xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89 
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92 
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_early_retrans __read_mostly = 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 #define REXMIT_NONE	0 /* no loss recovery to do */
126 #define REXMIT_LOST	1 /* retransmit packets marked lost */
127 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
128 
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
130 {
131 	static bool __once __read_mostly;
132 
133 	if (!__once) {
134 		struct net_device *dev;
135 
136 		__once = true;
137 
138 		rcu_read_lock();
139 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 			dev ? dev->name : "Unknown driver");
142 		rcu_read_unlock();
143 	}
144 }
145 
146 /* Adapt the MSS value used to make delayed ack decision to the
147  * real world.
148  */
149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
150 {
151 	struct inet_connection_sock *icsk = inet_csk(sk);
152 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
153 	unsigned int len;
154 
155 	icsk->icsk_ack.last_seg_size = 0;
156 
157 	/* skb->len may jitter because of SACKs, even if peer
158 	 * sends good full-sized frames.
159 	 */
160 	len = skb_shinfo(skb)->gso_size ? : skb->len;
161 	if (len >= icsk->icsk_ack.rcv_mss) {
162 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 					       tcp_sk(sk)->advmss);
164 		if (unlikely(icsk->icsk_ack.rcv_mss != len))
165 			tcp_gro_dev_warn(sk, skb);
166 	} else {
167 		/* Otherwise, we make more careful check taking into account,
168 		 * that SACKs block is variable.
169 		 *
170 		 * "len" is invariant segment length, including TCP header.
171 		 */
172 		len += skb->data - skb_transport_header(skb);
173 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
174 		    /* If PSH is not set, packet should be
175 		     * full sized, provided peer TCP is not badly broken.
176 		     * This observation (if it is correct 8)) allows
177 		     * to handle super-low mtu links fairly.
178 		     */
179 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
180 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
181 			/* Subtract also invariant (if peer is RFC compliant),
182 			 * tcp header plus fixed timestamp option length.
183 			 * Resulting "len" is MSS free of SACK jitter.
184 			 */
185 			len -= tcp_sk(sk)->tcp_header_len;
186 			icsk->icsk_ack.last_seg_size = len;
187 			if (len == lss) {
188 				icsk->icsk_ack.rcv_mss = len;
189 				return;
190 			}
191 		}
192 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
193 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
194 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
195 	}
196 }
197 
198 static void tcp_incr_quickack(struct sock *sk)
199 {
200 	struct inet_connection_sock *icsk = inet_csk(sk);
201 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
202 
203 	if (quickacks == 0)
204 		quickacks = 2;
205 	if (quickacks > icsk->icsk_ack.quick)
206 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
207 }
208 
209 static void tcp_enter_quickack_mode(struct sock *sk)
210 {
211 	struct inet_connection_sock *icsk = inet_csk(sk);
212 	tcp_incr_quickack(sk);
213 	icsk->icsk_ack.pingpong = 0;
214 	icsk->icsk_ack.ato = TCP_ATO_MIN;
215 }
216 
217 /* Send ACKs quickly, if "quick" count is not exhausted
218  * and the session is not interactive.
219  */
220 
221 static bool tcp_in_quickack_mode(struct sock *sk)
222 {
223 	const struct inet_connection_sock *icsk = inet_csk(sk);
224 	const struct dst_entry *dst = __sk_dst_get(sk);
225 
226 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
227 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
228 }
229 
230 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
231 {
232 	if (tp->ecn_flags & TCP_ECN_OK)
233 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
234 }
235 
236 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
237 {
238 	if (tcp_hdr(skb)->cwr)
239 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
240 }
241 
242 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
243 {
244 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
245 }
246 
247 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
248 {
249 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
250 	case INET_ECN_NOT_ECT:
251 		/* Funny extension: if ECT is not set on a segment,
252 		 * and we already seen ECT on a previous segment,
253 		 * it is probably a retransmit.
254 		 */
255 		if (tp->ecn_flags & TCP_ECN_SEEN)
256 			tcp_enter_quickack_mode((struct sock *)tp);
257 		break;
258 	case INET_ECN_CE:
259 		if (tcp_ca_needs_ecn((struct sock *)tp))
260 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
261 
262 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
263 			/* Better not delay acks, sender can have a very low cwnd */
264 			tcp_enter_quickack_mode((struct sock *)tp);
265 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
266 		}
267 		tp->ecn_flags |= TCP_ECN_SEEN;
268 		break;
269 	default:
270 		if (tcp_ca_needs_ecn((struct sock *)tp))
271 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
272 		tp->ecn_flags |= TCP_ECN_SEEN;
273 		break;
274 	}
275 }
276 
277 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
278 {
279 	if (tp->ecn_flags & TCP_ECN_OK)
280 		__tcp_ecn_check_ce(tp, skb);
281 }
282 
283 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
286 		tp->ecn_flags &= ~TCP_ECN_OK;
287 }
288 
289 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
290 {
291 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
292 		tp->ecn_flags &= ~TCP_ECN_OK;
293 }
294 
295 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
296 {
297 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
298 		return true;
299 	return false;
300 }
301 
302 /* Buffer size and advertised window tuning.
303  *
304  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
305  */
306 
307 static void tcp_sndbuf_expand(struct sock *sk)
308 {
309 	const struct tcp_sock *tp = tcp_sk(sk);
310 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
311 	int sndmem, per_mss;
312 	u32 nr_segs;
313 
314 	/* Worst case is non GSO/TSO : each frame consumes one skb
315 	 * and skb->head is kmalloced using power of two area of memory
316 	 */
317 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
318 		  MAX_TCP_HEADER +
319 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
320 
321 	per_mss = roundup_pow_of_two(per_mss) +
322 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
323 
324 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
325 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
326 
327 	/* Fast Recovery (RFC 5681 3.2) :
328 	 * Cubic needs 1.7 factor, rounded to 2 to include
329 	 * extra cushion (application might react slowly to POLLOUT)
330 	 */
331 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
332 	sndmem *= nr_segs * per_mss;
333 
334 	if (sk->sk_sndbuf < sndmem)
335 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
336 }
337 
338 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
339  *
340  * All tcp_full_space() is split to two parts: "network" buffer, allocated
341  * forward and advertised in receiver window (tp->rcv_wnd) and
342  * "application buffer", required to isolate scheduling/application
343  * latencies from network.
344  * window_clamp is maximal advertised window. It can be less than
345  * tcp_full_space(), in this case tcp_full_space() - window_clamp
346  * is reserved for "application" buffer. The less window_clamp is
347  * the smoother our behaviour from viewpoint of network, but the lower
348  * throughput and the higher sensitivity of the connection to losses. 8)
349  *
350  * rcv_ssthresh is more strict window_clamp used at "slow start"
351  * phase to predict further behaviour of this connection.
352  * It is used for two goals:
353  * - to enforce header prediction at sender, even when application
354  *   requires some significant "application buffer". It is check #1.
355  * - to prevent pruning of receive queue because of misprediction
356  *   of receiver window. Check #2.
357  *
358  * The scheme does not work when sender sends good segments opening
359  * window and then starts to feed us spaghetti. But it should work
360  * in common situations. Otherwise, we have to rely on queue collapsing.
361  */
362 
363 /* Slow part of check#2. */
364 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 	/* Optimize this! */
368 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
369 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
370 
371 	while (tp->rcv_ssthresh <= window) {
372 		if (truesize <= skb->len)
373 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
374 
375 		truesize >>= 1;
376 		window >>= 1;
377 	}
378 	return 0;
379 }
380 
381 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
382 {
383 	struct tcp_sock *tp = tcp_sk(sk);
384 
385 	/* Check #1 */
386 	if (tp->rcv_ssthresh < tp->window_clamp &&
387 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
388 	    !tcp_under_memory_pressure(sk)) {
389 		int incr;
390 
391 		/* Check #2. Increase window, if skb with such overhead
392 		 * will fit to rcvbuf in future.
393 		 */
394 		if (tcp_win_from_space(skb->truesize) <= skb->len)
395 			incr = 2 * tp->advmss;
396 		else
397 			incr = __tcp_grow_window(sk, skb);
398 
399 		if (incr) {
400 			incr = max_t(int, incr, 2 * skb->len);
401 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
402 					       tp->window_clamp);
403 			inet_csk(sk)->icsk_ack.quick |= 1;
404 		}
405 	}
406 }
407 
408 /* 3. Tuning rcvbuf, when connection enters established state. */
409 static void tcp_fixup_rcvbuf(struct sock *sk)
410 {
411 	u32 mss = tcp_sk(sk)->advmss;
412 	int rcvmem;
413 
414 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
415 		 tcp_default_init_rwnd(mss);
416 
417 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
418 	 * Allow enough cushion so that sender is not limited by our window
419 	 */
420 	if (sysctl_tcp_moderate_rcvbuf)
421 		rcvmem <<= 2;
422 
423 	if (sk->sk_rcvbuf < rcvmem)
424 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
425 }
426 
427 /* 4. Try to fixup all. It is made immediately after connection enters
428  *    established state.
429  */
430 void tcp_init_buffer_space(struct sock *sk)
431 {
432 	struct tcp_sock *tp = tcp_sk(sk);
433 	int maxwin;
434 
435 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
436 		tcp_fixup_rcvbuf(sk);
437 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
438 		tcp_sndbuf_expand(sk);
439 
440 	tp->rcvq_space.space = tp->rcv_wnd;
441 	tp->rcvq_space.time = tcp_time_stamp;
442 	tp->rcvq_space.seq = tp->copied_seq;
443 
444 	maxwin = tcp_full_space(sk);
445 
446 	if (tp->window_clamp >= maxwin) {
447 		tp->window_clamp = maxwin;
448 
449 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
450 			tp->window_clamp = max(maxwin -
451 					       (maxwin >> sysctl_tcp_app_win),
452 					       4 * tp->advmss);
453 	}
454 
455 	/* Force reservation of one segment. */
456 	if (sysctl_tcp_app_win &&
457 	    tp->window_clamp > 2 * tp->advmss &&
458 	    tp->window_clamp + tp->advmss > maxwin)
459 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
460 
461 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
462 	tp->snd_cwnd_stamp = tcp_time_stamp;
463 }
464 
465 /* 5. Recalculate window clamp after socket hit its memory bounds. */
466 static void tcp_clamp_window(struct sock *sk)
467 {
468 	struct tcp_sock *tp = tcp_sk(sk);
469 	struct inet_connection_sock *icsk = inet_csk(sk);
470 
471 	icsk->icsk_ack.quick = 0;
472 
473 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
474 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
475 	    !tcp_under_memory_pressure(sk) &&
476 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
477 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
478 				    sysctl_tcp_rmem[2]);
479 	}
480 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
481 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
482 }
483 
484 /* Initialize RCV_MSS value.
485  * RCV_MSS is an our guess about MSS used by the peer.
486  * We haven't any direct information about the MSS.
487  * It's better to underestimate the RCV_MSS rather than overestimate.
488  * Overestimations make us ACKing less frequently than needed.
489  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
490  */
491 void tcp_initialize_rcv_mss(struct sock *sk)
492 {
493 	const struct tcp_sock *tp = tcp_sk(sk);
494 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
495 
496 	hint = min(hint, tp->rcv_wnd / 2);
497 	hint = min(hint, TCP_MSS_DEFAULT);
498 	hint = max(hint, TCP_MIN_MSS);
499 
500 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
501 }
502 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
503 
504 /* Receiver "autotuning" code.
505  *
506  * The algorithm for RTT estimation w/o timestamps is based on
507  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
508  * <http://public.lanl.gov/radiant/pubs.html#DRS>
509  *
510  * More detail on this code can be found at
511  * <http://staff.psc.edu/jheffner/>,
512  * though this reference is out of date.  A new paper
513  * is pending.
514  */
515 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
516 {
517 	u32 new_sample = tp->rcv_rtt_est.rtt;
518 	long m = sample;
519 
520 	if (m == 0)
521 		m = 1;
522 
523 	if (new_sample != 0) {
524 		/* If we sample in larger samples in the non-timestamp
525 		 * case, we could grossly overestimate the RTT especially
526 		 * with chatty applications or bulk transfer apps which
527 		 * are stalled on filesystem I/O.
528 		 *
529 		 * Also, since we are only going for a minimum in the
530 		 * non-timestamp case, we do not smooth things out
531 		 * else with timestamps disabled convergence takes too
532 		 * long.
533 		 */
534 		if (!win_dep) {
535 			m -= (new_sample >> 3);
536 			new_sample += m;
537 		} else {
538 			m <<= 3;
539 			if (m < new_sample)
540 				new_sample = m;
541 		}
542 	} else {
543 		/* No previous measure. */
544 		new_sample = m << 3;
545 	}
546 
547 	if (tp->rcv_rtt_est.rtt != new_sample)
548 		tp->rcv_rtt_est.rtt = new_sample;
549 }
550 
551 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552 {
553 	if (tp->rcv_rtt_est.time == 0)
554 		goto new_measure;
555 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
556 		return;
557 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
558 
559 new_measure:
560 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
561 	tp->rcv_rtt_est.time = tcp_time_stamp;
562 }
563 
564 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
565 					  const struct sk_buff *skb)
566 {
567 	struct tcp_sock *tp = tcp_sk(sk);
568 	if (tp->rx_opt.rcv_tsecr &&
569 	    (TCP_SKB_CB(skb)->end_seq -
570 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
571 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
572 }
573 
574 /*
575  * This function should be called every time data is copied to user space.
576  * It calculates the appropriate TCP receive buffer space.
577  */
578 void tcp_rcv_space_adjust(struct sock *sk)
579 {
580 	struct tcp_sock *tp = tcp_sk(sk);
581 	int time;
582 	int copied;
583 
584 	time = tcp_time_stamp - tp->rcvq_space.time;
585 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
586 		return;
587 
588 	/* Number of bytes copied to user in last RTT */
589 	copied = tp->copied_seq - tp->rcvq_space.seq;
590 	if (copied <= tp->rcvq_space.space)
591 		goto new_measure;
592 
593 	/* A bit of theory :
594 	 * copied = bytes received in previous RTT, our base window
595 	 * To cope with packet losses, we need a 2x factor
596 	 * To cope with slow start, and sender growing its cwin by 100 %
597 	 * every RTT, we need a 4x factor, because the ACK we are sending
598 	 * now is for the next RTT, not the current one :
599 	 * <prev RTT . ><current RTT .. ><next RTT .... >
600 	 */
601 
602 	if (sysctl_tcp_moderate_rcvbuf &&
603 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
604 		int rcvwin, rcvmem, rcvbuf;
605 
606 		/* minimal window to cope with packet losses, assuming
607 		 * steady state. Add some cushion because of small variations.
608 		 */
609 		rcvwin = (copied << 1) + 16 * tp->advmss;
610 
611 		/* If rate increased by 25%,
612 		 *	assume slow start, rcvwin = 3 * copied
613 		 * If rate increased by 50%,
614 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
615 		 */
616 		if (copied >=
617 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
618 			if (copied >=
619 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
620 				rcvwin <<= 1;
621 			else
622 				rcvwin += (rcvwin >> 1);
623 		}
624 
625 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
626 		while (tcp_win_from_space(rcvmem) < tp->advmss)
627 			rcvmem += 128;
628 
629 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
630 		if (rcvbuf > sk->sk_rcvbuf) {
631 			sk->sk_rcvbuf = rcvbuf;
632 
633 			/* Make the window clamp follow along.  */
634 			tp->window_clamp = rcvwin;
635 		}
636 	}
637 	tp->rcvq_space.space = copied;
638 
639 new_measure:
640 	tp->rcvq_space.seq = tp->copied_seq;
641 	tp->rcvq_space.time = tcp_time_stamp;
642 }
643 
644 /* There is something which you must keep in mind when you analyze the
645  * behavior of the tp->ato delayed ack timeout interval.  When a
646  * connection starts up, we want to ack as quickly as possible.  The
647  * problem is that "good" TCP's do slow start at the beginning of data
648  * transmission.  The means that until we send the first few ACK's the
649  * sender will sit on his end and only queue most of his data, because
650  * he can only send snd_cwnd unacked packets at any given time.  For
651  * each ACK we send, he increments snd_cwnd and transmits more of his
652  * queue.  -DaveM
653  */
654 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct inet_connection_sock *icsk = inet_csk(sk);
658 	u32 now;
659 
660 	inet_csk_schedule_ack(sk);
661 
662 	tcp_measure_rcv_mss(sk, skb);
663 
664 	tcp_rcv_rtt_measure(tp);
665 
666 	now = tcp_time_stamp;
667 
668 	if (!icsk->icsk_ack.ato) {
669 		/* The _first_ data packet received, initialize
670 		 * delayed ACK engine.
671 		 */
672 		tcp_incr_quickack(sk);
673 		icsk->icsk_ack.ato = TCP_ATO_MIN;
674 	} else {
675 		int m = now - icsk->icsk_ack.lrcvtime;
676 
677 		if (m <= TCP_ATO_MIN / 2) {
678 			/* The fastest case is the first. */
679 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
680 		} else if (m < icsk->icsk_ack.ato) {
681 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
682 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
683 				icsk->icsk_ack.ato = icsk->icsk_rto;
684 		} else if (m > icsk->icsk_rto) {
685 			/* Too long gap. Apparently sender failed to
686 			 * restart window, so that we send ACKs quickly.
687 			 */
688 			tcp_incr_quickack(sk);
689 			sk_mem_reclaim(sk);
690 		}
691 	}
692 	icsk->icsk_ack.lrcvtime = now;
693 
694 	tcp_ecn_check_ce(tp, skb);
695 
696 	if (skb->len >= 128)
697 		tcp_grow_window(sk, skb);
698 }
699 
700 /* Called to compute a smoothed rtt estimate. The data fed to this
701  * routine either comes from timestamps, or from segments that were
702  * known _not_ to have been retransmitted [see Karn/Partridge
703  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
704  * piece by Van Jacobson.
705  * NOTE: the next three routines used to be one big routine.
706  * To save cycles in the RFC 1323 implementation it was better to break
707  * it up into three procedures. -- erics
708  */
709 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
710 {
711 	struct tcp_sock *tp = tcp_sk(sk);
712 	long m = mrtt_us; /* RTT */
713 	u32 srtt = tp->srtt_us;
714 
715 	/*	The following amusing code comes from Jacobson's
716 	 *	article in SIGCOMM '88.  Note that rtt and mdev
717 	 *	are scaled versions of rtt and mean deviation.
718 	 *	This is designed to be as fast as possible
719 	 *	m stands for "measurement".
720 	 *
721 	 *	On a 1990 paper the rto value is changed to:
722 	 *	RTO = rtt + 4 * mdev
723 	 *
724 	 * Funny. This algorithm seems to be very broken.
725 	 * These formulae increase RTO, when it should be decreased, increase
726 	 * too slowly, when it should be increased quickly, decrease too quickly
727 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
728 	 * does not matter how to _calculate_ it. Seems, it was trap
729 	 * that VJ failed to avoid. 8)
730 	 */
731 	if (srtt != 0) {
732 		m -= (srtt >> 3);	/* m is now error in rtt est */
733 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
734 		if (m < 0) {
735 			m = -m;		/* m is now abs(error) */
736 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
737 			/* This is similar to one of Eifel findings.
738 			 * Eifel blocks mdev updates when rtt decreases.
739 			 * This solution is a bit different: we use finer gain
740 			 * for mdev in this case (alpha*beta).
741 			 * Like Eifel it also prevents growth of rto,
742 			 * but also it limits too fast rto decreases,
743 			 * happening in pure Eifel.
744 			 */
745 			if (m > 0)
746 				m >>= 3;
747 		} else {
748 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
749 		}
750 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
751 		if (tp->mdev_us > tp->mdev_max_us) {
752 			tp->mdev_max_us = tp->mdev_us;
753 			if (tp->mdev_max_us > tp->rttvar_us)
754 				tp->rttvar_us = tp->mdev_max_us;
755 		}
756 		if (after(tp->snd_una, tp->rtt_seq)) {
757 			if (tp->mdev_max_us < tp->rttvar_us)
758 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
759 			tp->rtt_seq = tp->snd_nxt;
760 			tp->mdev_max_us = tcp_rto_min_us(sk);
761 		}
762 	} else {
763 		/* no previous measure. */
764 		srtt = m << 3;		/* take the measured time to be rtt */
765 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
766 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
767 		tp->mdev_max_us = tp->rttvar_us;
768 		tp->rtt_seq = tp->snd_nxt;
769 	}
770 	tp->srtt_us = max(1U, srtt);
771 }
772 
773 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
774  * Note: TCP stack does not yet implement pacing.
775  * FQ packet scheduler can be used to implement cheap but effective
776  * TCP pacing, to smooth the burst on large writes when packets
777  * in flight is significantly lower than cwnd (or rwin)
778  */
779 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
780 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
781 
782 static void tcp_update_pacing_rate(struct sock *sk)
783 {
784 	const struct tcp_sock *tp = tcp_sk(sk);
785 	u64 rate;
786 
787 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
788 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
789 
790 	/* current rate is (cwnd * mss) / srtt
791 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
792 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
793 	 *
794 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
795 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
796 	 *	 end of slow start and should slow down.
797 	 */
798 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
799 		rate *= sysctl_tcp_pacing_ss_ratio;
800 	else
801 		rate *= sysctl_tcp_pacing_ca_ratio;
802 
803 	rate *= max(tp->snd_cwnd, tp->packets_out);
804 
805 	if (likely(tp->srtt_us))
806 		do_div(rate, tp->srtt_us);
807 
808 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
809 	 * without any lock. We want to make sure compiler wont store
810 	 * intermediate values in this location.
811 	 */
812 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
813 						sk->sk_max_pacing_rate);
814 }
815 
816 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
817  * routine referred to above.
818  */
819 static void tcp_set_rto(struct sock *sk)
820 {
821 	const struct tcp_sock *tp = tcp_sk(sk);
822 	/* Old crap is replaced with new one. 8)
823 	 *
824 	 * More seriously:
825 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
826 	 *    It cannot be less due to utterly erratic ACK generation made
827 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
828 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
829 	 *    is invisible. Actually, Linux-2.4 also generates erratic
830 	 *    ACKs in some circumstances.
831 	 */
832 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
833 
834 	/* 2. Fixups made earlier cannot be right.
835 	 *    If we do not estimate RTO correctly without them,
836 	 *    all the algo is pure shit and should be replaced
837 	 *    with correct one. It is exactly, which we pretend to do.
838 	 */
839 
840 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
841 	 * guarantees that rto is higher.
842 	 */
843 	tcp_bound_rto(sk);
844 }
845 
846 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
847 {
848 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
849 
850 	if (!cwnd)
851 		cwnd = TCP_INIT_CWND;
852 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
853 }
854 
855 /*
856  * Packet counting of FACK is based on in-order assumptions, therefore TCP
857  * disables it when reordering is detected
858  */
859 void tcp_disable_fack(struct tcp_sock *tp)
860 {
861 	/* RFC3517 uses different metric in lost marker => reset on change */
862 	if (tcp_is_fack(tp))
863 		tp->lost_skb_hint = NULL;
864 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
865 }
866 
867 /* Take a notice that peer is sending D-SACKs */
868 static void tcp_dsack_seen(struct tcp_sock *tp)
869 {
870 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
871 }
872 
873 static void tcp_update_reordering(struct sock *sk, const int metric,
874 				  const int ts)
875 {
876 	struct tcp_sock *tp = tcp_sk(sk);
877 	if (metric > tp->reordering) {
878 		int mib_idx;
879 
880 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
881 
882 		/* This exciting event is worth to be remembered. 8) */
883 		if (ts)
884 			mib_idx = LINUX_MIB_TCPTSREORDER;
885 		else if (tcp_is_reno(tp))
886 			mib_idx = LINUX_MIB_TCPRENOREORDER;
887 		else if (tcp_is_fack(tp))
888 			mib_idx = LINUX_MIB_TCPFACKREORDER;
889 		else
890 			mib_idx = LINUX_MIB_TCPSACKREORDER;
891 
892 		NET_INC_STATS(sock_net(sk), mib_idx);
893 #if FASTRETRANS_DEBUG > 1
894 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
895 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
896 			 tp->reordering,
897 			 tp->fackets_out,
898 			 tp->sacked_out,
899 			 tp->undo_marker ? tp->undo_retrans : 0);
900 #endif
901 		tcp_disable_fack(tp);
902 	}
903 
904 	tp->rack.reord = 1;
905 }
906 
907 /* This must be called before lost_out is incremented */
908 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
909 {
910 	if (!tp->retransmit_skb_hint ||
911 	    before(TCP_SKB_CB(skb)->seq,
912 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
913 		tp->retransmit_skb_hint = skb;
914 }
915 
916 /* Sum the number of packets on the wire we have marked as lost.
917  * There are two cases we care about here:
918  * a) Packet hasn't been marked lost (nor retransmitted),
919  *    and this is the first loss.
920  * b) Packet has been marked both lost and retransmitted,
921  *    and this means we think it was lost again.
922  */
923 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
926 
927 	if (!(sacked & TCPCB_LOST) ||
928 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
929 		tp->lost += tcp_skb_pcount(skb);
930 }
931 
932 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
935 		tcp_verify_retransmit_hint(tp, skb);
936 
937 		tp->lost_out += tcp_skb_pcount(skb);
938 		tcp_sum_lost(tp, skb);
939 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
940 	}
941 }
942 
943 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
944 {
945 	tcp_verify_retransmit_hint(tp, skb);
946 
947 	tcp_sum_lost(tp, skb);
948 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 		tp->lost_out += tcp_skb_pcount(skb);
950 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 	}
952 }
953 
954 /* This procedure tags the retransmission queue when SACKs arrive.
955  *
956  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
957  * Packets in queue with these bits set are counted in variables
958  * sacked_out, retrans_out and lost_out, correspondingly.
959  *
960  * Valid combinations are:
961  * Tag  InFlight	Description
962  * 0	1		- orig segment is in flight.
963  * S	0		- nothing flies, orig reached receiver.
964  * L	0		- nothing flies, orig lost by net.
965  * R	2		- both orig and retransmit are in flight.
966  * L|R	1		- orig is lost, retransmit is in flight.
967  * S|R  1		- orig reached receiver, retrans is still in flight.
968  * (L|S|R is logically valid, it could occur when L|R is sacked,
969  *  but it is equivalent to plain S and code short-curcuits it to S.
970  *  L|S is logically invalid, it would mean -1 packet in flight 8))
971  *
972  * These 6 states form finite state machine, controlled by the following events:
973  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
974  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
975  * 3. Loss detection event of two flavors:
976  *	A. Scoreboard estimator decided the packet is lost.
977  *	   A'. Reno "three dupacks" marks head of queue lost.
978  *	   A''. Its FACK modification, head until snd.fack is lost.
979  *	B. SACK arrives sacking SND.NXT at the moment, when the
980  *	   segment was retransmitted.
981  * 4. D-SACK added new rule: D-SACK changes any tag to S.
982  *
983  * It is pleasant to note, that state diagram turns out to be commutative,
984  * so that we are allowed not to be bothered by order of our actions,
985  * when multiple events arrive simultaneously. (see the function below).
986  *
987  * Reordering detection.
988  * --------------------
989  * Reordering metric is maximal distance, which a packet can be displaced
990  * in packet stream. With SACKs we can estimate it:
991  *
992  * 1. SACK fills old hole and the corresponding segment was not
993  *    ever retransmitted -> reordering. Alas, we cannot use it
994  *    when segment was retransmitted.
995  * 2. The last flaw is solved with D-SACK. D-SACK arrives
996  *    for retransmitted and already SACKed segment -> reordering..
997  * Both of these heuristics are not used in Loss state, when we cannot
998  * account for retransmits accurately.
999  *
1000  * SACK block validation.
1001  * ----------------------
1002  *
1003  * SACK block range validation checks that the received SACK block fits to
1004  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1005  * Note that SND.UNA is not included to the range though being valid because
1006  * it means that the receiver is rather inconsistent with itself reporting
1007  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1008  * perfectly valid, however, in light of RFC2018 which explicitly states
1009  * that "SACK block MUST reflect the newest segment.  Even if the newest
1010  * segment is going to be discarded ...", not that it looks very clever
1011  * in case of head skb. Due to potentional receiver driven attacks, we
1012  * choose to avoid immediate execution of a walk in write queue due to
1013  * reneging and defer head skb's loss recovery to standard loss recovery
1014  * procedure that will eventually trigger (nothing forbids us doing this).
1015  *
1016  * Implements also blockage to start_seq wrap-around. Problem lies in the
1017  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1018  * there's no guarantee that it will be before snd_nxt (n). The problem
1019  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1020  * wrap (s_w):
1021  *
1022  *         <- outs wnd ->                          <- wrapzone ->
1023  *         u     e      n                         u_w   e_w  s n_w
1024  *         |     |      |                          |     |   |  |
1025  * |<------------+------+----- TCP seqno space --------------+---------->|
1026  * ...-- <2^31 ->|                                           |<--------...
1027  * ...---- >2^31 ------>|                                    |<--------...
1028  *
1029  * Current code wouldn't be vulnerable but it's better still to discard such
1030  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1031  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1032  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1033  * equal to the ideal case (infinite seqno space without wrap caused issues).
1034  *
1035  * With D-SACK the lower bound is extended to cover sequence space below
1036  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1037  * again, D-SACK block must not to go across snd_una (for the same reason as
1038  * for the normal SACK blocks, explained above). But there all simplicity
1039  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1040  * fully below undo_marker they do not affect behavior in anyway and can
1041  * therefore be safely ignored. In rare cases (which are more or less
1042  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1043  * fragmentation and packet reordering past skb's retransmission. To consider
1044  * them correctly, the acceptable range must be extended even more though
1045  * the exact amount is rather hard to quantify. However, tp->max_window can
1046  * be used as an exaggerated estimate.
1047  */
1048 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1049 				   u32 start_seq, u32 end_seq)
1050 {
1051 	/* Too far in future, or reversed (interpretation is ambiguous) */
1052 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1053 		return false;
1054 
1055 	/* Nasty start_seq wrap-around check (see comments above) */
1056 	if (!before(start_seq, tp->snd_nxt))
1057 		return false;
1058 
1059 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1060 	 * start_seq == snd_una is non-sensical (see comments above)
1061 	 */
1062 	if (after(start_seq, tp->snd_una))
1063 		return true;
1064 
1065 	if (!is_dsack || !tp->undo_marker)
1066 		return false;
1067 
1068 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1069 	if (after(end_seq, tp->snd_una))
1070 		return false;
1071 
1072 	if (!before(start_seq, tp->undo_marker))
1073 		return true;
1074 
1075 	/* Too old */
1076 	if (!after(end_seq, tp->undo_marker))
1077 		return false;
1078 
1079 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1080 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1081 	 */
1082 	return !before(start_seq, end_seq - tp->max_window);
1083 }
1084 
1085 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1086 			    struct tcp_sack_block_wire *sp, int num_sacks,
1087 			    u32 prior_snd_una)
1088 {
1089 	struct tcp_sock *tp = tcp_sk(sk);
1090 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1091 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1092 	bool dup_sack = false;
1093 
1094 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1095 		dup_sack = true;
1096 		tcp_dsack_seen(tp);
1097 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1098 	} else if (num_sacks > 1) {
1099 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1100 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1101 
1102 		if (!after(end_seq_0, end_seq_1) &&
1103 		    !before(start_seq_0, start_seq_1)) {
1104 			dup_sack = true;
1105 			tcp_dsack_seen(tp);
1106 			NET_INC_STATS(sock_net(sk),
1107 					LINUX_MIB_TCPDSACKOFORECV);
1108 		}
1109 	}
1110 
1111 	/* D-SACK for already forgotten data... Do dumb counting. */
1112 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1113 	    !after(end_seq_0, prior_snd_una) &&
1114 	    after(end_seq_0, tp->undo_marker))
1115 		tp->undo_retrans--;
1116 
1117 	return dup_sack;
1118 }
1119 
1120 struct tcp_sacktag_state {
1121 	int	reord;
1122 	int	fack_count;
1123 	/* Timestamps for earliest and latest never-retransmitted segment
1124 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 	 * but congestion control should still get an accurate delay signal.
1126 	 */
1127 	struct skb_mstamp first_sackt;
1128 	struct skb_mstamp last_sackt;
1129 	struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
1130 	struct rate_sample *rate;
1131 	int	flag;
1132 };
1133 
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135  * the incoming SACK may not exactly match but we can find smaller MSS
1136  * aligned portion of it that matches. Therefore we might need to fragment
1137  * which may fail and creates some hassle (caller must handle error case
1138  * returns).
1139  *
1140  * FIXME: this could be merged to shift decision code
1141  */
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 				  u32 start_seq, u32 end_seq)
1144 {
1145 	int err;
1146 	bool in_sack;
1147 	unsigned int pkt_len;
1148 	unsigned int mss;
1149 
1150 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152 
1153 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 		mss = tcp_skb_mss(skb);
1156 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157 
1158 		if (!in_sack) {
1159 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 			if (pkt_len < mss)
1161 				pkt_len = mss;
1162 		} else {
1163 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				return -EINVAL;
1166 		}
1167 
1168 		/* Round if necessary so that SACKs cover only full MSSes
1169 		 * and/or the remaining small portion (if present)
1170 		 */
1171 		if (pkt_len > mss) {
1172 			unsigned int new_len = (pkt_len / mss) * mss;
1173 			if (!in_sack && new_len < pkt_len) {
1174 				new_len += mss;
1175 				if (new_len >= skb->len)
1176 					return 0;
1177 			}
1178 			pkt_len = new_len;
1179 		}
1180 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1181 		if (err < 0)
1182 			return err;
1183 	}
1184 
1185 	return in_sack;
1186 }
1187 
1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1189 static u8 tcp_sacktag_one(struct sock *sk,
1190 			  struct tcp_sacktag_state *state, u8 sacked,
1191 			  u32 start_seq, u32 end_seq,
1192 			  int dup_sack, int pcount,
1193 			  const struct skb_mstamp *xmit_time)
1194 {
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 	int fack_count = state->fack_count;
1197 
1198 	/* Account D-SACK for retransmitted packet. */
1199 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1200 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1201 		    after(end_seq, tp->undo_marker))
1202 			tp->undo_retrans--;
1203 		if (sacked & TCPCB_SACKED_ACKED)
1204 			state->reord = min(fack_count, state->reord);
1205 	}
1206 
1207 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1208 	if (!after(end_seq, tp->snd_una))
1209 		return sacked;
1210 
1211 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1212 		tcp_rack_advance(tp, sacked, end_seq,
1213 				 xmit_time, &state->ack_time);
1214 
1215 		if (sacked & TCPCB_SACKED_RETRANS) {
1216 			/* If the segment is not tagged as lost,
1217 			 * we do not clear RETRANS, believing
1218 			 * that retransmission is still in flight.
1219 			 */
1220 			if (sacked & TCPCB_LOST) {
1221 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 				tp->lost_out -= pcount;
1223 				tp->retrans_out -= pcount;
1224 			}
1225 		} else {
1226 			if (!(sacked & TCPCB_RETRANS)) {
1227 				/* New sack for not retransmitted frame,
1228 				 * which was in hole. It is reordering.
1229 				 */
1230 				if (before(start_seq,
1231 					   tcp_highest_sack_seq(tp)))
1232 					state->reord = min(fack_count,
1233 							   state->reord);
1234 				if (!after(end_seq, tp->high_seq))
1235 					state->flag |= FLAG_ORIG_SACK_ACKED;
1236 				if (state->first_sackt.v64 == 0)
1237 					state->first_sackt = *xmit_time;
1238 				state->last_sackt = *xmit_time;
1239 			}
1240 
1241 			if (sacked & TCPCB_LOST) {
1242 				sacked &= ~TCPCB_LOST;
1243 				tp->lost_out -= pcount;
1244 			}
1245 		}
1246 
1247 		sacked |= TCPCB_SACKED_ACKED;
1248 		state->flag |= FLAG_DATA_SACKED;
1249 		tp->sacked_out += pcount;
1250 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1251 
1252 		fack_count += pcount;
1253 
1254 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1256 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 			tp->lost_cnt_hint += pcount;
1258 
1259 		if (fack_count > tp->fackets_out)
1260 			tp->fackets_out = fack_count;
1261 	}
1262 
1263 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1264 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1265 	 * are accounted above as well.
1266 	 */
1267 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1268 		sacked &= ~TCPCB_SACKED_RETRANS;
1269 		tp->retrans_out -= pcount;
1270 	}
1271 
1272 	return sacked;
1273 }
1274 
1275 /* Shift newly-SACKed bytes from this skb to the immediately previous
1276  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1277  */
1278 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1279 			    struct tcp_sacktag_state *state,
1280 			    unsigned int pcount, int shifted, int mss,
1281 			    bool dup_sack)
1282 {
1283 	struct tcp_sock *tp = tcp_sk(sk);
1284 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1285 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1286 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1287 
1288 	BUG_ON(!pcount);
1289 
1290 	/* Adjust counters and hints for the newly sacked sequence
1291 	 * range but discard the return value since prev is already
1292 	 * marked. We must tag the range first because the seq
1293 	 * advancement below implicitly advances
1294 	 * tcp_highest_sack_seq() when skb is highest_sack.
1295 	 */
1296 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1297 			start_seq, end_seq, dup_sack, pcount,
1298 			&skb->skb_mstamp);
1299 	tcp_rate_skb_delivered(sk, skb, state->rate);
1300 
1301 	if (skb == tp->lost_skb_hint)
1302 		tp->lost_cnt_hint += pcount;
1303 
1304 	TCP_SKB_CB(prev)->end_seq += shifted;
1305 	TCP_SKB_CB(skb)->seq += shifted;
1306 
1307 	tcp_skb_pcount_add(prev, pcount);
1308 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1309 	tcp_skb_pcount_add(skb, -pcount);
1310 
1311 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1312 	 * in theory this shouldn't be necessary but as long as DSACK
1313 	 * code can come after this skb later on it's better to keep
1314 	 * setting gso_size to something.
1315 	 */
1316 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1317 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1318 
1319 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1320 	if (tcp_skb_pcount(skb) <= 1)
1321 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1322 
1323 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1324 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1325 
1326 	if (skb->len > 0) {
1327 		BUG_ON(!tcp_skb_pcount(skb));
1328 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1329 		return false;
1330 	}
1331 
1332 	/* Whole SKB was eaten :-) */
1333 
1334 	if (skb == tp->retransmit_skb_hint)
1335 		tp->retransmit_skb_hint = prev;
1336 	if (skb == tp->lost_skb_hint) {
1337 		tp->lost_skb_hint = prev;
1338 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1339 	}
1340 
1341 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1342 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1343 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1344 		TCP_SKB_CB(prev)->end_seq++;
1345 
1346 	if (skb == tcp_highest_sack(sk))
1347 		tcp_advance_highest_sack(sk, skb);
1348 
1349 	tcp_skb_collapse_tstamp(prev, skb);
1350 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1351 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1352 
1353 	tcp_unlink_write_queue(skb, sk);
1354 	sk_wmem_free_skb(sk, skb);
1355 
1356 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1357 
1358 	return true;
1359 }
1360 
1361 /* I wish gso_size would have a bit more sane initialization than
1362  * something-or-zero which complicates things
1363  */
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1365 {
1366 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367 }
1368 
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1371 {
1372 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373 }
1374 
1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1376  * skb.
1377  */
1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379 					  struct tcp_sacktag_state *state,
1380 					  u32 start_seq, u32 end_seq,
1381 					  bool dup_sack)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct sk_buff *prev;
1385 	int mss;
1386 	int pcount = 0;
1387 	int len;
1388 	int in_sack;
1389 
1390 	if (!sk_can_gso(sk))
1391 		goto fallback;
1392 
1393 	/* Normally R but no L won't result in plain S */
1394 	if (!dup_sack &&
1395 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1396 		goto fallback;
1397 	if (!skb_can_shift(skb))
1398 		goto fallback;
1399 	/* This frame is about to be dropped (was ACKed). */
1400 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1401 		goto fallback;
1402 
1403 	/* Can only happen with delayed DSACK + discard craziness */
1404 	if (unlikely(skb == tcp_write_queue_head(sk)))
1405 		goto fallback;
1406 	prev = tcp_write_queue_prev(sk, skb);
1407 
1408 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1409 		goto fallback;
1410 
1411 	if (!tcp_skb_can_collapse_to(prev))
1412 		goto fallback;
1413 
1414 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1415 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1416 
1417 	if (in_sack) {
1418 		len = skb->len;
1419 		pcount = tcp_skb_pcount(skb);
1420 		mss = tcp_skb_seglen(skb);
1421 
1422 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1423 		 * drop this restriction as unnecessary
1424 		 */
1425 		if (mss != tcp_skb_seglen(prev))
1426 			goto fallback;
1427 	} else {
1428 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1429 			goto noop;
1430 		/* CHECKME: This is non-MSS split case only?, this will
1431 		 * cause skipped skbs due to advancing loop btw, original
1432 		 * has that feature too
1433 		 */
1434 		if (tcp_skb_pcount(skb) <= 1)
1435 			goto noop;
1436 
1437 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1438 		if (!in_sack) {
1439 			/* TODO: head merge to next could be attempted here
1440 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1441 			 * though it might not be worth of the additional hassle
1442 			 *
1443 			 * ...we can probably just fallback to what was done
1444 			 * previously. We could try merging non-SACKed ones
1445 			 * as well but it probably isn't going to buy off
1446 			 * because later SACKs might again split them, and
1447 			 * it would make skb timestamp tracking considerably
1448 			 * harder problem.
1449 			 */
1450 			goto fallback;
1451 		}
1452 
1453 		len = end_seq - TCP_SKB_CB(skb)->seq;
1454 		BUG_ON(len < 0);
1455 		BUG_ON(len > skb->len);
1456 
1457 		/* MSS boundaries should be honoured or else pcount will
1458 		 * severely break even though it makes things bit trickier.
1459 		 * Optimize common case to avoid most of the divides
1460 		 */
1461 		mss = tcp_skb_mss(skb);
1462 
1463 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1464 		 * drop this restriction as unnecessary
1465 		 */
1466 		if (mss != tcp_skb_seglen(prev))
1467 			goto fallback;
1468 
1469 		if (len == mss) {
1470 			pcount = 1;
1471 		} else if (len < mss) {
1472 			goto noop;
1473 		} else {
1474 			pcount = len / mss;
1475 			len = pcount * mss;
1476 		}
1477 	}
1478 
1479 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1480 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1481 		goto fallback;
1482 
1483 	if (!skb_shift(prev, skb, len))
1484 		goto fallback;
1485 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1486 		goto out;
1487 
1488 	/* Hole filled allows collapsing with the next as well, this is very
1489 	 * useful when hole on every nth skb pattern happens
1490 	 */
1491 	if (prev == tcp_write_queue_tail(sk))
1492 		goto out;
1493 	skb = tcp_write_queue_next(sk, prev);
1494 
1495 	if (!skb_can_shift(skb) ||
1496 	    (skb == tcp_send_head(sk)) ||
1497 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1498 	    (mss != tcp_skb_seglen(skb)))
1499 		goto out;
1500 
1501 	len = skb->len;
1502 	if (skb_shift(prev, skb, len)) {
1503 		pcount += tcp_skb_pcount(skb);
1504 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1505 	}
1506 
1507 out:
1508 	state->fack_count += pcount;
1509 	return prev;
1510 
1511 noop:
1512 	return skb;
1513 
1514 fallback:
1515 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1516 	return NULL;
1517 }
1518 
1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 					struct tcp_sack_block *next_dup,
1521 					struct tcp_sacktag_state *state,
1522 					u32 start_seq, u32 end_seq,
1523 					bool dup_sack_in)
1524 {
1525 	struct tcp_sock *tp = tcp_sk(sk);
1526 	struct sk_buff *tmp;
1527 
1528 	tcp_for_write_queue_from(skb, sk) {
1529 		int in_sack = 0;
1530 		bool dup_sack = dup_sack_in;
1531 
1532 		if (skb == tcp_send_head(sk))
1533 			break;
1534 
1535 		/* queue is in-order => we can short-circuit the walk early */
1536 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1537 			break;
1538 
1539 		if (next_dup  &&
1540 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1541 			in_sack = tcp_match_skb_to_sack(sk, skb,
1542 							next_dup->start_seq,
1543 							next_dup->end_seq);
1544 			if (in_sack > 0)
1545 				dup_sack = true;
1546 		}
1547 
1548 		/* skb reference here is a bit tricky to get right, since
1549 		 * shifting can eat and free both this skb and the next,
1550 		 * so not even _safe variant of the loop is enough.
1551 		 */
1552 		if (in_sack <= 0) {
1553 			tmp = tcp_shift_skb_data(sk, skb, state,
1554 						 start_seq, end_seq, dup_sack);
1555 			if (tmp) {
1556 				if (tmp != skb) {
1557 					skb = tmp;
1558 					continue;
1559 				}
1560 
1561 				in_sack = 0;
1562 			} else {
1563 				in_sack = tcp_match_skb_to_sack(sk, skb,
1564 								start_seq,
1565 								end_seq);
1566 			}
1567 		}
1568 
1569 		if (unlikely(in_sack < 0))
1570 			break;
1571 
1572 		if (in_sack) {
1573 			TCP_SKB_CB(skb)->sacked =
1574 				tcp_sacktag_one(sk,
1575 						state,
1576 						TCP_SKB_CB(skb)->sacked,
1577 						TCP_SKB_CB(skb)->seq,
1578 						TCP_SKB_CB(skb)->end_seq,
1579 						dup_sack,
1580 						tcp_skb_pcount(skb),
1581 						&skb->skb_mstamp);
1582 			tcp_rate_skb_delivered(sk, skb, state->rate);
1583 
1584 			if (!before(TCP_SKB_CB(skb)->seq,
1585 				    tcp_highest_sack_seq(tp)))
1586 				tcp_advance_highest_sack(sk, skb);
1587 		}
1588 
1589 		state->fack_count += tcp_skb_pcount(skb);
1590 	}
1591 	return skb;
1592 }
1593 
1594 /* Avoid all extra work that is being done by sacktag while walking in
1595  * a normal way
1596  */
1597 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1598 					struct tcp_sacktag_state *state,
1599 					u32 skip_to_seq)
1600 {
1601 	tcp_for_write_queue_from(skb, sk) {
1602 		if (skb == tcp_send_head(sk))
1603 			break;
1604 
1605 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1606 			break;
1607 
1608 		state->fack_count += tcp_skb_pcount(skb);
1609 	}
1610 	return skb;
1611 }
1612 
1613 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1614 						struct sock *sk,
1615 						struct tcp_sack_block *next_dup,
1616 						struct tcp_sacktag_state *state,
1617 						u32 skip_to_seq)
1618 {
1619 	if (!next_dup)
1620 		return skb;
1621 
1622 	if (before(next_dup->start_seq, skip_to_seq)) {
1623 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1624 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1625 				       next_dup->start_seq, next_dup->end_seq,
1626 				       1);
1627 	}
1628 
1629 	return skb;
1630 }
1631 
1632 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1633 {
1634 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1635 }
1636 
1637 static int
1638 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1639 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1640 {
1641 	struct tcp_sock *tp = tcp_sk(sk);
1642 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1643 				    TCP_SKB_CB(ack_skb)->sacked);
1644 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1645 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1646 	struct tcp_sack_block *cache;
1647 	struct sk_buff *skb;
1648 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1649 	int used_sacks;
1650 	bool found_dup_sack = false;
1651 	int i, j;
1652 	int first_sack_index;
1653 
1654 	state->flag = 0;
1655 	state->reord = tp->packets_out;
1656 
1657 	if (!tp->sacked_out) {
1658 		if (WARN_ON(tp->fackets_out))
1659 			tp->fackets_out = 0;
1660 		tcp_highest_sack_reset(sk);
1661 	}
1662 
1663 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 					 num_sacks, prior_snd_una);
1665 	if (found_dup_sack) {
1666 		state->flag |= FLAG_DSACKING_ACK;
1667 		tp->delivered++; /* A spurious retransmission is delivered */
1668 	}
1669 
1670 	/* Eliminate too old ACKs, but take into
1671 	 * account more or less fresh ones, they can
1672 	 * contain valid SACK info.
1673 	 */
1674 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1675 		return 0;
1676 
1677 	if (!tp->packets_out)
1678 		goto out;
1679 
1680 	used_sacks = 0;
1681 	first_sack_index = 0;
1682 	for (i = 0; i < num_sacks; i++) {
1683 		bool dup_sack = !i && found_dup_sack;
1684 
1685 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1686 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1687 
1688 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1689 					    sp[used_sacks].start_seq,
1690 					    sp[used_sacks].end_seq)) {
1691 			int mib_idx;
1692 
1693 			if (dup_sack) {
1694 				if (!tp->undo_marker)
1695 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1696 				else
1697 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1698 			} else {
1699 				/* Don't count olds caused by ACK reordering */
1700 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1701 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1702 					continue;
1703 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1704 			}
1705 
1706 			NET_INC_STATS(sock_net(sk), mib_idx);
1707 			if (i == 0)
1708 				first_sack_index = -1;
1709 			continue;
1710 		}
1711 
1712 		/* Ignore very old stuff early */
1713 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1714 			continue;
1715 
1716 		used_sacks++;
1717 	}
1718 
1719 	/* order SACK blocks to allow in order walk of the retrans queue */
1720 	for (i = used_sacks - 1; i > 0; i--) {
1721 		for (j = 0; j < i; j++) {
1722 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1723 				swap(sp[j], sp[j + 1]);
1724 
1725 				/* Track where the first SACK block goes to */
1726 				if (j == first_sack_index)
1727 					first_sack_index = j + 1;
1728 			}
1729 		}
1730 	}
1731 
1732 	skb = tcp_write_queue_head(sk);
1733 	state->fack_count = 0;
1734 	i = 0;
1735 
1736 	if (!tp->sacked_out) {
1737 		/* It's already past, so skip checking against it */
1738 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1739 	} else {
1740 		cache = tp->recv_sack_cache;
1741 		/* Skip empty blocks in at head of the cache */
1742 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1743 		       !cache->end_seq)
1744 			cache++;
1745 	}
1746 
1747 	while (i < used_sacks) {
1748 		u32 start_seq = sp[i].start_seq;
1749 		u32 end_seq = sp[i].end_seq;
1750 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1751 		struct tcp_sack_block *next_dup = NULL;
1752 
1753 		if (found_dup_sack && ((i + 1) == first_sack_index))
1754 			next_dup = &sp[i + 1];
1755 
1756 		/* Skip too early cached blocks */
1757 		while (tcp_sack_cache_ok(tp, cache) &&
1758 		       !before(start_seq, cache->end_seq))
1759 			cache++;
1760 
1761 		/* Can skip some work by looking recv_sack_cache? */
1762 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1763 		    after(end_seq, cache->start_seq)) {
1764 
1765 			/* Head todo? */
1766 			if (before(start_seq, cache->start_seq)) {
1767 				skb = tcp_sacktag_skip(skb, sk, state,
1768 						       start_seq);
1769 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1770 						       state,
1771 						       start_seq,
1772 						       cache->start_seq,
1773 						       dup_sack);
1774 			}
1775 
1776 			/* Rest of the block already fully processed? */
1777 			if (!after(end_seq, cache->end_seq))
1778 				goto advance_sp;
1779 
1780 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1781 						       state,
1782 						       cache->end_seq);
1783 
1784 			/* ...tail remains todo... */
1785 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1786 				/* ...but better entrypoint exists! */
1787 				skb = tcp_highest_sack(sk);
1788 				if (!skb)
1789 					break;
1790 				state->fack_count = tp->fackets_out;
1791 				cache++;
1792 				goto walk;
1793 			}
1794 
1795 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1796 			/* Check overlap against next cached too (past this one already) */
1797 			cache++;
1798 			continue;
1799 		}
1800 
1801 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1802 			skb = tcp_highest_sack(sk);
1803 			if (!skb)
1804 				break;
1805 			state->fack_count = tp->fackets_out;
1806 		}
1807 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1808 
1809 walk:
1810 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1811 				       start_seq, end_seq, dup_sack);
1812 
1813 advance_sp:
1814 		i++;
1815 	}
1816 
1817 	/* Clear the head of the cache sack blocks so we can skip it next time */
1818 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1819 		tp->recv_sack_cache[i].start_seq = 0;
1820 		tp->recv_sack_cache[i].end_seq = 0;
1821 	}
1822 	for (j = 0; j < used_sacks; j++)
1823 		tp->recv_sack_cache[i++] = sp[j];
1824 
1825 	if ((state->reord < tp->fackets_out) &&
1826 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1827 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1828 
1829 	tcp_verify_left_out(tp);
1830 out:
1831 
1832 #if FASTRETRANS_DEBUG > 0
1833 	WARN_ON((int)tp->sacked_out < 0);
1834 	WARN_ON((int)tp->lost_out < 0);
1835 	WARN_ON((int)tp->retrans_out < 0);
1836 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1837 #endif
1838 	return state->flag;
1839 }
1840 
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843  */
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845 {
1846 	u32 holes;
1847 
1848 	holes = max(tp->lost_out, 1U);
1849 	holes = min(holes, tp->packets_out);
1850 
1851 	if ((tp->sacked_out + holes) > tp->packets_out) {
1852 		tp->sacked_out = tp->packets_out - holes;
1853 		return true;
1854 	}
1855 	return false;
1856 }
1857 
1858 /* If we receive more dupacks than we expected counting segments
1859  * in assumption of absent reordering, interpret this as reordering.
1860  * The only another reason could be bug in receiver TCP.
1861  */
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863 {
1864 	struct tcp_sock *tp = tcp_sk(sk);
1865 	if (tcp_limit_reno_sacked(tp))
1866 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867 }
1868 
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1870 
1871 static void tcp_add_reno_sack(struct sock *sk)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	u32 prior_sacked = tp->sacked_out;
1875 
1876 	tp->sacked_out++;
1877 	tcp_check_reno_reordering(sk, 0);
1878 	if (tp->sacked_out > prior_sacked)
1879 		tp->delivered++; /* Some out-of-order packet is delivered */
1880 	tcp_verify_left_out(tp);
1881 }
1882 
1883 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1884 
1885 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1886 {
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 
1889 	if (acked > 0) {
1890 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1891 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1892 		if (acked - 1 >= tp->sacked_out)
1893 			tp->sacked_out = 0;
1894 		else
1895 			tp->sacked_out -= acked - 1;
1896 	}
1897 	tcp_check_reno_reordering(sk, acked);
1898 	tcp_verify_left_out(tp);
1899 }
1900 
1901 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1902 {
1903 	tp->sacked_out = 0;
1904 }
1905 
1906 void tcp_clear_retrans(struct tcp_sock *tp)
1907 {
1908 	tp->retrans_out = 0;
1909 	tp->lost_out = 0;
1910 	tp->undo_marker = 0;
1911 	tp->undo_retrans = -1;
1912 	tp->fackets_out = 0;
1913 	tp->sacked_out = 0;
1914 }
1915 
1916 static inline void tcp_init_undo(struct tcp_sock *tp)
1917 {
1918 	tp->undo_marker = tp->snd_una;
1919 	/* Retransmission still in flight may cause DSACKs later. */
1920 	tp->undo_retrans = tp->retrans_out ? : -1;
1921 }
1922 
1923 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1924  * and reset tags completely, otherwise preserve SACKs. If receiver
1925  * dropped its ofo queue, we will know this due to reneging detection.
1926  */
1927 void tcp_enter_loss(struct sock *sk)
1928 {
1929 	const struct inet_connection_sock *icsk = inet_csk(sk);
1930 	struct tcp_sock *tp = tcp_sk(sk);
1931 	struct net *net = sock_net(sk);
1932 	struct sk_buff *skb;
1933 	bool is_reneg;			/* is receiver reneging on SACKs? */
1934 	bool mark_lost;
1935 
1936 	/* Reduce ssthresh if it has not yet been made inside this window. */
1937 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1938 	    !after(tp->high_seq, tp->snd_una) ||
1939 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1940 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1941 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1942 		tcp_ca_event(sk, CA_EVENT_LOSS);
1943 		tcp_init_undo(tp);
1944 	}
1945 	tp->snd_cwnd	   = 1;
1946 	tp->snd_cwnd_cnt   = 0;
1947 	tp->snd_cwnd_stamp = tcp_time_stamp;
1948 
1949 	tp->retrans_out = 0;
1950 	tp->lost_out = 0;
1951 
1952 	if (tcp_is_reno(tp))
1953 		tcp_reset_reno_sack(tp);
1954 
1955 	skb = tcp_write_queue_head(sk);
1956 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1957 	if (is_reneg) {
1958 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1959 		tp->sacked_out = 0;
1960 		tp->fackets_out = 0;
1961 	}
1962 	tcp_clear_all_retrans_hints(tp);
1963 
1964 	tcp_for_write_queue(skb, sk) {
1965 		if (skb == tcp_send_head(sk))
1966 			break;
1967 
1968 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1969 			     is_reneg);
1970 		if (mark_lost)
1971 			tcp_sum_lost(tp, skb);
1972 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1973 		if (mark_lost) {
1974 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976 			tp->lost_out += tcp_skb_pcount(skb);
1977 		}
1978 	}
1979 	tcp_verify_left_out(tp);
1980 
1981 	/* Timeout in disordered state after receiving substantial DUPACKs
1982 	 * suggests that the degree of reordering is over-estimated.
1983 	 */
1984 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1985 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1986 		tp->reordering = min_t(unsigned int, tp->reordering,
1987 				       net->ipv4.sysctl_tcp_reordering);
1988 	tcp_set_ca_state(sk, TCP_CA_Loss);
1989 	tp->high_seq = tp->snd_nxt;
1990 	tcp_ecn_queue_cwr(tp);
1991 
1992 	/* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1993 	 * if a previous recovery is underway, otherwise it may incorrectly
1994 	 * call a timeout spurious if some previously retransmitted packets
1995 	 * are s/acked (sec 3.2). We do not apply that retriction since
1996 	 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
1997 	 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
1998 	 * on PTMU discovery to avoid sending new data.
1999 	 */
2000 	tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size;
2001 }
2002 
2003 /* If ACK arrived pointing to a remembered SACK, it means that our
2004  * remembered SACKs do not reflect real state of receiver i.e.
2005  * receiver _host_ is heavily congested (or buggy).
2006  *
2007  * To avoid big spurious retransmission bursts due to transient SACK
2008  * scoreboard oddities that look like reneging, we give the receiver a
2009  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2010  * restore sanity to the SACK scoreboard. If the apparent reneging
2011  * persists until this RTO then we'll clear the SACK scoreboard.
2012  */
2013 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2014 {
2015 	if (flag & FLAG_SACK_RENEGING) {
2016 		struct tcp_sock *tp = tcp_sk(sk);
2017 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2018 					  msecs_to_jiffies(10));
2019 
2020 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2021 					  delay, TCP_RTO_MAX);
2022 		return true;
2023 	}
2024 	return false;
2025 }
2026 
2027 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2028 {
2029 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2030 }
2031 
2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2033  * counter when SACK is enabled (without SACK, sacked_out is used for
2034  * that purpose).
2035  *
2036  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2037  * segments up to the highest received SACK block so far and holes in
2038  * between them.
2039  *
2040  * With reordering, holes may still be in flight, so RFC3517 recovery
2041  * uses pure sacked_out (total number of SACKed segments) even though
2042  * it violates the RFC that uses duplicate ACKs, often these are equal
2043  * but when e.g. out-of-window ACKs or packet duplication occurs,
2044  * they differ. Since neither occurs due to loss, TCP should really
2045  * ignore them.
2046  */
2047 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2048 {
2049 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2050 }
2051 
2052 /* Linux NewReno/SACK/FACK/ECN state machine.
2053  * --------------------------------------
2054  *
2055  * "Open"	Normal state, no dubious events, fast path.
2056  * "Disorder"   In all the respects it is "Open",
2057  *		but requires a bit more attention. It is entered when
2058  *		we see some SACKs or dupacks. It is split of "Open"
2059  *		mainly to move some processing from fast path to slow one.
2060  * "CWR"	CWND was reduced due to some Congestion Notification event.
2061  *		It can be ECN, ICMP source quench, local device congestion.
2062  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2063  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2064  *
2065  * tcp_fastretrans_alert() is entered:
2066  * - each incoming ACK, if state is not "Open"
2067  * - when arrived ACK is unusual, namely:
2068  *	* SACK
2069  *	* Duplicate ACK.
2070  *	* ECN ECE.
2071  *
2072  * Counting packets in flight is pretty simple.
2073  *
2074  *	in_flight = packets_out - left_out + retrans_out
2075  *
2076  *	packets_out is SND.NXT-SND.UNA counted in packets.
2077  *
2078  *	retrans_out is number of retransmitted segments.
2079  *
2080  *	left_out is number of segments left network, but not ACKed yet.
2081  *
2082  *		left_out = sacked_out + lost_out
2083  *
2084  *     sacked_out: Packets, which arrived to receiver out of order
2085  *		   and hence not ACKed. With SACKs this number is simply
2086  *		   amount of SACKed data. Even without SACKs
2087  *		   it is easy to give pretty reliable estimate of this number,
2088  *		   counting duplicate ACKs.
2089  *
2090  *       lost_out: Packets lost by network. TCP has no explicit
2091  *		   "loss notification" feedback from network (for now).
2092  *		   It means that this number can be only _guessed_.
2093  *		   Actually, it is the heuristics to predict lossage that
2094  *		   distinguishes different algorithms.
2095  *
2096  *	F.e. after RTO, when all the queue is considered as lost,
2097  *	lost_out = packets_out and in_flight = retrans_out.
2098  *
2099  *		Essentially, we have now a few algorithms detecting
2100  *		lost packets.
2101  *
2102  *		If the receiver supports SACK:
2103  *
2104  *		RFC6675/3517: It is the conventional algorithm. A packet is
2105  *		considered lost if the number of higher sequence packets
2106  *		SACKed is greater than or equal the DUPACK thoreshold
2107  *		(reordering). This is implemented in tcp_mark_head_lost and
2108  *		tcp_update_scoreboard.
2109  *
2110  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2111  *		(2017-) that checks timing instead of counting DUPACKs.
2112  *		Essentially a packet is considered lost if it's not S/ACKed
2113  *		after RTT + reordering_window, where both metrics are
2114  *		dynamically measured and adjusted. This is implemented in
2115  *		tcp_rack_mark_lost.
2116  *
2117  *		FACK (Disabled by default. Subsumbed by RACK):
2118  *		It is the simplest heuristics. As soon as we decided
2119  *		that something is lost, we decide that _all_ not SACKed
2120  *		packets until the most forward SACK are lost. I.e.
2121  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2122  *		It is absolutely correct estimate, if network does not reorder
2123  *		packets. And it loses any connection to reality when reordering
2124  *		takes place. We use FACK by default until reordering
2125  *		is suspected on the path to this destination.
2126  *
2127  *		If the receiver does not support SACK:
2128  *
2129  *		NewReno (RFC6582): in Recovery we assume that one segment
2130  *		is lost (classic Reno). While we are in Recovery and
2131  *		a partial ACK arrives, we assume that one more packet
2132  *		is lost (NewReno). This heuristics are the same in NewReno
2133  *		and SACK.
2134  *
2135  * Really tricky (and requiring careful tuning) part of algorithm
2136  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137  * The first determines the moment _when_ we should reduce CWND and,
2138  * hence, slow down forward transmission. In fact, it determines the moment
2139  * when we decide that hole is caused by loss, rather than by a reorder.
2140  *
2141  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142  * holes, caused by lost packets.
2143  *
2144  * And the most logically complicated part of algorithm is undo
2145  * heuristics. We detect false retransmits due to both too early
2146  * fast retransmit (reordering) and underestimated RTO, analyzing
2147  * timestamps and D-SACKs. When we detect that some segments were
2148  * retransmitted by mistake and CWND reduction was wrong, we undo
2149  * window reduction and abort recovery phase. This logic is hidden
2150  * inside several functions named tcp_try_undo_<something>.
2151  */
2152 
2153 /* This function decides, when we should leave Disordered state
2154  * and enter Recovery phase, reducing congestion window.
2155  *
2156  * Main question: may we further continue forward transmission
2157  * with the same cwnd?
2158  */
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2160 {
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 
2163 	/* Trick#1: The loss is proven. */
2164 	if (tp->lost_out)
2165 		return true;
2166 
2167 	/* Not-A-Trick#2 : Classic rule... */
2168 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2169 		return true;
2170 
2171 	return false;
2172 }
2173 
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2176  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178  * the maximum SACKed segments to pass before reaching this limit.
2179  */
2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2181 {
2182 	struct tcp_sock *tp = tcp_sk(sk);
2183 	struct sk_buff *skb;
2184 	int cnt, oldcnt, lost;
2185 	unsigned int mss;
2186 	/* Use SACK to deduce losses of new sequences sent during recovery */
2187 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2188 
2189 	WARN_ON(packets > tp->packets_out);
2190 	if (tp->lost_skb_hint) {
2191 		skb = tp->lost_skb_hint;
2192 		cnt = tp->lost_cnt_hint;
2193 		/* Head already handled? */
2194 		if (mark_head && skb != tcp_write_queue_head(sk))
2195 			return;
2196 	} else {
2197 		skb = tcp_write_queue_head(sk);
2198 		cnt = 0;
2199 	}
2200 
2201 	tcp_for_write_queue_from(skb, sk) {
2202 		if (skb == tcp_send_head(sk))
2203 			break;
2204 		/* TODO: do this better */
2205 		/* this is not the most efficient way to do this... */
2206 		tp->lost_skb_hint = skb;
2207 		tp->lost_cnt_hint = cnt;
2208 
2209 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2210 			break;
2211 
2212 		oldcnt = cnt;
2213 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2214 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2215 			cnt += tcp_skb_pcount(skb);
2216 
2217 		if (cnt > packets) {
2218 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2219 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2220 			    (oldcnt >= packets))
2221 				break;
2222 
2223 			mss = tcp_skb_mss(skb);
2224 			/* If needed, chop off the prefix to mark as lost. */
2225 			lost = (packets - oldcnt) * mss;
2226 			if (lost < skb->len &&
2227 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2228 				break;
2229 			cnt = packets;
2230 		}
2231 
2232 		tcp_skb_mark_lost(tp, skb);
2233 
2234 		if (mark_head)
2235 			break;
2236 	}
2237 	tcp_verify_left_out(tp);
2238 }
2239 
2240 /* Account newly detected lost packet(s) */
2241 
2242 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243 {
2244 	struct tcp_sock *tp = tcp_sk(sk);
2245 
2246 	if (tcp_is_reno(tp)) {
2247 		tcp_mark_head_lost(sk, 1, 1);
2248 	} else if (tcp_is_fack(tp)) {
2249 		int lost = tp->fackets_out - tp->reordering;
2250 		if (lost <= 0)
2251 			lost = 1;
2252 		tcp_mark_head_lost(sk, lost, 0);
2253 	} else {
2254 		int sacked_upto = tp->sacked_out - tp->reordering;
2255 		if (sacked_upto >= 0)
2256 			tcp_mark_head_lost(sk, sacked_upto, 0);
2257 		else if (fast_rexmit)
2258 			tcp_mark_head_lost(sk, 1, 1);
2259 	}
2260 }
2261 
2262 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2263 {
2264 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2265 	       before(tp->rx_opt.rcv_tsecr, when);
2266 }
2267 
2268 /* skb is spurious retransmitted if the returned timestamp echo
2269  * reply is prior to the skb transmission time
2270  */
2271 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2272 				     const struct sk_buff *skb)
2273 {
2274 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2275 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2276 }
2277 
2278 /* Nothing was retransmitted or returned timestamp is less
2279  * than timestamp of the first retransmission.
2280  */
2281 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2282 {
2283 	return !tp->retrans_stamp ||
2284 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2285 }
2286 
2287 /* Undo procedures. */
2288 
2289 /* We can clear retrans_stamp when there are no retransmissions in the
2290  * window. It would seem that it is trivially available for us in
2291  * tp->retrans_out, however, that kind of assumptions doesn't consider
2292  * what will happen if errors occur when sending retransmission for the
2293  * second time. ...It could the that such segment has only
2294  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2295  * the head skb is enough except for some reneging corner cases that
2296  * are not worth the effort.
2297  *
2298  * Main reason for all this complexity is the fact that connection dying
2299  * time now depends on the validity of the retrans_stamp, in particular,
2300  * that successive retransmissions of a segment must not advance
2301  * retrans_stamp under any conditions.
2302  */
2303 static bool tcp_any_retrans_done(const struct sock *sk)
2304 {
2305 	const struct tcp_sock *tp = tcp_sk(sk);
2306 	struct sk_buff *skb;
2307 
2308 	if (tp->retrans_out)
2309 		return true;
2310 
2311 	skb = tcp_write_queue_head(sk);
2312 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2313 		return true;
2314 
2315 	return false;
2316 }
2317 
2318 #if FASTRETRANS_DEBUG > 1
2319 static void DBGUNDO(struct sock *sk, const char *msg)
2320 {
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 	struct inet_sock *inet = inet_sk(sk);
2323 
2324 	if (sk->sk_family == AF_INET) {
2325 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2326 			 msg,
2327 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2328 			 tp->snd_cwnd, tcp_left_out(tp),
2329 			 tp->snd_ssthresh, tp->prior_ssthresh,
2330 			 tp->packets_out);
2331 	}
2332 #if IS_ENABLED(CONFIG_IPV6)
2333 	else if (sk->sk_family == AF_INET6) {
2334 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2335 			 msg,
2336 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2337 			 tp->snd_cwnd, tcp_left_out(tp),
2338 			 tp->snd_ssthresh, tp->prior_ssthresh,
2339 			 tp->packets_out);
2340 	}
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346 
2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2348 {
2349 	struct tcp_sock *tp = tcp_sk(sk);
2350 
2351 	if (unmark_loss) {
2352 		struct sk_buff *skb;
2353 
2354 		tcp_for_write_queue(skb, sk) {
2355 			if (skb == tcp_send_head(sk))
2356 				break;
2357 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2358 		}
2359 		tp->lost_out = 0;
2360 		tcp_clear_all_retrans_hints(tp);
2361 	}
2362 
2363 	if (tp->prior_ssthresh) {
2364 		const struct inet_connection_sock *icsk = inet_csk(sk);
2365 
2366 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2367 
2368 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2369 			tp->snd_ssthresh = tp->prior_ssthresh;
2370 			tcp_ecn_withdraw_cwr(tp);
2371 		}
2372 	}
2373 	tp->snd_cwnd_stamp = tcp_time_stamp;
2374 	tp->undo_marker = 0;
2375 }
2376 
2377 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2378 {
2379 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2380 }
2381 
2382 /* People celebrate: "We love our President!" */
2383 static bool tcp_try_undo_recovery(struct sock *sk)
2384 {
2385 	struct tcp_sock *tp = tcp_sk(sk);
2386 
2387 	if (tcp_may_undo(tp)) {
2388 		int mib_idx;
2389 
2390 		/* Happy end! We did not retransmit anything
2391 		 * or our original transmission succeeded.
2392 		 */
2393 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2394 		tcp_undo_cwnd_reduction(sk, false);
2395 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2396 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2397 		else
2398 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2399 
2400 		NET_INC_STATS(sock_net(sk), mib_idx);
2401 	}
2402 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2403 		/* Hold old state until something *above* high_seq
2404 		 * is ACKed. For Reno it is MUST to prevent false
2405 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2406 		if (!tcp_any_retrans_done(sk))
2407 			tp->retrans_stamp = 0;
2408 		return true;
2409 	}
2410 	tcp_set_ca_state(sk, TCP_CA_Open);
2411 	return false;
2412 }
2413 
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock *sk)
2416 {
2417 	struct tcp_sock *tp = tcp_sk(sk);
2418 
2419 	if (tp->undo_marker && !tp->undo_retrans) {
2420 		DBGUNDO(sk, "D-SACK");
2421 		tcp_undo_cwnd_reduction(sk, false);
2422 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423 		return true;
2424 	}
2425 	return false;
2426 }
2427 
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 
2433 	if (frto_undo || tcp_may_undo(tp)) {
2434 		tcp_undo_cwnd_reduction(sk, true);
2435 
2436 		DBGUNDO(sk, "partial loss");
2437 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438 		if (frto_undo)
2439 			NET_INC_STATS(sock_net(sk),
2440 					LINUX_MIB_TCPSPURIOUSRTOS);
2441 		inet_csk(sk)->icsk_retransmits = 0;
2442 		if (frto_undo || tcp_is_sack(tp))
2443 			tcp_set_ca_state(sk, TCP_CA_Open);
2444 		return true;
2445 	}
2446 	return false;
2447 }
2448 
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450  * It computes the number of packets to send (sndcnt) based on packets newly
2451  * delivered:
2452  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2453  *	cwnd reductions across a full RTT.
2454  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2455  *      But when the retransmits are acked without further losses, PRR
2456  *      slow starts cwnd up to ssthresh to speed up the recovery.
2457  */
2458 static void tcp_init_cwnd_reduction(struct sock *sk)
2459 {
2460 	struct tcp_sock *tp = tcp_sk(sk);
2461 
2462 	tp->high_seq = tp->snd_nxt;
2463 	tp->tlp_high_seq = 0;
2464 	tp->snd_cwnd_cnt = 0;
2465 	tp->prior_cwnd = tp->snd_cwnd;
2466 	tp->prr_delivered = 0;
2467 	tp->prr_out = 0;
2468 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469 	tcp_ecn_queue_cwr(tp);
2470 }
2471 
2472 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2473 {
2474 	struct tcp_sock *tp = tcp_sk(sk);
2475 	int sndcnt = 0;
2476 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2477 
2478 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2479 		return;
2480 
2481 	tp->prr_delivered += newly_acked_sacked;
2482 	if (delta < 0) {
2483 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2484 			       tp->prior_cwnd - 1;
2485 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2486 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2487 		   !(flag & FLAG_LOST_RETRANS)) {
2488 		sndcnt = min_t(int, delta,
2489 			       max_t(int, tp->prr_delivered - tp->prr_out,
2490 				     newly_acked_sacked) + 1);
2491 	} else {
2492 		sndcnt = min(delta, newly_acked_sacked);
2493 	}
2494 	/* Force a fast retransmit upon entering fast recovery */
2495 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2496 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2497 }
2498 
2499 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2500 {
2501 	struct tcp_sock *tp = tcp_sk(sk);
2502 
2503 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2504 		return;
2505 
2506 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2508 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2509 		tp->snd_cwnd = tp->snd_ssthresh;
2510 		tp->snd_cwnd_stamp = tcp_time_stamp;
2511 	}
2512 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513 }
2514 
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	tp->prior_ssthresh = 0;
2521 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522 		tp->undo_marker = 0;
2523 		tcp_init_cwnd_reduction(sk);
2524 		tcp_set_ca_state(sk, TCP_CA_CWR);
2525 	}
2526 }
2527 EXPORT_SYMBOL(tcp_enter_cwr);
2528 
2529 static void tcp_try_keep_open(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 	int state = TCP_CA_Open;
2533 
2534 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535 		state = TCP_CA_Disorder;
2536 
2537 	if (inet_csk(sk)->icsk_ca_state != state) {
2538 		tcp_set_ca_state(sk, state);
2539 		tp->high_seq = tp->snd_nxt;
2540 	}
2541 }
2542 
2543 static void tcp_try_to_open(struct sock *sk, int flag)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 
2547 	tcp_verify_left_out(tp);
2548 
2549 	if (!tcp_any_retrans_done(sk))
2550 		tp->retrans_stamp = 0;
2551 
2552 	if (flag & FLAG_ECE)
2553 		tcp_enter_cwr(sk);
2554 
2555 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556 		tcp_try_keep_open(sk);
2557 	}
2558 }
2559 
2560 static void tcp_mtup_probe_failed(struct sock *sk)
2561 {
2562 	struct inet_connection_sock *icsk = inet_csk(sk);
2563 
2564 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565 	icsk->icsk_mtup.probe_size = 0;
2566 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567 }
2568 
2569 static void tcp_mtup_probe_success(struct sock *sk)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 	struct inet_connection_sock *icsk = inet_csk(sk);
2573 
2574 	/* FIXME: breaks with very large cwnd */
2575 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576 	tp->snd_cwnd = tp->snd_cwnd *
2577 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2578 		       icsk->icsk_mtup.probe_size;
2579 	tp->snd_cwnd_cnt = 0;
2580 	tp->snd_cwnd_stamp = tcp_time_stamp;
2581 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582 
2583 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584 	icsk->icsk_mtup.probe_size = 0;
2585 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587 }
2588 
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590  * tcp_timer. This is used for path mtu discovery.
2591  * The socket is already locked here.
2592  */
2593 void tcp_simple_retransmit(struct sock *sk)
2594 {
2595 	const struct inet_connection_sock *icsk = inet_csk(sk);
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 	struct sk_buff *skb;
2598 	unsigned int mss = tcp_current_mss(sk);
2599 	u32 prior_lost = tp->lost_out;
2600 
2601 	tcp_for_write_queue(skb, sk) {
2602 		if (skb == tcp_send_head(sk))
2603 			break;
2604 		if (tcp_skb_seglen(skb) > mss &&
2605 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2606 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2607 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2608 				tp->retrans_out -= tcp_skb_pcount(skb);
2609 			}
2610 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2611 		}
2612 	}
2613 
2614 	tcp_clear_retrans_hints_partial(tp);
2615 
2616 	if (prior_lost == tp->lost_out)
2617 		return;
2618 
2619 	if (tcp_is_reno(tp))
2620 		tcp_limit_reno_sacked(tp);
2621 
2622 	tcp_verify_left_out(tp);
2623 
2624 	/* Don't muck with the congestion window here.
2625 	 * Reason is that we do not increase amount of _data_
2626 	 * in network, but units changed and effective
2627 	 * cwnd/ssthresh really reduced now.
2628 	 */
2629 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2630 		tp->high_seq = tp->snd_nxt;
2631 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632 		tp->prior_ssthresh = 0;
2633 		tp->undo_marker = 0;
2634 		tcp_set_ca_state(sk, TCP_CA_Loss);
2635 	}
2636 	tcp_xmit_retransmit_queue(sk);
2637 }
2638 EXPORT_SYMBOL(tcp_simple_retransmit);
2639 
2640 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 	int mib_idx;
2644 
2645 	if (tcp_is_reno(tp))
2646 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2647 	else
2648 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2649 
2650 	NET_INC_STATS(sock_net(sk), mib_idx);
2651 
2652 	tp->prior_ssthresh = 0;
2653 	tcp_init_undo(tp);
2654 
2655 	if (!tcp_in_cwnd_reduction(sk)) {
2656 		if (!ece_ack)
2657 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2658 		tcp_init_cwnd_reduction(sk);
2659 	}
2660 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2661 }
2662 
2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2665  */
2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2667 			     int *rexmit)
2668 {
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 	bool recovered = !before(tp->snd_una, tp->high_seq);
2671 
2672 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673 	    tcp_try_undo_loss(sk, false))
2674 		return;
2675 
2676 	/* The ACK (s)acks some never-retransmitted data meaning not all
2677 	 * the data packets before the timeout were lost. Therefore we
2678 	 * undo the congestion window and state. This is essentially
2679 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2680 	 * a retransmitted skb is permantly marked, we can apply such an
2681 	 * operation even if F-RTO was not used.
2682 	 */
2683 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2684 	    tcp_try_undo_loss(sk, tp->undo_marker))
2685 		return;
2686 
2687 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2688 		if (after(tp->snd_nxt, tp->high_seq)) {
2689 			if (flag & FLAG_DATA_SACKED || is_dupack)
2690 				tp->frto = 0; /* Step 3.a. loss was real */
2691 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2692 			tp->high_seq = tp->snd_nxt;
2693 			/* Step 2.b. Try send new data (but deferred until cwnd
2694 			 * is updated in tcp_ack()). Otherwise fall back to
2695 			 * the conventional recovery.
2696 			 */
2697 			if (tcp_send_head(sk) &&
2698 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2699 				*rexmit = REXMIT_NEW;
2700 				return;
2701 			}
2702 			tp->frto = 0;
2703 		}
2704 	}
2705 
2706 	if (recovered) {
2707 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 		tcp_try_undo_recovery(sk);
2709 		return;
2710 	}
2711 	if (tcp_is_reno(tp)) {
2712 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 		 * delivered. Lower inflight to clock out (re)tranmissions.
2714 		 */
2715 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2716 			tcp_add_reno_sack(sk);
2717 		else if (flag & FLAG_SND_UNA_ADVANCED)
2718 			tcp_reset_reno_sack(tp);
2719 	}
2720 	*rexmit = REXMIT_LOST;
2721 }
2722 
2723 /* Undo during fast recovery after partial ACK. */
2724 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 
2728 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2729 		/* Plain luck! Hole if filled with delayed
2730 		 * packet, rather than with a retransmit.
2731 		 */
2732 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2733 
2734 		/* We are getting evidence that the reordering degree is higher
2735 		 * than we realized. If there are no retransmits out then we
2736 		 * can undo. Otherwise we clock out new packets but do not
2737 		 * mark more packets lost or retransmit more.
2738 		 */
2739 		if (tp->retrans_out)
2740 			return true;
2741 
2742 		if (!tcp_any_retrans_done(sk))
2743 			tp->retrans_stamp = 0;
2744 
2745 		DBGUNDO(sk, "partial recovery");
2746 		tcp_undo_cwnd_reduction(sk, true);
2747 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748 		tcp_try_keep_open(sk);
2749 		return true;
2750 	}
2751 	return false;
2752 }
2753 
2754 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag,
2755 				   const struct skb_mstamp *ack_time)
2756 {
2757 	struct tcp_sock *tp = tcp_sk(sk);
2758 
2759 	/* Use RACK to detect loss */
2760 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2761 		u32 prior_retrans = tp->retrans_out;
2762 
2763 		tcp_rack_mark_lost(sk, ack_time);
2764 		if (prior_retrans > tp->retrans_out)
2765 			*ack_flag |= FLAG_LOST_RETRANS;
2766 	}
2767 }
2768 
2769 /* Process an event, which can update packets-in-flight not trivially.
2770  * Main goal of this function is to calculate new estimate for left_out,
2771  * taking into account both packets sitting in receiver's buffer and
2772  * packets lost by network.
2773  *
2774  * Besides that it updates the congestion state when packet loss or ECN
2775  * is detected. But it does not reduce the cwnd, it is done by the
2776  * congestion control later.
2777  *
2778  * It does _not_ decide what to send, it is made in function
2779  * tcp_xmit_retransmit_queue().
2780  */
2781 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2782 				  bool is_dupack, int *ack_flag, int *rexmit,
2783 				  const struct skb_mstamp *ack_time)
2784 {
2785 	struct inet_connection_sock *icsk = inet_csk(sk);
2786 	struct tcp_sock *tp = tcp_sk(sk);
2787 	int fast_rexmit = 0, flag = *ack_flag;
2788 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2789 				    (tcp_fackets_out(tp) > tp->reordering));
2790 
2791 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2792 		tp->sacked_out = 0;
2793 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2794 		tp->fackets_out = 0;
2795 
2796 	/* Now state machine starts.
2797 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2798 	if (flag & FLAG_ECE)
2799 		tp->prior_ssthresh = 0;
2800 
2801 	/* B. In all the states check for reneging SACKs. */
2802 	if (tcp_check_sack_reneging(sk, flag))
2803 		return;
2804 
2805 	/* C. Check consistency of the current state. */
2806 	tcp_verify_left_out(tp);
2807 
2808 	/* D. Check state exit conditions. State can be terminated
2809 	 *    when high_seq is ACKed. */
2810 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2811 		WARN_ON(tp->retrans_out != 0);
2812 		tp->retrans_stamp = 0;
2813 	} else if (!before(tp->snd_una, tp->high_seq)) {
2814 		switch (icsk->icsk_ca_state) {
2815 		case TCP_CA_CWR:
2816 			/* CWR is to be held something *above* high_seq
2817 			 * is ACKed for CWR bit to reach receiver. */
2818 			if (tp->snd_una != tp->high_seq) {
2819 				tcp_end_cwnd_reduction(sk);
2820 				tcp_set_ca_state(sk, TCP_CA_Open);
2821 			}
2822 			break;
2823 
2824 		case TCP_CA_Recovery:
2825 			if (tcp_is_reno(tp))
2826 				tcp_reset_reno_sack(tp);
2827 			if (tcp_try_undo_recovery(sk))
2828 				return;
2829 			tcp_end_cwnd_reduction(sk);
2830 			break;
2831 		}
2832 	}
2833 
2834 	/* E. Process state. */
2835 	switch (icsk->icsk_ca_state) {
2836 	case TCP_CA_Recovery:
2837 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2838 			if (tcp_is_reno(tp) && is_dupack)
2839 				tcp_add_reno_sack(sk);
2840 		} else {
2841 			if (tcp_try_undo_partial(sk, acked))
2842 				return;
2843 			/* Partial ACK arrived. Force fast retransmit. */
2844 			do_lost = tcp_is_reno(tp) ||
2845 				  tcp_fackets_out(tp) > tp->reordering;
2846 		}
2847 		if (tcp_try_undo_dsack(sk)) {
2848 			tcp_try_keep_open(sk);
2849 			return;
2850 		}
2851 		tcp_rack_identify_loss(sk, ack_flag, ack_time);
2852 		break;
2853 	case TCP_CA_Loss:
2854 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2855 		tcp_rack_identify_loss(sk, ack_flag, ack_time);
2856 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2857 		      (*ack_flag & FLAG_LOST_RETRANS)))
2858 			return;
2859 		/* Change state if cwnd is undone or retransmits are lost */
2860 	default:
2861 		if (tcp_is_reno(tp)) {
2862 			if (flag & FLAG_SND_UNA_ADVANCED)
2863 				tcp_reset_reno_sack(tp);
2864 			if (is_dupack)
2865 				tcp_add_reno_sack(sk);
2866 		}
2867 
2868 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2869 			tcp_try_undo_dsack(sk);
2870 
2871 		tcp_rack_identify_loss(sk, ack_flag, ack_time);
2872 		if (!tcp_time_to_recover(sk, flag)) {
2873 			tcp_try_to_open(sk, flag);
2874 			return;
2875 		}
2876 
2877 		/* MTU probe failure: don't reduce cwnd */
2878 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2879 		    icsk->icsk_mtup.probe_size &&
2880 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2881 			tcp_mtup_probe_failed(sk);
2882 			/* Restores the reduction we did in tcp_mtup_probe() */
2883 			tp->snd_cwnd++;
2884 			tcp_simple_retransmit(sk);
2885 			return;
2886 		}
2887 
2888 		/* Otherwise enter Recovery state */
2889 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2890 		fast_rexmit = 1;
2891 	}
2892 
2893 	if (do_lost)
2894 		tcp_update_scoreboard(sk, fast_rexmit);
2895 	*rexmit = REXMIT_LOST;
2896 }
2897 
2898 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2899 {
2900 	struct tcp_sock *tp = tcp_sk(sk);
2901 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2902 
2903 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2904 			   rtt_us ? : jiffies_to_usecs(1));
2905 }
2906 
2907 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2908 				      long seq_rtt_us, long sack_rtt_us,
2909 				      long ca_rtt_us)
2910 {
2911 	const struct tcp_sock *tp = tcp_sk(sk);
2912 
2913 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2914 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2915 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2916 	 * is acked (RFC6298).
2917 	 */
2918 	if (seq_rtt_us < 0)
2919 		seq_rtt_us = sack_rtt_us;
2920 
2921 	/* RTTM Rule: A TSecr value received in a segment is used to
2922 	 * update the averaged RTT measurement only if the segment
2923 	 * acknowledges some new data, i.e., only if it advances the
2924 	 * left edge of the send window.
2925 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2926 	 */
2927 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2928 	    flag & FLAG_ACKED)
2929 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2930 							  tp->rx_opt.rcv_tsecr);
2931 	if (seq_rtt_us < 0)
2932 		return false;
2933 
2934 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2935 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2936 	 * values will be skipped with the seq_rtt_us < 0 check above.
2937 	 */
2938 	tcp_update_rtt_min(sk, ca_rtt_us);
2939 	tcp_rtt_estimator(sk, seq_rtt_us);
2940 	tcp_set_rto(sk);
2941 
2942 	/* RFC6298: only reset backoff on valid RTT measurement. */
2943 	inet_csk(sk)->icsk_backoff = 0;
2944 	return true;
2945 }
2946 
2947 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2948 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2949 {
2950 	long rtt_us = -1L;
2951 
2952 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2953 		struct skb_mstamp now;
2954 
2955 		skb_mstamp_get(&now);
2956 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2957 	}
2958 
2959 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2960 }
2961 
2962 
2963 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2964 {
2965 	const struct inet_connection_sock *icsk = inet_csk(sk);
2966 
2967 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2968 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2969 }
2970 
2971 /* Restart timer after forward progress on connection.
2972  * RFC2988 recommends to restart timer to now+rto.
2973  */
2974 void tcp_rearm_rto(struct sock *sk)
2975 {
2976 	const struct inet_connection_sock *icsk = inet_csk(sk);
2977 	struct tcp_sock *tp = tcp_sk(sk);
2978 
2979 	/* If the retrans timer is currently being used by Fast Open
2980 	 * for SYN-ACK retrans purpose, stay put.
2981 	 */
2982 	if (tp->fastopen_rsk)
2983 		return;
2984 
2985 	if (!tp->packets_out) {
2986 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2987 	} else {
2988 		u32 rto = inet_csk(sk)->icsk_rto;
2989 		/* Offset the time elapsed after installing regular RTO */
2990 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2991 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2992 			struct sk_buff *skb = tcp_write_queue_head(sk);
2993 			const u32 rto_time_stamp =
2994 				tcp_skb_timestamp(skb) + rto;
2995 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2996 			/* delta may not be positive if the socket is locked
2997 			 * when the retrans timer fires and is rescheduled.
2998 			 */
2999 			if (delta > 0)
3000 				rto = delta;
3001 		}
3002 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3003 					  TCP_RTO_MAX);
3004 	}
3005 }
3006 
3007 /* If we get here, the whole TSO packet has not been acked. */
3008 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3009 {
3010 	struct tcp_sock *tp = tcp_sk(sk);
3011 	u32 packets_acked;
3012 
3013 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3014 
3015 	packets_acked = tcp_skb_pcount(skb);
3016 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3017 		return 0;
3018 	packets_acked -= tcp_skb_pcount(skb);
3019 
3020 	if (packets_acked) {
3021 		BUG_ON(tcp_skb_pcount(skb) == 0);
3022 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3023 	}
3024 
3025 	return packets_acked;
3026 }
3027 
3028 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3029 			   u32 prior_snd_una)
3030 {
3031 	const struct skb_shared_info *shinfo;
3032 
3033 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3034 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3035 		return;
3036 
3037 	shinfo = skb_shinfo(skb);
3038 	if (!before(shinfo->tskey, prior_snd_una) &&
3039 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3040 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3041 }
3042 
3043 /* Remove acknowledged frames from the retransmission queue. If our packet
3044  * is before the ack sequence we can discard it as it's confirmed to have
3045  * arrived at the other end.
3046  */
3047 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3048 			       u32 prior_snd_una, int *acked,
3049 			       struct tcp_sacktag_state *sack)
3050 {
3051 	const struct inet_connection_sock *icsk = inet_csk(sk);
3052 	struct skb_mstamp first_ackt, last_ackt;
3053 	struct skb_mstamp *now = &sack->ack_time;
3054 	struct tcp_sock *tp = tcp_sk(sk);
3055 	u32 prior_sacked = tp->sacked_out;
3056 	u32 reord = tp->packets_out;
3057 	bool fully_acked = true;
3058 	long sack_rtt_us = -1L;
3059 	long seq_rtt_us = -1L;
3060 	long ca_rtt_us = -1L;
3061 	struct sk_buff *skb;
3062 	u32 pkts_acked = 0;
3063 	u32 last_in_flight = 0;
3064 	bool rtt_update;
3065 	int flag = 0;
3066 
3067 	first_ackt.v64 = 0;
3068 
3069 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3070 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3071 		u8 sacked = scb->sacked;
3072 		u32 acked_pcount;
3073 
3074 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3075 
3076 		/* Determine how many packets and what bytes were acked, tso and else */
3077 		if (after(scb->end_seq, tp->snd_una)) {
3078 			if (tcp_skb_pcount(skb) == 1 ||
3079 			    !after(tp->snd_una, scb->seq))
3080 				break;
3081 
3082 			acked_pcount = tcp_tso_acked(sk, skb);
3083 			if (!acked_pcount)
3084 				break;
3085 			fully_acked = false;
3086 		} else {
3087 			/* Speedup tcp_unlink_write_queue() and next loop */
3088 			prefetchw(skb->next);
3089 			acked_pcount = tcp_skb_pcount(skb);
3090 		}
3091 
3092 		if (unlikely(sacked & TCPCB_RETRANS)) {
3093 			if (sacked & TCPCB_SACKED_RETRANS)
3094 				tp->retrans_out -= acked_pcount;
3095 			flag |= FLAG_RETRANS_DATA_ACKED;
3096 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3097 			last_ackt = skb->skb_mstamp;
3098 			WARN_ON_ONCE(last_ackt.v64 == 0);
3099 			if (!first_ackt.v64)
3100 				first_ackt = last_ackt;
3101 
3102 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3103 			reord = min(pkts_acked, reord);
3104 			if (!after(scb->end_seq, tp->high_seq))
3105 				flag |= FLAG_ORIG_SACK_ACKED;
3106 		}
3107 
3108 		if (sacked & TCPCB_SACKED_ACKED) {
3109 			tp->sacked_out -= acked_pcount;
3110 		} else if (tcp_is_sack(tp)) {
3111 			tp->delivered += acked_pcount;
3112 			if (!tcp_skb_spurious_retrans(tp, skb))
3113 				tcp_rack_advance(tp, sacked, scb->end_seq,
3114 						 &skb->skb_mstamp,
3115 						 &sack->ack_time);
3116 		}
3117 		if (sacked & TCPCB_LOST)
3118 			tp->lost_out -= acked_pcount;
3119 
3120 		tp->packets_out -= acked_pcount;
3121 		pkts_acked += acked_pcount;
3122 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3123 
3124 		/* Initial outgoing SYN's get put onto the write_queue
3125 		 * just like anything else we transmit.  It is not
3126 		 * true data, and if we misinform our callers that
3127 		 * this ACK acks real data, we will erroneously exit
3128 		 * connection startup slow start one packet too
3129 		 * quickly.  This is severely frowned upon behavior.
3130 		 */
3131 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3132 			flag |= FLAG_DATA_ACKED;
3133 		} else {
3134 			flag |= FLAG_SYN_ACKED;
3135 			tp->retrans_stamp = 0;
3136 		}
3137 
3138 		if (!fully_acked)
3139 			break;
3140 
3141 		tcp_unlink_write_queue(skb, sk);
3142 		sk_wmem_free_skb(sk, skb);
3143 		if (unlikely(skb == tp->retransmit_skb_hint))
3144 			tp->retransmit_skb_hint = NULL;
3145 		if (unlikely(skb == tp->lost_skb_hint))
3146 			tp->lost_skb_hint = NULL;
3147 	}
3148 
3149 	if (!skb)
3150 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3151 
3152 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3153 		tp->snd_up = tp->snd_una;
3154 
3155 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3156 		flag |= FLAG_SACK_RENEGING;
3157 
3158 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3159 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3160 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3161 	}
3162 	if (sack->first_sackt.v64) {
3163 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3164 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3165 	}
3166 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3167 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3168 					ca_rtt_us);
3169 
3170 	if (flag & FLAG_ACKED) {
3171 		tcp_rearm_rto(sk);
3172 		if (unlikely(icsk->icsk_mtup.probe_size &&
3173 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3174 			tcp_mtup_probe_success(sk);
3175 		}
3176 
3177 		if (tcp_is_reno(tp)) {
3178 			tcp_remove_reno_sacks(sk, pkts_acked);
3179 		} else {
3180 			int delta;
3181 
3182 			/* Non-retransmitted hole got filled? That's reordering */
3183 			if (reord < prior_fackets)
3184 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3185 
3186 			delta = tcp_is_fack(tp) ? pkts_acked :
3187 						  prior_sacked - tp->sacked_out;
3188 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3189 		}
3190 
3191 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3192 
3193 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3194 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3195 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3196 		 * after when the head was last (re)transmitted. Otherwise the
3197 		 * timeout may continue to extend in loss recovery.
3198 		 */
3199 		tcp_rearm_rto(sk);
3200 	}
3201 
3202 	if (icsk->icsk_ca_ops->pkts_acked) {
3203 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3204 					     .rtt_us = ca_rtt_us,
3205 					     .in_flight = last_in_flight };
3206 
3207 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3208 	}
3209 
3210 #if FASTRETRANS_DEBUG > 0
3211 	WARN_ON((int)tp->sacked_out < 0);
3212 	WARN_ON((int)tp->lost_out < 0);
3213 	WARN_ON((int)tp->retrans_out < 0);
3214 	if (!tp->packets_out && tcp_is_sack(tp)) {
3215 		icsk = inet_csk(sk);
3216 		if (tp->lost_out) {
3217 			pr_debug("Leak l=%u %d\n",
3218 				 tp->lost_out, icsk->icsk_ca_state);
3219 			tp->lost_out = 0;
3220 		}
3221 		if (tp->sacked_out) {
3222 			pr_debug("Leak s=%u %d\n",
3223 				 tp->sacked_out, icsk->icsk_ca_state);
3224 			tp->sacked_out = 0;
3225 		}
3226 		if (tp->retrans_out) {
3227 			pr_debug("Leak r=%u %d\n",
3228 				 tp->retrans_out, icsk->icsk_ca_state);
3229 			tp->retrans_out = 0;
3230 		}
3231 	}
3232 #endif
3233 	*acked = pkts_acked;
3234 	return flag;
3235 }
3236 
3237 static void tcp_ack_probe(struct sock *sk)
3238 {
3239 	const struct tcp_sock *tp = tcp_sk(sk);
3240 	struct inet_connection_sock *icsk = inet_csk(sk);
3241 
3242 	/* Was it a usable window open? */
3243 
3244 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3245 		icsk->icsk_backoff = 0;
3246 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3247 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3248 		 * This function is not for random using!
3249 		 */
3250 	} else {
3251 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3252 
3253 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3254 					  when, TCP_RTO_MAX);
3255 	}
3256 }
3257 
3258 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3259 {
3260 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3261 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3262 }
3263 
3264 /* Decide wheather to run the increase function of congestion control. */
3265 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3266 {
3267 	/* If reordering is high then always grow cwnd whenever data is
3268 	 * delivered regardless of its ordering. Otherwise stay conservative
3269 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3270 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3271 	 * cwnd in tcp_fastretrans_alert() based on more states.
3272 	 */
3273 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3274 		return flag & FLAG_FORWARD_PROGRESS;
3275 
3276 	return flag & FLAG_DATA_ACKED;
3277 }
3278 
3279 /* The "ultimate" congestion control function that aims to replace the rigid
3280  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3281  * It's called toward the end of processing an ACK with precise rate
3282  * information. All transmission or retransmission are delayed afterwards.
3283  */
3284 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3285 			     int flag, const struct rate_sample *rs)
3286 {
3287 	const struct inet_connection_sock *icsk = inet_csk(sk);
3288 
3289 	if (icsk->icsk_ca_ops->cong_control) {
3290 		icsk->icsk_ca_ops->cong_control(sk, rs);
3291 		return;
3292 	}
3293 
3294 	if (tcp_in_cwnd_reduction(sk)) {
3295 		/* Reduce cwnd if state mandates */
3296 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3297 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3298 		/* Advance cwnd if state allows */
3299 		tcp_cong_avoid(sk, ack, acked_sacked);
3300 	}
3301 	tcp_update_pacing_rate(sk);
3302 }
3303 
3304 /* Check that window update is acceptable.
3305  * The function assumes that snd_una<=ack<=snd_next.
3306  */
3307 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3308 					const u32 ack, const u32 ack_seq,
3309 					const u32 nwin)
3310 {
3311 	return	after(ack, tp->snd_una) ||
3312 		after(ack_seq, tp->snd_wl1) ||
3313 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3314 }
3315 
3316 /* If we update tp->snd_una, also update tp->bytes_acked */
3317 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3318 {
3319 	u32 delta = ack - tp->snd_una;
3320 
3321 	sock_owned_by_me((struct sock *)tp);
3322 	tp->bytes_acked += delta;
3323 	tp->snd_una = ack;
3324 }
3325 
3326 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3327 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3328 {
3329 	u32 delta = seq - tp->rcv_nxt;
3330 
3331 	sock_owned_by_me((struct sock *)tp);
3332 	tp->bytes_received += delta;
3333 	tp->rcv_nxt = seq;
3334 }
3335 
3336 /* Update our send window.
3337  *
3338  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3339  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3340  */
3341 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3342 				 u32 ack_seq)
3343 {
3344 	struct tcp_sock *tp = tcp_sk(sk);
3345 	int flag = 0;
3346 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3347 
3348 	if (likely(!tcp_hdr(skb)->syn))
3349 		nwin <<= tp->rx_opt.snd_wscale;
3350 
3351 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3352 		flag |= FLAG_WIN_UPDATE;
3353 		tcp_update_wl(tp, ack_seq);
3354 
3355 		if (tp->snd_wnd != nwin) {
3356 			tp->snd_wnd = nwin;
3357 
3358 			/* Note, it is the only place, where
3359 			 * fast path is recovered for sending TCP.
3360 			 */
3361 			tp->pred_flags = 0;
3362 			tcp_fast_path_check(sk);
3363 
3364 			if (tcp_send_head(sk))
3365 				tcp_slow_start_after_idle_check(sk);
3366 
3367 			if (nwin > tp->max_window) {
3368 				tp->max_window = nwin;
3369 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3370 			}
3371 		}
3372 	}
3373 
3374 	tcp_snd_una_update(tp, ack);
3375 
3376 	return flag;
3377 }
3378 
3379 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3380 				   u32 *last_oow_ack_time)
3381 {
3382 	if (*last_oow_ack_time) {
3383 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3384 
3385 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3386 			NET_INC_STATS(net, mib_idx);
3387 			return true;	/* rate-limited: don't send yet! */
3388 		}
3389 	}
3390 
3391 	*last_oow_ack_time = tcp_time_stamp;
3392 
3393 	return false;	/* not rate-limited: go ahead, send dupack now! */
3394 }
3395 
3396 /* Return true if we're currently rate-limiting out-of-window ACKs and
3397  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3398  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3399  * attacks that send repeated SYNs or ACKs for the same connection. To
3400  * do this, we do not send a duplicate SYNACK or ACK if the remote
3401  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3402  */
3403 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3404 			  int mib_idx, u32 *last_oow_ack_time)
3405 {
3406 	/* Data packets without SYNs are not likely part of an ACK loop. */
3407 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3408 	    !tcp_hdr(skb)->syn)
3409 		return false;
3410 
3411 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3412 }
3413 
3414 /* RFC 5961 7 [ACK Throttling] */
3415 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3416 {
3417 	/* unprotected vars, we dont care of overwrites */
3418 	static u32 challenge_timestamp;
3419 	static unsigned int challenge_count;
3420 	struct tcp_sock *tp = tcp_sk(sk);
3421 	u32 count, now;
3422 
3423 	/* First check our per-socket dupack rate limit. */
3424 	if (__tcp_oow_rate_limited(sock_net(sk),
3425 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3426 				   &tp->last_oow_ack_time))
3427 		return;
3428 
3429 	/* Then check host-wide RFC 5961 rate limit. */
3430 	now = jiffies / HZ;
3431 	if (now != challenge_timestamp) {
3432 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3433 
3434 		challenge_timestamp = now;
3435 		WRITE_ONCE(challenge_count, half +
3436 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3437 	}
3438 	count = READ_ONCE(challenge_count);
3439 	if (count > 0) {
3440 		WRITE_ONCE(challenge_count, count - 1);
3441 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3442 		tcp_send_ack(sk);
3443 	}
3444 }
3445 
3446 static void tcp_store_ts_recent(struct tcp_sock *tp)
3447 {
3448 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3449 	tp->rx_opt.ts_recent_stamp = get_seconds();
3450 }
3451 
3452 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3453 {
3454 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3455 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3456 		 * extra check below makes sure this can only happen
3457 		 * for pure ACK frames.  -DaveM
3458 		 *
3459 		 * Not only, also it occurs for expired timestamps.
3460 		 */
3461 
3462 		if (tcp_paws_check(&tp->rx_opt, 0))
3463 			tcp_store_ts_recent(tp);
3464 	}
3465 }
3466 
3467 /* This routine deals with acks during a TLP episode.
3468  * We mark the end of a TLP episode on receiving TLP dupack or when
3469  * ack is after tlp_high_seq.
3470  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3471  */
3472 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3473 {
3474 	struct tcp_sock *tp = tcp_sk(sk);
3475 
3476 	if (before(ack, tp->tlp_high_seq))
3477 		return;
3478 
3479 	if (flag & FLAG_DSACKING_ACK) {
3480 		/* This DSACK means original and TLP probe arrived; no loss */
3481 		tp->tlp_high_seq = 0;
3482 	} else if (after(ack, tp->tlp_high_seq)) {
3483 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3484 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3485 		 */
3486 		tcp_init_cwnd_reduction(sk);
3487 		tcp_set_ca_state(sk, TCP_CA_CWR);
3488 		tcp_end_cwnd_reduction(sk);
3489 		tcp_try_keep_open(sk);
3490 		NET_INC_STATS(sock_net(sk),
3491 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3492 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3493 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3494 		/* Pure dupack: original and TLP probe arrived; no loss */
3495 		tp->tlp_high_seq = 0;
3496 	}
3497 }
3498 
3499 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3500 {
3501 	const struct inet_connection_sock *icsk = inet_csk(sk);
3502 
3503 	if (icsk->icsk_ca_ops->in_ack_event)
3504 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3505 }
3506 
3507 /* Congestion control has updated the cwnd already. So if we're in
3508  * loss recovery then now we do any new sends (for FRTO) or
3509  * retransmits (for CA_Loss or CA_recovery) that make sense.
3510  */
3511 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3512 {
3513 	struct tcp_sock *tp = tcp_sk(sk);
3514 
3515 	if (rexmit == REXMIT_NONE)
3516 		return;
3517 
3518 	if (unlikely(rexmit == 2)) {
3519 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3520 					  TCP_NAGLE_OFF);
3521 		if (after(tp->snd_nxt, tp->high_seq))
3522 			return;
3523 		tp->frto = 0;
3524 	}
3525 	tcp_xmit_retransmit_queue(sk);
3526 }
3527 
3528 /* This routine deals with incoming acks, but not outgoing ones. */
3529 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3530 {
3531 	struct inet_connection_sock *icsk = inet_csk(sk);
3532 	struct tcp_sock *tp = tcp_sk(sk);
3533 	struct tcp_sacktag_state sack_state;
3534 	struct rate_sample rs = { .prior_delivered = 0 };
3535 	u32 prior_snd_una = tp->snd_una;
3536 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3537 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3538 	bool is_dupack = false;
3539 	u32 prior_fackets;
3540 	int prior_packets = tp->packets_out;
3541 	u32 delivered = tp->delivered;
3542 	u32 lost = tp->lost;
3543 	int acked = 0; /* Number of packets newly acked */
3544 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3545 
3546 	sack_state.first_sackt.v64 = 0;
3547 	sack_state.rate = &rs;
3548 
3549 	/* We very likely will need to access write queue head. */
3550 	prefetchw(sk->sk_write_queue.next);
3551 
3552 	/* If the ack is older than previous acks
3553 	 * then we can probably ignore it.
3554 	 */
3555 	if (before(ack, prior_snd_una)) {
3556 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3557 		if (before(ack, prior_snd_una - tp->max_window)) {
3558 			tcp_send_challenge_ack(sk, skb);
3559 			return -1;
3560 		}
3561 		goto old_ack;
3562 	}
3563 
3564 	/* If the ack includes data we haven't sent yet, discard
3565 	 * this segment (RFC793 Section 3.9).
3566 	 */
3567 	if (after(ack, tp->snd_nxt))
3568 		goto invalid_ack;
3569 
3570 	skb_mstamp_get(&sack_state.ack_time);
3571 
3572 	if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3573 		tcp_rearm_rto(sk);
3574 
3575 	if (after(ack, prior_snd_una)) {
3576 		flag |= FLAG_SND_UNA_ADVANCED;
3577 		icsk->icsk_retransmits = 0;
3578 	}
3579 
3580 	prior_fackets = tp->fackets_out;
3581 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3582 
3583 	/* ts_recent update must be made after we are sure that the packet
3584 	 * is in window.
3585 	 */
3586 	if (flag & FLAG_UPDATE_TS_RECENT)
3587 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3588 
3589 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3590 		/* Window is constant, pure forward advance.
3591 		 * No more checks are required.
3592 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3593 		 */
3594 		tcp_update_wl(tp, ack_seq);
3595 		tcp_snd_una_update(tp, ack);
3596 		flag |= FLAG_WIN_UPDATE;
3597 
3598 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3599 
3600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3601 	} else {
3602 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3603 
3604 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3605 			flag |= FLAG_DATA;
3606 		else
3607 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3608 
3609 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3610 
3611 		if (TCP_SKB_CB(skb)->sacked)
3612 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3613 							&sack_state);
3614 
3615 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3616 			flag |= FLAG_ECE;
3617 			ack_ev_flags |= CA_ACK_ECE;
3618 		}
3619 
3620 		if (flag & FLAG_WIN_UPDATE)
3621 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3622 
3623 		tcp_in_ack_event(sk, ack_ev_flags);
3624 	}
3625 
3626 	/* We passed data and got it acked, remove any soft error
3627 	 * log. Something worked...
3628 	 */
3629 	sk->sk_err_soft = 0;
3630 	icsk->icsk_probes_out = 0;
3631 	tp->rcv_tstamp = tcp_time_stamp;
3632 	if (!prior_packets)
3633 		goto no_queue;
3634 
3635 	/* See if we can take anything off of the retransmit queue. */
3636 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3637 				    &sack_state);
3638 
3639 	if (tcp_ack_is_dubious(sk, flag)) {
3640 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3641 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3642 				      &sack_state.ack_time);
3643 	}
3644 	if (tp->tlp_high_seq)
3645 		tcp_process_tlp_ack(sk, ack, flag);
3646 
3647 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3648 		sk_dst_confirm(sk);
3649 
3650 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3651 		tcp_schedule_loss_probe(sk);
3652 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3653 	lost = tp->lost - lost;			/* freshly marked lost */
3654 	tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time,
3655 		     sack_state.rate);
3656 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3657 	tcp_xmit_recovery(sk, rexmit);
3658 	return 1;
3659 
3660 no_queue:
3661 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3662 	if (flag & FLAG_DSACKING_ACK)
3663 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3664 				      &sack_state.ack_time);
3665 	/* If this ack opens up a zero window, clear backoff.  It was
3666 	 * being used to time the probes, and is probably far higher than
3667 	 * it needs to be for normal retransmission.
3668 	 */
3669 	if (tcp_send_head(sk))
3670 		tcp_ack_probe(sk);
3671 
3672 	if (tp->tlp_high_seq)
3673 		tcp_process_tlp_ack(sk, ack, flag);
3674 	return 1;
3675 
3676 invalid_ack:
3677 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3678 	return -1;
3679 
3680 old_ack:
3681 	/* If data was SACKed, tag it and see if we should send more data.
3682 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3683 	 */
3684 	if (TCP_SKB_CB(skb)->sacked) {
3685 		skb_mstamp_get(&sack_state.ack_time);
3686 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3687 						&sack_state);
3688 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3689 				      &sack_state.ack_time);
3690 		tcp_xmit_recovery(sk, rexmit);
3691 	}
3692 
3693 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 	return 0;
3695 }
3696 
3697 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3698 				      bool syn, struct tcp_fastopen_cookie *foc,
3699 				      bool exp_opt)
3700 {
3701 	/* Valid only in SYN or SYN-ACK with an even length.  */
3702 	if (!foc || !syn || len < 0 || (len & 1))
3703 		return;
3704 
3705 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3706 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3707 		memcpy(foc->val, cookie, len);
3708 	else if (len != 0)
3709 		len = -1;
3710 	foc->len = len;
3711 	foc->exp = exp_opt;
3712 }
3713 
3714 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3715  * But, this can also be called on packets in the established flow when
3716  * the fast version below fails.
3717  */
3718 void tcp_parse_options(const struct sk_buff *skb,
3719 		       struct tcp_options_received *opt_rx, int estab,
3720 		       struct tcp_fastopen_cookie *foc)
3721 {
3722 	const unsigned char *ptr;
3723 	const struct tcphdr *th = tcp_hdr(skb);
3724 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3725 
3726 	ptr = (const unsigned char *)(th + 1);
3727 	opt_rx->saw_tstamp = 0;
3728 
3729 	while (length > 0) {
3730 		int opcode = *ptr++;
3731 		int opsize;
3732 
3733 		switch (opcode) {
3734 		case TCPOPT_EOL:
3735 			return;
3736 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3737 			length--;
3738 			continue;
3739 		default:
3740 			opsize = *ptr++;
3741 			if (opsize < 2) /* "silly options" */
3742 				return;
3743 			if (opsize > length)
3744 				return;	/* don't parse partial options */
3745 			switch (opcode) {
3746 			case TCPOPT_MSS:
3747 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3748 					u16 in_mss = get_unaligned_be16(ptr);
3749 					if (in_mss) {
3750 						if (opt_rx->user_mss &&
3751 						    opt_rx->user_mss < in_mss)
3752 							in_mss = opt_rx->user_mss;
3753 						opt_rx->mss_clamp = in_mss;
3754 					}
3755 				}
3756 				break;
3757 			case TCPOPT_WINDOW:
3758 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3759 				    !estab && sysctl_tcp_window_scaling) {
3760 					__u8 snd_wscale = *(__u8 *)ptr;
3761 					opt_rx->wscale_ok = 1;
3762 					if (snd_wscale > 14) {
3763 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3764 								     __func__,
3765 								     snd_wscale);
3766 						snd_wscale = 14;
3767 					}
3768 					opt_rx->snd_wscale = snd_wscale;
3769 				}
3770 				break;
3771 			case TCPOPT_TIMESTAMP:
3772 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3773 				    ((estab && opt_rx->tstamp_ok) ||
3774 				     (!estab && sysctl_tcp_timestamps))) {
3775 					opt_rx->saw_tstamp = 1;
3776 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3777 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3778 				}
3779 				break;
3780 			case TCPOPT_SACK_PERM:
3781 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3782 				    !estab && sysctl_tcp_sack) {
3783 					opt_rx->sack_ok = TCP_SACK_SEEN;
3784 					tcp_sack_reset(opt_rx);
3785 				}
3786 				break;
3787 
3788 			case TCPOPT_SACK:
3789 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3790 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3791 				   opt_rx->sack_ok) {
3792 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3793 				}
3794 				break;
3795 #ifdef CONFIG_TCP_MD5SIG
3796 			case TCPOPT_MD5SIG:
3797 				/*
3798 				 * The MD5 Hash has already been
3799 				 * checked (see tcp_v{4,6}_do_rcv()).
3800 				 */
3801 				break;
3802 #endif
3803 			case TCPOPT_FASTOPEN:
3804 				tcp_parse_fastopen_option(
3805 					opsize - TCPOLEN_FASTOPEN_BASE,
3806 					ptr, th->syn, foc, false);
3807 				break;
3808 
3809 			case TCPOPT_EXP:
3810 				/* Fast Open option shares code 254 using a
3811 				 * 16 bits magic number.
3812 				 */
3813 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3814 				    get_unaligned_be16(ptr) ==
3815 				    TCPOPT_FASTOPEN_MAGIC)
3816 					tcp_parse_fastopen_option(opsize -
3817 						TCPOLEN_EXP_FASTOPEN_BASE,
3818 						ptr + 2, th->syn, foc, true);
3819 				break;
3820 
3821 			}
3822 			ptr += opsize-2;
3823 			length -= opsize;
3824 		}
3825 	}
3826 }
3827 EXPORT_SYMBOL(tcp_parse_options);
3828 
3829 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3830 {
3831 	const __be32 *ptr = (const __be32 *)(th + 1);
3832 
3833 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3834 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3835 		tp->rx_opt.saw_tstamp = 1;
3836 		++ptr;
3837 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3838 		++ptr;
3839 		if (*ptr)
3840 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3841 		else
3842 			tp->rx_opt.rcv_tsecr = 0;
3843 		return true;
3844 	}
3845 	return false;
3846 }
3847 
3848 /* Fast parse options. This hopes to only see timestamps.
3849  * If it is wrong it falls back on tcp_parse_options().
3850  */
3851 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3852 				   const struct tcphdr *th, struct tcp_sock *tp)
3853 {
3854 	/* In the spirit of fast parsing, compare doff directly to constant
3855 	 * values.  Because equality is used, short doff can be ignored here.
3856 	 */
3857 	if (th->doff == (sizeof(*th) / 4)) {
3858 		tp->rx_opt.saw_tstamp = 0;
3859 		return false;
3860 	} else if (tp->rx_opt.tstamp_ok &&
3861 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3862 		if (tcp_parse_aligned_timestamp(tp, th))
3863 			return true;
3864 	}
3865 
3866 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3867 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3868 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3869 
3870 	return true;
3871 }
3872 
3873 #ifdef CONFIG_TCP_MD5SIG
3874 /*
3875  * Parse MD5 Signature option
3876  */
3877 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3878 {
3879 	int length = (th->doff << 2) - sizeof(*th);
3880 	const u8 *ptr = (const u8 *)(th + 1);
3881 
3882 	/* If the TCP option is too short, we can short cut */
3883 	if (length < TCPOLEN_MD5SIG)
3884 		return NULL;
3885 
3886 	while (length > 0) {
3887 		int opcode = *ptr++;
3888 		int opsize;
3889 
3890 		switch (opcode) {
3891 		case TCPOPT_EOL:
3892 			return NULL;
3893 		case TCPOPT_NOP:
3894 			length--;
3895 			continue;
3896 		default:
3897 			opsize = *ptr++;
3898 			if (opsize < 2 || opsize > length)
3899 				return NULL;
3900 			if (opcode == TCPOPT_MD5SIG)
3901 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3902 		}
3903 		ptr += opsize - 2;
3904 		length -= opsize;
3905 	}
3906 	return NULL;
3907 }
3908 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3909 #endif
3910 
3911 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3912  *
3913  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3914  * it can pass through stack. So, the following predicate verifies that
3915  * this segment is not used for anything but congestion avoidance or
3916  * fast retransmit. Moreover, we even are able to eliminate most of such
3917  * second order effects, if we apply some small "replay" window (~RTO)
3918  * to timestamp space.
3919  *
3920  * All these measures still do not guarantee that we reject wrapped ACKs
3921  * on networks with high bandwidth, when sequence space is recycled fastly,
3922  * but it guarantees that such events will be very rare and do not affect
3923  * connection seriously. This doesn't look nice, but alas, PAWS is really
3924  * buggy extension.
3925  *
3926  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3927  * states that events when retransmit arrives after original data are rare.
3928  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3929  * the biggest problem on large power networks even with minor reordering.
3930  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3931  * up to bandwidth of 18Gigabit/sec. 8) ]
3932  */
3933 
3934 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3935 {
3936 	const struct tcp_sock *tp = tcp_sk(sk);
3937 	const struct tcphdr *th = tcp_hdr(skb);
3938 	u32 seq = TCP_SKB_CB(skb)->seq;
3939 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3940 
3941 	return (/* 1. Pure ACK with correct sequence number. */
3942 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3943 
3944 		/* 2. ... and duplicate ACK. */
3945 		ack == tp->snd_una &&
3946 
3947 		/* 3. ... and does not update window. */
3948 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3949 
3950 		/* 4. ... and sits in replay window. */
3951 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3952 }
3953 
3954 static inline bool tcp_paws_discard(const struct sock *sk,
3955 				   const struct sk_buff *skb)
3956 {
3957 	const struct tcp_sock *tp = tcp_sk(sk);
3958 
3959 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3960 	       !tcp_disordered_ack(sk, skb);
3961 }
3962 
3963 /* Check segment sequence number for validity.
3964  *
3965  * Segment controls are considered valid, if the segment
3966  * fits to the window after truncation to the window. Acceptability
3967  * of data (and SYN, FIN, of course) is checked separately.
3968  * See tcp_data_queue(), for example.
3969  *
3970  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3971  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3972  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3973  * (borrowed from freebsd)
3974  */
3975 
3976 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3977 {
3978 	return	!before(end_seq, tp->rcv_wup) &&
3979 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3980 }
3981 
3982 /* When we get a reset we do this. */
3983 void tcp_reset(struct sock *sk)
3984 {
3985 	/* We want the right error as BSD sees it (and indeed as we do). */
3986 	switch (sk->sk_state) {
3987 	case TCP_SYN_SENT:
3988 		sk->sk_err = ECONNREFUSED;
3989 		break;
3990 	case TCP_CLOSE_WAIT:
3991 		sk->sk_err = EPIPE;
3992 		break;
3993 	case TCP_CLOSE:
3994 		return;
3995 	default:
3996 		sk->sk_err = ECONNRESET;
3997 	}
3998 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3999 	smp_wmb();
4000 
4001 	if (!sock_flag(sk, SOCK_DEAD))
4002 		sk->sk_error_report(sk);
4003 
4004 	tcp_done(sk);
4005 }
4006 
4007 /*
4008  * 	Process the FIN bit. This now behaves as it is supposed to work
4009  *	and the FIN takes effect when it is validly part of sequence
4010  *	space. Not before when we get holes.
4011  *
4012  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4013  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4014  *	TIME-WAIT)
4015  *
4016  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4017  *	close and we go into CLOSING (and later onto TIME-WAIT)
4018  *
4019  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4020  */
4021 void tcp_fin(struct sock *sk)
4022 {
4023 	struct tcp_sock *tp = tcp_sk(sk);
4024 
4025 	inet_csk_schedule_ack(sk);
4026 
4027 	sk->sk_shutdown |= RCV_SHUTDOWN;
4028 	sock_set_flag(sk, SOCK_DONE);
4029 
4030 	switch (sk->sk_state) {
4031 	case TCP_SYN_RECV:
4032 	case TCP_ESTABLISHED:
4033 		/* Move to CLOSE_WAIT */
4034 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4035 		inet_csk(sk)->icsk_ack.pingpong = 1;
4036 		break;
4037 
4038 	case TCP_CLOSE_WAIT:
4039 	case TCP_CLOSING:
4040 		/* Received a retransmission of the FIN, do
4041 		 * nothing.
4042 		 */
4043 		break;
4044 	case TCP_LAST_ACK:
4045 		/* RFC793: Remain in the LAST-ACK state. */
4046 		break;
4047 
4048 	case TCP_FIN_WAIT1:
4049 		/* This case occurs when a simultaneous close
4050 		 * happens, we must ack the received FIN and
4051 		 * enter the CLOSING state.
4052 		 */
4053 		tcp_send_ack(sk);
4054 		tcp_set_state(sk, TCP_CLOSING);
4055 		break;
4056 	case TCP_FIN_WAIT2:
4057 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4058 		tcp_send_ack(sk);
4059 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4060 		break;
4061 	default:
4062 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4063 		 * cases we should never reach this piece of code.
4064 		 */
4065 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4066 		       __func__, sk->sk_state);
4067 		break;
4068 	}
4069 
4070 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4071 	 * Probably, we should reset in this case. For now drop them.
4072 	 */
4073 	skb_rbtree_purge(&tp->out_of_order_queue);
4074 	if (tcp_is_sack(tp))
4075 		tcp_sack_reset(&tp->rx_opt);
4076 	sk_mem_reclaim(sk);
4077 
4078 	if (!sock_flag(sk, SOCK_DEAD)) {
4079 		sk->sk_state_change(sk);
4080 
4081 		/* Do not send POLL_HUP for half duplex close. */
4082 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4083 		    sk->sk_state == TCP_CLOSE)
4084 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4085 		else
4086 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4087 	}
4088 }
4089 
4090 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4091 				  u32 end_seq)
4092 {
4093 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4094 		if (before(seq, sp->start_seq))
4095 			sp->start_seq = seq;
4096 		if (after(end_seq, sp->end_seq))
4097 			sp->end_seq = end_seq;
4098 		return true;
4099 	}
4100 	return false;
4101 }
4102 
4103 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4104 {
4105 	struct tcp_sock *tp = tcp_sk(sk);
4106 
4107 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4108 		int mib_idx;
4109 
4110 		if (before(seq, tp->rcv_nxt))
4111 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4112 		else
4113 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4114 
4115 		NET_INC_STATS(sock_net(sk), mib_idx);
4116 
4117 		tp->rx_opt.dsack = 1;
4118 		tp->duplicate_sack[0].start_seq = seq;
4119 		tp->duplicate_sack[0].end_seq = end_seq;
4120 	}
4121 }
4122 
4123 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4124 {
4125 	struct tcp_sock *tp = tcp_sk(sk);
4126 
4127 	if (!tp->rx_opt.dsack)
4128 		tcp_dsack_set(sk, seq, end_seq);
4129 	else
4130 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4131 }
4132 
4133 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4134 {
4135 	struct tcp_sock *tp = tcp_sk(sk);
4136 
4137 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4138 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4139 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4140 		tcp_enter_quickack_mode(sk);
4141 
4142 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4143 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4144 
4145 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4146 				end_seq = tp->rcv_nxt;
4147 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4148 		}
4149 	}
4150 
4151 	tcp_send_ack(sk);
4152 }
4153 
4154 /* These routines update the SACK block as out-of-order packets arrive or
4155  * in-order packets close up the sequence space.
4156  */
4157 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4158 {
4159 	int this_sack;
4160 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4161 	struct tcp_sack_block *swalk = sp + 1;
4162 
4163 	/* See if the recent change to the first SACK eats into
4164 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4165 	 */
4166 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4167 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4168 			int i;
4169 
4170 			/* Zap SWALK, by moving every further SACK up by one slot.
4171 			 * Decrease num_sacks.
4172 			 */
4173 			tp->rx_opt.num_sacks--;
4174 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4175 				sp[i] = sp[i + 1];
4176 			continue;
4177 		}
4178 		this_sack++, swalk++;
4179 	}
4180 }
4181 
4182 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4183 {
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4186 	int cur_sacks = tp->rx_opt.num_sacks;
4187 	int this_sack;
4188 
4189 	if (!cur_sacks)
4190 		goto new_sack;
4191 
4192 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4193 		if (tcp_sack_extend(sp, seq, end_seq)) {
4194 			/* Rotate this_sack to the first one. */
4195 			for (; this_sack > 0; this_sack--, sp--)
4196 				swap(*sp, *(sp - 1));
4197 			if (cur_sacks > 1)
4198 				tcp_sack_maybe_coalesce(tp);
4199 			return;
4200 		}
4201 	}
4202 
4203 	/* Could not find an adjacent existing SACK, build a new one,
4204 	 * put it at the front, and shift everyone else down.  We
4205 	 * always know there is at least one SACK present already here.
4206 	 *
4207 	 * If the sack array is full, forget about the last one.
4208 	 */
4209 	if (this_sack >= TCP_NUM_SACKS) {
4210 		this_sack--;
4211 		tp->rx_opt.num_sacks--;
4212 		sp--;
4213 	}
4214 	for (; this_sack > 0; this_sack--, sp--)
4215 		*sp = *(sp - 1);
4216 
4217 new_sack:
4218 	/* Build the new head SACK, and we're done. */
4219 	sp->start_seq = seq;
4220 	sp->end_seq = end_seq;
4221 	tp->rx_opt.num_sacks++;
4222 }
4223 
4224 /* RCV.NXT advances, some SACKs should be eaten. */
4225 
4226 static void tcp_sack_remove(struct tcp_sock *tp)
4227 {
4228 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4229 	int num_sacks = tp->rx_opt.num_sacks;
4230 	int this_sack;
4231 
4232 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4233 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4234 		tp->rx_opt.num_sacks = 0;
4235 		return;
4236 	}
4237 
4238 	for (this_sack = 0; this_sack < num_sacks;) {
4239 		/* Check if the start of the sack is covered by RCV.NXT. */
4240 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4241 			int i;
4242 
4243 			/* RCV.NXT must cover all the block! */
4244 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4245 
4246 			/* Zap this SACK, by moving forward any other SACKS. */
4247 			for (i = this_sack+1; i < num_sacks; i++)
4248 				tp->selective_acks[i-1] = tp->selective_acks[i];
4249 			num_sacks--;
4250 			continue;
4251 		}
4252 		this_sack++;
4253 		sp++;
4254 	}
4255 	tp->rx_opt.num_sacks = num_sacks;
4256 }
4257 
4258 /**
4259  * tcp_try_coalesce - try to merge skb to prior one
4260  * @sk: socket
4261  * @to: prior buffer
4262  * @from: buffer to add in queue
4263  * @fragstolen: pointer to boolean
4264  *
4265  * Before queueing skb @from after @to, try to merge them
4266  * to reduce overall memory use and queue lengths, if cost is small.
4267  * Packets in ofo or receive queues can stay a long time.
4268  * Better try to coalesce them right now to avoid future collapses.
4269  * Returns true if caller should free @from instead of queueing it
4270  */
4271 static bool tcp_try_coalesce(struct sock *sk,
4272 			     struct sk_buff *to,
4273 			     struct sk_buff *from,
4274 			     bool *fragstolen)
4275 {
4276 	int delta;
4277 
4278 	*fragstolen = false;
4279 
4280 	/* Its possible this segment overlaps with prior segment in queue */
4281 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4282 		return false;
4283 
4284 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4285 		return false;
4286 
4287 	atomic_add(delta, &sk->sk_rmem_alloc);
4288 	sk_mem_charge(sk, delta);
4289 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4290 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4291 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4292 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4293 	return true;
4294 }
4295 
4296 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4297 {
4298 	sk_drops_add(sk, skb);
4299 	__kfree_skb(skb);
4300 }
4301 
4302 /* This one checks to see if we can put data from the
4303  * out_of_order queue into the receive_queue.
4304  */
4305 static void tcp_ofo_queue(struct sock *sk)
4306 {
4307 	struct tcp_sock *tp = tcp_sk(sk);
4308 	__u32 dsack_high = tp->rcv_nxt;
4309 	bool fin, fragstolen, eaten;
4310 	struct sk_buff *skb, *tail;
4311 	struct rb_node *p;
4312 
4313 	p = rb_first(&tp->out_of_order_queue);
4314 	while (p) {
4315 		skb = rb_entry(p, struct sk_buff, rbnode);
4316 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4317 			break;
4318 
4319 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4320 			__u32 dsack = dsack_high;
4321 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4322 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4323 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4324 		}
4325 		p = rb_next(p);
4326 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4327 
4328 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4329 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4330 			tcp_drop(sk, skb);
4331 			continue;
4332 		}
4333 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4334 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4335 			   TCP_SKB_CB(skb)->end_seq);
4336 
4337 		tail = skb_peek_tail(&sk->sk_receive_queue);
4338 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4339 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4340 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4341 		if (!eaten)
4342 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4343 		else
4344 			kfree_skb_partial(skb, fragstolen);
4345 
4346 		if (unlikely(fin)) {
4347 			tcp_fin(sk);
4348 			/* tcp_fin() purges tp->out_of_order_queue,
4349 			 * so we must end this loop right now.
4350 			 */
4351 			break;
4352 		}
4353 	}
4354 }
4355 
4356 static bool tcp_prune_ofo_queue(struct sock *sk);
4357 static int tcp_prune_queue(struct sock *sk);
4358 
4359 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4360 				 unsigned int size)
4361 {
4362 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4363 	    !sk_rmem_schedule(sk, skb, size)) {
4364 
4365 		if (tcp_prune_queue(sk) < 0)
4366 			return -1;
4367 
4368 		while (!sk_rmem_schedule(sk, skb, size)) {
4369 			if (!tcp_prune_ofo_queue(sk))
4370 				return -1;
4371 		}
4372 	}
4373 	return 0;
4374 }
4375 
4376 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4377 {
4378 	struct tcp_sock *tp = tcp_sk(sk);
4379 	struct rb_node **p, *q, *parent;
4380 	struct sk_buff *skb1;
4381 	u32 seq, end_seq;
4382 	bool fragstolen;
4383 
4384 	tcp_ecn_check_ce(tp, skb);
4385 
4386 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4387 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4388 		tcp_drop(sk, skb);
4389 		return;
4390 	}
4391 
4392 	/* Disable header prediction. */
4393 	tp->pred_flags = 0;
4394 	inet_csk_schedule_ack(sk);
4395 
4396 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4397 	seq = TCP_SKB_CB(skb)->seq;
4398 	end_seq = TCP_SKB_CB(skb)->end_seq;
4399 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4400 		   tp->rcv_nxt, seq, end_seq);
4401 
4402 	p = &tp->out_of_order_queue.rb_node;
4403 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4404 		/* Initial out of order segment, build 1 SACK. */
4405 		if (tcp_is_sack(tp)) {
4406 			tp->rx_opt.num_sacks = 1;
4407 			tp->selective_acks[0].start_seq = seq;
4408 			tp->selective_acks[0].end_seq = end_seq;
4409 		}
4410 		rb_link_node(&skb->rbnode, NULL, p);
4411 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4412 		tp->ooo_last_skb = skb;
4413 		goto end;
4414 	}
4415 
4416 	/* In the typical case, we are adding an skb to the end of the list.
4417 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4418 	 */
4419 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4420 coalesce_done:
4421 		tcp_grow_window(sk, skb);
4422 		kfree_skb_partial(skb, fragstolen);
4423 		skb = NULL;
4424 		goto add_sack;
4425 	}
4426 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4427 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4428 		parent = &tp->ooo_last_skb->rbnode;
4429 		p = &parent->rb_right;
4430 		goto insert;
4431 	}
4432 
4433 	/* Find place to insert this segment. Handle overlaps on the way. */
4434 	parent = NULL;
4435 	while (*p) {
4436 		parent = *p;
4437 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4438 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4439 			p = &parent->rb_left;
4440 			continue;
4441 		}
4442 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4443 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4444 				/* All the bits are present. Drop. */
4445 				NET_INC_STATS(sock_net(sk),
4446 					      LINUX_MIB_TCPOFOMERGE);
4447 				__kfree_skb(skb);
4448 				skb = NULL;
4449 				tcp_dsack_set(sk, seq, end_seq);
4450 				goto add_sack;
4451 			}
4452 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4453 				/* Partial overlap. */
4454 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4455 			} else {
4456 				/* skb's seq == skb1's seq and skb covers skb1.
4457 				 * Replace skb1 with skb.
4458 				 */
4459 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4460 						&tp->out_of_order_queue);
4461 				tcp_dsack_extend(sk,
4462 						 TCP_SKB_CB(skb1)->seq,
4463 						 TCP_SKB_CB(skb1)->end_seq);
4464 				NET_INC_STATS(sock_net(sk),
4465 					      LINUX_MIB_TCPOFOMERGE);
4466 				__kfree_skb(skb1);
4467 				goto merge_right;
4468 			}
4469 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4470 			goto coalesce_done;
4471 		}
4472 		p = &parent->rb_right;
4473 	}
4474 insert:
4475 	/* Insert segment into RB tree. */
4476 	rb_link_node(&skb->rbnode, parent, p);
4477 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4478 
4479 merge_right:
4480 	/* Remove other segments covered by skb. */
4481 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4482 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4483 
4484 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4485 			break;
4486 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4487 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4488 					 end_seq);
4489 			break;
4490 		}
4491 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4492 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4493 				 TCP_SKB_CB(skb1)->end_seq);
4494 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4495 		tcp_drop(sk, skb1);
4496 	}
4497 	/* If there is no skb after us, we are the last_skb ! */
4498 	if (!q)
4499 		tp->ooo_last_skb = skb;
4500 
4501 add_sack:
4502 	if (tcp_is_sack(tp))
4503 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4504 end:
4505 	if (skb) {
4506 		tcp_grow_window(sk, skb);
4507 		skb_condense(skb);
4508 		skb_set_owner_r(skb, sk);
4509 	}
4510 }
4511 
4512 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4513 		  bool *fragstolen)
4514 {
4515 	int eaten;
4516 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4517 
4518 	__skb_pull(skb, hdrlen);
4519 	eaten = (tail &&
4520 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4521 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4522 	if (!eaten) {
4523 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4524 		skb_set_owner_r(skb, sk);
4525 	}
4526 	return eaten;
4527 }
4528 
4529 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4530 {
4531 	struct sk_buff *skb;
4532 	int err = -ENOMEM;
4533 	int data_len = 0;
4534 	bool fragstolen;
4535 
4536 	if (size == 0)
4537 		return 0;
4538 
4539 	if (size > PAGE_SIZE) {
4540 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4541 
4542 		data_len = npages << PAGE_SHIFT;
4543 		size = data_len + (size & ~PAGE_MASK);
4544 	}
4545 	skb = alloc_skb_with_frags(size - data_len, data_len,
4546 				   PAGE_ALLOC_COSTLY_ORDER,
4547 				   &err, sk->sk_allocation);
4548 	if (!skb)
4549 		goto err;
4550 
4551 	skb_put(skb, size - data_len);
4552 	skb->data_len = data_len;
4553 	skb->len = size;
4554 
4555 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4556 		goto err_free;
4557 
4558 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4559 	if (err)
4560 		goto err_free;
4561 
4562 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4563 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4564 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4565 
4566 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4567 		WARN_ON_ONCE(fragstolen); /* should not happen */
4568 		__kfree_skb(skb);
4569 	}
4570 	return size;
4571 
4572 err_free:
4573 	kfree_skb(skb);
4574 err:
4575 	return err;
4576 
4577 }
4578 
4579 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4580 {
4581 	struct tcp_sock *tp = tcp_sk(sk);
4582 	bool fragstolen = false;
4583 	int eaten = -1;
4584 
4585 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4586 		__kfree_skb(skb);
4587 		return;
4588 	}
4589 	skb_dst_drop(skb);
4590 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4591 
4592 	tcp_ecn_accept_cwr(tp, skb);
4593 
4594 	tp->rx_opt.dsack = 0;
4595 
4596 	/*  Queue data for delivery to the user.
4597 	 *  Packets in sequence go to the receive queue.
4598 	 *  Out of sequence packets to the out_of_order_queue.
4599 	 */
4600 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601 		if (tcp_receive_window(tp) == 0)
4602 			goto out_of_window;
4603 
4604 		/* Ok. In sequence. In window. */
4605 		if (tp->ucopy.task == current &&
4606 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4607 		    sock_owned_by_user(sk) && !tp->urg_data) {
4608 			int chunk = min_t(unsigned int, skb->len,
4609 					  tp->ucopy.len);
4610 
4611 			__set_current_state(TASK_RUNNING);
4612 
4613 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4614 				tp->ucopy.len -= chunk;
4615 				tp->copied_seq += chunk;
4616 				eaten = (chunk == skb->len);
4617 				tcp_rcv_space_adjust(sk);
4618 			}
4619 		}
4620 
4621 		if (eaten <= 0) {
4622 queue_and_out:
4623 			if (eaten < 0) {
4624 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4625 					sk_forced_mem_schedule(sk, skb->truesize);
4626 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4627 					goto drop;
4628 			}
4629 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4630 		}
4631 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4632 		if (skb->len)
4633 			tcp_event_data_recv(sk, skb);
4634 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4635 			tcp_fin(sk);
4636 
4637 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4638 			tcp_ofo_queue(sk);
4639 
4640 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4641 			 * gap in queue is filled.
4642 			 */
4643 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4644 				inet_csk(sk)->icsk_ack.pingpong = 0;
4645 		}
4646 
4647 		if (tp->rx_opt.num_sacks)
4648 			tcp_sack_remove(tp);
4649 
4650 		tcp_fast_path_check(sk);
4651 
4652 		if (eaten > 0)
4653 			kfree_skb_partial(skb, fragstolen);
4654 		if (!sock_flag(sk, SOCK_DEAD))
4655 			sk->sk_data_ready(sk);
4656 		return;
4657 	}
4658 
4659 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4660 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4661 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4662 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4663 
4664 out_of_window:
4665 		tcp_enter_quickack_mode(sk);
4666 		inet_csk_schedule_ack(sk);
4667 drop:
4668 		tcp_drop(sk, skb);
4669 		return;
4670 	}
4671 
4672 	/* Out of window. F.e. zero window probe. */
4673 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4674 		goto out_of_window;
4675 
4676 	tcp_enter_quickack_mode(sk);
4677 
4678 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4679 		/* Partial packet, seq < rcv_next < end_seq */
4680 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4681 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4682 			   TCP_SKB_CB(skb)->end_seq);
4683 
4684 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4685 
4686 		/* If window is closed, drop tail of packet. But after
4687 		 * remembering D-SACK for its head made in previous line.
4688 		 */
4689 		if (!tcp_receive_window(tp))
4690 			goto out_of_window;
4691 		goto queue_and_out;
4692 	}
4693 
4694 	tcp_data_queue_ofo(sk, skb);
4695 }
4696 
4697 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4698 {
4699 	if (list)
4700 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4701 
4702 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4703 }
4704 
4705 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4706 					struct sk_buff_head *list,
4707 					struct rb_root *root)
4708 {
4709 	struct sk_buff *next = tcp_skb_next(skb, list);
4710 
4711 	if (list)
4712 		__skb_unlink(skb, list);
4713 	else
4714 		rb_erase(&skb->rbnode, root);
4715 
4716 	__kfree_skb(skb);
4717 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4718 
4719 	return next;
4720 }
4721 
4722 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4723 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4724 {
4725 	struct rb_node **p = &root->rb_node;
4726 	struct rb_node *parent = NULL;
4727 	struct sk_buff *skb1;
4728 
4729 	while (*p) {
4730 		parent = *p;
4731 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4732 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4733 			p = &parent->rb_left;
4734 		else
4735 			p = &parent->rb_right;
4736 	}
4737 	rb_link_node(&skb->rbnode, parent, p);
4738 	rb_insert_color(&skb->rbnode, root);
4739 }
4740 
4741 /* Collapse contiguous sequence of skbs head..tail with
4742  * sequence numbers start..end.
4743  *
4744  * If tail is NULL, this means until the end of the queue.
4745  *
4746  * Segments with FIN/SYN are not collapsed (only because this
4747  * simplifies code)
4748  */
4749 static void
4750 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4751 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4752 {
4753 	struct sk_buff *skb = head, *n;
4754 	struct sk_buff_head tmp;
4755 	bool end_of_skbs;
4756 
4757 	/* First, check that queue is collapsible and find
4758 	 * the point where collapsing can be useful.
4759 	 */
4760 restart:
4761 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4762 		n = tcp_skb_next(skb, list);
4763 
4764 		/* No new bits? It is possible on ofo queue. */
4765 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4766 			skb = tcp_collapse_one(sk, skb, list, root);
4767 			if (!skb)
4768 				break;
4769 			goto restart;
4770 		}
4771 
4772 		/* The first skb to collapse is:
4773 		 * - not SYN/FIN and
4774 		 * - bloated or contains data before "start" or
4775 		 *   overlaps to the next one.
4776 		 */
4777 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4778 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4779 		     before(TCP_SKB_CB(skb)->seq, start))) {
4780 			end_of_skbs = false;
4781 			break;
4782 		}
4783 
4784 		if (n && n != tail &&
4785 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4786 			end_of_skbs = false;
4787 			break;
4788 		}
4789 
4790 		/* Decided to skip this, advance start seq. */
4791 		start = TCP_SKB_CB(skb)->end_seq;
4792 	}
4793 	if (end_of_skbs ||
4794 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4795 		return;
4796 
4797 	__skb_queue_head_init(&tmp);
4798 
4799 	while (before(start, end)) {
4800 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4801 		struct sk_buff *nskb;
4802 
4803 		nskb = alloc_skb(copy, GFP_ATOMIC);
4804 		if (!nskb)
4805 			break;
4806 
4807 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4808 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4809 		if (list)
4810 			__skb_queue_before(list, skb, nskb);
4811 		else
4812 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4813 		skb_set_owner_r(nskb, sk);
4814 
4815 		/* Copy data, releasing collapsed skbs. */
4816 		while (copy > 0) {
4817 			int offset = start - TCP_SKB_CB(skb)->seq;
4818 			int size = TCP_SKB_CB(skb)->end_seq - start;
4819 
4820 			BUG_ON(offset < 0);
4821 			if (size > 0) {
4822 				size = min(copy, size);
4823 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4824 					BUG();
4825 				TCP_SKB_CB(nskb)->end_seq += size;
4826 				copy -= size;
4827 				start += size;
4828 			}
4829 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4830 				skb = tcp_collapse_one(sk, skb, list, root);
4831 				if (!skb ||
4832 				    skb == tail ||
4833 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4834 					goto end;
4835 			}
4836 		}
4837 	}
4838 end:
4839 	skb_queue_walk_safe(&tmp, skb, n)
4840 		tcp_rbtree_insert(root, skb);
4841 }
4842 
4843 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4844  * and tcp_collapse() them until all the queue is collapsed.
4845  */
4846 static void tcp_collapse_ofo_queue(struct sock *sk)
4847 {
4848 	struct tcp_sock *tp = tcp_sk(sk);
4849 	struct sk_buff *skb, *head;
4850 	struct rb_node *p;
4851 	u32 start, end;
4852 
4853 	p = rb_first(&tp->out_of_order_queue);
4854 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4855 new_range:
4856 	if (!skb) {
4857 		p = rb_last(&tp->out_of_order_queue);
4858 		/* Note: This is possible p is NULL here. We do not
4859 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4860 		 * if rbtree is not empty.
4861 		 */
4862 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4863 		return;
4864 	}
4865 	start = TCP_SKB_CB(skb)->seq;
4866 	end = TCP_SKB_CB(skb)->end_seq;
4867 
4868 	for (head = skb;;) {
4869 		skb = tcp_skb_next(skb, NULL);
4870 
4871 		/* Range is terminated when we see a gap or when
4872 		 * we are at the queue end.
4873 		 */
4874 		if (!skb ||
4875 		    after(TCP_SKB_CB(skb)->seq, end) ||
4876 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4877 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4878 				     head, skb, start, end);
4879 			goto new_range;
4880 		}
4881 
4882 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4883 			start = TCP_SKB_CB(skb)->seq;
4884 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4885 			end = TCP_SKB_CB(skb)->end_seq;
4886 	}
4887 }
4888 
4889 /*
4890  * Clean the out-of-order queue to make room.
4891  * We drop high sequences packets to :
4892  * 1) Let a chance for holes to be filled.
4893  * 2) not add too big latencies if thousands of packets sit there.
4894  *    (But if application shrinks SO_RCVBUF, we could still end up
4895  *     freeing whole queue here)
4896  *
4897  * Return true if queue has shrunk.
4898  */
4899 static bool tcp_prune_ofo_queue(struct sock *sk)
4900 {
4901 	struct tcp_sock *tp = tcp_sk(sk);
4902 	struct rb_node *node, *prev;
4903 
4904 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4905 		return false;
4906 
4907 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4908 	node = &tp->ooo_last_skb->rbnode;
4909 	do {
4910 		prev = rb_prev(node);
4911 		rb_erase(node, &tp->out_of_order_queue);
4912 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4913 		sk_mem_reclaim(sk);
4914 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4915 		    !tcp_under_memory_pressure(sk))
4916 			break;
4917 		node = prev;
4918 	} while (node);
4919 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4920 
4921 	/* Reset SACK state.  A conforming SACK implementation will
4922 	 * do the same at a timeout based retransmit.  When a connection
4923 	 * is in a sad state like this, we care only about integrity
4924 	 * of the connection not performance.
4925 	 */
4926 	if (tp->rx_opt.sack_ok)
4927 		tcp_sack_reset(&tp->rx_opt);
4928 	return true;
4929 }
4930 
4931 /* Reduce allocated memory if we can, trying to get
4932  * the socket within its memory limits again.
4933  *
4934  * Return less than zero if we should start dropping frames
4935  * until the socket owning process reads some of the data
4936  * to stabilize the situation.
4937  */
4938 static int tcp_prune_queue(struct sock *sk)
4939 {
4940 	struct tcp_sock *tp = tcp_sk(sk);
4941 
4942 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4943 
4944 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4945 
4946 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4947 		tcp_clamp_window(sk);
4948 	else if (tcp_under_memory_pressure(sk))
4949 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4950 
4951 	tcp_collapse_ofo_queue(sk);
4952 	if (!skb_queue_empty(&sk->sk_receive_queue))
4953 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4954 			     skb_peek(&sk->sk_receive_queue),
4955 			     NULL,
4956 			     tp->copied_seq, tp->rcv_nxt);
4957 	sk_mem_reclaim(sk);
4958 
4959 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4960 		return 0;
4961 
4962 	/* Collapsing did not help, destructive actions follow.
4963 	 * This must not ever occur. */
4964 
4965 	tcp_prune_ofo_queue(sk);
4966 
4967 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4968 		return 0;
4969 
4970 	/* If we are really being abused, tell the caller to silently
4971 	 * drop receive data on the floor.  It will get retransmitted
4972 	 * and hopefully then we'll have sufficient space.
4973 	 */
4974 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4975 
4976 	/* Massive buffer overcommit. */
4977 	tp->pred_flags = 0;
4978 	return -1;
4979 }
4980 
4981 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4982 {
4983 	const struct tcp_sock *tp = tcp_sk(sk);
4984 
4985 	/* If the user specified a specific send buffer setting, do
4986 	 * not modify it.
4987 	 */
4988 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4989 		return false;
4990 
4991 	/* If we are under global TCP memory pressure, do not expand.  */
4992 	if (tcp_under_memory_pressure(sk))
4993 		return false;
4994 
4995 	/* If we are under soft global TCP memory pressure, do not expand.  */
4996 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4997 		return false;
4998 
4999 	/* If we filled the congestion window, do not expand.  */
5000 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5001 		return false;
5002 
5003 	return true;
5004 }
5005 
5006 /* When incoming ACK allowed to free some skb from write_queue,
5007  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5008  * on the exit from tcp input handler.
5009  *
5010  * PROBLEM: sndbuf expansion does not work well with largesend.
5011  */
5012 static void tcp_new_space(struct sock *sk)
5013 {
5014 	struct tcp_sock *tp = tcp_sk(sk);
5015 
5016 	if (tcp_should_expand_sndbuf(sk)) {
5017 		tcp_sndbuf_expand(sk);
5018 		tp->snd_cwnd_stamp = tcp_time_stamp;
5019 	}
5020 
5021 	sk->sk_write_space(sk);
5022 }
5023 
5024 static void tcp_check_space(struct sock *sk)
5025 {
5026 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5027 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5028 		/* pairs with tcp_poll() */
5029 		smp_mb();
5030 		if (sk->sk_socket &&
5031 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5032 			tcp_new_space(sk);
5033 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5034 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5035 		}
5036 	}
5037 }
5038 
5039 static inline void tcp_data_snd_check(struct sock *sk)
5040 {
5041 	tcp_push_pending_frames(sk);
5042 	tcp_check_space(sk);
5043 }
5044 
5045 /*
5046  * Check if sending an ack is needed.
5047  */
5048 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5049 {
5050 	struct tcp_sock *tp = tcp_sk(sk);
5051 
5052 	    /* More than one full frame received... */
5053 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5054 	     /* ... and right edge of window advances far enough.
5055 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5056 	      */
5057 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5058 	    /* We ACK each frame or... */
5059 	    tcp_in_quickack_mode(sk) ||
5060 	    /* We have out of order data. */
5061 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5062 		/* Then ack it now */
5063 		tcp_send_ack(sk);
5064 	} else {
5065 		/* Else, send delayed ack. */
5066 		tcp_send_delayed_ack(sk);
5067 	}
5068 }
5069 
5070 static inline void tcp_ack_snd_check(struct sock *sk)
5071 {
5072 	if (!inet_csk_ack_scheduled(sk)) {
5073 		/* We sent a data segment already. */
5074 		return;
5075 	}
5076 	__tcp_ack_snd_check(sk, 1);
5077 }
5078 
5079 /*
5080  *	This routine is only called when we have urgent data
5081  *	signaled. Its the 'slow' part of tcp_urg. It could be
5082  *	moved inline now as tcp_urg is only called from one
5083  *	place. We handle URGent data wrong. We have to - as
5084  *	BSD still doesn't use the correction from RFC961.
5085  *	For 1003.1g we should support a new option TCP_STDURG to permit
5086  *	either form (or just set the sysctl tcp_stdurg).
5087  */
5088 
5089 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5090 {
5091 	struct tcp_sock *tp = tcp_sk(sk);
5092 	u32 ptr = ntohs(th->urg_ptr);
5093 
5094 	if (ptr && !sysctl_tcp_stdurg)
5095 		ptr--;
5096 	ptr += ntohl(th->seq);
5097 
5098 	/* Ignore urgent data that we've already seen and read. */
5099 	if (after(tp->copied_seq, ptr))
5100 		return;
5101 
5102 	/* Do not replay urg ptr.
5103 	 *
5104 	 * NOTE: interesting situation not covered by specs.
5105 	 * Misbehaving sender may send urg ptr, pointing to segment,
5106 	 * which we already have in ofo queue. We are not able to fetch
5107 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5108 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5109 	 * situations. But it is worth to think about possibility of some
5110 	 * DoSes using some hypothetical application level deadlock.
5111 	 */
5112 	if (before(ptr, tp->rcv_nxt))
5113 		return;
5114 
5115 	/* Do we already have a newer (or duplicate) urgent pointer? */
5116 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5117 		return;
5118 
5119 	/* Tell the world about our new urgent pointer. */
5120 	sk_send_sigurg(sk);
5121 
5122 	/* We may be adding urgent data when the last byte read was
5123 	 * urgent. To do this requires some care. We cannot just ignore
5124 	 * tp->copied_seq since we would read the last urgent byte again
5125 	 * as data, nor can we alter copied_seq until this data arrives
5126 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5127 	 *
5128 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5129 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5130 	 * and expect that both A and B disappear from stream. This is _wrong_.
5131 	 * Though this happens in BSD with high probability, this is occasional.
5132 	 * Any application relying on this is buggy. Note also, that fix "works"
5133 	 * only in this artificial test. Insert some normal data between A and B and we will
5134 	 * decline of BSD again. Verdict: it is better to remove to trap
5135 	 * buggy users.
5136 	 */
5137 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5138 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5139 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5140 		tp->copied_seq++;
5141 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5142 			__skb_unlink(skb, &sk->sk_receive_queue);
5143 			__kfree_skb(skb);
5144 		}
5145 	}
5146 
5147 	tp->urg_data = TCP_URG_NOTYET;
5148 	tp->urg_seq = ptr;
5149 
5150 	/* Disable header prediction. */
5151 	tp->pred_flags = 0;
5152 }
5153 
5154 /* This is the 'fast' part of urgent handling. */
5155 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5156 {
5157 	struct tcp_sock *tp = tcp_sk(sk);
5158 
5159 	/* Check if we get a new urgent pointer - normally not. */
5160 	if (th->urg)
5161 		tcp_check_urg(sk, th);
5162 
5163 	/* Do we wait for any urgent data? - normally not... */
5164 	if (tp->urg_data == TCP_URG_NOTYET) {
5165 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5166 			  th->syn;
5167 
5168 		/* Is the urgent pointer pointing into this packet? */
5169 		if (ptr < skb->len) {
5170 			u8 tmp;
5171 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5172 				BUG();
5173 			tp->urg_data = TCP_URG_VALID | tmp;
5174 			if (!sock_flag(sk, SOCK_DEAD))
5175 				sk->sk_data_ready(sk);
5176 		}
5177 	}
5178 }
5179 
5180 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5181 {
5182 	struct tcp_sock *tp = tcp_sk(sk);
5183 	int chunk = skb->len - hlen;
5184 	int err;
5185 
5186 	if (skb_csum_unnecessary(skb))
5187 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5188 	else
5189 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5190 
5191 	if (!err) {
5192 		tp->ucopy.len -= chunk;
5193 		tp->copied_seq += chunk;
5194 		tcp_rcv_space_adjust(sk);
5195 	}
5196 
5197 	return err;
5198 }
5199 
5200 /* Accept RST for rcv_nxt - 1 after a FIN.
5201  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5202  * FIN is sent followed by a RST packet. The RST is sent with the same
5203  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5204  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5205  * ACKs on the closed socket. In addition middleboxes can drop either the
5206  * challenge ACK or a subsequent RST.
5207  */
5208 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5209 {
5210 	struct tcp_sock *tp = tcp_sk(sk);
5211 
5212 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5213 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5214 					       TCPF_CLOSING));
5215 }
5216 
5217 /* Does PAWS and seqno based validation of an incoming segment, flags will
5218  * play significant role here.
5219  */
5220 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5221 				  const struct tcphdr *th, int syn_inerr)
5222 {
5223 	struct tcp_sock *tp = tcp_sk(sk);
5224 	bool rst_seq_match = false;
5225 
5226 	/* RFC1323: H1. Apply PAWS check first. */
5227 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5228 	    tcp_paws_discard(sk, skb)) {
5229 		if (!th->rst) {
5230 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5231 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5232 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5233 						  &tp->last_oow_ack_time))
5234 				tcp_send_dupack(sk, skb);
5235 			goto discard;
5236 		}
5237 		/* Reset is accepted even if it did not pass PAWS. */
5238 	}
5239 
5240 	/* Step 1: check sequence number */
5241 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5242 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5243 		 * (RST) segments are validated by checking their SEQ-fields."
5244 		 * And page 69: "If an incoming segment is not acceptable,
5245 		 * an acknowledgment should be sent in reply (unless the RST
5246 		 * bit is set, if so drop the segment and return)".
5247 		 */
5248 		if (!th->rst) {
5249 			if (th->syn)
5250 				goto syn_challenge;
5251 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5252 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5253 						  &tp->last_oow_ack_time))
5254 				tcp_send_dupack(sk, skb);
5255 		} else if (tcp_reset_check(sk, skb)) {
5256 			tcp_reset(sk);
5257 		}
5258 		goto discard;
5259 	}
5260 
5261 	/* Step 2: check RST bit */
5262 	if (th->rst) {
5263 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5264 		 * FIN and SACK too if available):
5265 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5266 		 * the right-most SACK block,
5267 		 * then
5268 		 *     RESET the connection
5269 		 * else
5270 		 *     Send a challenge ACK
5271 		 */
5272 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5273 		    tcp_reset_check(sk, skb)) {
5274 			rst_seq_match = true;
5275 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5276 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5277 			int max_sack = sp[0].end_seq;
5278 			int this_sack;
5279 
5280 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5281 			     ++this_sack) {
5282 				max_sack = after(sp[this_sack].end_seq,
5283 						 max_sack) ?
5284 					sp[this_sack].end_seq : max_sack;
5285 			}
5286 
5287 			if (TCP_SKB_CB(skb)->seq == max_sack)
5288 				rst_seq_match = true;
5289 		}
5290 
5291 		if (rst_seq_match)
5292 			tcp_reset(sk);
5293 		else
5294 			tcp_send_challenge_ack(sk, skb);
5295 		goto discard;
5296 	}
5297 
5298 	/* step 3: check security and precedence [ignored] */
5299 
5300 	/* step 4: Check for a SYN
5301 	 * RFC 5961 4.2 : Send a challenge ack
5302 	 */
5303 	if (th->syn) {
5304 syn_challenge:
5305 		if (syn_inerr)
5306 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5307 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5308 		tcp_send_challenge_ack(sk, skb);
5309 		goto discard;
5310 	}
5311 
5312 	return true;
5313 
5314 discard:
5315 	tcp_drop(sk, skb);
5316 	return false;
5317 }
5318 
5319 /*
5320  *	TCP receive function for the ESTABLISHED state.
5321  *
5322  *	It is split into a fast path and a slow path. The fast path is
5323  * 	disabled when:
5324  *	- A zero window was announced from us - zero window probing
5325  *        is only handled properly in the slow path.
5326  *	- Out of order segments arrived.
5327  *	- Urgent data is expected.
5328  *	- There is no buffer space left
5329  *	- Unexpected TCP flags/window values/header lengths are received
5330  *	  (detected by checking the TCP header against pred_flags)
5331  *	- Data is sent in both directions. Fast path only supports pure senders
5332  *	  or pure receivers (this means either the sequence number or the ack
5333  *	  value must stay constant)
5334  *	- Unexpected TCP option.
5335  *
5336  *	When these conditions are not satisfied it drops into a standard
5337  *	receive procedure patterned after RFC793 to handle all cases.
5338  *	The first three cases are guaranteed by proper pred_flags setting,
5339  *	the rest is checked inline. Fast processing is turned on in
5340  *	tcp_data_queue when everything is OK.
5341  */
5342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5343 			 const struct tcphdr *th, unsigned int len)
5344 {
5345 	struct tcp_sock *tp = tcp_sk(sk);
5346 
5347 	if (unlikely(!sk->sk_rx_dst))
5348 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5349 	/*
5350 	 *	Header prediction.
5351 	 *	The code loosely follows the one in the famous
5352 	 *	"30 instruction TCP receive" Van Jacobson mail.
5353 	 *
5354 	 *	Van's trick is to deposit buffers into socket queue
5355 	 *	on a device interrupt, to call tcp_recv function
5356 	 *	on the receive process context and checksum and copy
5357 	 *	the buffer to user space. smart...
5358 	 *
5359 	 *	Our current scheme is not silly either but we take the
5360 	 *	extra cost of the net_bh soft interrupt processing...
5361 	 *	We do checksum and copy also but from device to kernel.
5362 	 */
5363 
5364 	tp->rx_opt.saw_tstamp = 0;
5365 
5366 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5367 	 *	if header_prediction is to be made
5368 	 *	'S' will always be tp->tcp_header_len >> 2
5369 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5370 	 *  turn it off	(when there are holes in the receive
5371 	 *	 space for instance)
5372 	 *	PSH flag is ignored.
5373 	 */
5374 
5375 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5376 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5377 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5378 		int tcp_header_len = tp->tcp_header_len;
5379 
5380 		/* Timestamp header prediction: tcp_header_len
5381 		 * is automatically equal to th->doff*4 due to pred_flags
5382 		 * match.
5383 		 */
5384 
5385 		/* Check timestamp */
5386 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5387 			/* No? Slow path! */
5388 			if (!tcp_parse_aligned_timestamp(tp, th))
5389 				goto slow_path;
5390 
5391 			/* If PAWS failed, check it more carefully in slow path */
5392 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5393 				goto slow_path;
5394 
5395 			/* DO NOT update ts_recent here, if checksum fails
5396 			 * and timestamp was corrupted part, it will result
5397 			 * in a hung connection since we will drop all
5398 			 * future packets due to the PAWS test.
5399 			 */
5400 		}
5401 
5402 		if (len <= tcp_header_len) {
5403 			/* Bulk data transfer: sender */
5404 			if (len == tcp_header_len) {
5405 				/* Predicted packet is in window by definition.
5406 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5407 				 * Hence, check seq<=rcv_wup reduces to:
5408 				 */
5409 				if (tcp_header_len ==
5410 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5411 				    tp->rcv_nxt == tp->rcv_wup)
5412 					tcp_store_ts_recent(tp);
5413 
5414 				/* We know that such packets are checksummed
5415 				 * on entry.
5416 				 */
5417 				tcp_ack(sk, skb, 0);
5418 				__kfree_skb(skb);
5419 				tcp_data_snd_check(sk);
5420 				return;
5421 			} else { /* Header too small */
5422 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5423 				goto discard;
5424 			}
5425 		} else {
5426 			int eaten = 0;
5427 			bool fragstolen = false;
5428 
5429 			if (tp->ucopy.task == current &&
5430 			    tp->copied_seq == tp->rcv_nxt &&
5431 			    len - tcp_header_len <= tp->ucopy.len &&
5432 			    sock_owned_by_user(sk)) {
5433 				__set_current_state(TASK_RUNNING);
5434 
5435 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5436 					/* Predicted packet is in window by definition.
5437 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5438 					 * Hence, check seq<=rcv_wup reduces to:
5439 					 */
5440 					if (tcp_header_len ==
5441 					    (sizeof(struct tcphdr) +
5442 					     TCPOLEN_TSTAMP_ALIGNED) &&
5443 					    tp->rcv_nxt == tp->rcv_wup)
5444 						tcp_store_ts_recent(tp);
5445 
5446 					tcp_rcv_rtt_measure_ts(sk, skb);
5447 
5448 					__skb_pull(skb, tcp_header_len);
5449 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5450 					NET_INC_STATS(sock_net(sk),
5451 							LINUX_MIB_TCPHPHITSTOUSER);
5452 					eaten = 1;
5453 				}
5454 			}
5455 			if (!eaten) {
5456 				if (tcp_checksum_complete(skb))
5457 					goto csum_error;
5458 
5459 				if ((int)skb->truesize > sk->sk_forward_alloc)
5460 					goto step5;
5461 
5462 				/* Predicted packet is in window by definition.
5463 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5464 				 * Hence, check seq<=rcv_wup reduces to:
5465 				 */
5466 				if (tcp_header_len ==
5467 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5468 				    tp->rcv_nxt == tp->rcv_wup)
5469 					tcp_store_ts_recent(tp);
5470 
5471 				tcp_rcv_rtt_measure_ts(sk, skb);
5472 
5473 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5474 
5475 				/* Bulk data transfer: receiver */
5476 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5477 						      &fragstolen);
5478 			}
5479 
5480 			tcp_event_data_recv(sk, skb);
5481 
5482 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5483 				/* Well, only one small jumplet in fast path... */
5484 				tcp_ack(sk, skb, FLAG_DATA);
5485 				tcp_data_snd_check(sk);
5486 				if (!inet_csk_ack_scheduled(sk))
5487 					goto no_ack;
5488 			}
5489 
5490 			__tcp_ack_snd_check(sk, 0);
5491 no_ack:
5492 			if (eaten)
5493 				kfree_skb_partial(skb, fragstolen);
5494 			sk->sk_data_ready(sk);
5495 			return;
5496 		}
5497 	}
5498 
5499 slow_path:
5500 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5501 		goto csum_error;
5502 
5503 	if (!th->ack && !th->rst && !th->syn)
5504 		goto discard;
5505 
5506 	/*
5507 	 *	Standard slow path.
5508 	 */
5509 
5510 	if (!tcp_validate_incoming(sk, skb, th, 1))
5511 		return;
5512 
5513 step5:
5514 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5515 		goto discard;
5516 
5517 	tcp_rcv_rtt_measure_ts(sk, skb);
5518 
5519 	/* Process urgent data. */
5520 	tcp_urg(sk, skb, th);
5521 
5522 	/* step 7: process the segment text */
5523 	tcp_data_queue(sk, skb);
5524 
5525 	tcp_data_snd_check(sk);
5526 	tcp_ack_snd_check(sk);
5527 	return;
5528 
5529 csum_error:
5530 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5531 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5532 
5533 discard:
5534 	tcp_drop(sk, skb);
5535 }
5536 EXPORT_SYMBOL(tcp_rcv_established);
5537 
5538 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5539 {
5540 	struct tcp_sock *tp = tcp_sk(sk);
5541 	struct inet_connection_sock *icsk = inet_csk(sk);
5542 
5543 	tcp_set_state(sk, TCP_ESTABLISHED);
5544 
5545 	if (skb) {
5546 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5547 		security_inet_conn_established(sk, skb);
5548 	}
5549 
5550 	/* Make sure socket is routed, for correct metrics.  */
5551 	icsk->icsk_af_ops->rebuild_header(sk);
5552 
5553 	tcp_init_metrics(sk);
5554 
5555 	tcp_init_congestion_control(sk);
5556 
5557 	/* Prevent spurious tcp_cwnd_restart() on first data
5558 	 * packet.
5559 	 */
5560 	tp->lsndtime = tcp_time_stamp;
5561 
5562 	tcp_init_buffer_space(sk);
5563 
5564 	if (sock_flag(sk, SOCK_KEEPOPEN))
5565 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5566 
5567 	if (!tp->rx_opt.snd_wscale)
5568 		__tcp_fast_path_on(tp, tp->snd_wnd);
5569 	else
5570 		tp->pred_flags = 0;
5571 
5572 	if (!sock_flag(sk, SOCK_DEAD)) {
5573 		sk->sk_state_change(sk);
5574 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5575 	}
5576 }
5577 
5578 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5579 				    struct tcp_fastopen_cookie *cookie)
5580 {
5581 	struct tcp_sock *tp = tcp_sk(sk);
5582 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5583 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5584 	bool syn_drop = false;
5585 
5586 	if (mss == tp->rx_opt.user_mss) {
5587 		struct tcp_options_received opt;
5588 
5589 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5590 		tcp_clear_options(&opt);
5591 		opt.user_mss = opt.mss_clamp = 0;
5592 		tcp_parse_options(synack, &opt, 0, NULL);
5593 		mss = opt.mss_clamp;
5594 	}
5595 
5596 	if (!tp->syn_fastopen) {
5597 		/* Ignore an unsolicited cookie */
5598 		cookie->len = -1;
5599 	} else if (tp->total_retrans) {
5600 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5601 		 * acknowledges data. Presumably the remote received only
5602 		 * the retransmitted (regular) SYNs: either the original
5603 		 * SYN-data or the corresponding SYN-ACK was dropped.
5604 		 */
5605 		syn_drop = (cookie->len < 0 && data);
5606 	} else if (cookie->len < 0 && !tp->syn_data) {
5607 		/* We requested a cookie but didn't get it. If we did not use
5608 		 * the (old) exp opt format then try so next time (try_exp=1).
5609 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5610 		 */
5611 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5612 	}
5613 
5614 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5615 
5616 	if (data) { /* Retransmit unacked data in SYN */
5617 		tcp_for_write_queue_from(data, sk) {
5618 			if (data == tcp_send_head(sk) ||
5619 			    __tcp_retransmit_skb(sk, data, 1))
5620 				break;
5621 		}
5622 		tcp_rearm_rto(sk);
5623 		NET_INC_STATS(sock_net(sk),
5624 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5625 		return true;
5626 	}
5627 	tp->syn_data_acked = tp->syn_data;
5628 	if (tp->syn_data_acked)
5629 		NET_INC_STATS(sock_net(sk),
5630 				LINUX_MIB_TCPFASTOPENACTIVE);
5631 
5632 	tcp_fastopen_add_skb(sk, synack);
5633 
5634 	return false;
5635 }
5636 
5637 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5638 					 const struct tcphdr *th)
5639 {
5640 	struct inet_connection_sock *icsk = inet_csk(sk);
5641 	struct tcp_sock *tp = tcp_sk(sk);
5642 	struct tcp_fastopen_cookie foc = { .len = -1 };
5643 	int saved_clamp = tp->rx_opt.mss_clamp;
5644 
5645 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5646 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5647 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5648 
5649 	if (th->ack) {
5650 		/* rfc793:
5651 		 * "If the state is SYN-SENT then
5652 		 *    first check the ACK bit
5653 		 *      If the ACK bit is set
5654 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5655 		 *        a reset (unless the RST bit is set, if so drop
5656 		 *        the segment and return)"
5657 		 */
5658 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5659 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5660 			goto reset_and_undo;
5661 
5662 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5663 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5664 			     tcp_time_stamp)) {
5665 			NET_INC_STATS(sock_net(sk),
5666 					LINUX_MIB_PAWSACTIVEREJECTED);
5667 			goto reset_and_undo;
5668 		}
5669 
5670 		/* Now ACK is acceptable.
5671 		 *
5672 		 * "If the RST bit is set
5673 		 *    If the ACK was acceptable then signal the user "error:
5674 		 *    connection reset", drop the segment, enter CLOSED state,
5675 		 *    delete TCB, and return."
5676 		 */
5677 
5678 		if (th->rst) {
5679 			tcp_reset(sk);
5680 			goto discard;
5681 		}
5682 
5683 		/* rfc793:
5684 		 *   "fifth, if neither of the SYN or RST bits is set then
5685 		 *    drop the segment and return."
5686 		 *
5687 		 *    See note below!
5688 		 *                                        --ANK(990513)
5689 		 */
5690 		if (!th->syn)
5691 			goto discard_and_undo;
5692 
5693 		/* rfc793:
5694 		 *   "If the SYN bit is on ...
5695 		 *    are acceptable then ...
5696 		 *    (our SYN has been ACKed), change the connection
5697 		 *    state to ESTABLISHED..."
5698 		 */
5699 
5700 		tcp_ecn_rcv_synack(tp, th);
5701 
5702 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5703 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5704 
5705 		/* Ok.. it's good. Set up sequence numbers and
5706 		 * move to established.
5707 		 */
5708 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5709 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5710 
5711 		/* RFC1323: The window in SYN & SYN/ACK segments is
5712 		 * never scaled.
5713 		 */
5714 		tp->snd_wnd = ntohs(th->window);
5715 
5716 		if (!tp->rx_opt.wscale_ok) {
5717 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5718 			tp->window_clamp = min(tp->window_clamp, 65535U);
5719 		}
5720 
5721 		if (tp->rx_opt.saw_tstamp) {
5722 			tp->rx_opt.tstamp_ok	   = 1;
5723 			tp->tcp_header_len =
5724 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5725 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5726 			tcp_store_ts_recent(tp);
5727 		} else {
5728 			tp->tcp_header_len = sizeof(struct tcphdr);
5729 		}
5730 
5731 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5732 			tcp_enable_fack(tp);
5733 
5734 		tcp_mtup_init(sk);
5735 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5736 		tcp_initialize_rcv_mss(sk);
5737 
5738 		/* Remember, tcp_poll() does not lock socket!
5739 		 * Change state from SYN-SENT only after copied_seq
5740 		 * is initialized. */
5741 		tp->copied_seq = tp->rcv_nxt;
5742 
5743 		smp_mb();
5744 
5745 		tcp_finish_connect(sk, skb);
5746 
5747 		if ((tp->syn_fastopen || tp->syn_data) &&
5748 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5749 			return -1;
5750 
5751 		if (sk->sk_write_pending ||
5752 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5753 		    icsk->icsk_ack.pingpong) {
5754 			/* Save one ACK. Data will be ready after
5755 			 * several ticks, if write_pending is set.
5756 			 *
5757 			 * It may be deleted, but with this feature tcpdumps
5758 			 * look so _wonderfully_ clever, that I was not able
5759 			 * to stand against the temptation 8)     --ANK
5760 			 */
5761 			inet_csk_schedule_ack(sk);
5762 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5763 			tcp_enter_quickack_mode(sk);
5764 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5765 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5766 
5767 discard:
5768 			tcp_drop(sk, skb);
5769 			return 0;
5770 		} else {
5771 			tcp_send_ack(sk);
5772 		}
5773 		return -1;
5774 	}
5775 
5776 	/* No ACK in the segment */
5777 
5778 	if (th->rst) {
5779 		/* rfc793:
5780 		 * "If the RST bit is set
5781 		 *
5782 		 *      Otherwise (no ACK) drop the segment and return."
5783 		 */
5784 
5785 		goto discard_and_undo;
5786 	}
5787 
5788 	/* PAWS check. */
5789 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5790 	    tcp_paws_reject(&tp->rx_opt, 0))
5791 		goto discard_and_undo;
5792 
5793 	if (th->syn) {
5794 		/* We see SYN without ACK. It is attempt of
5795 		 * simultaneous connect with crossed SYNs.
5796 		 * Particularly, it can be connect to self.
5797 		 */
5798 		tcp_set_state(sk, TCP_SYN_RECV);
5799 
5800 		if (tp->rx_opt.saw_tstamp) {
5801 			tp->rx_opt.tstamp_ok = 1;
5802 			tcp_store_ts_recent(tp);
5803 			tp->tcp_header_len =
5804 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5805 		} else {
5806 			tp->tcp_header_len = sizeof(struct tcphdr);
5807 		}
5808 
5809 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5810 		tp->copied_seq = tp->rcv_nxt;
5811 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5812 
5813 		/* RFC1323: The window in SYN & SYN/ACK segments is
5814 		 * never scaled.
5815 		 */
5816 		tp->snd_wnd    = ntohs(th->window);
5817 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5818 		tp->max_window = tp->snd_wnd;
5819 
5820 		tcp_ecn_rcv_syn(tp, th);
5821 
5822 		tcp_mtup_init(sk);
5823 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5824 		tcp_initialize_rcv_mss(sk);
5825 
5826 		tcp_send_synack(sk);
5827 #if 0
5828 		/* Note, we could accept data and URG from this segment.
5829 		 * There are no obstacles to make this (except that we must
5830 		 * either change tcp_recvmsg() to prevent it from returning data
5831 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5832 		 *
5833 		 * However, if we ignore data in ACKless segments sometimes,
5834 		 * we have no reasons to accept it sometimes.
5835 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5836 		 * is not flawless. So, discard packet for sanity.
5837 		 * Uncomment this return to process the data.
5838 		 */
5839 		return -1;
5840 #else
5841 		goto discard;
5842 #endif
5843 	}
5844 	/* "fifth, if neither of the SYN or RST bits is set then
5845 	 * drop the segment and return."
5846 	 */
5847 
5848 discard_and_undo:
5849 	tcp_clear_options(&tp->rx_opt);
5850 	tp->rx_opt.mss_clamp = saved_clamp;
5851 	goto discard;
5852 
5853 reset_and_undo:
5854 	tcp_clear_options(&tp->rx_opt);
5855 	tp->rx_opt.mss_clamp = saved_clamp;
5856 	return 1;
5857 }
5858 
5859 /*
5860  *	This function implements the receiving procedure of RFC 793 for
5861  *	all states except ESTABLISHED and TIME_WAIT.
5862  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5863  *	address independent.
5864  */
5865 
5866 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5867 {
5868 	struct tcp_sock *tp = tcp_sk(sk);
5869 	struct inet_connection_sock *icsk = inet_csk(sk);
5870 	const struct tcphdr *th = tcp_hdr(skb);
5871 	struct request_sock *req;
5872 	int queued = 0;
5873 	bool acceptable;
5874 
5875 	switch (sk->sk_state) {
5876 	case TCP_CLOSE:
5877 		goto discard;
5878 
5879 	case TCP_LISTEN:
5880 		if (th->ack)
5881 			return 1;
5882 
5883 		if (th->rst)
5884 			goto discard;
5885 
5886 		if (th->syn) {
5887 			if (th->fin)
5888 				goto discard;
5889 			/* It is possible that we process SYN packets from backlog,
5890 			 * so we need to make sure to disable BH right there.
5891 			 */
5892 			local_bh_disable();
5893 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5894 			local_bh_enable();
5895 
5896 			if (!acceptable)
5897 				return 1;
5898 			consume_skb(skb);
5899 			return 0;
5900 		}
5901 		goto discard;
5902 
5903 	case TCP_SYN_SENT:
5904 		tp->rx_opt.saw_tstamp = 0;
5905 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5906 		if (queued >= 0)
5907 			return queued;
5908 
5909 		/* Do step6 onward by hand. */
5910 		tcp_urg(sk, skb, th);
5911 		__kfree_skb(skb);
5912 		tcp_data_snd_check(sk);
5913 		return 0;
5914 	}
5915 
5916 	tp->rx_opt.saw_tstamp = 0;
5917 	req = tp->fastopen_rsk;
5918 	if (req) {
5919 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5920 		    sk->sk_state != TCP_FIN_WAIT1);
5921 
5922 		if (!tcp_check_req(sk, skb, req, true))
5923 			goto discard;
5924 	}
5925 
5926 	if (!th->ack && !th->rst && !th->syn)
5927 		goto discard;
5928 
5929 	if (!tcp_validate_incoming(sk, skb, th, 0))
5930 		return 0;
5931 
5932 	/* step 5: check the ACK field */
5933 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5934 				      FLAG_UPDATE_TS_RECENT) > 0;
5935 
5936 	switch (sk->sk_state) {
5937 	case TCP_SYN_RECV:
5938 		if (!acceptable)
5939 			return 1;
5940 
5941 		if (!tp->srtt_us)
5942 			tcp_synack_rtt_meas(sk, req);
5943 
5944 		/* Once we leave TCP_SYN_RECV, we no longer need req
5945 		 * so release it.
5946 		 */
5947 		if (req) {
5948 			inet_csk(sk)->icsk_retransmits = 0;
5949 			reqsk_fastopen_remove(sk, req, false);
5950 		} else {
5951 			/* Make sure socket is routed, for correct metrics. */
5952 			icsk->icsk_af_ops->rebuild_header(sk);
5953 			tcp_init_congestion_control(sk);
5954 
5955 			tcp_mtup_init(sk);
5956 			tp->copied_seq = tp->rcv_nxt;
5957 			tcp_init_buffer_space(sk);
5958 		}
5959 		smp_mb();
5960 		tcp_set_state(sk, TCP_ESTABLISHED);
5961 		sk->sk_state_change(sk);
5962 
5963 		/* Note, that this wakeup is only for marginal crossed SYN case.
5964 		 * Passively open sockets are not waked up, because
5965 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5966 		 */
5967 		if (sk->sk_socket)
5968 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5969 
5970 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5971 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5972 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5973 
5974 		if (tp->rx_opt.tstamp_ok)
5975 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5976 
5977 		if (req) {
5978 			/* Re-arm the timer because data may have been sent out.
5979 			 * This is similar to the regular data transmission case
5980 			 * when new data has just been ack'ed.
5981 			 *
5982 			 * (TFO) - we could try to be more aggressive and
5983 			 * retransmitting any data sooner based on when they
5984 			 * are sent out.
5985 			 */
5986 			tcp_rearm_rto(sk);
5987 		} else
5988 			tcp_init_metrics(sk);
5989 
5990 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5991 			tcp_update_pacing_rate(sk);
5992 
5993 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5994 		tp->lsndtime = tcp_time_stamp;
5995 
5996 		tcp_initialize_rcv_mss(sk);
5997 		tcp_fast_path_on(tp);
5998 		break;
5999 
6000 	case TCP_FIN_WAIT1: {
6001 		int tmo;
6002 
6003 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6004 		 * Fast Open socket and this is the first acceptable
6005 		 * ACK we have received, this would have acknowledged
6006 		 * our SYNACK so stop the SYNACK timer.
6007 		 */
6008 		if (req) {
6009 			/* Return RST if ack_seq is invalid.
6010 			 * Note that RFC793 only says to generate a
6011 			 * DUPACK for it but for TCP Fast Open it seems
6012 			 * better to treat this case like TCP_SYN_RECV
6013 			 * above.
6014 			 */
6015 			if (!acceptable)
6016 				return 1;
6017 			/* We no longer need the request sock. */
6018 			reqsk_fastopen_remove(sk, req, false);
6019 			tcp_rearm_rto(sk);
6020 		}
6021 		if (tp->snd_una != tp->write_seq)
6022 			break;
6023 
6024 		tcp_set_state(sk, TCP_FIN_WAIT2);
6025 		sk->sk_shutdown |= SEND_SHUTDOWN;
6026 
6027 		sk_dst_confirm(sk);
6028 
6029 		if (!sock_flag(sk, SOCK_DEAD)) {
6030 			/* Wake up lingering close() */
6031 			sk->sk_state_change(sk);
6032 			break;
6033 		}
6034 
6035 		if (tp->linger2 < 0 ||
6036 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6037 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6038 			tcp_done(sk);
6039 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040 			return 1;
6041 		}
6042 
6043 		tmo = tcp_fin_time(sk);
6044 		if (tmo > TCP_TIMEWAIT_LEN) {
6045 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6046 		} else if (th->fin || sock_owned_by_user(sk)) {
6047 			/* Bad case. We could lose such FIN otherwise.
6048 			 * It is not a big problem, but it looks confusing
6049 			 * and not so rare event. We still can lose it now,
6050 			 * if it spins in bh_lock_sock(), but it is really
6051 			 * marginal case.
6052 			 */
6053 			inet_csk_reset_keepalive_timer(sk, tmo);
6054 		} else {
6055 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6056 			goto discard;
6057 		}
6058 		break;
6059 	}
6060 
6061 	case TCP_CLOSING:
6062 		if (tp->snd_una == tp->write_seq) {
6063 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6064 			goto discard;
6065 		}
6066 		break;
6067 
6068 	case TCP_LAST_ACK:
6069 		if (tp->snd_una == tp->write_seq) {
6070 			tcp_update_metrics(sk);
6071 			tcp_done(sk);
6072 			goto discard;
6073 		}
6074 		break;
6075 	}
6076 
6077 	/* step 6: check the URG bit */
6078 	tcp_urg(sk, skb, th);
6079 
6080 	/* step 7: process the segment text */
6081 	switch (sk->sk_state) {
6082 	case TCP_CLOSE_WAIT:
6083 	case TCP_CLOSING:
6084 	case TCP_LAST_ACK:
6085 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6086 			break;
6087 	case TCP_FIN_WAIT1:
6088 	case TCP_FIN_WAIT2:
6089 		/* RFC 793 says to queue data in these states,
6090 		 * RFC 1122 says we MUST send a reset.
6091 		 * BSD 4.4 also does reset.
6092 		 */
6093 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6094 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6095 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6096 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6097 				tcp_reset(sk);
6098 				return 1;
6099 			}
6100 		}
6101 		/* Fall through */
6102 	case TCP_ESTABLISHED:
6103 		tcp_data_queue(sk, skb);
6104 		queued = 1;
6105 		break;
6106 	}
6107 
6108 	/* tcp_data could move socket to TIME-WAIT */
6109 	if (sk->sk_state != TCP_CLOSE) {
6110 		tcp_data_snd_check(sk);
6111 		tcp_ack_snd_check(sk);
6112 	}
6113 
6114 	if (!queued) {
6115 discard:
6116 		tcp_drop(sk, skb);
6117 	}
6118 	return 0;
6119 }
6120 EXPORT_SYMBOL(tcp_rcv_state_process);
6121 
6122 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6123 {
6124 	struct inet_request_sock *ireq = inet_rsk(req);
6125 
6126 	if (family == AF_INET)
6127 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6128 				    &ireq->ir_rmt_addr, port);
6129 #if IS_ENABLED(CONFIG_IPV6)
6130 	else if (family == AF_INET6)
6131 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6132 				    &ireq->ir_v6_rmt_addr, port);
6133 #endif
6134 }
6135 
6136 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6137  *
6138  * If we receive a SYN packet with these bits set, it means a
6139  * network is playing bad games with TOS bits. In order to
6140  * avoid possible false congestion notifications, we disable
6141  * TCP ECN negotiation.
6142  *
6143  * Exception: tcp_ca wants ECN. This is required for DCTCP
6144  * congestion control: Linux DCTCP asserts ECT on all packets,
6145  * including SYN, which is most optimal solution; however,
6146  * others, such as FreeBSD do not.
6147  */
6148 static void tcp_ecn_create_request(struct request_sock *req,
6149 				   const struct sk_buff *skb,
6150 				   const struct sock *listen_sk,
6151 				   const struct dst_entry *dst)
6152 {
6153 	const struct tcphdr *th = tcp_hdr(skb);
6154 	const struct net *net = sock_net(listen_sk);
6155 	bool th_ecn = th->ece && th->cwr;
6156 	bool ect, ecn_ok;
6157 	u32 ecn_ok_dst;
6158 
6159 	if (!th_ecn)
6160 		return;
6161 
6162 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6163 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6164 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6165 
6166 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6167 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6168 		inet_rsk(req)->ecn_ok = 1;
6169 }
6170 
6171 static void tcp_openreq_init(struct request_sock *req,
6172 			     const struct tcp_options_received *rx_opt,
6173 			     struct sk_buff *skb, const struct sock *sk)
6174 {
6175 	struct inet_request_sock *ireq = inet_rsk(req);
6176 
6177 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6178 	req->cookie_ts = 0;
6179 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6180 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6181 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6182 	tcp_rsk(req)->last_oow_ack_time = 0;
6183 	req->mss = rx_opt->mss_clamp;
6184 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6185 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6186 	ireq->sack_ok = rx_opt->sack_ok;
6187 	ireq->snd_wscale = rx_opt->snd_wscale;
6188 	ireq->wscale_ok = rx_opt->wscale_ok;
6189 	ireq->acked = 0;
6190 	ireq->ecn_ok = 0;
6191 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6192 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6193 	ireq->ir_mark = inet_request_mark(sk, skb);
6194 }
6195 
6196 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6197 				      struct sock *sk_listener,
6198 				      bool attach_listener)
6199 {
6200 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6201 					       attach_listener);
6202 
6203 	if (req) {
6204 		struct inet_request_sock *ireq = inet_rsk(req);
6205 
6206 		kmemcheck_annotate_bitfield(ireq, flags);
6207 		ireq->opt = NULL;
6208 #if IS_ENABLED(CONFIG_IPV6)
6209 		ireq->pktopts = NULL;
6210 #endif
6211 		atomic64_set(&ireq->ir_cookie, 0);
6212 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6213 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6214 		ireq->ireq_family = sk_listener->sk_family;
6215 	}
6216 
6217 	return req;
6218 }
6219 EXPORT_SYMBOL(inet_reqsk_alloc);
6220 
6221 /*
6222  * Return true if a syncookie should be sent
6223  */
6224 static bool tcp_syn_flood_action(const struct sock *sk,
6225 				 const struct sk_buff *skb,
6226 				 const char *proto)
6227 {
6228 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6229 	const char *msg = "Dropping request";
6230 	bool want_cookie = false;
6231 	struct net *net = sock_net(sk);
6232 
6233 #ifdef CONFIG_SYN_COOKIES
6234 	if (net->ipv4.sysctl_tcp_syncookies) {
6235 		msg = "Sending cookies";
6236 		want_cookie = true;
6237 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6238 	} else
6239 #endif
6240 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6241 
6242 	if (!queue->synflood_warned &&
6243 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6244 	    xchg(&queue->synflood_warned, 1) == 0)
6245 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6246 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6247 
6248 	return want_cookie;
6249 }
6250 
6251 static void tcp_reqsk_record_syn(const struct sock *sk,
6252 				 struct request_sock *req,
6253 				 const struct sk_buff *skb)
6254 {
6255 	if (tcp_sk(sk)->save_syn) {
6256 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6257 		u32 *copy;
6258 
6259 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6260 		if (copy) {
6261 			copy[0] = len;
6262 			memcpy(&copy[1], skb_network_header(skb), len);
6263 			req->saved_syn = copy;
6264 		}
6265 	}
6266 }
6267 
6268 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6269 		     const struct tcp_request_sock_ops *af_ops,
6270 		     struct sock *sk, struct sk_buff *skb)
6271 {
6272 	struct tcp_fastopen_cookie foc = { .len = -1 };
6273 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6274 	struct tcp_options_received tmp_opt;
6275 	struct tcp_sock *tp = tcp_sk(sk);
6276 	struct net *net = sock_net(sk);
6277 	struct sock *fastopen_sk = NULL;
6278 	struct dst_entry *dst = NULL;
6279 	struct request_sock *req;
6280 	bool want_cookie = false;
6281 	struct flowi fl;
6282 
6283 	/* TW buckets are converted to open requests without
6284 	 * limitations, they conserve resources and peer is
6285 	 * evidently real one.
6286 	 */
6287 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6288 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6289 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6290 		if (!want_cookie)
6291 			goto drop;
6292 	}
6293 
6294 	if (sk_acceptq_is_full(sk)) {
6295 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6296 		goto drop;
6297 	}
6298 
6299 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6300 	if (!req)
6301 		goto drop;
6302 
6303 	tcp_rsk(req)->af_specific = af_ops;
6304 	tcp_rsk(req)->ts_off = 0;
6305 
6306 	tcp_clear_options(&tmp_opt);
6307 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6308 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6309 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6310 
6311 	if (want_cookie && !tmp_opt.saw_tstamp)
6312 		tcp_clear_options(&tmp_opt);
6313 
6314 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6315 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6316 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6317 
6318 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6319 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6320 
6321 	af_ops->init_req(req, sk, skb);
6322 
6323 	if (security_inet_conn_request(sk, skb, req))
6324 		goto drop_and_free;
6325 
6326 	if (isn && tmp_opt.tstamp_ok)
6327 		af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6328 
6329 	if (!want_cookie && !isn) {
6330 		/* VJ's idea. We save last timestamp seen
6331 		 * from the destination in peer table, when entering
6332 		 * state TIME-WAIT, and check against it before
6333 		 * accepting new connection request.
6334 		 *
6335 		 * If "isn" is not zero, this request hit alive
6336 		 * timewait bucket, so that all the necessary checks
6337 		 * are made in the function processing timewait state.
6338 		 */
6339 		if (net->ipv4.tcp_death_row.sysctl_tw_recycle) {
6340 			bool strict;
6341 
6342 			dst = af_ops->route_req(sk, &fl, req, &strict);
6343 
6344 			if (dst && strict &&
6345 			    !tcp_peer_is_proven(req, dst, true,
6346 						tmp_opt.saw_tstamp)) {
6347 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6348 				goto drop_and_release;
6349 			}
6350 		}
6351 		/* Kill the following clause, if you dislike this way. */
6352 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6353 			 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6354 			  (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6355 			 !tcp_peer_is_proven(req, dst, false,
6356 					     tmp_opt.saw_tstamp)) {
6357 			/* Without syncookies last quarter of
6358 			 * backlog is filled with destinations,
6359 			 * proven to be alive.
6360 			 * It means that we continue to communicate
6361 			 * to destinations, already remembered
6362 			 * to the moment of synflood.
6363 			 */
6364 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6365 				    rsk_ops->family);
6366 			goto drop_and_release;
6367 		}
6368 
6369 		isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6370 	}
6371 	if (!dst) {
6372 		dst = af_ops->route_req(sk, &fl, req, NULL);
6373 		if (!dst)
6374 			goto drop_and_free;
6375 	}
6376 
6377 	tcp_ecn_create_request(req, skb, sk, dst);
6378 
6379 	if (want_cookie) {
6380 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6381 		tcp_rsk(req)->ts_off = 0;
6382 		req->cookie_ts = tmp_opt.tstamp_ok;
6383 		if (!tmp_opt.tstamp_ok)
6384 			inet_rsk(req)->ecn_ok = 0;
6385 	}
6386 
6387 	tcp_rsk(req)->snt_isn = isn;
6388 	tcp_rsk(req)->txhash = net_tx_rndhash();
6389 	tcp_openreq_init_rwin(req, sk, dst);
6390 	if (!want_cookie) {
6391 		tcp_reqsk_record_syn(sk, req, skb);
6392 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6393 	}
6394 	if (fastopen_sk) {
6395 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6396 				    &foc, TCP_SYNACK_FASTOPEN);
6397 		/* Add the child socket directly into the accept queue */
6398 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6399 		sk->sk_data_ready(sk);
6400 		bh_unlock_sock(fastopen_sk);
6401 		sock_put(fastopen_sk);
6402 	} else {
6403 		tcp_rsk(req)->tfo_listener = false;
6404 		if (!want_cookie)
6405 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6406 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6407 				    !want_cookie ? TCP_SYNACK_NORMAL :
6408 						   TCP_SYNACK_COOKIE);
6409 		if (want_cookie) {
6410 			reqsk_free(req);
6411 			return 0;
6412 		}
6413 	}
6414 	reqsk_put(req);
6415 	return 0;
6416 
6417 drop_and_release:
6418 	dst_release(dst);
6419 drop_and_free:
6420 	reqsk_free(req);
6421 drop:
6422 	tcp_listendrop(sk);
6423 	return 0;
6424 }
6425 EXPORT_SYMBOL(tcp_conn_request);
6426