_ok) ||
3780 				     (!estab && sysctl_tcp_timestamps))) {
3781 					opt_rx->saw_tstamp = 1;
3782 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3783 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3784 				}
3785 				break;
3786 			case TCPOPT_SACK_PERM:
3787 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3788 				    !estab && sysctl_tcp_sack) {
3789 					opt_rx->sack_ok = TCP_SACK_SEEN;
3790 					tcp_sack_reset(opt_rx);
3791 				}
3792 				break;
3793 
3794 			case TCPOPT_SACK:
3795 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3796 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3797 				   opt_rx->sack_ok) {
3798 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3799 				}
3800 				break;
3801 #ifdef CONFIG_TCP_MD5SIG
3802 			case TCPOPT_MD5SIG:
3803 				/*
3804 				 * The MD5 Hash has already been
3805 				 * checked (see tcp_v{4,6}_do_rcv()).
3806 				 */
3807 				break;
3808 #endif
3809 			case TCPOPT_FASTOPEN:
3810 				tcp_parse_fastopen_option(
3811 					opsize - TCPOLEN_FASTOPEN_BASE,
3812 					ptr, th->syn, foc, false);
3813 				break;
3814 
3815 			case TCPOPT_EXP:
3816 				/* Fast Open option shares code 254 using a
3817 				 * 16 bits magic number.
3818 				 */
3819 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3820 				    get_unaligned_be16(ptr) ==
3821 				    TCPOPT_FASTOPEN_MAGIC)
3822 					tcp_parse_fastopen_option(opsize -
3823 						TCPOLEN_EXP_FASTOPEN_BASE,
3824 						ptr + 2, th->syn, foc, true);
3825 				break;
3826 
3827 			}
3828 			ptr += opsize-2;
3829 			length -= opsize;
3830 		}
3831 	}
3832 }
3833 EXPORT_SYMBOL(tcp_parse_options);
3834 
3835 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3836 {
3837 	const __be32 *ptr = (const __be32 *)(th + 1);
3838 
3839 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3840 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3841 		tp->rx_opt.saw_tstamp = 1;
3842 		++ptr;
3843 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3844 		++ptr;
3845 		if (*ptr)
3846 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3847 		else
3848 			tp->rx_opt.rcv_tsecr = 0;
3849 		return true;
3850 	}
3851 	return false;
3852 }
3853 
3854 /* Fast parse options. This hopes to only see timestamps.
3855  * If it is wrong it falls back on tcp_parse_options().
3856  */
3857 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3858 				   const struct tcphdr *th, struct tcp_sock *tp)
3859 {
3860 	/* In the spirit of fast parsing, compare doff directly to constant
3861 	 * values.  Because equality is used, short doff can be ignored here.
3862 	 */
3863 	if (th->doff == (sizeof(*th) / 4)) {
3864 		tp->rx_opt.saw_tstamp = 0;
3865 		return false;
3866 	} else if (tp->rx_opt.tstamp_ok &&
3867 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3868 		if (tcp_parse_aligned_timestamp(tp, th))
3869 			return true;
3870 	}
3871 
3872 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3873 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3874 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3875 
3876 	return true;
3877 }
3878 
3879 #ifdef CONFIG_TCP_MD5SIG
3880 /*
3881  * Parse MD5 Signature option
3882  */
3883 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3884 {
3885 	int length = (th->doff << 2) - sizeof(*th);
3886 	const u8 *ptr = (const u8 *)(th + 1);
3887 
3888 	/* If the TCP option is too short, we can short cut */
3889 	if (length < TCPOLEN_MD5SIG)
3890 		return NULL;
3891 
3892 	while (length > 0) {
3893 		int opcode = *ptr++;
3894 		int opsize;
3895 
3896 		switch (opcode) {
3897 		case TCPOPT_EOL:
3898 			return NULL;
3899 		case TCPOPT_NOP:
3900 			length--;
3901 			continue;
3902 		default:
3903 			opsize = *ptr++;
3904 			if (opsize < 2 || opsize > length)
3905 				return NULL;
3906 			if (opcode == TCPOPT_MD5SIG)
3907 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3908 		}
3909 		ptr += opsize - 2;
3910 		length -= opsize;
3911 	}
3912 	return NULL;
3913 }
3914 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3915 #endif
3916 
3917 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3918  *
3919  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3920  * it can pass through stack. So, the following predicate verifies that
3921  * this segment is not used for anything but congestion avoidance or
3922  * fast retransmit. Moreover, we even are able to eliminate most of such
3923  * second order effects, if we apply some small "replay" window (~RTO)
3924  * to timestamp space.
3925  *
3926  * All these measures still do not guarantee that we reject wrapped ACKs
3927  * on networks with high bandwidth, when sequence space is recycled fastly,
3928  * but it guarantees that such events will be very rare and do not affect
3929  * connection seriously. This doesn't look nice, but alas, PAWS is really
3930  * buggy extension.
3931  *
3932  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3933  * states that events when retransmit arrives after original data are rare.
3934  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3935  * the biggest problem on large power networks even with minor reordering.
3936  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3937  * up to bandwidth of 18Gigabit/sec. 8) ]
3938  */
3939 
3940 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3941 {
3942 	const struct tcp_sock *tp = tcp_sk(sk);
3943 	const struct tcphdr *th = tcp_hdr(skb);
3944 	u32 seq = TCP_SKB_CB(skb)->seq;
3945 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3946 
3947 	return (/* 1. Pure ACK with correct sequence number. */
3948 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3949 
3950 		/* 2. ... and duplicate ACK. */
3951 		ack == tp->snd_una &&
3952 
3953 		/* 3. ... and does not update window. */
3954 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3955 
3956 		/* 4. ... and sits in replay window. */
3957 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3958 }
3959 
3960 static inline bool tcp_paws_discard(const struct sock *sk,
3961 				   const struct sk_buff *skb)
3962 {
3963 	const struct tcp_sock *tp = tcp_sk(sk);
3964 
3965 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3966 	       !tcp_disordered_ack(sk, skb);
3967 }
3968 
3969 /* Check segment sequence number for validity.
3970  *
3971  * Segment controls are considered valid, if the segment
3972  * fits to the window after truncation to the window. Acceptability
3973  * of data (and SYN, FIN, of course) is checked separately.
3974  * See tcp_data_queue(), for example.
3975  *
3976  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3977  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3978  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3979  * (borrowed from freebsd)
3980  */
3981 
3982 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3983 {
3984 	return	!before(end_seq, tp->rcv_wup) &&
3985 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3986 }
3987 
3988 /* When we get a reset we do this. */
3989 void tcp_reset(struct sock *sk)
3990 {
3991 	/* We want the right error as BSD sees it (and indeed as we do). */
3992 	switch (sk->sk_state) {
3993 	case TCP_SYN_SENT:
3994 		sk->sk_err = ECONNREFUSED;
3995 		break;
3996 	case TCP_CLOSE_WAIT:
3997 		sk->sk_err = EPIPE;
3998 		break;
3999 	case TCP_CLOSE:
4000 		return;
4001 	default:
4002 		sk->sk_err = ECONNRESET;
4003 	}
4004 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4005 	smp_wmb();
4006 
4007 	if (!sock_flag(sk, SOCK_DEAD))
4008 		sk->sk_error_report(sk);
4009 
4010 	tcp_done(sk);
4011 }
4012 
4013 /*
4014  * 	Process the FIN bit. This now behaves as it is supposed to work
4015  *	and the FIN takes effect when it is validly part of sequence
4016  *	space. Not before when we get holes.
4017  *
4018  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4019  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4020  *	TIME-WAIT)
4021  *
4022  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4023  *	close and we go into CLOSING (and later onto TIME-WAIT)
4024  *
4025  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4026  */
4027 void tcp_fin(struct sock *sk)
4028 {
4029 	struct tcp_sock *tp = tcp_sk(sk);
4030 
4031 	inet_csk_schedule_ack(sk);
4032 
4033 	sk->sk_shutdown |= RCV_SHUTDOWN;
4034 	sock_set_flag(sk, SOCK_DONE);
4035 
4036 	switch (sk->sk_state) {
4037 	case TCP_SYN_RECV:
4038 	case TCP_ESTABLISHED:
4039 		/* Move to CLOSE_WAIT */
4040 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4041 		inet_csk(sk)->icsk_ack.pingpong = 1;
4042 		break;
4043 
4044 	case TCP_CLOSE_WAIT:
4045 	case TCP_CLOSING:
4046 		/* Received a retransmission of the FIN, do
4047 		 * nothing.
4048 		 */
4049 		break;
4050 	case TCP_LAST_ACK:
4051 		/* RFC793: Remain in the LAST-ACK state. */
4052 		break;
4053 
4054 	case TCP_FIN_WAIT1:
4055 		/* This case occurs when a simultaneous close
4056 		 * happens, we must ack the received FIN and
4057 		 * enter the CLOSING state.
4058 		 */
4059 		tcp_send_ack(sk);
4060 		tcp_set_state(sk, TCP_CLOSING);
4061 		break;
4062 	case TCP_FIN_WAIT2:
4063 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4064 		tcp_send_ack(sk);
4065 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4066 		break;
4067 	default:
4068 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4069 		 * cases we should never reach this piece of code.
4070 		 */
4071 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4072 		       __func__, sk->sk_state);
4073 		break;
4074 	}
4075 
4076 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4077 	 * Probably, we should reset in this case. For now drop them.
4078 	 */
4079 	skb_rbtree_purge(&tp->out_of_order_queue);
4080 	if (tcp_is_sack(tp))
4081 		tcp_sack_reset(&tp->rx_opt);
4082 	sk_mem_reclaim(sk);
4083 
4084 	if (!sock_flag(sk, SOCK_DEAD)) {
4085 		sk->sk_state_change(sk);
4086 
4087 		/* Do not send POLL_HUP for half duplex close. */
4088 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4089 		    sk->sk_state == TCP_CLOSE)
4090 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4091 		else
4092 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4093 	}
4094 }
4095 
4096 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4097 				  u32 end_seq)
4098 {
4099 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4100 		if (before(seq, sp->start_seq))
4101 			sp->start_seq = seq;
4102 		if (after(end_seq, sp->end_seq))
4103 			sp->end_seq = end_seq;
4104 		return true;
4105 	}
4106 	return false;
4107 }
4108 
4109 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4110 {
4111 	struct tcp_sock *tp = tcp_sk(sk);
4112 
4113 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4114 		int mib_idx;
4115 
4116 		if (before(seq, tp->rcv_nxt))
4117 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4118 		else
4119 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4120 
4121 		NET_INC_STATS(sock_net(sk), mib_idx);
4122 
4123 		tp->rx_opt.dsack = 1;
4124 		tp->duplicate_sack[0].start_seq = seq;
4125 		tp->duplicate_sack[0].end_seq = end_seq;
4126 	}
4127 }
4128 
4129 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4130 {
4131 	struct tcp_sock *tp = tcp_sk(sk);
4132 
4133 	if (!tp->rx_opt.dsack)
4134 		tcp_dsack_set(sk, seq, end_seq);
4135 	else
4136 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4137 }
4138 
4139 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4140 {
4141 	struct tcp_sock *tp = tcp_sk(sk);
4142 
4143 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4144 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4145 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4146 		tcp_enter_quickack_mode(sk);
4147 
4148 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4149 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4150 
4151 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4152 				end_seq = tp->rcv_nxt;
4153 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4154 		}
4155 	}
4156 
4157 	tcp_send_ack(sk);
4158 }
4159 
4160 /* These routines update the SACK block as out-of-order packets arrive or
4161  * in-order packets close up the sequence space.
4162  */
4163 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4164 {
4165 	int this_sack;
4166 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4167 	struct tcp_sack_block *swalk = sp + 1;
4168 
4169 	/* See if the recent change to the first SACK eats into
4170 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4171 	 */
4172 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4173 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4174 			int i;
4175 
4176 			/* Zap SWALK, by moving every further SACK up by one slot.
4177 			 * Decrease num_sacks.
4178 			 */
4179 			tp->rx_opt.num_sacks--;
4180 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4181 				sp[i] = sp[i + 1];
4182 			continue;
4183 		}
4184 		this_sack++, swalk++;
4185 	}
4186 }
4187 
4188 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4189 {
4190 	struct tcp_sock *tp = tcp_sk(sk);
4191 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4192 	int cur_sacks = tp->rx_opt.num_sacks;
4193 	int this_sack;
4194 
4195 	if (!cur_sacks)
4196 		goto new_sack;
4197 
4198 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4199 		if (tcp_sack_extend(sp, seq, end_seq)) {
4200 			/* Rotate this_sack to the first one. */
4201 			for (; this_sack > 0; this_sack--, sp--)
4202 				swap(*sp, *(sp - 1));
4203 			if (cur_sacks > 1)
4204 				tcp_sack_maybe_coalesce(tp);
4205 			return;
4206 		}
4207 	}
4208 
4209 	/* Could not find an adjacent existing SACK, build a new one,
4210 	 * put it at the front, and shift everyone else down.  We
4211 	 * always know there is at least one SACK present already here.
4212 	 *
4213 	 * If the sack array is full, forget about the last one.
4214 	 */
4215 	if (this_sack >= TCP_NUM_SACKS) {
4216 		this_sack--;
4217 		tp->rx_opt.num_sacks--;
4218 		sp--;
4219 	}
4220 	for (; this_sack > 0; this_sack--, sp--)
4221 		*sp = *(sp - 1);
4222 
4223 new_sack:
4224 	/* Build the new head SACK, and we're done. */
4225 	sp->start_seq = seq;
4226 	sp->end_seq = end_seq;
4227 	tp->rx_opt.num_sacks++;
4228 }
4229 
4230 /* RCV.NXT advances, some SACKs should be eaten. */
4231 
4232 static void tcp_sack_remove(struct tcp_sock *tp)
4233 {
4234 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4235 	int num_sacks = tp->rx_opt.num_sacks;
4236 	int this_sack;
4237 
4238 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4239 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4240 		tp->rx_opt.num_sacks = 0;
4241 		return;
4242 	}
4243 
4244 	for (this_sack = 0; this_sack < num_sacks;) {
4245 		/* Check if the start of the sack is covered by RCV.NXT. */
4246 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4247 			int i;
4248 
4249 			/* RCV.NXT must cover all the block! */
4250 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4251 
4252 			/* Zap this SACK, by moving forward any other SACKS. */
4253 			for (i = this_sack+1; i < num_sacks; i++)
4254 				tp->selective_acks[i-1] = tp->selective_acks[i];
4255 			num_sacks--;
4256 			continue;
4257 		}
4258 		this_sack++;
4259 		sp++;
4260 	}
4261 	tp->rx_opt.num_sacks = num_sacks;
4262 }
4263 
4264 /**
4265  * tcp_try_coalesce - try to merge skb to prior one
4266  * @sk: socket
4267  * @to: prior buffer
4268  * @from: buffer to add in queue
4269  * @fragstolen: pointer to boolean
4270  *
4271  * Before queueing skb @from after @to, try to merge them
4272  * to reduce overall memory use and queue lengths, if cost is small.
4273  * Packets in ofo or receive queues can stay a long time.
4274  * Better try to coalesce them right now to avoid future collapses.
4275  * Returns true if caller should free @from instead of queueing it
4276  */
4277 static bool tcp_try_coalesce(struct sock *sk,
4278 			     struct sk_buff *to,
4279 			     struct sk_buff *from,
4280 			     bool *fragstolen)
4281 {
4282 	int delta;
4283 
4284 	*fragstolen = false;
4285 
4286 	/* Its possible this segment overlaps with prior segment in queue */
4287 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4288 		return false;
4289 
4290 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4291 		return false;
4292 
4293 	atomic_add(delta, &sk->sk_rmem_alloc);
4294 	sk_mem_charge(sk, delta);
4295 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4296 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4297 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4298 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4299 	return true;
4300 }
4301 
4302 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4303 {
4304 	sk_drops_add(sk, skb);
4305 	__kfree_skb(skb);
4306 }
4307 
4308 /* This one checks to see if we can put data from the
4309  * out_of_order queue into the receive_queue.
4310  */
4311 static void tcp_ofo_queue(struct sock *sk)
4312 {
4313 	struct tcp_sock *tp = tcp_sk(sk);
4314 	__u32 dsack_high = tp->rcv_nxt;
4315 	bool fin, fragstolen, eaten;
4316 	struct sk_buff *skb, *tail;
4317 	struct rb_node *p;
4318 
4319 	p = rb_first(&tp->out_of_order_queue);
4320 	while (p) {
4321 		skb = rb_entry(p, struct sk_buff, rbnode);
4322 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4323 			break;
4324 
4325 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4326 			__u32 dsack = dsack_high;
4327 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4328 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4329 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4330 		}
4331 		p = rb_next(p);
4332 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4333 
4334 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4335 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4336 			tcp_drop(sk, skb);
4337 			continue;
4338 		}
4339 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4340 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4341 			   TCP_SKB_CB(skb)->end_seq);
4342 
4343 		tail = skb_peek_tail(&sk->sk_receive_queue);
4344 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4345 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4346 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4347 		if (!eaten)
4348 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4349 		else
4350 			kfree_skb_partial(skb, fragstolen);
4351 
4352 		if (unlikely(fin)) {
4353 			tcp_fin(sk);
4354 			/* tcp_fin() purges tp->out_of_order_queue,
4355 			 * so we must end this loop right now.
4356 			 */
4357 			break;
4358 		}
4359 	}
4360 }
4361 
4362 static bool tcp_prune_ofo_queue(struct sock *sk);
4363 static int tcp_prune_queue(struct sock *sk);
4364 
4365 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4366 				 unsigned int size)
4367 {
4368 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4369 	    !sk_rmem_schedule(sk, skb, size)) {
4370 
4371 		if (tcp_prune_queue(sk) < 0)
4372 			return -1;
4373 
4374 		while (!sk_rmem_schedule(sk, skb, size)) {
4375 			if (!tcp_prune_ofo_queue(sk))
4376 				return -1;
4377 		}
4378 	}
4379 	return 0;
4380 }
4381 
4382 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4383 {
4384 	struct tcp_sock *tp = tcp_sk(sk);
4385 	struct rb_node **p, *q, *parent;
4386 	struct sk_buff *skb1;
4387 	u32 seq, end_seq;
4388 	bool fragstolen;
4389 
4390 	tcp_ecn_check_ce(tp, skb);
4391 
4392 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4393 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4394 		tcp_drop(sk, skb);
4395 		return;
4396 	}
4397 
4398 	/* Disable header prediction. */
4399 	tp->pred_flags = 0;
4400 	inet_csk_schedule_ack(sk);
4401 
4402 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4403 	seq = TCP_SKB_CB(skb)->seq;
4404 	end_seq = TCP_SKB_CB(skb)->end_seq;
4405 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4406 		   tp->rcv_nxt, seq, end_seq);
4407 
4408 	p = &tp->out_of_order_queue.rb_node;
4409 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4410 		/* Initial out of order segment, build 1 SACK. */
4411 		if (tcp_is_sack(tp)) {
4412 			tp->rx_opt.num_sacks = 1;
4413 			tp->selective_acks[0].start_seq = seq;
4414 			tp->selective_acks[0].end_seq = end_seq;
4415 		}
4416 		rb_link_node(&skb->rbnode, NULL, p);
4417 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4418 		tp->ooo_last_skb = skb;
4419 		goto end;
4420 	}
4421 
4422 	/* In the typical case, we are adding an skb to the end of the list.
4423 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4424 	 */
4425 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4426 coalesce_done:
4427 		tcp_grow_window(sk, skb);
4428 		kfree_skb_partial(skb, fragstolen);
4429 		skb = NULL;
4430 		goto add_sack;
4431 	}
4432 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4433 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4434 		parent = &tp->ooo_last_skb->rbnode;
4435 		p = &parent->rb_right;
4436 		goto insert;
4437 	}
4438 
4439 	/* Find place to insert this segment. Handle overlaps on the way. */
4440 	parent = NULL;
4441 	while (*p) {
4442 		parent = *p;
4443 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4444 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4445 			p = &parent->rb_left;
4446 			continue;
4447 		}
4448 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4449 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4450 				/* All the bits are present. Drop. */
4451 				NET_INC_STATS(sock_net(sk),
4452 					      LINUX_MIB_TCPOFOMERGE);
4453 				__kfree_skb(skb);
4454 				skb = NULL;
4455 				tcp_dsack_set(sk, seq, end_seq);
4456 				goto add_sack;
4457 			}
4458 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4459 				/* Partial overlap. */
4460 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4461 			} else {
4462 				/* skb's seq == skb1's seq and skb covers skb1.
4463 				 * Replace skb1 with skb.
4464 				 */
4465 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4466 						&tp->out_of_order_queue);
4467 				tcp_dsack_extend(sk,
4468 						 TCP_SKB_CB(skb1)->seq,
4469 						 TCP_SKB_CB(skb1)->end_seq);
4470 				NET_INC_STATS(sock_net(sk),
4471 					      LINUX_MIB_TCPOFOMERGE);
4472 				__kfree_skb(skb1);
4473 				goto merge_right;
4474 			}
4475 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4476 			goto coalesce_done;
4477 		}
4478 		p = &parent->rb_right;
4479 	}
4480 insert:
4481 	/* Insert segment into RB tree. */
4482 	rb_link_node(&skb->rbnode, parent, p);
4483 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4484 
4485 merge_right:
4486 	/* Remove other segments covered by skb. */
4487 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4488 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4489 
4490 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4491 			break;
4492 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4493 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4494 					 end_seq);
4495 			break;
4496 		}
4497 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4498 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 				 TCP_SKB_CB(skb1)->end_seq);
4500 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4501 		tcp_drop(sk, skb1);
4502 	}
4503 	/* If there is no skb after us, we are the last_skb ! */
4504 	if (!q)
4505 		tp->ooo_last_skb = skb;
4506 
4507 add_sack:
4508 	if (tcp_is_sack(tp))
4509 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4510 end:
4511 	if (skb) {
4512 		tcp_grow_window(sk, skb);
4513 		skb_condense(skb);
4514 		skb_set_owner_r(skb, sk);
4515 	}
4516 }
4517 
4518 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4519 		  bool *fragstolen)
4520 {
4521 	int eaten;
4522 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4523 
4524 	__skb_pull(skb, hdrlen);
4525 	eaten = (tail &&
4526 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4527 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4528 	if (!eaten) {
4529 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4530 		skb_set_owner_r(skb, sk);
4531 	}
4532 	return eaten;
4533 }
4534 
4535 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4536 {
4537 	struct sk_buff *skb;
4538 	int err = -ENOMEM;
4539 	int data_len = 0;
4540 	bool fragstolen;
4541 
4542 	if (size == 0)
4543 		return 0;
4544 
4545 	if (size > PAGE_SIZE) {
4546 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4547 
4548 		data_len = npages << PAGE_SHIFT;
4549 		size = data_len + (size & ~PAGE_MASK);
4550 	}
4551 	skb = alloc_skb_with_frags(size - data_len, data_len,
4552 				   PAGE_ALLOC_COSTLY_ORDER,
4553 				   &err, sk->sk_allocation);
4554 	if (!skb)
4555 		goto err;
4556 
4557 	skb_put(skb, size - data_len);
4558 	skb->data_len = data_len;
4559 	skb->len = size;
4560 
4561 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4562 		goto err_free;
4563 
4564 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4565 	if (err)
4566 		goto err_free;
4567 
4568 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4569 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4570 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4571 
4572 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4573 		WARN_ON_ONCE(fragstolen); /* should not happen */
4574 		__kfree_skb(skb);
4575 	}
4576 	return size;
4577 
4578 err_free:
4579 	kfree_skb(skb);
4580 err:
4581 	return err;
4582 
4583 }
4584 
4585 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4586 {
4587 	struct tcp_sock *tp = tcp_sk(sk);
4588 	bool fragstolen = false;
4589 	int eaten = -1;
4590 
4591 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4592 		__kfree_skb(skb);
4593 		return;
4594 	}
4595 	skb_dst_drop(skb);
4596 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4597 
4598 	tcp_ecn_accept_cwr(tp, skb);
4599 
4600 	tp->rx_opt.dsack = 0;
4601 
4602 	/*  Queue data for delivery to the user.
4603 	 *  Packets in sequence go to the receive queue.
4604 	 *  Out of sequence packets to the out_of_order_queue.
4605 	 */
4606 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4607 		if (tcp_receive_window(tp) == 0)
4608 			goto out_of_window;
4609 
4610 		/* Ok. In sequence. In window. */
4611 		if (tp->ucopy.task == current &&
4612 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4613 		    sock_owned_by_user(sk) && !tp->urg_data) {
4614 			int chunk = min_t(unsigned int, skb->len,
4615 					  tp->ucopy.len);
4616 
4617 			__set_current_state(TASK_RUNNING);
4618 
4619 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4620 				tp->ucopy.len -= chunk;
4621 				tp->copied_seq += chunk;
4622 				eaten = (chunk == skb->len);
4623 				tcp_rcv_space_adjust(sk);
4624 			}
4625 		}
4626 
4627 		if (eaten <= 0) {
4628 queue_and_out:
4629 			if (eaten < 0) {
4630 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4631 					sk_forced_mem_schedule(sk, skb->truesize);
4632 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4633 					goto drop;
4634 			}
4635 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4636 		}
4637 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4638 		if (skb->len)
4639 			tcp_event_data_recv(sk, skb);
4640 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4641 			tcp_fin(sk);
4642 
4643 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4644 			tcp_ofo_queue(sk);
4645 
4646 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4647 			 * gap in queue is filled.
4648 			 */
4649 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4650 				inet_csk(sk)->icsk_ack.pingpong = 0;
4651 		}
4652 
4653 		if (tp->rx_opt.num_sacks)
4654 			tcp_sack_remove(tp);
4655 
4656 		tcp_fast_path_check(sk);
4657 
4658 		if (eaten > 0)
4659 			kfree_skb_partial(skb, fragstolen);
4660 		if (!sock_flag(sk, SOCK_DEAD))
4661 			sk->sk_data_ready(sk);
4662 		return;
4663 	}
4664 
4665 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4666 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4667 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4668 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4669 
4670 out_of_window:
4671 		tcp_enter_quickack_mode(sk);
4672 		inet_csk_schedule_ack(sk);
4673 drop:
4674 		tcp_drop(sk, skb);
4675 		return;
4676 	}
4677 
4678 	/* Out of window. F.e. zero window probe. */
4679 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4680 		goto out_of_window;
4681 
4682 	tcp_enter_quickack_mode(sk);
4683 
4684 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4685 		/* Partial packet, seq < rcv_next < end_seq */
4686 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4687 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4688 			   TCP_SKB_CB(skb)->end_seq);
4689 
4690 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4691 
4692 		/* If window is closed, drop tail of packet. But after
4693 		 * remembering D-SACK for its head made in previous line.
4694 		 */
4695 		if (!tcp_receive_window(tp))
4696 			goto out_of_window;
4697 		goto queue_and_out;
4698 	}
4699 
4700 	tcp_data_queue_ofo(sk, skb);
4701 }
4702 
4703 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4704 {
4705 	if (list)
4706 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4707 
4708 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4709 }
4710 
4711 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4712 					struct sk_buff_head *list,
4713 					struct rb_root *root)
4714 {
4715 	struct sk_buff *next = tcp_skb_next(skb, list);
4716 
4717 	if (list)
4718 		__skb_unlink(skb, list);
4719 	else
4720 		rb_erase(&skb->rbnode, root);
4721 
4722 	__kfree_skb(skb);
4723 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4724 
4725 	return next;
4726 }
4727 
4728 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4729 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4730 {
4731 	struct rb_node **p = &root->rb_node;
4732 	struct rb_node *parent = NULL;
4733 	struct sk_buff *skb1;
4734 
4735 	while (*p) {
4736 		parent = *p;
4737 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4738 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4739 			p = &parent->rb_left;
4740 		else
4741 			p = &parent->rb_right;
4742 	}
4743 	rb_link_node(&skb->rbnode, parent, p);
4744 	rb_insert_color(&skb->rbnode, root);
4745 }
4746 
4747 /* Collapse contiguous sequence of skbs head..tail with
4748  * sequence numbers start..end.
4749  *
4750  * If tail is NULL, this means until the end of the queue.
4751  *
4752  * Segments with FIN/SYN are not collapsed (only because this
4753  * simplifies code)
4754  */
4755 static void
4756 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4757 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4758 {
4759 	struct sk_buff *skb = head, *n;
4760 	struct sk_buff_head tmp;
4761 	bool end_of_skbs;
4762 
4763 	/* First, check that queue is collapsible and find
4764 	 * the point where collapsing can be useful.
4765 	 */
4766 restart:
4767 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4768 		n = tcp_skb_next(skb, list);
4769 
4770 		/* No new bits? It is possible on ofo queue. */
4771 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4772 			skb = tcp_collapse_one(sk, skb, list, root);
4773 			if (!skb)
4774 				break;
4775 			goto restart;
4776 		}
4777 
4778 		/* The first skb to collapse is:
4779 		 * - not SYN/FIN and
4780 		 * - bloated or contains data before "start" or
4781 		 *   overlaps to the next one.
4782 		 */
4783 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4784 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4785 		     before(TCP_SKB_CB(skb)->seq, start))) {
4786 			end_of_skbs = false;
4787 			break;
4788 		}
4789 
4790 		if (n && n != tail &&
4791 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4792 			end_of_skbs = false;
4793 			break;
4794 		}
4795 
4796 		/* Decided to skip this, advance start seq. */
4797 		start = TCP_SKB_CB(skb)->end_seq;
4798 	}
4799 	if (end_of_skbs ||
4800 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4801 		return;
4802 
4803 	__skb_queue_head_init(&tmp);
4804 
4805 	while (before(start, end)) {
4806 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4807 		struct sk_buff *nskb;
4808 
4809 		nskb = alloc_skb(copy, GFP_ATOMIC);
4810 		if (!nskb)
4811 			break;
4812 
4813 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4814 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4815 		if (list)
4816 			__skb_queue_before(list, skb, nskb);
4817 		else
4818 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4819 		skb_set_owner_r(nskb, sk);
4820 
4821 		/* Copy data, releasing collapsed skbs. */
4822 		while (copy > 0) {
4823 			int offset = start - TCP_SKB_CB(skb)->seq;
4824 			int size = TCP_SKB_CB(skb)->end_seq - start;
4825 
4826 			BUG_ON(offset < 0);
4827 			if (size > 0) {
4828 				size = min(copy, size);
4829 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4830 					BUG();
4831 				TCP_SKB_CB(nskb)->end_seq += size;
4832 				copy -= size;
4833 				start += size;
4834 			}
4835 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4836 				skb = tcp_collapse_one(sk, skb, list, root);
4837 				if (!skb ||
4838 				    skb == tail ||
4839 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4840 					goto end;
4841 			}
4842 		}
4843 	}
4844 end:
4845 	skb_queue_walk_safe(&tmp, skb, n)
4846 		tcp_rbtree_insert(root, skb);
4847 }
4848 
4849 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4850  * and tcp_collapse() them until all the queue is collapsed.
4851  */
4852 static void tcp_collapse_ofo_queue(struct sock *sk)
4853 {
4854 	struct tcp_sock *tp = tcp_sk(sk);
4855 	struct sk_buff *skb, *head;
4856 	struct rb_node *p;
4857 	u32 start, end;
4858 
4859 	p = rb_first(&tp->out_of_order_queue);
4860 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4861 new_range:
4862 	if (!skb) {
4863 		p = rb_last(&tp->out_of_order_queue);
4864 		/* Note: This is possible p is NULL here. We do not
4865 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4866 		 * if rbtree is not empty.
4867 		 */
4868 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4869 		return;
4870 	}
4871 	start = TCP_SKB_CB(skb)->seq;
4872 	end = TCP_SKB_CB(skb)->end_seq;
4873 
4874 	for (head = skb;;) {
4875 		skb = tcp_skb_next(skb, NULL);
4876 
4877 		/* Range is terminated when we see a gap or when
4878 		 * we are at the queue end.
4879 		 */
4880 		if (!skb ||
4881 		    after(TCP_SKB_CB(skb)->seq, end) ||
4882 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4883 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4884 				     head, skb, start, end);
4885 			goto new_range;
4886 		}
4887 
4888 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4889 			start = TCP_SKB_CB(skb)->seq;
4890 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4891 			end = TCP_SKB_CB(skb)->end_seq;
4892 	}
4893 }
4894 
4895 /*
4896  * Clean the out-of-order queue to make room.
4897  * We drop high sequences packets to :
4898  * 1) Let a chance for holes to be filled.
4899  * 2) not add too big latencies if thousands of packets sit there.
4900  *    (But if application shrinks SO_RCVBUF, we could still end up
4901  *     freeing whole queue here)
4902  *
4903  * Return true if queue has shrunk.
4904  */
4905 static bool tcp_prune_ofo_queue(struct sock *sk)
4906 {
4907 	struct tcp_sock *tp = tcp_sk(sk);
4908 	struct rb_node *node, *prev;
4909 
4910 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4911 		return false;
4912 
4913 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4914 	node = &tp->ooo_last_skb->rbnode;
4915 	do {
4916 		prev = rb_prev(node);
4917 		rb_erase(node, &tp->out_of_order_queue);
4918 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4919 		sk_mem_reclaim(sk);
4920 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4921 		    !tcp_under_memory_pressure(sk))
4922 			break;
4923 		node = prev;
4924 	} while (node);
4925 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4926 
4927 	/* Reset SACK state.  A conforming SACK implementation will
4928 	 * do the same at a timeout based retransmit.  When a connection
4929 	 * is in a sad state like this, we care only about integrity
4930 	 * of the connection not performance.
4931 	 */
4932 	if (tp->rx_opt.sack_ok)
4933 		tcp_sack_reset(&tp->rx_opt);
4934 	return true;
4935 }
4936 
4937 /* Reduce allocated memory if we can, trying to get
4938  * the socket within its memory limits again.
4939  *
4940  * Return less than zero if we should start dropping frames
4941  * until the socket owning process reads some of the data
4942  * to stabilize the situation.
4943  */
4944 static int tcp_prune_queue(struct sock *sk)
4945 {
4946 	struct tcp_sock *tp = tcp_sk(sk);
4947 
4948 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4949 
4950 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4951 
4952 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4953 		tcp_clamp_window(sk);
4954 	else if (tcp_under_memory_pressure(sk))
4955 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4956 
4957 	tcp_collapse_ofo_queue(sk);
4958 	if (!skb_queue_empty(&sk->sk_receive_queue))
4959 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4960 			     skb_peek(&sk->sk_receive_queue),
4961 			     NULL,
4962 			     tp->copied_seq, tp->rcv_nxt);
4963 	sk_mem_reclaim(sk);
4964 
4965 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4966 		return 0;
4967 
4968 	/* Collapsing did not help, destructive actions follow.
4969 	 * This must not ever occur. */
4970 
4971 	tcp_prune_ofo_queue(sk);
4972 
4973 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4974 		return 0;
4975 
4976 	/* If we are really being abused, tell the caller to silently
4977 	 * drop receive data on the floor.  It will get retransmitted
4978 	 * and hopefully then we'll have sufficient space.
4979 	 */
4980 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4981 
4982 	/* Massive buffer overcommit. */
4983 	tp->pred_flags = 0;
4984 	return -1;
4985 }
4986 
4987 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4988 {
4989 	const struct tcp_sock *tp = tcp_sk(sk);
4990 
4991 	/* If the user specified a specific send buffer setting, do
4992 	 * not modify it.
4993 	 */
4994 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4995 		return false;
4996 
4997 	/* If we are under global TCP memory pressure, do not expand.  */
4998 	if (tcp_under_memory_pressure(sk))
4999 		return false;
5000 
5001 	/* If we are under soft global TCP memory pressure, do not expand.  */
5002 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5003 		return false;
5004 
5005 	/* If we filled the congestion window, do not expand.  */
5006 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5007 		return false;
5008 
5009 	return true;
5010 }
5011 
5012 /* When incoming ACK allowed to free some skb from write_queue,
5013  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5014  * on the exit from tcp input handler.
5015  *
5016  * PROBLEM: sndbuf expansion does not work well with largesend.
5017  */
5018 static void tcp_new_space(struct sock *sk)
5019 {
5020 	struct tcp_sock *tp = tcp_sk(sk);
5021 
5022 	if (tcp_should_expand_sndbuf(sk)) {
5023 		tcp_sndbuf_expand(sk);
5024 		tp->snd_cwnd_stamp = tcp_time_stamp;
5025 	}
5026 
5027 	sk->sk_write_space(sk);
5028 }
5029 
5030 static void tcp_check_space(struct sock *sk)
5031 {
5032 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5033 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5034 		/* pairs with tcp_poll() */
5035 		smp_mb();
5036 		if (sk->sk_socket &&
5037 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5038 			tcp_new_space(sk);
5039 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5040 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5041 		}
5042 	}
5043 }
5044 
5045 static inline void tcp_data_snd_check(struct sock *sk)
5046 {
5047 	tcp_push_pending_frames(sk);
5048 	tcp_check_space(sk);
5049 }
5050 
5051 /*
5052  * Check if sending an ack is needed.
5053  */
5054 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5055 {
5056 	struct tcp_sock *tp = tcp_sk(sk);
5057 
5058 	    /* More than one full frame received... */
5059 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5060 	     /* ... and right edge of window advances far enough.
5061 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5062 	      */
5063 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5064 	    /* We ACK each frame or... */
5065 	    tcp_in_quickack_mode(sk) ||
5066 	    /* We have out of order data. */
5067 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5068 		/* Then ack it now */
5069 		tcp_send_ack(sk);
5070 	} else {
5071 		/* Else, send delayed ack. */
5072 		tcp_send_delayed_ack(sk);
5073 	}
5074 }
5075 
5076 static inline void tcp_ack_snd_check(struct sock *sk)
5077 {
5078 	if (!inet_csk_ack_scheduled(sk)) {
5079 		/* We sent a data segment already. */
5080 		return;
5081 	}
5082 	__tcp_ack_snd_check(sk, 1);
5083 }
5084 
5085 /*
5086  *	This routine is only called when we have urgent data
5087  *	signaled. Its the 'slow' part of tcp_urg. It could be
5088  *	moved inline now as tcp_urg is only called from one
5089  *	place. We handle URGent data wrong. We have to - as
5090  *	BSD still doesn't use the correction from RFC961.
5091  *	For 1003.1g we should support a new option TCP_STDURG to permit
5092  *	either form (or just set the sysctl tcp_stdurg).
5093  */
5094 
5095 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5096 {
5097 	struct tcp_sock *tp = tcp_sk(sk);
5098 	u32 ptr = ntohs(th->urg_ptr);
5099 
5100 	if (ptr && !sysctl_tcp_stdurg)
5101 		ptr--;
5102 	ptr += ntohl(th->seq);
5103 
5104 	/* Ignore urgent data that we've already seen and read. */
5105 	if (after(tp->copied_seq, ptr))
5106 		return;
5107 
5108 	/* Do not replay urg ptr.
5109 	 *
5110 	 * NOTE: interesting situation not covered by specs.
5111 	 * Misbehaving sender may send urg ptr, pointing to segment,
5112 	 * which we already have in ofo queue. We are not able to fetch
5113 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5114 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5115 	 * situations. But it is worth to think about possibility of some
5116 	 * DoSes using some hypothetical application level deadlock.
5117 	 */
5118 	if (before(ptr, tp->rcv_nxt))
5119 		return;
5120 
5121 	/* Do we already have a newer (or duplicate) urgent pointer? */
5122 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5123 		return;
5124 
5125 	/* Tell the world about our new urgent pointer. */
5126 	sk_send_sigurg(sk);
5127 
5128 	/* We may be adding urgent data when the last byte read was
5129 	 * urgent. To do this requires some care. We cannot just ignore
5130 	 * tp->copied_seq since we would read the last urgent byte again
5131 	 * as data, nor can we alter copied_seq until this data arrives
5132 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5133 	 *
5134 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5135 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5136 	 * and expect that both A and B disappear from stream. This is _wrong_.
5137 	 * Though this happens in BSD with high probability, this is occasional.
5138 	 * Any application relying on this is buggy. Note also, that fix "works"
5139 	 * only in this artificial test. Insert some normal data between A and B and we will
5140 	 * decline of BSD again. Verdict: it is better to remove to trap
5141 	 * buggy users.
5142 	 */
5143 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5144 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5145 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5146 		tp->copied_seq++;
5147 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5148 			__skb_unlink(skb, &sk->sk_receive_queue);
5149 			__kfree_skb(skb);
5150 		}
5151 	}
5152 
5153 	tp->urg_data = TCP_URG_NOTYET;
5154 	tp->urg_seq = ptr;
5155 
5156 	/* Disable header prediction. */
5157 	tp->pred_flags = 0;
5158 }
5159 
5160 /* This is the 'fast' part of urgent handling. */
5161 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5162 {
5163 	struct tcp_sock *tp = tcp_sk(sk);
5164 
5165 	/* Check if we get a new urgent pointer - normally not. */
5166 	if (th->urg)
5167 		tcp_check_urg(sk, th);
5168 
5169 	/* Do we wait for any urgent data? - normally not... */
5170 	if (tp->urg_data == TCP_URG_NOTYET) {
5171 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5172 			  th->syn;
5173 
5174 		/* Is the urgent pointer pointing into this packet? */
5175 		if (ptr < skb->len) {
5176 			u8 tmp;
5177 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5178 				BUG();
5179 			tp->urg_data = TCP_URG_VALID | tmp;
5180 			if (!sock_flag(sk, SOCK_DEAD))
5181 				sk->sk_data_ready(sk);
5182 		}
5183 	}
5184 }
5185 
5186 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5187 {
5188 	struct tcp_sock *tp = tcp_sk(sk);
5189 	int chunk = skb->len - hlen;
5190 	int err;
5191 
5192 	if (skb_csum_unnecessary(skb))
5193 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5194 	else
5195 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5196 
5197 	if (!err) {
5198 		tp->ucopy.len -= chunk;
5199 		tp->copied_seq += chunk;
5200 		tcp_rcv_space_adjust(sk);
5201 	}
5202 
5203 	return err;
5204 }
5205 
5206 /* Accept RST for rcv_nxt - 1 after a FIN.
5207  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5208  * FIN is sent followed by a RST packet. The RST is sent with the same
5209  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5210  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5211  * ACKs on the closed socket. In addition middleboxes can drop either the
5212  * challenge ACK or a subsequent RST.
5213  */
5214 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5215 {
5216 	struct tcp_sock *tp = tcp_sk(sk);
5217 
5218 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5219 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5220 					       TCPF_CLOSING));
5221 }
5222 
5223 /* Does PAWS and seqno based validation of an incoming segment, flags will
5224  * play significant role here.
5225  */
5226 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5227 				  const struct tcphdr *th, int syn_inerr)
5228 {
5229 	struct tcp_sock *tp = tcp_sk(sk);
5230 	bool rst_seq_match = false;
5231 
5232 	/* RFC1323: H1. Apply PAWS check first. */
5233 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5234 	    tcp_paws_discard(sk, skb)) {
5235 		if (!th->rst) {
5236 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5237 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5238 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5239 						  &tp->last_oow_ack_time))
5240 				tcp_send_dupack(sk, skb);
5241 			goto discard;
5242 		}
5243 		/* Reset is accepted even if it did not pass PAWS. */
5244 	}
5245 
5246 	/* Step 1: check sequence number */
5247 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5248 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5249 		 * (RST) segments are validated by checking their SEQ-fields."
5250 		 * And page 69: "If an incoming segment is not acceptable,
5251 		 * an acknowledgment should be sent in reply (unless the RST
5252 		 * bit is set, if so drop the segment and return)".
5253 		 */
5254 		if (!th->rst) {
5255 			if (th->syn)
5256 				goto syn_challenge;
5257 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5258 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5259 						  &tp->last_oow_ack_time))
5260 				tcp_send_dupack(sk, skb);
5261 		} else if (tcp_reset_check(sk, skb)) {
5262 			tcp_reset(sk);
5263 		}
5264 		goto discard;
5265 	}
5266 
5267 	/* Step 2: check RST bit */
5268 	if (th->rst) {
5269 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5270 		 * FIN and SACK too if available):
5271 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5272 		 * the right-most SACK block,
5273 		 * then
5274 		 *     RESET the connection
5275 		 * else
5276 		 *     Send a challenge ACK
5277 		 */
5278 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5279 		    tcp_reset_check(sk, skb)) {
5280 			rst_seq_match = true;
5281 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5282 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5283 			int max_sack = sp[0].end_seq;
5284 			int this_sack;
5285 
5286 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5287 			     ++this_sack) {
5288 				max_sack = after(sp[this_sack].end_seq,
5289 						 max_sack) ?
5290 					sp[this_sack].end_seq : max_sack;
5291 			}
5292 
5293 			if (TCP_SKB_CB(skb)->seq == max_sack)
5294 				rst_seq_match = true;
5295 		}
5296 
5297 		if (rst_seq_match)
5298 			tcp_reset(sk);
5299 		else
5300 			tcp_send_challenge_ack(sk, skb);
5301 		goto discard;
5302 	}
5303 
5304 	/* step 3: check security and precedence [ignored] */
5305 
5306 	/* step 4: Check for a SYN
5307 	 * RFC 5961 4.2 : Send a challenge ack
5308 	 */
5309 	if (th->syn) {
5310 syn_challenge:
5311 		if (syn_inerr)
5312 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5313 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5314 		tcp_send_challenge_ack(sk, skb);
5315 		goto discard;
5316 	}
5317 
5318 	return true;
5319 
5320 discard:
5321 	tcp_drop(sk, skb);
5322 	return false;
5323 }
5324 
5325 /*
5326  *	TCP receive function for the ESTABLISHED state.
5327  *
5328  *	It is split into a fast path and a slow path. The fast path is
5329  * 	disabled when:
5330  *	- A zero window was announced from us - zero window probing
5331  *        is only handled properly in the slow path.
5332  *	- Out of order segments arrived.
5333  *	- Urgent data is expected.
5334  *	- There is no buffer space left
5335  *	- Unexpected TCP flags/window values/header lengths are received
5336  *	  (detected by checking the TCP header against pred_flags)
5337  *	- Data is sent in both directions. Fast path only supports pure senders
5338  *	  or pure receivers (this means either the sequence number or the ack
5339  *	  value must stay constant)
5340  *	- Unexpected TCP option.
5341  *
5342  *	When these conditions are not satisfied it drops into a standard
5343  *	receive procedure patterned after RFC793 to handle all cases.
5344  *	The first three cases are guaranteed by proper pred_flags setting,
5345  *	the rest is checked inline. Fast processing is turned on in
5346  *	tcp_data_queue when everything is OK.
5347  */
5348 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5349 			 const struct tcphdr *th, unsigned int len)
5350 {
5351 	struct tcp_sock *tp = tcp_sk(sk);
5352 
5353 	if (unlikely(!sk->sk_rx_dst))
5354 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5355 	/*
5356 	 *	Header prediction.
5357 	 *	The code loosely follows the one in the famous
5358 	 *	"30 instruction TCP receive" Van Jacobson mail.
5359 	 *
5360 	 *	Van's trick is to deposit buffers into socket queue
5361 	 *	on a device interrupt, to call tcp_recv function
5362 	 *	on the receive process context and checksum and copy
5363 	 *	the buffer to user space. smart...
5364 	 *
5365 	 *	Our current scheme is not silly either but we take the
5366 	 *	extra cost of the net_bh soft interrupt processing...
5367 	 *	We do checksum and copy also but from device to kernel.
5368 	 */
5369 
5370 	tp->rx_opt.saw_tstamp = 0;
5371 
5372 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5373 	 *	if header_prediction is to be made
5374 	 *	'S' will always be tp->tcp_header_len >> 2
5375 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5376 	 *  turn it off	(when there are holes in the receive
5377 	 *	 space for instance)
5378 	 *	PSH flag is ignored.
5379 	 */
5380 
5381 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5382 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5383 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5384 		int tcp_header_len = tp->tcp_header_len;
5385 
5386 		/* Timestamp header prediction: tcp_header_len
5387 		 * is automatically equal to th->doff*4 due to pred_flags
5388 		 * match.
5389 		 */
5390 
5391 		/* Check timestamp */
5392 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5393 			/* No? Slow path! */
5394 			if (!tcp_parse_aligned_timestamp(tp, th))
5395 				goto slow_path;
5396 
5397 			/* If PAWS failed, check it more carefully in slow path */
5398 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5399 				goto slow_path;
5400 
5401 			/* DO NOT update ts_recent here, if checksum fails
5402 			 * and timestamp was corrupted part, it will result
5403 			 * in a hung connection since we will drop all
5404 			 * future packets due to the PAWS test.
5405 			 */
5406 		}
5407 
5408 		if (len <= tcp_header_len) {
5409 			/* Bulk data transfer: sender */
5410 			if (len == tcp_header_len) {
5411 				/* Predicted packet is in window by definition.
5412 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5413 				 * Hence, check seq<=rcv_wup reduces to:
5414 				 */
5415 				if (tcp_header_len ==
5416 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5417 				    tp->rcv_nxt == tp->rcv_wup)
5418 					tcp_store_ts_recent(tp);
5419 
5420 				/* We know that such packets are checksummed
5421 				 * on entry.
5422 				 */
5423 				tcp_ack(sk, skb, 0);
5424 				__kfree_skb(skb);
5425 				tcp_data_snd_check(sk);
5426 				return;
5427 			} else { /* Header too small */
5428 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5429 				goto discard;
5430 			}
5431 		} else {
5432 			int eaten = 0;
5433 			bool fragstolen = false;
5434 
5435 			if (tp->ucopy.task == current &&
5436 			    tp->copied_seq == tp->rcv_nxt &&
5437 			    len - tcp_header_len <= tp->ucopy.len &&
5438 			    sock_owned_by_user(sk)) {
5439 				__set_current_state(TASK_RUNNING);
5440 
5441 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5442 					/* Predicted packet is in window by definition.
5443 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5444 					 * Hence, check seq<=rcv_wup reduces to:
5445 					 */
5446 					if (tcp_header_len ==
5447 					    (sizeof(struct tcphdr) +
5448 					     TCPOLEN_TSTAMP_ALIGNED) &&
5449 					    tp->rcv_nxt == tp->rcv_wup)
5450 						tcp_store_ts_recent(tp);
5451 
5452 					tcp_rcv_rtt_measure_ts(sk, skb);
5453 
5454 					__skb_pull(skb, tcp_header_len);
5455 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5456 					NET_INC_STATS(sock_net(sk),
5457 							LINUX_MIB_TCPHPHITSTOUSER);
5458 					eaten = 1;
5459 				}
5460 			}
5461 			if (!eaten) {
5462 				if (tcp_checksum_complete(skb))
5463 					goto csum_error;
5464 
5465 				if ((int)skb->truesize > sk->sk_forward_alloc)
5466 					goto step5;
5467 
5468 				/* Predicted packet is in window by definition.
5469 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5470 				 * Hence, check seq<=rcv_wup reduces to:
5471 				 */
5472 				if (tcp_header_len ==
5473 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5474 				    tp->rcv_nxt == tp->rcv_wup)
5475 					tcp_store_ts_recent(tp);
5476 
5477 				tcp_rcv_rtt_measure_ts(sk, skb);
5478 
5479 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5480 
5481 				/* Bulk data transfer: receiver */
5482 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5483 						      &fragstolen);
5484 			}
5485 
5486 			tcp_event_data_recv(sk, skb);
5487 
5488 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5489 				/* Well, only one small jumplet in fast path... */
5490 				tcp_ack(sk, skb, FLAG_DATA);
5491 				tcp_data_snd_check(sk);
5492 				if (!inet_csk_ack_scheduled(sk))
5493 					goto no_ack;
5494 			}
5495 
5496 			__tcp_ack_snd_check(sk, 0);
5497 no_ack:
5498 			if (eaten)
5499 				kfree_skb_partial(skb, fragstolen);
5500 			sk->sk_data_ready(sk);
5501 			return;
5502 		}
5503 	}
5504 
5505 slow_path:
5506 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5507 		goto csum_error;
5508 
5509 	if (!th->ack && !th->rst && !th->syn)
5510 		goto discard;
5511 
5512 	/*
5513 	 *	Standard slow path.
5514 	 */
5515 
5516 	if (!tcp_validate_incoming(sk, skb, th, 1))
5517 		return;
5518 
5519 step5:
5520 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5521 		goto discard;
5522 
5523 	tcp_rcv_rtt_measure_ts(sk, skb);
5524 
5525 	/* Process urgent data. */
5526 	tcp_urg(sk, skb, th);
5527 
5528 	/* step 7: process the segment text */
5529 	tcp_data_queue(sk, skb);
5530 
5531 	tcp_data_snd_check(sk);
5532 	tcp_ack_snd_check(sk);
5533 	return;
5534 
5535 csum_error:
5536 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5537 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5538 
5539 discard:
5540 	tcp_drop(sk, skb);
5541 }
5542 EXPORT_SYMBOL(tcp_rcv_established);
5543 
5544 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5545 {
5546 	struct tcp_sock *tp = tcp_sk(sk);
5547 	struct inet_connection_sock *icsk = inet_csk(sk);
5548 
5549 	tcp_set_state(sk, TCP_ESTABLISHED);
5550 	icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5551 
5552 	if (skb) {
5553 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5554 		security_inet_conn_established(sk, skb);
5555 	}
5556 
5557 	/* Make sure socket is routed, for correct metrics.  */
5558 	icsk->icsk_af_ops->rebuild_header(sk);
5559 
5560 	tcp_init_metrics(sk);
5561 
5562 	tcp_init_congestion_control(sk);
5563 
5564 	/* Prevent spurious tcp_cwnd_restart() on first data
5565 	 * packet.
5566 	 */
5567 	tp->lsndtime = tcp_time_stamp;
5568 
5569 	tcp_init_buffer_space(sk);
5570 
5571 	if (sock_flag(sk, SOCK_KEEPOPEN))
5572 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5573 
5574 	if (!tp->rx_opt.snd_wscale)
5575 		__tcp_fast_path_on(tp, tp->snd_wnd);
5576 	else
5577 		tp->pred_flags = 0;
5578 
5579 	if (!sock_flag(sk, SOCK_DEAD)) {
5580 		sk->sk_state_change(sk);
5581 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5582 	}
5583 }
5584 
5585 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5586 				    struct tcp_fastopen_cookie *cookie)
5587 {
5588 	struct tcp_sock *tp = tcp_sk(sk);
5589 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5590 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5591 	bool syn_drop = false;
5592 
5593 	if (mss == tp->rx_opt.user_mss) {
5594 		struct tcp_options_received opt;
5595 
5596 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5597 		tcp_clear_options(&opt);
5598 		opt.user_mss = opt.mss_clamp = 0;
5599 		tcp_parse_options(synack, &opt, 0, NULL);
5600 		mss = opt.mss_clamp;
5601 	}
5602 
5603 	if (!tp->syn_fastopen) {
5604 		/* Ignore an unsolicited cookie */
5605 		cookie->len = -1;
5606 	} else if (tp->total_retrans) {
5607 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5608 		 * acknowledges data. Presumably the remote received only
5609 		 * the retransmitted (regular) SYNs: either the original
5610 		 * SYN-data or the corresponding SYN-ACK was dropped.
5611 		 */
5612 		syn_drop = (cookie->len < 0 && data);
5613 	} else if (cookie->len < 0 && !tp->syn_data) {
5614 		/* We requested a cookie but didn't get it. If we did not use
5615 		 * the (old) exp opt format then try so next time (try_exp=1).
5616 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5617 		 */
5618 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5619 	}
5620 
5621 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5622 
5623 	if (data) { /* Retransmit unacked data in SYN */
5624 		tcp_for_write_queue_from(data, sk) {
5625 			if (data == tcp_send_head(sk) ||
5626 			    __tcp_retransmit_skb(sk, data, 1))
5627 				break;
5628 		}
5629 		tcp_rearm_rto(sk);
5630 		NET_INC_STATS(sock_net(sk),
5631 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5632 		return true;
5633 	}
5634 	tp->syn_data_acked = tp->syn_data;
5635 	if (tp->syn_data_acked)
5636 		NET_INC_STATS(sock_net(sk),
5637 				LINUX_MIB_TCPFASTOPENACTIVE);
5638 
5639 	tcp_fastopen_add_skb(sk, synack);
5640 
5641 	return false;
5642 }
5643 
5644 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5645 					 const struct tcphdr *th)
5646 {
5647 	struct inet_connection_sock *icsk = inet_csk(sk);
5648 	struct tcp_sock *tp = tcp_sk(sk);
5649 	struct tcp_fastopen_cookie foc = { .len = -1 };
5650 	int saved_clamp = tp->rx_opt.mss_clamp;
5651 
5652 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5653 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5654 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5655 
5656 	if (th->ack) {
5657 		/* rfc793:
5658 		 * "If the state is SYN-SENT then
5659 		 *    first check the ACK bit
5660 		 *      If the ACK bit is set
5661 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5662 		 *        a reset (unless the RST bit is set, if so drop
5663 		 *        the segment and return)"
5664 		 */
5665 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5666 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5667 			goto reset_and_undo;
5668 
5669 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5670 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5671 			     tcp_time_stamp)) {
5672 			NET_INC_STATS(sock_net(sk),
5673 					LINUX_MIB_PAWSACTIVEREJECTED);
5674 			goto reset_and_undo;
5675 		}
5676 
5677 		/* Now ACK is acceptable.
5678 		 *
5679 		 * "If the RST bit is set
5680 		 *    If the ACK was acceptable then signal the user "error:
5681 		 *    connection reset", drop the segment, enter CLOSED state,
5682 		 *    delete TCB, and return."
5683 		 */
5684 
5685 		if (th->rst) {
5686 			tcp_reset(sk);
5687 			goto discard;
5688 		}
5689 
5690 		/* rfc793:
5691 		 *   "fifth, if neither of the SYN or RST bits is set then
5692 		 *    drop the segment and return."
5693 		 *
5694 		 *    See note below!
5695 		 *                                        --ANK(990513)
5696 		 */
5697 		if (!th->syn)
5698 			goto discard_and_undo;
5699 
5700 		/* rfc793:
5701 		 *   "If the SYN bit is on ...
5702 		 *    are acceptable then ...
5703 		 *    (our SYN has been ACKed), change the connection
5704 		 *    state to ESTABLISHED..."
5705 		 */
5706 
5707 		tcp_ecn_rcv_synack(tp, th);
5708 
5709 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5710 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5711 
5712 		/* Ok.. it's good. Set up sequence numbers and
5713 		 * move to established.
5714 		 */
5715 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5716 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5717 
5718 		/* RFC1323: The window in SYN & SYN/ACK segments is
5719 		 * never scaled.
5720 		 */
5721 		tp->snd_wnd = ntohs(th->window);
5722 
5723 		if (!tp->rx_opt.wscale_ok) {
5724 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5725 			tp->window_clamp = min(tp->window_clamp, 65535U);
5726 		}
5727 
5728 		if (tp->rx_opt.saw_tstamp) {
5729 			tp->rx_opt.tstamp_ok	   = 1;
5730 			tp->tcp_header_len =
5731 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5732 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5733 			tcp_store_ts_recent(tp);
5734 		} else {
5735 			tp->tcp_header_len = sizeof(struct tcphdr);
5736 		}
5737 
5738 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5739 			tcp_enable_fack(tp);
5740 
5741 		tcp_mtup_init(sk);
5742 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5743 		tcp_initialize_rcv_mss(sk);
5744 
5745 		/* Remember, tcp_poll() does not lock socket!
5746 		 * Change state from SYN-SENT only after copied_seq
5747 		 * is initialized. */
5748 		tp->copied_seq = tp->rcv_nxt;
5749 
5750 		smp_mb();
5751 
5752 		tcp_finish_connect(sk, skb);
5753 
5754 		if ((tp->syn_fastopen || tp->syn_data) &&
5755 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5756 			return -1;
5757 
5758 		if (sk->sk_write_pending ||
5759 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5760 		    icsk->icsk_ack.pingpong) {
5761 			/* Save one ACK. Data will be ready after
5762 			 * several ticks, if write_pending is set.
5763 			 *
5764 			 * It may be deleted, but with this feature tcpdumps
5765 			 * look so _wonderfully_ clever, that I was not able
5766 			 * to stand against the temptation 8)     --ANK
5767 			 */
5768 			inet_csk_schedule_ack(sk);
5769 			tcp_enter_quickack_mode(sk);
5770 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5771 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5772 
5773 discard:
5774 			tcp_drop(sk, skb);
5775 			return 0;
5776 		} else {
5777 			tcp_send_ack(sk);
5778 		}
5779 		return -1;
5780 	}
5781 
5782 	/* No ACK in the segment */
5783 
5784 	if (th->rst) {
5785 		/* rfc793:
5786 		 * "If the RST bit is set
5787 		 *
5788 		 *      Otherwise (no ACK) drop the segment and return."
5789 		 */
5790 
5791 		goto discard_and_undo;
5792 	}
5793 
5794 	/* PAWS check. */
5795 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5796 	    tcp_paws_reject(&tp->rx_opt, 0))
5797 		goto discard_and_undo;
5798 
5799 	if (th->syn) {
5800 		/* We see SYN without ACK. It is attempt of
5801 		 * simultaneous connect with crossed SYNs.
5802 		 * Particularly, it can be connect to self.
5803 		 */
5804 		tcp_set_state(sk, TCP_SYN_RECV);
5805 
5806 		if (tp->rx_opt.saw_tstamp) {
5807 			tp->rx_opt.tstamp_ok = 1;
5808 			tcp_store_ts_recent(tp);
5809 			tp->tcp_header_len =
5810 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5811 		} else {
5812 			tp->tcp_header_len = sizeof(struct tcphdr);
5813 		}
5814 
5815 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5816 		tp->copied_seq = tp->rcv_nxt;
5817 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5818 
5819 		/* RFC1323: The window in SYN & SYN/ACK segments is
5820 		 * never scaled.
5821 		 */
5822 		tp->snd_wnd    = ntohs(th->window);
5823 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5824 		tp->max_window = tp->snd_wnd;
5825 
5826 		tcp_ecn_rcv_syn(tp, th);
5827 
5828 		tcp_mtup_init(sk);
5829 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5830 		tcp_initialize_rcv_mss(sk);
5831 
5832 		tcp_send_synack(sk);
5833 #if 0
5834 		/* Note, we could accept data and URG from this segment.
5835 		 * There are no obstacles to make this (except that we must
5836 		 * either change tcp_recvmsg() to prevent it from returning data
5837 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5838 		 *
5839 		 * However, if we ignore data in ACKless segments sometimes,
5840 		 * we have no reasons to accept it sometimes.
5841 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5842 		 * is not flawless. So, discard packet for sanity.
5843 		 * Uncomment this return to process the data.
5844 		 */
5845 		return -1;
5846 #else
5847 		goto discard;
5848 #endif
5849 	}
5850 	/* "fifth, if neither of the SYN or RST bits is set then
5851 	 * drop the segment and return."
5852 	 */
5853 
5854 discard_and_undo:
5855 	tcp_clear_options(&tp->rx_opt);
5856 	tp->rx_opt.mss_clamp = saved_clamp;
5857 	goto discard;
5858 
5859 reset_and_undo:
5860 	tcp_clear_options(&tp->rx_opt);
5861 	tp->rx_opt.mss_clamp = saved_clamp;
5862 	return 1;
5863 }
5864 
5865 /*
5866  *	This function implements the receiving procedure of RFC 793 for
5867  *	all states except ESTABLISHED and TIME_WAIT.
5868  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5869  *	address independent.
5870  */
5871 
5872 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5873 {
5874 	struct tcp_sock *tp = tcp_sk(sk);
5875 	struct inet_connection_sock *icsk = inet_csk(sk);
5876 	const struct tcphdr *th = tcp_hdr(skb);
5877 	struct request_sock *req;
5878 	int queued = 0;
5879 	bool acceptable;
5880 
5881 	switch (sk->sk_state) {
5882 	case TCP_CLOSE:
5883 		goto discard;
5884 
5885 	case TCP_LISTEN:
5886 		if (th->ack)
5887 			return 1;
5888 
5889 		if (th->rst)
5890 			goto discard;
5891 
5892 		if (th->syn) {
5893 			if (th->fin)
5894 				goto discard;
5895 			/* It is possible that we process SYN packets from backlog,
5896 			 * so we need to make sure to disable BH right there.
5897 			 */
5898 			local_bh_disable();
5899 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5900 			local_bh_enable();
5901 
5902 			if (!acceptable)
5903 				return 1;
5904 			consume_skb(skb);
5905 			return 0;
5906 		}
5907 		goto discard;
5908 
5909 	case TCP_SYN_SENT:
5910 		tp->rx_opt.saw_tstamp = 0;
5911 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5912 		if (queued >= 0)
5913 			return queued;
5914 
5915 		/* Do step6 onward by hand. */
5916 		tcp_urg(sk, skb, th);
5917 		__kfree_skb(skb);
5918 		tcp_data_snd_check(sk);
5919 		return 0;
5920 	}
5921 
5922 	tp->rx_opt.saw_tstamp = 0;
5923 	req = tp->fastopen_rsk;
5924 	if (req) {
5925 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5926 		    sk->sk_state != TCP_FIN_WAIT1);
5927 
5928 		if (!tcp_check_req(sk, skb, req, true))
5929 			goto discard;
5930 	}
5931 
5932 	if (!th->ack && !th->rst && !th->syn)
5933 		goto discard;
5934 
5935 	if (!tcp_validate_incoming(sk, skb, th, 0))
5936 		return 0;
5937 
5938 	/* step 5: check the ACK field */
5939 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5940 				      FLAG_UPDATE_TS_RECENT) > 0;
5941 
5942 	switch (sk->sk_state) {
5943 	case TCP_SYN_RECV:
5944 		if (!acceptable)
5945 			return 1;
5946 
5947 		if (!tp->srtt_us)
5948 			tcp_synack_rtt_meas(sk, req);
5949 
5950 		/* Once we leave TCP_SYN_RECV, we no longer need req
5951 		 * so release it.
5952 		 */
5953 		if (req) {
5954 			inet_csk(sk)->icsk_retransmits = 0;
5955 			reqsk_fastopen_remove(sk, req, false);
5956 		} else {
5957 			/* Make sure socket is routed, for correct metrics. */
5958 			icsk->icsk_af_ops->rebuild_header(sk);
5959 			tcp_init_congestion_control(sk);
5960 
5961 			tcp_mtup_init(sk);
5962 			tp->copied_seq = tp->rcv_nxt;
5963 			tcp_init_buffer_space(sk);
5964 		}
5965 		smp_mb();
5966 		tcp_set_state(sk, TCP_ESTABLISHED);
5967 		sk->sk_state_change(sk);
5968 
5969 		/* Note, that this wakeup is only for marginal crossed SYN case.
5970 		 * Passively open sockets are not waked up, because
5971 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5972 		 */
5973 		if (sk->sk_socket)
5974 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5975 
5976 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5977 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5978 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5979 
5980 		if (tp->rx_opt.tstamp_ok)
5981 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5982 
5983 		if (req) {
5984 			/* Re-arm the timer because data may have been sent out.
5985 			 * This is similar to the regular data transmission case
5986 			 * when new data has just been ack'ed.
5987 			 *
5988 			 * (TFO) - we could try to be more aggressive and
5989 			 * retransmitting any data sooner based on when they
5990 			 * are sent out.
5991 			 */
5992 			tcp_rearm_rto(sk);
5993 		} else
5994 			tcp_init_metrics(sk);
5995 
5996 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5997 			tcp_update_pacing_rate(sk);
5998 
5999 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6000 		tp->lsndtime = tcp_time_stamp;
6001 
6002 		tcp_initialize_rcv_mss(sk);
6003 		tcp_fast_path_on(tp);
6004 		break;
6005 
6006 	case TCP_FIN_WAIT1: {
6007 		int tmo;
6008 
6009 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6010 		 * Fast Open socket and this is the first acceptable
6011 		 * ACK we have received, this would have acknowledged
6012 		 * our SYNACK so stop the SYNACK timer.
6013 		 */
6014 		if (req) {
6015 			/* Return RST if ack_seq is invalid.
6016 			 * Note that RFC793 only says to generate a
6017 			 * DUPACK for it but for TCP Fast Open it seems
6018 			 * better to treat this case like TCP_SYN_RECV
6019 			 * above.
6020 			 */
6021 			if (!acceptable)
6022 				return 1;
6023 			/* We no longer need the request sock. */
6024 			reqsk_fastopen_remove(sk, req, false);
6025 			tcp_rearm_rto(sk);
6026 		}
6027 		if (tp->snd_una != tp->write_seq)
6028 			break;
6029 
6030 		tcp_set_state(sk, TCP_FIN_WAIT2);
6031 		sk->sk_shutdown |= SEND_SHUTDOWN;
6032 
6033 		sk_dst_confirm(sk);
6034 
6035 		if (!sock_flag(sk, SOCK_DEAD)) {
6036 			/* Wake up lingering close() */
6037 			sk->sk_state_change(sk);
6038 			break;
6039 		}
6040 
6041 		if (tp->linger2 < 0 ||
6042 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6043 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6044 			tcp_done(sk);
6045 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6046 			return 1;
6047 		}
6048 
6049 		tmo = tcp_fin_time(sk);
6050 		if (tmo > TCP_TIMEWAIT_LEN) {
6051 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6052 		} else if (th->fin || sock_owned_by_user(sk)) {
6053 			/* Bad case. We could lose such FIN otherwise.
6054 			 * It is not a big problem, but it looks confusing
6055 			 * and not so rare event. We still can lose it now,
6056 			 * if it spins in bh_lock_sock(), but it is really
6057 			 * marginal case.
6058 			 */
6059 			inet_csk_reset_keepalive_timer(sk, tmo);
6060 		} else {
6061 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6062 			goto discard;
6063 		}
6064 		break;
6065 	}
6066 
6067 	case TCP_CLOSING:
6068 		if (tp->snd_una == tp->write_seq) {
6069 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6070 			goto discard;
6071 		}
6072 		break;
6073 
6074 	case TCP_LAST_ACK:
6075 		if (tp->snd_una == tp->write_seq) {
6076 			tcp_update_metrics(sk);
6077 			tcp_done(sk);
6078 			goto discard;
6079 		}
6080 		break;
6081 	}
6082 
6083 	/* step 6: check the URG bit */
6084 	tcp_urg(sk, skb, th);
6085 
6086 	/* step 7: process the segment text */
6087 	switch (sk->sk_state) {
6088 	case TCP_CLOSE_WAIT:
6089 	case TCP_CLOSING:
6090 	case TCP_LAST_ACK:
6091 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6092 			break;
6093 	case TCP_FIN_WAIT1:
6094 	case TCP_FIN_WAIT2:
6095 		/* RFC 793 says to queue data in these states,
6096 		 * RFC 1122 says we MUST send a reset.
6097 		 * BSD 4.4 also does reset.
6098 		 */
6099 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6100 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6101 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6102 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6103 				tcp_reset(sk);
6104 				return 1;
6105 			}
6106 		}
6107 		/* Fall through */
6108 	case TCP_ESTABLISHED:
6109 		tcp_data_queue(sk, skb);
6110 		queued = 1;
6111 		break;
6112 	}
6113 
6114 	/* tcp_data could move socket to TIME-WAIT */
6115 	if (sk->sk_state != TCP_CLOSE) {
6116 		tcp_data_snd_check(sk);
6117 		tcp_ack_snd_check(sk);
6118 	}
6119 
6120 	if (!queued) {
6121 discard:
6122 		tcp_drop(sk, skb);
6123 	}
6124 	return 0;
6125 }
6126 EXPORT_SYMBOL(tcp_rcv_state_process);
6127 
6128 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6129 {
6130 	struct inet_request_sock *ireq = inet_rsk(req);
6131 
6132 	if (family == AF_INET)
6133 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6134 				    &ireq->ir_rmt_addr, port);
6135 #if IS_ENABLED(CONFIG_IPV6)
6136 	else if (family == AF_INET6)
6137 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6138 				    &ireq->ir_v6_rmt_addr, port);
6139 #endif
6140 }
6141 
6142 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6143  *
6144  * If we receive a SYN packet with these bits set, it means a
6145  * network is playing bad games with TOS bits. In order to
6146  * avoid possible false congestion notifications, we disable
6147  * TCP ECN negotiation.
6148  *
6149  * Exception: tcp_ca wants ECN. This is required for DCTCP
6150  * congestion control: Linux DCTCP asserts ECT on all packets,
6151  * including SYN, which is most optimal solution; however,
6152  * others, such as FreeBSD do not.
6153  */
6154 static void tcp_ecn_create_request(struct request_sock *req,
6155 				   const struct sk_buff *skb,
6156 				   const struct sock *listen_sk,
6157 				   const struct dst_entry *dst)
6158 {
6159 	const struct tcphdr *th = tcp_hdr(skb);
6160 	const struct net *net = sock_net(listen_sk);
6161 	bool th_ecn = th->ece && th->cwr;
6162 	bool ect, ecn_ok;
6163 	u32 ecn_ok_dst;
6164 
6165 	if (!th_ecn)
6166 		return;
6167 
6168 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6169 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6170 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6171 
6172 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6173 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6174 		inet_rsk(req)->ecn_ok = 1;
6175 }
6176 
6177 static void tcp_openreq_init(struct request_sock *req,
6178 			     const struct tcp_options_received *rx_opt,
6179 			     struct sk_buff *skb, const struct sock *sk)
6180 {
6181 	struct inet_request_sock *ireq = inet_rsk(req);
6182 
6183 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6184 	req->cookie_ts = 0;
6185 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6186 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6187 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6188 	tcp_rsk(req)->last_oow_ack_time = 0;
6189 	req->mss = rx_opt->mss_clamp;
6190 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6191 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6192 	ireq->sack_ok = rx_opt->sack_ok;
6193 	ireq->snd_wscale = rx_opt->snd_wscale;
6194 	ireq->wscale_ok = rx_opt->wscale_ok;
6195 	ireq->acked = 0;
6196 	ireq->ecn_ok = 0;
6197 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6198 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6199 	ireq->ir_mark = inet_request_mark(sk, skb);
6200 }
6201 
6202 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6203 				      struct sock *sk_listener,
6204 				      bool attach_listener)
6205 {
6206 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6207 					       attach_listener);
6208 
6209 	if (req) {
6210 		struct inet_request_sock *ireq = inet_rsk(req);
6211 
6212 		kmemcheck_annotate_bitfield(ireq, flags);
6213 		ireq->opt = NULL;
6214 #if IS_ENABLED(CONFIG_IPV6)
6215 		ireq->pktopts = NULL;
6216 #endif
6217 		atomic64_set(&ireq->ir_cookie, 0);
6218 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6219 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6220 		ireq->ireq_family = sk_listener->sk_family;
6221 	}
6222 
6223 	return req;
6224 }
6225 EXPORT_SYMBOL(inet_reqsk_alloc);
6226 
6227 /*
6228  * Return true if a syncookie should be sent
6229  */
6230 static bool tcp_syn_flood_action(const struct sock *sk,
6231 				 const struct sk_buff *skb,
6232 				 const char *proto)
6233 {
6234 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6235 	const char *msg = "Dropping request";
6236 	bool want_cookie = false;
6237 	struct net *net = sock_net(sk);
6238 
6239 #ifdef CONFIG_SYN_COOKIES
6240 	if (net->ipv4.sysctl_tcp_syncookies) {
6241 		msg = "Sending cookies";
6242 		want_cookie = true;
6243 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6244 	} else
6245 #endif
6246 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6247 
6248 	if (!queue->synflood_warned &&
6249 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6250 	    xchg(&queue->synflood_warned, 1) == 0)
6251 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6252 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6253 
6254 	return want_cookie;
6255 }
6256 
6257 static void tcp_reqsk_record_syn(const struct sock *sk,
6258 				 struct request_sock *req,
6259 				 const struct sk_buff *skb)
6260 {
6261 	if (tcp_sk(sk)->save_syn) {
6262 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6263 		u32 *copy;
6264 
6265 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6266 		if (copy) {
6267 			copy[0] = len;
6268 			memcpy(&copy[1], skb_network_header(skb), len);
6269 			req->saved_syn = copy;
6270 		}
6271 	}
6272 }
6273 
6274 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6275 		     const struct tcp_request_sock_ops *af_ops,
6276 		     struct sock *sk, struct sk_buff *skb)
6277 {
6278 	struct tcp_fastopen_cookie foc = { .len = -1 };
6279 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6280 	struct tcp_options_received tmp_opt;
6281 	struct tcp_sock *tp = tcp_sk(sk);
6282 	struct net *net = sock_net(sk);
6283 	struct sock *fastopen_sk = NULL;
6284 	struct dst_entry *dst = NULL;
6285 	struct request_sock *req;
6286 	bool want_cookie = false;
6287 	struct flowi fl;
6288 
6289 	/* TW buckets are converted to open requests without
6290 	 * limitations, they conserve resources and peer is
6291 	 * evidently real one.
6292 	 */
6293 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6294 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6295 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6296 		if (!want_cookie)
6297 			goto drop;
6298 	}
6299 
6300 	if (sk_acceptq_is_full(sk)) {
6301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6302 		goto drop;
6303 	}
6304 
6305 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6306 	if (!req)
6307 		goto drop;
6308 
6309 	tcp_rsk(req)->af_specific = af_ops;
6310 	tcp_rsk(req)->ts_off = 0;
6311 
6312 	tcp_clear_options(&tmp_opt);
6313 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6314 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6315 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6316 
6317 	if (want_cookie && !tmp_opt.saw_tstamp)
6318 		tcp_clear_options(&tmp_opt);
6319 
6320 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6321 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6322 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6323 
6324 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6325 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6326 
6327 	af_ops->init_req(req, sk, skb);
6328 
6329 	if (security_inet_conn_request(sk, skb, req))
6330 		goto drop_and_free;
6331 
6332 	if (isn && tmp_opt.tstamp_ok)
6333 		af_ops->init_seq_tsoff(skb, &tcp_rsk(req)->ts_off);
6334 
6335 	if (!want_cookie && !isn) {
6336 		/* Kill the following clause, if you dislike this way. */
6337 		if (!net->ipv4.sysctl_tcp_syncookies &&
6338 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6339 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6340 		    !tcp_peer_is_proven(req, dst)) {
6341 			/* Without syncookies last quarter of
6342 			 * backlog is filled with destinations,
6343 			 * proven to be alive.
6344 			 * It means that we continue to communicate
6345 			 * to destinations, already remembered
6346 			 * to the moment of synflood.
6347 			 */
6348 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6349 				    rsk_ops->family);
6350 			goto drop_and_release;
6351 		}
6352 
6353 		isn = af_ops->init_seq_tsoff(skb, &tcp_rsk(req)->ts_off);
6354 	}
6355 	if (!dst) {
6356 		dst = af_ops->route_req(sk, &fl, req);
6357 		if (!dst)
6358 			goto drop_and_free;
6359 	}
6360 
6361 	tcp_ecn_create_request(req, skb, sk, dst);
6362 
6363 	if (want_cookie) {
6364 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6365 		tcp_rsk(req)->ts_off = 0;
6366 		req->cookie_ts = tmp_opt.tstamp_ok;
6367 		if (!tmp_opt.tstamp_ok)
6368 			inet_rsk(req)->ecn_ok = 0;
6369 	}
6370 
6371 	tcp_rsk(req)->snt_isn = isn;
6372 	tcp_rsk(req)->txhash = net_tx_rndhash();
6373 	tcp_openreq_init_rwin(req, sk, dst);
6374 	if (!want_cookie) {
6375 		tcp_reqsk_record_syn(sk, req, skb);
6376 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6377 	}
6378 	if (fastopen_sk) {
6379 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6380 				    &foc, TCP_SYNACK_FASTOPEN);
6381 		/* Add the child socket directly into the accept queue */
6382 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6383 		sk->sk_data_ready(sk);
6384 		bh_unlock_sock(fastopen_sk);
6385 		sock_put(fastopen_sk);
6386 	} else {
6387 		tcp_rsk(req)->tfo_listener = false;
6388 		if (!want_cookie)
6389 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6390 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6391 				    !want_cookie ? TCP_SYNACK_NORMAL :
6392 						   TCP_SYNACK_COOKIE);
6393 		if (want_cookie) {
6394 			reqsk_free(req);
6395 			return 0;
6396 		}
6397 	}
6398 	reqsk_put(req);
6399 	return 0;
6400 
6401 drop_and_release:
6402 	dst_release(dst);
6403 drop_and_free:
6404 	reqsk_free(req);
6405 drop:
6406 	tcp_listendrop(sk);
6407 	return 0;
6408 }
6409 EXPORT_SYMBOL(tcp_conn_request);
6410