1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 EXPORT_SYMBOL(sysctl_tcp_timestamps); 89 90 /* rfc5961 challenge ack rate limiting */ 91 int sysctl_tcp_challenge_ack_limit = 1000; 92 93 int sysctl_tcp_stdurg __read_mostly; 94 int sysctl_tcp_rfc1337 __read_mostly; 95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 96 int sysctl_tcp_frto __read_mostly = 2; 97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_early_retrans __read_mostly = 3; 100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 #define REXMIT_NONE 0 /* no loss recovery to do */ 126 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 128 129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb) 130 { 131 static bool __once __read_mostly; 132 133 if (!__once) { 134 struct net_device *dev; 135 136 __once = true; 137 138 rcu_read_lock(); 139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 141 dev ? dev->name : "Unknown driver"); 142 rcu_read_unlock(); 143 } 144 } 145 146 /* Adapt the MSS value used to make delayed ack decision to the 147 * real world. 148 */ 149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 150 { 151 struct inet_connection_sock *icsk = inet_csk(sk); 152 const unsigned int lss = icsk->icsk_ack.last_seg_size; 153 unsigned int len; 154 155 icsk->icsk_ack.last_seg_size = 0; 156 157 /* skb->len may jitter because of SACKs, even if peer 158 * sends good full-sized frames. 159 */ 160 len = skb_shinfo(skb)->gso_size ? : skb->len; 161 if (len >= icsk->icsk_ack.rcv_mss) { 162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 163 tcp_sk(sk)->advmss); 164 if (unlikely(icsk->icsk_ack.rcv_mss != len)) 165 tcp_gro_dev_warn(sk, skb); 166 } else { 167 /* Otherwise, we make more careful check taking into account, 168 * that SACKs block is variable. 169 * 170 * "len" is invariant segment length, including TCP header. 171 */ 172 len += skb->data - skb_transport_header(skb); 173 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 174 /* If PSH is not set, packet should be 175 * full sized, provided peer TCP is not badly broken. 176 * This observation (if it is correct 8)) allows 177 * to handle super-low mtu links fairly. 178 */ 179 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 180 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 181 /* Subtract also invariant (if peer is RFC compliant), 182 * tcp header plus fixed timestamp option length. 183 * Resulting "len" is MSS free of SACK jitter. 184 */ 185 len -= tcp_sk(sk)->tcp_header_len; 186 icsk->icsk_ack.last_seg_size = len; 187 if (len == lss) { 188 icsk->icsk_ack.rcv_mss = len; 189 return; 190 } 191 } 192 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 193 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 195 } 196 } 197 198 static void tcp_incr_quickack(struct sock *sk) 199 { 200 struct inet_connection_sock *icsk = inet_csk(sk); 201 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 202 203 if (quickacks == 0) 204 quickacks = 2; 205 if (quickacks > icsk->icsk_ack.quick) 206 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 207 } 208 209 static void tcp_enter_quickack_mode(struct sock *sk) 210 { 211 struct inet_connection_sock *icsk = inet_csk(sk); 212 tcp_incr_quickack(sk); 213 icsk->icsk_ack.pingpong = 0; 214 icsk->icsk_ack.ato = TCP_ATO_MIN; 215 } 216 217 /* Send ACKs quickly, if "quick" count is not exhausted 218 * and the session is not interactive. 219 */ 220 221 static bool tcp_in_quickack_mode(struct sock *sk) 222 { 223 const struct inet_connection_sock *icsk = inet_csk(sk); 224 const struct dst_entry *dst = __sk_dst_get(sk); 225 226 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 227 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 228 } 229 230 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 231 { 232 if (tp->ecn_flags & TCP_ECN_OK) 233 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 234 } 235 236 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 237 { 238 if (tcp_hdr(skb)->cwr) 239 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 240 } 241 242 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 243 { 244 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 245 } 246 247 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 248 { 249 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 250 case INET_ECN_NOT_ECT: 251 /* Funny extension: if ECT is not set on a segment, 252 * and we already seen ECT on a previous segment, 253 * it is probably a retransmit. 254 */ 255 if (tp->ecn_flags & TCP_ECN_SEEN) 256 tcp_enter_quickack_mode((struct sock *)tp); 257 break; 258 case INET_ECN_CE: 259 if (tcp_ca_needs_ecn((struct sock *)tp)) 260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 261 262 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 263 /* Better not delay acks, sender can have a very low cwnd */ 264 tcp_enter_quickack_mode((struct sock *)tp); 265 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 266 } 267 tp->ecn_flags |= TCP_ECN_SEEN; 268 break; 269 default: 270 if (tcp_ca_needs_ecn((struct sock *)tp)) 271 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 272 tp->ecn_flags |= TCP_ECN_SEEN; 273 break; 274 } 275 } 276 277 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 278 { 279 if (tp->ecn_flags & TCP_ECN_OK) 280 __tcp_ecn_check_ce(tp, skb); 281 } 282 283 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 284 { 285 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 286 tp->ecn_flags &= ~TCP_ECN_OK; 287 } 288 289 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 290 { 291 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 292 tp->ecn_flags &= ~TCP_ECN_OK; 293 } 294 295 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 296 { 297 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 298 return true; 299 return false; 300 } 301 302 /* Buffer size and advertised window tuning. 303 * 304 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 305 */ 306 307 static void tcp_sndbuf_expand(struct sock *sk) 308 { 309 const struct tcp_sock *tp = tcp_sk(sk); 310 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 311 int sndmem, per_mss; 312 u32 nr_segs; 313 314 /* Worst case is non GSO/TSO : each frame consumes one skb 315 * and skb->head is kmalloced using power of two area of memory 316 */ 317 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 318 MAX_TCP_HEADER + 319 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 320 321 per_mss = roundup_pow_of_two(per_mss) + 322 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 323 324 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 325 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 326 327 /* Fast Recovery (RFC 5681 3.2) : 328 * Cubic needs 1.7 factor, rounded to 2 to include 329 * extra cushion (application might react slowly to POLLOUT) 330 */ 331 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 332 sndmem *= nr_segs * per_mss; 333 334 if (sk->sk_sndbuf < sndmem) 335 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 336 } 337 338 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 339 * 340 * All tcp_full_space() is split to two parts: "network" buffer, allocated 341 * forward and advertised in receiver window (tp->rcv_wnd) and 342 * "application buffer", required to isolate scheduling/application 343 * latencies from network. 344 * window_clamp is maximal advertised window. It can be less than 345 * tcp_full_space(), in this case tcp_full_space() - window_clamp 346 * is reserved for "application" buffer. The less window_clamp is 347 * the smoother our behaviour from viewpoint of network, but the lower 348 * throughput and the higher sensitivity of the connection to losses. 8) 349 * 350 * rcv_ssthresh is more strict window_clamp used at "slow start" 351 * phase to predict further behaviour of this connection. 352 * It is used for two goals: 353 * - to enforce header prediction at sender, even when application 354 * requires some significant "application buffer". It is check #1. 355 * - to prevent pruning of receive queue because of misprediction 356 * of receiver window. Check #2. 357 * 358 * The scheme does not work when sender sends good segments opening 359 * window and then starts to feed us spaghetti. But it should work 360 * in common situations. Otherwise, we have to rely on queue collapsing. 361 */ 362 363 /* Slow part of check#2. */ 364 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 365 { 366 struct tcp_sock *tp = tcp_sk(sk); 367 /* Optimize this! */ 368 int truesize = tcp_win_from_space(skb->truesize) >> 1; 369 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 370 371 while (tp->rcv_ssthresh <= window) { 372 if (truesize <= skb->len) 373 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 374 375 truesize >>= 1; 376 window >>= 1; 377 } 378 return 0; 379 } 380 381 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 382 { 383 struct tcp_sock *tp = tcp_sk(sk); 384 385 /* Check #1 */ 386 if (tp->rcv_ssthresh < tp->window_clamp && 387 (int)tp->rcv_ssthresh < tcp_space(sk) && 388 !tcp_under_memory_pressure(sk)) { 389 int incr; 390 391 /* Check #2. Increase window, if skb with such overhead 392 * will fit to rcvbuf in future. 393 */ 394 if (tcp_win_from_space(skb->truesize) <= skb->len) 395 incr = 2 * tp->advmss; 396 else 397 incr = __tcp_grow_window(sk, skb); 398 399 if (incr) { 400 incr = max_t(int, incr, 2 * skb->len); 401 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 402 tp->window_clamp); 403 inet_csk(sk)->icsk_ack.quick |= 1; 404 } 405 } 406 } 407 408 /* 3. Tuning rcvbuf, when connection enters established state. */ 409 static void tcp_fixup_rcvbuf(struct sock *sk) 410 { 411 u32 mss = tcp_sk(sk)->advmss; 412 int rcvmem; 413 414 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 415 tcp_default_init_rwnd(mss); 416 417 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 418 * Allow enough cushion so that sender is not limited by our window 419 */ 420 if (sysctl_tcp_moderate_rcvbuf) 421 rcvmem <<= 2; 422 423 if (sk->sk_rcvbuf < rcvmem) 424 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 425 } 426 427 /* 4. Try to fixup all. It is made immediately after connection enters 428 * established state. 429 */ 430 void tcp_init_buffer_space(struct sock *sk) 431 { 432 struct tcp_sock *tp = tcp_sk(sk); 433 int maxwin; 434 435 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 436 tcp_fixup_rcvbuf(sk); 437 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 438 tcp_sndbuf_expand(sk); 439 440 tp->rcvq_space.space = tp->rcv_wnd; 441 tp->rcvq_space.time = tcp_time_stamp; 442 tp->rcvq_space.seq = tp->copied_seq; 443 444 maxwin = tcp_full_space(sk); 445 446 if (tp->window_clamp >= maxwin) { 447 tp->window_clamp = maxwin; 448 449 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 450 tp->window_clamp = max(maxwin - 451 (maxwin >> sysctl_tcp_app_win), 452 4 * tp->advmss); 453 } 454 455 /* Force reservation of one segment. */ 456 if (sysctl_tcp_app_win && 457 tp->window_clamp > 2 * tp->advmss && 458 tp->window_clamp + tp->advmss > maxwin) 459 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 460 461 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 462 tp->snd_cwnd_stamp = tcp_time_stamp; 463 } 464 465 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 466 static void tcp_clamp_window(struct sock *sk) 467 { 468 struct tcp_sock *tp = tcp_sk(sk); 469 struct inet_connection_sock *icsk = inet_csk(sk); 470 471 icsk->icsk_ack.quick = 0; 472 473 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 474 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 475 !tcp_under_memory_pressure(sk) && 476 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 477 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 478 sysctl_tcp_rmem[2]); 479 } 480 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 481 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 482 } 483 484 /* Initialize RCV_MSS value. 485 * RCV_MSS is an our guess about MSS used by the peer. 486 * We haven't any direct information about the MSS. 487 * It's better to underestimate the RCV_MSS rather than overestimate. 488 * Overestimations make us ACKing less frequently than needed. 489 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 490 */ 491 void tcp_initialize_rcv_mss(struct sock *sk) 492 { 493 const struct tcp_sock *tp = tcp_sk(sk); 494 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 495 496 hint = min(hint, tp->rcv_wnd / 2); 497 hint = min(hint, TCP_MSS_DEFAULT); 498 hint = max(hint, TCP_MIN_MSS); 499 500 inet_csk(sk)->icsk_ack.rcv_mss = hint; 501 } 502 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 503 504 /* Receiver "autotuning" code. 505 * 506 * The algorithm for RTT estimation w/o timestamps is based on 507 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 508 * <http://public.lanl.gov/radiant/pubs.html#DRS> 509 * 510 * More detail on this code can be found at 511 * <http://staff.psc.edu/jheffner/>, 512 * though this reference is out of date. A new paper 513 * is pending. 514 */ 515 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 516 { 517 u32 new_sample = tp->rcv_rtt_est.rtt; 518 long m = sample; 519 520 if (m == 0) 521 m = 1; 522 523 if (new_sample != 0) { 524 /* If we sample in larger samples in the non-timestamp 525 * case, we could grossly overestimate the RTT especially 526 * with chatty applications or bulk transfer apps which 527 * are stalled on filesystem I/O. 528 * 529 * Also, since we are only going for a minimum in the 530 * non-timestamp case, we do not smooth things out 531 * else with timestamps disabled convergence takes too 532 * long. 533 */ 534 if (!win_dep) { 535 m -= (new_sample >> 3); 536 new_sample += m; 537 } else { 538 m <<= 3; 539 if (m < new_sample) 540 new_sample = m; 541 } 542 } else { 543 /* No previous measure. */ 544 new_sample = m << 3; 545 } 546 547 if (tp->rcv_rtt_est.rtt != new_sample) 548 tp->rcv_rtt_est.rtt = new_sample; 549 } 550 551 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 552 { 553 if (tp->rcv_rtt_est.time == 0) 554 goto new_measure; 555 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 556 return; 557 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 558 559 new_measure: 560 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 561 tp->rcv_rtt_est.time = tcp_time_stamp; 562 } 563 564 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 565 const struct sk_buff *skb) 566 { 567 struct tcp_sock *tp = tcp_sk(sk); 568 if (tp->rx_opt.rcv_tsecr && 569 (TCP_SKB_CB(skb)->end_seq - 570 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 571 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 572 } 573 574 /* 575 * This function should be called every time data is copied to user space. 576 * It calculates the appropriate TCP receive buffer space. 577 */ 578 void tcp_rcv_space_adjust(struct sock *sk) 579 { 580 struct tcp_sock *tp = tcp_sk(sk); 581 int time; 582 int copied; 583 584 time = tcp_time_stamp - tp->rcvq_space.time; 585 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 586 return; 587 588 /* Number of bytes copied to user in last RTT */ 589 copied = tp->copied_seq - tp->rcvq_space.seq; 590 if (copied <= tp->rcvq_space.space) 591 goto new_measure; 592 593 /* A bit of theory : 594 * copied = bytes received in previous RTT, our base window 595 * To cope with packet losses, we need a 2x factor 596 * To cope with slow start, and sender growing its cwin by 100 % 597 * every RTT, we need a 4x factor, because the ACK we are sending 598 * now is for the next RTT, not the current one : 599 * <prev RTT . ><current RTT .. ><next RTT .... > 600 */ 601 602 if (sysctl_tcp_moderate_rcvbuf && 603 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 604 int rcvwin, rcvmem, rcvbuf; 605 606 /* minimal window to cope with packet losses, assuming 607 * steady state. Add some cushion because of small variations. 608 */ 609 rcvwin = (copied << 1) + 16 * tp->advmss; 610 611 /* If rate increased by 25%, 612 * assume slow start, rcvwin = 3 * copied 613 * If rate increased by 50%, 614 * assume sender can use 2x growth, rcvwin = 4 * copied 615 */ 616 if (copied >= 617 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 618 if (copied >= 619 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 620 rcvwin <<= 1; 621 else 622 rcvwin += (rcvwin >> 1); 623 } 624 625 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 626 while (tcp_win_from_space(rcvmem) < tp->advmss) 627 rcvmem += 128; 628 629 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 630 if (rcvbuf > sk->sk_rcvbuf) { 631 sk->sk_rcvbuf = rcvbuf; 632 633 /* Make the window clamp follow along. */ 634 tp->window_clamp = rcvwin; 635 } 636 } 637 tp->rcvq_space.space = copied; 638 639 new_measure: 640 tp->rcvq_space.seq = tp->copied_seq; 641 tp->rcvq_space.time = tcp_time_stamp; 642 } 643 644 /* There is something which you must keep in mind when you analyze the 645 * behavior of the tp->ato delayed ack timeout interval. When a 646 * connection starts up, we want to ack as quickly as possible. The 647 * problem is that "good" TCP's do slow start at the beginning of data 648 * transmission. The means that until we send the first few ACK's the 649 * sender will sit on his end and only queue most of his data, because 650 * he can only send snd_cwnd unacked packets at any given time. For 651 * each ACK we send, he increments snd_cwnd and transmits more of his 652 * queue. -DaveM 653 */ 654 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct inet_connection_sock *icsk = inet_csk(sk); 658 u32 now; 659 660 inet_csk_schedule_ack(sk); 661 662 tcp_measure_rcv_mss(sk, skb); 663 664 tcp_rcv_rtt_measure(tp); 665 666 now = tcp_time_stamp; 667 668 if (!icsk->icsk_ack.ato) { 669 /* The _first_ data packet received, initialize 670 * delayed ACK engine. 671 */ 672 tcp_incr_quickack(sk); 673 icsk->icsk_ack.ato = TCP_ATO_MIN; 674 } else { 675 int m = now - icsk->icsk_ack.lrcvtime; 676 677 if (m <= TCP_ATO_MIN / 2) { 678 /* The fastest case is the first. */ 679 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 680 } else if (m < icsk->icsk_ack.ato) { 681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 682 if (icsk->icsk_ack.ato > icsk->icsk_rto) 683 icsk->icsk_ack.ato = icsk->icsk_rto; 684 } else if (m > icsk->icsk_rto) { 685 /* Too long gap. Apparently sender failed to 686 * restart window, so that we send ACKs quickly. 687 */ 688 tcp_incr_quickack(sk); 689 sk_mem_reclaim(sk); 690 } 691 } 692 icsk->icsk_ack.lrcvtime = now; 693 694 tcp_ecn_check_ce(tp, skb); 695 696 if (skb->len >= 128) 697 tcp_grow_window(sk, skb); 698 } 699 700 /* Called to compute a smoothed rtt estimate. The data fed to this 701 * routine either comes from timestamps, or from segments that were 702 * known _not_ to have been retransmitted [see Karn/Partridge 703 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 704 * piece by Van Jacobson. 705 * NOTE: the next three routines used to be one big routine. 706 * To save cycles in the RFC 1323 implementation it was better to break 707 * it up into three procedures. -- erics 708 */ 709 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 710 { 711 struct tcp_sock *tp = tcp_sk(sk); 712 long m = mrtt_us; /* RTT */ 713 u32 srtt = tp->srtt_us; 714 715 /* The following amusing code comes from Jacobson's 716 * article in SIGCOMM '88. Note that rtt and mdev 717 * are scaled versions of rtt and mean deviation. 718 * This is designed to be as fast as possible 719 * m stands for "measurement". 720 * 721 * On a 1990 paper the rto value is changed to: 722 * RTO = rtt + 4 * mdev 723 * 724 * Funny. This algorithm seems to be very broken. 725 * These formulae increase RTO, when it should be decreased, increase 726 * too slowly, when it should be increased quickly, decrease too quickly 727 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 728 * does not matter how to _calculate_ it. Seems, it was trap 729 * that VJ failed to avoid. 8) 730 */ 731 if (srtt != 0) { 732 m -= (srtt >> 3); /* m is now error in rtt est */ 733 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 734 if (m < 0) { 735 m = -m; /* m is now abs(error) */ 736 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 737 /* This is similar to one of Eifel findings. 738 * Eifel blocks mdev updates when rtt decreases. 739 * This solution is a bit different: we use finer gain 740 * for mdev in this case (alpha*beta). 741 * Like Eifel it also prevents growth of rto, 742 * but also it limits too fast rto decreases, 743 * happening in pure Eifel. 744 */ 745 if (m > 0) 746 m >>= 3; 747 } else { 748 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 749 } 750 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 751 if (tp->mdev_us > tp->mdev_max_us) { 752 tp->mdev_max_us = tp->mdev_us; 753 if (tp->mdev_max_us > tp->rttvar_us) 754 tp->rttvar_us = tp->mdev_max_us; 755 } 756 if (after(tp->snd_una, tp->rtt_seq)) { 757 if (tp->mdev_max_us < tp->rttvar_us) 758 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 759 tp->rtt_seq = tp->snd_nxt; 760 tp->mdev_max_us = tcp_rto_min_us(sk); 761 } 762 } else { 763 /* no previous measure. */ 764 srtt = m << 3; /* take the measured time to be rtt */ 765 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 766 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 767 tp->mdev_max_us = tp->rttvar_us; 768 tp->rtt_seq = tp->snd_nxt; 769 } 770 tp->srtt_us = max(1U, srtt); 771 } 772 773 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 774 * Note: TCP stack does not yet implement pacing. 775 * FQ packet scheduler can be used to implement cheap but effective 776 * TCP pacing, to smooth the burst on large writes when packets 777 * in flight is significantly lower than cwnd (or rwin) 778 */ 779 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 780 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 781 782 static void tcp_update_pacing_rate(struct sock *sk) 783 { 784 const struct tcp_sock *tp = tcp_sk(sk); 785 u64 rate; 786 787 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 788 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 789 790 /* current rate is (cwnd * mss) / srtt 791 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 792 * In Congestion Avoidance phase, set it to 120 % the current rate. 793 * 794 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 795 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 796 * end of slow start and should slow down. 797 */ 798 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 799 rate *= sysctl_tcp_pacing_ss_ratio; 800 else 801 rate *= sysctl_tcp_pacing_ca_ratio; 802 803 rate *= max(tp->snd_cwnd, tp->packets_out); 804 805 if (likely(tp->srtt_us)) 806 do_div(rate, tp->srtt_us); 807 808 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 809 * without any lock. We want to make sure compiler wont store 810 * intermediate values in this location. 811 */ 812 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 813 sk->sk_max_pacing_rate); 814 } 815 816 /* Calculate rto without backoff. This is the second half of Van Jacobson's 817 * routine referred to above. 818 */ 819 static void tcp_set_rto(struct sock *sk) 820 { 821 const struct tcp_sock *tp = tcp_sk(sk); 822 /* Old crap is replaced with new one. 8) 823 * 824 * More seriously: 825 * 1. If rtt variance happened to be less 50msec, it is hallucination. 826 * It cannot be less due to utterly erratic ACK generation made 827 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 828 * to do with delayed acks, because at cwnd>2 true delack timeout 829 * is invisible. Actually, Linux-2.4 also generates erratic 830 * ACKs in some circumstances. 831 */ 832 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 833 834 /* 2. Fixups made earlier cannot be right. 835 * If we do not estimate RTO correctly without them, 836 * all the algo is pure shit and should be replaced 837 * with correct one. It is exactly, which we pretend to do. 838 */ 839 840 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 841 * guarantees that rto is higher. 842 */ 843 tcp_bound_rto(sk); 844 } 845 846 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 847 { 848 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 849 850 if (!cwnd) 851 cwnd = TCP_INIT_CWND; 852 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 853 } 854 855 /* 856 * Packet counting of FACK is based on in-order assumptions, therefore TCP 857 * disables it when reordering is detected 858 */ 859 void tcp_disable_fack(struct tcp_sock *tp) 860 { 861 /* RFC3517 uses different metric in lost marker => reset on change */ 862 if (tcp_is_fack(tp)) 863 tp->lost_skb_hint = NULL; 864 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 865 } 866 867 /* Take a notice that peer is sending D-SACKs */ 868 static void tcp_dsack_seen(struct tcp_sock *tp) 869 { 870 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 871 } 872 873 static void tcp_update_reordering(struct sock *sk, const int metric, 874 const int ts) 875 { 876 struct tcp_sock *tp = tcp_sk(sk); 877 if (metric > tp->reordering) { 878 int mib_idx; 879 880 tp->reordering = min(sysctl_tcp_max_reordering, metric); 881 882 /* This exciting event is worth to be remembered. 8) */ 883 if (ts) 884 mib_idx = LINUX_MIB_TCPTSREORDER; 885 else if (tcp_is_reno(tp)) 886 mib_idx = LINUX_MIB_TCPRENOREORDER; 887 else if (tcp_is_fack(tp)) 888 mib_idx = LINUX_MIB_TCPFACKREORDER; 889 else 890 mib_idx = LINUX_MIB_TCPSACKREORDER; 891 892 NET_INC_STATS(sock_net(sk), mib_idx); 893 #if FASTRETRANS_DEBUG > 1 894 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 895 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 896 tp->reordering, 897 tp->fackets_out, 898 tp->sacked_out, 899 tp->undo_marker ? tp->undo_retrans : 0); 900 #endif 901 tcp_disable_fack(tp); 902 } 903 904 tp->rack.reord = 1; 905 } 906 907 /* This must be called before lost_out is incremented */ 908 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 909 { 910 if (!tp->retransmit_skb_hint || 911 before(TCP_SKB_CB(skb)->seq, 912 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 913 tp->retransmit_skb_hint = skb; 914 } 915 916 /* Sum the number of packets on the wire we have marked as lost. 917 * There are two cases we care about here: 918 * a) Packet hasn't been marked lost (nor retransmitted), 919 * and this is the first loss. 920 * b) Packet has been marked both lost and retransmitted, 921 * and this means we think it was lost again. 922 */ 923 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 __u8 sacked = TCP_SKB_CB(skb)->sacked; 926 927 if (!(sacked & TCPCB_LOST) || 928 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 929 tp->lost += tcp_skb_pcount(skb); 930 } 931 932 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 933 { 934 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 935 tcp_verify_retransmit_hint(tp, skb); 936 937 tp->lost_out += tcp_skb_pcount(skb); 938 tcp_sum_lost(tp, skb); 939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 940 } 941 } 942 943 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 944 { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tcp_sum_lost(tp, skb); 948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 949 tp->lost_out += tcp_skb_pcount(skb); 950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 951 } 952 } 953 954 /* This procedure tags the retransmission queue when SACKs arrive. 955 * 956 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 957 * Packets in queue with these bits set are counted in variables 958 * sacked_out, retrans_out and lost_out, correspondingly. 959 * 960 * Valid combinations are: 961 * Tag InFlight Description 962 * 0 1 - orig segment is in flight. 963 * S 0 - nothing flies, orig reached receiver. 964 * L 0 - nothing flies, orig lost by net. 965 * R 2 - both orig and retransmit are in flight. 966 * L|R 1 - orig is lost, retransmit is in flight. 967 * S|R 1 - orig reached receiver, retrans is still in flight. 968 * (L|S|R is logically valid, it could occur when L|R is sacked, 969 * but it is equivalent to plain S and code short-curcuits it to S. 970 * L|S is logically invalid, it would mean -1 packet in flight 8)) 971 * 972 * These 6 states form finite state machine, controlled by the following events: 973 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 974 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 975 * 3. Loss detection event of two flavors: 976 * A. Scoreboard estimator decided the packet is lost. 977 * A'. Reno "three dupacks" marks head of queue lost. 978 * A''. Its FACK modification, head until snd.fack is lost. 979 * B. SACK arrives sacking SND.NXT at the moment, when the 980 * segment was retransmitted. 981 * 4. D-SACK added new rule: D-SACK changes any tag to S. 982 * 983 * It is pleasant to note, that state diagram turns out to be commutative, 984 * so that we are allowed not to be bothered by order of our actions, 985 * when multiple events arrive simultaneously. (see the function below). 986 * 987 * Reordering detection. 988 * -------------------- 989 * Reordering metric is maximal distance, which a packet can be displaced 990 * in packet stream. With SACKs we can estimate it: 991 * 992 * 1. SACK fills old hole and the corresponding segment was not 993 * ever retransmitted -> reordering. Alas, we cannot use it 994 * when segment was retransmitted. 995 * 2. The last flaw is solved with D-SACK. D-SACK arrives 996 * for retransmitted and already SACKed segment -> reordering.. 997 * Both of these heuristics are not used in Loss state, when we cannot 998 * account for retransmits accurately. 999 * 1000 * SACK block validation. 1001 * ---------------------- 1002 * 1003 * SACK block range validation checks that the received SACK block fits to 1004 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1005 * Note that SND.UNA is not included to the range though being valid because 1006 * it means that the receiver is rather inconsistent with itself reporting 1007 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1008 * perfectly valid, however, in light of RFC2018 which explicitly states 1009 * that "SACK block MUST reflect the newest segment. Even if the newest 1010 * segment is going to be discarded ...", not that it looks very clever 1011 * in case of head skb. Due to potentional receiver driven attacks, we 1012 * choose to avoid immediate execution of a walk in write queue due to 1013 * reneging and defer head skb's loss recovery to standard loss recovery 1014 * procedure that will eventually trigger (nothing forbids us doing this). 1015 * 1016 * Implements also blockage to start_seq wrap-around. Problem lies in the 1017 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1018 * there's no guarantee that it will be before snd_nxt (n). The problem 1019 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1020 * wrap (s_w): 1021 * 1022 * <- outs wnd -> <- wrapzone -> 1023 * u e n u_w e_w s n_w 1024 * | | | | | | | 1025 * |<------------+------+----- TCP seqno space --------------+---------->| 1026 * ...-- <2^31 ->| |<--------... 1027 * ...---- >2^31 ------>| |<--------... 1028 * 1029 * Current code wouldn't be vulnerable but it's better still to discard such 1030 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1031 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1032 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1033 * equal to the ideal case (infinite seqno space without wrap caused issues). 1034 * 1035 * With D-SACK the lower bound is extended to cover sequence space below 1036 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1037 * again, D-SACK block must not to go across snd_una (for the same reason as 1038 * for the normal SACK blocks, explained above). But there all simplicity 1039 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1040 * fully below undo_marker they do not affect behavior in anyway and can 1041 * therefore be safely ignored. In rare cases (which are more or less 1042 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1043 * fragmentation and packet reordering past skb's retransmission. To consider 1044 * them correctly, the acceptable range must be extended even more though 1045 * the exact amount is rather hard to quantify. However, tp->max_window can 1046 * be used as an exaggerated estimate. 1047 */ 1048 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1049 u32 start_seq, u32 end_seq) 1050 { 1051 /* Too far in future, or reversed (interpretation is ambiguous) */ 1052 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1053 return false; 1054 1055 /* Nasty start_seq wrap-around check (see comments above) */ 1056 if (!before(start_seq, tp->snd_nxt)) 1057 return false; 1058 1059 /* In outstanding window? ...This is valid exit for D-SACKs too. 1060 * start_seq == snd_una is non-sensical (see comments above) 1061 */ 1062 if (after(start_seq, tp->snd_una)) 1063 return true; 1064 1065 if (!is_dsack || !tp->undo_marker) 1066 return false; 1067 1068 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1069 if (after(end_seq, tp->snd_una)) 1070 return false; 1071 1072 if (!before(start_seq, tp->undo_marker)) 1073 return true; 1074 1075 /* Too old */ 1076 if (!after(end_seq, tp->undo_marker)) 1077 return false; 1078 1079 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1080 * start_seq < undo_marker and end_seq >= undo_marker. 1081 */ 1082 return !before(start_seq, end_seq - tp->max_window); 1083 } 1084 1085 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1086 struct tcp_sack_block_wire *sp, int num_sacks, 1087 u32 prior_snd_una) 1088 { 1089 struct tcp_sock *tp = tcp_sk(sk); 1090 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1091 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1092 bool dup_sack = false; 1093 1094 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1095 dup_sack = true; 1096 tcp_dsack_seen(tp); 1097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1098 } else if (num_sacks > 1) { 1099 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1100 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1101 1102 if (!after(end_seq_0, end_seq_1) && 1103 !before(start_seq_0, start_seq_1)) { 1104 dup_sack = true; 1105 tcp_dsack_seen(tp); 1106 NET_INC_STATS(sock_net(sk), 1107 LINUX_MIB_TCPDSACKOFORECV); 1108 } 1109 } 1110 1111 /* D-SACK for already forgotten data... Do dumb counting. */ 1112 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1113 !after(end_seq_0, prior_snd_una) && 1114 after(end_seq_0, tp->undo_marker)) 1115 tp->undo_retrans--; 1116 1117 return dup_sack; 1118 } 1119 1120 struct tcp_sacktag_state { 1121 int reord; 1122 int fack_count; 1123 /* Timestamps for earliest and latest never-retransmitted segment 1124 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1125 * but congestion control should still get an accurate delay signal. 1126 */ 1127 struct skb_mstamp first_sackt; 1128 struct skb_mstamp last_sackt; 1129 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */ 1130 struct rate_sample *rate; 1131 int flag; 1132 }; 1133 1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1135 * the incoming SACK may not exactly match but we can find smaller MSS 1136 * aligned portion of it that matches. Therefore we might need to fragment 1137 * which may fail and creates some hassle (caller must handle error case 1138 * returns). 1139 * 1140 * FIXME: this could be merged to shift decision code 1141 */ 1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1143 u32 start_seq, u32 end_seq) 1144 { 1145 int err; 1146 bool in_sack; 1147 unsigned int pkt_len; 1148 unsigned int mss; 1149 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1152 1153 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1155 mss = tcp_skb_mss(skb); 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1157 1158 if (!in_sack) { 1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1160 if (pkt_len < mss) 1161 pkt_len = mss; 1162 } else { 1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 return -EINVAL; 1166 } 1167 1168 /* Round if necessary so that SACKs cover only full MSSes 1169 * and/or the remaining small portion (if present) 1170 */ 1171 if (pkt_len > mss) { 1172 unsigned int new_len = (pkt_len / mss) * mss; 1173 if (!in_sack && new_len < pkt_len) { 1174 new_len += mss; 1175 if (new_len >= skb->len) 1176 return 0; 1177 } 1178 pkt_len = new_len; 1179 } 1180 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1181 if (err < 0) 1182 return err; 1183 } 1184 1185 return in_sack; 1186 } 1187 1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1189 static u8 tcp_sacktag_one(struct sock *sk, 1190 struct tcp_sacktag_state *state, u8 sacked, 1191 u32 start_seq, u32 end_seq, 1192 int dup_sack, int pcount, 1193 const struct skb_mstamp *xmit_time) 1194 { 1195 struct tcp_sock *tp = tcp_sk(sk); 1196 int fack_count = state->fack_count; 1197 1198 /* Account D-SACK for retransmitted packet. */ 1199 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1200 if (tp->undo_marker && tp->undo_retrans > 0 && 1201 after(end_seq, tp->undo_marker)) 1202 tp->undo_retrans--; 1203 if (sacked & TCPCB_SACKED_ACKED) 1204 state->reord = min(fack_count, state->reord); 1205 } 1206 1207 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1208 if (!after(end_seq, tp->snd_una)) 1209 return sacked; 1210 1211 if (!(sacked & TCPCB_SACKED_ACKED)) { 1212 tcp_rack_advance(tp, sacked, end_seq, 1213 xmit_time, &state->ack_time); 1214 1215 if (sacked & TCPCB_SACKED_RETRANS) { 1216 /* If the segment is not tagged as lost, 1217 * we do not clear RETRANS, believing 1218 * that retransmission is still in flight. 1219 */ 1220 if (sacked & TCPCB_LOST) { 1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1222 tp->lost_out -= pcount; 1223 tp->retrans_out -= pcount; 1224 } 1225 } else { 1226 if (!(sacked & TCPCB_RETRANS)) { 1227 /* New sack for not retransmitted frame, 1228 * which was in hole. It is reordering. 1229 */ 1230 if (before(start_seq, 1231 tcp_highest_sack_seq(tp))) 1232 state->reord = min(fack_count, 1233 state->reord); 1234 if (!after(end_seq, tp->high_seq)) 1235 state->flag |= FLAG_ORIG_SACK_ACKED; 1236 if (state->first_sackt.v64 == 0) 1237 state->first_sackt = *xmit_time; 1238 state->last_sackt = *xmit_time; 1239 } 1240 1241 if (sacked & TCPCB_LOST) { 1242 sacked &= ~TCPCB_LOST; 1243 tp->lost_out -= pcount; 1244 } 1245 } 1246 1247 sacked |= TCPCB_SACKED_ACKED; 1248 state->flag |= FLAG_DATA_SACKED; 1249 tp->sacked_out += pcount; 1250 tp->delivered += pcount; /* Out-of-order packets delivered */ 1251 1252 fack_count += pcount; 1253 1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1255 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1257 tp->lost_cnt_hint += pcount; 1258 1259 if (fack_count > tp->fackets_out) 1260 tp->fackets_out = fack_count; 1261 } 1262 1263 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1264 * frames and clear it. undo_retrans is decreased above, L|R frames 1265 * are accounted above as well. 1266 */ 1267 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1268 sacked &= ~TCPCB_SACKED_RETRANS; 1269 tp->retrans_out -= pcount; 1270 } 1271 1272 return sacked; 1273 } 1274 1275 /* Shift newly-SACKed bytes from this skb to the immediately previous 1276 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1277 */ 1278 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1279 struct tcp_sacktag_state *state, 1280 unsigned int pcount, int shifted, int mss, 1281 bool dup_sack) 1282 { 1283 struct tcp_sock *tp = tcp_sk(sk); 1284 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1285 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1286 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1287 1288 BUG_ON(!pcount); 1289 1290 /* Adjust counters and hints for the newly sacked sequence 1291 * range but discard the return value since prev is already 1292 * marked. We must tag the range first because the seq 1293 * advancement below implicitly advances 1294 * tcp_highest_sack_seq() when skb is highest_sack. 1295 */ 1296 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1297 start_seq, end_seq, dup_sack, pcount, 1298 &skb->skb_mstamp); 1299 tcp_rate_skb_delivered(sk, skb, state->rate); 1300 1301 if (skb == tp->lost_skb_hint) 1302 tp->lost_cnt_hint += pcount; 1303 1304 TCP_SKB_CB(prev)->end_seq += shifted; 1305 TCP_SKB_CB(skb)->seq += shifted; 1306 1307 tcp_skb_pcount_add(prev, pcount); 1308 BUG_ON(tcp_skb_pcount(skb) < pcount); 1309 tcp_skb_pcount_add(skb, -pcount); 1310 1311 /* When we're adding to gso_segs == 1, gso_size will be zero, 1312 * in theory this shouldn't be necessary but as long as DSACK 1313 * code can come after this skb later on it's better to keep 1314 * setting gso_size to something. 1315 */ 1316 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1317 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1318 1319 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1320 if (tcp_skb_pcount(skb) <= 1) 1321 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1322 1323 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1324 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1325 1326 if (skb->len > 0) { 1327 BUG_ON(!tcp_skb_pcount(skb)); 1328 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1329 return false; 1330 } 1331 1332 /* Whole SKB was eaten :-) */ 1333 1334 if (skb == tp->retransmit_skb_hint) 1335 tp->retransmit_skb_hint = prev; 1336 if (skb == tp->lost_skb_hint) { 1337 tp->lost_skb_hint = prev; 1338 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1339 } 1340 1341 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1342 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1344 TCP_SKB_CB(prev)->end_seq++; 1345 1346 if (skb == tcp_highest_sack(sk)) 1347 tcp_advance_highest_sack(sk, skb); 1348 1349 tcp_skb_collapse_tstamp(prev, skb); 1350 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1351 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1352 1353 tcp_unlink_write_queue(skb, sk); 1354 sk_wmem_free_skb(sk, skb); 1355 1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1357 1358 return true; 1359 } 1360 1361 /* I wish gso_size would have a bit more sane initialization than 1362 * something-or-zero which complicates things 1363 */ 1364 static int tcp_skb_seglen(const struct sk_buff *skb) 1365 { 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1367 } 1368 1369 /* Shifting pages past head area doesn't work */ 1370 static int skb_can_shift(const struct sk_buff *skb) 1371 { 1372 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1373 } 1374 1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1376 * skb. 1377 */ 1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1379 struct tcp_sacktag_state *state, 1380 u32 start_seq, u32 end_seq, 1381 bool dup_sack) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct sk_buff *prev; 1385 int mss; 1386 int pcount = 0; 1387 int len; 1388 int in_sack; 1389 1390 if (!sk_can_gso(sk)) 1391 goto fallback; 1392 1393 /* Normally R but no L won't result in plain S */ 1394 if (!dup_sack && 1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1396 goto fallback; 1397 if (!skb_can_shift(skb)) 1398 goto fallback; 1399 /* This frame is about to be dropped (was ACKed). */ 1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1401 goto fallback; 1402 1403 /* Can only happen with delayed DSACK + discard craziness */ 1404 if (unlikely(skb == tcp_write_queue_head(sk))) 1405 goto fallback; 1406 prev = tcp_write_queue_prev(sk, skb); 1407 1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1409 goto fallback; 1410 1411 if (!tcp_skb_can_collapse_to(prev)) 1412 goto fallback; 1413 1414 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1415 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1416 1417 if (in_sack) { 1418 len = skb->len; 1419 pcount = tcp_skb_pcount(skb); 1420 mss = tcp_skb_seglen(skb); 1421 1422 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1423 * drop this restriction as unnecessary 1424 */ 1425 if (mss != tcp_skb_seglen(prev)) 1426 goto fallback; 1427 } else { 1428 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1429 goto noop; 1430 /* CHECKME: This is non-MSS split case only?, this will 1431 * cause skipped skbs due to advancing loop btw, original 1432 * has that feature too 1433 */ 1434 if (tcp_skb_pcount(skb) <= 1) 1435 goto noop; 1436 1437 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1438 if (!in_sack) { 1439 /* TODO: head merge to next could be attempted here 1440 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1441 * though it might not be worth of the additional hassle 1442 * 1443 * ...we can probably just fallback to what was done 1444 * previously. We could try merging non-SACKed ones 1445 * as well but it probably isn't going to buy off 1446 * because later SACKs might again split them, and 1447 * it would make skb timestamp tracking considerably 1448 * harder problem. 1449 */ 1450 goto fallback; 1451 } 1452 1453 len = end_seq - TCP_SKB_CB(skb)->seq; 1454 BUG_ON(len < 0); 1455 BUG_ON(len > skb->len); 1456 1457 /* MSS boundaries should be honoured or else pcount will 1458 * severely break even though it makes things bit trickier. 1459 * Optimize common case to avoid most of the divides 1460 */ 1461 mss = tcp_skb_mss(skb); 1462 1463 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1464 * drop this restriction as unnecessary 1465 */ 1466 if (mss != tcp_skb_seglen(prev)) 1467 goto fallback; 1468 1469 if (len == mss) { 1470 pcount = 1; 1471 } else if (len < mss) { 1472 goto noop; 1473 } else { 1474 pcount = len / mss; 1475 len = pcount * mss; 1476 } 1477 } 1478 1479 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1480 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1481 goto fallback; 1482 1483 if (!skb_shift(prev, skb, len)) 1484 goto fallback; 1485 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1486 goto out; 1487 1488 /* Hole filled allows collapsing with the next as well, this is very 1489 * useful when hole on every nth skb pattern happens 1490 */ 1491 if (prev == tcp_write_queue_tail(sk)) 1492 goto out; 1493 skb = tcp_write_queue_next(sk, prev); 1494 1495 if (!skb_can_shift(skb) || 1496 (skb == tcp_send_head(sk)) || 1497 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1498 (mss != tcp_skb_seglen(skb))) 1499 goto out; 1500 1501 len = skb->len; 1502 if (skb_shift(prev, skb, len)) { 1503 pcount += tcp_skb_pcount(skb); 1504 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1505 } 1506 1507 out: 1508 state->fack_count += pcount; 1509 return prev; 1510 1511 noop: 1512 return skb; 1513 1514 fallback: 1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1516 return NULL; 1517 } 1518 1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1520 struct tcp_sack_block *next_dup, 1521 struct tcp_sacktag_state *state, 1522 u32 start_seq, u32 end_seq, 1523 bool dup_sack_in) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 struct sk_buff *tmp; 1527 1528 tcp_for_write_queue_from(skb, sk) { 1529 int in_sack = 0; 1530 bool dup_sack = dup_sack_in; 1531 1532 if (skb == tcp_send_head(sk)) 1533 break; 1534 1535 /* queue is in-order => we can short-circuit the walk early */ 1536 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1537 break; 1538 1539 if (next_dup && 1540 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1541 in_sack = tcp_match_skb_to_sack(sk, skb, 1542 next_dup->start_seq, 1543 next_dup->end_seq); 1544 if (in_sack > 0) 1545 dup_sack = true; 1546 } 1547 1548 /* skb reference here is a bit tricky to get right, since 1549 * shifting can eat and free both this skb and the next, 1550 * so not even _safe variant of the loop is enough. 1551 */ 1552 if (in_sack <= 0) { 1553 tmp = tcp_shift_skb_data(sk, skb, state, 1554 start_seq, end_seq, dup_sack); 1555 if (tmp) { 1556 if (tmp != skb) { 1557 skb = tmp; 1558 continue; 1559 } 1560 1561 in_sack = 0; 1562 } else { 1563 in_sack = tcp_match_skb_to_sack(sk, skb, 1564 start_seq, 1565 end_seq); 1566 } 1567 } 1568 1569 if (unlikely(in_sack < 0)) 1570 break; 1571 1572 if (in_sack) { 1573 TCP_SKB_CB(skb)->sacked = 1574 tcp_sacktag_one(sk, 1575 state, 1576 TCP_SKB_CB(skb)->sacked, 1577 TCP_SKB_CB(skb)->seq, 1578 TCP_SKB_CB(skb)->end_seq, 1579 dup_sack, 1580 tcp_skb_pcount(skb), 1581 &skb->skb_mstamp); 1582 tcp_rate_skb_delivered(sk, skb, state->rate); 1583 1584 if (!before(TCP_SKB_CB(skb)->seq, 1585 tcp_highest_sack_seq(tp))) 1586 tcp_advance_highest_sack(sk, skb); 1587 } 1588 1589 state->fack_count += tcp_skb_pcount(skb); 1590 } 1591 return skb; 1592 } 1593 1594 /* Avoid all extra work that is being done by sacktag while walking in 1595 * a normal way 1596 */ 1597 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1598 struct tcp_sacktag_state *state, 1599 u32 skip_to_seq) 1600 { 1601 tcp_for_write_queue_from(skb, sk) { 1602 if (skb == tcp_send_head(sk)) 1603 break; 1604 1605 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1606 break; 1607 1608 state->fack_count += tcp_skb_pcount(skb); 1609 } 1610 return skb; 1611 } 1612 1613 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1614 struct sock *sk, 1615 struct tcp_sack_block *next_dup, 1616 struct tcp_sacktag_state *state, 1617 u32 skip_to_seq) 1618 { 1619 if (!next_dup) 1620 return skb; 1621 1622 if (before(next_dup->start_seq, skip_to_seq)) { 1623 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1624 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1625 next_dup->start_seq, next_dup->end_seq, 1626 1); 1627 } 1628 1629 return skb; 1630 } 1631 1632 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1633 { 1634 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1635 } 1636 1637 static int 1638 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1639 u32 prior_snd_una, struct tcp_sacktag_state *state) 1640 { 1641 struct tcp_sock *tp = tcp_sk(sk); 1642 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1643 TCP_SKB_CB(ack_skb)->sacked); 1644 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1645 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1646 struct tcp_sack_block *cache; 1647 struct sk_buff *skb; 1648 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1649 int used_sacks; 1650 bool found_dup_sack = false; 1651 int i, j; 1652 int first_sack_index; 1653 1654 state->flag = 0; 1655 state->reord = tp->packets_out; 1656 1657 if (!tp->sacked_out) { 1658 if (WARN_ON(tp->fackets_out)) 1659 tp->fackets_out = 0; 1660 tcp_highest_sack_reset(sk); 1661 } 1662 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1664 num_sacks, prior_snd_una); 1665 if (found_dup_sack) { 1666 state->flag |= FLAG_DSACKING_ACK; 1667 tp->delivered++; /* A spurious retransmission is delivered */ 1668 } 1669 1670 /* Eliminate too old ACKs, but take into 1671 * account more or less fresh ones, they can 1672 * contain valid SACK info. 1673 */ 1674 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1675 return 0; 1676 1677 if (!tp->packets_out) 1678 goto out; 1679 1680 used_sacks = 0; 1681 first_sack_index = 0; 1682 for (i = 0; i < num_sacks; i++) { 1683 bool dup_sack = !i && found_dup_sack; 1684 1685 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1686 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1687 1688 if (!tcp_is_sackblock_valid(tp, dup_sack, 1689 sp[used_sacks].start_seq, 1690 sp[used_sacks].end_seq)) { 1691 int mib_idx; 1692 1693 if (dup_sack) { 1694 if (!tp->undo_marker) 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1696 else 1697 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1698 } else { 1699 /* Don't count olds caused by ACK reordering */ 1700 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1701 !after(sp[used_sacks].end_seq, tp->snd_una)) 1702 continue; 1703 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1704 } 1705 1706 NET_INC_STATS(sock_net(sk), mib_idx); 1707 if (i == 0) 1708 first_sack_index = -1; 1709 continue; 1710 } 1711 1712 /* Ignore very old stuff early */ 1713 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1714 continue; 1715 1716 used_sacks++; 1717 } 1718 1719 /* order SACK blocks to allow in order walk of the retrans queue */ 1720 for (i = used_sacks - 1; i > 0; i--) { 1721 for (j = 0; j < i; j++) { 1722 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1723 swap(sp[j], sp[j + 1]); 1724 1725 /* Track where the first SACK block goes to */ 1726 if (j == first_sack_index) 1727 first_sack_index = j + 1; 1728 } 1729 } 1730 } 1731 1732 skb = tcp_write_queue_head(sk); 1733 state->fack_count = 0; 1734 i = 0; 1735 1736 if (!tp->sacked_out) { 1737 /* It's already past, so skip checking against it */ 1738 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1739 } else { 1740 cache = tp->recv_sack_cache; 1741 /* Skip empty blocks in at head of the cache */ 1742 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1743 !cache->end_seq) 1744 cache++; 1745 } 1746 1747 while (i < used_sacks) { 1748 u32 start_seq = sp[i].start_seq; 1749 u32 end_seq = sp[i].end_seq; 1750 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1751 struct tcp_sack_block *next_dup = NULL; 1752 1753 if (found_dup_sack && ((i + 1) == first_sack_index)) 1754 next_dup = &sp[i + 1]; 1755 1756 /* Skip too early cached blocks */ 1757 while (tcp_sack_cache_ok(tp, cache) && 1758 !before(start_seq, cache->end_seq)) 1759 cache++; 1760 1761 /* Can skip some work by looking recv_sack_cache? */ 1762 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1763 after(end_seq, cache->start_seq)) { 1764 1765 /* Head todo? */ 1766 if (before(start_seq, cache->start_seq)) { 1767 skb = tcp_sacktag_skip(skb, sk, state, 1768 start_seq); 1769 skb = tcp_sacktag_walk(skb, sk, next_dup, 1770 state, 1771 start_seq, 1772 cache->start_seq, 1773 dup_sack); 1774 } 1775 1776 /* Rest of the block already fully processed? */ 1777 if (!after(end_seq, cache->end_seq)) 1778 goto advance_sp; 1779 1780 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1781 state, 1782 cache->end_seq); 1783 1784 /* ...tail remains todo... */ 1785 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1786 /* ...but better entrypoint exists! */ 1787 skb = tcp_highest_sack(sk); 1788 if (!skb) 1789 break; 1790 state->fack_count = tp->fackets_out; 1791 cache++; 1792 goto walk; 1793 } 1794 1795 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1796 /* Check overlap against next cached too (past this one already) */ 1797 cache++; 1798 continue; 1799 } 1800 1801 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1802 skb = tcp_highest_sack(sk); 1803 if (!skb) 1804 break; 1805 state->fack_count = tp->fackets_out; 1806 } 1807 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1808 1809 walk: 1810 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1811 start_seq, end_seq, dup_sack); 1812 1813 advance_sp: 1814 i++; 1815 } 1816 1817 /* Clear the head of the cache sack blocks so we can skip it next time */ 1818 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1819 tp->recv_sack_cache[i].start_seq = 0; 1820 tp->recv_sack_cache[i].end_seq = 0; 1821 } 1822 for (j = 0; j < used_sacks; j++) 1823 tp->recv_sack_cache[i++] = sp[j]; 1824 1825 if ((state->reord < tp->fackets_out) && 1826 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1827 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1828 1829 tcp_verify_left_out(tp); 1830 out: 1831 1832 #if FASTRETRANS_DEBUG > 0 1833 WARN_ON((int)tp->sacked_out < 0); 1834 WARN_ON((int)tp->lost_out < 0); 1835 WARN_ON((int)tp->retrans_out < 0); 1836 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1837 #endif 1838 return state->flag; 1839 } 1840 1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1843 */ 1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1845 { 1846 u32 holes; 1847 1848 holes = max(tp->lost_out, 1U); 1849 holes = min(holes, tp->packets_out); 1850 1851 if ((tp->sacked_out + holes) > tp->packets_out) { 1852 tp->sacked_out = tp->packets_out - holes; 1853 return true; 1854 } 1855 return false; 1856 } 1857 1858 /* If we receive more dupacks than we expected counting segments 1859 * in assumption of absent reordering, interpret this as reordering. 1860 * The only another reason could be bug in receiver TCP. 1861 */ 1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 if (tcp_limit_reno_sacked(tp)) 1866 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1867 } 1868 1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1870 1871 static void tcp_add_reno_sack(struct sock *sk) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 u32 prior_sacked = tp->sacked_out; 1875 1876 tp->sacked_out++; 1877 tcp_check_reno_reordering(sk, 0); 1878 if (tp->sacked_out > prior_sacked) 1879 tp->delivered++; /* Some out-of-order packet is delivered */ 1880 tcp_verify_left_out(tp); 1881 } 1882 1883 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1884 1885 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1886 { 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 1889 if (acked > 0) { 1890 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1891 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1892 if (acked - 1 >= tp->sacked_out) 1893 tp->sacked_out = 0; 1894 else 1895 tp->sacked_out -= acked - 1; 1896 } 1897 tcp_check_reno_reordering(sk, acked); 1898 tcp_verify_left_out(tp); 1899 } 1900 1901 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1902 { 1903 tp->sacked_out = 0; 1904 } 1905 1906 void tcp_clear_retrans(struct tcp_sock *tp) 1907 { 1908 tp->retrans_out = 0; 1909 tp->lost_out = 0; 1910 tp->undo_marker = 0; 1911 tp->undo_retrans = -1; 1912 tp->fackets_out = 0; 1913 tp->sacked_out = 0; 1914 } 1915 1916 static inline void tcp_init_undo(struct tcp_sock *tp) 1917 { 1918 tp->undo_marker = tp->snd_una; 1919 /* Retransmission still in flight may cause DSACKs later. */ 1920 tp->undo_retrans = tp->retrans_out ? : -1; 1921 } 1922 1923 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1924 * and reset tags completely, otherwise preserve SACKs. If receiver 1925 * dropped its ofo queue, we will know this due to reneging detection. 1926 */ 1927 void tcp_enter_loss(struct sock *sk) 1928 { 1929 const struct inet_connection_sock *icsk = inet_csk(sk); 1930 struct tcp_sock *tp = tcp_sk(sk); 1931 struct net *net = sock_net(sk); 1932 struct sk_buff *skb; 1933 bool is_reneg; /* is receiver reneging on SACKs? */ 1934 bool mark_lost; 1935 1936 /* Reduce ssthresh if it has not yet been made inside this window. */ 1937 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1938 !after(tp->high_seq, tp->snd_una) || 1939 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1940 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1941 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1942 tcp_ca_event(sk, CA_EVENT_LOSS); 1943 tcp_init_undo(tp); 1944 } 1945 tp->snd_cwnd = 1; 1946 tp->snd_cwnd_cnt = 0; 1947 tp->snd_cwnd_stamp = tcp_time_stamp; 1948 1949 tp->retrans_out = 0; 1950 tp->lost_out = 0; 1951 1952 if (tcp_is_reno(tp)) 1953 tcp_reset_reno_sack(tp); 1954 1955 skb = tcp_write_queue_head(sk); 1956 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1957 if (is_reneg) { 1958 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1959 tp->sacked_out = 0; 1960 tp->fackets_out = 0; 1961 } 1962 tcp_clear_all_retrans_hints(tp); 1963 1964 tcp_for_write_queue(skb, sk) { 1965 if (skb == tcp_send_head(sk)) 1966 break; 1967 1968 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1969 is_reneg); 1970 if (mark_lost) 1971 tcp_sum_lost(tp, skb); 1972 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1973 if (mark_lost) { 1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1976 tp->lost_out += tcp_skb_pcount(skb); 1977 } 1978 } 1979 tcp_verify_left_out(tp); 1980 1981 /* Timeout in disordered state after receiving substantial DUPACKs 1982 * suggests that the degree of reordering is over-estimated. 1983 */ 1984 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1985 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1986 tp->reordering = min_t(unsigned int, tp->reordering, 1987 net->ipv4.sysctl_tcp_reordering); 1988 tcp_set_ca_state(sk, TCP_CA_Loss); 1989 tp->high_seq = tp->snd_nxt; 1990 tcp_ecn_queue_cwr(tp); 1991 1992 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO 1993 * if a previous recovery is underway, otherwise it may incorrectly 1994 * call a timeout spurious if some previously retransmitted packets 1995 * are s/acked (sec 3.2). We do not apply that retriction since 1996 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS 1997 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO 1998 * on PTMU discovery to avoid sending new data. 1999 */ 2000 tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size; 2001 } 2002 2003 /* If ACK arrived pointing to a remembered SACK, it means that our 2004 * remembered SACKs do not reflect real state of receiver i.e. 2005 * receiver _host_ is heavily congested (or buggy). 2006 * 2007 * To avoid big spurious retransmission bursts due to transient SACK 2008 * scoreboard oddities that look like reneging, we give the receiver a 2009 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2010 * restore sanity to the SACK scoreboard. If the apparent reneging 2011 * persists until this RTO then we'll clear the SACK scoreboard. 2012 */ 2013 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2014 { 2015 if (flag & FLAG_SACK_RENEGING) { 2016 struct tcp_sock *tp = tcp_sk(sk); 2017 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2018 msecs_to_jiffies(10)); 2019 2020 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2021 delay, TCP_RTO_MAX); 2022 return true; 2023 } 2024 return false; 2025 } 2026 2027 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2028 { 2029 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2030 } 2031 2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2033 * counter when SACK is enabled (without SACK, sacked_out is used for 2034 * that purpose). 2035 * 2036 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2037 * segments up to the highest received SACK block so far and holes in 2038 * between them. 2039 * 2040 * With reordering, holes may still be in flight, so RFC3517 recovery 2041 * uses pure sacked_out (total number of SACKed segments) even though 2042 * it violates the RFC that uses duplicate ACKs, often these are equal 2043 * but when e.g. out-of-window ACKs or packet duplication occurs, 2044 * they differ. Since neither occurs due to loss, TCP should really 2045 * ignore them. 2046 */ 2047 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2048 { 2049 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2050 } 2051 2052 /* Linux NewReno/SACK/FACK/ECN state machine. 2053 * -------------------------------------- 2054 * 2055 * "Open" Normal state, no dubious events, fast path. 2056 * "Disorder" In all the respects it is "Open", 2057 * but requires a bit more attention. It is entered when 2058 * we see some SACKs or dupacks. It is split of "Open" 2059 * mainly to move some processing from fast path to slow one. 2060 * "CWR" CWND was reduced due to some Congestion Notification event. 2061 * It can be ECN, ICMP source quench, local device congestion. 2062 * "Recovery" CWND was reduced, we are fast-retransmitting. 2063 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2064 * 2065 * tcp_fastretrans_alert() is entered: 2066 * - each incoming ACK, if state is not "Open" 2067 * - when arrived ACK is unusual, namely: 2068 * * SACK 2069 * * Duplicate ACK. 2070 * * ECN ECE. 2071 * 2072 * Counting packets in flight is pretty simple. 2073 * 2074 * in_flight = packets_out - left_out + retrans_out 2075 * 2076 * packets_out is SND.NXT-SND.UNA counted in packets. 2077 * 2078 * retrans_out is number of retransmitted segments. 2079 * 2080 * left_out is number of segments left network, but not ACKed yet. 2081 * 2082 * left_out = sacked_out + lost_out 2083 * 2084 * sacked_out: Packets, which arrived to receiver out of order 2085 * and hence not ACKed. With SACKs this number is simply 2086 * amount of SACKed data. Even without SACKs 2087 * it is easy to give pretty reliable estimate of this number, 2088 * counting duplicate ACKs. 2089 * 2090 * lost_out: Packets lost by network. TCP has no explicit 2091 * "loss notification" feedback from network (for now). 2092 * It means that this number can be only _guessed_. 2093 * Actually, it is the heuristics to predict lossage that 2094 * distinguishes different algorithms. 2095 * 2096 * F.e. after RTO, when all the queue is considered as lost, 2097 * lost_out = packets_out and in_flight = retrans_out. 2098 * 2099 * Essentially, we have now a few algorithms detecting 2100 * lost packets. 2101 * 2102 * If the receiver supports SACK: 2103 * 2104 * RFC6675/3517: It is the conventional algorithm. A packet is 2105 * considered lost if the number of higher sequence packets 2106 * SACKed is greater than or equal the DUPACK thoreshold 2107 * (reordering). This is implemented in tcp_mark_head_lost and 2108 * tcp_update_scoreboard. 2109 * 2110 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2111 * (2017-) that checks timing instead of counting DUPACKs. 2112 * Essentially a packet is considered lost if it's not S/ACKed 2113 * after RTT + reordering_window, where both metrics are 2114 * dynamically measured and adjusted. This is implemented in 2115 * tcp_rack_mark_lost. 2116 * 2117 * FACK (Disabled by default. Subsumbed by RACK): 2118 * It is the simplest heuristics. As soon as we decided 2119 * that something is lost, we decide that _all_ not SACKed 2120 * packets until the most forward SACK are lost. I.e. 2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2122 * It is absolutely correct estimate, if network does not reorder 2123 * packets. And it loses any connection to reality when reordering 2124 * takes place. We use FACK by default until reordering 2125 * is suspected on the path to this destination. 2126 * 2127 * If the receiver does not support SACK: 2128 * 2129 * NewReno (RFC6582): in Recovery we assume that one segment 2130 * is lost (classic Reno). While we are in Recovery and 2131 * a partial ACK arrives, we assume that one more packet 2132 * is lost (NewReno). This heuristics are the same in NewReno 2133 * and SACK. 2134 * 2135 * Really tricky (and requiring careful tuning) part of algorithm 2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2137 * The first determines the moment _when_ we should reduce CWND and, 2138 * hence, slow down forward transmission. In fact, it determines the moment 2139 * when we decide that hole is caused by loss, rather than by a reorder. 2140 * 2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2142 * holes, caused by lost packets. 2143 * 2144 * And the most logically complicated part of algorithm is undo 2145 * heuristics. We detect false retransmits due to both too early 2146 * fast retransmit (reordering) and underestimated RTO, analyzing 2147 * timestamps and D-SACKs. When we detect that some segments were 2148 * retransmitted by mistake and CWND reduction was wrong, we undo 2149 * window reduction and abort recovery phase. This logic is hidden 2150 * inside several functions named tcp_try_undo_<something>. 2151 */ 2152 2153 /* This function decides, when we should leave Disordered state 2154 * and enter Recovery phase, reducing congestion window. 2155 * 2156 * Main question: may we further continue forward transmission 2157 * with the same cwnd? 2158 */ 2159 static bool tcp_time_to_recover(struct sock *sk, int flag) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 2163 /* Trick#1: The loss is proven. */ 2164 if (tp->lost_out) 2165 return true; 2166 2167 /* Not-A-Trick#2 : Classic rule... */ 2168 if (tcp_dupack_heuristics(tp) > tp->reordering) 2169 return true; 2170 2171 return false; 2172 } 2173 2174 /* Detect loss in event "A" above by marking head of queue up as lost. 2175 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2178 * the maximum SACKed segments to pass before reaching this limit. 2179 */ 2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2181 { 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 struct sk_buff *skb; 2184 int cnt, oldcnt, lost; 2185 unsigned int mss; 2186 /* Use SACK to deduce losses of new sequences sent during recovery */ 2187 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2188 2189 WARN_ON(packets > tp->packets_out); 2190 if (tp->lost_skb_hint) { 2191 skb = tp->lost_skb_hint; 2192 cnt = tp->lost_cnt_hint; 2193 /* Head already handled? */ 2194 if (mark_head && skb != tcp_write_queue_head(sk)) 2195 return; 2196 } else { 2197 skb = tcp_write_queue_head(sk); 2198 cnt = 0; 2199 } 2200 2201 tcp_for_write_queue_from(skb, sk) { 2202 if (skb == tcp_send_head(sk)) 2203 break; 2204 /* TODO: do this better */ 2205 /* this is not the most efficient way to do this... */ 2206 tp->lost_skb_hint = skb; 2207 tp->lost_cnt_hint = cnt; 2208 2209 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2210 break; 2211 2212 oldcnt = cnt; 2213 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2214 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2215 cnt += tcp_skb_pcount(skb); 2216 2217 if (cnt > packets) { 2218 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2219 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2220 (oldcnt >= packets)) 2221 break; 2222 2223 mss = tcp_skb_mss(skb); 2224 /* If needed, chop off the prefix to mark as lost. */ 2225 lost = (packets - oldcnt) * mss; 2226 if (lost < skb->len && 2227 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2228 break; 2229 cnt = packets; 2230 } 2231 2232 tcp_skb_mark_lost(tp, skb); 2233 2234 if (mark_head) 2235 break; 2236 } 2237 tcp_verify_left_out(tp); 2238 } 2239 2240 /* Account newly detected lost packet(s) */ 2241 2242 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2243 { 2244 struct tcp_sock *tp = tcp_sk(sk); 2245 2246 if (tcp_is_reno(tp)) { 2247 tcp_mark_head_lost(sk, 1, 1); 2248 } else if (tcp_is_fack(tp)) { 2249 int lost = tp->fackets_out - tp->reordering; 2250 if (lost <= 0) 2251 lost = 1; 2252 tcp_mark_head_lost(sk, lost, 0); 2253 } else { 2254 int sacked_upto = tp->sacked_out - tp->reordering; 2255 if (sacked_upto >= 0) 2256 tcp_mark_head_lost(sk, sacked_upto, 0); 2257 else if (fast_rexmit) 2258 tcp_mark_head_lost(sk, 1, 1); 2259 } 2260 } 2261 2262 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2263 { 2264 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2265 before(tp->rx_opt.rcv_tsecr, when); 2266 } 2267 2268 /* skb is spurious retransmitted if the returned timestamp echo 2269 * reply is prior to the skb transmission time 2270 */ 2271 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2272 const struct sk_buff *skb) 2273 { 2274 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2275 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2276 } 2277 2278 /* Nothing was retransmitted or returned timestamp is less 2279 * than timestamp of the first retransmission. 2280 */ 2281 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2282 { 2283 return !tp->retrans_stamp || 2284 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2285 } 2286 2287 /* Undo procedures. */ 2288 2289 /* We can clear retrans_stamp when there are no retransmissions in the 2290 * window. It would seem that it is trivially available for us in 2291 * tp->retrans_out, however, that kind of assumptions doesn't consider 2292 * what will happen if errors occur when sending retransmission for the 2293 * second time. ...It could the that such segment has only 2294 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2295 * the head skb is enough except for some reneging corner cases that 2296 * are not worth the effort. 2297 * 2298 * Main reason for all this complexity is the fact that connection dying 2299 * time now depends on the validity of the retrans_stamp, in particular, 2300 * that successive retransmissions of a segment must not advance 2301 * retrans_stamp under any conditions. 2302 */ 2303 static bool tcp_any_retrans_done(const struct sock *sk) 2304 { 2305 const struct tcp_sock *tp = tcp_sk(sk); 2306 struct sk_buff *skb; 2307 2308 if (tp->retrans_out) 2309 return true; 2310 2311 skb = tcp_write_queue_head(sk); 2312 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2313 return true; 2314 2315 return false; 2316 } 2317 2318 #if FASTRETRANS_DEBUG > 1 2319 static void DBGUNDO(struct sock *sk, const char *msg) 2320 { 2321 struct tcp_sock *tp = tcp_sk(sk); 2322 struct inet_sock *inet = inet_sk(sk); 2323 2324 if (sk->sk_family == AF_INET) { 2325 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2326 msg, 2327 &inet->inet_daddr, ntohs(inet->inet_dport), 2328 tp->snd_cwnd, tcp_left_out(tp), 2329 tp->snd_ssthresh, tp->prior_ssthresh, 2330 tp->packets_out); 2331 } 2332 #if IS_ENABLED(CONFIG_IPV6) 2333 else if (sk->sk_family == AF_INET6) { 2334 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2335 msg, 2336 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2337 tp->snd_cwnd, tcp_left_out(tp), 2338 tp->snd_ssthresh, tp->prior_ssthresh, 2339 tp->packets_out); 2340 } 2341 #endif 2342 } 2343 #else 2344 #define DBGUNDO(x...) do { } while (0) 2345 #endif 2346 2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2348 { 2349 struct tcp_sock *tp = tcp_sk(sk); 2350 2351 if (unmark_loss) { 2352 struct sk_buff *skb; 2353 2354 tcp_for_write_queue(skb, sk) { 2355 if (skb == tcp_send_head(sk)) 2356 break; 2357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2358 } 2359 tp->lost_out = 0; 2360 tcp_clear_all_retrans_hints(tp); 2361 } 2362 2363 if (tp->prior_ssthresh) { 2364 const struct inet_connection_sock *icsk = inet_csk(sk); 2365 2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2367 2368 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2369 tp->snd_ssthresh = tp->prior_ssthresh; 2370 tcp_ecn_withdraw_cwr(tp); 2371 } 2372 } 2373 tp->snd_cwnd_stamp = tcp_time_stamp; 2374 tp->undo_marker = 0; 2375 } 2376 2377 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2378 { 2379 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2380 } 2381 2382 /* People celebrate: "We love our President!" */ 2383 static bool tcp_try_undo_recovery(struct sock *sk) 2384 { 2385 struct tcp_sock *tp = tcp_sk(sk); 2386 2387 if (tcp_may_undo(tp)) { 2388 int mib_idx; 2389 2390 /* Happy end! We did not retransmit anything 2391 * or our original transmission succeeded. 2392 */ 2393 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2394 tcp_undo_cwnd_reduction(sk, false); 2395 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2396 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2397 else 2398 mib_idx = LINUX_MIB_TCPFULLUNDO; 2399 2400 NET_INC_STATS(sock_net(sk), mib_idx); 2401 } 2402 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2403 /* Hold old state until something *above* high_seq 2404 * is ACKed. For Reno it is MUST to prevent false 2405 * fast retransmits (RFC2582). SACK TCP is safe. */ 2406 if (!tcp_any_retrans_done(sk)) 2407 tp->retrans_stamp = 0; 2408 return true; 2409 } 2410 tcp_set_ca_state(sk, TCP_CA_Open); 2411 return false; 2412 } 2413 2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2415 static bool tcp_try_undo_dsack(struct sock *sk) 2416 { 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 2419 if (tp->undo_marker && !tp->undo_retrans) { 2420 DBGUNDO(sk, "D-SACK"); 2421 tcp_undo_cwnd_reduction(sk, false); 2422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2423 return true; 2424 } 2425 return false; 2426 } 2427 2428 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2430 { 2431 struct tcp_sock *tp = tcp_sk(sk); 2432 2433 if (frto_undo || tcp_may_undo(tp)) { 2434 tcp_undo_cwnd_reduction(sk, true); 2435 2436 DBGUNDO(sk, "partial loss"); 2437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2438 if (frto_undo) 2439 NET_INC_STATS(sock_net(sk), 2440 LINUX_MIB_TCPSPURIOUSRTOS); 2441 inet_csk(sk)->icsk_retransmits = 0; 2442 if (frto_undo || tcp_is_sack(tp)) 2443 tcp_set_ca_state(sk, TCP_CA_Open); 2444 return true; 2445 } 2446 return false; 2447 } 2448 2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2450 * It computes the number of packets to send (sndcnt) based on packets newly 2451 * delivered: 2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2453 * cwnd reductions across a full RTT. 2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2455 * But when the retransmits are acked without further losses, PRR 2456 * slow starts cwnd up to ssthresh to speed up the recovery. 2457 */ 2458 static void tcp_init_cwnd_reduction(struct sock *sk) 2459 { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 2462 tp->high_seq = tp->snd_nxt; 2463 tp->tlp_high_seq = 0; 2464 tp->snd_cwnd_cnt = 0; 2465 tp->prior_cwnd = tp->snd_cwnd; 2466 tp->prr_delivered = 0; 2467 tp->prr_out = 0; 2468 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2469 tcp_ecn_queue_cwr(tp); 2470 } 2471 2472 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2473 { 2474 struct tcp_sock *tp = tcp_sk(sk); 2475 int sndcnt = 0; 2476 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2477 2478 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2479 return; 2480 2481 tp->prr_delivered += newly_acked_sacked; 2482 if (delta < 0) { 2483 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2484 tp->prior_cwnd - 1; 2485 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2486 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2487 !(flag & FLAG_LOST_RETRANS)) { 2488 sndcnt = min_t(int, delta, 2489 max_t(int, tp->prr_delivered - tp->prr_out, 2490 newly_acked_sacked) + 1); 2491 } else { 2492 sndcnt = min(delta, newly_acked_sacked); 2493 } 2494 /* Force a fast retransmit upon entering fast recovery */ 2495 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2496 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2497 } 2498 2499 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2500 { 2501 struct tcp_sock *tp = tcp_sk(sk); 2502 2503 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2504 return; 2505 2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2508 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2509 tp->snd_cwnd = tp->snd_ssthresh; 2510 tp->snd_cwnd_stamp = tcp_time_stamp; 2511 } 2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2513 } 2514 2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2516 void tcp_enter_cwr(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 tp->prior_ssthresh = 0; 2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2522 tp->undo_marker = 0; 2523 tcp_init_cwnd_reduction(sk); 2524 tcp_set_ca_state(sk, TCP_CA_CWR); 2525 } 2526 } 2527 EXPORT_SYMBOL(tcp_enter_cwr); 2528 2529 static void tcp_try_keep_open(struct sock *sk) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 int state = TCP_CA_Open; 2533 2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2535 state = TCP_CA_Disorder; 2536 2537 if (inet_csk(sk)->icsk_ca_state != state) { 2538 tcp_set_ca_state(sk, state); 2539 tp->high_seq = tp->snd_nxt; 2540 } 2541 } 2542 2543 static void tcp_try_to_open(struct sock *sk, int flag) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 2547 tcp_verify_left_out(tp); 2548 2549 if (!tcp_any_retrans_done(sk)) 2550 tp->retrans_stamp = 0; 2551 2552 if (flag & FLAG_ECE) 2553 tcp_enter_cwr(sk); 2554 2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2556 tcp_try_keep_open(sk); 2557 } 2558 } 2559 2560 static void tcp_mtup_probe_failed(struct sock *sk) 2561 { 2562 struct inet_connection_sock *icsk = inet_csk(sk); 2563 2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2565 icsk->icsk_mtup.probe_size = 0; 2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2567 } 2568 2569 static void tcp_mtup_probe_success(struct sock *sk) 2570 { 2571 struct tcp_sock *tp = tcp_sk(sk); 2572 struct inet_connection_sock *icsk = inet_csk(sk); 2573 2574 /* FIXME: breaks with very large cwnd */ 2575 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2576 tp->snd_cwnd = tp->snd_cwnd * 2577 tcp_mss_to_mtu(sk, tp->mss_cache) / 2578 icsk->icsk_mtup.probe_size; 2579 tp->snd_cwnd_cnt = 0; 2580 tp->snd_cwnd_stamp = tcp_time_stamp; 2581 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2582 2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2584 icsk->icsk_mtup.probe_size = 0; 2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2587 } 2588 2589 /* Do a simple retransmit without using the backoff mechanisms in 2590 * tcp_timer. This is used for path mtu discovery. 2591 * The socket is already locked here. 2592 */ 2593 void tcp_simple_retransmit(struct sock *sk) 2594 { 2595 const struct inet_connection_sock *icsk = inet_csk(sk); 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 struct sk_buff *skb; 2598 unsigned int mss = tcp_current_mss(sk); 2599 u32 prior_lost = tp->lost_out; 2600 2601 tcp_for_write_queue(skb, sk) { 2602 if (skb == tcp_send_head(sk)) 2603 break; 2604 if (tcp_skb_seglen(skb) > mss && 2605 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2607 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2608 tp->retrans_out -= tcp_skb_pcount(skb); 2609 } 2610 tcp_skb_mark_lost_uncond_verify(tp, skb); 2611 } 2612 } 2613 2614 tcp_clear_retrans_hints_partial(tp); 2615 2616 if (prior_lost == tp->lost_out) 2617 return; 2618 2619 if (tcp_is_reno(tp)) 2620 tcp_limit_reno_sacked(tp); 2621 2622 tcp_verify_left_out(tp); 2623 2624 /* Don't muck with the congestion window here. 2625 * Reason is that we do not increase amount of _data_ 2626 * in network, but units changed and effective 2627 * cwnd/ssthresh really reduced now. 2628 */ 2629 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2630 tp->high_seq = tp->snd_nxt; 2631 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2632 tp->prior_ssthresh = 0; 2633 tp->undo_marker = 0; 2634 tcp_set_ca_state(sk, TCP_CA_Loss); 2635 } 2636 tcp_xmit_retransmit_queue(sk); 2637 } 2638 EXPORT_SYMBOL(tcp_simple_retransmit); 2639 2640 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 int mib_idx; 2644 2645 if (tcp_is_reno(tp)) 2646 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2647 else 2648 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2649 2650 NET_INC_STATS(sock_net(sk), mib_idx); 2651 2652 tp->prior_ssthresh = 0; 2653 tcp_init_undo(tp); 2654 2655 if (!tcp_in_cwnd_reduction(sk)) { 2656 if (!ece_ack) 2657 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2658 tcp_init_cwnd_reduction(sk); 2659 } 2660 tcp_set_ca_state(sk, TCP_CA_Recovery); 2661 } 2662 2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2664 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2665 */ 2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2667 int *rexmit) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 bool recovered = !before(tp->snd_una, tp->high_seq); 2671 2672 if ((flag & FLAG_SND_UNA_ADVANCED) && 2673 tcp_try_undo_loss(sk, false)) 2674 return; 2675 2676 /* The ACK (s)acks some never-retransmitted data meaning not all 2677 * the data packets before the timeout were lost. Therefore we 2678 * undo the congestion window and state. This is essentially 2679 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2680 * a retransmitted skb is permantly marked, we can apply such an 2681 * operation even if F-RTO was not used. 2682 */ 2683 if ((flag & FLAG_ORIG_SACK_ACKED) && 2684 tcp_try_undo_loss(sk, tp->undo_marker)) 2685 return; 2686 2687 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2688 if (after(tp->snd_nxt, tp->high_seq)) { 2689 if (flag & FLAG_DATA_SACKED || is_dupack) 2690 tp->frto = 0; /* Step 3.a. loss was real */ 2691 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2692 tp->high_seq = tp->snd_nxt; 2693 /* Step 2.b. Try send new data (but deferred until cwnd 2694 * is updated in tcp_ack()). Otherwise fall back to 2695 * the conventional recovery. 2696 */ 2697 if (tcp_send_head(sk) && 2698 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2699 *rexmit = REXMIT_NEW; 2700 return; 2701 } 2702 tp->frto = 0; 2703 } 2704 } 2705 2706 if (recovered) { 2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2708 tcp_try_undo_recovery(sk); 2709 return; 2710 } 2711 if (tcp_is_reno(tp)) { 2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2713 * delivered. Lower inflight to clock out (re)tranmissions. 2714 */ 2715 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2716 tcp_add_reno_sack(sk); 2717 else if (flag & FLAG_SND_UNA_ADVANCED) 2718 tcp_reset_reno_sack(tp); 2719 } 2720 *rexmit = REXMIT_LOST; 2721 } 2722 2723 /* Undo during fast recovery after partial ACK. */ 2724 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2725 { 2726 struct tcp_sock *tp = tcp_sk(sk); 2727 2728 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2729 /* Plain luck! Hole if filled with delayed 2730 * packet, rather than with a retransmit. 2731 */ 2732 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2733 2734 /* We are getting evidence that the reordering degree is higher 2735 * than we realized. If there are no retransmits out then we 2736 * can undo. Otherwise we clock out new packets but do not 2737 * mark more packets lost or retransmit more. 2738 */ 2739 if (tp->retrans_out) 2740 return true; 2741 2742 if (!tcp_any_retrans_done(sk)) 2743 tp->retrans_stamp = 0; 2744 2745 DBGUNDO(sk, "partial recovery"); 2746 tcp_undo_cwnd_reduction(sk, true); 2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2748 tcp_try_keep_open(sk); 2749 return true; 2750 } 2751 return false; 2752 } 2753 2754 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag, 2755 const struct skb_mstamp *ack_time) 2756 { 2757 struct tcp_sock *tp = tcp_sk(sk); 2758 2759 /* Use RACK to detect loss */ 2760 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2761 u32 prior_retrans = tp->retrans_out; 2762 2763 tcp_rack_mark_lost(sk, ack_time); 2764 if (prior_retrans > tp->retrans_out) 2765 *ack_flag |= FLAG_LOST_RETRANS; 2766 } 2767 } 2768 2769 /* Process an event, which can update packets-in-flight not trivially. 2770 * Main goal of this function is to calculate new estimate for left_out, 2771 * taking into account both packets sitting in receiver's buffer and 2772 * packets lost by network. 2773 * 2774 * Besides that it updates the congestion state when packet loss or ECN 2775 * is detected. But it does not reduce the cwnd, it is done by the 2776 * congestion control later. 2777 * 2778 * It does _not_ decide what to send, it is made in function 2779 * tcp_xmit_retransmit_queue(). 2780 */ 2781 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2782 bool is_dupack, int *ack_flag, int *rexmit, 2783 const struct skb_mstamp *ack_time) 2784 { 2785 struct inet_connection_sock *icsk = inet_csk(sk); 2786 struct tcp_sock *tp = tcp_sk(sk); 2787 int fast_rexmit = 0, flag = *ack_flag; 2788 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2789 (tcp_fackets_out(tp) > tp->reordering)); 2790 2791 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2792 tp->sacked_out = 0; 2793 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2794 tp->fackets_out = 0; 2795 2796 /* Now state machine starts. 2797 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2798 if (flag & FLAG_ECE) 2799 tp->prior_ssthresh = 0; 2800 2801 /* B. In all the states check for reneging SACKs. */ 2802 if (tcp_check_sack_reneging(sk, flag)) 2803 return; 2804 2805 /* C. Check consistency of the current state. */ 2806 tcp_verify_left_out(tp); 2807 2808 /* D. Check state exit conditions. State can be terminated 2809 * when high_seq is ACKed. */ 2810 if (icsk->icsk_ca_state == TCP_CA_Open) { 2811 WARN_ON(tp->retrans_out != 0); 2812 tp->retrans_stamp = 0; 2813 } else if (!before(tp->snd_una, tp->high_seq)) { 2814 switch (icsk->icsk_ca_state) { 2815 case TCP_CA_CWR: 2816 /* CWR is to be held something *above* high_seq 2817 * is ACKed for CWR bit to reach receiver. */ 2818 if (tp->snd_una != tp->high_seq) { 2819 tcp_end_cwnd_reduction(sk); 2820 tcp_set_ca_state(sk, TCP_CA_Open); 2821 } 2822 break; 2823 2824 case TCP_CA_Recovery: 2825 if (tcp_is_reno(tp)) 2826 tcp_reset_reno_sack(tp); 2827 if (tcp_try_undo_recovery(sk)) 2828 return; 2829 tcp_end_cwnd_reduction(sk); 2830 break; 2831 } 2832 } 2833 2834 /* E. Process state. */ 2835 switch (icsk->icsk_ca_state) { 2836 case TCP_CA_Recovery: 2837 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2838 if (tcp_is_reno(tp) && is_dupack) 2839 tcp_add_reno_sack(sk); 2840 } else { 2841 if (tcp_try_undo_partial(sk, acked)) 2842 return; 2843 /* Partial ACK arrived. Force fast retransmit. */ 2844 do_lost = tcp_is_reno(tp) || 2845 tcp_fackets_out(tp) > tp->reordering; 2846 } 2847 if (tcp_try_undo_dsack(sk)) { 2848 tcp_try_keep_open(sk); 2849 return; 2850 } 2851 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2852 break; 2853 case TCP_CA_Loss: 2854 tcp_process_loss(sk, flag, is_dupack, rexmit); 2855 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2856 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2857 (*ack_flag & FLAG_LOST_RETRANS))) 2858 return; 2859 /* Change state if cwnd is undone or retransmits are lost */ 2860 default: 2861 if (tcp_is_reno(tp)) { 2862 if (flag & FLAG_SND_UNA_ADVANCED) 2863 tcp_reset_reno_sack(tp); 2864 if (is_dupack) 2865 tcp_add_reno_sack(sk); 2866 } 2867 2868 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2869 tcp_try_undo_dsack(sk); 2870 2871 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2872 if (!tcp_time_to_recover(sk, flag)) { 2873 tcp_try_to_open(sk, flag); 2874 return; 2875 } 2876 2877 /* MTU probe failure: don't reduce cwnd */ 2878 if (icsk->icsk_ca_state < TCP_CA_CWR && 2879 icsk->icsk_mtup.probe_size && 2880 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2881 tcp_mtup_probe_failed(sk); 2882 /* Restores the reduction we did in tcp_mtup_probe() */ 2883 tp->snd_cwnd++; 2884 tcp_simple_retransmit(sk); 2885 return; 2886 } 2887 2888 /* Otherwise enter Recovery state */ 2889 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2890 fast_rexmit = 1; 2891 } 2892 2893 if (do_lost) 2894 tcp_update_scoreboard(sk, fast_rexmit); 2895 *rexmit = REXMIT_LOST; 2896 } 2897 2898 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2899 { 2900 struct tcp_sock *tp = tcp_sk(sk); 2901 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2902 2903 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2904 rtt_us ? : jiffies_to_usecs(1)); 2905 } 2906 2907 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2908 long seq_rtt_us, long sack_rtt_us, 2909 long ca_rtt_us) 2910 { 2911 const struct tcp_sock *tp = tcp_sk(sk); 2912 2913 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2914 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2915 * Karn's algorithm forbids taking RTT if some retransmitted data 2916 * is acked (RFC6298). 2917 */ 2918 if (seq_rtt_us < 0) 2919 seq_rtt_us = sack_rtt_us; 2920 2921 /* RTTM Rule: A TSecr value received in a segment is used to 2922 * update the averaged RTT measurement only if the segment 2923 * acknowledges some new data, i.e., only if it advances the 2924 * left edge of the send window. 2925 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2926 */ 2927 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2928 flag & FLAG_ACKED) 2929 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2930 tp->rx_opt.rcv_tsecr); 2931 if (seq_rtt_us < 0) 2932 return false; 2933 2934 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2935 * always taken together with ACK, SACK, or TS-opts. Any negative 2936 * values will be skipped with the seq_rtt_us < 0 check above. 2937 */ 2938 tcp_update_rtt_min(sk, ca_rtt_us); 2939 tcp_rtt_estimator(sk, seq_rtt_us); 2940 tcp_set_rto(sk); 2941 2942 /* RFC6298: only reset backoff on valid RTT measurement. */ 2943 inet_csk(sk)->icsk_backoff = 0; 2944 return true; 2945 } 2946 2947 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2948 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2949 { 2950 long rtt_us = -1L; 2951 2952 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2953 struct skb_mstamp now; 2954 2955 skb_mstamp_get(&now); 2956 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2957 } 2958 2959 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2960 } 2961 2962 2963 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2964 { 2965 const struct inet_connection_sock *icsk = inet_csk(sk); 2966 2967 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2968 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2969 } 2970 2971 /* Restart timer after forward progress on connection. 2972 * RFC2988 recommends to restart timer to now+rto. 2973 */ 2974 void tcp_rearm_rto(struct sock *sk) 2975 { 2976 const struct inet_connection_sock *icsk = inet_csk(sk); 2977 struct tcp_sock *tp = tcp_sk(sk); 2978 2979 /* If the retrans timer is currently being used by Fast Open 2980 * for SYN-ACK retrans purpose, stay put. 2981 */ 2982 if (tp->fastopen_rsk) 2983 return; 2984 2985 if (!tp->packets_out) { 2986 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2987 } else { 2988 u32 rto = inet_csk(sk)->icsk_rto; 2989 /* Offset the time elapsed after installing regular RTO */ 2990 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2991 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2992 struct sk_buff *skb = tcp_write_queue_head(sk); 2993 const u32 rto_time_stamp = 2994 tcp_skb_timestamp(skb) + rto; 2995 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2996 /* delta may not be positive if the socket is locked 2997 * when the retrans timer fires and is rescheduled. 2998 */ 2999 if (delta > 0) 3000 rto = delta; 3001 } 3002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3003 TCP_RTO_MAX); 3004 } 3005 } 3006 3007 /* If we get here, the whole TSO packet has not been acked. */ 3008 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3009 { 3010 struct tcp_sock *tp = tcp_sk(sk); 3011 u32 packets_acked; 3012 3013 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3014 3015 packets_acked = tcp_skb_pcount(skb); 3016 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3017 return 0; 3018 packets_acked -= tcp_skb_pcount(skb); 3019 3020 if (packets_acked) { 3021 BUG_ON(tcp_skb_pcount(skb) == 0); 3022 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3023 } 3024 3025 return packets_acked; 3026 } 3027 3028 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3029 u32 prior_snd_una) 3030 { 3031 const struct skb_shared_info *shinfo; 3032 3033 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3034 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3035 return; 3036 3037 shinfo = skb_shinfo(skb); 3038 if (!before(shinfo->tskey, prior_snd_una) && 3039 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3040 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3041 } 3042 3043 /* Remove acknowledged frames from the retransmission queue. If our packet 3044 * is before the ack sequence we can discard it as it's confirmed to have 3045 * arrived at the other end. 3046 */ 3047 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3048 u32 prior_snd_una, int *acked, 3049 struct tcp_sacktag_state *sack) 3050 { 3051 const struct inet_connection_sock *icsk = inet_csk(sk); 3052 struct skb_mstamp first_ackt, last_ackt; 3053 struct skb_mstamp *now = &sack->ack_time; 3054 struct tcp_sock *tp = tcp_sk(sk); 3055 u32 prior_sacked = tp->sacked_out; 3056 u32 reord = tp->packets_out; 3057 bool fully_acked = true; 3058 long sack_rtt_us = -1L; 3059 long seq_rtt_us = -1L; 3060 long ca_rtt_us = -1L; 3061 struct sk_buff *skb; 3062 u32 pkts_acked = 0; 3063 u32 last_in_flight = 0; 3064 bool rtt_update; 3065 int flag = 0; 3066 3067 first_ackt.v64 = 0; 3068 3069 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3070 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3071 u8 sacked = scb->sacked; 3072 u32 acked_pcount; 3073 3074 tcp_ack_tstamp(sk, skb, prior_snd_una); 3075 3076 /* Determine how many packets and what bytes were acked, tso and else */ 3077 if (after(scb->end_seq, tp->snd_una)) { 3078 if (tcp_skb_pcount(skb) == 1 || 3079 !after(tp->snd_una, scb->seq)) 3080 break; 3081 3082 acked_pcount = tcp_tso_acked(sk, skb); 3083 if (!acked_pcount) 3084 break; 3085 fully_acked = false; 3086 } else { 3087 /* Speedup tcp_unlink_write_queue() and next loop */ 3088 prefetchw(skb->next); 3089 acked_pcount = tcp_skb_pcount(skb); 3090 } 3091 3092 if (unlikely(sacked & TCPCB_RETRANS)) { 3093 if (sacked & TCPCB_SACKED_RETRANS) 3094 tp->retrans_out -= acked_pcount; 3095 flag |= FLAG_RETRANS_DATA_ACKED; 3096 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3097 last_ackt = skb->skb_mstamp; 3098 WARN_ON_ONCE(last_ackt.v64 == 0); 3099 if (!first_ackt.v64) 3100 first_ackt = last_ackt; 3101 3102 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3103 reord = min(pkts_acked, reord); 3104 if (!after(scb->end_seq, tp->high_seq)) 3105 flag |= FLAG_ORIG_SACK_ACKED; 3106 } 3107 3108 if (sacked & TCPCB_SACKED_ACKED) { 3109 tp->sacked_out -= acked_pcount; 3110 } else if (tcp_is_sack(tp)) { 3111 tp->delivered += acked_pcount; 3112 if (!tcp_skb_spurious_retrans(tp, skb)) 3113 tcp_rack_advance(tp, sacked, scb->end_seq, 3114 &skb->skb_mstamp, 3115 &sack->ack_time); 3116 } 3117 if (sacked & TCPCB_LOST) 3118 tp->lost_out -= acked_pcount; 3119 3120 tp->packets_out -= acked_pcount; 3121 pkts_acked += acked_pcount; 3122 tcp_rate_skb_delivered(sk, skb, sack->rate); 3123 3124 /* Initial outgoing SYN's get put onto the write_queue 3125 * just like anything else we transmit. It is not 3126 * true data, and if we misinform our callers that 3127 * this ACK acks real data, we will erroneously exit 3128 * connection startup slow start one packet too 3129 * quickly. This is severely frowned upon behavior. 3130 */ 3131 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3132 flag |= FLAG_DATA_ACKED; 3133 } else { 3134 flag |= FLAG_SYN_ACKED; 3135 tp->retrans_stamp = 0; 3136 } 3137 3138 if (!fully_acked) 3139 break; 3140 3141 tcp_unlink_write_queue(skb, sk); 3142 sk_wmem_free_skb(sk, skb); 3143 if (unlikely(skb == tp->retransmit_skb_hint)) 3144 tp->retransmit_skb_hint = NULL; 3145 if (unlikely(skb == tp->lost_skb_hint)) 3146 tp->lost_skb_hint = NULL; 3147 } 3148 3149 if (!skb) 3150 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3151 3152 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3153 tp->snd_up = tp->snd_una; 3154 3155 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3156 flag |= FLAG_SACK_RENEGING; 3157 3158 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3159 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3160 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3161 } 3162 if (sack->first_sackt.v64) { 3163 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3164 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3165 } 3166 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3167 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3168 ca_rtt_us); 3169 3170 if (flag & FLAG_ACKED) { 3171 tcp_rearm_rto(sk); 3172 if (unlikely(icsk->icsk_mtup.probe_size && 3173 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3174 tcp_mtup_probe_success(sk); 3175 } 3176 3177 if (tcp_is_reno(tp)) { 3178 tcp_remove_reno_sacks(sk, pkts_acked); 3179 } else { 3180 int delta; 3181 3182 /* Non-retransmitted hole got filled? That's reordering */ 3183 if (reord < prior_fackets) 3184 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3185 3186 delta = tcp_is_fack(tp) ? pkts_acked : 3187 prior_sacked - tp->sacked_out; 3188 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3189 } 3190 3191 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3192 3193 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3194 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3195 /* Do not re-arm RTO if the sack RTT is measured from data sent 3196 * after when the head was last (re)transmitted. Otherwise the 3197 * timeout may continue to extend in loss recovery. 3198 */ 3199 tcp_rearm_rto(sk); 3200 } 3201 3202 if (icsk->icsk_ca_ops->pkts_acked) { 3203 struct ack_sample sample = { .pkts_acked = pkts_acked, 3204 .rtt_us = ca_rtt_us, 3205 .in_flight = last_in_flight }; 3206 3207 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3208 } 3209 3210 #if FASTRETRANS_DEBUG > 0 3211 WARN_ON((int)tp->sacked_out < 0); 3212 WARN_ON((int)tp->lost_out < 0); 3213 WARN_ON((int)tp->retrans_out < 0); 3214 if (!tp->packets_out && tcp_is_sack(tp)) { 3215 icsk = inet_csk(sk); 3216 if (tp->lost_out) { 3217 pr_debug("Leak l=%u %d\n", 3218 tp->lost_out, icsk->icsk_ca_state); 3219 tp->lost_out = 0; 3220 } 3221 if (tp->sacked_out) { 3222 pr_debug("Leak s=%u %d\n", 3223 tp->sacked_out, icsk->icsk_ca_state); 3224 tp->sacked_out = 0; 3225 } 3226 if (tp->retrans_out) { 3227 pr_debug("Leak r=%u %d\n", 3228 tp->retrans_out, icsk->icsk_ca_state); 3229 tp->retrans_out = 0; 3230 } 3231 } 3232 #endif 3233 *acked = pkts_acked; 3234 return flag; 3235 } 3236 3237 static void tcp_ack_probe(struct sock *sk) 3238 { 3239 const struct tcp_sock *tp = tcp_sk(sk); 3240 struct inet_connection_sock *icsk = inet_csk(sk); 3241 3242 /* Was it a usable window open? */ 3243 3244 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3245 icsk->icsk_backoff = 0; 3246 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3247 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3248 * This function is not for random using! 3249 */ 3250 } else { 3251 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3252 3253 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3254 when, TCP_RTO_MAX); 3255 } 3256 } 3257 3258 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3259 { 3260 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3261 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3262 } 3263 3264 /* Decide wheather to run the increase function of congestion control. */ 3265 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3266 { 3267 /* If reordering is high then always grow cwnd whenever data is 3268 * delivered regardless of its ordering. Otherwise stay conservative 3269 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3270 * new SACK or ECE mark may first advance cwnd here and later reduce 3271 * cwnd in tcp_fastretrans_alert() based on more states. 3272 */ 3273 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3274 return flag & FLAG_FORWARD_PROGRESS; 3275 3276 return flag & FLAG_DATA_ACKED; 3277 } 3278 3279 /* The "ultimate" congestion control function that aims to replace the rigid 3280 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3281 * It's called toward the end of processing an ACK with precise rate 3282 * information. All transmission or retransmission are delayed afterwards. 3283 */ 3284 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3285 int flag, const struct rate_sample *rs) 3286 { 3287 const struct inet_connection_sock *icsk = inet_csk(sk); 3288 3289 if (icsk->icsk_ca_ops->cong_control) { 3290 icsk->icsk_ca_ops->cong_control(sk, rs); 3291 return; 3292 } 3293 3294 if (tcp_in_cwnd_reduction(sk)) { 3295 /* Reduce cwnd if state mandates */ 3296 tcp_cwnd_reduction(sk, acked_sacked, flag); 3297 } else if (tcp_may_raise_cwnd(sk, flag)) { 3298 /* Advance cwnd if state allows */ 3299 tcp_cong_avoid(sk, ack, acked_sacked); 3300 } 3301 tcp_update_pacing_rate(sk); 3302 } 3303 3304 /* Check that window update is acceptable. 3305 * The function assumes that snd_una<=ack<=snd_next. 3306 */ 3307 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3308 const u32 ack, const u32 ack_seq, 3309 const u32 nwin) 3310 { 3311 return after(ack, tp->snd_una) || 3312 after(ack_seq, tp->snd_wl1) || 3313 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3314 } 3315 3316 /* If we update tp->snd_una, also update tp->bytes_acked */ 3317 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3318 { 3319 u32 delta = ack - tp->snd_una; 3320 3321 sock_owned_by_me((struct sock *)tp); 3322 tp->bytes_acked += delta; 3323 tp->snd_una = ack; 3324 } 3325 3326 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3327 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3328 { 3329 u32 delta = seq - tp->rcv_nxt; 3330 3331 sock_owned_by_me((struct sock *)tp); 3332 tp->bytes_received += delta; 3333 tp->rcv_nxt = seq; 3334 } 3335 3336 /* Update our send window. 3337 * 3338 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3339 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3340 */ 3341 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3342 u32 ack_seq) 3343 { 3344 struct tcp_sock *tp = tcp_sk(sk); 3345 int flag = 0; 3346 u32 nwin = ntohs(tcp_hdr(skb)->window); 3347 3348 if (likely(!tcp_hdr(skb)->syn)) 3349 nwin <<= tp->rx_opt.snd_wscale; 3350 3351 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3352 flag |= FLAG_WIN_UPDATE; 3353 tcp_update_wl(tp, ack_seq); 3354 3355 if (tp->snd_wnd != nwin) { 3356 tp->snd_wnd = nwin; 3357 3358 /* Note, it is the only place, where 3359 * fast path is recovered for sending TCP. 3360 */ 3361 tp->pred_flags = 0; 3362 tcp_fast_path_check(sk); 3363 3364 if (tcp_send_head(sk)) 3365 tcp_slow_start_after_idle_check(sk); 3366 3367 if (nwin > tp->max_window) { 3368 tp->max_window = nwin; 3369 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3370 } 3371 } 3372 } 3373 3374 tcp_snd_una_update(tp, ack); 3375 3376 return flag; 3377 } 3378 3379 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3380 u32 *last_oow_ack_time) 3381 { 3382 if (*last_oow_ack_time) { 3383 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3384 3385 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3386 NET_INC_STATS(net, mib_idx); 3387 return true; /* rate-limited: don't send yet! */ 3388 } 3389 } 3390 3391 *last_oow_ack_time = tcp_time_stamp; 3392 3393 return false; /* not rate-limited: go ahead, send dupack now! */ 3394 } 3395 3396 /* Return true if we're currently rate-limiting out-of-window ACKs and 3397 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3398 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3399 * attacks that send repeated SYNs or ACKs for the same connection. To 3400 * do this, we do not send a duplicate SYNACK or ACK if the remote 3401 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3402 */ 3403 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3404 int mib_idx, u32 *last_oow_ack_time) 3405 { 3406 /* Data packets without SYNs are not likely part of an ACK loop. */ 3407 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3408 !tcp_hdr(skb)->syn) 3409 return false; 3410 3411 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3412 } 3413 3414 /* RFC 5961 7 [ACK Throttling] */ 3415 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3416 { 3417 /* unprotected vars, we dont care of overwrites */ 3418 static u32 challenge_timestamp; 3419 static unsigned int challenge_count; 3420 struct tcp_sock *tp = tcp_sk(sk); 3421 u32 count, now; 3422 3423 /* First check our per-socket dupack rate limit. */ 3424 if (__tcp_oow_rate_limited(sock_net(sk), 3425 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3426 &tp->last_oow_ack_time)) 3427 return; 3428 3429 /* Then check host-wide RFC 5961 rate limit. */ 3430 now = jiffies / HZ; 3431 if (now != challenge_timestamp) { 3432 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3433 3434 challenge_timestamp = now; 3435 WRITE_ONCE(challenge_count, half + 3436 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3437 } 3438 count = READ_ONCE(challenge_count); 3439 if (count > 0) { 3440 WRITE_ONCE(challenge_count, count - 1); 3441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3442 tcp_send_ack(sk); 3443 } 3444 } 3445 3446 static void tcp_store_ts_recent(struct tcp_sock *tp) 3447 { 3448 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3449 tp->rx_opt.ts_recent_stamp = get_seconds(); 3450 } 3451 3452 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3453 { 3454 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3455 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3456 * extra check below makes sure this can only happen 3457 * for pure ACK frames. -DaveM 3458 * 3459 * Not only, also it occurs for expired timestamps. 3460 */ 3461 3462 if (tcp_paws_check(&tp->rx_opt, 0)) 3463 tcp_store_ts_recent(tp); 3464 } 3465 } 3466 3467 /* This routine deals with acks during a TLP episode. 3468 * We mark the end of a TLP episode on receiving TLP dupack or when 3469 * ack is after tlp_high_seq. 3470 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3471 */ 3472 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3473 { 3474 struct tcp_sock *tp = tcp_sk(sk); 3475 3476 if (before(ack, tp->tlp_high_seq)) 3477 return; 3478 3479 if (flag & FLAG_DSACKING_ACK) { 3480 /* This DSACK means original and TLP probe arrived; no loss */ 3481 tp->tlp_high_seq = 0; 3482 } else if (after(ack, tp->tlp_high_seq)) { 3483 /* ACK advances: there was a loss, so reduce cwnd. Reset 3484 * tlp_high_seq in tcp_init_cwnd_reduction() 3485 */ 3486 tcp_init_cwnd_reduction(sk); 3487 tcp_set_ca_state(sk, TCP_CA_CWR); 3488 tcp_end_cwnd_reduction(sk); 3489 tcp_try_keep_open(sk); 3490 NET_INC_STATS(sock_net(sk), 3491 LINUX_MIB_TCPLOSSPROBERECOVERY); 3492 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3493 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3494 /* Pure dupack: original and TLP probe arrived; no loss */ 3495 tp->tlp_high_seq = 0; 3496 } 3497 } 3498 3499 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3500 { 3501 const struct inet_connection_sock *icsk = inet_csk(sk); 3502 3503 if (icsk->icsk_ca_ops->in_ack_event) 3504 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3505 } 3506 3507 /* Congestion control has updated the cwnd already. So if we're in 3508 * loss recovery then now we do any new sends (for FRTO) or 3509 * retransmits (for CA_Loss or CA_recovery) that make sense. 3510 */ 3511 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3512 { 3513 struct tcp_sock *tp = tcp_sk(sk); 3514 3515 if (rexmit == REXMIT_NONE) 3516 return; 3517 3518 if (unlikely(rexmit == 2)) { 3519 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3520 TCP_NAGLE_OFF); 3521 if (after(tp->snd_nxt, tp->high_seq)) 3522 return; 3523 tp->frto = 0; 3524 } 3525 tcp_xmit_retransmit_queue(sk); 3526 } 3527 3528 /* This routine deals with incoming acks, but not outgoing ones. */ 3529 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3530 { 3531 struct inet_connection_sock *icsk = inet_csk(sk); 3532 struct tcp_sock *tp = tcp_sk(sk); 3533 struct tcp_sacktag_state sack_state; 3534 struct rate_sample rs = { .prior_delivered = 0 }; 3535 u32 prior_snd_una = tp->snd_una; 3536 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3537 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3538 bool is_dupack = false; 3539 u32 prior_fackets; 3540 int prior_packets = tp->packets_out; 3541 u32 delivered = tp->delivered; 3542 u32 lost = tp->lost; 3543 int acked = 0; /* Number of packets newly acked */ 3544 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3545 3546 sack_state.first_sackt.v64 = 0; 3547 sack_state.rate = &rs; 3548 3549 /* We very likely will need to access write queue head. */ 3550 prefetchw(sk->sk_write_queue.next); 3551 3552 /* If the ack is older than previous acks 3553 * then we can probably ignore it. 3554 */ 3555 if (before(ack, prior_snd_una)) { 3556 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3557 if (before(ack, prior_snd_una - tp->max_window)) { 3558 tcp_send_challenge_ack(sk, skb); 3559 return -1; 3560 } 3561 goto old_ack; 3562 } 3563 3564 /* If the ack includes data we haven't sent yet, discard 3565 * this segment (RFC793 Section 3.9). 3566 */ 3567 if (after(ack, tp->snd_nxt)) 3568 goto invalid_ack; 3569 3570 skb_mstamp_get(&sack_state.ack_time); 3571 3572 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3573 tcp_rearm_rto(sk); 3574 3575 if (after(ack, prior_snd_una)) { 3576 flag |= FLAG_SND_UNA_ADVANCED; 3577 icsk->icsk_retransmits = 0; 3578 } 3579 3580 prior_fackets = tp->fackets_out; 3581 rs.prior_in_flight = tcp_packets_in_flight(tp); 3582 3583 /* ts_recent update must be made after we are sure that the packet 3584 * is in window. 3585 */ 3586 if (flag & FLAG_UPDATE_TS_RECENT) 3587 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3588 3589 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3590 /* Window is constant, pure forward advance. 3591 * No more checks are required. 3592 * Note, we use the fact that SND.UNA>=SND.WL2. 3593 */ 3594 tcp_update_wl(tp, ack_seq); 3595 tcp_snd_una_update(tp, ack); 3596 flag |= FLAG_WIN_UPDATE; 3597 3598 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3599 3600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3601 } else { 3602 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3603 3604 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3605 flag |= FLAG_DATA; 3606 else 3607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3608 3609 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3610 3611 if (TCP_SKB_CB(skb)->sacked) 3612 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3613 &sack_state); 3614 3615 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3616 flag |= FLAG_ECE; 3617 ack_ev_flags |= CA_ACK_ECE; 3618 } 3619 3620 if (flag & FLAG_WIN_UPDATE) 3621 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3622 3623 tcp_in_ack_event(sk, ack_ev_flags); 3624 } 3625 3626 /* We passed data and got it acked, remove any soft error 3627 * log. Something worked... 3628 */ 3629 sk->sk_err_soft = 0; 3630 icsk->icsk_probes_out = 0; 3631 tp->rcv_tstamp = tcp_time_stamp; 3632 if (!prior_packets) 3633 goto no_queue; 3634 3635 /* See if we can take anything off of the retransmit queue. */ 3636 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3637 &sack_state); 3638 3639 if (tcp_ack_is_dubious(sk, flag)) { 3640 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3641 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3642 &sack_state.ack_time); 3643 } 3644 if (tp->tlp_high_seq) 3645 tcp_process_tlp_ack(sk, ack, flag); 3646 3647 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3648 sk_dst_confirm(sk); 3649 3650 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3651 tcp_schedule_loss_probe(sk); 3652 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3653 lost = tp->lost - lost; /* freshly marked lost */ 3654 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time, 3655 sack_state.rate); 3656 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3657 tcp_xmit_recovery(sk, rexmit); 3658 return 1; 3659 3660 no_queue: 3661 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3662 if (flag & FLAG_DSACKING_ACK) 3663 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3664 &sack_state.ack_time); 3665 /* If this ack opens up a zero window, clear backoff. It was 3666 * being used to time the probes, and is probably far higher than 3667 * it needs to be for normal retransmission. 3668 */ 3669 if (tcp_send_head(sk)) 3670 tcp_ack_probe(sk); 3671 3672 if (tp->tlp_high_seq) 3673 tcp_process_tlp_ack(sk, ack, flag); 3674 return 1; 3675 3676 invalid_ack: 3677 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3678 return -1; 3679 3680 old_ack: 3681 /* If data was SACKed, tag it and see if we should send more data. 3682 * If data was DSACKed, see if we can undo a cwnd reduction. 3683 */ 3684 if (TCP_SKB_CB(skb)->sacked) { 3685 skb_mstamp_get(&sack_state.ack_time); 3686 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3687 &sack_state); 3688 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3689 &sack_state.ack_time); 3690 tcp_xmit_recovery(sk, rexmit); 3691 } 3692 3693 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3694 return 0; 3695 } 3696 3697 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3698 bool syn, struct tcp_fastopen_cookie *foc, 3699 bool exp_opt) 3700 { 3701 /* Valid only in SYN or SYN-ACK with an even length. */ 3702 if (!foc || !syn || len < 0 || (len & 1)) 3703 return; 3704 3705 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3706 len <= TCP_FASTOPEN_COOKIE_MAX) 3707 memcpy(foc->val, cookie, len); 3708 else if (len != 0) 3709 len = -1; 3710 foc->len = len; 3711 foc->exp = exp_opt; 3712 } 3713 3714 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3715 * But, this can also be called on packets in the established flow when 3716 * the fast version below fails. 3717 */ 3718 void tcp_parse_options(const struct sk_buff *skb, 3719 struct tcp_options_received *opt_rx, int estab, 3720 struct tcp_fastopen_cookie *foc) 3721 { 3722 const unsigned char *ptr; 3723 const struct tcphdr *th = tcp_hdr(skb); 3724 int length = (th->doff * 4) - sizeof(struct tcphdr); 3725 3726 ptr = (const unsigned char *)(th + 1); 3727 opt_rx->saw_tstamp = 0; 3728 3729 while (length > 0) { 3730 int opcode = *ptr++; 3731 int opsize; 3732 3733 switch (opcode) { 3734 case TCPOPT_EOL: 3735 return; 3736 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3737 length--; 3738 continue; 3739 default: 3740 opsize = *ptr++; 3741 if (opsize < 2) /* "silly options" */ 3742 return; 3743 if (opsize > length) 3744 return; /* don't parse partial options */ 3745 switch (opcode) { 3746 case TCPOPT_MSS: 3747 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3748 u16 in_mss = get_unaligned_be16(ptr); 3749 if (in_mss) { 3750 if (opt_rx->user_mss && 3751 opt_rx->user_mss < in_mss) 3752 in_mss = opt_rx->user_mss; 3753 opt_rx->mss_clamp = in_mss; 3754 } 3755 } 3756 break; 3757 case TCPOPT_WINDOW: 3758 if (opsize == TCPOLEN_WINDOW && th->syn && 3759 !estab && sysctl_tcp_window_scaling) { 3760 __u8 snd_wscale = *(__u8 *)ptr; 3761 opt_rx->wscale_ok = 1; 3762 if (snd_wscale > 14) { 3763 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3764 __func__, 3765 snd_wscale); 3766 snd_wscale = 14; 3767 } 3768 opt_rx->snd_wscale = snd_wscale; 3769 } 3770 break; 3771 case TCPOPT_TIMESTAMP: 3772 if ((opsize == TCPOLEN_TIMESTAMP) && 3773 ((estab && opt_rx->tstamp_ok) || 3774 (!estab && sysctl_tcp_timestamps))) { 3775 opt_rx->saw_tstamp = 1; 3776 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3777 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3778 } 3779 break; 3780 case TCPOPT_SACK_PERM: 3781 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3782 !estab && sysctl_tcp_sack) { 3783 opt_rx->sack_ok = TCP_SACK_SEEN; 3784 tcp_sack_reset(opt_rx); 3785 } 3786 break; 3787 3788 case TCPOPT_SACK: 3789 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3790 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3791 opt_rx->sack_ok) { 3792 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3793 } 3794 break; 3795 #ifdef CONFIG_TCP_MD5SIG 3796 case TCPOPT_MD5SIG: 3797 /* 3798 * The MD5 Hash has already been 3799 * checked (see tcp_v{4,6}_do_rcv()). 3800 */ 3801 break; 3802 #endif 3803 case TCPOPT_FASTOPEN: 3804 tcp_parse_fastopen_option( 3805 opsize - TCPOLEN_FASTOPEN_BASE, 3806 ptr, th->syn, foc, false); 3807 break; 3808 3809 case TCPOPT_EXP: 3810 /* Fast Open option shares code 254 using a 3811 * 16 bits magic number. 3812 */ 3813 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3814 get_unaligned_be16(ptr) == 3815 TCPOPT_FASTOPEN_MAGIC) 3816 tcp_parse_fastopen_option(opsize - 3817 TCPOLEN_EXP_FASTOPEN_BASE, 3818 ptr + 2, th->syn, foc, true); 3819 break; 3820 3821 } 3822 ptr += opsize-2; 3823 length -= opsize; 3824 } 3825 } 3826 } 3827 EXPORT_SYMBOL(tcp_parse_options); 3828 3829 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3830 { 3831 const __be32 *ptr = (const __be32 *)(th + 1); 3832 3833 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3834 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3835 tp->rx_opt.saw_tstamp = 1; 3836 ++ptr; 3837 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3838 ++ptr; 3839 if (*ptr) 3840 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3841 else 3842 tp->rx_opt.rcv_tsecr = 0; 3843 return true; 3844 } 3845 return false; 3846 } 3847 3848 /* Fast parse options. This hopes to only see timestamps. 3849 * If it is wrong it falls back on tcp_parse_options(). 3850 */ 3851 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3852 const struct tcphdr *th, struct tcp_sock *tp) 3853 { 3854 /* In the spirit of fast parsing, compare doff directly to constant 3855 * values. Because equality is used, short doff can be ignored here. 3856 */ 3857 if (th->doff == (sizeof(*th) / 4)) { 3858 tp->rx_opt.saw_tstamp = 0; 3859 return false; 3860 } else if (tp->rx_opt.tstamp_ok && 3861 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3862 if (tcp_parse_aligned_timestamp(tp, th)) 3863 return true; 3864 } 3865 3866 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3867 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3868 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3869 3870 return true; 3871 } 3872 3873 #ifdef CONFIG_TCP_MD5SIG 3874 /* 3875 * Parse MD5 Signature option 3876 */ 3877 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3878 { 3879 int length = (th->doff << 2) - sizeof(*th); 3880 const u8 *ptr = (const u8 *)(th + 1); 3881 3882 /* If the TCP option is too short, we can short cut */ 3883 if (length < TCPOLEN_MD5SIG) 3884 return NULL; 3885 3886 while (length > 0) { 3887 int opcode = *ptr++; 3888 int opsize; 3889 3890 switch (opcode) { 3891 case TCPOPT_EOL: 3892 return NULL; 3893 case TCPOPT_NOP: 3894 length--; 3895 continue; 3896 default: 3897 opsize = *ptr++; 3898 if (opsize < 2 || opsize > length) 3899 return NULL; 3900 if (opcode == TCPOPT_MD5SIG) 3901 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3902 } 3903 ptr += opsize - 2; 3904 length -= opsize; 3905 } 3906 return NULL; 3907 } 3908 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3909 #endif 3910 3911 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3912 * 3913 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3914 * it can pass through stack. So, the following predicate verifies that 3915 * this segment is not used for anything but congestion avoidance or 3916 * fast retransmit. Moreover, we even are able to eliminate most of such 3917 * second order effects, if we apply some small "replay" window (~RTO) 3918 * to timestamp space. 3919 * 3920 * All these measures still do not guarantee that we reject wrapped ACKs 3921 * on networks with high bandwidth, when sequence space is recycled fastly, 3922 * but it guarantees that such events will be very rare and do not affect 3923 * connection seriously. This doesn't look nice, but alas, PAWS is really 3924 * buggy extension. 3925 * 3926 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3927 * states that events when retransmit arrives after original data are rare. 3928 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3929 * the biggest problem on large power networks even with minor reordering. 3930 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3931 * up to bandwidth of 18Gigabit/sec. 8) ] 3932 */ 3933 3934 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3935 { 3936 const struct tcp_sock *tp = tcp_sk(sk); 3937 const struct tcphdr *th = tcp_hdr(skb); 3938 u32 seq = TCP_SKB_CB(skb)->seq; 3939 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3940 3941 return (/* 1. Pure ACK with correct sequence number. */ 3942 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3943 3944 /* 2. ... and duplicate ACK. */ 3945 ack == tp->snd_una && 3946 3947 /* 3. ... and does not update window. */ 3948 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3949 3950 /* 4. ... and sits in replay window. */ 3951 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3952 } 3953 3954 static inline bool tcp_paws_discard(const struct sock *sk, 3955 const struct sk_buff *skb) 3956 { 3957 const struct tcp_sock *tp = tcp_sk(sk); 3958 3959 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3960 !tcp_disordered_ack(sk, skb); 3961 } 3962 3963 /* Check segment sequence number for validity. 3964 * 3965 * Segment controls are considered valid, if the segment 3966 * fits to the window after truncation to the window. Acceptability 3967 * of data (and SYN, FIN, of course) is checked separately. 3968 * See tcp_data_queue(), for example. 3969 * 3970 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3971 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3972 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3973 * (borrowed from freebsd) 3974 */ 3975 3976 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3977 { 3978 return !before(end_seq, tp->rcv_wup) && 3979 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3980 } 3981 3982 /* When we get a reset we do this. */ 3983 void tcp_reset(struct sock *sk) 3984 { 3985 /* We want the right error as BSD sees it (and indeed as we do). */ 3986 switch (sk->sk_state) { 3987 case TCP_SYN_SENT: 3988 sk->sk_err = ECONNREFUSED; 3989 break; 3990 case TCP_CLOSE_WAIT: 3991 sk->sk_err = EPIPE; 3992 break; 3993 case TCP_CLOSE: 3994 return; 3995 default: 3996 sk->sk_err = ECONNRESET; 3997 } 3998 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3999 smp_wmb(); 4000 4001 if (!sock_flag(sk, SOCK_DEAD)) 4002 sk->sk_error_report(sk); 4003 4004 tcp_done(sk); 4005 } 4006 4007 /* 4008 * Process the FIN bit. This now behaves as it is supposed to work 4009 * and the FIN takes effect when it is validly part of sequence 4010 * space. Not before when we get holes. 4011 * 4012 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4013 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4014 * TIME-WAIT) 4015 * 4016 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4017 * close and we go into CLOSING (and later onto TIME-WAIT) 4018 * 4019 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4020 */ 4021 void tcp_fin(struct sock *sk) 4022 { 4023 struct tcp_sock *tp = tcp_sk(sk); 4024 4025 inet_csk_schedule_ack(sk); 4026 4027 sk->sk_shutdown |= RCV_SHUTDOWN; 4028 sock_set_flag(sk, SOCK_DONE); 4029 4030 switch (sk->sk_state) { 4031 case TCP_SYN_RECV: 4032 case TCP_ESTABLISHED: 4033 /* Move to CLOSE_WAIT */ 4034 tcp_set_state(sk, TCP_CLOSE_WAIT); 4035 inet_csk(sk)->icsk_ack.pingpong = 1; 4036 break; 4037 4038 case TCP_CLOSE_WAIT: 4039 case TCP_CLOSING: 4040 /* Received a retransmission of the FIN, do 4041 * nothing. 4042 */ 4043 break; 4044 case TCP_LAST_ACK: 4045 /* RFC793: Remain in the LAST-ACK state. */ 4046 break; 4047 4048 case TCP_FIN_WAIT1: 4049 /* This case occurs when a simultaneous close 4050 * happens, we must ack the received FIN and 4051 * enter the CLOSING state. 4052 */ 4053 tcp_send_ack(sk); 4054 tcp_set_state(sk, TCP_CLOSING); 4055 break; 4056 case TCP_FIN_WAIT2: 4057 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4058 tcp_send_ack(sk); 4059 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4060 break; 4061 default: 4062 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4063 * cases we should never reach this piece of code. 4064 */ 4065 pr_err("%s: Impossible, sk->sk_state=%d\n", 4066 __func__, sk->sk_state); 4067 break; 4068 } 4069 4070 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4071 * Probably, we should reset in this case. For now drop them. 4072 */ 4073 skb_rbtree_purge(&tp->out_of_order_queue); 4074 if (tcp_is_sack(tp)) 4075 tcp_sack_reset(&tp->rx_opt); 4076 sk_mem_reclaim(sk); 4077 4078 if (!sock_flag(sk, SOCK_DEAD)) { 4079 sk->sk_state_change(sk); 4080 4081 /* Do not send POLL_HUP for half duplex close. */ 4082 if (sk->sk_shutdown == SHUTDOWN_MASK || 4083 sk->sk_state == TCP_CLOSE) 4084 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4085 else 4086 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4087 } 4088 } 4089 4090 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4091 u32 end_seq) 4092 { 4093 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4094 if (before(seq, sp->start_seq)) 4095 sp->start_seq = seq; 4096 if (after(end_seq, sp->end_seq)) 4097 sp->end_seq = end_seq; 4098 return true; 4099 } 4100 return false; 4101 } 4102 4103 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4104 { 4105 struct tcp_sock *tp = tcp_sk(sk); 4106 4107 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4108 int mib_idx; 4109 4110 if (before(seq, tp->rcv_nxt)) 4111 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4112 else 4113 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4114 4115 NET_INC_STATS(sock_net(sk), mib_idx); 4116 4117 tp->rx_opt.dsack = 1; 4118 tp->duplicate_sack[0].start_seq = seq; 4119 tp->duplicate_sack[0].end_seq = end_seq; 4120 } 4121 } 4122 4123 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4124 { 4125 struct tcp_sock *tp = tcp_sk(sk); 4126 4127 if (!tp->rx_opt.dsack) 4128 tcp_dsack_set(sk, seq, end_seq); 4129 else 4130 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4131 } 4132 4133 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4134 { 4135 struct tcp_sock *tp = tcp_sk(sk); 4136 4137 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4138 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4139 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4140 tcp_enter_quickack_mode(sk); 4141 4142 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4143 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4144 4145 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4146 end_seq = tp->rcv_nxt; 4147 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4148 } 4149 } 4150 4151 tcp_send_ack(sk); 4152 } 4153 4154 /* These routines update the SACK block as out-of-order packets arrive or 4155 * in-order packets close up the sequence space. 4156 */ 4157 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4158 { 4159 int this_sack; 4160 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4161 struct tcp_sack_block *swalk = sp + 1; 4162 4163 /* See if the recent change to the first SACK eats into 4164 * or hits the sequence space of other SACK blocks, if so coalesce. 4165 */ 4166 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4167 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4168 int i; 4169 4170 /* Zap SWALK, by moving every further SACK up by one slot. 4171 * Decrease num_sacks. 4172 */ 4173 tp->rx_opt.num_sacks--; 4174 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4175 sp[i] = sp[i + 1]; 4176 continue; 4177 } 4178 this_sack++, swalk++; 4179 } 4180 } 4181 4182 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4183 { 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4186 int cur_sacks = tp->rx_opt.num_sacks; 4187 int this_sack; 4188 4189 if (!cur_sacks) 4190 goto new_sack; 4191 4192 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4193 if (tcp_sack_extend(sp, seq, end_seq)) { 4194 /* Rotate this_sack to the first one. */ 4195 for (; this_sack > 0; this_sack--, sp--) 4196 swap(*sp, *(sp - 1)); 4197 if (cur_sacks > 1) 4198 tcp_sack_maybe_coalesce(tp); 4199 return; 4200 } 4201 } 4202 4203 /* Could not find an adjacent existing SACK, build a new one, 4204 * put it at the front, and shift everyone else down. We 4205 * always know there is at least one SACK present already here. 4206 * 4207 * If the sack array is full, forget about the last one. 4208 */ 4209 if (this_sack >= TCP_NUM_SACKS) { 4210 this_sack--; 4211 tp->rx_opt.num_sacks--; 4212 sp--; 4213 } 4214 for (; this_sack > 0; this_sack--, sp--) 4215 *sp = *(sp - 1); 4216 4217 new_sack: 4218 /* Build the new head SACK, and we're done. */ 4219 sp->start_seq = seq; 4220 sp->end_seq = end_seq; 4221 tp->rx_opt.num_sacks++; 4222 } 4223 4224 /* RCV.NXT advances, some SACKs should be eaten. */ 4225 4226 static void tcp_sack_remove(struct tcp_sock *tp) 4227 { 4228 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4229 int num_sacks = tp->rx_opt.num_sacks; 4230 int this_sack; 4231 4232 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4233 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4234 tp->rx_opt.num_sacks = 0; 4235 return; 4236 } 4237 4238 for (this_sack = 0; this_sack < num_sacks;) { 4239 /* Check if the start of the sack is covered by RCV.NXT. */ 4240 if (!before(tp->rcv_nxt, sp->start_seq)) { 4241 int i; 4242 4243 /* RCV.NXT must cover all the block! */ 4244 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4245 4246 /* Zap this SACK, by moving forward any other SACKS. */ 4247 for (i = this_sack+1; i < num_sacks; i++) 4248 tp->selective_acks[i-1] = tp->selective_acks[i]; 4249 num_sacks--; 4250 continue; 4251 } 4252 this_sack++; 4253 sp++; 4254 } 4255 tp->rx_opt.num_sacks = num_sacks; 4256 } 4257 4258 /** 4259 * tcp_try_coalesce - try to merge skb to prior one 4260 * @sk: socket 4261 * @to: prior buffer 4262 * @from: buffer to add in queue 4263 * @fragstolen: pointer to boolean 4264 * 4265 * Before queueing skb @from after @to, try to merge them 4266 * to reduce overall memory use and queue lengths, if cost is small. 4267 * Packets in ofo or receive queues can stay a long time. 4268 * Better try to coalesce them right now to avoid future collapses. 4269 * Returns true if caller should free @from instead of queueing it 4270 */ 4271 static bool tcp_try_coalesce(struct sock *sk, 4272 struct sk_buff *to, 4273 struct sk_buff *from, 4274 bool *fragstolen) 4275 { 4276 int delta; 4277 4278 *fragstolen = false; 4279 4280 /* Its possible this segment overlaps with prior segment in queue */ 4281 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4282 return false; 4283 4284 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4285 return false; 4286 4287 atomic_add(delta, &sk->sk_rmem_alloc); 4288 sk_mem_charge(sk, delta); 4289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4290 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4291 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4292 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4293 return true; 4294 } 4295 4296 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4297 { 4298 sk_drops_add(sk, skb); 4299 __kfree_skb(skb); 4300 } 4301 4302 /* This one checks to see if we can put data from the 4303 * out_of_order queue into the receive_queue. 4304 */ 4305 static void tcp_ofo_queue(struct sock *sk) 4306 { 4307 struct tcp_sock *tp = tcp_sk(sk); 4308 __u32 dsack_high = tp->rcv_nxt; 4309 bool fin, fragstolen, eaten; 4310 struct sk_buff *skb, *tail; 4311 struct rb_node *p; 4312 4313 p = rb_first(&tp->out_of_order_queue); 4314 while (p) { 4315 skb = rb_entry(p, struct sk_buff, rbnode); 4316 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4317 break; 4318 4319 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4320 __u32 dsack = dsack_high; 4321 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4322 dsack_high = TCP_SKB_CB(skb)->end_seq; 4323 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4324 } 4325 p = rb_next(p); 4326 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4327 4328 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4329 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4330 tcp_drop(sk, skb); 4331 continue; 4332 } 4333 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4334 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4335 TCP_SKB_CB(skb)->end_seq); 4336 4337 tail = skb_peek_tail(&sk->sk_receive_queue); 4338 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4339 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4340 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4341 if (!eaten) 4342 __skb_queue_tail(&sk->sk_receive_queue, skb); 4343 else 4344 kfree_skb_partial(skb, fragstolen); 4345 4346 if (unlikely(fin)) { 4347 tcp_fin(sk); 4348 /* tcp_fin() purges tp->out_of_order_queue, 4349 * so we must end this loop right now. 4350 */ 4351 break; 4352 } 4353 } 4354 } 4355 4356 static bool tcp_prune_ofo_queue(struct sock *sk); 4357 static int tcp_prune_queue(struct sock *sk); 4358 4359 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4360 unsigned int size) 4361 { 4362 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4363 !sk_rmem_schedule(sk, skb, size)) { 4364 4365 if (tcp_prune_queue(sk) < 0) 4366 return -1; 4367 4368 while (!sk_rmem_schedule(sk, skb, size)) { 4369 if (!tcp_prune_ofo_queue(sk)) 4370 return -1; 4371 } 4372 } 4373 return 0; 4374 } 4375 4376 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4377 { 4378 struct tcp_sock *tp = tcp_sk(sk); 4379 struct rb_node **p, *q, *parent; 4380 struct sk_buff *skb1; 4381 u32 seq, end_seq; 4382 bool fragstolen; 4383 4384 tcp_ecn_check_ce(tp, skb); 4385 4386 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4388 tcp_drop(sk, skb); 4389 return; 4390 } 4391 4392 /* Disable header prediction. */ 4393 tp->pred_flags = 0; 4394 inet_csk_schedule_ack(sk); 4395 4396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4397 seq = TCP_SKB_CB(skb)->seq; 4398 end_seq = TCP_SKB_CB(skb)->end_seq; 4399 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4400 tp->rcv_nxt, seq, end_seq); 4401 4402 p = &tp->out_of_order_queue.rb_node; 4403 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4404 /* Initial out of order segment, build 1 SACK. */ 4405 if (tcp_is_sack(tp)) { 4406 tp->rx_opt.num_sacks = 1; 4407 tp->selective_acks[0].start_seq = seq; 4408 tp->selective_acks[0].end_seq = end_seq; 4409 } 4410 rb_link_node(&skb->rbnode, NULL, p); 4411 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4412 tp->ooo_last_skb = skb; 4413 goto end; 4414 } 4415 4416 /* In the typical case, we are adding an skb to the end of the list. 4417 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4418 */ 4419 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4420 coalesce_done: 4421 tcp_grow_window(sk, skb); 4422 kfree_skb_partial(skb, fragstolen); 4423 skb = NULL; 4424 goto add_sack; 4425 } 4426 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4427 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4428 parent = &tp->ooo_last_skb->rbnode; 4429 p = &parent->rb_right; 4430 goto insert; 4431 } 4432 4433 /* Find place to insert this segment. Handle overlaps on the way. */ 4434 parent = NULL; 4435 while (*p) { 4436 parent = *p; 4437 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4438 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4439 p = &parent->rb_left; 4440 continue; 4441 } 4442 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4443 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4444 /* All the bits are present. Drop. */ 4445 NET_INC_STATS(sock_net(sk), 4446 LINUX_MIB_TCPOFOMERGE); 4447 __kfree_skb(skb); 4448 skb = NULL; 4449 tcp_dsack_set(sk, seq, end_seq); 4450 goto add_sack; 4451 } 4452 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4453 /* Partial overlap. */ 4454 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4455 } else { 4456 /* skb's seq == skb1's seq and skb covers skb1. 4457 * Replace skb1 with skb. 4458 */ 4459 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4460 &tp->out_of_order_queue); 4461 tcp_dsack_extend(sk, 4462 TCP_SKB_CB(skb1)->seq, 4463 TCP_SKB_CB(skb1)->end_seq); 4464 NET_INC_STATS(sock_net(sk), 4465 LINUX_MIB_TCPOFOMERGE); 4466 __kfree_skb(skb1); 4467 goto merge_right; 4468 } 4469 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4470 goto coalesce_done; 4471 } 4472 p = &parent->rb_right; 4473 } 4474 insert: 4475 /* Insert segment into RB tree. */ 4476 rb_link_node(&skb->rbnode, parent, p); 4477 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4478 4479 merge_right: 4480 /* Remove other segments covered by skb. */ 4481 while ((q = rb_next(&skb->rbnode)) != NULL) { 4482 skb1 = rb_entry(q, struct sk_buff, rbnode); 4483 4484 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4485 break; 4486 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4487 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4488 end_seq); 4489 break; 4490 } 4491 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4492 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4493 TCP_SKB_CB(skb1)->end_seq); 4494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4495 tcp_drop(sk, skb1); 4496 } 4497 /* If there is no skb after us, we are the last_skb ! */ 4498 if (!q) 4499 tp->ooo_last_skb = skb; 4500 4501 add_sack: 4502 if (tcp_is_sack(tp)) 4503 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4504 end: 4505 if (skb) { 4506 tcp_grow_window(sk, skb); 4507 skb_condense(skb); 4508 skb_set_owner_r(skb, sk); 4509 } 4510 } 4511 4512 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4513 bool *fragstolen) 4514 { 4515 int eaten; 4516 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4517 4518 __skb_pull(skb, hdrlen); 4519 eaten = (tail && 4520 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4521 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4522 if (!eaten) { 4523 __skb_queue_tail(&sk->sk_receive_queue, skb); 4524 skb_set_owner_r(skb, sk); 4525 } 4526 return eaten; 4527 } 4528 4529 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4530 { 4531 struct sk_buff *skb; 4532 int err = -ENOMEM; 4533 int data_len = 0; 4534 bool fragstolen; 4535 4536 if (size == 0) 4537 return 0; 4538 4539 if (size > PAGE_SIZE) { 4540 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4541 4542 data_len = npages << PAGE_SHIFT; 4543 size = data_len + (size & ~PAGE_MASK); 4544 } 4545 skb = alloc_skb_with_frags(size - data_len, data_len, 4546 PAGE_ALLOC_COSTLY_ORDER, 4547 &err, sk->sk_allocation); 4548 if (!skb) 4549 goto err; 4550 4551 skb_put(skb, size - data_len); 4552 skb->data_len = data_len; 4553 skb->len = size; 4554 4555 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4556 goto err_free; 4557 4558 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4559 if (err) 4560 goto err_free; 4561 4562 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4563 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4564 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4565 4566 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4567 WARN_ON_ONCE(fragstolen); /* should not happen */ 4568 __kfree_skb(skb); 4569 } 4570 return size; 4571 4572 err_free: 4573 kfree_skb(skb); 4574 err: 4575 return err; 4576 4577 } 4578 4579 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4580 { 4581 struct tcp_sock *tp = tcp_sk(sk); 4582 bool fragstolen = false; 4583 int eaten = -1; 4584 4585 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4586 __kfree_skb(skb); 4587 return; 4588 } 4589 skb_dst_drop(skb); 4590 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4591 4592 tcp_ecn_accept_cwr(tp, skb); 4593 4594 tp->rx_opt.dsack = 0; 4595 4596 /* Queue data for delivery to the user. 4597 * Packets in sequence go to the receive queue. 4598 * Out of sequence packets to the out_of_order_queue. 4599 */ 4600 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4601 if (tcp_receive_window(tp) == 0) 4602 goto out_of_window; 4603 4604 /* Ok. In sequence. In window. */ 4605 if (tp->ucopy.task == current && 4606 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4607 sock_owned_by_user(sk) && !tp->urg_data) { 4608 int chunk = min_t(unsigned int, skb->len, 4609 tp->ucopy.len); 4610 4611 __set_current_state(TASK_RUNNING); 4612 4613 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4614 tp->ucopy.len -= chunk; 4615 tp->copied_seq += chunk; 4616 eaten = (chunk == skb->len); 4617 tcp_rcv_space_adjust(sk); 4618 } 4619 } 4620 4621 if (eaten <= 0) { 4622 queue_and_out: 4623 if (eaten < 0) { 4624 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4625 sk_forced_mem_schedule(sk, skb->truesize); 4626 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4627 goto drop; 4628 } 4629 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4630 } 4631 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4632 if (skb->len) 4633 tcp_event_data_recv(sk, skb); 4634 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4635 tcp_fin(sk); 4636 4637 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4638 tcp_ofo_queue(sk); 4639 4640 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4641 * gap in queue is filled. 4642 */ 4643 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4644 inet_csk(sk)->icsk_ack.pingpong = 0; 4645 } 4646 4647 if (tp->rx_opt.num_sacks) 4648 tcp_sack_remove(tp); 4649 4650 tcp_fast_path_check(sk); 4651 4652 if (eaten > 0) 4653 kfree_skb_partial(skb, fragstolen); 4654 if (!sock_flag(sk, SOCK_DEAD)) 4655 sk->sk_data_ready(sk); 4656 return; 4657 } 4658 4659 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4660 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4661 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4662 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4663 4664 out_of_window: 4665 tcp_enter_quickack_mode(sk); 4666 inet_csk_schedule_ack(sk); 4667 drop: 4668 tcp_drop(sk, skb); 4669 return; 4670 } 4671 4672 /* Out of window. F.e. zero window probe. */ 4673 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4674 goto out_of_window; 4675 4676 tcp_enter_quickack_mode(sk); 4677 4678 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4679 /* Partial packet, seq < rcv_next < end_seq */ 4680 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4681 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4682 TCP_SKB_CB(skb)->end_seq); 4683 4684 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4685 4686 /* If window is closed, drop tail of packet. But after 4687 * remembering D-SACK for its head made in previous line. 4688 */ 4689 if (!tcp_receive_window(tp)) 4690 goto out_of_window; 4691 goto queue_and_out; 4692 } 4693 4694 tcp_data_queue_ofo(sk, skb); 4695 } 4696 4697 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4698 { 4699 if (list) 4700 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4701 4702 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4703 } 4704 4705 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4706 struct sk_buff_head *list, 4707 struct rb_root *root) 4708 { 4709 struct sk_buff *next = tcp_skb_next(skb, list); 4710 4711 if (list) 4712 __skb_unlink(skb, list); 4713 else 4714 rb_erase(&skb->rbnode, root); 4715 4716 __kfree_skb(skb); 4717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4718 4719 return next; 4720 } 4721 4722 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4723 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4724 { 4725 struct rb_node **p = &root->rb_node; 4726 struct rb_node *parent = NULL; 4727 struct sk_buff *skb1; 4728 4729 while (*p) { 4730 parent = *p; 4731 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4732 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4733 p = &parent->rb_left; 4734 else 4735 p = &parent->rb_right; 4736 } 4737 rb_link_node(&skb->rbnode, parent, p); 4738 rb_insert_color(&skb->rbnode, root); 4739 } 4740 4741 /* Collapse contiguous sequence of skbs head..tail with 4742 * sequence numbers start..end. 4743 * 4744 * If tail is NULL, this means until the end of the queue. 4745 * 4746 * Segments with FIN/SYN are not collapsed (only because this 4747 * simplifies code) 4748 */ 4749 static void 4750 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4751 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4752 { 4753 struct sk_buff *skb = head, *n; 4754 struct sk_buff_head tmp; 4755 bool end_of_skbs; 4756 4757 /* First, check that queue is collapsible and find 4758 * the point where collapsing can be useful. 4759 */ 4760 restart: 4761 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4762 n = tcp_skb_next(skb, list); 4763 4764 /* No new bits? It is possible on ofo queue. */ 4765 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4766 skb = tcp_collapse_one(sk, skb, list, root); 4767 if (!skb) 4768 break; 4769 goto restart; 4770 } 4771 4772 /* The first skb to collapse is: 4773 * - not SYN/FIN and 4774 * - bloated or contains data before "start" or 4775 * overlaps to the next one. 4776 */ 4777 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4778 (tcp_win_from_space(skb->truesize) > skb->len || 4779 before(TCP_SKB_CB(skb)->seq, start))) { 4780 end_of_skbs = false; 4781 break; 4782 } 4783 4784 if (n && n != tail && 4785 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4786 end_of_skbs = false; 4787 break; 4788 } 4789 4790 /* Decided to skip this, advance start seq. */ 4791 start = TCP_SKB_CB(skb)->end_seq; 4792 } 4793 if (end_of_skbs || 4794 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4795 return; 4796 4797 __skb_queue_head_init(&tmp); 4798 4799 while (before(start, end)) { 4800 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4801 struct sk_buff *nskb; 4802 4803 nskb = alloc_skb(copy, GFP_ATOMIC); 4804 if (!nskb) 4805 break; 4806 4807 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4808 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4809 if (list) 4810 __skb_queue_before(list, skb, nskb); 4811 else 4812 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4813 skb_set_owner_r(nskb, sk); 4814 4815 /* Copy data, releasing collapsed skbs. */ 4816 while (copy > 0) { 4817 int offset = start - TCP_SKB_CB(skb)->seq; 4818 int size = TCP_SKB_CB(skb)->end_seq - start; 4819 4820 BUG_ON(offset < 0); 4821 if (size > 0) { 4822 size = min(copy, size); 4823 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4824 BUG(); 4825 TCP_SKB_CB(nskb)->end_seq += size; 4826 copy -= size; 4827 start += size; 4828 } 4829 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4830 skb = tcp_collapse_one(sk, skb, list, root); 4831 if (!skb || 4832 skb == tail || 4833 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4834 goto end; 4835 } 4836 } 4837 } 4838 end: 4839 skb_queue_walk_safe(&tmp, skb, n) 4840 tcp_rbtree_insert(root, skb); 4841 } 4842 4843 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4844 * and tcp_collapse() them until all the queue is collapsed. 4845 */ 4846 static void tcp_collapse_ofo_queue(struct sock *sk) 4847 { 4848 struct tcp_sock *tp = tcp_sk(sk); 4849 struct sk_buff *skb, *head; 4850 struct rb_node *p; 4851 u32 start, end; 4852 4853 p = rb_first(&tp->out_of_order_queue); 4854 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4855 new_range: 4856 if (!skb) { 4857 p = rb_last(&tp->out_of_order_queue); 4858 /* Note: This is possible p is NULL here. We do not 4859 * use rb_entry_safe(), as ooo_last_skb is valid only 4860 * if rbtree is not empty. 4861 */ 4862 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4863 return; 4864 } 4865 start = TCP_SKB_CB(skb)->seq; 4866 end = TCP_SKB_CB(skb)->end_seq; 4867 4868 for (head = skb;;) { 4869 skb = tcp_skb_next(skb, NULL); 4870 4871 /* Range is terminated when we see a gap or when 4872 * we are at the queue end. 4873 */ 4874 if (!skb || 4875 after(TCP_SKB_CB(skb)->seq, end) || 4876 before(TCP_SKB_CB(skb)->end_seq, start)) { 4877 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4878 head, skb, start, end); 4879 goto new_range; 4880 } 4881 4882 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4883 start = TCP_SKB_CB(skb)->seq; 4884 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4885 end = TCP_SKB_CB(skb)->end_seq; 4886 } 4887 } 4888 4889 /* 4890 * Clean the out-of-order queue to make room. 4891 * We drop high sequences packets to : 4892 * 1) Let a chance for holes to be filled. 4893 * 2) not add too big latencies if thousands of packets sit there. 4894 * (But if application shrinks SO_RCVBUF, we could still end up 4895 * freeing whole queue here) 4896 * 4897 * Return true if queue has shrunk. 4898 */ 4899 static bool tcp_prune_ofo_queue(struct sock *sk) 4900 { 4901 struct tcp_sock *tp = tcp_sk(sk); 4902 struct rb_node *node, *prev; 4903 4904 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4905 return false; 4906 4907 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4908 node = &tp->ooo_last_skb->rbnode; 4909 do { 4910 prev = rb_prev(node); 4911 rb_erase(node, &tp->out_of_order_queue); 4912 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4913 sk_mem_reclaim(sk); 4914 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4915 !tcp_under_memory_pressure(sk)) 4916 break; 4917 node = prev; 4918 } while (node); 4919 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4920 4921 /* Reset SACK state. A conforming SACK implementation will 4922 * do the same at a timeout based retransmit. When a connection 4923 * is in a sad state like this, we care only about integrity 4924 * of the connection not performance. 4925 */ 4926 if (tp->rx_opt.sack_ok) 4927 tcp_sack_reset(&tp->rx_opt); 4928 return true; 4929 } 4930 4931 /* Reduce allocated memory if we can, trying to get 4932 * the socket within its memory limits again. 4933 * 4934 * Return less than zero if we should start dropping frames 4935 * until the socket owning process reads some of the data 4936 * to stabilize the situation. 4937 */ 4938 static int tcp_prune_queue(struct sock *sk) 4939 { 4940 struct tcp_sock *tp = tcp_sk(sk); 4941 4942 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4943 4944 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4945 4946 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4947 tcp_clamp_window(sk); 4948 else if (tcp_under_memory_pressure(sk)) 4949 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4950 4951 tcp_collapse_ofo_queue(sk); 4952 if (!skb_queue_empty(&sk->sk_receive_queue)) 4953 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4954 skb_peek(&sk->sk_receive_queue), 4955 NULL, 4956 tp->copied_seq, tp->rcv_nxt); 4957 sk_mem_reclaim(sk); 4958 4959 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4960 return 0; 4961 4962 /* Collapsing did not help, destructive actions follow. 4963 * This must not ever occur. */ 4964 4965 tcp_prune_ofo_queue(sk); 4966 4967 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4968 return 0; 4969 4970 /* If we are really being abused, tell the caller to silently 4971 * drop receive data on the floor. It will get retransmitted 4972 * and hopefully then we'll have sufficient space. 4973 */ 4974 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4975 4976 /* Massive buffer overcommit. */ 4977 tp->pred_flags = 0; 4978 return -1; 4979 } 4980 4981 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4982 { 4983 const struct tcp_sock *tp = tcp_sk(sk); 4984 4985 /* If the user specified a specific send buffer setting, do 4986 * not modify it. 4987 */ 4988 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4989 return false; 4990 4991 /* If we are under global TCP memory pressure, do not expand. */ 4992 if (tcp_under_memory_pressure(sk)) 4993 return false; 4994 4995 /* If we are under soft global TCP memory pressure, do not expand. */ 4996 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4997 return false; 4998 4999 /* If we filled the congestion window, do not expand. */ 5000 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5001 return false; 5002 5003 return true; 5004 } 5005 5006 /* When incoming ACK allowed to free some skb from write_queue, 5007 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5008 * on the exit from tcp input handler. 5009 * 5010 * PROBLEM: sndbuf expansion does not work well with largesend. 5011 */ 5012 static void tcp_new_space(struct sock *sk) 5013 { 5014 struct tcp_sock *tp = tcp_sk(sk); 5015 5016 if (tcp_should_expand_sndbuf(sk)) { 5017 tcp_sndbuf_expand(sk); 5018 tp->snd_cwnd_stamp = tcp_time_stamp; 5019 } 5020 5021 sk->sk_write_space(sk); 5022 } 5023 5024 static void tcp_check_space(struct sock *sk) 5025 { 5026 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5027 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5028 /* pairs with tcp_poll() */ 5029 smp_mb(); 5030 if (sk->sk_socket && 5031 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5032 tcp_new_space(sk); 5033 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5034 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5035 } 5036 } 5037 } 5038 5039 static inline void tcp_data_snd_check(struct sock *sk) 5040 { 5041 tcp_push_pending_frames(sk); 5042 tcp_check_space(sk); 5043 } 5044 5045 /* 5046 * Check if sending an ack is needed. 5047 */ 5048 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5049 { 5050 struct tcp_sock *tp = tcp_sk(sk); 5051 5052 /* More than one full frame received... */ 5053 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5054 /* ... and right edge of window advances far enough. 5055 * (tcp_recvmsg() will send ACK otherwise). Or... 5056 */ 5057 __tcp_select_window(sk) >= tp->rcv_wnd) || 5058 /* We ACK each frame or... */ 5059 tcp_in_quickack_mode(sk) || 5060 /* We have out of order data. */ 5061 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5062 /* Then ack it now */ 5063 tcp_send_ack(sk); 5064 } else { 5065 /* Else, send delayed ack. */ 5066 tcp_send_delayed_ack(sk); 5067 } 5068 } 5069 5070 static inline void tcp_ack_snd_check(struct sock *sk) 5071 { 5072 if (!inet_csk_ack_scheduled(sk)) { 5073 /* We sent a data segment already. */ 5074 return; 5075 } 5076 __tcp_ack_snd_check(sk, 1); 5077 } 5078 5079 /* 5080 * This routine is only called when we have urgent data 5081 * signaled. Its the 'slow' part of tcp_urg. It could be 5082 * moved inline now as tcp_urg is only called from one 5083 * place. We handle URGent data wrong. We have to - as 5084 * BSD still doesn't use the correction from RFC961. 5085 * For 1003.1g we should support a new option TCP_STDURG to permit 5086 * either form (or just set the sysctl tcp_stdurg). 5087 */ 5088 5089 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5090 { 5091 struct tcp_sock *tp = tcp_sk(sk); 5092 u32 ptr = ntohs(th->urg_ptr); 5093 5094 if (ptr && !sysctl_tcp_stdurg) 5095 ptr--; 5096 ptr += ntohl(th->seq); 5097 5098 /* Ignore urgent data that we've already seen and read. */ 5099 if (after(tp->copied_seq, ptr)) 5100 return; 5101 5102 /* Do not replay urg ptr. 5103 * 5104 * NOTE: interesting situation not covered by specs. 5105 * Misbehaving sender may send urg ptr, pointing to segment, 5106 * which we already have in ofo queue. We are not able to fetch 5107 * such data and will stay in TCP_URG_NOTYET until will be eaten 5108 * by recvmsg(). Seems, we are not obliged to handle such wicked 5109 * situations. But it is worth to think about possibility of some 5110 * DoSes using some hypothetical application level deadlock. 5111 */ 5112 if (before(ptr, tp->rcv_nxt)) 5113 return; 5114 5115 /* Do we already have a newer (or duplicate) urgent pointer? */ 5116 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5117 return; 5118 5119 /* Tell the world about our new urgent pointer. */ 5120 sk_send_sigurg(sk); 5121 5122 /* We may be adding urgent data when the last byte read was 5123 * urgent. To do this requires some care. We cannot just ignore 5124 * tp->copied_seq since we would read the last urgent byte again 5125 * as data, nor can we alter copied_seq until this data arrives 5126 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5127 * 5128 * NOTE. Double Dutch. Rendering to plain English: author of comment 5129 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5130 * and expect that both A and B disappear from stream. This is _wrong_. 5131 * Though this happens in BSD with high probability, this is occasional. 5132 * Any application relying on this is buggy. Note also, that fix "works" 5133 * only in this artificial test. Insert some normal data between A and B and we will 5134 * decline of BSD again. Verdict: it is better to remove to trap 5135 * buggy users. 5136 */ 5137 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5138 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5139 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5140 tp->copied_seq++; 5141 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5142 __skb_unlink(skb, &sk->sk_receive_queue); 5143 __kfree_skb(skb); 5144 } 5145 } 5146 5147 tp->urg_data = TCP_URG_NOTYET; 5148 tp->urg_seq = ptr; 5149 5150 /* Disable header prediction. */ 5151 tp->pred_flags = 0; 5152 } 5153 5154 /* This is the 'fast' part of urgent handling. */ 5155 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5156 { 5157 struct tcp_sock *tp = tcp_sk(sk); 5158 5159 /* Check if we get a new urgent pointer - normally not. */ 5160 if (th->urg) 5161 tcp_check_urg(sk, th); 5162 5163 /* Do we wait for any urgent data? - normally not... */ 5164 if (tp->urg_data == TCP_URG_NOTYET) { 5165 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5166 th->syn; 5167 5168 /* Is the urgent pointer pointing into this packet? */ 5169 if (ptr < skb->len) { 5170 u8 tmp; 5171 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5172 BUG(); 5173 tp->urg_data = TCP_URG_VALID | tmp; 5174 if (!sock_flag(sk, SOCK_DEAD)) 5175 sk->sk_data_ready(sk); 5176 } 5177 } 5178 } 5179 5180 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5181 { 5182 struct tcp_sock *tp = tcp_sk(sk); 5183 int chunk = skb->len - hlen; 5184 int err; 5185 5186 if (skb_csum_unnecessary(skb)) 5187 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5188 else 5189 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5190 5191 if (!err) { 5192 tp->ucopy.len -= chunk; 5193 tp->copied_seq += chunk; 5194 tcp_rcv_space_adjust(sk); 5195 } 5196 5197 return err; 5198 } 5199 5200 /* Accept RST for rcv_nxt - 1 after a FIN. 5201 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5202 * FIN is sent followed by a RST packet. The RST is sent with the same 5203 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5204 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5205 * ACKs on the closed socket. In addition middleboxes can drop either the 5206 * challenge ACK or a subsequent RST. 5207 */ 5208 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5209 { 5210 struct tcp_sock *tp = tcp_sk(sk); 5211 5212 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5213 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5214 TCPF_CLOSING)); 5215 } 5216 5217 /* Does PAWS and seqno based validation of an incoming segment, flags will 5218 * play significant role here. 5219 */ 5220 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5221 const struct tcphdr *th, int syn_inerr) 5222 { 5223 struct tcp_sock *tp = tcp_sk(sk); 5224 bool rst_seq_match = false; 5225 5226 /* RFC1323: H1. Apply PAWS check first. */ 5227 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5228 tcp_paws_discard(sk, skb)) { 5229 if (!th->rst) { 5230 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5231 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5232 LINUX_MIB_TCPACKSKIPPEDPAWS, 5233 &tp->last_oow_ack_time)) 5234 tcp_send_dupack(sk, skb); 5235 goto discard; 5236 } 5237 /* Reset is accepted even if it did not pass PAWS. */ 5238 } 5239 5240 /* Step 1: check sequence number */ 5241 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5242 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5243 * (RST) segments are validated by checking their SEQ-fields." 5244 * And page 69: "If an incoming segment is not acceptable, 5245 * an acknowledgment should be sent in reply (unless the RST 5246 * bit is set, if so drop the segment and return)". 5247 */ 5248 if (!th->rst) { 5249 if (th->syn) 5250 goto syn_challenge; 5251 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5252 LINUX_MIB_TCPACKSKIPPEDSEQ, 5253 &tp->last_oow_ack_time)) 5254 tcp_send_dupack(sk, skb); 5255 } else if (tcp_reset_check(sk, skb)) { 5256 tcp_reset(sk); 5257 } 5258 goto discard; 5259 } 5260 5261 /* Step 2: check RST bit */ 5262 if (th->rst) { 5263 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5264 * FIN and SACK too if available): 5265 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5266 * the right-most SACK block, 5267 * then 5268 * RESET the connection 5269 * else 5270 * Send a challenge ACK 5271 */ 5272 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5273 tcp_reset_check(sk, skb)) { 5274 rst_seq_match = true; 5275 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5276 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5277 int max_sack = sp[0].end_seq; 5278 int this_sack; 5279 5280 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5281 ++this_sack) { 5282 max_sack = after(sp[this_sack].end_seq, 5283 max_sack) ? 5284 sp[this_sack].end_seq : max_sack; 5285 } 5286 5287 if (TCP_SKB_CB(skb)->seq == max_sack) 5288 rst_seq_match = true; 5289 } 5290 5291 if (rst_seq_match) 5292 tcp_reset(sk); 5293 else 5294 tcp_send_challenge_ack(sk, skb); 5295 goto discard; 5296 } 5297 5298 /* step 3: check security and precedence [ignored] */ 5299 5300 /* step 4: Check for a SYN 5301 * RFC 5961 4.2 : Send a challenge ack 5302 */ 5303 if (th->syn) { 5304 syn_challenge: 5305 if (syn_inerr) 5306 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5308 tcp_send_challenge_ack(sk, skb); 5309 goto discard; 5310 } 5311 5312 return true; 5313 5314 discard: 5315 tcp_drop(sk, skb); 5316 return false; 5317 } 5318 5319 /* 5320 * TCP receive function for the ESTABLISHED state. 5321 * 5322 * It is split into a fast path and a slow path. The fast path is 5323 * disabled when: 5324 * - A zero window was announced from us - zero window probing 5325 * is only handled properly in the slow path. 5326 * - Out of order segments arrived. 5327 * - Urgent data is expected. 5328 * - There is no buffer space left 5329 * - Unexpected TCP flags/window values/header lengths are received 5330 * (detected by checking the TCP header against pred_flags) 5331 * - Data is sent in both directions. Fast path only supports pure senders 5332 * or pure receivers (this means either the sequence number or the ack 5333 * value must stay constant) 5334 * - Unexpected TCP option. 5335 * 5336 * When these conditions are not satisfied it drops into a standard 5337 * receive procedure patterned after RFC793 to handle all cases. 5338 * The first three cases are guaranteed by proper pred_flags setting, 5339 * the rest is checked inline. Fast processing is turned on in 5340 * tcp_data_queue when everything is OK. 5341 */ 5342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5343 const struct tcphdr *th, unsigned int len) 5344 { 5345 struct tcp_sock *tp = tcp_sk(sk); 5346 5347 if (unlikely(!sk->sk_rx_dst)) 5348 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5349 /* 5350 * Header prediction. 5351 * The code loosely follows the one in the famous 5352 * "30 instruction TCP receive" Van Jacobson mail. 5353 * 5354 * Van's trick is to deposit buffers into socket queue 5355 * on a device interrupt, to call tcp_recv function 5356 * on the receive process context and checksum and copy 5357 * the buffer to user space. smart... 5358 * 5359 * Our current scheme is not silly either but we take the 5360 * extra cost of the net_bh soft interrupt processing... 5361 * We do checksum and copy also but from device to kernel. 5362 */ 5363 5364 tp->rx_opt.saw_tstamp = 0; 5365 5366 /* pred_flags is 0xS?10 << 16 + snd_wnd 5367 * if header_prediction is to be made 5368 * 'S' will always be tp->tcp_header_len >> 2 5369 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5370 * turn it off (when there are holes in the receive 5371 * space for instance) 5372 * PSH flag is ignored. 5373 */ 5374 5375 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5376 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5377 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5378 int tcp_header_len = tp->tcp_header_len; 5379 5380 /* Timestamp header prediction: tcp_header_len 5381 * is automatically equal to th->doff*4 due to pred_flags 5382 * match. 5383 */ 5384 5385 /* Check timestamp */ 5386 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5387 /* No? Slow path! */ 5388 if (!tcp_parse_aligned_timestamp(tp, th)) 5389 goto slow_path; 5390 5391 /* If PAWS failed, check it more carefully in slow path */ 5392 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5393 goto slow_path; 5394 5395 /* DO NOT update ts_recent here, if checksum fails 5396 * and timestamp was corrupted part, it will result 5397 * in a hung connection since we will drop all 5398 * future packets due to the PAWS test. 5399 */ 5400 } 5401 5402 if (len <= tcp_header_len) { 5403 /* Bulk data transfer: sender */ 5404 if (len == tcp_header_len) { 5405 /* Predicted packet is in window by definition. 5406 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5407 * Hence, check seq<=rcv_wup reduces to: 5408 */ 5409 if (tcp_header_len == 5410 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5411 tp->rcv_nxt == tp->rcv_wup) 5412 tcp_store_ts_recent(tp); 5413 5414 /* We know that such packets are checksummed 5415 * on entry. 5416 */ 5417 tcp_ack(sk, skb, 0); 5418 __kfree_skb(skb); 5419 tcp_data_snd_check(sk); 5420 return; 5421 } else { /* Header too small */ 5422 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5423 goto discard; 5424 } 5425 } else { 5426 int eaten = 0; 5427 bool fragstolen = false; 5428 5429 if (tp->ucopy.task == current && 5430 tp->copied_seq == tp->rcv_nxt && 5431 len - tcp_header_len <= tp->ucopy.len && 5432 sock_owned_by_user(sk)) { 5433 __set_current_state(TASK_RUNNING); 5434 5435 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5436 /* Predicted packet is in window by definition. 5437 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5438 * Hence, check seq<=rcv_wup reduces to: 5439 */ 5440 if (tcp_header_len == 5441 (sizeof(struct tcphdr) + 5442 TCPOLEN_TSTAMP_ALIGNED) && 5443 tp->rcv_nxt == tp->rcv_wup) 5444 tcp_store_ts_recent(tp); 5445 5446 tcp_rcv_rtt_measure_ts(sk, skb); 5447 5448 __skb_pull(skb, tcp_header_len); 5449 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5450 NET_INC_STATS(sock_net(sk), 5451 LINUX_MIB_TCPHPHITSTOUSER); 5452 eaten = 1; 5453 } 5454 } 5455 if (!eaten) { 5456 if (tcp_checksum_complete(skb)) 5457 goto csum_error; 5458 5459 if ((int)skb->truesize > sk->sk_forward_alloc) 5460 goto step5; 5461 5462 /* Predicted packet is in window by definition. 5463 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5464 * Hence, check seq<=rcv_wup reduces to: 5465 */ 5466 if (tcp_header_len == 5467 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5468 tp->rcv_nxt == tp->rcv_wup) 5469 tcp_store_ts_recent(tp); 5470 5471 tcp_rcv_rtt_measure_ts(sk, skb); 5472 5473 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5474 5475 /* Bulk data transfer: receiver */ 5476 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5477 &fragstolen); 5478 } 5479 5480 tcp_event_data_recv(sk, skb); 5481 5482 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5483 /* Well, only one small jumplet in fast path... */ 5484 tcp_ack(sk, skb, FLAG_DATA); 5485 tcp_data_snd_check(sk); 5486 if (!inet_csk_ack_scheduled(sk)) 5487 goto no_ack; 5488 } 5489 5490 __tcp_ack_snd_check(sk, 0); 5491 no_ack: 5492 if (eaten) 5493 kfree_skb_partial(skb, fragstolen); 5494 sk->sk_data_ready(sk); 5495 return; 5496 } 5497 } 5498 5499 slow_path: 5500 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5501 goto csum_error; 5502 5503 if (!th->ack && !th->rst && !th->syn) 5504 goto discard; 5505 5506 /* 5507 * Standard slow path. 5508 */ 5509 5510 if (!tcp_validate_incoming(sk, skb, th, 1)) 5511 return; 5512 5513 step5: 5514 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5515 goto discard; 5516 5517 tcp_rcv_rtt_measure_ts(sk, skb); 5518 5519 /* Process urgent data. */ 5520 tcp_urg(sk, skb, th); 5521 5522 /* step 7: process the segment text */ 5523 tcp_data_queue(sk, skb); 5524 5525 tcp_data_snd_check(sk); 5526 tcp_ack_snd_check(sk); 5527 return; 5528 5529 csum_error: 5530 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5531 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5532 5533 discard: 5534 tcp_drop(sk, skb); 5535 } 5536 EXPORT_SYMBOL(tcp_rcv_established); 5537 5538 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5539 { 5540 struct tcp_sock *tp = tcp_sk(sk); 5541 struct inet_connection_sock *icsk = inet_csk(sk); 5542 5543 tcp_set_state(sk, TCP_ESTABLISHED); 5544 5545 if (skb) { 5546 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5547 security_inet_conn_established(sk, skb); 5548 } 5549 5550 /* Make sure socket is routed, for correct metrics. */ 5551 icsk->icsk_af_ops->rebuild_header(sk); 5552 5553 tcp_init_metrics(sk); 5554 5555 tcp_init_congestion_control(sk); 5556 5557 /* Prevent spurious tcp_cwnd_restart() on first data 5558 * packet. 5559 */ 5560 tp->lsndtime = tcp_time_stamp; 5561 5562 tcp_init_buffer_space(sk); 5563 5564 if (sock_flag(sk, SOCK_KEEPOPEN)) 5565 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5566 5567 if (!tp->rx_opt.snd_wscale) 5568 __tcp_fast_path_on(tp, tp->snd_wnd); 5569 else 5570 tp->pred_flags = 0; 5571 5572 if (!sock_flag(sk, SOCK_DEAD)) { 5573 sk->sk_state_change(sk); 5574 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5575 } 5576 } 5577 5578 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5579 struct tcp_fastopen_cookie *cookie) 5580 { 5581 struct tcp_sock *tp = tcp_sk(sk); 5582 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5583 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5584 bool syn_drop = false; 5585 5586 if (mss == tp->rx_opt.user_mss) { 5587 struct tcp_options_received opt; 5588 5589 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5590 tcp_clear_options(&opt); 5591 opt.user_mss = opt.mss_clamp = 0; 5592 tcp_parse_options(synack, &opt, 0, NULL); 5593 mss = opt.mss_clamp; 5594 } 5595 5596 if (!tp->syn_fastopen) { 5597 /* Ignore an unsolicited cookie */ 5598 cookie->len = -1; 5599 } else if (tp->total_retrans) { 5600 /* SYN timed out and the SYN-ACK neither has a cookie nor 5601 * acknowledges data. Presumably the remote received only 5602 * the retransmitted (regular) SYNs: either the original 5603 * SYN-data or the corresponding SYN-ACK was dropped. 5604 */ 5605 syn_drop = (cookie->len < 0 && data); 5606 } else if (cookie->len < 0 && !tp->syn_data) { 5607 /* We requested a cookie but didn't get it. If we did not use 5608 * the (old) exp opt format then try so next time (try_exp=1). 5609 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5610 */ 5611 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5612 } 5613 5614 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5615 5616 if (data) { /* Retransmit unacked data in SYN */ 5617 tcp_for_write_queue_from(data, sk) { 5618 if (data == tcp_send_head(sk) || 5619 __tcp_retransmit_skb(sk, data, 1)) 5620 break; 5621 } 5622 tcp_rearm_rto(sk); 5623 NET_INC_STATS(sock_net(sk), 5624 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5625 return true; 5626 } 5627 tp->syn_data_acked = tp->syn_data; 5628 if (tp->syn_data_acked) 5629 NET_INC_STATS(sock_net(sk), 5630 LINUX_MIB_TCPFASTOPENACTIVE); 5631 5632 tcp_fastopen_add_skb(sk, synack); 5633 5634 return false; 5635 } 5636 5637 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5638 const struct tcphdr *th) 5639 { 5640 struct inet_connection_sock *icsk = inet_csk(sk); 5641 struct tcp_sock *tp = tcp_sk(sk); 5642 struct tcp_fastopen_cookie foc = { .len = -1 }; 5643 int saved_clamp = tp->rx_opt.mss_clamp; 5644 5645 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5646 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5647 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5648 5649 if (th->ack) { 5650 /* rfc793: 5651 * "If the state is SYN-SENT then 5652 * first check the ACK bit 5653 * If the ACK bit is set 5654 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5655 * a reset (unless the RST bit is set, if so drop 5656 * the segment and return)" 5657 */ 5658 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5659 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5660 goto reset_and_undo; 5661 5662 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5663 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5664 tcp_time_stamp)) { 5665 NET_INC_STATS(sock_net(sk), 5666 LINUX_MIB_PAWSACTIVEREJECTED); 5667 goto reset_and_undo; 5668 } 5669 5670 /* Now ACK is acceptable. 5671 * 5672 * "If the RST bit is set 5673 * If the ACK was acceptable then signal the user "error: 5674 * connection reset", drop the segment, enter CLOSED state, 5675 * delete TCB, and return." 5676 */ 5677 5678 if (th->rst) { 5679 tcp_reset(sk); 5680 goto discard; 5681 } 5682 5683 /* rfc793: 5684 * "fifth, if neither of the SYN or RST bits is set then 5685 * drop the segment and return." 5686 * 5687 * See note below! 5688 * --ANK(990513) 5689 */ 5690 if (!th->syn) 5691 goto discard_and_undo; 5692 5693 /* rfc793: 5694 * "If the SYN bit is on ... 5695 * are acceptable then ... 5696 * (our SYN has been ACKed), change the connection 5697 * state to ESTABLISHED..." 5698 */ 5699 5700 tcp_ecn_rcv_synack(tp, th); 5701 5702 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5703 tcp_ack(sk, skb, FLAG_SLOWPATH); 5704 5705 /* Ok.. it's good. Set up sequence numbers and 5706 * move to established. 5707 */ 5708 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5709 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5710 5711 /* RFC1323: The window in SYN & SYN/ACK segments is 5712 * never scaled. 5713 */ 5714 tp->snd_wnd = ntohs(th->window); 5715 5716 if (!tp->rx_opt.wscale_ok) { 5717 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5718 tp->window_clamp = min(tp->window_clamp, 65535U); 5719 } 5720 5721 if (tp->rx_opt.saw_tstamp) { 5722 tp->rx_opt.tstamp_ok = 1; 5723 tp->tcp_header_len = 5724 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5725 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5726 tcp_store_ts_recent(tp); 5727 } else { 5728 tp->tcp_header_len = sizeof(struct tcphdr); 5729 } 5730 5731 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5732 tcp_enable_fack(tp); 5733 5734 tcp_mtup_init(sk); 5735 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5736 tcp_initialize_rcv_mss(sk); 5737 5738 /* Remember, tcp_poll() does not lock socket! 5739 * Change state from SYN-SENT only after copied_seq 5740 * is initialized. */ 5741 tp->copied_seq = tp->rcv_nxt; 5742 5743 smp_mb(); 5744 5745 tcp_finish_connect(sk, skb); 5746 5747 if ((tp->syn_fastopen || tp->syn_data) && 5748 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5749 return -1; 5750 5751 if (sk->sk_write_pending || 5752 icsk->icsk_accept_queue.rskq_defer_accept || 5753 icsk->icsk_ack.pingpong) { 5754 /* Save one ACK. Data will be ready after 5755 * several ticks, if write_pending is set. 5756 * 5757 * It may be deleted, but with this feature tcpdumps 5758 * look so _wonderfully_ clever, that I was not able 5759 * to stand against the temptation 8) --ANK 5760 */ 5761 inet_csk_schedule_ack(sk); 5762 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5763 tcp_enter_quickack_mode(sk); 5764 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5765 TCP_DELACK_MAX, TCP_RTO_MAX); 5766 5767 discard: 5768 tcp_drop(sk, skb); 5769 return 0; 5770 } else { 5771 tcp_send_ack(sk); 5772 } 5773 return -1; 5774 } 5775 5776 /* No ACK in the segment */ 5777 5778 if (th->rst) { 5779 /* rfc793: 5780 * "If the RST bit is set 5781 * 5782 * Otherwise (no ACK) drop the segment and return." 5783 */ 5784 5785 goto discard_and_undo; 5786 } 5787 5788 /* PAWS check. */ 5789 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5790 tcp_paws_reject(&tp->rx_opt, 0)) 5791 goto discard_and_undo; 5792 5793 if (th->syn) { 5794 /* We see SYN without ACK. It is attempt of 5795 * simultaneous connect with crossed SYNs. 5796 * Particularly, it can be connect to self. 5797 */ 5798 tcp_set_state(sk, TCP_SYN_RECV); 5799 5800 if (tp->rx_opt.saw_tstamp) { 5801 tp->rx_opt.tstamp_ok = 1; 5802 tcp_store_ts_recent(tp); 5803 tp->tcp_header_len = 5804 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5805 } else { 5806 tp->tcp_header_len = sizeof(struct tcphdr); 5807 } 5808 5809 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5810 tp->copied_seq = tp->rcv_nxt; 5811 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5812 5813 /* RFC1323: The window in SYN & SYN/ACK segments is 5814 * never scaled. 5815 */ 5816 tp->snd_wnd = ntohs(th->window); 5817 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5818 tp->max_window = tp->snd_wnd; 5819 5820 tcp_ecn_rcv_syn(tp, th); 5821 5822 tcp_mtup_init(sk); 5823 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5824 tcp_initialize_rcv_mss(sk); 5825 5826 tcp_send_synack(sk); 5827 #if 0 5828 /* Note, we could accept data and URG from this segment. 5829 * There are no obstacles to make this (except that we must 5830 * either change tcp_recvmsg() to prevent it from returning data 5831 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5832 * 5833 * However, if we ignore data in ACKless segments sometimes, 5834 * we have no reasons to accept it sometimes. 5835 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5836 * is not flawless. So, discard packet for sanity. 5837 * Uncomment this return to process the data. 5838 */ 5839 return -1; 5840 #else 5841 goto discard; 5842 #endif 5843 } 5844 /* "fifth, if neither of the SYN or RST bits is set then 5845 * drop the segment and return." 5846 */ 5847 5848 discard_and_undo: 5849 tcp_clear_options(&tp->rx_opt); 5850 tp->rx_opt.mss_clamp = saved_clamp; 5851 goto discard; 5852 5853 reset_and_undo: 5854 tcp_clear_options(&tp->rx_opt); 5855 tp->rx_opt.mss_clamp = saved_clamp; 5856 return 1; 5857 } 5858 5859 /* 5860 * This function implements the receiving procedure of RFC 793 for 5861 * all states except ESTABLISHED and TIME_WAIT. 5862 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5863 * address independent. 5864 */ 5865 5866 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5867 { 5868 struct tcp_sock *tp = tcp_sk(sk); 5869 struct inet_connection_sock *icsk = inet_csk(sk); 5870 const struct tcphdr *th = tcp_hdr(skb); 5871 struct request_sock *req; 5872 int queued = 0; 5873 bool acceptable; 5874 5875 switch (sk->sk_state) { 5876 case TCP_CLOSE: 5877 goto discard; 5878 5879 case TCP_LISTEN: 5880 if (th->ack) 5881 return 1; 5882 5883 if (th->rst) 5884 goto discard; 5885 5886 if (th->syn) { 5887 if (th->fin) 5888 goto discard; 5889 /* It is possible that we process SYN packets from backlog, 5890 * so we need to make sure to disable BH right there. 5891 */ 5892 local_bh_disable(); 5893 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5894 local_bh_enable(); 5895 5896 if (!acceptable) 5897 return 1; 5898 consume_skb(skb); 5899 return 0; 5900 } 5901 goto discard; 5902 5903 case TCP_SYN_SENT: 5904 tp->rx_opt.saw_tstamp = 0; 5905 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5906 if (queued >= 0) 5907 return queued; 5908 5909 /* Do step6 onward by hand. */ 5910 tcp_urg(sk, skb, th); 5911 __kfree_skb(skb); 5912 tcp_data_snd_check(sk); 5913 return 0; 5914 } 5915 5916 tp->rx_opt.saw_tstamp = 0; 5917 req = tp->fastopen_rsk; 5918 if (req) { 5919 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5920 sk->sk_state != TCP_FIN_WAIT1); 5921 5922 if (!tcp_check_req(sk, skb, req, true)) 5923 goto discard; 5924 } 5925 5926 if (!th->ack && !th->rst && !th->syn) 5927 goto discard; 5928 5929 if (!tcp_validate_incoming(sk, skb, th, 0)) 5930 return 0; 5931 5932 /* step 5: check the ACK field */ 5933 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5934 FLAG_UPDATE_TS_RECENT) > 0; 5935 5936 switch (sk->sk_state) { 5937 case TCP_SYN_RECV: 5938 if (!acceptable) 5939 return 1; 5940 5941 if (!tp->srtt_us) 5942 tcp_synack_rtt_meas(sk, req); 5943 5944 /* Once we leave TCP_SYN_RECV, we no longer need req 5945 * so release it. 5946 */ 5947 if (req) { 5948 inet_csk(sk)->icsk_retransmits = 0; 5949 reqsk_fastopen_remove(sk, req, false); 5950 } else { 5951 /* Make sure socket is routed, for correct metrics. */ 5952 icsk->icsk_af_ops->rebuild_header(sk); 5953 tcp_init_congestion_control(sk); 5954 5955 tcp_mtup_init(sk); 5956 tp->copied_seq = tp->rcv_nxt; 5957 tcp_init_buffer_space(sk); 5958 } 5959 smp_mb(); 5960 tcp_set_state(sk, TCP_ESTABLISHED); 5961 sk->sk_state_change(sk); 5962 5963 /* Note, that this wakeup is only for marginal crossed SYN case. 5964 * Passively open sockets are not waked up, because 5965 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5966 */ 5967 if (sk->sk_socket) 5968 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5969 5970 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5971 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5972 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5973 5974 if (tp->rx_opt.tstamp_ok) 5975 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5976 5977 if (req) { 5978 /* Re-arm the timer because data may have been sent out. 5979 * This is similar to the regular data transmission case 5980 * when new data has just been ack'ed. 5981 * 5982 * (TFO) - we could try to be more aggressive and 5983 * retransmitting any data sooner based on when they 5984 * are sent out. 5985 */ 5986 tcp_rearm_rto(sk); 5987 } else 5988 tcp_init_metrics(sk); 5989 5990 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5991 tcp_update_pacing_rate(sk); 5992 5993 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5994 tp->lsndtime = tcp_time_stamp; 5995 5996 tcp_initialize_rcv_mss(sk); 5997 tcp_fast_path_on(tp); 5998 break; 5999 6000 case TCP_FIN_WAIT1: { 6001 int tmo; 6002 6003 /* If we enter the TCP_FIN_WAIT1 state and we are a 6004 * Fast Open socket and this is the first acceptable 6005 * ACK we have received, this would have acknowledged 6006 * our SYNACK so stop the SYNACK timer. 6007 */ 6008 if (req) { 6009 /* Return RST if ack_seq is invalid. 6010 * Note that RFC793 only says to generate a 6011 * DUPACK for it but for TCP Fast Open it seems 6012 * better to treat this case like TCP_SYN_RECV 6013 * above. 6014 */ 6015 if (!acceptable) 6016 return 1; 6017 /* We no longer need the request sock. */ 6018 reqsk_fastopen_remove(sk, req, false); 6019 tcp_rearm_rto(sk); 6020 } 6021 if (tp->snd_una != tp->write_seq) 6022 break; 6023 6024 tcp_set_state(sk, TCP_FIN_WAIT2); 6025 sk->sk_shutdown |= SEND_SHUTDOWN; 6026 6027 sk_dst_confirm(sk); 6028 6029 if (!sock_flag(sk, SOCK_DEAD)) { 6030 /* Wake up lingering close() */ 6031 sk->sk_state_change(sk); 6032 break; 6033 } 6034 6035 if (tp->linger2 < 0 || 6036 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6037 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6038 tcp_done(sk); 6039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6040 return 1; 6041 } 6042 6043 tmo = tcp_fin_time(sk); 6044 if (tmo > TCP_TIMEWAIT_LEN) { 6045 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6046 } else if (th->fin || sock_owned_by_user(sk)) { 6047 /* Bad case. We could lose such FIN otherwise. 6048 * It is not a big problem, but it looks confusing 6049 * and not so rare event. We still can lose it now, 6050 * if it spins in bh_lock_sock(), but it is really 6051 * marginal case. 6052 */ 6053 inet_csk_reset_keepalive_timer(sk, tmo); 6054 } else { 6055 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6056 goto discard; 6057 } 6058 break; 6059 } 6060 6061 case TCP_CLOSING: 6062 if (tp->snd_una == tp->write_seq) { 6063 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6064 goto discard; 6065 } 6066 break; 6067 6068 case TCP_LAST_ACK: 6069 if (tp->snd_una == tp->write_seq) { 6070 tcp_update_metrics(sk); 6071 tcp_done(sk); 6072 goto discard; 6073 } 6074 break; 6075 } 6076 6077 /* step 6: check the URG bit */ 6078 tcp_urg(sk, skb, th); 6079 6080 /* step 7: process the segment text */ 6081 switch (sk->sk_state) { 6082 case TCP_CLOSE_WAIT: 6083 case TCP_CLOSING: 6084 case TCP_LAST_ACK: 6085 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6086 break; 6087 case TCP_FIN_WAIT1: 6088 case TCP_FIN_WAIT2: 6089 /* RFC 793 says to queue data in these states, 6090 * RFC 1122 says we MUST send a reset. 6091 * BSD 4.4 also does reset. 6092 */ 6093 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6094 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6095 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6096 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6097 tcp_reset(sk); 6098 return 1; 6099 } 6100 } 6101 /* Fall through */ 6102 case TCP_ESTABLISHED: 6103 tcp_data_queue(sk, skb); 6104 queued = 1; 6105 break; 6106 } 6107 6108 /* tcp_data could move socket to TIME-WAIT */ 6109 if (sk->sk_state != TCP_CLOSE) { 6110 tcp_data_snd_check(sk); 6111 tcp_ack_snd_check(sk); 6112 } 6113 6114 if (!queued) { 6115 discard: 6116 tcp_drop(sk, skb); 6117 } 6118 return 0; 6119 } 6120 EXPORT_SYMBOL(tcp_rcv_state_process); 6121 6122 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6123 { 6124 struct inet_request_sock *ireq = inet_rsk(req); 6125 6126 if (family == AF_INET) 6127 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6128 &ireq->ir_rmt_addr, port); 6129 #if IS_ENABLED(CONFIG_IPV6) 6130 else if (family == AF_INET6) 6131 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6132 &ireq->ir_v6_rmt_addr, port); 6133 #endif 6134 } 6135 6136 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6137 * 6138 * If we receive a SYN packet with these bits set, it means a 6139 * network is playing bad games with TOS bits. In order to 6140 * avoid possible false congestion notifications, we disable 6141 * TCP ECN negotiation. 6142 * 6143 * Exception: tcp_ca wants ECN. This is required for DCTCP 6144 * congestion control: Linux DCTCP asserts ECT on all packets, 6145 * including SYN, which is most optimal solution; however, 6146 * others, such as FreeBSD do not. 6147 */ 6148 static void tcp_ecn_create_request(struct request_sock *req, 6149 const struct sk_buff *skb, 6150 const struct sock *listen_sk, 6151 const struct dst_entry *dst) 6152 { 6153 const struct tcphdr *th = tcp_hdr(skb); 6154 const struct net *net = sock_net(listen_sk); 6155 bool th_ecn = th->ece && th->cwr; 6156 bool ect, ecn_ok; 6157 u32 ecn_ok_dst; 6158 6159 if (!th_ecn) 6160 return; 6161 6162 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6163 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6164 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6165 6166 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6167 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6168 inet_rsk(req)->ecn_ok = 1; 6169 } 6170 6171 static void tcp_openreq_init(struct request_sock *req, 6172 const struct tcp_options_received *rx_opt, 6173 struct sk_buff *skb, const struct sock *sk) 6174 { 6175 struct inet_request_sock *ireq = inet_rsk(req); 6176 6177 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6178 req->cookie_ts = 0; 6179 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6180 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6181 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6182 tcp_rsk(req)->last_oow_ack_time = 0; 6183 req->mss = rx_opt->mss_clamp; 6184 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6185 ireq->tstamp_ok = rx_opt->tstamp_ok; 6186 ireq->sack_ok = rx_opt->sack_ok; 6187 ireq->snd_wscale = rx_opt->snd_wscale; 6188 ireq->wscale_ok = rx_opt->wscale_ok; 6189 ireq->acked = 0; 6190 ireq->ecn_ok = 0; 6191 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6192 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6193 ireq->ir_mark = inet_request_mark(sk, skb); 6194 } 6195 6196 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6197 struct sock *sk_listener, 6198 bool attach_listener) 6199 { 6200 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6201 attach_listener); 6202 6203 if (req) { 6204 struct inet_request_sock *ireq = inet_rsk(req); 6205 6206 kmemcheck_annotate_bitfield(ireq, flags); 6207 ireq->opt = NULL; 6208 #if IS_ENABLED(CONFIG_IPV6) 6209 ireq->pktopts = NULL; 6210 #endif 6211 atomic64_set(&ireq->ir_cookie, 0); 6212 ireq->ireq_state = TCP_NEW_SYN_RECV; 6213 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6214 ireq->ireq_family = sk_listener->sk_family; 6215 } 6216 6217 return req; 6218 } 6219 EXPORT_SYMBOL(inet_reqsk_alloc); 6220 6221 /* 6222 * Return true if a syncookie should be sent 6223 */ 6224 static bool tcp_syn_flood_action(const struct sock *sk, 6225 const struct sk_buff *skb, 6226 const char *proto) 6227 { 6228 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6229 const char *msg = "Dropping request"; 6230 bool want_cookie = false; 6231 struct net *net = sock_net(sk); 6232 6233 #ifdef CONFIG_SYN_COOKIES 6234 if (net->ipv4.sysctl_tcp_syncookies) { 6235 msg = "Sending cookies"; 6236 want_cookie = true; 6237 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6238 } else 6239 #endif 6240 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6241 6242 if (!queue->synflood_warned && 6243 net->ipv4.sysctl_tcp_syncookies != 2 && 6244 xchg(&queue->synflood_warned, 1) == 0) 6245 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6246 proto, ntohs(tcp_hdr(skb)->dest), msg); 6247 6248 return want_cookie; 6249 } 6250 6251 static void tcp_reqsk_record_syn(const struct sock *sk, 6252 struct request_sock *req, 6253 const struct sk_buff *skb) 6254 { 6255 if (tcp_sk(sk)->save_syn) { 6256 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6257 u32 *copy; 6258 6259 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6260 if (copy) { 6261 copy[0] = len; 6262 memcpy(©[1], skb_network_header(skb), len); 6263 req->saved_syn = copy; 6264 } 6265 } 6266 } 6267 6268 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6269 const struct tcp_request_sock_ops *af_ops, 6270 struct sock *sk, struct sk_buff *skb) 6271 { 6272 struct tcp_fastopen_cookie foc = { .len = -1 }; 6273 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6274 struct tcp_options_received tmp_opt; 6275 struct tcp_sock *tp = tcp_sk(sk); 6276 struct net *net = sock_net(sk); 6277 struct sock *fastopen_sk = NULL; 6278 struct dst_entry *dst = NULL; 6279 struct request_sock *req; 6280 bool want_cookie = false; 6281 struct flowi fl; 6282 6283 /* TW buckets are converted to open requests without 6284 * limitations, they conserve resources and peer is 6285 * evidently real one. 6286 */ 6287 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6288 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6289 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6290 if (!want_cookie) 6291 goto drop; 6292 } 6293 6294 if (sk_acceptq_is_full(sk)) { 6295 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6296 goto drop; 6297 } 6298 6299 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6300 if (!req) 6301 goto drop; 6302 6303 tcp_rsk(req)->af_specific = af_ops; 6304 tcp_rsk(req)->ts_off = 0; 6305 6306 tcp_clear_options(&tmp_opt); 6307 tmp_opt.mss_clamp = af_ops->mss_clamp; 6308 tmp_opt.user_mss = tp->rx_opt.user_mss; 6309 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6310 6311 if (want_cookie && !tmp_opt.saw_tstamp) 6312 tcp_clear_options(&tmp_opt); 6313 6314 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6315 tcp_openreq_init(req, &tmp_opt, skb, sk); 6316 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6317 6318 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6319 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6320 6321 af_ops->init_req(req, sk, skb); 6322 6323 if (security_inet_conn_request(sk, skb, req)) 6324 goto drop_and_free; 6325 6326 if (isn && tmp_opt.tstamp_ok) 6327 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off); 6328 6329 if (!want_cookie && !isn) { 6330 /* VJ's idea. We save last timestamp seen 6331 * from the destination in peer table, when entering 6332 * state TIME-WAIT, and check against it before 6333 * accepting new connection request. 6334 * 6335 * If "isn" is not zero, this request hit alive 6336 * timewait bucket, so that all the necessary checks 6337 * are made in the function processing timewait state. 6338 */ 6339 if (net->ipv4.tcp_death_row.sysctl_tw_recycle) { 6340 bool strict; 6341 6342 dst = af_ops->route_req(sk, &fl, req, &strict); 6343 6344 if (dst && strict && 6345 !tcp_peer_is_proven(req, dst, true, 6346 tmp_opt.saw_tstamp)) { 6347 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6348 goto drop_and_release; 6349 } 6350 } 6351 /* Kill the following clause, if you dislike this way. */ 6352 else if (!net->ipv4.sysctl_tcp_syncookies && 6353 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6354 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6355 !tcp_peer_is_proven(req, dst, false, 6356 tmp_opt.saw_tstamp)) { 6357 /* Without syncookies last quarter of 6358 * backlog is filled with destinations, 6359 * proven to be alive. 6360 * It means that we continue to communicate 6361 * to destinations, already remembered 6362 * to the moment of synflood. 6363 */ 6364 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6365 rsk_ops->family); 6366 goto drop_and_release; 6367 } 6368 6369 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off); 6370 } 6371 if (!dst) { 6372 dst = af_ops->route_req(sk, &fl, req, NULL); 6373 if (!dst) 6374 goto drop_and_free; 6375 } 6376 6377 tcp_ecn_create_request(req, skb, sk, dst); 6378 6379 if (want_cookie) { 6380 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6381 tcp_rsk(req)->ts_off = 0; 6382 req->cookie_ts = tmp_opt.tstamp_ok; 6383 if (!tmp_opt.tstamp_ok) 6384 inet_rsk(req)->ecn_ok = 0; 6385 } 6386 6387 tcp_rsk(req)->snt_isn = isn; 6388 tcp_rsk(req)->txhash = net_tx_rndhash(); 6389 tcp_openreq_init_rwin(req, sk, dst); 6390 if (!want_cookie) { 6391 tcp_reqsk_record_syn(sk, req, skb); 6392 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6393 } 6394 if (fastopen_sk) { 6395 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6396 &foc, TCP_SYNACK_FASTOPEN); 6397 /* Add the child socket directly into the accept queue */ 6398 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6399 sk->sk_data_ready(sk); 6400 bh_unlock_sock(fastopen_sk); 6401 sock_put(fastopen_sk); 6402 } else { 6403 tcp_rsk(req)->tfo_listener = false; 6404 if (!want_cookie) 6405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6406 af_ops->send_synack(sk, dst, &fl, req, &foc, 6407 !want_cookie ? TCP_SYNACK_NORMAL : 6408 TCP_SYNACK_COOKIE); 6409 if (want_cookie) { 6410 reqsk_free(req); 6411 return 0; 6412 } 6413 } 6414 reqsk_put(req); 6415 return 0; 6416 6417 drop_and_release: 6418 dst_release(dst); 6419 drop_and_free: 6420 reqsk_free(req); 6421 drop: 6422 tcp_listendrop(sk); 6423 return 0; 6424 } 6425 EXPORT_SYMBOL(tcp_conn_request); 6426