1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_dec(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 #endif 133 134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 135 unsigned int len) 136 { 137 static bool __once __read_mostly; 138 139 if (!__once) { 140 struct net_device *dev; 141 142 __once = true; 143 144 rcu_read_lock(); 145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 146 if (!dev || len >= dev->mtu) 147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 148 dev ? dev->name : "Unknown driver"); 149 rcu_read_unlock(); 150 } 151 } 152 153 /* Adapt the MSS value used to make delayed ack decision to the 154 * real world. 155 */ 156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 157 { 158 struct inet_connection_sock *icsk = inet_csk(sk); 159 const unsigned int lss = icsk->icsk_ack.last_seg_size; 160 unsigned int len; 161 162 icsk->icsk_ack.last_seg_size = 0; 163 164 /* skb->len may jitter because of SACKs, even if peer 165 * sends good full-sized frames. 166 */ 167 len = skb_shinfo(skb)->gso_size ? : skb->len; 168 if (len >= icsk->icsk_ack.rcv_mss) { 169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 170 tcp_sk(sk)->advmss); 171 /* Account for possibly-removed options */ 172 if (unlikely(len > icsk->icsk_ack.rcv_mss + 173 MAX_TCP_OPTION_SPACE)) 174 tcp_gro_dev_warn(sk, skb, len); 175 } else { 176 /* Otherwise, we make more careful check taking into account, 177 * that SACKs block is variable. 178 * 179 * "len" is invariant segment length, including TCP header. 180 */ 181 len += skb->data - skb_transport_header(skb); 182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 183 /* If PSH is not set, packet should be 184 * full sized, provided peer TCP is not badly broken. 185 * This observation (if it is correct 8)) allows 186 * to handle super-low mtu links fairly. 187 */ 188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 190 /* Subtract also invariant (if peer is RFC compliant), 191 * tcp header plus fixed timestamp option length. 192 * Resulting "len" is MSS free of SACK jitter. 193 */ 194 len -= tcp_sk(sk)->tcp_header_len; 195 icsk->icsk_ack.last_seg_size = len; 196 if (len == lss) { 197 icsk->icsk_ack.rcv_mss = len; 198 return; 199 } 200 } 201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 204 } 205 } 206 207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 208 { 209 struct inet_connection_sock *icsk = inet_csk(sk); 210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 211 212 if (quickacks == 0) 213 quickacks = 2; 214 quickacks = min(quickacks, max_quickacks); 215 if (quickacks > icsk->icsk_ack.quick) 216 icsk->icsk_ack.quick = quickacks; 217 } 218 219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 220 { 221 struct inet_connection_sock *icsk = inet_csk(sk); 222 223 tcp_incr_quickack(sk, max_quickacks); 224 icsk->icsk_ack.pingpong = 0; 225 icsk->icsk_ack.ato = TCP_ATO_MIN; 226 } 227 EXPORT_SYMBOL(tcp_enter_quickack_mode); 228 229 /* Send ACKs quickly, if "quick" count is not exhausted 230 * and the session is not interactive. 231 */ 232 233 static bool tcp_in_quickack_mode(struct sock *sk) 234 { 235 const struct inet_connection_sock *icsk = inet_csk(sk); 236 const struct dst_entry *dst = __sk_dst_get(sk); 237 238 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 240 } 241 242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 243 { 244 if (tp->ecn_flags & TCP_ECN_OK) 245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 246 } 247 248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 249 { 250 if (tcp_hdr(skb)->cwr) { 251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 252 253 /* If the sender is telling us it has entered CWR, then its 254 * cwnd may be very low (even just 1 packet), so we should ACK 255 * immediately. 256 */ 257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 258 } 259 } 260 261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 262 { 263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 264 } 265 266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 271 case INET_ECN_NOT_ECT: 272 /* Funny extension: if ECT is not set on a segment, 273 * and we already seen ECT on a previous segment, 274 * it is probably a retransmit. 275 */ 276 if (tp->ecn_flags & TCP_ECN_SEEN) 277 tcp_enter_quickack_mode(sk, 2); 278 break; 279 case INET_ECN_CE: 280 if (tcp_ca_needs_ecn(sk)) 281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 282 283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 284 /* Better not delay acks, sender can have a very low cwnd */ 285 tcp_enter_quickack_mode(sk, 2); 286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 287 } 288 tp->ecn_flags |= TCP_ECN_SEEN; 289 break; 290 default: 291 if (tcp_ca_needs_ecn(sk)) 292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 293 tp->ecn_flags |= TCP_ECN_SEEN; 294 break; 295 } 296 } 297 298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 299 { 300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 301 __tcp_ecn_check_ce(sk, skb); 302 } 303 304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 305 { 306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 307 tp->ecn_flags &= ~TCP_ECN_OK; 308 } 309 310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 319 return true; 320 return false; 321 } 322 323 /* Buffer size and advertised window tuning. 324 * 325 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 326 */ 327 328 static void tcp_sndbuf_expand(struct sock *sk) 329 { 330 const struct tcp_sock *tp = tcp_sk(sk); 331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 332 int sndmem, per_mss; 333 u32 nr_segs; 334 335 /* Worst case is non GSO/TSO : each frame consumes one skb 336 * and skb->head is kmalloced using power of two area of memory 337 */ 338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 339 MAX_TCP_HEADER + 340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 341 342 per_mss = roundup_pow_of_two(per_mss) + 343 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 344 345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 347 348 /* Fast Recovery (RFC 5681 3.2) : 349 * Cubic needs 1.7 factor, rounded to 2 to include 350 * extra cushion (application might react slowly to EPOLLOUT) 351 */ 352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 353 sndmem *= nr_segs * per_mss; 354 355 if (sk->sk_sndbuf < sndmem) 356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 357 } 358 359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 360 * 361 * All tcp_full_space() is split to two parts: "network" buffer, allocated 362 * forward and advertised in receiver window (tp->rcv_wnd) and 363 * "application buffer", required to isolate scheduling/application 364 * latencies from network. 365 * window_clamp is maximal advertised window. It can be less than 366 * tcp_full_space(), in this case tcp_full_space() - window_clamp 367 * is reserved for "application" buffer. The less window_clamp is 368 * the smoother our behaviour from viewpoint of network, but the lower 369 * throughput and the higher sensitivity of the connection to losses. 8) 370 * 371 * rcv_ssthresh is more strict window_clamp used at "slow start" 372 * phase to predict further behaviour of this connection. 373 * It is used for two goals: 374 * - to enforce header prediction at sender, even when application 375 * requires some significant "application buffer". It is check #1. 376 * - to prevent pruning of receive queue because of misprediction 377 * of receiver window. Check #2. 378 * 379 * The scheme does not work when sender sends good segments opening 380 * window and then starts to feed us spaghetti. But it should work 381 * in common situations. Otherwise, we have to rely on queue collapsing. 382 */ 383 384 /* Slow part of check#2. */ 385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 /* Optimize this! */ 389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 391 392 while (tp->rcv_ssthresh <= window) { 393 if (truesize <= skb->len) 394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 395 396 truesize >>= 1; 397 window >>= 1; 398 } 399 return 0; 400 } 401 402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 403 { 404 struct tcp_sock *tp = tcp_sk(sk); 405 406 /* Check #1 */ 407 if (tp->rcv_ssthresh < tp->window_clamp && 408 (int)tp->rcv_ssthresh < tcp_space(sk) && 409 !tcp_under_memory_pressure(sk)) { 410 int incr; 411 412 /* Check #2. Increase window, if skb with such overhead 413 * will fit to rcvbuf in future. 414 */ 415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 416 incr = 2 * tp->advmss; 417 else 418 incr = __tcp_grow_window(sk, skb); 419 420 if (incr) { 421 incr = max_t(int, incr, 2 * skb->len); 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 423 tp->window_clamp); 424 inet_csk(sk)->icsk_ack.quick |= 1; 425 } 426 } 427 } 428 429 /* 3. Tuning rcvbuf, when connection enters established state. */ 430 static void tcp_fixup_rcvbuf(struct sock *sk) 431 { 432 u32 mss = tcp_sk(sk)->advmss; 433 int rcvmem; 434 435 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 436 tcp_default_init_rwnd(mss); 437 438 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 439 * Allow enough cushion so that sender is not limited by our window 440 */ 441 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 442 rcvmem <<= 2; 443 444 if (sk->sk_rcvbuf < rcvmem) 445 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 446 } 447 448 /* 4. Try to fixup all. It is made immediately after connection enters 449 * established state. 450 */ 451 void tcp_init_buffer_space(struct sock *sk) 452 { 453 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 454 struct tcp_sock *tp = tcp_sk(sk); 455 int maxwin; 456 457 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 458 tcp_fixup_rcvbuf(sk); 459 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 460 tcp_sndbuf_expand(sk); 461 462 tp->rcvq_space.space = tp->rcv_wnd; 463 tcp_mstamp_refresh(tp); 464 tp->rcvq_space.time = tp->tcp_mstamp; 465 tp->rcvq_space.seq = tp->copied_seq; 466 467 maxwin = tcp_full_space(sk); 468 469 if (tp->window_clamp >= maxwin) { 470 tp->window_clamp = maxwin; 471 472 if (tcp_app_win && maxwin > 4 * tp->advmss) 473 tp->window_clamp = max(maxwin - 474 (maxwin >> tcp_app_win), 475 4 * tp->advmss); 476 } 477 478 /* Force reservation of one segment. */ 479 if (tcp_app_win && 480 tp->window_clamp > 2 * tp->advmss && 481 tp->window_clamp + tp->advmss > maxwin) 482 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 483 484 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 485 tp->snd_cwnd_stamp = tcp_jiffies32; 486 } 487 488 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 489 static void tcp_clamp_window(struct sock *sk) 490 { 491 struct tcp_sock *tp = tcp_sk(sk); 492 struct inet_connection_sock *icsk = inet_csk(sk); 493 struct net *net = sock_net(sk); 494 495 icsk->icsk_ack.quick = 0; 496 497 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 498 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 499 !tcp_under_memory_pressure(sk) && 500 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 501 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 502 net->ipv4.sysctl_tcp_rmem[2]); 503 } 504 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 505 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 506 } 507 508 /* Initialize RCV_MSS value. 509 * RCV_MSS is an our guess about MSS used by the peer. 510 * We haven't any direct information about the MSS. 511 * It's better to underestimate the RCV_MSS rather than overestimate. 512 * Overestimations make us ACKing less frequently than needed. 513 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 514 */ 515 void tcp_initialize_rcv_mss(struct sock *sk) 516 { 517 const struct tcp_sock *tp = tcp_sk(sk); 518 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 519 520 hint = min(hint, tp->rcv_wnd / 2); 521 hint = min(hint, TCP_MSS_DEFAULT); 522 hint = max(hint, TCP_MIN_MSS); 523 524 inet_csk(sk)->icsk_ack.rcv_mss = hint; 525 } 526 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 527 528 /* Receiver "autotuning" code. 529 * 530 * The algorithm for RTT estimation w/o timestamps is based on 531 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 532 * <http://public.lanl.gov/radiant/pubs.html#DRS> 533 * 534 * More detail on this code can be found at 535 * <http://staff.psc.edu/jheffner/>, 536 * though this reference is out of date. A new paper 537 * is pending. 538 */ 539 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 540 { 541 u32 new_sample = tp->rcv_rtt_est.rtt_us; 542 long m = sample; 543 544 if (new_sample != 0) { 545 /* If we sample in larger samples in the non-timestamp 546 * case, we could grossly overestimate the RTT especially 547 * with chatty applications or bulk transfer apps which 548 * are stalled on filesystem I/O. 549 * 550 * Also, since we are only going for a minimum in the 551 * non-timestamp case, we do not smooth things out 552 * else with timestamps disabled convergence takes too 553 * long. 554 */ 555 if (!win_dep) { 556 m -= (new_sample >> 3); 557 new_sample += m; 558 } else { 559 m <<= 3; 560 if (m < new_sample) 561 new_sample = m; 562 } 563 } else { 564 /* No previous measure. */ 565 new_sample = m << 3; 566 } 567 568 tp->rcv_rtt_est.rtt_us = new_sample; 569 } 570 571 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 572 { 573 u32 delta_us; 574 575 if (tp->rcv_rtt_est.time == 0) 576 goto new_measure; 577 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 578 return; 579 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 580 if (!delta_us) 581 delta_us = 1; 582 tcp_rcv_rtt_update(tp, delta_us, 1); 583 584 new_measure: 585 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 586 tp->rcv_rtt_est.time = tp->tcp_mstamp; 587 } 588 589 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 590 const struct sk_buff *skb) 591 { 592 struct tcp_sock *tp = tcp_sk(sk); 593 594 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 595 return; 596 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 597 598 if (TCP_SKB_CB(skb)->end_seq - 599 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 600 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 601 u32 delta_us; 602 603 if (!delta) 604 delta = 1; 605 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 606 tcp_rcv_rtt_update(tp, delta_us, 0); 607 } 608 } 609 610 /* 611 * This function should be called every time data is copied to user space. 612 * It calculates the appropriate TCP receive buffer space. 613 */ 614 void tcp_rcv_space_adjust(struct sock *sk) 615 { 616 struct tcp_sock *tp = tcp_sk(sk); 617 u32 copied; 618 int time; 619 620 trace_tcp_rcv_space_adjust(sk); 621 622 tcp_mstamp_refresh(tp); 623 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 624 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 625 return; 626 627 /* Number of bytes copied to user in last RTT */ 628 copied = tp->copied_seq - tp->rcvq_space.seq; 629 if (copied <= tp->rcvq_space.space) 630 goto new_measure; 631 632 /* A bit of theory : 633 * copied = bytes received in previous RTT, our base window 634 * To cope with packet losses, we need a 2x factor 635 * To cope with slow start, and sender growing its cwin by 100 % 636 * every RTT, we need a 4x factor, because the ACK we are sending 637 * now is for the next RTT, not the current one : 638 * <prev RTT . ><current RTT .. ><next RTT .... > 639 */ 640 641 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 642 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 643 int rcvmem, rcvbuf; 644 u64 rcvwin, grow; 645 646 /* minimal window to cope with packet losses, assuming 647 * steady state. Add some cushion because of small variations. 648 */ 649 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 650 651 /* Accommodate for sender rate increase (eg. slow start) */ 652 grow = rcvwin * (copied - tp->rcvq_space.space); 653 do_div(grow, tp->rcvq_space.space); 654 rcvwin += (grow << 1); 655 656 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 657 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 658 rcvmem += 128; 659 660 do_div(rcvwin, tp->advmss); 661 rcvbuf = min_t(u64, rcvwin * rcvmem, 662 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 663 if (rcvbuf > sk->sk_rcvbuf) { 664 sk->sk_rcvbuf = rcvbuf; 665 666 /* Make the window clamp follow along. */ 667 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 668 } 669 } 670 tp->rcvq_space.space = copied; 671 672 new_measure: 673 tp->rcvq_space.seq = tp->copied_seq; 674 tp->rcvq_space.time = tp->tcp_mstamp; 675 } 676 677 /* There is something which you must keep in mind when you analyze the 678 * behavior of the tp->ato delayed ack timeout interval. When a 679 * connection starts up, we want to ack as quickly as possible. The 680 * problem is that "good" TCP's do slow start at the beginning of data 681 * transmission. The means that until we send the first few ACK's the 682 * sender will sit on his end and only queue most of his data, because 683 * he can only send snd_cwnd unacked packets at any given time. For 684 * each ACK we send, he increments snd_cwnd and transmits more of his 685 * queue. -DaveM 686 */ 687 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 688 { 689 struct tcp_sock *tp = tcp_sk(sk); 690 struct inet_connection_sock *icsk = inet_csk(sk); 691 u32 now; 692 693 inet_csk_schedule_ack(sk); 694 695 tcp_measure_rcv_mss(sk, skb); 696 697 tcp_rcv_rtt_measure(tp); 698 699 now = tcp_jiffies32; 700 701 if (!icsk->icsk_ack.ato) { 702 /* The _first_ data packet received, initialize 703 * delayed ACK engine. 704 */ 705 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 706 icsk->icsk_ack.ato = TCP_ATO_MIN; 707 } else { 708 int m = now - icsk->icsk_ack.lrcvtime; 709 710 if (m <= TCP_ATO_MIN / 2) { 711 /* The fastest case is the first. */ 712 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 713 } else if (m < icsk->icsk_ack.ato) { 714 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 715 if (icsk->icsk_ack.ato > icsk->icsk_rto) 716 icsk->icsk_ack.ato = icsk->icsk_rto; 717 } else if (m > icsk->icsk_rto) { 718 /* Too long gap. Apparently sender failed to 719 * restart window, so that we send ACKs quickly. 720 */ 721 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 722 sk_mem_reclaim(sk); 723 } 724 } 725 icsk->icsk_ack.lrcvtime = now; 726 727 tcp_ecn_check_ce(sk, skb); 728 729 if (skb->len >= 128) 730 tcp_grow_window(sk, skb); 731 } 732 733 /* Called to compute a smoothed rtt estimate. The data fed to this 734 * routine either comes from timestamps, or from segments that were 735 * known _not_ to have been retransmitted [see Karn/Partridge 736 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 737 * piece by Van Jacobson. 738 * NOTE: the next three routines used to be one big routine. 739 * To save cycles in the RFC 1323 implementation it was better to break 740 * it up into three procedures. -- erics 741 */ 742 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 743 { 744 struct tcp_sock *tp = tcp_sk(sk); 745 long m = mrtt_us; /* RTT */ 746 u32 srtt = tp->srtt_us; 747 748 /* The following amusing code comes from Jacobson's 749 * article in SIGCOMM '88. Note that rtt and mdev 750 * are scaled versions of rtt and mean deviation. 751 * This is designed to be as fast as possible 752 * m stands for "measurement". 753 * 754 * On a 1990 paper the rto value is changed to: 755 * RTO = rtt + 4 * mdev 756 * 757 * Funny. This algorithm seems to be very broken. 758 * These formulae increase RTO, when it should be decreased, increase 759 * too slowly, when it should be increased quickly, decrease too quickly 760 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 761 * does not matter how to _calculate_ it. Seems, it was trap 762 * that VJ failed to avoid. 8) 763 */ 764 if (srtt != 0) { 765 m -= (srtt >> 3); /* m is now error in rtt est */ 766 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 767 if (m < 0) { 768 m = -m; /* m is now abs(error) */ 769 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 770 /* This is similar to one of Eifel findings. 771 * Eifel blocks mdev updates when rtt decreases. 772 * This solution is a bit different: we use finer gain 773 * for mdev in this case (alpha*beta). 774 * Like Eifel it also prevents growth of rto, 775 * but also it limits too fast rto decreases, 776 * happening in pure Eifel. 777 */ 778 if (m > 0) 779 m >>= 3; 780 } else { 781 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 782 } 783 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 784 if (tp->mdev_us > tp->mdev_max_us) { 785 tp->mdev_max_us = tp->mdev_us; 786 if (tp->mdev_max_us > tp->rttvar_us) 787 tp->rttvar_us = tp->mdev_max_us; 788 } 789 if (after(tp->snd_una, tp->rtt_seq)) { 790 if (tp->mdev_max_us < tp->rttvar_us) 791 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 792 tp->rtt_seq = tp->snd_nxt; 793 tp->mdev_max_us = tcp_rto_min_us(sk); 794 } 795 } else { 796 /* no previous measure. */ 797 srtt = m << 3; /* take the measured time to be rtt */ 798 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 799 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 800 tp->mdev_max_us = tp->rttvar_us; 801 tp->rtt_seq = tp->snd_nxt; 802 } 803 tp->srtt_us = max(1U, srtt); 804 } 805 806 static void tcp_update_pacing_rate(struct sock *sk) 807 { 808 const struct tcp_sock *tp = tcp_sk(sk); 809 u64 rate; 810 811 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 812 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 813 814 /* current rate is (cwnd * mss) / srtt 815 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 816 * In Congestion Avoidance phase, set it to 120 % the current rate. 817 * 818 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 819 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 820 * end of slow start and should slow down. 821 */ 822 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 823 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 824 else 825 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 826 827 rate *= max(tp->snd_cwnd, tp->packets_out); 828 829 if (likely(tp->srtt_us)) 830 do_div(rate, tp->srtt_us); 831 832 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 833 * without any lock. We want to make sure compiler wont store 834 * intermediate values in this location. 835 */ 836 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 837 sk->sk_max_pacing_rate)); 838 } 839 840 /* Calculate rto without backoff. This is the second half of Van Jacobson's 841 * routine referred to above. 842 */ 843 static void tcp_set_rto(struct sock *sk) 844 { 845 const struct tcp_sock *tp = tcp_sk(sk); 846 /* Old crap is replaced with new one. 8) 847 * 848 * More seriously: 849 * 1. If rtt variance happened to be less 50msec, it is hallucination. 850 * It cannot be less due to utterly erratic ACK generation made 851 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 852 * to do with delayed acks, because at cwnd>2 true delack timeout 853 * is invisible. Actually, Linux-2.4 also generates erratic 854 * ACKs in some circumstances. 855 */ 856 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 857 858 /* 2. Fixups made earlier cannot be right. 859 * If we do not estimate RTO correctly without them, 860 * all the algo is pure shit and should be replaced 861 * with correct one. It is exactly, which we pretend to do. 862 */ 863 864 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 865 * guarantees that rto is higher. 866 */ 867 tcp_bound_rto(sk); 868 } 869 870 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 871 { 872 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 873 874 if (!cwnd) 875 cwnd = TCP_INIT_CWND; 876 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 877 } 878 879 /* Take a notice that peer is sending D-SACKs */ 880 static void tcp_dsack_seen(struct tcp_sock *tp) 881 { 882 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 883 tp->rack.dsack_seen = 1; 884 tp->dsack_dups++; 885 } 886 887 /* It's reordering when higher sequence was delivered (i.e. sacked) before 888 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 889 * distance is approximated in full-mss packet distance ("reordering"). 890 */ 891 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 892 const int ts) 893 { 894 struct tcp_sock *tp = tcp_sk(sk); 895 const u32 mss = tp->mss_cache; 896 u32 fack, metric; 897 898 fack = tcp_highest_sack_seq(tp); 899 if (!before(low_seq, fack)) 900 return; 901 902 metric = fack - low_seq; 903 if ((metric > tp->reordering * mss) && mss) { 904 #if FASTRETRANS_DEBUG > 1 905 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 906 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 907 tp->reordering, 908 0, 909 tp->sacked_out, 910 tp->undo_marker ? tp->undo_retrans : 0); 911 #endif 912 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 913 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 914 } 915 916 /* This exciting event is worth to be remembered. 8) */ 917 tp->reord_seen++; 918 NET_INC_STATS(sock_net(sk), 919 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 920 } 921 922 /* This must be called before lost_out is incremented */ 923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 if (!tp->retransmit_skb_hint || 926 before(TCP_SKB_CB(skb)->seq, 927 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 928 tp->retransmit_skb_hint = skb; 929 } 930 931 /* Sum the number of packets on the wire we have marked as lost. 932 * There are two cases we care about here: 933 * a) Packet hasn't been marked lost (nor retransmitted), 934 * and this is the first loss. 935 * b) Packet has been marked both lost and retransmitted, 936 * and this means we think it was lost again. 937 */ 938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 939 { 940 __u8 sacked = TCP_SKB_CB(skb)->sacked; 941 942 if (!(sacked & TCPCB_LOST) || 943 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 944 tp->lost += tcp_skb_pcount(skb); 945 } 946 947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 948 { 949 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 950 tcp_verify_retransmit_hint(tp, skb); 951 952 tp->lost_out += tcp_skb_pcount(skb); 953 tcp_sum_lost(tp, skb); 954 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 955 } 956 } 957 958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 959 { 960 tcp_verify_retransmit_hint(tp, skb); 961 962 tcp_sum_lost(tp, skb); 963 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 964 tp->lost_out += tcp_skb_pcount(skb); 965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 966 } 967 } 968 969 /* This procedure tags the retransmission queue when SACKs arrive. 970 * 971 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 972 * Packets in queue with these bits set are counted in variables 973 * sacked_out, retrans_out and lost_out, correspondingly. 974 * 975 * Valid combinations are: 976 * Tag InFlight Description 977 * 0 1 - orig segment is in flight. 978 * S 0 - nothing flies, orig reached receiver. 979 * L 0 - nothing flies, orig lost by net. 980 * R 2 - both orig and retransmit are in flight. 981 * L|R 1 - orig is lost, retransmit is in flight. 982 * S|R 1 - orig reached receiver, retrans is still in flight. 983 * (L|S|R is logically valid, it could occur when L|R is sacked, 984 * but it is equivalent to plain S and code short-curcuits it to S. 985 * L|S is logically invalid, it would mean -1 packet in flight 8)) 986 * 987 * These 6 states form finite state machine, controlled by the following events: 988 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 989 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 990 * 3. Loss detection event of two flavors: 991 * A. Scoreboard estimator decided the packet is lost. 992 * A'. Reno "three dupacks" marks head of queue lost. 993 * B. SACK arrives sacking SND.NXT at the moment, when the 994 * segment was retransmitted. 995 * 4. D-SACK added new rule: D-SACK changes any tag to S. 996 * 997 * It is pleasant to note, that state diagram turns out to be commutative, 998 * so that we are allowed not to be bothered by order of our actions, 999 * when multiple events arrive simultaneously. (see the function below). 1000 * 1001 * Reordering detection. 1002 * -------------------- 1003 * Reordering metric is maximal distance, which a packet can be displaced 1004 * in packet stream. With SACKs we can estimate it: 1005 * 1006 * 1. SACK fills old hole and the corresponding segment was not 1007 * ever retransmitted -> reordering. Alas, we cannot use it 1008 * when segment was retransmitted. 1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1010 * for retransmitted and already SACKed segment -> reordering.. 1011 * Both of these heuristics are not used in Loss state, when we cannot 1012 * account for retransmits accurately. 1013 * 1014 * SACK block validation. 1015 * ---------------------- 1016 * 1017 * SACK block range validation checks that the received SACK block fits to 1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1019 * Note that SND.UNA is not included to the range though being valid because 1020 * it means that the receiver is rather inconsistent with itself reporting 1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1022 * perfectly valid, however, in light of RFC2018 which explicitly states 1023 * that "SACK block MUST reflect the newest segment. Even if the newest 1024 * segment is going to be discarded ...", not that it looks very clever 1025 * in case of head skb. Due to potentional receiver driven attacks, we 1026 * choose to avoid immediate execution of a walk in write queue due to 1027 * reneging and defer head skb's loss recovery to standard loss recovery 1028 * procedure that will eventually trigger (nothing forbids us doing this). 1029 * 1030 * Implements also blockage to start_seq wrap-around. Problem lies in the 1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1032 * there's no guarantee that it will be before snd_nxt (n). The problem 1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1034 * wrap (s_w): 1035 * 1036 * <- outs wnd -> <- wrapzone -> 1037 * u e n u_w e_w s n_w 1038 * | | | | | | | 1039 * |<------------+------+----- TCP seqno space --------------+---------->| 1040 * ...-- <2^31 ->| |<--------... 1041 * ...---- >2^31 ------>| |<--------... 1042 * 1043 * Current code wouldn't be vulnerable but it's better still to discard such 1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1047 * equal to the ideal case (infinite seqno space without wrap caused issues). 1048 * 1049 * With D-SACK the lower bound is extended to cover sequence space below 1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1051 * again, D-SACK block must not to go across snd_una (for the same reason as 1052 * for the normal SACK blocks, explained above). But there all simplicity 1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1054 * fully below undo_marker they do not affect behavior in anyway and can 1055 * therefore be safely ignored. In rare cases (which are more or less 1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1057 * fragmentation and packet reordering past skb's retransmission. To consider 1058 * them correctly, the acceptable range must be extended even more though 1059 * the exact amount is rather hard to quantify. However, tp->max_window can 1060 * be used as an exaggerated estimate. 1061 */ 1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1063 u32 start_seq, u32 end_seq) 1064 { 1065 /* Too far in future, or reversed (interpretation is ambiguous) */ 1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1067 return false; 1068 1069 /* Nasty start_seq wrap-around check (see comments above) */ 1070 if (!before(start_seq, tp->snd_nxt)) 1071 return false; 1072 1073 /* In outstanding window? ...This is valid exit for D-SACKs too. 1074 * start_seq == snd_una is non-sensical (see comments above) 1075 */ 1076 if (after(start_seq, tp->snd_una)) 1077 return true; 1078 1079 if (!is_dsack || !tp->undo_marker) 1080 return false; 1081 1082 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1083 if (after(end_seq, tp->snd_una)) 1084 return false; 1085 1086 if (!before(start_seq, tp->undo_marker)) 1087 return true; 1088 1089 /* Too old */ 1090 if (!after(end_seq, tp->undo_marker)) 1091 return false; 1092 1093 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1094 * start_seq < undo_marker and end_seq >= undo_marker. 1095 */ 1096 return !before(start_seq, end_seq - tp->max_window); 1097 } 1098 1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1100 struct tcp_sack_block_wire *sp, int num_sacks, 1101 u32 prior_snd_una) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1106 bool dup_sack = false; 1107 1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1112 } else if (num_sacks > 1) { 1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1115 1116 if (!after(end_seq_0, end_seq_1) && 1117 !before(start_seq_0, start_seq_1)) { 1118 dup_sack = true; 1119 tcp_dsack_seen(tp); 1120 NET_INC_STATS(sock_net(sk), 1121 LINUX_MIB_TCPDSACKOFORECV); 1122 } 1123 } 1124 1125 /* D-SACK for already forgotten data... Do dumb counting. */ 1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1127 !after(end_seq_0, prior_snd_una) && 1128 after(end_seq_0, tp->undo_marker)) 1129 tp->undo_retrans--; 1130 1131 return dup_sack; 1132 } 1133 1134 struct tcp_sacktag_state { 1135 u32 reord; 1136 /* Timestamps for earliest and latest never-retransmitted segment 1137 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1138 * but congestion control should still get an accurate delay signal. 1139 */ 1140 u64 first_sackt; 1141 u64 last_sackt; 1142 struct rate_sample *rate; 1143 int flag; 1144 unsigned int mss_now; 1145 }; 1146 1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1148 * the incoming SACK may not exactly match but we can find smaller MSS 1149 * aligned portion of it that matches. Therefore we might need to fragment 1150 * which may fail and creates some hassle (caller must handle error case 1151 * returns). 1152 * 1153 * FIXME: this could be merged to shift decision code 1154 */ 1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1156 u32 start_seq, u32 end_seq) 1157 { 1158 int err; 1159 bool in_sack; 1160 unsigned int pkt_len; 1161 unsigned int mss; 1162 1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1165 1166 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1168 mss = tcp_skb_mss(skb); 1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1170 1171 if (!in_sack) { 1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 pkt_len = mss; 1175 } else { 1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1177 if (pkt_len < mss) 1178 return -EINVAL; 1179 } 1180 1181 /* Round if necessary so that SACKs cover only full MSSes 1182 * and/or the remaining small portion (if present) 1183 */ 1184 if (pkt_len > mss) { 1185 unsigned int new_len = (pkt_len / mss) * mss; 1186 if (!in_sack && new_len < pkt_len) 1187 new_len += mss; 1188 pkt_len = new_len; 1189 } 1190 1191 if (pkt_len >= skb->len && !in_sack) 1192 return 0; 1193 1194 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1195 pkt_len, mss, GFP_ATOMIC); 1196 if (err < 0) 1197 return err; 1198 } 1199 1200 return in_sack; 1201 } 1202 1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1204 static u8 tcp_sacktag_one(struct sock *sk, 1205 struct tcp_sacktag_state *state, u8 sacked, 1206 u32 start_seq, u32 end_seq, 1207 int dup_sack, int pcount, 1208 u64 xmit_time) 1209 { 1210 struct tcp_sock *tp = tcp_sk(sk); 1211 1212 /* Account D-SACK for retransmitted packet. */ 1213 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1214 if (tp->undo_marker && tp->undo_retrans > 0 && 1215 after(end_seq, tp->undo_marker)) 1216 tp->undo_retrans--; 1217 if ((sacked & TCPCB_SACKED_ACKED) && 1218 before(start_seq, state->reord)) 1219 state->reord = start_seq; 1220 } 1221 1222 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1223 if (!after(end_seq, tp->snd_una)) 1224 return sacked; 1225 1226 if (!(sacked & TCPCB_SACKED_ACKED)) { 1227 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1228 1229 if (sacked & TCPCB_SACKED_RETRANS) { 1230 /* If the segment is not tagged as lost, 1231 * we do not clear RETRANS, believing 1232 * that retransmission is still in flight. 1233 */ 1234 if (sacked & TCPCB_LOST) { 1235 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1236 tp->lost_out -= pcount; 1237 tp->retrans_out -= pcount; 1238 } 1239 } else { 1240 if (!(sacked & TCPCB_RETRANS)) { 1241 /* New sack for not retransmitted frame, 1242 * which was in hole. It is reordering. 1243 */ 1244 if (before(start_seq, 1245 tcp_highest_sack_seq(tp)) && 1246 before(start_seq, state->reord)) 1247 state->reord = start_seq; 1248 1249 if (!after(end_seq, tp->high_seq)) 1250 state->flag |= FLAG_ORIG_SACK_ACKED; 1251 if (state->first_sackt == 0) 1252 state->first_sackt = xmit_time; 1253 state->last_sackt = xmit_time; 1254 } 1255 1256 if (sacked & TCPCB_LOST) { 1257 sacked &= ~TCPCB_LOST; 1258 tp->lost_out -= pcount; 1259 } 1260 } 1261 1262 sacked |= TCPCB_SACKED_ACKED; 1263 state->flag |= FLAG_DATA_SACKED; 1264 tp->sacked_out += pcount; 1265 tp->delivered += pcount; /* Out-of-order packets delivered */ 1266 1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1268 if (tp->lost_skb_hint && 1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1270 tp->lost_cnt_hint += pcount; 1271 } 1272 1273 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1274 * frames and clear it. undo_retrans is decreased above, L|R frames 1275 * are accounted above as well. 1276 */ 1277 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1278 sacked &= ~TCPCB_SACKED_RETRANS; 1279 tp->retrans_out -= pcount; 1280 } 1281 1282 return sacked; 1283 } 1284 1285 /* Shift newly-SACKed bytes from this skb to the immediately previous 1286 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1287 */ 1288 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1289 struct sk_buff *skb, 1290 struct tcp_sacktag_state *state, 1291 unsigned int pcount, int shifted, int mss, 1292 bool dup_sack) 1293 { 1294 struct tcp_sock *tp = tcp_sk(sk); 1295 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1296 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1297 1298 BUG_ON(!pcount); 1299 1300 /* Adjust counters and hints for the newly sacked sequence 1301 * range but discard the return value since prev is already 1302 * marked. We must tag the range first because the seq 1303 * advancement below implicitly advances 1304 * tcp_highest_sack_seq() when skb is highest_sack. 1305 */ 1306 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1307 start_seq, end_seq, dup_sack, pcount, 1308 skb->skb_mstamp); 1309 tcp_rate_skb_delivered(sk, skb, state->rate); 1310 1311 if (skb == tp->lost_skb_hint) 1312 tp->lost_cnt_hint += pcount; 1313 1314 TCP_SKB_CB(prev)->end_seq += shifted; 1315 TCP_SKB_CB(skb)->seq += shifted; 1316 1317 tcp_skb_pcount_add(prev, pcount); 1318 BUG_ON(tcp_skb_pcount(skb) < pcount); 1319 tcp_skb_pcount_add(skb, -pcount); 1320 1321 /* When we're adding to gso_segs == 1, gso_size will be zero, 1322 * in theory this shouldn't be necessary but as long as DSACK 1323 * code can come after this skb later on it's better to keep 1324 * setting gso_size to something. 1325 */ 1326 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1327 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1328 1329 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1330 if (tcp_skb_pcount(skb) <= 1) 1331 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1332 1333 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1334 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1335 1336 if (skb->len > 0) { 1337 BUG_ON(!tcp_skb_pcount(skb)); 1338 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1339 return false; 1340 } 1341 1342 /* Whole SKB was eaten :-) */ 1343 1344 if (skb == tp->retransmit_skb_hint) 1345 tp->retransmit_skb_hint = prev; 1346 if (skb == tp->lost_skb_hint) { 1347 tp->lost_skb_hint = prev; 1348 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1349 } 1350 1351 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1352 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1353 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1354 TCP_SKB_CB(prev)->end_seq++; 1355 1356 if (skb == tcp_highest_sack(sk)) 1357 tcp_advance_highest_sack(sk, skb); 1358 1359 tcp_skb_collapse_tstamp(prev, skb); 1360 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1361 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1362 1363 tcp_rtx_queue_unlink_and_free(skb, sk); 1364 1365 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1366 1367 return true; 1368 } 1369 1370 /* I wish gso_size would have a bit more sane initialization than 1371 * something-or-zero which complicates things 1372 */ 1373 static int tcp_skb_seglen(const struct sk_buff *skb) 1374 { 1375 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1376 } 1377 1378 /* Shifting pages past head area doesn't work */ 1379 static int skb_can_shift(const struct sk_buff *skb) 1380 { 1381 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1382 } 1383 1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1385 * skb. 1386 */ 1387 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1388 struct tcp_sacktag_state *state, 1389 u32 start_seq, u32 end_seq, 1390 bool dup_sack) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 struct sk_buff *prev; 1394 int mss; 1395 int pcount = 0; 1396 int len; 1397 int in_sack; 1398 1399 /* Normally R but no L won't result in plain S */ 1400 if (!dup_sack && 1401 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1402 goto fallback; 1403 if (!skb_can_shift(skb)) 1404 goto fallback; 1405 /* This frame is about to be dropped (was ACKed). */ 1406 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1407 goto fallback; 1408 1409 /* Can only happen with delayed DSACK + discard craziness */ 1410 prev = skb_rb_prev(skb); 1411 if (!prev) 1412 goto fallback; 1413 1414 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1415 goto fallback; 1416 1417 if (!tcp_skb_can_collapse_to(prev)) 1418 goto fallback; 1419 1420 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1421 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1422 1423 if (in_sack) { 1424 len = skb->len; 1425 pcount = tcp_skb_pcount(skb); 1426 mss = tcp_skb_seglen(skb); 1427 1428 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1429 * drop this restriction as unnecessary 1430 */ 1431 if (mss != tcp_skb_seglen(prev)) 1432 goto fallback; 1433 } else { 1434 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1435 goto noop; 1436 /* CHECKME: This is non-MSS split case only?, this will 1437 * cause skipped skbs due to advancing loop btw, original 1438 * has that feature too 1439 */ 1440 if (tcp_skb_pcount(skb) <= 1) 1441 goto noop; 1442 1443 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1444 if (!in_sack) { 1445 /* TODO: head merge to next could be attempted here 1446 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1447 * though it might not be worth of the additional hassle 1448 * 1449 * ...we can probably just fallback to what was done 1450 * previously. We could try merging non-SACKed ones 1451 * as well but it probably isn't going to buy off 1452 * because later SACKs might again split them, and 1453 * it would make skb timestamp tracking considerably 1454 * harder problem. 1455 */ 1456 goto fallback; 1457 } 1458 1459 len = end_seq - TCP_SKB_CB(skb)->seq; 1460 BUG_ON(len < 0); 1461 BUG_ON(len > skb->len); 1462 1463 /* MSS boundaries should be honoured or else pcount will 1464 * severely break even though it makes things bit trickier. 1465 * Optimize common case to avoid most of the divides 1466 */ 1467 mss = tcp_skb_mss(skb); 1468 1469 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1470 * drop this restriction as unnecessary 1471 */ 1472 if (mss != tcp_skb_seglen(prev)) 1473 goto fallback; 1474 1475 if (len == mss) { 1476 pcount = 1; 1477 } else if (len < mss) { 1478 goto noop; 1479 } else { 1480 pcount = len / mss; 1481 len = pcount * mss; 1482 } 1483 } 1484 1485 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1486 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1487 goto fallback; 1488 1489 if (!skb_shift(prev, skb, len)) 1490 goto fallback; 1491 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1492 goto out; 1493 1494 /* Hole filled allows collapsing with the next as well, this is very 1495 * useful when hole on every nth skb pattern happens 1496 */ 1497 skb = skb_rb_next(prev); 1498 if (!skb) 1499 goto out; 1500 1501 if (!skb_can_shift(skb) || 1502 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1503 (mss != tcp_skb_seglen(skb))) 1504 goto out; 1505 1506 len = skb->len; 1507 if (skb_shift(prev, skb, len)) { 1508 pcount += tcp_skb_pcount(skb); 1509 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1510 len, mss, 0); 1511 } 1512 1513 out: 1514 return prev; 1515 1516 noop: 1517 return skb; 1518 1519 fallback: 1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1521 return NULL; 1522 } 1523 1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1525 struct tcp_sack_block *next_dup, 1526 struct tcp_sacktag_state *state, 1527 u32 start_seq, u32 end_seq, 1528 bool dup_sack_in) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 struct sk_buff *tmp; 1532 1533 skb_rbtree_walk_from(skb) { 1534 int in_sack = 0; 1535 bool dup_sack = dup_sack_in; 1536 1537 /* queue is in-order => we can short-circuit the walk early */ 1538 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1539 break; 1540 1541 if (next_dup && 1542 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1543 in_sack = tcp_match_skb_to_sack(sk, skb, 1544 next_dup->start_seq, 1545 next_dup->end_seq); 1546 if (in_sack > 0) 1547 dup_sack = true; 1548 } 1549 1550 /* skb reference here is a bit tricky to get right, since 1551 * shifting can eat and free both this skb and the next, 1552 * so not even _safe variant of the loop is enough. 1553 */ 1554 if (in_sack <= 0) { 1555 tmp = tcp_shift_skb_data(sk, skb, state, 1556 start_seq, end_seq, dup_sack); 1557 if (tmp) { 1558 if (tmp != skb) { 1559 skb = tmp; 1560 continue; 1561 } 1562 1563 in_sack = 0; 1564 } else { 1565 in_sack = tcp_match_skb_to_sack(sk, skb, 1566 start_seq, 1567 end_seq); 1568 } 1569 } 1570 1571 if (unlikely(in_sack < 0)) 1572 break; 1573 1574 if (in_sack) { 1575 TCP_SKB_CB(skb)->sacked = 1576 tcp_sacktag_one(sk, 1577 state, 1578 TCP_SKB_CB(skb)->sacked, 1579 TCP_SKB_CB(skb)->seq, 1580 TCP_SKB_CB(skb)->end_seq, 1581 dup_sack, 1582 tcp_skb_pcount(skb), 1583 skb->skb_mstamp); 1584 tcp_rate_skb_delivered(sk, skb, state->rate); 1585 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1586 list_del_init(&skb->tcp_tsorted_anchor); 1587 1588 if (!before(TCP_SKB_CB(skb)->seq, 1589 tcp_highest_sack_seq(tp))) 1590 tcp_advance_highest_sack(sk, skb); 1591 } 1592 } 1593 return skb; 1594 } 1595 1596 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1597 struct tcp_sacktag_state *state, 1598 u32 seq) 1599 { 1600 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1601 struct sk_buff *skb; 1602 1603 while (*p) { 1604 parent = *p; 1605 skb = rb_to_skb(parent); 1606 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1607 p = &parent->rb_left; 1608 continue; 1609 } 1610 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1611 p = &parent->rb_right; 1612 continue; 1613 } 1614 return skb; 1615 } 1616 return NULL; 1617 } 1618 1619 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1620 struct tcp_sacktag_state *state, 1621 u32 skip_to_seq) 1622 { 1623 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1624 return skb; 1625 1626 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1627 } 1628 1629 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1630 struct sock *sk, 1631 struct tcp_sack_block *next_dup, 1632 struct tcp_sacktag_state *state, 1633 u32 skip_to_seq) 1634 { 1635 if (!next_dup) 1636 return skb; 1637 1638 if (before(next_dup->start_seq, skip_to_seq)) { 1639 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1640 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1641 next_dup->start_seq, next_dup->end_seq, 1642 1); 1643 } 1644 1645 return skb; 1646 } 1647 1648 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1649 { 1650 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1651 } 1652 1653 static int 1654 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1655 u32 prior_snd_una, struct tcp_sacktag_state *state) 1656 { 1657 struct tcp_sock *tp = tcp_sk(sk); 1658 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1659 TCP_SKB_CB(ack_skb)->sacked); 1660 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1661 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1662 struct tcp_sack_block *cache; 1663 struct sk_buff *skb; 1664 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1665 int used_sacks; 1666 bool found_dup_sack = false; 1667 int i, j; 1668 int first_sack_index; 1669 1670 state->flag = 0; 1671 state->reord = tp->snd_nxt; 1672 1673 if (!tp->sacked_out) 1674 tcp_highest_sack_reset(sk); 1675 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1677 num_sacks, prior_snd_una); 1678 if (found_dup_sack) { 1679 state->flag |= FLAG_DSACKING_ACK; 1680 tp->delivered++; /* A spurious retransmission is delivered */ 1681 } 1682 1683 /* Eliminate too old ACKs, but take into 1684 * account more or less fresh ones, they can 1685 * contain valid SACK info. 1686 */ 1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1688 return 0; 1689 1690 if (!tp->packets_out) 1691 goto out; 1692 1693 used_sacks = 0; 1694 first_sack_index = 0; 1695 for (i = 0; i < num_sacks; i++) { 1696 bool dup_sack = !i && found_dup_sack; 1697 1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1700 1701 if (!tcp_is_sackblock_valid(tp, dup_sack, 1702 sp[used_sacks].start_seq, 1703 sp[used_sacks].end_seq)) { 1704 int mib_idx; 1705 1706 if (dup_sack) { 1707 if (!tp->undo_marker) 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1709 else 1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1711 } else { 1712 /* Don't count olds caused by ACK reordering */ 1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1714 !after(sp[used_sacks].end_seq, tp->snd_una)) 1715 continue; 1716 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1717 } 1718 1719 NET_INC_STATS(sock_net(sk), mib_idx); 1720 if (i == 0) 1721 first_sack_index = -1; 1722 continue; 1723 } 1724 1725 /* Ignore very old stuff early */ 1726 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1727 continue; 1728 1729 used_sacks++; 1730 } 1731 1732 /* order SACK blocks to allow in order walk of the retrans queue */ 1733 for (i = used_sacks - 1; i > 0; i--) { 1734 for (j = 0; j < i; j++) { 1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1736 swap(sp[j], sp[j + 1]); 1737 1738 /* Track where the first SACK block goes to */ 1739 if (j == first_sack_index) 1740 first_sack_index = j + 1; 1741 } 1742 } 1743 } 1744 1745 state->mss_now = tcp_current_mss(sk); 1746 skb = NULL; 1747 i = 0; 1748 1749 if (!tp->sacked_out) { 1750 /* It's already past, so skip checking against it */ 1751 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1752 } else { 1753 cache = tp->recv_sack_cache; 1754 /* Skip empty blocks in at head of the cache */ 1755 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1756 !cache->end_seq) 1757 cache++; 1758 } 1759 1760 while (i < used_sacks) { 1761 u32 start_seq = sp[i].start_seq; 1762 u32 end_seq = sp[i].end_seq; 1763 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1764 struct tcp_sack_block *next_dup = NULL; 1765 1766 if (found_dup_sack && ((i + 1) == first_sack_index)) 1767 next_dup = &sp[i + 1]; 1768 1769 /* Skip too early cached blocks */ 1770 while (tcp_sack_cache_ok(tp, cache) && 1771 !before(start_seq, cache->end_seq)) 1772 cache++; 1773 1774 /* Can skip some work by looking recv_sack_cache? */ 1775 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1776 after(end_seq, cache->start_seq)) { 1777 1778 /* Head todo? */ 1779 if (before(start_seq, cache->start_seq)) { 1780 skb = tcp_sacktag_skip(skb, sk, state, 1781 start_seq); 1782 skb = tcp_sacktag_walk(skb, sk, next_dup, 1783 state, 1784 start_seq, 1785 cache->start_seq, 1786 dup_sack); 1787 } 1788 1789 /* Rest of the block already fully processed? */ 1790 if (!after(end_seq, cache->end_seq)) 1791 goto advance_sp; 1792 1793 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1794 state, 1795 cache->end_seq); 1796 1797 /* ...tail remains todo... */ 1798 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1799 /* ...but better entrypoint exists! */ 1800 skb = tcp_highest_sack(sk); 1801 if (!skb) 1802 break; 1803 cache++; 1804 goto walk; 1805 } 1806 1807 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1808 /* Check overlap against next cached too (past this one already) */ 1809 cache++; 1810 continue; 1811 } 1812 1813 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1814 skb = tcp_highest_sack(sk); 1815 if (!skb) 1816 break; 1817 } 1818 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1819 1820 walk: 1821 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1822 start_seq, end_seq, dup_sack); 1823 1824 advance_sp: 1825 i++; 1826 } 1827 1828 /* Clear the head of the cache sack blocks so we can skip it next time */ 1829 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1830 tp->recv_sack_cache[i].start_seq = 0; 1831 tp->recv_sack_cache[i].end_seq = 0; 1832 } 1833 for (j = 0; j < used_sacks; j++) 1834 tp->recv_sack_cache[i++] = sp[j]; 1835 1836 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1837 tcp_check_sack_reordering(sk, state->reord, 0); 1838 1839 tcp_verify_left_out(tp); 1840 out: 1841 1842 #if FASTRETRANS_DEBUG > 0 1843 WARN_ON((int)tp->sacked_out < 0); 1844 WARN_ON((int)tp->lost_out < 0); 1845 WARN_ON((int)tp->retrans_out < 0); 1846 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1847 #endif 1848 return state->flag; 1849 } 1850 1851 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1852 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1853 */ 1854 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1855 { 1856 u32 holes; 1857 1858 holes = max(tp->lost_out, 1U); 1859 holes = min(holes, tp->packets_out); 1860 1861 if ((tp->sacked_out + holes) > tp->packets_out) { 1862 tp->sacked_out = tp->packets_out - holes; 1863 return true; 1864 } 1865 return false; 1866 } 1867 1868 /* If we receive more dupacks than we expected counting segments 1869 * in assumption of absent reordering, interpret this as reordering. 1870 * The only another reason could be bug in receiver TCP. 1871 */ 1872 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1873 { 1874 struct tcp_sock *tp = tcp_sk(sk); 1875 1876 if (!tcp_limit_reno_sacked(tp)) 1877 return; 1878 1879 tp->reordering = min_t(u32, tp->packets_out + addend, 1880 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1881 tp->reord_seen++; 1882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1883 } 1884 1885 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1886 1887 static void tcp_add_reno_sack(struct sock *sk) 1888 { 1889 struct tcp_sock *tp = tcp_sk(sk); 1890 u32 prior_sacked = tp->sacked_out; 1891 1892 tp->sacked_out++; 1893 tcp_check_reno_reordering(sk, 0); 1894 if (tp->sacked_out > prior_sacked) 1895 tp->delivered++; /* Some out-of-order packet is delivered */ 1896 tcp_verify_left_out(tp); 1897 } 1898 1899 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1900 1901 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1902 { 1903 struct tcp_sock *tp = tcp_sk(sk); 1904 1905 if (acked > 0) { 1906 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1907 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1908 if (acked - 1 >= tp->sacked_out) 1909 tp->sacked_out = 0; 1910 else 1911 tp->sacked_out -= acked - 1; 1912 } 1913 tcp_check_reno_reordering(sk, acked); 1914 tcp_verify_left_out(tp); 1915 } 1916 1917 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1918 { 1919 tp->sacked_out = 0; 1920 } 1921 1922 void tcp_clear_retrans(struct tcp_sock *tp) 1923 { 1924 tp->retrans_out = 0; 1925 tp->lost_out = 0; 1926 tp->undo_marker = 0; 1927 tp->undo_retrans = -1; 1928 tp->sacked_out = 0; 1929 } 1930 1931 static inline void tcp_init_undo(struct tcp_sock *tp) 1932 { 1933 tp->undo_marker = tp->snd_una; 1934 /* Retransmission still in flight may cause DSACKs later. */ 1935 tp->undo_retrans = tp->retrans_out ? : -1; 1936 } 1937 1938 static bool tcp_is_rack(const struct sock *sk) 1939 { 1940 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1941 } 1942 1943 /* If we detect SACK reneging, forget all SACK information 1944 * and reset tags completely, otherwise preserve SACKs. If receiver 1945 * dropped its ofo queue, we will know this due to reneging detection. 1946 */ 1947 static void tcp_timeout_mark_lost(struct sock *sk) 1948 { 1949 struct tcp_sock *tp = tcp_sk(sk); 1950 struct sk_buff *skb, *head; 1951 bool is_reneg; /* is receiver reneging on SACKs? */ 1952 1953 head = tcp_rtx_queue_head(sk); 1954 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1955 if (is_reneg) { 1956 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1957 tp->sacked_out = 0; 1958 /* Mark SACK reneging until we recover from this loss event. */ 1959 tp->is_sack_reneg = 1; 1960 } else if (tcp_is_reno(tp)) { 1961 tcp_reset_reno_sack(tp); 1962 } 1963 1964 skb = head; 1965 skb_rbtree_walk_from(skb) { 1966 if (is_reneg) 1967 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1968 else if (tcp_is_rack(sk) && skb != head && 1969 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1970 continue; /* Don't mark recently sent ones lost yet */ 1971 tcp_mark_skb_lost(sk, skb); 1972 } 1973 tcp_verify_left_out(tp); 1974 tcp_clear_all_retrans_hints(tp); 1975 } 1976 1977 /* Enter Loss state. */ 1978 void tcp_enter_loss(struct sock *sk) 1979 { 1980 const struct inet_connection_sock *icsk = inet_csk(sk); 1981 struct tcp_sock *tp = tcp_sk(sk); 1982 struct net *net = sock_net(sk); 1983 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1984 1985 tcp_timeout_mark_lost(sk); 1986 1987 /* Reduce ssthresh if it has not yet been made inside this window. */ 1988 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1989 !after(tp->high_seq, tp->snd_una) || 1990 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1991 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1992 tp->prior_cwnd = tp->snd_cwnd; 1993 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1994 tcp_ca_event(sk, CA_EVENT_LOSS); 1995 tcp_init_undo(tp); 1996 } 1997 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1998 tp->snd_cwnd_cnt = 0; 1999 tp->snd_cwnd_stamp = tcp_jiffies32; 2000 2001 /* Timeout in disordered state after receiving substantial DUPACKs 2002 * suggests that the degree of reordering is over-estimated. 2003 */ 2004 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2005 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2006 tp->reordering = min_t(unsigned int, tp->reordering, 2007 net->ipv4.sysctl_tcp_reordering); 2008 tcp_set_ca_state(sk, TCP_CA_Loss); 2009 tp->high_seq = tp->snd_nxt; 2010 tcp_ecn_queue_cwr(tp); 2011 2012 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2013 * loss recovery is underway except recurring timeout(s) on 2014 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2015 */ 2016 tp->frto = net->ipv4.sysctl_tcp_frto && 2017 (new_recovery || icsk->icsk_retransmits) && 2018 !inet_csk(sk)->icsk_mtup.probe_size; 2019 } 2020 2021 /* If ACK arrived pointing to a remembered SACK, it means that our 2022 * remembered SACKs do not reflect real state of receiver i.e. 2023 * receiver _host_ is heavily congested (or buggy). 2024 * 2025 * To avoid big spurious retransmission bursts due to transient SACK 2026 * scoreboard oddities that look like reneging, we give the receiver a 2027 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2028 * restore sanity to the SACK scoreboard. If the apparent reneging 2029 * persists until this RTO then we'll clear the SACK scoreboard. 2030 */ 2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2032 { 2033 if (flag & FLAG_SACK_RENEGING) { 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2036 msecs_to_jiffies(10)); 2037 2038 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2039 delay, TCP_RTO_MAX); 2040 return true; 2041 } 2042 return false; 2043 } 2044 2045 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2046 * counter when SACK is enabled (without SACK, sacked_out is used for 2047 * that purpose). 2048 * 2049 * With reordering, holes may still be in flight, so RFC3517 recovery 2050 * uses pure sacked_out (total number of SACKed segments) even though 2051 * it violates the RFC that uses duplicate ACKs, often these are equal 2052 * but when e.g. out-of-window ACKs or packet duplication occurs, 2053 * they differ. Since neither occurs due to loss, TCP should really 2054 * ignore them. 2055 */ 2056 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2057 { 2058 return tp->sacked_out + 1; 2059 } 2060 2061 /* Linux NewReno/SACK/ECN state machine. 2062 * -------------------------------------- 2063 * 2064 * "Open" Normal state, no dubious events, fast path. 2065 * "Disorder" In all the respects it is "Open", 2066 * but requires a bit more attention. It is entered when 2067 * we see some SACKs or dupacks. It is split of "Open" 2068 * mainly to move some processing from fast path to slow one. 2069 * "CWR" CWND was reduced due to some Congestion Notification event. 2070 * It can be ECN, ICMP source quench, local device congestion. 2071 * "Recovery" CWND was reduced, we are fast-retransmitting. 2072 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2073 * 2074 * tcp_fastretrans_alert() is entered: 2075 * - each incoming ACK, if state is not "Open" 2076 * - when arrived ACK is unusual, namely: 2077 * * SACK 2078 * * Duplicate ACK. 2079 * * ECN ECE. 2080 * 2081 * Counting packets in flight is pretty simple. 2082 * 2083 * in_flight = packets_out - left_out + retrans_out 2084 * 2085 * packets_out is SND.NXT-SND.UNA counted in packets. 2086 * 2087 * retrans_out is number of retransmitted segments. 2088 * 2089 * left_out is number of segments left network, but not ACKed yet. 2090 * 2091 * left_out = sacked_out + lost_out 2092 * 2093 * sacked_out: Packets, which arrived to receiver out of order 2094 * and hence not ACKed. With SACKs this number is simply 2095 * amount of SACKed data. Even without SACKs 2096 * it is easy to give pretty reliable estimate of this number, 2097 * counting duplicate ACKs. 2098 * 2099 * lost_out: Packets lost by network. TCP has no explicit 2100 * "loss notification" feedback from network (for now). 2101 * It means that this number can be only _guessed_. 2102 * Actually, it is the heuristics to predict lossage that 2103 * distinguishes different algorithms. 2104 * 2105 * F.e. after RTO, when all the queue is considered as lost, 2106 * lost_out = packets_out and in_flight = retrans_out. 2107 * 2108 * Essentially, we have now a few algorithms detecting 2109 * lost packets. 2110 * 2111 * If the receiver supports SACK: 2112 * 2113 * RFC6675/3517: It is the conventional algorithm. A packet is 2114 * considered lost if the number of higher sequence packets 2115 * SACKed is greater than or equal the DUPACK thoreshold 2116 * (reordering). This is implemented in tcp_mark_head_lost and 2117 * tcp_update_scoreboard. 2118 * 2119 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2120 * (2017-) that checks timing instead of counting DUPACKs. 2121 * Essentially a packet is considered lost if it's not S/ACKed 2122 * after RTT + reordering_window, where both metrics are 2123 * dynamically measured and adjusted. This is implemented in 2124 * tcp_rack_mark_lost. 2125 * 2126 * If the receiver does not support SACK: 2127 * 2128 * NewReno (RFC6582): in Recovery we assume that one segment 2129 * is lost (classic Reno). While we are in Recovery and 2130 * a partial ACK arrives, we assume that one more packet 2131 * is lost (NewReno). This heuristics are the same in NewReno 2132 * and SACK. 2133 * 2134 * Really tricky (and requiring careful tuning) part of algorithm 2135 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2136 * The first determines the moment _when_ we should reduce CWND and, 2137 * hence, slow down forward transmission. In fact, it determines the moment 2138 * when we decide that hole is caused by loss, rather than by a reorder. 2139 * 2140 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2141 * holes, caused by lost packets. 2142 * 2143 * And the most logically complicated part of algorithm is undo 2144 * heuristics. We detect false retransmits due to both too early 2145 * fast retransmit (reordering) and underestimated RTO, analyzing 2146 * timestamps and D-SACKs. When we detect that some segments were 2147 * retransmitted by mistake and CWND reduction was wrong, we undo 2148 * window reduction and abort recovery phase. This logic is hidden 2149 * inside several functions named tcp_try_undo_<something>. 2150 */ 2151 2152 /* This function decides, when we should leave Disordered state 2153 * and enter Recovery phase, reducing congestion window. 2154 * 2155 * Main question: may we further continue forward transmission 2156 * with the same cwnd? 2157 */ 2158 static bool tcp_time_to_recover(struct sock *sk, int flag) 2159 { 2160 struct tcp_sock *tp = tcp_sk(sk); 2161 2162 /* Trick#1: The loss is proven. */ 2163 if (tp->lost_out) 2164 return true; 2165 2166 /* Not-A-Trick#2 : Classic rule... */ 2167 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2168 return true; 2169 2170 return false; 2171 } 2172 2173 /* Detect loss in event "A" above by marking head of queue up as lost. 2174 * For non-SACK(Reno) senders, the first "packets" number of segments 2175 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2176 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2177 * the maximum SACKed segments to pass before reaching this limit. 2178 */ 2179 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2180 { 2181 struct tcp_sock *tp = tcp_sk(sk); 2182 struct sk_buff *skb; 2183 int cnt, oldcnt, lost; 2184 unsigned int mss; 2185 /* Use SACK to deduce losses of new sequences sent during recovery */ 2186 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2187 2188 WARN_ON(packets > tp->packets_out); 2189 skb = tp->lost_skb_hint; 2190 if (skb) { 2191 /* Head already handled? */ 2192 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2193 return; 2194 cnt = tp->lost_cnt_hint; 2195 } else { 2196 skb = tcp_rtx_queue_head(sk); 2197 cnt = 0; 2198 } 2199 2200 skb_rbtree_walk_from(skb) { 2201 /* TODO: do this better */ 2202 /* this is not the most efficient way to do this... */ 2203 tp->lost_skb_hint = skb; 2204 tp->lost_cnt_hint = cnt; 2205 2206 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2207 break; 2208 2209 oldcnt = cnt; 2210 if (tcp_is_reno(tp) || 2211 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2212 cnt += tcp_skb_pcount(skb); 2213 2214 if (cnt > packets) { 2215 if (tcp_is_sack(tp) || 2216 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2217 (oldcnt >= packets)) 2218 break; 2219 2220 mss = tcp_skb_mss(skb); 2221 /* If needed, chop off the prefix to mark as lost. */ 2222 lost = (packets - oldcnt) * mss; 2223 if (lost < skb->len && 2224 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2225 lost, mss, GFP_ATOMIC) < 0) 2226 break; 2227 cnt = packets; 2228 } 2229 2230 tcp_skb_mark_lost(tp, skb); 2231 2232 if (mark_head) 2233 break; 2234 } 2235 tcp_verify_left_out(tp); 2236 } 2237 2238 /* Account newly detected lost packet(s) */ 2239 2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2241 { 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 2244 if (tcp_is_sack(tp)) { 2245 int sacked_upto = tp->sacked_out - tp->reordering; 2246 if (sacked_upto >= 0) 2247 tcp_mark_head_lost(sk, sacked_upto, 0); 2248 else if (fast_rexmit) 2249 tcp_mark_head_lost(sk, 1, 1); 2250 } 2251 } 2252 2253 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2254 { 2255 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2256 before(tp->rx_opt.rcv_tsecr, when); 2257 } 2258 2259 /* skb is spurious retransmitted if the returned timestamp echo 2260 * reply is prior to the skb transmission time 2261 */ 2262 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2263 const struct sk_buff *skb) 2264 { 2265 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2266 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2267 } 2268 2269 /* Nothing was retransmitted or returned timestamp is less 2270 * than timestamp of the first retransmission. 2271 */ 2272 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2273 { 2274 return !tp->retrans_stamp || 2275 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2276 } 2277 2278 /* Undo procedures. */ 2279 2280 /* We can clear retrans_stamp when there are no retransmissions in the 2281 * window. It would seem that it is trivially available for us in 2282 * tp->retrans_out, however, that kind of assumptions doesn't consider 2283 * what will happen if errors occur when sending retransmission for the 2284 * second time. ...It could the that such segment has only 2285 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2286 * the head skb is enough except for some reneging corner cases that 2287 * are not worth the effort. 2288 * 2289 * Main reason for all this complexity is the fact that connection dying 2290 * time now depends on the validity of the retrans_stamp, in particular, 2291 * that successive retransmissions of a segment must not advance 2292 * retrans_stamp under any conditions. 2293 */ 2294 static bool tcp_any_retrans_done(const struct sock *sk) 2295 { 2296 const struct tcp_sock *tp = tcp_sk(sk); 2297 struct sk_buff *skb; 2298 2299 if (tp->retrans_out) 2300 return true; 2301 2302 skb = tcp_rtx_queue_head(sk); 2303 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2304 return true; 2305 2306 return false; 2307 } 2308 2309 static void DBGUNDO(struct sock *sk, const char *msg) 2310 { 2311 #if FASTRETRANS_DEBUG > 1 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 struct inet_sock *inet = inet_sk(sk); 2314 2315 if (sk->sk_family == AF_INET) { 2316 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2317 msg, 2318 &inet->inet_daddr, ntohs(inet->inet_dport), 2319 tp->snd_cwnd, tcp_left_out(tp), 2320 tp->snd_ssthresh, tp->prior_ssthresh, 2321 tp->packets_out); 2322 } 2323 #if IS_ENABLED(CONFIG_IPV6) 2324 else if (sk->sk_family == AF_INET6) { 2325 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2326 msg, 2327 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2328 tp->snd_cwnd, tcp_left_out(tp), 2329 tp->snd_ssthresh, tp->prior_ssthresh, 2330 tp->packets_out); 2331 } 2332 #endif 2333 #endif 2334 } 2335 2336 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 2340 if (unmark_loss) { 2341 struct sk_buff *skb; 2342 2343 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2344 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2345 } 2346 tp->lost_out = 0; 2347 tcp_clear_all_retrans_hints(tp); 2348 } 2349 2350 if (tp->prior_ssthresh) { 2351 const struct inet_connection_sock *icsk = inet_csk(sk); 2352 2353 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2354 2355 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2356 tp->snd_ssthresh = tp->prior_ssthresh; 2357 tcp_ecn_withdraw_cwr(tp); 2358 } 2359 } 2360 tp->snd_cwnd_stamp = tcp_jiffies32; 2361 tp->undo_marker = 0; 2362 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2363 } 2364 2365 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2366 { 2367 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2368 } 2369 2370 /* People celebrate: "We love our President!" */ 2371 static bool tcp_try_undo_recovery(struct sock *sk) 2372 { 2373 struct tcp_sock *tp = tcp_sk(sk); 2374 2375 if (tcp_may_undo(tp)) { 2376 int mib_idx; 2377 2378 /* Happy end! We did not retransmit anything 2379 * or our original transmission succeeded. 2380 */ 2381 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2382 tcp_undo_cwnd_reduction(sk, false); 2383 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2384 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2385 else 2386 mib_idx = LINUX_MIB_TCPFULLUNDO; 2387 2388 NET_INC_STATS(sock_net(sk), mib_idx); 2389 } else if (tp->rack.reo_wnd_persist) { 2390 tp->rack.reo_wnd_persist--; 2391 } 2392 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2393 /* Hold old state until something *above* high_seq 2394 * is ACKed. For Reno it is MUST to prevent false 2395 * fast retransmits (RFC2582). SACK TCP is safe. */ 2396 if (!tcp_any_retrans_done(sk)) 2397 tp->retrans_stamp = 0; 2398 return true; 2399 } 2400 tcp_set_ca_state(sk, TCP_CA_Open); 2401 tp->is_sack_reneg = 0; 2402 return false; 2403 } 2404 2405 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2406 static bool tcp_try_undo_dsack(struct sock *sk) 2407 { 2408 struct tcp_sock *tp = tcp_sk(sk); 2409 2410 if (tp->undo_marker && !tp->undo_retrans) { 2411 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2412 tp->rack.reo_wnd_persist + 1); 2413 DBGUNDO(sk, "D-SACK"); 2414 tcp_undo_cwnd_reduction(sk, false); 2415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2416 return true; 2417 } 2418 return false; 2419 } 2420 2421 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2422 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2423 { 2424 struct tcp_sock *tp = tcp_sk(sk); 2425 2426 if (frto_undo || tcp_may_undo(tp)) { 2427 tcp_undo_cwnd_reduction(sk, true); 2428 2429 DBGUNDO(sk, "partial loss"); 2430 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2431 if (frto_undo) 2432 NET_INC_STATS(sock_net(sk), 2433 LINUX_MIB_TCPSPURIOUSRTOS); 2434 inet_csk(sk)->icsk_retransmits = 0; 2435 if (frto_undo || tcp_is_sack(tp)) { 2436 tcp_set_ca_state(sk, TCP_CA_Open); 2437 tp->is_sack_reneg = 0; 2438 } 2439 return true; 2440 } 2441 return false; 2442 } 2443 2444 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2445 * It computes the number of packets to send (sndcnt) based on packets newly 2446 * delivered: 2447 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2448 * cwnd reductions across a full RTT. 2449 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2450 * But when the retransmits are acked without further losses, PRR 2451 * slow starts cwnd up to ssthresh to speed up the recovery. 2452 */ 2453 static void tcp_init_cwnd_reduction(struct sock *sk) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 2457 tp->high_seq = tp->snd_nxt; 2458 tp->tlp_high_seq = 0; 2459 tp->snd_cwnd_cnt = 0; 2460 tp->prior_cwnd = tp->snd_cwnd; 2461 tp->prr_delivered = 0; 2462 tp->prr_out = 0; 2463 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2464 tcp_ecn_queue_cwr(tp); 2465 } 2466 2467 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2468 { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 int sndcnt = 0; 2471 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2472 2473 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2474 return; 2475 2476 tp->prr_delivered += newly_acked_sacked; 2477 if (delta < 0) { 2478 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2479 tp->prior_cwnd - 1; 2480 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2481 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2482 !(flag & FLAG_LOST_RETRANS)) { 2483 sndcnt = min_t(int, delta, 2484 max_t(int, tp->prr_delivered - tp->prr_out, 2485 newly_acked_sacked) + 1); 2486 } else { 2487 sndcnt = min(delta, newly_acked_sacked); 2488 } 2489 /* Force a fast retransmit upon entering fast recovery */ 2490 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2491 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2492 } 2493 2494 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2495 { 2496 struct tcp_sock *tp = tcp_sk(sk); 2497 2498 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2499 return; 2500 2501 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2502 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2503 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2504 tp->snd_cwnd = tp->snd_ssthresh; 2505 tp->snd_cwnd_stamp = tcp_jiffies32; 2506 } 2507 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2508 } 2509 2510 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2511 void tcp_enter_cwr(struct sock *sk) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 2515 tp->prior_ssthresh = 0; 2516 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2517 tp->undo_marker = 0; 2518 tcp_init_cwnd_reduction(sk); 2519 tcp_set_ca_state(sk, TCP_CA_CWR); 2520 } 2521 } 2522 EXPORT_SYMBOL(tcp_enter_cwr); 2523 2524 static void tcp_try_keep_open(struct sock *sk) 2525 { 2526 struct tcp_sock *tp = tcp_sk(sk); 2527 int state = TCP_CA_Open; 2528 2529 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2530 state = TCP_CA_Disorder; 2531 2532 if (inet_csk(sk)->icsk_ca_state != state) { 2533 tcp_set_ca_state(sk, state); 2534 tp->high_seq = tp->snd_nxt; 2535 } 2536 } 2537 2538 static void tcp_try_to_open(struct sock *sk, int flag) 2539 { 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 2542 tcp_verify_left_out(tp); 2543 2544 if (!tcp_any_retrans_done(sk)) 2545 tp->retrans_stamp = 0; 2546 2547 if (flag & FLAG_ECE) 2548 tcp_enter_cwr(sk); 2549 2550 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2551 tcp_try_keep_open(sk); 2552 } 2553 } 2554 2555 static void tcp_mtup_probe_failed(struct sock *sk) 2556 { 2557 struct inet_connection_sock *icsk = inet_csk(sk); 2558 2559 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2560 icsk->icsk_mtup.probe_size = 0; 2561 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2562 } 2563 2564 static void tcp_mtup_probe_success(struct sock *sk) 2565 { 2566 struct tcp_sock *tp = tcp_sk(sk); 2567 struct inet_connection_sock *icsk = inet_csk(sk); 2568 2569 /* FIXME: breaks with very large cwnd */ 2570 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2571 tp->snd_cwnd = tp->snd_cwnd * 2572 tcp_mss_to_mtu(sk, tp->mss_cache) / 2573 icsk->icsk_mtup.probe_size; 2574 tp->snd_cwnd_cnt = 0; 2575 tp->snd_cwnd_stamp = tcp_jiffies32; 2576 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2577 2578 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2579 icsk->icsk_mtup.probe_size = 0; 2580 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2581 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2582 } 2583 2584 /* Do a simple retransmit without using the backoff mechanisms in 2585 * tcp_timer. This is used for path mtu discovery. 2586 * The socket is already locked here. 2587 */ 2588 void tcp_simple_retransmit(struct sock *sk) 2589 { 2590 const struct inet_connection_sock *icsk = inet_csk(sk); 2591 struct tcp_sock *tp = tcp_sk(sk); 2592 struct sk_buff *skb; 2593 unsigned int mss = tcp_current_mss(sk); 2594 2595 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2596 if (tcp_skb_seglen(skb) > mss && 2597 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2598 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2599 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2600 tp->retrans_out -= tcp_skb_pcount(skb); 2601 } 2602 tcp_skb_mark_lost_uncond_verify(tp, skb); 2603 } 2604 } 2605 2606 tcp_clear_retrans_hints_partial(tp); 2607 2608 if (!tp->lost_out) 2609 return; 2610 2611 if (tcp_is_reno(tp)) 2612 tcp_limit_reno_sacked(tp); 2613 2614 tcp_verify_left_out(tp); 2615 2616 /* Don't muck with the congestion window here. 2617 * Reason is that we do not increase amount of _data_ 2618 * in network, but units changed and effective 2619 * cwnd/ssthresh really reduced now. 2620 */ 2621 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2622 tp->high_seq = tp->snd_nxt; 2623 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2624 tp->prior_ssthresh = 0; 2625 tp->undo_marker = 0; 2626 tcp_set_ca_state(sk, TCP_CA_Loss); 2627 } 2628 tcp_xmit_retransmit_queue(sk); 2629 } 2630 EXPORT_SYMBOL(tcp_simple_retransmit); 2631 2632 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2633 { 2634 struct tcp_sock *tp = tcp_sk(sk); 2635 int mib_idx; 2636 2637 if (tcp_is_reno(tp)) 2638 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2639 else 2640 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2641 2642 NET_INC_STATS(sock_net(sk), mib_idx); 2643 2644 tp->prior_ssthresh = 0; 2645 tcp_init_undo(tp); 2646 2647 if (!tcp_in_cwnd_reduction(sk)) { 2648 if (!ece_ack) 2649 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2650 tcp_init_cwnd_reduction(sk); 2651 } 2652 tcp_set_ca_state(sk, TCP_CA_Recovery); 2653 } 2654 2655 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2656 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2657 */ 2658 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2659 int *rexmit) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 bool recovered = !before(tp->snd_una, tp->high_seq); 2663 2664 if ((flag & FLAG_SND_UNA_ADVANCED) && 2665 tcp_try_undo_loss(sk, false)) 2666 return; 2667 2668 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2669 /* Step 3.b. A timeout is spurious if not all data are 2670 * lost, i.e., never-retransmitted data are (s)acked. 2671 */ 2672 if ((flag & FLAG_ORIG_SACK_ACKED) && 2673 tcp_try_undo_loss(sk, true)) 2674 return; 2675 2676 if (after(tp->snd_nxt, tp->high_seq)) { 2677 if (flag & FLAG_DATA_SACKED || is_dupack) 2678 tp->frto = 0; /* Step 3.a. loss was real */ 2679 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2680 tp->high_seq = tp->snd_nxt; 2681 /* Step 2.b. Try send new data (but deferred until cwnd 2682 * is updated in tcp_ack()). Otherwise fall back to 2683 * the conventional recovery. 2684 */ 2685 if (!tcp_write_queue_empty(sk) && 2686 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2687 *rexmit = REXMIT_NEW; 2688 return; 2689 } 2690 tp->frto = 0; 2691 } 2692 } 2693 2694 if (recovered) { 2695 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2696 tcp_try_undo_recovery(sk); 2697 return; 2698 } 2699 if (tcp_is_reno(tp)) { 2700 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2701 * delivered. Lower inflight to clock out (re)tranmissions. 2702 */ 2703 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2704 tcp_add_reno_sack(sk); 2705 else if (flag & FLAG_SND_UNA_ADVANCED) 2706 tcp_reset_reno_sack(tp); 2707 } 2708 *rexmit = REXMIT_LOST; 2709 } 2710 2711 /* Undo during fast recovery after partial ACK. */ 2712 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2713 { 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 2716 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2717 /* Plain luck! Hole if filled with delayed 2718 * packet, rather than with a retransmit. Check reordering. 2719 */ 2720 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2721 2722 /* We are getting evidence that the reordering degree is higher 2723 * than we realized. If there are no retransmits out then we 2724 * can undo. Otherwise we clock out new packets but do not 2725 * mark more packets lost or retransmit more. 2726 */ 2727 if (tp->retrans_out) 2728 return true; 2729 2730 if (!tcp_any_retrans_done(sk)) 2731 tp->retrans_stamp = 0; 2732 2733 DBGUNDO(sk, "partial recovery"); 2734 tcp_undo_cwnd_reduction(sk, true); 2735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2736 tcp_try_keep_open(sk); 2737 return true; 2738 } 2739 return false; 2740 } 2741 2742 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2743 { 2744 struct tcp_sock *tp = tcp_sk(sk); 2745 2746 if (tcp_rtx_queue_empty(sk)) 2747 return; 2748 2749 if (unlikely(tcp_is_reno(tp))) { 2750 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2751 } else if (tcp_is_rack(sk)) { 2752 u32 prior_retrans = tp->retrans_out; 2753 2754 tcp_rack_mark_lost(sk); 2755 if (prior_retrans > tp->retrans_out) 2756 *ack_flag |= FLAG_LOST_RETRANS; 2757 } 2758 } 2759 2760 static bool tcp_force_fast_retransmit(struct sock *sk) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 2764 return after(tcp_highest_sack_seq(tp), 2765 tp->snd_una + tp->reordering * tp->mss_cache); 2766 } 2767 2768 /* Process an event, which can update packets-in-flight not trivially. 2769 * Main goal of this function is to calculate new estimate for left_out, 2770 * taking into account both packets sitting in receiver's buffer and 2771 * packets lost by network. 2772 * 2773 * Besides that it updates the congestion state when packet loss or ECN 2774 * is detected. But it does not reduce the cwnd, it is done by the 2775 * congestion control later. 2776 * 2777 * It does _not_ decide what to send, it is made in function 2778 * tcp_xmit_retransmit_queue(). 2779 */ 2780 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2781 bool is_dupack, int *ack_flag, int *rexmit) 2782 { 2783 struct inet_connection_sock *icsk = inet_csk(sk); 2784 struct tcp_sock *tp = tcp_sk(sk); 2785 int fast_rexmit = 0, flag = *ack_flag; 2786 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2787 tcp_force_fast_retransmit(sk)); 2788 2789 if (!tp->packets_out && tp->sacked_out) 2790 tp->sacked_out = 0; 2791 2792 /* Now state machine starts. 2793 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2794 if (flag & FLAG_ECE) 2795 tp->prior_ssthresh = 0; 2796 2797 /* B. In all the states check for reneging SACKs. */ 2798 if (tcp_check_sack_reneging(sk, flag)) 2799 return; 2800 2801 /* C. Check consistency of the current state. */ 2802 tcp_verify_left_out(tp); 2803 2804 /* D. Check state exit conditions. State can be terminated 2805 * when high_seq is ACKed. */ 2806 if (icsk->icsk_ca_state == TCP_CA_Open) { 2807 WARN_ON(tp->retrans_out != 0); 2808 tp->retrans_stamp = 0; 2809 } else if (!before(tp->snd_una, tp->high_seq)) { 2810 switch (icsk->icsk_ca_state) { 2811 case TCP_CA_CWR: 2812 /* CWR is to be held something *above* high_seq 2813 * is ACKed for CWR bit to reach receiver. */ 2814 if (tp->snd_una != tp->high_seq) { 2815 tcp_end_cwnd_reduction(sk); 2816 tcp_set_ca_state(sk, TCP_CA_Open); 2817 } 2818 break; 2819 2820 case TCP_CA_Recovery: 2821 if (tcp_is_reno(tp)) 2822 tcp_reset_reno_sack(tp); 2823 if (tcp_try_undo_recovery(sk)) 2824 return; 2825 tcp_end_cwnd_reduction(sk); 2826 break; 2827 } 2828 } 2829 2830 /* E. Process state. */ 2831 switch (icsk->icsk_ca_state) { 2832 case TCP_CA_Recovery: 2833 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2834 if (tcp_is_reno(tp) && is_dupack) 2835 tcp_add_reno_sack(sk); 2836 } else { 2837 if (tcp_try_undo_partial(sk, prior_snd_una)) 2838 return; 2839 /* Partial ACK arrived. Force fast retransmit. */ 2840 do_lost = tcp_is_reno(tp) || 2841 tcp_force_fast_retransmit(sk); 2842 } 2843 if (tcp_try_undo_dsack(sk)) { 2844 tcp_try_keep_open(sk); 2845 return; 2846 } 2847 tcp_identify_packet_loss(sk, ack_flag); 2848 break; 2849 case TCP_CA_Loss: 2850 tcp_process_loss(sk, flag, is_dupack, rexmit); 2851 tcp_identify_packet_loss(sk, ack_flag); 2852 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2853 (*ack_flag & FLAG_LOST_RETRANS))) 2854 return; 2855 /* Change state if cwnd is undone or retransmits are lost */ 2856 /* fall through */ 2857 default: 2858 if (tcp_is_reno(tp)) { 2859 if (flag & FLAG_SND_UNA_ADVANCED) 2860 tcp_reset_reno_sack(tp); 2861 if (is_dupack) 2862 tcp_add_reno_sack(sk); 2863 } 2864 2865 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2866 tcp_try_undo_dsack(sk); 2867 2868 tcp_identify_packet_loss(sk, ack_flag); 2869 if (!tcp_time_to_recover(sk, flag)) { 2870 tcp_try_to_open(sk, flag); 2871 return; 2872 } 2873 2874 /* MTU probe failure: don't reduce cwnd */ 2875 if (icsk->icsk_ca_state < TCP_CA_CWR && 2876 icsk->icsk_mtup.probe_size && 2877 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2878 tcp_mtup_probe_failed(sk); 2879 /* Restores the reduction we did in tcp_mtup_probe() */ 2880 tp->snd_cwnd++; 2881 tcp_simple_retransmit(sk); 2882 return; 2883 } 2884 2885 /* Otherwise enter Recovery state */ 2886 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2887 fast_rexmit = 1; 2888 } 2889 2890 if (!tcp_is_rack(sk) && do_lost) 2891 tcp_update_scoreboard(sk, fast_rexmit); 2892 *rexmit = REXMIT_LOST; 2893 } 2894 2895 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2896 { 2897 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 2900 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2901 /* If the remote keeps returning delayed ACKs, eventually 2902 * the min filter would pick it up and overestimate the 2903 * prop. delay when it expires. Skip suspected delayed ACKs. 2904 */ 2905 return; 2906 } 2907 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2908 rtt_us ? : jiffies_to_usecs(1)); 2909 } 2910 2911 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2912 long seq_rtt_us, long sack_rtt_us, 2913 long ca_rtt_us, struct rate_sample *rs) 2914 { 2915 const struct tcp_sock *tp = tcp_sk(sk); 2916 2917 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2918 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2919 * Karn's algorithm forbids taking RTT if some retransmitted data 2920 * is acked (RFC6298). 2921 */ 2922 if (seq_rtt_us < 0) 2923 seq_rtt_us = sack_rtt_us; 2924 2925 /* RTTM Rule: A TSecr value received in a segment is used to 2926 * update the averaged RTT measurement only if the segment 2927 * acknowledges some new data, i.e., only if it advances the 2928 * left edge of the send window. 2929 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2930 */ 2931 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2932 flag & FLAG_ACKED) { 2933 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2934 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2935 2936 seq_rtt_us = ca_rtt_us = delta_us; 2937 } 2938 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2939 if (seq_rtt_us < 0) 2940 return false; 2941 2942 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2943 * always taken together with ACK, SACK, or TS-opts. Any negative 2944 * values will be skipped with the seq_rtt_us < 0 check above. 2945 */ 2946 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2947 tcp_rtt_estimator(sk, seq_rtt_us); 2948 tcp_set_rto(sk); 2949 2950 /* RFC6298: only reset backoff on valid RTT measurement. */ 2951 inet_csk(sk)->icsk_backoff = 0; 2952 return true; 2953 } 2954 2955 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2956 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2957 { 2958 struct rate_sample rs; 2959 long rtt_us = -1L; 2960 2961 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2962 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2963 2964 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2965 } 2966 2967 2968 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2969 { 2970 const struct inet_connection_sock *icsk = inet_csk(sk); 2971 2972 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2973 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2974 } 2975 2976 /* Restart timer after forward progress on connection. 2977 * RFC2988 recommends to restart timer to now+rto. 2978 */ 2979 void tcp_rearm_rto(struct sock *sk) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 struct tcp_sock *tp = tcp_sk(sk); 2983 2984 /* If the retrans timer is currently being used by Fast Open 2985 * for SYN-ACK retrans purpose, stay put. 2986 */ 2987 if (tp->fastopen_rsk) 2988 return; 2989 2990 if (!tp->packets_out) { 2991 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2992 } else { 2993 u32 rto = inet_csk(sk)->icsk_rto; 2994 /* Offset the time elapsed after installing regular RTO */ 2995 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2996 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2997 s64 delta_us = tcp_rto_delta_us(sk); 2998 /* delta_us may not be positive if the socket is locked 2999 * when the retrans timer fires and is rescheduled. 3000 */ 3001 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3002 } 3003 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3004 TCP_RTO_MAX); 3005 } 3006 } 3007 3008 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3009 static void tcp_set_xmit_timer(struct sock *sk) 3010 { 3011 if (!tcp_schedule_loss_probe(sk, true)) 3012 tcp_rearm_rto(sk); 3013 } 3014 3015 /* If we get here, the whole TSO packet has not been acked. */ 3016 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3017 { 3018 struct tcp_sock *tp = tcp_sk(sk); 3019 u32 packets_acked; 3020 3021 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3022 3023 packets_acked = tcp_skb_pcount(skb); 3024 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3025 return 0; 3026 packets_acked -= tcp_skb_pcount(skb); 3027 3028 if (packets_acked) { 3029 BUG_ON(tcp_skb_pcount(skb) == 0); 3030 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3031 } 3032 3033 return packets_acked; 3034 } 3035 3036 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3037 u32 prior_snd_una) 3038 { 3039 const struct skb_shared_info *shinfo; 3040 3041 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3042 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3043 return; 3044 3045 shinfo = skb_shinfo(skb); 3046 if (!before(shinfo->tskey, prior_snd_una) && 3047 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3048 tcp_skb_tsorted_save(skb) { 3049 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3050 } tcp_skb_tsorted_restore(skb); 3051 } 3052 } 3053 3054 /* Remove acknowledged frames from the retransmission queue. If our packet 3055 * is before the ack sequence we can discard it as it's confirmed to have 3056 * arrived at the other end. 3057 */ 3058 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3059 u32 prior_snd_una, 3060 struct tcp_sacktag_state *sack) 3061 { 3062 const struct inet_connection_sock *icsk = inet_csk(sk); 3063 u64 first_ackt, last_ackt; 3064 struct tcp_sock *tp = tcp_sk(sk); 3065 u32 prior_sacked = tp->sacked_out; 3066 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3067 struct sk_buff *skb, *next; 3068 bool fully_acked = true; 3069 long sack_rtt_us = -1L; 3070 long seq_rtt_us = -1L; 3071 long ca_rtt_us = -1L; 3072 u32 pkts_acked = 0; 3073 u32 last_in_flight = 0; 3074 bool rtt_update; 3075 int flag = 0; 3076 3077 first_ackt = 0; 3078 3079 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3080 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3081 const u32 start_seq = scb->seq; 3082 u8 sacked = scb->sacked; 3083 u32 acked_pcount; 3084 3085 tcp_ack_tstamp(sk, skb, prior_snd_una); 3086 3087 /* Determine how many packets and what bytes were acked, tso and else */ 3088 if (after(scb->end_seq, tp->snd_una)) { 3089 if (tcp_skb_pcount(skb) == 1 || 3090 !after(tp->snd_una, scb->seq)) 3091 break; 3092 3093 acked_pcount = tcp_tso_acked(sk, skb); 3094 if (!acked_pcount) 3095 break; 3096 fully_acked = false; 3097 } else { 3098 acked_pcount = tcp_skb_pcount(skb); 3099 } 3100 3101 if (unlikely(sacked & TCPCB_RETRANS)) { 3102 if (sacked & TCPCB_SACKED_RETRANS) 3103 tp->retrans_out -= acked_pcount; 3104 flag |= FLAG_RETRANS_DATA_ACKED; 3105 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3106 last_ackt = skb->skb_mstamp; 3107 WARN_ON_ONCE(last_ackt == 0); 3108 if (!first_ackt) 3109 first_ackt = last_ackt; 3110 3111 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3112 if (before(start_seq, reord)) 3113 reord = start_seq; 3114 if (!after(scb->end_seq, tp->high_seq)) 3115 flag |= FLAG_ORIG_SACK_ACKED; 3116 } 3117 3118 if (sacked & TCPCB_SACKED_ACKED) { 3119 tp->sacked_out -= acked_pcount; 3120 } else if (tcp_is_sack(tp)) { 3121 tp->delivered += acked_pcount; 3122 if (!tcp_skb_spurious_retrans(tp, skb)) 3123 tcp_rack_advance(tp, sacked, scb->end_seq, 3124 skb->skb_mstamp); 3125 } 3126 if (sacked & TCPCB_LOST) 3127 tp->lost_out -= acked_pcount; 3128 3129 tp->packets_out -= acked_pcount; 3130 pkts_acked += acked_pcount; 3131 tcp_rate_skb_delivered(sk, skb, sack->rate); 3132 3133 /* Initial outgoing SYN's get put onto the write_queue 3134 * just like anything else we transmit. It is not 3135 * true data, and if we misinform our callers that 3136 * this ACK acks real data, we will erroneously exit 3137 * connection startup slow start one packet too 3138 * quickly. This is severely frowned upon behavior. 3139 */ 3140 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3141 flag |= FLAG_DATA_ACKED; 3142 } else { 3143 flag |= FLAG_SYN_ACKED; 3144 tp->retrans_stamp = 0; 3145 } 3146 3147 if (!fully_acked) 3148 break; 3149 3150 next = skb_rb_next(skb); 3151 if (unlikely(skb == tp->retransmit_skb_hint)) 3152 tp->retransmit_skb_hint = NULL; 3153 if (unlikely(skb == tp->lost_skb_hint)) 3154 tp->lost_skb_hint = NULL; 3155 tcp_rtx_queue_unlink_and_free(skb, sk); 3156 } 3157 3158 if (!skb) 3159 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3160 3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3162 tp->snd_up = tp->snd_una; 3163 3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3165 flag |= FLAG_SACK_RENEGING; 3166 3167 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3168 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3169 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3170 3171 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3172 last_in_flight && !prior_sacked && fully_acked && 3173 sack->rate->prior_delivered + 1 == tp->delivered && 3174 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3175 /* Conservatively mark a delayed ACK. It's typically 3176 * from a lone runt packet over the round trip to 3177 * a receiver w/o out-of-order or CE events. 3178 */ 3179 flag |= FLAG_ACK_MAYBE_DELAYED; 3180 } 3181 } 3182 if (sack->first_sackt) { 3183 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3184 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3185 } 3186 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3187 ca_rtt_us, sack->rate); 3188 3189 if (flag & FLAG_ACKED) { 3190 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3191 if (unlikely(icsk->icsk_mtup.probe_size && 3192 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3193 tcp_mtup_probe_success(sk); 3194 } 3195 3196 if (tcp_is_reno(tp)) { 3197 tcp_remove_reno_sacks(sk, pkts_acked); 3198 3199 /* If any of the cumulatively ACKed segments was 3200 * retransmitted, non-SACK case cannot confirm that 3201 * progress was due to original transmission due to 3202 * lack of TCPCB_SACKED_ACKED bits even if some of 3203 * the packets may have been never retransmitted. 3204 */ 3205 if (flag & FLAG_RETRANS_DATA_ACKED) 3206 flag &= ~FLAG_ORIG_SACK_ACKED; 3207 } else { 3208 int delta; 3209 3210 /* Non-retransmitted hole got filled? That's reordering */ 3211 if (before(reord, prior_fack)) 3212 tcp_check_sack_reordering(sk, reord, 0); 3213 3214 delta = prior_sacked - tp->sacked_out; 3215 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3216 } 3217 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3218 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3219 /* Do not re-arm RTO if the sack RTT is measured from data sent 3220 * after when the head was last (re)transmitted. Otherwise the 3221 * timeout may continue to extend in loss recovery. 3222 */ 3223 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3224 } 3225 3226 if (icsk->icsk_ca_ops->pkts_acked) { 3227 struct ack_sample sample = { .pkts_acked = pkts_acked, 3228 .rtt_us = sack->rate->rtt_us, 3229 .in_flight = last_in_flight }; 3230 3231 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3232 } 3233 3234 #if FASTRETRANS_DEBUG > 0 3235 WARN_ON((int)tp->sacked_out < 0); 3236 WARN_ON((int)tp->lost_out < 0); 3237 WARN_ON((int)tp->retrans_out < 0); 3238 if (!tp->packets_out && tcp_is_sack(tp)) { 3239 icsk = inet_csk(sk); 3240 if (tp->lost_out) { 3241 pr_debug("Leak l=%u %d\n", 3242 tp->lost_out, icsk->icsk_ca_state); 3243 tp->lost_out = 0; 3244 } 3245 if (tp->sacked_out) { 3246 pr_debug("Leak s=%u %d\n", 3247 tp->sacked_out, icsk->icsk_ca_state); 3248 tp->sacked_out = 0; 3249 } 3250 if (tp->retrans_out) { 3251 pr_debug("Leak r=%u %d\n", 3252 tp->retrans_out, icsk->icsk_ca_state); 3253 tp->retrans_out = 0; 3254 } 3255 } 3256 #endif 3257 return flag; 3258 } 3259 3260 static void tcp_ack_probe(struct sock *sk) 3261 { 3262 struct inet_connection_sock *icsk = inet_csk(sk); 3263 struct sk_buff *head = tcp_send_head(sk); 3264 const struct tcp_sock *tp = tcp_sk(sk); 3265 3266 /* Was it a usable window open? */ 3267 if (!head) 3268 return; 3269 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3270 icsk->icsk_backoff = 0; 3271 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3272 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3273 * This function is not for random using! 3274 */ 3275 } else { 3276 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3277 3278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3279 when, TCP_RTO_MAX); 3280 } 3281 } 3282 3283 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3284 { 3285 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3286 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3287 } 3288 3289 /* Decide wheather to run the increase function of congestion control. */ 3290 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3291 { 3292 /* If reordering is high then always grow cwnd whenever data is 3293 * delivered regardless of its ordering. Otherwise stay conservative 3294 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3295 * new SACK or ECE mark may first advance cwnd here and later reduce 3296 * cwnd in tcp_fastretrans_alert() based on more states. 3297 */ 3298 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3299 return flag & FLAG_FORWARD_PROGRESS; 3300 3301 return flag & FLAG_DATA_ACKED; 3302 } 3303 3304 /* The "ultimate" congestion control function that aims to replace the rigid 3305 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3306 * It's called toward the end of processing an ACK with precise rate 3307 * information. All transmission or retransmission are delayed afterwards. 3308 */ 3309 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3310 int flag, const struct rate_sample *rs) 3311 { 3312 const struct inet_connection_sock *icsk = inet_csk(sk); 3313 3314 if (icsk->icsk_ca_ops->cong_control) { 3315 icsk->icsk_ca_ops->cong_control(sk, rs); 3316 return; 3317 } 3318 3319 if (tcp_in_cwnd_reduction(sk)) { 3320 /* Reduce cwnd if state mandates */ 3321 tcp_cwnd_reduction(sk, acked_sacked, flag); 3322 } else if (tcp_may_raise_cwnd(sk, flag)) { 3323 /* Advance cwnd if state allows */ 3324 tcp_cong_avoid(sk, ack, acked_sacked); 3325 } 3326 tcp_update_pacing_rate(sk); 3327 } 3328 3329 /* Check that window update is acceptable. 3330 * The function assumes that snd_una<=ack<=snd_next. 3331 */ 3332 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3333 const u32 ack, const u32 ack_seq, 3334 const u32 nwin) 3335 { 3336 return after(ack, tp->snd_una) || 3337 after(ack_seq, tp->snd_wl1) || 3338 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3339 } 3340 3341 /* If we update tp->snd_una, also update tp->bytes_acked */ 3342 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3343 { 3344 u32 delta = ack - tp->snd_una; 3345 3346 sock_owned_by_me((struct sock *)tp); 3347 tp->bytes_acked += delta; 3348 tp->snd_una = ack; 3349 } 3350 3351 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3352 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3353 { 3354 u32 delta = seq - tp->rcv_nxt; 3355 3356 sock_owned_by_me((struct sock *)tp); 3357 tp->bytes_received += delta; 3358 tp->rcv_nxt = seq; 3359 } 3360 3361 /* Update our send window. 3362 * 3363 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3364 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3365 */ 3366 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3367 u32 ack_seq) 3368 { 3369 struct tcp_sock *tp = tcp_sk(sk); 3370 int flag = 0; 3371 u32 nwin = ntohs(tcp_hdr(skb)->window); 3372 3373 if (likely(!tcp_hdr(skb)->syn)) 3374 nwin <<= tp->rx_opt.snd_wscale; 3375 3376 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3377 flag |= FLAG_WIN_UPDATE; 3378 tcp_update_wl(tp, ack_seq); 3379 3380 if (tp->snd_wnd != nwin) { 3381 tp->snd_wnd = nwin; 3382 3383 /* Note, it is the only place, where 3384 * fast path is recovered for sending TCP. 3385 */ 3386 tp->pred_flags = 0; 3387 tcp_fast_path_check(sk); 3388 3389 if (!tcp_write_queue_empty(sk)) 3390 tcp_slow_start_after_idle_check(sk); 3391 3392 if (nwin > tp->max_window) { 3393 tp->max_window = nwin; 3394 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3395 } 3396 } 3397 } 3398 3399 tcp_snd_una_update(tp, ack); 3400 3401 return flag; 3402 } 3403 3404 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3405 u32 *last_oow_ack_time) 3406 { 3407 if (*last_oow_ack_time) { 3408 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3409 3410 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3411 NET_INC_STATS(net, mib_idx); 3412 return true; /* rate-limited: don't send yet! */ 3413 } 3414 } 3415 3416 *last_oow_ack_time = tcp_jiffies32; 3417 3418 return false; /* not rate-limited: go ahead, send dupack now! */ 3419 } 3420 3421 /* Return true if we're currently rate-limiting out-of-window ACKs and 3422 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3423 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3424 * attacks that send repeated SYNs or ACKs for the same connection. To 3425 * do this, we do not send a duplicate SYNACK or ACK if the remote 3426 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3427 */ 3428 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3429 int mib_idx, u32 *last_oow_ack_time) 3430 { 3431 /* Data packets without SYNs are not likely part of an ACK loop. */ 3432 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3433 !tcp_hdr(skb)->syn) 3434 return false; 3435 3436 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3437 } 3438 3439 /* RFC 5961 7 [ACK Throttling] */ 3440 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3441 { 3442 /* unprotected vars, we dont care of overwrites */ 3443 static u32 challenge_timestamp; 3444 static unsigned int challenge_count; 3445 struct tcp_sock *tp = tcp_sk(sk); 3446 struct net *net = sock_net(sk); 3447 u32 count, now; 3448 3449 /* First check our per-socket dupack rate limit. */ 3450 if (__tcp_oow_rate_limited(net, 3451 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3452 &tp->last_oow_ack_time)) 3453 return; 3454 3455 /* Then check host-wide RFC 5961 rate limit. */ 3456 now = jiffies / HZ; 3457 if (now != challenge_timestamp) { 3458 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3459 u32 half = (ack_limit + 1) >> 1; 3460 3461 challenge_timestamp = now; 3462 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3463 } 3464 count = READ_ONCE(challenge_count); 3465 if (count > 0) { 3466 WRITE_ONCE(challenge_count, count - 1); 3467 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3468 tcp_send_ack(sk); 3469 } 3470 } 3471 3472 static void tcp_store_ts_recent(struct tcp_sock *tp) 3473 { 3474 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3475 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3476 } 3477 3478 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3479 { 3480 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3481 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3482 * extra check below makes sure this can only happen 3483 * for pure ACK frames. -DaveM 3484 * 3485 * Not only, also it occurs for expired timestamps. 3486 */ 3487 3488 if (tcp_paws_check(&tp->rx_opt, 0)) 3489 tcp_store_ts_recent(tp); 3490 } 3491 } 3492 3493 /* This routine deals with acks during a TLP episode. 3494 * We mark the end of a TLP episode on receiving TLP dupack or when 3495 * ack is after tlp_high_seq. 3496 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3497 */ 3498 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3499 { 3500 struct tcp_sock *tp = tcp_sk(sk); 3501 3502 if (before(ack, tp->tlp_high_seq)) 3503 return; 3504 3505 if (flag & FLAG_DSACKING_ACK) { 3506 /* This DSACK means original and TLP probe arrived; no loss */ 3507 tp->tlp_high_seq = 0; 3508 } else if (after(ack, tp->tlp_high_seq)) { 3509 /* ACK advances: there was a loss, so reduce cwnd. Reset 3510 * tlp_high_seq in tcp_init_cwnd_reduction() 3511 */ 3512 tcp_init_cwnd_reduction(sk); 3513 tcp_set_ca_state(sk, TCP_CA_CWR); 3514 tcp_end_cwnd_reduction(sk); 3515 tcp_try_keep_open(sk); 3516 NET_INC_STATS(sock_net(sk), 3517 LINUX_MIB_TCPLOSSPROBERECOVERY); 3518 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3519 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3520 /* Pure dupack: original and TLP probe arrived; no loss */ 3521 tp->tlp_high_seq = 0; 3522 } 3523 } 3524 3525 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3526 { 3527 const struct inet_connection_sock *icsk = inet_csk(sk); 3528 3529 if (icsk->icsk_ca_ops->in_ack_event) 3530 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3531 } 3532 3533 /* Congestion control has updated the cwnd already. So if we're in 3534 * loss recovery then now we do any new sends (for FRTO) or 3535 * retransmits (for CA_Loss or CA_recovery) that make sense. 3536 */ 3537 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3538 { 3539 struct tcp_sock *tp = tcp_sk(sk); 3540 3541 if (rexmit == REXMIT_NONE) 3542 return; 3543 3544 if (unlikely(rexmit == 2)) { 3545 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3546 TCP_NAGLE_OFF); 3547 if (after(tp->snd_nxt, tp->high_seq)) 3548 return; 3549 tp->frto = 0; 3550 } 3551 tcp_xmit_retransmit_queue(sk); 3552 } 3553 3554 /* Returns the number of packets newly acked or sacked by the current ACK */ 3555 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3556 { 3557 const struct net *net = sock_net(sk); 3558 struct tcp_sock *tp = tcp_sk(sk); 3559 u32 delivered; 3560 3561 delivered = tp->delivered - prior_delivered; 3562 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3563 if (flag & FLAG_ECE) { 3564 tp->delivered_ce += delivered; 3565 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3566 } 3567 return delivered; 3568 } 3569 3570 /* This routine deals with incoming acks, but not outgoing ones. */ 3571 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3572 { 3573 struct inet_connection_sock *icsk = inet_csk(sk); 3574 struct tcp_sock *tp = tcp_sk(sk); 3575 struct tcp_sacktag_state sack_state; 3576 struct rate_sample rs = { .prior_delivered = 0 }; 3577 u32 prior_snd_una = tp->snd_una; 3578 bool is_sack_reneg = tp->is_sack_reneg; 3579 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3580 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3581 bool is_dupack = false; 3582 int prior_packets = tp->packets_out; 3583 u32 delivered = tp->delivered; 3584 u32 lost = tp->lost; 3585 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3586 u32 prior_fack; 3587 3588 sack_state.first_sackt = 0; 3589 sack_state.rate = &rs; 3590 3591 /* We very likely will need to access rtx queue. */ 3592 prefetch(sk->tcp_rtx_queue.rb_node); 3593 3594 /* If the ack is older than previous acks 3595 * then we can probably ignore it. 3596 */ 3597 if (before(ack, prior_snd_una)) { 3598 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3599 if (before(ack, prior_snd_una - tp->max_window)) { 3600 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3601 tcp_send_challenge_ack(sk, skb); 3602 return -1; 3603 } 3604 goto old_ack; 3605 } 3606 3607 /* If the ack includes data we haven't sent yet, discard 3608 * this segment (RFC793 Section 3.9). 3609 */ 3610 if (after(ack, tp->snd_nxt)) 3611 goto invalid_ack; 3612 3613 if (after(ack, prior_snd_una)) { 3614 flag |= FLAG_SND_UNA_ADVANCED; 3615 icsk->icsk_retransmits = 0; 3616 3617 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3618 if (static_branch_unlikely(&clean_acked_data_enabled)) 3619 if (icsk->icsk_clean_acked) 3620 icsk->icsk_clean_acked(sk, ack); 3621 #endif 3622 } 3623 3624 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3625 rs.prior_in_flight = tcp_packets_in_flight(tp); 3626 3627 /* ts_recent update must be made after we are sure that the packet 3628 * is in window. 3629 */ 3630 if (flag & FLAG_UPDATE_TS_RECENT) 3631 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3632 3633 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3634 /* Window is constant, pure forward advance. 3635 * No more checks are required. 3636 * Note, we use the fact that SND.UNA>=SND.WL2. 3637 */ 3638 tcp_update_wl(tp, ack_seq); 3639 tcp_snd_una_update(tp, ack); 3640 flag |= FLAG_WIN_UPDATE; 3641 3642 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3643 3644 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3645 } else { 3646 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3647 3648 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3649 flag |= FLAG_DATA; 3650 else 3651 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3652 3653 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3654 3655 if (TCP_SKB_CB(skb)->sacked) 3656 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3657 &sack_state); 3658 3659 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3660 flag |= FLAG_ECE; 3661 ack_ev_flags |= CA_ACK_ECE; 3662 } 3663 3664 if (flag & FLAG_WIN_UPDATE) 3665 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3666 3667 tcp_in_ack_event(sk, ack_ev_flags); 3668 } 3669 3670 /* We passed data and got it acked, remove any soft error 3671 * log. Something worked... 3672 */ 3673 sk->sk_err_soft = 0; 3674 icsk->icsk_probes_out = 0; 3675 tp->rcv_tstamp = tcp_jiffies32; 3676 if (!prior_packets) 3677 goto no_queue; 3678 3679 /* See if we can take anything off of the retransmit queue. */ 3680 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3681 3682 tcp_rack_update_reo_wnd(sk, &rs); 3683 3684 if (tp->tlp_high_seq) 3685 tcp_process_tlp_ack(sk, ack, flag); 3686 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3687 if (flag & FLAG_SET_XMIT_TIMER) 3688 tcp_set_xmit_timer(sk); 3689 3690 if (tcp_ack_is_dubious(sk, flag)) { 3691 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3692 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3693 &rexmit); 3694 } 3695 3696 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3697 sk_dst_confirm(sk); 3698 3699 delivered = tcp_newly_delivered(sk, delivered, flag); 3700 lost = tp->lost - lost; /* freshly marked lost */ 3701 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3702 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3703 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3704 tcp_xmit_recovery(sk, rexmit); 3705 return 1; 3706 3707 no_queue: 3708 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3709 if (flag & FLAG_DSACKING_ACK) { 3710 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3711 &rexmit); 3712 tcp_newly_delivered(sk, delivered, flag); 3713 } 3714 /* If this ack opens up a zero window, clear backoff. It was 3715 * being used to time the probes, and is probably far higher than 3716 * it needs to be for normal retransmission. 3717 */ 3718 tcp_ack_probe(sk); 3719 3720 if (tp->tlp_high_seq) 3721 tcp_process_tlp_ack(sk, ack, flag); 3722 return 1; 3723 3724 invalid_ack: 3725 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3726 return -1; 3727 3728 old_ack: 3729 /* If data was SACKed, tag it and see if we should send more data. 3730 * If data was DSACKed, see if we can undo a cwnd reduction. 3731 */ 3732 if (TCP_SKB_CB(skb)->sacked) { 3733 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3734 &sack_state); 3735 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3736 &rexmit); 3737 tcp_newly_delivered(sk, delivered, flag); 3738 tcp_xmit_recovery(sk, rexmit); 3739 } 3740 3741 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3742 return 0; 3743 } 3744 3745 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3746 bool syn, struct tcp_fastopen_cookie *foc, 3747 bool exp_opt) 3748 { 3749 /* Valid only in SYN or SYN-ACK with an even length. */ 3750 if (!foc || !syn || len < 0 || (len & 1)) 3751 return; 3752 3753 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3754 len <= TCP_FASTOPEN_COOKIE_MAX) 3755 memcpy(foc->val, cookie, len); 3756 else if (len != 0) 3757 len = -1; 3758 foc->len = len; 3759 foc->exp = exp_opt; 3760 } 3761 3762 static void smc_parse_options(const struct tcphdr *th, 3763 struct tcp_options_received *opt_rx, 3764 const unsigned char *ptr, 3765 int opsize) 3766 { 3767 #if IS_ENABLED(CONFIG_SMC) 3768 if (static_branch_unlikely(&tcp_have_smc)) { 3769 if (th->syn && !(opsize & 1) && 3770 opsize >= TCPOLEN_EXP_SMC_BASE && 3771 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3772 opt_rx->smc_ok = 1; 3773 } 3774 #endif 3775 } 3776 3777 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3778 * But, this can also be called on packets in the established flow when 3779 * the fast version below fails. 3780 */ 3781 void tcp_parse_options(const struct net *net, 3782 const struct sk_buff *skb, 3783 struct tcp_options_received *opt_rx, int estab, 3784 struct tcp_fastopen_cookie *foc) 3785 { 3786 const unsigned char *ptr; 3787 const struct tcphdr *th = tcp_hdr(skb); 3788 int length = (th->doff * 4) - sizeof(struct tcphdr); 3789 3790 ptr = (const unsigned char *)(th + 1); 3791 opt_rx->saw_tstamp = 0; 3792 3793 while (length > 0) { 3794 int opcode = *ptr++; 3795 int opsize; 3796 3797 switch (opcode) { 3798 case TCPOPT_EOL: 3799 return; 3800 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3801 length--; 3802 continue; 3803 default: 3804 opsize = *ptr++; 3805 if (opsize < 2) /* "silly options" */ 3806 return; 3807 if (opsize > length) 3808 return; /* don't parse partial options */ 3809 switch (opcode) { 3810 case TCPOPT_MSS: 3811 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3812 u16 in_mss = get_unaligned_be16(ptr); 3813 if (in_mss) { 3814 if (opt_rx->user_mss && 3815 opt_rx->user_mss < in_mss) 3816 in_mss = opt_rx->user_mss; 3817 opt_rx->mss_clamp = in_mss; 3818 } 3819 } 3820 break; 3821 case TCPOPT_WINDOW: 3822 if (opsize == TCPOLEN_WINDOW && th->syn && 3823 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3824 __u8 snd_wscale = *(__u8 *)ptr; 3825 opt_rx->wscale_ok = 1; 3826 if (snd_wscale > TCP_MAX_WSCALE) { 3827 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3828 __func__, 3829 snd_wscale, 3830 TCP_MAX_WSCALE); 3831 snd_wscale = TCP_MAX_WSCALE; 3832 } 3833 opt_rx->snd_wscale = snd_wscale; 3834 } 3835 break; 3836 case TCPOPT_TIMESTAMP: 3837 if ((opsize == TCPOLEN_TIMESTAMP) && 3838 ((estab && opt_rx->tstamp_ok) || 3839 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3840 opt_rx->saw_tstamp = 1; 3841 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3842 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3843 } 3844 break; 3845 case TCPOPT_SACK_PERM: 3846 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3847 !estab && net->ipv4.sysctl_tcp_sack) { 3848 opt_rx->sack_ok = TCP_SACK_SEEN; 3849 tcp_sack_reset(opt_rx); 3850 } 3851 break; 3852 3853 case TCPOPT_SACK: 3854 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3855 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3856 opt_rx->sack_ok) { 3857 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3858 } 3859 break; 3860 #ifdef CONFIG_TCP_MD5SIG 3861 case TCPOPT_MD5SIG: 3862 /* 3863 * The MD5 Hash has already been 3864 * checked (see tcp_v{4,6}_do_rcv()). 3865 */ 3866 break; 3867 #endif 3868 case TCPOPT_FASTOPEN: 3869 tcp_parse_fastopen_option( 3870 opsize - TCPOLEN_FASTOPEN_BASE, 3871 ptr, th->syn, foc, false); 3872 break; 3873 3874 case TCPOPT_EXP: 3875 /* Fast Open option shares code 254 using a 3876 * 16 bits magic number. 3877 */ 3878 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3879 get_unaligned_be16(ptr) == 3880 TCPOPT_FASTOPEN_MAGIC) 3881 tcp_parse_fastopen_option(opsize - 3882 TCPOLEN_EXP_FASTOPEN_BASE, 3883 ptr + 2, th->syn, foc, true); 3884 else 3885 smc_parse_options(th, opt_rx, ptr, 3886 opsize); 3887 break; 3888 3889 } 3890 ptr += opsize-2; 3891 length -= opsize; 3892 } 3893 } 3894 } 3895 EXPORT_SYMBOL(tcp_parse_options); 3896 3897 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3898 { 3899 const __be32 *ptr = (const __be32 *)(th + 1); 3900 3901 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3902 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3903 tp->rx_opt.saw_tstamp = 1; 3904 ++ptr; 3905 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3906 ++ptr; 3907 if (*ptr) 3908 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3909 else 3910 tp->rx_opt.rcv_tsecr = 0; 3911 return true; 3912 } 3913 return false; 3914 } 3915 3916 /* Fast parse options. This hopes to only see timestamps. 3917 * If it is wrong it falls back on tcp_parse_options(). 3918 */ 3919 static bool tcp_fast_parse_options(const struct net *net, 3920 const struct sk_buff *skb, 3921 const struct tcphdr *th, struct tcp_sock *tp) 3922 { 3923 /* In the spirit of fast parsing, compare doff directly to constant 3924 * values. Because equality is used, short doff can be ignored here. 3925 */ 3926 if (th->doff == (sizeof(*th) / 4)) { 3927 tp->rx_opt.saw_tstamp = 0; 3928 return false; 3929 } else if (tp->rx_opt.tstamp_ok && 3930 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3931 if (tcp_parse_aligned_timestamp(tp, th)) 3932 return true; 3933 } 3934 3935 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3936 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3937 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3938 3939 return true; 3940 } 3941 3942 #ifdef CONFIG_TCP_MD5SIG 3943 /* 3944 * Parse MD5 Signature option 3945 */ 3946 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3947 { 3948 int length = (th->doff << 2) - sizeof(*th); 3949 const u8 *ptr = (const u8 *)(th + 1); 3950 3951 /* If not enough data remaining, we can short cut */ 3952 while (length >= TCPOLEN_MD5SIG) { 3953 int opcode = *ptr++; 3954 int opsize; 3955 3956 switch (opcode) { 3957 case TCPOPT_EOL: 3958 return NULL; 3959 case TCPOPT_NOP: 3960 length--; 3961 continue; 3962 default: 3963 opsize = *ptr++; 3964 if (opsize < 2 || opsize > length) 3965 return NULL; 3966 if (opcode == TCPOPT_MD5SIG) 3967 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3968 } 3969 ptr += opsize - 2; 3970 length -= opsize; 3971 } 3972 return NULL; 3973 } 3974 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3975 #endif 3976 3977 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3978 * 3979 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3980 * it can pass through stack. So, the following predicate verifies that 3981 * this segment is not used for anything but congestion avoidance or 3982 * fast retransmit. Moreover, we even are able to eliminate most of such 3983 * second order effects, if we apply some small "replay" window (~RTO) 3984 * to timestamp space. 3985 * 3986 * All these measures still do not guarantee that we reject wrapped ACKs 3987 * on networks with high bandwidth, when sequence space is recycled fastly, 3988 * but it guarantees that such events will be very rare and do not affect 3989 * connection seriously. This doesn't look nice, but alas, PAWS is really 3990 * buggy extension. 3991 * 3992 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3993 * states that events when retransmit arrives after original data are rare. 3994 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3995 * the biggest problem on large power networks even with minor reordering. 3996 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3997 * up to bandwidth of 18Gigabit/sec. 8) ] 3998 */ 3999 4000 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4001 { 4002 const struct tcp_sock *tp = tcp_sk(sk); 4003 const struct tcphdr *th = tcp_hdr(skb); 4004 u32 seq = TCP_SKB_CB(skb)->seq; 4005 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4006 4007 return (/* 1. Pure ACK with correct sequence number. */ 4008 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4009 4010 /* 2. ... and duplicate ACK. */ 4011 ack == tp->snd_una && 4012 4013 /* 3. ... and does not update window. */ 4014 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4015 4016 /* 4. ... and sits in replay window. */ 4017 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4018 } 4019 4020 static inline bool tcp_paws_discard(const struct sock *sk, 4021 const struct sk_buff *skb) 4022 { 4023 const struct tcp_sock *tp = tcp_sk(sk); 4024 4025 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4026 !tcp_disordered_ack(sk, skb); 4027 } 4028 4029 /* Check segment sequence number for validity. 4030 * 4031 * Segment controls are considered valid, if the segment 4032 * fits to the window after truncation to the window. Acceptability 4033 * of data (and SYN, FIN, of course) is checked separately. 4034 * See tcp_data_queue(), for example. 4035 * 4036 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4037 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4038 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4039 * (borrowed from freebsd) 4040 */ 4041 4042 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4043 { 4044 return !before(end_seq, tp->rcv_wup) && 4045 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4046 } 4047 4048 /* When we get a reset we do this. */ 4049 void tcp_reset(struct sock *sk) 4050 { 4051 trace_tcp_receive_reset(sk); 4052 4053 /* We want the right error as BSD sees it (and indeed as we do). */ 4054 switch (sk->sk_state) { 4055 case TCP_SYN_SENT: 4056 sk->sk_err = ECONNREFUSED; 4057 break; 4058 case TCP_CLOSE_WAIT: 4059 sk->sk_err = EPIPE; 4060 break; 4061 case TCP_CLOSE: 4062 return; 4063 default: 4064 sk->sk_err = ECONNRESET; 4065 } 4066 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4067 smp_wmb(); 4068 4069 tcp_write_queue_purge(sk); 4070 tcp_done(sk); 4071 4072 if (!sock_flag(sk, SOCK_DEAD)) 4073 sk->sk_error_report(sk); 4074 } 4075 4076 /* 4077 * Process the FIN bit. This now behaves as it is supposed to work 4078 * and the FIN takes effect when it is validly part of sequence 4079 * space. Not before when we get holes. 4080 * 4081 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4082 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4083 * TIME-WAIT) 4084 * 4085 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4086 * close and we go into CLOSING (and later onto TIME-WAIT) 4087 * 4088 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4089 */ 4090 void tcp_fin(struct sock *sk) 4091 { 4092 struct tcp_sock *tp = tcp_sk(sk); 4093 4094 inet_csk_schedule_ack(sk); 4095 4096 sk->sk_shutdown |= RCV_SHUTDOWN; 4097 sock_set_flag(sk, SOCK_DONE); 4098 4099 switch (sk->sk_state) { 4100 case TCP_SYN_RECV: 4101 case TCP_ESTABLISHED: 4102 /* Move to CLOSE_WAIT */ 4103 tcp_set_state(sk, TCP_CLOSE_WAIT); 4104 inet_csk(sk)->icsk_ack.pingpong = 1; 4105 break; 4106 4107 case TCP_CLOSE_WAIT: 4108 case TCP_CLOSING: 4109 /* Received a retransmission of the FIN, do 4110 * nothing. 4111 */ 4112 break; 4113 case TCP_LAST_ACK: 4114 /* RFC793: Remain in the LAST-ACK state. */ 4115 break; 4116 4117 case TCP_FIN_WAIT1: 4118 /* This case occurs when a simultaneous close 4119 * happens, we must ack the received FIN and 4120 * enter the CLOSING state. 4121 */ 4122 tcp_send_ack(sk); 4123 tcp_set_state(sk, TCP_CLOSING); 4124 break; 4125 case TCP_FIN_WAIT2: 4126 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4127 tcp_send_ack(sk); 4128 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4129 break; 4130 default: 4131 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4132 * cases we should never reach this piece of code. 4133 */ 4134 pr_err("%s: Impossible, sk->sk_state=%d\n", 4135 __func__, sk->sk_state); 4136 break; 4137 } 4138 4139 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4140 * Probably, we should reset in this case. For now drop them. 4141 */ 4142 skb_rbtree_purge(&tp->out_of_order_queue); 4143 if (tcp_is_sack(tp)) 4144 tcp_sack_reset(&tp->rx_opt); 4145 sk_mem_reclaim(sk); 4146 4147 if (!sock_flag(sk, SOCK_DEAD)) { 4148 sk->sk_state_change(sk); 4149 4150 /* Do not send POLL_HUP for half duplex close. */ 4151 if (sk->sk_shutdown == SHUTDOWN_MASK || 4152 sk->sk_state == TCP_CLOSE) 4153 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4154 else 4155 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4156 } 4157 } 4158 4159 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4160 u32 end_seq) 4161 { 4162 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4163 if (before(seq, sp->start_seq)) 4164 sp->start_seq = seq; 4165 if (after(end_seq, sp->end_seq)) 4166 sp->end_seq = end_seq; 4167 return true; 4168 } 4169 return false; 4170 } 4171 4172 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4173 { 4174 struct tcp_sock *tp = tcp_sk(sk); 4175 4176 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4177 int mib_idx; 4178 4179 if (before(seq, tp->rcv_nxt)) 4180 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4181 else 4182 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4183 4184 NET_INC_STATS(sock_net(sk), mib_idx); 4185 4186 tp->rx_opt.dsack = 1; 4187 tp->duplicate_sack[0].start_seq = seq; 4188 tp->duplicate_sack[0].end_seq = end_seq; 4189 } 4190 } 4191 4192 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4193 { 4194 struct tcp_sock *tp = tcp_sk(sk); 4195 4196 if (!tp->rx_opt.dsack) 4197 tcp_dsack_set(sk, seq, end_seq); 4198 else 4199 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4200 } 4201 4202 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4203 { 4204 struct tcp_sock *tp = tcp_sk(sk); 4205 4206 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4207 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4208 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4209 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4210 4211 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4212 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4213 4214 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4215 end_seq = tp->rcv_nxt; 4216 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4217 } 4218 } 4219 4220 tcp_send_ack(sk); 4221 } 4222 4223 /* These routines update the SACK block as out-of-order packets arrive or 4224 * in-order packets close up the sequence space. 4225 */ 4226 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4227 { 4228 int this_sack; 4229 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4230 struct tcp_sack_block *swalk = sp + 1; 4231 4232 /* See if the recent change to the first SACK eats into 4233 * or hits the sequence space of other SACK blocks, if so coalesce. 4234 */ 4235 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4236 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4237 int i; 4238 4239 /* Zap SWALK, by moving every further SACK up by one slot. 4240 * Decrease num_sacks. 4241 */ 4242 tp->rx_opt.num_sacks--; 4243 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4244 sp[i] = sp[i + 1]; 4245 continue; 4246 } 4247 this_sack++, swalk++; 4248 } 4249 } 4250 4251 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4252 { 4253 struct tcp_sock *tp = tcp_sk(sk); 4254 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4255 int cur_sacks = tp->rx_opt.num_sacks; 4256 int this_sack; 4257 4258 if (!cur_sacks) 4259 goto new_sack; 4260 4261 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4262 if (tcp_sack_extend(sp, seq, end_seq)) { 4263 /* Rotate this_sack to the first one. */ 4264 for (; this_sack > 0; this_sack--, sp--) 4265 swap(*sp, *(sp - 1)); 4266 if (cur_sacks > 1) 4267 tcp_sack_maybe_coalesce(tp); 4268 return; 4269 } 4270 } 4271 4272 /* Could not find an adjacent existing SACK, build a new one, 4273 * put it at the front, and shift everyone else down. We 4274 * always know there is at least one SACK present already here. 4275 * 4276 * If the sack array is full, forget about the last one. 4277 */ 4278 if (this_sack >= TCP_NUM_SACKS) { 4279 if (tp->compressed_ack) 4280 tcp_send_ack(sk); 4281 this_sack--; 4282 tp->rx_opt.num_sacks--; 4283 sp--; 4284 } 4285 for (; this_sack > 0; this_sack--, sp--) 4286 *sp = *(sp - 1); 4287 4288 new_sack: 4289 /* Build the new head SACK, and we're done. */ 4290 sp->start_seq = seq; 4291 sp->end_seq = end_seq; 4292 tp->rx_opt.num_sacks++; 4293 } 4294 4295 /* RCV.NXT advances, some SACKs should be eaten. */ 4296 4297 static void tcp_sack_remove(struct tcp_sock *tp) 4298 { 4299 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4300 int num_sacks = tp->rx_opt.num_sacks; 4301 int this_sack; 4302 4303 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4304 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4305 tp->rx_opt.num_sacks = 0; 4306 return; 4307 } 4308 4309 for (this_sack = 0; this_sack < num_sacks;) { 4310 /* Check if the start of the sack is covered by RCV.NXT. */ 4311 if (!before(tp->rcv_nxt, sp->start_seq)) { 4312 int i; 4313 4314 /* RCV.NXT must cover all the block! */ 4315 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4316 4317 /* Zap this SACK, by moving forward any other SACKS. */ 4318 for (i = this_sack+1; i < num_sacks; i++) 4319 tp->selective_acks[i-1] = tp->selective_acks[i]; 4320 num_sacks--; 4321 continue; 4322 } 4323 this_sack++; 4324 sp++; 4325 } 4326 tp->rx_opt.num_sacks = num_sacks; 4327 } 4328 4329 /** 4330 * tcp_try_coalesce - try to merge skb to prior one 4331 * @sk: socket 4332 * @dest: destination queue 4333 * @to: prior buffer 4334 * @from: buffer to add in queue 4335 * @fragstolen: pointer to boolean 4336 * 4337 * Before queueing skb @from after @to, try to merge them 4338 * to reduce overall memory use and queue lengths, if cost is small. 4339 * Packets in ofo or receive queues can stay a long time. 4340 * Better try to coalesce them right now to avoid future collapses. 4341 * Returns true if caller should free @from instead of queueing it 4342 */ 4343 static bool tcp_try_coalesce(struct sock *sk, 4344 struct sk_buff *to, 4345 struct sk_buff *from, 4346 bool *fragstolen) 4347 { 4348 int delta; 4349 4350 *fragstolen = false; 4351 4352 /* Its possible this segment overlaps with prior segment in queue */ 4353 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4354 return false; 4355 4356 #ifdef CONFIG_TLS_DEVICE 4357 if (from->decrypted != to->decrypted) 4358 return false; 4359 #endif 4360 4361 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4362 return false; 4363 4364 atomic_add(delta, &sk->sk_rmem_alloc); 4365 sk_mem_charge(sk, delta); 4366 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4367 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4368 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4369 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4370 4371 if (TCP_SKB_CB(from)->has_rxtstamp) { 4372 TCP_SKB_CB(to)->has_rxtstamp = true; 4373 to->tstamp = from->tstamp; 4374 } 4375 4376 return true; 4377 } 4378 4379 static bool tcp_ooo_try_coalesce(struct sock *sk, 4380 struct sk_buff *to, 4381 struct sk_buff *from, 4382 bool *fragstolen) 4383 { 4384 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4385 4386 /* In case tcp_drop() is called later, update to->gso_segs */ 4387 if (res) { 4388 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4389 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4390 4391 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4392 } 4393 return res; 4394 } 4395 4396 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4397 { 4398 sk_drops_add(sk, skb); 4399 __kfree_skb(skb); 4400 } 4401 4402 /* This one checks to see if we can put data from the 4403 * out_of_order queue into the receive_queue. 4404 */ 4405 static void tcp_ofo_queue(struct sock *sk) 4406 { 4407 struct tcp_sock *tp = tcp_sk(sk); 4408 __u32 dsack_high = tp->rcv_nxt; 4409 bool fin, fragstolen, eaten; 4410 struct sk_buff *skb, *tail; 4411 struct rb_node *p; 4412 4413 p = rb_first(&tp->out_of_order_queue); 4414 while (p) { 4415 skb = rb_to_skb(p); 4416 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4417 break; 4418 4419 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4420 __u32 dsack = dsack_high; 4421 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4422 dsack_high = TCP_SKB_CB(skb)->end_seq; 4423 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4424 } 4425 p = rb_next(p); 4426 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4427 4428 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4429 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4430 tcp_drop(sk, skb); 4431 continue; 4432 } 4433 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4434 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4435 TCP_SKB_CB(skb)->end_seq); 4436 4437 tail = skb_peek_tail(&sk->sk_receive_queue); 4438 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4439 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4440 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4441 if (!eaten) 4442 __skb_queue_tail(&sk->sk_receive_queue, skb); 4443 else 4444 kfree_skb_partial(skb, fragstolen); 4445 4446 if (unlikely(fin)) { 4447 tcp_fin(sk); 4448 /* tcp_fin() purges tp->out_of_order_queue, 4449 * so we must end this loop right now. 4450 */ 4451 break; 4452 } 4453 } 4454 } 4455 4456 static bool tcp_prune_ofo_queue(struct sock *sk); 4457 static int tcp_prune_queue(struct sock *sk); 4458 4459 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4460 unsigned int size) 4461 { 4462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4463 !sk_rmem_schedule(sk, skb, size)) { 4464 4465 if (tcp_prune_queue(sk) < 0) 4466 return -1; 4467 4468 while (!sk_rmem_schedule(sk, skb, size)) { 4469 if (!tcp_prune_ofo_queue(sk)) 4470 return -1; 4471 } 4472 } 4473 return 0; 4474 } 4475 4476 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4477 { 4478 struct tcp_sock *tp = tcp_sk(sk); 4479 struct rb_node **p, *parent; 4480 struct sk_buff *skb1; 4481 u32 seq, end_seq; 4482 bool fragstolen; 4483 4484 tcp_ecn_check_ce(sk, skb); 4485 4486 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4487 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4488 tcp_drop(sk, skb); 4489 return; 4490 } 4491 4492 /* Disable header prediction. */ 4493 tp->pred_flags = 0; 4494 inet_csk_schedule_ack(sk); 4495 4496 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4497 seq = TCP_SKB_CB(skb)->seq; 4498 end_seq = TCP_SKB_CB(skb)->end_seq; 4499 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4500 tp->rcv_nxt, seq, end_seq); 4501 4502 p = &tp->out_of_order_queue.rb_node; 4503 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4504 /* Initial out of order segment, build 1 SACK. */ 4505 if (tcp_is_sack(tp)) { 4506 tp->rx_opt.num_sacks = 1; 4507 tp->selective_acks[0].start_seq = seq; 4508 tp->selective_acks[0].end_seq = end_seq; 4509 } 4510 rb_link_node(&skb->rbnode, NULL, p); 4511 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4512 tp->ooo_last_skb = skb; 4513 goto end; 4514 } 4515 4516 /* In the typical case, we are adding an skb to the end of the list. 4517 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4518 */ 4519 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4520 skb, &fragstolen)) { 4521 coalesce_done: 4522 tcp_grow_window(sk, skb); 4523 kfree_skb_partial(skb, fragstolen); 4524 skb = NULL; 4525 goto add_sack; 4526 } 4527 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4528 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4529 parent = &tp->ooo_last_skb->rbnode; 4530 p = &parent->rb_right; 4531 goto insert; 4532 } 4533 4534 /* Find place to insert this segment. Handle overlaps on the way. */ 4535 parent = NULL; 4536 while (*p) { 4537 parent = *p; 4538 skb1 = rb_to_skb(parent); 4539 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4540 p = &parent->rb_left; 4541 continue; 4542 } 4543 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4544 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4545 /* All the bits are present. Drop. */ 4546 NET_INC_STATS(sock_net(sk), 4547 LINUX_MIB_TCPOFOMERGE); 4548 tcp_drop(sk, skb); 4549 skb = NULL; 4550 tcp_dsack_set(sk, seq, end_seq); 4551 goto add_sack; 4552 } 4553 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4554 /* Partial overlap. */ 4555 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4556 } else { 4557 /* skb's seq == skb1's seq and skb covers skb1. 4558 * Replace skb1 with skb. 4559 */ 4560 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4561 &tp->out_of_order_queue); 4562 tcp_dsack_extend(sk, 4563 TCP_SKB_CB(skb1)->seq, 4564 TCP_SKB_CB(skb1)->end_seq); 4565 NET_INC_STATS(sock_net(sk), 4566 LINUX_MIB_TCPOFOMERGE); 4567 tcp_drop(sk, skb1); 4568 goto merge_right; 4569 } 4570 } else if (tcp_ooo_try_coalesce(sk, skb1, 4571 skb, &fragstolen)) { 4572 goto coalesce_done; 4573 } 4574 p = &parent->rb_right; 4575 } 4576 insert: 4577 /* Insert segment into RB tree. */ 4578 rb_link_node(&skb->rbnode, parent, p); 4579 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4580 4581 merge_right: 4582 /* Remove other segments covered by skb. */ 4583 while ((skb1 = skb_rb_next(skb)) != NULL) { 4584 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4585 break; 4586 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4587 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4588 end_seq); 4589 break; 4590 } 4591 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4592 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4593 TCP_SKB_CB(skb1)->end_seq); 4594 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4595 tcp_drop(sk, skb1); 4596 } 4597 /* If there is no skb after us, we are the last_skb ! */ 4598 if (!skb1) 4599 tp->ooo_last_skb = skb; 4600 4601 add_sack: 4602 if (tcp_is_sack(tp)) 4603 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4604 end: 4605 if (skb) { 4606 tcp_grow_window(sk, skb); 4607 skb_condense(skb); 4608 skb_set_owner_r(skb, sk); 4609 } 4610 } 4611 4612 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4613 bool *fragstolen) 4614 { 4615 int eaten; 4616 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4617 4618 __skb_pull(skb, hdrlen); 4619 eaten = (tail && 4620 tcp_try_coalesce(sk, tail, 4621 skb, fragstolen)) ? 1 : 0; 4622 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4623 if (!eaten) { 4624 __skb_queue_tail(&sk->sk_receive_queue, skb); 4625 skb_set_owner_r(skb, sk); 4626 } 4627 return eaten; 4628 } 4629 4630 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4631 { 4632 struct sk_buff *skb; 4633 int err = -ENOMEM; 4634 int data_len = 0; 4635 bool fragstolen; 4636 4637 if (size == 0) 4638 return 0; 4639 4640 if (size > PAGE_SIZE) { 4641 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4642 4643 data_len = npages << PAGE_SHIFT; 4644 size = data_len + (size & ~PAGE_MASK); 4645 } 4646 skb = alloc_skb_with_frags(size - data_len, data_len, 4647 PAGE_ALLOC_COSTLY_ORDER, 4648 &err, sk->sk_allocation); 4649 if (!skb) 4650 goto err; 4651 4652 skb_put(skb, size - data_len); 4653 skb->data_len = data_len; 4654 skb->len = size; 4655 4656 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4658 goto err_free; 4659 } 4660 4661 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4662 if (err) 4663 goto err_free; 4664 4665 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4666 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4667 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4668 4669 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4670 WARN_ON_ONCE(fragstolen); /* should not happen */ 4671 __kfree_skb(skb); 4672 } 4673 return size; 4674 4675 err_free: 4676 kfree_skb(skb); 4677 err: 4678 return err; 4679 4680 } 4681 4682 void tcp_data_ready(struct sock *sk) 4683 { 4684 const struct tcp_sock *tp = tcp_sk(sk); 4685 int avail = tp->rcv_nxt - tp->copied_seq; 4686 4687 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4688 return; 4689 4690 sk->sk_data_ready(sk); 4691 } 4692 4693 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4694 { 4695 struct tcp_sock *tp = tcp_sk(sk); 4696 bool fragstolen; 4697 int eaten; 4698 4699 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4700 __kfree_skb(skb); 4701 return; 4702 } 4703 skb_dst_drop(skb); 4704 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4705 4706 tcp_ecn_accept_cwr(sk, skb); 4707 4708 tp->rx_opt.dsack = 0; 4709 4710 /* Queue data for delivery to the user. 4711 * Packets in sequence go to the receive queue. 4712 * Out of sequence packets to the out_of_order_queue. 4713 */ 4714 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4715 if (tcp_receive_window(tp) == 0) { 4716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4717 goto out_of_window; 4718 } 4719 4720 /* Ok. In sequence. In window. */ 4721 queue_and_out: 4722 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4723 sk_forced_mem_schedule(sk, skb->truesize); 4724 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4726 goto drop; 4727 } 4728 4729 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4730 if (skb->len) 4731 tcp_event_data_recv(sk, skb); 4732 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4733 tcp_fin(sk); 4734 4735 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4736 tcp_ofo_queue(sk); 4737 4738 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4739 * gap in queue is filled. 4740 */ 4741 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4742 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4743 } 4744 4745 if (tp->rx_opt.num_sacks) 4746 tcp_sack_remove(tp); 4747 4748 tcp_fast_path_check(sk); 4749 4750 if (eaten > 0) 4751 kfree_skb_partial(skb, fragstolen); 4752 if (!sock_flag(sk, SOCK_DEAD)) 4753 tcp_data_ready(sk); 4754 return; 4755 } 4756 4757 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4758 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4759 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4760 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4761 4762 out_of_window: 4763 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4764 inet_csk_schedule_ack(sk); 4765 drop: 4766 tcp_drop(sk, skb); 4767 return; 4768 } 4769 4770 /* Out of window. F.e. zero window probe. */ 4771 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4772 goto out_of_window; 4773 4774 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4775 /* Partial packet, seq < rcv_next < end_seq */ 4776 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4777 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4778 TCP_SKB_CB(skb)->end_seq); 4779 4780 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4781 4782 /* If window is closed, drop tail of packet. But after 4783 * remembering D-SACK for its head made in previous line. 4784 */ 4785 if (!tcp_receive_window(tp)) { 4786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4787 goto out_of_window; 4788 } 4789 goto queue_and_out; 4790 } 4791 4792 tcp_data_queue_ofo(sk, skb); 4793 } 4794 4795 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4796 { 4797 if (list) 4798 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4799 4800 return skb_rb_next(skb); 4801 } 4802 4803 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4804 struct sk_buff_head *list, 4805 struct rb_root *root) 4806 { 4807 struct sk_buff *next = tcp_skb_next(skb, list); 4808 4809 if (list) 4810 __skb_unlink(skb, list); 4811 else 4812 rb_erase(&skb->rbnode, root); 4813 4814 __kfree_skb(skb); 4815 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4816 4817 return next; 4818 } 4819 4820 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4821 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4822 { 4823 struct rb_node **p = &root->rb_node; 4824 struct rb_node *parent = NULL; 4825 struct sk_buff *skb1; 4826 4827 while (*p) { 4828 parent = *p; 4829 skb1 = rb_to_skb(parent); 4830 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4831 p = &parent->rb_left; 4832 else 4833 p = &parent->rb_right; 4834 } 4835 rb_link_node(&skb->rbnode, parent, p); 4836 rb_insert_color(&skb->rbnode, root); 4837 } 4838 4839 /* Collapse contiguous sequence of skbs head..tail with 4840 * sequence numbers start..end. 4841 * 4842 * If tail is NULL, this means until the end of the queue. 4843 * 4844 * Segments with FIN/SYN are not collapsed (only because this 4845 * simplifies code) 4846 */ 4847 static void 4848 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4849 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4850 { 4851 struct sk_buff *skb = head, *n; 4852 struct sk_buff_head tmp; 4853 bool end_of_skbs; 4854 4855 /* First, check that queue is collapsible and find 4856 * the point where collapsing can be useful. 4857 */ 4858 restart: 4859 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4860 n = tcp_skb_next(skb, list); 4861 4862 /* No new bits? It is possible on ofo queue. */ 4863 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4864 skb = tcp_collapse_one(sk, skb, list, root); 4865 if (!skb) 4866 break; 4867 goto restart; 4868 } 4869 4870 /* The first skb to collapse is: 4871 * - not SYN/FIN and 4872 * - bloated or contains data before "start" or 4873 * overlaps to the next one. 4874 */ 4875 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4876 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4877 before(TCP_SKB_CB(skb)->seq, start))) { 4878 end_of_skbs = false; 4879 break; 4880 } 4881 4882 if (n && n != tail && 4883 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4884 end_of_skbs = false; 4885 break; 4886 } 4887 4888 /* Decided to skip this, advance start seq. */ 4889 start = TCP_SKB_CB(skb)->end_seq; 4890 } 4891 if (end_of_skbs || 4892 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4893 return; 4894 4895 __skb_queue_head_init(&tmp); 4896 4897 while (before(start, end)) { 4898 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4899 struct sk_buff *nskb; 4900 4901 nskb = alloc_skb(copy, GFP_ATOMIC); 4902 if (!nskb) 4903 break; 4904 4905 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4906 #ifdef CONFIG_TLS_DEVICE 4907 nskb->decrypted = skb->decrypted; 4908 #endif 4909 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4910 if (list) 4911 __skb_queue_before(list, skb, nskb); 4912 else 4913 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4914 skb_set_owner_r(nskb, sk); 4915 4916 /* Copy data, releasing collapsed skbs. */ 4917 while (copy > 0) { 4918 int offset = start - TCP_SKB_CB(skb)->seq; 4919 int size = TCP_SKB_CB(skb)->end_seq - start; 4920 4921 BUG_ON(offset < 0); 4922 if (size > 0) { 4923 size = min(copy, size); 4924 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4925 BUG(); 4926 TCP_SKB_CB(nskb)->end_seq += size; 4927 copy -= size; 4928 start += size; 4929 } 4930 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4931 skb = tcp_collapse_one(sk, skb, list, root); 4932 if (!skb || 4933 skb == tail || 4934 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4935 goto end; 4936 #ifdef CONFIG_TLS_DEVICE 4937 if (skb->decrypted != nskb->decrypted) 4938 goto end; 4939 #endif 4940 } 4941 } 4942 } 4943 end: 4944 skb_queue_walk_safe(&tmp, skb, n) 4945 tcp_rbtree_insert(root, skb); 4946 } 4947 4948 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4949 * and tcp_collapse() them until all the queue is collapsed. 4950 */ 4951 static void tcp_collapse_ofo_queue(struct sock *sk) 4952 { 4953 struct tcp_sock *tp = tcp_sk(sk); 4954 u32 range_truesize, sum_tiny = 0; 4955 struct sk_buff *skb, *head; 4956 u32 start, end; 4957 4958 skb = skb_rb_first(&tp->out_of_order_queue); 4959 new_range: 4960 if (!skb) { 4961 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4962 return; 4963 } 4964 start = TCP_SKB_CB(skb)->seq; 4965 end = TCP_SKB_CB(skb)->end_seq; 4966 range_truesize = skb->truesize; 4967 4968 for (head = skb;;) { 4969 skb = skb_rb_next(skb); 4970 4971 /* Range is terminated when we see a gap or when 4972 * we are at the queue end. 4973 */ 4974 if (!skb || 4975 after(TCP_SKB_CB(skb)->seq, end) || 4976 before(TCP_SKB_CB(skb)->end_seq, start)) { 4977 /* Do not attempt collapsing tiny skbs */ 4978 if (range_truesize != head->truesize || 4979 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4980 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4981 head, skb, start, end); 4982 } else { 4983 sum_tiny += range_truesize; 4984 if (sum_tiny > sk->sk_rcvbuf >> 3) 4985 return; 4986 } 4987 goto new_range; 4988 } 4989 4990 range_truesize += skb->truesize; 4991 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4992 start = TCP_SKB_CB(skb)->seq; 4993 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4994 end = TCP_SKB_CB(skb)->end_seq; 4995 } 4996 } 4997 4998 /* 4999 * Clean the out-of-order queue to make room. 5000 * We drop high sequences packets to : 5001 * 1) Let a chance for holes to be filled. 5002 * 2) not add too big latencies if thousands of packets sit there. 5003 * (But if application shrinks SO_RCVBUF, we could still end up 5004 * freeing whole queue here) 5005 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5006 * 5007 * Return true if queue has shrunk. 5008 */ 5009 static bool tcp_prune_ofo_queue(struct sock *sk) 5010 { 5011 struct tcp_sock *tp = tcp_sk(sk); 5012 struct rb_node *node, *prev; 5013 int goal; 5014 5015 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5016 return false; 5017 5018 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5019 goal = sk->sk_rcvbuf >> 3; 5020 node = &tp->ooo_last_skb->rbnode; 5021 do { 5022 prev = rb_prev(node); 5023 rb_erase(node, &tp->out_of_order_queue); 5024 goal -= rb_to_skb(node)->truesize; 5025 tcp_drop(sk, rb_to_skb(node)); 5026 if (!prev || goal <= 0) { 5027 sk_mem_reclaim(sk); 5028 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5029 !tcp_under_memory_pressure(sk)) 5030 break; 5031 goal = sk->sk_rcvbuf >> 3; 5032 } 5033 node = prev; 5034 } while (node); 5035 tp->ooo_last_skb = rb_to_skb(prev); 5036 5037 /* Reset SACK state. A conforming SACK implementation will 5038 * do the same at a timeout based retransmit. When a connection 5039 * is in a sad state like this, we care only about integrity 5040 * of the connection not performance. 5041 */ 5042 if (tp->rx_opt.sack_ok) 5043 tcp_sack_reset(&tp->rx_opt); 5044 return true; 5045 } 5046 5047 /* Reduce allocated memory if we can, trying to get 5048 * the socket within its memory limits again. 5049 * 5050 * Return less than zero if we should start dropping frames 5051 * until the socket owning process reads some of the data 5052 * to stabilize the situation. 5053 */ 5054 static int tcp_prune_queue(struct sock *sk) 5055 { 5056 struct tcp_sock *tp = tcp_sk(sk); 5057 5058 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 5059 5060 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5061 5062 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5063 tcp_clamp_window(sk); 5064 else if (tcp_under_memory_pressure(sk)) 5065 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5066 5067 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5068 return 0; 5069 5070 tcp_collapse_ofo_queue(sk); 5071 if (!skb_queue_empty(&sk->sk_receive_queue)) 5072 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5073 skb_peek(&sk->sk_receive_queue), 5074 NULL, 5075 tp->copied_seq, tp->rcv_nxt); 5076 sk_mem_reclaim(sk); 5077 5078 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5079 return 0; 5080 5081 /* Collapsing did not help, destructive actions follow. 5082 * This must not ever occur. */ 5083 5084 tcp_prune_ofo_queue(sk); 5085 5086 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5087 return 0; 5088 5089 /* If we are really being abused, tell the caller to silently 5090 * drop receive data on the floor. It will get retransmitted 5091 * and hopefully then we'll have sufficient space. 5092 */ 5093 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5094 5095 /* Massive buffer overcommit. */ 5096 tp->pred_flags = 0; 5097 return -1; 5098 } 5099 5100 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5101 { 5102 const struct tcp_sock *tp = tcp_sk(sk); 5103 5104 /* If the user specified a specific send buffer setting, do 5105 * not modify it. 5106 */ 5107 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5108 return false; 5109 5110 /* If we are under global TCP memory pressure, do not expand. */ 5111 if (tcp_under_memory_pressure(sk)) 5112 return false; 5113 5114 /* If we are under soft global TCP memory pressure, do not expand. */ 5115 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5116 return false; 5117 5118 /* If we filled the congestion window, do not expand. */ 5119 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5120 return false; 5121 5122 return true; 5123 } 5124 5125 /* When incoming ACK allowed to free some skb from write_queue, 5126 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5127 * on the exit from tcp input handler. 5128 * 5129 * PROBLEM: sndbuf expansion does not work well with largesend. 5130 */ 5131 static void tcp_new_space(struct sock *sk) 5132 { 5133 struct tcp_sock *tp = tcp_sk(sk); 5134 5135 if (tcp_should_expand_sndbuf(sk)) { 5136 tcp_sndbuf_expand(sk); 5137 tp->snd_cwnd_stamp = tcp_jiffies32; 5138 } 5139 5140 sk->sk_write_space(sk); 5141 } 5142 5143 static void tcp_check_space(struct sock *sk) 5144 { 5145 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5146 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5147 /* pairs with tcp_poll() */ 5148 smp_mb(); 5149 if (sk->sk_socket && 5150 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5151 tcp_new_space(sk); 5152 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5153 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5154 } 5155 } 5156 } 5157 5158 static inline void tcp_data_snd_check(struct sock *sk) 5159 { 5160 tcp_push_pending_frames(sk); 5161 tcp_check_space(sk); 5162 } 5163 5164 /* 5165 * Check if sending an ack is needed. 5166 */ 5167 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5168 { 5169 struct tcp_sock *tp = tcp_sk(sk); 5170 unsigned long rtt, delay; 5171 5172 /* More than one full frame received... */ 5173 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5174 /* ... and right edge of window advances far enough. 5175 * (tcp_recvmsg() will send ACK otherwise). 5176 * If application uses SO_RCVLOWAT, we want send ack now if 5177 * we have not received enough bytes to satisfy the condition. 5178 */ 5179 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5180 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5181 /* We ACK each frame or... */ 5182 tcp_in_quickack_mode(sk) || 5183 /* Protocol state mandates a one-time immediate ACK */ 5184 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5185 send_now: 5186 tcp_send_ack(sk); 5187 return; 5188 } 5189 5190 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5191 tcp_send_delayed_ack(sk); 5192 return; 5193 } 5194 5195 if (!tcp_is_sack(tp) || 5196 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5197 goto send_now; 5198 tp->compressed_ack++; 5199 5200 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5201 return; 5202 5203 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5204 5205 rtt = tp->rcv_rtt_est.rtt_us; 5206 if (tp->srtt_us && tp->srtt_us < rtt) 5207 rtt = tp->srtt_us; 5208 5209 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5210 rtt * (NSEC_PER_USEC >> 3)/20); 5211 sock_hold(sk); 5212 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5213 HRTIMER_MODE_REL_PINNED_SOFT); 5214 } 5215 5216 static inline void tcp_ack_snd_check(struct sock *sk) 5217 { 5218 if (!inet_csk_ack_scheduled(sk)) { 5219 /* We sent a data segment already. */ 5220 return; 5221 } 5222 __tcp_ack_snd_check(sk, 1); 5223 } 5224 5225 /* 5226 * This routine is only called when we have urgent data 5227 * signaled. Its the 'slow' part of tcp_urg. It could be 5228 * moved inline now as tcp_urg is only called from one 5229 * place. We handle URGent data wrong. We have to - as 5230 * BSD still doesn't use the correction from RFC961. 5231 * For 1003.1g we should support a new option TCP_STDURG to permit 5232 * either form (or just set the sysctl tcp_stdurg). 5233 */ 5234 5235 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5236 { 5237 struct tcp_sock *tp = tcp_sk(sk); 5238 u32 ptr = ntohs(th->urg_ptr); 5239 5240 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5241 ptr--; 5242 ptr += ntohl(th->seq); 5243 5244 /* Ignore urgent data that we've already seen and read. */ 5245 if (after(tp->copied_seq, ptr)) 5246 return; 5247 5248 /* Do not replay urg ptr. 5249 * 5250 * NOTE: interesting situation not covered by specs. 5251 * Misbehaving sender may send urg ptr, pointing to segment, 5252 * which we already have in ofo queue. We are not able to fetch 5253 * such data and will stay in TCP_URG_NOTYET until will be eaten 5254 * by recvmsg(). Seems, we are not obliged to handle such wicked 5255 * situations. But it is worth to think about possibility of some 5256 * DoSes using some hypothetical application level deadlock. 5257 */ 5258 if (before(ptr, tp->rcv_nxt)) 5259 return; 5260 5261 /* Do we already have a newer (or duplicate) urgent pointer? */ 5262 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5263 return; 5264 5265 /* Tell the world about our new urgent pointer. */ 5266 sk_send_sigurg(sk); 5267 5268 /* We may be adding urgent data when the last byte read was 5269 * urgent. To do this requires some care. We cannot just ignore 5270 * tp->copied_seq since we would read the last urgent byte again 5271 * as data, nor can we alter copied_seq until this data arrives 5272 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5273 * 5274 * NOTE. Double Dutch. Rendering to plain English: author of comment 5275 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5276 * and expect that both A and B disappear from stream. This is _wrong_. 5277 * Though this happens in BSD with high probability, this is occasional. 5278 * Any application relying on this is buggy. Note also, that fix "works" 5279 * only in this artificial test. Insert some normal data between A and B and we will 5280 * decline of BSD again. Verdict: it is better to remove to trap 5281 * buggy users. 5282 */ 5283 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5284 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5285 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5286 tp->copied_seq++; 5287 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5288 __skb_unlink(skb, &sk->sk_receive_queue); 5289 __kfree_skb(skb); 5290 } 5291 } 5292 5293 tp->urg_data = TCP_URG_NOTYET; 5294 tp->urg_seq = ptr; 5295 5296 /* Disable header prediction. */ 5297 tp->pred_flags = 0; 5298 } 5299 5300 /* This is the 'fast' part of urgent handling. */ 5301 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5302 { 5303 struct tcp_sock *tp = tcp_sk(sk); 5304 5305 /* Check if we get a new urgent pointer - normally not. */ 5306 if (th->urg) 5307 tcp_check_urg(sk, th); 5308 5309 /* Do we wait for any urgent data? - normally not... */ 5310 if (tp->urg_data == TCP_URG_NOTYET) { 5311 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5312 th->syn; 5313 5314 /* Is the urgent pointer pointing into this packet? */ 5315 if (ptr < skb->len) { 5316 u8 tmp; 5317 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5318 BUG(); 5319 tp->urg_data = TCP_URG_VALID | tmp; 5320 if (!sock_flag(sk, SOCK_DEAD)) 5321 sk->sk_data_ready(sk); 5322 } 5323 } 5324 } 5325 5326 /* Accept RST for rcv_nxt - 1 after a FIN. 5327 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5328 * FIN is sent followed by a RST packet. The RST is sent with the same 5329 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5330 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5331 * ACKs on the closed socket. In addition middleboxes can drop either the 5332 * challenge ACK or a subsequent RST. 5333 */ 5334 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5335 { 5336 struct tcp_sock *tp = tcp_sk(sk); 5337 5338 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5339 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5340 TCPF_CLOSING)); 5341 } 5342 5343 /* Does PAWS and seqno based validation of an incoming segment, flags will 5344 * play significant role here. 5345 */ 5346 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5347 const struct tcphdr *th, int syn_inerr) 5348 { 5349 struct tcp_sock *tp = tcp_sk(sk); 5350 bool rst_seq_match = false; 5351 5352 /* RFC1323: H1. Apply PAWS check first. */ 5353 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5354 tp->rx_opt.saw_tstamp && 5355 tcp_paws_discard(sk, skb)) { 5356 if (!th->rst) { 5357 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5358 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5359 LINUX_MIB_TCPACKSKIPPEDPAWS, 5360 &tp->last_oow_ack_time)) 5361 tcp_send_dupack(sk, skb); 5362 goto discard; 5363 } 5364 /* Reset is accepted even if it did not pass PAWS. */ 5365 } 5366 5367 /* Step 1: check sequence number */ 5368 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5369 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5370 * (RST) segments are validated by checking their SEQ-fields." 5371 * And page 69: "If an incoming segment is not acceptable, 5372 * an acknowledgment should be sent in reply (unless the RST 5373 * bit is set, if so drop the segment and return)". 5374 */ 5375 if (!th->rst) { 5376 if (th->syn) 5377 goto syn_challenge; 5378 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5379 LINUX_MIB_TCPACKSKIPPEDSEQ, 5380 &tp->last_oow_ack_time)) 5381 tcp_send_dupack(sk, skb); 5382 } else if (tcp_reset_check(sk, skb)) { 5383 tcp_reset(sk); 5384 } 5385 goto discard; 5386 } 5387 5388 /* Step 2: check RST bit */ 5389 if (th->rst) { 5390 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5391 * FIN and SACK too if available): 5392 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5393 * the right-most SACK block, 5394 * then 5395 * RESET the connection 5396 * else 5397 * Send a challenge ACK 5398 */ 5399 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5400 tcp_reset_check(sk, skb)) { 5401 rst_seq_match = true; 5402 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5403 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5404 int max_sack = sp[0].end_seq; 5405 int this_sack; 5406 5407 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5408 ++this_sack) { 5409 max_sack = after(sp[this_sack].end_seq, 5410 max_sack) ? 5411 sp[this_sack].end_seq : max_sack; 5412 } 5413 5414 if (TCP_SKB_CB(skb)->seq == max_sack) 5415 rst_seq_match = true; 5416 } 5417 5418 if (rst_seq_match) 5419 tcp_reset(sk); 5420 else { 5421 /* Disable TFO if RST is out-of-order 5422 * and no data has been received 5423 * for current active TFO socket 5424 */ 5425 if (tp->syn_fastopen && !tp->data_segs_in && 5426 sk->sk_state == TCP_ESTABLISHED) 5427 tcp_fastopen_active_disable(sk); 5428 tcp_send_challenge_ack(sk, skb); 5429 } 5430 goto discard; 5431 } 5432 5433 /* step 3: check security and precedence [ignored] */ 5434 5435 /* step 4: Check for a SYN 5436 * RFC 5961 4.2 : Send a challenge ack 5437 */ 5438 if (th->syn) { 5439 syn_challenge: 5440 if (syn_inerr) 5441 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5443 tcp_send_challenge_ack(sk, skb); 5444 goto discard; 5445 } 5446 5447 return true; 5448 5449 discard: 5450 tcp_drop(sk, skb); 5451 return false; 5452 } 5453 5454 /* 5455 * TCP receive function for the ESTABLISHED state. 5456 * 5457 * It is split into a fast path and a slow path. The fast path is 5458 * disabled when: 5459 * - A zero window was announced from us - zero window probing 5460 * is only handled properly in the slow path. 5461 * - Out of order segments arrived. 5462 * - Urgent data is expected. 5463 * - There is no buffer space left 5464 * - Unexpected TCP flags/window values/header lengths are received 5465 * (detected by checking the TCP header against pred_flags) 5466 * - Data is sent in both directions. Fast path only supports pure senders 5467 * or pure receivers (this means either the sequence number or the ack 5468 * value must stay constant) 5469 * - Unexpected TCP option. 5470 * 5471 * When these conditions are not satisfied it drops into a standard 5472 * receive procedure patterned after RFC793 to handle all cases. 5473 * The first three cases are guaranteed by proper pred_flags setting, 5474 * the rest is checked inline. Fast processing is turned on in 5475 * tcp_data_queue when everything is OK. 5476 */ 5477 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5478 { 5479 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5480 struct tcp_sock *tp = tcp_sk(sk); 5481 unsigned int len = skb->len; 5482 5483 /* TCP congestion window tracking */ 5484 trace_tcp_probe(sk, skb); 5485 5486 tcp_mstamp_refresh(tp); 5487 if (unlikely(!sk->sk_rx_dst)) 5488 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5489 /* 5490 * Header prediction. 5491 * The code loosely follows the one in the famous 5492 * "30 instruction TCP receive" Van Jacobson mail. 5493 * 5494 * Van's trick is to deposit buffers into socket queue 5495 * on a device interrupt, to call tcp_recv function 5496 * on the receive process context and checksum and copy 5497 * the buffer to user space. smart... 5498 * 5499 * Our current scheme is not silly either but we take the 5500 * extra cost of the net_bh soft interrupt processing... 5501 * We do checksum and copy also but from device to kernel. 5502 */ 5503 5504 tp->rx_opt.saw_tstamp = 0; 5505 5506 /* pred_flags is 0xS?10 << 16 + snd_wnd 5507 * if header_prediction is to be made 5508 * 'S' will always be tp->tcp_header_len >> 2 5509 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5510 * turn it off (when there are holes in the receive 5511 * space for instance) 5512 * PSH flag is ignored. 5513 */ 5514 5515 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5516 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5517 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5518 int tcp_header_len = tp->tcp_header_len; 5519 5520 /* Timestamp header prediction: tcp_header_len 5521 * is automatically equal to th->doff*4 due to pred_flags 5522 * match. 5523 */ 5524 5525 /* Check timestamp */ 5526 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5527 /* No? Slow path! */ 5528 if (!tcp_parse_aligned_timestamp(tp, th)) 5529 goto slow_path; 5530 5531 /* If PAWS failed, check it more carefully in slow path */ 5532 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5533 goto slow_path; 5534 5535 /* DO NOT update ts_recent here, if checksum fails 5536 * and timestamp was corrupted part, it will result 5537 * in a hung connection since we will drop all 5538 * future packets due to the PAWS test. 5539 */ 5540 } 5541 5542 if (len <= tcp_header_len) { 5543 /* Bulk data transfer: sender */ 5544 if (len == tcp_header_len) { 5545 /* Predicted packet is in window by definition. 5546 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5547 * Hence, check seq<=rcv_wup reduces to: 5548 */ 5549 if (tcp_header_len == 5550 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5551 tp->rcv_nxt == tp->rcv_wup) 5552 tcp_store_ts_recent(tp); 5553 5554 /* We know that such packets are checksummed 5555 * on entry. 5556 */ 5557 tcp_ack(sk, skb, 0); 5558 __kfree_skb(skb); 5559 tcp_data_snd_check(sk); 5560 /* When receiving pure ack in fast path, update 5561 * last ts ecr directly instead of calling 5562 * tcp_rcv_rtt_measure_ts() 5563 */ 5564 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5565 return; 5566 } else { /* Header too small */ 5567 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5568 goto discard; 5569 } 5570 } else { 5571 int eaten = 0; 5572 bool fragstolen = false; 5573 5574 if (tcp_checksum_complete(skb)) 5575 goto csum_error; 5576 5577 if ((int)skb->truesize > sk->sk_forward_alloc) 5578 goto step5; 5579 5580 /* Predicted packet is in window by definition. 5581 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5582 * Hence, check seq<=rcv_wup reduces to: 5583 */ 5584 if (tcp_header_len == 5585 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5586 tp->rcv_nxt == tp->rcv_wup) 5587 tcp_store_ts_recent(tp); 5588 5589 tcp_rcv_rtt_measure_ts(sk, skb); 5590 5591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5592 5593 /* Bulk data transfer: receiver */ 5594 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5595 &fragstolen); 5596 5597 tcp_event_data_recv(sk, skb); 5598 5599 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5600 /* Well, only one small jumplet in fast path... */ 5601 tcp_ack(sk, skb, FLAG_DATA); 5602 tcp_data_snd_check(sk); 5603 if (!inet_csk_ack_scheduled(sk)) 5604 goto no_ack; 5605 } 5606 5607 __tcp_ack_snd_check(sk, 0); 5608 no_ack: 5609 if (eaten) 5610 kfree_skb_partial(skb, fragstolen); 5611 tcp_data_ready(sk); 5612 return; 5613 } 5614 } 5615 5616 slow_path: 5617 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5618 goto csum_error; 5619 5620 if (!th->ack && !th->rst && !th->syn) 5621 goto discard; 5622 5623 /* 5624 * Standard slow path. 5625 */ 5626 5627 if (!tcp_validate_incoming(sk, skb, th, 1)) 5628 return; 5629 5630 step5: 5631 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5632 goto discard; 5633 5634 tcp_rcv_rtt_measure_ts(sk, skb); 5635 5636 /* Process urgent data. */ 5637 tcp_urg(sk, skb, th); 5638 5639 /* step 7: process the segment text */ 5640 tcp_data_queue(sk, skb); 5641 5642 tcp_data_snd_check(sk); 5643 tcp_ack_snd_check(sk); 5644 return; 5645 5646 csum_error: 5647 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5648 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5649 5650 discard: 5651 tcp_drop(sk, skb); 5652 } 5653 EXPORT_SYMBOL(tcp_rcv_established); 5654 5655 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5656 { 5657 struct tcp_sock *tp = tcp_sk(sk); 5658 struct inet_connection_sock *icsk = inet_csk(sk); 5659 5660 tcp_set_state(sk, TCP_ESTABLISHED); 5661 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5662 5663 if (skb) { 5664 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5665 security_inet_conn_established(sk, skb); 5666 sk_mark_napi_id(sk, skb); 5667 } 5668 5669 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5670 5671 /* Prevent spurious tcp_cwnd_restart() on first data 5672 * packet. 5673 */ 5674 tp->lsndtime = tcp_jiffies32; 5675 5676 if (sock_flag(sk, SOCK_KEEPOPEN)) 5677 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5678 5679 if (!tp->rx_opt.snd_wscale) 5680 __tcp_fast_path_on(tp, tp->snd_wnd); 5681 else 5682 tp->pred_flags = 0; 5683 } 5684 5685 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5686 struct tcp_fastopen_cookie *cookie) 5687 { 5688 struct tcp_sock *tp = tcp_sk(sk); 5689 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5690 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5691 bool syn_drop = false; 5692 5693 if (mss == tp->rx_opt.user_mss) { 5694 struct tcp_options_received opt; 5695 5696 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5697 tcp_clear_options(&opt); 5698 opt.user_mss = opt.mss_clamp = 0; 5699 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5700 mss = opt.mss_clamp; 5701 } 5702 5703 if (!tp->syn_fastopen) { 5704 /* Ignore an unsolicited cookie */ 5705 cookie->len = -1; 5706 } else if (tp->total_retrans) { 5707 /* SYN timed out and the SYN-ACK neither has a cookie nor 5708 * acknowledges data. Presumably the remote received only 5709 * the retransmitted (regular) SYNs: either the original 5710 * SYN-data or the corresponding SYN-ACK was dropped. 5711 */ 5712 syn_drop = (cookie->len < 0 && data); 5713 } else if (cookie->len < 0 && !tp->syn_data) { 5714 /* We requested a cookie but didn't get it. If we did not use 5715 * the (old) exp opt format then try so next time (try_exp=1). 5716 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5717 */ 5718 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5719 } 5720 5721 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5722 5723 if (data) { /* Retransmit unacked data in SYN */ 5724 skb_rbtree_walk_from(data) { 5725 if (__tcp_retransmit_skb(sk, data, 1)) 5726 break; 5727 } 5728 tcp_rearm_rto(sk); 5729 NET_INC_STATS(sock_net(sk), 5730 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5731 return true; 5732 } 5733 tp->syn_data_acked = tp->syn_data; 5734 if (tp->syn_data_acked) { 5735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5736 /* SYN-data is counted as two separate packets in tcp_ack() */ 5737 if (tp->delivered > 1) 5738 --tp->delivered; 5739 } 5740 5741 tcp_fastopen_add_skb(sk, synack); 5742 5743 return false; 5744 } 5745 5746 static void smc_check_reset_syn(struct tcp_sock *tp) 5747 { 5748 #if IS_ENABLED(CONFIG_SMC) 5749 if (static_branch_unlikely(&tcp_have_smc)) { 5750 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5751 tp->syn_smc = 0; 5752 } 5753 #endif 5754 } 5755 5756 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5757 const struct tcphdr *th) 5758 { 5759 struct inet_connection_sock *icsk = inet_csk(sk); 5760 struct tcp_sock *tp = tcp_sk(sk); 5761 struct tcp_fastopen_cookie foc = { .len = -1 }; 5762 int saved_clamp = tp->rx_opt.mss_clamp; 5763 bool fastopen_fail; 5764 5765 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5766 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5767 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5768 5769 if (th->ack) { 5770 /* rfc793: 5771 * "If the state is SYN-SENT then 5772 * first check the ACK bit 5773 * If the ACK bit is set 5774 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5775 * a reset (unless the RST bit is set, if so drop 5776 * the segment and return)" 5777 */ 5778 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5779 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5780 goto reset_and_undo; 5781 5782 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5783 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5784 tcp_time_stamp(tp))) { 5785 NET_INC_STATS(sock_net(sk), 5786 LINUX_MIB_PAWSACTIVEREJECTED); 5787 goto reset_and_undo; 5788 } 5789 5790 /* Now ACK is acceptable. 5791 * 5792 * "If the RST bit is set 5793 * If the ACK was acceptable then signal the user "error: 5794 * connection reset", drop the segment, enter CLOSED state, 5795 * delete TCB, and return." 5796 */ 5797 5798 if (th->rst) { 5799 tcp_reset(sk); 5800 goto discard; 5801 } 5802 5803 /* rfc793: 5804 * "fifth, if neither of the SYN or RST bits is set then 5805 * drop the segment and return." 5806 * 5807 * See note below! 5808 * --ANK(990513) 5809 */ 5810 if (!th->syn) 5811 goto discard_and_undo; 5812 5813 /* rfc793: 5814 * "If the SYN bit is on ... 5815 * are acceptable then ... 5816 * (our SYN has been ACKed), change the connection 5817 * state to ESTABLISHED..." 5818 */ 5819 5820 tcp_ecn_rcv_synack(tp, th); 5821 5822 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5823 tcp_ack(sk, skb, FLAG_SLOWPATH); 5824 5825 /* Ok.. it's good. Set up sequence numbers and 5826 * move to established. 5827 */ 5828 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5829 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5830 5831 /* RFC1323: The window in SYN & SYN/ACK segments is 5832 * never scaled. 5833 */ 5834 tp->snd_wnd = ntohs(th->window); 5835 5836 if (!tp->rx_opt.wscale_ok) { 5837 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5838 tp->window_clamp = min(tp->window_clamp, 65535U); 5839 } 5840 5841 if (tp->rx_opt.saw_tstamp) { 5842 tp->rx_opt.tstamp_ok = 1; 5843 tp->tcp_header_len = 5844 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5845 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5846 tcp_store_ts_recent(tp); 5847 } else { 5848 tp->tcp_header_len = sizeof(struct tcphdr); 5849 } 5850 5851 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5852 tcp_initialize_rcv_mss(sk); 5853 5854 /* Remember, tcp_poll() does not lock socket! 5855 * Change state from SYN-SENT only after copied_seq 5856 * is initialized. */ 5857 tp->copied_seq = tp->rcv_nxt; 5858 5859 smc_check_reset_syn(tp); 5860 5861 smp_mb(); 5862 5863 tcp_finish_connect(sk, skb); 5864 5865 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5866 tcp_rcv_fastopen_synack(sk, skb, &foc); 5867 5868 if (!sock_flag(sk, SOCK_DEAD)) { 5869 sk->sk_state_change(sk); 5870 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5871 } 5872 if (fastopen_fail) 5873 return -1; 5874 if (sk->sk_write_pending || 5875 icsk->icsk_accept_queue.rskq_defer_accept || 5876 icsk->icsk_ack.pingpong) { 5877 /* Save one ACK. Data will be ready after 5878 * several ticks, if write_pending is set. 5879 * 5880 * It may be deleted, but with this feature tcpdumps 5881 * look so _wonderfully_ clever, that I was not able 5882 * to stand against the temptation 8) --ANK 5883 */ 5884 inet_csk_schedule_ack(sk); 5885 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5886 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5887 TCP_DELACK_MAX, TCP_RTO_MAX); 5888 5889 discard: 5890 tcp_drop(sk, skb); 5891 return 0; 5892 } else { 5893 tcp_send_ack(sk); 5894 } 5895 return -1; 5896 } 5897 5898 /* No ACK in the segment */ 5899 5900 if (th->rst) { 5901 /* rfc793: 5902 * "If the RST bit is set 5903 * 5904 * Otherwise (no ACK) drop the segment and return." 5905 */ 5906 5907 goto discard_and_undo; 5908 } 5909 5910 /* PAWS check. */ 5911 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5912 tcp_paws_reject(&tp->rx_opt, 0)) 5913 goto discard_and_undo; 5914 5915 if (th->syn) { 5916 /* We see SYN without ACK. It is attempt of 5917 * simultaneous connect with crossed SYNs. 5918 * Particularly, it can be connect to self. 5919 */ 5920 tcp_set_state(sk, TCP_SYN_RECV); 5921 5922 if (tp->rx_opt.saw_tstamp) { 5923 tp->rx_opt.tstamp_ok = 1; 5924 tcp_store_ts_recent(tp); 5925 tp->tcp_header_len = 5926 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5927 } else { 5928 tp->tcp_header_len = sizeof(struct tcphdr); 5929 } 5930 5931 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5932 tp->copied_seq = tp->rcv_nxt; 5933 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5934 5935 /* RFC1323: The window in SYN & SYN/ACK segments is 5936 * never scaled. 5937 */ 5938 tp->snd_wnd = ntohs(th->window); 5939 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5940 tp->max_window = tp->snd_wnd; 5941 5942 tcp_ecn_rcv_syn(tp, th); 5943 5944 tcp_mtup_init(sk); 5945 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5946 tcp_initialize_rcv_mss(sk); 5947 5948 tcp_send_synack(sk); 5949 #if 0 5950 /* Note, we could accept data and URG from this segment. 5951 * There are no obstacles to make this (except that we must 5952 * either change tcp_recvmsg() to prevent it from returning data 5953 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5954 * 5955 * However, if we ignore data in ACKless segments sometimes, 5956 * we have no reasons to accept it sometimes. 5957 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5958 * is not flawless. So, discard packet for sanity. 5959 * Uncomment this return to process the data. 5960 */ 5961 return -1; 5962 #else 5963 goto discard; 5964 #endif 5965 } 5966 /* "fifth, if neither of the SYN or RST bits is set then 5967 * drop the segment and return." 5968 */ 5969 5970 discard_and_undo: 5971 tcp_clear_options(&tp->rx_opt); 5972 tp->rx_opt.mss_clamp = saved_clamp; 5973 goto discard; 5974 5975 reset_and_undo: 5976 tcp_clear_options(&tp->rx_opt); 5977 tp->rx_opt.mss_clamp = saved_clamp; 5978 return 1; 5979 } 5980 5981 /* 5982 * This function implements the receiving procedure of RFC 793 for 5983 * all states except ESTABLISHED and TIME_WAIT. 5984 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5985 * address independent. 5986 */ 5987 5988 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5989 { 5990 struct tcp_sock *tp = tcp_sk(sk); 5991 struct inet_connection_sock *icsk = inet_csk(sk); 5992 const struct tcphdr *th = tcp_hdr(skb); 5993 struct request_sock *req; 5994 int queued = 0; 5995 bool acceptable; 5996 5997 switch (sk->sk_state) { 5998 case TCP_CLOSE: 5999 goto discard; 6000 6001 case TCP_LISTEN: 6002 if (th->ack) 6003 return 1; 6004 6005 if (th->rst) 6006 goto discard; 6007 6008 if (th->syn) { 6009 if (th->fin) 6010 goto discard; 6011 /* It is possible that we process SYN packets from backlog, 6012 * so we need to make sure to disable BH and RCU right there. 6013 */ 6014 rcu_read_lock(); 6015 local_bh_disable(); 6016 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6017 local_bh_enable(); 6018 rcu_read_unlock(); 6019 6020 if (!acceptable) 6021 return 1; 6022 consume_skb(skb); 6023 return 0; 6024 } 6025 goto discard; 6026 6027 case TCP_SYN_SENT: 6028 tp->rx_opt.saw_tstamp = 0; 6029 tcp_mstamp_refresh(tp); 6030 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6031 if (queued >= 0) 6032 return queued; 6033 6034 /* Do step6 onward by hand. */ 6035 tcp_urg(sk, skb, th); 6036 __kfree_skb(skb); 6037 tcp_data_snd_check(sk); 6038 return 0; 6039 } 6040 6041 tcp_mstamp_refresh(tp); 6042 tp->rx_opt.saw_tstamp = 0; 6043 req = tp->fastopen_rsk; 6044 if (req) { 6045 bool req_stolen; 6046 6047 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6048 sk->sk_state != TCP_FIN_WAIT1); 6049 6050 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6051 goto discard; 6052 } 6053 6054 if (!th->ack && !th->rst && !th->syn) 6055 goto discard; 6056 6057 if (!tcp_validate_incoming(sk, skb, th, 0)) 6058 return 0; 6059 6060 /* step 5: check the ACK field */ 6061 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6062 FLAG_UPDATE_TS_RECENT | 6063 FLAG_NO_CHALLENGE_ACK) > 0; 6064 6065 if (!acceptable) { 6066 if (sk->sk_state == TCP_SYN_RECV) 6067 return 1; /* send one RST */ 6068 tcp_send_challenge_ack(sk, skb); 6069 goto discard; 6070 } 6071 switch (sk->sk_state) { 6072 case TCP_SYN_RECV: 6073 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6074 if (!tp->srtt_us) 6075 tcp_synack_rtt_meas(sk, req); 6076 6077 /* Once we leave TCP_SYN_RECV, we no longer need req 6078 * so release it. 6079 */ 6080 if (req) { 6081 inet_csk(sk)->icsk_retransmits = 0; 6082 reqsk_fastopen_remove(sk, req, false); 6083 /* Re-arm the timer because data may have been sent out. 6084 * This is similar to the regular data transmission case 6085 * when new data has just been ack'ed. 6086 * 6087 * (TFO) - we could try to be more aggressive and 6088 * retransmitting any data sooner based on when they 6089 * are sent out. 6090 */ 6091 tcp_rearm_rto(sk); 6092 } else { 6093 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6094 tp->copied_seq = tp->rcv_nxt; 6095 } 6096 smp_mb(); 6097 tcp_set_state(sk, TCP_ESTABLISHED); 6098 sk->sk_state_change(sk); 6099 6100 /* Note, that this wakeup is only for marginal crossed SYN case. 6101 * Passively open sockets are not waked up, because 6102 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6103 */ 6104 if (sk->sk_socket) 6105 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6106 6107 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6108 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6109 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6110 6111 if (tp->rx_opt.tstamp_ok) 6112 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6113 6114 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6115 tcp_update_pacing_rate(sk); 6116 6117 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6118 tp->lsndtime = tcp_jiffies32; 6119 6120 tcp_initialize_rcv_mss(sk); 6121 tcp_fast_path_on(tp); 6122 break; 6123 6124 case TCP_FIN_WAIT1: { 6125 int tmo; 6126 6127 /* If we enter the TCP_FIN_WAIT1 state and we are a 6128 * Fast Open socket and this is the first acceptable 6129 * ACK we have received, this would have acknowledged 6130 * our SYNACK so stop the SYNACK timer. 6131 */ 6132 if (req) { 6133 /* We no longer need the request sock. */ 6134 reqsk_fastopen_remove(sk, req, false); 6135 tcp_rearm_rto(sk); 6136 } 6137 if (tp->snd_una != tp->write_seq) 6138 break; 6139 6140 tcp_set_state(sk, TCP_FIN_WAIT2); 6141 sk->sk_shutdown |= SEND_SHUTDOWN; 6142 6143 sk_dst_confirm(sk); 6144 6145 if (!sock_flag(sk, SOCK_DEAD)) { 6146 /* Wake up lingering close() */ 6147 sk->sk_state_change(sk); 6148 break; 6149 } 6150 6151 if (tp->linger2 < 0) { 6152 tcp_done(sk); 6153 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6154 return 1; 6155 } 6156 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6157 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6158 /* Receive out of order FIN after close() */ 6159 if (tp->syn_fastopen && th->fin) 6160 tcp_fastopen_active_disable(sk); 6161 tcp_done(sk); 6162 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6163 return 1; 6164 } 6165 6166 tmo = tcp_fin_time(sk); 6167 if (tmo > TCP_TIMEWAIT_LEN) { 6168 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6169 } else if (th->fin || sock_owned_by_user(sk)) { 6170 /* Bad case. We could lose such FIN otherwise. 6171 * It is not a big problem, but it looks confusing 6172 * and not so rare event. We still can lose it now, 6173 * if it spins in bh_lock_sock(), but it is really 6174 * marginal case. 6175 */ 6176 inet_csk_reset_keepalive_timer(sk, tmo); 6177 } else { 6178 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6179 goto discard; 6180 } 6181 break; 6182 } 6183 6184 case TCP_CLOSING: 6185 if (tp->snd_una == tp->write_seq) { 6186 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6187 goto discard; 6188 } 6189 break; 6190 6191 case TCP_LAST_ACK: 6192 if (tp->snd_una == tp->write_seq) { 6193 tcp_update_metrics(sk); 6194 tcp_done(sk); 6195 goto discard; 6196 } 6197 break; 6198 } 6199 6200 /* step 6: check the URG bit */ 6201 tcp_urg(sk, skb, th); 6202 6203 /* step 7: process the segment text */ 6204 switch (sk->sk_state) { 6205 case TCP_CLOSE_WAIT: 6206 case TCP_CLOSING: 6207 case TCP_LAST_ACK: 6208 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6209 break; 6210 /* fall through */ 6211 case TCP_FIN_WAIT1: 6212 case TCP_FIN_WAIT2: 6213 /* RFC 793 says to queue data in these states, 6214 * RFC 1122 says we MUST send a reset. 6215 * BSD 4.4 also does reset. 6216 */ 6217 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6218 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6219 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6220 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6221 tcp_reset(sk); 6222 return 1; 6223 } 6224 } 6225 /* Fall through */ 6226 case TCP_ESTABLISHED: 6227 tcp_data_queue(sk, skb); 6228 queued = 1; 6229 break; 6230 } 6231 6232 /* tcp_data could move socket to TIME-WAIT */ 6233 if (sk->sk_state != TCP_CLOSE) { 6234 tcp_data_snd_check(sk); 6235 tcp_ack_snd_check(sk); 6236 } 6237 6238 if (!queued) { 6239 discard: 6240 tcp_drop(sk, skb); 6241 } 6242 return 0; 6243 } 6244 EXPORT_SYMBOL(tcp_rcv_state_process); 6245 6246 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6247 { 6248 struct inet_request_sock *ireq = inet_rsk(req); 6249 6250 if (family == AF_INET) 6251 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6252 &ireq->ir_rmt_addr, port); 6253 #if IS_ENABLED(CONFIG_IPV6) 6254 else if (family == AF_INET6) 6255 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6256 &ireq->ir_v6_rmt_addr, port); 6257 #endif 6258 } 6259 6260 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6261 * 6262 * If we receive a SYN packet with these bits set, it means a 6263 * network is playing bad games with TOS bits. In order to 6264 * avoid possible false congestion notifications, we disable 6265 * TCP ECN negotiation. 6266 * 6267 * Exception: tcp_ca wants ECN. This is required for DCTCP 6268 * congestion control: Linux DCTCP asserts ECT on all packets, 6269 * including SYN, which is most optimal solution; however, 6270 * others, such as FreeBSD do not. 6271 */ 6272 static void tcp_ecn_create_request(struct request_sock *req, 6273 const struct sk_buff *skb, 6274 const struct sock *listen_sk, 6275 const struct dst_entry *dst) 6276 { 6277 const struct tcphdr *th = tcp_hdr(skb); 6278 const struct net *net = sock_net(listen_sk); 6279 bool th_ecn = th->ece && th->cwr; 6280 bool ect, ecn_ok; 6281 u32 ecn_ok_dst; 6282 6283 if (!th_ecn) 6284 return; 6285 6286 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6287 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6288 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6289 6290 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6291 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6292 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6293 inet_rsk(req)->ecn_ok = 1; 6294 } 6295 6296 static void tcp_openreq_init(struct request_sock *req, 6297 const struct tcp_options_received *rx_opt, 6298 struct sk_buff *skb, const struct sock *sk) 6299 { 6300 struct inet_request_sock *ireq = inet_rsk(req); 6301 6302 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6303 req->cookie_ts = 0; 6304 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6305 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6306 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6307 tcp_rsk(req)->last_oow_ack_time = 0; 6308 req->mss = rx_opt->mss_clamp; 6309 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6310 ireq->tstamp_ok = rx_opt->tstamp_ok; 6311 ireq->sack_ok = rx_opt->sack_ok; 6312 ireq->snd_wscale = rx_opt->snd_wscale; 6313 ireq->wscale_ok = rx_opt->wscale_ok; 6314 ireq->acked = 0; 6315 ireq->ecn_ok = 0; 6316 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6317 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6318 ireq->ir_mark = inet_request_mark(sk, skb); 6319 #if IS_ENABLED(CONFIG_SMC) 6320 ireq->smc_ok = rx_opt->smc_ok; 6321 #endif 6322 } 6323 6324 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6325 struct sock *sk_listener, 6326 bool attach_listener) 6327 { 6328 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6329 attach_listener); 6330 6331 if (req) { 6332 struct inet_request_sock *ireq = inet_rsk(req); 6333 6334 ireq->ireq_opt = NULL; 6335 #if IS_ENABLED(CONFIG_IPV6) 6336 ireq->pktopts = NULL; 6337 #endif 6338 atomic64_set(&ireq->ir_cookie, 0); 6339 ireq->ireq_state = TCP_NEW_SYN_RECV; 6340 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6341 ireq->ireq_family = sk_listener->sk_family; 6342 } 6343 6344 return req; 6345 } 6346 EXPORT_SYMBOL(inet_reqsk_alloc); 6347 6348 /* 6349 * Return true if a syncookie should be sent 6350 */ 6351 static bool tcp_syn_flood_action(const struct sock *sk, 6352 const struct sk_buff *skb, 6353 const char *proto) 6354 { 6355 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6356 const char *msg = "Dropping request"; 6357 bool want_cookie = false; 6358 struct net *net = sock_net(sk); 6359 6360 #ifdef CONFIG_SYN_COOKIES 6361 if (net->ipv4.sysctl_tcp_syncookies) { 6362 msg = "Sending cookies"; 6363 want_cookie = true; 6364 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6365 } else 6366 #endif 6367 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6368 6369 if (!queue->synflood_warned && 6370 net->ipv4.sysctl_tcp_syncookies != 2 && 6371 xchg(&queue->synflood_warned, 1) == 0) 6372 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6373 proto, ntohs(tcp_hdr(skb)->dest), msg); 6374 6375 return want_cookie; 6376 } 6377 6378 static void tcp_reqsk_record_syn(const struct sock *sk, 6379 struct request_sock *req, 6380 const struct sk_buff *skb) 6381 { 6382 if (tcp_sk(sk)->save_syn) { 6383 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6384 u32 *copy; 6385 6386 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6387 if (copy) { 6388 copy[0] = len; 6389 memcpy(©[1], skb_network_header(skb), len); 6390 req->saved_syn = copy; 6391 } 6392 } 6393 } 6394 6395 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6396 const struct tcp_request_sock_ops *af_ops, 6397 struct sock *sk, struct sk_buff *skb) 6398 { 6399 struct tcp_fastopen_cookie foc = { .len = -1 }; 6400 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6401 struct tcp_options_received tmp_opt; 6402 struct tcp_sock *tp = tcp_sk(sk); 6403 struct net *net = sock_net(sk); 6404 struct sock *fastopen_sk = NULL; 6405 struct request_sock *req; 6406 bool want_cookie = false; 6407 struct dst_entry *dst; 6408 struct flowi fl; 6409 6410 /* TW buckets are converted to open requests without 6411 * limitations, they conserve resources and peer is 6412 * evidently real one. 6413 */ 6414 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6415 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6416 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6417 if (!want_cookie) 6418 goto drop; 6419 } 6420 6421 if (sk_acceptq_is_full(sk)) { 6422 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6423 goto drop; 6424 } 6425 6426 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6427 if (!req) 6428 goto drop; 6429 6430 tcp_rsk(req)->af_specific = af_ops; 6431 tcp_rsk(req)->ts_off = 0; 6432 6433 tcp_clear_options(&tmp_opt); 6434 tmp_opt.mss_clamp = af_ops->mss_clamp; 6435 tmp_opt.user_mss = tp->rx_opt.user_mss; 6436 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6437 want_cookie ? NULL : &foc); 6438 6439 if (want_cookie && !tmp_opt.saw_tstamp) 6440 tcp_clear_options(&tmp_opt); 6441 6442 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6443 tmp_opt.smc_ok = 0; 6444 6445 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6446 tcp_openreq_init(req, &tmp_opt, skb, sk); 6447 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6448 6449 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6450 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6451 6452 af_ops->init_req(req, sk, skb); 6453 6454 if (security_inet_conn_request(sk, skb, req)) 6455 goto drop_and_free; 6456 6457 if (tmp_opt.tstamp_ok) 6458 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6459 6460 dst = af_ops->route_req(sk, &fl, req); 6461 if (!dst) 6462 goto drop_and_free; 6463 6464 if (!want_cookie && !isn) { 6465 /* Kill the following clause, if you dislike this way. */ 6466 if (!net->ipv4.sysctl_tcp_syncookies && 6467 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6468 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6469 !tcp_peer_is_proven(req, dst)) { 6470 /* Without syncookies last quarter of 6471 * backlog is filled with destinations, 6472 * proven to be alive. 6473 * It means that we continue to communicate 6474 * to destinations, already remembered 6475 * to the moment of synflood. 6476 */ 6477 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6478 rsk_ops->family); 6479 goto drop_and_release; 6480 } 6481 6482 isn = af_ops->init_seq(skb); 6483 } 6484 6485 tcp_ecn_create_request(req, skb, sk, dst); 6486 6487 if (want_cookie) { 6488 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6489 req->cookie_ts = tmp_opt.tstamp_ok; 6490 if (!tmp_opt.tstamp_ok) 6491 inet_rsk(req)->ecn_ok = 0; 6492 } 6493 6494 tcp_rsk(req)->snt_isn = isn; 6495 tcp_rsk(req)->txhash = net_tx_rndhash(); 6496 tcp_openreq_init_rwin(req, sk, dst); 6497 sk_rx_queue_set(req_to_sk(req), skb); 6498 if (!want_cookie) { 6499 tcp_reqsk_record_syn(sk, req, skb); 6500 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6501 } 6502 if (fastopen_sk) { 6503 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6504 &foc, TCP_SYNACK_FASTOPEN); 6505 /* Add the child socket directly into the accept queue */ 6506 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6507 sk->sk_data_ready(sk); 6508 bh_unlock_sock(fastopen_sk); 6509 sock_put(fastopen_sk); 6510 } else { 6511 tcp_rsk(req)->tfo_listener = false; 6512 if (!want_cookie) 6513 inet_csk_reqsk_queue_hash_add(sk, req, 6514 tcp_timeout_init((struct sock *)req)); 6515 af_ops->send_synack(sk, dst, &fl, req, &foc, 6516 !want_cookie ? TCP_SYNACK_NORMAL : 6517 TCP_SYNACK_COOKIE); 6518 if (want_cookie) { 6519 reqsk_free(req); 6520 return 0; 6521 } 6522 } 6523 reqsk_put(req); 6524 return 0; 6525 6526 drop_and_release: 6527 dst_release(dst); 6528 drop_and_free: 6529 reqsk_free(req); 6530 drop: 6531 tcp_listendrop(sk); 6532 return 0; 6533 } 6534 EXPORT_SYMBOL(tcp_conn_request); 6535