1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 EXPORT_SYMBOL(sysctl_tcp_timestamps); 89 90 /* rfc5961 challenge ack rate limiting */ 91 int sysctl_tcp_challenge_ack_limit = 1000; 92 93 int sysctl_tcp_stdurg __read_mostly; 94 int sysctl_tcp_rfc1337 __read_mostly; 95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 96 int sysctl_tcp_frto __read_mostly = 2; 97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_early_retrans __read_mostly = 3; 100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 #define REXMIT_NONE 0 /* no loss recovery to do */ 126 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 128 129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 130 unsigned int len) 131 { 132 static bool __once __read_mostly; 133 134 if (!__once) { 135 struct net_device *dev; 136 137 __once = true; 138 139 rcu_read_lock(); 140 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 141 if (!dev || len >= dev->mtu) 142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 143 dev ? dev->name : "Unknown driver"); 144 rcu_read_unlock(); 145 } 146 } 147 148 /* Adapt the MSS value used to make delayed ack decision to the 149 * real world. 150 */ 151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 152 { 153 struct inet_connection_sock *icsk = inet_csk(sk); 154 const unsigned int lss = icsk->icsk_ack.last_seg_size; 155 unsigned int len; 156 157 icsk->icsk_ack.last_seg_size = 0; 158 159 /* skb->len may jitter because of SACKs, even if peer 160 * sends good full-sized frames. 161 */ 162 len = skb_shinfo(skb)->gso_size ? : skb->len; 163 if (len >= icsk->icsk_ack.rcv_mss) { 164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 165 tcp_sk(sk)->advmss); 166 /* Account for possibly-removed options */ 167 if (unlikely(len > icsk->icsk_ack.rcv_mss + 168 MAX_TCP_OPTION_SPACE)) 169 tcp_gro_dev_warn(sk, skb, len); 170 } else { 171 /* Otherwise, we make more careful check taking into account, 172 * that SACKs block is variable. 173 * 174 * "len" is invariant segment length, including TCP header. 175 */ 176 len += skb->data - skb_transport_header(skb); 177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 178 /* If PSH is not set, packet should be 179 * full sized, provided peer TCP is not badly broken. 180 * This observation (if it is correct 8)) allows 181 * to handle super-low mtu links fairly. 182 */ 183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 185 /* Subtract also invariant (if peer is RFC compliant), 186 * tcp header plus fixed timestamp option length. 187 * Resulting "len" is MSS free of SACK jitter. 188 */ 189 len -= tcp_sk(sk)->tcp_header_len; 190 icsk->icsk_ack.last_seg_size = len; 191 if (len == lss) { 192 icsk->icsk_ack.rcv_mss = len; 193 return; 194 } 195 } 196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 199 } 200 } 201 202 static void tcp_incr_quickack(struct sock *sk) 203 { 204 struct inet_connection_sock *icsk = inet_csk(sk); 205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 206 207 if (quickacks == 0) 208 quickacks = 2; 209 if (quickacks > icsk->icsk_ack.quick) 210 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 211 } 212 213 static void tcp_enter_quickack_mode(struct sock *sk) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 tcp_incr_quickack(sk); 217 icsk->icsk_ack.pingpong = 0; 218 icsk->icsk_ack.ato = TCP_ATO_MIN; 219 } 220 221 /* Send ACKs quickly, if "quick" count is not exhausted 222 * and the session is not interactive. 223 */ 224 225 static bool tcp_in_quickack_mode(struct sock *sk) 226 { 227 const struct inet_connection_sock *icsk = inet_csk(sk); 228 const struct dst_entry *dst = __sk_dst_get(sk); 229 230 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 231 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 232 } 233 234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 235 { 236 if (tp->ecn_flags & TCP_ECN_OK) 237 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 238 } 239 240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 241 { 242 if (tcp_hdr(skb)->cwr) 243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 244 } 245 246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 247 { 248 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 249 } 250 251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 252 { 253 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 254 case INET_ECN_NOT_ECT: 255 /* Funny extension: if ECT is not set on a segment, 256 * and we already seen ECT on a previous segment, 257 * it is probably a retransmit. 258 */ 259 if (tp->ecn_flags & TCP_ECN_SEEN) 260 tcp_enter_quickack_mode((struct sock *)tp); 261 break; 262 case INET_ECN_CE: 263 if (tcp_ca_needs_ecn((struct sock *)tp)) 264 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 265 266 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 267 /* Better not delay acks, sender can have a very low cwnd */ 268 tcp_enter_quickack_mode((struct sock *)tp); 269 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 270 } 271 tp->ecn_flags |= TCP_ECN_SEEN; 272 break; 273 default: 274 if (tcp_ca_needs_ecn((struct sock *)tp)) 275 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 276 tp->ecn_flags |= TCP_ECN_SEEN; 277 break; 278 } 279 } 280 281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 282 { 283 if (tp->ecn_flags & TCP_ECN_OK) 284 __tcp_ecn_check_ce(tp, skb); 285 } 286 287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 288 { 289 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 290 tp->ecn_flags &= ~TCP_ECN_OK; 291 } 292 293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 294 { 295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 296 tp->ecn_flags &= ~TCP_ECN_OK; 297 } 298 299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 300 { 301 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 302 return true; 303 return false; 304 } 305 306 /* Buffer size and advertised window tuning. 307 * 308 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 309 */ 310 311 static void tcp_sndbuf_expand(struct sock *sk) 312 { 313 const struct tcp_sock *tp = tcp_sk(sk); 314 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 315 int sndmem, per_mss; 316 u32 nr_segs; 317 318 /* Worst case is non GSO/TSO : each frame consumes one skb 319 * and skb->head is kmalloced using power of two area of memory 320 */ 321 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 322 MAX_TCP_HEADER + 323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 324 325 per_mss = roundup_pow_of_two(per_mss) + 326 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 327 328 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 329 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 330 331 /* Fast Recovery (RFC 5681 3.2) : 332 * Cubic needs 1.7 factor, rounded to 2 to include 333 * extra cushion (application might react slowly to POLLOUT) 334 */ 335 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 336 sndmem *= nr_segs * per_mss; 337 338 if (sk->sk_sndbuf < sndmem) 339 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 340 } 341 342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 343 * 344 * All tcp_full_space() is split to two parts: "network" buffer, allocated 345 * forward and advertised in receiver window (tp->rcv_wnd) and 346 * "application buffer", required to isolate scheduling/application 347 * latencies from network. 348 * window_clamp is maximal advertised window. It can be less than 349 * tcp_full_space(), in this case tcp_full_space() - window_clamp 350 * is reserved for "application" buffer. The less window_clamp is 351 * the smoother our behaviour from viewpoint of network, but the lower 352 * throughput and the higher sensitivity of the connection to losses. 8) 353 * 354 * rcv_ssthresh is more strict window_clamp used at "slow start" 355 * phase to predict further behaviour of this connection. 356 * It is used for two goals: 357 * - to enforce header prediction at sender, even when application 358 * requires some significant "application buffer". It is check #1. 359 * - to prevent pruning of receive queue because of misprediction 360 * of receiver window. Check #2. 361 * 362 * The scheme does not work when sender sends good segments opening 363 * window and then starts to feed us spaghetti. But it should work 364 * in common situations. Otherwise, we have to rely on queue collapsing. 365 */ 366 367 /* Slow part of check#2. */ 368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 /* Optimize this! */ 372 int truesize = tcp_win_from_space(skb->truesize) >> 1; 373 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 374 375 while (tp->rcv_ssthresh <= window) { 376 if (truesize <= skb->len) 377 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 378 379 truesize >>= 1; 380 window >>= 1; 381 } 382 return 0; 383 } 384 385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 389 /* Check #1 */ 390 if (tp->rcv_ssthresh < tp->window_clamp && 391 (int)tp->rcv_ssthresh < tcp_space(sk) && 392 !tcp_under_memory_pressure(sk)) { 393 int incr; 394 395 /* Check #2. Increase window, if skb with such overhead 396 * will fit to rcvbuf in future. 397 */ 398 if (tcp_win_from_space(skb->truesize) <= skb->len) 399 incr = 2 * tp->advmss; 400 else 401 incr = __tcp_grow_window(sk, skb); 402 403 if (incr) { 404 incr = max_t(int, incr, 2 * skb->len); 405 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 406 tp->window_clamp); 407 inet_csk(sk)->icsk_ack.quick |= 1; 408 } 409 } 410 } 411 412 /* 3. Tuning rcvbuf, when connection enters established state. */ 413 static void tcp_fixup_rcvbuf(struct sock *sk) 414 { 415 u32 mss = tcp_sk(sk)->advmss; 416 int rcvmem; 417 418 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 419 tcp_default_init_rwnd(mss); 420 421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 422 * Allow enough cushion so that sender is not limited by our window 423 */ 424 if (sysctl_tcp_moderate_rcvbuf) 425 rcvmem <<= 2; 426 427 if (sk->sk_rcvbuf < rcvmem) 428 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 429 } 430 431 /* 4. Try to fixup all. It is made immediately after connection enters 432 * established state. 433 */ 434 void tcp_init_buffer_space(struct sock *sk) 435 { 436 struct tcp_sock *tp = tcp_sk(sk); 437 int maxwin; 438 439 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 440 tcp_fixup_rcvbuf(sk); 441 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 442 tcp_sndbuf_expand(sk); 443 444 tp->rcvq_space.space = tp->rcv_wnd; 445 tp->rcvq_space.time = tcp_time_stamp; 446 tp->rcvq_space.seq = tp->copied_seq; 447 448 maxwin = tcp_full_space(sk); 449 450 if (tp->window_clamp >= maxwin) { 451 tp->window_clamp = maxwin; 452 453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 454 tp->window_clamp = max(maxwin - 455 (maxwin >> sysctl_tcp_app_win), 456 4 * tp->advmss); 457 } 458 459 /* Force reservation of one segment. */ 460 if (sysctl_tcp_app_win && 461 tp->window_clamp > 2 * tp->advmss && 462 tp->window_clamp + tp->advmss > maxwin) 463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 464 465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 466 tp->snd_cwnd_stamp = tcp_time_stamp; 467 } 468 469 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 470 static void tcp_clamp_window(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 475 icsk->icsk_ack.quick = 0; 476 477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 479 !tcp_under_memory_pressure(sk) && 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 482 sysctl_tcp_rmem[2]); 483 } 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 486 } 487 488 /* Initialize RCV_MSS value. 489 * RCV_MSS is an our guess about MSS used by the peer. 490 * We haven't any direct information about the MSS. 491 * It's better to underestimate the RCV_MSS rather than overestimate. 492 * Overestimations make us ACKing less frequently than needed. 493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 494 */ 495 void tcp_initialize_rcv_mss(struct sock *sk) 496 { 497 const struct tcp_sock *tp = tcp_sk(sk); 498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 499 500 hint = min(hint, tp->rcv_wnd / 2); 501 hint = min(hint, TCP_MSS_DEFAULT); 502 hint = max(hint, TCP_MIN_MSS); 503 504 inet_csk(sk)->icsk_ack.rcv_mss = hint; 505 } 506 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 507 508 /* Receiver "autotuning" code. 509 * 510 * The algorithm for RTT estimation w/o timestamps is based on 511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 512 * <http://public.lanl.gov/radiant/pubs.html#DRS> 513 * 514 * More detail on this code can be found at 515 * <http://staff.psc.edu/jheffner/>, 516 * though this reference is out of date. A new paper 517 * is pending. 518 */ 519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 520 { 521 u32 new_sample = tp->rcv_rtt_est.rtt; 522 long m = sample; 523 524 if (m == 0) 525 m = 1; 526 527 if (new_sample != 0) { 528 /* If we sample in larger samples in the non-timestamp 529 * case, we could grossly overestimate the RTT especially 530 * with chatty applications or bulk transfer apps which 531 * are stalled on filesystem I/O. 532 * 533 * Also, since we are only going for a minimum in the 534 * non-timestamp case, we do not smooth things out 535 * else with timestamps disabled convergence takes too 536 * long. 537 */ 538 if (!win_dep) { 539 m -= (new_sample >> 3); 540 new_sample += m; 541 } else { 542 m <<= 3; 543 if (m < new_sample) 544 new_sample = m; 545 } 546 } else { 547 /* No previous measure. */ 548 new_sample = m << 3; 549 } 550 551 if (tp->rcv_rtt_est.rtt != new_sample) 552 tp->rcv_rtt_est.rtt = new_sample; 553 } 554 555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 556 { 557 if (tp->rcv_rtt_est.time == 0) 558 goto new_measure; 559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 560 return; 561 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tcp_time_stamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 if (tp->rx_opt.rcv_tsecr && 573 (TCP_SKB_CB(skb)->end_seq - 574 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 575 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 576 } 577 578 /* 579 * This function should be called every time data is copied to user space. 580 * It calculates the appropriate TCP receive buffer space. 581 */ 582 void tcp_rcv_space_adjust(struct sock *sk) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 int time; 586 int copied; 587 588 time = tcp_time_stamp - tp->rcvq_space.time; 589 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 590 return; 591 592 /* Number of bytes copied to user in last RTT */ 593 copied = tp->copied_seq - tp->rcvq_space.seq; 594 if (copied <= tp->rcvq_space.space) 595 goto new_measure; 596 597 /* A bit of theory : 598 * copied = bytes received in previous RTT, our base window 599 * To cope with packet losses, we need a 2x factor 600 * To cope with slow start, and sender growing its cwin by 100 % 601 * every RTT, we need a 4x factor, because the ACK we are sending 602 * now is for the next RTT, not the current one : 603 * <prev RTT . ><current RTT .. ><next RTT .... > 604 */ 605 606 if (sysctl_tcp_moderate_rcvbuf && 607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 608 int rcvwin, rcvmem, rcvbuf; 609 610 /* minimal window to cope with packet losses, assuming 611 * steady state. Add some cushion because of small variations. 612 */ 613 rcvwin = (copied << 1) + 16 * tp->advmss; 614 615 /* If rate increased by 25%, 616 * assume slow start, rcvwin = 3 * copied 617 * If rate increased by 50%, 618 * assume sender can use 2x growth, rcvwin = 4 * copied 619 */ 620 if (copied >= 621 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 622 if (copied >= 623 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 624 rcvwin <<= 1; 625 else 626 rcvwin += (rcvwin >> 1); 627 } 628 629 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 630 while (tcp_win_from_space(rcvmem) < tp->advmss) 631 rcvmem += 128; 632 633 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 634 if (rcvbuf > sk->sk_rcvbuf) { 635 sk->sk_rcvbuf = rcvbuf; 636 637 /* Make the window clamp follow along. */ 638 tp->window_clamp = rcvwin; 639 } 640 } 641 tp->rcvq_space.space = copied; 642 643 new_measure: 644 tp->rcvq_space.seq = tp->copied_seq; 645 tp->rcvq_space.time = tcp_time_stamp; 646 } 647 648 /* There is something which you must keep in mind when you analyze the 649 * behavior of the tp->ato delayed ack timeout interval. When a 650 * connection starts up, we want to ack as quickly as possible. The 651 * problem is that "good" TCP's do slow start at the beginning of data 652 * transmission. The means that until we send the first few ACK's the 653 * sender will sit on his end and only queue most of his data, because 654 * he can only send snd_cwnd unacked packets at any given time. For 655 * each ACK we send, he increments snd_cwnd and transmits more of his 656 * queue. -DaveM 657 */ 658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 659 { 660 struct tcp_sock *tp = tcp_sk(sk); 661 struct inet_connection_sock *icsk = inet_csk(sk); 662 u32 now; 663 664 inet_csk_schedule_ack(sk); 665 666 tcp_measure_rcv_mss(sk, skb); 667 668 tcp_rcv_rtt_measure(tp); 669 670 now = tcp_time_stamp; 671 672 if (!icsk->icsk_ack.ato) { 673 /* The _first_ data packet received, initialize 674 * delayed ACK engine. 675 */ 676 tcp_incr_quickack(sk); 677 icsk->icsk_ack.ato = TCP_ATO_MIN; 678 } else { 679 int m = now - icsk->icsk_ack.lrcvtime; 680 681 if (m <= TCP_ATO_MIN / 2) { 682 /* The fastest case is the first. */ 683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 684 } else if (m < icsk->icsk_ack.ato) { 685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 686 if (icsk->icsk_ack.ato > icsk->icsk_rto) 687 icsk->icsk_ack.ato = icsk->icsk_rto; 688 } else if (m > icsk->icsk_rto) { 689 /* Too long gap. Apparently sender failed to 690 * restart window, so that we send ACKs quickly. 691 */ 692 tcp_incr_quickack(sk); 693 sk_mem_reclaim(sk); 694 } 695 } 696 icsk->icsk_ack.lrcvtime = now; 697 698 tcp_ecn_check_ce(tp, skb); 699 700 if (skb->len >= 128) 701 tcp_grow_window(sk, skb); 702 } 703 704 /* Called to compute a smoothed rtt estimate. The data fed to this 705 * routine either comes from timestamps, or from segments that were 706 * known _not_ to have been retransmitted [see Karn/Partridge 707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 708 * piece by Van Jacobson. 709 * NOTE: the next three routines used to be one big routine. 710 * To save cycles in the RFC 1323 implementation it was better to break 711 * it up into three procedures. -- erics 712 */ 713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 long m = mrtt_us; /* RTT */ 717 u32 srtt = tp->srtt_us; 718 719 /* The following amusing code comes from Jacobson's 720 * article in SIGCOMM '88. Note that rtt and mdev 721 * are scaled versions of rtt and mean deviation. 722 * This is designed to be as fast as possible 723 * m stands for "measurement". 724 * 725 * On a 1990 paper the rto value is changed to: 726 * RTO = rtt + 4 * mdev 727 * 728 * Funny. This algorithm seems to be very broken. 729 * These formulae increase RTO, when it should be decreased, increase 730 * too slowly, when it should be increased quickly, decrease too quickly 731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 732 * does not matter how to _calculate_ it. Seems, it was trap 733 * that VJ failed to avoid. 8) 734 */ 735 if (srtt != 0) { 736 m -= (srtt >> 3); /* m is now error in rtt est */ 737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 738 if (m < 0) { 739 m = -m; /* m is now abs(error) */ 740 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 741 /* This is similar to one of Eifel findings. 742 * Eifel blocks mdev updates when rtt decreases. 743 * This solution is a bit different: we use finer gain 744 * for mdev in this case (alpha*beta). 745 * Like Eifel it also prevents growth of rto, 746 * but also it limits too fast rto decreases, 747 * happening in pure Eifel. 748 */ 749 if (m > 0) 750 m >>= 3; 751 } else { 752 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 753 } 754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 755 if (tp->mdev_us > tp->mdev_max_us) { 756 tp->mdev_max_us = tp->mdev_us; 757 if (tp->mdev_max_us > tp->rttvar_us) 758 tp->rttvar_us = tp->mdev_max_us; 759 } 760 if (after(tp->snd_una, tp->rtt_seq)) { 761 if (tp->mdev_max_us < tp->rttvar_us) 762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 763 tp->rtt_seq = tp->snd_nxt; 764 tp->mdev_max_us = tcp_rto_min_us(sk); 765 } 766 } else { 767 /* no previous measure. */ 768 srtt = m << 3; /* take the measured time to be rtt */ 769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 771 tp->mdev_max_us = tp->rttvar_us; 772 tp->rtt_seq = tp->snd_nxt; 773 } 774 tp->srtt_us = max(1U, srtt); 775 } 776 777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 778 * Note: TCP stack does not yet implement pacing. 779 * FQ packet scheduler can be used to implement cheap but effective 780 * TCP pacing, to smooth the burst on large writes when packets 781 * in flight is significantly lower than cwnd (or rwin) 782 */ 783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 785 786 static void tcp_update_pacing_rate(struct sock *sk) 787 { 788 const struct tcp_sock *tp = tcp_sk(sk); 789 u64 rate; 790 791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 793 794 /* current rate is (cwnd * mss) / srtt 795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 796 * In Congestion Avoidance phase, set it to 120 % the current rate. 797 * 798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 800 * end of slow start and should slow down. 801 */ 802 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 803 rate *= sysctl_tcp_pacing_ss_ratio; 804 else 805 rate *= sysctl_tcp_pacing_ca_ratio; 806 807 rate *= max(tp->snd_cwnd, tp->packets_out); 808 809 if (likely(tp->srtt_us)) 810 do_div(rate, tp->srtt_us); 811 812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 813 * without any lock. We want to make sure compiler wont store 814 * intermediate values in this location. 815 */ 816 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 817 sk->sk_max_pacing_rate); 818 } 819 820 /* Calculate rto without backoff. This is the second half of Van Jacobson's 821 * routine referred to above. 822 */ 823 static void tcp_set_rto(struct sock *sk) 824 { 825 const struct tcp_sock *tp = tcp_sk(sk); 826 /* Old crap is replaced with new one. 8) 827 * 828 * More seriously: 829 * 1. If rtt variance happened to be less 50msec, it is hallucination. 830 * It cannot be less due to utterly erratic ACK generation made 831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 832 * to do with delayed acks, because at cwnd>2 true delack timeout 833 * is invisible. Actually, Linux-2.4 also generates erratic 834 * ACKs in some circumstances. 835 */ 836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 837 838 /* 2. Fixups made earlier cannot be right. 839 * If we do not estimate RTO correctly without them, 840 * all the algo is pure shit and should be replaced 841 * with correct one. It is exactly, which we pretend to do. 842 */ 843 844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 845 * guarantees that rto is higher. 846 */ 847 tcp_bound_rto(sk); 848 } 849 850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 851 { 852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 853 854 if (!cwnd) 855 cwnd = TCP_INIT_CWND; 856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 857 } 858 859 /* 860 * Packet counting of FACK is based on in-order assumptions, therefore TCP 861 * disables it when reordering is detected 862 */ 863 void tcp_disable_fack(struct tcp_sock *tp) 864 { 865 /* RFC3517 uses different metric in lost marker => reset on change */ 866 if (tcp_is_fack(tp)) 867 tp->lost_skb_hint = NULL; 868 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 869 } 870 871 /* Take a notice that peer is sending D-SACKs */ 872 static void tcp_dsack_seen(struct tcp_sock *tp) 873 { 874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 875 } 876 877 static void tcp_update_reordering(struct sock *sk, const int metric, 878 const int ts) 879 { 880 struct tcp_sock *tp = tcp_sk(sk); 881 int mib_idx; 882 883 if (metric > tp->reordering) { 884 tp->reordering = min(sysctl_tcp_max_reordering, metric); 885 886 #if FASTRETRANS_DEBUG > 1 887 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 888 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 889 tp->reordering, 890 tp->fackets_out, 891 tp->sacked_out, 892 tp->undo_marker ? tp->undo_retrans : 0); 893 #endif 894 tcp_disable_fack(tp); 895 } 896 897 tp->rack.reord = 1; 898 899 /* This exciting event is worth to be remembered. 8) */ 900 if (ts) 901 mib_idx = LINUX_MIB_TCPTSREORDER; 902 else if (tcp_is_reno(tp)) 903 mib_idx = LINUX_MIB_TCPRENOREORDER; 904 else if (tcp_is_fack(tp)) 905 mib_idx = LINUX_MIB_TCPFACKREORDER; 906 else 907 mib_idx = LINUX_MIB_TCPSACKREORDER; 908 909 NET_INC_STATS(sock_net(sk), mib_idx); 910 } 911 912 /* This must be called before lost_out is incremented */ 913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 914 { 915 if (!tp->retransmit_skb_hint || 916 before(TCP_SKB_CB(skb)->seq, 917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 918 tp->retransmit_skb_hint = skb; 919 } 920 921 /* Sum the number of packets on the wire we have marked as lost. 922 * There are two cases we care about here: 923 * a) Packet hasn't been marked lost (nor retransmitted), 924 * and this is the first loss. 925 * b) Packet has been marked both lost and retransmitted, 926 * and this means we think it was lost again. 927 */ 928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 929 { 930 __u8 sacked = TCP_SKB_CB(skb)->sacked; 931 932 if (!(sacked & TCPCB_LOST) || 933 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 934 tp->lost += tcp_skb_pcount(skb); 935 } 936 937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 940 tcp_verify_retransmit_hint(tp, skb); 941 942 tp->lost_out += tcp_skb_pcount(skb); 943 tcp_sum_lost(tp, skb); 944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 945 } 946 } 947 948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 949 { 950 tcp_verify_retransmit_hint(tp, skb); 951 952 tcp_sum_lost(tp, skb); 953 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 954 tp->lost_out += tcp_skb_pcount(skb); 955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 956 } 957 } 958 959 /* This procedure tags the retransmission queue when SACKs arrive. 960 * 961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 962 * Packets in queue with these bits set are counted in variables 963 * sacked_out, retrans_out and lost_out, correspondingly. 964 * 965 * Valid combinations are: 966 * Tag InFlight Description 967 * 0 1 - orig segment is in flight. 968 * S 0 - nothing flies, orig reached receiver. 969 * L 0 - nothing flies, orig lost by net. 970 * R 2 - both orig and retransmit are in flight. 971 * L|R 1 - orig is lost, retransmit is in flight. 972 * S|R 1 - orig reached receiver, retrans is still in flight. 973 * (L|S|R is logically valid, it could occur when L|R is sacked, 974 * but it is equivalent to plain S and code short-curcuits it to S. 975 * L|S is logically invalid, it would mean -1 packet in flight 8)) 976 * 977 * These 6 states form finite state machine, controlled by the following events: 978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 980 * 3. Loss detection event of two flavors: 981 * A. Scoreboard estimator decided the packet is lost. 982 * A'. Reno "three dupacks" marks head of queue lost. 983 * A''. Its FACK modification, head until snd.fack is lost. 984 * B. SACK arrives sacking SND.NXT at the moment, when the 985 * segment was retransmitted. 986 * 4. D-SACK added new rule: D-SACK changes any tag to S. 987 * 988 * It is pleasant to note, that state diagram turns out to be commutative, 989 * so that we are allowed not to be bothered by order of our actions, 990 * when multiple events arrive simultaneously. (see the function below). 991 * 992 * Reordering detection. 993 * -------------------- 994 * Reordering metric is maximal distance, which a packet can be displaced 995 * in packet stream. With SACKs we can estimate it: 996 * 997 * 1. SACK fills old hole and the corresponding segment was not 998 * ever retransmitted -> reordering. Alas, we cannot use it 999 * when segment was retransmitted. 1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1001 * for retransmitted and already SACKed segment -> reordering.. 1002 * Both of these heuristics are not used in Loss state, when we cannot 1003 * account for retransmits accurately. 1004 * 1005 * SACK block validation. 1006 * ---------------------- 1007 * 1008 * SACK block range validation checks that the received SACK block fits to 1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1010 * Note that SND.UNA is not included to the range though being valid because 1011 * it means that the receiver is rather inconsistent with itself reporting 1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1013 * perfectly valid, however, in light of RFC2018 which explicitly states 1014 * that "SACK block MUST reflect the newest segment. Even if the newest 1015 * segment is going to be discarded ...", not that it looks very clever 1016 * in case of head skb. Due to potentional receiver driven attacks, we 1017 * choose to avoid immediate execution of a walk in write queue due to 1018 * reneging and defer head skb's loss recovery to standard loss recovery 1019 * procedure that will eventually trigger (nothing forbids us doing this). 1020 * 1021 * Implements also blockage to start_seq wrap-around. Problem lies in the 1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1023 * there's no guarantee that it will be before snd_nxt (n). The problem 1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1025 * wrap (s_w): 1026 * 1027 * <- outs wnd -> <- wrapzone -> 1028 * u e n u_w e_w s n_w 1029 * | | | | | | | 1030 * |<------------+------+----- TCP seqno space --------------+---------->| 1031 * ...-- <2^31 ->| |<--------... 1032 * ...---- >2^31 ------>| |<--------... 1033 * 1034 * Current code wouldn't be vulnerable but it's better still to discard such 1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1038 * equal to the ideal case (infinite seqno space without wrap caused issues). 1039 * 1040 * With D-SACK the lower bound is extended to cover sequence space below 1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1042 * again, D-SACK block must not to go across snd_una (for the same reason as 1043 * for the normal SACK blocks, explained above). But there all simplicity 1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1045 * fully below undo_marker they do not affect behavior in anyway and can 1046 * therefore be safely ignored. In rare cases (which are more or less 1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1048 * fragmentation and packet reordering past skb's retransmission. To consider 1049 * them correctly, the acceptable range must be extended even more though 1050 * the exact amount is rather hard to quantify. However, tp->max_window can 1051 * be used as an exaggerated estimate. 1052 */ 1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1054 u32 start_seq, u32 end_seq) 1055 { 1056 /* Too far in future, or reversed (interpretation is ambiguous) */ 1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1058 return false; 1059 1060 /* Nasty start_seq wrap-around check (see comments above) */ 1061 if (!before(start_seq, tp->snd_nxt)) 1062 return false; 1063 1064 /* In outstanding window? ...This is valid exit for D-SACKs too. 1065 * start_seq == snd_una is non-sensical (see comments above) 1066 */ 1067 if (after(start_seq, tp->snd_una)) 1068 return true; 1069 1070 if (!is_dsack || !tp->undo_marker) 1071 return false; 1072 1073 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1074 if (after(end_seq, tp->snd_una)) 1075 return false; 1076 1077 if (!before(start_seq, tp->undo_marker)) 1078 return true; 1079 1080 /* Too old */ 1081 if (!after(end_seq, tp->undo_marker)) 1082 return false; 1083 1084 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1085 * start_seq < undo_marker and end_seq >= undo_marker. 1086 */ 1087 return !before(start_seq, end_seq - tp->max_window); 1088 } 1089 1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1091 struct tcp_sack_block_wire *sp, int num_sacks, 1092 u32 prior_snd_una) 1093 { 1094 struct tcp_sock *tp = tcp_sk(sk); 1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1097 bool dup_sack = false; 1098 1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1100 dup_sack = true; 1101 tcp_dsack_seen(tp); 1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1103 } else if (num_sacks > 1) { 1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1106 1107 if (!after(end_seq_0, end_seq_1) && 1108 !before(start_seq_0, start_seq_1)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), 1112 LINUX_MIB_TCPDSACKOFORECV); 1113 } 1114 } 1115 1116 /* D-SACK for already forgotten data... Do dumb counting. */ 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1118 !after(end_seq_0, prior_snd_una) && 1119 after(end_seq_0, tp->undo_marker)) 1120 tp->undo_retrans--; 1121 1122 return dup_sack; 1123 } 1124 1125 struct tcp_sacktag_state { 1126 int reord; 1127 int fack_count; 1128 /* Timestamps for earliest and latest never-retransmitted segment 1129 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1130 * but congestion control should still get an accurate delay signal. 1131 */ 1132 struct skb_mstamp first_sackt; 1133 struct skb_mstamp last_sackt; 1134 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */ 1135 struct rate_sample *rate; 1136 int flag; 1137 }; 1138 1139 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1140 * the incoming SACK may not exactly match but we can find smaller MSS 1141 * aligned portion of it that matches. Therefore we might need to fragment 1142 * which may fail and creates some hassle (caller must handle error case 1143 * returns). 1144 * 1145 * FIXME: this could be merged to shift decision code 1146 */ 1147 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1148 u32 start_seq, u32 end_seq) 1149 { 1150 int err; 1151 bool in_sack; 1152 unsigned int pkt_len; 1153 unsigned int mss; 1154 1155 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1156 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1157 1158 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1159 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1160 mss = tcp_skb_mss(skb); 1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1162 1163 if (!in_sack) { 1164 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1165 if (pkt_len < mss) 1166 pkt_len = mss; 1167 } else { 1168 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1169 if (pkt_len < mss) 1170 return -EINVAL; 1171 } 1172 1173 /* Round if necessary so that SACKs cover only full MSSes 1174 * and/or the remaining small portion (if present) 1175 */ 1176 if (pkt_len > mss) { 1177 unsigned int new_len = (pkt_len / mss) * mss; 1178 if (!in_sack && new_len < pkt_len) { 1179 new_len += mss; 1180 if (new_len >= skb->len) 1181 return 0; 1182 } 1183 pkt_len = new_len; 1184 } 1185 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1186 if (err < 0) 1187 return err; 1188 } 1189 1190 return in_sack; 1191 } 1192 1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1194 static u8 tcp_sacktag_one(struct sock *sk, 1195 struct tcp_sacktag_state *state, u8 sacked, 1196 u32 start_seq, u32 end_seq, 1197 int dup_sack, int pcount, 1198 const struct skb_mstamp *xmit_time) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 int fack_count = state->fack_count; 1202 1203 /* Account D-SACK for retransmitted packet. */ 1204 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1205 if (tp->undo_marker && tp->undo_retrans > 0 && 1206 after(end_seq, tp->undo_marker)) 1207 tp->undo_retrans--; 1208 if (sacked & TCPCB_SACKED_ACKED) 1209 state->reord = min(fack_count, state->reord); 1210 } 1211 1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1213 if (!after(end_seq, tp->snd_una)) 1214 return sacked; 1215 1216 if (!(sacked & TCPCB_SACKED_ACKED)) { 1217 tcp_rack_advance(tp, sacked, end_seq, 1218 xmit_time, &state->ack_time); 1219 1220 if (sacked & TCPCB_SACKED_RETRANS) { 1221 /* If the segment is not tagged as lost, 1222 * we do not clear RETRANS, believing 1223 * that retransmission is still in flight. 1224 */ 1225 if (sacked & TCPCB_LOST) { 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1227 tp->lost_out -= pcount; 1228 tp->retrans_out -= pcount; 1229 } 1230 } else { 1231 if (!(sacked & TCPCB_RETRANS)) { 1232 /* New sack for not retransmitted frame, 1233 * which was in hole. It is reordering. 1234 */ 1235 if (before(start_seq, 1236 tcp_highest_sack_seq(tp))) 1237 state->reord = min(fack_count, 1238 state->reord); 1239 if (!after(end_seq, tp->high_seq)) 1240 state->flag |= FLAG_ORIG_SACK_ACKED; 1241 if (state->first_sackt.v64 == 0) 1242 state->first_sackt = *xmit_time; 1243 state->last_sackt = *xmit_time; 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 tp->delivered += pcount; /* Out-of-order packets delivered */ 1256 1257 fack_count += pcount; 1258 1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1260 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1261 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1262 tp->lost_cnt_hint += pcount; 1263 1264 if (fack_count > tp->fackets_out) 1265 tp->fackets_out = fack_count; 1266 } 1267 1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1269 * frames and clear it. undo_retrans is decreased above, L|R frames 1270 * are accounted above as well. 1271 */ 1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1273 sacked &= ~TCPCB_SACKED_RETRANS; 1274 tp->retrans_out -= pcount; 1275 } 1276 1277 return sacked; 1278 } 1279 1280 /* Shift newly-SACKed bytes from this skb to the immediately previous 1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1282 */ 1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1284 struct tcp_sacktag_state *state, 1285 unsigned int pcount, int shifted, int mss, 1286 bool dup_sack) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1292 1293 BUG_ON(!pcount); 1294 1295 /* Adjust counters and hints for the newly sacked sequence 1296 * range but discard the return value since prev is already 1297 * marked. We must tag the range first because the seq 1298 * advancement below implicitly advances 1299 * tcp_highest_sack_seq() when skb is highest_sack. 1300 */ 1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1302 start_seq, end_seq, dup_sack, pcount, 1303 &skb->skb_mstamp); 1304 tcp_rate_skb_delivered(sk, skb, state->rate); 1305 1306 if (skb == tp->lost_skb_hint) 1307 tp->lost_cnt_hint += pcount; 1308 1309 TCP_SKB_CB(prev)->end_seq += shifted; 1310 TCP_SKB_CB(skb)->seq += shifted; 1311 1312 tcp_skb_pcount_add(prev, pcount); 1313 BUG_ON(tcp_skb_pcount(skb) < pcount); 1314 tcp_skb_pcount_add(skb, -pcount); 1315 1316 /* When we're adding to gso_segs == 1, gso_size will be zero, 1317 * in theory this shouldn't be necessary but as long as DSACK 1318 * code can come after this skb later on it's better to keep 1319 * setting gso_size to something. 1320 */ 1321 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1322 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) 1326 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1349 TCP_SKB_CB(prev)->end_seq++; 1350 1351 if (skb == tcp_highest_sack(sk)) 1352 tcp_advance_highest_sack(sk, skb); 1353 1354 tcp_skb_collapse_tstamp(prev, skb); 1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1356 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1357 1358 tcp_unlink_write_queue(skb, sk); 1359 sk_wmem_free_skb(sk, skb); 1360 1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1362 1363 return true; 1364 } 1365 1366 /* I wish gso_size would have a bit more sane initialization than 1367 * something-or-zero which complicates things 1368 */ 1369 static int tcp_skb_seglen(const struct sk_buff *skb) 1370 { 1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1372 } 1373 1374 /* Shifting pages past head area doesn't work */ 1375 static int skb_can_shift(const struct sk_buff *skb) 1376 { 1377 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1378 } 1379 1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1381 * skb. 1382 */ 1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1384 struct tcp_sacktag_state *state, 1385 u32 start_seq, u32 end_seq, 1386 bool dup_sack) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 struct sk_buff *prev; 1390 int mss; 1391 int pcount = 0; 1392 int len; 1393 int in_sack; 1394 1395 if (!sk_can_gso(sk)) 1396 goto fallback; 1397 1398 /* Normally R but no L won't result in plain S */ 1399 if (!dup_sack && 1400 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1401 goto fallback; 1402 if (!skb_can_shift(skb)) 1403 goto fallback; 1404 /* This frame is about to be dropped (was ACKed). */ 1405 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1406 goto fallback; 1407 1408 /* Can only happen with delayed DSACK + discard craziness */ 1409 if (unlikely(skb == tcp_write_queue_head(sk))) 1410 goto fallback; 1411 prev = tcp_write_queue_prev(sk, skb); 1412 1413 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1414 goto fallback; 1415 1416 if (!tcp_skb_can_collapse_to(prev)) 1417 goto fallback; 1418 1419 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1420 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1421 1422 if (in_sack) { 1423 len = skb->len; 1424 pcount = tcp_skb_pcount(skb); 1425 mss = tcp_skb_seglen(skb); 1426 1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1428 * drop this restriction as unnecessary 1429 */ 1430 if (mss != tcp_skb_seglen(prev)) 1431 goto fallback; 1432 } else { 1433 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1434 goto noop; 1435 /* CHECKME: This is non-MSS split case only?, this will 1436 * cause skipped skbs due to advancing loop btw, original 1437 * has that feature too 1438 */ 1439 if (tcp_skb_pcount(skb) <= 1) 1440 goto noop; 1441 1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1443 if (!in_sack) { 1444 /* TODO: head merge to next could be attempted here 1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1446 * though it might not be worth of the additional hassle 1447 * 1448 * ...we can probably just fallback to what was done 1449 * previously. We could try merging non-SACKed ones 1450 * as well but it probably isn't going to buy off 1451 * because later SACKs might again split them, and 1452 * it would make skb timestamp tracking considerably 1453 * harder problem. 1454 */ 1455 goto fallback; 1456 } 1457 1458 len = end_seq - TCP_SKB_CB(skb)->seq; 1459 BUG_ON(len < 0); 1460 BUG_ON(len > skb->len); 1461 1462 /* MSS boundaries should be honoured or else pcount will 1463 * severely break even though it makes things bit trickier. 1464 * Optimize common case to avoid most of the divides 1465 */ 1466 mss = tcp_skb_mss(skb); 1467 1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1469 * drop this restriction as unnecessary 1470 */ 1471 if (mss != tcp_skb_seglen(prev)) 1472 goto fallback; 1473 1474 if (len == mss) { 1475 pcount = 1; 1476 } else if (len < mss) { 1477 goto noop; 1478 } else { 1479 pcount = len / mss; 1480 len = pcount * mss; 1481 } 1482 } 1483 1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1485 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1486 goto fallback; 1487 1488 if (!skb_shift(prev, skb, len)) 1489 goto fallback; 1490 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1491 goto out; 1492 1493 /* Hole filled allows collapsing with the next as well, this is very 1494 * useful when hole on every nth skb pattern happens 1495 */ 1496 if (prev == tcp_write_queue_tail(sk)) 1497 goto out; 1498 skb = tcp_write_queue_next(sk, prev); 1499 1500 if (!skb_can_shift(skb) || 1501 (skb == tcp_send_head(sk)) || 1502 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1503 (mss != tcp_skb_seglen(skb))) 1504 goto out; 1505 1506 len = skb->len; 1507 if (skb_shift(prev, skb, len)) { 1508 pcount += tcp_skb_pcount(skb); 1509 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1510 } 1511 1512 out: 1513 state->fack_count += pcount; 1514 return prev; 1515 1516 noop: 1517 return skb; 1518 1519 fallback: 1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1521 return NULL; 1522 } 1523 1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1525 struct tcp_sack_block *next_dup, 1526 struct tcp_sacktag_state *state, 1527 u32 start_seq, u32 end_seq, 1528 bool dup_sack_in) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 struct sk_buff *tmp; 1532 1533 tcp_for_write_queue_from(skb, sk) { 1534 int in_sack = 0; 1535 bool dup_sack = dup_sack_in; 1536 1537 if (skb == tcp_send_head(sk)) 1538 break; 1539 1540 /* queue is in-order => we can short-circuit the walk early */ 1541 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1542 break; 1543 1544 if (next_dup && 1545 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1546 in_sack = tcp_match_skb_to_sack(sk, skb, 1547 next_dup->start_seq, 1548 next_dup->end_seq); 1549 if (in_sack > 0) 1550 dup_sack = true; 1551 } 1552 1553 /* skb reference here is a bit tricky to get right, since 1554 * shifting can eat and free both this skb and the next, 1555 * so not even _safe variant of the loop is enough. 1556 */ 1557 if (in_sack <= 0) { 1558 tmp = tcp_shift_skb_data(sk, skb, state, 1559 start_seq, end_seq, dup_sack); 1560 if (tmp) { 1561 if (tmp != skb) { 1562 skb = tmp; 1563 continue; 1564 } 1565 1566 in_sack = 0; 1567 } else { 1568 in_sack = tcp_match_skb_to_sack(sk, skb, 1569 start_seq, 1570 end_seq); 1571 } 1572 } 1573 1574 if (unlikely(in_sack < 0)) 1575 break; 1576 1577 if (in_sack) { 1578 TCP_SKB_CB(skb)->sacked = 1579 tcp_sacktag_one(sk, 1580 state, 1581 TCP_SKB_CB(skb)->sacked, 1582 TCP_SKB_CB(skb)->seq, 1583 TCP_SKB_CB(skb)->end_seq, 1584 dup_sack, 1585 tcp_skb_pcount(skb), 1586 &skb->skb_mstamp); 1587 tcp_rate_skb_delivered(sk, skb, state->rate); 1588 1589 if (!before(TCP_SKB_CB(skb)->seq, 1590 tcp_highest_sack_seq(tp))) 1591 tcp_advance_highest_sack(sk, skb); 1592 } 1593 1594 state->fack_count += tcp_skb_pcount(skb); 1595 } 1596 return skb; 1597 } 1598 1599 /* Avoid all extra work that is being done by sacktag while walking in 1600 * a normal way 1601 */ 1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1603 struct tcp_sacktag_state *state, 1604 u32 skip_to_seq) 1605 { 1606 tcp_for_write_queue_from(skb, sk) { 1607 if (skb == tcp_send_head(sk)) 1608 break; 1609 1610 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1611 break; 1612 1613 state->fack_count += tcp_skb_pcount(skb); 1614 } 1615 return skb; 1616 } 1617 1618 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1619 struct sock *sk, 1620 struct tcp_sack_block *next_dup, 1621 struct tcp_sacktag_state *state, 1622 u32 skip_to_seq) 1623 { 1624 if (!next_dup) 1625 return skb; 1626 1627 if (before(next_dup->start_seq, skip_to_seq)) { 1628 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1629 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1630 next_dup->start_seq, next_dup->end_seq, 1631 1); 1632 } 1633 1634 return skb; 1635 } 1636 1637 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1638 { 1639 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1640 } 1641 1642 static int 1643 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1644 u32 prior_snd_una, struct tcp_sacktag_state *state) 1645 { 1646 struct tcp_sock *tp = tcp_sk(sk); 1647 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1648 TCP_SKB_CB(ack_skb)->sacked); 1649 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1650 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1651 struct tcp_sack_block *cache; 1652 struct sk_buff *skb; 1653 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1654 int used_sacks; 1655 bool found_dup_sack = false; 1656 int i, j; 1657 int first_sack_index; 1658 1659 state->flag = 0; 1660 state->reord = tp->packets_out; 1661 1662 if (!tp->sacked_out) { 1663 if (WARN_ON(tp->fackets_out)) 1664 tp->fackets_out = 0; 1665 tcp_highest_sack_reset(sk); 1666 } 1667 1668 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1669 num_sacks, prior_snd_una); 1670 if (found_dup_sack) { 1671 state->flag |= FLAG_DSACKING_ACK; 1672 tp->delivered++; /* A spurious retransmission is delivered */ 1673 } 1674 1675 /* Eliminate too old ACKs, but take into 1676 * account more or less fresh ones, they can 1677 * contain valid SACK info. 1678 */ 1679 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1680 return 0; 1681 1682 if (!tp->packets_out) 1683 goto out; 1684 1685 used_sacks = 0; 1686 first_sack_index = 0; 1687 for (i = 0; i < num_sacks; i++) { 1688 bool dup_sack = !i && found_dup_sack; 1689 1690 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1691 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1692 1693 if (!tcp_is_sackblock_valid(tp, dup_sack, 1694 sp[used_sacks].start_seq, 1695 sp[used_sacks].end_seq)) { 1696 int mib_idx; 1697 1698 if (dup_sack) { 1699 if (!tp->undo_marker) 1700 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1701 else 1702 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1703 } else { 1704 /* Don't count olds caused by ACK reordering */ 1705 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1706 !after(sp[used_sacks].end_seq, tp->snd_una)) 1707 continue; 1708 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1709 } 1710 1711 NET_INC_STATS(sock_net(sk), mib_idx); 1712 if (i == 0) 1713 first_sack_index = -1; 1714 continue; 1715 } 1716 1717 /* Ignore very old stuff early */ 1718 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1719 continue; 1720 1721 used_sacks++; 1722 } 1723 1724 /* order SACK blocks to allow in order walk of the retrans queue */ 1725 for (i = used_sacks - 1; i > 0; i--) { 1726 for (j = 0; j < i; j++) { 1727 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1728 swap(sp[j], sp[j + 1]); 1729 1730 /* Track where the first SACK block goes to */ 1731 if (j == first_sack_index) 1732 first_sack_index = j + 1; 1733 } 1734 } 1735 } 1736 1737 skb = tcp_write_queue_head(sk); 1738 state->fack_count = 0; 1739 i = 0; 1740 1741 if (!tp->sacked_out) { 1742 /* It's already past, so skip checking against it */ 1743 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1744 } else { 1745 cache = tp->recv_sack_cache; 1746 /* Skip empty blocks in at head of the cache */ 1747 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1748 !cache->end_seq) 1749 cache++; 1750 } 1751 1752 while (i < used_sacks) { 1753 u32 start_seq = sp[i].start_seq; 1754 u32 end_seq = sp[i].end_seq; 1755 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1756 struct tcp_sack_block *next_dup = NULL; 1757 1758 if (found_dup_sack && ((i + 1) == first_sack_index)) 1759 next_dup = &sp[i + 1]; 1760 1761 /* Skip too early cached blocks */ 1762 while (tcp_sack_cache_ok(tp, cache) && 1763 !before(start_seq, cache->end_seq)) 1764 cache++; 1765 1766 /* Can skip some work by looking recv_sack_cache? */ 1767 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1768 after(end_seq, cache->start_seq)) { 1769 1770 /* Head todo? */ 1771 if (before(start_seq, cache->start_seq)) { 1772 skb = tcp_sacktag_skip(skb, sk, state, 1773 start_seq); 1774 skb = tcp_sacktag_walk(skb, sk, next_dup, 1775 state, 1776 start_seq, 1777 cache->start_seq, 1778 dup_sack); 1779 } 1780 1781 /* Rest of the block already fully processed? */ 1782 if (!after(end_seq, cache->end_seq)) 1783 goto advance_sp; 1784 1785 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1786 state, 1787 cache->end_seq); 1788 1789 /* ...tail remains todo... */ 1790 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1791 /* ...but better entrypoint exists! */ 1792 skb = tcp_highest_sack(sk); 1793 if (!skb) 1794 break; 1795 state->fack_count = tp->fackets_out; 1796 cache++; 1797 goto walk; 1798 } 1799 1800 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1801 /* Check overlap against next cached too (past this one already) */ 1802 cache++; 1803 continue; 1804 } 1805 1806 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1807 skb = tcp_highest_sack(sk); 1808 if (!skb) 1809 break; 1810 state->fack_count = tp->fackets_out; 1811 } 1812 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1813 1814 walk: 1815 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1816 start_seq, end_seq, dup_sack); 1817 1818 advance_sp: 1819 i++; 1820 } 1821 1822 /* Clear the head of the cache sack blocks so we can skip it next time */ 1823 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1824 tp->recv_sack_cache[i].start_seq = 0; 1825 tp->recv_sack_cache[i].end_seq = 0; 1826 } 1827 for (j = 0; j < used_sacks; j++) 1828 tp->recv_sack_cache[i++] = sp[j]; 1829 1830 if ((state->reord < tp->fackets_out) && 1831 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1832 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1833 1834 tcp_verify_left_out(tp); 1835 out: 1836 1837 #if FASTRETRANS_DEBUG > 0 1838 WARN_ON((int)tp->sacked_out < 0); 1839 WARN_ON((int)tp->lost_out < 0); 1840 WARN_ON((int)tp->retrans_out < 0); 1841 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1842 #endif 1843 return state->flag; 1844 } 1845 1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1848 */ 1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1850 { 1851 u32 holes; 1852 1853 holes = max(tp->lost_out, 1U); 1854 holes = min(holes, tp->packets_out); 1855 1856 if ((tp->sacked_out + holes) > tp->packets_out) { 1857 tp->sacked_out = tp->packets_out - holes; 1858 return true; 1859 } 1860 return false; 1861 } 1862 1863 /* If we receive more dupacks than we expected counting segments 1864 * in assumption of absent reordering, interpret this as reordering. 1865 * The only another reason could be bug in receiver TCP. 1866 */ 1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1868 { 1869 struct tcp_sock *tp = tcp_sk(sk); 1870 if (tcp_limit_reno_sacked(tp)) 1871 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1872 } 1873 1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1875 1876 static void tcp_add_reno_sack(struct sock *sk) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 u32 prior_sacked = tp->sacked_out; 1880 1881 tp->sacked_out++; 1882 tcp_check_reno_reordering(sk, 0); 1883 if (tp->sacked_out > prior_sacked) 1884 tp->delivered++; /* Some out-of-order packet is delivered */ 1885 tcp_verify_left_out(tp); 1886 } 1887 1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1889 1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1891 { 1892 struct tcp_sock *tp = tcp_sk(sk); 1893 1894 if (acked > 0) { 1895 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1896 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1897 if (acked - 1 >= tp->sacked_out) 1898 tp->sacked_out = 0; 1899 else 1900 tp->sacked_out -= acked - 1; 1901 } 1902 tcp_check_reno_reordering(sk, acked); 1903 tcp_verify_left_out(tp); 1904 } 1905 1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1907 { 1908 tp->sacked_out = 0; 1909 } 1910 1911 void tcp_clear_retrans(struct tcp_sock *tp) 1912 { 1913 tp->retrans_out = 0; 1914 tp->lost_out = 0; 1915 tp->undo_marker = 0; 1916 tp->undo_retrans = -1; 1917 tp->fackets_out = 0; 1918 tp->sacked_out = 0; 1919 } 1920 1921 static inline void tcp_init_undo(struct tcp_sock *tp) 1922 { 1923 tp->undo_marker = tp->snd_una; 1924 /* Retransmission still in flight may cause DSACKs later. */ 1925 tp->undo_retrans = tp->retrans_out ? : -1; 1926 } 1927 1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1929 * and reset tags completely, otherwise preserve SACKs. If receiver 1930 * dropped its ofo queue, we will know this due to reneging detection. 1931 */ 1932 void tcp_enter_loss(struct sock *sk) 1933 { 1934 const struct inet_connection_sock *icsk = inet_csk(sk); 1935 struct tcp_sock *tp = tcp_sk(sk); 1936 struct net *net = sock_net(sk); 1937 struct sk_buff *skb; 1938 bool is_reneg; /* is receiver reneging on SACKs? */ 1939 bool mark_lost; 1940 1941 /* Reduce ssthresh if it has not yet been made inside this window. */ 1942 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1943 !after(tp->high_seq, tp->snd_una) || 1944 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1945 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1946 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1947 tcp_ca_event(sk, CA_EVENT_LOSS); 1948 tcp_init_undo(tp); 1949 } 1950 tp->snd_cwnd = 1; 1951 tp->snd_cwnd_cnt = 0; 1952 tp->snd_cwnd_stamp = tcp_time_stamp; 1953 1954 tp->retrans_out = 0; 1955 tp->lost_out = 0; 1956 1957 if (tcp_is_reno(tp)) 1958 tcp_reset_reno_sack(tp); 1959 1960 skb = tcp_write_queue_head(sk); 1961 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1962 if (is_reneg) { 1963 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1964 tp->sacked_out = 0; 1965 tp->fackets_out = 0; 1966 } 1967 tcp_clear_all_retrans_hints(tp); 1968 1969 tcp_for_write_queue(skb, sk) { 1970 if (skb == tcp_send_head(sk)) 1971 break; 1972 1973 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1974 is_reneg); 1975 if (mark_lost) 1976 tcp_sum_lost(tp, skb); 1977 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1978 if (mark_lost) { 1979 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1980 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1981 tp->lost_out += tcp_skb_pcount(skb); 1982 } 1983 } 1984 tcp_verify_left_out(tp); 1985 1986 /* Timeout in disordered state after receiving substantial DUPACKs 1987 * suggests that the degree of reordering is over-estimated. 1988 */ 1989 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1990 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1991 tp->reordering = min_t(unsigned int, tp->reordering, 1992 net->ipv4.sysctl_tcp_reordering); 1993 tcp_set_ca_state(sk, TCP_CA_Loss); 1994 tp->high_seq = tp->snd_nxt; 1995 tcp_ecn_queue_cwr(tp); 1996 1997 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO 1998 * if a previous recovery is underway, otherwise it may incorrectly 1999 * call a timeout spurious if some previously retransmitted packets 2000 * are s/acked (sec 3.2). We do not apply that retriction since 2001 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS 2002 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO 2003 * on PTMU discovery to avoid sending new data. 2004 */ 2005 tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size; 2006 } 2007 2008 /* If ACK arrived pointing to a remembered SACK, it means that our 2009 * remembered SACKs do not reflect real state of receiver i.e. 2010 * receiver _host_ is heavily congested (or buggy). 2011 * 2012 * To avoid big spurious retransmission bursts due to transient SACK 2013 * scoreboard oddities that look like reneging, we give the receiver a 2014 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2015 * restore sanity to the SACK scoreboard. If the apparent reneging 2016 * persists until this RTO then we'll clear the SACK scoreboard. 2017 */ 2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2019 { 2020 if (flag & FLAG_SACK_RENEGING) { 2021 struct tcp_sock *tp = tcp_sk(sk); 2022 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2023 msecs_to_jiffies(10)); 2024 2025 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2026 delay, TCP_RTO_MAX); 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2033 { 2034 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2035 } 2036 2037 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2038 * counter when SACK is enabled (without SACK, sacked_out is used for 2039 * that purpose). 2040 * 2041 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2042 * segments up to the highest received SACK block so far and holes in 2043 * between them. 2044 * 2045 * With reordering, holes may still be in flight, so RFC3517 recovery 2046 * uses pure sacked_out (total number of SACKed segments) even though 2047 * it violates the RFC that uses duplicate ACKs, often these are equal 2048 * but when e.g. out-of-window ACKs or packet duplication occurs, 2049 * they differ. Since neither occurs due to loss, TCP should really 2050 * ignore them. 2051 */ 2052 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2053 { 2054 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2055 } 2056 2057 /* Linux NewReno/SACK/FACK/ECN state machine. 2058 * -------------------------------------- 2059 * 2060 * "Open" Normal state, no dubious events, fast path. 2061 * "Disorder" In all the respects it is "Open", 2062 * but requires a bit more attention. It is entered when 2063 * we see some SACKs or dupacks. It is split of "Open" 2064 * mainly to move some processing from fast path to slow one. 2065 * "CWR" CWND was reduced due to some Congestion Notification event. 2066 * It can be ECN, ICMP source quench, local device congestion. 2067 * "Recovery" CWND was reduced, we are fast-retransmitting. 2068 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2069 * 2070 * tcp_fastretrans_alert() is entered: 2071 * - each incoming ACK, if state is not "Open" 2072 * - when arrived ACK is unusual, namely: 2073 * * SACK 2074 * * Duplicate ACK. 2075 * * ECN ECE. 2076 * 2077 * Counting packets in flight is pretty simple. 2078 * 2079 * in_flight = packets_out - left_out + retrans_out 2080 * 2081 * packets_out is SND.NXT-SND.UNA counted in packets. 2082 * 2083 * retrans_out is number of retransmitted segments. 2084 * 2085 * left_out is number of segments left network, but not ACKed yet. 2086 * 2087 * left_out = sacked_out + lost_out 2088 * 2089 * sacked_out: Packets, which arrived to receiver out of order 2090 * and hence not ACKed. With SACKs this number is simply 2091 * amount of SACKed data. Even without SACKs 2092 * it is easy to give pretty reliable estimate of this number, 2093 * counting duplicate ACKs. 2094 * 2095 * lost_out: Packets lost by network. TCP has no explicit 2096 * "loss notification" feedback from network (for now). 2097 * It means that this number can be only _guessed_. 2098 * Actually, it is the heuristics to predict lossage that 2099 * distinguishes different algorithms. 2100 * 2101 * F.e. after RTO, when all the queue is considered as lost, 2102 * lost_out = packets_out and in_flight = retrans_out. 2103 * 2104 * Essentially, we have now a few algorithms detecting 2105 * lost packets. 2106 * 2107 * If the receiver supports SACK: 2108 * 2109 * RFC6675/3517: It is the conventional algorithm. A packet is 2110 * considered lost if the number of higher sequence packets 2111 * SACKed is greater than or equal the DUPACK thoreshold 2112 * (reordering). This is implemented in tcp_mark_head_lost and 2113 * tcp_update_scoreboard. 2114 * 2115 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2116 * (2017-) that checks timing instead of counting DUPACKs. 2117 * Essentially a packet is considered lost if it's not S/ACKed 2118 * after RTT + reordering_window, where both metrics are 2119 * dynamically measured and adjusted. This is implemented in 2120 * tcp_rack_mark_lost. 2121 * 2122 * FACK (Disabled by default. Subsumbed by RACK): 2123 * It is the simplest heuristics. As soon as we decided 2124 * that something is lost, we decide that _all_ not SACKed 2125 * packets until the most forward SACK are lost. I.e. 2126 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2127 * It is absolutely correct estimate, if network does not reorder 2128 * packets. And it loses any connection to reality when reordering 2129 * takes place. We use FACK by default until reordering 2130 * is suspected on the path to this destination. 2131 * 2132 * If the receiver does not support SACK: 2133 * 2134 * NewReno (RFC6582): in Recovery we assume that one segment 2135 * is lost (classic Reno). While we are in Recovery and 2136 * a partial ACK arrives, we assume that one more packet 2137 * is lost (NewReno). This heuristics are the same in NewReno 2138 * and SACK. 2139 * 2140 * Really tricky (and requiring careful tuning) part of algorithm 2141 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2142 * The first determines the moment _when_ we should reduce CWND and, 2143 * hence, slow down forward transmission. In fact, it determines the moment 2144 * when we decide that hole is caused by loss, rather than by a reorder. 2145 * 2146 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2147 * holes, caused by lost packets. 2148 * 2149 * And the most logically complicated part of algorithm is undo 2150 * heuristics. We detect false retransmits due to both too early 2151 * fast retransmit (reordering) and underestimated RTO, analyzing 2152 * timestamps and D-SACKs. When we detect that some segments were 2153 * retransmitted by mistake and CWND reduction was wrong, we undo 2154 * window reduction and abort recovery phase. This logic is hidden 2155 * inside several functions named tcp_try_undo_<something>. 2156 */ 2157 2158 /* This function decides, when we should leave Disordered state 2159 * and enter Recovery phase, reducing congestion window. 2160 * 2161 * Main question: may we further continue forward transmission 2162 * with the same cwnd? 2163 */ 2164 static bool tcp_time_to_recover(struct sock *sk, int flag) 2165 { 2166 struct tcp_sock *tp = tcp_sk(sk); 2167 2168 /* Trick#1: The loss is proven. */ 2169 if (tp->lost_out) 2170 return true; 2171 2172 /* Not-A-Trick#2 : Classic rule... */ 2173 if (tcp_dupack_heuristics(tp) > tp->reordering) 2174 return true; 2175 2176 return false; 2177 } 2178 2179 /* Detect loss in event "A" above by marking head of queue up as lost. 2180 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2181 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2182 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2183 * the maximum SACKed segments to pass before reaching this limit. 2184 */ 2185 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2186 { 2187 struct tcp_sock *tp = tcp_sk(sk); 2188 struct sk_buff *skb; 2189 int cnt, oldcnt, lost; 2190 unsigned int mss; 2191 /* Use SACK to deduce losses of new sequences sent during recovery */ 2192 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2193 2194 WARN_ON(packets > tp->packets_out); 2195 if (tp->lost_skb_hint) { 2196 skb = tp->lost_skb_hint; 2197 cnt = tp->lost_cnt_hint; 2198 /* Head already handled? */ 2199 if (mark_head && skb != tcp_write_queue_head(sk)) 2200 return; 2201 } else { 2202 skb = tcp_write_queue_head(sk); 2203 cnt = 0; 2204 } 2205 2206 tcp_for_write_queue_from(skb, sk) { 2207 if (skb == tcp_send_head(sk)) 2208 break; 2209 /* TODO: do this better */ 2210 /* this is not the most efficient way to do this... */ 2211 tp->lost_skb_hint = skb; 2212 tp->lost_cnt_hint = cnt; 2213 2214 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2215 break; 2216 2217 oldcnt = cnt; 2218 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2219 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2220 cnt += tcp_skb_pcount(skb); 2221 2222 if (cnt > packets) { 2223 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2224 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2225 (oldcnt >= packets)) 2226 break; 2227 2228 mss = tcp_skb_mss(skb); 2229 /* If needed, chop off the prefix to mark as lost. */ 2230 lost = (packets - oldcnt) * mss; 2231 if (lost < skb->len && 2232 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2233 break; 2234 cnt = packets; 2235 } 2236 2237 tcp_skb_mark_lost(tp, skb); 2238 2239 if (mark_head) 2240 break; 2241 } 2242 tcp_verify_left_out(tp); 2243 } 2244 2245 /* Account newly detected lost packet(s) */ 2246 2247 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2248 { 2249 struct tcp_sock *tp = tcp_sk(sk); 2250 2251 if (tcp_is_reno(tp)) { 2252 tcp_mark_head_lost(sk, 1, 1); 2253 } else if (tcp_is_fack(tp)) { 2254 int lost = tp->fackets_out - tp->reordering; 2255 if (lost <= 0) 2256 lost = 1; 2257 tcp_mark_head_lost(sk, lost, 0); 2258 } else { 2259 int sacked_upto = tp->sacked_out - tp->reordering; 2260 if (sacked_upto >= 0) 2261 tcp_mark_head_lost(sk, sacked_upto, 0); 2262 else if (fast_rexmit) 2263 tcp_mark_head_lost(sk, 1, 1); 2264 } 2265 } 2266 2267 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2268 { 2269 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2270 before(tp->rx_opt.rcv_tsecr, when); 2271 } 2272 2273 /* skb is spurious retransmitted if the returned timestamp echo 2274 * reply is prior to the skb transmission time 2275 */ 2276 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2277 const struct sk_buff *skb) 2278 { 2279 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2280 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2281 } 2282 2283 /* Nothing was retransmitted or returned timestamp is less 2284 * than timestamp of the first retransmission. 2285 */ 2286 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2287 { 2288 return !tp->retrans_stamp || 2289 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2290 } 2291 2292 /* Undo procedures. */ 2293 2294 /* We can clear retrans_stamp when there are no retransmissions in the 2295 * window. It would seem that it is trivially available for us in 2296 * tp->retrans_out, however, that kind of assumptions doesn't consider 2297 * what will happen if errors occur when sending retransmission for the 2298 * second time. ...It could the that such segment has only 2299 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2300 * the head skb is enough except for some reneging corner cases that 2301 * are not worth the effort. 2302 * 2303 * Main reason for all this complexity is the fact that connection dying 2304 * time now depends on the validity of the retrans_stamp, in particular, 2305 * that successive retransmissions of a segment must not advance 2306 * retrans_stamp under any conditions. 2307 */ 2308 static bool tcp_any_retrans_done(const struct sock *sk) 2309 { 2310 const struct tcp_sock *tp = tcp_sk(sk); 2311 struct sk_buff *skb; 2312 2313 if (tp->retrans_out) 2314 return true; 2315 2316 skb = tcp_write_queue_head(sk); 2317 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2318 return true; 2319 2320 return false; 2321 } 2322 2323 #if FASTRETRANS_DEBUG > 1 2324 static void DBGUNDO(struct sock *sk, const char *msg) 2325 { 2326 struct tcp_sock *tp = tcp_sk(sk); 2327 struct inet_sock *inet = inet_sk(sk); 2328 2329 if (sk->sk_family == AF_INET) { 2330 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2331 msg, 2332 &inet->inet_daddr, ntohs(inet->inet_dport), 2333 tp->snd_cwnd, tcp_left_out(tp), 2334 tp->snd_ssthresh, tp->prior_ssthresh, 2335 tp->packets_out); 2336 } 2337 #if IS_ENABLED(CONFIG_IPV6) 2338 else if (sk->sk_family == AF_INET6) { 2339 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2340 msg, 2341 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2342 tp->snd_cwnd, tcp_left_out(tp), 2343 tp->snd_ssthresh, tp->prior_ssthresh, 2344 tp->packets_out); 2345 } 2346 #endif 2347 } 2348 #else 2349 #define DBGUNDO(x...) do { } while (0) 2350 #endif 2351 2352 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2353 { 2354 struct tcp_sock *tp = tcp_sk(sk); 2355 2356 if (unmark_loss) { 2357 struct sk_buff *skb; 2358 2359 tcp_for_write_queue(skb, sk) { 2360 if (skb == tcp_send_head(sk)) 2361 break; 2362 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2363 } 2364 tp->lost_out = 0; 2365 tcp_clear_all_retrans_hints(tp); 2366 } 2367 2368 if (tp->prior_ssthresh) { 2369 const struct inet_connection_sock *icsk = inet_csk(sk); 2370 2371 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2372 2373 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2374 tp->snd_ssthresh = tp->prior_ssthresh; 2375 tcp_ecn_withdraw_cwr(tp); 2376 } 2377 } 2378 tp->snd_cwnd_stamp = tcp_time_stamp; 2379 tp->undo_marker = 0; 2380 } 2381 2382 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2383 { 2384 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2385 } 2386 2387 /* People celebrate: "We love our President!" */ 2388 static bool tcp_try_undo_recovery(struct sock *sk) 2389 { 2390 struct tcp_sock *tp = tcp_sk(sk); 2391 2392 if (tcp_may_undo(tp)) { 2393 int mib_idx; 2394 2395 /* Happy end! We did not retransmit anything 2396 * or our original transmission succeeded. 2397 */ 2398 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2399 tcp_undo_cwnd_reduction(sk, false); 2400 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2401 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2402 else 2403 mib_idx = LINUX_MIB_TCPFULLUNDO; 2404 2405 NET_INC_STATS(sock_net(sk), mib_idx); 2406 } 2407 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2408 /* Hold old state until something *above* high_seq 2409 * is ACKed. For Reno it is MUST to prevent false 2410 * fast retransmits (RFC2582). SACK TCP is safe. */ 2411 if (!tcp_any_retrans_done(sk)) 2412 tp->retrans_stamp = 0; 2413 return true; 2414 } 2415 tcp_set_ca_state(sk, TCP_CA_Open); 2416 return false; 2417 } 2418 2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2420 static bool tcp_try_undo_dsack(struct sock *sk) 2421 { 2422 struct tcp_sock *tp = tcp_sk(sk); 2423 2424 if (tp->undo_marker && !tp->undo_retrans) { 2425 DBGUNDO(sk, "D-SACK"); 2426 tcp_undo_cwnd_reduction(sk, false); 2427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2428 return true; 2429 } 2430 return false; 2431 } 2432 2433 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2434 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2435 { 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 2438 if (frto_undo || tcp_may_undo(tp)) { 2439 tcp_undo_cwnd_reduction(sk, true); 2440 2441 DBGUNDO(sk, "partial loss"); 2442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2443 if (frto_undo) 2444 NET_INC_STATS(sock_net(sk), 2445 LINUX_MIB_TCPSPURIOUSRTOS); 2446 inet_csk(sk)->icsk_retransmits = 0; 2447 if (frto_undo || tcp_is_sack(tp)) 2448 tcp_set_ca_state(sk, TCP_CA_Open); 2449 return true; 2450 } 2451 return false; 2452 } 2453 2454 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2455 * It computes the number of packets to send (sndcnt) based on packets newly 2456 * delivered: 2457 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2458 * cwnd reductions across a full RTT. 2459 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2460 * But when the retransmits are acked without further losses, PRR 2461 * slow starts cwnd up to ssthresh to speed up the recovery. 2462 */ 2463 static void tcp_init_cwnd_reduction(struct sock *sk) 2464 { 2465 struct tcp_sock *tp = tcp_sk(sk); 2466 2467 tp->high_seq = tp->snd_nxt; 2468 tp->tlp_high_seq = 0; 2469 tp->snd_cwnd_cnt = 0; 2470 tp->prior_cwnd = tp->snd_cwnd; 2471 tp->prr_delivered = 0; 2472 tp->prr_out = 0; 2473 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2474 tcp_ecn_queue_cwr(tp); 2475 } 2476 2477 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 int sndcnt = 0; 2481 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2482 2483 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2484 return; 2485 2486 tp->prr_delivered += newly_acked_sacked; 2487 if (delta < 0) { 2488 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2489 tp->prior_cwnd - 1; 2490 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2491 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2492 !(flag & FLAG_LOST_RETRANS)) { 2493 sndcnt = min_t(int, delta, 2494 max_t(int, tp->prr_delivered - tp->prr_out, 2495 newly_acked_sacked) + 1); 2496 } else { 2497 sndcnt = min(delta, newly_acked_sacked); 2498 } 2499 /* Force a fast retransmit upon entering fast recovery */ 2500 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2501 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2502 } 2503 2504 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2505 { 2506 struct tcp_sock *tp = tcp_sk(sk); 2507 2508 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2509 return; 2510 2511 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2512 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2513 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2514 tp->snd_cwnd = tp->snd_ssthresh; 2515 tp->snd_cwnd_stamp = tcp_time_stamp; 2516 } 2517 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2518 } 2519 2520 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2521 void tcp_enter_cwr(struct sock *sk) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 tp->prior_ssthresh = 0; 2526 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2527 tp->undo_marker = 0; 2528 tcp_init_cwnd_reduction(sk); 2529 tcp_set_ca_state(sk, TCP_CA_CWR); 2530 } 2531 } 2532 EXPORT_SYMBOL(tcp_enter_cwr); 2533 2534 static void tcp_try_keep_open(struct sock *sk) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 int state = TCP_CA_Open; 2538 2539 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2540 state = TCP_CA_Disorder; 2541 2542 if (inet_csk(sk)->icsk_ca_state != state) { 2543 tcp_set_ca_state(sk, state); 2544 tp->high_seq = tp->snd_nxt; 2545 } 2546 } 2547 2548 static void tcp_try_to_open(struct sock *sk, int flag) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 2552 tcp_verify_left_out(tp); 2553 2554 if (!tcp_any_retrans_done(sk)) 2555 tp->retrans_stamp = 0; 2556 2557 if (flag & FLAG_ECE) 2558 tcp_enter_cwr(sk); 2559 2560 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2561 tcp_try_keep_open(sk); 2562 } 2563 } 2564 2565 static void tcp_mtup_probe_failed(struct sock *sk) 2566 { 2567 struct inet_connection_sock *icsk = inet_csk(sk); 2568 2569 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2570 icsk->icsk_mtup.probe_size = 0; 2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2572 } 2573 2574 static void tcp_mtup_probe_success(struct sock *sk) 2575 { 2576 struct tcp_sock *tp = tcp_sk(sk); 2577 struct inet_connection_sock *icsk = inet_csk(sk); 2578 2579 /* FIXME: breaks with very large cwnd */ 2580 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2581 tp->snd_cwnd = tp->snd_cwnd * 2582 tcp_mss_to_mtu(sk, tp->mss_cache) / 2583 icsk->icsk_mtup.probe_size; 2584 tp->snd_cwnd_cnt = 0; 2585 tp->snd_cwnd_stamp = tcp_time_stamp; 2586 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2587 2588 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2589 icsk->icsk_mtup.probe_size = 0; 2590 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2592 } 2593 2594 /* Do a simple retransmit without using the backoff mechanisms in 2595 * tcp_timer. This is used for path mtu discovery. 2596 * The socket is already locked here. 2597 */ 2598 void tcp_simple_retransmit(struct sock *sk) 2599 { 2600 const struct inet_connection_sock *icsk = inet_csk(sk); 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 struct sk_buff *skb; 2603 unsigned int mss = tcp_current_mss(sk); 2604 u32 prior_lost = tp->lost_out; 2605 2606 tcp_for_write_queue(skb, sk) { 2607 if (skb == tcp_send_head(sk)) 2608 break; 2609 if (tcp_skb_seglen(skb) > mss && 2610 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2611 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2612 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2613 tp->retrans_out -= tcp_skb_pcount(skb); 2614 } 2615 tcp_skb_mark_lost_uncond_verify(tp, skb); 2616 } 2617 } 2618 2619 tcp_clear_retrans_hints_partial(tp); 2620 2621 if (prior_lost == tp->lost_out) 2622 return; 2623 2624 if (tcp_is_reno(tp)) 2625 tcp_limit_reno_sacked(tp); 2626 2627 tcp_verify_left_out(tp); 2628 2629 /* Don't muck with the congestion window here. 2630 * Reason is that we do not increase amount of _data_ 2631 * in network, but units changed and effective 2632 * cwnd/ssthresh really reduced now. 2633 */ 2634 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2635 tp->high_seq = tp->snd_nxt; 2636 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2637 tp->prior_ssthresh = 0; 2638 tp->undo_marker = 0; 2639 tcp_set_ca_state(sk, TCP_CA_Loss); 2640 } 2641 tcp_xmit_retransmit_queue(sk); 2642 } 2643 EXPORT_SYMBOL(tcp_simple_retransmit); 2644 2645 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 int mib_idx; 2649 2650 if (tcp_is_reno(tp)) 2651 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2652 else 2653 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2654 2655 NET_INC_STATS(sock_net(sk), mib_idx); 2656 2657 tp->prior_ssthresh = 0; 2658 tcp_init_undo(tp); 2659 2660 if (!tcp_in_cwnd_reduction(sk)) { 2661 if (!ece_ack) 2662 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2663 tcp_init_cwnd_reduction(sk); 2664 } 2665 tcp_set_ca_state(sk, TCP_CA_Recovery); 2666 } 2667 2668 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2669 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2670 */ 2671 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2672 int *rexmit) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 bool recovered = !before(tp->snd_una, tp->high_seq); 2676 2677 if ((flag & FLAG_SND_UNA_ADVANCED) && 2678 tcp_try_undo_loss(sk, false)) 2679 return; 2680 2681 /* The ACK (s)acks some never-retransmitted data meaning not all 2682 * the data packets before the timeout were lost. Therefore we 2683 * undo the congestion window and state. This is essentially 2684 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2685 * a retransmitted skb is permantly marked, we can apply such an 2686 * operation even if F-RTO was not used. 2687 */ 2688 if ((flag & FLAG_ORIG_SACK_ACKED) && 2689 tcp_try_undo_loss(sk, tp->undo_marker)) 2690 return; 2691 2692 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2693 if (after(tp->snd_nxt, tp->high_seq)) { 2694 if (flag & FLAG_DATA_SACKED || is_dupack) 2695 tp->frto = 0; /* Step 3.a. loss was real */ 2696 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2697 tp->high_seq = tp->snd_nxt; 2698 /* Step 2.b. Try send new data (but deferred until cwnd 2699 * is updated in tcp_ack()). Otherwise fall back to 2700 * the conventional recovery. 2701 */ 2702 if (tcp_send_head(sk) && 2703 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2704 *rexmit = REXMIT_NEW; 2705 return; 2706 } 2707 tp->frto = 0; 2708 } 2709 } 2710 2711 if (recovered) { 2712 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2713 tcp_try_undo_recovery(sk); 2714 return; 2715 } 2716 if (tcp_is_reno(tp)) { 2717 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2718 * delivered. Lower inflight to clock out (re)tranmissions. 2719 */ 2720 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2721 tcp_add_reno_sack(sk); 2722 else if (flag & FLAG_SND_UNA_ADVANCED) 2723 tcp_reset_reno_sack(tp); 2724 } 2725 *rexmit = REXMIT_LOST; 2726 } 2727 2728 /* Undo during fast recovery after partial ACK. */ 2729 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2734 /* Plain luck! Hole if filled with delayed 2735 * packet, rather than with a retransmit. 2736 */ 2737 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2738 2739 /* We are getting evidence that the reordering degree is higher 2740 * than we realized. If there are no retransmits out then we 2741 * can undo. Otherwise we clock out new packets but do not 2742 * mark more packets lost or retransmit more. 2743 */ 2744 if (tp->retrans_out) 2745 return true; 2746 2747 if (!tcp_any_retrans_done(sk)) 2748 tp->retrans_stamp = 0; 2749 2750 DBGUNDO(sk, "partial recovery"); 2751 tcp_undo_cwnd_reduction(sk, true); 2752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2753 tcp_try_keep_open(sk); 2754 return true; 2755 } 2756 return false; 2757 } 2758 2759 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag, 2760 const struct skb_mstamp *ack_time) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 2764 /* Use RACK to detect loss */ 2765 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2766 u32 prior_retrans = tp->retrans_out; 2767 2768 tcp_rack_mark_lost(sk, ack_time); 2769 if (prior_retrans > tp->retrans_out) 2770 *ack_flag |= FLAG_LOST_RETRANS; 2771 } 2772 } 2773 2774 /* Process an event, which can update packets-in-flight not trivially. 2775 * Main goal of this function is to calculate new estimate for left_out, 2776 * taking into account both packets sitting in receiver's buffer and 2777 * packets lost by network. 2778 * 2779 * Besides that it updates the congestion state when packet loss or ECN 2780 * is detected. But it does not reduce the cwnd, it is done by the 2781 * congestion control later. 2782 * 2783 * It does _not_ decide what to send, it is made in function 2784 * tcp_xmit_retransmit_queue(). 2785 */ 2786 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2787 bool is_dupack, int *ack_flag, int *rexmit, 2788 const struct skb_mstamp *ack_time) 2789 { 2790 struct inet_connection_sock *icsk = inet_csk(sk); 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 int fast_rexmit = 0, flag = *ack_flag; 2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2794 (tcp_fackets_out(tp) > tp->reordering)); 2795 2796 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2797 tp->sacked_out = 0; 2798 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2799 tp->fackets_out = 0; 2800 2801 /* Now state machine starts. 2802 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2803 if (flag & FLAG_ECE) 2804 tp->prior_ssthresh = 0; 2805 2806 /* B. In all the states check for reneging SACKs. */ 2807 if (tcp_check_sack_reneging(sk, flag)) 2808 return; 2809 2810 /* C. Check consistency of the current state. */ 2811 tcp_verify_left_out(tp); 2812 2813 /* D. Check state exit conditions. State can be terminated 2814 * when high_seq is ACKed. */ 2815 if (icsk->icsk_ca_state == TCP_CA_Open) { 2816 WARN_ON(tp->retrans_out != 0); 2817 tp->retrans_stamp = 0; 2818 } else if (!before(tp->snd_una, tp->high_seq)) { 2819 switch (icsk->icsk_ca_state) { 2820 case TCP_CA_CWR: 2821 /* CWR is to be held something *above* high_seq 2822 * is ACKed for CWR bit to reach receiver. */ 2823 if (tp->snd_una != tp->high_seq) { 2824 tcp_end_cwnd_reduction(sk); 2825 tcp_set_ca_state(sk, TCP_CA_Open); 2826 } 2827 break; 2828 2829 case TCP_CA_Recovery: 2830 if (tcp_is_reno(tp)) 2831 tcp_reset_reno_sack(tp); 2832 if (tcp_try_undo_recovery(sk)) 2833 return; 2834 tcp_end_cwnd_reduction(sk); 2835 break; 2836 } 2837 } 2838 2839 /* E. Process state. */ 2840 switch (icsk->icsk_ca_state) { 2841 case TCP_CA_Recovery: 2842 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2843 if (tcp_is_reno(tp) && is_dupack) 2844 tcp_add_reno_sack(sk); 2845 } else { 2846 if (tcp_try_undo_partial(sk, acked)) 2847 return; 2848 /* Partial ACK arrived. Force fast retransmit. */ 2849 do_lost = tcp_is_reno(tp) || 2850 tcp_fackets_out(tp) > tp->reordering; 2851 } 2852 if (tcp_try_undo_dsack(sk)) { 2853 tcp_try_keep_open(sk); 2854 return; 2855 } 2856 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2857 break; 2858 case TCP_CA_Loss: 2859 tcp_process_loss(sk, flag, is_dupack, rexmit); 2860 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2861 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2862 (*ack_flag & FLAG_LOST_RETRANS))) 2863 return; 2864 /* Change state if cwnd is undone or retransmits are lost */ 2865 default: 2866 if (tcp_is_reno(tp)) { 2867 if (flag & FLAG_SND_UNA_ADVANCED) 2868 tcp_reset_reno_sack(tp); 2869 if (is_dupack) 2870 tcp_add_reno_sack(sk); 2871 } 2872 2873 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2874 tcp_try_undo_dsack(sk); 2875 2876 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2877 if (!tcp_time_to_recover(sk, flag)) { 2878 tcp_try_to_open(sk, flag); 2879 return; 2880 } 2881 2882 /* MTU probe failure: don't reduce cwnd */ 2883 if (icsk->icsk_ca_state < TCP_CA_CWR && 2884 icsk->icsk_mtup.probe_size && 2885 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2886 tcp_mtup_probe_failed(sk); 2887 /* Restores the reduction we did in tcp_mtup_probe() */ 2888 tp->snd_cwnd++; 2889 tcp_simple_retransmit(sk); 2890 return; 2891 } 2892 2893 /* Otherwise enter Recovery state */ 2894 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2895 fast_rexmit = 1; 2896 } 2897 2898 if (do_lost) 2899 tcp_update_scoreboard(sk, fast_rexmit); 2900 *rexmit = REXMIT_LOST; 2901 } 2902 2903 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2904 { 2905 struct tcp_sock *tp = tcp_sk(sk); 2906 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2907 2908 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2909 rtt_us ? : jiffies_to_usecs(1)); 2910 } 2911 2912 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2913 long seq_rtt_us, long sack_rtt_us, 2914 long ca_rtt_us) 2915 { 2916 const struct tcp_sock *tp = tcp_sk(sk); 2917 2918 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2919 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2920 * Karn's algorithm forbids taking RTT if some retransmitted data 2921 * is acked (RFC6298). 2922 */ 2923 if (seq_rtt_us < 0) 2924 seq_rtt_us = sack_rtt_us; 2925 2926 /* RTTM Rule: A TSecr value received in a segment is used to 2927 * update the averaged RTT measurement only if the segment 2928 * acknowledges some new data, i.e., only if it advances the 2929 * left edge of the send window. 2930 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2931 */ 2932 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2933 flag & FLAG_ACKED) 2934 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2935 tp->rx_opt.rcv_tsecr); 2936 if (seq_rtt_us < 0) 2937 return false; 2938 2939 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2940 * always taken together with ACK, SACK, or TS-opts. Any negative 2941 * values will be skipped with the seq_rtt_us < 0 check above. 2942 */ 2943 tcp_update_rtt_min(sk, ca_rtt_us); 2944 tcp_rtt_estimator(sk, seq_rtt_us); 2945 tcp_set_rto(sk); 2946 2947 /* RFC6298: only reset backoff on valid RTT measurement. */ 2948 inet_csk(sk)->icsk_backoff = 0; 2949 return true; 2950 } 2951 2952 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2953 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2954 { 2955 long rtt_us = -1L; 2956 2957 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2958 struct skb_mstamp now; 2959 2960 skb_mstamp_get(&now); 2961 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2962 } 2963 2964 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2965 } 2966 2967 2968 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2969 { 2970 const struct inet_connection_sock *icsk = inet_csk(sk); 2971 2972 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2973 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2974 } 2975 2976 /* Restart timer after forward progress on connection. 2977 * RFC2988 recommends to restart timer to now+rto. 2978 */ 2979 void tcp_rearm_rto(struct sock *sk) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 struct tcp_sock *tp = tcp_sk(sk); 2983 2984 /* If the retrans timer is currently being used by Fast Open 2985 * for SYN-ACK retrans purpose, stay put. 2986 */ 2987 if (tp->fastopen_rsk) 2988 return; 2989 2990 if (!tp->packets_out) { 2991 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2992 } else { 2993 u32 rto = inet_csk(sk)->icsk_rto; 2994 /* Offset the time elapsed after installing regular RTO */ 2995 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2996 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2997 struct sk_buff *skb = tcp_write_queue_head(sk); 2998 const u32 rto_time_stamp = 2999 tcp_skb_timestamp(skb) + rto; 3000 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3001 /* delta may not be positive if the socket is locked 3002 * when the retrans timer fires and is rescheduled. 3003 */ 3004 if (delta > 0) 3005 rto = delta; 3006 } 3007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3008 TCP_RTO_MAX); 3009 } 3010 } 3011 3012 /* If we get here, the whole TSO packet has not been acked. */ 3013 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3014 { 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 u32 packets_acked; 3017 3018 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3019 3020 packets_acked = tcp_skb_pcount(skb); 3021 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3022 return 0; 3023 packets_acked -= tcp_skb_pcount(skb); 3024 3025 if (packets_acked) { 3026 BUG_ON(tcp_skb_pcount(skb) == 0); 3027 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3028 } 3029 3030 return packets_acked; 3031 } 3032 3033 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3034 u32 prior_snd_una) 3035 { 3036 const struct skb_shared_info *shinfo; 3037 3038 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3039 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3040 return; 3041 3042 shinfo = skb_shinfo(skb); 3043 if (!before(shinfo->tskey, prior_snd_una) && 3044 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3045 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3046 } 3047 3048 /* Remove acknowledged frames from the retransmission queue. If our packet 3049 * is before the ack sequence we can discard it as it's confirmed to have 3050 * arrived at the other end. 3051 */ 3052 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3053 u32 prior_snd_una, int *acked, 3054 struct tcp_sacktag_state *sack) 3055 { 3056 const struct inet_connection_sock *icsk = inet_csk(sk); 3057 struct skb_mstamp first_ackt, last_ackt; 3058 struct skb_mstamp *now = &sack->ack_time; 3059 struct tcp_sock *tp = tcp_sk(sk); 3060 u32 prior_sacked = tp->sacked_out; 3061 u32 reord = tp->packets_out; 3062 bool fully_acked = true; 3063 long sack_rtt_us = -1L; 3064 long seq_rtt_us = -1L; 3065 long ca_rtt_us = -1L; 3066 struct sk_buff *skb; 3067 u32 pkts_acked = 0; 3068 u32 last_in_flight = 0; 3069 bool rtt_update; 3070 int flag = 0; 3071 3072 first_ackt.v64 = 0; 3073 3074 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3076 u8 sacked = scb->sacked; 3077 u32 acked_pcount; 3078 3079 tcp_ack_tstamp(sk, skb, prior_snd_una); 3080 3081 /* Determine how many packets and what bytes were acked, tso and else */ 3082 if (after(scb->end_seq, tp->snd_una)) { 3083 if (tcp_skb_pcount(skb) == 1 || 3084 !after(tp->snd_una, scb->seq)) 3085 break; 3086 3087 acked_pcount = tcp_tso_acked(sk, skb); 3088 if (!acked_pcount) 3089 break; 3090 fully_acked = false; 3091 } else { 3092 /* Speedup tcp_unlink_write_queue() and next loop */ 3093 prefetchw(skb->next); 3094 acked_pcount = tcp_skb_pcount(skb); 3095 } 3096 3097 if (unlikely(sacked & TCPCB_RETRANS)) { 3098 if (sacked & TCPCB_SACKED_RETRANS) 3099 tp->retrans_out -= acked_pcount; 3100 flag |= FLAG_RETRANS_DATA_ACKED; 3101 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3102 last_ackt = skb->skb_mstamp; 3103 WARN_ON_ONCE(last_ackt.v64 == 0); 3104 if (!first_ackt.v64) 3105 first_ackt = last_ackt; 3106 3107 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3108 reord = min(pkts_acked, reord); 3109 if (!after(scb->end_seq, tp->high_seq)) 3110 flag |= FLAG_ORIG_SACK_ACKED; 3111 } 3112 3113 if (sacked & TCPCB_SACKED_ACKED) { 3114 tp->sacked_out -= acked_pcount; 3115 } else if (tcp_is_sack(tp)) { 3116 tp->delivered += acked_pcount; 3117 if (!tcp_skb_spurious_retrans(tp, skb)) 3118 tcp_rack_advance(tp, sacked, scb->end_seq, 3119 &skb->skb_mstamp, 3120 &sack->ack_time); 3121 } 3122 if (sacked & TCPCB_LOST) 3123 tp->lost_out -= acked_pcount; 3124 3125 tp->packets_out -= acked_pcount; 3126 pkts_acked += acked_pcount; 3127 tcp_rate_skb_delivered(sk, skb, sack->rate); 3128 3129 /* Initial outgoing SYN's get put onto the write_queue 3130 * just like anything else we transmit. It is not 3131 * true data, and if we misinform our callers that 3132 * this ACK acks real data, we will erroneously exit 3133 * connection startup slow start one packet too 3134 * quickly. This is severely frowned upon behavior. 3135 */ 3136 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3137 flag |= FLAG_DATA_ACKED; 3138 } else { 3139 flag |= FLAG_SYN_ACKED; 3140 tp->retrans_stamp = 0; 3141 } 3142 3143 if (!fully_acked) 3144 break; 3145 3146 tcp_unlink_write_queue(skb, sk); 3147 sk_wmem_free_skb(sk, skb); 3148 if (unlikely(skb == tp->retransmit_skb_hint)) 3149 tp->retransmit_skb_hint = NULL; 3150 if (unlikely(skb == tp->lost_skb_hint)) 3151 tp->lost_skb_hint = NULL; 3152 } 3153 3154 if (!skb) 3155 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3156 3157 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3158 tp->snd_up = tp->snd_una; 3159 3160 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3161 flag |= FLAG_SACK_RENEGING; 3162 3163 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3164 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3165 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3166 } 3167 if (sack->first_sackt.v64) { 3168 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3169 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3170 } 3171 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3172 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3173 ca_rtt_us); 3174 3175 if (flag & FLAG_ACKED) { 3176 tcp_rearm_rto(sk); 3177 if (unlikely(icsk->icsk_mtup.probe_size && 3178 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3179 tcp_mtup_probe_success(sk); 3180 } 3181 3182 if (tcp_is_reno(tp)) { 3183 tcp_remove_reno_sacks(sk, pkts_acked); 3184 } else { 3185 int delta; 3186 3187 /* Non-retransmitted hole got filled? That's reordering */ 3188 if (reord < prior_fackets) 3189 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3190 3191 delta = tcp_is_fack(tp) ? pkts_acked : 3192 prior_sacked - tp->sacked_out; 3193 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3194 } 3195 3196 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3197 3198 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3199 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3200 /* Do not re-arm RTO if the sack RTT is measured from data sent 3201 * after when the head was last (re)transmitted. Otherwise the 3202 * timeout may continue to extend in loss recovery. 3203 */ 3204 tcp_rearm_rto(sk); 3205 } 3206 3207 if (icsk->icsk_ca_ops->pkts_acked) { 3208 struct ack_sample sample = { .pkts_acked = pkts_acked, 3209 .rtt_us = ca_rtt_us, 3210 .in_flight = last_in_flight }; 3211 3212 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3213 } 3214 3215 #if FASTRETRANS_DEBUG > 0 3216 WARN_ON((int)tp->sacked_out < 0); 3217 WARN_ON((int)tp->lost_out < 0); 3218 WARN_ON((int)tp->retrans_out < 0); 3219 if (!tp->packets_out && tcp_is_sack(tp)) { 3220 icsk = inet_csk(sk); 3221 if (tp->lost_out) { 3222 pr_debug("Leak l=%u %d\n", 3223 tp->lost_out, icsk->icsk_ca_state); 3224 tp->lost_out = 0; 3225 } 3226 if (tp->sacked_out) { 3227 pr_debug("Leak s=%u %d\n", 3228 tp->sacked_out, icsk->icsk_ca_state); 3229 tp->sacked_out = 0; 3230 } 3231 if (tp->retrans_out) { 3232 pr_debug("Leak r=%u %d\n", 3233 tp->retrans_out, icsk->icsk_ca_state); 3234 tp->retrans_out = 0; 3235 } 3236 } 3237 #endif 3238 *acked = pkts_acked; 3239 return flag; 3240 } 3241 3242 static void tcp_ack_probe(struct sock *sk) 3243 { 3244 const struct tcp_sock *tp = tcp_sk(sk); 3245 struct inet_connection_sock *icsk = inet_csk(sk); 3246 3247 /* Was it a usable window open? */ 3248 3249 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3250 icsk->icsk_backoff = 0; 3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3252 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3253 * This function is not for random using! 3254 */ 3255 } else { 3256 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3257 3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3259 when, TCP_RTO_MAX); 3260 } 3261 } 3262 3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3264 { 3265 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3266 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3267 } 3268 3269 /* Decide wheather to run the increase function of congestion control. */ 3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3271 { 3272 /* If reordering is high then always grow cwnd whenever data is 3273 * delivered regardless of its ordering. Otherwise stay conservative 3274 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3275 * new SACK or ECE mark may first advance cwnd here and later reduce 3276 * cwnd in tcp_fastretrans_alert() based on more states. 3277 */ 3278 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3279 return flag & FLAG_FORWARD_PROGRESS; 3280 3281 return flag & FLAG_DATA_ACKED; 3282 } 3283 3284 /* The "ultimate" congestion control function that aims to replace the rigid 3285 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3286 * It's called toward the end of processing an ACK with precise rate 3287 * information. All transmission or retransmission are delayed afterwards. 3288 */ 3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3290 int flag, const struct rate_sample *rs) 3291 { 3292 const struct inet_connection_sock *icsk = inet_csk(sk); 3293 3294 if (icsk->icsk_ca_ops->cong_control) { 3295 icsk->icsk_ca_ops->cong_control(sk, rs); 3296 return; 3297 } 3298 3299 if (tcp_in_cwnd_reduction(sk)) { 3300 /* Reduce cwnd if state mandates */ 3301 tcp_cwnd_reduction(sk, acked_sacked, flag); 3302 } else if (tcp_may_raise_cwnd(sk, flag)) { 3303 /* Advance cwnd if state allows */ 3304 tcp_cong_avoid(sk, ack, acked_sacked); 3305 } 3306 tcp_update_pacing_rate(sk); 3307 } 3308 3309 /* Check that window update is acceptable. 3310 * The function assumes that snd_una<=ack<=snd_next. 3311 */ 3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3313 const u32 ack, const u32 ack_seq, 3314 const u32 nwin) 3315 { 3316 return after(ack, tp->snd_una) || 3317 after(ack_seq, tp->snd_wl1) || 3318 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3319 } 3320 3321 /* If we update tp->snd_una, also update tp->bytes_acked */ 3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3323 { 3324 u32 delta = ack - tp->snd_una; 3325 3326 sock_owned_by_me((struct sock *)tp); 3327 tp->bytes_acked += delta; 3328 tp->snd_una = ack; 3329 } 3330 3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3333 { 3334 u32 delta = seq - tp->rcv_nxt; 3335 3336 sock_owned_by_me((struct sock *)tp); 3337 tp->bytes_received += delta; 3338 tp->rcv_nxt = seq; 3339 } 3340 3341 /* Update our send window. 3342 * 3343 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3344 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3345 */ 3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3347 u32 ack_seq) 3348 { 3349 struct tcp_sock *tp = tcp_sk(sk); 3350 int flag = 0; 3351 u32 nwin = ntohs(tcp_hdr(skb)->window); 3352 3353 if (likely(!tcp_hdr(skb)->syn)) 3354 nwin <<= tp->rx_opt.snd_wscale; 3355 3356 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3357 flag |= FLAG_WIN_UPDATE; 3358 tcp_update_wl(tp, ack_seq); 3359 3360 if (tp->snd_wnd != nwin) { 3361 tp->snd_wnd = nwin; 3362 3363 /* Note, it is the only place, where 3364 * fast path is recovered for sending TCP. 3365 */ 3366 tp->pred_flags = 0; 3367 tcp_fast_path_check(sk); 3368 3369 if (tcp_send_head(sk)) 3370 tcp_slow_start_after_idle_check(sk); 3371 3372 if (nwin > tp->max_window) { 3373 tp->max_window = nwin; 3374 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3375 } 3376 } 3377 } 3378 3379 tcp_snd_una_update(tp, ack); 3380 3381 return flag; 3382 } 3383 3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3385 u32 *last_oow_ack_time) 3386 { 3387 if (*last_oow_ack_time) { 3388 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3389 3390 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3391 NET_INC_STATS(net, mib_idx); 3392 return true; /* rate-limited: don't send yet! */ 3393 } 3394 } 3395 3396 *last_oow_ack_time = tcp_time_stamp; 3397 3398 return false; /* not rate-limited: go ahead, send dupack now! */ 3399 } 3400 3401 /* Return true if we're currently rate-limiting out-of-window ACKs and 3402 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3403 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3404 * attacks that send repeated SYNs or ACKs for the same connection. To 3405 * do this, we do not send a duplicate SYNACK or ACK if the remote 3406 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3407 */ 3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3409 int mib_idx, u32 *last_oow_ack_time) 3410 { 3411 /* Data packets without SYNs are not likely part of an ACK loop. */ 3412 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3413 !tcp_hdr(skb)->syn) 3414 return false; 3415 3416 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3417 } 3418 3419 /* RFC 5961 7 [ACK Throttling] */ 3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3421 { 3422 /* unprotected vars, we dont care of overwrites */ 3423 static u32 challenge_timestamp; 3424 static unsigned int challenge_count; 3425 struct tcp_sock *tp = tcp_sk(sk); 3426 u32 count, now; 3427 3428 /* First check our per-socket dupack rate limit. */ 3429 if (__tcp_oow_rate_limited(sock_net(sk), 3430 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3431 &tp->last_oow_ack_time)) 3432 return; 3433 3434 /* Then check host-wide RFC 5961 rate limit. */ 3435 now = jiffies / HZ; 3436 if (now != challenge_timestamp) { 3437 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3438 3439 challenge_timestamp = now; 3440 WRITE_ONCE(challenge_count, half + 3441 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3442 } 3443 count = READ_ONCE(challenge_count); 3444 if (count > 0) { 3445 WRITE_ONCE(challenge_count, count - 1); 3446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3447 tcp_send_ack(sk); 3448 } 3449 } 3450 3451 static void tcp_store_ts_recent(struct tcp_sock *tp) 3452 { 3453 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3454 tp->rx_opt.ts_recent_stamp = get_seconds(); 3455 } 3456 3457 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3458 { 3459 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3460 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3461 * extra check below makes sure this can only happen 3462 * for pure ACK frames. -DaveM 3463 * 3464 * Not only, also it occurs for expired timestamps. 3465 */ 3466 3467 if (tcp_paws_check(&tp->rx_opt, 0)) 3468 tcp_store_ts_recent(tp); 3469 } 3470 } 3471 3472 /* This routine deals with acks during a TLP episode. 3473 * We mark the end of a TLP episode on receiving TLP dupack or when 3474 * ack is after tlp_high_seq. 3475 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3476 */ 3477 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3478 { 3479 struct tcp_sock *tp = tcp_sk(sk); 3480 3481 if (before(ack, tp->tlp_high_seq)) 3482 return; 3483 3484 if (flag & FLAG_DSACKING_ACK) { 3485 /* This DSACK means original and TLP probe arrived; no loss */ 3486 tp->tlp_high_seq = 0; 3487 } else if (after(ack, tp->tlp_high_seq)) { 3488 /* ACK advances: there was a loss, so reduce cwnd. Reset 3489 * tlp_high_seq in tcp_init_cwnd_reduction() 3490 */ 3491 tcp_init_cwnd_reduction(sk); 3492 tcp_set_ca_state(sk, TCP_CA_CWR); 3493 tcp_end_cwnd_reduction(sk); 3494 tcp_try_keep_open(sk); 3495 NET_INC_STATS(sock_net(sk), 3496 LINUX_MIB_TCPLOSSPROBERECOVERY); 3497 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3498 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3499 /* Pure dupack: original and TLP probe arrived; no loss */ 3500 tp->tlp_high_seq = 0; 3501 } 3502 } 3503 3504 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3505 { 3506 const struct inet_connection_sock *icsk = inet_csk(sk); 3507 3508 if (icsk->icsk_ca_ops->in_ack_event) 3509 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3510 } 3511 3512 /* Congestion control has updated the cwnd already. So if we're in 3513 * loss recovery then now we do any new sends (for FRTO) or 3514 * retransmits (for CA_Loss or CA_recovery) that make sense. 3515 */ 3516 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3517 { 3518 struct tcp_sock *tp = tcp_sk(sk); 3519 3520 if (rexmit == REXMIT_NONE) 3521 return; 3522 3523 if (unlikely(rexmit == 2)) { 3524 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3525 TCP_NAGLE_OFF); 3526 if (after(tp->snd_nxt, tp->high_seq)) 3527 return; 3528 tp->frto = 0; 3529 } 3530 tcp_xmit_retransmit_queue(sk); 3531 } 3532 3533 /* This routine deals with incoming acks, but not outgoing ones. */ 3534 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3535 { 3536 struct inet_connection_sock *icsk = inet_csk(sk); 3537 struct tcp_sock *tp = tcp_sk(sk); 3538 struct tcp_sacktag_state sack_state; 3539 struct rate_sample rs = { .prior_delivered = 0 }; 3540 u32 prior_snd_una = tp->snd_una; 3541 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3542 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3543 bool is_dupack = false; 3544 u32 prior_fackets; 3545 int prior_packets = tp->packets_out; 3546 u32 delivered = tp->delivered; 3547 u32 lost = tp->lost; 3548 int acked = 0; /* Number of packets newly acked */ 3549 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3550 3551 sack_state.first_sackt.v64 = 0; 3552 sack_state.rate = &rs; 3553 3554 /* We very likely will need to access write queue head. */ 3555 prefetchw(sk->sk_write_queue.next); 3556 3557 /* If the ack is older than previous acks 3558 * then we can probably ignore it. 3559 */ 3560 if (before(ack, prior_snd_una)) { 3561 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3562 if (before(ack, prior_snd_una - tp->max_window)) { 3563 tcp_send_challenge_ack(sk, skb); 3564 return -1; 3565 } 3566 goto old_ack; 3567 } 3568 3569 /* If the ack includes data we haven't sent yet, discard 3570 * this segment (RFC793 Section 3.9). 3571 */ 3572 if (after(ack, tp->snd_nxt)) 3573 goto invalid_ack; 3574 3575 skb_mstamp_get(&sack_state.ack_time); 3576 3577 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3578 tcp_rearm_rto(sk); 3579 3580 if (after(ack, prior_snd_una)) { 3581 flag |= FLAG_SND_UNA_ADVANCED; 3582 icsk->icsk_retransmits = 0; 3583 } 3584 3585 prior_fackets = tp->fackets_out; 3586 rs.prior_in_flight = tcp_packets_in_flight(tp); 3587 3588 /* ts_recent update must be made after we are sure that the packet 3589 * is in window. 3590 */ 3591 if (flag & FLAG_UPDATE_TS_RECENT) 3592 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3593 3594 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3595 /* Window is constant, pure forward advance. 3596 * No more checks are required. 3597 * Note, we use the fact that SND.UNA>=SND.WL2. 3598 */ 3599 tcp_update_wl(tp, ack_seq); 3600 tcp_snd_una_update(tp, ack); 3601 flag |= FLAG_WIN_UPDATE; 3602 3603 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3604 3605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3606 } else { 3607 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3608 3609 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3610 flag |= FLAG_DATA; 3611 else 3612 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3613 3614 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3615 3616 if (TCP_SKB_CB(skb)->sacked) 3617 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3618 &sack_state); 3619 3620 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3621 flag |= FLAG_ECE; 3622 ack_ev_flags |= CA_ACK_ECE; 3623 } 3624 3625 if (flag & FLAG_WIN_UPDATE) 3626 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3627 3628 tcp_in_ack_event(sk, ack_ev_flags); 3629 } 3630 3631 /* We passed data and got it acked, remove any soft error 3632 * log. Something worked... 3633 */ 3634 sk->sk_err_soft = 0; 3635 icsk->icsk_probes_out = 0; 3636 tp->rcv_tstamp = tcp_time_stamp; 3637 if (!prior_packets) 3638 goto no_queue; 3639 3640 /* See if we can take anything off of the retransmit queue. */ 3641 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3642 &sack_state); 3643 3644 if (tcp_ack_is_dubious(sk, flag)) { 3645 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3646 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3647 &sack_state.ack_time); 3648 } 3649 if (tp->tlp_high_seq) 3650 tcp_process_tlp_ack(sk, ack, flag); 3651 3652 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3653 sk_dst_confirm(sk); 3654 3655 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3656 tcp_schedule_loss_probe(sk); 3657 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3658 lost = tp->lost - lost; /* freshly marked lost */ 3659 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time, 3660 sack_state.rate); 3661 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3662 tcp_xmit_recovery(sk, rexmit); 3663 return 1; 3664 3665 no_queue: 3666 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3667 if (flag & FLAG_DSACKING_ACK) 3668 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3669 &sack_state.ack_time); 3670 /* If this ack opens up a zero window, clear backoff. It was 3671 * being used to time the probes, and is probably far higher than 3672 * it needs to be for normal retransmission. 3673 */ 3674 if (tcp_send_head(sk)) 3675 tcp_ack_probe(sk); 3676 3677 if (tp->tlp_high_seq) 3678 tcp_process_tlp_ack(sk, ack, flag); 3679 return 1; 3680 3681 invalid_ack: 3682 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3683 return -1; 3684 3685 old_ack: 3686 /* If data was SACKed, tag it and see if we should send more data. 3687 * If data was DSACKed, see if we can undo a cwnd reduction. 3688 */ 3689 if (TCP_SKB_CB(skb)->sacked) { 3690 skb_mstamp_get(&sack_state.ack_time); 3691 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3692 &sack_state); 3693 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3694 &sack_state.ack_time); 3695 tcp_xmit_recovery(sk, rexmit); 3696 } 3697 3698 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3699 return 0; 3700 } 3701 3702 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3703 bool syn, struct tcp_fastopen_cookie *foc, 3704 bool exp_opt) 3705 { 3706 /* Valid only in SYN or SYN-ACK with an even length. */ 3707 if (!foc || !syn || len < 0 || (len & 1)) 3708 return; 3709 3710 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3711 len <= TCP_FASTOPEN_COOKIE_MAX) 3712 memcpy(foc->val, cookie, len); 3713 else if (len != 0) 3714 len = -1; 3715 foc->len = len; 3716 foc->exp = exp_opt; 3717 } 3718 3719 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3720 * But, this can also be called on packets in the established flow when 3721 * the fast version below fails. 3722 */ 3723 void tcp_parse_options(const struct sk_buff *skb, 3724 struct tcp_options_received *opt_rx, int estab, 3725 struct tcp_fastopen_cookie *foc) 3726 { 3727 const unsigned char *ptr; 3728 const struct tcphdr *th = tcp_hdr(skb); 3729 int length = (th->doff * 4) - sizeof(struct tcphdr); 3730 3731 ptr = (const unsigned char *)(th + 1); 3732 opt_rx->saw_tstamp = 0; 3733 3734 while (length > 0) { 3735 int opcode = *ptr++; 3736 int opsize; 3737 3738 switch (opcode) { 3739 case TCPOPT_EOL: 3740 return; 3741 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3742 length--; 3743 continue; 3744 default: 3745 opsize = *ptr++; 3746 if (opsize < 2) /* "silly options" */ 3747 return; 3748 if (opsize > length) 3749 return; /* don't parse partial options */ 3750 switch (opcode) { 3751 case TCPOPT_MSS: 3752 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3753 u16 in_mss = get_unaligned_be16(ptr); 3754 if (in_mss) { 3755 if (opt_rx->user_mss && 3756 opt_rx->user_mss < in_mss) 3757 in_mss = opt_rx->user_mss; 3758 opt_rx->mss_clamp = in_mss; 3759 } 3760 } 3761 break; 3762 case TCPOPT_WINDOW: 3763 if (opsize == TCPOLEN_WINDOW && th->syn && 3764 !estab && sysctl_tcp_window_scaling) { 3765 __u8 snd_wscale = *(__u8 *)ptr; 3766 opt_rx->wscale_ok = 1; 3767 if (snd_wscale > TCP_MAX_WSCALE) { 3768 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3769 __func__, 3770 snd_wscale, 3771 TCP_MAX_WSCALE); 3772 snd_wscale = TCP_MAX_WSCALE; 3773 } 3774 opt_rx->snd_wscale = snd_wscale; 3775 } 3776 break; 3777 case TCPOPT_TIMESTAMP: 3778 if ((opsize == TCPOLEN_TIMESTAMP) && 3779 ((estab && opt_rx->tstamp_ok) || 3780 (!estab && sysctl_tcp_timestamps))) { 3781 opt_rx->saw_tstamp = 1; 3782 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3783 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3784 } 3785 break; 3786 case TCPOPT_SACK_PERM: 3787 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3788 !estab && sysctl_tcp_sack) { 3789 opt_rx->sack_ok = TCP_SACK_SEEN; 3790 tcp_sack_reset(opt_rx); 3791 } 3792 break; 3793 3794 case TCPOPT_SACK: 3795 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3796 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3797 opt_rx->sack_ok) { 3798 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3799 } 3800 break; 3801 #ifdef CONFIG_TCP_MD5SIG 3802 case TCPOPT_MD5SIG: 3803 /* 3804 * The MD5 Hash has already been 3805 * checked (see tcp_v{4,6}_do_rcv()). 3806 */ 3807 break; 3808 #endif 3809 case TCPOPT_FASTOPEN: 3810 tcp_parse_fastopen_option( 3811 opsize - TCPOLEN_FASTOPEN_BASE, 3812 ptr, th->syn, foc, false); 3813 break; 3814 3815 case TCPOPT_EXP: 3816 /* Fast Open option shares code 254 using a 3817 * 16 bits magic number. 3818 */ 3819 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3820 get_unaligned_be16(ptr) == 3821 TCPOPT_FASTOPEN_MAGIC) 3822 tcp_parse_fastopen_option(opsize - 3823 TCPOLEN_EXP_FASTOPEN_BASE, 3824 ptr + 2, th->syn, foc, true); 3825 break; 3826 3827 } 3828 ptr += opsize-2; 3829 length -= opsize; 3830 } 3831 } 3832 } 3833 EXPORT_SYMBOL(tcp_parse_options); 3834 3835 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3836 { 3837 const __be32 *ptr = (const __be32 *)(th + 1); 3838 3839 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3840 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3841 tp->rx_opt.saw_tstamp = 1; 3842 ++ptr; 3843 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3844 ++ptr; 3845 if (*ptr) 3846 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3847 else 3848 tp->rx_opt.rcv_tsecr = 0; 3849 return true; 3850 } 3851 return false; 3852 } 3853 3854 /* Fast parse options. This hopes to only see timestamps. 3855 * If it is wrong it falls back on tcp_parse_options(). 3856 */ 3857 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3858 const struct tcphdr *th, struct tcp_sock *tp) 3859 { 3860 /* In the spirit of fast parsing, compare doff directly to constant 3861 * values. Because equality is used, short doff can be ignored here. 3862 */ 3863 if (th->doff == (sizeof(*th) / 4)) { 3864 tp->rx_opt.saw_tstamp = 0; 3865 return false; 3866 } else if (tp->rx_opt.tstamp_ok && 3867 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3868 if (tcp_parse_aligned_timestamp(tp, th)) 3869 return true; 3870 } 3871 3872 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3873 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3874 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3875 3876 return true; 3877 } 3878 3879 #ifdef CONFIG_TCP_MD5SIG 3880 /* 3881 * Parse MD5 Signature option 3882 */ 3883 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3884 { 3885 int length = (th->doff << 2) - sizeof(*th); 3886 const u8 *ptr = (const u8 *)(th + 1); 3887 3888 /* If the TCP option is too short, we can short cut */ 3889 if (length < TCPOLEN_MD5SIG) 3890 return NULL; 3891 3892 while (length > 0) { 3893 int opcode = *ptr++; 3894 int opsize; 3895 3896 switch (opcode) { 3897 case TCPOPT_EOL: 3898 return NULL; 3899 case TCPOPT_NOP: 3900 length--; 3901 continue; 3902 default: 3903 opsize = *ptr++; 3904 if (opsize < 2 || opsize > length) 3905 return NULL; 3906 if (opcode == TCPOPT_MD5SIG) 3907 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3908 } 3909 ptr += opsize - 2; 3910 length -= opsize; 3911 } 3912 return NULL; 3913 } 3914 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3915 #endif 3916 3917 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3918 * 3919 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3920 * it can pass through stack. So, the following predicate verifies that 3921 * this segment is not used for anything but congestion avoidance or 3922 * fast retransmit. Moreover, we even are able to eliminate most of such 3923 * second order effects, if we apply some small "replay" window (~RTO) 3924 * to timestamp space. 3925 * 3926 * All these measures still do not guarantee that we reject wrapped ACKs 3927 * on networks with high bandwidth, when sequence space is recycled fastly, 3928 * but it guarantees that such events will be very rare and do not affect 3929 * connection seriously. This doesn't look nice, but alas, PAWS is really 3930 * buggy extension. 3931 * 3932 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3933 * states that events when retransmit arrives after original data are rare. 3934 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3935 * the biggest problem on large power networks even with minor reordering. 3936 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3937 * up to bandwidth of 18Gigabit/sec. 8) ] 3938 */ 3939 3940 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3941 { 3942 const struct tcp_sock *tp = tcp_sk(sk); 3943 const struct tcphdr *th = tcp_hdr(skb); 3944 u32 seq = TCP_SKB_CB(skb)->seq; 3945 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3946 3947 return (/* 1. Pure ACK with correct sequence number. */ 3948 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3949 3950 /* 2. ... and duplicate ACK. */ 3951 ack == tp->snd_una && 3952 3953 /* 3. ... and does not update window. */ 3954 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3955 3956 /* 4. ... and sits in replay window. */ 3957 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3958 } 3959 3960 static inline bool tcp_paws_discard(const struct sock *sk, 3961 const struct sk_buff *skb) 3962 { 3963 const struct tcp_sock *tp = tcp_sk(sk); 3964 3965 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3966 !tcp_disordered_ack(sk, skb); 3967 } 3968 3969 /* Check segment sequence number for validity. 3970 * 3971 * Segment controls are considered valid, if the segment 3972 * fits to the window after truncation to the window. Acceptability 3973 * of data (and SYN, FIN, of course) is checked separately. 3974 * See tcp_data_queue(), for example. 3975 * 3976 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3977 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3978 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3979 * (borrowed from freebsd) 3980 */ 3981 3982 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3983 { 3984 return !before(end_seq, tp->rcv_wup) && 3985 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3986 } 3987 3988 /* When we get a reset we do this. */ 3989 void tcp_reset(struct sock *sk) 3990 { 3991 /* We want the right error as BSD sees it (and indeed as we do). */ 3992 switch (sk->sk_state) { 3993 case TCP_SYN_SENT: 3994 sk->sk_err = ECONNREFUSED; 3995 break; 3996 case TCP_CLOSE_WAIT: 3997 sk->sk_err = EPIPE; 3998 break; 3999 case TCP_CLOSE: 4000 return; 4001 default: 4002 sk->sk_err = ECONNRESET; 4003 } 4004 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4005 smp_wmb(); 4006 4007 if (!sock_flag(sk, SOCK_DEAD)) 4008 sk->sk_error_report(sk); 4009 4010 tcp_done(sk); 4011 } 4012 4013 /* 4014 * Process the FIN bit. This now behaves as it is supposed to work 4015 * and the FIN takes effect when it is validly part of sequence 4016 * space. Not before when we get holes. 4017 * 4018 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4019 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4020 * TIME-WAIT) 4021 * 4022 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4023 * close and we go into CLOSING (and later onto TIME-WAIT) 4024 * 4025 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4026 */ 4027 void tcp_fin(struct sock *sk) 4028 { 4029 struct tcp_sock *tp = tcp_sk(sk); 4030 4031 inet_csk_schedule_ack(sk); 4032 4033 sk->sk_shutdown |= RCV_SHUTDOWN; 4034 sock_set_flag(sk, SOCK_DONE); 4035 4036 switch (sk->sk_state) { 4037 case TCP_SYN_RECV: 4038 case TCP_ESTABLISHED: 4039 /* Move to CLOSE_WAIT */ 4040 tcp_set_state(sk, TCP_CLOSE_WAIT); 4041 inet_csk(sk)->icsk_ack.pingpong = 1; 4042 break; 4043 4044 case TCP_CLOSE_WAIT: 4045 case TCP_CLOSING: 4046 /* Received a retransmission of the FIN, do 4047 * nothing. 4048 */ 4049 break; 4050 case TCP_LAST_ACK: 4051 /* RFC793: Remain in the LAST-ACK state. */ 4052 break; 4053 4054 case TCP_FIN_WAIT1: 4055 /* This case occurs when a simultaneous close 4056 * happens, we must ack the received FIN and 4057 * enter the CLOSING state. 4058 */ 4059 tcp_send_ack(sk); 4060 tcp_set_state(sk, TCP_CLOSING); 4061 break; 4062 case TCP_FIN_WAIT2: 4063 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4064 tcp_send_ack(sk); 4065 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4066 break; 4067 default: 4068 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4069 * cases we should never reach this piece of code. 4070 */ 4071 pr_err("%s: Impossible, sk->sk_state=%d\n", 4072 __func__, sk->sk_state); 4073 break; 4074 } 4075 4076 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4077 * Probably, we should reset in this case. For now drop them. 4078 */ 4079 skb_rbtree_purge(&tp->out_of_order_queue); 4080 if (tcp_is_sack(tp)) 4081 tcp_sack_reset(&tp->rx_opt); 4082 sk_mem_reclaim(sk); 4083 4084 if (!sock_flag(sk, SOCK_DEAD)) { 4085 sk->sk_state_change(sk); 4086 4087 /* Do not send POLL_HUP for half duplex close. */ 4088 if (sk->sk_shutdown == SHUTDOWN_MASK || 4089 sk->sk_state == TCP_CLOSE) 4090 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4091 else 4092 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4093 } 4094 } 4095 4096 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4097 u32 end_seq) 4098 { 4099 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4100 if (before(seq, sp->start_seq)) 4101 sp->start_seq = seq; 4102 if (after(end_seq, sp->end_seq)) 4103 sp->end_seq = end_seq; 4104 return true; 4105 } 4106 return false; 4107 } 4108 4109 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4110 { 4111 struct tcp_sock *tp = tcp_sk(sk); 4112 4113 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4114 int mib_idx; 4115 4116 if (before(seq, tp->rcv_nxt)) 4117 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4118 else 4119 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4120 4121 NET_INC_STATS(sock_net(sk), mib_idx); 4122 4123 tp->rx_opt.dsack = 1; 4124 tp->duplicate_sack[0].start_seq = seq; 4125 tp->duplicate_sack[0].end_seq = end_seq; 4126 } 4127 } 4128 4129 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4130 { 4131 struct tcp_sock *tp = tcp_sk(sk); 4132 4133 if (!tp->rx_opt.dsack) 4134 tcp_dsack_set(sk, seq, end_seq); 4135 else 4136 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4137 } 4138 4139 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4140 { 4141 struct tcp_sock *tp = tcp_sk(sk); 4142 4143 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4144 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4145 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4146 tcp_enter_quickack_mode(sk); 4147 4148 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4149 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4150 4151 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4152 end_seq = tp->rcv_nxt; 4153 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4154 } 4155 } 4156 4157 tcp_send_ack(sk); 4158 } 4159 4160 /* These routines update the SACK block as out-of-order packets arrive or 4161 * in-order packets close up the sequence space. 4162 */ 4163 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4164 { 4165 int this_sack; 4166 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4167 struct tcp_sack_block *swalk = sp + 1; 4168 4169 /* See if the recent change to the first SACK eats into 4170 * or hits the sequence space of other SACK blocks, if so coalesce. 4171 */ 4172 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4173 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4174 int i; 4175 4176 /* Zap SWALK, by moving every further SACK up by one slot. 4177 * Decrease num_sacks. 4178 */ 4179 tp->rx_opt.num_sacks--; 4180 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4181 sp[i] = sp[i + 1]; 4182 continue; 4183 } 4184 this_sack++, swalk++; 4185 } 4186 } 4187 4188 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4189 { 4190 struct tcp_sock *tp = tcp_sk(sk); 4191 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4192 int cur_sacks = tp->rx_opt.num_sacks; 4193 int this_sack; 4194 4195 if (!cur_sacks) 4196 goto new_sack; 4197 4198 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4199 if (tcp_sack_extend(sp, seq, end_seq)) { 4200 /* Rotate this_sack to the first one. */ 4201 for (; this_sack > 0; this_sack--, sp--) 4202 swap(*sp, *(sp - 1)); 4203 if (cur_sacks > 1) 4204 tcp_sack_maybe_coalesce(tp); 4205 return; 4206 } 4207 } 4208 4209 /* Could not find an adjacent existing SACK, build a new one, 4210 * put it at the front, and shift everyone else down. We 4211 * always know there is at least one SACK present already here. 4212 * 4213 * If the sack array is full, forget about the last one. 4214 */ 4215 if (this_sack >= TCP_NUM_SACKS) { 4216 this_sack--; 4217 tp->rx_opt.num_sacks--; 4218 sp--; 4219 } 4220 for (; this_sack > 0; this_sack--, sp--) 4221 *sp = *(sp - 1); 4222 4223 new_sack: 4224 /* Build the new head SACK, and we're done. */ 4225 sp->start_seq = seq; 4226 sp->end_seq = end_seq; 4227 tp->rx_opt.num_sacks++; 4228 } 4229 4230 /* RCV.NXT advances, some SACKs should be eaten. */ 4231 4232 static void tcp_sack_remove(struct tcp_sock *tp) 4233 { 4234 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4235 int num_sacks = tp->rx_opt.num_sacks; 4236 int this_sack; 4237 4238 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4239 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4240 tp->rx_opt.num_sacks = 0; 4241 return; 4242 } 4243 4244 for (this_sack = 0; this_sack < num_sacks;) { 4245 /* Check if the start of the sack is covered by RCV.NXT. */ 4246 if (!before(tp->rcv_nxt, sp->start_seq)) { 4247 int i; 4248 4249 /* RCV.NXT must cover all the block! */ 4250 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4251 4252 /* Zap this SACK, by moving forward any other SACKS. */ 4253 for (i = this_sack+1; i < num_sacks; i++) 4254 tp->selective_acks[i-1] = tp->selective_acks[i]; 4255 num_sacks--; 4256 continue; 4257 } 4258 this_sack++; 4259 sp++; 4260 } 4261 tp->rx_opt.num_sacks = num_sacks; 4262 } 4263 4264 /** 4265 * tcp_try_coalesce - try to merge skb to prior one 4266 * @sk: socket 4267 * @to: prior buffer 4268 * @from: buffer to add in queue 4269 * @fragstolen: pointer to boolean 4270 * 4271 * Before queueing skb @from after @to, try to merge them 4272 * to reduce overall memory use and queue lengths, if cost is small. 4273 * Packets in ofo or receive queues can stay a long time. 4274 * Better try to coalesce them right now to avoid future collapses. 4275 * Returns true if caller should free @from instead of queueing it 4276 */ 4277 static bool tcp_try_coalesce(struct sock *sk, 4278 struct sk_buff *to, 4279 struct sk_buff *from, 4280 bool *fragstolen) 4281 { 4282 int delta; 4283 4284 *fragstolen = false; 4285 4286 /* Its possible this segment overlaps with prior segment in queue */ 4287 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4288 return false; 4289 4290 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4291 return false; 4292 4293 atomic_add(delta, &sk->sk_rmem_alloc); 4294 sk_mem_charge(sk, delta); 4295 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4296 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4297 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4298 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4299 return true; 4300 } 4301 4302 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4303 { 4304 sk_drops_add(sk, skb); 4305 __kfree_skb(skb); 4306 } 4307 4308 /* This one checks to see if we can put data from the 4309 * out_of_order queue into the receive_queue. 4310 */ 4311 static void tcp_ofo_queue(struct sock *sk) 4312 { 4313 struct tcp_sock *tp = tcp_sk(sk); 4314 __u32 dsack_high = tp->rcv_nxt; 4315 bool fin, fragstolen, eaten; 4316 struct sk_buff *skb, *tail; 4317 struct rb_node *p; 4318 4319 p = rb_first(&tp->out_of_order_queue); 4320 while (p) { 4321 skb = rb_entry(p, struct sk_buff, rbnode); 4322 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4323 break; 4324 4325 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4326 __u32 dsack = dsack_high; 4327 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4328 dsack_high = TCP_SKB_CB(skb)->end_seq; 4329 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4330 } 4331 p = rb_next(p); 4332 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4333 4334 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4335 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4336 tcp_drop(sk, skb); 4337 continue; 4338 } 4339 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4340 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4341 TCP_SKB_CB(skb)->end_seq); 4342 4343 tail = skb_peek_tail(&sk->sk_receive_queue); 4344 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4345 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4346 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4347 if (!eaten) 4348 __skb_queue_tail(&sk->sk_receive_queue, skb); 4349 else 4350 kfree_skb_partial(skb, fragstolen); 4351 4352 if (unlikely(fin)) { 4353 tcp_fin(sk); 4354 /* tcp_fin() purges tp->out_of_order_queue, 4355 * so we must end this loop right now. 4356 */ 4357 break; 4358 } 4359 } 4360 } 4361 4362 static bool tcp_prune_ofo_queue(struct sock *sk); 4363 static int tcp_prune_queue(struct sock *sk); 4364 4365 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4366 unsigned int size) 4367 { 4368 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4369 !sk_rmem_schedule(sk, skb, size)) { 4370 4371 if (tcp_prune_queue(sk) < 0) 4372 return -1; 4373 4374 while (!sk_rmem_schedule(sk, skb, size)) { 4375 if (!tcp_prune_ofo_queue(sk)) 4376 return -1; 4377 } 4378 } 4379 return 0; 4380 } 4381 4382 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4383 { 4384 struct tcp_sock *tp = tcp_sk(sk); 4385 struct rb_node **p, *q, *parent; 4386 struct sk_buff *skb1; 4387 u32 seq, end_seq; 4388 bool fragstolen; 4389 4390 tcp_ecn_check_ce(tp, skb); 4391 4392 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4394 tcp_drop(sk, skb); 4395 return; 4396 } 4397 4398 /* Disable header prediction. */ 4399 tp->pred_flags = 0; 4400 inet_csk_schedule_ack(sk); 4401 4402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4403 seq = TCP_SKB_CB(skb)->seq; 4404 end_seq = TCP_SKB_CB(skb)->end_seq; 4405 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4406 tp->rcv_nxt, seq, end_seq); 4407 4408 p = &tp->out_of_order_queue.rb_node; 4409 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4410 /* Initial out of order segment, build 1 SACK. */ 4411 if (tcp_is_sack(tp)) { 4412 tp->rx_opt.num_sacks = 1; 4413 tp->selective_acks[0].start_seq = seq; 4414 tp->selective_acks[0].end_seq = end_seq; 4415 } 4416 rb_link_node(&skb->rbnode, NULL, p); 4417 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4418 tp->ooo_last_skb = skb; 4419 goto end; 4420 } 4421 4422 /* In the typical case, we are adding an skb to the end of the list. 4423 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4424 */ 4425 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4426 coalesce_done: 4427 tcp_grow_window(sk, skb); 4428 kfree_skb_partial(skb, fragstolen); 4429 skb = NULL; 4430 goto add_sack; 4431 } 4432 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4433 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4434 parent = &tp->ooo_last_skb->rbnode; 4435 p = &parent->rb_right; 4436 goto insert; 4437 } 4438 4439 /* Find place to insert this segment. Handle overlaps on the way. */ 4440 parent = NULL; 4441 while (*p) { 4442 parent = *p; 4443 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4444 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4445 p = &parent->rb_left; 4446 continue; 4447 } 4448 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4449 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4450 /* All the bits are present. Drop. */ 4451 NET_INC_STATS(sock_net(sk), 4452 LINUX_MIB_TCPOFOMERGE); 4453 __kfree_skb(skb); 4454 skb = NULL; 4455 tcp_dsack_set(sk, seq, end_seq); 4456 goto add_sack; 4457 } 4458 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4459 /* Partial overlap. */ 4460 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4461 } else { 4462 /* skb's seq == skb1's seq and skb covers skb1. 4463 * Replace skb1 with skb. 4464 */ 4465 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4466 &tp->out_of_order_queue); 4467 tcp_dsack_extend(sk, 4468 TCP_SKB_CB(skb1)->seq, 4469 TCP_SKB_CB(skb1)->end_seq); 4470 NET_INC_STATS(sock_net(sk), 4471 LINUX_MIB_TCPOFOMERGE); 4472 __kfree_skb(skb1); 4473 goto merge_right; 4474 } 4475 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4476 goto coalesce_done; 4477 } 4478 p = &parent->rb_right; 4479 } 4480 insert: 4481 /* Insert segment into RB tree. */ 4482 rb_link_node(&skb->rbnode, parent, p); 4483 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4484 4485 merge_right: 4486 /* Remove other segments covered by skb. */ 4487 while ((q = rb_next(&skb->rbnode)) != NULL) { 4488 skb1 = rb_entry(q, struct sk_buff, rbnode); 4489 4490 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4491 break; 4492 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4493 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4494 end_seq); 4495 break; 4496 } 4497 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4499 TCP_SKB_CB(skb1)->end_seq); 4500 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4501 tcp_drop(sk, skb1); 4502 } 4503 /* If there is no skb after us, we are the last_skb ! */ 4504 if (!q) 4505 tp->ooo_last_skb = skb; 4506 4507 add_sack: 4508 if (tcp_is_sack(tp)) 4509 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4510 end: 4511 if (skb) { 4512 tcp_grow_window(sk, skb); 4513 skb_condense(skb); 4514 skb_set_owner_r(skb, sk); 4515 } 4516 } 4517 4518 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4519 bool *fragstolen) 4520 { 4521 int eaten; 4522 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4523 4524 __skb_pull(skb, hdrlen); 4525 eaten = (tail && 4526 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4527 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4528 if (!eaten) { 4529 __skb_queue_tail(&sk->sk_receive_queue, skb); 4530 skb_set_owner_r(skb, sk); 4531 } 4532 return eaten; 4533 } 4534 4535 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4536 { 4537 struct sk_buff *skb; 4538 int err = -ENOMEM; 4539 int data_len = 0; 4540 bool fragstolen; 4541 4542 if (size == 0) 4543 return 0; 4544 4545 if (size > PAGE_SIZE) { 4546 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4547 4548 data_len = npages << PAGE_SHIFT; 4549 size = data_len + (size & ~PAGE_MASK); 4550 } 4551 skb = alloc_skb_with_frags(size - data_len, data_len, 4552 PAGE_ALLOC_COSTLY_ORDER, 4553 &err, sk->sk_allocation); 4554 if (!skb) 4555 goto err; 4556 4557 skb_put(skb, size - data_len); 4558 skb->data_len = data_len; 4559 skb->len = size; 4560 4561 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4562 goto err_free; 4563 4564 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4565 if (err) 4566 goto err_free; 4567 4568 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4569 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4570 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4571 4572 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4573 WARN_ON_ONCE(fragstolen); /* should not happen */ 4574 __kfree_skb(skb); 4575 } 4576 return size; 4577 4578 err_free: 4579 kfree_skb(skb); 4580 err: 4581 return err; 4582 4583 } 4584 4585 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4586 { 4587 struct tcp_sock *tp = tcp_sk(sk); 4588 bool fragstolen = false; 4589 int eaten = -1; 4590 4591 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4592 __kfree_skb(skb); 4593 return; 4594 } 4595 skb_dst_drop(skb); 4596 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4597 4598 tcp_ecn_accept_cwr(tp, skb); 4599 4600 tp->rx_opt.dsack = 0; 4601 4602 /* Queue data for delivery to the user. 4603 * Packets in sequence go to the receive queue. 4604 * Out of sequence packets to the out_of_order_queue. 4605 */ 4606 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4607 if (tcp_receive_window(tp) == 0) 4608 goto out_of_window; 4609 4610 /* Ok. In sequence. In window. */ 4611 if (tp->ucopy.task == current && 4612 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4613 sock_owned_by_user(sk) && !tp->urg_data) { 4614 int chunk = min_t(unsigned int, skb->len, 4615 tp->ucopy.len); 4616 4617 __set_current_state(TASK_RUNNING); 4618 4619 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4620 tp->ucopy.len -= chunk; 4621 tp->copied_seq += chunk; 4622 eaten = (chunk == skb->len); 4623 tcp_rcv_space_adjust(sk); 4624 } 4625 } 4626 4627 if (eaten <= 0) { 4628 queue_and_out: 4629 if (eaten < 0) { 4630 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4631 sk_forced_mem_schedule(sk, skb->truesize); 4632 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4633 goto drop; 4634 } 4635 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4636 } 4637 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4638 if (skb->len) 4639 tcp_event_data_recv(sk, skb); 4640 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4641 tcp_fin(sk); 4642 4643 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4644 tcp_ofo_queue(sk); 4645 4646 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4647 * gap in queue is filled. 4648 */ 4649 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4650 inet_csk(sk)->icsk_ack.pingpong = 0; 4651 } 4652 4653 if (tp->rx_opt.num_sacks) 4654 tcp_sack_remove(tp); 4655 4656 tcp_fast_path_check(sk); 4657 4658 if (eaten > 0) 4659 kfree_skb_partial(skb, fragstolen); 4660 if (!sock_flag(sk, SOCK_DEAD)) 4661 sk->sk_data_ready(sk); 4662 return; 4663 } 4664 4665 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4666 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4667 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4668 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4669 4670 out_of_window: 4671 tcp_enter_quickack_mode(sk); 4672 inet_csk_schedule_ack(sk); 4673 drop: 4674 tcp_drop(sk, skb); 4675 return; 4676 } 4677 4678 /* Out of window. F.e. zero window probe. */ 4679 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4680 goto out_of_window; 4681 4682 tcp_enter_quickack_mode(sk); 4683 4684 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4685 /* Partial packet, seq < rcv_next < end_seq */ 4686 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4687 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4688 TCP_SKB_CB(skb)->end_seq); 4689 4690 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4691 4692 /* If window is closed, drop tail of packet. But after 4693 * remembering D-SACK for its head made in previous line. 4694 */ 4695 if (!tcp_receive_window(tp)) 4696 goto out_of_window; 4697 goto queue_and_out; 4698 } 4699 4700 tcp_data_queue_ofo(sk, skb); 4701 } 4702 4703 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4704 { 4705 if (list) 4706 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4707 4708 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4709 } 4710 4711 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4712 struct sk_buff_head *list, 4713 struct rb_root *root) 4714 { 4715 struct sk_buff *next = tcp_skb_next(skb, list); 4716 4717 if (list) 4718 __skb_unlink(skb, list); 4719 else 4720 rb_erase(&skb->rbnode, root); 4721 4722 __kfree_skb(skb); 4723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4724 4725 return next; 4726 } 4727 4728 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4729 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4730 { 4731 struct rb_node **p = &root->rb_node; 4732 struct rb_node *parent = NULL; 4733 struct sk_buff *skb1; 4734 4735 while (*p) { 4736 parent = *p; 4737 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4738 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4739 p = &parent->rb_left; 4740 else 4741 p = &parent->rb_right; 4742 } 4743 rb_link_node(&skb->rbnode, parent, p); 4744 rb_insert_color(&skb->rbnode, root); 4745 } 4746 4747 /* Collapse contiguous sequence of skbs head..tail with 4748 * sequence numbers start..end. 4749 * 4750 * If tail is NULL, this means until the end of the queue. 4751 * 4752 * Segments with FIN/SYN are not collapsed (only because this 4753 * simplifies code) 4754 */ 4755 static void 4756 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4757 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4758 { 4759 struct sk_buff *skb = head, *n; 4760 struct sk_buff_head tmp; 4761 bool end_of_skbs; 4762 4763 /* First, check that queue is collapsible and find 4764 * the point where collapsing can be useful. 4765 */ 4766 restart: 4767 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4768 n = tcp_skb_next(skb, list); 4769 4770 /* No new bits? It is possible on ofo queue. */ 4771 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4772 skb = tcp_collapse_one(sk, skb, list, root); 4773 if (!skb) 4774 break; 4775 goto restart; 4776 } 4777 4778 /* The first skb to collapse is: 4779 * - not SYN/FIN and 4780 * - bloated or contains data before "start" or 4781 * overlaps to the next one. 4782 */ 4783 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4784 (tcp_win_from_space(skb->truesize) > skb->len || 4785 before(TCP_SKB_CB(skb)->seq, start))) { 4786 end_of_skbs = false; 4787 break; 4788 } 4789 4790 if (n && n != tail && 4791 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4792 end_of_skbs = false; 4793 break; 4794 } 4795 4796 /* Decided to skip this, advance start seq. */ 4797 start = TCP_SKB_CB(skb)->end_seq; 4798 } 4799 if (end_of_skbs || 4800 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4801 return; 4802 4803 __skb_queue_head_init(&tmp); 4804 4805 while (before(start, end)) { 4806 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4807 struct sk_buff *nskb; 4808 4809 nskb = alloc_skb(copy, GFP_ATOMIC); 4810 if (!nskb) 4811 break; 4812 4813 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4814 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4815 if (list) 4816 __skb_queue_before(list, skb, nskb); 4817 else 4818 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4819 skb_set_owner_r(nskb, sk); 4820 4821 /* Copy data, releasing collapsed skbs. */ 4822 while (copy > 0) { 4823 int offset = start - TCP_SKB_CB(skb)->seq; 4824 int size = TCP_SKB_CB(skb)->end_seq - start; 4825 4826 BUG_ON(offset < 0); 4827 if (size > 0) { 4828 size = min(copy, size); 4829 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4830 BUG(); 4831 TCP_SKB_CB(nskb)->end_seq += size; 4832 copy -= size; 4833 start += size; 4834 } 4835 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4836 skb = tcp_collapse_one(sk, skb, list, root); 4837 if (!skb || 4838 skb == tail || 4839 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4840 goto end; 4841 } 4842 } 4843 } 4844 end: 4845 skb_queue_walk_safe(&tmp, skb, n) 4846 tcp_rbtree_insert(root, skb); 4847 } 4848 4849 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4850 * and tcp_collapse() them until all the queue is collapsed. 4851 */ 4852 static void tcp_collapse_ofo_queue(struct sock *sk) 4853 { 4854 struct tcp_sock *tp = tcp_sk(sk); 4855 struct sk_buff *skb, *head; 4856 struct rb_node *p; 4857 u32 start, end; 4858 4859 p = rb_first(&tp->out_of_order_queue); 4860 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4861 new_range: 4862 if (!skb) { 4863 p = rb_last(&tp->out_of_order_queue); 4864 /* Note: This is possible p is NULL here. We do not 4865 * use rb_entry_safe(), as ooo_last_skb is valid only 4866 * if rbtree is not empty. 4867 */ 4868 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4869 return; 4870 } 4871 start = TCP_SKB_CB(skb)->seq; 4872 end = TCP_SKB_CB(skb)->end_seq; 4873 4874 for (head = skb;;) { 4875 skb = tcp_skb_next(skb, NULL); 4876 4877 /* Range is terminated when we see a gap or when 4878 * we are at the queue end. 4879 */ 4880 if (!skb || 4881 after(TCP_SKB_CB(skb)->seq, end) || 4882 before(TCP_SKB_CB(skb)->end_seq, start)) { 4883 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4884 head, skb, start, end); 4885 goto new_range; 4886 } 4887 4888 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4889 start = TCP_SKB_CB(skb)->seq; 4890 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4891 end = TCP_SKB_CB(skb)->end_seq; 4892 } 4893 } 4894 4895 /* 4896 * Clean the out-of-order queue to make room. 4897 * We drop high sequences packets to : 4898 * 1) Let a chance for holes to be filled. 4899 * 2) not add too big latencies if thousands of packets sit there. 4900 * (But if application shrinks SO_RCVBUF, we could still end up 4901 * freeing whole queue here) 4902 * 4903 * Return true if queue has shrunk. 4904 */ 4905 static bool tcp_prune_ofo_queue(struct sock *sk) 4906 { 4907 struct tcp_sock *tp = tcp_sk(sk); 4908 struct rb_node *node, *prev; 4909 4910 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4911 return false; 4912 4913 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4914 node = &tp->ooo_last_skb->rbnode; 4915 do { 4916 prev = rb_prev(node); 4917 rb_erase(node, &tp->out_of_order_queue); 4918 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4919 sk_mem_reclaim(sk); 4920 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4921 !tcp_under_memory_pressure(sk)) 4922 break; 4923 node = prev; 4924 } while (node); 4925 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4926 4927 /* Reset SACK state. A conforming SACK implementation will 4928 * do the same at a timeout based retransmit. When a connection 4929 * is in a sad state like this, we care only about integrity 4930 * of the connection not performance. 4931 */ 4932 if (tp->rx_opt.sack_ok) 4933 tcp_sack_reset(&tp->rx_opt); 4934 return true; 4935 } 4936 4937 /* Reduce allocated memory if we can, trying to get 4938 * the socket within its memory limits again. 4939 * 4940 * Return less than zero if we should start dropping frames 4941 * until the socket owning process reads some of the data 4942 * to stabilize the situation. 4943 */ 4944 static int tcp_prune_queue(struct sock *sk) 4945 { 4946 struct tcp_sock *tp = tcp_sk(sk); 4947 4948 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4949 4950 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4951 4952 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4953 tcp_clamp_window(sk); 4954 else if (tcp_under_memory_pressure(sk)) 4955 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4956 4957 tcp_collapse_ofo_queue(sk); 4958 if (!skb_queue_empty(&sk->sk_receive_queue)) 4959 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4960 skb_peek(&sk->sk_receive_queue), 4961 NULL, 4962 tp->copied_seq, tp->rcv_nxt); 4963 sk_mem_reclaim(sk); 4964 4965 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4966 return 0; 4967 4968 /* Collapsing did not help, destructive actions follow. 4969 * This must not ever occur. */ 4970 4971 tcp_prune_ofo_queue(sk); 4972 4973 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4974 return 0; 4975 4976 /* If we are really being abused, tell the caller to silently 4977 * drop receive data on the floor. It will get retransmitted 4978 * and hopefully then we'll have sufficient space. 4979 */ 4980 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4981 4982 /* Massive buffer overcommit. */ 4983 tp->pred_flags = 0; 4984 return -1; 4985 } 4986 4987 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4988 { 4989 const struct tcp_sock *tp = tcp_sk(sk); 4990 4991 /* If the user specified a specific send buffer setting, do 4992 * not modify it. 4993 */ 4994 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4995 return false; 4996 4997 /* If we are under global TCP memory pressure, do not expand. */ 4998 if (tcp_under_memory_pressure(sk)) 4999 return false; 5000 5001 /* If we are under soft global TCP memory pressure, do not expand. */ 5002 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5003 return false; 5004 5005 /* If we filled the congestion window, do not expand. */ 5006 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5007 return false; 5008 5009 return true; 5010 } 5011 5012 /* When incoming ACK allowed to free some skb from write_queue, 5013 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5014 * on the exit from tcp input handler. 5015 * 5016 * PROBLEM: sndbuf expansion does not work well with largesend. 5017 */ 5018 static void tcp_new_space(struct sock *sk) 5019 { 5020 struct tcp_sock *tp = tcp_sk(sk); 5021 5022 if (tcp_should_expand_sndbuf(sk)) { 5023 tcp_sndbuf_expand(sk); 5024 tp->snd_cwnd_stamp = tcp_time_stamp; 5025 } 5026 5027 sk->sk_write_space(sk); 5028 } 5029 5030 static void tcp_check_space(struct sock *sk) 5031 { 5032 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5033 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5034 /* pairs with tcp_poll() */ 5035 smp_mb(); 5036 if (sk->sk_socket && 5037 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5038 tcp_new_space(sk); 5039 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5040 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5041 } 5042 } 5043 } 5044 5045 static inline void tcp_data_snd_check(struct sock *sk) 5046 { 5047 tcp_push_pending_frames(sk); 5048 tcp_check_space(sk); 5049 } 5050 5051 /* 5052 * Check if sending an ack is needed. 5053 */ 5054 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5055 { 5056 struct tcp_sock *tp = tcp_sk(sk); 5057 5058 /* More than one full frame received... */ 5059 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5060 /* ... and right edge of window advances far enough. 5061 * (tcp_recvmsg() will send ACK otherwise). Or... 5062 */ 5063 __tcp_select_window(sk) >= tp->rcv_wnd) || 5064 /* We ACK each frame or... */ 5065 tcp_in_quickack_mode(sk) || 5066 /* We have out of order data. */ 5067 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5068 /* Then ack it now */ 5069 tcp_send_ack(sk); 5070 } else { 5071 /* Else, send delayed ack. */ 5072 tcp_send_delayed_ack(sk); 5073 } 5074 } 5075 5076 static inline void tcp_ack_snd_check(struct sock *sk) 5077 { 5078 if (!inet_csk_ack_scheduled(sk)) { 5079 /* We sent a data segment already. */ 5080 return; 5081 } 5082 __tcp_ack_snd_check(sk, 1); 5083 } 5084 5085 /* 5086 * This routine is only called when we have urgent data 5087 * signaled. Its the 'slow' part of tcp_urg. It could be 5088 * moved inline now as tcp_urg is only called from one 5089 * place. We handle URGent data wrong. We have to - as 5090 * BSD still doesn't use the correction from RFC961. 5091 * For 1003.1g we should support a new option TCP_STDURG to permit 5092 * either form (or just set the sysctl tcp_stdurg). 5093 */ 5094 5095 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5096 { 5097 struct tcp_sock *tp = tcp_sk(sk); 5098 u32 ptr = ntohs(th->urg_ptr); 5099 5100 if (ptr && !sysctl_tcp_stdurg) 5101 ptr--; 5102 ptr += ntohl(th->seq); 5103 5104 /* Ignore urgent data that we've already seen and read. */ 5105 if (after(tp->copied_seq, ptr)) 5106 return; 5107 5108 /* Do not replay urg ptr. 5109 * 5110 * NOTE: interesting situation not covered by specs. 5111 * Misbehaving sender may send urg ptr, pointing to segment, 5112 * which we already have in ofo queue. We are not able to fetch 5113 * such data and will stay in TCP_URG_NOTYET until will be eaten 5114 * by recvmsg(). Seems, we are not obliged to handle such wicked 5115 * situations. But it is worth to think about possibility of some 5116 * DoSes using some hypothetical application level deadlock. 5117 */ 5118 if (before(ptr, tp->rcv_nxt)) 5119 return; 5120 5121 /* Do we already have a newer (or duplicate) urgent pointer? */ 5122 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5123 return; 5124 5125 /* Tell the world about our new urgent pointer. */ 5126 sk_send_sigurg(sk); 5127 5128 /* We may be adding urgent data when the last byte read was 5129 * urgent. To do this requires some care. We cannot just ignore 5130 * tp->copied_seq since we would read the last urgent byte again 5131 * as data, nor can we alter copied_seq until this data arrives 5132 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5133 * 5134 * NOTE. Double Dutch. Rendering to plain English: author of comment 5135 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5136 * and expect that both A and B disappear from stream. This is _wrong_. 5137 * Though this happens in BSD with high probability, this is occasional. 5138 * Any application relying on this is buggy. Note also, that fix "works" 5139 * only in this artificial test. Insert some normal data between A and B and we will 5140 * decline of BSD again. Verdict: it is better to remove to trap 5141 * buggy users. 5142 */ 5143 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5144 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5145 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5146 tp->copied_seq++; 5147 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5148 __skb_unlink(skb, &sk->sk_receive_queue); 5149 __kfree_skb(skb); 5150 } 5151 } 5152 5153 tp->urg_data = TCP_URG_NOTYET; 5154 tp->urg_seq = ptr; 5155 5156 /* Disable header prediction. */ 5157 tp->pred_flags = 0; 5158 } 5159 5160 /* This is the 'fast' part of urgent handling. */ 5161 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5162 { 5163 struct tcp_sock *tp = tcp_sk(sk); 5164 5165 /* Check if we get a new urgent pointer - normally not. */ 5166 if (th->urg) 5167 tcp_check_urg(sk, th); 5168 5169 /* Do we wait for any urgent data? - normally not... */ 5170 if (tp->urg_data == TCP_URG_NOTYET) { 5171 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5172 th->syn; 5173 5174 /* Is the urgent pointer pointing into this packet? */ 5175 if (ptr < skb->len) { 5176 u8 tmp; 5177 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5178 BUG(); 5179 tp->urg_data = TCP_URG_VALID | tmp; 5180 if (!sock_flag(sk, SOCK_DEAD)) 5181 sk->sk_data_ready(sk); 5182 } 5183 } 5184 } 5185 5186 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5187 { 5188 struct tcp_sock *tp = tcp_sk(sk); 5189 int chunk = skb->len - hlen; 5190 int err; 5191 5192 if (skb_csum_unnecessary(skb)) 5193 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5194 else 5195 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5196 5197 if (!err) { 5198 tp->ucopy.len -= chunk; 5199 tp->copied_seq += chunk; 5200 tcp_rcv_space_adjust(sk); 5201 } 5202 5203 return err; 5204 } 5205 5206 /* Accept RST for rcv_nxt - 1 after a FIN. 5207 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5208 * FIN is sent followed by a RST packet. The RST is sent with the same 5209 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5210 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5211 * ACKs on the closed socket. In addition middleboxes can drop either the 5212 * challenge ACK or a subsequent RST. 5213 */ 5214 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5215 { 5216 struct tcp_sock *tp = tcp_sk(sk); 5217 5218 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5219 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5220 TCPF_CLOSING)); 5221 } 5222 5223 /* Does PAWS and seqno based validation of an incoming segment, flags will 5224 * play significant role here. 5225 */ 5226 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5227 const struct tcphdr *th, int syn_inerr) 5228 { 5229 struct tcp_sock *tp = tcp_sk(sk); 5230 bool rst_seq_match = false; 5231 5232 /* RFC1323: H1. Apply PAWS check first. */ 5233 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5234 tcp_paws_discard(sk, skb)) { 5235 if (!th->rst) { 5236 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5237 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5238 LINUX_MIB_TCPACKSKIPPEDPAWS, 5239 &tp->last_oow_ack_time)) 5240 tcp_send_dupack(sk, skb); 5241 goto discard; 5242 } 5243 /* Reset is accepted even if it did not pass PAWS. */ 5244 } 5245 5246 /* Step 1: check sequence number */ 5247 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5248 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5249 * (RST) segments are validated by checking their SEQ-fields." 5250 * And page 69: "If an incoming segment is not acceptable, 5251 * an acknowledgment should be sent in reply (unless the RST 5252 * bit is set, if so drop the segment and return)". 5253 */ 5254 if (!th->rst) { 5255 if (th->syn) 5256 goto syn_challenge; 5257 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5258 LINUX_MIB_TCPACKSKIPPEDSEQ, 5259 &tp->last_oow_ack_time)) 5260 tcp_send_dupack(sk, skb); 5261 } else if (tcp_reset_check(sk, skb)) { 5262 tcp_reset(sk); 5263 } 5264 goto discard; 5265 } 5266 5267 /* Step 2: check RST bit */ 5268 if (th->rst) { 5269 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5270 * FIN and SACK too if available): 5271 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5272 * the right-most SACK block, 5273 * then 5274 * RESET the connection 5275 * else 5276 * Send a challenge ACK 5277 */ 5278 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5279 tcp_reset_check(sk, skb)) { 5280 rst_seq_match = true; 5281 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5282 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5283 int max_sack = sp[0].end_seq; 5284 int this_sack; 5285 5286 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5287 ++this_sack) { 5288 max_sack = after(sp[this_sack].end_seq, 5289 max_sack) ? 5290 sp[this_sack].end_seq : max_sack; 5291 } 5292 5293 if (TCP_SKB_CB(skb)->seq == max_sack) 5294 rst_seq_match = true; 5295 } 5296 5297 if (rst_seq_match) 5298 tcp_reset(sk); 5299 else 5300 tcp_send_challenge_ack(sk, skb); 5301 goto discard; 5302 } 5303 5304 /* step 3: check security and precedence [ignored] */ 5305 5306 /* step 4: Check for a SYN 5307 * RFC 5961 4.2 : Send a challenge ack 5308 */ 5309 if (th->syn) { 5310 syn_challenge: 5311 if (syn_inerr) 5312 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5313 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5314 tcp_send_challenge_ack(sk, skb); 5315 goto discard; 5316 } 5317 5318 return true; 5319 5320 discard: 5321 tcp_drop(sk, skb); 5322 return false; 5323 } 5324 5325 /* 5326 * TCP receive function for the ESTABLISHED state. 5327 * 5328 * It is split into a fast path and a slow path. The fast path is 5329 * disabled when: 5330 * - A zero window was announced from us - zero window probing 5331 * is only handled properly in the slow path. 5332 * - Out of order segments arrived. 5333 * - Urgent data is expected. 5334 * - There is no buffer space left 5335 * - Unexpected TCP flags/window values/header lengths are received 5336 * (detected by checking the TCP header against pred_flags) 5337 * - Data is sent in both directions. Fast path only supports pure senders 5338 * or pure receivers (this means either the sequence number or the ack 5339 * value must stay constant) 5340 * - Unexpected TCP option. 5341 * 5342 * When these conditions are not satisfied it drops into a standard 5343 * receive procedure patterned after RFC793 to handle all cases. 5344 * The first three cases are guaranteed by proper pred_flags setting, 5345 * the rest is checked inline. Fast processing is turned on in 5346 * tcp_data_queue when everything is OK. 5347 */ 5348 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5349 const struct tcphdr *th, unsigned int len) 5350 { 5351 struct tcp_sock *tp = tcp_sk(sk); 5352 5353 if (unlikely(!sk->sk_rx_dst)) 5354 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5355 /* 5356 * Header prediction. 5357 * The code loosely follows the one in the famous 5358 * "30 instruction TCP receive" Van Jacobson mail. 5359 * 5360 * Van's trick is to deposit buffers into socket queue 5361 * on a device interrupt, to call tcp_recv function 5362 * on the receive process context and checksum and copy 5363 * the buffer to user space. smart... 5364 * 5365 * Our current scheme is not silly either but we take the 5366 * extra cost of the net_bh soft interrupt processing... 5367 * We do checksum and copy also but from device to kernel. 5368 */ 5369 5370 tp->rx_opt.saw_tstamp = 0; 5371 5372 /* pred_flags is 0xS?10 << 16 + snd_wnd 5373 * if header_prediction is to be made 5374 * 'S' will always be tp->tcp_header_len >> 2 5375 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5376 * turn it off (when there are holes in the receive 5377 * space for instance) 5378 * PSH flag is ignored. 5379 */ 5380 5381 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5382 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5383 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5384 int tcp_header_len = tp->tcp_header_len; 5385 5386 /* Timestamp header prediction: tcp_header_len 5387 * is automatically equal to th->doff*4 due to pred_flags 5388 * match. 5389 */ 5390 5391 /* Check timestamp */ 5392 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5393 /* No? Slow path! */ 5394 if (!tcp_parse_aligned_timestamp(tp, th)) 5395 goto slow_path; 5396 5397 /* If PAWS failed, check it more carefully in slow path */ 5398 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5399 goto slow_path; 5400 5401 /* DO NOT update ts_recent here, if checksum fails 5402 * and timestamp was corrupted part, it will result 5403 * in a hung connection since we will drop all 5404 * future packets due to the PAWS test. 5405 */ 5406 } 5407 5408 if (len <= tcp_header_len) { 5409 /* Bulk data transfer: sender */ 5410 if (len == tcp_header_len) { 5411 /* Predicted packet is in window by definition. 5412 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5413 * Hence, check seq<=rcv_wup reduces to: 5414 */ 5415 if (tcp_header_len == 5416 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5417 tp->rcv_nxt == tp->rcv_wup) 5418 tcp_store_ts_recent(tp); 5419 5420 /* We know that such packets are checksummed 5421 * on entry. 5422 */ 5423 tcp_ack(sk, skb, 0); 5424 __kfree_skb(skb); 5425 tcp_data_snd_check(sk); 5426 return; 5427 } else { /* Header too small */ 5428 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5429 goto discard; 5430 } 5431 } else { 5432 int eaten = 0; 5433 bool fragstolen = false; 5434 5435 if (tp->ucopy.task == current && 5436 tp->copied_seq == tp->rcv_nxt && 5437 len - tcp_header_len <= tp->ucopy.len && 5438 sock_owned_by_user(sk)) { 5439 __set_current_state(TASK_RUNNING); 5440 5441 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5442 /* Predicted packet is in window by definition. 5443 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5444 * Hence, check seq<=rcv_wup reduces to: 5445 */ 5446 if (tcp_header_len == 5447 (sizeof(struct tcphdr) + 5448 TCPOLEN_TSTAMP_ALIGNED) && 5449 tp->rcv_nxt == tp->rcv_wup) 5450 tcp_store_ts_recent(tp); 5451 5452 tcp_rcv_rtt_measure_ts(sk, skb); 5453 5454 __skb_pull(skb, tcp_header_len); 5455 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5456 NET_INC_STATS(sock_net(sk), 5457 LINUX_MIB_TCPHPHITSTOUSER); 5458 eaten = 1; 5459 } 5460 } 5461 if (!eaten) { 5462 if (tcp_checksum_complete(skb)) 5463 goto csum_error; 5464 5465 if ((int)skb->truesize > sk->sk_forward_alloc) 5466 goto step5; 5467 5468 /* Predicted packet is in window by definition. 5469 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5470 * Hence, check seq<=rcv_wup reduces to: 5471 */ 5472 if (tcp_header_len == 5473 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5474 tp->rcv_nxt == tp->rcv_wup) 5475 tcp_store_ts_recent(tp); 5476 5477 tcp_rcv_rtt_measure_ts(sk, skb); 5478 5479 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5480 5481 /* Bulk data transfer: receiver */ 5482 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5483 &fragstolen); 5484 } 5485 5486 tcp_event_data_recv(sk, skb); 5487 5488 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5489 /* Well, only one small jumplet in fast path... */ 5490 tcp_ack(sk, skb, FLAG_DATA); 5491 tcp_data_snd_check(sk); 5492 if (!inet_csk_ack_scheduled(sk)) 5493 goto no_ack; 5494 } 5495 5496 __tcp_ack_snd_check(sk, 0); 5497 no_ack: 5498 if (eaten) 5499 kfree_skb_partial(skb, fragstolen); 5500 sk->sk_data_ready(sk); 5501 return; 5502 } 5503 } 5504 5505 slow_path: 5506 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5507 goto csum_error; 5508 5509 if (!th->ack && !th->rst && !th->syn) 5510 goto discard; 5511 5512 /* 5513 * Standard slow path. 5514 */ 5515 5516 if (!tcp_validate_incoming(sk, skb, th, 1)) 5517 return; 5518 5519 step5: 5520 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5521 goto discard; 5522 5523 tcp_rcv_rtt_measure_ts(sk, skb); 5524 5525 /* Process urgent data. */ 5526 tcp_urg(sk, skb, th); 5527 5528 /* step 7: process the segment text */ 5529 tcp_data_queue(sk, skb); 5530 5531 tcp_data_snd_check(sk); 5532 tcp_ack_snd_check(sk); 5533 return; 5534 5535 csum_error: 5536 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5537 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5538 5539 discard: 5540 tcp_drop(sk, skb); 5541 } 5542 EXPORT_SYMBOL(tcp_rcv_established); 5543 5544 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5545 { 5546 struct tcp_sock *tp = tcp_sk(sk); 5547 struct inet_connection_sock *icsk = inet_csk(sk); 5548 5549 tcp_set_state(sk, TCP_ESTABLISHED); 5550 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5551 5552 if (skb) { 5553 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5554 security_inet_conn_established(sk, skb); 5555 } 5556 5557 /* Make sure socket is routed, for correct metrics. */ 5558 icsk->icsk_af_ops->rebuild_header(sk); 5559 5560 tcp_init_metrics(sk); 5561 5562 tcp_init_congestion_control(sk); 5563 5564 /* Prevent spurious tcp_cwnd_restart() on first data 5565 * packet. 5566 */ 5567 tp->lsndtime = tcp_time_stamp; 5568 5569 tcp_init_buffer_space(sk); 5570 5571 if (sock_flag(sk, SOCK_KEEPOPEN)) 5572 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5573 5574 if (!tp->rx_opt.snd_wscale) 5575 __tcp_fast_path_on(tp, tp->snd_wnd); 5576 else 5577 tp->pred_flags = 0; 5578 5579 if (!sock_flag(sk, SOCK_DEAD)) { 5580 sk->sk_state_change(sk); 5581 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5582 } 5583 } 5584 5585 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5586 struct tcp_fastopen_cookie *cookie) 5587 { 5588 struct tcp_sock *tp = tcp_sk(sk); 5589 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5590 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5591 bool syn_drop = false; 5592 5593 if (mss == tp->rx_opt.user_mss) { 5594 struct tcp_options_received opt; 5595 5596 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5597 tcp_clear_options(&opt); 5598 opt.user_mss = opt.mss_clamp = 0; 5599 tcp_parse_options(synack, &opt, 0, NULL); 5600 mss = opt.mss_clamp; 5601 } 5602 5603 if (!tp->syn_fastopen) { 5604 /* Ignore an unsolicited cookie */ 5605 cookie->len = -1; 5606 } else if (tp->total_retrans) { 5607 /* SYN timed out and the SYN-ACK neither has a cookie nor 5608 * acknowledges data. Presumably the remote received only 5609 * the retransmitted (regular) SYNs: either the original 5610 * SYN-data or the corresponding SYN-ACK was dropped. 5611 */ 5612 syn_drop = (cookie->len < 0 && data); 5613 } else if (cookie->len < 0 && !tp->syn_data) { 5614 /* We requested a cookie but didn't get it. If we did not use 5615 * the (old) exp opt format then try so next time (try_exp=1). 5616 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5617 */ 5618 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5619 } 5620 5621 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5622 5623 if (data) { /* Retransmit unacked data in SYN */ 5624 tcp_for_write_queue_from(data, sk) { 5625 if (data == tcp_send_head(sk) || 5626 __tcp_retransmit_skb(sk, data, 1)) 5627 break; 5628 } 5629 tcp_rearm_rto(sk); 5630 NET_INC_STATS(sock_net(sk), 5631 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5632 return true; 5633 } 5634 tp->syn_data_acked = tp->syn_data; 5635 if (tp->syn_data_acked) 5636 NET_INC_STATS(sock_net(sk), 5637 LINUX_MIB_TCPFASTOPENACTIVE); 5638 5639 tcp_fastopen_add_skb(sk, synack); 5640 5641 return false; 5642 } 5643 5644 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5645 const struct tcphdr *th) 5646 { 5647 struct inet_connection_sock *icsk = inet_csk(sk); 5648 struct tcp_sock *tp = tcp_sk(sk); 5649 struct tcp_fastopen_cookie foc = { .len = -1 }; 5650 int saved_clamp = tp->rx_opt.mss_clamp; 5651 5652 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5653 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5654 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5655 5656 if (th->ack) { 5657 /* rfc793: 5658 * "If the state is SYN-SENT then 5659 * first check the ACK bit 5660 * If the ACK bit is set 5661 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5662 * a reset (unless the RST bit is set, if so drop 5663 * the segment and return)" 5664 */ 5665 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5666 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5667 goto reset_and_undo; 5668 5669 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5670 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5671 tcp_time_stamp)) { 5672 NET_INC_STATS(sock_net(sk), 5673 LINUX_MIB_PAWSACTIVEREJECTED); 5674 goto reset_and_undo; 5675 } 5676 5677 /* Now ACK is acceptable. 5678 * 5679 * "If the RST bit is set 5680 * If the ACK was acceptable then signal the user "error: 5681 * connection reset", drop the segment, enter CLOSED state, 5682 * delete TCB, and return." 5683 */ 5684 5685 if (th->rst) { 5686 tcp_reset(sk); 5687 goto discard; 5688 } 5689 5690 /* rfc793: 5691 * "fifth, if neither of the SYN or RST bits is set then 5692 * drop the segment and return." 5693 * 5694 * See note below! 5695 * --ANK(990513) 5696 */ 5697 if (!th->syn) 5698 goto discard_and_undo; 5699 5700 /* rfc793: 5701 * "If the SYN bit is on ... 5702 * are acceptable then ... 5703 * (our SYN has been ACKed), change the connection 5704 * state to ESTABLISHED..." 5705 */ 5706 5707 tcp_ecn_rcv_synack(tp, th); 5708 5709 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5710 tcp_ack(sk, skb, FLAG_SLOWPATH); 5711 5712 /* Ok.. it's good. Set up sequence numbers and 5713 * move to established. 5714 */ 5715 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5716 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5717 5718 /* RFC1323: The window in SYN & SYN/ACK segments is 5719 * never scaled. 5720 */ 5721 tp->snd_wnd = ntohs(th->window); 5722 5723 if (!tp->rx_opt.wscale_ok) { 5724 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5725 tp->window_clamp = min(tp->window_clamp, 65535U); 5726 } 5727 5728 if (tp->rx_opt.saw_tstamp) { 5729 tp->rx_opt.tstamp_ok = 1; 5730 tp->tcp_header_len = 5731 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5732 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5733 tcp_store_ts_recent(tp); 5734 } else { 5735 tp->tcp_header_len = sizeof(struct tcphdr); 5736 } 5737 5738 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5739 tcp_enable_fack(tp); 5740 5741 tcp_mtup_init(sk); 5742 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5743 tcp_initialize_rcv_mss(sk); 5744 5745 /* Remember, tcp_poll() does not lock socket! 5746 * Change state from SYN-SENT only after copied_seq 5747 * is initialized. */ 5748 tp->copied_seq = tp->rcv_nxt; 5749 5750 smp_mb(); 5751 5752 tcp_finish_connect(sk, skb); 5753 5754 if ((tp->syn_fastopen || tp->syn_data) && 5755 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5756 return -1; 5757 5758 if (sk->sk_write_pending || 5759 icsk->icsk_accept_queue.rskq_defer_accept || 5760 icsk->icsk_ack.pingpong) { 5761 /* Save one ACK. Data will be ready after 5762 * several ticks, if write_pending is set. 5763 * 5764 * It may be deleted, but with this feature tcpdumps 5765 * look so _wonderfully_ clever, that I was not able 5766 * to stand against the temptation 8) --ANK 5767 */ 5768 inet_csk_schedule_ack(sk); 5769 tcp_enter_quickack_mode(sk); 5770 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5771 TCP_DELACK_MAX, TCP_RTO_MAX); 5772 5773 discard: 5774 tcp_drop(sk, skb); 5775 return 0; 5776 } else { 5777 tcp_send_ack(sk); 5778 } 5779 return -1; 5780 } 5781 5782 /* No ACK in the segment */ 5783 5784 if (th->rst) { 5785 /* rfc793: 5786 * "If the RST bit is set 5787 * 5788 * Otherwise (no ACK) drop the segment and return." 5789 */ 5790 5791 goto discard_and_undo; 5792 } 5793 5794 /* PAWS check. */ 5795 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5796 tcp_paws_reject(&tp->rx_opt, 0)) 5797 goto discard_and_undo; 5798 5799 if (th->syn) { 5800 /* We see SYN without ACK. It is attempt of 5801 * simultaneous connect with crossed SYNs. 5802 * Particularly, it can be connect to self. 5803 */ 5804 tcp_set_state(sk, TCP_SYN_RECV); 5805 5806 if (tp->rx_opt.saw_tstamp) { 5807 tp->rx_opt.tstamp_ok = 1; 5808 tcp_store_ts_recent(tp); 5809 tp->tcp_header_len = 5810 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5811 } else { 5812 tp->tcp_header_len = sizeof(struct tcphdr); 5813 } 5814 5815 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5816 tp->copied_seq = tp->rcv_nxt; 5817 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5818 5819 /* RFC1323: The window in SYN & SYN/ACK segments is 5820 * never scaled. 5821 */ 5822 tp->snd_wnd = ntohs(th->window); 5823 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5824 tp->max_window = tp->snd_wnd; 5825 5826 tcp_ecn_rcv_syn(tp, th); 5827 5828 tcp_mtup_init(sk); 5829 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5830 tcp_initialize_rcv_mss(sk); 5831 5832 tcp_send_synack(sk); 5833 #if 0 5834 /* Note, we could accept data and URG from this segment. 5835 * There are no obstacles to make this (except that we must 5836 * either change tcp_recvmsg() to prevent it from returning data 5837 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5838 * 5839 * However, if we ignore data in ACKless segments sometimes, 5840 * we have no reasons to accept it sometimes. 5841 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5842 * is not flawless. So, discard packet for sanity. 5843 * Uncomment this return to process the data. 5844 */ 5845 return -1; 5846 #else 5847 goto discard; 5848 #endif 5849 } 5850 /* "fifth, if neither of the SYN or RST bits is set then 5851 * drop the segment and return." 5852 */ 5853 5854 discard_and_undo: 5855 tcp_clear_options(&tp->rx_opt); 5856 tp->rx_opt.mss_clamp = saved_clamp; 5857 goto discard; 5858 5859 reset_and_undo: 5860 tcp_clear_options(&tp->rx_opt); 5861 tp->rx_opt.mss_clamp = saved_clamp; 5862 return 1; 5863 } 5864 5865 /* 5866 * This function implements the receiving procedure of RFC 793 for 5867 * all states except ESTABLISHED and TIME_WAIT. 5868 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5869 * address independent. 5870 */ 5871 5872 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5873 { 5874 struct tcp_sock *tp = tcp_sk(sk); 5875 struct inet_connection_sock *icsk = inet_csk(sk); 5876 const struct tcphdr *th = tcp_hdr(skb); 5877 struct request_sock *req; 5878 int queued = 0; 5879 bool acceptable; 5880 5881 switch (sk->sk_state) { 5882 case TCP_CLOSE: 5883 goto discard; 5884 5885 case TCP_LISTEN: 5886 if (th->ack) 5887 return 1; 5888 5889 if (th->rst) 5890 goto discard; 5891 5892 if (th->syn) { 5893 if (th->fin) 5894 goto discard; 5895 /* It is possible that we process SYN packets from backlog, 5896 * so we need to make sure to disable BH right there. 5897 */ 5898 local_bh_disable(); 5899 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5900 local_bh_enable(); 5901 5902 if (!acceptable) 5903 return 1; 5904 consume_skb(skb); 5905 return 0; 5906 } 5907 goto discard; 5908 5909 case TCP_SYN_SENT: 5910 tp->rx_opt.saw_tstamp = 0; 5911 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5912 if (queued >= 0) 5913 return queued; 5914 5915 /* Do step6 onward by hand. */ 5916 tcp_urg(sk, skb, th); 5917 __kfree_skb(skb); 5918 tcp_data_snd_check(sk); 5919 return 0; 5920 } 5921 5922 tp->rx_opt.saw_tstamp = 0; 5923 req = tp->fastopen_rsk; 5924 if (req) { 5925 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5926 sk->sk_state != TCP_FIN_WAIT1); 5927 5928 if (!tcp_check_req(sk, skb, req, true)) 5929 goto discard; 5930 } 5931 5932 if (!th->ack && !th->rst && !th->syn) 5933 goto discard; 5934 5935 if (!tcp_validate_incoming(sk, skb, th, 0)) 5936 return 0; 5937 5938 /* step 5: check the ACK field */ 5939 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5940 FLAG_UPDATE_TS_RECENT) > 0; 5941 5942 switch (sk->sk_state) { 5943 case TCP_SYN_RECV: 5944 if (!acceptable) 5945 return 1; 5946 5947 if (!tp->srtt_us) 5948 tcp_synack_rtt_meas(sk, req); 5949 5950 /* Once we leave TCP_SYN_RECV, we no longer need req 5951 * so release it. 5952 */ 5953 if (req) { 5954 inet_csk(sk)->icsk_retransmits = 0; 5955 reqsk_fastopen_remove(sk, req, false); 5956 } else { 5957 /* Make sure socket is routed, for correct metrics. */ 5958 icsk->icsk_af_ops->rebuild_header(sk); 5959 tcp_init_congestion_control(sk); 5960 5961 tcp_mtup_init(sk); 5962 tp->copied_seq = tp->rcv_nxt; 5963 tcp_init_buffer_space(sk); 5964 } 5965 smp_mb(); 5966 tcp_set_state(sk, TCP_ESTABLISHED); 5967 sk->sk_state_change(sk); 5968 5969 /* Note, that this wakeup is only for marginal crossed SYN case. 5970 * Passively open sockets are not waked up, because 5971 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5972 */ 5973 if (sk->sk_socket) 5974 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5975 5976 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5977 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5978 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5979 5980 if (tp->rx_opt.tstamp_ok) 5981 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5982 5983 if (req) { 5984 /* Re-arm the timer because data may have been sent out. 5985 * This is similar to the regular data transmission case 5986 * when new data has just been ack'ed. 5987 * 5988 * (TFO) - we could try to be more aggressive and 5989 * retransmitting any data sooner based on when they 5990 * are sent out. 5991 */ 5992 tcp_rearm_rto(sk); 5993 } else 5994 tcp_init_metrics(sk); 5995 5996 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5997 tcp_update_pacing_rate(sk); 5998 5999 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6000 tp->lsndtime = tcp_time_stamp; 6001 6002 tcp_initialize_rcv_mss(sk); 6003 tcp_fast_path_on(tp); 6004 break; 6005 6006 case TCP_FIN_WAIT1: { 6007 int tmo; 6008 6009 /* If we enter the TCP_FIN_WAIT1 state and we are a 6010 * Fast Open socket and this is the first acceptable 6011 * ACK we have received, this would have acknowledged 6012 * our SYNACK so stop the SYNACK timer. 6013 */ 6014 if (req) { 6015 /* Return RST if ack_seq is invalid. 6016 * Note that RFC793 only says to generate a 6017 * DUPACK for it but for TCP Fast Open it seems 6018 * better to treat this case like TCP_SYN_RECV 6019 * above. 6020 */ 6021 if (!acceptable) 6022 return 1; 6023 /* We no longer need the request sock. */ 6024 reqsk_fastopen_remove(sk, req, false); 6025 tcp_rearm_rto(sk); 6026 } 6027 if (tp->snd_una != tp->write_seq) 6028 break; 6029 6030 tcp_set_state(sk, TCP_FIN_WAIT2); 6031 sk->sk_shutdown |= SEND_SHUTDOWN; 6032 6033 sk_dst_confirm(sk); 6034 6035 if (!sock_flag(sk, SOCK_DEAD)) { 6036 /* Wake up lingering close() */ 6037 sk->sk_state_change(sk); 6038 break; 6039 } 6040 6041 if (tp->linger2 < 0 || 6042 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6043 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6044 tcp_done(sk); 6045 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6046 return 1; 6047 } 6048 6049 tmo = tcp_fin_time(sk); 6050 if (tmo > TCP_TIMEWAIT_LEN) { 6051 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6052 } else if (th->fin || sock_owned_by_user(sk)) { 6053 /* Bad case. We could lose such FIN otherwise. 6054 * It is not a big problem, but it looks confusing 6055 * and not so rare event. We still can lose it now, 6056 * if it spins in bh_lock_sock(), but it is really 6057 * marginal case. 6058 */ 6059 inet_csk_reset_keepalive_timer(sk, tmo); 6060 } else { 6061 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6062 goto discard; 6063 } 6064 break; 6065 } 6066 6067 case TCP_CLOSING: 6068 if (tp->snd_una == tp->write_seq) { 6069 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6070 goto discard; 6071 } 6072 break; 6073 6074 case TCP_LAST_ACK: 6075 if (tp->snd_una == tp->write_seq) { 6076 tcp_update_metrics(sk); 6077 tcp_done(sk); 6078 goto discard; 6079 } 6080 break; 6081 } 6082 6083 /* step 6: check the URG bit */ 6084 tcp_urg(sk, skb, th); 6085 6086 /* step 7: process the segment text */ 6087 switch (sk->sk_state) { 6088 case TCP_CLOSE_WAIT: 6089 case TCP_CLOSING: 6090 case TCP_LAST_ACK: 6091 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6092 break; 6093 case TCP_FIN_WAIT1: 6094 case TCP_FIN_WAIT2: 6095 /* RFC 793 says to queue data in these states, 6096 * RFC 1122 says we MUST send a reset. 6097 * BSD 4.4 also does reset. 6098 */ 6099 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6100 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6101 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6103 tcp_reset(sk); 6104 return 1; 6105 } 6106 } 6107 /* Fall through */ 6108 case TCP_ESTABLISHED: 6109 tcp_data_queue(sk, skb); 6110 queued = 1; 6111 break; 6112 } 6113 6114 /* tcp_data could move socket to TIME-WAIT */ 6115 if (sk->sk_state != TCP_CLOSE) { 6116 tcp_data_snd_check(sk); 6117 tcp_ack_snd_check(sk); 6118 } 6119 6120 if (!queued) { 6121 discard: 6122 tcp_drop(sk, skb); 6123 } 6124 return 0; 6125 } 6126 EXPORT_SYMBOL(tcp_rcv_state_process); 6127 6128 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6129 { 6130 struct inet_request_sock *ireq = inet_rsk(req); 6131 6132 if (family == AF_INET) 6133 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6134 &ireq->ir_rmt_addr, port); 6135 #if IS_ENABLED(CONFIG_IPV6) 6136 else if (family == AF_INET6) 6137 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6138 &ireq->ir_v6_rmt_addr, port); 6139 #endif 6140 } 6141 6142 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6143 * 6144 * If we receive a SYN packet with these bits set, it means a 6145 * network is playing bad games with TOS bits. In order to 6146 * avoid possible false congestion notifications, we disable 6147 * TCP ECN negotiation. 6148 * 6149 * Exception: tcp_ca wants ECN. This is required for DCTCP 6150 * congestion control: Linux DCTCP asserts ECT on all packets, 6151 * including SYN, which is most optimal solution; however, 6152 * others, such as FreeBSD do not. 6153 */ 6154 static void tcp_ecn_create_request(struct request_sock *req, 6155 const struct sk_buff *skb, 6156 const struct sock *listen_sk, 6157 const struct dst_entry *dst) 6158 { 6159 const struct tcphdr *th = tcp_hdr(skb); 6160 const struct net *net = sock_net(listen_sk); 6161 bool th_ecn = th->ece && th->cwr; 6162 bool ect, ecn_ok; 6163 u32 ecn_ok_dst; 6164 6165 if (!th_ecn) 6166 return; 6167 6168 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6169 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6170 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6171 6172 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6173 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6174 inet_rsk(req)->ecn_ok = 1; 6175 } 6176 6177 static void tcp_openreq_init(struct request_sock *req, 6178 const struct tcp_options_received *rx_opt, 6179 struct sk_buff *skb, const struct sock *sk) 6180 { 6181 struct inet_request_sock *ireq = inet_rsk(req); 6182 6183 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6184 req->cookie_ts = 0; 6185 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6186 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6187 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6188 tcp_rsk(req)->last_oow_ack_time = 0; 6189 req->mss = rx_opt->mss_clamp; 6190 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6191 ireq->tstamp_ok = rx_opt->tstamp_ok; 6192 ireq->sack_ok = rx_opt->sack_ok; 6193 ireq->snd_wscale = rx_opt->snd_wscale; 6194 ireq->wscale_ok = rx_opt->wscale_ok; 6195 ireq->acked = 0; 6196 ireq->ecn_ok = 0; 6197 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6198 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6199 ireq->ir_mark = inet_request_mark(sk, skb); 6200 } 6201 6202 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6203 struct sock *sk_listener, 6204 bool attach_listener) 6205 { 6206 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6207 attach_listener); 6208 6209 if (req) { 6210 struct inet_request_sock *ireq = inet_rsk(req); 6211 6212 kmemcheck_annotate_bitfield(ireq, flags); 6213 ireq->opt = NULL; 6214 #if IS_ENABLED(CONFIG_IPV6) 6215 ireq->pktopts = NULL; 6216 #endif 6217 atomic64_set(&ireq->ir_cookie, 0); 6218 ireq->ireq_state = TCP_NEW_SYN_RECV; 6219 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6220 ireq->ireq_family = sk_listener->sk_family; 6221 } 6222 6223 return req; 6224 } 6225 EXPORT_SYMBOL(inet_reqsk_alloc); 6226 6227 /* 6228 * Return true if a syncookie should be sent 6229 */ 6230 static bool tcp_syn_flood_action(const struct sock *sk, 6231 const struct sk_buff *skb, 6232 const char *proto) 6233 { 6234 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6235 const char *msg = "Dropping request"; 6236 bool want_cookie = false; 6237 struct net *net = sock_net(sk); 6238 6239 #ifdef CONFIG_SYN_COOKIES 6240 if (net->ipv4.sysctl_tcp_syncookies) { 6241 msg = "Sending cookies"; 6242 want_cookie = true; 6243 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6244 } else 6245 #endif 6246 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6247 6248 if (!queue->synflood_warned && 6249 net->ipv4.sysctl_tcp_syncookies != 2 && 6250 xchg(&queue->synflood_warned, 1) == 0) 6251 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6252 proto, ntohs(tcp_hdr(skb)->dest), msg); 6253 6254 return want_cookie; 6255 } 6256 6257 static void tcp_reqsk_record_syn(const struct sock *sk, 6258 struct request_sock *req, 6259 const struct sk_buff *skb) 6260 { 6261 if (tcp_sk(sk)->save_syn) { 6262 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6263 u32 *copy; 6264 6265 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6266 if (copy) { 6267 copy[0] = len; 6268 memcpy(©[1], skb_network_header(skb), len); 6269 req->saved_syn = copy; 6270 } 6271 } 6272 } 6273 6274 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6275 const struct tcp_request_sock_ops *af_ops, 6276 struct sock *sk, struct sk_buff *skb) 6277 { 6278 struct tcp_fastopen_cookie foc = { .len = -1 }; 6279 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6280 struct tcp_options_received tmp_opt; 6281 struct tcp_sock *tp = tcp_sk(sk); 6282 struct net *net = sock_net(sk); 6283 struct sock *fastopen_sk = NULL; 6284 struct dst_entry *dst = NULL; 6285 struct request_sock *req; 6286 bool want_cookie = false; 6287 struct flowi fl; 6288 6289 /* TW buckets are converted to open requests without 6290 * limitations, they conserve resources and peer is 6291 * evidently real one. 6292 */ 6293 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6294 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6295 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6296 if (!want_cookie) 6297 goto drop; 6298 } 6299 6300 if (sk_acceptq_is_full(sk)) { 6301 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6302 goto drop; 6303 } 6304 6305 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6306 if (!req) 6307 goto drop; 6308 6309 tcp_rsk(req)->af_specific = af_ops; 6310 tcp_rsk(req)->ts_off = 0; 6311 6312 tcp_clear_options(&tmp_opt); 6313 tmp_opt.mss_clamp = af_ops->mss_clamp; 6314 tmp_opt.user_mss = tp->rx_opt.user_mss; 6315 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6316 6317 if (want_cookie && !tmp_opt.saw_tstamp) 6318 tcp_clear_options(&tmp_opt); 6319 6320 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6321 tcp_openreq_init(req, &tmp_opt, skb, sk); 6322 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6323 6324 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6325 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6326 6327 af_ops->init_req(req, sk, skb); 6328 6329 if (security_inet_conn_request(sk, skb, req)) 6330 goto drop_and_free; 6331 6332 if (isn && tmp_opt.tstamp_ok) 6333 af_ops->init_seq_tsoff(skb, &tcp_rsk(req)->ts_off); 6334 6335 if (!want_cookie && !isn) { 6336 /* Kill the following clause, if you dislike this way. */ 6337 if (!net->ipv4.sysctl_tcp_syncookies && 6338 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6339 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6340 !tcp_peer_is_proven(req, dst)) { 6341 /* Without syncookies last quarter of 6342 * backlog is filled with destinations, 6343 * proven to be alive. 6344 * It means that we continue to communicate 6345 * to destinations, already remembered 6346 * to the moment of synflood. 6347 */ 6348 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6349 rsk_ops->family); 6350 goto drop_and_release; 6351 } 6352 6353 isn = af_ops->init_seq_tsoff(skb, &tcp_rsk(req)->ts_off); 6354 } 6355 if (!dst) { 6356 dst = af_ops->route_req(sk, &fl, req); 6357 if (!dst) 6358 goto drop_and_free; 6359 } 6360 6361 tcp_ecn_create_request(req, skb, sk, dst); 6362 6363 if (want_cookie) { 6364 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6365 tcp_rsk(req)->ts_off = 0; 6366 req->cookie_ts = tmp_opt.tstamp_ok; 6367 if (!tmp_opt.tstamp_ok) 6368 inet_rsk(req)->ecn_ok = 0; 6369 } 6370 6371 tcp_rsk(req)->snt_isn = isn; 6372 tcp_rsk(req)->txhash = net_tx_rndhash(); 6373 tcp_openreq_init_rwin(req, sk, dst); 6374 if (!want_cookie) { 6375 tcp_reqsk_record_syn(sk, req, skb); 6376 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6377 } 6378 if (fastopen_sk) { 6379 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6380 &foc, TCP_SYNACK_FASTOPEN); 6381 /* Add the child socket directly into the accept queue */ 6382 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6383 sk->sk_data_ready(sk); 6384 bh_unlock_sock(fastopen_sk); 6385 sock_put(fastopen_sk); 6386 } else { 6387 tcp_rsk(req)->tfo_listener = false; 6388 if (!want_cookie) 6389 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6390 af_ops->send_synack(sk, dst, &fl, req, &foc, 6391 !want_cookie ? TCP_SYNACK_NORMAL : 6392 TCP_SYNACK_COOKIE); 6393 if (want_cookie) { 6394 reqsk_free(req); 6395 return 0; 6396 } 6397 } 6398 reqsk_put(req); 6399 return 0; 6400 6401 drop_and_release: 6402 dst_release(dst); 6403 drop_and_free: 6404 reqsk_free(req); 6405 drop: 6406 tcp_listendrop(sk); 6407 return 0; 6408 } 6409 EXPORT_SYMBOL(tcp_conn_request); 6410