1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_fack __read_mostly; 80 int sysctl_tcp_max_reordering __read_mostly = 300; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 1; 84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 85 86 /* rfc5961 challenge ack rate limiting */ 87 int sysctl_tcp_challenge_ack_limit = 1000; 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 95 int sysctl_tcp_early_retrans __read_mostly = 3; 96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 97 98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 104 #define FLAG_ECE 0x40 /* ECE in this ACK */ 105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 110 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 111 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 112 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 113 114 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 115 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 116 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 117 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 118 119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 121 122 #define REXMIT_NONE 0 /* no loss recovery to do */ 123 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 124 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 125 126 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 127 unsigned int len) 128 { 129 static bool __once __read_mostly; 130 131 if (!__once) { 132 struct net_device *dev; 133 134 __once = true; 135 136 rcu_read_lock(); 137 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 138 if (!dev || len >= dev->mtu) 139 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 140 dev ? dev->name : "Unknown driver"); 141 rcu_read_unlock(); 142 } 143 } 144 145 /* Adapt the MSS value used to make delayed ack decision to the 146 * real world. 147 */ 148 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 149 { 150 struct inet_connection_sock *icsk = inet_csk(sk); 151 const unsigned int lss = icsk->icsk_ack.last_seg_size; 152 unsigned int len; 153 154 icsk->icsk_ack.last_seg_size = 0; 155 156 /* skb->len may jitter because of SACKs, even if peer 157 * sends good full-sized frames. 158 */ 159 len = skb_shinfo(skb)->gso_size ? : skb->len; 160 if (len >= icsk->icsk_ack.rcv_mss) { 161 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 162 tcp_sk(sk)->advmss); 163 /* Account for possibly-removed options */ 164 if (unlikely(len > icsk->icsk_ack.rcv_mss + 165 MAX_TCP_OPTION_SPACE)) 166 tcp_gro_dev_warn(sk, skb, len); 167 } else { 168 /* Otherwise, we make more careful check taking into account, 169 * that SACKs block is variable. 170 * 171 * "len" is invariant segment length, including TCP header. 172 */ 173 len += skb->data - skb_transport_header(skb); 174 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 175 /* If PSH is not set, packet should be 176 * full sized, provided peer TCP is not badly broken. 177 * This observation (if it is correct 8)) allows 178 * to handle super-low mtu links fairly. 179 */ 180 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 181 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 182 /* Subtract also invariant (if peer is RFC compliant), 183 * tcp header plus fixed timestamp option length. 184 * Resulting "len" is MSS free of SACK jitter. 185 */ 186 len -= tcp_sk(sk)->tcp_header_len; 187 icsk->icsk_ack.last_seg_size = len; 188 if (len == lss) { 189 icsk->icsk_ack.rcv_mss = len; 190 return; 191 } 192 } 193 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 196 } 197 } 198 199 static void tcp_incr_quickack(struct sock *sk) 200 { 201 struct inet_connection_sock *icsk = inet_csk(sk); 202 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 203 204 if (quickacks == 0) 205 quickacks = 2; 206 if (quickacks > icsk->icsk_ack.quick) 207 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 208 } 209 210 static void tcp_enter_quickack_mode(struct sock *sk) 211 { 212 struct inet_connection_sock *icsk = inet_csk(sk); 213 tcp_incr_quickack(sk); 214 icsk->icsk_ack.pingpong = 0; 215 icsk->icsk_ack.ato = TCP_ATO_MIN; 216 } 217 218 /* Send ACKs quickly, if "quick" count is not exhausted 219 * and the session is not interactive. 220 */ 221 222 static bool tcp_in_quickack_mode(struct sock *sk) 223 { 224 const struct inet_connection_sock *icsk = inet_csk(sk); 225 const struct dst_entry *dst = __sk_dst_get(sk); 226 227 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 228 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 229 } 230 231 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 232 { 233 if (tp->ecn_flags & TCP_ECN_OK) 234 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 235 } 236 237 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 238 { 239 if (tcp_hdr(skb)->cwr) 240 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 241 } 242 243 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 244 { 245 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 246 } 247 248 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 249 { 250 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 251 case INET_ECN_NOT_ECT: 252 /* Funny extension: if ECT is not set on a segment, 253 * and we already seen ECT on a previous segment, 254 * it is probably a retransmit. 255 */ 256 if (tp->ecn_flags & TCP_ECN_SEEN) 257 tcp_enter_quickack_mode((struct sock *)tp); 258 break; 259 case INET_ECN_CE: 260 if (tcp_ca_needs_ecn((struct sock *)tp)) 261 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 262 263 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 264 /* Better not delay acks, sender can have a very low cwnd */ 265 tcp_enter_quickack_mode((struct sock *)tp); 266 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 267 } 268 tp->ecn_flags |= TCP_ECN_SEEN; 269 break; 270 default: 271 if (tcp_ca_needs_ecn((struct sock *)tp)) 272 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 273 tp->ecn_flags |= TCP_ECN_SEEN; 274 break; 275 } 276 } 277 278 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 279 { 280 if (tp->ecn_flags & TCP_ECN_OK) 281 __tcp_ecn_check_ce(tp, skb); 282 } 283 284 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 285 { 286 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 287 tp->ecn_flags &= ~TCP_ECN_OK; 288 } 289 290 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 291 { 292 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 293 tp->ecn_flags &= ~TCP_ECN_OK; 294 } 295 296 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 297 { 298 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 299 return true; 300 return false; 301 } 302 303 /* Buffer size and advertised window tuning. 304 * 305 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 306 */ 307 308 static void tcp_sndbuf_expand(struct sock *sk) 309 { 310 const struct tcp_sock *tp = tcp_sk(sk); 311 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 312 int sndmem, per_mss; 313 u32 nr_segs; 314 315 /* Worst case is non GSO/TSO : each frame consumes one skb 316 * and skb->head is kmalloced using power of two area of memory 317 */ 318 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 319 MAX_TCP_HEADER + 320 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 321 322 per_mss = roundup_pow_of_two(per_mss) + 323 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 324 325 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 326 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 327 328 /* Fast Recovery (RFC 5681 3.2) : 329 * Cubic needs 1.7 factor, rounded to 2 to include 330 * extra cushion (application might react slowly to POLLOUT) 331 */ 332 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 333 sndmem *= nr_segs * per_mss; 334 335 if (sk->sk_sndbuf < sndmem) 336 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 337 } 338 339 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 340 * 341 * All tcp_full_space() is split to two parts: "network" buffer, allocated 342 * forward and advertised in receiver window (tp->rcv_wnd) and 343 * "application buffer", required to isolate scheduling/application 344 * latencies from network. 345 * window_clamp is maximal advertised window. It can be less than 346 * tcp_full_space(), in this case tcp_full_space() - window_clamp 347 * is reserved for "application" buffer. The less window_clamp is 348 * the smoother our behaviour from viewpoint of network, but the lower 349 * throughput and the higher sensitivity of the connection to losses. 8) 350 * 351 * rcv_ssthresh is more strict window_clamp used at "slow start" 352 * phase to predict further behaviour of this connection. 353 * It is used for two goals: 354 * - to enforce header prediction at sender, even when application 355 * requires some significant "application buffer". It is check #1. 356 * - to prevent pruning of receive queue because of misprediction 357 * of receiver window. Check #2. 358 * 359 * The scheme does not work when sender sends good segments opening 360 * window and then starts to feed us spaghetti. But it should work 361 * in common situations. Otherwise, we have to rely on queue collapsing. 362 */ 363 364 /* Slow part of check#2. */ 365 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 /* Optimize this! */ 369 int truesize = tcp_win_from_space(skb->truesize) >> 1; 370 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 371 372 while (tp->rcv_ssthresh <= window) { 373 if (truesize <= skb->len) 374 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 375 376 truesize >>= 1; 377 window >>= 1; 378 } 379 return 0; 380 } 381 382 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 383 { 384 struct tcp_sock *tp = tcp_sk(sk); 385 386 /* Check #1 */ 387 if (tp->rcv_ssthresh < tp->window_clamp && 388 (int)tp->rcv_ssthresh < tcp_space(sk) && 389 !tcp_under_memory_pressure(sk)) { 390 int incr; 391 392 /* Check #2. Increase window, if skb with such overhead 393 * will fit to rcvbuf in future. 394 */ 395 if (tcp_win_from_space(skb->truesize) <= skb->len) 396 incr = 2 * tp->advmss; 397 else 398 incr = __tcp_grow_window(sk, skb); 399 400 if (incr) { 401 incr = max_t(int, incr, 2 * skb->len); 402 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 403 tp->window_clamp); 404 inet_csk(sk)->icsk_ack.quick |= 1; 405 } 406 } 407 } 408 409 /* 3. Tuning rcvbuf, when connection enters established state. */ 410 static void tcp_fixup_rcvbuf(struct sock *sk) 411 { 412 u32 mss = tcp_sk(sk)->advmss; 413 int rcvmem; 414 415 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 416 tcp_default_init_rwnd(mss); 417 418 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 419 * Allow enough cushion so that sender is not limited by our window 420 */ 421 if (sysctl_tcp_moderate_rcvbuf) 422 rcvmem <<= 2; 423 424 if (sk->sk_rcvbuf < rcvmem) 425 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 426 } 427 428 /* 4. Try to fixup all. It is made immediately after connection enters 429 * established state. 430 */ 431 void tcp_init_buffer_space(struct sock *sk) 432 { 433 struct tcp_sock *tp = tcp_sk(sk); 434 int maxwin; 435 436 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 437 tcp_fixup_rcvbuf(sk); 438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 439 tcp_sndbuf_expand(sk); 440 441 tp->rcvq_space.space = tp->rcv_wnd; 442 tcp_mstamp_refresh(tp); 443 tp->rcvq_space.time = tp->tcp_mstamp; 444 tp->rcvq_space.seq = tp->copied_seq; 445 446 maxwin = tcp_full_space(sk); 447 448 if (tp->window_clamp >= maxwin) { 449 tp->window_clamp = maxwin; 450 451 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 452 tp->window_clamp = max(maxwin - 453 (maxwin >> sysctl_tcp_app_win), 454 4 * tp->advmss); 455 } 456 457 /* Force reservation of one segment. */ 458 if (sysctl_tcp_app_win && 459 tp->window_clamp > 2 * tp->advmss && 460 tp->window_clamp + tp->advmss > maxwin) 461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 462 463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 464 tp->snd_cwnd_stamp = tcp_jiffies32; 465 } 466 467 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 468 static void tcp_clamp_window(struct sock *sk) 469 { 470 struct tcp_sock *tp = tcp_sk(sk); 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 473 icsk->icsk_ack.quick = 0; 474 475 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 476 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 477 !tcp_under_memory_pressure(sk) && 478 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 479 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 480 sysctl_tcp_rmem[2]); 481 } 482 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 483 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 484 } 485 486 /* Initialize RCV_MSS value. 487 * RCV_MSS is an our guess about MSS used by the peer. 488 * We haven't any direct information about the MSS. 489 * It's better to underestimate the RCV_MSS rather than overestimate. 490 * Overestimations make us ACKing less frequently than needed. 491 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 492 */ 493 void tcp_initialize_rcv_mss(struct sock *sk) 494 { 495 const struct tcp_sock *tp = tcp_sk(sk); 496 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 497 498 hint = min(hint, tp->rcv_wnd / 2); 499 hint = min(hint, TCP_MSS_DEFAULT); 500 hint = max(hint, TCP_MIN_MSS); 501 502 inet_csk(sk)->icsk_ack.rcv_mss = hint; 503 } 504 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 505 506 /* Receiver "autotuning" code. 507 * 508 * The algorithm for RTT estimation w/o timestamps is based on 509 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 510 * <http://public.lanl.gov/radiant/pubs.html#DRS> 511 * 512 * More detail on this code can be found at 513 * <http://staff.psc.edu/jheffner/>, 514 * though this reference is out of date. A new paper 515 * is pending. 516 */ 517 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 518 { 519 u32 new_sample = tp->rcv_rtt_est.rtt_us; 520 long m = sample; 521 522 if (m == 0) 523 m = 1; 524 525 if (new_sample != 0) { 526 /* If we sample in larger samples in the non-timestamp 527 * case, we could grossly overestimate the RTT especially 528 * with chatty applications or bulk transfer apps which 529 * are stalled on filesystem I/O. 530 * 531 * Also, since we are only going for a minimum in the 532 * non-timestamp case, we do not smooth things out 533 * else with timestamps disabled convergence takes too 534 * long. 535 */ 536 if (!win_dep) { 537 m -= (new_sample >> 3); 538 new_sample += m; 539 } else { 540 m <<= 3; 541 if (m < new_sample) 542 new_sample = m; 543 } 544 } else { 545 /* No previous measure. */ 546 new_sample = m << 3; 547 } 548 549 tp->rcv_rtt_est.rtt_us = new_sample; 550 } 551 552 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 553 { 554 u32 delta_us; 555 556 if (tp->rcv_rtt_est.time == 0) 557 goto new_measure; 558 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 559 return; 560 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 561 tcp_rcv_rtt_update(tp, delta_us, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tp->tcp_mstamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 573 if (tp->rx_opt.rcv_tsecr && 574 (TCP_SKB_CB(skb)->end_seq - 575 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 576 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 577 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 578 579 tcp_rcv_rtt_update(tp, delta_us, 0); 580 } 581 } 582 583 /* 584 * This function should be called every time data is copied to user space. 585 * It calculates the appropriate TCP receive buffer space. 586 */ 587 void tcp_rcv_space_adjust(struct sock *sk) 588 { 589 struct tcp_sock *tp = tcp_sk(sk); 590 int time; 591 int copied; 592 593 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 595 return; 596 597 /* Number of bytes copied to user in last RTT */ 598 copied = tp->copied_seq - tp->rcvq_space.seq; 599 if (copied <= tp->rcvq_space.space) 600 goto new_measure; 601 602 /* A bit of theory : 603 * copied = bytes received in previous RTT, our base window 604 * To cope with packet losses, we need a 2x factor 605 * To cope with slow start, and sender growing its cwin by 100 % 606 * every RTT, we need a 4x factor, because the ACK we are sending 607 * now is for the next RTT, not the current one : 608 * <prev RTT . ><current RTT .. ><next RTT .... > 609 */ 610 611 if (sysctl_tcp_moderate_rcvbuf && 612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 613 int rcvwin, rcvmem, rcvbuf; 614 615 /* minimal window to cope with packet losses, assuming 616 * steady state. Add some cushion because of small variations. 617 */ 618 rcvwin = (copied << 1) + 16 * tp->advmss; 619 620 /* If rate increased by 25%, 621 * assume slow start, rcvwin = 3 * copied 622 * If rate increased by 50%, 623 * assume sender can use 2x growth, rcvwin = 4 * copied 624 */ 625 if (copied >= 626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 627 if (copied >= 628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 629 rcvwin <<= 1; 630 else 631 rcvwin += (rcvwin >> 1); 632 } 633 634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 635 while (tcp_win_from_space(rcvmem) < tp->advmss) 636 rcvmem += 128; 637 638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 639 if (rcvbuf > sk->sk_rcvbuf) { 640 sk->sk_rcvbuf = rcvbuf; 641 642 /* Make the window clamp follow along. */ 643 tp->window_clamp = rcvwin; 644 } 645 } 646 tp->rcvq_space.space = copied; 647 648 new_measure: 649 tp->rcvq_space.seq = tp->copied_seq; 650 tp->rcvq_space.time = tp->tcp_mstamp; 651 } 652 653 /* There is something which you must keep in mind when you analyze the 654 * behavior of the tp->ato delayed ack timeout interval. When a 655 * connection starts up, we want to ack as quickly as possible. The 656 * problem is that "good" TCP's do slow start at the beginning of data 657 * transmission. The means that until we send the first few ACK's the 658 * sender will sit on his end and only queue most of his data, because 659 * he can only send snd_cwnd unacked packets at any given time. For 660 * each ACK we send, he increments snd_cwnd and transmits more of his 661 * queue. -DaveM 662 */ 663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 664 { 665 struct tcp_sock *tp = tcp_sk(sk); 666 struct inet_connection_sock *icsk = inet_csk(sk); 667 u32 now; 668 669 inet_csk_schedule_ack(sk); 670 671 tcp_measure_rcv_mss(sk, skb); 672 673 tcp_rcv_rtt_measure(tp); 674 675 now = tcp_jiffies32; 676 677 if (!icsk->icsk_ack.ato) { 678 /* The _first_ data packet received, initialize 679 * delayed ACK engine. 680 */ 681 tcp_incr_quickack(sk); 682 icsk->icsk_ack.ato = TCP_ATO_MIN; 683 } else { 684 int m = now - icsk->icsk_ack.lrcvtime; 685 686 if (m <= TCP_ATO_MIN / 2) { 687 /* The fastest case is the first. */ 688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 689 } else if (m < icsk->icsk_ack.ato) { 690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 691 if (icsk->icsk_ack.ato > icsk->icsk_rto) 692 icsk->icsk_ack.ato = icsk->icsk_rto; 693 } else if (m > icsk->icsk_rto) { 694 /* Too long gap. Apparently sender failed to 695 * restart window, so that we send ACKs quickly. 696 */ 697 tcp_incr_quickack(sk); 698 sk_mem_reclaim(sk); 699 } 700 } 701 icsk->icsk_ack.lrcvtime = now; 702 703 tcp_ecn_check_ce(tp, skb); 704 705 if (skb->len >= 128) 706 tcp_grow_window(sk, skb); 707 } 708 709 /* Called to compute a smoothed rtt estimate. The data fed to this 710 * routine either comes from timestamps, or from segments that were 711 * known _not_ to have been retransmitted [see Karn/Partridge 712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 713 * piece by Van Jacobson. 714 * NOTE: the next three routines used to be one big routine. 715 * To save cycles in the RFC 1323 implementation it was better to break 716 * it up into three procedures. -- erics 717 */ 718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 719 { 720 struct tcp_sock *tp = tcp_sk(sk); 721 long m = mrtt_us; /* RTT */ 722 u32 srtt = tp->srtt_us; 723 724 /* The following amusing code comes from Jacobson's 725 * article in SIGCOMM '88. Note that rtt and mdev 726 * are scaled versions of rtt and mean deviation. 727 * This is designed to be as fast as possible 728 * m stands for "measurement". 729 * 730 * On a 1990 paper the rto value is changed to: 731 * RTO = rtt + 4 * mdev 732 * 733 * Funny. This algorithm seems to be very broken. 734 * These formulae increase RTO, when it should be decreased, increase 735 * too slowly, when it should be increased quickly, decrease too quickly 736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 737 * does not matter how to _calculate_ it. Seems, it was trap 738 * that VJ failed to avoid. 8) 739 */ 740 if (srtt != 0) { 741 m -= (srtt >> 3); /* m is now error in rtt est */ 742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 743 if (m < 0) { 744 m = -m; /* m is now abs(error) */ 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 746 /* This is similar to one of Eifel findings. 747 * Eifel blocks mdev updates when rtt decreases. 748 * This solution is a bit different: we use finer gain 749 * for mdev in this case (alpha*beta). 750 * Like Eifel it also prevents growth of rto, 751 * but also it limits too fast rto decreases, 752 * happening in pure Eifel. 753 */ 754 if (m > 0) 755 m >>= 3; 756 } else { 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 758 } 759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 760 if (tp->mdev_us > tp->mdev_max_us) { 761 tp->mdev_max_us = tp->mdev_us; 762 if (tp->mdev_max_us > tp->rttvar_us) 763 tp->rttvar_us = tp->mdev_max_us; 764 } 765 if (after(tp->snd_una, tp->rtt_seq)) { 766 if (tp->mdev_max_us < tp->rttvar_us) 767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 768 tp->rtt_seq = tp->snd_nxt; 769 tp->mdev_max_us = tcp_rto_min_us(sk); 770 } 771 } else { 772 /* no previous measure. */ 773 srtt = m << 3; /* take the measured time to be rtt */ 774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 776 tp->mdev_max_us = tp->rttvar_us; 777 tp->rtt_seq = tp->snd_nxt; 778 } 779 tp->srtt_us = max(1U, srtt); 780 } 781 782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 783 * Note: TCP stack does not yet implement pacing. 784 * FQ packet scheduler can be used to implement cheap but effective 785 * TCP pacing, to smooth the burst on large writes when packets 786 * in flight is significantly lower than cwnd (or rwin) 787 */ 788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 790 791 static void tcp_update_pacing_rate(struct sock *sk) 792 { 793 const struct tcp_sock *tp = tcp_sk(sk); 794 u64 rate; 795 796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 798 799 /* current rate is (cwnd * mss) / srtt 800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 801 * In Congestion Avoidance phase, set it to 120 % the current rate. 802 * 803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 805 * end of slow start and should slow down. 806 */ 807 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 808 rate *= sysctl_tcp_pacing_ss_ratio; 809 else 810 rate *= sysctl_tcp_pacing_ca_ratio; 811 812 rate *= max(tp->snd_cwnd, tp->packets_out); 813 814 if (likely(tp->srtt_us)) 815 do_div(rate, tp->srtt_us); 816 817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 818 * without any lock. We want to make sure compiler wont store 819 * intermediate values in this location. 820 */ 821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 822 sk->sk_max_pacing_rate); 823 } 824 825 /* Calculate rto without backoff. This is the second half of Van Jacobson's 826 * routine referred to above. 827 */ 828 static void tcp_set_rto(struct sock *sk) 829 { 830 const struct tcp_sock *tp = tcp_sk(sk); 831 /* Old crap is replaced with new one. 8) 832 * 833 * More seriously: 834 * 1. If rtt variance happened to be less 50msec, it is hallucination. 835 * It cannot be less due to utterly erratic ACK generation made 836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 837 * to do with delayed acks, because at cwnd>2 true delack timeout 838 * is invisible. Actually, Linux-2.4 also generates erratic 839 * ACKs in some circumstances. 840 */ 841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 842 843 /* 2. Fixups made earlier cannot be right. 844 * If we do not estimate RTO correctly without them, 845 * all the algo is pure shit and should be replaced 846 * with correct one. It is exactly, which we pretend to do. 847 */ 848 849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 850 * guarantees that rto is higher. 851 */ 852 tcp_bound_rto(sk); 853 } 854 855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 856 { 857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 858 859 if (!cwnd) 860 cwnd = TCP_INIT_CWND; 861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 862 } 863 864 /* 865 * Packet counting of FACK is based on in-order assumptions, therefore TCP 866 * disables it when reordering is detected 867 */ 868 void tcp_disable_fack(struct tcp_sock *tp) 869 { 870 /* RFC3517 uses different metric in lost marker => reset on change */ 871 if (tcp_is_fack(tp)) 872 tp->lost_skb_hint = NULL; 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 874 } 875 876 /* Take a notice that peer is sending D-SACKs */ 877 static void tcp_dsack_seen(struct tcp_sock *tp) 878 { 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 880 } 881 882 static void tcp_update_reordering(struct sock *sk, const int metric, 883 const int ts) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 int mib_idx; 887 888 if (WARN_ON_ONCE(metric < 0)) 889 return; 890 891 if (metric > tp->reordering) { 892 tp->reordering = min(sysctl_tcp_max_reordering, metric); 893 894 #if FASTRETRANS_DEBUG > 1 895 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 896 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 897 tp->reordering, 898 tp->fackets_out, 899 tp->sacked_out, 900 tp->undo_marker ? tp->undo_retrans : 0); 901 #endif 902 tcp_disable_fack(tp); 903 } 904 905 tp->rack.reord = 1; 906 907 /* This exciting event is worth to be remembered. 8) */ 908 if (ts) 909 mib_idx = LINUX_MIB_TCPTSREORDER; 910 else if (tcp_is_reno(tp)) 911 mib_idx = LINUX_MIB_TCPRENOREORDER; 912 else if (tcp_is_fack(tp)) 913 mib_idx = LINUX_MIB_TCPFACKREORDER; 914 else 915 mib_idx = LINUX_MIB_TCPSACKREORDER; 916 917 NET_INC_STATS(sock_net(sk), mib_idx); 918 } 919 920 /* This must be called before lost_out is incremented */ 921 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 922 { 923 if (!tp->retransmit_skb_hint || 924 before(TCP_SKB_CB(skb)->seq, 925 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 926 tp->retransmit_skb_hint = skb; 927 } 928 929 /* Sum the number of packets on the wire we have marked as lost. 930 * There are two cases we care about here: 931 * a) Packet hasn't been marked lost (nor retransmitted), 932 * and this is the first loss. 933 * b) Packet has been marked both lost and retransmitted, 934 * and this means we think it was lost again. 935 */ 936 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 937 { 938 __u8 sacked = TCP_SKB_CB(skb)->sacked; 939 940 if (!(sacked & TCPCB_LOST) || 941 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 942 tp->lost += tcp_skb_pcount(skb); 943 } 944 945 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 946 { 947 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 948 tcp_verify_retransmit_hint(tp, skb); 949 950 tp->lost_out += tcp_skb_pcount(skb); 951 tcp_sum_lost(tp, skb); 952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 953 } 954 } 955 956 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 957 { 958 tcp_verify_retransmit_hint(tp, skb); 959 960 tcp_sum_lost(tp, skb); 961 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 962 tp->lost_out += tcp_skb_pcount(skb); 963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 964 } 965 } 966 967 /* This procedure tags the retransmission queue when SACKs arrive. 968 * 969 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 970 * Packets in queue with these bits set are counted in variables 971 * sacked_out, retrans_out and lost_out, correspondingly. 972 * 973 * Valid combinations are: 974 * Tag InFlight Description 975 * 0 1 - orig segment is in flight. 976 * S 0 - nothing flies, orig reached receiver. 977 * L 0 - nothing flies, orig lost by net. 978 * R 2 - both orig and retransmit are in flight. 979 * L|R 1 - orig is lost, retransmit is in flight. 980 * S|R 1 - orig reached receiver, retrans is still in flight. 981 * (L|S|R is logically valid, it could occur when L|R is sacked, 982 * but it is equivalent to plain S and code short-curcuits it to S. 983 * L|S is logically invalid, it would mean -1 packet in flight 8)) 984 * 985 * These 6 states form finite state machine, controlled by the following events: 986 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 987 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 988 * 3. Loss detection event of two flavors: 989 * A. Scoreboard estimator decided the packet is lost. 990 * A'. Reno "three dupacks" marks head of queue lost. 991 * A''. Its FACK modification, head until snd.fack is lost. 992 * B. SACK arrives sacking SND.NXT at the moment, when the 993 * segment was retransmitted. 994 * 4. D-SACK added new rule: D-SACK changes any tag to S. 995 * 996 * It is pleasant to note, that state diagram turns out to be commutative, 997 * so that we are allowed not to be bothered by order of our actions, 998 * when multiple events arrive simultaneously. (see the function below). 999 * 1000 * Reordering detection. 1001 * -------------------- 1002 * Reordering metric is maximal distance, which a packet can be displaced 1003 * in packet stream. With SACKs we can estimate it: 1004 * 1005 * 1. SACK fills old hole and the corresponding segment was not 1006 * ever retransmitted -> reordering. Alas, we cannot use it 1007 * when segment was retransmitted. 1008 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1009 * for retransmitted and already SACKed segment -> reordering.. 1010 * Both of these heuristics are not used in Loss state, when we cannot 1011 * account for retransmits accurately. 1012 * 1013 * SACK block validation. 1014 * ---------------------- 1015 * 1016 * SACK block range validation checks that the received SACK block fits to 1017 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1018 * Note that SND.UNA is not included to the range though being valid because 1019 * it means that the receiver is rather inconsistent with itself reporting 1020 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1021 * perfectly valid, however, in light of RFC2018 which explicitly states 1022 * that "SACK block MUST reflect the newest segment. Even if the newest 1023 * segment is going to be discarded ...", not that it looks very clever 1024 * in case of head skb. Due to potentional receiver driven attacks, we 1025 * choose to avoid immediate execution of a walk in write queue due to 1026 * reneging and defer head skb's loss recovery to standard loss recovery 1027 * procedure that will eventually trigger (nothing forbids us doing this). 1028 * 1029 * Implements also blockage to start_seq wrap-around. Problem lies in the 1030 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1031 * there's no guarantee that it will be before snd_nxt (n). The problem 1032 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1033 * wrap (s_w): 1034 * 1035 * <- outs wnd -> <- wrapzone -> 1036 * u e n u_w e_w s n_w 1037 * | | | | | | | 1038 * |<------------+------+----- TCP seqno space --------------+---------->| 1039 * ...-- <2^31 ->| |<--------... 1040 * ...---- >2^31 ------>| |<--------... 1041 * 1042 * Current code wouldn't be vulnerable but it's better still to discard such 1043 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1044 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1045 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1046 * equal to the ideal case (infinite seqno space without wrap caused issues). 1047 * 1048 * With D-SACK the lower bound is extended to cover sequence space below 1049 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1050 * again, D-SACK block must not to go across snd_una (for the same reason as 1051 * for the normal SACK blocks, explained above). But there all simplicity 1052 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1053 * fully below undo_marker they do not affect behavior in anyway and can 1054 * therefore be safely ignored. In rare cases (which are more or less 1055 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1056 * fragmentation and packet reordering past skb's retransmission. To consider 1057 * them correctly, the acceptable range must be extended even more though 1058 * the exact amount is rather hard to quantify. However, tp->max_window can 1059 * be used as an exaggerated estimate. 1060 */ 1061 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1062 u32 start_seq, u32 end_seq) 1063 { 1064 /* Too far in future, or reversed (interpretation is ambiguous) */ 1065 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1066 return false; 1067 1068 /* Nasty start_seq wrap-around check (see comments above) */ 1069 if (!before(start_seq, tp->snd_nxt)) 1070 return false; 1071 1072 /* In outstanding window? ...This is valid exit for D-SACKs too. 1073 * start_seq == snd_una is non-sensical (see comments above) 1074 */ 1075 if (after(start_seq, tp->snd_una)) 1076 return true; 1077 1078 if (!is_dsack || !tp->undo_marker) 1079 return false; 1080 1081 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1082 if (after(end_seq, tp->snd_una)) 1083 return false; 1084 1085 if (!before(start_seq, tp->undo_marker)) 1086 return true; 1087 1088 /* Too old */ 1089 if (!after(end_seq, tp->undo_marker)) 1090 return false; 1091 1092 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1093 * start_seq < undo_marker and end_seq >= undo_marker. 1094 */ 1095 return !before(start_seq, end_seq - tp->max_window); 1096 } 1097 1098 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1099 struct tcp_sack_block_wire *sp, int num_sacks, 1100 u32 prior_snd_una) 1101 { 1102 struct tcp_sock *tp = tcp_sk(sk); 1103 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1104 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1105 bool dup_sack = false; 1106 1107 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1108 dup_sack = true; 1109 tcp_dsack_seen(tp); 1110 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1111 } else if (num_sacks > 1) { 1112 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1113 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1114 1115 if (!after(end_seq_0, end_seq_1) && 1116 !before(start_seq_0, start_seq_1)) { 1117 dup_sack = true; 1118 tcp_dsack_seen(tp); 1119 NET_INC_STATS(sock_net(sk), 1120 LINUX_MIB_TCPDSACKOFORECV); 1121 } 1122 } 1123 1124 /* D-SACK for already forgotten data... Do dumb counting. */ 1125 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1126 !after(end_seq_0, prior_snd_una) && 1127 after(end_seq_0, tp->undo_marker)) 1128 tp->undo_retrans--; 1129 1130 return dup_sack; 1131 } 1132 1133 struct tcp_sacktag_state { 1134 int reord; 1135 int fack_count; 1136 /* Timestamps for earliest and latest never-retransmitted segment 1137 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1138 * but congestion control should still get an accurate delay signal. 1139 */ 1140 u64 first_sackt; 1141 u64 last_sackt; 1142 struct rate_sample *rate; 1143 int flag; 1144 }; 1145 1146 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1147 * the incoming SACK may not exactly match but we can find smaller MSS 1148 * aligned portion of it that matches. Therefore we might need to fragment 1149 * which may fail and creates some hassle (caller must handle error case 1150 * returns). 1151 * 1152 * FIXME: this could be merged to shift decision code 1153 */ 1154 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1155 u32 start_seq, u32 end_seq) 1156 { 1157 int err; 1158 bool in_sack; 1159 unsigned int pkt_len; 1160 unsigned int mss; 1161 1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1163 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1164 1165 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1166 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1167 mss = tcp_skb_mss(skb); 1168 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1169 1170 if (!in_sack) { 1171 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 pkt_len = mss; 1174 } else { 1175 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1176 if (pkt_len < mss) 1177 return -EINVAL; 1178 } 1179 1180 /* Round if necessary so that SACKs cover only full MSSes 1181 * and/or the remaining small portion (if present) 1182 */ 1183 if (pkt_len > mss) { 1184 unsigned int new_len = (pkt_len / mss) * mss; 1185 if (!in_sack && new_len < pkt_len) 1186 new_len += mss; 1187 pkt_len = new_len; 1188 } 1189 1190 if (pkt_len >= skb->len && !in_sack) 1191 return 0; 1192 1193 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1194 if (err < 0) 1195 return err; 1196 } 1197 1198 return in_sack; 1199 } 1200 1201 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1202 static u8 tcp_sacktag_one(struct sock *sk, 1203 struct tcp_sacktag_state *state, u8 sacked, 1204 u32 start_seq, u32 end_seq, 1205 int dup_sack, int pcount, 1206 u64 xmit_time) 1207 { 1208 struct tcp_sock *tp = tcp_sk(sk); 1209 int fack_count = state->fack_count; 1210 1211 /* Account D-SACK for retransmitted packet. */ 1212 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1213 if (tp->undo_marker && tp->undo_retrans > 0 && 1214 after(end_seq, tp->undo_marker)) 1215 tp->undo_retrans--; 1216 if (sacked & TCPCB_SACKED_ACKED) 1217 state->reord = min(fack_count, state->reord); 1218 } 1219 1220 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1221 if (!after(end_seq, tp->snd_una)) 1222 return sacked; 1223 1224 if (!(sacked & TCPCB_SACKED_ACKED)) { 1225 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1226 1227 if (sacked & TCPCB_SACKED_RETRANS) { 1228 /* If the segment is not tagged as lost, 1229 * we do not clear RETRANS, believing 1230 * that retransmission is still in flight. 1231 */ 1232 if (sacked & TCPCB_LOST) { 1233 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1234 tp->lost_out -= pcount; 1235 tp->retrans_out -= pcount; 1236 } 1237 } else { 1238 if (!(sacked & TCPCB_RETRANS)) { 1239 /* New sack for not retransmitted frame, 1240 * which was in hole. It is reordering. 1241 */ 1242 if (before(start_seq, 1243 tcp_highest_sack_seq(tp))) 1244 state->reord = min(fack_count, 1245 state->reord); 1246 if (!after(end_seq, tp->high_seq)) 1247 state->flag |= FLAG_ORIG_SACK_ACKED; 1248 if (state->first_sackt == 0) 1249 state->first_sackt = xmit_time; 1250 state->last_sackt = xmit_time; 1251 } 1252 1253 if (sacked & TCPCB_LOST) { 1254 sacked &= ~TCPCB_LOST; 1255 tp->lost_out -= pcount; 1256 } 1257 } 1258 1259 sacked |= TCPCB_SACKED_ACKED; 1260 state->flag |= FLAG_DATA_SACKED; 1261 tp->sacked_out += pcount; 1262 tp->delivered += pcount; /* Out-of-order packets delivered */ 1263 1264 fack_count += pcount; 1265 1266 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1267 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1268 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1269 tp->lost_cnt_hint += pcount; 1270 1271 if (fack_count > tp->fackets_out) 1272 tp->fackets_out = fack_count; 1273 } 1274 1275 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1276 * frames and clear it. undo_retrans is decreased above, L|R frames 1277 * are accounted above as well. 1278 */ 1279 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1280 sacked &= ~TCPCB_SACKED_RETRANS; 1281 tp->retrans_out -= pcount; 1282 } 1283 1284 return sacked; 1285 } 1286 1287 /* Shift newly-SACKed bytes from this skb to the immediately previous 1288 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1289 */ 1290 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1291 struct tcp_sacktag_state *state, 1292 unsigned int pcount, int shifted, int mss, 1293 bool dup_sack) 1294 { 1295 struct tcp_sock *tp = tcp_sk(sk); 1296 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1297 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1298 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1299 1300 BUG_ON(!pcount); 1301 1302 /* Adjust counters and hints for the newly sacked sequence 1303 * range but discard the return value since prev is already 1304 * marked. We must tag the range first because the seq 1305 * advancement below implicitly advances 1306 * tcp_highest_sack_seq() when skb is highest_sack. 1307 */ 1308 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1309 start_seq, end_seq, dup_sack, pcount, 1310 skb->skb_mstamp); 1311 tcp_rate_skb_delivered(sk, skb, state->rate); 1312 1313 if (skb == tp->lost_skb_hint) 1314 tp->lost_cnt_hint += pcount; 1315 1316 TCP_SKB_CB(prev)->end_seq += shifted; 1317 TCP_SKB_CB(skb)->seq += shifted; 1318 1319 tcp_skb_pcount_add(prev, pcount); 1320 BUG_ON(tcp_skb_pcount(skb) < pcount); 1321 tcp_skb_pcount_add(skb, -pcount); 1322 1323 /* When we're adding to gso_segs == 1, gso_size will be zero, 1324 * in theory this shouldn't be necessary but as long as DSACK 1325 * code can come after this skb later on it's better to keep 1326 * setting gso_size to something. 1327 */ 1328 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1329 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1330 1331 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1332 if (tcp_skb_pcount(skb) <= 1) 1333 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1334 1335 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1336 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1337 1338 if (skb->len > 0) { 1339 BUG_ON(!tcp_skb_pcount(skb)); 1340 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1341 return false; 1342 } 1343 1344 /* Whole SKB was eaten :-) */ 1345 1346 if (skb == tp->retransmit_skb_hint) 1347 tp->retransmit_skb_hint = prev; 1348 if (skb == tp->lost_skb_hint) { 1349 tp->lost_skb_hint = prev; 1350 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1351 } 1352 1353 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1354 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1355 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1356 TCP_SKB_CB(prev)->end_seq++; 1357 1358 if (skb == tcp_highest_sack(sk)) 1359 tcp_advance_highest_sack(sk, skb); 1360 1361 tcp_skb_collapse_tstamp(prev, skb); 1362 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1363 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1364 1365 tcp_unlink_write_queue(skb, sk); 1366 sk_wmem_free_skb(sk, skb); 1367 1368 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1369 1370 return true; 1371 } 1372 1373 /* I wish gso_size would have a bit more sane initialization than 1374 * something-or-zero which complicates things 1375 */ 1376 static int tcp_skb_seglen(const struct sk_buff *skb) 1377 { 1378 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1379 } 1380 1381 /* Shifting pages past head area doesn't work */ 1382 static int skb_can_shift(const struct sk_buff *skb) 1383 { 1384 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1385 } 1386 1387 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1388 * skb. 1389 */ 1390 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1391 struct tcp_sacktag_state *state, 1392 u32 start_seq, u32 end_seq, 1393 bool dup_sack) 1394 { 1395 struct tcp_sock *tp = tcp_sk(sk); 1396 struct sk_buff *prev; 1397 int mss; 1398 int pcount = 0; 1399 int len; 1400 int in_sack; 1401 1402 if (!sk_can_gso(sk)) 1403 goto fallback; 1404 1405 /* Normally R but no L won't result in plain S */ 1406 if (!dup_sack && 1407 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1408 goto fallback; 1409 if (!skb_can_shift(skb)) 1410 goto fallback; 1411 /* This frame is about to be dropped (was ACKed). */ 1412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1413 goto fallback; 1414 1415 /* Can only happen with delayed DSACK + discard craziness */ 1416 if (unlikely(skb == tcp_write_queue_head(sk))) 1417 goto fallback; 1418 prev = tcp_write_queue_prev(sk, skb); 1419 1420 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1421 goto fallback; 1422 1423 if (!tcp_skb_can_collapse_to(prev)) 1424 goto fallback; 1425 1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1427 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1428 1429 if (in_sack) { 1430 len = skb->len; 1431 pcount = tcp_skb_pcount(skb); 1432 mss = tcp_skb_seglen(skb); 1433 1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1435 * drop this restriction as unnecessary 1436 */ 1437 if (mss != tcp_skb_seglen(prev)) 1438 goto fallback; 1439 } else { 1440 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1441 goto noop; 1442 /* CHECKME: This is non-MSS split case only?, this will 1443 * cause skipped skbs due to advancing loop btw, original 1444 * has that feature too 1445 */ 1446 if (tcp_skb_pcount(skb) <= 1) 1447 goto noop; 1448 1449 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1450 if (!in_sack) { 1451 /* TODO: head merge to next could be attempted here 1452 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1453 * though it might not be worth of the additional hassle 1454 * 1455 * ...we can probably just fallback to what was done 1456 * previously. We could try merging non-SACKed ones 1457 * as well but it probably isn't going to buy off 1458 * because later SACKs might again split them, and 1459 * it would make skb timestamp tracking considerably 1460 * harder problem. 1461 */ 1462 goto fallback; 1463 } 1464 1465 len = end_seq - TCP_SKB_CB(skb)->seq; 1466 BUG_ON(len < 0); 1467 BUG_ON(len > skb->len); 1468 1469 /* MSS boundaries should be honoured or else pcount will 1470 * severely break even though it makes things bit trickier. 1471 * Optimize common case to avoid most of the divides 1472 */ 1473 mss = tcp_skb_mss(skb); 1474 1475 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1476 * drop this restriction as unnecessary 1477 */ 1478 if (mss != tcp_skb_seglen(prev)) 1479 goto fallback; 1480 1481 if (len == mss) { 1482 pcount = 1; 1483 } else if (len < mss) { 1484 goto noop; 1485 } else { 1486 pcount = len / mss; 1487 len = pcount * mss; 1488 } 1489 } 1490 1491 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1492 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1493 goto fallback; 1494 1495 if (!skb_shift(prev, skb, len)) 1496 goto fallback; 1497 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1498 goto out; 1499 1500 /* Hole filled allows collapsing with the next as well, this is very 1501 * useful when hole on every nth skb pattern happens 1502 */ 1503 if (prev == tcp_write_queue_tail(sk)) 1504 goto out; 1505 skb = tcp_write_queue_next(sk, prev); 1506 1507 if (!skb_can_shift(skb) || 1508 (skb == tcp_send_head(sk)) || 1509 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1510 (mss != tcp_skb_seglen(skb))) 1511 goto out; 1512 1513 len = skb->len; 1514 if (skb_shift(prev, skb, len)) { 1515 pcount += tcp_skb_pcount(skb); 1516 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1517 } 1518 1519 out: 1520 state->fack_count += pcount; 1521 return prev; 1522 1523 noop: 1524 return skb; 1525 1526 fallback: 1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1528 return NULL; 1529 } 1530 1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1532 struct tcp_sack_block *next_dup, 1533 struct tcp_sacktag_state *state, 1534 u32 start_seq, u32 end_seq, 1535 bool dup_sack_in) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct sk_buff *tmp; 1539 1540 tcp_for_write_queue_from(skb, sk) { 1541 int in_sack = 0; 1542 bool dup_sack = dup_sack_in; 1543 1544 if (skb == tcp_send_head(sk)) 1545 break; 1546 1547 /* queue is in-order => we can short-circuit the walk early */ 1548 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1549 break; 1550 1551 if (next_dup && 1552 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1553 in_sack = tcp_match_skb_to_sack(sk, skb, 1554 next_dup->start_seq, 1555 next_dup->end_seq); 1556 if (in_sack > 0) 1557 dup_sack = true; 1558 } 1559 1560 /* skb reference here is a bit tricky to get right, since 1561 * shifting can eat and free both this skb and the next, 1562 * so not even _safe variant of the loop is enough. 1563 */ 1564 if (in_sack <= 0) { 1565 tmp = tcp_shift_skb_data(sk, skb, state, 1566 start_seq, end_seq, dup_sack); 1567 if (tmp) { 1568 if (tmp != skb) { 1569 skb = tmp; 1570 continue; 1571 } 1572 1573 in_sack = 0; 1574 } else { 1575 in_sack = tcp_match_skb_to_sack(sk, skb, 1576 start_seq, 1577 end_seq); 1578 } 1579 } 1580 1581 if (unlikely(in_sack < 0)) 1582 break; 1583 1584 if (in_sack) { 1585 TCP_SKB_CB(skb)->sacked = 1586 tcp_sacktag_one(sk, 1587 state, 1588 TCP_SKB_CB(skb)->sacked, 1589 TCP_SKB_CB(skb)->seq, 1590 TCP_SKB_CB(skb)->end_seq, 1591 dup_sack, 1592 tcp_skb_pcount(skb), 1593 skb->skb_mstamp); 1594 tcp_rate_skb_delivered(sk, skb, state->rate); 1595 1596 if (!before(TCP_SKB_CB(skb)->seq, 1597 tcp_highest_sack_seq(tp))) 1598 tcp_advance_highest_sack(sk, skb); 1599 } 1600 1601 state->fack_count += tcp_skb_pcount(skb); 1602 } 1603 return skb; 1604 } 1605 1606 /* Avoid all extra work that is being done by sacktag while walking in 1607 * a normal way 1608 */ 1609 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1610 struct tcp_sacktag_state *state, 1611 u32 skip_to_seq) 1612 { 1613 tcp_for_write_queue_from(skb, sk) { 1614 if (skb == tcp_send_head(sk)) 1615 break; 1616 1617 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1618 break; 1619 1620 state->fack_count += tcp_skb_pcount(skb); 1621 } 1622 return skb; 1623 } 1624 1625 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1626 struct sock *sk, 1627 struct tcp_sack_block *next_dup, 1628 struct tcp_sacktag_state *state, 1629 u32 skip_to_seq) 1630 { 1631 if (!next_dup) 1632 return skb; 1633 1634 if (before(next_dup->start_seq, skip_to_seq)) { 1635 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1636 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1637 next_dup->start_seq, next_dup->end_seq, 1638 1); 1639 } 1640 1641 return skb; 1642 } 1643 1644 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1645 { 1646 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1647 } 1648 1649 static int 1650 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1651 u32 prior_snd_una, struct tcp_sacktag_state *state) 1652 { 1653 struct tcp_sock *tp = tcp_sk(sk); 1654 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1655 TCP_SKB_CB(ack_skb)->sacked); 1656 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1657 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1658 struct tcp_sack_block *cache; 1659 struct sk_buff *skb; 1660 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1661 int used_sacks; 1662 bool found_dup_sack = false; 1663 int i, j; 1664 int first_sack_index; 1665 1666 state->flag = 0; 1667 state->reord = tp->packets_out; 1668 1669 if (!tp->sacked_out) { 1670 if (WARN_ON(tp->fackets_out)) 1671 tp->fackets_out = 0; 1672 tcp_highest_sack_reset(sk); 1673 } 1674 1675 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1676 num_sacks, prior_snd_una); 1677 if (found_dup_sack) { 1678 state->flag |= FLAG_DSACKING_ACK; 1679 tp->delivered++; /* A spurious retransmission is delivered */ 1680 } 1681 1682 /* Eliminate too old ACKs, but take into 1683 * account more or less fresh ones, they can 1684 * contain valid SACK info. 1685 */ 1686 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1687 return 0; 1688 1689 if (!tp->packets_out) 1690 goto out; 1691 1692 used_sacks = 0; 1693 first_sack_index = 0; 1694 for (i = 0; i < num_sacks; i++) { 1695 bool dup_sack = !i && found_dup_sack; 1696 1697 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1698 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1699 1700 if (!tcp_is_sackblock_valid(tp, dup_sack, 1701 sp[used_sacks].start_seq, 1702 sp[used_sacks].end_seq)) { 1703 int mib_idx; 1704 1705 if (dup_sack) { 1706 if (!tp->undo_marker) 1707 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1708 else 1709 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1710 } else { 1711 /* Don't count olds caused by ACK reordering */ 1712 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1713 !after(sp[used_sacks].end_seq, tp->snd_una)) 1714 continue; 1715 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1716 } 1717 1718 NET_INC_STATS(sock_net(sk), mib_idx); 1719 if (i == 0) 1720 first_sack_index = -1; 1721 continue; 1722 } 1723 1724 /* Ignore very old stuff early */ 1725 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1726 continue; 1727 1728 used_sacks++; 1729 } 1730 1731 /* order SACK blocks to allow in order walk of the retrans queue */ 1732 for (i = used_sacks - 1; i > 0; i--) { 1733 for (j = 0; j < i; j++) { 1734 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1735 swap(sp[j], sp[j + 1]); 1736 1737 /* Track where the first SACK block goes to */ 1738 if (j == first_sack_index) 1739 first_sack_index = j + 1; 1740 } 1741 } 1742 } 1743 1744 skb = tcp_write_queue_head(sk); 1745 state->fack_count = 0; 1746 i = 0; 1747 1748 if (!tp->sacked_out) { 1749 /* It's already past, so skip checking against it */ 1750 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1751 } else { 1752 cache = tp->recv_sack_cache; 1753 /* Skip empty blocks in at head of the cache */ 1754 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1755 !cache->end_seq) 1756 cache++; 1757 } 1758 1759 while (i < used_sacks) { 1760 u32 start_seq = sp[i].start_seq; 1761 u32 end_seq = sp[i].end_seq; 1762 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1763 struct tcp_sack_block *next_dup = NULL; 1764 1765 if (found_dup_sack && ((i + 1) == first_sack_index)) 1766 next_dup = &sp[i + 1]; 1767 1768 /* Skip too early cached blocks */ 1769 while (tcp_sack_cache_ok(tp, cache) && 1770 !before(start_seq, cache->end_seq)) 1771 cache++; 1772 1773 /* Can skip some work by looking recv_sack_cache? */ 1774 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1775 after(end_seq, cache->start_seq)) { 1776 1777 /* Head todo? */ 1778 if (before(start_seq, cache->start_seq)) { 1779 skb = tcp_sacktag_skip(skb, sk, state, 1780 start_seq); 1781 skb = tcp_sacktag_walk(skb, sk, next_dup, 1782 state, 1783 start_seq, 1784 cache->start_seq, 1785 dup_sack); 1786 } 1787 1788 /* Rest of the block already fully processed? */ 1789 if (!after(end_seq, cache->end_seq)) 1790 goto advance_sp; 1791 1792 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1793 state, 1794 cache->end_seq); 1795 1796 /* ...tail remains todo... */ 1797 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1798 /* ...but better entrypoint exists! */ 1799 skb = tcp_highest_sack(sk); 1800 if (!skb) 1801 break; 1802 state->fack_count = tp->fackets_out; 1803 cache++; 1804 goto walk; 1805 } 1806 1807 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1808 /* Check overlap against next cached too (past this one already) */ 1809 cache++; 1810 continue; 1811 } 1812 1813 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1814 skb = tcp_highest_sack(sk); 1815 if (!skb) 1816 break; 1817 state->fack_count = tp->fackets_out; 1818 } 1819 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1820 1821 walk: 1822 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1823 start_seq, end_seq, dup_sack); 1824 1825 advance_sp: 1826 i++; 1827 } 1828 1829 /* Clear the head of the cache sack blocks so we can skip it next time */ 1830 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1831 tp->recv_sack_cache[i].start_seq = 0; 1832 tp->recv_sack_cache[i].end_seq = 0; 1833 } 1834 for (j = 0; j < used_sacks; j++) 1835 tp->recv_sack_cache[i++] = sp[j]; 1836 1837 if ((state->reord < tp->fackets_out) && 1838 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1839 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1840 1841 tcp_verify_left_out(tp); 1842 out: 1843 1844 #if FASTRETRANS_DEBUG > 0 1845 WARN_ON((int)tp->sacked_out < 0); 1846 WARN_ON((int)tp->lost_out < 0); 1847 WARN_ON((int)tp->retrans_out < 0); 1848 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1849 #endif 1850 return state->flag; 1851 } 1852 1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1854 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1855 */ 1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1857 { 1858 u32 holes; 1859 1860 holes = max(tp->lost_out, 1U); 1861 holes = min(holes, tp->packets_out); 1862 1863 if ((tp->sacked_out + holes) > tp->packets_out) { 1864 tp->sacked_out = tp->packets_out - holes; 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 /* If we receive more dupacks than we expected counting segments 1871 * in assumption of absent reordering, interpret this as reordering. 1872 * The only another reason could be bug in receiver TCP. 1873 */ 1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1875 { 1876 struct tcp_sock *tp = tcp_sk(sk); 1877 if (tcp_limit_reno_sacked(tp)) 1878 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1879 } 1880 1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1882 1883 static void tcp_add_reno_sack(struct sock *sk) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 u32 prior_sacked = tp->sacked_out; 1887 1888 tp->sacked_out++; 1889 tcp_check_reno_reordering(sk, 0); 1890 if (tp->sacked_out > prior_sacked) 1891 tp->delivered++; /* Some out-of-order packet is delivered */ 1892 tcp_verify_left_out(tp); 1893 } 1894 1895 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1896 1897 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1898 { 1899 struct tcp_sock *tp = tcp_sk(sk); 1900 1901 if (acked > 0) { 1902 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1903 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1904 if (acked - 1 >= tp->sacked_out) 1905 tp->sacked_out = 0; 1906 else 1907 tp->sacked_out -= acked - 1; 1908 } 1909 tcp_check_reno_reordering(sk, acked); 1910 tcp_verify_left_out(tp); 1911 } 1912 1913 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1914 { 1915 tp->sacked_out = 0; 1916 } 1917 1918 void tcp_clear_retrans(struct tcp_sock *tp) 1919 { 1920 tp->retrans_out = 0; 1921 tp->lost_out = 0; 1922 tp->undo_marker = 0; 1923 tp->undo_retrans = -1; 1924 tp->fackets_out = 0; 1925 tp->sacked_out = 0; 1926 } 1927 1928 static inline void tcp_init_undo(struct tcp_sock *tp) 1929 { 1930 tp->undo_marker = tp->snd_una; 1931 /* Retransmission still in flight may cause DSACKs later. */ 1932 tp->undo_retrans = tp->retrans_out ? : -1; 1933 } 1934 1935 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1936 * and reset tags completely, otherwise preserve SACKs. If receiver 1937 * dropped its ofo queue, we will know this due to reneging detection. 1938 */ 1939 void tcp_enter_loss(struct sock *sk) 1940 { 1941 const struct inet_connection_sock *icsk = inet_csk(sk); 1942 struct tcp_sock *tp = tcp_sk(sk); 1943 struct net *net = sock_net(sk); 1944 struct sk_buff *skb; 1945 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1946 bool is_reneg; /* is receiver reneging on SACKs? */ 1947 bool mark_lost; 1948 1949 /* Reduce ssthresh if it has not yet been made inside this window. */ 1950 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1951 !after(tp->high_seq, tp->snd_una) || 1952 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1953 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1954 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1955 tcp_ca_event(sk, CA_EVENT_LOSS); 1956 tcp_init_undo(tp); 1957 } 1958 tp->snd_cwnd = 1; 1959 tp->snd_cwnd_cnt = 0; 1960 tp->snd_cwnd_stamp = tcp_jiffies32; 1961 1962 tp->retrans_out = 0; 1963 tp->lost_out = 0; 1964 1965 if (tcp_is_reno(tp)) 1966 tcp_reset_reno_sack(tp); 1967 1968 skb = tcp_write_queue_head(sk); 1969 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1970 if (is_reneg) { 1971 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1972 tp->sacked_out = 0; 1973 tp->fackets_out = 0; 1974 } 1975 tcp_clear_all_retrans_hints(tp); 1976 1977 tcp_for_write_queue(skb, sk) { 1978 if (skb == tcp_send_head(sk)) 1979 break; 1980 1981 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1982 is_reneg); 1983 if (mark_lost) 1984 tcp_sum_lost(tp, skb); 1985 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1986 if (mark_lost) { 1987 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1988 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1989 tp->lost_out += tcp_skb_pcount(skb); 1990 } 1991 } 1992 tcp_verify_left_out(tp); 1993 1994 /* Timeout in disordered state after receiving substantial DUPACKs 1995 * suggests that the degree of reordering is over-estimated. 1996 */ 1997 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1998 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1999 tp->reordering = min_t(unsigned int, tp->reordering, 2000 net->ipv4.sysctl_tcp_reordering); 2001 tcp_set_ca_state(sk, TCP_CA_Loss); 2002 tp->high_seq = tp->snd_nxt; 2003 tcp_ecn_queue_cwr(tp); 2004 2005 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2006 * loss recovery is underway except recurring timeout(s) on 2007 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2008 * 2009 * In theory F-RTO can be used repeatedly during loss recovery. 2010 * In practice this interacts badly with broken middle-boxes that 2011 * falsely raise the receive window, which results in repeated 2012 * timeouts and stop-and-go behavior. 2013 */ 2014 tp->frto = sysctl_tcp_frto && 2015 (new_recovery || icsk->icsk_retransmits) && 2016 !inet_csk(sk)->icsk_mtup.probe_size; 2017 } 2018 2019 /* If ACK arrived pointing to a remembered SACK, it means that our 2020 * remembered SACKs do not reflect real state of receiver i.e. 2021 * receiver _host_ is heavily congested (or buggy). 2022 * 2023 * To avoid big spurious retransmission bursts due to transient SACK 2024 * scoreboard oddities that look like reneging, we give the receiver a 2025 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2026 * restore sanity to the SACK scoreboard. If the apparent reneging 2027 * persists until this RTO then we'll clear the SACK scoreboard. 2028 */ 2029 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2030 { 2031 if (flag & FLAG_SACK_RENEGING) { 2032 struct tcp_sock *tp = tcp_sk(sk); 2033 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2034 msecs_to_jiffies(10)); 2035 2036 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2037 delay, TCP_RTO_MAX); 2038 return true; 2039 } 2040 return false; 2041 } 2042 2043 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2044 { 2045 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2046 } 2047 2048 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2049 * counter when SACK is enabled (without SACK, sacked_out is used for 2050 * that purpose). 2051 * 2052 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2053 * segments up to the highest received SACK block so far and holes in 2054 * between them. 2055 * 2056 * With reordering, holes may still be in flight, so RFC3517 recovery 2057 * uses pure sacked_out (total number of SACKed segments) even though 2058 * it violates the RFC that uses duplicate ACKs, often these are equal 2059 * but when e.g. out-of-window ACKs or packet duplication occurs, 2060 * they differ. Since neither occurs due to loss, TCP should really 2061 * ignore them. 2062 */ 2063 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2064 { 2065 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2066 } 2067 2068 /* Linux NewReno/SACK/FACK/ECN state machine. 2069 * -------------------------------------- 2070 * 2071 * "Open" Normal state, no dubious events, fast path. 2072 * "Disorder" In all the respects it is "Open", 2073 * but requires a bit more attention. It is entered when 2074 * we see some SACKs or dupacks. It is split of "Open" 2075 * mainly to move some processing from fast path to slow one. 2076 * "CWR" CWND was reduced due to some Congestion Notification event. 2077 * It can be ECN, ICMP source quench, local device congestion. 2078 * "Recovery" CWND was reduced, we are fast-retransmitting. 2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2080 * 2081 * tcp_fastretrans_alert() is entered: 2082 * - each incoming ACK, if state is not "Open" 2083 * - when arrived ACK is unusual, namely: 2084 * * SACK 2085 * * Duplicate ACK. 2086 * * ECN ECE. 2087 * 2088 * Counting packets in flight is pretty simple. 2089 * 2090 * in_flight = packets_out - left_out + retrans_out 2091 * 2092 * packets_out is SND.NXT-SND.UNA counted in packets. 2093 * 2094 * retrans_out is number of retransmitted segments. 2095 * 2096 * left_out is number of segments left network, but not ACKed yet. 2097 * 2098 * left_out = sacked_out + lost_out 2099 * 2100 * sacked_out: Packets, which arrived to receiver out of order 2101 * and hence not ACKed. With SACKs this number is simply 2102 * amount of SACKed data. Even without SACKs 2103 * it is easy to give pretty reliable estimate of this number, 2104 * counting duplicate ACKs. 2105 * 2106 * lost_out: Packets lost by network. TCP has no explicit 2107 * "loss notification" feedback from network (for now). 2108 * It means that this number can be only _guessed_. 2109 * Actually, it is the heuristics to predict lossage that 2110 * distinguishes different algorithms. 2111 * 2112 * F.e. after RTO, when all the queue is considered as lost, 2113 * lost_out = packets_out and in_flight = retrans_out. 2114 * 2115 * Essentially, we have now a few algorithms detecting 2116 * lost packets. 2117 * 2118 * If the receiver supports SACK: 2119 * 2120 * RFC6675/3517: It is the conventional algorithm. A packet is 2121 * considered lost if the number of higher sequence packets 2122 * SACKed is greater than or equal the DUPACK thoreshold 2123 * (reordering). This is implemented in tcp_mark_head_lost and 2124 * tcp_update_scoreboard. 2125 * 2126 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2127 * (2017-) that checks timing instead of counting DUPACKs. 2128 * Essentially a packet is considered lost if it's not S/ACKed 2129 * after RTT + reordering_window, where both metrics are 2130 * dynamically measured and adjusted. This is implemented in 2131 * tcp_rack_mark_lost. 2132 * 2133 * FACK (Disabled by default. Subsumbed by RACK): 2134 * It is the simplest heuristics. As soon as we decided 2135 * that something is lost, we decide that _all_ not SACKed 2136 * packets until the most forward SACK are lost. I.e. 2137 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2138 * It is absolutely correct estimate, if network does not reorder 2139 * packets. And it loses any connection to reality when reordering 2140 * takes place. We use FACK by default until reordering 2141 * is suspected on the path to this destination. 2142 * 2143 * If the receiver does not support SACK: 2144 * 2145 * NewReno (RFC6582): in Recovery we assume that one segment 2146 * is lost (classic Reno). While we are in Recovery and 2147 * a partial ACK arrives, we assume that one more packet 2148 * is lost (NewReno). This heuristics are the same in NewReno 2149 * and SACK. 2150 * 2151 * Really tricky (and requiring careful tuning) part of algorithm 2152 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2153 * The first determines the moment _when_ we should reduce CWND and, 2154 * hence, slow down forward transmission. In fact, it determines the moment 2155 * when we decide that hole is caused by loss, rather than by a reorder. 2156 * 2157 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2158 * holes, caused by lost packets. 2159 * 2160 * And the most logically complicated part of algorithm is undo 2161 * heuristics. We detect false retransmits due to both too early 2162 * fast retransmit (reordering) and underestimated RTO, analyzing 2163 * timestamps and D-SACKs. When we detect that some segments were 2164 * retransmitted by mistake and CWND reduction was wrong, we undo 2165 * window reduction and abort recovery phase. This logic is hidden 2166 * inside several functions named tcp_try_undo_<something>. 2167 */ 2168 2169 /* This function decides, when we should leave Disordered state 2170 * and enter Recovery phase, reducing congestion window. 2171 * 2172 * Main question: may we further continue forward transmission 2173 * with the same cwnd? 2174 */ 2175 static bool tcp_time_to_recover(struct sock *sk, int flag) 2176 { 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 2179 /* Trick#1: The loss is proven. */ 2180 if (tp->lost_out) 2181 return true; 2182 2183 /* Not-A-Trick#2 : Classic rule... */ 2184 if (tcp_dupack_heuristics(tp) > tp->reordering) 2185 return true; 2186 2187 return false; 2188 } 2189 2190 /* Detect loss in event "A" above by marking head of queue up as lost. 2191 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2192 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2193 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2194 * the maximum SACKed segments to pass before reaching this limit. 2195 */ 2196 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2197 { 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 struct sk_buff *skb; 2200 int cnt, oldcnt, lost; 2201 unsigned int mss; 2202 /* Use SACK to deduce losses of new sequences sent during recovery */ 2203 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2204 2205 WARN_ON(packets > tp->packets_out); 2206 if (tp->lost_skb_hint) { 2207 skb = tp->lost_skb_hint; 2208 cnt = tp->lost_cnt_hint; 2209 /* Head already handled? */ 2210 if (mark_head && skb != tcp_write_queue_head(sk)) 2211 return; 2212 } else { 2213 skb = tcp_write_queue_head(sk); 2214 cnt = 0; 2215 } 2216 2217 tcp_for_write_queue_from(skb, sk) { 2218 if (skb == tcp_send_head(sk)) 2219 break; 2220 /* TODO: do this better */ 2221 /* this is not the most efficient way to do this... */ 2222 tp->lost_skb_hint = skb; 2223 tp->lost_cnt_hint = cnt; 2224 2225 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2226 break; 2227 2228 oldcnt = cnt; 2229 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2230 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2231 cnt += tcp_skb_pcount(skb); 2232 2233 if (cnt > packets) { 2234 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2235 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2236 (oldcnt >= packets)) 2237 break; 2238 2239 mss = tcp_skb_mss(skb); 2240 /* If needed, chop off the prefix to mark as lost. */ 2241 lost = (packets - oldcnt) * mss; 2242 if (lost < skb->len && 2243 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2244 break; 2245 cnt = packets; 2246 } 2247 2248 tcp_skb_mark_lost(tp, skb); 2249 2250 if (mark_head) 2251 break; 2252 } 2253 tcp_verify_left_out(tp); 2254 } 2255 2256 /* Account newly detected lost packet(s) */ 2257 2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2259 { 2260 struct tcp_sock *tp = tcp_sk(sk); 2261 2262 if (tcp_is_reno(tp)) { 2263 tcp_mark_head_lost(sk, 1, 1); 2264 } else if (tcp_is_fack(tp)) { 2265 int lost = tp->fackets_out - tp->reordering; 2266 if (lost <= 0) 2267 lost = 1; 2268 tcp_mark_head_lost(sk, lost, 0); 2269 } else { 2270 int sacked_upto = tp->sacked_out - tp->reordering; 2271 if (sacked_upto >= 0) 2272 tcp_mark_head_lost(sk, sacked_upto, 0); 2273 else if (fast_rexmit) 2274 tcp_mark_head_lost(sk, 1, 1); 2275 } 2276 } 2277 2278 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2279 { 2280 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2281 before(tp->rx_opt.rcv_tsecr, when); 2282 } 2283 2284 /* skb is spurious retransmitted if the returned timestamp echo 2285 * reply is prior to the skb transmission time 2286 */ 2287 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2288 const struct sk_buff *skb) 2289 { 2290 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2291 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2292 } 2293 2294 /* Nothing was retransmitted or returned timestamp is less 2295 * than timestamp of the first retransmission. 2296 */ 2297 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2298 { 2299 return !tp->retrans_stamp || 2300 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2301 } 2302 2303 /* Undo procedures. */ 2304 2305 /* We can clear retrans_stamp when there are no retransmissions in the 2306 * window. It would seem that it is trivially available for us in 2307 * tp->retrans_out, however, that kind of assumptions doesn't consider 2308 * what will happen if errors occur when sending retransmission for the 2309 * second time. ...It could the that such segment has only 2310 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2311 * the head skb is enough except for some reneging corner cases that 2312 * are not worth the effort. 2313 * 2314 * Main reason for all this complexity is the fact that connection dying 2315 * time now depends on the validity of the retrans_stamp, in particular, 2316 * that successive retransmissions of a segment must not advance 2317 * retrans_stamp under any conditions. 2318 */ 2319 static bool tcp_any_retrans_done(const struct sock *sk) 2320 { 2321 const struct tcp_sock *tp = tcp_sk(sk); 2322 struct sk_buff *skb; 2323 2324 if (tp->retrans_out) 2325 return true; 2326 2327 skb = tcp_write_queue_head(sk); 2328 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2329 return true; 2330 2331 return false; 2332 } 2333 2334 #if FASTRETRANS_DEBUG > 1 2335 static void DBGUNDO(struct sock *sk, const char *msg) 2336 { 2337 struct tcp_sock *tp = tcp_sk(sk); 2338 struct inet_sock *inet = inet_sk(sk); 2339 2340 if (sk->sk_family == AF_INET) { 2341 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2342 msg, 2343 &inet->inet_daddr, ntohs(inet->inet_dport), 2344 tp->snd_cwnd, tcp_left_out(tp), 2345 tp->snd_ssthresh, tp->prior_ssthresh, 2346 tp->packets_out); 2347 } 2348 #if IS_ENABLED(CONFIG_IPV6) 2349 else if (sk->sk_family == AF_INET6) { 2350 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2351 msg, 2352 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2353 tp->snd_cwnd, tcp_left_out(tp), 2354 tp->snd_ssthresh, tp->prior_ssthresh, 2355 tp->packets_out); 2356 } 2357 #endif 2358 } 2359 #else 2360 #define DBGUNDO(x...) do { } while (0) 2361 #endif 2362 2363 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2364 { 2365 struct tcp_sock *tp = tcp_sk(sk); 2366 2367 if (unmark_loss) { 2368 struct sk_buff *skb; 2369 2370 tcp_for_write_queue(skb, sk) { 2371 if (skb == tcp_send_head(sk)) 2372 break; 2373 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2374 } 2375 tp->lost_out = 0; 2376 tcp_clear_all_retrans_hints(tp); 2377 } 2378 2379 if (tp->prior_ssthresh) { 2380 const struct inet_connection_sock *icsk = inet_csk(sk); 2381 2382 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2383 2384 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2385 tp->snd_ssthresh = tp->prior_ssthresh; 2386 tcp_ecn_withdraw_cwr(tp); 2387 } 2388 } 2389 tp->snd_cwnd_stamp = tcp_jiffies32; 2390 tp->undo_marker = 0; 2391 } 2392 2393 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2394 { 2395 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2396 } 2397 2398 /* People celebrate: "We love our President!" */ 2399 static bool tcp_try_undo_recovery(struct sock *sk) 2400 { 2401 struct tcp_sock *tp = tcp_sk(sk); 2402 2403 if (tcp_may_undo(tp)) { 2404 int mib_idx; 2405 2406 /* Happy end! We did not retransmit anything 2407 * or our original transmission succeeded. 2408 */ 2409 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2410 tcp_undo_cwnd_reduction(sk, false); 2411 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2412 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2413 else 2414 mib_idx = LINUX_MIB_TCPFULLUNDO; 2415 2416 NET_INC_STATS(sock_net(sk), mib_idx); 2417 } 2418 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2419 /* Hold old state until something *above* high_seq 2420 * is ACKed. For Reno it is MUST to prevent false 2421 * fast retransmits (RFC2582). SACK TCP is safe. */ 2422 if (!tcp_any_retrans_done(sk)) 2423 tp->retrans_stamp = 0; 2424 return true; 2425 } 2426 tcp_set_ca_state(sk, TCP_CA_Open); 2427 return false; 2428 } 2429 2430 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2431 static bool tcp_try_undo_dsack(struct sock *sk) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (tp->undo_marker && !tp->undo_retrans) { 2436 DBGUNDO(sk, "D-SACK"); 2437 tcp_undo_cwnd_reduction(sk, false); 2438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2439 return true; 2440 } 2441 return false; 2442 } 2443 2444 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2445 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2446 { 2447 struct tcp_sock *tp = tcp_sk(sk); 2448 2449 if (frto_undo || tcp_may_undo(tp)) { 2450 tcp_undo_cwnd_reduction(sk, true); 2451 2452 DBGUNDO(sk, "partial loss"); 2453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2454 if (frto_undo) 2455 NET_INC_STATS(sock_net(sk), 2456 LINUX_MIB_TCPSPURIOUSRTOS); 2457 inet_csk(sk)->icsk_retransmits = 0; 2458 if (frto_undo || tcp_is_sack(tp)) 2459 tcp_set_ca_state(sk, TCP_CA_Open); 2460 return true; 2461 } 2462 return false; 2463 } 2464 2465 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2466 * It computes the number of packets to send (sndcnt) based on packets newly 2467 * delivered: 2468 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2469 * cwnd reductions across a full RTT. 2470 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2471 * But when the retransmits are acked without further losses, PRR 2472 * slow starts cwnd up to ssthresh to speed up the recovery. 2473 */ 2474 static void tcp_init_cwnd_reduction(struct sock *sk) 2475 { 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 2478 tp->high_seq = tp->snd_nxt; 2479 tp->tlp_high_seq = 0; 2480 tp->snd_cwnd_cnt = 0; 2481 tp->prior_cwnd = tp->snd_cwnd; 2482 tp->prr_delivered = 0; 2483 tp->prr_out = 0; 2484 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2485 tcp_ecn_queue_cwr(tp); 2486 } 2487 2488 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2489 { 2490 struct tcp_sock *tp = tcp_sk(sk); 2491 int sndcnt = 0; 2492 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2493 2494 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2495 return; 2496 2497 tp->prr_delivered += newly_acked_sacked; 2498 if (delta < 0) { 2499 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2500 tp->prior_cwnd - 1; 2501 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2502 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2503 !(flag & FLAG_LOST_RETRANS)) { 2504 sndcnt = min_t(int, delta, 2505 max_t(int, tp->prr_delivered - tp->prr_out, 2506 newly_acked_sacked) + 1); 2507 } else { 2508 sndcnt = min(delta, newly_acked_sacked); 2509 } 2510 /* Force a fast retransmit upon entering fast recovery */ 2511 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2512 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2513 } 2514 2515 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2516 { 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 2519 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2520 return; 2521 2522 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2523 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2524 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2525 tp->snd_cwnd = tp->snd_ssthresh; 2526 tp->snd_cwnd_stamp = tcp_jiffies32; 2527 } 2528 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2529 } 2530 2531 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2532 void tcp_enter_cwr(struct sock *sk) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 2536 tp->prior_ssthresh = 0; 2537 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2538 tp->undo_marker = 0; 2539 tcp_init_cwnd_reduction(sk); 2540 tcp_set_ca_state(sk, TCP_CA_CWR); 2541 } 2542 } 2543 EXPORT_SYMBOL(tcp_enter_cwr); 2544 2545 static void tcp_try_keep_open(struct sock *sk) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 int state = TCP_CA_Open; 2549 2550 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2551 state = TCP_CA_Disorder; 2552 2553 if (inet_csk(sk)->icsk_ca_state != state) { 2554 tcp_set_ca_state(sk, state); 2555 tp->high_seq = tp->snd_nxt; 2556 } 2557 } 2558 2559 static void tcp_try_to_open(struct sock *sk, int flag) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 2563 tcp_verify_left_out(tp); 2564 2565 if (!tcp_any_retrans_done(sk)) 2566 tp->retrans_stamp = 0; 2567 2568 if (flag & FLAG_ECE) 2569 tcp_enter_cwr(sk); 2570 2571 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2572 tcp_try_keep_open(sk); 2573 } 2574 } 2575 2576 static void tcp_mtup_probe_failed(struct sock *sk) 2577 { 2578 struct inet_connection_sock *icsk = inet_csk(sk); 2579 2580 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2581 icsk->icsk_mtup.probe_size = 0; 2582 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2583 } 2584 2585 static void tcp_mtup_probe_success(struct sock *sk) 2586 { 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 2590 /* FIXME: breaks with very large cwnd */ 2591 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2592 tp->snd_cwnd = tp->snd_cwnd * 2593 tcp_mss_to_mtu(sk, tp->mss_cache) / 2594 icsk->icsk_mtup.probe_size; 2595 tp->snd_cwnd_cnt = 0; 2596 tp->snd_cwnd_stamp = tcp_jiffies32; 2597 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2598 2599 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2600 icsk->icsk_mtup.probe_size = 0; 2601 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2602 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2603 } 2604 2605 /* Do a simple retransmit without using the backoff mechanisms in 2606 * tcp_timer. This is used for path mtu discovery. 2607 * The socket is already locked here. 2608 */ 2609 void tcp_simple_retransmit(struct sock *sk) 2610 { 2611 const struct inet_connection_sock *icsk = inet_csk(sk); 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 struct sk_buff *skb; 2614 unsigned int mss = tcp_current_mss(sk); 2615 u32 prior_lost = tp->lost_out; 2616 2617 tcp_for_write_queue(skb, sk) { 2618 if (skb == tcp_send_head(sk)) 2619 break; 2620 if (tcp_skb_seglen(skb) > mss && 2621 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2622 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2623 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2624 tp->retrans_out -= tcp_skb_pcount(skb); 2625 } 2626 tcp_skb_mark_lost_uncond_verify(tp, skb); 2627 } 2628 } 2629 2630 tcp_clear_retrans_hints_partial(tp); 2631 2632 if (prior_lost == tp->lost_out) 2633 return; 2634 2635 if (tcp_is_reno(tp)) 2636 tcp_limit_reno_sacked(tp); 2637 2638 tcp_verify_left_out(tp); 2639 2640 /* Don't muck with the congestion window here. 2641 * Reason is that we do not increase amount of _data_ 2642 * in network, but units changed and effective 2643 * cwnd/ssthresh really reduced now. 2644 */ 2645 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2646 tp->high_seq = tp->snd_nxt; 2647 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2648 tp->prior_ssthresh = 0; 2649 tp->undo_marker = 0; 2650 tcp_set_ca_state(sk, TCP_CA_Loss); 2651 } 2652 tcp_xmit_retransmit_queue(sk); 2653 } 2654 EXPORT_SYMBOL(tcp_simple_retransmit); 2655 2656 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2657 { 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 int mib_idx; 2660 2661 if (tcp_is_reno(tp)) 2662 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2663 else 2664 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2665 2666 NET_INC_STATS(sock_net(sk), mib_idx); 2667 2668 tp->prior_ssthresh = 0; 2669 tcp_init_undo(tp); 2670 2671 if (!tcp_in_cwnd_reduction(sk)) { 2672 if (!ece_ack) 2673 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2674 tcp_init_cwnd_reduction(sk); 2675 } 2676 tcp_set_ca_state(sk, TCP_CA_Recovery); 2677 } 2678 2679 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2680 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2681 */ 2682 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2683 int *rexmit) 2684 { 2685 struct tcp_sock *tp = tcp_sk(sk); 2686 bool recovered = !before(tp->snd_una, tp->high_seq); 2687 2688 if ((flag & FLAG_SND_UNA_ADVANCED) && 2689 tcp_try_undo_loss(sk, false)) 2690 return; 2691 2692 /* The ACK (s)acks some never-retransmitted data meaning not all 2693 * the data packets before the timeout were lost. Therefore we 2694 * undo the congestion window and state. This is essentially 2695 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2696 * a retransmitted skb is permantly marked, we can apply such an 2697 * operation even if F-RTO was not used. 2698 */ 2699 if ((flag & FLAG_ORIG_SACK_ACKED) && 2700 tcp_try_undo_loss(sk, tp->undo_marker)) 2701 return; 2702 2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2704 if (after(tp->snd_nxt, tp->high_seq)) { 2705 if (flag & FLAG_DATA_SACKED || is_dupack) 2706 tp->frto = 0; /* Step 3.a. loss was real */ 2707 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2708 tp->high_seq = tp->snd_nxt; 2709 /* Step 2.b. Try send new data (but deferred until cwnd 2710 * is updated in tcp_ack()). Otherwise fall back to 2711 * the conventional recovery. 2712 */ 2713 if (tcp_send_head(sk) && 2714 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2715 *rexmit = REXMIT_NEW; 2716 return; 2717 } 2718 tp->frto = 0; 2719 } 2720 } 2721 2722 if (recovered) { 2723 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2724 tcp_try_undo_recovery(sk); 2725 return; 2726 } 2727 if (tcp_is_reno(tp)) { 2728 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2729 * delivered. Lower inflight to clock out (re)tranmissions. 2730 */ 2731 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2732 tcp_add_reno_sack(sk); 2733 else if (flag & FLAG_SND_UNA_ADVANCED) 2734 tcp_reset_reno_sack(tp); 2735 } 2736 *rexmit = REXMIT_LOST; 2737 } 2738 2739 /* Undo during fast recovery after partial ACK. */ 2740 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2741 { 2742 struct tcp_sock *tp = tcp_sk(sk); 2743 2744 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2745 /* Plain luck! Hole if filled with delayed 2746 * packet, rather than with a retransmit. 2747 */ 2748 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2749 2750 /* We are getting evidence that the reordering degree is higher 2751 * than we realized. If there are no retransmits out then we 2752 * can undo. Otherwise we clock out new packets but do not 2753 * mark more packets lost or retransmit more. 2754 */ 2755 if (tp->retrans_out) 2756 return true; 2757 2758 if (!tcp_any_retrans_done(sk)) 2759 tp->retrans_stamp = 0; 2760 2761 DBGUNDO(sk, "partial recovery"); 2762 tcp_undo_cwnd_reduction(sk, true); 2763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2764 tcp_try_keep_open(sk); 2765 return true; 2766 } 2767 return false; 2768 } 2769 2770 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2771 { 2772 struct tcp_sock *tp = tcp_sk(sk); 2773 2774 /* Use RACK to detect loss */ 2775 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2776 u32 prior_retrans = tp->retrans_out; 2777 2778 tcp_rack_mark_lost(sk); 2779 if (prior_retrans > tp->retrans_out) 2780 *ack_flag |= FLAG_LOST_RETRANS; 2781 } 2782 } 2783 2784 /* Process an event, which can update packets-in-flight not trivially. 2785 * Main goal of this function is to calculate new estimate for left_out, 2786 * taking into account both packets sitting in receiver's buffer and 2787 * packets lost by network. 2788 * 2789 * Besides that it updates the congestion state when packet loss or ECN 2790 * is detected. But it does not reduce the cwnd, it is done by the 2791 * congestion control later. 2792 * 2793 * It does _not_ decide what to send, it is made in function 2794 * tcp_xmit_retransmit_queue(). 2795 */ 2796 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2797 bool is_dupack, int *ack_flag, int *rexmit) 2798 { 2799 struct inet_connection_sock *icsk = inet_csk(sk); 2800 struct tcp_sock *tp = tcp_sk(sk); 2801 int fast_rexmit = 0, flag = *ack_flag; 2802 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2803 (tcp_fackets_out(tp) > tp->reordering)); 2804 2805 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2806 tp->sacked_out = 0; 2807 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2808 tp->fackets_out = 0; 2809 2810 /* Now state machine starts. 2811 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2812 if (flag & FLAG_ECE) 2813 tp->prior_ssthresh = 0; 2814 2815 /* B. In all the states check for reneging SACKs. */ 2816 if (tcp_check_sack_reneging(sk, flag)) 2817 return; 2818 2819 /* C. Check consistency of the current state. */ 2820 tcp_verify_left_out(tp); 2821 2822 /* D. Check state exit conditions. State can be terminated 2823 * when high_seq is ACKed. */ 2824 if (icsk->icsk_ca_state == TCP_CA_Open) { 2825 WARN_ON(tp->retrans_out != 0); 2826 tp->retrans_stamp = 0; 2827 } else if (!before(tp->snd_una, tp->high_seq)) { 2828 switch (icsk->icsk_ca_state) { 2829 case TCP_CA_CWR: 2830 /* CWR is to be held something *above* high_seq 2831 * is ACKed for CWR bit to reach receiver. */ 2832 if (tp->snd_una != tp->high_seq) { 2833 tcp_end_cwnd_reduction(sk); 2834 tcp_set_ca_state(sk, TCP_CA_Open); 2835 } 2836 break; 2837 2838 case TCP_CA_Recovery: 2839 if (tcp_is_reno(tp)) 2840 tcp_reset_reno_sack(tp); 2841 if (tcp_try_undo_recovery(sk)) 2842 return; 2843 tcp_end_cwnd_reduction(sk); 2844 break; 2845 } 2846 } 2847 2848 /* E. Process state. */ 2849 switch (icsk->icsk_ca_state) { 2850 case TCP_CA_Recovery: 2851 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2852 if (tcp_is_reno(tp) && is_dupack) 2853 tcp_add_reno_sack(sk); 2854 } else { 2855 if (tcp_try_undo_partial(sk, acked)) 2856 return; 2857 /* Partial ACK arrived. Force fast retransmit. */ 2858 do_lost = tcp_is_reno(tp) || 2859 tcp_fackets_out(tp) > tp->reordering; 2860 } 2861 if (tcp_try_undo_dsack(sk)) { 2862 tcp_try_keep_open(sk); 2863 return; 2864 } 2865 tcp_rack_identify_loss(sk, ack_flag); 2866 break; 2867 case TCP_CA_Loss: 2868 tcp_process_loss(sk, flag, is_dupack, rexmit); 2869 tcp_rack_identify_loss(sk, ack_flag); 2870 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2871 (*ack_flag & FLAG_LOST_RETRANS))) 2872 return; 2873 /* Change state if cwnd is undone or retransmits are lost */ 2874 default: 2875 if (tcp_is_reno(tp)) { 2876 if (flag & FLAG_SND_UNA_ADVANCED) 2877 tcp_reset_reno_sack(tp); 2878 if (is_dupack) 2879 tcp_add_reno_sack(sk); 2880 } 2881 2882 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2883 tcp_try_undo_dsack(sk); 2884 2885 tcp_rack_identify_loss(sk, ack_flag); 2886 if (!tcp_time_to_recover(sk, flag)) { 2887 tcp_try_to_open(sk, flag); 2888 return; 2889 } 2890 2891 /* MTU probe failure: don't reduce cwnd */ 2892 if (icsk->icsk_ca_state < TCP_CA_CWR && 2893 icsk->icsk_mtup.probe_size && 2894 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2895 tcp_mtup_probe_failed(sk); 2896 /* Restores the reduction we did in tcp_mtup_probe() */ 2897 tp->snd_cwnd++; 2898 tcp_simple_retransmit(sk); 2899 return; 2900 } 2901 2902 /* Otherwise enter Recovery state */ 2903 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2904 fast_rexmit = 1; 2905 } 2906 2907 if (do_lost) 2908 tcp_update_scoreboard(sk, fast_rexmit); 2909 *rexmit = REXMIT_LOST; 2910 } 2911 2912 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2913 { 2914 struct tcp_sock *tp = tcp_sk(sk); 2915 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2916 2917 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2918 rtt_us ? : jiffies_to_usecs(1)); 2919 } 2920 2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2922 long seq_rtt_us, long sack_rtt_us, 2923 long ca_rtt_us, struct rate_sample *rs) 2924 { 2925 const struct tcp_sock *tp = tcp_sk(sk); 2926 2927 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2928 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2929 * Karn's algorithm forbids taking RTT if some retransmitted data 2930 * is acked (RFC6298). 2931 */ 2932 if (seq_rtt_us < 0) 2933 seq_rtt_us = sack_rtt_us; 2934 2935 /* RTTM Rule: A TSecr value received in a segment is used to 2936 * update the averaged RTT measurement only if the segment 2937 * acknowledges some new data, i.e., only if it advances the 2938 * left edge of the send window. 2939 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2940 */ 2941 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2942 flag & FLAG_ACKED) { 2943 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2944 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2945 2946 seq_rtt_us = ca_rtt_us = delta_us; 2947 } 2948 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2949 if (seq_rtt_us < 0) 2950 return false; 2951 2952 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2953 * always taken together with ACK, SACK, or TS-opts. Any negative 2954 * values will be skipped with the seq_rtt_us < 0 check above. 2955 */ 2956 tcp_update_rtt_min(sk, ca_rtt_us); 2957 tcp_rtt_estimator(sk, seq_rtt_us); 2958 tcp_set_rto(sk); 2959 2960 /* RFC6298: only reset backoff on valid RTT measurement. */ 2961 inet_csk(sk)->icsk_backoff = 0; 2962 return true; 2963 } 2964 2965 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2966 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2967 { 2968 struct rate_sample rs; 2969 long rtt_us = -1L; 2970 2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2972 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2973 2974 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2975 } 2976 2977 2978 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2979 { 2980 const struct inet_connection_sock *icsk = inet_csk(sk); 2981 2982 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2983 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2984 } 2985 2986 /* Restart timer after forward progress on connection. 2987 * RFC2988 recommends to restart timer to now+rto. 2988 */ 2989 void tcp_rearm_rto(struct sock *sk) 2990 { 2991 const struct inet_connection_sock *icsk = inet_csk(sk); 2992 struct tcp_sock *tp = tcp_sk(sk); 2993 2994 /* If the retrans timer is currently being used by Fast Open 2995 * for SYN-ACK retrans purpose, stay put. 2996 */ 2997 if (tp->fastopen_rsk) 2998 return; 2999 3000 if (!tp->packets_out) { 3001 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3002 } else { 3003 u32 rto = inet_csk(sk)->icsk_rto; 3004 /* Offset the time elapsed after installing regular RTO */ 3005 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3006 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3007 struct sk_buff *skb = tcp_write_queue_head(sk); 3008 u64 rto_time_stamp = skb->skb_mstamp + 3009 jiffies_to_usecs(rto); 3010 s64 delta_us = rto_time_stamp - tp->tcp_mstamp; 3011 /* delta_us may not be positive if the socket is locked 3012 * when the retrans timer fires and is rescheduled. 3013 */ 3014 if (delta_us > 0) 3015 rto = usecs_to_jiffies(delta_us); 3016 } 3017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3018 TCP_RTO_MAX); 3019 } 3020 } 3021 3022 /* If we get here, the whole TSO packet has not been acked. */ 3023 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3024 { 3025 struct tcp_sock *tp = tcp_sk(sk); 3026 u32 packets_acked; 3027 3028 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3029 3030 packets_acked = tcp_skb_pcount(skb); 3031 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3032 return 0; 3033 packets_acked -= tcp_skb_pcount(skb); 3034 3035 if (packets_acked) { 3036 BUG_ON(tcp_skb_pcount(skb) == 0); 3037 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3038 } 3039 3040 return packets_acked; 3041 } 3042 3043 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3044 u32 prior_snd_una) 3045 { 3046 const struct skb_shared_info *shinfo; 3047 3048 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3049 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3050 return; 3051 3052 shinfo = skb_shinfo(skb); 3053 if (!before(shinfo->tskey, prior_snd_una) && 3054 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3055 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3056 } 3057 3058 /* Remove acknowledged frames from the retransmission queue. If our packet 3059 * is before the ack sequence we can discard it as it's confirmed to have 3060 * arrived at the other end. 3061 */ 3062 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3063 u32 prior_snd_una, int *acked, 3064 struct tcp_sacktag_state *sack) 3065 { 3066 const struct inet_connection_sock *icsk = inet_csk(sk); 3067 u64 first_ackt, last_ackt; 3068 struct tcp_sock *tp = tcp_sk(sk); 3069 u32 prior_sacked = tp->sacked_out; 3070 u32 reord = tp->packets_out; 3071 bool fully_acked = true; 3072 long sack_rtt_us = -1L; 3073 long seq_rtt_us = -1L; 3074 long ca_rtt_us = -1L; 3075 struct sk_buff *skb; 3076 u32 pkts_acked = 0; 3077 u32 last_in_flight = 0; 3078 bool rtt_update; 3079 int flag = 0; 3080 3081 first_ackt = 0; 3082 3083 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3084 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3085 u8 sacked = scb->sacked; 3086 u32 acked_pcount; 3087 3088 tcp_ack_tstamp(sk, skb, prior_snd_una); 3089 3090 /* Determine how many packets and what bytes were acked, tso and else */ 3091 if (after(scb->end_seq, tp->snd_una)) { 3092 if (tcp_skb_pcount(skb) == 1 || 3093 !after(tp->snd_una, scb->seq)) 3094 break; 3095 3096 acked_pcount = tcp_tso_acked(sk, skb); 3097 if (!acked_pcount) 3098 break; 3099 fully_acked = false; 3100 } else { 3101 /* Speedup tcp_unlink_write_queue() and next loop */ 3102 prefetchw(skb->next); 3103 acked_pcount = tcp_skb_pcount(skb); 3104 } 3105 3106 if (unlikely(sacked & TCPCB_RETRANS)) { 3107 if (sacked & TCPCB_SACKED_RETRANS) 3108 tp->retrans_out -= acked_pcount; 3109 flag |= FLAG_RETRANS_DATA_ACKED; 3110 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3111 last_ackt = skb->skb_mstamp; 3112 WARN_ON_ONCE(last_ackt == 0); 3113 if (!first_ackt) 3114 first_ackt = last_ackt; 3115 3116 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3117 reord = min(pkts_acked, reord); 3118 if (!after(scb->end_seq, tp->high_seq)) 3119 flag |= FLAG_ORIG_SACK_ACKED; 3120 } 3121 3122 if (sacked & TCPCB_SACKED_ACKED) { 3123 tp->sacked_out -= acked_pcount; 3124 } else if (tcp_is_sack(tp)) { 3125 tp->delivered += acked_pcount; 3126 if (!tcp_skb_spurious_retrans(tp, skb)) 3127 tcp_rack_advance(tp, sacked, scb->end_seq, 3128 skb->skb_mstamp); 3129 } 3130 if (sacked & TCPCB_LOST) 3131 tp->lost_out -= acked_pcount; 3132 3133 tp->packets_out -= acked_pcount; 3134 pkts_acked += acked_pcount; 3135 tcp_rate_skb_delivered(sk, skb, sack->rate); 3136 3137 /* Initial outgoing SYN's get put onto the write_queue 3138 * just like anything else we transmit. It is not 3139 * true data, and if we misinform our callers that 3140 * this ACK acks real data, we will erroneously exit 3141 * connection startup slow start one packet too 3142 * quickly. This is severely frowned upon behavior. 3143 */ 3144 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3145 flag |= FLAG_DATA_ACKED; 3146 } else { 3147 flag |= FLAG_SYN_ACKED; 3148 tp->retrans_stamp = 0; 3149 } 3150 3151 if (!fully_acked) 3152 break; 3153 3154 tcp_unlink_write_queue(skb, sk); 3155 sk_wmem_free_skb(sk, skb); 3156 if (unlikely(skb == tp->retransmit_skb_hint)) 3157 tp->retransmit_skb_hint = NULL; 3158 if (unlikely(skb == tp->lost_skb_hint)) 3159 tp->lost_skb_hint = NULL; 3160 } 3161 3162 if (!skb) 3163 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3164 3165 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3166 tp->snd_up = tp->snd_una; 3167 3168 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3169 flag |= FLAG_SACK_RENEGING; 3170 3171 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3172 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3173 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3174 } 3175 if (sack->first_sackt) { 3176 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3177 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3178 } 3179 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3180 ca_rtt_us, sack->rate); 3181 3182 if (flag & FLAG_ACKED) { 3183 tcp_rearm_rto(sk); 3184 if (unlikely(icsk->icsk_mtup.probe_size && 3185 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3186 tcp_mtup_probe_success(sk); 3187 } 3188 3189 if (tcp_is_reno(tp)) { 3190 tcp_remove_reno_sacks(sk, pkts_acked); 3191 } else { 3192 int delta; 3193 3194 /* Non-retransmitted hole got filled? That's reordering */ 3195 if (reord < prior_fackets && reord <= tp->fackets_out) 3196 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3197 3198 delta = tcp_is_fack(tp) ? pkts_acked : 3199 prior_sacked - tp->sacked_out; 3200 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3201 } 3202 3203 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3204 3205 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3206 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3207 /* Do not re-arm RTO if the sack RTT is measured from data sent 3208 * after when the head was last (re)transmitted. Otherwise the 3209 * timeout may continue to extend in loss recovery. 3210 */ 3211 tcp_rearm_rto(sk); 3212 } 3213 3214 if (icsk->icsk_ca_ops->pkts_acked) { 3215 struct ack_sample sample = { .pkts_acked = pkts_acked, 3216 .rtt_us = sack->rate->rtt_us, 3217 .in_flight = last_in_flight }; 3218 3219 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3220 } 3221 3222 #if FASTRETRANS_DEBUG > 0 3223 WARN_ON((int)tp->sacked_out < 0); 3224 WARN_ON((int)tp->lost_out < 0); 3225 WARN_ON((int)tp->retrans_out < 0); 3226 if (!tp->packets_out && tcp_is_sack(tp)) { 3227 icsk = inet_csk(sk); 3228 if (tp->lost_out) { 3229 pr_debug("Leak l=%u %d\n", 3230 tp->lost_out, icsk->icsk_ca_state); 3231 tp->lost_out = 0; 3232 } 3233 if (tp->sacked_out) { 3234 pr_debug("Leak s=%u %d\n", 3235 tp->sacked_out, icsk->icsk_ca_state); 3236 tp->sacked_out = 0; 3237 } 3238 if (tp->retrans_out) { 3239 pr_debug("Leak r=%u %d\n", 3240 tp->retrans_out, icsk->icsk_ca_state); 3241 tp->retrans_out = 0; 3242 } 3243 } 3244 #endif 3245 *acked = pkts_acked; 3246 return flag; 3247 } 3248 3249 static void tcp_ack_probe(struct sock *sk) 3250 { 3251 const struct tcp_sock *tp = tcp_sk(sk); 3252 struct inet_connection_sock *icsk = inet_csk(sk); 3253 3254 /* Was it a usable window open? */ 3255 3256 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3257 icsk->icsk_backoff = 0; 3258 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3259 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3260 * This function is not for random using! 3261 */ 3262 } else { 3263 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3264 3265 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3266 when, TCP_RTO_MAX); 3267 } 3268 } 3269 3270 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3271 { 3272 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3273 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3274 } 3275 3276 /* Decide wheather to run the increase function of congestion control. */ 3277 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3278 { 3279 /* If reordering is high then always grow cwnd whenever data is 3280 * delivered regardless of its ordering. Otherwise stay conservative 3281 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3282 * new SACK or ECE mark may first advance cwnd here and later reduce 3283 * cwnd in tcp_fastretrans_alert() based on more states. 3284 */ 3285 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3286 return flag & FLAG_FORWARD_PROGRESS; 3287 3288 return flag & FLAG_DATA_ACKED; 3289 } 3290 3291 /* The "ultimate" congestion control function that aims to replace the rigid 3292 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3293 * It's called toward the end of processing an ACK with precise rate 3294 * information. All transmission or retransmission are delayed afterwards. 3295 */ 3296 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3297 int flag, const struct rate_sample *rs) 3298 { 3299 const struct inet_connection_sock *icsk = inet_csk(sk); 3300 3301 if (icsk->icsk_ca_ops->cong_control) { 3302 icsk->icsk_ca_ops->cong_control(sk, rs); 3303 return; 3304 } 3305 3306 if (tcp_in_cwnd_reduction(sk)) { 3307 /* Reduce cwnd if state mandates */ 3308 tcp_cwnd_reduction(sk, acked_sacked, flag); 3309 } else if (tcp_may_raise_cwnd(sk, flag)) { 3310 /* Advance cwnd if state allows */ 3311 tcp_cong_avoid(sk, ack, acked_sacked); 3312 } 3313 tcp_update_pacing_rate(sk); 3314 } 3315 3316 /* Check that window update is acceptable. 3317 * The function assumes that snd_una<=ack<=snd_next. 3318 */ 3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3320 const u32 ack, const u32 ack_seq, 3321 const u32 nwin) 3322 { 3323 return after(ack, tp->snd_una) || 3324 after(ack_seq, tp->snd_wl1) || 3325 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3326 } 3327 3328 /* If we update tp->snd_una, also update tp->bytes_acked */ 3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3330 { 3331 u32 delta = ack - tp->snd_una; 3332 3333 sock_owned_by_me((struct sock *)tp); 3334 tp->bytes_acked += delta; 3335 tp->snd_una = ack; 3336 } 3337 3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3339 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3340 { 3341 u32 delta = seq - tp->rcv_nxt; 3342 3343 sock_owned_by_me((struct sock *)tp); 3344 tp->bytes_received += delta; 3345 tp->rcv_nxt = seq; 3346 } 3347 3348 /* Update our send window. 3349 * 3350 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3351 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3352 */ 3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3354 u32 ack_seq) 3355 { 3356 struct tcp_sock *tp = tcp_sk(sk); 3357 int flag = 0; 3358 u32 nwin = ntohs(tcp_hdr(skb)->window); 3359 3360 if (likely(!tcp_hdr(skb)->syn)) 3361 nwin <<= tp->rx_opt.snd_wscale; 3362 3363 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3364 flag |= FLAG_WIN_UPDATE; 3365 tcp_update_wl(tp, ack_seq); 3366 3367 if (tp->snd_wnd != nwin) { 3368 tp->snd_wnd = nwin; 3369 3370 /* Note, it is the only place, where 3371 * fast path is recovered for sending TCP. 3372 */ 3373 tp->pred_flags = 0; 3374 tcp_fast_path_check(sk); 3375 3376 if (tcp_send_head(sk)) 3377 tcp_slow_start_after_idle_check(sk); 3378 3379 if (nwin > tp->max_window) { 3380 tp->max_window = nwin; 3381 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3382 } 3383 } 3384 } 3385 3386 tcp_snd_una_update(tp, ack); 3387 3388 return flag; 3389 } 3390 3391 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3392 u32 *last_oow_ack_time) 3393 { 3394 if (*last_oow_ack_time) { 3395 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3396 3397 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3398 NET_INC_STATS(net, mib_idx); 3399 return true; /* rate-limited: don't send yet! */ 3400 } 3401 } 3402 3403 *last_oow_ack_time = tcp_jiffies32; 3404 3405 return false; /* not rate-limited: go ahead, send dupack now! */ 3406 } 3407 3408 /* Return true if we're currently rate-limiting out-of-window ACKs and 3409 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3410 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3411 * attacks that send repeated SYNs or ACKs for the same connection. To 3412 * do this, we do not send a duplicate SYNACK or ACK if the remote 3413 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3414 */ 3415 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3416 int mib_idx, u32 *last_oow_ack_time) 3417 { 3418 /* Data packets without SYNs are not likely part of an ACK loop. */ 3419 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3420 !tcp_hdr(skb)->syn) 3421 return false; 3422 3423 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3424 } 3425 3426 /* RFC 5961 7 [ACK Throttling] */ 3427 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3428 { 3429 /* unprotected vars, we dont care of overwrites */ 3430 static u32 challenge_timestamp; 3431 static unsigned int challenge_count; 3432 struct tcp_sock *tp = tcp_sk(sk); 3433 u32 count, now; 3434 3435 /* First check our per-socket dupack rate limit. */ 3436 if (__tcp_oow_rate_limited(sock_net(sk), 3437 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3438 &tp->last_oow_ack_time)) 3439 return; 3440 3441 /* Then check host-wide RFC 5961 rate limit. */ 3442 now = jiffies / HZ; 3443 if (now != challenge_timestamp) { 3444 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3445 3446 challenge_timestamp = now; 3447 WRITE_ONCE(challenge_count, half + 3448 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3449 } 3450 count = READ_ONCE(challenge_count); 3451 if (count > 0) { 3452 WRITE_ONCE(challenge_count, count - 1); 3453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3454 tcp_send_ack(sk); 3455 } 3456 } 3457 3458 static void tcp_store_ts_recent(struct tcp_sock *tp) 3459 { 3460 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3461 tp->rx_opt.ts_recent_stamp = get_seconds(); 3462 } 3463 3464 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3465 { 3466 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3467 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3468 * extra check below makes sure this can only happen 3469 * for pure ACK frames. -DaveM 3470 * 3471 * Not only, also it occurs for expired timestamps. 3472 */ 3473 3474 if (tcp_paws_check(&tp->rx_opt, 0)) 3475 tcp_store_ts_recent(tp); 3476 } 3477 } 3478 3479 /* This routine deals with acks during a TLP episode. 3480 * We mark the end of a TLP episode on receiving TLP dupack or when 3481 * ack is after tlp_high_seq. 3482 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3483 */ 3484 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3485 { 3486 struct tcp_sock *tp = tcp_sk(sk); 3487 3488 if (before(ack, tp->tlp_high_seq)) 3489 return; 3490 3491 if (flag & FLAG_DSACKING_ACK) { 3492 /* This DSACK means original and TLP probe arrived; no loss */ 3493 tp->tlp_high_seq = 0; 3494 } else if (after(ack, tp->tlp_high_seq)) { 3495 /* ACK advances: there was a loss, so reduce cwnd. Reset 3496 * tlp_high_seq in tcp_init_cwnd_reduction() 3497 */ 3498 tcp_init_cwnd_reduction(sk); 3499 tcp_set_ca_state(sk, TCP_CA_CWR); 3500 tcp_end_cwnd_reduction(sk); 3501 tcp_try_keep_open(sk); 3502 NET_INC_STATS(sock_net(sk), 3503 LINUX_MIB_TCPLOSSPROBERECOVERY); 3504 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3505 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3506 /* Pure dupack: original and TLP probe arrived; no loss */ 3507 tp->tlp_high_seq = 0; 3508 } 3509 } 3510 3511 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3512 { 3513 const struct inet_connection_sock *icsk = inet_csk(sk); 3514 3515 if (icsk->icsk_ca_ops->in_ack_event) 3516 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3517 } 3518 3519 /* Congestion control has updated the cwnd already. So if we're in 3520 * loss recovery then now we do any new sends (for FRTO) or 3521 * retransmits (for CA_Loss or CA_recovery) that make sense. 3522 */ 3523 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3524 { 3525 struct tcp_sock *tp = tcp_sk(sk); 3526 3527 if (rexmit == REXMIT_NONE) 3528 return; 3529 3530 if (unlikely(rexmit == 2)) { 3531 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3532 TCP_NAGLE_OFF); 3533 if (after(tp->snd_nxt, tp->high_seq)) 3534 return; 3535 tp->frto = 0; 3536 } 3537 tcp_xmit_retransmit_queue(sk); 3538 } 3539 3540 /* This routine deals with incoming acks, but not outgoing ones. */ 3541 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3542 { 3543 struct inet_connection_sock *icsk = inet_csk(sk); 3544 struct tcp_sock *tp = tcp_sk(sk); 3545 struct tcp_sacktag_state sack_state; 3546 struct rate_sample rs = { .prior_delivered = 0 }; 3547 u32 prior_snd_una = tp->snd_una; 3548 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3549 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3550 bool is_dupack = false; 3551 u32 prior_fackets; 3552 int prior_packets = tp->packets_out; 3553 u32 delivered = tp->delivered; 3554 u32 lost = tp->lost; 3555 int acked = 0; /* Number of packets newly acked */ 3556 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3557 3558 sack_state.first_sackt = 0; 3559 sack_state.rate = &rs; 3560 3561 /* We very likely will need to access write queue head. */ 3562 prefetchw(sk->sk_write_queue.next); 3563 3564 /* If the ack is older than previous acks 3565 * then we can probably ignore it. 3566 */ 3567 if (before(ack, prior_snd_una)) { 3568 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3569 if (before(ack, prior_snd_una - tp->max_window)) { 3570 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3571 tcp_send_challenge_ack(sk, skb); 3572 return -1; 3573 } 3574 goto old_ack; 3575 } 3576 3577 /* If the ack includes data we haven't sent yet, discard 3578 * this segment (RFC793 Section 3.9). 3579 */ 3580 if (after(ack, tp->snd_nxt)) 3581 goto invalid_ack; 3582 3583 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3584 tcp_rearm_rto(sk); 3585 3586 if (after(ack, prior_snd_una)) { 3587 flag |= FLAG_SND_UNA_ADVANCED; 3588 icsk->icsk_retransmits = 0; 3589 } 3590 3591 prior_fackets = tp->fackets_out; 3592 rs.prior_in_flight = tcp_packets_in_flight(tp); 3593 3594 /* ts_recent update must be made after we are sure that the packet 3595 * is in window. 3596 */ 3597 if (flag & FLAG_UPDATE_TS_RECENT) 3598 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3599 3600 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3601 /* Window is constant, pure forward advance. 3602 * No more checks are required. 3603 * Note, we use the fact that SND.UNA>=SND.WL2. 3604 */ 3605 tcp_update_wl(tp, ack_seq); 3606 tcp_snd_una_update(tp, ack); 3607 flag |= FLAG_WIN_UPDATE; 3608 3609 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3610 3611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3612 } else { 3613 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3614 3615 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3616 flag |= FLAG_DATA; 3617 else 3618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3619 3620 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3621 3622 if (TCP_SKB_CB(skb)->sacked) 3623 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3624 &sack_state); 3625 3626 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3627 flag |= FLAG_ECE; 3628 ack_ev_flags |= CA_ACK_ECE; 3629 } 3630 3631 if (flag & FLAG_WIN_UPDATE) 3632 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3633 3634 tcp_in_ack_event(sk, ack_ev_flags); 3635 } 3636 3637 /* We passed data and got it acked, remove any soft error 3638 * log. Something worked... 3639 */ 3640 sk->sk_err_soft = 0; 3641 icsk->icsk_probes_out = 0; 3642 tp->rcv_tstamp = tcp_jiffies32; 3643 if (!prior_packets) 3644 goto no_queue; 3645 3646 /* See if we can take anything off of the retransmit queue. */ 3647 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3648 &sack_state); 3649 3650 if (tcp_ack_is_dubious(sk, flag)) { 3651 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3652 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3653 } 3654 if (tp->tlp_high_seq) 3655 tcp_process_tlp_ack(sk, ack, flag); 3656 3657 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3658 sk_dst_confirm(sk); 3659 3660 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3661 tcp_schedule_loss_probe(sk); 3662 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3663 lost = tp->lost - lost; /* freshly marked lost */ 3664 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3665 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3666 tcp_xmit_recovery(sk, rexmit); 3667 return 1; 3668 3669 no_queue: 3670 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3671 if (flag & FLAG_DSACKING_ACK) 3672 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3673 /* If this ack opens up a zero window, clear backoff. It was 3674 * being used to time the probes, and is probably far higher than 3675 * it needs to be for normal retransmission. 3676 */ 3677 if (tcp_send_head(sk)) 3678 tcp_ack_probe(sk); 3679 3680 if (tp->tlp_high_seq) 3681 tcp_process_tlp_ack(sk, ack, flag); 3682 return 1; 3683 3684 invalid_ack: 3685 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3686 return -1; 3687 3688 old_ack: 3689 /* If data was SACKed, tag it and see if we should send more data. 3690 * If data was DSACKed, see if we can undo a cwnd reduction. 3691 */ 3692 if (TCP_SKB_CB(skb)->sacked) { 3693 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3694 &sack_state); 3695 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3696 tcp_xmit_recovery(sk, rexmit); 3697 } 3698 3699 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3700 return 0; 3701 } 3702 3703 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3704 bool syn, struct tcp_fastopen_cookie *foc, 3705 bool exp_opt) 3706 { 3707 /* Valid only in SYN or SYN-ACK with an even length. */ 3708 if (!foc || !syn || len < 0 || (len & 1)) 3709 return; 3710 3711 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3712 len <= TCP_FASTOPEN_COOKIE_MAX) 3713 memcpy(foc->val, cookie, len); 3714 else if (len != 0) 3715 len = -1; 3716 foc->len = len; 3717 foc->exp = exp_opt; 3718 } 3719 3720 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3721 * But, this can also be called on packets in the established flow when 3722 * the fast version below fails. 3723 */ 3724 void tcp_parse_options(const struct net *net, 3725 const struct sk_buff *skb, 3726 struct tcp_options_received *opt_rx, int estab, 3727 struct tcp_fastopen_cookie *foc) 3728 { 3729 const unsigned char *ptr; 3730 const struct tcphdr *th = tcp_hdr(skb); 3731 int length = (th->doff * 4) - sizeof(struct tcphdr); 3732 3733 ptr = (const unsigned char *)(th + 1); 3734 opt_rx->saw_tstamp = 0; 3735 3736 while (length > 0) { 3737 int opcode = *ptr++; 3738 int opsize; 3739 3740 switch (opcode) { 3741 case TCPOPT_EOL: 3742 return; 3743 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3744 length--; 3745 continue; 3746 default: 3747 opsize = *ptr++; 3748 if (opsize < 2) /* "silly options" */ 3749 return; 3750 if (opsize > length) 3751 return; /* don't parse partial options */ 3752 switch (opcode) { 3753 case TCPOPT_MSS: 3754 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3755 u16 in_mss = get_unaligned_be16(ptr); 3756 if (in_mss) { 3757 if (opt_rx->user_mss && 3758 opt_rx->user_mss < in_mss) 3759 in_mss = opt_rx->user_mss; 3760 opt_rx->mss_clamp = in_mss; 3761 } 3762 } 3763 break; 3764 case TCPOPT_WINDOW: 3765 if (opsize == TCPOLEN_WINDOW && th->syn && 3766 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3767 __u8 snd_wscale = *(__u8 *)ptr; 3768 opt_rx->wscale_ok = 1; 3769 if (snd_wscale > TCP_MAX_WSCALE) { 3770 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3771 __func__, 3772 snd_wscale, 3773 TCP_MAX_WSCALE); 3774 snd_wscale = TCP_MAX_WSCALE; 3775 } 3776 opt_rx->snd_wscale = snd_wscale; 3777 } 3778 break; 3779 case TCPOPT_TIMESTAMP: 3780 if ((opsize == TCPOLEN_TIMESTAMP) && 3781 ((estab && opt_rx->tstamp_ok) || 3782 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3783 opt_rx->saw_tstamp = 1; 3784 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3785 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3786 } 3787 break; 3788 case TCPOPT_SACK_PERM: 3789 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3790 !estab && net->ipv4.sysctl_tcp_sack) { 3791 opt_rx->sack_ok = TCP_SACK_SEEN; 3792 tcp_sack_reset(opt_rx); 3793 } 3794 break; 3795 3796 case TCPOPT_SACK: 3797 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3798 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3799 opt_rx->sack_ok) { 3800 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3801 } 3802 break; 3803 #ifdef CONFIG_TCP_MD5SIG 3804 case TCPOPT_MD5SIG: 3805 /* 3806 * The MD5 Hash has already been 3807 * checked (see tcp_v{4,6}_do_rcv()). 3808 */ 3809 break; 3810 #endif 3811 case TCPOPT_FASTOPEN: 3812 tcp_parse_fastopen_option( 3813 opsize - TCPOLEN_FASTOPEN_BASE, 3814 ptr, th->syn, foc, false); 3815 break; 3816 3817 case TCPOPT_EXP: 3818 /* Fast Open option shares code 254 using a 3819 * 16 bits magic number. 3820 */ 3821 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3822 get_unaligned_be16(ptr) == 3823 TCPOPT_FASTOPEN_MAGIC) 3824 tcp_parse_fastopen_option(opsize - 3825 TCPOLEN_EXP_FASTOPEN_BASE, 3826 ptr + 2, th->syn, foc, true); 3827 break; 3828 3829 } 3830 ptr += opsize-2; 3831 length -= opsize; 3832 } 3833 } 3834 } 3835 EXPORT_SYMBOL(tcp_parse_options); 3836 3837 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3838 { 3839 const __be32 *ptr = (const __be32 *)(th + 1); 3840 3841 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3842 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3843 tp->rx_opt.saw_tstamp = 1; 3844 ++ptr; 3845 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3846 ++ptr; 3847 if (*ptr) 3848 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3849 else 3850 tp->rx_opt.rcv_tsecr = 0; 3851 return true; 3852 } 3853 return false; 3854 } 3855 3856 /* Fast parse options. This hopes to only see timestamps. 3857 * If it is wrong it falls back on tcp_parse_options(). 3858 */ 3859 static bool tcp_fast_parse_options(const struct net *net, 3860 const struct sk_buff *skb, 3861 const struct tcphdr *th, struct tcp_sock *tp) 3862 { 3863 /* In the spirit of fast parsing, compare doff directly to constant 3864 * values. Because equality is used, short doff can be ignored here. 3865 */ 3866 if (th->doff == (sizeof(*th) / 4)) { 3867 tp->rx_opt.saw_tstamp = 0; 3868 return false; 3869 } else if (tp->rx_opt.tstamp_ok && 3870 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3871 if (tcp_parse_aligned_timestamp(tp, th)) 3872 return true; 3873 } 3874 3875 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3876 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3877 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3878 3879 return true; 3880 } 3881 3882 #ifdef CONFIG_TCP_MD5SIG 3883 /* 3884 * Parse MD5 Signature option 3885 */ 3886 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3887 { 3888 int length = (th->doff << 2) - sizeof(*th); 3889 const u8 *ptr = (const u8 *)(th + 1); 3890 3891 /* If the TCP option is too short, we can short cut */ 3892 if (length < TCPOLEN_MD5SIG) 3893 return NULL; 3894 3895 while (length > 0) { 3896 int opcode = *ptr++; 3897 int opsize; 3898 3899 switch (opcode) { 3900 case TCPOPT_EOL: 3901 return NULL; 3902 case TCPOPT_NOP: 3903 length--; 3904 continue; 3905 default: 3906 opsize = *ptr++; 3907 if (opsize < 2 || opsize > length) 3908 return NULL; 3909 if (opcode == TCPOPT_MD5SIG) 3910 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3911 } 3912 ptr += opsize - 2; 3913 length -= opsize; 3914 } 3915 return NULL; 3916 } 3917 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3918 #endif 3919 3920 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3921 * 3922 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3923 * it can pass through stack. So, the following predicate verifies that 3924 * this segment is not used for anything but congestion avoidance or 3925 * fast retransmit. Moreover, we even are able to eliminate most of such 3926 * second order effects, if we apply some small "replay" window (~RTO) 3927 * to timestamp space. 3928 * 3929 * All these measures still do not guarantee that we reject wrapped ACKs 3930 * on networks with high bandwidth, when sequence space is recycled fastly, 3931 * but it guarantees that such events will be very rare and do not affect 3932 * connection seriously. This doesn't look nice, but alas, PAWS is really 3933 * buggy extension. 3934 * 3935 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3936 * states that events when retransmit arrives after original data are rare. 3937 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3938 * the biggest problem on large power networks even with minor reordering. 3939 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3940 * up to bandwidth of 18Gigabit/sec. 8) ] 3941 */ 3942 3943 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3944 { 3945 const struct tcp_sock *tp = tcp_sk(sk); 3946 const struct tcphdr *th = tcp_hdr(skb); 3947 u32 seq = TCP_SKB_CB(skb)->seq; 3948 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3949 3950 return (/* 1. Pure ACK with correct sequence number. */ 3951 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3952 3953 /* 2. ... and duplicate ACK. */ 3954 ack == tp->snd_una && 3955 3956 /* 3. ... and does not update window. */ 3957 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3958 3959 /* 4. ... and sits in replay window. */ 3960 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3961 } 3962 3963 static inline bool tcp_paws_discard(const struct sock *sk, 3964 const struct sk_buff *skb) 3965 { 3966 const struct tcp_sock *tp = tcp_sk(sk); 3967 3968 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3969 !tcp_disordered_ack(sk, skb); 3970 } 3971 3972 /* Check segment sequence number for validity. 3973 * 3974 * Segment controls are considered valid, if the segment 3975 * fits to the window after truncation to the window. Acceptability 3976 * of data (and SYN, FIN, of course) is checked separately. 3977 * See tcp_data_queue(), for example. 3978 * 3979 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3980 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3981 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3982 * (borrowed from freebsd) 3983 */ 3984 3985 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3986 { 3987 return !before(end_seq, tp->rcv_wup) && 3988 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3989 } 3990 3991 /* When we get a reset we do this. */ 3992 void tcp_reset(struct sock *sk) 3993 { 3994 /* We want the right error as BSD sees it (and indeed as we do). */ 3995 switch (sk->sk_state) { 3996 case TCP_SYN_SENT: 3997 sk->sk_err = ECONNREFUSED; 3998 break; 3999 case TCP_CLOSE_WAIT: 4000 sk->sk_err = EPIPE; 4001 break; 4002 case TCP_CLOSE: 4003 return; 4004 default: 4005 sk->sk_err = ECONNRESET; 4006 } 4007 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4008 smp_wmb(); 4009 4010 tcp_done(sk); 4011 4012 if (!sock_flag(sk, SOCK_DEAD)) 4013 sk->sk_error_report(sk); 4014 } 4015 4016 /* 4017 * Process the FIN bit. This now behaves as it is supposed to work 4018 * and the FIN takes effect when it is validly part of sequence 4019 * space. Not before when we get holes. 4020 * 4021 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4022 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4023 * TIME-WAIT) 4024 * 4025 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4026 * close and we go into CLOSING (and later onto TIME-WAIT) 4027 * 4028 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4029 */ 4030 void tcp_fin(struct sock *sk) 4031 { 4032 struct tcp_sock *tp = tcp_sk(sk); 4033 4034 inet_csk_schedule_ack(sk); 4035 4036 sk->sk_shutdown |= RCV_SHUTDOWN; 4037 sock_set_flag(sk, SOCK_DONE); 4038 4039 switch (sk->sk_state) { 4040 case TCP_SYN_RECV: 4041 case TCP_ESTABLISHED: 4042 /* Move to CLOSE_WAIT */ 4043 tcp_set_state(sk, TCP_CLOSE_WAIT); 4044 inet_csk(sk)->icsk_ack.pingpong = 1; 4045 break; 4046 4047 case TCP_CLOSE_WAIT: 4048 case TCP_CLOSING: 4049 /* Received a retransmission of the FIN, do 4050 * nothing. 4051 */ 4052 break; 4053 case TCP_LAST_ACK: 4054 /* RFC793: Remain in the LAST-ACK state. */ 4055 break; 4056 4057 case TCP_FIN_WAIT1: 4058 /* This case occurs when a simultaneous close 4059 * happens, we must ack the received FIN and 4060 * enter the CLOSING state. 4061 */ 4062 tcp_send_ack(sk); 4063 tcp_set_state(sk, TCP_CLOSING); 4064 break; 4065 case TCP_FIN_WAIT2: 4066 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4067 tcp_send_ack(sk); 4068 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4069 break; 4070 default: 4071 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4072 * cases we should never reach this piece of code. 4073 */ 4074 pr_err("%s: Impossible, sk->sk_state=%d\n", 4075 __func__, sk->sk_state); 4076 break; 4077 } 4078 4079 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4080 * Probably, we should reset in this case. For now drop them. 4081 */ 4082 skb_rbtree_purge(&tp->out_of_order_queue); 4083 if (tcp_is_sack(tp)) 4084 tcp_sack_reset(&tp->rx_opt); 4085 sk_mem_reclaim(sk); 4086 4087 if (!sock_flag(sk, SOCK_DEAD)) { 4088 sk->sk_state_change(sk); 4089 4090 /* Do not send POLL_HUP for half duplex close. */ 4091 if (sk->sk_shutdown == SHUTDOWN_MASK || 4092 sk->sk_state == TCP_CLOSE) 4093 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4094 else 4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4096 } 4097 } 4098 4099 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4100 u32 end_seq) 4101 { 4102 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4103 if (before(seq, sp->start_seq)) 4104 sp->start_seq = seq; 4105 if (after(end_seq, sp->end_seq)) 4106 sp->end_seq = end_seq; 4107 return true; 4108 } 4109 return false; 4110 } 4111 4112 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4113 { 4114 struct tcp_sock *tp = tcp_sk(sk); 4115 4116 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4117 int mib_idx; 4118 4119 if (before(seq, tp->rcv_nxt)) 4120 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4121 else 4122 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4123 4124 NET_INC_STATS(sock_net(sk), mib_idx); 4125 4126 tp->rx_opt.dsack = 1; 4127 tp->duplicate_sack[0].start_seq = seq; 4128 tp->duplicate_sack[0].end_seq = end_seq; 4129 } 4130 } 4131 4132 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4133 { 4134 struct tcp_sock *tp = tcp_sk(sk); 4135 4136 if (!tp->rx_opt.dsack) 4137 tcp_dsack_set(sk, seq, end_seq); 4138 else 4139 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4140 } 4141 4142 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4143 { 4144 struct tcp_sock *tp = tcp_sk(sk); 4145 4146 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4147 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4148 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4149 tcp_enter_quickack_mode(sk); 4150 4151 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4152 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4153 4154 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4155 end_seq = tp->rcv_nxt; 4156 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4157 } 4158 } 4159 4160 tcp_send_ack(sk); 4161 } 4162 4163 /* These routines update the SACK block as out-of-order packets arrive or 4164 * in-order packets close up the sequence space. 4165 */ 4166 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4167 { 4168 int this_sack; 4169 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4170 struct tcp_sack_block *swalk = sp + 1; 4171 4172 /* See if the recent change to the first SACK eats into 4173 * or hits the sequence space of other SACK blocks, if so coalesce. 4174 */ 4175 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4176 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4177 int i; 4178 4179 /* Zap SWALK, by moving every further SACK up by one slot. 4180 * Decrease num_sacks. 4181 */ 4182 tp->rx_opt.num_sacks--; 4183 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4184 sp[i] = sp[i + 1]; 4185 continue; 4186 } 4187 this_sack++, swalk++; 4188 } 4189 } 4190 4191 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4192 { 4193 struct tcp_sock *tp = tcp_sk(sk); 4194 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4195 int cur_sacks = tp->rx_opt.num_sacks; 4196 int this_sack; 4197 4198 if (!cur_sacks) 4199 goto new_sack; 4200 4201 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4202 if (tcp_sack_extend(sp, seq, end_seq)) { 4203 /* Rotate this_sack to the first one. */ 4204 for (; this_sack > 0; this_sack--, sp--) 4205 swap(*sp, *(sp - 1)); 4206 if (cur_sacks > 1) 4207 tcp_sack_maybe_coalesce(tp); 4208 return; 4209 } 4210 } 4211 4212 /* Could not find an adjacent existing SACK, build a new one, 4213 * put it at the front, and shift everyone else down. We 4214 * always know there is at least one SACK present already here. 4215 * 4216 * If the sack array is full, forget about the last one. 4217 */ 4218 if (this_sack >= TCP_NUM_SACKS) { 4219 this_sack--; 4220 tp->rx_opt.num_sacks--; 4221 sp--; 4222 } 4223 for (; this_sack > 0; this_sack--, sp--) 4224 *sp = *(sp - 1); 4225 4226 new_sack: 4227 /* Build the new head SACK, and we're done. */ 4228 sp->start_seq = seq; 4229 sp->end_seq = end_seq; 4230 tp->rx_opt.num_sacks++; 4231 } 4232 4233 /* RCV.NXT advances, some SACKs should be eaten. */ 4234 4235 static void tcp_sack_remove(struct tcp_sock *tp) 4236 { 4237 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4238 int num_sacks = tp->rx_opt.num_sacks; 4239 int this_sack; 4240 4241 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4242 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4243 tp->rx_opt.num_sacks = 0; 4244 return; 4245 } 4246 4247 for (this_sack = 0; this_sack < num_sacks;) { 4248 /* Check if the start of the sack is covered by RCV.NXT. */ 4249 if (!before(tp->rcv_nxt, sp->start_seq)) { 4250 int i; 4251 4252 /* RCV.NXT must cover all the block! */ 4253 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4254 4255 /* Zap this SACK, by moving forward any other SACKS. */ 4256 for (i = this_sack+1; i < num_sacks; i++) 4257 tp->selective_acks[i-1] = tp->selective_acks[i]; 4258 num_sacks--; 4259 continue; 4260 } 4261 this_sack++; 4262 sp++; 4263 } 4264 tp->rx_opt.num_sacks = num_sacks; 4265 } 4266 4267 /** 4268 * tcp_try_coalesce - try to merge skb to prior one 4269 * @sk: socket 4270 * @to: prior buffer 4271 * @from: buffer to add in queue 4272 * @fragstolen: pointer to boolean 4273 * 4274 * Before queueing skb @from after @to, try to merge them 4275 * to reduce overall memory use and queue lengths, if cost is small. 4276 * Packets in ofo or receive queues can stay a long time. 4277 * Better try to coalesce them right now to avoid future collapses. 4278 * Returns true if caller should free @from instead of queueing it 4279 */ 4280 static bool tcp_try_coalesce(struct sock *sk, 4281 struct sk_buff *to, 4282 struct sk_buff *from, 4283 bool *fragstolen) 4284 { 4285 int delta; 4286 4287 *fragstolen = false; 4288 4289 /* Its possible this segment overlaps with prior segment in queue */ 4290 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4291 return false; 4292 4293 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4294 return false; 4295 4296 atomic_add(delta, &sk->sk_rmem_alloc); 4297 sk_mem_charge(sk, delta); 4298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4299 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4300 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4301 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4302 return true; 4303 } 4304 4305 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4306 { 4307 sk_drops_add(sk, skb); 4308 __kfree_skb(skb); 4309 } 4310 4311 /* This one checks to see if we can put data from the 4312 * out_of_order queue into the receive_queue. 4313 */ 4314 static void tcp_ofo_queue(struct sock *sk) 4315 { 4316 struct tcp_sock *tp = tcp_sk(sk); 4317 __u32 dsack_high = tp->rcv_nxt; 4318 bool fin, fragstolen, eaten; 4319 struct sk_buff *skb, *tail; 4320 struct rb_node *p; 4321 4322 p = rb_first(&tp->out_of_order_queue); 4323 while (p) { 4324 skb = rb_entry(p, struct sk_buff, rbnode); 4325 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4326 break; 4327 4328 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4329 __u32 dsack = dsack_high; 4330 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4331 dsack_high = TCP_SKB_CB(skb)->end_seq; 4332 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4333 } 4334 p = rb_next(p); 4335 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4336 4337 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4338 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4339 tcp_drop(sk, skb); 4340 continue; 4341 } 4342 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4343 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4344 TCP_SKB_CB(skb)->end_seq); 4345 4346 tail = skb_peek_tail(&sk->sk_receive_queue); 4347 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4348 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4349 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4350 if (!eaten) 4351 __skb_queue_tail(&sk->sk_receive_queue, skb); 4352 else 4353 kfree_skb_partial(skb, fragstolen); 4354 4355 if (unlikely(fin)) { 4356 tcp_fin(sk); 4357 /* tcp_fin() purges tp->out_of_order_queue, 4358 * so we must end this loop right now. 4359 */ 4360 break; 4361 } 4362 } 4363 } 4364 4365 static bool tcp_prune_ofo_queue(struct sock *sk); 4366 static int tcp_prune_queue(struct sock *sk); 4367 4368 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4369 unsigned int size) 4370 { 4371 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4372 !sk_rmem_schedule(sk, skb, size)) { 4373 4374 if (tcp_prune_queue(sk) < 0) 4375 return -1; 4376 4377 while (!sk_rmem_schedule(sk, skb, size)) { 4378 if (!tcp_prune_ofo_queue(sk)) 4379 return -1; 4380 } 4381 } 4382 return 0; 4383 } 4384 4385 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4386 { 4387 struct tcp_sock *tp = tcp_sk(sk); 4388 struct rb_node **p, *q, *parent; 4389 struct sk_buff *skb1; 4390 u32 seq, end_seq; 4391 bool fragstolen; 4392 4393 tcp_ecn_check_ce(tp, skb); 4394 4395 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4397 tcp_drop(sk, skb); 4398 return; 4399 } 4400 4401 /* Disable header prediction. */ 4402 tp->pred_flags = 0; 4403 inet_csk_schedule_ack(sk); 4404 4405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4406 seq = TCP_SKB_CB(skb)->seq; 4407 end_seq = TCP_SKB_CB(skb)->end_seq; 4408 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4409 tp->rcv_nxt, seq, end_seq); 4410 4411 p = &tp->out_of_order_queue.rb_node; 4412 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4413 /* Initial out of order segment, build 1 SACK. */ 4414 if (tcp_is_sack(tp)) { 4415 tp->rx_opt.num_sacks = 1; 4416 tp->selective_acks[0].start_seq = seq; 4417 tp->selective_acks[0].end_seq = end_seq; 4418 } 4419 rb_link_node(&skb->rbnode, NULL, p); 4420 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4421 tp->ooo_last_skb = skb; 4422 goto end; 4423 } 4424 4425 /* In the typical case, we are adding an skb to the end of the list. 4426 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4427 */ 4428 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4429 coalesce_done: 4430 tcp_grow_window(sk, skb); 4431 kfree_skb_partial(skb, fragstolen); 4432 skb = NULL; 4433 goto add_sack; 4434 } 4435 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4436 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4437 parent = &tp->ooo_last_skb->rbnode; 4438 p = &parent->rb_right; 4439 goto insert; 4440 } 4441 4442 /* Find place to insert this segment. Handle overlaps on the way. */ 4443 parent = NULL; 4444 while (*p) { 4445 parent = *p; 4446 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4447 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4448 p = &parent->rb_left; 4449 continue; 4450 } 4451 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4452 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4453 /* All the bits are present. Drop. */ 4454 NET_INC_STATS(sock_net(sk), 4455 LINUX_MIB_TCPOFOMERGE); 4456 __kfree_skb(skb); 4457 skb = NULL; 4458 tcp_dsack_set(sk, seq, end_seq); 4459 goto add_sack; 4460 } 4461 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4462 /* Partial overlap. */ 4463 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4464 } else { 4465 /* skb's seq == skb1's seq and skb covers skb1. 4466 * Replace skb1 with skb. 4467 */ 4468 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4469 &tp->out_of_order_queue); 4470 tcp_dsack_extend(sk, 4471 TCP_SKB_CB(skb1)->seq, 4472 TCP_SKB_CB(skb1)->end_seq); 4473 NET_INC_STATS(sock_net(sk), 4474 LINUX_MIB_TCPOFOMERGE); 4475 __kfree_skb(skb1); 4476 goto merge_right; 4477 } 4478 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4479 goto coalesce_done; 4480 } 4481 p = &parent->rb_right; 4482 } 4483 insert: 4484 /* Insert segment into RB tree. */ 4485 rb_link_node(&skb->rbnode, parent, p); 4486 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4487 4488 merge_right: 4489 /* Remove other segments covered by skb. */ 4490 while ((q = rb_next(&skb->rbnode)) != NULL) { 4491 skb1 = rb_entry(q, struct sk_buff, rbnode); 4492 4493 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4494 break; 4495 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4496 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4497 end_seq); 4498 break; 4499 } 4500 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4501 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4502 TCP_SKB_CB(skb1)->end_seq); 4503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4504 tcp_drop(sk, skb1); 4505 } 4506 /* If there is no skb after us, we are the last_skb ! */ 4507 if (!q) 4508 tp->ooo_last_skb = skb; 4509 4510 add_sack: 4511 if (tcp_is_sack(tp)) 4512 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4513 end: 4514 if (skb) { 4515 tcp_grow_window(sk, skb); 4516 skb_condense(skb); 4517 skb_set_owner_r(skb, sk); 4518 } 4519 } 4520 4521 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4522 bool *fragstolen) 4523 { 4524 int eaten; 4525 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4526 4527 __skb_pull(skb, hdrlen); 4528 eaten = (tail && 4529 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4530 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4531 if (!eaten) { 4532 __skb_queue_tail(&sk->sk_receive_queue, skb); 4533 skb_set_owner_r(skb, sk); 4534 } 4535 return eaten; 4536 } 4537 4538 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4539 { 4540 struct sk_buff *skb; 4541 int err = -ENOMEM; 4542 int data_len = 0; 4543 bool fragstolen; 4544 4545 if (size == 0) 4546 return 0; 4547 4548 if (size > PAGE_SIZE) { 4549 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4550 4551 data_len = npages << PAGE_SHIFT; 4552 size = data_len + (size & ~PAGE_MASK); 4553 } 4554 skb = alloc_skb_with_frags(size - data_len, data_len, 4555 PAGE_ALLOC_COSTLY_ORDER, 4556 &err, sk->sk_allocation); 4557 if (!skb) 4558 goto err; 4559 4560 skb_put(skb, size - data_len); 4561 skb->data_len = data_len; 4562 skb->len = size; 4563 4564 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4565 goto err_free; 4566 4567 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4568 if (err) 4569 goto err_free; 4570 4571 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4572 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4573 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4574 4575 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4576 WARN_ON_ONCE(fragstolen); /* should not happen */ 4577 __kfree_skb(skb); 4578 } 4579 return size; 4580 4581 err_free: 4582 kfree_skb(skb); 4583 err: 4584 return err; 4585 4586 } 4587 4588 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4589 { 4590 struct tcp_sock *tp = tcp_sk(sk); 4591 bool fragstolen = false; 4592 int eaten = -1; 4593 4594 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4595 __kfree_skb(skb); 4596 return; 4597 } 4598 skb_dst_drop(skb); 4599 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4600 4601 tcp_ecn_accept_cwr(tp, skb); 4602 4603 tp->rx_opt.dsack = 0; 4604 4605 /* Queue data for delivery to the user. 4606 * Packets in sequence go to the receive queue. 4607 * Out of sequence packets to the out_of_order_queue. 4608 */ 4609 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4610 if (tcp_receive_window(tp) == 0) 4611 goto out_of_window; 4612 4613 /* Ok. In sequence. In window. */ 4614 if (tp->ucopy.task == current && 4615 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4616 sock_owned_by_user(sk) && !tp->urg_data) { 4617 int chunk = min_t(unsigned int, skb->len, 4618 tp->ucopy.len); 4619 4620 __set_current_state(TASK_RUNNING); 4621 4622 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4623 tp->ucopy.len -= chunk; 4624 tp->copied_seq += chunk; 4625 eaten = (chunk == skb->len); 4626 tcp_rcv_space_adjust(sk); 4627 } 4628 } 4629 4630 if (eaten <= 0) { 4631 queue_and_out: 4632 if (eaten < 0) { 4633 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4634 sk_forced_mem_schedule(sk, skb->truesize); 4635 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4636 goto drop; 4637 } 4638 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4639 } 4640 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4641 if (skb->len) 4642 tcp_event_data_recv(sk, skb); 4643 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4644 tcp_fin(sk); 4645 4646 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4647 tcp_ofo_queue(sk); 4648 4649 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4650 * gap in queue is filled. 4651 */ 4652 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4653 inet_csk(sk)->icsk_ack.pingpong = 0; 4654 } 4655 4656 if (tp->rx_opt.num_sacks) 4657 tcp_sack_remove(tp); 4658 4659 tcp_fast_path_check(sk); 4660 4661 if (eaten > 0) 4662 kfree_skb_partial(skb, fragstolen); 4663 if (!sock_flag(sk, SOCK_DEAD)) 4664 sk->sk_data_ready(sk); 4665 return; 4666 } 4667 4668 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4669 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4670 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4671 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4672 4673 out_of_window: 4674 tcp_enter_quickack_mode(sk); 4675 inet_csk_schedule_ack(sk); 4676 drop: 4677 tcp_drop(sk, skb); 4678 return; 4679 } 4680 4681 /* Out of window. F.e. zero window probe. */ 4682 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4683 goto out_of_window; 4684 4685 tcp_enter_quickack_mode(sk); 4686 4687 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4688 /* Partial packet, seq < rcv_next < end_seq */ 4689 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4690 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4691 TCP_SKB_CB(skb)->end_seq); 4692 4693 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4694 4695 /* If window is closed, drop tail of packet. But after 4696 * remembering D-SACK for its head made in previous line. 4697 */ 4698 if (!tcp_receive_window(tp)) 4699 goto out_of_window; 4700 goto queue_and_out; 4701 } 4702 4703 tcp_data_queue_ofo(sk, skb); 4704 } 4705 4706 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4707 { 4708 if (list) 4709 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4710 4711 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4712 } 4713 4714 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4715 struct sk_buff_head *list, 4716 struct rb_root *root) 4717 { 4718 struct sk_buff *next = tcp_skb_next(skb, list); 4719 4720 if (list) 4721 __skb_unlink(skb, list); 4722 else 4723 rb_erase(&skb->rbnode, root); 4724 4725 __kfree_skb(skb); 4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4727 4728 return next; 4729 } 4730 4731 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4732 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4733 { 4734 struct rb_node **p = &root->rb_node; 4735 struct rb_node *parent = NULL; 4736 struct sk_buff *skb1; 4737 4738 while (*p) { 4739 parent = *p; 4740 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4741 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4742 p = &parent->rb_left; 4743 else 4744 p = &parent->rb_right; 4745 } 4746 rb_link_node(&skb->rbnode, parent, p); 4747 rb_insert_color(&skb->rbnode, root); 4748 } 4749 4750 /* Collapse contiguous sequence of skbs head..tail with 4751 * sequence numbers start..end. 4752 * 4753 * If tail is NULL, this means until the end of the queue. 4754 * 4755 * Segments with FIN/SYN are not collapsed (only because this 4756 * simplifies code) 4757 */ 4758 static void 4759 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4760 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4761 { 4762 struct sk_buff *skb = head, *n; 4763 struct sk_buff_head tmp; 4764 bool end_of_skbs; 4765 4766 /* First, check that queue is collapsible and find 4767 * the point where collapsing can be useful. 4768 */ 4769 restart: 4770 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4771 n = tcp_skb_next(skb, list); 4772 4773 /* No new bits? It is possible on ofo queue. */ 4774 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4775 skb = tcp_collapse_one(sk, skb, list, root); 4776 if (!skb) 4777 break; 4778 goto restart; 4779 } 4780 4781 /* The first skb to collapse is: 4782 * - not SYN/FIN and 4783 * - bloated or contains data before "start" or 4784 * overlaps to the next one. 4785 */ 4786 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4787 (tcp_win_from_space(skb->truesize) > skb->len || 4788 before(TCP_SKB_CB(skb)->seq, start))) { 4789 end_of_skbs = false; 4790 break; 4791 } 4792 4793 if (n && n != tail && 4794 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4795 end_of_skbs = false; 4796 break; 4797 } 4798 4799 /* Decided to skip this, advance start seq. */ 4800 start = TCP_SKB_CB(skb)->end_seq; 4801 } 4802 if (end_of_skbs || 4803 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4804 return; 4805 4806 __skb_queue_head_init(&tmp); 4807 4808 while (before(start, end)) { 4809 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4810 struct sk_buff *nskb; 4811 4812 nskb = alloc_skb(copy, GFP_ATOMIC); 4813 if (!nskb) 4814 break; 4815 4816 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4817 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4818 if (list) 4819 __skb_queue_before(list, skb, nskb); 4820 else 4821 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4822 skb_set_owner_r(nskb, sk); 4823 4824 /* Copy data, releasing collapsed skbs. */ 4825 while (copy > 0) { 4826 int offset = start - TCP_SKB_CB(skb)->seq; 4827 int size = TCP_SKB_CB(skb)->end_seq - start; 4828 4829 BUG_ON(offset < 0); 4830 if (size > 0) { 4831 size = min(copy, size); 4832 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4833 BUG(); 4834 TCP_SKB_CB(nskb)->end_seq += size; 4835 copy -= size; 4836 start += size; 4837 } 4838 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4839 skb = tcp_collapse_one(sk, skb, list, root); 4840 if (!skb || 4841 skb == tail || 4842 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4843 goto end; 4844 } 4845 } 4846 } 4847 end: 4848 skb_queue_walk_safe(&tmp, skb, n) 4849 tcp_rbtree_insert(root, skb); 4850 } 4851 4852 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4853 * and tcp_collapse() them until all the queue is collapsed. 4854 */ 4855 static void tcp_collapse_ofo_queue(struct sock *sk) 4856 { 4857 struct tcp_sock *tp = tcp_sk(sk); 4858 struct sk_buff *skb, *head; 4859 struct rb_node *p; 4860 u32 start, end; 4861 4862 p = rb_first(&tp->out_of_order_queue); 4863 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4864 new_range: 4865 if (!skb) { 4866 p = rb_last(&tp->out_of_order_queue); 4867 /* Note: This is possible p is NULL here. We do not 4868 * use rb_entry_safe(), as ooo_last_skb is valid only 4869 * if rbtree is not empty. 4870 */ 4871 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4872 return; 4873 } 4874 start = TCP_SKB_CB(skb)->seq; 4875 end = TCP_SKB_CB(skb)->end_seq; 4876 4877 for (head = skb;;) { 4878 skb = tcp_skb_next(skb, NULL); 4879 4880 /* Range is terminated when we see a gap or when 4881 * we are at the queue end. 4882 */ 4883 if (!skb || 4884 after(TCP_SKB_CB(skb)->seq, end) || 4885 before(TCP_SKB_CB(skb)->end_seq, start)) { 4886 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4887 head, skb, start, end); 4888 goto new_range; 4889 } 4890 4891 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4892 start = TCP_SKB_CB(skb)->seq; 4893 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4894 end = TCP_SKB_CB(skb)->end_seq; 4895 } 4896 } 4897 4898 /* 4899 * Clean the out-of-order queue to make room. 4900 * We drop high sequences packets to : 4901 * 1) Let a chance for holes to be filled. 4902 * 2) not add too big latencies if thousands of packets sit there. 4903 * (But if application shrinks SO_RCVBUF, we could still end up 4904 * freeing whole queue here) 4905 * 4906 * Return true if queue has shrunk. 4907 */ 4908 static bool tcp_prune_ofo_queue(struct sock *sk) 4909 { 4910 struct tcp_sock *tp = tcp_sk(sk); 4911 struct rb_node *node, *prev; 4912 4913 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4914 return false; 4915 4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4917 node = &tp->ooo_last_skb->rbnode; 4918 do { 4919 prev = rb_prev(node); 4920 rb_erase(node, &tp->out_of_order_queue); 4921 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4922 sk_mem_reclaim(sk); 4923 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4924 !tcp_under_memory_pressure(sk)) 4925 break; 4926 node = prev; 4927 } while (node); 4928 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4929 4930 /* Reset SACK state. A conforming SACK implementation will 4931 * do the same at a timeout based retransmit. When a connection 4932 * is in a sad state like this, we care only about integrity 4933 * of the connection not performance. 4934 */ 4935 if (tp->rx_opt.sack_ok) 4936 tcp_sack_reset(&tp->rx_opt); 4937 return true; 4938 } 4939 4940 /* Reduce allocated memory if we can, trying to get 4941 * the socket within its memory limits again. 4942 * 4943 * Return less than zero if we should start dropping frames 4944 * until the socket owning process reads some of the data 4945 * to stabilize the situation. 4946 */ 4947 static int tcp_prune_queue(struct sock *sk) 4948 { 4949 struct tcp_sock *tp = tcp_sk(sk); 4950 4951 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4952 4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4954 4955 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4956 tcp_clamp_window(sk); 4957 else if (tcp_under_memory_pressure(sk)) 4958 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4959 4960 tcp_collapse_ofo_queue(sk); 4961 if (!skb_queue_empty(&sk->sk_receive_queue)) 4962 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4963 skb_peek(&sk->sk_receive_queue), 4964 NULL, 4965 tp->copied_seq, tp->rcv_nxt); 4966 sk_mem_reclaim(sk); 4967 4968 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4969 return 0; 4970 4971 /* Collapsing did not help, destructive actions follow. 4972 * This must not ever occur. */ 4973 4974 tcp_prune_ofo_queue(sk); 4975 4976 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4977 return 0; 4978 4979 /* If we are really being abused, tell the caller to silently 4980 * drop receive data on the floor. It will get retransmitted 4981 * and hopefully then we'll have sufficient space. 4982 */ 4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4984 4985 /* Massive buffer overcommit. */ 4986 tp->pred_flags = 0; 4987 return -1; 4988 } 4989 4990 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4991 { 4992 const struct tcp_sock *tp = tcp_sk(sk); 4993 4994 /* If the user specified a specific send buffer setting, do 4995 * not modify it. 4996 */ 4997 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4998 return false; 4999 5000 /* If we are under global TCP memory pressure, do not expand. */ 5001 if (tcp_under_memory_pressure(sk)) 5002 return false; 5003 5004 /* If we are under soft global TCP memory pressure, do not expand. */ 5005 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5006 return false; 5007 5008 /* If we filled the congestion window, do not expand. */ 5009 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5010 return false; 5011 5012 return true; 5013 } 5014 5015 /* When incoming ACK allowed to free some skb from write_queue, 5016 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5017 * on the exit from tcp input handler. 5018 * 5019 * PROBLEM: sndbuf expansion does not work well with largesend. 5020 */ 5021 static void tcp_new_space(struct sock *sk) 5022 { 5023 struct tcp_sock *tp = tcp_sk(sk); 5024 5025 if (tcp_should_expand_sndbuf(sk)) { 5026 tcp_sndbuf_expand(sk); 5027 tp->snd_cwnd_stamp = tcp_jiffies32; 5028 } 5029 5030 sk->sk_write_space(sk); 5031 } 5032 5033 static void tcp_check_space(struct sock *sk) 5034 { 5035 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5036 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5037 /* pairs with tcp_poll() */ 5038 smp_mb(); 5039 if (sk->sk_socket && 5040 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5041 tcp_new_space(sk); 5042 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5043 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5044 } 5045 } 5046 } 5047 5048 static inline void tcp_data_snd_check(struct sock *sk) 5049 { 5050 tcp_push_pending_frames(sk); 5051 tcp_check_space(sk); 5052 } 5053 5054 /* 5055 * Check if sending an ack is needed. 5056 */ 5057 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5058 { 5059 struct tcp_sock *tp = tcp_sk(sk); 5060 5061 /* More than one full frame received... */ 5062 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5063 /* ... and right edge of window advances far enough. 5064 * (tcp_recvmsg() will send ACK otherwise). Or... 5065 */ 5066 __tcp_select_window(sk) >= tp->rcv_wnd) || 5067 /* We ACK each frame or... */ 5068 tcp_in_quickack_mode(sk) || 5069 /* We have out of order data. */ 5070 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5071 /* Then ack it now */ 5072 tcp_send_ack(sk); 5073 } else { 5074 /* Else, send delayed ack. */ 5075 tcp_send_delayed_ack(sk); 5076 } 5077 } 5078 5079 static inline void tcp_ack_snd_check(struct sock *sk) 5080 { 5081 if (!inet_csk_ack_scheduled(sk)) { 5082 /* We sent a data segment already. */ 5083 return; 5084 } 5085 __tcp_ack_snd_check(sk, 1); 5086 } 5087 5088 /* 5089 * This routine is only called when we have urgent data 5090 * signaled. Its the 'slow' part of tcp_urg. It could be 5091 * moved inline now as tcp_urg is only called from one 5092 * place. We handle URGent data wrong. We have to - as 5093 * BSD still doesn't use the correction from RFC961. 5094 * For 1003.1g we should support a new option TCP_STDURG to permit 5095 * either form (or just set the sysctl tcp_stdurg). 5096 */ 5097 5098 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5099 { 5100 struct tcp_sock *tp = tcp_sk(sk); 5101 u32 ptr = ntohs(th->urg_ptr); 5102 5103 if (ptr && !sysctl_tcp_stdurg) 5104 ptr--; 5105 ptr += ntohl(th->seq); 5106 5107 /* Ignore urgent data that we've already seen and read. */ 5108 if (after(tp->copied_seq, ptr)) 5109 return; 5110 5111 /* Do not replay urg ptr. 5112 * 5113 * NOTE: interesting situation not covered by specs. 5114 * Misbehaving sender may send urg ptr, pointing to segment, 5115 * which we already have in ofo queue. We are not able to fetch 5116 * such data and will stay in TCP_URG_NOTYET until will be eaten 5117 * by recvmsg(). Seems, we are not obliged to handle such wicked 5118 * situations. But it is worth to think about possibility of some 5119 * DoSes using some hypothetical application level deadlock. 5120 */ 5121 if (before(ptr, tp->rcv_nxt)) 5122 return; 5123 5124 /* Do we already have a newer (or duplicate) urgent pointer? */ 5125 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5126 return; 5127 5128 /* Tell the world about our new urgent pointer. */ 5129 sk_send_sigurg(sk); 5130 5131 /* We may be adding urgent data when the last byte read was 5132 * urgent. To do this requires some care. We cannot just ignore 5133 * tp->copied_seq since we would read the last urgent byte again 5134 * as data, nor can we alter copied_seq until this data arrives 5135 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5136 * 5137 * NOTE. Double Dutch. Rendering to plain English: author of comment 5138 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5139 * and expect that both A and B disappear from stream. This is _wrong_. 5140 * Though this happens in BSD with high probability, this is occasional. 5141 * Any application relying on this is buggy. Note also, that fix "works" 5142 * only in this artificial test. Insert some normal data between A and B and we will 5143 * decline of BSD again. Verdict: it is better to remove to trap 5144 * buggy users. 5145 */ 5146 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5147 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5148 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5149 tp->copied_seq++; 5150 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5151 __skb_unlink(skb, &sk->sk_receive_queue); 5152 __kfree_skb(skb); 5153 } 5154 } 5155 5156 tp->urg_data = TCP_URG_NOTYET; 5157 tp->urg_seq = ptr; 5158 5159 /* Disable header prediction. */ 5160 tp->pred_flags = 0; 5161 } 5162 5163 /* This is the 'fast' part of urgent handling. */ 5164 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5165 { 5166 struct tcp_sock *tp = tcp_sk(sk); 5167 5168 /* Check if we get a new urgent pointer - normally not. */ 5169 if (th->urg) 5170 tcp_check_urg(sk, th); 5171 5172 /* Do we wait for any urgent data? - normally not... */ 5173 if (tp->urg_data == TCP_URG_NOTYET) { 5174 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5175 th->syn; 5176 5177 /* Is the urgent pointer pointing into this packet? */ 5178 if (ptr < skb->len) { 5179 u8 tmp; 5180 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5181 BUG(); 5182 tp->urg_data = TCP_URG_VALID | tmp; 5183 if (!sock_flag(sk, SOCK_DEAD)) 5184 sk->sk_data_ready(sk); 5185 } 5186 } 5187 } 5188 5189 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5190 { 5191 struct tcp_sock *tp = tcp_sk(sk); 5192 int chunk = skb->len - hlen; 5193 int err; 5194 5195 if (skb_csum_unnecessary(skb)) 5196 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5197 else 5198 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5199 5200 if (!err) { 5201 tp->ucopy.len -= chunk; 5202 tp->copied_seq += chunk; 5203 tcp_rcv_space_adjust(sk); 5204 } 5205 5206 return err; 5207 } 5208 5209 /* Accept RST for rcv_nxt - 1 after a FIN. 5210 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5211 * FIN is sent followed by a RST packet. The RST is sent with the same 5212 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5213 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5214 * ACKs on the closed socket. In addition middleboxes can drop either the 5215 * challenge ACK or a subsequent RST. 5216 */ 5217 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5218 { 5219 struct tcp_sock *tp = tcp_sk(sk); 5220 5221 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5222 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5223 TCPF_CLOSING)); 5224 } 5225 5226 /* Does PAWS and seqno based validation of an incoming segment, flags will 5227 * play significant role here. 5228 */ 5229 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5230 const struct tcphdr *th, int syn_inerr) 5231 { 5232 struct tcp_sock *tp = tcp_sk(sk); 5233 bool rst_seq_match = false; 5234 5235 /* RFC1323: H1. Apply PAWS check first. */ 5236 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5237 tp->rx_opt.saw_tstamp && 5238 tcp_paws_discard(sk, skb)) { 5239 if (!th->rst) { 5240 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5241 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5242 LINUX_MIB_TCPACKSKIPPEDPAWS, 5243 &tp->last_oow_ack_time)) 5244 tcp_send_dupack(sk, skb); 5245 goto discard; 5246 } 5247 /* Reset is accepted even if it did not pass PAWS. */ 5248 } 5249 5250 /* Step 1: check sequence number */ 5251 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5252 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5253 * (RST) segments are validated by checking their SEQ-fields." 5254 * And page 69: "If an incoming segment is not acceptable, 5255 * an acknowledgment should be sent in reply (unless the RST 5256 * bit is set, if so drop the segment and return)". 5257 */ 5258 if (!th->rst) { 5259 if (th->syn) 5260 goto syn_challenge; 5261 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5262 LINUX_MIB_TCPACKSKIPPEDSEQ, 5263 &tp->last_oow_ack_time)) 5264 tcp_send_dupack(sk, skb); 5265 } else if (tcp_reset_check(sk, skb)) { 5266 tcp_reset(sk); 5267 } 5268 goto discard; 5269 } 5270 5271 /* Step 2: check RST bit */ 5272 if (th->rst) { 5273 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5274 * FIN and SACK too if available): 5275 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5276 * the right-most SACK block, 5277 * then 5278 * RESET the connection 5279 * else 5280 * Send a challenge ACK 5281 */ 5282 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5283 tcp_reset_check(sk, skb)) { 5284 rst_seq_match = true; 5285 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5286 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5287 int max_sack = sp[0].end_seq; 5288 int this_sack; 5289 5290 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5291 ++this_sack) { 5292 max_sack = after(sp[this_sack].end_seq, 5293 max_sack) ? 5294 sp[this_sack].end_seq : max_sack; 5295 } 5296 5297 if (TCP_SKB_CB(skb)->seq == max_sack) 5298 rst_seq_match = true; 5299 } 5300 5301 if (rst_seq_match) 5302 tcp_reset(sk); 5303 else { 5304 /* Disable TFO if RST is out-of-order 5305 * and no data has been received 5306 * for current active TFO socket 5307 */ 5308 if (tp->syn_fastopen && !tp->data_segs_in && 5309 sk->sk_state == TCP_ESTABLISHED) 5310 tcp_fastopen_active_disable(sk); 5311 tcp_send_challenge_ack(sk, skb); 5312 } 5313 goto discard; 5314 } 5315 5316 /* step 3: check security and precedence [ignored] */ 5317 5318 /* step 4: Check for a SYN 5319 * RFC 5961 4.2 : Send a challenge ack 5320 */ 5321 if (th->syn) { 5322 syn_challenge: 5323 if (syn_inerr) 5324 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5326 tcp_send_challenge_ack(sk, skb); 5327 goto discard; 5328 } 5329 5330 return true; 5331 5332 discard: 5333 tcp_drop(sk, skb); 5334 return false; 5335 } 5336 5337 /* 5338 * TCP receive function for the ESTABLISHED state. 5339 * 5340 * It is split into a fast path and a slow path. The fast path is 5341 * disabled when: 5342 * - A zero window was announced from us - zero window probing 5343 * is only handled properly in the slow path. 5344 * - Out of order segments arrived. 5345 * - Urgent data is expected. 5346 * - There is no buffer space left 5347 * - Unexpected TCP flags/window values/header lengths are received 5348 * (detected by checking the TCP header against pred_flags) 5349 * - Data is sent in both directions. Fast path only supports pure senders 5350 * or pure receivers (this means either the sequence number or the ack 5351 * value must stay constant) 5352 * - Unexpected TCP option. 5353 * 5354 * When these conditions are not satisfied it drops into a standard 5355 * receive procedure patterned after RFC793 to handle all cases. 5356 * The first three cases are guaranteed by proper pred_flags setting, 5357 * the rest is checked inline. Fast processing is turned on in 5358 * tcp_data_queue when everything is OK. 5359 */ 5360 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5361 const struct tcphdr *th, unsigned int len) 5362 { 5363 struct tcp_sock *tp = tcp_sk(sk); 5364 5365 tcp_mstamp_refresh(tp); 5366 if (unlikely(!sk->sk_rx_dst)) 5367 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5368 /* 5369 * Header prediction. 5370 * The code loosely follows the one in the famous 5371 * "30 instruction TCP receive" Van Jacobson mail. 5372 * 5373 * Van's trick is to deposit buffers into socket queue 5374 * on a device interrupt, to call tcp_recv function 5375 * on the receive process context and checksum and copy 5376 * the buffer to user space. smart... 5377 * 5378 * Our current scheme is not silly either but we take the 5379 * extra cost of the net_bh soft interrupt processing... 5380 * We do checksum and copy also but from device to kernel. 5381 */ 5382 5383 tp->rx_opt.saw_tstamp = 0; 5384 5385 /* pred_flags is 0xS?10 << 16 + snd_wnd 5386 * if header_prediction is to be made 5387 * 'S' will always be tp->tcp_header_len >> 2 5388 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5389 * turn it off (when there are holes in the receive 5390 * space for instance) 5391 * PSH flag is ignored. 5392 */ 5393 5394 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5395 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5396 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5397 int tcp_header_len = tp->tcp_header_len; 5398 5399 /* Timestamp header prediction: tcp_header_len 5400 * is automatically equal to th->doff*4 due to pred_flags 5401 * match. 5402 */ 5403 5404 /* Check timestamp */ 5405 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5406 /* No? Slow path! */ 5407 if (!tcp_parse_aligned_timestamp(tp, th)) 5408 goto slow_path; 5409 5410 /* If PAWS failed, check it more carefully in slow path */ 5411 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5412 goto slow_path; 5413 5414 /* DO NOT update ts_recent here, if checksum fails 5415 * and timestamp was corrupted part, it will result 5416 * in a hung connection since we will drop all 5417 * future packets due to the PAWS test. 5418 */ 5419 } 5420 5421 if (len <= tcp_header_len) { 5422 /* Bulk data transfer: sender */ 5423 if (len == tcp_header_len) { 5424 /* Predicted packet is in window by definition. 5425 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5426 * Hence, check seq<=rcv_wup reduces to: 5427 */ 5428 if (tcp_header_len == 5429 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5430 tp->rcv_nxt == tp->rcv_wup) 5431 tcp_store_ts_recent(tp); 5432 5433 /* We know that such packets are checksummed 5434 * on entry. 5435 */ 5436 tcp_ack(sk, skb, 0); 5437 __kfree_skb(skb); 5438 tcp_data_snd_check(sk); 5439 return; 5440 } else { /* Header too small */ 5441 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5442 goto discard; 5443 } 5444 } else { 5445 int eaten = 0; 5446 bool fragstolen = false; 5447 5448 if (tp->ucopy.task == current && 5449 tp->copied_seq == tp->rcv_nxt && 5450 len - tcp_header_len <= tp->ucopy.len && 5451 sock_owned_by_user(sk)) { 5452 __set_current_state(TASK_RUNNING); 5453 5454 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5455 /* Predicted packet is in window by definition. 5456 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5457 * Hence, check seq<=rcv_wup reduces to: 5458 */ 5459 if (tcp_header_len == 5460 (sizeof(struct tcphdr) + 5461 TCPOLEN_TSTAMP_ALIGNED) && 5462 tp->rcv_nxt == tp->rcv_wup) 5463 tcp_store_ts_recent(tp); 5464 5465 tcp_rcv_rtt_measure_ts(sk, skb); 5466 5467 __skb_pull(skb, tcp_header_len); 5468 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5469 NET_INC_STATS(sock_net(sk), 5470 LINUX_MIB_TCPHPHITSTOUSER); 5471 eaten = 1; 5472 } 5473 } 5474 if (!eaten) { 5475 if (tcp_checksum_complete(skb)) 5476 goto csum_error; 5477 5478 if ((int)skb->truesize > sk->sk_forward_alloc) 5479 goto step5; 5480 5481 /* Predicted packet is in window by definition. 5482 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5483 * Hence, check seq<=rcv_wup reduces to: 5484 */ 5485 if (tcp_header_len == 5486 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5487 tp->rcv_nxt == tp->rcv_wup) 5488 tcp_store_ts_recent(tp); 5489 5490 tcp_rcv_rtt_measure_ts(sk, skb); 5491 5492 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5493 5494 /* Bulk data transfer: receiver */ 5495 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5496 &fragstolen); 5497 } 5498 5499 tcp_event_data_recv(sk, skb); 5500 5501 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5502 /* Well, only one small jumplet in fast path... */ 5503 tcp_ack(sk, skb, FLAG_DATA); 5504 tcp_data_snd_check(sk); 5505 if (!inet_csk_ack_scheduled(sk)) 5506 goto no_ack; 5507 } 5508 5509 __tcp_ack_snd_check(sk, 0); 5510 no_ack: 5511 if (eaten) 5512 kfree_skb_partial(skb, fragstolen); 5513 sk->sk_data_ready(sk); 5514 return; 5515 } 5516 } 5517 5518 slow_path: 5519 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5520 goto csum_error; 5521 5522 if (!th->ack && !th->rst && !th->syn) 5523 goto discard; 5524 5525 /* 5526 * Standard slow path. 5527 */ 5528 5529 if (!tcp_validate_incoming(sk, skb, th, 1)) 5530 return; 5531 5532 step5: 5533 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5534 goto discard; 5535 5536 tcp_rcv_rtt_measure_ts(sk, skb); 5537 5538 /* Process urgent data. */ 5539 tcp_urg(sk, skb, th); 5540 5541 /* step 7: process the segment text */ 5542 tcp_data_queue(sk, skb); 5543 5544 tcp_data_snd_check(sk); 5545 tcp_ack_snd_check(sk); 5546 return; 5547 5548 csum_error: 5549 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5550 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5551 5552 discard: 5553 tcp_drop(sk, skb); 5554 } 5555 EXPORT_SYMBOL(tcp_rcv_established); 5556 5557 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5558 { 5559 struct tcp_sock *tp = tcp_sk(sk); 5560 struct inet_connection_sock *icsk = inet_csk(sk); 5561 5562 tcp_set_state(sk, TCP_ESTABLISHED); 5563 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5564 5565 if (skb) { 5566 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5567 security_inet_conn_established(sk, skb); 5568 } 5569 5570 /* Make sure socket is routed, for correct metrics. */ 5571 icsk->icsk_af_ops->rebuild_header(sk); 5572 5573 tcp_init_metrics(sk); 5574 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5575 tcp_init_congestion_control(sk); 5576 5577 /* Prevent spurious tcp_cwnd_restart() on first data 5578 * packet. 5579 */ 5580 tp->lsndtime = tcp_jiffies32; 5581 5582 tcp_init_buffer_space(sk); 5583 5584 if (sock_flag(sk, SOCK_KEEPOPEN)) 5585 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5586 5587 if (!tp->rx_opt.snd_wscale) 5588 __tcp_fast_path_on(tp, tp->snd_wnd); 5589 else 5590 tp->pred_flags = 0; 5591 5592 } 5593 5594 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5595 struct tcp_fastopen_cookie *cookie) 5596 { 5597 struct tcp_sock *tp = tcp_sk(sk); 5598 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5599 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5600 bool syn_drop = false; 5601 5602 if (mss == tp->rx_opt.user_mss) { 5603 struct tcp_options_received opt; 5604 5605 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5606 tcp_clear_options(&opt); 5607 opt.user_mss = opt.mss_clamp = 0; 5608 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5609 mss = opt.mss_clamp; 5610 } 5611 5612 if (!tp->syn_fastopen) { 5613 /* Ignore an unsolicited cookie */ 5614 cookie->len = -1; 5615 } else if (tp->total_retrans) { 5616 /* SYN timed out and the SYN-ACK neither has a cookie nor 5617 * acknowledges data. Presumably the remote received only 5618 * the retransmitted (regular) SYNs: either the original 5619 * SYN-data or the corresponding SYN-ACK was dropped. 5620 */ 5621 syn_drop = (cookie->len < 0 && data); 5622 } else if (cookie->len < 0 && !tp->syn_data) { 5623 /* We requested a cookie but didn't get it. If we did not use 5624 * the (old) exp opt format then try so next time (try_exp=1). 5625 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5626 */ 5627 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5628 } 5629 5630 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5631 5632 if (data) { /* Retransmit unacked data in SYN */ 5633 tcp_for_write_queue_from(data, sk) { 5634 if (data == tcp_send_head(sk) || 5635 __tcp_retransmit_skb(sk, data, 1)) 5636 break; 5637 } 5638 tcp_rearm_rto(sk); 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5641 return true; 5642 } 5643 tp->syn_data_acked = tp->syn_data; 5644 if (tp->syn_data_acked) 5645 NET_INC_STATS(sock_net(sk), 5646 LINUX_MIB_TCPFASTOPENACTIVE); 5647 5648 tcp_fastopen_add_skb(sk, synack); 5649 5650 return false; 5651 } 5652 5653 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5654 const struct tcphdr *th) 5655 { 5656 struct inet_connection_sock *icsk = inet_csk(sk); 5657 struct tcp_sock *tp = tcp_sk(sk); 5658 struct tcp_fastopen_cookie foc = { .len = -1 }; 5659 int saved_clamp = tp->rx_opt.mss_clamp; 5660 bool fastopen_fail; 5661 5662 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5663 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5664 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5665 5666 if (th->ack) { 5667 /* rfc793: 5668 * "If the state is SYN-SENT then 5669 * first check the ACK bit 5670 * If the ACK bit is set 5671 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5672 * a reset (unless the RST bit is set, if so drop 5673 * the segment and return)" 5674 */ 5675 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5676 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5677 goto reset_and_undo; 5678 5679 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5680 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5681 tcp_time_stamp(tp))) { 5682 NET_INC_STATS(sock_net(sk), 5683 LINUX_MIB_PAWSACTIVEREJECTED); 5684 goto reset_and_undo; 5685 } 5686 5687 /* Now ACK is acceptable. 5688 * 5689 * "If the RST bit is set 5690 * If the ACK was acceptable then signal the user "error: 5691 * connection reset", drop the segment, enter CLOSED state, 5692 * delete TCB, and return." 5693 */ 5694 5695 if (th->rst) { 5696 tcp_reset(sk); 5697 goto discard; 5698 } 5699 5700 /* rfc793: 5701 * "fifth, if neither of the SYN or RST bits is set then 5702 * drop the segment and return." 5703 * 5704 * See note below! 5705 * --ANK(990513) 5706 */ 5707 if (!th->syn) 5708 goto discard_and_undo; 5709 5710 /* rfc793: 5711 * "If the SYN bit is on ... 5712 * are acceptable then ... 5713 * (our SYN has been ACKed), change the connection 5714 * state to ESTABLISHED..." 5715 */ 5716 5717 tcp_ecn_rcv_synack(tp, th); 5718 5719 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5720 tcp_ack(sk, skb, FLAG_SLOWPATH); 5721 5722 /* Ok.. it's good. Set up sequence numbers and 5723 * move to established. 5724 */ 5725 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5726 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5727 5728 /* RFC1323: The window in SYN & SYN/ACK segments is 5729 * never scaled. 5730 */ 5731 tp->snd_wnd = ntohs(th->window); 5732 5733 if (!tp->rx_opt.wscale_ok) { 5734 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5735 tp->window_clamp = min(tp->window_clamp, 65535U); 5736 } 5737 5738 if (tp->rx_opt.saw_tstamp) { 5739 tp->rx_opt.tstamp_ok = 1; 5740 tp->tcp_header_len = 5741 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5742 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5743 tcp_store_ts_recent(tp); 5744 } else { 5745 tp->tcp_header_len = sizeof(struct tcphdr); 5746 } 5747 5748 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5749 tcp_enable_fack(tp); 5750 5751 tcp_mtup_init(sk); 5752 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5753 tcp_initialize_rcv_mss(sk); 5754 5755 /* Remember, tcp_poll() does not lock socket! 5756 * Change state from SYN-SENT only after copied_seq 5757 * is initialized. */ 5758 tp->copied_seq = tp->rcv_nxt; 5759 5760 smp_mb(); 5761 5762 tcp_finish_connect(sk, skb); 5763 5764 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5765 tcp_rcv_fastopen_synack(sk, skb, &foc); 5766 5767 if (!sock_flag(sk, SOCK_DEAD)) { 5768 sk->sk_state_change(sk); 5769 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5770 } 5771 if (fastopen_fail) 5772 return -1; 5773 if (sk->sk_write_pending || 5774 icsk->icsk_accept_queue.rskq_defer_accept || 5775 icsk->icsk_ack.pingpong) { 5776 /* Save one ACK. Data will be ready after 5777 * several ticks, if write_pending is set. 5778 * 5779 * It may be deleted, but with this feature tcpdumps 5780 * look so _wonderfully_ clever, that I was not able 5781 * to stand against the temptation 8) --ANK 5782 */ 5783 inet_csk_schedule_ack(sk); 5784 tcp_enter_quickack_mode(sk); 5785 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5786 TCP_DELACK_MAX, TCP_RTO_MAX); 5787 5788 discard: 5789 tcp_drop(sk, skb); 5790 return 0; 5791 } else { 5792 tcp_send_ack(sk); 5793 } 5794 return -1; 5795 } 5796 5797 /* No ACK in the segment */ 5798 5799 if (th->rst) { 5800 /* rfc793: 5801 * "If the RST bit is set 5802 * 5803 * Otherwise (no ACK) drop the segment and return." 5804 */ 5805 5806 goto discard_and_undo; 5807 } 5808 5809 /* PAWS check. */ 5810 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5811 tcp_paws_reject(&tp->rx_opt, 0)) 5812 goto discard_and_undo; 5813 5814 if (th->syn) { 5815 /* We see SYN without ACK. It is attempt of 5816 * simultaneous connect with crossed SYNs. 5817 * Particularly, it can be connect to self. 5818 */ 5819 tcp_set_state(sk, TCP_SYN_RECV); 5820 5821 if (tp->rx_opt.saw_tstamp) { 5822 tp->rx_opt.tstamp_ok = 1; 5823 tcp_store_ts_recent(tp); 5824 tp->tcp_header_len = 5825 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5826 } else { 5827 tp->tcp_header_len = sizeof(struct tcphdr); 5828 } 5829 5830 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5831 tp->copied_seq = tp->rcv_nxt; 5832 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5833 5834 /* RFC1323: The window in SYN & SYN/ACK segments is 5835 * never scaled. 5836 */ 5837 tp->snd_wnd = ntohs(th->window); 5838 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5839 tp->max_window = tp->snd_wnd; 5840 5841 tcp_ecn_rcv_syn(tp, th); 5842 5843 tcp_mtup_init(sk); 5844 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5845 tcp_initialize_rcv_mss(sk); 5846 5847 tcp_send_synack(sk); 5848 #if 0 5849 /* Note, we could accept data and URG from this segment. 5850 * There are no obstacles to make this (except that we must 5851 * either change tcp_recvmsg() to prevent it from returning data 5852 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5853 * 5854 * However, if we ignore data in ACKless segments sometimes, 5855 * we have no reasons to accept it sometimes. 5856 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5857 * is not flawless. So, discard packet for sanity. 5858 * Uncomment this return to process the data. 5859 */ 5860 return -1; 5861 #else 5862 goto discard; 5863 #endif 5864 } 5865 /* "fifth, if neither of the SYN or RST bits is set then 5866 * drop the segment and return." 5867 */ 5868 5869 discard_and_undo: 5870 tcp_clear_options(&tp->rx_opt); 5871 tp->rx_opt.mss_clamp = saved_clamp; 5872 goto discard; 5873 5874 reset_and_undo: 5875 tcp_clear_options(&tp->rx_opt); 5876 tp->rx_opt.mss_clamp = saved_clamp; 5877 return 1; 5878 } 5879 5880 /* 5881 * This function implements the receiving procedure of RFC 793 for 5882 * all states except ESTABLISHED and TIME_WAIT. 5883 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5884 * address independent. 5885 */ 5886 5887 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5888 { 5889 struct tcp_sock *tp = tcp_sk(sk); 5890 struct inet_connection_sock *icsk = inet_csk(sk); 5891 const struct tcphdr *th = tcp_hdr(skb); 5892 struct request_sock *req; 5893 int queued = 0; 5894 bool acceptable; 5895 5896 switch (sk->sk_state) { 5897 case TCP_CLOSE: 5898 goto discard; 5899 5900 case TCP_LISTEN: 5901 if (th->ack) 5902 return 1; 5903 5904 if (th->rst) 5905 goto discard; 5906 5907 if (th->syn) { 5908 if (th->fin) 5909 goto discard; 5910 /* It is possible that we process SYN packets from backlog, 5911 * so we need to make sure to disable BH right there. 5912 */ 5913 local_bh_disable(); 5914 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5915 local_bh_enable(); 5916 5917 if (!acceptable) 5918 return 1; 5919 consume_skb(skb); 5920 return 0; 5921 } 5922 goto discard; 5923 5924 case TCP_SYN_SENT: 5925 tp->rx_opt.saw_tstamp = 0; 5926 tcp_mstamp_refresh(tp); 5927 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5928 if (queued >= 0) 5929 return queued; 5930 5931 /* Do step6 onward by hand. */ 5932 tcp_urg(sk, skb, th); 5933 __kfree_skb(skb); 5934 tcp_data_snd_check(sk); 5935 return 0; 5936 } 5937 5938 tcp_mstamp_refresh(tp); 5939 tp->rx_opt.saw_tstamp = 0; 5940 req = tp->fastopen_rsk; 5941 if (req) { 5942 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5943 sk->sk_state != TCP_FIN_WAIT1); 5944 5945 if (!tcp_check_req(sk, skb, req, true)) 5946 goto discard; 5947 } 5948 5949 if (!th->ack && !th->rst && !th->syn) 5950 goto discard; 5951 5952 if (!tcp_validate_incoming(sk, skb, th, 0)) 5953 return 0; 5954 5955 /* step 5: check the ACK field */ 5956 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5957 FLAG_UPDATE_TS_RECENT | 5958 FLAG_NO_CHALLENGE_ACK) > 0; 5959 5960 if (!acceptable) { 5961 if (sk->sk_state == TCP_SYN_RECV) 5962 return 1; /* send one RST */ 5963 tcp_send_challenge_ack(sk, skb); 5964 goto discard; 5965 } 5966 switch (sk->sk_state) { 5967 case TCP_SYN_RECV: 5968 if (!tp->srtt_us) 5969 tcp_synack_rtt_meas(sk, req); 5970 5971 /* Once we leave TCP_SYN_RECV, we no longer need req 5972 * so release it. 5973 */ 5974 if (req) { 5975 inet_csk(sk)->icsk_retransmits = 0; 5976 reqsk_fastopen_remove(sk, req, false); 5977 } else { 5978 /* Make sure socket is routed, for correct metrics. */ 5979 icsk->icsk_af_ops->rebuild_header(sk); 5980 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5981 tcp_init_congestion_control(sk); 5982 5983 tcp_mtup_init(sk); 5984 tp->copied_seq = tp->rcv_nxt; 5985 tcp_init_buffer_space(sk); 5986 } 5987 smp_mb(); 5988 tcp_set_state(sk, TCP_ESTABLISHED); 5989 sk->sk_state_change(sk); 5990 5991 /* Note, that this wakeup is only for marginal crossed SYN case. 5992 * Passively open sockets are not waked up, because 5993 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5994 */ 5995 if (sk->sk_socket) 5996 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5997 5998 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5999 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6000 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6001 6002 if (tp->rx_opt.tstamp_ok) 6003 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6004 6005 if (req) { 6006 /* Re-arm the timer because data may have been sent out. 6007 * This is similar to the regular data transmission case 6008 * when new data has just been ack'ed. 6009 * 6010 * (TFO) - we could try to be more aggressive and 6011 * retransmitting any data sooner based on when they 6012 * are sent out. 6013 */ 6014 tcp_rearm_rto(sk); 6015 } else 6016 tcp_init_metrics(sk); 6017 6018 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6019 tcp_update_pacing_rate(sk); 6020 6021 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6022 tp->lsndtime = tcp_jiffies32; 6023 6024 tcp_initialize_rcv_mss(sk); 6025 tcp_fast_path_on(tp); 6026 break; 6027 6028 case TCP_FIN_WAIT1: { 6029 int tmo; 6030 6031 /* If we enter the TCP_FIN_WAIT1 state and we are a 6032 * Fast Open socket and this is the first acceptable 6033 * ACK we have received, this would have acknowledged 6034 * our SYNACK so stop the SYNACK timer. 6035 */ 6036 if (req) { 6037 /* We no longer need the request sock. */ 6038 reqsk_fastopen_remove(sk, req, false); 6039 tcp_rearm_rto(sk); 6040 } 6041 if (tp->snd_una != tp->write_seq) 6042 break; 6043 6044 tcp_set_state(sk, TCP_FIN_WAIT2); 6045 sk->sk_shutdown |= SEND_SHUTDOWN; 6046 6047 sk_dst_confirm(sk); 6048 6049 if (!sock_flag(sk, SOCK_DEAD)) { 6050 /* Wake up lingering close() */ 6051 sk->sk_state_change(sk); 6052 break; 6053 } 6054 6055 if (tp->linger2 < 0) { 6056 tcp_done(sk); 6057 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6058 return 1; 6059 } 6060 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6061 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6062 /* Receive out of order FIN after close() */ 6063 if (tp->syn_fastopen && th->fin) 6064 tcp_fastopen_active_disable(sk); 6065 tcp_done(sk); 6066 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6067 return 1; 6068 } 6069 6070 tmo = tcp_fin_time(sk); 6071 if (tmo > TCP_TIMEWAIT_LEN) { 6072 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6073 } else if (th->fin || sock_owned_by_user(sk)) { 6074 /* Bad case. We could lose such FIN otherwise. 6075 * It is not a big problem, but it looks confusing 6076 * and not so rare event. We still can lose it now, 6077 * if it spins in bh_lock_sock(), but it is really 6078 * marginal case. 6079 */ 6080 inet_csk_reset_keepalive_timer(sk, tmo); 6081 } else { 6082 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6083 goto discard; 6084 } 6085 break; 6086 } 6087 6088 case TCP_CLOSING: 6089 if (tp->snd_una == tp->write_seq) { 6090 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6091 goto discard; 6092 } 6093 break; 6094 6095 case TCP_LAST_ACK: 6096 if (tp->snd_una == tp->write_seq) { 6097 tcp_update_metrics(sk); 6098 tcp_done(sk); 6099 goto discard; 6100 } 6101 break; 6102 } 6103 6104 /* step 6: check the URG bit */ 6105 tcp_urg(sk, skb, th); 6106 6107 /* step 7: process the segment text */ 6108 switch (sk->sk_state) { 6109 case TCP_CLOSE_WAIT: 6110 case TCP_CLOSING: 6111 case TCP_LAST_ACK: 6112 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6113 break; 6114 case TCP_FIN_WAIT1: 6115 case TCP_FIN_WAIT2: 6116 /* RFC 793 says to queue data in these states, 6117 * RFC 1122 says we MUST send a reset. 6118 * BSD 4.4 also does reset. 6119 */ 6120 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6121 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6122 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6124 tcp_reset(sk); 6125 return 1; 6126 } 6127 } 6128 /* Fall through */ 6129 case TCP_ESTABLISHED: 6130 tcp_data_queue(sk, skb); 6131 queued = 1; 6132 break; 6133 } 6134 6135 /* tcp_data could move socket to TIME-WAIT */ 6136 if (sk->sk_state != TCP_CLOSE) { 6137 tcp_data_snd_check(sk); 6138 tcp_ack_snd_check(sk); 6139 } 6140 6141 if (!queued) { 6142 discard: 6143 tcp_drop(sk, skb); 6144 } 6145 return 0; 6146 } 6147 EXPORT_SYMBOL(tcp_rcv_state_process); 6148 6149 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6150 { 6151 struct inet_request_sock *ireq = inet_rsk(req); 6152 6153 if (family == AF_INET) 6154 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6155 &ireq->ir_rmt_addr, port); 6156 #if IS_ENABLED(CONFIG_IPV6) 6157 else if (family == AF_INET6) 6158 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6159 &ireq->ir_v6_rmt_addr, port); 6160 #endif 6161 } 6162 6163 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6164 * 6165 * If we receive a SYN packet with these bits set, it means a 6166 * network is playing bad games with TOS bits. In order to 6167 * avoid possible false congestion notifications, we disable 6168 * TCP ECN negotiation. 6169 * 6170 * Exception: tcp_ca wants ECN. This is required for DCTCP 6171 * congestion control: Linux DCTCP asserts ECT on all packets, 6172 * including SYN, which is most optimal solution; however, 6173 * others, such as FreeBSD do not. 6174 */ 6175 static void tcp_ecn_create_request(struct request_sock *req, 6176 const struct sk_buff *skb, 6177 const struct sock *listen_sk, 6178 const struct dst_entry *dst) 6179 { 6180 const struct tcphdr *th = tcp_hdr(skb); 6181 const struct net *net = sock_net(listen_sk); 6182 bool th_ecn = th->ece && th->cwr; 6183 bool ect, ecn_ok; 6184 u32 ecn_ok_dst; 6185 6186 if (!th_ecn) 6187 return; 6188 6189 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6190 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6191 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6192 6193 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6194 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6195 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6196 inet_rsk(req)->ecn_ok = 1; 6197 } 6198 6199 static void tcp_openreq_init(struct request_sock *req, 6200 const struct tcp_options_received *rx_opt, 6201 struct sk_buff *skb, const struct sock *sk) 6202 { 6203 struct inet_request_sock *ireq = inet_rsk(req); 6204 6205 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6206 req->cookie_ts = 0; 6207 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6208 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6209 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6210 tcp_rsk(req)->last_oow_ack_time = 0; 6211 req->mss = rx_opt->mss_clamp; 6212 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6213 ireq->tstamp_ok = rx_opt->tstamp_ok; 6214 ireq->sack_ok = rx_opt->sack_ok; 6215 ireq->snd_wscale = rx_opt->snd_wscale; 6216 ireq->wscale_ok = rx_opt->wscale_ok; 6217 ireq->acked = 0; 6218 ireq->ecn_ok = 0; 6219 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6220 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6221 ireq->ir_mark = inet_request_mark(sk, skb); 6222 } 6223 6224 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6225 struct sock *sk_listener, 6226 bool attach_listener) 6227 { 6228 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6229 attach_listener); 6230 6231 if (req) { 6232 struct inet_request_sock *ireq = inet_rsk(req); 6233 6234 kmemcheck_annotate_bitfield(ireq, flags); 6235 ireq->opt = NULL; 6236 #if IS_ENABLED(CONFIG_IPV6) 6237 ireq->pktopts = NULL; 6238 #endif 6239 atomic64_set(&ireq->ir_cookie, 0); 6240 ireq->ireq_state = TCP_NEW_SYN_RECV; 6241 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6242 ireq->ireq_family = sk_listener->sk_family; 6243 } 6244 6245 return req; 6246 } 6247 EXPORT_SYMBOL(inet_reqsk_alloc); 6248 6249 /* 6250 * Return true if a syncookie should be sent 6251 */ 6252 static bool tcp_syn_flood_action(const struct sock *sk, 6253 const struct sk_buff *skb, 6254 const char *proto) 6255 { 6256 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6257 const char *msg = "Dropping request"; 6258 bool want_cookie = false; 6259 struct net *net = sock_net(sk); 6260 6261 #ifdef CONFIG_SYN_COOKIES 6262 if (net->ipv4.sysctl_tcp_syncookies) { 6263 msg = "Sending cookies"; 6264 want_cookie = true; 6265 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6266 } else 6267 #endif 6268 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6269 6270 if (!queue->synflood_warned && 6271 net->ipv4.sysctl_tcp_syncookies != 2 && 6272 xchg(&queue->synflood_warned, 1) == 0) 6273 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6274 proto, ntohs(tcp_hdr(skb)->dest), msg); 6275 6276 return want_cookie; 6277 } 6278 6279 static void tcp_reqsk_record_syn(const struct sock *sk, 6280 struct request_sock *req, 6281 const struct sk_buff *skb) 6282 { 6283 if (tcp_sk(sk)->save_syn) { 6284 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6285 u32 *copy; 6286 6287 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6288 if (copy) { 6289 copy[0] = len; 6290 memcpy(©[1], skb_network_header(skb), len); 6291 req->saved_syn = copy; 6292 } 6293 } 6294 } 6295 6296 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6297 const struct tcp_request_sock_ops *af_ops, 6298 struct sock *sk, struct sk_buff *skb) 6299 { 6300 struct tcp_fastopen_cookie foc = { .len = -1 }; 6301 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6302 struct tcp_options_received tmp_opt; 6303 struct tcp_sock *tp = tcp_sk(sk); 6304 struct net *net = sock_net(sk); 6305 struct sock *fastopen_sk = NULL; 6306 struct dst_entry *dst = NULL; 6307 struct request_sock *req; 6308 bool want_cookie = false; 6309 struct flowi fl; 6310 6311 /* TW buckets are converted to open requests without 6312 * limitations, they conserve resources and peer is 6313 * evidently real one. 6314 */ 6315 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6316 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6317 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6318 if (!want_cookie) 6319 goto drop; 6320 } 6321 6322 if (sk_acceptq_is_full(sk)) { 6323 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6324 goto drop; 6325 } 6326 6327 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6328 if (!req) 6329 goto drop; 6330 6331 tcp_rsk(req)->af_specific = af_ops; 6332 tcp_rsk(req)->ts_off = 0; 6333 6334 tcp_clear_options(&tmp_opt); 6335 tmp_opt.mss_clamp = af_ops->mss_clamp; 6336 tmp_opt.user_mss = tp->rx_opt.user_mss; 6337 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6338 want_cookie ? NULL : &foc); 6339 6340 if (want_cookie && !tmp_opt.saw_tstamp) 6341 tcp_clear_options(&tmp_opt); 6342 6343 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6344 tcp_openreq_init(req, &tmp_opt, skb, sk); 6345 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6346 6347 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6348 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6349 6350 af_ops->init_req(req, sk, skb); 6351 6352 if (security_inet_conn_request(sk, skb, req)) 6353 goto drop_and_free; 6354 6355 if (tmp_opt.tstamp_ok) 6356 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6357 6358 if (!want_cookie && !isn) { 6359 /* Kill the following clause, if you dislike this way. */ 6360 if (!net->ipv4.sysctl_tcp_syncookies && 6361 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6362 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6363 !tcp_peer_is_proven(req, dst)) { 6364 /* Without syncookies last quarter of 6365 * backlog is filled with destinations, 6366 * proven to be alive. 6367 * It means that we continue to communicate 6368 * to destinations, already remembered 6369 * to the moment of synflood. 6370 */ 6371 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6372 rsk_ops->family); 6373 goto drop_and_release; 6374 } 6375 6376 isn = af_ops->init_seq(skb); 6377 } 6378 if (!dst) { 6379 dst = af_ops->route_req(sk, &fl, req); 6380 if (!dst) 6381 goto drop_and_free; 6382 } 6383 6384 tcp_ecn_create_request(req, skb, sk, dst); 6385 6386 if (want_cookie) { 6387 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6388 req->cookie_ts = tmp_opt.tstamp_ok; 6389 if (!tmp_opt.tstamp_ok) 6390 inet_rsk(req)->ecn_ok = 0; 6391 } 6392 6393 tcp_rsk(req)->snt_isn = isn; 6394 tcp_rsk(req)->txhash = net_tx_rndhash(); 6395 tcp_openreq_init_rwin(req, sk, dst); 6396 if (!want_cookie) { 6397 tcp_reqsk_record_syn(sk, req, skb); 6398 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6399 } 6400 if (fastopen_sk) { 6401 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6402 &foc, TCP_SYNACK_FASTOPEN); 6403 /* Add the child socket directly into the accept queue */ 6404 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6405 sk->sk_data_ready(sk); 6406 bh_unlock_sock(fastopen_sk); 6407 sock_put(fastopen_sk); 6408 } else { 6409 tcp_rsk(req)->tfo_listener = false; 6410 if (!want_cookie) 6411 inet_csk_reqsk_queue_hash_add(sk, req, 6412 tcp_timeout_init((struct sock *)req)); 6413 af_ops->send_synack(sk, dst, &fl, req, &foc, 6414 !want_cookie ? TCP_SYNACK_NORMAL : 6415 TCP_SYNACK_COOKIE); 6416 if (want_cookie) { 6417 reqsk_free(req); 6418 return 0; 6419 } 6420 } 6421 reqsk_put(req); 6422 return 0; 6423 6424 drop_and_release: 6425 dst_release(dst); 6426 drop_and_free: 6427 reqsk_free(req); 6428 drop: 6429 tcp_listendrop(sk); 6430 return 0; 6431 } 6432 EXPORT_SYMBOL(tcp_conn_request); 6433