1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 241 tcp_sk(sk)->advmss); 242 /* Account for possibly-removed options */ 243 if (unlikely(len > icsk->icsk_ack.rcv_mss + 244 MAX_TCP_OPTION_SPACE)) 245 tcp_gro_dev_warn(sk, skb, len); 246 } else { 247 /* Otherwise, we make more careful check taking into account, 248 * that SACKs block is variable. 249 * 250 * "len" is invariant segment length, including TCP header. 251 */ 252 len += skb->data - skb_transport_header(skb); 253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 254 /* If PSH is not set, packet should be 255 * full sized, provided peer TCP is not badly broken. 256 * This observation (if it is correct 8)) allows 257 * to handle super-low mtu links fairly. 258 */ 259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 261 /* Subtract also invariant (if peer is RFC compliant), 262 * tcp header plus fixed timestamp option length. 263 * Resulting "len" is MSS free of SACK jitter. 264 */ 265 len -= tcp_sk(sk)->tcp_header_len; 266 icsk->icsk_ack.last_seg_size = len; 267 if (len == lss) { 268 icsk->icsk_ack.rcv_mss = len; 269 return; 270 } 271 } 272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 275 } 276 } 277 278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 279 { 280 struct inet_connection_sock *icsk = inet_csk(sk); 281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 282 283 if (quickacks == 0) 284 quickacks = 2; 285 quickacks = min(quickacks, max_quickacks); 286 if (quickacks > icsk->icsk_ack.quick) 287 icsk->icsk_ack.quick = quickacks; 288 } 289 290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 291 { 292 struct inet_connection_sock *icsk = inet_csk(sk); 293 294 tcp_incr_quickack(sk, max_quickacks); 295 inet_csk_exit_pingpong_mode(sk); 296 icsk->icsk_ack.ato = TCP_ATO_MIN; 297 } 298 EXPORT_SYMBOL(tcp_enter_quickack_mode); 299 300 /* Send ACKs quickly, if "quick" count is not exhausted 301 * and the session is not interactive. 302 */ 303 304 static bool tcp_in_quickack_mode(struct sock *sk) 305 { 306 const struct inet_connection_sock *icsk = inet_csk(sk); 307 const struct dst_entry *dst = __sk_dst_get(sk); 308 309 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 311 } 312 313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 314 { 315 if (tp->ecn_flags & TCP_ECN_OK) 316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 317 } 318 319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 320 { 321 if (tcp_hdr(skb)->cwr) { 322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 323 324 /* If the sender is telling us it has entered CWR, then its 325 * cwnd may be very low (even just 1 packet), so we should ACK 326 * immediately. 327 */ 328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 330 } 331 } 332 333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 334 { 335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 336 } 337 338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 343 case INET_ECN_NOT_ECT: 344 /* Funny extension: if ECT is not set on a segment, 345 * and we already seen ECT on a previous segment, 346 * it is probably a retransmit. 347 */ 348 if (tp->ecn_flags & TCP_ECN_SEEN) 349 tcp_enter_quickack_mode(sk, 2); 350 break; 351 case INET_ECN_CE: 352 if (tcp_ca_needs_ecn(sk)) 353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 354 355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 356 /* Better not delay acks, sender can have a very low cwnd */ 357 tcp_enter_quickack_mode(sk, 2); 358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 359 } 360 tp->ecn_flags |= TCP_ECN_SEEN; 361 break; 362 default: 363 if (tcp_ca_needs_ecn(sk)) 364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 365 tp->ecn_flags |= TCP_ECN_SEEN; 366 break; 367 } 368 } 369 370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 371 { 372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 373 __tcp_ecn_check_ce(sk, skb); 374 } 375 376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 377 { 378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 379 tp->ecn_flags &= ~TCP_ECN_OK; 380 } 381 382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 383 { 384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 385 tp->ecn_flags &= ~TCP_ECN_OK; 386 } 387 388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 389 { 390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 391 return true; 392 return false; 393 } 394 395 /* Buffer size and advertised window tuning. 396 * 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 398 */ 399 400 static void tcp_sndbuf_expand(struct sock *sk) 401 { 402 const struct tcp_sock *tp = tcp_sk(sk); 403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 404 int sndmem, per_mss; 405 u32 nr_segs; 406 407 /* Worst case is non GSO/TSO : each frame consumes one skb 408 * and skb->head is kmalloced using power of two area of memory 409 */ 410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 411 MAX_TCP_HEADER + 412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 414 per_mss = roundup_pow_of_two(per_mss) + 415 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 416 417 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 419 420 /* Fast Recovery (RFC 5681 3.2) : 421 * Cubic needs 1.7 factor, rounded to 2 to include 422 * extra cushion (application might react slowly to EPOLLOUT) 423 */ 424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 425 sndmem *= nr_segs * per_mss; 426 427 if (sk->sk_sndbuf < sndmem) 428 WRITE_ONCE(sk->sk_sndbuf, 429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 430 } 431 432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 433 * 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated 435 * forward and advertised in receiver window (tp->rcv_wnd) and 436 * "application buffer", required to isolate scheduling/application 437 * latencies from network. 438 * window_clamp is maximal advertised window. It can be less than 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp 440 * is reserved for "application" buffer. The less window_clamp is 441 * the smoother our behaviour from viewpoint of network, but the lower 442 * throughput and the higher sensitivity of the connection to losses. 8) 443 * 444 * rcv_ssthresh is more strict window_clamp used at "slow start" 445 * phase to predict further behaviour of this connection. 446 * It is used for two goals: 447 * - to enforce header prediction at sender, even when application 448 * requires some significant "application buffer". It is check #1. 449 * - to prevent pruning of receive queue because of misprediction 450 * of receiver window. Check #2. 451 * 452 * The scheme does not work when sender sends good segments opening 453 * window and then starts to feed us spaghetti. But it should work 454 * in common situations. Otherwise, we have to rely on queue collapsing. 455 */ 456 457 /* Slow part of check#2. */ 458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 459 unsigned int skbtruesize) 460 { 461 struct tcp_sock *tp = tcp_sk(sk); 462 /* Optimize this! */ 463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 465 466 while (tp->rcv_ssthresh <= window) { 467 if (truesize <= skb->len) 468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 469 470 truesize >>= 1; 471 window >>= 1; 472 } 473 return 0; 474 } 475 476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 477 * can play nice with us, as sk_buff and skb->head might be either 478 * freed or shared with up to MAX_SKB_FRAGS segments. 479 * Only give a boost to drivers using page frag(s) to hold the frame(s), 480 * and if no payload was pulled in skb->head before reaching us. 481 */ 482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 483 { 484 u32 truesize = skb->truesize; 485 486 if (adjust && !skb_headlen(skb)) { 487 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 488 /* paranoid check, some drivers might be buggy */ 489 if (unlikely((int)truesize < (int)skb->len)) 490 truesize = skb->truesize; 491 } 492 return truesize; 493 } 494 495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 496 bool adjust) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 int room; 500 501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 502 503 /* Check #1 */ 504 if (room > 0 && !tcp_under_memory_pressure(sk)) { 505 unsigned int truesize = truesize_adjust(adjust, skb); 506 int incr; 507 508 /* Check #2. Increase window, if skb with such overhead 509 * will fit to rcvbuf in future. 510 */ 511 if (tcp_win_from_space(sk, truesize) <= skb->len) 512 incr = 2 * tp->advmss; 513 else 514 incr = __tcp_grow_window(sk, skb, truesize); 515 516 if (incr) { 517 incr = max_t(int, incr, 2 * skb->len); 518 tp->rcv_ssthresh += min(room, incr); 519 inet_csk(sk)->icsk_ack.quick |= 1; 520 } 521 } 522 } 523 524 /* 3. Try to fixup all. It is made immediately after connection enters 525 * established state. 526 */ 527 static void tcp_init_buffer_space(struct sock *sk) 528 { 529 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 530 struct tcp_sock *tp = tcp_sk(sk); 531 int maxwin; 532 533 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 534 tcp_sndbuf_expand(sk); 535 536 tcp_mstamp_refresh(tp); 537 tp->rcvq_space.time = tp->tcp_mstamp; 538 tp->rcvq_space.seq = tp->copied_seq; 539 540 maxwin = tcp_full_space(sk); 541 542 if (tp->window_clamp >= maxwin) { 543 tp->window_clamp = maxwin; 544 545 if (tcp_app_win && maxwin > 4 * tp->advmss) 546 tp->window_clamp = max(maxwin - 547 (maxwin >> tcp_app_win), 548 4 * tp->advmss); 549 } 550 551 /* Force reservation of one segment. */ 552 if (tcp_app_win && 553 tp->window_clamp > 2 * tp->advmss && 554 tp->window_clamp + tp->advmss > maxwin) 555 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 556 557 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 558 tp->snd_cwnd_stamp = tcp_jiffies32; 559 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 560 (u32)TCP_INIT_CWND * tp->advmss); 561 } 562 563 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 564 static void tcp_clamp_window(struct sock *sk) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 struct inet_connection_sock *icsk = inet_csk(sk); 568 struct net *net = sock_net(sk); 569 570 icsk->icsk_ack.quick = 0; 571 572 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 573 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 574 !tcp_under_memory_pressure(sk) && 575 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 576 WRITE_ONCE(sk->sk_rcvbuf, 577 min(atomic_read(&sk->sk_rmem_alloc), 578 net->ipv4.sysctl_tcp_rmem[2])); 579 } 580 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 581 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 582 } 583 584 /* Initialize RCV_MSS value. 585 * RCV_MSS is an our guess about MSS used by the peer. 586 * We haven't any direct information about the MSS. 587 * It's better to underestimate the RCV_MSS rather than overestimate. 588 * Overestimations make us ACKing less frequently than needed. 589 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 590 */ 591 void tcp_initialize_rcv_mss(struct sock *sk) 592 { 593 const struct tcp_sock *tp = tcp_sk(sk); 594 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 595 596 hint = min(hint, tp->rcv_wnd / 2); 597 hint = min(hint, TCP_MSS_DEFAULT); 598 hint = max(hint, TCP_MIN_MSS); 599 600 inet_csk(sk)->icsk_ack.rcv_mss = hint; 601 } 602 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 603 604 /* Receiver "autotuning" code. 605 * 606 * The algorithm for RTT estimation w/o timestamps is based on 607 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 608 * <https://public.lanl.gov/radiant/pubs.html#DRS> 609 * 610 * More detail on this code can be found at 611 * <http://staff.psc.edu/jheffner/>, 612 * though this reference is out of date. A new paper 613 * is pending. 614 */ 615 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 616 { 617 u32 new_sample = tp->rcv_rtt_est.rtt_us; 618 long m = sample; 619 620 if (new_sample != 0) { 621 /* If we sample in larger samples in the non-timestamp 622 * case, we could grossly overestimate the RTT especially 623 * with chatty applications or bulk transfer apps which 624 * are stalled on filesystem I/O. 625 * 626 * Also, since we are only going for a minimum in the 627 * non-timestamp case, we do not smooth things out 628 * else with timestamps disabled convergence takes too 629 * long. 630 */ 631 if (!win_dep) { 632 m -= (new_sample >> 3); 633 new_sample += m; 634 } else { 635 m <<= 3; 636 if (m < new_sample) 637 new_sample = m; 638 } 639 } else { 640 /* No previous measure. */ 641 new_sample = m << 3; 642 } 643 644 tp->rcv_rtt_est.rtt_us = new_sample; 645 } 646 647 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 648 { 649 u32 delta_us; 650 651 if (tp->rcv_rtt_est.time == 0) 652 goto new_measure; 653 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 654 return; 655 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 656 if (!delta_us) 657 delta_us = 1; 658 tcp_rcv_rtt_update(tp, delta_us, 1); 659 660 new_measure: 661 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 662 tp->rcv_rtt_est.time = tp->tcp_mstamp; 663 } 664 665 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 666 const struct sk_buff *skb) 667 { 668 struct tcp_sock *tp = tcp_sk(sk); 669 670 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 671 return; 672 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 673 674 if (TCP_SKB_CB(skb)->end_seq - 675 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 676 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 677 u32 delta_us; 678 679 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 680 if (!delta) 681 delta = 1; 682 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 683 tcp_rcv_rtt_update(tp, delta_us, 0); 684 } 685 } 686 } 687 688 /* 689 * This function should be called every time data is copied to user space. 690 * It calculates the appropriate TCP receive buffer space. 691 */ 692 void tcp_rcv_space_adjust(struct sock *sk) 693 { 694 struct tcp_sock *tp = tcp_sk(sk); 695 u32 copied; 696 int time; 697 698 trace_tcp_rcv_space_adjust(sk); 699 700 tcp_mstamp_refresh(tp); 701 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 702 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 703 return; 704 705 /* Number of bytes copied to user in last RTT */ 706 copied = tp->copied_seq - tp->rcvq_space.seq; 707 if (copied <= tp->rcvq_space.space) 708 goto new_measure; 709 710 /* A bit of theory : 711 * copied = bytes received in previous RTT, our base window 712 * To cope with packet losses, we need a 2x factor 713 * To cope with slow start, and sender growing its cwin by 100 % 714 * every RTT, we need a 4x factor, because the ACK we are sending 715 * now is for the next RTT, not the current one : 716 * <prev RTT . ><current RTT .. ><next RTT .... > 717 */ 718 719 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 720 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 721 int rcvmem, rcvbuf; 722 u64 rcvwin, grow; 723 724 /* minimal window to cope with packet losses, assuming 725 * steady state. Add some cushion because of small variations. 726 */ 727 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 728 729 /* Accommodate for sender rate increase (eg. slow start) */ 730 grow = rcvwin * (copied - tp->rcvq_space.space); 731 do_div(grow, tp->rcvq_space.space); 732 rcvwin += (grow << 1); 733 734 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 735 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 736 rcvmem += 128; 737 738 do_div(rcvwin, tp->advmss); 739 rcvbuf = min_t(u64, rcvwin * rcvmem, 740 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 741 if (rcvbuf > sk->sk_rcvbuf) { 742 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 743 744 /* Make the window clamp follow along. */ 745 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 746 } 747 } 748 tp->rcvq_space.space = copied; 749 750 new_measure: 751 tp->rcvq_space.seq = tp->copied_seq; 752 tp->rcvq_space.time = tp->tcp_mstamp; 753 } 754 755 /* There is something which you must keep in mind when you analyze the 756 * behavior of the tp->ato delayed ack timeout interval. When a 757 * connection starts up, we want to ack as quickly as possible. The 758 * problem is that "good" TCP's do slow start at the beginning of data 759 * transmission. The means that until we send the first few ACK's the 760 * sender will sit on his end and only queue most of his data, because 761 * he can only send snd_cwnd unacked packets at any given time. For 762 * each ACK we send, he increments snd_cwnd and transmits more of his 763 * queue. -DaveM 764 */ 765 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 766 { 767 struct tcp_sock *tp = tcp_sk(sk); 768 struct inet_connection_sock *icsk = inet_csk(sk); 769 u32 now; 770 771 inet_csk_schedule_ack(sk); 772 773 tcp_measure_rcv_mss(sk, skb); 774 775 tcp_rcv_rtt_measure(tp); 776 777 now = tcp_jiffies32; 778 779 if (!icsk->icsk_ack.ato) { 780 /* The _first_ data packet received, initialize 781 * delayed ACK engine. 782 */ 783 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 784 icsk->icsk_ack.ato = TCP_ATO_MIN; 785 } else { 786 int m = now - icsk->icsk_ack.lrcvtime; 787 788 if (m <= TCP_ATO_MIN / 2) { 789 /* The fastest case is the first. */ 790 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 791 } else if (m < icsk->icsk_ack.ato) { 792 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 793 if (icsk->icsk_ack.ato > icsk->icsk_rto) 794 icsk->icsk_ack.ato = icsk->icsk_rto; 795 } else if (m > icsk->icsk_rto) { 796 /* Too long gap. Apparently sender failed to 797 * restart window, so that we send ACKs quickly. 798 */ 799 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 800 sk_mem_reclaim(sk); 801 } 802 } 803 icsk->icsk_ack.lrcvtime = now; 804 805 tcp_ecn_check_ce(sk, skb); 806 807 if (skb->len >= 128) 808 tcp_grow_window(sk, skb, true); 809 } 810 811 /* Called to compute a smoothed rtt estimate. The data fed to this 812 * routine either comes from timestamps, or from segments that were 813 * known _not_ to have been retransmitted [see Karn/Partridge 814 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 815 * piece by Van Jacobson. 816 * NOTE: the next three routines used to be one big routine. 817 * To save cycles in the RFC 1323 implementation it was better to break 818 * it up into three procedures. -- erics 819 */ 820 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 821 { 822 struct tcp_sock *tp = tcp_sk(sk); 823 long m = mrtt_us; /* RTT */ 824 u32 srtt = tp->srtt_us; 825 826 /* The following amusing code comes from Jacobson's 827 * article in SIGCOMM '88. Note that rtt and mdev 828 * are scaled versions of rtt and mean deviation. 829 * This is designed to be as fast as possible 830 * m stands for "measurement". 831 * 832 * On a 1990 paper the rto value is changed to: 833 * RTO = rtt + 4 * mdev 834 * 835 * Funny. This algorithm seems to be very broken. 836 * These formulae increase RTO, when it should be decreased, increase 837 * too slowly, when it should be increased quickly, decrease too quickly 838 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 839 * does not matter how to _calculate_ it. Seems, it was trap 840 * that VJ failed to avoid. 8) 841 */ 842 if (srtt != 0) { 843 m -= (srtt >> 3); /* m is now error in rtt est */ 844 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 845 if (m < 0) { 846 m = -m; /* m is now abs(error) */ 847 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 848 /* This is similar to one of Eifel findings. 849 * Eifel blocks mdev updates when rtt decreases. 850 * This solution is a bit different: we use finer gain 851 * for mdev in this case (alpha*beta). 852 * Like Eifel it also prevents growth of rto, 853 * but also it limits too fast rto decreases, 854 * happening in pure Eifel. 855 */ 856 if (m > 0) 857 m >>= 3; 858 } else { 859 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 860 } 861 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 862 if (tp->mdev_us > tp->mdev_max_us) { 863 tp->mdev_max_us = tp->mdev_us; 864 if (tp->mdev_max_us > tp->rttvar_us) 865 tp->rttvar_us = tp->mdev_max_us; 866 } 867 if (after(tp->snd_una, tp->rtt_seq)) { 868 if (tp->mdev_max_us < tp->rttvar_us) 869 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 870 tp->rtt_seq = tp->snd_nxt; 871 tp->mdev_max_us = tcp_rto_min_us(sk); 872 873 tcp_bpf_rtt(sk); 874 } 875 } else { 876 /* no previous measure. */ 877 srtt = m << 3; /* take the measured time to be rtt */ 878 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 879 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 880 tp->mdev_max_us = tp->rttvar_us; 881 tp->rtt_seq = tp->snd_nxt; 882 883 tcp_bpf_rtt(sk); 884 } 885 tp->srtt_us = max(1U, srtt); 886 } 887 888 static void tcp_update_pacing_rate(struct sock *sk) 889 { 890 const struct tcp_sock *tp = tcp_sk(sk); 891 u64 rate; 892 893 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 894 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 895 896 /* current rate is (cwnd * mss) / srtt 897 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 898 * In Congestion Avoidance phase, set it to 120 % the current rate. 899 * 900 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 901 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 902 * end of slow start and should slow down. 903 */ 904 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 905 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 906 else 907 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 908 909 rate *= max(tp->snd_cwnd, tp->packets_out); 910 911 if (likely(tp->srtt_us)) 912 do_div(rate, tp->srtt_us); 913 914 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 915 * without any lock. We want to make sure compiler wont store 916 * intermediate values in this location. 917 */ 918 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 919 sk->sk_max_pacing_rate)); 920 } 921 922 /* Calculate rto without backoff. This is the second half of Van Jacobson's 923 * routine referred to above. 924 */ 925 static void tcp_set_rto(struct sock *sk) 926 { 927 const struct tcp_sock *tp = tcp_sk(sk); 928 /* Old crap is replaced with new one. 8) 929 * 930 * More seriously: 931 * 1. If rtt variance happened to be less 50msec, it is hallucination. 932 * It cannot be less due to utterly erratic ACK generation made 933 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 934 * to do with delayed acks, because at cwnd>2 true delack timeout 935 * is invisible. Actually, Linux-2.4 also generates erratic 936 * ACKs in some circumstances. 937 */ 938 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 939 940 /* 2. Fixups made earlier cannot be right. 941 * If we do not estimate RTO correctly without them, 942 * all the algo is pure shit and should be replaced 943 * with correct one. It is exactly, which we pretend to do. 944 */ 945 946 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 947 * guarantees that rto is higher. 948 */ 949 tcp_bound_rto(sk); 950 } 951 952 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 953 { 954 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 955 956 if (!cwnd) 957 cwnd = TCP_INIT_CWND; 958 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 959 } 960 961 struct tcp_sacktag_state { 962 /* Timestamps for earliest and latest never-retransmitted segment 963 * that was SACKed. RTO needs the earliest RTT to stay conservative, 964 * but congestion control should still get an accurate delay signal. 965 */ 966 u64 first_sackt; 967 u64 last_sackt; 968 u32 reord; 969 u32 sack_delivered; 970 int flag; 971 unsigned int mss_now; 972 struct rate_sample *rate; 973 }; 974 975 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 976 * and spurious retransmission information if this DSACK is unlikely caused by 977 * sender's action: 978 * - DSACKed sequence range is larger than maximum receiver's window. 979 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 980 */ 981 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 982 u32 end_seq, struct tcp_sacktag_state *state) 983 { 984 u32 seq_len, dup_segs = 1; 985 986 if (!before(start_seq, end_seq)) 987 return 0; 988 989 seq_len = end_seq - start_seq; 990 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 991 if (seq_len > tp->max_window) 992 return 0; 993 if (seq_len > tp->mss_cache) 994 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 995 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 996 state->flag |= FLAG_DSACK_TLP; 997 998 tp->dsack_dups += dup_segs; 999 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1000 if (tp->dsack_dups > tp->total_retrans) 1001 return 0; 1002 1003 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1004 /* We increase the RACK ordering window in rounds where we receive 1005 * DSACKs that may have been due to reordering causing RACK to trigger 1006 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1007 * without having seen reordering, or that match TLP probes (TLP 1008 * is timer-driven, not triggered by RACK). 1009 */ 1010 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1011 tp->rack.dsack_seen = 1; 1012 1013 state->flag |= FLAG_DSACKING_ACK; 1014 /* A spurious retransmission is delivered */ 1015 state->sack_delivered += dup_segs; 1016 1017 return dup_segs; 1018 } 1019 1020 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1021 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1022 * distance is approximated in full-mss packet distance ("reordering"). 1023 */ 1024 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1025 const int ts) 1026 { 1027 struct tcp_sock *tp = tcp_sk(sk); 1028 const u32 mss = tp->mss_cache; 1029 u32 fack, metric; 1030 1031 fack = tcp_highest_sack_seq(tp); 1032 if (!before(low_seq, fack)) 1033 return; 1034 1035 metric = fack - low_seq; 1036 if ((metric > tp->reordering * mss) && mss) { 1037 #if FASTRETRANS_DEBUG > 1 1038 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1039 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1040 tp->reordering, 1041 0, 1042 tp->sacked_out, 1043 tp->undo_marker ? tp->undo_retrans : 0); 1044 #endif 1045 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1046 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1047 } 1048 1049 /* This exciting event is worth to be remembered. 8) */ 1050 tp->reord_seen++; 1051 NET_INC_STATS(sock_net(sk), 1052 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1053 } 1054 1055 /* This must be called before lost_out or retrans_out are updated 1056 * on a new loss, because we want to know if all skbs previously 1057 * known to be lost have already been retransmitted, indicating 1058 * that this newly lost skb is our next skb to retransmit. 1059 */ 1060 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1061 { 1062 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1063 (tp->retransmit_skb_hint && 1064 before(TCP_SKB_CB(skb)->seq, 1065 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1066 tp->retransmit_skb_hint = skb; 1067 } 1068 1069 /* Sum the number of packets on the wire we have marked as lost, and 1070 * notify the congestion control module that the given skb was marked lost. 1071 */ 1072 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1073 { 1074 tp->lost += tcp_skb_pcount(skb); 1075 } 1076 1077 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1078 { 1079 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1080 struct tcp_sock *tp = tcp_sk(sk); 1081 1082 if (sacked & TCPCB_SACKED_ACKED) 1083 return; 1084 1085 tcp_verify_retransmit_hint(tp, skb); 1086 if (sacked & TCPCB_LOST) { 1087 if (sacked & TCPCB_SACKED_RETRANS) { 1088 /* Account for retransmits that are lost again */ 1089 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1090 tp->retrans_out -= tcp_skb_pcount(skb); 1091 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1092 tcp_skb_pcount(skb)); 1093 tcp_notify_skb_loss_event(tp, skb); 1094 } 1095 } else { 1096 tp->lost_out += tcp_skb_pcount(skb); 1097 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1098 tcp_notify_skb_loss_event(tp, skb); 1099 } 1100 } 1101 1102 /* Updates the delivered and delivered_ce counts */ 1103 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1104 bool ece_ack) 1105 { 1106 tp->delivered += delivered; 1107 if (ece_ack) 1108 tp->delivered_ce += delivered; 1109 } 1110 1111 /* This procedure tags the retransmission queue when SACKs arrive. 1112 * 1113 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1114 * Packets in queue with these bits set are counted in variables 1115 * sacked_out, retrans_out and lost_out, correspondingly. 1116 * 1117 * Valid combinations are: 1118 * Tag InFlight Description 1119 * 0 1 - orig segment is in flight. 1120 * S 0 - nothing flies, orig reached receiver. 1121 * L 0 - nothing flies, orig lost by net. 1122 * R 2 - both orig and retransmit are in flight. 1123 * L|R 1 - orig is lost, retransmit is in flight. 1124 * S|R 1 - orig reached receiver, retrans is still in flight. 1125 * (L|S|R is logically valid, it could occur when L|R is sacked, 1126 * but it is equivalent to plain S and code short-curcuits it to S. 1127 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1128 * 1129 * These 6 states form finite state machine, controlled by the following events: 1130 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1131 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1132 * 3. Loss detection event of two flavors: 1133 * A. Scoreboard estimator decided the packet is lost. 1134 * A'. Reno "three dupacks" marks head of queue lost. 1135 * B. SACK arrives sacking SND.NXT at the moment, when the 1136 * segment was retransmitted. 1137 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1138 * 1139 * It is pleasant to note, that state diagram turns out to be commutative, 1140 * so that we are allowed not to be bothered by order of our actions, 1141 * when multiple events arrive simultaneously. (see the function below). 1142 * 1143 * Reordering detection. 1144 * -------------------- 1145 * Reordering metric is maximal distance, which a packet can be displaced 1146 * in packet stream. With SACKs we can estimate it: 1147 * 1148 * 1. SACK fills old hole and the corresponding segment was not 1149 * ever retransmitted -> reordering. Alas, we cannot use it 1150 * when segment was retransmitted. 1151 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1152 * for retransmitted and already SACKed segment -> reordering.. 1153 * Both of these heuristics are not used in Loss state, when we cannot 1154 * account for retransmits accurately. 1155 * 1156 * SACK block validation. 1157 * ---------------------- 1158 * 1159 * SACK block range validation checks that the received SACK block fits to 1160 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1161 * Note that SND.UNA is not included to the range though being valid because 1162 * it means that the receiver is rather inconsistent with itself reporting 1163 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1164 * perfectly valid, however, in light of RFC2018 which explicitly states 1165 * that "SACK block MUST reflect the newest segment. Even if the newest 1166 * segment is going to be discarded ...", not that it looks very clever 1167 * in case of head skb. Due to potentional receiver driven attacks, we 1168 * choose to avoid immediate execution of a walk in write queue due to 1169 * reneging and defer head skb's loss recovery to standard loss recovery 1170 * procedure that will eventually trigger (nothing forbids us doing this). 1171 * 1172 * Implements also blockage to start_seq wrap-around. Problem lies in the 1173 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1174 * there's no guarantee that it will be before snd_nxt (n). The problem 1175 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1176 * wrap (s_w): 1177 * 1178 * <- outs wnd -> <- wrapzone -> 1179 * u e n u_w e_w s n_w 1180 * | | | | | | | 1181 * |<------------+------+----- TCP seqno space --------------+---------->| 1182 * ...-- <2^31 ->| |<--------... 1183 * ...---- >2^31 ------>| |<--------... 1184 * 1185 * Current code wouldn't be vulnerable but it's better still to discard such 1186 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1187 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1188 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1189 * equal to the ideal case (infinite seqno space without wrap caused issues). 1190 * 1191 * With D-SACK the lower bound is extended to cover sequence space below 1192 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1193 * again, D-SACK block must not to go across snd_una (for the same reason as 1194 * for the normal SACK blocks, explained above). But there all simplicity 1195 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1196 * fully below undo_marker they do not affect behavior in anyway and can 1197 * therefore be safely ignored. In rare cases (which are more or less 1198 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1199 * fragmentation and packet reordering past skb's retransmission. To consider 1200 * them correctly, the acceptable range must be extended even more though 1201 * the exact amount is rather hard to quantify. However, tp->max_window can 1202 * be used as an exaggerated estimate. 1203 */ 1204 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1205 u32 start_seq, u32 end_seq) 1206 { 1207 /* Too far in future, or reversed (interpretation is ambiguous) */ 1208 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1209 return false; 1210 1211 /* Nasty start_seq wrap-around check (see comments above) */ 1212 if (!before(start_seq, tp->snd_nxt)) 1213 return false; 1214 1215 /* In outstanding window? ...This is valid exit for D-SACKs too. 1216 * start_seq == snd_una is non-sensical (see comments above) 1217 */ 1218 if (after(start_seq, tp->snd_una)) 1219 return true; 1220 1221 if (!is_dsack || !tp->undo_marker) 1222 return false; 1223 1224 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1225 if (after(end_seq, tp->snd_una)) 1226 return false; 1227 1228 if (!before(start_seq, tp->undo_marker)) 1229 return true; 1230 1231 /* Too old */ 1232 if (!after(end_seq, tp->undo_marker)) 1233 return false; 1234 1235 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1236 * start_seq < undo_marker and end_seq >= undo_marker. 1237 */ 1238 return !before(start_seq, end_seq - tp->max_window); 1239 } 1240 1241 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1242 struct tcp_sack_block_wire *sp, int num_sacks, 1243 u32 prior_snd_una, struct tcp_sacktag_state *state) 1244 { 1245 struct tcp_sock *tp = tcp_sk(sk); 1246 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1247 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1248 u32 dup_segs; 1249 1250 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1252 } else if (num_sacks > 1) { 1253 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1254 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1255 1256 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1257 return false; 1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1259 } else { 1260 return false; 1261 } 1262 1263 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1264 if (!dup_segs) { /* Skip dubious DSACK */ 1265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1266 return false; 1267 } 1268 1269 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1270 1271 /* D-SACK for already forgotten data... Do dumb counting. */ 1272 if (tp->undo_marker && tp->undo_retrans > 0 && 1273 !after(end_seq_0, prior_snd_una) && 1274 after(end_seq_0, tp->undo_marker)) 1275 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1276 1277 return true; 1278 } 1279 1280 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1281 * the incoming SACK may not exactly match but we can find smaller MSS 1282 * aligned portion of it that matches. Therefore we might need to fragment 1283 * which may fail and creates some hassle (caller must handle error case 1284 * returns). 1285 * 1286 * FIXME: this could be merged to shift decision code 1287 */ 1288 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1289 u32 start_seq, u32 end_seq) 1290 { 1291 int err; 1292 bool in_sack; 1293 unsigned int pkt_len; 1294 unsigned int mss; 1295 1296 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1297 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1298 1299 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1300 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1301 mss = tcp_skb_mss(skb); 1302 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1303 1304 if (!in_sack) { 1305 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1306 if (pkt_len < mss) 1307 pkt_len = mss; 1308 } else { 1309 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1310 if (pkt_len < mss) 1311 return -EINVAL; 1312 } 1313 1314 /* Round if necessary so that SACKs cover only full MSSes 1315 * and/or the remaining small portion (if present) 1316 */ 1317 if (pkt_len > mss) { 1318 unsigned int new_len = (pkt_len / mss) * mss; 1319 if (!in_sack && new_len < pkt_len) 1320 new_len += mss; 1321 pkt_len = new_len; 1322 } 1323 1324 if (pkt_len >= skb->len && !in_sack) 1325 return 0; 1326 1327 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1328 pkt_len, mss, GFP_ATOMIC); 1329 if (err < 0) 1330 return err; 1331 } 1332 1333 return in_sack; 1334 } 1335 1336 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1337 static u8 tcp_sacktag_one(struct sock *sk, 1338 struct tcp_sacktag_state *state, u8 sacked, 1339 u32 start_seq, u32 end_seq, 1340 int dup_sack, int pcount, 1341 u64 xmit_time) 1342 { 1343 struct tcp_sock *tp = tcp_sk(sk); 1344 1345 /* Account D-SACK for retransmitted packet. */ 1346 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1347 if (tp->undo_marker && tp->undo_retrans > 0 && 1348 after(end_seq, tp->undo_marker)) 1349 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1350 if ((sacked & TCPCB_SACKED_ACKED) && 1351 before(start_seq, state->reord)) 1352 state->reord = start_seq; 1353 } 1354 1355 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1356 if (!after(end_seq, tp->snd_una)) 1357 return sacked; 1358 1359 if (!(sacked & TCPCB_SACKED_ACKED)) { 1360 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1361 1362 if (sacked & TCPCB_SACKED_RETRANS) { 1363 /* If the segment is not tagged as lost, 1364 * we do not clear RETRANS, believing 1365 * that retransmission is still in flight. 1366 */ 1367 if (sacked & TCPCB_LOST) { 1368 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1369 tp->lost_out -= pcount; 1370 tp->retrans_out -= pcount; 1371 } 1372 } else { 1373 if (!(sacked & TCPCB_RETRANS)) { 1374 /* New sack for not retransmitted frame, 1375 * which was in hole. It is reordering. 1376 */ 1377 if (before(start_seq, 1378 tcp_highest_sack_seq(tp)) && 1379 before(start_seq, state->reord)) 1380 state->reord = start_seq; 1381 1382 if (!after(end_seq, tp->high_seq)) 1383 state->flag |= FLAG_ORIG_SACK_ACKED; 1384 if (state->first_sackt == 0) 1385 state->first_sackt = xmit_time; 1386 state->last_sackt = xmit_time; 1387 } 1388 1389 if (sacked & TCPCB_LOST) { 1390 sacked &= ~TCPCB_LOST; 1391 tp->lost_out -= pcount; 1392 } 1393 } 1394 1395 sacked |= TCPCB_SACKED_ACKED; 1396 state->flag |= FLAG_DATA_SACKED; 1397 tp->sacked_out += pcount; 1398 /* Out-of-order packets delivered */ 1399 state->sack_delivered += pcount; 1400 1401 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1402 if (tp->lost_skb_hint && 1403 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1404 tp->lost_cnt_hint += pcount; 1405 } 1406 1407 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1408 * frames and clear it. undo_retrans is decreased above, L|R frames 1409 * are accounted above as well. 1410 */ 1411 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1412 sacked &= ~TCPCB_SACKED_RETRANS; 1413 tp->retrans_out -= pcount; 1414 } 1415 1416 return sacked; 1417 } 1418 1419 /* Shift newly-SACKed bytes from this skb to the immediately previous 1420 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1421 */ 1422 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1423 struct sk_buff *skb, 1424 struct tcp_sacktag_state *state, 1425 unsigned int pcount, int shifted, int mss, 1426 bool dup_sack) 1427 { 1428 struct tcp_sock *tp = tcp_sk(sk); 1429 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1430 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1431 1432 BUG_ON(!pcount); 1433 1434 /* Adjust counters and hints for the newly sacked sequence 1435 * range but discard the return value since prev is already 1436 * marked. We must tag the range first because the seq 1437 * advancement below implicitly advances 1438 * tcp_highest_sack_seq() when skb is highest_sack. 1439 */ 1440 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1441 start_seq, end_seq, dup_sack, pcount, 1442 tcp_skb_timestamp_us(skb)); 1443 tcp_rate_skb_delivered(sk, skb, state->rate); 1444 1445 if (skb == tp->lost_skb_hint) 1446 tp->lost_cnt_hint += pcount; 1447 1448 TCP_SKB_CB(prev)->end_seq += shifted; 1449 TCP_SKB_CB(skb)->seq += shifted; 1450 1451 tcp_skb_pcount_add(prev, pcount); 1452 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1453 tcp_skb_pcount_add(skb, -pcount); 1454 1455 /* When we're adding to gso_segs == 1, gso_size will be zero, 1456 * in theory this shouldn't be necessary but as long as DSACK 1457 * code can come after this skb later on it's better to keep 1458 * setting gso_size to something. 1459 */ 1460 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1461 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1462 1463 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1464 if (tcp_skb_pcount(skb) <= 1) 1465 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1466 1467 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1468 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1469 1470 if (skb->len > 0) { 1471 BUG_ON(!tcp_skb_pcount(skb)); 1472 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1473 return false; 1474 } 1475 1476 /* Whole SKB was eaten :-) */ 1477 1478 if (skb == tp->retransmit_skb_hint) 1479 tp->retransmit_skb_hint = prev; 1480 if (skb == tp->lost_skb_hint) { 1481 tp->lost_skb_hint = prev; 1482 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1483 } 1484 1485 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1486 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1487 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1488 TCP_SKB_CB(prev)->end_seq++; 1489 1490 if (skb == tcp_highest_sack(sk)) 1491 tcp_advance_highest_sack(sk, skb); 1492 1493 tcp_skb_collapse_tstamp(prev, skb); 1494 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1495 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1496 1497 tcp_rtx_queue_unlink_and_free(skb, sk); 1498 1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1500 1501 return true; 1502 } 1503 1504 /* I wish gso_size would have a bit more sane initialization than 1505 * something-or-zero which complicates things 1506 */ 1507 static int tcp_skb_seglen(const struct sk_buff *skb) 1508 { 1509 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1510 } 1511 1512 /* Shifting pages past head area doesn't work */ 1513 static int skb_can_shift(const struct sk_buff *skb) 1514 { 1515 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1516 } 1517 1518 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1519 int pcount, int shiftlen) 1520 { 1521 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1522 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1523 * to make sure not storing more than 65535 * 8 bytes per skb, 1524 * even if current MSS is bigger. 1525 */ 1526 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1527 return 0; 1528 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1529 return 0; 1530 return skb_shift(to, from, shiftlen); 1531 } 1532 1533 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1534 * skb. 1535 */ 1536 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1537 struct tcp_sacktag_state *state, 1538 u32 start_seq, u32 end_seq, 1539 bool dup_sack) 1540 { 1541 struct tcp_sock *tp = tcp_sk(sk); 1542 struct sk_buff *prev; 1543 int mss; 1544 int pcount = 0; 1545 int len; 1546 int in_sack; 1547 1548 /* Normally R but no L won't result in plain S */ 1549 if (!dup_sack && 1550 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1551 goto fallback; 1552 if (!skb_can_shift(skb)) 1553 goto fallback; 1554 /* This frame is about to be dropped (was ACKed). */ 1555 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1556 goto fallback; 1557 1558 /* Can only happen with delayed DSACK + discard craziness */ 1559 prev = skb_rb_prev(skb); 1560 if (!prev) 1561 goto fallback; 1562 1563 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1564 goto fallback; 1565 1566 if (!tcp_skb_can_collapse(prev, skb)) 1567 goto fallback; 1568 1569 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1570 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1571 1572 if (in_sack) { 1573 len = skb->len; 1574 pcount = tcp_skb_pcount(skb); 1575 mss = tcp_skb_seglen(skb); 1576 1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1578 * drop this restriction as unnecessary 1579 */ 1580 if (mss != tcp_skb_seglen(prev)) 1581 goto fallback; 1582 } else { 1583 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1584 goto noop; 1585 /* CHECKME: This is non-MSS split case only?, this will 1586 * cause skipped skbs due to advancing loop btw, original 1587 * has that feature too 1588 */ 1589 if (tcp_skb_pcount(skb) <= 1) 1590 goto noop; 1591 1592 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1593 if (!in_sack) { 1594 /* TODO: head merge to next could be attempted here 1595 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1596 * though it might not be worth of the additional hassle 1597 * 1598 * ...we can probably just fallback to what was done 1599 * previously. We could try merging non-SACKed ones 1600 * as well but it probably isn't going to buy off 1601 * because later SACKs might again split them, and 1602 * it would make skb timestamp tracking considerably 1603 * harder problem. 1604 */ 1605 goto fallback; 1606 } 1607 1608 len = end_seq - TCP_SKB_CB(skb)->seq; 1609 BUG_ON(len < 0); 1610 BUG_ON(len > skb->len); 1611 1612 /* MSS boundaries should be honoured or else pcount will 1613 * severely break even though it makes things bit trickier. 1614 * Optimize common case to avoid most of the divides 1615 */ 1616 mss = tcp_skb_mss(skb); 1617 1618 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1619 * drop this restriction as unnecessary 1620 */ 1621 if (mss != tcp_skb_seglen(prev)) 1622 goto fallback; 1623 1624 if (len == mss) { 1625 pcount = 1; 1626 } else if (len < mss) { 1627 goto noop; 1628 } else { 1629 pcount = len / mss; 1630 len = pcount * mss; 1631 } 1632 } 1633 1634 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1635 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1636 goto fallback; 1637 1638 if (!tcp_skb_shift(prev, skb, pcount, len)) 1639 goto fallback; 1640 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1641 goto out; 1642 1643 /* Hole filled allows collapsing with the next as well, this is very 1644 * useful when hole on every nth skb pattern happens 1645 */ 1646 skb = skb_rb_next(prev); 1647 if (!skb) 1648 goto out; 1649 1650 if (!skb_can_shift(skb) || 1651 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1652 (mss != tcp_skb_seglen(skb))) 1653 goto out; 1654 1655 len = skb->len; 1656 pcount = tcp_skb_pcount(skb); 1657 if (tcp_skb_shift(prev, skb, pcount, len)) 1658 tcp_shifted_skb(sk, prev, skb, state, pcount, 1659 len, mss, 0); 1660 1661 out: 1662 return prev; 1663 1664 noop: 1665 return skb; 1666 1667 fallback: 1668 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1669 return NULL; 1670 } 1671 1672 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1673 struct tcp_sack_block *next_dup, 1674 struct tcp_sacktag_state *state, 1675 u32 start_seq, u32 end_seq, 1676 bool dup_sack_in) 1677 { 1678 struct tcp_sock *tp = tcp_sk(sk); 1679 struct sk_buff *tmp; 1680 1681 skb_rbtree_walk_from(skb) { 1682 int in_sack = 0; 1683 bool dup_sack = dup_sack_in; 1684 1685 /* queue is in-order => we can short-circuit the walk early */ 1686 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1687 break; 1688 1689 if (next_dup && 1690 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1691 in_sack = tcp_match_skb_to_sack(sk, skb, 1692 next_dup->start_seq, 1693 next_dup->end_seq); 1694 if (in_sack > 0) 1695 dup_sack = true; 1696 } 1697 1698 /* skb reference here is a bit tricky to get right, since 1699 * shifting can eat and free both this skb and the next, 1700 * so not even _safe variant of the loop is enough. 1701 */ 1702 if (in_sack <= 0) { 1703 tmp = tcp_shift_skb_data(sk, skb, state, 1704 start_seq, end_seq, dup_sack); 1705 if (tmp) { 1706 if (tmp != skb) { 1707 skb = tmp; 1708 continue; 1709 } 1710 1711 in_sack = 0; 1712 } else { 1713 in_sack = tcp_match_skb_to_sack(sk, skb, 1714 start_seq, 1715 end_seq); 1716 } 1717 } 1718 1719 if (unlikely(in_sack < 0)) 1720 break; 1721 1722 if (in_sack) { 1723 TCP_SKB_CB(skb)->sacked = 1724 tcp_sacktag_one(sk, 1725 state, 1726 TCP_SKB_CB(skb)->sacked, 1727 TCP_SKB_CB(skb)->seq, 1728 TCP_SKB_CB(skb)->end_seq, 1729 dup_sack, 1730 tcp_skb_pcount(skb), 1731 tcp_skb_timestamp_us(skb)); 1732 tcp_rate_skb_delivered(sk, skb, state->rate); 1733 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1734 list_del_init(&skb->tcp_tsorted_anchor); 1735 1736 if (!before(TCP_SKB_CB(skb)->seq, 1737 tcp_highest_sack_seq(tp))) 1738 tcp_advance_highest_sack(sk, skb); 1739 } 1740 } 1741 return skb; 1742 } 1743 1744 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1745 { 1746 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1747 struct sk_buff *skb; 1748 1749 while (*p) { 1750 parent = *p; 1751 skb = rb_to_skb(parent); 1752 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1753 p = &parent->rb_left; 1754 continue; 1755 } 1756 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1757 p = &parent->rb_right; 1758 continue; 1759 } 1760 return skb; 1761 } 1762 return NULL; 1763 } 1764 1765 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1766 u32 skip_to_seq) 1767 { 1768 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1769 return skb; 1770 1771 return tcp_sacktag_bsearch(sk, skip_to_seq); 1772 } 1773 1774 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1775 struct sock *sk, 1776 struct tcp_sack_block *next_dup, 1777 struct tcp_sacktag_state *state, 1778 u32 skip_to_seq) 1779 { 1780 if (!next_dup) 1781 return skb; 1782 1783 if (before(next_dup->start_seq, skip_to_seq)) { 1784 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1785 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1786 next_dup->start_seq, next_dup->end_seq, 1787 1); 1788 } 1789 1790 return skb; 1791 } 1792 1793 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1794 { 1795 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1796 } 1797 1798 static int 1799 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1800 u32 prior_snd_una, struct tcp_sacktag_state *state) 1801 { 1802 struct tcp_sock *tp = tcp_sk(sk); 1803 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1804 TCP_SKB_CB(ack_skb)->sacked); 1805 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1806 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1807 struct tcp_sack_block *cache; 1808 struct sk_buff *skb; 1809 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1810 int used_sacks; 1811 bool found_dup_sack = false; 1812 int i, j; 1813 int first_sack_index; 1814 1815 state->flag = 0; 1816 state->reord = tp->snd_nxt; 1817 1818 if (!tp->sacked_out) 1819 tcp_highest_sack_reset(sk); 1820 1821 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1822 num_sacks, prior_snd_una, state); 1823 1824 /* Eliminate too old ACKs, but take into 1825 * account more or less fresh ones, they can 1826 * contain valid SACK info. 1827 */ 1828 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1829 return 0; 1830 1831 if (!tp->packets_out) 1832 goto out; 1833 1834 used_sacks = 0; 1835 first_sack_index = 0; 1836 for (i = 0; i < num_sacks; i++) { 1837 bool dup_sack = !i && found_dup_sack; 1838 1839 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1840 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1841 1842 if (!tcp_is_sackblock_valid(tp, dup_sack, 1843 sp[used_sacks].start_seq, 1844 sp[used_sacks].end_seq)) { 1845 int mib_idx; 1846 1847 if (dup_sack) { 1848 if (!tp->undo_marker) 1849 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1850 else 1851 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1852 } else { 1853 /* Don't count olds caused by ACK reordering */ 1854 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1855 !after(sp[used_sacks].end_seq, tp->snd_una)) 1856 continue; 1857 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1858 } 1859 1860 NET_INC_STATS(sock_net(sk), mib_idx); 1861 if (i == 0) 1862 first_sack_index = -1; 1863 continue; 1864 } 1865 1866 /* Ignore very old stuff early */ 1867 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1868 if (i == 0) 1869 first_sack_index = -1; 1870 continue; 1871 } 1872 1873 used_sacks++; 1874 } 1875 1876 /* order SACK blocks to allow in order walk of the retrans queue */ 1877 for (i = used_sacks - 1; i > 0; i--) { 1878 for (j = 0; j < i; j++) { 1879 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1880 swap(sp[j], sp[j + 1]); 1881 1882 /* Track where the first SACK block goes to */ 1883 if (j == first_sack_index) 1884 first_sack_index = j + 1; 1885 } 1886 } 1887 } 1888 1889 state->mss_now = tcp_current_mss(sk); 1890 skb = NULL; 1891 i = 0; 1892 1893 if (!tp->sacked_out) { 1894 /* It's already past, so skip checking against it */ 1895 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1896 } else { 1897 cache = tp->recv_sack_cache; 1898 /* Skip empty blocks in at head of the cache */ 1899 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1900 !cache->end_seq) 1901 cache++; 1902 } 1903 1904 while (i < used_sacks) { 1905 u32 start_seq = sp[i].start_seq; 1906 u32 end_seq = sp[i].end_seq; 1907 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1908 struct tcp_sack_block *next_dup = NULL; 1909 1910 if (found_dup_sack && ((i + 1) == first_sack_index)) 1911 next_dup = &sp[i + 1]; 1912 1913 /* Skip too early cached blocks */ 1914 while (tcp_sack_cache_ok(tp, cache) && 1915 !before(start_seq, cache->end_seq)) 1916 cache++; 1917 1918 /* Can skip some work by looking recv_sack_cache? */ 1919 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1920 after(end_seq, cache->start_seq)) { 1921 1922 /* Head todo? */ 1923 if (before(start_seq, cache->start_seq)) { 1924 skb = tcp_sacktag_skip(skb, sk, start_seq); 1925 skb = tcp_sacktag_walk(skb, sk, next_dup, 1926 state, 1927 start_seq, 1928 cache->start_seq, 1929 dup_sack); 1930 } 1931 1932 /* Rest of the block already fully processed? */ 1933 if (!after(end_seq, cache->end_seq)) 1934 goto advance_sp; 1935 1936 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1937 state, 1938 cache->end_seq); 1939 1940 /* ...tail remains todo... */ 1941 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1942 /* ...but better entrypoint exists! */ 1943 skb = tcp_highest_sack(sk); 1944 if (!skb) 1945 break; 1946 cache++; 1947 goto walk; 1948 } 1949 1950 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1951 /* Check overlap against next cached too (past this one already) */ 1952 cache++; 1953 continue; 1954 } 1955 1956 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1957 skb = tcp_highest_sack(sk); 1958 if (!skb) 1959 break; 1960 } 1961 skb = tcp_sacktag_skip(skb, sk, start_seq); 1962 1963 walk: 1964 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1965 start_seq, end_seq, dup_sack); 1966 1967 advance_sp: 1968 i++; 1969 } 1970 1971 /* Clear the head of the cache sack blocks so we can skip it next time */ 1972 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1973 tp->recv_sack_cache[i].start_seq = 0; 1974 tp->recv_sack_cache[i].end_seq = 0; 1975 } 1976 for (j = 0; j < used_sacks; j++) 1977 tp->recv_sack_cache[i++] = sp[j]; 1978 1979 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1980 tcp_check_sack_reordering(sk, state->reord, 0); 1981 1982 tcp_verify_left_out(tp); 1983 out: 1984 1985 #if FASTRETRANS_DEBUG > 0 1986 WARN_ON((int)tp->sacked_out < 0); 1987 WARN_ON((int)tp->lost_out < 0); 1988 WARN_ON((int)tp->retrans_out < 0); 1989 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1990 #endif 1991 return state->flag; 1992 } 1993 1994 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1995 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1996 */ 1997 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1998 { 1999 u32 holes; 2000 2001 holes = max(tp->lost_out, 1U); 2002 holes = min(holes, tp->packets_out); 2003 2004 if ((tp->sacked_out + holes) > tp->packets_out) { 2005 tp->sacked_out = tp->packets_out - holes; 2006 return true; 2007 } 2008 return false; 2009 } 2010 2011 /* If we receive more dupacks than we expected counting segments 2012 * in assumption of absent reordering, interpret this as reordering. 2013 * The only another reason could be bug in receiver TCP. 2014 */ 2015 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2016 { 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 2019 if (!tcp_limit_reno_sacked(tp)) 2020 return; 2021 2022 tp->reordering = min_t(u32, tp->packets_out + addend, 2023 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 2024 tp->reord_seen++; 2025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2026 } 2027 2028 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2029 2030 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2031 { 2032 if (num_dupack) { 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 u32 prior_sacked = tp->sacked_out; 2035 s32 delivered; 2036 2037 tp->sacked_out += num_dupack; 2038 tcp_check_reno_reordering(sk, 0); 2039 delivered = tp->sacked_out - prior_sacked; 2040 if (delivered > 0) 2041 tcp_count_delivered(tp, delivered, ece_ack); 2042 tcp_verify_left_out(tp); 2043 } 2044 } 2045 2046 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2047 2048 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2049 { 2050 struct tcp_sock *tp = tcp_sk(sk); 2051 2052 if (acked > 0) { 2053 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2054 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2055 ece_ack); 2056 if (acked - 1 >= tp->sacked_out) 2057 tp->sacked_out = 0; 2058 else 2059 tp->sacked_out -= acked - 1; 2060 } 2061 tcp_check_reno_reordering(sk, acked); 2062 tcp_verify_left_out(tp); 2063 } 2064 2065 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2066 { 2067 tp->sacked_out = 0; 2068 } 2069 2070 void tcp_clear_retrans(struct tcp_sock *tp) 2071 { 2072 tp->retrans_out = 0; 2073 tp->lost_out = 0; 2074 tp->undo_marker = 0; 2075 tp->undo_retrans = -1; 2076 tp->sacked_out = 0; 2077 } 2078 2079 static inline void tcp_init_undo(struct tcp_sock *tp) 2080 { 2081 tp->undo_marker = tp->snd_una; 2082 /* Retransmission still in flight may cause DSACKs later. */ 2083 tp->undo_retrans = tp->retrans_out ? : -1; 2084 } 2085 2086 static bool tcp_is_rack(const struct sock *sk) 2087 { 2088 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 2089 } 2090 2091 /* If we detect SACK reneging, forget all SACK information 2092 * and reset tags completely, otherwise preserve SACKs. If receiver 2093 * dropped its ofo queue, we will know this due to reneging detection. 2094 */ 2095 static void tcp_timeout_mark_lost(struct sock *sk) 2096 { 2097 struct tcp_sock *tp = tcp_sk(sk); 2098 struct sk_buff *skb, *head; 2099 bool is_reneg; /* is receiver reneging on SACKs? */ 2100 2101 head = tcp_rtx_queue_head(sk); 2102 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2103 if (is_reneg) { 2104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2105 tp->sacked_out = 0; 2106 /* Mark SACK reneging until we recover from this loss event. */ 2107 tp->is_sack_reneg = 1; 2108 } else if (tcp_is_reno(tp)) { 2109 tcp_reset_reno_sack(tp); 2110 } 2111 2112 skb = head; 2113 skb_rbtree_walk_from(skb) { 2114 if (is_reneg) 2115 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2116 else if (tcp_is_rack(sk) && skb != head && 2117 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2118 continue; /* Don't mark recently sent ones lost yet */ 2119 tcp_mark_skb_lost(sk, skb); 2120 } 2121 tcp_verify_left_out(tp); 2122 tcp_clear_all_retrans_hints(tp); 2123 } 2124 2125 /* Enter Loss state. */ 2126 void tcp_enter_loss(struct sock *sk) 2127 { 2128 const struct inet_connection_sock *icsk = inet_csk(sk); 2129 struct tcp_sock *tp = tcp_sk(sk); 2130 struct net *net = sock_net(sk); 2131 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2132 2133 tcp_timeout_mark_lost(sk); 2134 2135 /* Reduce ssthresh if it has not yet been made inside this window. */ 2136 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2137 !after(tp->high_seq, tp->snd_una) || 2138 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2139 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2140 tp->prior_cwnd = tp->snd_cwnd; 2141 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2142 tcp_ca_event(sk, CA_EVENT_LOSS); 2143 tcp_init_undo(tp); 2144 } 2145 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2146 tp->snd_cwnd_cnt = 0; 2147 tp->snd_cwnd_stamp = tcp_jiffies32; 2148 2149 /* Timeout in disordered state after receiving substantial DUPACKs 2150 * suggests that the degree of reordering is over-estimated. 2151 */ 2152 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2153 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2154 tp->reordering = min_t(unsigned int, tp->reordering, 2155 net->ipv4.sysctl_tcp_reordering); 2156 tcp_set_ca_state(sk, TCP_CA_Loss); 2157 tp->high_seq = tp->snd_nxt; 2158 tcp_ecn_queue_cwr(tp); 2159 2160 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2161 * loss recovery is underway except recurring timeout(s) on 2162 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2163 */ 2164 tp->frto = net->ipv4.sysctl_tcp_frto && 2165 (new_recovery || icsk->icsk_retransmits) && 2166 !inet_csk(sk)->icsk_mtup.probe_size; 2167 } 2168 2169 /* If ACK arrived pointing to a remembered SACK, it means that our 2170 * remembered SACKs do not reflect real state of receiver i.e. 2171 * receiver _host_ is heavily congested (or buggy). 2172 * 2173 * To avoid big spurious retransmission bursts due to transient SACK 2174 * scoreboard oddities that look like reneging, we give the receiver a 2175 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2176 * restore sanity to the SACK scoreboard. If the apparent reneging 2177 * persists until this RTO then we'll clear the SACK scoreboard. 2178 */ 2179 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2180 { 2181 if (flag & FLAG_SACK_RENEGING) { 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2184 msecs_to_jiffies(10)); 2185 2186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2187 delay, TCP_RTO_MAX); 2188 return true; 2189 } 2190 return false; 2191 } 2192 2193 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2194 * counter when SACK is enabled (without SACK, sacked_out is used for 2195 * that purpose). 2196 * 2197 * With reordering, holes may still be in flight, so RFC3517 recovery 2198 * uses pure sacked_out (total number of SACKed segments) even though 2199 * it violates the RFC that uses duplicate ACKs, often these are equal 2200 * but when e.g. out-of-window ACKs or packet duplication occurs, 2201 * they differ. Since neither occurs due to loss, TCP should really 2202 * ignore them. 2203 */ 2204 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2205 { 2206 return tp->sacked_out + 1; 2207 } 2208 2209 /* Linux NewReno/SACK/ECN state machine. 2210 * -------------------------------------- 2211 * 2212 * "Open" Normal state, no dubious events, fast path. 2213 * "Disorder" In all the respects it is "Open", 2214 * but requires a bit more attention. It is entered when 2215 * we see some SACKs or dupacks. It is split of "Open" 2216 * mainly to move some processing from fast path to slow one. 2217 * "CWR" CWND was reduced due to some Congestion Notification event. 2218 * It can be ECN, ICMP source quench, local device congestion. 2219 * "Recovery" CWND was reduced, we are fast-retransmitting. 2220 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2221 * 2222 * tcp_fastretrans_alert() is entered: 2223 * - each incoming ACK, if state is not "Open" 2224 * - when arrived ACK is unusual, namely: 2225 * * SACK 2226 * * Duplicate ACK. 2227 * * ECN ECE. 2228 * 2229 * Counting packets in flight is pretty simple. 2230 * 2231 * in_flight = packets_out - left_out + retrans_out 2232 * 2233 * packets_out is SND.NXT-SND.UNA counted in packets. 2234 * 2235 * retrans_out is number of retransmitted segments. 2236 * 2237 * left_out is number of segments left network, but not ACKed yet. 2238 * 2239 * left_out = sacked_out + lost_out 2240 * 2241 * sacked_out: Packets, which arrived to receiver out of order 2242 * and hence not ACKed. With SACKs this number is simply 2243 * amount of SACKed data. Even without SACKs 2244 * it is easy to give pretty reliable estimate of this number, 2245 * counting duplicate ACKs. 2246 * 2247 * lost_out: Packets lost by network. TCP has no explicit 2248 * "loss notification" feedback from network (for now). 2249 * It means that this number can be only _guessed_. 2250 * Actually, it is the heuristics to predict lossage that 2251 * distinguishes different algorithms. 2252 * 2253 * F.e. after RTO, when all the queue is considered as lost, 2254 * lost_out = packets_out and in_flight = retrans_out. 2255 * 2256 * Essentially, we have now a few algorithms detecting 2257 * lost packets. 2258 * 2259 * If the receiver supports SACK: 2260 * 2261 * RFC6675/3517: It is the conventional algorithm. A packet is 2262 * considered lost if the number of higher sequence packets 2263 * SACKed is greater than or equal the DUPACK thoreshold 2264 * (reordering). This is implemented in tcp_mark_head_lost and 2265 * tcp_update_scoreboard. 2266 * 2267 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2268 * (2017-) that checks timing instead of counting DUPACKs. 2269 * Essentially a packet is considered lost if it's not S/ACKed 2270 * after RTT + reordering_window, where both metrics are 2271 * dynamically measured and adjusted. This is implemented in 2272 * tcp_rack_mark_lost. 2273 * 2274 * If the receiver does not support SACK: 2275 * 2276 * NewReno (RFC6582): in Recovery we assume that one segment 2277 * is lost (classic Reno). While we are in Recovery and 2278 * a partial ACK arrives, we assume that one more packet 2279 * is lost (NewReno). This heuristics are the same in NewReno 2280 * and SACK. 2281 * 2282 * Really tricky (and requiring careful tuning) part of algorithm 2283 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2284 * The first determines the moment _when_ we should reduce CWND and, 2285 * hence, slow down forward transmission. In fact, it determines the moment 2286 * when we decide that hole is caused by loss, rather than by a reorder. 2287 * 2288 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2289 * holes, caused by lost packets. 2290 * 2291 * And the most logically complicated part of algorithm is undo 2292 * heuristics. We detect false retransmits due to both too early 2293 * fast retransmit (reordering) and underestimated RTO, analyzing 2294 * timestamps and D-SACKs. When we detect that some segments were 2295 * retransmitted by mistake and CWND reduction was wrong, we undo 2296 * window reduction and abort recovery phase. This logic is hidden 2297 * inside several functions named tcp_try_undo_<something>. 2298 */ 2299 2300 /* This function decides, when we should leave Disordered state 2301 * and enter Recovery phase, reducing congestion window. 2302 * 2303 * Main question: may we further continue forward transmission 2304 * with the same cwnd? 2305 */ 2306 static bool tcp_time_to_recover(struct sock *sk, int flag) 2307 { 2308 struct tcp_sock *tp = tcp_sk(sk); 2309 2310 /* Trick#1: The loss is proven. */ 2311 if (tp->lost_out) 2312 return true; 2313 2314 /* Not-A-Trick#2 : Classic rule... */ 2315 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2316 return true; 2317 2318 return false; 2319 } 2320 2321 /* Detect loss in event "A" above by marking head of queue up as lost. 2322 * For RFC3517 SACK, a segment is considered lost if it 2323 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2324 * the maximum SACKed segments to pass before reaching this limit. 2325 */ 2326 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2327 { 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 struct sk_buff *skb; 2330 int cnt; 2331 /* Use SACK to deduce losses of new sequences sent during recovery */ 2332 const u32 loss_high = tp->snd_nxt; 2333 2334 WARN_ON(packets > tp->packets_out); 2335 skb = tp->lost_skb_hint; 2336 if (skb) { 2337 /* Head already handled? */ 2338 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2339 return; 2340 cnt = tp->lost_cnt_hint; 2341 } else { 2342 skb = tcp_rtx_queue_head(sk); 2343 cnt = 0; 2344 } 2345 2346 skb_rbtree_walk_from(skb) { 2347 /* TODO: do this better */ 2348 /* this is not the most efficient way to do this... */ 2349 tp->lost_skb_hint = skb; 2350 tp->lost_cnt_hint = cnt; 2351 2352 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2353 break; 2354 2355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2356 cnt += tcp_skb_pcount(skb); 2357 2358 if (cnt > packets) 2359 break; 2360 2361 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2362 tcp_mark_skb_lost(sk, skb); 2363 2364 if (mark_head) 2365 break; 2366 } 2367 tcp_verify_left_out(tp); 2368 } 2369 2370 /* Account newly detected lost packet(s) */ 2371 2372 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2373 { 2374 struct tcp_sock *tp = tcp_sk(sk); 2375 2376 if (tcp_is_sack(tp)) { 2377 int sacked_upto = tp->sacked_out - tp->reordering; 2378 if (sacked_upto >= 0) 2379 tcp_mark_head_lost(sk, sacked_upto, 0); 2380 else if (fast_rexmit) 2381 tcp_mark_head_lost(sk, 1, 1); 2382 } 2383 } 2384 2385 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2386 { 2387 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2388 before(tp->rx_opt.rcv_tsecr, when); 2389 } 2390 2391 /* skb is spurious retransmitted if the returned timestamp echo 2392 * reply is prior to the skb transmission time 2393 */ 2394 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2395 const struct sk_buff *skb) 2396 { 2397 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2398 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2399 } 2400 2401 /* Nothing was retransmitted or returned timestamp is less 2402 * than timestamp of the first retransmission. 2403 */ 2404 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2405 { 2406 return tp->retrans_stamp && 2407 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2408 } 2409 2410 /* Undo procedures. */ 2411 2412 /* We can clear retrans_stamp when there are no retransmissions in the 2413 * window. It would seem that it is trivially available for us in 2414 * tp->retrans_out, however, that kind of assumptions doesn't consider 2415 * what will happen if errors occur when sending retransmission for the 2416 * second time. ...It could the that such segment has only 2417 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2418 * the head skb is enough except for some reneging corner cases that 2419 * are not worth the effort. 2420 * 2421 * Main reason for all this complexity is the fact that connection dying 2422 * time now depends on the validity of the retrans_stamp, in particular, 2423 * that successive retransmissions of a segment must not advance 2424 * retrans_stamp under any conditions. 2425 */ 2426 static bool tcp_any_retrans_done(const struct sock *sk) 2427 { 2428 const struct tcp_sock *tp = tcp_sk(sk); 2429 struct sk_buff *skb; 2430 2431 if (tp->retrans_out) 2432 return true; 2433 2434 skb = tcp_rtx_queue_head(sk); 2435 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2436 return true; 2437 2438 return false; 2439 } 2440 2441 static void DBGUNDO(struct sock *sk, const char *msg) 2442 { 2443 #if FASTRETRANS_DEBUG > 1 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 struct inet_sock *inet = inet_sk(sk); 2446 2447 if (sk->sk_family == AF_INET) { 2448 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2449 msg, 2450 &inet->inet_daddr, ntohs(inet->inet_dport), 2451 tp->snd_cwnd, tcp_left_out(tp), 2452 tp->snd_ssthresh, tp->prior_ssthresh, 2453 tp->packets_out); 2454 } 2455 #if IS_ENABLED(CONFIG_IPV6) 2456 else if (sk->sk_family == AF_INET6) { 2457 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2458 msg, 2459 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2460 tp->snd_cwnd, tcp_left_out(tp), 2461 tp->snd_ssthresh, tp->prior_ssthresh, 2462 tp->packets_out); 2463 } 2464 #endif 2465 #endif 2466 } 2467 2468 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2469 { 2470 struct tcp_sock *tp = tcp_sk(sk); 2471 2472 if (unmark_loss) { 2473 struct sk_buff *skb; 2474 2475 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2476 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2477 } 2478 tp->lost_out = 0; 2479 tcp_clear_all_retrans_hints(tp); 2480 } 2481 2482 if (tp->prior_ssthresh) { 2483 const struct inet_connection_sock *icsk = inet_csk(sk); 2484 2485 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2486 2487 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2488 tp->snd_ssthresh = tp->prior_ssthresh; 2489 tcp_ecn_withdraw_cwr(tp); 2490 } 2491 } 2492 tp->snd_cwnd_stamp = tcp_jiffies32; 2493 tp->undo_marker = 0; 2494 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2495 } 2496 2497 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2498 { 2499 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2500 } 2501 2502 /* People celebrate: "We love our President!" */ 2503 static bool tcp_try_undo_recovery(struct sock *sk) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 2507 if (tcp_may_undo(tp)) { 2508 int mib_idx; 2509 2510 /* Happy end! We did not retransmit anything 2511 * or our original transmission succeeded. 2512 */ 2513 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2514 tcp_undo_cwnd_reduction(sk, false); 2515 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2516 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2517 else 2518 mib_idx = LINUX_MIB_TCPFULLUNDO; 2519 2520 NET_INC_STATS(sock_net(sk), mib_idx); 2521 } else if (tp->rack.reo_wnd_persist) { 2522 tp->rack.reo_wnd_persist--; 2523 } 2524 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2525 /* Hold old state until something *above* high_seq 2526 * is ACKed. For Reno it is MUST to prevent false 2527 * fast retransmits (RFC2582). SACK TCP is safe. */ 2528 if (!tcp_any_retrans_done(sk)) 2529 tp->retrans_stamp = 0; 2530 return true; 2531 } 2532 tcp_set_ca_state(sk, TCP_CA_Open); 2533 tp->is_sack_reneg = 0; 2534 return false; 2535 } 2536 2537 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2538 static bool tcp_try_undo_dsack(struct sock *sk) 2539 { 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 2542 if (tp->undo_marker && !tp->undo_retrans) { 2543 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2544 tp->rack.reo_wnd_persist + 1); 2545 DBGUNDO(sk, "D-SACK"); 2546 tcp_undo_cwnd_reduction(sk, false); 2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2548 return true; 2549 } 2550 return false; 2551 } 2552 2553 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2554 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 2558 if (frto_undo || tcp_may_undo(tp)) { 2559 tcp_undo_cwnd_reduction(sk, true); 2560 2561 DBGUNDO(sk, "partial loss"); 2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2563 if (frto_undo) 2564 NET_INC_STATS(sock_net(sk), 2565 LINUX_MIB_TCPSPURIOUSRTOS); 2566 inet_csk(sk)->icsk_retransmits = 0; 2567 if (frto_undo || tcp_is_sack(tp)) { 2568 tcp_set_ca_state(sk, TCP_CA_Open); 2569 tp->is_sack_reneg = 0; 2570 } 2571 return true; 2572 } 2573 return false; 2574 } 2575 2576 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2577 * It computes the number of packets to send (sndcnt) based on packets newly 2578 * delivered: 2579 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2580 * cwnd reductions across a full RTT. 2581 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2582 * But when SND_UNA is acked without further losses, 2583 * slow starts cwnd up to ssthresh to speed up the recovery. 2584 */ 2585 static void tcp_init_cwnd_reduction(struct sock *sk) 2586 { 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 2589 tp->high_seq = tp->snd_nxt; 2590 tp->tlp_high_seq = 0; 2591 tp->snd_cwnd_cnt = 0; 2592 tp->prior_cwnd = tp->snd_cwnd; 2593 tp->prr_delivered = 0; 2594 tp->prr_out = 0; 2595 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2596 tcp_ecn_queue_cwr(tp); 2597 } 2598 2599 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2600 { 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 int sndcnt = 0; 2603 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2604 2605 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2606 return; 2607 2608 tp->prr_delivered += newly_acked_sacked; 2609 if (delta < 0) { 2610 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2611 tp->prior_cwnd - 1; 2612 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2613 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) { 2614 sndcnt = min_t(int, delta, 2615 max_t(int, tp->prr_delivered - tp->prr_out, 2616 newly_acked_sacked) + 1); 2617 } else { 2618 sndcnt = min(delta, newly_acked_sacked); 2619 } 2620 /* Force a fast retransmit upon entering fast recovery */ 2621 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2622 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2623 } 2624 2625 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2626 { 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 2629 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2630 return; 2631 2632 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2633 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2634 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2635 tp->snd_cwnd = tp->snd_ssthresh; 2636 tp->snd_cwnd_stamp = tcp_jiffies32; 2637 } 2638 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2639 } 2640 2641 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2642 void tcp_enter_cwr(struct sock *sk) 2643 { 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 2646 tp->prior_ssthresh = 0; 2647 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2648 tp->undo_marker = 0; 2649 tcp_init_cwnd_reduction(sk); 2650 tcp_set_ca_state(sk, TCP_CA_CWR); 2651 } 2652 } 2653 EXPORT_SYMBOL(tcp_enter_cwr); 2654 2655 static void tcp_try_keep_open(struct sock *sk) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 int state = TCP_CA_Open; 2659 2660 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2661 state = TCP_CA_Disorder; 2662 2663 if (inet_csk(sk)->icsk_ca_state != state) { 2664 tcp_set_ca_state(sk, state); 2665 tp->high_seq = tp->snd_nxt; 2666 } 2667 } 2668 2669 static void tcp_try_to_open(struct sock *sk, int flag) 2670 { 2671 struct tcp_sock *tp = tcp_sk(sk); 2672 2673 tcp_verify_left_out(tp); 2674 2675 if (!tcp_any_retrans_done(sk)) 2676 tp->retrans_stamp = 0; 2677 2678 if (flag & FLAG_ECE) 2679 tcp_enter_cwr(sk); 2680 2681 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2682 tcp_try_keep_open(sk); 2683 } 2684 } 2685 2686 static void tcp_mtup_probe_failed(struct sock *sk) 2687 { 2688 struct inet_connection_sock *icsk = inet_csk(sk); 2689 2690 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2691 icsk->icsk_mtup.probe_size = 0; 2692 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2693 } 2694 2695 static void tcp_mtup_probe_success(struct sock *sk) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 struct inet_connection_sock *icsk = inet_csk(sk); 2699 2700 /* FIXME: breaks with very large cwnd */ 2701 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2702 tp->snd_cwnd = tp->snd_cwnd * 2703 tcp_mss_to_mtu(sk, tp->mss_cache) / 2704 icsk->icsk_mtup.probe_size; 2705 tp->snd_cwnd_cnt = 0; 2706 tp->snd_cwnd_stamp = tcp_jiffies32; 2707 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2708 2709 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2710 icsk->icsk_mtup.probe_size = 0; 2711 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2713 } 2714 2715 /* Do a simple retransmit without using the backoff mechanisms in 2716 * tcp_timer. This is used for path mtu discovery. 2717 * The socket is already locked here. 2718 */ 2719 void tcp_simple_retransmit(struct sock *sk) 2720 { 2721 const struct inet_connection_sock *icsk = inet_csk(sk); 2722 struct tcp_sock *tp = tcp_sk(sk); 2723 struct sk_buff *skb; 2724 int mss; 2725 2726 /* A fastopen SYN request is stored as two separate packets within 2727 * the retransmit queue, this is done by tcp_send_syn_data(). 2728 * As a result simply checking the MSS of the frames in the queue 2729 * will not work for the SYN packet. 2730 * 2731 * Us being here is an indication of a path MTU issue so we can 2732 * assume that the fastopen SYN was lost and just mark all the 2733 * frames in the retransmit queue as lost. We will use an MSS of 2734 * -1 to mark all frames as lost, otherwise compute the current MSS. 2735 */ 2736 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2737 mss = -1; 2738 else 2739 mss = tcp_current_mss(sk); 2740 2741 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2742 if (tcp_skb_seglen(skb) > mss) 2743 tcp_mark_skb_lost(sk, skb); 2744 } 2745 2746 tcp_clear_retrans_hints_partial(tp); 2747 2748 if (!tp->lost_out) 2749 return; 2750 2751 if (tcp_is_reno(tp)) 2752 tcp_limit_reno_sacked(tp); 2753 2754 tcp_verify_left_out(tp); 2755 2756 /* Don't muck with the congestion window here. 2757 * Reason is that we do not increase amount of _data_ 2758 * in network, but units changed and effective 2759 * cwnd/ssthresh really reduced now. 2760 */ 2761 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2762 tp->high_seq = tp->snd_nxt; 2763 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2764 tp->prior_ssthresh = 0; 2765 tp->undo_marker = 0; 2766 tcp_set_ca_state(sk, TCP_CA_Loss); 2767 } 2768 tcp_xmit_retransmit_queue(sk); 2769 } 2770 EXPORT_SYMBOL(tcp_simple_retransmit); 2771 2772 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2773 { 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 int mib_idx; 2776 2777 if (tcp_is_reno(tp)) 2778 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2779 else 2780 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2781 2782 NET_INC_STATS(sock_net(sk), mib_idx); 2783 2784 tp->prior_ssthresh = 0; 2785 tcp_init_undo(tp); 2786 2787 if (!tcp_in_cwnd_reduction(sk)) { 2788 if (!ece_ack) 2789 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2790 tcp_init_cwnd_reduction(sk); 2791 } 2792 tcp_set_ca_state(sk, TCP_CA_Recovery); 2793 } 2794 2795 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2796 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2797 */ 2798 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2799 int *rexmit) 2800 { 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 bool recovered = !before(tp->snd_una, tp->high_seq); 2803 2804 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2805 tcp_try_undo_loss(sk, false)) 2806 return; 2807 2808 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2809 /* Step 3.b. A timeout is spurious if not all data are 2810 * lost, i.e., never-retransmitted data are (s)acked. 2811 */ 2812 if ((flag & FLAG_ORIG_SACK_ACKED) && 2813 tcp_try_undo_loss(sk, true)) 2814 return; 2815 2816 if (after(tp->snd_nxt, tp->high_seq)) { 2817 if (flag & FLAG_DATA_SACKED || num_dupack) 2818 tp->frto = 0; /* Step 3.a. loss was real */ 2819 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2820 tp->high_seq = tp->snd_nxt; 2821 /* Step 2.b. Try send new data (but deferred until cwnd 2822 * is updated in tcp_ack()). Otherwise fall back to 2823 * the conventional recovery. 2824 */ 2825 if (!tcp_write_queue_empty(sk) && 2826 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2827 *rexmit = REXMIT_NEW; 2828 return; 2829 } 2830 tp->frto = 0; 2831 } 2832 } 2833 2834 if (recovered) { 2835 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2836 tcp_try_undo_recovery(sk); 2837 return; 2838 } 2839 if (tcp_is_reno(tp)) { 2840 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2841 * delivered. Lower inflight to clock out (re)tranmissions. 2842 */ 2843 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2844 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2845 else if (flag & FLAG_SND_UNA_ADVANCED) 2846 tcp_reset_reno_sack(tp); 2847 } 2848 *rexmit = REXMIT_LOST; 2849 } 2850 2851 static bool tcp_force_fast_retransmit(struct sock *sk) 2852 { 2853 struct tcp_sock *tp = tcp_sk(sk); 2854 2855 return after(tcp_highest_sack_seq(tp), 2856 tp->snd_una + tp->reordering * tp->mss_cache); 2857 } 2858 2859 /* Undo during fast recovery after partial ACK. */ 2860 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2861 bool *do_lost) 2862 { 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 2865 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2866 /* Plain luck! Hole if filled with delayed 2867 * packet, rather than with a retransmit. Check reordering. 2868 */ 2869 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2870 2871 /* We are getting evidence that the reordering degree is higher 2872 * than we realized. If there are no retransmits out then we 2873 * can undo. Otherwise we clock out new packets but do not 2874 * mark more packets lost or retransmit more. 2875 */ 2876 if (tp->retrans_out) 2877 return true; 2878 2879 if (!tcp_any_retrans_done(sk)) 2880 tp->retrans_stamp = 0; 2881 2882 DBGUNDO(sk, "partial recovery"); 2883 tcp_undo_cwnd_reduction(sk, true); 2884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2885 tcp_try_keep_open(sk); 2886 } else { 2887 /* Partial ACK arrived. Force fast retransmit. */ 2888 *do_lost = tcp_force_fast_retransmit(sk); 2889 } 2890 return false; 2891 } 2892 2893 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2894 { 2895 struct tcp_sock *tp = tcp_sk(sk); 2896 2897 if (tcp_rtx_queue_empty(sk)) 2898 return; 2899 2900 if (unlikely(tcp_is_reno(tp))) { 2901 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2902 } else if (tcp_is_rack(sk)) { 2903 u32 prior_retrans = tp->retrans_out; 2904 2905 if (tcp_rack_mark_lost(sk)) 2906 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2907 if (prior_retrans > tp->retrans_out) 2908 *ack_flag |= FLAG_LOST_RETRANS; 2909 } 2910 } 2911 2912 /* Process an event, which can update packets-in-flight not trivially. 2913 * Main goal of this function is to calculate new estimate for left_out, 2914 * taking into account both packets sitting in receiver's buffer and 2915 * packets lost by network. 2916 * 2917 * Besides that it updates the congestion state when packet loss or ECN 2918 * is detected. But it does not reduce the cwnd, it is done by the 2919 * congestion control later. 2920 * 2921 * It does _not_ decide what to send, it is made in function 2922 * tcp_xmit_retransmit_queue(). 2923 */ 2924 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2925 int num_dupack, int *ack_flag, int *rexmit) 2926 { 2927 struct inet_connection_sock *icsk = inet_csk(sk); 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 int fast_rexmit = 0, flag = *ack_flag; 2930 bool ece_ack = flag & FLAG_ECE; 2931 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2932 tcp_force_fast_retransmit(sk)); 2933 2934 if (!tp->packets_out && tp->sacked_out) 2935 tp->sacked_out = 0; 2936 2937 /* Now state machine starts. 2938 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2939 if (ece_ack) 2940 tp->prior_ssthresh = 0; 2941 2942 /* B. In all the states check for reneging SACKs. */ 2943 if (tcp_check_sack_reneging(sk, flag)) 2944 return; 2945 2946 /* C. Check consistency of the current state. */ 2947 tcp_verify_left_out(tp); 2948 2949 /* D. Check state exit conditions. State can be terminated 2950 * when high_seq is ACKed. */ 2951 if (icsk->icsk_ca_state == TCP_CA_Open) { 2952 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2953 tp->retrans_stamp = 0; 2954 } else if (!before(tp->snd_una, tp->high_seq)) { 2955 switch (icsk->icsk_ca_state) { 2956 case TCP_CA_CWR: 2957 /* CWR is to be held something *above* high_seq 2958 * is ACKed for CWR bit to reach receiver. */ 2959 if (tp->snd_una != tp->high_seq) { 2960 tcp_end_cwnd_reduction(sk); 2961 tcp_set_ca_state(sk, TCP_CA_Open); 2962 } 2963 break; 2964 2965 case TCP_CA_Recovery: 2966 if (tcp_is_reno(tp)) 2967 tcp_reset_reno_sack(tp); 2968 if (tcp_try_undo_recovery(sk)) 2969 return; 2970 tcp_end_cwnd_reduction(sk); 2971 break; 2972 } 2973 } 2974 2975 /* E. Process state. */ 2976 switch (icsk->icsk_ca_state) { 2977 case TCP_CA_Recovery: 2978 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2979 if (tcp_is_reno(tp)) 2980 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2981 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 2982 return; 2983 2984 if (tcp_try_undo_dsack(sk)) 2985 tcp_try_keep_open(sk); 2986 2987 tcp_identify_packet_loss(sk, ack_flag); 2988 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 2989 if (!tcp_time_to_recover(sk, flag)) 2990 return; 2991 /* Undo reverts the recovery state. If loss is evident, 2992 * starts a new recovery (e.g. reordering then loss); 2993 */ 2994 tcp_enter_recovery(sk, ece_ack); 2995 } 2996 break; 2997 case TCP_CA_Loss: 2998 tcp_process_loss(sk, flag, num_dupack, rexmit); 2999 tcp_identify_packet_loss(sk, ack_flag); 3000 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3001 (*ack_flag & FLAG_LOST_RETRANS))) 3002 return; 3003 /* Change state if cwnd is undone or retransmits are lost */ 3004 fallthrough; 3005 default: 3006 if (tcp_is_reno(tp)) { 3007 if (flag & FLAG_SND_UNA_ADVANCED) 3008 tcp_reset_reno_sack(tp); 3009 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3010 } 3011 3012 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3013 tcp_try_undo_dsack(sk); 3014 3015 tcp_identify_packet_loss(sk, ack_flag); 3016 if (!tcp_time_to_recover(sk, flag)) { 3017 tcp_try_to_open(sk, flag); 3018 return; 3019 } 3020 3021 /* MTU probe failure: don't reduce cwnd */ 3022 if (icsk->icsk_ca_state < TCP_CA_CWR && 3023 icsk->icsk_mtup.probe_size && 3024 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3025 tcp_mtup_probe_failed(sk); 3026 /* Restores the reduction we did in tcp_mtup_probe() */ 3027 tp->snd_cwnd++; 3028 tcp_simple_retransmit(sk); 3029 return; 3030 } 3031 3032 /* Otherwise enter Recovery state */ 3033 tcp_enter_recovery(sk, ece_ack); 3034 fast_rexmit = 1; 3035 } 3036 3037 if (!tcp_is_rack(sk) && do_lost) 3038 tcp_update_scoreboard(sk, fast_rexmit); 3039 *rexmit = REXMIT_LOST; 3040 } 3041 3042 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3043 { 3044 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 3045 struct tcp_sock *tp = tcp_sk(sk); 3046 3047 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3048 /* If the remote keeps returning delayed ACKs, eventually 3049 * the min filter would pick it up and overestimate the 3050 * prop. delay when it expires. Skip suspected delayed ACKs. 3051 */ 3052 return; 3053 } 3054 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3055 rtt_us ? : jiffies_to_usecs(1)); 3056 } 3057 3058 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3059 long seq_rtt_us, long sack_rtt_us, 3060 long ca_rtt_us, struct rate_sample *rs) 3061 { 3062 const struct tcp_sock *tp = tcp_sk(sk); 3063 3064 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3065 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3066 * Karn's algorithm forbids taking RTT if some retransmitted data 3067 * is acked (RFC6298). 3068 */ 3069 if (seq_rtt_us < 0) 3070 seq_rtt_us = sack_rtt_us; 3071 3072 /* RTTM Rule: A TSecr value received in a segment is used to 3073 * update the averaged RTT measurement only if the segment 3074 * acknowledges some new data, i.e., only if it advances the 3075 * left edge of the send window. 3076 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3077 */ 3078 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3079 flag & FLAG_ACKED) { 3080 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3081 3082 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3083 if (!delta) 3084 delta = 1; 3085 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3086 ca_rtt_us = seq_rtt_us; 3087 } 3088 } 3089 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3090 if (seq_rtt_us < 0) 3091 return false; 3092 3093 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3094 * always taken together with ACK, SACK, or TS-opts. Any negative 3095 * values will be skipped with the seq_rtt_us < 0 check above. 3096 */ 3097 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3098 tcp_rtt_estimator(sk, seq_rtt_us); 3099 tcp_set_rto(sk); 3100 3101 /* RFC6298: only reset backoff on valid RTT measurement. */ 3102 inet_csk(sk)->icsk_backoff = 0; 3103 return true; 3104 } 3105 3106 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3107 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3108 { 3109 struct rate_sample rs; 3110 long rtt_us = -1L; 3111 3112 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3113 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3114 3115 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3116 } 3117 3118 3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3120 { 3121 const struct inet_connection_sock *icsk = inet_csk(sk); 3122 3123 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3124 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3125 } 3126 3127 /* Restart timer after forward progress on connection. 3128 * RFC2988 recommends to restart timer to now+rto. 3129 */ 3130 void tcp_rearm_rto(struct sock *sk) 3131 { 3132 const struct inet_connection_sock *icsk = inet_csk(sk); 3133 struct tcp_sock *tp = tcp_sk(sk); 3134 3135 /* If the retrans timer is currently being used by Fast Open 3136 * for SYN-ACK retrans purpose, stay put. 3137 */ 3138 if (rcu_access_pointer(tp->fastopen_rsk)) 3139 return; 3140 3141 if (!tp->packets_out) { 3142 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3143 } else { 3144 u32 rto = inet_csk(sk)->icsk_rto; 3145 /* Offset the time elapsed after installing regular RTO */ 3146 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3147 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3148 s64 delta_us = tcp_rto_delta_us(sk); 3149 /* delta_us may not be positive if the socket is locked 3150 * when the retrans timer fires and is rescheduled. 3151 */ 3152 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3153 } 3154 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3155 TCP_RTO_MAX); 3156 } 3157 } 3158 3159 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3160 static void tcp_set_xmit_timer(struct sock *sk) 3161 { 3162 if (!tcp_schedule_loss_probe(sk, true)) 3163 tcp_rearm_rto(sk); 3164 } 3165 3166 /* If we get here, the whole TSO packet has not been acked. */ 3167 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3168 { 3169 struct tcp_sock *tp = tcp_sk(sk); 3170 u32 packets_acked; 3171 3172 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3173 3174 packets_acked = tcp_skb_pcount(skb); 3175 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3176 return 0; 3177 packets_acked -= tcp_skb_pcount(skb); 3178 3179 if (packets_acked) { 3180 BUG_ON(tcp_skb_pcount(skb) == 0); 3181 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3182 } 3183 3184 return packets_acked; 3185 } 3186 3187 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3188 const struct sk_buff *ack_skb, u32 prior_snd_una) 3189 { 3190 const struct skb_shared_info *shinfo; 3191 3192 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3193 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3194 return; 3195 3196 shinfo = skb_shinfo(skb); 3197 if (!before(shinfo->tskey, prior_snd_una) && 3198 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3199 tcp_skb_tsorted_save(skb) { 3200 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3201 } tcp_skb_tsorted_restore(skb); 3202 } 3203 } 3204 3205 /* Remove acknowledged frames from the retransmission queue. If our packet 3206 * is before the ack sequence we can discard it as it's confirmed to have 3207 * arrived at the other end. 3208 */ 3209 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3210 u32 prior_fack, u32 prior_snd_una, 3211 struct tcp_sacktag_state *sack, bool ece_ack) 3212 { 3213 const struct inet_connection_sock *icsk = inet_csk(sk); 3214 u64 first_ackt, last_ackt; 3215 struct tcp_sock *tp = tcp_sk(sk); 3216 u32 prior_sacked = tp->sacked_out; 3217 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3218 struct sk_buff *skb, *next; 3219 bool fully_acked = true; 3220 long sack_rtt_us = -1L; 3221 long seq_rtt_us = -1L; 3222 long ca_rtt_us = -1L; 3223 u32 pkts_acked = 0; 3224 bool rtt_update; 3225 int flag = 0; 3226 3227 first_ackt = 0; 3228 3229 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3230 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3231 const u32 start_seq = scb->seq; 3232 u8 sacked = scb->sacked; 3233 u32 acked_pcount; 3234 3235 /* Determine how many packets and what bytes were acked, tso and else */ 3236 if (after(scb->end_seq, tp->snd_una)) { 3237 if (tcp_skb_pcount(skb) == 1 || 3238 !after(tp->snd_una, scb->seq)) 3239 break; 3240 3241 acked_pcount = tcp_tso_acked(sk, skb); 3242 if (!acked_pcount) 3243 break; 3244 fully_acked = false; 3245 } else { 3246 acked_pcount = tcp_skb_pcount(skb); 3247 } 3248 3249 if (unlikely(sacked & TCPCB_RETRANS)) { 3250 if (sacked & TCPCB_SACKED_RETRANS) 3251 tp->retrans_out -= acked_pcount; 3252 flag |= FLAG_RETRANS_DATA_ACKED; 3253 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3254 last_ackt = tcp_skb_timestamp_us(skb); 3255 WARN_ON_ONCE(last_ackt == 0); 3256 if (!first_ackt) 3257 first_ackt = last_ackt; 3258 3259 if (before(start_seq, reord)) 3260 reord = start_seq; 3261 if (!after(scb->end_seq, tp->high_seq)) 3262 flag |= FLAG_ORIG_SACK_ACKED; 3263 } 3264 3265 if (sacked & TCPCB_SACKED_ACKED) { 3266 tp->sacked_out -= acked_pcount; 3267 } else if (tcp_is_sack(tp)) { 3268 tcp_count_delivered(tp, acked_pcount, ece_ack); 3269 if (!tcp_skb_spurious_retrans(tp, skb)) 3270 tcp_rack_advance(tp, sacked, scb->end_seq, 3271 tcp_skb_timestamp_us(skb)); 3272 } 3273 if (sacked & TCPCB_LOST) 3274 tp->lost_out -= acked_pcount; 3275 3276 tp->packets_out -= acked_pcount; 3277 pkts_acked += acked_pcount; 3278 tcp_rate_skb_delivered(sk, skb, sack->rate); 3279 3280 /* Initial outgoing SYN's get put onto the write_queue 3281 * just like anything else we transmit. It is not 3282 * true data, and if we misinform our callers that 3283 * this ACK acks real data, we will erroneously exit 3284 * connection startup slow start one packet too 3285 * quickly. This is severely frowned upon behavior. 3286 */ 3287 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3288 flag |= FLAG_DATA_ACKED; 3289 } else { 3290 flag |= FLAG_SYN_ACKED; 3291 tp->retrans_stamp = 0; 3292 } 3293 3294 if (!fully_acked) 3295 break; 3296 3297 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3298 3299 next = skb_rb_next(skb); 3300 if (unlikely(skb == tp->retransmit_skb_hint)) 3301 tp->retransmit_skb_hint = NULL; 3302 if (unlikely(skb == tp->lost_skb_hint)) 3303 tp->lost_skb_hint = NULL; 3304 tcp_highest_sack_replace(sk, skb, next); 3305 tcp_rtx_queue_unlink_and_free(skb, sk); 3306 } 3307 3308 if (!skb) 3309 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3310 3311 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3312 tp->snd_up = tp->snd_una; 3313 3314 if (skb) { 3315 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3316 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3317 flag |= FLAG_SACK_RENEGING; 3318 } 3319 3320 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3321 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3322 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3323 3324 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3325 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3326 sack->rate->prior_delivered + 1 == tp->delivered && 3327 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3328 /* Conservatively mark a delayed ACK. It's typically 3329 * from a lone runt packet over the round trip to 3330 * a receiver w/o out-of-order or CE events. 3331 */ 3332 flag |= FLAG_ACK_MAYBE_DELAYED; 3333 } 3334 } 3335 if (sack->first_sackt) { 3336 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3337 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3338 } 3339 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3340 ca_rtt_us, sack->rate); 3341 3342 if (flag & FLAG_ACKED) { 3343 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3344 if (unlikely(icsk->icsk_mtup.probe_size && 3345 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3346 tcp_mtup_probe_success(sk); 3347 } 3348 3349 if (tcp_is_reno(tp)) { 3350 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3351 3352 /* If any of the cumulatively ACKed segments was 3353 * retransmitted, non-SACK case cannot confirm that 3354 * progress was due to original transmission due to 3355 * lack of TCPCB_SACKED_ACKED bits even if some of 3356 * the packets may have been never retransmitted. 3357 */ 3358 if (flag & FLAG_RETRANS_DATA_ACKED) 3359 flag &= ~FLAG_ORIG_SACK_ACKED; 3360 } else { 3361 int delta; 3362 3363 /* Non-retransmitted hole got filled? That's reordering */ 3364 if (before(reord, prior_fack)) 3365 tcp_check_sack_reordering(sk, reord, 0); 3366 3367 delta = prior_sacked - tp->sacked_out; 3368 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3369 } 3370 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3371 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3372 tcp_skb_timestamp_us(skb))) { 3373 /* Do not re-arm RTO if the sack RTT is measured from data sent 3374 * after when the head was last (re)transmitted. Otherwise the 3375 * timeout may continue to extend in loss recovery. 3376 */ 3377 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3378 } 3379 3380 if (icsk->icsk_ca_ops->pkts_acked) { 3381 struct ack_sample sample = { .pkts_acked = pkts_acked, 3382 .rtt_us = sack->rate->rtt_us }; 3383 3384 sample.in_flight = tp->mss_cache * 3385 (tp->delivered - sack->rate->prior_delivered); 3386 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3387 } 3388 3389 #if FASTRETRANS_DEBUG > 0 3390 WARN_ON((int)tp->sacked_out < 0); 3391 WARN_ON((int)tp->lost_out < 0); 3392 WARN_ON((int)tp->retrans_out < 0); 3393 if (!tp->packets_out && tcp_is_sack(tp)) { 3394 icsk = inet_csk(sk); 3395 if (tp->lost_out) { 3396 pr_debug("Leak l=%u %d\n", 3397 tp->lost_out, icsk->icsk_ca_state); 3398 tp->lost_out = 0; 3399 } 3400 if (tp->sacked_out) { 3401 pr_debug("Leak s=%u %d\n", 3402 tp->sacked_out, icsk->icsk_ca_state); 3403 tp->sacked_out = 0; 3404 } 3405 if (tp->retrans_out) { 3406 pr_debug("Leak r=%u %d\n", 3407 tp->retrans_out, icsk->icsk_ca_state); 3408 tp->retrans_out = 0; 3409 } 3410 } 3411 #endif 3412 return flag; 3413 } 3414 3415 static void tcp_ack_probe(struct sock *sk) 3416 { 3417 struct inet_connection_sock *icsk = inet_csk(sk); 3418 struct sk_buff *head = tcp_send_head(sk); 3419 const struct tcp_sock *tp = tcp_sk(sk); 3420 3421 /* Was it a usable window open? */ 3422 if (!head) 3423 return; 3424 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3425 icsk->icsk_backoff = 0; 3426 icsk->icsk_probes_tstamp = 0; 3427 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3428 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3429 * This function is not for random using! 3430 */ 3431 } else { 3432 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3433 3434 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3435 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3436 } 3437 } 3438 3439 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3440 { 3441 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3442 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3443 } 3444 3445 /* Decide wheather to run the increase function of congestion control. */ 3446 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3447 { 3448 /* If reordering is high then always grow cwnd whenever data is 3449 * delivered regardless of its ordering. Otherwise stay conservative 3450 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3451 * new SACK or ECE mark may first advance cwnd here and later reduce 3452 * cwnd in tcp_fastretrans_alert() based on more states. 3453 */ 3454 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3455 return flag & FLAG_FORWARD_PROGRESS; 3456 3457 return flag & FLAG_DATA_ACKED; 3458 } 3459 3460 /* The "ultimate" congestion control function that aims to replace the rigid 3461 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3462 * It's called toward the end of processing an ACK with precise rate 3463 * information. All transmission or retransmission are delayed afterwards. 3464 */ 3465 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3466 int flag, const struct rate_sample *rs) 3467 { 3468 const struct inet_connection_sock *icsk = inet_csk(sk); 3469 3470 if (icsk->icsk_ca_ops->cong_control) { 3471 icsk->icsk_ca_ops->cong_control(sk, rs); 3472 return; 3473 } 3474 3475 if (tcp_in_cwnd_reduction(sk)) { 3476 /* Reduce cwnd if state mandates */ 3477 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3478 } else if (tcp_may_raise_cwnd(sk, flag)) { 3479 /* Advance cwnd if state allows */ 3480 tcp_cong_avoid(sk, ack, acked_sacked); 3481 } 3482 tcp_update_pacing_rate(sk); 3483 } 3484 3485 /* Check that window update is acceptable. 3486 * The function assumes that snd_una<=ack<=snd_next. 3487 */ 3488 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3489 const u32 ack, const u32 ack_seq, 3490 const u32 nwin) 3491 { 3492 return after(ack, tp->snd_una) || 3493 after(ack_seq, tp->snd_wl1) || 3494 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3495 } 3496 3497 /* If we update tp->snd_una, also update tp->bytes_acked */ 3498 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3499 { 3500 u32 delta = ack - tp->snd_una; 3501 3502 sock_owned_by_me((struct sock *)tp); 3503 tp->bytes_acked += delta; 3504 tp->snd_una = ack; 3505 } 3506 3507 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3508 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3509 { 3510 u32 delta = seq - tp->rcv_nxt; 3511 3512 sock_owned_by_me((struct sock *)tp); 3513 tp->bytes_received += delta; 3514 WRITE_ONCE(tp->rcv_nxt, seq); 3515 } 3516 3517 /* Update our send window. 3518 * 3519 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3520 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3521 */ 3522 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3523 u32 ack_seq) 3524 { 3525 struct tcp_sock *tp = tcp_sk(sk); 3526 int flag = 0; 3527 u32 nwin = ntohs(tcp_hdr(skb)->window); 3528 3529 if (likely(!tcp_hdr(skb)->syn)) 3530 nwin <<= tp->rx_opt.snd_wscale; 3531 3532 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3533 flag |= FLAG_WIN_UPDATE; 3534 tcp_update_wl(tp, ack_seq); 3535 3536 if (tp->snd_wnd != nwin) { 3537 tp->snd_wnd = nwin; 3538 3539 /* Note, it is the only place, where 3540 * fast path is recovered for sending TCP. 3541 */ 3542 tp->pred_flags = 0; 3543 tcp_fast_path_check(sk); 3544 3545 if (!tcp_write_queue_empty(sk)) 3546 tcp_slow_start_after_idle_check(sk); 3547 3548 if (nwin > tp->max_window) { 3549 tp->max_window = nwin; 3550 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3551 } 3552 } 3553 } 3554 3555 tcp_snd_una_update(tp, ack); 3556 3557 return flag; 3558 } 3559 3560 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3561 u32 *last_oow_ack_time) 3562 { 3563 if (*last_oow_ack_time) { 3564 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3565 3566 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3567 NET_INC_STATS(net, mib_idx); 3568 return true; /* rate-limited: don't send yet! */ 3569 } 3570 } 3571 3572 *last_oow_ack_time = tcp_jiffies32; 3573 3574 return false; /* not rate-limited: go ahead, send dupack now! */ 3575 } 3576 3577 /* Return true if we're currently rate-limiting out-of-window ACKs and 3578 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3579 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3580 * attacks that send repeated SYNs or ACKs for the same connection. To 3581 * do this, we do not send a duplicate SYNACK or ACK if the remote 3582 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3583 */ 3584 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3585 int mib_idx, u32 *last_oow_ack_time) 3586 { 3587 /* Data packets without SYNs are not likely part of an ACK loop. */ 3588 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3589 !tcp_hdr(skb)->syn) 3590 return false; 3591 3592 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3593 } 3594 3595 /* RFC 5961 7 [ACK Throttling] */ 3596 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3597 { 3598 /* unprotected vars, we dont care of overwrites */ 3599 static u32 challenge_timestamp; 3600 static unsigned int challenge_count; 3601 struct tcp_sock *tp = tcp_sk(sk); 3602 struct net *net = sock_net(sk); 3603 u32 count, now; 3604 3605 /* First check our per-socket dupack rate limit. */ 3606 if (__tcp_oow_rate_limited(net, 3607 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3608 &tp->last_oow_ack_time)) 3609 return; 3610 3611 /* Then check host-wide RFC 5961 rate limit. */ 3612 now = jiffies / HZ; 3613 if (now != challenge_timestamp) { 3614 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3615 u32 half = (ack_limit + 1) >> 1; 3616 3617 challenge_timestamp = now; 3618 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3619 } 3620 count = READ_ONCE(challenge_count); 3621 if (count > 0) { 3622 WRITE_ONCE(challenge_count, count - 1); 3623 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3624 tcp_send_ack(sk); 3625 } 3626 } 3627 3628 static void tcp_store_ts_recent(struct tcp_sock *tp) 3629 { 3630 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3631 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3632 } 3633 3634 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3635 { 3636 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3637 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3638 * extra check below makes sure this can only happen 3639 * for pure ACK frames. -DaveM 3640 * 3641 * Not only, also it occurs for expired timestamps. 3642 */ 3643 3644 if (tcp_paws_check(&tp->rx_opt, 0)) 3645 tcp_store_ts_recent(tp); 3646 } 3647 } 3648 3649 /* This routine deals with acks during a TLP episode and ends an episode by 3650 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3651 */ 3652 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3653 { 3654 struct tcp_sock *tp = tcp_sk(sk); 3655 3656 if (before(ack, tp->tlp_high_seq)) 3657 return; 3658 3659 if (!tp->tlp_retrans) { 3660 /* TLP of new data has been acknowledged */ 3661 tp->tlp_high_seq = 0; 3662 } else if (flag & FLAG_DSACK_TLP) { 3663 /* This DSACK means original and TLP probe arrived; no loss */ 3664 tp->tlp_high_seq = 0; 3665 } else if (after(ack, tp->tlp_high_seq)) { 3666 /* ACK advances: there was a loss, so reduce cwnd. Reset 3667 * tlp_high_seq in tcp_init_cwnd_reduction() 3668 */ 3669 tcp_init_cwnd_reduction(sk); 3670 tcp_set_ca_state(sk, TCP_CA_CWR); 3671 tcp_end_cwnd_reduction(sk); 3672 tcp_try_keep_open(sk); 3673 NET_INC_STATS(sock_net(sk), 3674 LINUX_MIB_TCPLOSSPROBERECOVERY); 3675 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3676 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3677 /* Pure dupack: original and TLP probe arrived; no loss */ 3678 tp->tlp_high_seq = 0; 3679 } 3680 } 3681 3682 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3683 { 3684 const struct inet_connection_sock *icsk = inet_csk(sk); 3685 3686 if (icsk->icsk_ca_ops->in_ack_event) 3687 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3688 } 3689 3690 /* Congestion control has updated the cwnd already. So if we're in 3691 * loss recovery then now we do any new sends (for FRTO) or 3692 * retransmits (for CA_Loss or CA_recovery) that make sense. 3693 */ 3694 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3695 { 3696 struct tcp_sock *tp = tcp_sk(sk); 3697 3698 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3699 return; 3700 3701 if (unlikely(rexmit == REXMIT_NEW)) { 3702 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3703 TCP_NAGLE_OFF); 3704 if (after(tp->snd_nxt, tp->high_seq)) 3705 return; 3706 tp->frto = 0; 3707 } 3708 tcp_xmit_retransmit_queue(sk); 3709 } 3710 3711 /* Returns the number of packets newly acked or sacked by the current ACK */ 3712 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3713 { 3714 const struct net *net = sock_net(sk); 3715 struct tcp_sock *tp = tcp_sk(sk); 3716 u32 delivered; 3717 3718 delivered = tp->delivered - prior_delivered; 3719 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3720 if (flag & FLAG_ECE) 3721 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3722 3723 return delivered; 3724 } 3725 3726 /* This routine deals with incoming acks, but not outgoing ones. */ 3727 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3728 { 3729 struct inet_connection_sock *icsk = inet_csk(sk); 3730 struct tcp_sock *tp = tcp_sk(sk); 3731 struct tcp_sacktag_state sack_state; 3732 struct rate_sample rs = { .prior_delivered = 0 }; 3733 u32 prior_snd_una = tp->snd_una; 3734 bool is_sack_reneg = tp->is_sack_reneg; 3735 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3736 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3737 int num_dupack = 0; 3738 int prior_packets = tp->packets_out; 3739 u32 delivered = tp->delivered; 3740 u32 lost = tp->lost; 3741 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3742 u32 prior_fack; 3743 3744 sack_state.first_sackt = 0; 3745 sack_state.rate = &rs; 3746 sack_state.sack_delivered = 0; 3747 3748 /* We very likely will need to access rtx queue. */ 3749 prefetch(sk->tcp_rtx_queue.rb_node); 3750 3751 /* If the ack is older than previous acks 3752 * then we can probably ignore it. 3753 */ 3754 if (before(ack, prior_snd_una)) { 3755 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3756 if (before(ack, prior_snd_una - tp->max_window)) { 3757 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3758 tcp_send_challenge_ack(sk, skb); 3759 return -1; 3760 } 3761 goto old_ack; 3762 } 3763 3764 /* If the ack includes data we haven't sent yet, discard 3765 * this segment (RFC793 Section 3.9). 3766 */ 3767 if (after(ack, tp->snd_nxt)) 3768 return -1; 3769 3770 if (after(ack, prior_snd_una)) { 3771 flag |= FLAG_SND_UNA_ADVANCED; 3772 icsk->icsk_retransmits = 0; 3773 3774 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3775 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3776 if (icsk->icsk_clean_acked) 3777 icsk->icsk_clean_acked(sk, ack); 3778 #endif 3779 } 3780 3781 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3782 rs.prior_in_flight = tcp_packets_in_flight(tp); 3783 3784 /* ts_recent update must be made after we are sure that the packet 3785 * is in window. 3786 */ 3787 if (flag & FLAG_UPDATE_TS_RECENT) 3788 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3789 3790 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3791 FLAG_SND_UNA_ADVANCED) { 3792 /* Window is constant, pure forward advance. 3793 * No more checks are required. 3794 * Note, we use the fact that SND.UNA>=SND.WL2. 3795 */ 3796 tcp_update_wl(tp, ack_seq); 3797 tcp_snd_una_update(tp, ack); 3798 flag |= FLAG_WIN_UPDATE; 3799 3800 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3801 3802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3803 } else { 3804 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3805 3806 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3807 flag |= FLAG_DATA; 3808 else 3809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3810 3811 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3812 3813 if (TCP_SKB_CB(skb)->sacked) 3814 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3815 &sack_state); 3816 3817 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3818 flag |= FLAG_ECE; 3819 ack_ev_flags |= CA_ACK_ECE; 3820 } 3821 3822 if (sack_state.sack_delivered) 3823 tcp_count_delivered(tp, sack_state.sack_delivered, 3824 flag & FLAG_ECE); 3825 3826 if (flag & FLAG_WIN_UPDATE) 3827 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3828 3829 tcp_in_ack_event(sk, ack_ev_flags); 3830 } 3831 3832 /* This is a deviation from RFC3168 since it states that: 3833 * "When the TCP data sender is ready to set the CWR bit after reducing 3834 * the congestion window, it SHOULD set the CWR bit only on the first 3835 * new data packet that it transmits." 3836 * We accept CWR on pure ACKs to be more robust 3837 * with widely-deployed TCP implementations that do this. 3838 */ 3839 tcp_ecn_accept_cwr(sk, skb); 3840 3841 /* We passed data and got it acked, remove any soft error 3842 * log. Something worked... 3843 */ 3844 sk->sk_err_soft = 0; 3845 icsk->icsk_probes_out = 0; 3846 tp->rcv_tstamp = tcp_jiffies32; 3847 if (!prior_packets) 3848 goto no_queue; 3849 3850 /* See if we can take anything off of the retransmit queue. */ 3851 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3852 &sack_state, flag & FLAG_ECE); 3853 3854 tcp_rack_update_reo_wnd(sk, &rs); 3855 3856 if (tp->tlp_high_seq) 3857 tcp_process_tlp_ack(sk, ack, flag); 3858 3859 if (tcp_ack_is_dubious(sk, flag)) { 3860 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3861 num_dupack = 1; 3862 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3863 if (!(flag & FLAG_DATA)) 3864 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3865 } 3866 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3867 &rexmit); 3868 } 3869 3870 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3871 if (flag & FLAG_SET_XMIT_TIMER) 3872 tcp_set_xmit_timer(sk); 3873 3874 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3875 sk_dst_confirm(sk); 3876 3877 delivered = tcp_newly_delivered(sk, delivered, flag); 3878 lost = tp->lost - lost; /* freshly marked lost */ 3879 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3880 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3881 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3882 tcp_xmit_recovery(sk, rexmit); 3883 return 1; 3884 3885 no_queue: 3886 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3887 if (flag & FLAG_DSACKING_ACK) { 3888 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3889 &rexmit); 3890 tcp_newly_delivered(sk, delivered, flag); 3891 } 3892 /* If this ack opens up a zero window, clear backoff. It was 3893 * being used to time the probes, and is probably far higher than 3894 * it needs to be for normal retransmission. 3895 */ 3896 tcp_ack_probe(sk); 3897 3898 if (tp->tlp_high_seq) 3899 tcp_process_tlp_ack(sk, ack, flag); 3900 return 1; 3901 3902 old_ack: 3903 /* If data was SACKed, tag it and see if we should send more data. 3904 * If data was DSACKed, see if we can undo a cwnd reduction. 3905 */ 3906 if (TCP_SKB_CB(skb)->sacked) { 3907 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3908 &sack_state); 3909 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3910 &rexmit); 3911 tcp_newly_delivered(sk, delivered, flag); 3912 tcp_xmit_recovery(sk, rexmit); 3913 } 3914 3915 return 0; 3916 } 3917 3918 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3919 bool syn, struct tcp_fastopen_cookie *foc, 3920 bool exp_opt) 3921 { 3922 /* Valid only in SYN or SYN-ACK with an even length. */ 3923 if (!foc || !syn || len < 0 || (len & 1)) 3924 return; 3925 3926 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3927 len <= TCP_FASTOPEN_COOKIE_MAX) 3928 memcpy(foc->val, cookie, len); 3929 else if (len != 0) 3930 len = -1; 3931 foc->len = len; 3932 foc->exp = exp_opt; 3933 } 3934 3935 static bool smc_parse_options(const struct tcphdr *th, 3936 struct tcp_options_received *opt_rx, 3937 const unsigned char *ptr, 3938 int opsize) 3939 { 3940 #if IS_ENABLED(CONFIG_SMC) 3941 if (static_branch_unlikely(&tcp_have_smc)) { 3942 if (th->syn && !(opsize & 1) && 3943 opsize >= TCPOLEN_EXP_SMC_BASE && 3944 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3945 opt_rx->smc_ok = 1; 3946 return true; 3947 } 3948 } 3949 #endif 3950 return false; 3951 } 3952 3953 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3954 * value on success. 3955 */ 3956 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3957 { 3958 const unsigned char *ptr = (const unsigned char *)(th + 1); 3959 int length = (th->doff * 4) - sizeof(struct tcphdr); 3960 u16 mss = 0; 3961 3962 while (length > 0) { 3963 int opcode = *ptr++; 3964 int opsize; 3965 3966 switch (opcode) { 3967 case TCPOPT_EOL: 3968 return mss; 3969 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3970 length--; 3971 continue; 3972 default: 3973 if (length < 2) 3974 return mss; 3975 opsize = *ptr++; 3976 if (opsize < 2) /* "silly options" */ 3977 return mss; 3978 if (opsize > length) 3979 return mss; /* fail on partial options */ 3980 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3981 u16 in_mss = get_unaligned_be16(ptr); 3982 3983 if (in_mss) { 3984 if (user_mss && user_mss < in_mss) 3985 in_mss = user_mss; 3986 mss = in_mss; 3987 } 3988 } 3989 ptr += opsize - 2; 3990 length -= opsize; 3991 } 3992 } 3993 return mss; 3994 } 3995 3996 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3997 * But, this can also be called on packets in the established flow when 3998 * the fast version below fails. 3999 */ 4000 void tcp_parse_options(const struct net *net, 4001 const struct sk_buff *skb, 4002 struct tcp_options_received *opt_rx, int estab, 4003 struct tcp_fastopen_cookie *foc) 4004 { 4005 const unsigned char *ptr; 4006 const struct tcphdr *th = tcp_hdr(skb); 4007 int length = (th->doff * 4) - sizeof(struct tcphdr); 4008 4009 ptr = (const unsigned char *)(th + 1); 4010 opt_rx->saw_tstamp = 0; 4011 opt_rx->saw_unknown = 0; 4012 4013 while (length > 0) { 4014 int opcode = *ptr++; 4015 int opsize; 4016 4017 switch (opcode) { 4018 case TCPOPT_EOL: 4019 return; 4020 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4021 length--; 4022 continue; 4023 default: 4024 if (length < 2) 4025 return; 4026 opsize = *ptr++; 4027 if (opsize < 2) /* "silly options" */ 4028 return; 4029 if (opsize > length) 4030 return; /* don't parse partial options */ 4031 switch (opcode) { 4032 case TCPOPT_MSS: 4033 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4034 u16 in_mss = get_unaligned_be16(ptr); 4035 if (in_mss) { 4036 if (opt_rx->user_mss && 4037 opt_rx->user_mss < in_mss) 4038 in_mss = opt_rx->user_mss; 4039 opt_rx->mss_clamp = in_mss; 4040 } 4041 } 4042 break; 4043 case TCPOPT_WINDOW: 4044 if (opsize == TCPOLEN_WINDOW && th->syn && 4045 !estab && net->ipv4.sysctl_tcp_window_scaling) { 4046 __u8 snd_wscale = *(__u8 *)ptr; 4047 opt_rx->wscale_ok = 1; 4048 if (snd_wscale > TCP_MAX_WSCALE) { 4049 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4050 __func__, 4051 snd_wscale, 4052 TCP_MAX_WSCALE); 4053 snd_wscale = TCP_MAX_WSCALE; 4054 } 4055 opt_rx->snd_wscale = snd_wscale; 4056 } 4057 break; 4058 case TCPOPT_TIMESTAMP: 4059 if ((opsize == TCPOLEN_TIMESTAMP) && 4060 ((estab && opt_rx->tstamp_ok) || 4061 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 4062 opt_rx->saw_tstamp = 1; 4063 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4064 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4065 } 4066 break; 4067 case TCPOPT_SACK_PERM: 4068 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4069 !estab && net->ipv4.sysctl_tcp_sack) { 4070 opt_rx->sack_ok = TCP_SACK_SEEN; 4071 tcp_sack_reset(opt_rx); 4072 } 4073 break; 4074 4075 case TCPOPT_SACK: 4076 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4077 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4078 opt_rx->sack_ok) { 4079 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4080 } 4081 break; 4082 #ifdef CONFIG_TCP_MD5SIG 4083 case TCPOPT_MD5SIG: 4084 /* 4085 * The MD5 Hash has already been 4086 * checked (see tcp_v{4,6}_do_rcv()). 4087 */ 4088 break; 4089 #endif 4090 case TCPOPT_FASTOPEN: 4091 tcp_parse_fastopen_option( 4092 opsize - TCPOLEN_FASTOPEN_BASE, 4093 ptr, th->syn, foc, false); 4094 break; 4095 4096 case TCPOPT_EXP: 4097 /* Fast Open option shares code 254 using a 4098 * 16 bits magic number. 4099 */ 4100 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4101 get_unaligned_be16(ptr) == 4102 TCPOPT_FASTOPEN_MAGIC) { 4103 tcp_parse_fastopen_option(opsize - 4104 TCPOLEN_EXP_FASTOPEN_BASE, 4105 ptr + 2, th->syn, foc, true); 4106 break; 4107 } 4108 4109 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4110 break; 4111 4112 opt_rx->saw_unknown = 1; 4113 break; 4114 4115 default: 4116 opt_rx->saw_unknown = 1; 4117 } 4118 ptr += opsize-2; 4119 length -= opsize; 4120 } 4121 } 4122 } 4123 EXPORT_SYMBOL(tcp_parse_options); 4124 4125 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4126 { 4127 const __be32 *ptr = (const __be32 *)(th + 1); 4128 4129 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4130 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4131 tp->rx_opt.saw_tstamp = 1; 4132 ++ptr; 4133 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4134 ++ptr; 4135 if (*ptr) 4136 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4137 else 4138 tp->rx_opt.rcv_tsecr = 0; 4139 return true; 4140 } 4141 return false; 4142 } 4143 4144 /* Fast parse options. This hopes to only see timestamps. 4145 * If it is wrong it falls back on tcp_parse_options(). 4146 */ 4147 static bool tcp_fast_parse_options(const struct net *net, 4148 const struct sk_buff *skb, 4149 const struct tcphdr *th, struct tcp_sock *tp) 4150 { 4151 /* In the spirit of fast parsing, compare doff directly to constant 4152 * values. Because equality is used, short doff can be ignored here. 4153 */ 4154 if (th->doff == (sizeof(*th) / 4)) { 4155 tp->rx_opt.saw_tstamp = 0; 4156 return false; 4157 } else if (tp->rx_opt.tstamp_ok && 4158 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4159 if (tcp_parse_aligned_timestamp(tp, th)) 4160 return true; 4161 } 4162 4163 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4164 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4165 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4166 4167 return true; 4168 } 4169 4170 #ifdef CONFIG_TCP_MD5SIG 4171 /* 4172 * Parse MD5 Signature option 4173 */ 4174 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4175 { 4176 int length = (th->doff << 2) - sizeof(*th); 4177 const u8 *ptr = (const u8 *)(th + 1); 4178 4179 /* If not enough data remaining, we can short cut */ 4180 while (length >= TCPOLEN_MD5SIG) { 4181 int opcode = *ptr++; 4182 int opsize; 4183 4184 switch (opcode) { 4185 case TCPOPT_EOL: 4186 return NULL; 4187 case TCPOPT_NOP: 4188 length--; 4189 continue; 4190 default: 4191 opsize = *ptr++; 4192 if (opsize < 2 || opsize > length) 4193 return NULL; 4194 if (opcode == TCPOPT_MD5SIG) 4195 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4196 } 4197 ptr += opsize - 2; 4198 length -= opsize; 4199 } 4200 return NULL; 4201 } 4202 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4203 #endif 4204 4205 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4206 * 4207 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4208 * it can pass through stack. So, the following predicate verifies that 4209 * this segment is not used for anything but congestion avoidance or 4210 * fast retransmit. Moreover, we even are able to eliminate most of such 4211 * second order effects, if we apply some small "replay" window (~RTO) 4212 * to timestamp space. 4213 * 4214 * All these measures still do not guarantee that we reject wrapped ACKs 4215 * on networks with high bandwidth, when sequence space is recycled fastly, 4216 * but it guarantees that such events will be very rare and do not affect 4217 * connection seriously. This doesn't look nice, but alas, PAWS is really 4218 * buggy extension. 4219 * 4220 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4221 * states that events when retransmit arrives after original data are rare. 4222 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4223 * the biggest problem on large power networks even with minor reordering. 4224 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4225 * up to bandwidth of 18Gigabit/sec. 8) ] 4226 */ 4227 4228 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4229 { 4230 const struct tcp_sock *tp = tcp_sk(sk); 4231 const struct tcphdr *th = tcp_hdr(skb); 4232 u32 seq = TCP_SKB_CB(skb)->seq; 4233 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4234 4235 return (/* 1. Pure ACK with correct sequence number. */ 4236 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4237 4238 /* 2. ... and duplicate ACK. */ 4239 ack == tp->snd_una && 4240 4241 /* 3. ... and does not update window. */ 4242 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4243 4244 /* 4. ... and sits in replay window. */ 4245 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4246 } 4247 4248 static inline bool tcp_paws_discard(const struct sock *sk, 4249 const struct sk_buff *skb) 4250 { 4251 const struct tcp_sock *tp = tcp_sk(sk); 4252 4253 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4254 !tcp_disordered_ack(sk, skb); 4255 } 4256 4257 /* Check segment sequence number for validity. 4258 * 4259 * Segment controls are considered valid, if the segment 4260 * fits to the window after truncation to the window. Acceptability 4261 * of data (and SYN, FIN, of course) is checked separately. 4262 * See tcp_data_queue(), for example. 4263 * 4264 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4265 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4266 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4267 * (borrowed from freebsd) 4268 */ 4269 4270 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4271 { 4272 return !before(end_seq, tp->rcv_wup) && 4273 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4274 } 4275 4276 /* When we get a reset we do this. */ 4277 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4278 { 4279 trace_tcp_receive_reset(sk); 4280 4281 /* mptcp can't tell us to ignore reset pkts, 4282 * so just ignore the return value of mptcp_incoming_options(). 4283 */ 4284 if (sk_is_mptcp(sk)) 4285 mptcp_incoming_options(sk, skb); 4286 4287 /* We want the right error as BSD sees it (and indeed as we do). */ 4288 switch (sk->sk_state) { 4289 case TCP_SYN_SENT: 4290 sk->sk_err = ECONNREFUSED; 4291 break; 4292 case TCP_CLOSE_WAIT: 4293 sk->sk_err = EPIPE; 4294 break; 4295 case TCP_CLOSE: 4296 return; 4297 default: 4298 sk->sk_err = ECONNRESET; 4299 } 4300 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4301 smp_wmb(); 4302 4303 tcp_write_queue_purge(sk); 4304 tcp_done(sk); 4305 4306 if (!sock_flag(sk, SOCK_DEAD)) 4307 sk_error_report(sk); 4308 } 4309 4310 /* 4311 * Process the FIN bit. This now behaves as it is supposed to work 4312 * and the FIN takes effect when it is validly part of sequence 4313 * space. Not before when we get holes. 4314 * 4315 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4316 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4317 * TIME-WAIT) 4318 * 4319 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4320 * close and we go into CLOSING (and later onto TIME-WAIT) 4321 * 4322 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4323 */ 4324 void tcp_fin(struct sock *sk) 4325 { 4326 struct tcp_sock *tp = tcp_sk(sk); 4327 4328 inet_csk_schedule_ack(sk); 4329 4330 sk->sk_shutdown |= RCV_SHUTDOWN; 4331 sock_set_flag(sk, SOCK_DONE); 4332 4333 switch (sk->sk_state) { 4334 case TCP_SYN_RECV: 4335 case TCP_ESTABLISHED: 4336 /* Move to CLOSE_WAIT */ 4337 tcp_set_state(sk, TCP_CLOSE_WAIT); 4338 inet_csk_enter_pingpong_mode(sk); 4339 break; 4340 4341 case TCP_CLOSE_WAIT: 4342 case TCP_CLOSING: 4343 /* Received a retransmission of the FIN, do 4344 * nothing. 4345 */ 4346 break; 4347 case TCP_LAST_ACK: 4348 /* RFC793: Remain in the LAST-ACK state. */ 4349 break; 4350 4351 case TCP_FIN_WAIT1: 4352 /* This case occurs when a simultaneous close 4353 * happens, we must ack the received FIN and 4354 * enter the CLOSING state. 4355 */ 4356 tcp_send_ack(sk); 4357 tcp_set_state(sk, TCP_CLOSING); 4358 break; 4359 case TCP_FIN_WAIT2: 4360 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4361 tcp_send_ack(sk); 4362 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4363 break; 4364 default: 4365 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4366 * cases we should never reach this piece of code. 4367 */ 4368 pr_err("%s: Impossible, sk->sk_state=%d\n", 4369 __func__, sk->sk_state); 4370 break; 4371 } 4372 4373 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4374 * Probably, we should reset in this case. For now drop them. 4375 */ 4376 skb_rbtree_purge(&tp->out_of_order_queue); 4377 if (tcp_is_sack(tp)) 4378 tcp_sack_reset(&tp->rx_opt); 4379 sk_mem_reclaim(sk); 4380 4381 if (!sock_flag(sk, SOCK_DEAD)) { 4382 sk->sk_state_change(sk); 4383 4384 /* Do not send POLL_HUP for half duplex close. */ 4385 if (sk->sk_shutdown == SHUTDOWN_MASK || 4386 sk->sk_state == TCP_CLOSE) 4387 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4388 else 4389 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4390 } 4391 } 4392 4393 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4394 u32 end_seq) 4395 { 4396 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4397 if (before(seq, sp->start_seq)) 4398 sp->start_seq = seq; 4399 if (after(end_seq, sp->end_seq)) 4400 sp->end_seq = end_seq; 4401 return true; 4402 } 4403 return false; 4404 } 4405 4406 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4407 { 4408 struct tcp_sock *tp = tcp_sk(sk); 4409 4410 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4411 int mib_idx; 4412 4413 if (before(seq, tp->rcv_nxt)) 4414 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4415 else 4416 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4417 4418 NET_INC_STATS(sock_net(sk), mib_idx); 4419 4420 tp->rx_opt.dsack = 1; 4421 tp->duplicate_sack[0].start_seq = seq; 4422 tp->duplicate_sack[0].end_seq = end_seq; 4423 } 4424 } 4425 4426 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4427 { 4428 struct tcp_sock *tp = tcp_sk(sk); 4429 4430 if (!tp->rx_opt.dsack) 4431 tcp_dsack_set(sk, seq, end_seq); 4432 else 4433 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4434 } 4435 4436 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4437 { 4438 /* When the ACK path fails or drops most ACKs, the sender would 4439 * timeout and spuriously retransmit the same segment repeatedly. 4440 * The receiver remembers and reflects via DSACKs. Leverage the 4441 * DSACK state and change the txhash to re-route speculatively. 4442 */ 4443 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4444 sk_rethink_txhash(sk)) 4445 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4446 } 4447 4448 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4449 { 4450 struct tcp_sock *tp = tcp_sk(sk); 4451 4452 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4453 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4454 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4455 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4456 4457 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4458 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4459 4460 tcp_rcv_spurious_retrans(sk, skb); 4461 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4462 end_seq = tp->rcv_nxt; 4463 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4464 } 4465 } 4466 4467 tcp_send_ack(sk); 4468 } 4469 4470 /* These routines update the SACK block as out-of-order packets arrive or 4471 * in-order packets close up the sequence space. 4472 */ 4473 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4474 { 4475 int this_sack; 4476 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4477 struct tcp_sack_block *swalk = sp + 1; 4478 4479 /* See if the recent change to the first SACK eats into 4480 * or hits the sequence space of other SACK blocks, if so coalesce. 4481 */ 4482 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4483 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4484 int i; 4485 4486 /* Zap SWALK, by moving every further SACK up by one slot. 4487 * Decrease num_sacks. 4488 */ 4489 tp->rx_opt.num_sacks--; 4490 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4491 sp[i] = sp[i + 1]; 4492 continue; 4493 } 4494 this_sack++; 4495 swalk++; 4496 } 4497 } 4498 4499 static void tcp_sack_compress_send_ack(struct sock *sk) 4500 { 4501 struct tcp_sock *tp = tcp_sk(sk); 4502 4503 if (!tp->compressed_ack) 4504 return; 4505 4506 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4507 __sock_put(sk); 4508 4509 /* Since we have to send one ack finally, 4510 * substract one from tp->compressed_ack to keep 4511 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4512 */ 4513 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4514 tp->compressed_ack - 1); 4515 4516 tp->compressed_ack = 0; 4517 tcp_send_ack(sk); 4518 } 4519 4520 /* Reasonable amount of sack blocks included in TCP SACK option 4521 * The max is 4, but this becomes 3 if TCP timestamps are there. 4522 * Given that SACK packets might be lost, be conservative and use 2. 4523 */ 4524 #define TCP_SACK_BLOCKS_EXPECTED 2 4525 4526 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4527 { 4528 struct tcp_sock *tp = tcp_sk(sk); 4529 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4530 int cur_sacks = tp->rx_opt.num_sacks; 4531 int this_sack; 4532 4533 if (!cur_sacks) 4534 goto new_sack; 4535 4536 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4537 if (tcp_sack_extend(sp, seq, end_seq)) { 4538 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4539 tcp_sack_compress_send_ack(sk); 4540 /* Rotate this_sack to the first one. */ 4541 for (; this_sack > 0; this_sack--, sp--) 4542 swap(*sp, *(sp - 1)); 4543 if (cur_sacks > 1) 4544 tcp_sack_maybe_coalesce(tp); 4545 return; 4546 } 4547 } 4548 4549 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4550 tcp_sack_compress_send_ack(sk); 4551 4552 /* Could not find an adjacent existing SACK, build a new one, 4553 * put it at the front, and shift everyone else down. We 4554 * always know there is at least one SACK present already here. 4555 * 4556 * If the sack array is full, forget about the last one. 4557 */ 4558 if (this_sack >= TCP_NUM_SACKS) { 4559 this_sack--; 4560 tp->rx_opt.num_sacks--; 4561 sp--; 4562 } 4563 for (; this_sack > 0; this_sack--, sp--) 4564 *sp = *(sp - 1); 4565 4566 new_sack: 4567 /* Build the new head SACK, and we're done. */ 4568 sp->start_seq = seq; 4569 sp->end_seq = end_seq; 4570 tp->rx_opt.num_sacks++; 4571 } 4572 4573 /* RCV.NXT advances, some SACKs should be eaten. */ 4574 4575 static void tcp_sack_remove(struct tcp_sock *tp) 4576 { 4577 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4578 int num_sacks = tp->rx_opt.num_sacks; 4579 int this_sack; 4580 4581 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4582 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4583 tp->rx_opt.num_sacks = 0; 4584 return; 4585 } 4586 4587 for (this_sack = 0; this_sack < num_sacks;) { 4588 /* Check if the start of the sack is covered by RCV.NXT. */ 4589 if (!before(tp->rcv_nxt, sp->start_seq)) { 4590 int i; 4591 4592 /* RCV.NXT must cover all the block! */ 4593 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4594 4595 /* Zap this SACK, by moving forward any other SACKS. */ 4596 for (i = this_sack+1; i < num_sacks; i++) 4597 tp->selective_acks[i-1] = tp->selective_acks[i]; 4598 num_sacks--; 4599 continue; 4600 } 4601 this_sack++; 4602 sp++; 4603 } 4604 tp->rx_opt.num_sacks = num_sacks; 4605 } 4606 4607 /** 4608 * tcp_try_coalesce - try to merge skb to prior one 4609 * @sk: socket 4610 * @to: prior buffer 4611 * @from: buffer to add in queue 4612 * @fragstolen: pointer to boolean 4613 * 4614 * Before queueing skb @from after @to, try to merge them 4615 * to reduce overall memory use and queue lengths, if cost is small. 4616 * Packets in ofo or receive queues can stay a long time. 4617 * Better try to coalesce them right now to avoid future collapses. 4618 * Returns true if caller should free @from instead of queueing it 4619 */ 4620 static bool tcp_try_coalesce(struct sock *sk, 4621 struct sk_buff *to, 4622 struct sk_buff *from, 4623 bool *fragstolen) 4624 { 4625 int delta; 4626 4627 *fragstolen = false; 4628 4629 /* Its possible this segment overlaps with prior segment in queue */ 4630 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4631 return false; 4632 4633 if (!mptcp_skb_can_collapse(to, from)) 4634 return false; 4635 4636 #ifdef CONFIG_TLS_DEVICE 4637 if (from->decrypted != to->decrypted) 4638 return false; 4639 #endif 4640 4641 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4642 return false; 4643 4644 atomic_add(delta, &sk->sk_rmem_alloc); 4645 sk_mem_charge(sk, delta); 4646 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4647 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4648 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4649 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4650 4651 if (TCP_SKB_CB(from)->has_rxtstamp) { 4652 TCP_SKB_CB(to)->has_rxtstamp = true; 4653 to->tstamp = from->tstamp; 4654 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4655 } 4656 4657 return true; 4658 } 4659 4660 static bool tcp_ooo_try_coalesce(struct sock *sk, 4661 struct sk_buff *to, 4662 struct sk_buff *from, 4663 bool *fragstolen) 4664 { 4665 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4666 4667 /* In case tcp_drop() is called later, update to->gso_segs */ 4668 if (res) { 4669 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4670 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4671 4672 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4673 } 4674 return res; 4675 } 4676 4677 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4678 { 4679 sk_drops_add(sk, skb); 4680 __kfree_skb(skb); 4681 } 4682 4683 /* This one checks to see if we can put data from the 4684 * out_of_order queue into the receive_queue. 4685 */ 4686 static void tcp_ofo_queue(struct sock *sk) 4687 { 4688 struct tcp_sock *tp = tcp_sk(sk); 4689 __u32 dsack_high = tp->rcv_nxt; 4690 bool fin, fragstolen, eaten; 4691 struct sk_buff *skb, *tail; 4692 struct rb_node *p; 4693 4694 p = rb_first(&tp->out_of_order_queue); 4695 while (p) { 4696 skb = rb_to_skb(p); 4697 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4698 break; 4699 4700 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4701 __u32 dsack = dsack_high; 4702 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4703 dsack_high = TCP_SKB_CB(skb)->end_seq; 4704 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4705 } 4706 p = rb_next(p); 4707 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4708 4709 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4710 tcp_drop(sk, skb); 4711 continue; 4712 } 4713 4714 tail = skb_peek_tail(&sk->sk_receive_queue); 4715 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4716 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4717 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4718 if (!eaten) 4719 __skb_queue_tail(&sk->sk_receive_queue, skb); 4720 else 4721 kfree_skb_partial(skb, fragstolen); 4722 4723 if (unlikely(fin)) { 4724 tcp_fin(sk); 4725 /* tcp_fin() purges tp->out_of_order_queue, 4726 * so we must end this loop right now. 4727 */ 4728 break; 4729 } 4730 } 4731 } 4732 4733 static bool tcp_prune_ofo_queue(struct sock *sk); 4734 static int tcp_prune_queue(struct sock *sk); 4735 4736 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4737 unsigned int size) 4738 { 4739 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4740 !sk_rmem_schedule(sk, skb, size)) { 4741 4742 if (tcp_prune_queue(sk) < 0) 4743 return -1; 4744 4745 while (!sk_rmem_schedule(sk, skb, size)) { 4746 if (!tcp_prune_ofo_queue(sk)) 4747 return -1; 4748 } 4749 } 4750 return 0; 4751 } 4752 4753 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4754 { 4755 struct tcp_sock *tp = tcp_sk(sk); 4756 struct rb_node **p, *parent; 4757 struct sk_buff *skb1; 4758 u32 seq, end_seq; 4759 bool fragstolen; 4760 4761 tcp_ecn_check_ce(sk, skb); 4762 4763 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4765 sk->sk_data_ready(sk); 4766 tcp_drop(sk, skb); 4767 return; 4768 } 4769 4770 /* Disable header prediction. */ 4771 tp->pred_flags = 0; 4772 inet_csk_schedule_ack(sk); 4773 4774 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4775 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4776 seq = TCP_SKB_CB(skb)->seq; 4777 end_seq = TCP_SKB_CB(skb)->end_seq; 4778 4779 p = &tp->out_of_order_queue.rb_node; 4780 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4781 /* Initial out of order segment, build 1 SACK. */ 4782 if (tcp_is_sack(tp)) { 4783 tp->rx_opt.num_sacks = 1; 4784 tp->selective_acks[0].start_seq = seq; 4785 tp->selective_acks[0].end_seq = end_seq; 4786 } 4787 rb_link_node(&skb->rbnode, NULL, p); 4788 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4789 tp->ooo_last_skb = skb; 4790 goto end; 4791 } 4792 4793 /* In the typical case, we are adding an skb to the end of the list. 4794 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4795 */ 4796 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4797 skb, &fragstolen)) { 4798 coalesce_done: 4799 /* For non sack flows, do not grow window to force DUPACK 4800 * and trigger fast retransmit. 4801 */ 4802 if (tcp_is_sack(tp)) 4803 tcp_grow_window(sk, skb, true); 4804 kfree_skb_partial(skb, fragstolen); 4805 skb = NULL; 4806 goto add_sack; 4807 } 4808 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4809 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4810 parent = &tp->ooo_last_skb->rbnode; 4811 p = &parent->rb_right; 4812 goto insert; 4813 } 4814 4815 /* Find place to insert this segment. Handle overlaps on the way. */ 4816 parent = NULL; 4817 while (*p) { 4818 parent = *p; 4819 skb1 = rb_to_skb(parent); 4820 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4821 p = &parent->rb_left; 4822 continue; 4823 } 4824 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4825 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4826 /* All the bits are present. Drop. */ 4827 NET_INC_STATS(sock_net(sk), 4828 LINUX_MIB_TCPOFOMERGE); 4829 tcp_drop(sk, skb); 4830 skb = NULL; 4831 tcp_dsack_set(sk, seq, end_seq); 4832 goto add_sack; 4833 } 4834 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4835 /* Partial overlap. */ 4836 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4837 } else { 4838 /* skb's seq == skb1's seq and skb covers skb1. 4839 * Replace skb1 with skb. 4840 */ 4841 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4842 &tp->out_of_order_queue); 4843 tcp_dsack_extend(sk, 4844 TCP_SKB_CB(skb1)->seq, 4845 TCP_SKB_CB(skb1)->end_seq); 4846 NET_INC_STATS(sock_net(sk), 4847 LINUX_MIB_TCPOFOMERGE); 4848 tcp_drop(sk, skb1); 4849 goto merge_right; 4850 } 4851 } else if (tcp_ooo_try_coalesce(sk, skb1, 4852 skb, &fragstolen)) { 4853 goto coalesce_done; 4854 } 4855 p = &parent->rb_right; 4856 } 4857 insert: 4858 /* Insert segment into RB tree. */ 4859 rb_link_node(&skb->rbnode, parent, p); 4860 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4861 4862 merge_right: 4863 /* Remove other segments covered by skb. */ 4864 while ((skb1 = skb_rb_next(skb)) != NULL) { 4865 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4866 break; 4867 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4868 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4869 end_seq); 4870 break; 4871 } 4872 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4873 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4874 TCP_SKB_CB(skb1)->end_seq); 4875 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4876 tcp_drop(sk, skb1); 4877 } 4878 /* If there is no skb after us, we are the last_skb ! */ 4879 if (!skb1) 4880 tp->ooo_last_skb = skb; 4881 4882 add_sack: 4883 if (tcp_is_sack(tp)) 4884 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4885 end: 4886 if (skb) { 4887 /* For non sack flows, do not grow window to force DUPACK 4888 * and trigger fast retransmit. 4889 */ 4890 if (tcp_is_sack(tp)) 4891 tcp_grow_window(sk, skb, false); 4892 skb_condense(skb); 4893 skb_set_owner_r(skb, sk); 4894 } 4895 } 4896 4897 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4898 bool *fragstolen) 4899 { 4900 int eaten; 4901 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4902 4903 eaten = (tail && 4904 tcp_try_coalesce(sk, tail, 4905 skb, fragstolen)) ? 1 : 0; 4906 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4907 if (!eaten) { 4908 __skb_queue_tail(&sk->sk_receive_queue, skb); 4909 skb_set_owner_r(skb, sk); 4910 } 4911 return eaten; 4912 } 4913 4914 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4915 { 4916 struct sk_buff *skb; 4917 int err = -ENOMEM; 4918 int data_len = 0; 4919 bool fragstolen; 4920 4921 if (size == 0) 4922 return 0; 4923 4924 if (size > PAGE_SIZE) { 4925 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4926 4927 data_len = npages << PAGE_SHIFT; 4928 size = data_len + (size & ~PAGE_MASK); 4929 } 4930 skb = alloc_skb_with_frags(size - data_len, data_len, 4931 PAGE_ALLOC_COSTLY_ORDER, 4932 &err, sk->sk_allocation); 4933 if (!skb) 4934 goto err; 4935 4936 skb_put(skb, size - data_len); 4937 skb->data_len = data_len; 4938 skb->len = size; 4939 4940 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4942 goto err_free; 4943 } 4944 4945 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4946 if (err) 4947 goto err_free; 4948 4949 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4950 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4951 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4952 4953 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4954 WARN_ON_ONCE(fragstolen); /* should not happen */ 4955 __kfree_skb(skb); 4956 } 4957 return size; 4958 4959 err_free: 4960 kfree_skb(skb); 4961 err: 4962 return err; 4963 4964 } 4965 4966 void tcp_data_ready(struct sock *sk) 4967 { 4968 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 4969 sk->sk_data_ready(sk); 4970 } 4971 4972 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4973 { 4974 struct tcp_sock *tp = tcp_sk(sk); 4975 bool fragstolen; 4976 int eaten; 4977 4978 /* If a subflow has been reset, the packet should not continue 4979 * to be processed, drop the packet. 4980 */ 4981 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 4982 __kfree_skb(skb); 4983 return; 4984 } 4985 4986 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4987 __kfree_skb(skb); 4988 return; 4989 } 4990 skb_dst_drop(skb); 4991 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4992 4993 tp->rx_opt.dsack = 0; 4994 4995 /* Queue data for delivery to the user. 4996 * Packets in sequence go to the receive queue. 4997 * Out of sequence packets to the out_of_order_queue. 4998 */ 4999 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5000 if (tcp_receive_window(tp) == 0) { 5001 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5002 goto out_of_window; 5003 } 5004 5005 /* Ok. In sequence. In window. */ 5006 queue_and_out: 5007 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5008 sk_forced_mem_schedule(sk, skb->truesize); 5009 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5010 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5011 sk->sk_data_ready(sk); 5012 goto drop; 5013 } 5014 5015 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5016 if (skb->len) 5017 tcp_event_data_recv(sk, skb); 5018 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5019 tcp_fin(sk); 5020 5021 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5022 tcp_ofo_queue(sk); 5023 5024 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5025 * gap in queue is filled. 5026 */ 5027 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5028 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5029 } 5030 5031 if (tp->rx_opt.num_sacks) 5032 tcp_sack_remove(tp); 5033 5034 tcp_fast_path_check(sk); 5035 5036 if (eaten > 0) 5037 kfree_skb_partial(skb, fragstolen); 5038 if (!sock_flag(sk, SOCK_DEAD)) 5039 tcp_data_ready(sk); 5040 return; 5041 } 5042 5043 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5044 tcp_rcv_spurious_retrans(sk, skb); 5045 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5046 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5047 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5048 5049 out_of_window: 5050 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5051 inet_csk_schedule_ack(sk); 5052 drop: 5053 tcp_drop(sk, skb); 5054 return; 5055 } 5056 5057 /* Out of window. F.e. zero window probe. */ 5058 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 5059 goto out_of_window; 5060 5061 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5062 /* Partial packet, seq < rcv_next < end_seq */ 5063 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5064 5065 /* If window is closed, drop tail of packet. But after 5066 * remembering D-SACK for its head made in previous line. 5067 */ 5068 if (!tcp_receive_window(tp)) { 5069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5070 goto out_of_window; 5071 } 5072 goto queue_and_out; 5073 } 5074 5075 tcp_data_queue_ofo(sk, skb); 5076 } 5077 5078 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5079 { 5080 if (list) 5081 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5082 5083 return skb_rb_next(skb); 5084 } 5085 5086 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5087 struct sk_buff_head *list, 5088 struct rb_root *root) 5089 { 5090 struct sk_buff *next = tcp_skb_next(skb, list); 5091 5092 if (list) 5093 __skb_unlink(skb, list); 5094 else 5095 rb_erase(&skb->rbnode, root); 5096 5097 __kfree_skb(skb); 5098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5099 5100 return next; 5101 } 5102 5103 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5104 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5105 { 5106 struct rb_node **p = &root->rb_node; 5107 struct rb_node *parent = NULL; 5108 struct sk_buff *skb1; 5109 5110 while (*p) { 5111 parent = *p; 5112 skb1 = rb_to_skb(parent); 5113 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5114 p = &parent->rb_left; 5115 else 5116 p = &parent->rb_right; 5117 } 5118 rb_link_node(&skb->rbnode, parent, p); 5119 rb_insert_color(&skb->rbnode, root); 5120 } 5121 5122 /* Collapse contiguous sequence of skbs head..tail with 5123 * sequence numbers start..end. 5124 * 5125 * If tail is NULL, this means until the end of the queue. 5126 * 5127 * Segments with FIN/SYN are not collapsed (only because this 5128 * simplifies code) 5129 */ 5130 static void 5131 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5132 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5133 { 5134 struct sk_buff *skb = head, *n; 5135 struct sk_buff_head tmp; 5136 bool end_of_skbs; 5137 5138 /* First, check that queue is collapsible and find 5139 * the point where collapsing can be useful. 5140 */ 5141 restart: 5142 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5143 n = tcp_skb_next(skb, list); 5144 5145 /* No new bits? It is possible on ofo queue. */ 5146 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5147 skb = tcp_collapse_one(sk, skb, list, root); 5148 if (!skb) 5149 break; 5150 goto restart; 5151 } 5152 5153 /* The first skb to collapse is: 5154 * - not SYN/FIN and 5155 * - bloated or contains data before "start" or 5156 * overlaps to the next one and mptcp allow collapsing. 5157 */ 5158 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5159 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5160 before(TCP_SKB_CB(skb)->seq, start))) { 5161 end_of_skbs = false; 5162 break; 5163 } 5164 5165 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5166 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5167 end_of_skbs = false; 5168 break; 5169 } 5170 5171 /* Decided to skip this, advance start seq. */ 5172 start = TCP_SKB_CB(skb)->end_seq; 5173 } 5174 if (end_of_skbs || 5175 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5176 return; 5177 5178 __skb_queue_head_init(&tmp); 5179 5180 while (before(start, end)) { 5181 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5182 struct sk_buff *nskb; 5183 5184 nskb = alloc_skb(copy, GFP_ATOMIC); 5185 if (!nskb) 5186 break; 5187 5188 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5189 #ifdef CONFIG_TLS_DEVICE 5190 nskb->decrypted = skb->decrypted; 5191 #endif 5192 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5193 if (list) 5194 __skb_queue_before(list, skb, nskb); 5195 else 5196 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5197 skb_set_owner_r(nskb, sk); 5198 mptcp_skb_ext_move(nskb, skb); 5199 5200 /* Copy data, releasing collapsed skbs. */ 5201 while (copy > 0) { 5202 int offset = start - TCP_SKB_CB(skb)->seq; 5203 int size = TCP_SKB_CB(skb)->end_seq - start; 5204 5205 BUG_ON(offset < 0); 5206 if (size > 0) { 5207 size = min(copy, size); 5208 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5209 BUG(); 5210 TCP_SKB_CB(nskb)->end_seq += size; 5211 copy -= size; 5212 start += size; 5213 } 5214 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5215 skb = tcp_collapse_one(sk, skb, list, root); 5216 if (!skb || 5217 skb == tail || 5218 !mptcp_skb_can_collapse(nskb, skb) || 5219 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5220 goto end; 5221 #ifdef CONFIG_TLS_DEVICE 5222 if (skb->decrypted != nskb->decrypted) 5223 goto end; 5224 #endif 5225 } 5226 } 5227 } 5228 end: 5229 skb_queue_walk_safe(&tmp, skb, n) 5230 tcp_rbtree_insert(root, skb); 5231 } 5232 5233 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5234 * and tcp_collapse() them until all the queue is collapsed. 5235 */ 5236 static void tcp_collapse_ofo_queue(struct sock *sk) 5237 { 5238 struct tcp_sock *tp = tcp_sk(sk); 5239 u32 range_truesize, sum_tiny = 0; 5240 struct sk_buff *skb, *head; 5241 u32 start, end; 5242 5243 skb = skb_rb_first(&tp->out_of_order_queue); 5244 new_range: 5245 if (!skb) { 5246 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5247 return; 5248 } 5249 start = TCP_SKB_CB(skb)->seq; 5250 end = TCP_SKB_CB(skb)->end_seq; 5251 range_truesize = skb->truesize; 5252 5253 for (head = skb;;) { 5254 skb = skb_rb_next(skb); 5255 5256 /* Range is terminated when we see a gap or when 5257 * we are at the queue end. 5258 */ 5259 if (!skb || 5260 after(TCP_SKB_CB(skb)->seq, end) || 5261 before(TCP_SKB_CB(skb)->end_seq, start)) { 5262 /* Do not attempt collapsing tiny skbs */ 5263 if (range_truesize != head->truesize || 5264 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5265 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5266 head, skb, start, end); 5267 } else { 5268 sum_tiny += range_truesize; 5269 if (sum_tiny > sk->sk_rcvbuf >> 3) 5270 return; 5271 } 5272 goto new_range; 5273 } 5274 5275 range_truesize += skb->truesize; 5276 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5277 start = TCP_SKB_CB(skb)->seq; 5278 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5279 end = TCP_SKB_CB(skb)->end_seq; 5280 } 5281 } 5282 5283 /* 5284 * Clean the out-of-order queue to make room. 5285 * We drop high sequences packets to : 5286 * 1) Let a chance for holes to be filled. 5287 * 2) not add too big latencies if thousands of packets sit there. 5288 * (But if application shrinks SO_RCVBUF, we could still end up 5289 * freeing whole queue here) 5290 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5291 * 5292 * Return true if queue has shrunk. 5293 */ 5294 static bool tcp_prune_ofo_queue(struct sock *sk) 5295 { 5296 struct tcp_sock *tp = tcp_sk(sk); 5297 struct rb_node *node, *prev; 5298 int goal; 5299 5300 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5301 return false; 5302 5303 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5304 goal = sk->sk_rcvbuf >> 3; 5305 node = &tp->ooo_last_skb->rbnode; 5306 do { 5307 prev = rb_prev(node); 5308 rb_erase(node, &tp->out_of_order_queue); 5309 goal -= rb_to_skb(node)->truesize; 5310 tcp_drop(sk, rb_to_skb(node)); 5311 if (!prev || goal <= 0) { 5312 sk_mem_reclaim(sk); 5313 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5314 !tcp_under_memory_pressure(sk)) 5315 break; 5316 goal = sk->sk_rcvbuf >> 3; 5317 } 5318 node = prev; 5319 } while (node); 5320 tp->ooo_last_skb = rb_to_skb(prev); 5321 5322 /* Reset SACK state. A conforming SACK implementation will 5323 * do the same at a timeout based retransmit. When a connection 5324 * is in a sad state like this, we care only about integrity 5325 * of the connection not performance. 5326 */ 5327 if (tp->rx_opt.sack_ok) 5328 tcp_sack_reset(&tp->rx_opt); 5329 return true; 5330 } 5331 5332 /* Reduce allocated memory if we can, trying to get 5333 * the socket within its memory limits again. 5334 * 5335 * Return less than zero if we should start dropping frames 5336 * until the socket owning process reads some of the data 5337 * to stabilize the situation. 5338 */ 5339 static int tcp_prune_queue(struct sock *sk) 5340 { 5341 struct tcp_sock *tp = tcp_sk(sk); 5342 5343 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5344 5345 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5346 tcp_clamp_window(sk); 5347 else if (tcp_under_memory_pressure(sk)) 5348 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5349 5350 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5351 return 0; 5352 5353 tcp_collapse_ofo_queue(sk); 5354 if (!skb_queue_empty(&sk->sk_receive_queue)) 5355 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5356 skb_peek(&sk->sk_receive_queue), 5357 NULL, 5358 tp->copied_seq, tp->rcv_nxt); 5359 sk_mem_reclaim(sk); 5360 5361 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5362 return 0; 5363 5364 /* Collapsing did not help, destructive actions follow. 5365 * This must not ever occur. */ 5366 5367 tcp_prune_ofo_queue(sk); 5368 5369 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5370 return 0; 5371 5372 /* If we are really being abused, tell the caller to silently 5373 * drop receive data on the floor. It will get retransmitted 5374 * and hopefully then we'll have sufficient space. 5375 */ 5376 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5377 5378 /* Massive buffer overcommit. */ 5379 tp->pred_flags = 0; 5380 return -1; 5381 } 5382 5383 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5384 { 5385 const struct tcp_sock *tp = tcp_sk(sk); 5386 5387 /* If the user specified a specific send buffer setting, do 5388 * not modify it. 5389 */ 5390 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5391 return false; 5392 5393 /* If we are under global TCP memory pressure, do not expand. */ 5394 if (tcp_under_memory_pressure(sk)) 5395 return false; 5396 5397 /* If we are under soft global TCP memory pressure, do not expand. */ 5398 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5399 return false; 5400 5401 /* If we filled the congestion window, do not expand. */ 5402 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5403 return false; 5404 5405 return true; 5406 } 5407 5408 static void tcp_new_space(struct sock *sk) 5409 { 5410 struct tcp_sock *tp = tcp_sk(sk); 5411 5412 if (tcp_should_expand_sndbuf(sk)) { 5413 tcp_sndbuf_expand(sk); 5414 tp->snd_cwnd_stamp = tcp_jiffies32; 5415 } 5416 5417 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5418 } 5419 5420 static void tcp_check_space(struct sock *sk) 5421 { 5422 /* pairs with tcp_poll() */ 5423 smp_mb(); 5424 if (sk->sk_socket && 5425 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5426 tcp_new_space(sk); 5427 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5428 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5429 } 5430 } 5431 5432 static inline void tcp_data_snd_check(struct sock *sk) 5433 { 5434 tcp_push_pending_frames(sk); 5435 tcp_check_space(sk); 5436 } 5437 5438 /* 5439 * Check if sending an ack is needed. 5440 */ 5441 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5442 { 5443 struct tcp_sock *tp = tcp_sk(sk); 5444 unsigned long rtt, delay; 5445 5446 /* More than one full frame received... */ 5447 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5448 /* ... and right edge of window advances far enough. 5449 * (tcp_recvmsg() will send ACK otherwise). 5450 * If application uses SO_RCVLOWAT, we want send ack now if 5451 * we have not received enough bytes to satisfy the condition. 5452 */ 5453 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5454 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5455 /* We ACK each frame or... */ 5456 tcp_in_quickack_mode(sk) || 5457 /* Protocol state mandates a one-time immediate ACK */ 5458 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5459 send_now: 5460 tcp_send_ack(sk); 5461 return; 5462 } 5463 5464 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5465 tcp_send_delayed_ack(sk); 5466 return; 5467 } 5468 5469 if (!tcp_is_sack(tp) || 5470 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5471 goto send_now; 5472 5473 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5474 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5475 tp->dup_ack_counter = 0; 5476 } 5477 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5478 tp->dup_ack_counter++; 5479 goto send_now; 5480 } 5481 tp->compressed_ack++; 5482 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5483 return; 5484 5485 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5486 5487 rtt = tp->rcv_rtt_est.rtt_us; 5488 if (tp->srtt_us && tp->srtt_us < rtt) 5489 rtt = tp->srtt_us; 5490 5491 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5492 rtt * (NSEC_PER_USEC >> 3)/20); 5493 sock_hold(sk); 5494 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5495 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5496 HRTIMER_MODE_REL_PINNED_SOFT); 5497 } 5498 5499 static inline void tcp_ack_snd_check(struct sock *sk) 5500 { 5501 if (!inet_csk_ack_scheduled(sk)) { 5502 /* We sent a data segment already. */ 5503 return; 5504 } 5505 __tcp_ack_snd_check(sk, 1); 5506 } 5507 5508 /* 5509 * This routine is only called when we have urgent data 5510 * signaled. Its the 'slow' part of tcp_urg. It could be 5511 * moved inline now as tcp_urg is only called from one 5512 * place. We handle URGent data wrong. We have to - as 5513 * BSD still doesn't use the correction from RFC961. 5514 * For 1003.1g we should support a new option TCP_STDURG to permit 5515 * either form (or just set the sysctl tcp_stdurg). 5516 */ 5517 5518 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5519 { 5520 struct tcp_sock *tp = tcp_sk(sk); 5521 u32 ptr = ntohs(th->urg_ptr); 5522 5523 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5524 ptr--; 5525 ptr += ntohl(th->seq); 5526 5527 /* Ignore urgent data that we've already seen and read. */ 5528 if (after(tp->copied_seq, ptr)) 5529 return; 5530 5531 /* Do not replay urg ptr. 5532 * 5533 * NOTE: interesting situation not covered by specs. 5534 * Misbehaving sender may send urg ptr, pointing to segment, 5535 * which we already have in ofo queue. We are not able to fetch 5536 * such data and will stay in TCP_URG_NOTYET until will be eaten 5537 * by recvmsg(). Seems, we are not obliged to handle such wicked 5538 * situations. But it is worth to think about possibility of some 5539 * DoSes using some hypothetical application level deadlock. 5540 */ 5541 if (before(ptr, tp->rcv_nxt)) 5542 return; 5543 5544 /* Do we already have a newer (or duplicate) urgent pointer? */ 5545 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5546 return; 5547 5548 /* Tell the world about our new urgent pointer. */ 5549 sk_send_sigurg(sk); 5550 5551 /* We may be adding urgent data when the last byte read was 5552 * urgent. To do this requires some care. We cannot just ignore 5553 * tp->copied_seq since we would read the last urgent byte again 5554 * as data, nor can we alter copied_seq until this data arrives 5555 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5556 * 5557 * NOTE. Double Dutch. Rendering to plain English: author of comment 5558 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5559 * and expect that both A and B disappear from stream. This is _wrong_. 5560 * Though this happens in BSD with high probability, this is occasional. 5561 * Any application relying on this is buggy. Note also, that fix "works" 5562 * only in this artificial test. Insert some normal data between A and B and we will 5563 * decline of BSD again. Verdict: it is better to remove to trap 5564 * buggy users. 5565 */ 5566 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5567 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5568 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5569 tp->copied_seq++; 5570 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5571 __skb_unlink(skb, &sk->sk_receive_queue); 5572 __kfree_skb(skb); 5573 } 5574 } 5575 5576 tp->urg_data = TCP_URG_NOTYET; 5577 WRITE_ONCE(tp->urg_seq, ptr); 5578 5579 /* Disable header prediction. */ 5580 tp->pred_flags = 0; 5581 } 5582 5583 /* This is the 'fast' part of urgent handling. */ 5584 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5585 { 5586 struct tcp_sock *tp = tcp_sk(sk); 5587 5588 /* Check if we get a new urgent pointer - normally not. */ 5589 if (th->urg) 5590 tcp_check_urg(sk, th); 5591 5592 /* Do we wait for any urgent data? - normally not... */ 5593 if (tp->urg_data == TCP_URG_NOTYET) { 5594 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5595 th->syn; 5596 5597 /* Is the urgent pointer pointing into this packet? */ 5598 if (ptr < skb->len) { 5599 u8 tmp; 5600 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5601 BUG(); 5602 tp->urg_data = TCP_URG_VALID | tmp; 5603 if (!sock_flag(sk, SOCK_DEAD)) 5604 sk->sk_data_ready(sk); 5605 } 5606 } 5607 } 5608 5609 /* Accept RST for rcv_nxt - 1 after a FIN. 5610 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5611 * FIN is sent followed by a RST packet. The RST is sent with the same 5612 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5613 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5614 * ACKs on the closed socket. In addition middleboxes can drop either the 5615 * challenge ACK or a subsequent RST. 5616 */ 5617 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5618 { 5619 struct tcp_sock *tp = tcp_sk(sk); 5620 5621 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5622 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5623 TCPF_CLOSING)); 5624 } 5625 5626 /* Does PAWS and seqno based validation of an incoming segment, flags will 5627 * play significant role here. 5628 */ 5629 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5630 const struct tcphdr *th, int syn_inerr) 5631 { 5632 struct tcp_sock *tp = tcp_sk(sk); 5633 bool rst_seq_match = false; 5634 5635 /* RFC1323: H1. Apply PAWS check first. */ 5636 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5637 tp->rx_opt.saw_tstamp && 5638 tcp_paws_discard(sk, skb)) { 5639 if (!th->rst) { 5640 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5641 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5642 LINUX_MIB_TCPACKSKIPPEDPAWS, 5643 &tp->last_oow_ack_time)) 5644 tcp_send_dupack(sk, skb); 5645 goto discard; 5646 } 5647 /* Reset is accepted even if it did not pass PAWS. */ 5648 } 5649 5650 /* Step 1: check sequence number */ 5651 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5652 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5653 * (RST) segments are validated by checking their SEQ-fields." 5654 * And page 69: "If an incoming segment is not acceptable, 5655 * an acknowledgment should be sent in reply (unless the RST 5656 * bit is set, if so drop the segment and return)". 5657 */ 5658 if (!th->rst) { 5659 if (th->syn) 5660 goto syn_challenge; 5661 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5662 LINUX_MIB_TCPACKSKIPPEDSEQ, 5663 &tp->last_oow_ack_time)) 5664 tcp_send_dupack(sk, skb); 5665 } else if (tcp_reset_check(sk, skb)) { 5666 tcp_reset(sk, skb); 5667 } 5668 goto discard; 5669 } 5670 5671 /* Step 2: check RST bit */ 5672 if (th->rst) { 5673 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5674 * FIN and SACK too if available): 5675 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5676 * the right-most SACK block, 5677 * then 5678 * RESET the connection 5679 * else 5680 * Send a challenge ACK 5681 */ 5682 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5683 tcp_reset_check(sk, skb)) { 5684 rst_seq_match = true; 5685 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5686 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5687 int max_sack = sp[0].end_seq; 5688 int this_sack; 5689 5690 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5691 ++this_sack) { 5692 max_sack = after(sp[this_sack].end_seq, 5693 max_sack) ? 5694 sp[this_sack].end_seq : max_sack; 5695 } 5696 5697 if (TCP_SKB_CB(skb)->seq == max_sack) 5698 rst_seq_match = true; 5699 } 5700 5701 if (rst_seq_match) 5702 tcp_reset(sk, skb); 5703 else { 5704 /* Disable TFO if RST is out-of-order 5705 * and no data has been received 5706 * for current active TFO socket 5707 */ 5708 if (tp->syn_fastopen && !tp->data_segs_in && 5709 sk->sk_state == TCP_ESTABLISHED) 5710 tcp_fastopen_active_disable(sk); 5711 tcp_send_challenge_ack(sk, skb); 5712 } 5713 goto discard; 5714 } 5715 5716 /* step 3: check security and precedence [ignored] */ 5717 5718 /* step 4: Check for a SYN 5719 * RFC 5961 4.2 : Send a challenge ack 5720 */ 5721 if (th->syn) { 5722 syn_challenge: 5723 if (syn_inerr) 5724 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5726 tcp_send_challenge_ack(sk, skb); 5727 goto discard; 5728 } 5729 5730 bpf_skops_parse_hdr(sk, skb); 5731 5732 return true; 5733 5734 discard: 5735 tcp_drop(sk, skb); 5736 return false; 5737 } 5738 5739 /* 5740 * TCP receive function for the ESTABLISHED state. 5741 * 5742 * It is split into a fast path and a slow path. The fast path is 5743 * disabled when: 5744 * - A zero window was announced from us - zero window probing 5745 * is only handled properly in the slow path. 5746 * - Out of order segments arrived. 5747 * - Urgent data is expected. 5748 * - There is no buffer space left 5749 * - Unexpected TCP flags/window values/header lengths are received 5750 * (detected by checking the TCP header against pred_flags) 5751 * - Data is sent in both directions. Fast path only supports pure senders 5752 * or pure receivers (this means either the sequence number or the ack 5753 * value must stay constant) 5754 * - Unexpected TCP option. 5755 * 5756 * When these conditions are not satisfied it drops into a standard 5757 * receive procedure patterned after RFC793 to handle all cases. 5758 * The first three cases are guaranteed by proper pred_flags setting, 5759 * the rest is checked inline. Fast processing is turned on in 5760 * tcp_data_queue when everything is OK. 5761 */ 5762 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5763 { 5764 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5765 struct tcp_sock *tp = tcp_sk(sk); 5766 unsigned int len = skb->len; 5767 5768 /* TCP congestion window tracking */ 5769 trace_tcp_probe(sk, skb); 5770 5771 tcp_mstamp_refresh(tp); 5772 if (unlikely(!sk->sk_rx_dst)) 5773 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5774 /* 5775 * Header prediction. 5776 * The code loosely follows the one in the famous 5777 * "30 instruction TCP receive" Van Jacobson mail. 5778 * 5779 * Van's trick is to deposit buffers into socket queue 5780 * on a device interrupt, to call tcp_recv function 5781 * on the receive process context and checksum and copy 5782 * the buffer to user space. smart... 5783 * 5784 * Our current scheme is not silly either but we take the 5785 * extra cost of the net_bh soft interrupt processing... 5786 * We do checksum and copy also but from device to kernel. 5787 */ 5788 5789 tp->rx_opt.saw_tstamp = 0; 5790 5791 /* pred_flags is 0xS?10 << 16 + snd_wnd 5792 * if header_prediction is to be made 5793 * 'S' will always be tp->tcp_header_len >> 2 5794 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5795 * turn it off (when there are holes in the receive 5796 * space for instance) 5797 * PSH flag is ignored. 5798 */ 5799 5800 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5801 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5802 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5803 int tcp_header_len = tp->tcp_header_len; 5804 5805 /* Timestamp header prediction: tcp_header_len 5806 * is automatically equal to th->doff*4 due to pred_flags 5807 * match. 5808 */ 5809 5810 /* Check timestamp */ 5811 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5812 /* No? Slow path! */ 5813 if (!tcp_parse_aligned_timestamp(tp, th)) 5814 goto slow_path; 5815 5816 /* If PAWS failed, check it more carefully in slow path */ 5817 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5818 goto slow_path; 5819 5820 /* DO NOT update ts_recent here, if checksum fails 5821 * and timestamp was corrupted part, it will result 5822 * in a hung connection since we will drop all 5823 * future packets due to the PAWS test. 5824 */ 5825 } 5826 5827 if (len <= tcp_header_len) { 5828 /* Bulk data transfer: sender */ 5829 if (len == tcp_header_len) { 5830 /* Predicted packet is in window by definition. 5831 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5832 * Hence, check seq<=rcv_wup reduces to: 5833 */ 5834 if (tcp_header_len == 5835 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5836 tp->rcv_nxt == tp->rcv_wup) 5837 tcp_store_ts_recent(tp); 5838 5839 /* We know that such packets are checksummed 5840 * on entry. 5841 */ 5842 tcp_ack(sk, skb, 0); 5843 __kfree_skb(skb); 5844 tcp_data_snd_check(sk); 5845 /* When receiving pure ack in fast path, update 5846 * last ts ecr directly instead of calling 5847 * tcp_rcv_rtt_measure_ts() 5848 */ 5849 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5850 return; 5851 } else { /* Header too small */ 5852 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5853 goto discard; 5854 } 5855 } else { 5856 int eaten = 0; 5857 bool fragstolen = false; 5858 5859 if (tcp_checksum_complete(skb)) 5860 goto csum_error; 5861 5862 if ((int)skb->truesize > sk->sk_forward_alloc) 5863 goto step5; 5864 5865 /* Predicted packet is in window by definition. 5866 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5867 * Hence, check seq<=rcv_wup reduces to: 5868 */ 5869 if (tcp_header_len == 5870 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5871 tp->rcv_nxt == tp->rcv_wup) 5872 tcp_store_ts_recent(tp); 5873 5874 tcp_rcv_rtt_measure_ts(sk, skb); 5875 5876 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5877 5878 /* Bulk data transfer: receiver */ 5879 __skb_pull(skb, tcp_header_len); 5880 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5881 5882 tcp_event_data_recv(sk, skb); 5883 5884 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5885 /* Well, only one small jumplet in fast path... */ 5886 tcp_ack(sk, skb, FLAG_DATA); 5887 tcp_data_snd_check(sk); 5888 if (!inet_csk_ack_scheduled(sk)) 5889 goto no_ack; 5890 } else { 5891 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5892 } 5893 5894 __tcp_ack_snd_check(sk, 0); 5895 no_ack: 5896 if (eaten) 5897 kfree_skb_partial(skb, fragstolen); 5898 tcp_data_ready(sk); 5899 return; 5900 } 5901 } 5902 5903 slow_path: 5904 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5905 goto csum_error; 5906 5907 if (!th->ack && !th->rst && !th->syn) 5908 goto discard; 5909 5910 /* 5911 * Standard slow path. 5912 */ 5913 5914 if (!tcp_validate_incoming(sk, skb, th, 1)) 5915 return; 5916 5917 step5: 5918 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5919 goto discard; 5920 5921 tcp_rcv_rtt_measure_ts(sk, skb); 5922 5923 /* Process urgent data. */ 5924 tcp_urg(sk, skb, th); 5925 5926 /* step 7: process the segment text */ 5927 tcp_data_queue(sk, skb); 5928 5929 tcp_data_snd_check(sk); 5930 tcp_ack_snd_check(sk); 5931 return; 5932 5933 csum_error: 5934 trace_tcp_bad_csum(skb); 5935 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5936 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5937 5938 discard: 5939 tcp_drop(sk, skb); 5940 } 5941 EXPORT_SYMBOL(tcp_rcv_established); 5942 5943 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5944 { 5945 struct inet_connection_sock *icsk = inet_csk(sk); 5946 struct tcp_sock *tp = tcp_sk(sk); 5947 5948 tcp_mtup_init(sk); 5949 icsk->icsk_af_ops->rebuild_header(sk); 5950 tcp_init_metrics(sk); 5951 5952 /* Initialize the congestion window to start the transfer. 5953 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5954 * retransmitted. In light of RFC6298 more aggressive 1sec 5955 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5956 * retransmission has occurred. 5957 */ 5958 if (tp->total_retrans > 1 && tp->undo_marker) 5959 tp->snd_cwnd = 1; 5960 else 5961 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5962 tp->snd_cwnd_stamp = tcp_jiffies32; 5963 5964 bpf_skops_established(sk, bpf_op, skb); 5965 /* Initialize congestion control unless BPF initialized it already: */ 5966 if (!icsk->icsk_ca_initialized) 5967 tcp_init_congestion_control(sk); 5968 tcp_init_buffer_space(sk); 5969 } 5970 5971 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5972 { 5973 struct tcp_sock *tp = tcp_sk(sk); 5974 struct inet_connection_sock *icsk = inet_csk(sk); 5975 5976 tcp_set_state(sk, TCP_ESTABLISHED); 5977 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5978 5979 if (skb) { 5980 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5981 security_inet_conn_established(sk, skb); 5982 sk_mark_napi_id(sk, skb); 5983 } 5984 5985 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 5986 5987 /* Prevent spurious tcp_cwnd_restart() on first data 5988 * packet. 5989 */ 5990 tp->lsndtime = tcp_jiffies32; 5991 5992 if (sock_flag(sk, SOCK_KEEPOPEN)) 5993 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5994 5995 if (!tp->rx_opt.snd_wscale) 5996 __tcp_fast_path_on(tp, tp->snd_wnd); 5997 else 5998 tp->pred_flags = 0; 5999 } 6000 6001 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6002 struct tcp_fastopen_cookie *cookie) 6003 { 6004 struct tcp_sock *tp = tcp_sk(sk); 6005 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6006 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6007 bool syn_drop = false; 6008 6009 if (mss == tp->rx_opt.user_mss) { 6010 struct tcp_options_received opt; 6011 6012 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6013 tcp_clear_options(&opt); 6014 opt.user_mss = opt.mss_clamp = 0; 6015 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6016 mss = opt.mss_clamp; 6017 } 6018 6019 if (!tp->syn_fastopen) { 6020 /* Ignore an unsolicited cookie */ 6021 cookie->len = -1; 6022 } else if (tp->total_retrans) { 6023 /* SYN timed out and the SYN-ACK neither has a cookie nor 6024 * acknowledges data. Presumably the remote received only 6025 * the retransmitted (regular) SYNs: either the original 6026 * SYN-data or the corresponding SYN-ACK was dropped. 6027 */ 6028 syn_drop = (cookie->len < 0 && data); 6029 } else if (cookie->len < 0 && !tp->syn_data) { 6030 /* We requested a cookie but didn't get it. If we did not use 6031 * the (old) exp opt format then try so next time (try_exp=1). 6032 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6033 */ 6034 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6035 } 6036 6037 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6038 6039 if (data) { /* Retransmit unacked data in SYN */ 6040 if (tp->total_retrans) 6041 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6042 else 6043 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6044 skb_rbtree_walk_from(data) 6045 tcp_mark_skb_lost(sk, data); 6046 tcp_xmit_retransmit_queue(sk); 6047 NET_INC_STATS(sock_net(sk), 6048 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6049 return true; 6050 } 6051 tp->syn_data_acked = tp->syn_data; 6052 if (tp->syn_data_acked) { 6053 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6054 /* SYN-data is counted as two separate packets in tcp_ack() */ 6055 if (tp->delivered > 1) 6056 --tp->delivered; 6057 } 6058 6059 tcp_fastopen_add_skb(sk, synack); 6060 6061 return false; 6062 } 6063 6064 static void smc_check_reset_syn(struct tcp_sock *tp) 6065 { 6066 #if IS_ENABLED(CONFIG_SMC) 6067 if (static_branch_unlikely(&tcp_have_smc)) { 6068 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6069 tp->syn_smc = 0; 6070 } 6071 #endif 6072 } 6073 6074 static void tcp_try_undo_spurious_syn(struct sock *sk) 6075 { 6076 struct tcp_sock *tp = tcp_sk(sk); 6077 u32 syn_stamp; 6078 6079 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6080 * spurious if the ACK's timestamp option echo value matches the 6081 * original SYN timestamp. 6082 */ 6083 syn_stamp = tp->retrans_stamp; 6084 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6085 syn_stamp == tp->rx_opt.rcv_tsecr) 6086 tp->undo_marker = 0; 6087 } 6088 6089 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6090 const struct tcphdr *th) 6091 { 6092 struct inet_connection_sock *icsk = inet_csk(sk); 6093 struct tcp_sock *tp = tcp_sk(sk); 6094 struct tcp_fastopen_cookie foc = { .len = -1 }; 6095 int saved_clamp = tp->rx_opt.mss_clamp; 6096 bool fastopen_fail; 6097 6098 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6099 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6100 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6101 6102 if (th->ack) { 6103 /* rfc793: 6104 * "If the state is SYN-SENT then 6105 * first check the ACK bit 6106 * If the ACK bit is set 6107 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6108 * a reset (unless the RST bit is set, if so drop 6109 * the segment and return)" 6110 */ 6111 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6112 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6113 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6114 if (icsk->icsk_retransmits == 0) 6115 inet_csk_reset_xmit_timer(sk, 6116 ICSK_TIME_RETRANS, 6117 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6118 goto reset_and_undo; 6119 } 6120 6121 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6122 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6123 tcp_time_stamp(tp))) { 6124 NET_INC_STATS(sock_net(sk), 6125 LINUX_MIB_PAWSACTIVEREJECTED); 6126 goto reset_and_undo; 6127 } 6128 6129 /* Now ACK is acceptable. 6130 * 6131 * "If the RST bit is set 6132 * If the ACK was acceptable then signal the user "error: 6133 * connection reset", drop the segment, enter CLOSED state, 6134 * delete TCB, and return." 6135 */ 6136 6137 if (th->rst) { 6138 tcp_reset(sk, skb); 6139 goto discard; 6140 } 6141 6142 /* rfc793: 6143 * "fifth, if neither of the SYN or RST bits is set then 6144 * drop the segment and return." 6145 * 6146 * See note below! 6147 * --ANK(990513) 6148 */ 6149 if (!th->syn) 6150 goto discard_and_undo; 6151 6152 /* rfc793: 6153 * "If the SYN bit is on ... 6154 * are acceptable then ... 6155 * (our SYN has been ACKed), change the connection 6156 * state to ESTABLISHED..." 6157 */ 6158 6159 tcp_ecn_rcv_synack(tp, th); 6160 6161 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6162 tcp_try_undo_spurious_syn(sk); 6163 tcp_ack(sk, skb, FLAG_SLOWPATH); 6164 6165 /* Ok.. it's good. Set up sequence numbers and 6166 * move to established. 6167 */ 6168 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6169 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6170 6171 /* RFC1323: The window in SYN & SYN/ACK segments is 6172 * never scaled. 6173 */ 6174 tp->snd_wnd = ntohs(th->window); 6175 6176 if (!tp->rx_opt.wscale_ok) { 6177 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6178 tp->window_clamp = min(tp->window_clamp, 65535U); 6179 } 6180 6181 if (tp->rx_opt.saw_tstamp) { 6182 tp->rx_opt.tstamp_ok = 1; 6183 tp->tcp_header_len = 6184 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6185 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6186 tcp_store_ts_recent(tp); 6187 } else { 6188 tp->tcp_header_len = sizeof(struct tcphdr); 6189 } 6190 6191 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6192 tcp_initialize_rcv_mss(sk); 6193 6194 /* Remember, tcp_poll() does not lock socket! 6195 * Change state from SYN-SENT only after copied_seq 6196 * is initialized. */ 6197 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6198 6199 smc_check_reset_syn(tp); 6200 6201 smp_mb(); 6202 6203 tcp_finish_connect(sk, skb); 6204 6205 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6206 tcp_rcv_fastopen_synack(sk, skb, &foc); 6207 6208 if (!sock_flag(sk, SOCK_DEAD)) { 6209 sk->sk_state_change(sk); 6210 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6211 } 6212 if (fastopen_fail) 6213 return -1; 6214 if (sk->sk_write_pending || 6215 icsk->icsk_accept_queue.rskq_defer_accept || 6216 inet_csk_in_pingpong_mode(sk)) { 6217 /* Save one ACK. Data will be ready after 6218 * several ticks, if write_pending is set. 6219 * 6220 * It may be deleted, but with this feature tcpdumps 6221 * look so _wonderfully_ clever, that I was not able 6222 * to stand against the temptation 8) --ANK 6223 */ 6224 inet_csk_schedule_ack(sk); 6225 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6226 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6227 TCP_DELACK_MAX, TCP_RTO_MAX); 6228 6229 discard: 6230 tcp_drop(sk, skb); 6231 return 0; 6232 } else { 6233 tcp_send_ack(sk); 6234 } 6235 return -1; 6236 } 6237 6238 /* No ACK in the segment */ 6239 6240 if (th->rst) { 6241 /* rfc793: 6242 * "If the RST bit is set 6243 * 6244 * Otherwise (no ACK) drop the segment and return." 6245 */ 6246 6247 goto discard_and_undo; 6248 } 6249 6250 /* PAWS check. */ 6251 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6252 tcp_paws_reject(&tp->rx_opt, 0)) 6253 goto discard_and_undo; 6254 6255 if (th->syn) { 6256 /* We see SYN without ACK. It is attempt of 6257 * simultaneous connect with crossed SYNs. 6258 * Particularly, it can be connect to self. 6259 */ 6260 tcp_set_state(sk, TCP_SYN_RECV); 6261 6262 if (tp->rx_opt.saw_tstamp) { 6263 tp->rx_opt.tstamp_ok = 1; 6264 tcp_store_ts_recent(tp); 6265 tp->tcp_header_len = 6266 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6267 } else { 6268 tp->tcp_header_len = sizeof(struct tcphdr); 6269 } 6270 6271 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6272 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6273 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6274 6275 /* RFC1323: The window in SYN & SYN/ACK segments is 6276 * never scaled. 6277 */ 6278 tp->snd_wnd = ntohs(th->window); 6279 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6280 tp->max_window = tp->snd_wnd; 6281 6282 tcp_ecn_rcv_syn(tp, th); 6283 6284 tcp_mtup_init(sk); 6285 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6286 tcp_initialize_rcv_mss(sk); 6287 6288 tcp_send_synack(sk); 6289 #if 0 6290 /* Note, we could accept data and URG from this segment. 6291 * There are no obstacles to make this (except that we must 6292 * either change tcp_recvmsg() to prevent it from returning data 6293 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6294 * 6295 * However, if we ignore data in ACKless segments sometimes, 6296 * we have no reasons to accept it sometimes. 6297 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6298 * is not flawless. So, discard packet for sanity. 6299 * Uncomment this return to process the data. 6300 */ 6301 return -1; 6302 #else 6303 goto discard; 6304 #endif 6305 } 6306 /* "fifth, if neither of the SYN or RST bits is set then 6307 * drop the segment and return." 6308 */ 6309 6310 discard_and_undo: 6311 tcp_clear_options(&tp->rx_opt); 6312 tp->rx_opt.mss_clamp = saved_clamp; 6313 goto discard; 6314 6315 reset_and_undo: 6316 tcp_clear_options(&tp->rx_opt); 6317 tp->rx_opt.mss_clamp = saved_clamp; 6318 return 1; 6319 } 6320 6321 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6322 { 6323 struct request_sock *req; 6324 6325 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6326 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6327 */ 6328 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6329 tcp_try_undo_loss(sk, false); 6330 6331 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6332 tcp_sk(sk)->retrans_stamp = 0; 6333 inet_csk(sk)->icsk_retransmits = 0; 6334 6335 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6336 * we no longer need req so release it. 6337 */ 6338 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6339 lockdep_sock_is_held(sk)); 6340 reqsk_fastopen_remove(sk, req, false); 6341 6342 /* Re-arm the timer because data may have been sent out. 6343 * This is similar to the regular data transmission case 6344 * when new data has just been ack'ed. 6345 * 6346 * (TFO) - we could try to be more aggressive and 6347 * retransmitting any data sooner based on when they 6348 * are sent out. 6349 */ 6350 tcp_rearm_rto(sk); 6351 } 6352 6353 /* 6354 * This function implements the receiving procedure of RFC 793 for 6355 * all states except ESTABLISHED and TIME_WAIT. 6356 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6357 * address independent. 6358 */ 6359 6360 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6361 { 6362 struct tcp_sock *tp = tcp_sk(sk); 6363 struct inet_connection_sock *icsk = inet_csk(sk); 6364 const struct tcphdr *th = tcp_hdr(skb); 6365 struct request_sock *req; 6366 int queued = 0; 6367 bool acceptable; 6368 6369 switch (sk->sk_state) { 6370 case TCP_CLOSE: 6371 goto discard; 6372 6373 case TCP_LISTEN: 6374 if (th->ack) 6375 return 1; 6376 6377 if (th->rst) 6378 goto discard; 6379 6380 if (th->syn) { 6381 if (th->fin) 6382 goto discard; 6383 /* It is possible that we process SYN packets from backlog, 6384 * so we need to make sure to disable BH and RCU right there. 6385 */ 6386 rcu_read_lock(); 6387 local_bh_disable(); 6388 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6389 local_bh_enable(); 6390 rcu_read_unlock(); 6391 6392 if (!acceptable) 6393 return 1; 6394 consume_skb(skb); 6395 return 0; 6396 } 6397 goto discard; 6398 6399 case TCP_SYN_SENT: 6400 tp->rx_opt.saw_tstamp = 0; 6401 tcp_mstamp_refresh(tp); 6402 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6403 if (queued >= 0) 6404 return queued; 6405 6406 /* Do step6 onward by hand. */ 6407 tcp_urg(sk, skb, th); 6408 __kfree_skb(skb); 6409 tcp_data_snd_check(sk); 6410 return 0; 6411 } 6412 6413 tcp_mstamp_refresh(tp); 6414 tp->rx_opt.saw_tstamp = 0; 6415 req = rcu_dereference_protected(tp->fastopen_rsk, 6416 lockdep_sock_is_held(sk)); 6417 if (req) { 6418 bool req_stolen; 6419 6420 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6421 sk->sk_state != TCP_FIN_WAIT1); 6422 6423 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6424 goto discard; 6425 } 6426 6427 if (!th->ack && !th->rst && !th->syn) 6428 goto discard; 6429 6430 if (!tcp_validate_incoming(sk, skb, th, 0)) 6431 return 0; 6432 6433 /* step 5: check the ACK field */ 6434 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6435 FLAG_UPDATE_TS_RECENT | 6436 FLAG_NO_CHALLENGE_ACK) > 0; 6437 6438 if (!acceptable) { 6439 if (sk->sk_state == TCP_SYN_RECV) 6440 return 1; /* send one RST */ 6441 tcp_send_challenge_ack(sk, skb); 6442 goto discard; 6443 } 6444 switch (sk->sk_state) { 6445 case TCP_SYN_RECV: 6446 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6447 if (!tp->srtt_us) 6448 tcp_synack_rtt_meas(sk, req); 6449 6450 if (req) { 6451 tcp_rcv_synrecv_state_fastopen(sk); 6452 } else { 6453 tcp_try_undo_spurious_syn(sk); 6454 tp->retrans_stamp = 0; 6455 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6456 skb); 6457 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6458 } 6459 smp_mb(); 6460 tcp_set_state(sk, TCP_ESTABLISHED); 6461 sk->sk_state_change(sk); 6462 6463 /* Note, that this wakeup is only for marginal crossed SYN case. 6464 * Passively open sockets are not waked up, because 6465 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6466 */ 6467 if (sk->sk_socket) 6468 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6469 6470 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6471 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6472 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6473 6474 if (tp->rx_opt.tstamp_ok) 6475 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6476 6477 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6478 tcp_update_pacing_rate(sk); 6479 6480 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6481 tp->lsndtime = tcp_jiffies32; 6482 6483 tcp_initialize_rcv_mss(sk); 6484 tcp_fast_path_on(tp); 6485 break; 6486 6487 case TCP_FIN_WAIT1: { 6488 int tmo; 6489 6490 if (req) 6491 tcp_rcv_synrecv_state_fastopen(sk); 6492 6493 if (tp->snd_una != tp->write_seq) 6494 break; 6495 6496 tcp_set_state(sk, TCP_FIN_WAIT2); 6497 sk->sk_shutdown |= SEND_SHUTDOWN; 6498 6499 sk_dst_confirm(sk); 6500 6501 if (!sock_flag(sk, SOCK_DEAD)) { 6502 /* Wake up lingering close() */ 6503 sk->sk_state_change(sk); 6504 break; 6505 } 6506 6507 if (tp->linger2 < 0) { 6508 tcp_done(sk); 6509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6510 return 1; 6511 } 6512 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6513 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6514 /* Receive out of order FIN after close() */ 6515 if (tp->syn_fastopen && th->fin) 6516 tcp_fastopen_active_disable(sk); 6517 tcp_done(sk); 6518 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6519 return 1; 6520 } 6521 6522 tmo = tcp_fin_time(sk); 6523 if (tmo > TCP_TIMEWAIT_LEN) { 6524 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6525 } else if (th->fin || sock_owned_by_user(sk)) { 6526 /* Bad case. We could lose such FIN otherwise. 6527 * It is not a big problem, but it looks confusing 6528 * and not so rare event. We still can lose it now, 6529 * if it spins in bh_lock_sock(), but it is really 6530 * marginal case. 6531 */ 6532 inet_csk_reset_keepalive_timer(sk, tmo); 6533 } else { 6534 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6535 goto discard; 6536 } 6537 break; 6538 } 6539 6540 case TCP_CLOSING: 6541 if (tp->snd_una == tp->write_seq) { 6542 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6543 goto discard; 6544 } 6545 break; 6546 6547 case TCP_LAST_ACK: 6548 if (tp->snd_una == tp->write_seq) { 6549 tcp_update_metrics(sk); 6550 tcp_done(sk); 6551 goto discard; 6552 } 6553 break; 6554 } 6555 6556 /* step 6: check the URG bit */ 6557 tcp_urg(sk, skb, th); 6558 6559 /* step 7: process the segment text */ 6560 switch (sk->sk_state) { 6561 case TCP_CLOSE_WAIT: 6562 case TCP_CLOSING: 6563 case TCP_LAST_ACK: 6564 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6565 /* If a subflow has been reset, the packet should not 6566 * continue to be processed, drop the packet. 6567 */ 6568 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6569 goto discard; 6570 break; 6571 } 6572 fallthrough; 6573 case TCP_FIN_WAIT1: 6574 case TCP_FIN_WAIT2: 6575 /* RFC 793 says to queue data in these states, 6576 * RFC 1122 says we MUST send a reset. 6577 * BSD 4.4 also does reset. 6578 */ 6579 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6580 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6581 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6582 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6583 tcp_reset(sk, skb); 6584 return 1; 6585 } 6586 } 6587 fallthrough; 6588 case TCP_ESTABLISHED: 6589 tcp_data_queue(sk, skb); 6590 queued = 1; 6591 break; 6592 } 6593 6594 /* tcp_data could move socket to TIME-WAIT */ 6595 if (sk->sk_state != TCP_CLOSE) { 6596 tcp_data_snd_check(sk); 6597 tcp_ack_snd_check(sk); 6598 } 6599 6600 if (!queued) { 6601 discard: 6602 tcp_drop(sk, skb); 6603 } 6604 return 0; 6605 } 6606 EXPORT_SYMBOL(tcp_rcv_state_process); 6607 6608 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6609 { 6610 struct inet_request_sock *ireq = inet_rsk(req); 6611 6612 if (family == AF_INET) 6613 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6614 &ireq->ir_rmt_addr, port); 6615 #if IS_ENABLED(CONFIG_IPV6) 6616 else if (family == AF_INET6) 6617 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6618 &ireq->ir_v6_rmt_addr, port); 6619 #endif 6620 } 6621 6622 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6623 * 6624 * If we receive a SYN packet with these bits set, it means a 6625 * network is playing bad games with TOS bits. In order to 6626 * avoid possible false congestion notifications, we disable 6627 * TCP ECN negotiation. 6628 * 6629 * Exception: tcp_ca wants ECN. This is required for DCTCP 6630 * congestion control: Linux DCTCP asserts ECT on all packets, 6631 * including SYN, which is most optimal solution; however, 6632 * others, such as FreeBSD do not. 6633 * 6634 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6635 * set, indicating the use of a future TCP extension (such as AccECN). See 6636 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6637 * extensions. 6638 */ 6639 static void tcp_ecn_create_request(struct request_sock *req, 6640 const struct sk_buff *skb, 6641 const struct sock *listen_sk, 6642 const struct dst_entry *dst) 6643 { 6644 const struct tcphdr *th = tcp_hdr(skb); 6645 const struct net *net = sock_net(listen_sk); 6646 bool th_ecn = th->ece && th->cwr; 6647 bool ect, ecn_ok; 6648 u32 ecn_ok_dst; 6649 6650 if (!th_ecn) 6651 return; 6652 6653 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6654 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6655 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6656 6657 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6658 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6659 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6660 inet_rsk(req)->ecn_ok = 1; 6661 } 6662 6663 static void tcp_openreq_init(struct request_sock *req, 6664 const struct tcp_options_received *rx_opt, 6665 struct sk_buff *skb, const struct sock *sk) 6666 { 6667 struct inet_request_sock *ireq = inet_rsk(req); 6668 6669 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6670 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6671 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6672 tcp_rsk(req)->snt_synack = 0; 6673 tcp_rsk(req)->last_oow_ack_time = 0; 6674 req->mss = rx_opt->mss_clamp; 6675 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6676 ireq->tstamp_ok = rx_opt->tstamp_ok; 6677 ireq->sack_ok = rx_opt->sack_ok; 6678 ireq->snd_wscale = rx_opt->snd_wscale; 6679 ireq->wscale_ok = rx_opt->wscale_ok; 6680 ireq->acked = 0; 6681 ireq->ecn_ok = 0; 6682 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6683 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6684 ireq->ir_mark = inet_request_mark(sk, skb); 6685 #if IS_ENABLED(CONFIG_SMC) 6686 ireq->smc_ok = rx_opt->smc_ok; 6687 #endif 6688 } 6689 6690 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6691 struct sock *sk_listener, 6692 bool attach_listener) 6693 { 6694 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6695 attach_listener); 6696 6697 if (req) { 6698 struct inet_request_sock *ireq = inet_rsk(req); 6699 6700 ireq->ireq_opt = NULL; 6701 #if IS_ENABLED(CONFIG_IPV6) 6702 ireq->pktopts = NULL; 6703 #endif 6704 atomic64_set(&ireq->ir_cookie, 0); 6705 ireq->ireq_state = TCP_NEW_SYN_RECV; 6706 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6707 ireq->ireq_family = sk_listener->sk_family; 6708 } 6709 6710 return req; 6711 } 6712 EXPORT_SYMBOL(inet_reqsk_alloc); 6713 6714 /* 6715 * Return true if a syncookie should be sent 6716 */ 6717 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6718 { 6719 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6720 const char *msg = "Dropping request"; 6721 bool want_cookie = false; 6722 struct net *net = sock_net(sk); 6723 6724 #ifdef CONFIG_SYN_COOKIES 6725 if (net->ipv4.sysctl_tcp_syncookies) { 6726 msg = "Sending cookies"; 6727 want_cookie = true; 6728 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6729 } else 6730 #endif 6731 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6732 6733 if (!queue->synflood_warned && 6734 net->ipv4.sysctl_tcp_syncookies != 2 && 6735 xchg(&queue->synflood_warned, 1) == 0) 6736 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6737 proto, sk->sk_num, msg); 6738 6739 return want_cookie; 6740 } 6741 6742 static void tcp_reqsk_record_syn(const struct sock *sk, 6743 struct request_sock *req, 6744 const struct sk_buff *skb) 6745 { 6746 if (tcp_sk(sk)->save_syn) { 6747 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6748 struct saved_syn *saved_syn; 6749 u32 mac_hdrlen; 6750 void *base; 6751 6752 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6753 base = skb_mac_header(skb); 6754 mac_hdrlen = skb_mac_header_len(skb); 6755 len += mac_hdrlen; 6756 } else { 6757 base = skb_network_header(skb); 6758 mac_hdrlen = 0; 6759 } 6760 6761 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6762 GFP_ATOMIC); 6763 if (saved_syn) { 6764 saved_syn->mac_hdrlen = mac_hdrlen; 6765 saved_syn->network_hdrlen = skb_network_header_len(skb); 6766 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6767 memcpy(saved_syn->data, base, len); 6768 req->saved_syn = saved_syn; 6769 } 6770 } 6771 } 6772 6773 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6774 * used for SYN cookie generation. 6775 */ 6776 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6777 const struct tcp_request_sock_ops *af_ops, 6778 struct sock *sk, struct tcphdr *th) 6779 { 6780 struct tcp_sock *tp = tcp_sk(sk); 6781 u16 mss; 6782 6783 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6784 !inet_csk_reqsk_queue_is_full(sk)) 6785 return 0; 6786 6787 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6788 return 0; 6789 6790 if (sk_acceptq_is_full(sk)) { 6791 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6792 return 0; 6793 } 6794 6795 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6796 if (!mss) 6797 mss = af_ops->mss_clamp; 6798 6799 return mss; 6800 } 6801 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6802 6803 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6804 const struct tcp_request_sock_ops *af_ops, 6805 struct sock *sk, struct sk_buff *skb) 6806 { 6807 struct tcp_fastopen_cookie foc = { .len = -1 }; 6808 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6809 struct tcp_options_received tmp_opt; 6810 struct tcp_sock *tp = tcp_sk(sk); 6811 struct net *net = sock_net(sk); 6812 struct sock *fastopen_sk = NULL; 6813 struct request_sock *req; 6814 bool want_cookie = false; 6815 struct dst_entry *dst; 6816 struct flowi fl; 6817 6818 /* TW buckets are converted to open requests without 6819 * limitations, they conserve resources and peer is 6820 * evidently real one. 6821 */ 6822 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6823 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6824 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6825 if (!want_cookie) 6826 goto drop; 6827 } 6828 6829 if (sk_acceptq_is_full(sk)) { 6830 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6831 goto drop; 6832 } 6833 6834 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6835 if (!req) 6836 goto drop; 6837 6838 req->syncookie = want_cookie; 6839 tcp_rsk(req)->af_specific = af_ops; 6840 tcp_rsk(req)->ts_off = 0; 6841 #if IS_ENABLED(CONFIG_MPTCP) 6842 tcp_rsk(req)->is_mptcp = 0; 6843 #endif 6844 6845 tcp_clear_options(&tmp_opt); 6846 tmp_opt.mss_clamp = af_ops->mss_clamp; 6847 tmp_opt.user_mss = tp->rx_opt.user_mss; 6848 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6849 want_cookie ? NULL : &foc); 6850 6851 if (want_cookie && !tmp_opt.saw_tstamp) 6852 tcp_clear_options(&tmp_opt); 6853 6854 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6855 tmp_opt.smc_ok = 0; 6856 6857 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6858 tcp_openreq_init(req, &tmp_opt, skb, sk); 6859 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6860 6861 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6862 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6863 6864 dst = af_ops->route_req(sk, skb, &fl, req); 6865 if (!dst) 6866 goto drop_and_free; 6867 6868 if (tmp_opt.tstamp_ok) 6869 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6870 6871 if (!want_cookie && !isn) { 6872 /* Kill the following clause, if you dislike this way. */ 6873 if (!net->ipv4.sysctl_tcp_syncookies && 6874 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6875 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6876 !tcp_peer_is_proven(req, dst)) { 6877 /* Without syncookies last quarter of 6878 * backlog is filled with destinations, 6879 * proven to be alive. 6880 * It means that we continue to communicate 6881 * to destinations, already remembered 6882 * to the moment of synflood. 6883 */ 6884 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6885 rsk_ops->family); 6886 goto drop_and_release; 6887 } 6888 6889 isn = af_ops->init_seq(skb); 6890 } 6891 6892 tcp_ecn_create_request(req, skb, sk, dst); 6893 6894 if (want_cookie) { 6895 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6896 if (!tmp_opt.tstamp_ok) 6897 inet_rsk(req)->ecn_ok = 0; 6898 } 6899 6900 tcp_rsk(req)->snt_isn = isn; 6901 tcp_rsk(req)->txhash = net_tx_rndhash(); 6902 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6903 tcp_openreq_init_rwin(req, sk, dst); 6904 sk_rx_queue_set(req_to_sk(req), skb); 6905 if (!want_cookie) { 6906 tcp_reqsk_record_syn(sk, req, skb); 6907 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6908 } 6909 if (fastopen_sk) { 6910 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6911 &foc, TCP_SYNACK_FASTOPEN, skb); 6912 /* Add the child socket directly into the accept queue */ 6913 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6914 reqsk_fastopen_remove(fastopen_sk, req, false); 6915 bh_unlock_sock(fastopen_sk); 6916 sock_put(fastopen_sk); 6917 goto drop_and_free; 6918 } 6919 sk->sk_data_ready(sk); 6920 bh_unlock_sock(fastopen_sk); 6921 sock_put(fastopen_sk); 6922 } else { 6923 tcp_rsk(req)->tfo_listener = false; 6924 if (!want_cookie) 6925 inet_csk_reqsk_queue_hash_add(sk, req, 6926 tcp_timeout_init((struct sock *)req)); 6927 af_ops->send_synack(sk, dst, &fl, req, &foc, 6928 !want_cookie ? TCP_SYNACK_NORMAL : 6929 TCP_SYNACK_COOKIE, 6930 skb); 6931 if (want_cookie) { 6932 reqsk_free(req); 6933 return 0; 6934 } 6935 } 6936 reqsk_put(req); 6937 return 0; 6938 6939 drop_and_release: 6940 dst_release(dst); 6941 drop_and_free: 6942 __reqsk_free(req); 6943 drop: 6944 tcp_listendrop(sk); 6945 return 0; 6946 } 6947 EXPORT_SYMBOL(tcp_conn_request); 6948