xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_dec(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133 
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 			     unsigned int len)
136 {
137 	static bool __once __read_mostly;
138 
139 	if (!__once) {
140 		struct net_device *dev;
141 
142 		__once = true;
143 
144 		rcu_read_lock();
145 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 		if (!dev || len >= dev->mtu)
147 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 				dev ? dev->name : "Unknown driver");
149 		rcu_read_unlock();
150 	}
151 }
152 
153 /* Adapt the MSS value used to make delayed ack decision to the
154  * real world.
155  */
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 	unsigned int len;
161 
162 	icsk->icsk_ack.last_seg_size = 0;
163 
164 	/* skb->len may jitter because of SACKs, even if peer
165 	 * sends good full-sized frames.
166 	 */
167 	len = skb_shinfo(skb)->gso_size ? : skb->len;
168 	if (len >= icsk->icsk_ack.rcv_mss) {
169 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 					       tcp_sk(sk)->advmss);
171 		/* Account for possibly-removed options */
172 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 				   MAX_TCP_OPTION_SPACE))
174 			tcp_gro_dev_warn(sk, skb, len);
175 	} else {
176 		/* Otherwise, we make more careful check taking into account,
177 		 * that SACKs block is variable.
178 		 *
179 		 * "len" is invariant segment length, including TCP header.
180 		 */
181 		len += skb->data - skb_transport_header(skb);
182 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 		    /* If PSH is not set, packet should be
184 		     * full sized, provided peer TCP is not badly broken.
185 		     * This observation (if it is correct 8)) allows
186 		     * to handle super-low mtu links fairly.
187 		     */
188 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 			/* Subtract also invariant (if peer is RFC compliant),
191 			 * tcp header plus fixed timestamp option length.
192 			 * Resulting "len" is MSS free of SACK jitter.
193 			 */
194 			len -= tcp_sk(sk)->tcp_header_len;
195 			icsk->icsk_ack.last_seg_size = len;
196 			if (len == lss) {
197 				icsk->icsk_ack.rcv_mss = len;
198 				return;
199 			}
200 		}
201 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 	}
205 }
206 
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211 
212 	if (quickacks == 0)
213 		quickacks = 2;
214 	quickacks = min(quickacks, max_quickacks);
215 	if (quickacks > icsk->icsk_ack.quick)
216 		icsk->icsk_ack.quick = quickacks;
217 }
218 
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 	struct inet_connection_sock *icsk = inet_csk(sk);
222 
223 	tcp_incr_quickack(sk, max_quickacks);
224 	icsk->icsk_ack.pingpong = 0;
225 	icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228 
229 /* Send ACKs quickly, if "quick" count is not exhausted
230  * and the session is not interactive.
231  */
232 
233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 	const struct inet_connection_sock *icsk = inet_csk(sk);
236 	const struct dst_entry *dst = __sk_dst_get(sk);
237 
238 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
240 }
241 
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 	if (tp->ecn_flags & TCP_ECN_OK)
245 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247 
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 	if (tcp_hdr(skb)->cwr) {
251 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252 
253 		/* If the sender is telling us it has entered CWR, then its
254 		 * cwnd may be very low (even just 1 packet), so we should ACK
255 		 * immediately.
256 		 */
257 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
258 	}
259 }
260 
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
262 {
263 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
264 }
265 
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 
270 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 	case INET_ECN_NOT_ECT:
272 		/* Funny extension: if ECT is not set on a segment,
273 		 * and we already seen ECT on a previous segment,
274 		 * it is probably a retransmit.
275 		 */
276 		if (tp->ecn_flags & TCP_ECN_SEEN)
277 			tcp_enter_quickack_mode(sk, 2);
278 		break;
279 	case INET_ECN_CE:
280 		if (tcp_ca_needs_ecn(sk))
281 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
282 
283 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 			/* Better not delay acks, sender can have a very low cwnd */
285 			tcp_enter_quickack_mode(sk, 2);
286 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
287 		}
288 		tp->ecn_flags |= TCP_ECN_SEEN;
289 		break;
290 	default:
291 		if (tcp_ca_needs_ecn(sk))
292 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 		tp->ecn_flags |= TCP_ECN_SEEN;
294 		break;
295 	}
296 }
297 
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
299 {
300 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 		__tcp_ecn_check_ce(sk, skb);
302 }
303 
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
305 {
306 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 		tp->ecn_flags &= ~TCP_ECN_OK;
308 }
309 
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 		return true;
320 	return false;
321 }
322 
323 /* Buffer size and advertised window tuning.
324  *
325  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
326  */
327 
328 static void tcp_sndbuf_expand(struct sock *sk)
329 {
330 	const struct tcp_sock *tp = tcp_sk(sk);
331 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 	int sndmem, per_mss;
333 	u32 nr_segs;
334 
335 	/* Worst case is non GSO/TSO : each frame consumes one skb
336 	 * and skb->head is kmalloced using power of two area of memory
337 	 */
338 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 		  MAX_TCP_HEADER +
340 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
341 
342 	per_mss = roundup_pow_of_two(per_mss) +
343 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
344 
345 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
347 
348 	/* Fast Recovery (RFC 5681 3.2) :
349 	 * Cubic needs 1.7 factor, rounded to 2 to include
350 	 * extra cushion (application might react slowly to EPOLLOUT)
351 	 */
352 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 	sndmem *= nr_segs * per_mss;
354 
355 	if (sk->sk_sndbuf < sndmem)
356 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
357 }
358 
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
360  *
361  * All tcp_full_space() is split to two parts: "network" buffer, allocated
362  * forward and advertised in receiver window (tp->rcv_wnd) and
363  * "application buffer", required to isolate scheduling/application
364  * latencies from network.
365  * window_clamp is maximal advertised window. It can be less than
366  * tcp_full_space(), in this case tcp_full_space() - window_clamp
367  * is reserved for "application" buffer. The less window_clamp is
368  * the smoother our behaviour from viewpoint of network, but the lower
369  * throughput and the higher sensitivity of the connection to losses. 8)
370  *
371  * rcv_ssthresh is more strict window_clamp used at "slow start"
372  * phase to predict further behaviour of this connection.
373  * It is used for two goals:
374  * - to enforce header prediction at sender, even when application
375  *   requires some significant "application buffer". It is check #1.
376  * - to prevent pruning of receive queue because of misprediction
377  *   of receiver window. Check #2.
378  *
379  * The scheme does not work when sender sends good segments opening
380  * window and then starts to feed us spaghetti. But it should work
381  * in common situations. Otherwise, we have to rely on queue collapsing.
382  */
383 
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	/* Optimize this! */
389 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
391 
392 	while (tp->rcv_ssthresh <= window) {
393 		if (truesize <= skb->len)
394 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
395 
396 		truesize >>= 1;
397 		window >>= 1;
398 	}
399 	return 0;
400 }
401 
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
403 {
404 	struct tcp_sock *tp = tcp_sk(sk);
405 
406 	/* Check #1 */
407 	if (tp->rcv_ssthresh < tp->window_clamp &&
408 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
409 	    !tcp_under_memory_pressure(sk)) {
410 		int incr;
411 
412 		/* Check #2. Increase window, if skb with such overhead
413 		 * will fit to rcvbuf in future.
414 		 */
415 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
416 			incr = 2 * tp->advmss;
417 		else
418 			incr = __tcp_grow_window(sk, skb);
419 
420 		if (incr) {
421 			incr = max_t(int, incr, 2 * skb->len);
422 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 					       tp->window_clamp);
424 			inet_csk(sk)->icsk_ack.quick |= 1;
425 		}
426 	}
427 }
428 
429 /* 3. Tuning rcvbuf, when connection enters established state. */
430 static void tcp_fixup_rcvbuf(struct sock *sk)
431 {
432 	u32 mss = tcp_sk(sk)->advmss;
433 	int rcvmem;
434 
435 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
436 		 tcp_default_init_rwnd(mss);
437 
438 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
439 	 * Allow enough cushion so that sender is not limited by our window
440 	 */
441 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
442 		rcvmem <<= 2;
443 
444 	if (sk->sk_rcvbuf < rcvmem)
445 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
446 }
447 
448 /* 4. Try to fixup all. It is made immediately after connection enters
449  *    established state.
450  */
451 void tcp_init_buffer_space(struct sock *sk)
452 {
453 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
454 	struct tcp_sock *tp = tcp_sk(sk);
455 	int maxwin;
456 
457 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
458 		tcp_fixup_rcvbuf(sk);
459 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
460 		tcp_sndbuf_expand(sk);
461 
462 	tp->rcvq_space.space = tp->rcv_wnd;
463 	tcp_mstamp_refresh(tp);
464 	tp->rcvq_space.time = tp->tcp_mstamp;
465 	tp->rcvq_space.seq = tp->copied_seq;
466 
467 	maxwin = tcp_full_space(sk);
468 
469 	if (tp->window_clamp >= maxwin) {
470 		tp->window_clamp = maxwin;
471 
472 		if (tcp_app_win && maxwin > 4 * tp->advmss)
473 			tp->window_clamp = max(maxwin -
474 					       (maxwin >> tcp_app_win),
475 					       4 * tp->advmss);
476 	}
477 
478 	/* Force reservation of one segment. */
479 	if (tcp_app_win &&
480 	    tp->window_clamp > 2 * tp->advmss &&
481 	    tp->window_clamp + tp->advmss > maxwin)
482 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
483 
484 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
485 	tp->snd_cwnd_stamp = tcp_jiffies32;
486 }
487 
488 /* 5. Recalculate window clamp after socket hit its memory bounds. */
489 static void tcp_clamp_window(struct sock *sk)
490 {
491 	struct tcp_sock *tp = tcp_sk(sk);
492 	struct inet_connection_sock *icsk = inet_csk(sk);
493 	struct net *net = sock_net(sk);
494 
495 	icsk->icsk_ack.quick = 0;
496 
497 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
498 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
499 	    !tcp_under_memory_pressure(sk) &&
500 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
501 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
502 				    net->ipv4.sysctl_tcp_rmem[2]);
503 	}
504 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
505 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
506 }
507 
508 /* Initialize RCV_MSS value.
509  * RCV_MSS is an our guess about MSS used by the peer.
510  * We haven't any direct information about the MSS.
511  * It's better to underestimate the RCV_MSS rather than overestimate.
512  * Overestimations make us ACKing less frequently than needed.
513  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
514  */
515 void tcp_initialize_rcv_mss(struct sock *sk)
516 {
517 	const struct tcp_sock *tp = tcp_sk(sk);
518 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
519 
520 	hint = min(hint, tp->rcv_wnd / 2);
521 	hint = min(hint, TCP_MSS_DEFAULT);
522 	hint = max(hint, TCP_MIN_MSS);
523 
524 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
525 }
526 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
527 
528 /* Receiver "autotuning" code.
529  *
530  * The algorithm for RTT estimation w/o timestamps is based on
531  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
532  * <http://public.lanl.gov/radiant/pubs.html#DRS>
533  *
534  * More detail on this code can be found at
535  * <http://staff.psc.edu/jheffner/>,
536  * though this reference is out of date.  A new paper
537  * is pending.
538  */
539 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
540 {
541 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
542 	long m = sample;
543 
544 	if (new_sample != 0) {
545 		/* If we sample in larger samples in the non-timestamp
546 		 * case, we could grossly overestimate the RTT especially
547 		 * with chatty applications or bulk transfer apps which
548 		 * are stalled on filesystem I/O.
549 		 *
550 		 * Also, since we are only going for a minimum in the
551 		 * non-timestamp case, we do not smooth things out
552 		 * else with timestamps disabled convergence takes too
553 		 * long.
554 		 */
555 		if (!win_dep) {
556 			m -= (new_sample >> 3);
557 			new_sample += m;
558 		} else {
559 			m <<= 3;
560 			if (m < new_sample)
561 				new_sample = m;
562 		}
563 	} else {
564 		/* No previous measure. */
565 		new_sample = m << 3;
566 	}
567 
568 	tp->rcv_rtt_est.rtt_us = new_sample;
569 }
570 
571 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
572 {
573 	u32 delta_us;
574 
575 	if (tp->rcv_rtt_est.time == 0)
576 		goto new_measure;
577 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
578 		return;
579 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
580 	if (!delta_us)
581 		delta_us = 1;
582 	tcp_rcv_rtt_update(tp, delta_us, 1);
583 
584 new_measure:
585 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
586 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
587 }
588 
589 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
590 					  const struct sk_buff *skb)
591 {
592 	struct tcp_sock *tp = tcp_sk(sk);
593 
594 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
595 		return;
596 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
597 
598 	if (TCP_SKB_CB(skb)->end_seq -
599 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
600 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
601 		u32 delta_us;
602 
603 		if (!delta)
604 			delta = 1;
605 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
606 		tcp_rcv_rtt_update(tp, delta_us, 0);
607 	}
608 }
609 
610 /*
611  * This function should be called every time data is copied to user space.
612  * It calculates the appropriate TCP receive buffer space.
613  */
614 void tcp_rcv_space_adjust(struct sock *sk)
615 {
616 	struct tcp_sock *tp = tcp_sk(sk);
617 	u32 copied;
618 	int time;
619 
620 	trace_tcp_rcv_space_adjust(sk);
621 
622 	tcp_mstamp_refresh(tp);
623 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
624 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
625 		return;
626 
627 	/* Number of bytes copied to user in last RTT */
628 	copied = tp->copied_seq - tp->rcvq_space.seq;
629 	if (copied <= tp->rcvq_space.space)
630 		goto new_measure;
631 
632 	/* A bit of theory :
633 	 * copied = bytes received in previous RTT, our base window
634 	 * To cope with packet losses, we need a 2x factor
635 	 * To cope with slow start, and sender growing its cwin by 100 %
636 	 * every RTT, we need a 4x factor, because the ACK we are sending
637 	 * now is for the next RTT, not the current one :
638 	 * <prev RTT . ><current RTT .. ><next RTT .... >
639 	 */
640 
641 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
642 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
643 		int rcvmem, rcvbuf;
644 		u64 rcvwin, grow;
645 
646 		/* minimal window to cope with packet losses, assuming
647 		 * steady state. Add some cushion because of small variations.
648 		 */
649 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
650 
651 		/* Accommodate for sender rate increase (eg. slow start) */
652 		grow = rcvwin * (copied - tp->rcvq_space.space);
653 		do_div(grow, tp->rcvq_space.space);
654 		rcvwin += (grow << 1);
655 
656 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
657 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
658 			rcvmem += 128;
659 
660 		do_div(rcvwin, tp->advmss);
661 		rcvbuf = min_t(u64, rcvwin * rcvmem,
662 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
663 		if (rcvbuf > sk->sk_rcvbuf) {
664 			sk->sk_rcvbuf = rcvbuf;
665 
666 			/* Make the window clamp follow along.  */
667 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
668 		}
669 	}
670 	tp->rcvq_space.space = copied;
671 
672 new_measure:
673 	tp->rcvq_space.seq = tp->copied_seq;
674 	tp->rcvq_space.time = tp->tcp_mstamp;
675 }
676 
677 /* There is something which you must keep in mind when you analyze the
678  * behavior of the tp->ato delayed ack timeout interval.  When a
679  * connection starts up, we want to ack as quickly as possible.  The
680  * problem is that "good" TCP's do slow start at the beginning of data
681  * transmission.  The means that until we send the first few ACK's the
682  * sender will sit on his end and only queue most of his data, because
683  * he can only send snd_cwnd unacked packets at any given time.  For
684  * each ACK we send, he increments snd_cwnd and transmits more of his
685  * queue.  -DaveM
686  */
687 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 	struct inet_connection_sock *icsk = inet_csk(sk);
691 	u32 now;
692 
693 	inet_csk_schedule_ack(sk);
694 
695 	tcp_measure_rcv_mss(sk, skb);
696 
697 	tcp_rcv_rtt_measure(tp);
698 
699 	now = tcp_jiffies32;
700 
701 	if (!icsk->icsk_ack.ato) {
702 		/* The _first_ data packet received, initialize
703 		 * delayed ACK engine.
704 		 */
705 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
706 		icsk->icsk_ack.ato = TCP_ATO_MIN;
707 	} else {
708 		int m = now - icsk->icsk_ack.lrcvtime;
709 
710 		if (m <= TCP_ATO_MIN / 2) {
711 			/* The fastest case is the first. */
712 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
713 		} else if (m < icsk->icsk_ack.ato) {
714 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
715 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
716 				icsk->icsk_ack.ato = icsk->icsk_rto;
717 		} else if (m > icsk->icsk_rto) {
718 			/* Too long gap. Apparently sender failed to
719 			 * restart window, so that we send ACKs quickly.
720 			 */
721 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
722 			sk_mem_reclaim(sk);
723 		}
724 	}
725 	icsk->icsk_ack.lrcvtime = now;
726 
727 	tcp_ecn_check_ce(sk, skb);
728 
729 	if (skb->len >= 128)
730 		tcp_grow_window(sk, skb);
731 }
732 
733 /* Called to compute a smoothed rtt estimate. The data fed to this
734  * routine either comes from timestamps, or from segments that were
735  * known _not_ to have been retransmitted [see Karn/Partridge
736  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
737  * piece by Van Jacobson.
738  * NOTE: the next three routines used to be one big routine.
739  * To save cycles in the RFC 1323 implementation it was better to break
740  * it up into three procedures. -- erics
741  */
742 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
743 {
744 	struct tcp_sock *tp = tcp_sk(sk);
745 	long m = mrtt_us; /* RTT */
746 	u32 srtt = tp->srtt_us;
747 
748 	/*	The following amusing code comes from Jacobson's
749 	 *	article in SIGCOMM '88.  Note that rtt and mdev
750 	 *	are scaled versions of rtt and mean deviation.
751 	 *	This is designed to be as fast as possible
752 	 *	m stands for "measurement".
753 	 *
754 	 *	On a 1990 paper the rto value is changed to:
755 	 *	RTO = rtt + 4 * mdev
756 	 *
757 	 * Funny. This algorithm seems to be very broken.
758 	 * These formulae increase RTO, when it should be decreased, increase
759 	 * too slowly, when it should be increased quickly, decrease too quickly
760 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
761 	 * does not matter how to _calculate_ it. Seems, it was trap
762 	 * that VJ failed to avoid. 8)
763 	 */
764 	if (srtt != 0) {
765 		m -= (srtt >> 3);	/* m is now error in rtt est */
766 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
767 		if (m < 0) {
768 			m = -m;		/* m is now abs(error) */
769 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
770 			/* This is similar to one of Eifel findings.
771 			 * Eifel blocks mdev updates when rtt decreases.
772 			 * This solution is a bit different: we use finer gain
773 			 * for mdev in this case (alpha*beta).
774 			 * Like Eifel it also prevents growth of rto,
775 			 * but also it limits too fast rto decreases,
776 			 * happening in pure Eifel.
777 			 */
778 			if (m > 0)
779 				m >>= 3;
780 		} else {
781 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
782 		}
783 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
784 		if (tp->mdev_us > tp->mdev_max_us) {
785 			tp->mdev_max_us = tp->mdev_us;
786 			if (tp->mdev_max_us > tp->rttvar_us)
787 				tp->rttvar_us = tp->mdev_max_us;
788 		}
789 		if (after(tp->snd_una, tp->rtt_seq)) {
790 			if (tp->mdev_max_us < tp->rttvar_us)
791 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
792 			tp->rtt_seq = tp->snd_nxt;
793 			tp->mdev_max_us = tcp_rto_min_us(sk);
794 		}
795 	} else {
796 		/* no previous measure. */
797 		srtt = m << 3;		/* take the measured time to be rtt */
798 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
799 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
800 		tp->mdev_max_us = tp->rttvar_us;
801 		tp->rtt_seq = tp->snd_nxt;
802 	}
803 	tp->srtt_us = max(1U, srtt);
804 }
805 
806 static void tcp_update_pacing_rate(struct sock *sk)
807 {
808 	const struct tcp_sock *tp = tcp_sk(sk);
809 	u64 rate;
810 
811 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
812 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
813 
814 	/* current rate is (cwnd * mss) / srtt
815 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
816 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
817 	 *
818 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
819 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
820 	 *	 end of slow start and should slow down.
821 	 */
822 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
823 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
824 	else
825 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
826 
827 	rate *= max(tp->snd_cwnd, tp->packets_out);
828 
829 	if (likely(tp->srtt_us))
830 		do_div(rate, tp->srtt_us);
831 
832 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
833 	 * without any lock. We want to make sure compiler wont store
834 	 * intermediate values in this location.
835 	 */
836 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
837 					     sk->sk_max_pacing_rate));
838 }
839 
840 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
841  * routine referred to above.
842  */
843 static void tcp_set_rto(struct sock *sk)
844 {
845 	const struct tcp_sock *tp = tcp_sk(sk);
846 	/* Old crap is replaced with new one. 8)
847 	 *
848 	 * More seriously:
849 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
850 	 *    It cannot be less due to utterly erratic ACK generation made
851 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
852 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
853 	 *    is invisible. Actually, Linux-2.4 also generates erratic
854 	 *    ACKs in some circumstances.
855 	 */
856 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
857 
858 	/* 2. Fixups made earlier cannot be right.
859 	 *    If we do not estimate RTO correctly without them,
860 	 *    all the algo is pure shit and should be replaced
861 	 *    with correct one. It is exactly, which we pretend to do.
862 	 */
863 
864 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
865 	 * guarantees that rto is higher.
866 	 */
867 	tcp_bound_rto(sk);
868 }
869 
870 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
871 {
872 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
873 
874 	if (!cwnd)
875 		cwnd = TCP_INIT_CWND;
876 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
877 }
878 
879 /* Take a notice that peer is sending D-SACKs */
880 static void tcp_dsack_seen(struct tcp_sock *tp)
881 {
882 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
883 	tp->rack.dsack_seen = 1;
884 	tp->dsack_dups++;
885 }
886 
887 /* It's reordering when higher sequence was delivered (i.e. sacked) before
888  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
889  * distance is approximated in full-mss packet distance ("reordering").
890  */
891 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
892 				      const int ts)
893 {
894 	struct tcp_sock *tp = tcp_sk(sk);
895 	const u32 mss = tp->mss_cache;
896 	u32 fack, metric;
897 
898 	fack = tcp_highest_sack_seq(tp);
899 	if (!before(low_seq, fack))
900 		return;
901 
902 	metric = fack - low_seq;
903 	if ((metric > tp->reordering * mss) && mss) {
904 #if FASTRETRANS_DEBUG > 1
905 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
906 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
907 			 tp->reordering,
908 			 0,
909 			 tp->sacked_out,
910 			 tp->undo_marker ? tp->undo_retrans : 0);
911 #endif
912 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
913 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
914 	}
915 
916 	/* This exciting event is worth to be remembered. 8) */
917 	tp->reord_seen++;
918 	NET_INC_STATS(sock_net(sk),
919 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
920 }
921 
922 /* This must be called before lost_out is incremented */
923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	if (!tp->retransmit_skb_hint ||
926 	    before(TCP_SKB_CB(skb)->seq,
927 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
928 		tp->retransmit_skb_hint = skb;
929 }
930 
931 /* Sum the number of packets on the wire we have marked as lost.
932  * There are two cases we care about here:
933  * a) Packet hasn't been marked lost (nor retransmitted),
934  *    and this is the first loss.
935  * b) Packet has been marked both lost and retransmitted,
936  *    and this means we think it was lost again.
937  */
938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 {
940 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
941 
942 	if (!(sacked & TCPCB_LOST) ||
943 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
944 		tp->lost += tcp_skb_pcount(skb);
945 }
946 
947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
950 		tcp_verify_retransmit_hint(tp, skb);
951 
952 		tp->lost_out += tcp_skb_pcount(skb);
953 		tcp_sum_lost(tp, skb);
954 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
955 	}
956 }
957 
958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
959 {
960 	tcp_verify_retransmit_hint(tp, skb);
961 
962 	tcp_sum_lost(tp, skb);
963 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
964 		tp->lost_out += tcp_skb_pcount(skb);
965 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
966 	}
967 }
968 
969 /* This procedure tags the retransmission queue when SACKs arrive.
970  *
971  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
972  * Packets in queue with these bits set are counted in variables
973  * sacked_out, retrans_out and lost_out, correspondingly.
974  *
975  * Valid combinations are:
976  * Tag  InFlight	Description
977  * 0	1		- orig segment is in flight.
978  * S	0		- nothing flies, orig reached receiver.
979  * L	0		- nothing flies, orig lost by net.
980  * R	2		- both orig and retransmit are in flight.
981  * L|R	1		- orig is lost, retransmit is in flight.
982  * S|R  1		- orig reached receiver, retrans is still in flight.
983  * (L|S|R is logically valid, it could occur when L|R is sacked,
984  *  but it is equivalent to plain S and code short-curcuits it to S.
985  *  L|S is logically invalid, it would mean -1 packet in flight 8))
986  *
987  * These 6 states form finite state machine, controlled by the following events:
988  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
989  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
990  * 3. Loss detection event of two flavors:
991  *	A. Scoreboard estimator decided the packet is lost.
992  *	   A'. Reno "three dupacks" marks head of queue lost.
993  *	B. SACK arrives sacking SND.NXT at the moment, when the
994  *	   segment was retransmitted.
995  * 4. D-SACK added new rule: D-SACK changes any tag to S.
996  *
997  * It is pleasant to note, that state diagram turns out to be commutative,
998  * so that we are allowed not to be bothered by order of our actions,
999  * when multiple events arrive simultaneously. (see the function below).
1000  *
1001  * Reordering detection.
1002  * --------------------
1003  * Reordering metric is maximal distance, which a packet can be displaced
1004  * in packet stream. With SACKs we can estimate it:
1005  *
1006  * 1. SACK fills old hole and the corresponding segment was not
1007  *    ever retransmitted -> reordering. Alas, we cannot use it
1008  *    when segment was retransmitted.
1009  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1010  *    for retransmitted and already SACKed segment -> reordering..
1011  * Both of these heuristics are not used in Loss state, when we cannot
1012  * account for retransmits accurately.
1013  *
1014  * SACK block validation.
1015  * ----------------------
1016  *
1017  * SACK block range validation checks that the received SACK block fits to
1018  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1019  * Note that SND.UNA is not included to the range though being valid because
1020  * it means that the receiver is rather inconsistent with itself reporting
1021  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1022  * perfectly valid, however, in light of RFC2018 which explicitly states
1023  * that "SACK block MUST reflect the newest segment.  Even if the newest
1024  * segment is going to be discarded ...", not that it looks very clever
1025  * in case of head skb. Due to potentional receiver driven attacks, we
1026  * choose to avoid immediate execution of a walk in write queue due to
1027  * reneging and defer head skb's loss recovery to standard loss recovery
1028  * procedure that will eventually trigger (nothing forbids us doing this).
1029  *
1030  * Implements also blockage to start_seq wrap-around. Problem lies in the
1031  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1032  * there's no guarantee that it will be before snd_nxt (n). The problem
1033  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1034  * wrap (s_w):
1035  *
1036  *         <- outs wnd ->                          <- wrapzone ->
1037  *         u     e      n                         u_w   e_w  s n_w
1038  *         |     |      |                          |     |   |  |
1039  * |<------------+------+----- TCP seqno space --------------+---------->|
1040  * ...-- <2^31 ->|                                           |<--------...
1041  * ...---- >2^31 ------>|                                    |<--------...
1042  *
1043  * Current code wouldn't be vulnerable but it's better still to discard such
1044  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1045  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1046  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1047  * equal to the ideal case (infinite seqno space without wrap caused issues).
1048  *
1049  * With D-SACK the lower bound is extended to cover sequence space below
1050  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1051  * again, D-SACK block must not to go across snd_una (for the same reason as
1052  * for the normal SACK blocks, explained above). But there all simplicity
1053  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1054  * fully below undo_marker they do not affect behavior in anyway and can
1055  * therefore be safely ignored. In rare cases (which are more or less
1056  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1057  * fragmentation and packet reordering past skb's retransmission. To consider
1058  * them correctly, the acceptable range must be extended even more though
1059  * the exact amount is rather hard to quantify. However, tp->max_window can
1060  * be used as an exaggerated estimate.
1061  */
1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1063 				   u32 start_seq, u32 end_seq)
1064 {
1065 	/* Too far in future, or reversed (interpretation is ambiguous) */
1066 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1067 		return false;
1068 
1069 	/* Nasty start_seq wrap-around check (see comments above) */
1070 	if (!before(start_seq, tp->snd_nxt))
1071 		return false;
1072 
1073 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1074 	 * start_seq == snd_una is non-sensical (see comments above)
1075 	 */
1076 	if (after(start_seq, tp->snd_una))
1077 		return true;
1078 
1079 	if (!is_dsack || !tp->undo_marker)
1080 		return false;
1081 
1082 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1083 	if (after(end_seq, tp->snd_una))
1084 		return false;
1085 
1086 	if (!before(start_seq, tp->undo_marker))
1087 		return true;
1088 
1089 	/* Too old */
1090 	if (!after(end_seq, tp->undo_marker))
1091 		return false;
1092 
1093 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1094 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1095 	 */
1096 	return !before(start_seq, end_seq - tp->max_window);
1097 }
1098 
1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1100 			    struct tcp_sack_block_wire *sp, int num_sacks,
1101 			    u32 prior_snd_una)
1102 {
1103 	struct tcp_sock *tp = tcp_sk(sk);
1104 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1105 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1106 	bool dup_sack = false;
1107 
1108 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1109 		dup_sack = true;
1110 		tcp_dsack_seen(tp);
1111 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1112 	} else if (num_sacks > 1) {
1113 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1114 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1115 
1116 		if (!after(end_seq_0, end_seq_1) &&
1117 		    !before(start_seq_0, start_seq_1)) {
1118 			dup_sack = true;
1119 			tcp_dsack_seen(tp);
1120 			NET_INC_STATS(sock_net(sk),
1121 					LINUX_MIB_TCPDSACKOFORECV);
1122 		}
1123 	}
1124 
1125 	/* D-SACK for already forgotten data... Do dumb counting. */
1126 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1127 	    !after(end_seq_0, prior_snd_una) &&
1128 	    after(end_seq_0, tp->undo_marker))
1129 		tp->undo_retrans--;
1130 
1131 	return dup_sack;
1132 }
1133 
1134 struct tcp_sacktag_state {
1135 	u32	reord;
1136 	/* Timestamps for earliest and latest never-retransmitted segment
1137 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1138 	 * but congestion control should still get an accurate delay signal.
1139 	 */
1140 	u64	first_sackt;
1141 	u64	last_sackt;
1142 	struct rate_sample *rate;
1143 	int	flag;
1144 	unsigned int mss_now;
1145 };
1146 
1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1148  * the incoming SACK may not exactly match but we can find smaller MSS
1149  * aligned portion of it that matches. Therefore we might need to fragment
1150  * which may fail and creates some hassle (caller must handle error case
1151  * returns).
1152  *
1153  * FIXME: this could be merged to shift decision code
1154  */
1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1156 				  u32 start_seq, u32 end_seq)
1157 {
1158 	int err;
1159 	bool in_sack;
1160 	unsigned int pkt_len;
1161 	unsigned int mss;
1162 
1163 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1164 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1165 
1166 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1167 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1168 		mss = tcp_skb_mss(skb);
1169 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1170 
1171 		if (!in_sack) {
1172 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1173 			if (pkt_len < mss)
1174 				pkt_len = mss;
1175 		} else {
1176 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1177 			if (pkt_len < mss)
1178 				return -EINVAL;
1179 		}
1180 
1181 		/* Round if necessary so that SACKs cover only full MSSes
1182 		 * and/or the remaining small portion (if present)
1183 		 */
1184 		if (pkt_len > mss) {
1185 			unsigned int new_len = (pkt_len / mss) * mss;
1186 			if (!in_sack && new_len < pkt_len)
1187 				new_len += mss;
1188 			pkt_len = new_len;
1189 		}
1190 
1191 		if (pkt_len >= skb->len && !in_sack)
1192 			return 0;
1193 
1194 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1195 				   pkt_len, mss, GFP_ATOMIC);
1196 		if (err < 0)
1197 			return err;
1198 	}
1199 
1200 	return in_sack;
1201 }
1202 
1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1204 static u8 tcp_sacktag_one(struct sock *sk,
1205 			  struct tcp_sacktag_state *state, u8 sacked,
1206 			  u32 start_seq, u32 end_seq,
1207 			  int dup_sack, int pcount,
1208 			  u64 xmit_time)
1209 {
1210 	struct tcp_sock *tp = tcp_sk(sk);
1211 
1212 	/* Account D-SACK for retransmitted packet. */
1213 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1214 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1215 		    after(end_seq, tp->undo_marker))
1216 			tp->undo_retrans--;
1217 		if ((sacked & TCPCB_SACKED_ACKED) &&
1218 		    before(start_seq, state->reord))
1219 				state->reord = start_seq;
1220 	}
1221 
1222 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1223 	if (!after(end_seq, tp->snd_una))
1224 		return sacked;
1225 
1226 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1227 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1228 
1229 		if (sacked & TCPCB_SACKED_RETRANS) {
1230 			/* If the segment is not tagged as lost,
1231 			 * we do not clear RETRANS, believing
1232 			 * that retransmission is still in flight.
1233 			 */
1234 			if (sacked & TCPCB_LOST) {
1235 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1236 				tp->lost_out -= pcount;
1237 				tp->retrans_out -= pcount;
1238 			}
1239 		} else {
1240 			if (!(sacked & TCPCB_RETRANS)) {
1241 				/* New sack for not retransmitted frame,
1242 				 * which was in hole. It is reordering.
1243 				 */
1244 				if (before(start_seq,
1245 					   tcp_highest_sack_seq(tp)) &&
1246 				    before(start_seq, state->reord))
1247 					state->reord = start_seq;
1248 
1249 				if (!after(end_seq, tp->high_seq))
1250 					state->flag |= FLAG_ORIG_SACK_ACKED;
1251 				if (state->first_sackt == 0)
1252 					state->first_sackt = xmit_time;
1253 				state->last_sackt = xmit_time;
1254 			}
1255 
1256 			if (sacked & TCPCB_LOST) {
1257 				sacked &= ~TCPCB_LOST;
1258 				tp->lost_out -= pcount;
1259 			}
1260 		}
1261 
1262 		sacked |= TCPCB_SACKED_ACKED;
1263 		state->flag |= FLAG_DATA_SACKED;
1264 		tp->sacked_out += pcount;
1265 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1266 
1267 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1268 		if (tp->lost_skb_hint &&
1269 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1270 			tp->lost_cnt_hint += pcount;
1271 	}
1272 
1273 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1274 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1275 	 * are accounted above as well.
1276 	 */
1277 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1278 		sacked &= ~TCPCB_SACKED_RETRANS;
1279 		tp->retrans_out -= pcount;
1280 	}
1281 
1282 	return sacked;
1283 }
1284 
1285 /* Shift newly-SACKed bytes from this skb to the immediately previous
1286  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1287  */
1288 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1289 			    struct sk_buff *skb,
1290 			    struct tcp_sacktag_state *state,
1291 			    unsigned int pcount, int shifted, int mss,
1292 			    bool dup_sack)
1293 {
1294 	struct tcp_sock *tp = tcp_sk(sk);
1295 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1296 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1297 
1298 	BUG_ON(!pcount);
1299 
1300 	/* Adjust counters and hints for the newly sacked sequence
1301 	 * range but discard the return value since prev is already
1302 	 * marked. We must tag the range first because the seq
1303 	 * advancement below implicitly advances
1304 	 * tcp_highest_sack_seq() when skb is highest_sack.
1305 	 */
1306 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1307 			start_seq, end_seq, dup_sack, pcount,
1308 			skb->skb_mstamp);
1309 	tcp_rate_skb_delivered(sk, skb, state->rate);
1310 
1311 	if (skb == tp->lost_skb_hint)
1312 		tp->lost_cnt_hint += pcount;
1313 
1314 	TCP_SKB_CB(prev)->end_seq += shifted;
1315 	TCP_SKB_CB(skb)->seq += shifted;
1316 
1317 	tcp_skb_pcount_add(prev, pcount);
1318 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1319 	tcp_skb_pcount_add(skb, -pcount);
1320 
1321 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1322 	 * in theory this shouldn't be necessary but as long as DSACK
1323 	 * code can come after this skb later on it's better to keep
1324 	 * setting gso_size to something.
1325 	 */
1326 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1327 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1328 
1329 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1330 	if (tcp_skb_pcount(skb) <= 1)
1331 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1332 
1333 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1334 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1335 
1336 	if (skb->len > 0) {
1337 		BUG_ON(!tcp_skb_pcount(skb));
1338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1339 		return false;
1340 	}
1341 
1342 	/* Whole SKB was eaten :-) */
1343 
1344 	if (skb == tp->retransmit_skb_hint)
1345 		tp->retransmit_skb_hint = prev;
1346 	if (skb == tp->lost_skb_hint) {
1347 		tp->lost_skb_hint = prev;
1348 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1349 	}
1350 
1351 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1352 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1353 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1354 		TCP_SKB_CB(prev)->end_seq++;
1355 
1356 	if (skb == tcp_highest_sack(sk))
1357 		tcp_advance_highest_sack(sk, skb);
1358 
1359 	tcp_skb_collapse_tstamp(prev, skb);
1360 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1361 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1362 
1363 	tcp_rtx_queue_unlink_and_free(skb, sk);
1364 
1365 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1366 
1367 	return true;
1368 }
1369 
1370 /* I wish gso_size would have a bit more sane initialization than
1371  * something-or-zero which complicates things
1372  */
1373 static int tcp_skb_seglen(const struct sk_buff *skb)
1374 {
1375 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1376 }
1377 
1378 /* Shifting pages past head area doesn't work */
1379 static int skb_can_shift(const struct sk_buff *skb)
1380 {
1381 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1382 }
1383 
1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1385  * skb.
1386  */
1387 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1388 					  struct tcp_sacktag_state *state,
1389 					  u32 start_seq, u32 end_seq,
1390 					  bool dup_sack)
1391 {
1392 	struct tcp_sock *tp = tcp_sk(sk);
1393 	struct sk_buff *prev;
1394 	int mss;
1395 	int pcount = 0;
1396 	int len;
1397 	int in_sack;
1398 
1399 	/* Normally R but no L won't result in plain S */
1400 	if (!dup_sack &&
1401 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1402 		goto fallback;
1403 	if (!skb_can_shift(skb))
1404 		goto fallback;
1405 	/* This frame is about to be dropped (was ACKed). */
1406 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1407 		goto fallback;
1408 
1409 	/* Can only happen with delayed DSACK + discard craziness */
1410 	prev = skb_rb_prev(skb);
1411 	if (!prev)
1412 		goto fallback;
1413 
1414 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1415 		goto fallback;
1416 
1417 	if (!tcp_skb_can_collapse_to(prev))
1418 		goto fallback;
1419 
1420 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1421 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1422 
1423 	if (in_sack) {
1424 		len = skb->len;
1425 		pcount = tcp_skb_pcount(skb);
1426 		mss = tcp_skb_seglen(skb);
1427 
1428 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1429 		 * drop this restriction as unnecessary
1430 		 */
1431 		if (mss != tcp_skb_seglen(prev))
1432 			goto fallback;
1433 	} else {
1434 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1435 			goto noop;
1436 		/* CHECKME: This is non-MSS split case only?, this will
1437 		 * cause skipped skbs due to advancing loop btw, original
1438 		 * has that feature too
1439 		 */
1440 		if (tcp_skb_pcount(skb) <= 1)
1441 			goto noop;
1442 
1443 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1444 		if (!in_sack) {
1445 			/* TODO: head merge to next could be attempted here
1446 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1447 			 * though it might not be worth of the additional hassle
1448 			 *
1449 			 * ...we can probably just fallback to what was done
1450 			 * previously. We could try merging non-SACKed ones
1451 			 * as well but it probably isn't going to buy off
1452 			 * because later SACKs might again split them, and
1453 			 * it would make skb timestamp tracking considerably
1454 			 * harder problem.
1455 			 */
1456 			goto fallback;
1457 		}
1458 
1459 		len = end_seq - TCP_SKB_CB(skb)->seq;
1460 		BUG_ON(len < 0);
1461 		BUG_ON(len > skb->len);
1462 
1463 		/* MSS boundaries should be honoured or else pcount will
1464 		 * severely break even though it makes things bit trickier.
1465 		 * Optimize common case to avoid most of the divides
1466 		 */
1467 		mss = tcp_skb_mss(skb);
1468 
1469 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1470 		 * drop this restriction as unnecessary
1471 		 */
1472 		if (mss != tcp_skb_seglen(prev))
1473 			goto fallback;
1474 
1475 		if (len == mss) {
1476 			pcount = 1;
1477 		} else if (len < mss) {
1478 			goto noop;
1479 		} else {
1480 			pcount = len / mss;
1481 			len = pcount * mss;
1482 		}
1483 	}
1484 
1485 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1486 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1487 		goto fallback;
1488 
1489 	if (!skb_shift(prev, skb, len))
1490 		goto fallback;
1491 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1492 		goto out;
1493 
1494 	/* Hole filled allows collapsing with the next as well, this is very
1495 	 * useful when hole on every nth skb pattern happens
1496 	 */
1497 	skb = skb_rb_next(prev);
1498 	if (!skb)
1499 		goto out;
1500 
1501 	if (!skb_can_shift(skb) ||
1502 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1503 	    (mss != tcp_skb_seglen(skb)))
1504 		goto out;
1505 
1506 	len = skb->len;
1507 	if (skb_shift(prev, skb, len)) {
1508 		pcount += tcp_skb_pcount(skb);
1509 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1510 				len, mss, 0);
1511 	}
1512 
1513 out:
1514 	return prev;
1515 
1516 noop:
1517 	return skb;
1518 
1519 fallback:
1520 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1521 	return NULL;
1522 }
1523 
1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1525 					struct tcp_sack_block *next_dup,
1526 					struct tcp_sacktag_state *state,
1527 					u32 start_seq, u32 end_seq,
1528 					bool dup_sack_in)
1529 {
1530 	struct tcp_sock *tp = tcp_sk(sk);
1531 	struct sk_buff *tmp;
1532 
1533 	skb_rbtree_walk_from(skb) {
1534 		int in_sack = 0;
1535 		bool dup_sack = dup_sack_in;
1536 
1537 		/* queue is in-order => we can short-circuit the walk early */
1538 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1539 			break;
1540 
1541 		if (next_dup  &&
1542 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1543 			in_sack = tcp_match_skb_to_sack(sk, skb,
1544 							next_dup->start_seq,
1545 							next_dup->end_seq);
1546 			if (in_sack > 0)
1547 				dup_sack = true;
1548 		}
1549 
1550 		/* skb reference here is a bit tricky to get right, since
1551 		 * shifting can eat and free both this skb and the next,
1552 		 * so not even _safe variant of the loop is enough.
1553 		 */
1554 		if (in_sack <= 0) {
1555 			tmp = tcp_shift_skb_data(sk, skb, state,
1556 						 start_seq, end_seq, dup_sack);
1557 			if (tmp) {
1558 				if (tmp != skb) {
1559 					skb = tmp;
1560 					continue;
1561 				}
1562 
1563 				in_sack = 0;
1564 			} else {
1565 				in_sack = tcp_match_skb_to_sack(sk, skb,
1566 								start_seq,
1567 								end_seq);
1568 			}
1569 		}
1570 
1571 		if (unlikely(in_sack < 0))
1572 			break;
1573 
1574 		if (in_sack) {
1575 			TCP_SKB_CB(skb)->sacked =
1576 				tcp_sacktag_one(sk,
1577 						state,
1578 						TCP_SKB_CB(skb)->sacked,
1579 						TCP_SKB_CB(skb)->seq,
1580 						TCP_SKB_CB(skb)->end_seq,
1581 						dup_sack,
1582 						tcp_skb_pcount(skb),
1583 						skb->skb_mstamp);
1584 			tcp_rate_skb_delivered(sk, skb, state->rate);
1585 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1586 				list_del_init(&skb->tcp_tsorted_anchor);
1587 
1588 			if (!before(TCP_SKB_CB(skb)->seq,
1589 				    tcp_highest_sack_seq(tp)))
1590 				tcp_advance_highest_sack(sk, skb);
1591 		}
1592 	}
1593 	return skb;
1594 }
1595 
1596 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1597 					   struct tcp_sacktag_state *state,
1598 					   u32 seq)
1599 {
1600 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1601 	struct sk_buff *skb;
1602 
1603 	while (*p) {
1604 		parent = *p;
1605 		skb = rb_to_skb(parent);
1606 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1607 			p = &parent->rb_left;
1608 			continue;
1609 		}
1610 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1611 			p = &parent->rb_right;
1612 			continue;
1613 		}
1614 		return skb;
1615 	}
1616 	return NULL;
1617 }
1618 
1619 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1620 					struct tcp_sacktag_state *state,
1621 					u32 skip_to_seq)
1622 {
1623 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1624 		return skb;
1625 
1626 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1627 }
1628 
1629 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1630 						struct sock *sk,
1631 						struct tcp_sack_block *next_dup,
1632 						struct tcp_sacktag_state *state,
1633 						u32 skip_to_seq)
1634 {
1635 	if (!next_dup)
1636 		return skb;
1637 
1638 	if (before(next_dup->start_seq, skip_to_seq)) {
1639 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1640 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1641 				       next_dup->start_seq, next_dup->end_seq,
1642 				       1);
1643 	}
1644 
1645 	return skb;
1646 }
1647 
1648 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1649 {
1650 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651 }
1652 
1653 static int
1654 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1655 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1656 {
1657 	struct tcp_sock *tp = tcp_sk(sk);
1658 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1659 				    TCP_SKB_CB(ack_skb)->sacked);
1660 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1661 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1662 	struct tcp_sack_block *cache;
1663 	struct sk_buff *skb;
1664 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1665 	int used_sacks;
1666 	bool found_dup_sack = false;
1667 	int i, j;
1668 	int first_sack_index;
1669 
1670 	state->flag = 0;
1671 	state->reord = tp->snd_nxt;
1672 
1673 	if (!tp->sacked_out)
1674 		tcp_highest_sack_reset(sk);
1675 
1676 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1677 					 num_sacks, prior_snd_una);
1678 	if (found_dup_sack) {
1679 		state->flag |= FLAG_DSACKING_ACK;
1680 		tp->delivered++; /* A spurious retransmission is delivered */
1681 	}
1682 
1683 	/* Eliminate too old ACKs, but take into
1684 	 * account more or less fresh ones, they can
1685 	 * contain valid SACK info.
1686 	 */
1687 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688 		return 0;
1689 
1690 	if (!tp->packets_out)
1691 		goto out;
1692 
1693 	used_sacks = 0;
1694 	first_sack_index = 0;
1695 	for (i = 0; i < num_sacks; i++) {
1696 		bool dup_sack = !i && found_dup_sack;
1697 
1698 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1699 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1700 
1701 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1702 					    sp[used_sacks].start_seq,
1703 					    sp[used_sacks].end_seq)) {
1704 			int mib_idx;
1705 
1706 			if (dup_sack) {
1707 				if (!tp->undo_marker)
1708 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1709 				else
1710 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1711 			} else {
1712 				/* Don't count olds caused by ACK reordering */
1713 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1714 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1715 					continue;
1716 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717 			}
1718 
1719 			NET_INC_STATS(sock_net(sk), mib_idx);
1720 			if (i == 0)
1721 				first_sack_index = -1;
1722 			continue;
1723 		}
1724 
1725 		/* Ignore very old stuff early */
1726 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1727 			continue;
1728 
1729 		used_sacks++;
1730 	}
1731 
1732 	/* order SACK blocks to allow in order walk of the retrans queue */
1733 	for (i = used_sacks - 1; i > 0; i--) {
1734 		for (j = 0; j < i; j++) {
1735 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1736 				swap(sp[j], sp[j + 1]);
1737 
1738 				/* Track where the first SACK block goes to */
1739 				if (j == first_sack_index)
1740 					first_sack_index = j + 1;
1741 			}
1742 		}
1743 	}
1744 
1745 	state->mss_now = tcp_current_mss(sk);
1746 	skb = NULL;
1747 	i = 0;
1748 
1749 	if (!tp->sacked_out) {
1750 		/* It's already past, so skip checking against it */
1751 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1752 	} else {
1753 		cache = tp->recv_sack_cache;
1754 		/* Skip empty blocks in at head of the cache */
1755 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1756 		       !cache->end_seq)
1757 			cache++;
1758 	}
1759 
1760 	while (i < used_sacks) {
1761 		u32 start_seq = sp[i].start_seq;
1762 		u32 end_seq = sp[i].end_seq;
1763 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1764 		struct tcp_sack_block *next_dup = NULL;
1765 
1766 		if (found_dup_sack && ((i + 1) == first_sack_index))
1767 			next_dup = &sp[i + 1];
1768 
1769 		/* Skip too early cached blocks */
1770 		while (tcp_sack_cache_ok(tp, cache) &&
1771 		       !before(start_seq, cache->end_seq))
1772 			cache++;
1773 
1774 		/* Can skip some work by looking recv_sack_cache? */
1775 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1776 		    after(end_seq, cache->start_seq)) {
1777 
1778 			/* Head todo? */
1779 			if (before(start_seq, cache->start_seq)) {
1780 				skb = tcp_sacktag_skip(skb, sk, state,
1781 						       start_seq);
1782 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1783 						       state,
1784 						       start_seq,
1785 						       cache->start_seq,
1786 						       dup_sack);
1787 			}
1788 
1789 			/* Rest of the block already fully processed? */
1790 			if (!after(end_seq, cache->end_seq))
1791 				goto advance_sp;
1792 
1793 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1794 						       state,
1795 						       cache->end_seq);
1796 
1797 			/* ...tail remains todo... */
1798 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1799 				/* ...but better entrypoint exists! */
1800 				skb = tcp_highest_sack(sk);
1801 				if (!skb)
1802 					break;
1803 				cache++;
1804 				goto walk;
1805 			}
1806 
1807 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1808 			/* Check overlap against next cached too (past this one already) */
1809 			cache++;
1810 			continue;
1811 		}
1812 
1813 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1814 			skb = tcp_highest_sack(sk);
1815 			if (!skb)
1816 				break;
1817 		}
1818 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1819 
1820 walk:
1821 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1822 				       start_seq, end_seq, dup_sack);
1823 
1824 advance_sp:
1825 		i++;
1826 	}
1827 
1828 	/* Clear the head of the cache sack blocks so we can skip it next time */
1829 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1830 		tp->recv_sack_cache[i].start_seq = 0;
1831 		tp->recv_sack_cache[i].end_seq = 0;
1832 	}
1833 	for (j = 0; j < used_sacks; j++)
1834 		tp->recv_sack_cache[i++] = sp[j];
1835 
1836 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1837 		tcp_check_sack_reordering(sk, state->reord, 0);
1838 
1839 	tcp_verify_left_out(tp);
1840 out:
1841 
1842 #if FASTRETRANS_DEBUG > 0
1843 	WARN_ON((int)tp->sacked_out < 0);
1844 	WARN_ON((int)tp->lost_out < 0);
1845 	WARN_ON((int)tp->retrans_out < 0);
1846 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1847 #endif
1848 	return state->flag;
1849 }
1850 
1851 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1852  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1853  */
1854 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1855 {
1856 	u32 holes;
1857 
1858 	holes = max(tp->lost_out, 1U);
1859 	holes = min(holes, tp->packets_out);
1860 
1861 	if ((tp->sacked_out + holes) > tp->packets_out) {
1862 		tp->sacked_out = tp->packets_out - holes;
1863 		return true;
1864 	}
1865 	return false;
1866 }
1867 
1868 /* If we receive more dupacks than we expected counting segments
1869  * in assumption of absent reordering, interpret this as reordering.
1870  * The only another reason could be bug in receiver TCP.
1871  */
1872 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1873 {
1874 	struct tcp_sock *tp = tcp_sk(sk);
1875 
1876 	if (!tcp_limit_reno_sacked(tp))
1877 		return;
1878 
1879 	tp->reordering = min_t(u32, tp->packets_out + addend,
1880 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1881 	tp->reord_seen++;
1882 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1883 }
1884 
1885 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1886 
1887 static void tcp_add_reno_sack(struct sock *sk)
1888 {
1889 	struct tcp_sock *tp = tcp_sk(sk);
1890 	u32 prior_sacked = tp->sacked_out;
1891 
1892 	tp->sacked_out++;
1893 	tcp_check_reno_reordering(sk, 0);
1894 	if (tp->sacked_out > prior_sacked)
1895 		tp->delivered++; /* Some out-of-order packet is delivered */
1896 	tcp_verify_left_out(tp);
1897 }
1898 
1899 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1900 
1901 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1902 {
1903 	struct tcp_sock *tp = tcp_sk(sk);
1904 
1905 	if (acked > 0) {
1906 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1907 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1908 		if (acked - 1 >= tp->sacked_out)
1909 			tp->sacked_out = 0;
1910 		else
1911 			tp->sacked_out -= acked - 1;
1912 	}
1913 	tcp_check_reno_reordering(sk, acked);
1914 	tcp_verify_left_out(tp);
1915 }
1916 
1917 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1918 {
1919 	tp->sacked_out = 0;
1920 }
1921 
1922 void tcp_clear_retrans(struct tcp_sock *tp)
1923 {
1924 	tp->retrans_out = 0;
1925 	tp->lost_out = 0;
1926 	tp->undo_marker = 0;
1927 	tp->undo_retrans = -1;
1928 	tp->sacked_out = 0;
1929 }
1930 
1931 static inline void tcp_init_undo(struct tcp_sock *tp)
1932 {
1933 	tp->undo_marker = tp->snd_una;
1934 	/* Retransmission still in flight may cause DSACKs later. */
1935 	tp->undo_retrans = tp->retrans_out ? : -1;
1936 }
1937 
1938 static bool tcp_is_rack(const struct sock *sk)
1939 {
1940 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1941 }
1942 
1943 /* If we detect SACK reneging, forget all SACK information
1944  * and reset tags completely, otherwise preserve SACKs. If receiver
1945  * dropped its ofo queue, we will know this due to reneging detection.
1946  */
1947 static void tcp_timeout_mark_lost(struct sock *sk)
1948 {
1949 	struct tcp_sock *tp = tcp_sk(sk);
1950 	struct sk_buff *skb, *head;
1951 	bool is_reneg;			/* is receiver reneging on SACKs? */
1952 
1953 	head = tcp_rtx_queue_head(sk);
1954 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1955 	if (is_reneg) {
1956 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1957 		tp->sacked_out = 0;
1958 		/* Mark SACK reneging until we recover from this loss event. */
1959 		tp->is_sack_reneg = 1;
1960 	} else if (tcp_is_reno(tp)) {
1961 		tcp_reset_reno_sack(tp);
1962 	}
1963 
1964 	skb = head;
1965 	skb_rbtree_walk_from(skb) {
1966 		if (is_reneg)
1967 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1968 		else if (tcp_is_rack(sk) && skb != head &&
1969 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1970 			continue; /* Don't mark recently sent ones lost yet */
1971 		tcp_mark_skb_lost(sk, skb);
1972 	}
1973 	tcp_verify_left_out(tp);
1974 	tcp_clear_all_retrans_hints(tp);
1975 }
1976 
1977 /* Enter Loss state. */
1978 void tcp_enter_loss(struct sock *sk)
1979 {
1980 	const struct inet_connection_sock *icsk = inet_csk(sk);
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 	struct net *net = sock_net(sk);
1983 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1984 
1985 	tcp_timeout_mark_lost(sk);
1986 
1987 	/* Reduce ssthresh if it has not yet been made inside this window. */
1988 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1989 	    !after(tp->high_seq, tp->snd_una) ||
1990 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1991 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1992 		tp->prior_cwnd = tp->snd_cwnd;
1993 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1994 		tcp_ca_event(sk, CA_EVENT_LOSS);
1995 		tcp_init_undo(tp);
1996 	}
1997 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1998 	tp->snd_cwnd_cnt   = 0;
1999 	tp->snd_cwnd_stamp = tcp_jiffies32;
2000 
2001 	/* Timeout in disordered state after receiving substantial DUPACKs
2002 	 * suggests that the degree of reordering is over-estimated.
2003 	 */
2004 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2005 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2006 		tp->reordering = min_t(unsigned int, tp->reordering,
2007 				       net->ipv4.sysctl_tcp_reordering);
2008 	tcp_set_ca_state(sk, TCP_CA_Loss);
2009 	tp->high_seq = tp->snd_nxt;
2010 	tcp_ecn_queue_cwr(tp);
2011 
2012 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2013 	 * loss recovery is underway except recurring timeout(s) on
2014 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2015 	 */
2016 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2017 		   (new_recovery || icsk->icsk_retransmits) &&
2018 		   !inet_csk(sk)->icsk_mtup.probe_size;
2019 }
2020 
2021 /* If ACK arrived pointing to a remembered SACK, it means that our
2022  * remembered SACKs do not reflect real state of receiver i.e.
2023  * receiver _host_ is heavily congested (or buggy).
2024  *
2025  * To avoid big spurious retransmission bursts due to transient SACK
2026  * scoreboard oddities that look like reneging, we give the receiver a
2027  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2028  * restore sanity to the SACK scoreboard. If the apparent reneging
2029  * persists until this RTO then we'll clear the SACK scoreboard.
2030  */
2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2032 {
2033 	if (flag & FLAG_SACK_RENEGING) {
2034 		struct tcp_sock *tp = tcp_sk(sk);
2035 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2036 					  msecs_to_jiffies(10));
2037 
2038 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2039 					  delay, TCP_RTO_MAX);
2040 		return true;
2041 	}
2042 	return false;
2043 }
2044 
2045 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2046  * counter when SACK is enabled (without SACK, sacked_out is used for
2047  * that purpose).
2048  *
2049  * With reordering, holes may still be in flight, so RFC3517 recovery
2050  * uses pure sacked_out (total number of SACKed segments) even though
2051  * it violates the RFC that uses duplicate ACKs, often these are equal
2052  * but when e.g. out-of-window ACKs or packet duplication occurs,
2053  * they differ. Since neither occurs due to loss, TCP should really
2054  * ignore them.
2055  */
2056 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2057 {
2058 	return tp->sacked_out + 1;
2059 }
2060 
2061 /* Linux NewReno/SACK/ECN state machine.
2062  * --------------------------------------
2063  *
2064  * "Open"	Normal state, no dubious events, fast path.
2065  * "Disorder"   In all the respects it is "Open",
2066  *		but requires a bit more attention. It is entered when
2067  *		we see some SACKs or dupacks. It is split of "Open"
2068  *		mainly to move some processing from fast path to slow one.
2069  * "CWR"	CWND was reduced due to some Congestion Notification event.
2070  *		It can be ECN, ICMP source quench, local device congestion.
2071  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2072  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2073  *
2074  * tcp_fastretrans_alert() is entered:
2075  * - each incoming ACK, if state is not "Open"
2076  * - when arrived ACK is unusual, namely:
2077  *	* SACK
2078  *	* Duplicate ACK.
2079  *	* ECN ECE.
2080  *
2081  * Counting packets in flight is pretty simple.
2082  *
2083  *	in_flight = packets_out - left_out + retrans_out
2084  *
2085  *	packets_out is SND.NXT-SND.UNA counted in packets.
2086  *
2087  *	retrans_out is number of retransmitted segments.
2088  *
2089  *	left_out is number of segments left network, but not ACKed yet.
2090  *
2091  *		left_out = sacked_out + lost_out
2092  *
2093  *     sacked_out: Packets, which arrived to receiver out of order
2094  *		   and hence not ACKed. With SACKs this number is simply
2095  *		   amount of SACKed data. Even without SACKs
2096  *		   it is easy to give pretty reliable estimate of this number,
2097  *		   counting duplicate ACKs.
2098  *
2099  *       lost_out: Packets lost by network. TCP has no explicit
2100  *		   "loss notification" feedback from network (for now).
2101  *		   It means that this number can be only _guessed_.
2102  *		   Actually, it is the heuristics to predict lossage that
2103  *		   distinguishes different algorithms.
2104  *
2105  *	F.e. after RTO, when all the queue is considered as lost,
2106  *	lost_out = packets_out and in_flight = retrans_out.
2107  *
2108  *		Essentially, we have now a few algorithms detecting
2109  *		lost packets.
2110  *
2111  *		If the receiver supports SACK:
2112  *
2113  *		RFC6675/3517: It is the conventional algorithm. A packet is
2114  *		considered lost if the number of higher sequence packets
2115  *		SACKed is greater than or equal the DUPACK thoreshold
2116  *		(reordering). This is implemented in tcp_mark_head_lost and
2117  *		tcp_update_scoreboard.
2118  *
2119  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2120  *		(2017-) that checks timing instead of counting DUPACKs.
2121  *		Essentially a packet is considered lost if it's not S/ACKed
2122  *		after RTT + reordering_window, where both metrics are
2123  *		dynamically measured and adjusted. This is implemented in
2124  *		tcp_rack_mark_lost.
2125  *
2126  *		If the receiver does not support SACK:
2127  *
2128  *		NewReno (RFC6582): in Recovery we assume that one segment
2129  *		is lost (classic Reno). While we are in Recovery and
2130  *		a partial ACK arrives, we assume that one more packet
2131  *		is lost (NewReno). This heuristics are the same in NewReno
2132  *		and SACK.
2133  *
2134  * Really tricky (and requiring careful tuning) part of algorithm
2135  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2136  * The first determines the moment _when_ we should reduce CWND and,
2137  * hence, slow down forward transmission. In fact, it determines the moment
2138  * when we decide that hole is caused by loss, rather than by a reorder.
2139  *
2140  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2141  * holes, caused by lost packets.
2142  *
2143  * And the most logically complicated part of algorithm is undo
2144  * heuristics. We detect false retransmits due to both too early
2145  * fast retransmit (reordering) and underestimated RTO, analyzing
2146  * timestamps and D-SACKs. When we detect that some segments were
2147  * retransmitted by mistake and CWND reduction was wrong, we undo
2148  * window reduction and abort recovery phase. This logic is hidden
2149  * inside several functions named tcp_try_undo_<something>.
2150  */
2151 
2152 /* This function decides, when we should leave Disordered state
2153  * and enter Recovery phase, reducing congestion window.
2154  *
2155  * Main question: may we further continue forward transmission
2156  * with the same cwnd?
2157  */
2158 static bool tcp_time_to_recover(struct sock *sk, int flag)
2159 {
2160 	struct tcp_sock *tp = tcp_sk(sk);
2161 
2162 	/* Trick#1: The loss is proven. */
2163 	if (tp->lost_out)
2164 		return true;
2165 
2166 	/* Not-A-Trick#2 : Classic rule... */
2167 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2168 		return true;
2169 
2170 	return false;
2171 }
2172 
2173 /* Detect loss in event "A" above by marking head of queue up as lost.
2174  * For non-SACK(Reno) senders, the first "packets" number of segments
2175  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2176  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2177  * the maximum SACKed segments to pass before reaching this limit.
2178  */
2179 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2180 {
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 	struct sk_buff *skb;
2183 	int cnt, oldcnt, lost;
2184 	unsigned int mss;
2185 	/* Use SACK to deduce losses of new sequences sent during recovery */
2186 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2187 
2188 	WARN_ON(packets > tp->packets_out);
2189 	skb = tp->lost_skb_hint;
2190 	if (skb) {
2191 		/* Head already handled? */
2192 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2193 			return;
2194 		cnt = tp->lost_cnt_hint;
2195 	} else {
2196 		skb = tcp_rtx_queue_head(sk);
2197 		cnt = 0;
2198 	}
2199 
2200 	skb_rbtree_walk_from(skb) {
2201 		/* TODO: do this better */
2202 		/* this is not the most efficient way to do this... */
2203 		tp->lost_skb_hint = skb;
2204 		tp->lost_cnt_hint = cnt;
2205 
2206 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2207 			break;
2208 
2209 		oldcnt = cnt;
2210 		if (tcp_is_reno(tp) ||
2211 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2212 			cnt += tcp_skb_pcount(skb);
2213 
2214 		if (cnt > packets) {
2215 			if (tcp_is_sack(tp) ||
2216 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2217 			    (oldcnt >= packets))
2218 				break;
2219 
2220 			mss = tcp_skb_mss(skb);
2221 			/* If needed, chop off the prefix to mark as lost. */
2222 			lost = (packets - oldcnt) * mss;
2223 			if (lost < skb->len &&
2224 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2225 					 lost, mss, GFP_ATOMIC) < 0)
2226 				break;
2227 			cnt = packets;
2228 		}
2229 
2230 		tcp_skb_mark_lost(tp, skb);
2231 
2232 		if (mark_head)
2233 			break;
2234 	}
2235 	tcp_verify_left_out(tp);
2236 }
2237 
2238 /* Account newly detected lost packet(s) */
2239 
2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241 {
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 
2244 	if (tcp_is_sack(tp)) {
2245 		int sacked_upto = tp->sacked_out - tp->reordering;
2246 		if (sacked_upto >= 0)
2247 			tcp_mark_head_lost(sk, sacked_upto, 0);
2248 		else if (fast_rexmit)
2249 			tcp_mark_head_lost(sk, 1, 1);
2250 	}
2251 }
2252 
2253 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2254 {
2255 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2256 	       before(tp->rx_opt.rcv_tsecr, when);
2257 }
2258 
2259 /* skb is spurious retransmitted if the returned timestamp echo
2260  * reply is prior to the skb transmission time
2261  */
2262 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2263 				     const struct sk_buff *skb)
2264 {
2265 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2266 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2267 }
2268 
2269 /* Nothing was retransmitted or returned timestamp is less
2270  * than timestamp of the first retransmission.
2271  */
2272 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2273 {
2274 	return !tp->retrans_stamp ||
2275 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2276 }
2277 
2278 /* Undo procedures. */
2279 
2280 /* We can clear retrans_stamp when there are no retransmissions in the
2281  * window. It would seem that it is trivially available for us in
2282  * tp->retrans_out, however, that kind of assumptions doesn't consider
2283  * what will happen if errors occur when sending retransmission for the
2284  * second time. ...It could the that such segment has only
2285  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2286  * the head skb is enough except for some reneging corner cases that
2287  * are not worth the effort.
2288  *
2289  * Main reason for all this complexity is the fact that connection dying
2290  * time now depends on the validity of the retrans_stamp, in particular,
2291  * that successive retransmissions of a segment must not advance
2292  * retrans_stamp under any conditions.
2293  */
2294 static bool tcp_any_retrans_done(const struct sock *sk)
2295 {
2296 	const struct tcp_sock *tp = tcp_sk(sk);
2297 	struct sk_buff *skb;
2298 
2299 	if (tp->retrans_out)
2300 		return true;
2301 
2302 	skb = tcp_rtx_queue_head(sk);
2303 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2304 		return true;
2305 
2306 	return false;
2307 }
2308 
2309 static void DBGUNDO(struct sock *sk, const char *msg)
2310 {
2311 #if FASTRETRANS_DEBUG > 1
2312 	struct tcp_sock *tp = tcp_sk(sk);
2313 	struct inet_sock *inet = inet_sk(sk);
2314 
2315 	if (sk->sk_family == AF_INET) {
2316 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2317 			 msg,
2318 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2319 			 tp->snd_cwnd, tcp_left_out(tp),
2320 			 tp->snd_ssthresh, tp->prior_ssthresh,
2321 			 tp->packets_out);
2322 	}
2323 #if IS_ENABLED(CONFIG_IPV6)
2324 	else if (sk->sk_family == AF_INET6) {
2325 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2326 			 msg,
2327 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2328 			 tp->snd_cwnd, tcp_left_out(tp),
2329 			 tp->snd_ssthresh, tp->prior_ssthresh,
2330 			 tp->packets_out);
2331 	}
2332 #endif
2333 #endif
2334 }
2335 
2336 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2337 {
2338 	struct tcp_sock *tp = tcp_sk(sk);
2339 
2340 	if (unmark_loss) {
2341 		struct sk_buff *skb;
2342 
2343 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2344 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2345 		}
2346 		tp->lost_out = 0;
2347 		tcp_clear_all_retrans_hints(tp);
2348 	}
2349 
2350 	if (tp->prior_ssthresh) {
2351 		const struct inet_connection_sock *icsk = inet_csk(sk);
2352 
2353 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2354 
2355 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2356 			tp->snd_ssthresh = tp->prior_ssthresh;
2357 			tcp_ecn_withdraw_cwr(tp);
2358 		}
2359 	}
2360 	tp->snd_cwnd_stamp = tcp_jiffies32;
2361 	tp->undo_marker = 0;
2362 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2363 }
2364 
2365 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2366 {
2367 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2368 }
2369 
2370 /* People celebrate: "We love our President!" */
2371 static bool tcp_try_undo_recovery(struct sock *sk)
2372 {
2373 	struct tcp_sock *tp = tcp_sk(sk);
2374 
2375 	if (tcp_may_undo(tp)) {
2376 		int mib_idx;
2377 
2378 		/* Happy end! We did not retransmit anything
2379 		 * or our original transmission succeeded.
2380 		 */
2381 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2382 		tcp_undo_cwnd_reduction(sk, false);
2383 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2384 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2385 		else
2386 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2387 
2388 		NET_INC_STATS(sock_net(sk), mib_idx);
2389 	} else if (tp->rack.reo_wnd_persist) {
2390 		tp->rack.reo_wnd_persist--;
2391 	}
2392 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393 		/* Hold old state until something *above* high_seq
2394 		 * is ACKed. For Reno it is MUST to prevent false
2395 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2396 		if (!tcp_any_retrans_done(sk))
2397 			tp->retrans_stamp = 0;
2398 		return true;
2399 	}
2400 	tcp_set_ca_state(sk, TCP_CA_Open);
2401 	tp->is_sack_reneg = 0;
2402 	return false;
2403 }
2404 
2405 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2406 static bool tcp_try_undo_dsack(struct sock *sk)
2407 {
2408 	struct tcp_sock *tp = tcp_sk(sk);
2409 
2410 	if (tp->undo_marker && !tp->undo_retrans) {
2411 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2412 					       tp->rack.reo_wnd_persist + 1);
2413 		DBGUNDO(sk, "D-SACK");
2414 		tcp_undo_cwnd_reduction(sk, false);
2415 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2416 		return true;
2417 	}
2418 	return false;
2419 }
2420 
2421 /* Undo during loss recovery after partial ACK or using F-RTO. */
2422 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2423 {
2424 	struct tcp_sock *tp = tcp_sk(sk);
2425 
2426 	if (frto_undo || tcp_may_undo(tp)) {
2427 		tcp_undo_cwnd_reduction(sk, true);
2428 
2429 		DBGUNDO(sk, "partial loss");
2430 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2431 		if (frto_undo)
2432 			NET_INC_STATS(sock_net(sk),
2433 					LINUX_MIB_TCPSPURIOUSRTOS);
2434 		inet_csk(sk)->icsk_retransmits = 0;
2435 		if (frto_undo || tcp_is_sack(tp)) {
2436 			tcp_set_ca_state(sk, TCP_CA_Open);
2437 			tp->is_sack_reneg = 0;
2438 		}
2439 		return true;
2440 	}
2441 	return false;
2442 }
2443 
2444 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2445  * It computes the number of packets to send (sndcnt) based on packets newly
2446  * delivered:
2447  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2448  *	cwnd reductions across a full RTT.
2449  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2450  *      But when the retransmits are acked without further losses, PRR
2451  *      slow starts cwnd up to ssthresh to speed up the recovery.
2452  */
2453 static void tcp_init_cwnd_reduction(struct sock *sk)
2454 {
2455 	struct tcp_sock *tp = tcp_sk(sk);
2456 
2457 	tp->high_seq = tp->snd_nxt;
2458 	tp->tlp_high_seq = 0;
2459 	tp->snd_cwnd_cnt = 0;
2460 	tp->prior_cwnd = tp->snd_cwnd;
2461 	tp->prr_delivered = 0;
2462 	tp->prr_out = 0;
2463 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2464 	tcp_ecn_queue_cwr(tp);
2465 }
2466 
2467 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2468 {
2469 	struct tcp_sock *tp = tcp_sk(sk);
2470 	int sndcnt = 0;
2471 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2472 
2473 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2474 		return;
2475 
2476 	tp->prr_delivered += newly_acked_sacked;
2477 	if (delta < 0) {
2478 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2479 			       tp->prior_cwnd - 1;
2480 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2481 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2482 		   !(flag & FLAG_LOST_RETRANS)) {
2483 		sndcnt = min_t(int, delta,
2484 			       max_t(int, tp->prr_delivered - tp->prr_out,
2485 				     newly_acked_sacked) + 1);
2486 	} else {
2487 		sndcnt = min(delta, newly_acked_sacked);
2488 	}
2489 	/* Force a fast retransmit upon entering fast recovery */
2490 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2491 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2492 }
2493 
2494 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2495 {
2496 	struct tcp_sock *tp = tcp_sk(sk);
2497 
2498 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2499 		return;
2500 
2501 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2502 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2503 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2504 		tp->snd_cwnd = tp->snd_ssthresh;
2505 		tp->snd_cwnd_stamp = tcp_jiffies32;
2506 	}
2507 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2508 }
2509 
2510 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2511 void tcp_enter_cwr(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 
2515 	tp->prior_ssthresh = 0;
2516 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2517 		tp->undo_marker = 0;
2518 		tcp_init_cwnd_reduction(sk);
2519 		tcp_set_ca_state(sk, TCP_CA_CWR);
2520 	}
2521 }
2522 EXPORT_SYMBOL(tcp_enter_cwr);
2523 
2524 static void tcp_try_keep_open(struct sock *sk)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 	int state = TCP_CA_Open;
2528 
2529 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2530 		state = TCP_CA_Disorder;
2531 
2532 	if (inet_csk(sk)->icsk_ca_state != state) {
2533 		tcp_set_ca_state(sk, state);
2534 		tp->high_seq = tp->snd_nxt;
2535 	}
2536 }
2537 
2538 static void tcp_try_to_open(struct sock *sk, int flag)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 
2542 	tcp_verify_left_out(tp);
2543 
2544 	if (!tcp_any_retrans_done(sk))
2545 		tp->retrans_stamp = 0;
2546 
2547 	if (flag & FLAG_ECE)
2548 		tcp_enter_cwr(sk);
2549 
2550 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2551 		tcp_try_keep_open(sk);
2552 	}
2553 }
2554 
2555 static void tcp_mtup_probe_failed(struct sock *sk)
2556 {
2557 	struct inet_connection_sock *icsk = inet_csk(sk);
2558 
2559 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2560 	icsk->icsk_mtup.probe_size = 0;
2561 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2562 }
2563 
2564 static void tcp_mtup_probe_success(struct sock *sk)
2565 {
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 	struct inet_connection_sock *icsk = inet_csk(sk);
2568 
2569 	/* FIXME: breaks with very large cwnd */
2570 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2571 	tp->snd_cwnd = tp->snd_cwnd *
2572 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2573 		       icsk->icsk_mtup.probe_size;
2574 	tp->snd_cwnd_cnt = 0;
2575 	tp->snd_cwnd_stamp = tcp_jiffies32;
2576 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2577 
2578 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2579 	icsk->icsk_mtup.probe_size = 0;
2580 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2581 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2582 }
2583 
2584 /* Do a simple retransmit without using the backoff mechanisms in
2585  * tcp_timer. This is used for path mtu discovery.
2586  * The socket is already locked here.
2587  */
2588 void tcp_simple_retransmit(struct sock *sk)
2589 {
2590 	const struct inet_connection_sock *icsk = inet_csk(sk);
2591 	struct tcp_sock *tp = tcp_sk(sk);
2592 	struct sk_buff *skb;
2593 	unsigned int mss = tcp_current_mss(sk);
2594 
2595 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2596 		if (tcp_skb_seglen(skb) > mss &&
2597 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2598 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2599 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2600 				tp->retrans_out -= tcp_skb_pcount(skb);
2601 			}
2602 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2603 		}
2604 	}
2605 
2606 	tcp_clear_retrans_hints_partial(tp);
2607 
2608 	if (!tp->lost_out)
2609 		return;
2610 
2611 	if (tcp_is_reno(tp))
2612 		tcp_limit_reno_sacked(tp);
2613 
2614 	tcp_verify_left_out(tp);
2615 
2616 	/* Don't muck with the congestion window here.
2617 	 * Reason is that we do not increase amount of _data_
2618 	 * in network, but units changed and effective
2619 	 * cwnd/ssthresh really reduced now.
2620 	 */
2621 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2622 		tp->high_seq = tp->snd_nxt;
2623 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2624 		tp->prior_ssthresh = 0;
2625 		tp->undo_marker = 0;
2626 		tcp_set_ca_state(sk, TCP_CA_Loss);
2627 	}
2628 	tcp_xmit_retransmit_queue(sk);
2629 }
2630 EXPORT_SYMBOL(tcp_simple_retransmit);
2631 
2632 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2633 {
2634 	struct tcp_sock *tp = tcp_sk(sk);
2635 	int mib_idx;
2636 
2637 	if (tcp_is_reno(tp))
2638 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2639 	else
2640 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2641 
2642 	NET_INC_STATS(sock_net(sk), mib_idx);
2643 
2644 	tp->prior_ssthresh = 0;
2645 	tcp_init_undo(tp);
2646 
2647 	if (!tcp_in_cwnd_reduction(sk)) {
2648 		if (!ece_ack)
2649 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2650 		tcp_init_cwnd_reduction(sk);
2651 	}
2652 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2653 }
2654 
2655 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2656  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2657  */
2658 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2659 			     int *rexmit)
2660 {
2661 	struct tcp_sock *tp = tcp_sk(sk);
2662 	bool recovered = !before(tp->snd_una, tp->high_seq);
2663 
2664 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2665 	    tcp_try_undo_loss(sk, false))
2666 		return;
2667 
2668 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2669 		/* Step 3.b. A timeout is spurious if not all data are
2670 		 * lost, i.e., never-retransmitted data are (s)acked.
2671 		 */
2672 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2673 		    tcp_try_undo_loss(sk, true))
2674 			return;
2675 
2676 		if (after(tp->snd_nxt, tp->high_seq)) {
2677 			if (flag & FLAG_DATA_SACKED || is_dupack)
2678 				tp->frto = 0; /* Step 3.a. loss was real */
2679 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2680 			tp->high_seq = tp->snd_nxt;
2681 			/* Step 2.b. Try send new data (but deferred until cwnd
2682 			 * is updated in tcp_ack()). Otherwise fall back to
2683 			 * the conventional recovery.
2684 			 */
2685 			if (!tcp_write_queue_empty(sk) &&
2686 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2687 				*rexmit = REXMIT_NEW;
2688 				return;
2689 			}
2690 			tp->frto = 0;
2691 		}
2692 	}
2693 
2694 	if (recovered) {
2695 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2696 		tcp_try_undo_recovery(sk);
2697 		return;
2698 	}
2699 	if (tcp_is_reno(tp)) {
2700 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2701 		 * delivered. Lower inflight to clock out (re)tranmissions.
2702 		 */
2703 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2704 			tcp_add_reno_sack(sk);
2705 		else if (flag & FLAG_SND_UNA_ADVANCED)
2706 			tcp_reset_reno_sack(tp);
2707 	}
2708 	*rexmit = REXMIT_LOST;
2709 }
2710 
2711 /* Undo during fast recovery after partial ACK. */
2712 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2713 {
2714 	struct tcp_sock *tp = tcp_sk(sk);
2715 
2716 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2717 		/* Plain luck! Hole if filled with delayed
2718 		 * packet, rather than with a retransmit. Check reordering.
2719 		 */
2720 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2721 
2722 		/* We are getting evidence that the reordering degree is higher
2723 		 * than we realized. If there are no retransmits out then we
2724 		 * can undo. Otherwise we clock out new packets but do not
2725 		 * mark more packets lost or retransmit more.
2726 		 */
2727 		if (tp->retrans_out)
2728 			return true;
2729 
2730 		if (!tcp_any_retrans_done(sk))
2731 			tp->retrans_stamp = 0;
2732 
2733 		DBGUNDO(sk, "partial recovery");
2734 		tcp_undo_cwnd_reduction(sk, true);
2735 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2736 		tcp_try_keep_open(sk);
2737 		return true;
2738 	}
2739 	return false;
2740 }
2741 
2742 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2743 {
2744 	struct tcp_sock *tp = tcp_sk(sk);
2745 
2746 	if (tcp_rtx_queue_empty(sk))
2747 		return;
2748 
2749 	if (unlikely(tcp_is_reno(tp))) {
2750 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2751 	} else if (tcp_is_rack(sk)) {
2752 		u32 prior_retrans = tp->retrans_out;
2753 
2754 		tcp_rack_mark_lost(sk);
2755 		if (prior_retrans > tp->retrans_out)
2756 			*ack_flag |= FLAG_LOST_RETRANS;
2757 	}
2758 }
2759 
2760 static bool tcp_force_fast_retransmit(struct sock *sk)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 
2764 	return after(tcp_highest_sack_seq(tp),
2765 		     tp->snd_una + tp->reordering * tp->mss_cache);
2766 }
2767 
2768 /* Process an event, which can update packets-in-flight not trivially.
2769  * Main goal of this function is to calculate new estimate for left_out,
2770  * taking into account both packets sitting in receiver's buffer and
2771  * packets lost by network.
2772  *
2773  * Besides that it updates the congestion state when packet loss or ECN
2774  * is detected. But it does not reduce the cwnd, it is done by the
2775  * congestion control later.
2776  *
2777  * It does _not_ decide what to send, it is made in function
2778  * tcp_xmit_retransmit_queue().
2779  */
2780 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2781 				  bool is_dupack, int *ack_flag, int *rexmit)
2782 {
2783 	struct inet_connection_sock *icsk = inet_csk(sk);
2784 	struct tcp_sock *tp = tcp_sk(sk);
2785 	int fast_rexmit = 0, flag = *ack_flag;
2786 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2787 				     tcp_force_fast_retransmit(sk));
2788 
2789 	if (!tp->packets_out && tp->sacked_out)
2790 		tp->sacked_out = 0;
2791 
2792 	/* Now state machine starts.
2793 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2794 	if (flag & FLAG_ECE)
2795 		tp->prior_ssthresh = 0;
2796 
2797 	/* B. In all the states check for reneging SACKs. */
2798 	if (tcp_check_sack_reneging(sk, flag))
2799 		return;
2800 
2801 	/* C. Check consistency of the current state. */
2802 	tcp_verify_left_out(tp);
2803 
2804 	/* D. Check state exit conditions. State can be terminated
2805 	 *    when high_seq is ACKed. */
2806 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2807 		WARN_ON(tp->retrans_out != 0);
2808 		tp->retrans_stamp = 0;
2809 	} else if (!before(tp->snd_una, tp->high_seq)) {
2810 		switch (icsk->icsk_ca_state) {
2811 		case TCP_CA_CWR:
2812 			/* CWR is to be held something *above* high_seq
2813 			 * is ACKed for CWR bit to reach receiver. */
2814 			if (tp->snd_una != tp->high_seq) {
2815 				tcp_end_cwnd_reduction(sk);
2816 				tcp_set_ca_state(sk, TCP_CA_Open);
2817 			}
2818 			break;
2819 
2820 		case TCP_CA_Recovery:
2821 			if (tcp_is_reno(tp))
2822 				tcp_reset_reno_sack(tp);
2823 			if (tcp_try_undo_recovery(sk))
2824 				return;
2825 			tcp_end_cwnd_reduction(sk);
2826 			break;
2827 		}
2828 	}
2829 
2830 	/* E. Process state. */
2831 	switch (icsk->icsk_ca_state) {
2832 	case TCP_CA_Recovery:
2833 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2834 			if (tcp_is_reno(tp) && is_dupack)
2835 				tcp_add_reno_sack(sk);
2836 		} else {
2837 			if (tcp_try_undo_partial(sk, prior_snd_una))
2838 				return;
2839 			/* Partial ACK arrived. Force fast retransmit. */
2840 			do_lost = tcp_is_reno(tp) ||
2841 				  tcp_force_fast_retransmit(sk);
2842 		}
2843 		if (tcp_try_undo_dsack(sk)) {
2844 			tcp_try_keep_open(sk);
2845 			return;
2846 		}
2847 		tcp_identify_packet_loss(sk, ack_flag);
2848 		break;
2849 	case TCP_CA_Loss:
2850 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2851 		tcp_identify_packet_loss(sk, ack_flag);
2852 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2853 		      (*ack_flag & FLAG_LOST_RETRANS)))
2854 			return;
2855 		/* Change state if cwnd is undone or retransmits are lost */
2856 		/* fall through */
2857 	default:
2858 		if (tcp_is_reno(tp)) {
2859 			if (flag & FLAG_SND_UNA_ADVANCED)
2860 				tcp_reset_reno_sack(tp);
2861 			if (is_dupack)
2862 				tcp_add_reno_sack(sk);
2863 		}
2864 
2865 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866 			tcp_try_undo_dsack(sk);
2867 
2868 		tcp_identify_packet_loss(sk, ack_flag);
2869 		if (!tcp_time_to_recover(sk, flag)) {
2870 			tcp_try_to_open(sk, flag);
2871 			return;
2872 		}
2873 
2874 		/* MTU probe failure: don't reduce cwnd */
2875 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2876 		    icsk->icsk_mtup.probe_size &&
2877 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2878 			tcp_mtup_probe_failed(sk);
2879 			/* Restores the reduction we did in tcp_mtup_probe() */
2880 			tp->snd_cwnd++;
2881 			tcp_simple_retransmit(sk);
2882 			return;
2883 		}
2884 
2885 		/* Otherwise enter Recovery state */
2886 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2887 		fast_rexmit = 1;
2888 	}
2889 
2890 	if (!tcp_is_rack(sk) && do_lost)
2891 		tcp_update_scoreboard(sk, fast_rexmit);
2892 	*rexmit = REXMIT_LOST;
2893 }
2894 
2895 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2896 {
2897 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2898 	struct tcp_sock *tp = tcp_sk(sk);
2899 
2900 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2901 		/* If the remote keeps returning delayed ACKs, eventually
2902 		 * the min filter would pick it up and overestimate the
2903 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2904 		 */
2905 		return;
2906 	}
2907 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2908 			   rtt_us ? : jiffies_to_usecs(1));
2909 }
2910 
2911 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2912 			       long seq_rtt_us, long sack_rtt_us,
2913 			       long ca_rtt_us, struct rate_sample *rs)
2914 {
2915 	const struct tcp_sock *tp = tcp_sk(sk);
2916 
2917 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2918 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2919 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2920 	 * is acked (RFC6298).
2921 	 */
2922 	if (seq_rtt_us < 0)
2923 		seq_rtt_us = sack_rtt_us;
2924 
2925 	/* RTTM Rule: A TSecr value received in a segment is used to
2926 	 * update the averaged RTT measurement only if the segment
2927 	 * acknowledges some new data, i.e., only if it advances the
2928 	 * left edge of the send window.
2929 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2930 	 */
2931 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2932 	    flag & FLAG_ACKED) {
2933 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2934 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2935 
2936 		seq_rtt_us = ca_rtt_us = delta_us;
2937 	}
2938 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2939 	if (seq_rtt_us < 0)
2940 		return false;
2941 
2942 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2943 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2944 	 * values will be skipped with the seq_rtt_us < 0 check above.
2945 	 */
2946 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2947 	tcp_rtt_estimator(sk, seq_rtt_us);
2948 	tcp_set_rto(sk);
2949 
2950 	/* RFC6298: only reset backoff on valid RTT measurement. */
2951 	inet_csk(sk)->icsk_backoff = 0;
2952 	return true;
2953 }
2954 
2955 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2956 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2957 {
2958 	struct rate_sample rs;
2959 	long rtt_us = -1L;
2960 
2961 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2962 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2963 
2964 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2965 }
2966 
2967 
2968 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2969 {
2970 	const struct inet_connection_sock *icsk = inet_csk(sk);
2971 
2972 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2973 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2974 }
2975 
2976 /* Restart timer after forward progress on connection.
2977  * RFC2988 recommends to restart timer to now+rto.
2978  */
2979 void tcp_rearm_rto(struct sock *sk)
2980 {
2981 	const struct inet_connection_sock *icsk = inet_csk(sk);
2982 	struct tcp_sock *tp = tcp_sk(sk);
2983 
2984 	/* If the retrans timer is currently being used by Fast Open
2985 	 * for SYN-ACK retrans purpose, stay put.
2986 	 */
2987 	if (tp->fastopen_rsk)
2988 		return;
2989 
2990 	if (!tp->packets_out) {
2991 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2992 	} else {
2993 		u32 rto = inet_csk(sk)->icsk_rto;
2994 		/* Offset the time elapsed after installing regular RTO */
2995 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2996 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2997 			s64 delta_us = tcp_rto_delta_us(sk);
2998 			/* delta_us may not be positive if the socket is locked
2999 			 * when the retrans timer fires and is rescheduled.
3000 			 */
3001 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3002 		}
3003 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3004 					  TCP_RTO_MAX);
3005 	}
3006 }
3007 
3008 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3009 static void tcp_set_xmit_timer(struct sock *sk)
3010 {
3011 	if (!tcp_schedule_loss_probe(sk, true))
3012 		tcp_rearm_rto(sk);
3013 }
3014 
3015 /* If we get here, the whole TSO packet has not been acked. */
3016 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3017 {
3018 	struct tcp_sock *tp = tcp_sk(sk);
3019 	u32 packets_acked;
3020 
3021 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3022 
3023 	packets_acked = tcp_skb_pcount(skb);
3024 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3025 		return 0;
3026 	packets_acked -= tcp_skb_pcount(skb);
3027 
3028 	if (packets_acked) {
3029 		BUG_ON(tcp_skb_pcount(skb) == 0);
3030 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3031 	}
3032 
3033 	return packets_acked;
3034 }
3035 
3036 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3037 			   u32 prior_snd_una)
3038 {
3039 	const struct skb_shared_info *shinfo;
3040 
3041 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3042 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3043 		return;
3044 
3045 	shinfo = skb_shinfo(skb);
3046 	if (!before(shinfo->tskey, prior_snd_una) &&
3047 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3048 		tcp_skb_tsorted_save(skb) {
3049 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3050 		} tcp_skb_tsorted_restore(skb);
3051 	}
3052 }
3053 
3054 /* Remove acknowledged frames from the retransmission queue. If our packet
3055  * is before the ack sequence we can discard it as it's confirmed to have
3056  * arrived at the other end.
3057  */
3058 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3059 			       u32 prior_snd_una,
3060 			       struct tcp_sacktag_state *sack)
3061 {
3062 	const struct inet_connection_sock *icsk = inet_csk(sk);
3063 	u64 first_ackt, last_ackt;
3064 	struct tcp_sock *tp = tcp_sk(sk);
3065 	u32 prior_sacked = tp->sacked_out;
3066 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3067 	struct sk_buff *skb, *next;
3068 	bool fully_acked = true;
3069 	long sack_rtt_us = -1L;
3070 	long seq_rtt_us = -1L;
3071 	long ca_rtt_us = -1L;
3072 	u32 pkts_acked = 0;
3073 	u32 last_in_flight = 0;
3074 	bool rtt_update;
3075 	int flag = 0;
3076 
3077 	first_ackt = 0;
3078 
3079 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3080 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3081 		const u32 start_seq = scb->seq;
3082 		u8 sacked = scb->sacked;
3083 		u32 acked_pcount;
3084 
3085 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3086 
3087 		/* Determine how many packets and what bytes were acked, tso and else */
3088 		if (after(scb->end_seq, tp->snd_una)) {
3089 			if (tcp_skb_pcount(skb) == 1 ||
3090 			    !after(tp->snd_una, scb->seq))
3091 				break;
3092 
3093 			acked_pcount = tcp_tso_acked(sk, skb);
3094 			if (!acked_pcount)
3095 				break;
3096 			fully_acked = false;
3097 		} else {
3098 			acked_pcount = tcp_skb_pcount(skb);
3099 		}
3100 
3101 		if (unlikely(sacked & TCPCB_RETRANS)) {
3102 			if (sacked & TCPCB_SACKED_RETRANS)
3103 				tp->retrans_out -= acked_pcount;
3104 			flag |= FLAG_RETRANS_DATA_ACKED;
3105 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3106 			last_ackt = skb->skb_mstamp;
3107 			WARN_ON_ONCE(last_ackt == 0);
3108 			if (!first_ackt)
3109 				first_ackt = last_ackt;
3110 
3111 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3112 			if (before(start_seq, reord))
3113 				reord = start_seq;
3114 			if (!after(scb->end_seq, tp->high_seq))
3115 				flag |= FLAG_ORIG_SACK_ACKED;
3116 		}
3117 
3118 		if (sacked & TCPCB_SACKED_ACKED) {
3119 			tp->sacked_out -= acked_pcount;
3120 		} else if (tcp_is_sack(tp)) {
3121 			tp->delivered += acked_pcount;
3122 			if (!tcp_skb_spurious_retrans(tp, skb))
3123 				tcp_rack_advance(tp, sacked, scb->end_seq,
3124 						 skb->skb_mstamp);
3125 		}
3126 		if (sacked & TCPCB_LOST)
3127 			tp->lost_out -= acked_pcount;
3128 
3129 		tp->packets_out -= acked_pcount;
3130 		pkts_acked += acked_pcount;
3131 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3132 
3133 		/* Initial outgoing SYN's get put onto the write_queue
3134 		 * just like anything else we transmit.  It is not
3135 		 * true data, and if we misinform our callers that
3136 		 * this ACK acks real data, we will erroneously exit
3137 		 * connection startup slow start one packet too
3138 		 * quickly.  This is severely frowned upon behavior.
3139 		 */
3140 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3141 			flag |= FLAG_DATA_ACKED;
3142 		} else {
3143 			flag |= FLAG_SYN_ACKED;
3144 			tp->retrans_stamp = 0;
3145 		}
3146 
3147 		if (!fully_acked)
3148 			break;
3149 
3150 		next = skb_rb_next(skb);
3151 		if (unlikely(skb == tp->retransmit_skb_hint))
3152 			tp->retransmit_skb_hint = NULL;
3153 		if (unlikely(skb == tp->lost_skb_hint))
3154 			tp->lost_skb_hint = NULL;
3155 		tcp_rtx_queue_unlink_and_free(skb, sk);
3156 	}
3157 
3158 	if (!skb)
3159 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3160 
3161 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162 		tp->snd_up = tp->snd_una;
3163 
3164 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165 		flag |= FLAG_SACK_RENEGING;
3166 
3167 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3168 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3169 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3170 
3171 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3172 		    last_in_flight && !prior_sacked && fully_acked &&
3173 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3174 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3175 			/* Conservatively mark a delayed ACK. It's typically
3176 			 * from a lone runt packet over the round trip to
3177 			 * a receiver w/o out-of-order or CE events.
3178 			 */
3179 			flag |= FLAG_ACK_MAYBE_DELAYED;
3180 		}
3181 	}
3182 	if (sack->first_sackt) {
3183 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3184 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3185 	}
3186 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3187 					ca_rtt_us, sack->rate);
3188 
3189 	if (flag & FLAG_ACKED) {
3190 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3191 		if (unlikely(icsk->icsk_mtup.probe_size &&
3192 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3193 			tcp_mtup_probe_success(sk);
3194 		}
3195 
3196 		if (tcp_is_reno(tp)) {
3197 			tcp_remove_reno_sacks(sk, pkts_acked);
3198 
3199 			/* If any of the cumulatively ACKed segments was
3200 			 * retransmitted, non-SACK case cannot confirm that
3201 			 * progress was due to original transmission due to
3202 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3203 			 * the packets may have been never retransmitted.
3204 			 */
3205 			if (flag & FLAG_RETRANS_DATA_ACKED)
3206 				flag &= ~FLAG_ORIG_SACK_ACKED;
3207 		} else {
3208 			int delta;
3209 
3210 			/* Non-retransmitted hole got filled? That's reordering */
3211 			if (before(reord, prior_fack))
3212 				tcp_check_sack_reordering(sk, reord, 0);
3213 
3214 			delta = prior_sacked - tp->sacked_out;
3215 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3216 		}
3217 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3218 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3219 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3220 		 * after when the head was last (re)transmitted. Otherwise the
3221 		 * timeout may continue to extend in loss recovery.
3222 		 */
3223 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3224 	}
3225 
3226 	if (icsk->icsk_ca_ops->pkts_acked) {
3227 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3228 					     .rtt_us = sack->rate->rtt_us,
3229 					     .in_flight = last_in_flight };
3230 
3231 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3232 	}
3233 
3234 #if FASTRETRANS_DEBUG > 0
3235 	WARN_ON((int)tp->sacked_out < 0);
3236 	WARN_ON((int)tp->lost_out < 0);
3237 	WARN_ON((int)tp->retrans_out < 0);
3238 	if (!tp->packets_out && tcp_is_sack(tp)) {
3239 		icsk = inet_csk(sk);
3240 		if (tp->lost_out) {
3241 			pr_debug("Leak l=%u %d\n",
3242 				 tp->lost_out, icsk->icsk_ca_state);
3243 			tp->lost_out = 0;
3244 		}
3245 		if (tp->sacked_out) {
3246 			pr_debug("Leak s=%u %d\n",
3247 				 tp->sacked_out, icsk->icsk_ca_state);
3248 			tp->sacked_out = 0;
3249 		}
3250 		if (tp->retrans_out) {
3251 			pr_debug("Leak r=%u %d\n",
3252 				 tp->retrans_out, icsk->icsk_ca_state);
3253 			tp->retrans_out = 0;
3254 		}
3255 	}
3256 #endif
3257 	return flag;
3258 }
3259 
3260 static void tcp_ack_probe(struct sock *sk)
3261 {
3262 	struct inet_connection_sock *icsk = inet_csk(sk);
3263 	struct sk_buff *head = tcp_send_head(sk);
3264 	const struct tcp_sock *tp = tcp_sk(sk);
3265 
3266 	/* Was it a usable window open? */
3267 	if (!head)
3268 		return;
3269 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3270 		icsk->icsk_backoff = 0;
3271 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3272 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3273 		 * This function is not for random using!
3274 		 */
3275 	} else {
3276 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3277 
3278 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3279 					  when, TCP_RTO_MAX);
3280 	}
3281 }
3282 
3283 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3284 {
3285 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3286 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3287 }
3288 
3289 /* Decide wheather to run the increase function of congestion control. */
3290 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3291 {
3292 	/* If reordering is high then always grow cwnd whenever data is
3293 	 * delivered regardless of its ordering. Otherwise stay conservative
3294 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3295 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3296 	 * cwnd in tcp_fastretrans_alert() based on more states.
3297 	 */
3298 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3299 		return flag & FLAG_FORWARD_PROGRESS;
3300 
3301 	return flag & FLAG_DATA_ACKED;
3302 }
3303 
3304 /* The "ultimate" congestion control function that aims to replace the rigid
3305  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3306  * It's called toward the end of processing an ACK with precise rate
3307  * information. All transmission or retransmission are delayed afterwards.
3308  */
3309 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3310 			     int flag, const struct rate_sample *rs)
3311 {
3312 	const struct inet_connection_sock *icsk = inet_csk(sk);
3313 
3314 	if (icsk->icsk_ca_ops->cong_control) {
3315 		icsk->icsk_ca_ops->cong_control(sk, rs);
3316 		return;
3317 	}
3318 
3319 	if (tcp_in_cwnd_reduction(sk)) {
3320 		/* Reduce cwnd if state mandates */
3321 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3322 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3323 		/* Advance cwnd if state allows */
3324 		tcp_cong_avoid(sk, ack, acked_sacked);
3325 	}
3326 	tcp_update_pacing_rate(sk);
3327 }
3328 
3329 /* Check that window update is acceptable.
3330  * The function assumes that snd_una<=ack<=snd_next.
3331  */
3332 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3333 					const u32 ack, const u32 ack_seq,
3334 					const u32 nwin)
3335 {
3336 	return	after(ack, tp->snd_una) ||
3337 		after(ack_seq, tp->snd_wl1) ||
3338 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3339 }
3340 
3341 /* If we update tp->snd_una, also update tp->bytes_acked */
3342 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3343 {
3344 	u32 delta = ack - tp->snd_una;
3345 
3346 	sock_owned_by_me((struct sock *)tp);
3347 	tp->bytes_acked += delta;
3348 	tp->snd_una = ack;
3349 }
3350 
3351 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3352 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3353 {
3354 	u32 delta = seq - tp->rcv_nxt;
3355 
3356 	sock_owned_by_me((struct sock *)tp);
3357 	tp->bytes_received += delta;
3358 	tp->rcv_nxt = seq;
3359 }
3360 
3361 /* Update our send window.
3362  *
3363  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3364  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3365  */
3366 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3367 				 u32 ack_seq)
3368 {
3369 	struct tcp_sock *tp = tcp_sk(sk);
3370 	int flag = 0;
3371 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3372 
3373 	if (likely(!tcp_hdr(skb)->syn))
3374 		nwin <<= tp->rx_opt.snd_wscale;
3375 
3376 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3377 		flag |= FLAG_WIN_UPDATE;
3378 		tcp_update_wl(tp, ack_seq);
3379 
3380 		if (tp->snd_wnd != nwin) {
3381 			tp->snd_wnd = nwin;
3382 
3383 			/* Note, it is the only place, where
3384 			 * fast path is recovered for sending TCP.
3385 			 */
3386 			tp->pred_flags = 0;
3387 			tcp_fast_path_check(sk);
3388 
3389 			if (!tcp_write_queue_empty(sk))
3390 				tcp_slow_start_after_idle_check(sk);
3391 
3392 			if (nwin > tp->max_window) {
3393 				tp->max_window = nwin;
3394 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3395 			}
3396 		}
3397 	}
3398 
3399 	tcp_snd_una_update(tp, ack);
3400 
3401 	return flag;
3402 }
3403 
3404 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3405 				   u32 *last_oow_ack_time)
3406 {
3407 	if (*last_oow_ack_time) {
3408 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3409 
3410 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3411 			NET_INC_STATS(net, mib_idx);
3412 			return true;	/* rate-limited: don't send yet! */
3413 		}
3414 	}
3415 
3416 	*last_oow_ack_time = tcp_jiffies32;
3417 
3418 	return false;	/* not rate-limited: go ahead, send dupack now! */
3419 }
3420 
3421 /* Return true if we're currently rate-limiting out-of-window ACKs and
3422  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3423  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3424  * attacks that send repeated SYNs or ACKs for the same connection. To
3425  * do this, we do not send a duplicate SYNACK or ACK if the remote
3426  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3427  */
3428 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3429 			  int mib_idx, u32 *last_oow_ack_time)
3430 {
3431 	/* Data packets without SYNs are not likely part of an ACK loop. */
3432 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3433 	    !tcp_hdr(skb)->syn)
3434 		return false;
3435 
3436 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3437 }
3438 
3439 /* RFC 5961 7 [ACK Throttling] */
3440 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3441 {
3442 	/* unprotected vars, we dont care of overwrites */
3443 	static u32 challenge_timestamp;
3444 	static unsigned int challenge_count;
3445 	struct tcp_sock *tp = tcp_sk(sk);
3446 	struct net *net = sock_net(sk);
3447 	u32 count, now;
3448 
3449 	/* First check our per-socket dupack rate limit. */
3450 	if (__tcp_oow_rate_limited(net,
3451 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3452 				   &tp->last_oow_ack_time))
3453 		return;
3454 
3455 	/* Then check host-wide RFC 5961 rate limit. */
3456 	now = jiffies / HZ;
3457 	if (now != challenge_timestamp) {
3458 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3459 		u32 half = (ack_limit + 1) >> 1;
3460 
3461 		challenge_timestamp = now;
3462 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3463 	}
3464 	count = READ_ONCE(challenge_count);
3465 	if (count > 0) {
3466 		WRITE_ONCE(challenge_count, count - 1);
3467 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3468 		tcp_send_ack(sk);
3469 	}
3470 }
3471 
3472 static void tcp_store_ts_recent(struct tcp_sock *tp)
3473 {
3474 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3475 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3476 }
3477 
3478 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3479 {
3480 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3481 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3482 		 * extra check below makes sure this can only happen
3483 		 * for pure ACK frames.  -DaveM
3484 		 *
3485 		 * Not only, also it occurs for expired timestamps.
3486 		 */
3487 
3488 		if (tcp_paws_check(&tp->rx_opt, 0))
3489 			tcp_store_ts_recent(tp);
3490 	}
3491 }
3492 
3493 /* This routine deals with acks during a TLP episode.
3494  * We mark the end of a TLP episode on receiving TLP dupack or when
3495  * ack is after tlp_high_seq.
3496  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3497  */
3498 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3499 {
3500 	struct tcp_sock *tp = tcp_sk(sk);
3501 
3502 	if (before(ack, tp->tlp_high_seq))
3503 		return;
3504 
3505 	if (flag & FLAG_DSACKING_ACK) {
3506 		/* This DSACK means original and TLP probe arrived; no loss */
3507 		tp->tlp_high_seq = 0;
3508 	} else if (after(ack, tp->tlp_high_seq)) {
3509 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3510 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3511 		 */
3512 		tcp_init_cwnd_reduction(sk);
3513 		tcp_set_ca_state(sk, TCP_CA_CWR);
3514 		tcp_end_cwnd_reduction(sk);
3515 		tcp_try_keep_open(sk);
3516 		NET_INC_STATS(sock_net(sk),
3517 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3518 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3519 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3520 		/* Pure dupack: original and TLP probe arrived; no loss */
3521 		tp->tlp_high_seq = 0;
3522 	}
3523 }
3524 
3525 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3526 {
3527 	const struct inet_connection_sock *icsk = inet_csk(sk);
3528 
3529 	if (icsk->icsk_ca_ops->in_ack_event)
3530 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3531 }
3532 
3533 /* Congestion control has updated the cwnd already. So if we're in
3534  * loss recovery then now we do any new sends (for FRTO) or
3535  * retransmits (for CA_Loss or CA_recovery) that make sense.
3536  */
3537 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3538 {
3539 	struct tcp_sock *tp = tcp_sk(sk);
3540 
3541 	if (rexmit == REXMIT_NONE)
3542 		return;
3543 
3544 	if (unlikely(rexmit == 2)) {
3545 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3546 					  TCP_NAGLE_OFF);
3547 		if (after(tp->snd_nxt, tp->high_seq))
3548 			return;
3549 		tp->frto = 0;
3550 	}
3551 	tcp_xmit_retransmit_queue(sk);
3552 }
3553 
3554 /* Returns the number of packets newly acked or sacked by the current ACK */
3555 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3556 {
3557 	const struct net *net = sock_net(sk);
3558 	struct tcp_sock *tp = tcp_sk(sk);
3559 	u32 delivered;
3560 
3561 	delivered = tp->delivered - prior_delivered;
3562 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3563 	if (flag & FLAG_ECE) {
3564 		tp->delivered_ce += delivered;
3565 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3566 	}
3567 	return delivered;
3568 }
3569 
3570 /* This routine deals with incoming acks, but not outgoing ones. */
3571 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3572 {
3573 	struct inet_connection_sock *icsk = inet_csk(sk);
3574 	struct tcp_sock *tp = tcp_sk(sk);
3575 	struct tcp_sacktag_state sack_state;
3576 	struct rate_sample rs = { .prior_delivered = 0 };
3577 	u32 prior_snd_una = tp->snd_una;
3578 	bool is_sack_reneg = tp->is_sack_reneg;
3579 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3580 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3581 	bool is_dupack = false;
3582 	int prior_packets = tp->packets_out;
3583 	u32 delivered = tp->delivered;
3584 	u32 lost = tp->lost;
3585 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3586 	u32 prior_fack;
3587 
3588 	sack_state.first_sackt = 0;
3589 	sack_state.rate = &rs;
3590 
3591 	/* We very likely will need to access rtx queue. */
3592 	prefetch(sk->tcp_rtx_queue.rb_node);
3593 
3594 	/* If the ack is older than previous acks
3595 	 * then we can probably ignore it.
3596 	 */
3597 	if (before(ack, prior_snd_una)) {
3598 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3599 		if (before(ack, prior_snd_una - tp->max_window)) {
3600 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3601 				tcp_send_challenge_ack(sk, skb);
3602 			return -1;
3603 		}
3604 		goto old_ack;
3605 	}
3606 
3607 	/* If the ack includes data we haven't sent yet, discard
3608 	 * this segment (RFC793 Section 3.9).
3609 	 */
3610 	if (after(ack, tp->snd_nxt))
3611 		goto invalid_ack;
3612 
3613 	if (after(ack, prior_snd_una)) {
3614 		flag |= FLAG_SND_UNA_ADVANCED;
3615 		icsk->icsk_retransmits = 0;
3616 
3617 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3618 		if (static_branch_unlikely(&clean_acked_data_enabled))
3619 			if (icsk->icsk_clean_acked)
3620 				icsk->icsk_clean_acked(sk, ack);
3621 #endif
3622 	}
3623 
3624 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3625 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3626 
3627 	/* ts_recent update must be made after we are sure that the packet
3628 	 * is in window.
3629 	 */
3630 	if (flag & FLAG_UPDATE_TS_RECENT)
3631 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3632 
3633 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3634 		/* Window is constant, pure forward advance.
3635 		 * No more checks are required.
3636 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3637 		 */
3638 		tcp_update_wl(tp, ack_seq);
3639 		tcp_snd_una_update(tp, ack);
3640 		flag |= FLAG_WIN_UPDATE;
3641 
3642 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3643 
3644 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3645 	} else {
3646 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3647 
3648 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3649 			flag |= FLAG_DATA;
3650 		else
3651 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3652 
3653 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3654 
3655 		if (TCP_SKB_CB(skb)->sacked)
3656 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3657 							&sack_state);
3658 
3659 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3660 			flag |= FLAG_ECE;
3661 			ack_ev_flags |= CA_ACK_ECE;
3662 		}
3663 
3664 		if (flag & FLAG_WIN_UPDATE)
3665 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3666 
3667 		tcp_in_ack_event(sk, ack_ev_flags);
3668 	}
3669 
3670 	/* We passed data and got it acked, remove any soft error
3671 	 * log. Something worked...
3672 	 */
3673 	sk->sk_err_soft = 0;
3674 	icsk->icsk_probes_out = 0;
3675 	tp->rcv_tstamp = tcp_jiffies32;
3676 	if (!prior_packets)
3677 		goto no_queue;
3678 
3679 	/* See if we can take anything off of the retransmit queue. */
3680 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3681 
3682 	tcp_rack_update_reo_wnd(sk, &rs);
3683 
3684 	if (tp->tlp_high_seq)
3685 		tcp_process_tlp_ack(sk, ack, flag);
3686 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3687 	if (flag & FLAG_SET_XMIT_TIMER)
3688 		tcp_set_xmit_timer(sk);
3689 
3690 	if (tcp_ack_is_dubious(sk, flag)) {
3691 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3692 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3693 				      &rexmit);
3694 	}
3695 
3696 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3697 		sk_dst_confirm(sk);
3698 
3699 	delivered = tcp_newly_delivered(sk, delivered, flag);
3700 	lost = tp->lost - lost;			/* freshly marked lost */
3701 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3702 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3703 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3704 	tcp_xmit_recovery(sk, rexmit);
3705 	return 1;
3706 
3707 no_queue:
3708 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3709 	if (flag & FLAG_DSACKING_ACK) {
3710 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3711 				      &rexmit);
3712 		tcp_newly_delivered(sk, delivered, flag);
3713 	}
3714 	/* If this ack opens up a zero window, clear backoff.  It was
3715 	 * being used to time the probes, and is probably far higher than
3716 	 * it needs to be for normal retransmission.
3717 	 */
3718 	tcp_ack_probe(sk);
3719 
3720 	if (tp->tlp_high_seq)
3721 		tcp_process_tlp_ack(sk, ack, flag);
3722 	return 1;
3723 
3724 invalid_ack:
3725 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3726 	return -1;
3727 
3728 old_ack:
3729 	/* If data was SACKed, tag it and see if we should send more data.
3730 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3731 	 */
3732 	if (TCP_SKB_CB(skb)->sacked) {
3733 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3734 						&sack_state);
3735 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3736 				      &rexmit);
3737 		tcp_newly_delivered(sk, delivered, flag);
3738 		tcp_xmit_recovery(sk, rexmit);
3739 	}
3740 
3741 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3742 	return 0;
3743 }
3744 
3745 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3746 				      bool syn, struct tcp_fastopen_cookie *foc,
3747 				      bool exp_opt)
3748 {
3749 	/* Valid only in SYN or SYN-ACK with an even length.  */
3750 	if (!foc || !syn || len < 0 || (len & 1))
3751 		return;
3752 
3753 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3754 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3755 		memcpy(foc->val, cookie, len);
3756 	else if (len != 0)
3757 		len = -1;
3758 	foc->len = len;
3759 	foc->exp = exp_opt;
3760 }
3761 
3762 static void smc_parse_options(const struct tcphdr *th,
3763 			      struct tcp_options_received *opt_rx,
3764 			      const unsigned char *ptr,
3765 			      int opsize)
3766 {
3767 #if IS_ENABLED(CONFIG_SMC)
3768 	if (static_branch_unlikely(&tcp_have_smc)) {
3769 		if (th->syn && !(opsize & 1) &&
3770 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3771 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3772 			opt_rx->smc_ok = 1;
3773 	}
3774 #endif
3775 }
3776 
3777 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3778  * But, this can also be called on packets in the established flow when
3779  * the fast version below fails.
3780  */
3781 void tcp_parse_options(const struct net *net,
3782 		       const struct sk_buff *skb,
3783 		       struct tcp_options_received *opt_rx, int estab,
3784 		       struct tcp_fastopen_cookie *foc)
3785 {
3786 	const unsigned char *ptr;
3787 	const struct tcphdr *th = tcp_hdr(skb);
3788 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3789 
3790 	ptr = (const unsigned char *)(th + 1);
3791 	opt_rx->saw_tstamp = 0;
3792 
3793 	while (length > 0) {
3794 		int opcode = *ptr++;
3795 		int opsize;
3796 
3797 		switch (opcode) {
3798 		case TCPOPT_EOL:
3799 			return;
3800 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3801 			length--;
3802 			continue;
3803 		default:
3804 			opsize = *ptr++;
3805 			if (opsize < 2) /* "silly options" */
3806 				return;
3807 			if (opsize > length)
3808 				return;	/* don't parse partial options */
3809 			switch (opcode) {
3810 			case TCPOPT_MSS:
3811 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3812 					u16 in_mss = get_unaligned_be16(ptr);
3813 					if (in_mss) {
3814 						if (opt_rx->user_mss &&
3815 						    opt_rx->user_mss < in_mss)
3816 							in_mss = opt_rx->user_mss;
3817 						opt_rx->mss_clamp = in_mss;
3818 					}
3819 				}
3820 				break;
3821 			case TCPOPT_WINDOW:
3822 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3823 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3824 					__u8 snd_wscale = *(__u8 *)ptr;
3825 					opt_rx->wscale_ok = 1;
3826 					if (snd_wscale > TCP_MAX_WSCALE) {
3827 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3828 								     __func__,
3829 								     snd_wscale,
3830 								     TCP_MAX_WSCALE);
3831 						snd_wscale = TCP_MAX_WSCALE;
3832 					}
3833 					opt_rx->snd_wscale = snd_wscale;
3834 				}
3835 				break;
3836 			case TCPOPT_TIMESTAMP:
3837 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3838 				    ((estab && opt_rx->tstamp_ok) ||
3839 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3840 					opt_rx->saw_tstamp = 1;
3841 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3842 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3843 				}
3844 				break;
3845 			case TCPOPT_SACK_PERM:
3846 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3847 				    !estab && net->ipv4.sysctl_tcp_sack) {
3848 					opt_rx->sack_ok = TCP_SACK_SEEN;
3849 					tcp_sack_reset(opt_rx);
3850 				}
3851 				break;
3852 
3853 			case TCPOPT_SACK:
3854 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3855 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3856 				   opt_rx->sack_ok) {
3857 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3858 				}
3859 				break;
3860 #ifdef CONFIG_TCP_MD5SIG
3861 			case TCPOPT_MD5SIG:
3862 				/*
3863 				 * The MD5 Hash has already been
3864 				 * checked (see tcp_v{4,6}_do_rcv()).
3865 				 */
3866 				break;
3867 #endif
3868 			case TCPOPT_FASTOPEN:
3869 				tcp_parse_fastopen_option(
3870 					opsize - TCPOLEN_FASTOPEN_BASE,
3871 					ptr, th->syn, foc, false);
3872 				break;
3873 
3874 			case TCPOPT_EXP:
3875 				/* Fast Open option shares code 254 using a
3876 				 * 16 bits magic number.
3877 				 */
3878 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3879 				    get_unaligned_be16(ptr) ==
3880 				    TCPOPT_FASTOPEN_MAGIC)
3881 					tcp_parse_fastopen_option(opsize -
3882 						TCPOLEN_EXP_FASTOPEN_BASE,
3883 						ptr + 2, th->syn, foc, true);
3884 				else
3885 					smc_parse_options(th, opt_rx, ptr,
3886 							  opsize);
3887 				break;
3888 
3889 			}
3890 			ptr += opsize-2;
3891 			length -= opsize;
3892 		}
3893 	}
3894 }
3895 EXPORT_SYMBOL(tcp_parse_options);
3896 
3897 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3898 {
3899 	const __be32 *ptr = (const __be32 *)(th + 1);
3900 
3901 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3902 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3903 		tp->rx_opt.saw_tstamp = 1;
3904 		++ptr;
3905 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3906 		++ptr;
3907 		if (*ptr)
3908 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3909 		else
3910 			tp->rx_opt.rcv_tsecr = 0;
3911 		return true;
3912 	}
3913 	return false;
3914 }
3915 
3916 /* Fast parse options. This hopes to only see timestamps.
3917  * If it is wrong it falls back on tcp_parse_options().
3918  */
3919 static bool tcp_fast_parse_options(const struct net *net,
3920 				   const struct sk_buff *skb,
3921 				   const struct tcphdr *th, struct tcp_sock *tp)
3922 {
3923 	/* In the spirit of fast parsing, compare doff directly to constant
3924 	 * values.  Because equality is used, short doff can be ignored here.
3925 	 */
3926 	if (th->doff == (sizeof(*th) / 4)) {
3927 		tp->rx_opt.saw_tstamp = 0;
3928 		return false;
3929 	} else if (tp->rx_opt.tstamp_ok &&
3930 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3931 		if (tcp_parse_aligned_timestamp(tp, th))
3932 			return true;
3933 	}
3934 
3935 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3936 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3937 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3938 
3939 	return true;
3940 }
3941 
3942 #ifdef CONFIG_TCP_MD5SIG
3943 /*
3944  * Parse MD5 Signature option
3945  */
3946 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3947 {
3948 	int length = (th->doff << 2) - sizeof(*th);
3949 	const u8 *ptr = (const u8 *)(th + 1);
3950 
3951 	/* If not enough data remaining, we can short cut */
3952 	while (length >= TCPOLEN_MD5SIG) {
3953 		int opcode = *ptr++;
3954 		int opsize;
3955 
3956 		switch (opcode) {
3957 		case TCPOPT_EOL:
3958 			return NULL;
3959 		case TCPOPT_NOP:
3960 			length--;
3961 			continue;
3962 		default:
3963 			opsize = *ptr++;
3964 			if (opsize < 2 || opsize > length)
3965 				return NULL;
3966 			if (opcode == TCPOPT_MD5SIG)
3967 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3968 		}
3969 		ptr += opsize - 2;
3970 		length -= opsize;
3971 	}
3972 	return NULL;
3973 }
3974 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3975 #endif
3976 
3977 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3978  *
3979  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3980  * it can pass through stack. So, the following predicate verifies that
3981  * this segment is not used for anything but congestion avoidance or
3982  * fast retransmit. Moreover, we even are able to eliminate most of such
3983  * second order effects, if we apply some small "replay" window (~RTO)
3984  * to timestamp space.
3985  *
3986  * All these measures still do not guarantee that we reject wrapped ACKs
3987  * on networks with high bandwidth, when sequence space is recycled fastly,
3988  * but it guarantees that such events will be very rare and do not affect
3989  * connection seriously. This doesn't look nice, but alas, PAWS is really
3990  * buggy extension.
3991  *
3992  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3993  * states that events when retransmit arrives after original data are rare.
3994  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3995  * the biggest problem on large power networks even with minor reordering.
3996  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3997  * up to bandwidth of 18Gigabit/sec. 8) ]
3998  */
3999 
4000 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4001 {
4002 	const struct tcp_sock *tp = tcp_sk(sk);
4003 	const struct tcphdr *th = tcp_hdr(skb);
4004 	u32 seq = TCP_SKB_CB(skb)->seq;
4005 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4006 
4007 	return (/* 1. Pure ACK with correct sequence number. */
4008 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4009 
4010 		/* 2. ... and duplicate ACK. */
4011 		ack == tp->snd_una &&
4012 
4013 		/* 3. ... and does not update window. */
4014 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4015 
4016 		/* 4. ... and sits in replay window. */
4017 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4018 }
4019 
4020 static inline bool tcp_paws_discard(const struct sock *sk,
4021 				   const struct sk_buff *skb)
4022 {
4023 	const struct tcp_sock *tp = tcp_sk(sk);
4024 
4025 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4026 	       !tcp_disordered_ack(sk, skb);
4027 }
4028 
4029 /* Check segment sequence number for validity.
4030  *
4031  * Segment controls are considered valid, if the segment
4032  * fits to the window after truncation to the window. Acceptability
4033  * of data (and SYN, FIN, of course) is checked separately.
4034  * See tcp_data_queue(), for example.
4035  *
4036  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4037  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4038  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4039  * (borrowed from freebsd)
4040  */
4041 
4042 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4043 {
4044 	return	!before(end_seq, tp->rcv_wup) &&
4045 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4046 }
4047 
4048 /* When we get a reset we do this. */
4049 void tcp_reset(struct sock *sk)
4050 {
4051 	trace_tcp_receive_reset(sk);
4052 
4053 	/* We want the right error as BSD sees it (and indeed as we do). */
4054 	switch (sk->sk_state) {
4055 	case TCP_SYN_SENT:
4056 		sk->sk_err = ECONNREFUSED;
4057 		break;
4058 	case TCP_CLOSE_WAIT:
4059 		sk->sk_err = EPIPE;
4060 		break;
4061 	case TCP_CLOSE:
4062 		return;
4063 	default:
4064 		sk->sk_err = ECONNRESET;
4065 	}
4066 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4067 	smp_wmb();
4068 
4069 	tcp_write_queue_purge(sk);
4070 	tcp_done(sk);
4071 
4072 	if (!sock_flag(sk, SOCK_DEAD))
4073 		sk->sk_error_report(sk);
4074 }
4075 
4076 /*
4077  * 	Process the FIN bit. This now behaves as it is supposed to work
4078  *	and the FIN takes effect when it is validly part of sequence
4079  *	space. Not before when we get holes.
4080  *
4081  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4082  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4083  *	TIME-WAIT)
4084  *
4085  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4086  *	close and we go into CLOSING (and later onto TIME-WAIT)
4087  *
4088  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4089  */
4090 void tcp_fin(struct sock *sk)
4091 {
4092 	struct tcp_sock *tp = tcp_sk(sk);
4093 
4094 	inet_csk_schedule_ack(sk);
4095 
4096 	sk->sk_shutdown |= RCV_SHUTDOWN;
4097 	sock_set_flag(sk, SOCK_DONE);
4098 
4099 	switch (sk->sk_state) {
4100 	case TCP_SYN_RECV:
4101 	case TCP_ESTABLISHED:
4102 		/* Move to CLOSE_WAIT */
4103 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4104 		inet_csk(sk)->icsk_ack.pingpong = 1;
4105 		break;
4106 
4107 	case TCP_CLOSE_WAIT:
4108 	case TCP_CLOSING:
4109 		/* Received a retransmission of the FIN, do
4110 		 * nothing.
4111 		 */
4112 		break;
4113 	case TCP_LAST_ACK:
4114 		/* RFC793: Remain in the LAST-ACK state. */
4115 		break;
4116 
4117 	case TCP_FIN_WAIT1:
4118 		/* This case occurs when a simultaneous close
4119 		 * happens, we must ack the received FIN and
4120 		 * enter the CLOSING state.
4121 		 */
4122 		tcp_send_ack(sk);
4123 		tcp_set_state(sk, TCP_CLOSING);
4124 		break;
4125 	case TCP_FIN_WAIT2:
4126 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4127 		tcp_send_ack(sk);
4128 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4129 		break;
4130 	default:
4131 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4132 		 * cases we should never reach this piece of code.
4133 		 */
4134 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4135 		       __func__, sk->sk_state);
4136 		break;
4137 	}
4138 
4139 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4140 	 * Probably, we should reset in this case. For now drop them.
4141 	 */
4142 	skb_rbtree_purge(&tp->out_of_order_queue);
4143 	if (tcp_is_sack(tp))
4144 		tcp_sack_reset(&tp->rx_opt);
4145 	sk_mem_reclaim(sk);
4146 
4147 	if (!sock_flag(sk, SOCK_DEAD)) {
4148 		sk->sk_state_change(sk);
4149 
4150 		/* Do not send POLL_HUP for half duplex close. */
4151 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4152 		    sk->sk_state == TCP_CLOSE)
4153 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4154 		else
4155 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4156 	}
4157 }
4158 
4159 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4160 				  u32 end_seq)
4161 {
4162 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4163 		if (before(seq, sp->start_seq))
4164 			sp->start_seq = seq;
4165 		if (after(end_seq, sp->end_seq))
4166 			sp->end_seq = end_seq;
4167 		return true;
4168 	}
4169 	return false;
4170 }
4171 
4172 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4173 {
4174 	struct tcp_sock *tp = tcp_sk(sk);
4175 
4176 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4177 		int mib_idx;
4178 
4179 		if (before(seq, tp->rcv_nxt))
4180 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4181 		else
4182 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4183 
4184 		NET_INC_STATS(sock_net(sk), mib_idx);
4185 
4186 		tp->rx_opt.dsack = 1;
4187 		tp->duplicate_sack[0].start_seq = seq;
4188 		tp->duplicate_sack[0].end_seq = end_seq;
4189 	}
4190 }
4191 
4192 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4193 {
4194 	struct tcp_sock *tp = tcp_sk(sk);
4195 
4196 	if (!tp->rx_opt.dsack)
4197 		tcp_dsack_set(sk, seq, end_seq);
4198 	else
4199 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4200 }
4201 
4202 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4203 {
4204 	struct tcp_sock *tp = tcp_sk(sk);
4205 
4206 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4207 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4208 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4209 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4210 
4211 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4212 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4213 
4214 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4215 				end_seq = tp->rcv_nxt;
4216 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4217 		}
4218 	}
4219 
4220 	tcp_send_ack(sk);
4221 }
4222 
4223 /* These routines update the SACK block as out-of-order packets arrive or
4224  * in-order packets close up the sequence space.
4225  */
4226 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4227 {
4228 	int this_sack;
4229 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4230 	struct tcp_sack_block *swalk = sp + 1;
4231 
4232 	/* See if the recent change to the first SACK eats into
4233 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4234 	 */
4235 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4236 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4237 			int i;
4238 
4239 			/* Zap SWALK, by moving every further SACK up by one slot.
4240 			 * Decrease num_sacks.
4241 			 */
4242 			tp->rx_opt.num_sacks--;
4243 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4244 				sp[i] = sp[i + 1];
4245 			continue;
4246 		}
4247 		this_sack++, swalk++;
4248 	}
4249 }
4250 
4251 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4252 {
4253 	struct tcp_sock *tp = tcp_sk(sk);
4254 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4255 	int cur_sacks = tp->rx_opt.num_sacks;
4256 	int this_sack;
4257 
4258 	if (!cur_sacks)
4259 		goto new_sack;
4260 
4261 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4262 		if (tcp_sack_extend(sp, seq, end_seq)) {
4263 			/* Rotate this_sack to the first one. */
4264 			for (; this_sack > 0; this_sack--, sp--)
4265 				swap(*sp, *(sp - 1));
4266 			if (cur_sacks > 1)
4267 				tcp_sack_maybe_coalesce(tp);
4268 			return;
4269 		}
4270 	}
4271 
4272 	/* Could not find an adjacent existing SACK, build a new one,
4273 	 * put it at the front, and shift everyone else down.  We
4274 	 * always know there is at least one SACK present already here.
4275 	 *
4276 	 * If the sack array is full, forget about the last one.
4277 	 */
4278 	if (this_sack >= TCP_NUM_SACKS) {
4279 		if (tp->compressed_ack)
4280 			tcp_send_ack(sk);
4281 		this_sack--;
4282 		tp->rx_opt.num_sacks--;
4283 		sp--;
4284 	}
4285 	for (; this_sack > 0; this_sack--, sp--)
4286 		*sp = *(sp - 1);
4287 
4288 new_sack:
4289 	/* Build the new head SACK, and we're done. */
4290 	sp->start_seq = seq;
4291 	sp->end_seq = end_seq;
4292 	tp->rx_opt.num_sacks++;
4293 }
4294 
4295 /* RCV.NXT advances, some SACKs should be eaten. */
4296 
4297 static void tcp_sack_remove(struct tcp_sock *tp)
4298 {
4299 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4300 	int num_sacks = tp->rx_opt.num_sacks;
4301 	int this_sack;
4302 
4303 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4304 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4305 		tp->rx_opt.num_sacks = 0;
4306 		return;
4307 	}
4308 
4309 	for (this_sack = 0; this_sack < num_sacks;) {
4310 		/* Check if the start of the sack is covered by RCV.NXT. */
4311 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4312 			int i;
4313 
4314 			/* RCV.NXT must cover all the block! */
4315 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4316 
4317 			/* Zap this SACK, by moving forward any other SACKS. */
4318 			for (i = this_sack+1; i < num_sacks; i++)
4319 				tp->selective_acks[i-1] = tp->selective_acks[i];
4320 			num_sacks--;
4321 			continue;
4322 		}
4323 		this_sack++;
4324 		sp++;
4325 	}
4326 	tp->rx_opt.num_sacks = num_sacks;
4327 }
4328 
4329 /**
4330  * tcp_try_coalesce - try to merge skb to prior one
4331  * @sk: socket
4332  * @dest: destination queue
4333  * @to: prior buffer
4334  * @from: buffer to add in queue
4335  * @fragstolen: pointer to boolean
4336  *
4337  * Before queueing skb @from after @to, try to merge them
4338  * to reduce overall memory use and queue lengths, if cost is small.
4339  * Packets in ofo or receive queues can stay a long time.
4340  * Better try to coalesce them right now to avoid future collapses.
4341  * Returns true if caller should free @from instead of queueing it
4342  */
4343 static bool tcp_try_coalesce(struct sock *sk,
4344 			     struct sk_buff *to,
4345 			     struct sk_buff *from,
4346 			     bool *fragstolen)
4347 {
4348 	int delta;
4349 
4350 	*fragstolen = false;
4351 
4352 	/* Its possible this segment overlaps with prior segment in queue */
4353 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4354 		return false;
4355 
4356 #ifdef CONFIG_TLS_DEVICE
4357 	if (from->decrypted != to->decrypted)
4358 		return false;
4359 #endif
4360 
4361 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4362 		return false;
4363 
4364 	atomic_add(delta, &sk->sk_rmem_alloc);
4365 	sk_mem_charge(sk, delta);
4366 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4367 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4368 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4369 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4370 
4371 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4372 		TCP_SKB_CB(to)->has_rxtstamp = true;
4373 		to->tstamp = from->tstamp;
4374 	}
4375 
4376 	return true;
4377 }
4378 
4379 static bool tcp_ooo_try_coalesce(struct sock *sk,
4380 			     struct sk_buff *to,
4381 			     struct sk_buff *from,
4382 			     bool *fragstolen)
4383 {
4384 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4385 
4386 	/* In case tcp_drop() is called later, update to->gso_segs */
4387 	if (res) {
4388 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4389 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4390 
4391 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4392 	}
4393 	return res;
4394 }
4395 
4396 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4397 {
4398 	sk_drops_add(sk, skb);
4399 	__kfree_skb(skb);
4400 }
4401 
4402 /* This one checks to see if we can put data from the
4403  * out_of_order queue into the receive_queue.
4404  */
4405 static void tcp_ofo_queue(struct sock *sk)
4406 {
4407 	struct tcp_sock *tp = tcp_sk(sk);
4408 	__u32 dsack_high = tp->rcv_nxt;
4409 	bool fin, fragstolen, eaten;
4410 	struct sk_buff *skb, *tail;
4411 	struct rb_node *p;
4412 
4413 	p = rb_first(&tp->out_of_order_queue);
4414 	while (p) {
4415 		skb = rb_to_skb(p);
4416 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4417 			break;
4418 
4419 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4420 			__u32 dsack = dsack_high;
4421 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4422 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4423 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4424 		}
4425 		p = rb_next(p);
4426 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4427 
4428 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4429 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4430 			tcp_drop(sk, skb);
4431 			continue;
4432 		}
4433 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4434 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4435 			   TCP_SKB_CB(skb)->end_seq);
4436 
4437 		tail = skb_peek_tail(&sk->sk_receive_queue);
4438 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4439 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4440 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4441 		if (!eaten)
4442 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4443 		else
4444 			kfree_skb_partial(skb, fragstolen);
4445 
4446 		if (unlikely(fin)) {
4447 			tcp_fin(sk);
4448 			/* tcp_fin() purges tp->out_of_order_queue,
4449 			 * so we must end this loop right now.
4450 			 */
4451 			break;
4452 		}
4453 	}
4454 }
4455 
4456 static bool tcp_prune_ofo_queue(struct sock *sk);
4457 static int tcp_prune_queue(struct sock *sk);
4458 
4459 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4460 				 unsigned int size)
4461 {
4462 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4463 	    !sk_rmem_schedule(sk, skb, size)) {
4464 
4465 		if (tcp_prune_queue(sk) < 0)
4466 			return -1;
4467 
4468 		while (!sk_rmem_schedule(sk, skb, size)) {
4469 			if (!tcp_prune_ofo_queue(sk))
4470 				return -1;
4471 		}
4472 	}
4473 	return 0;
4474 }
4475 
4476 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4477 {
4478 	struct tcp_sock *tp = tcp_sk(sk);
4479 	struct rb_node **p, *parent;
4480 	struct sk_buff *skb1;
4481 	u32 seq, end_seq;
4482 	bool fragstolen;
4483 
4484 	tcp_ecn_check_ce(sk, skb);
4485 
4486 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4487 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4488 		tcp_drop(sk, skb);
4489 		return;
4490 	}
4491 
4492 	/* Disable header prediction. */
4493 	tp->pred_flags = 0;
4494 	inet_csk_schedule_ack(sk);
4495 
4496 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4497 	seq = TCP_SKB_CB(skb)->seq;
4498 	end_seq = TCP_SKB_CB(skb)->end_seq;
4499 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4500 		   tp->rcv_nxt, seq, end_seq);
4501 
4502 	p = &tp->out_of_order_queue.rb_node;
4503 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4504 		/* Initial out of order segment, build 1 SACK. */
4505 		if (tcp_is_sack(tp)) {
4506 			tp->rx_opt.num_sacks = 1;
4507 			tp->selective_acks[0].start_seq = seq;
4508 			tp->selective_acks[0].end_seq = end_seq;
4509 		}
4510 		rb_link_node(&skb->rbnode, NULL, p);
4511 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4512 		tp->ooo_last_skb = skb;
4513 		goto end;
4514 	}
4515 
4516 	/* In the typical case, we are adding an skb to the end of the list.
4517 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4518 	 */
4519 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4520 				 skb, &fragstolen)) {
4521 coalesce_done:
4522 		tcp_grow_window(sk, skb);
4523 		kfree_skb_partial(skb, fragstolen);
4524 		skb = NULL;
4525 		goto add_sack;
4526 	}
4527 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4528 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4529 		parent = &tp->ooo_last_skb->rbnode;
4530 		p = &parent->rb_right;
4531 		goto insert;
4532 	}
4533 
4534 	/* Find place to insert this segment. Handle overlaps on the way. */
4535 	parent = NULL;
4536 	while (*p) {
4537 		parent = *p;
4538 		skb1 = rb_to_skb(parent);
4539 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4540 			p = &parent->rb_left;
4541 			continue;
4542 		}
4543 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4544 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4545 				/* All the bits are present. Drop. */
4546 				NET_INC_STATS(sock_net(sk),
4547 					      LINUX_MIB_TCPOFOMERGE);
4548 				tcp_drop(sk, skb);
4549 				skb = NULL;
4550 				tcp_dsack_set(sk, seq, end_seq);
4551 				goto add_sack;
4552 			}
4553 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4554 				/* Partial overlap. */
4555 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4556 			} else {
4557 				/* skb's seq == skb1's seq and skb covers skb1.
4558 				 * Replace skb1 with skb.
4559 				 */
4560 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4561 						&tp->out_of_order_queue);
4562 				tcp_dsack_extend(sk,
4563 						 TCP_SKB_CB(skb1)->seq,
4564 						 TCP_SKB_CB(skb1)->end_seq);
4565 				NET_INC_STATS(sock_net(sk),
4566 					      LINUX_MIB_TCPOFOMERGE);
4567 				tcp_drop(sk, skb1);
4568 				goto merge_right;
4569 			}
4570 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4571 						skb, &fragstolen)) {
4572 			goto coalesce_done;
4573 		}
4574 		p = &parent->rb_right;
4575 	}
4576 insert:
4577 	/* Insert segment into RB tree. */
4578 	rb_link_node(&skb->rbnode, parent, p);
4579 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4580 
4581 merge_right:
4582 	/* Remove other segments covered by skb. */
4583 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4584 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4585 			break;
4586 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4587 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4588 					 end_seq);
4589 			break;
4590 		}
4591 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4592 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4593 				 TCP_SKB_CB(skb1)->end_seq);
4594 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4595 		tcp_drop(sk, skb1);
4596 	}
4597 	/* If there is no skb after us, we are the last_skb ! */
4598 	if (!skb1)
4599 		tp->ooo_last_skb = skb;
4600 
4601 add_sack:
4602 	if (tcp_is_sack(tp))
4603 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4604 end:
4605 	if (skb) {
4606 		tcp_grow_window(sk, skb);
4607 		skb_condense(skb);
4608 		skb_set_owner_r(skb, sk);
4609 	}
4610 }
4611 
4612 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4613 		  bool *fragstolen)
4614 {
4615 	int eaten;
4616 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4617 
4618 	__skb_pull(skb, hdrlen);
4619 	eaten = (tail &&
4620 		 tcp_try_coalesce(sk, tail,
4621 				  skb, fragstolen)) ? 1 : 0;
4622 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4623 	if (!eaten) {
4624 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4625 		skb_set_owner_r(skb, sk);
4626 	}
4627 	return eaten;
4628 }
4629 
4630 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4631 {
4632 	struct sk_buff *skb;
4633 	int err = -ENOMEM;
4634 	int data_len = 0;
4635 	bool fragstolen;
4636 
4637 	if (size == 0)
4638 		return 0;
4639 
4640 	if (size > PAGE_SIZE) {
4641 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4642 
4643 		data_len = npages << PAGE_SHIFT;
4644 		size = data_len + (size & ~PAGE_MASK);
4645 	}
4646 	skb = alloc_skb_with_frags(size - data_len, data_len,
4647 				   PAGE_ALLOC_COSTLY_ORDER,
4648 				   &err, sk->sk_allocation);
4649 	if (!skb)
4650 		goto err;
4651 
4652 	skb_put(skb, size - data_len);
4653 	skb->data_len = data_len;
4654 	skb->len = size;
4655 
4656 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4657 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4658 		goto err_free;
4659 	}
4660 
4661 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4662 	if (err)
4663 		goto err_free;
4664 
4665 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4666 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4667 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4668 
4669 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4670 		WARN_ON_ONCE(fragstolen); /* should not happen */
4671 		__kfree_skb(skb);
4672 	}
4673 	return size;
4674 
4675 err_free:
4676 	kfree_skb(skb);
4677 err:
4678 	return err;
4679 
4680 }
4681 
4682 void tcp_data_ready(struct sock *sk)
4683 {
4684 	const struct tcp_sock *tp = tcp_sk(sk);
4685 	int avail = tp->rcv_nxt - tp->copied_seq;
4686 
4687 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4688 		return;
4689 
4690 	sk->sk_data_ready(sk);
4691 }
4692 
4693 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4694 {
4695 	struct tcp_sock *tp = tcp_sk(sk);
4696 	bool fragstolen;
4697 	int eaten;
4698 
4699 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4700 		__kfree_skb(skb);
4701 		return;
4702 	}
4703 	skb_dst_drop(skb);
4704 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4705 
4706 	tcp_ecn_accept_cwr(sk, skb);
4707 
4708 	tp->rx_opt.dsack = 0;
4709 
4710 	/*  Queue data for delivery to the user.
4711 	 *  Packets in sequence go to the receive queue.
4712 	 *  Out of sequence packets to the out_of_order_queue.
4713 	 */
4714 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4715 		if (tcp_receive_window(tp) == 0) {
4716 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4717 			goto out_of_window;
4718 		}
4719 
4720 		/* Ok. In sequence. In window. */
4721 queue_and_out:
4722 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4723 			sk_forced_mem_schedule(sk, skb->truesize);
4724 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4725 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4726 			goto drop;
4727 		}
4728 
4729 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4730 		if (skb->len)
4731 			tcp_event_data_recv(sk, skb);
4732 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4733 			tcp_fin(sk);
4734 
4735 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4736 			tcp_ofo_queue(sk);
4737 
4738 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4739 			 * gap in queue is filled.
4740 			 */
4741 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4742 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4743 		}
4744 
4745 		if (tp->rx_opt.num_sacks)
4746 			tcp_sack_remove(tp);
4747 
4748 		tcp_fast_path_check(sk);
4749 
4750 		if (eaten > 0)
4751 			kfree_skb_partial(skb, fragstolen);
4752 		if (!sock_flag(sk, SOCK_DEAD))
4753 			tcp_data_ready(sk);
4754 		return;
4755 	}
4756 
4757 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4758 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4759 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4760 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4761 
4762 out_of_window:
4763 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4764 		inet_csk_schedule_ack(sk);
4765 drop:
4766 		tcp_drop(sk, skb);
4767 		return;
4768 	}
4769 
4770 	/* Out of window. F.e. zero window probe. */
4771 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4772 		goto out_of_window;
4773 
4774 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4775 		/* Partial packet, seq < rcv_next < end_seq */
4776 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4777 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4778 			   TCP_SKB_CB(skb)->end_seq);
4779 
4780 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4781 
4782 		/* If window is closed, drop tail of packet. But after
4783 		 * remembering D-SACK for its head made in previous line.
4784 		 */
4785 		if (!tcp_receive_window(tp)) {
4786 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4787 			goto out_of_window;
4788 		}
4789 		goto queue_and_out;
4790 	}
4791 
4792 	tcp_data_queue_ofo(sk, skb);
4793 }
4794 
4795 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4796 {
4797 	if (list)
4798 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4799 
4800 	return skb_rb_next(skb);
4801 }
4802 
4803 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4804 					struct sk_buff_head *list,
4805 					struct rb_root *root)
4806 {
4807 	struct sk_buff *next = tcp_skb_next(skb, list);
4808 
4809 	if (list)
4810 		__skb_unlink(skb, list);
4811 	else
4812 		rb_erase(&skb->rbnode, root);
4813 
4814 	__kfree_skb(skb);
4815 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4816 
4817 	return next;
4818 }
4819 
4820 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4821 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4822 {
4823 	struct rb_node **p = &root->rb_node;
4824 	struct rb_node *parent = NULL;
4825 	struct sk_buff *skb1;
4826 
4827 	while (*p) {
4828 		parent = *p;
4829 		skb1 = rb_to_skb(parent);
4830 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4831 			p = &parent->rb_left;
4832 		else
4833 			p = &parent->rb_right;
4834 	}
4835 	rb_link_node(&skb->rbnode, parent, p);
4836 	rb_insert_color(&skb->rbnode, root);
4837 }
4838 
4839 /* Collapse contiguous sequence of skbs head..tail with
4840  * sequence numbers start..end.
4841  *
4842  * If tail is NULL, this means until the end of the queue.
4843  *
4844  * Segments with FIN/SYN are not collapsed (only because this
4845  * simplifies code)
4846  */
4847 static void
4848 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4849 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4850 {
4851 	struct sk_buff *skb = head, *n;
4852 	struct sk_buff_head tmp;
4853 	bool end_of_skbs;
4854 
4855 	/* First, check that queue is collapsible and find
4856 	 * the point where collapsing can be useful.
4857 	 */
4858 restart:
4859 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4860 		n = tcp_skb_next(skb, list);
4861 
4862 		/* No new bits? It is possible on ofo queue. */
4863 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4864 			skb = tcp_collapse_one(sk, skb, list, root);
4865 			if (!skb)
4866 				break;
4867 			goto restart;
4868 		}
4869 
4870 		/* The first skb to collapse is:
4871 		 * - not SYN/FIN and
4872 		 * - bloated or contains data before "start" or
4873 		 *   overlaps to the next one.
4874 		 */
4875 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4876 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4877 		     before(TCP_SKB_CB(skb)->seq, start))) {
4878 			end_of_skbs = false;
4879 			break;
4880 		}
4881 
4882 		if (n && n != tail &&
4883 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4884 			end_of_skbs = false;
4885 			break;
4886 		}
4887 
4888 		/* Decided to skip this, advance start seq. */
4889 		start = TCP_SKB_CB(skb)->end_seq;
4890 	}
4891 	if (end_of_skbs ||
4892 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4893 		return;
4894 
4895 	__skb_queue_head_init(&tmp);
4896 
4897 	while (before(start, end)) {
4898 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4899 		struct sk_buff *nskb;
4900 
4901 		nskb = alloc_skb(copy, GFP_ATOMIC);
4902 		if (!nskb)
4903 			break;
4904 
4905 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4906 #ifdef CONFIG_TLS_DEVICE
4907 		nskb->decrypted = skb->decrypted;
4908 #endif
4909 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4910 		if (list)
4911 			__skb_queue_before(list, skb, nskb);
4912 		else
4913 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4914 		skb_set_owner_r(nskb, sk);
4915 
4916 		/* Copy data, releasing collapsed skbs. */
4917 		while (copy > 0) {
4918 			int offset = start - TCP_SKB_CB(skb)->seq;
4919 			int size = TCP_SKB_CB(skb)->end_seq - start;
4920 
4921 			BUG_ON(offset < 0);
4922 			if (size > 0) {
4923 				size = min(copy, size);
4924 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4925 					BUG();
4926 				TCP_SKB_CB(nskb)->end_seq += size;
4927 				copy -= size;
4928 				start += size;
4929 			}
4930 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4931 				skb = tcp_collapse_one(sk, skb, list, root);
4932 				if (!skb ||
4933 				    skb == tail ||
4934 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4935 					goto end;
4936 #ifdef CONFIG_TLS_DEVICE
4937 				if (skb->decrypted != nskb->decrypted)
4938 					goto end;
4939 #endif
4940 			}
4941 		}
4942 	}
4943 end:
4944 	skb_queue_walk_safe(&tmp, skb, n)
4945 		tcp_rbtree_insert(root, skb);
4946 }
4947 
4948 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4949  * and tcp_collapse() them until all the queue is collapsed.
4950  */
4951 static void tcp_collapse_ofo_queue(struct sock *sk)
4952 {
4953 	struct tcp_sock *tp = tcp_sk(sk);
4954 	u32 range_truesize, sum_tiny = 0;
4955 	struct sk_buff *skb, *head;
4956 	u32 start, end;
4957 
4958 	skb = skb_rb_first(&tp->out_of_order_queue);
4959 new_range:
4960 	if (!skb) {
4961 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4962 		return;
4963 	}
4964 	start = TCP_SKB_CB(skb)->seq;
4965 	end = TCP_SKB_CB(skb)->end_seq;
4966 	range_truesize = skb->truesize;
4967 
4968 	for (head = skb;;) {
4969 		skb = skb_rb_next(skb);
4970 
4971 		/* Range is terminated when we see a gap or when
4972 		 * we are at the queue end.
4973 		 */
4974 		if (!skb ||
4975 		    after(TCP_SKB_CB(skb)->seq, end) ||
4976 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4977 			/* Do not attempt collapsing tiny skbs */
4978 			if (range_truesize != head->truesize ||
4979 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4980 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4981 					     head, skb, start, end);
4982 			} else {
4983 				sum_tiny += range_truesize;
4984 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4985 					return;
4986 			}
4987 			goto new_range;
4988 		}
4989 
4990 		range_truesize += skb->truesize;
4991 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4992 			start = TCP_SKB_CB(skb)->seq;
4993 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4994 			end = TCP_SKB_CB(skb)->end_seq;
4995 	}
4996 }
4997 
4998 /*
4999  * Clean the out-of-order queue to make room.
5000  * We drop high sequences packets to :
5001  * 1) Let a chance for holes to be filled.
5002  * 2) not add too big latencies if thousands of packets sit there.
5003  *    (But if application shrinks SO_RCVBUF, we could still end up
5004  *     freeing whole queue here)
5005  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5006  *
5007  * Return true if queue has shrunk.
5008  */
5009 static bool tcp_prune_ofo_queue(struct sock *sk)
5010 {
5011 	struct tcp_sock *tp = tcp_sk(sk);
5012 	struct rb_node *node, *prev;
5013 	int goal;
5014 
5015 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5016 		return false;
5017 
5018 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5019 	goal = sk->sk_rcvbuf >> 3;
5020 	node = &tp->ooo_last_skb->rbnode;
5021 	do {
5022 		prev = rb_prev(node);
5023 		rb_erase(node, &tp->out_of_order_queue);
5024 		goal -= rb_to_skb(node)->truesize;
5025 		tcp_drop(sk, rb_to_skb(node));
5026 		if (!prev || goal <= 0) {
5027 			sk_mem_reclaim(sk);
5028 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5029 			    !tcp_under_memory_pressure(sk))
5030 				break;
5031 			goal = sk->sk_rcvbuf >> 3;
5032 		}
5033 		node = prev;
5034 	} while (node);
5035 	tp->ooo_last_skb = rb_to_skb(prev);
5036 
5037 	/* Reset SACK state.  A conforming SACK implementation will
5038 	 * do the same at a timeout based retransmit.  When a connection
5039 	 * is in a sad state like this, we care only about integrity
5040 	 * of the connection not performance.
5041 	 */
5042 	if (tp->rx_opt.sack_ok)
5043 		tcp_sack_reset(&tp->rx_opt);
5044 	return true;
5045 }
5046 
5047 /* Reduce allocated memory if we can, trying to get
5048  * the socket within its memory limits again.
5049  *
5050  * Return less than zero if we should start dropping frames
5051  * until the socket owning process reads some of the data
5052  * to stabilize the situation.
5053  */
5054 static int tcp_prune_queue(struct sock *sk)
5055 {
5056 	struct tcp_sock *tp = tcp_sk(sk);
5057 
5058 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5059 
5060 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5061 
5062 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5063 		tcp_clamp_window(sk);
5064 	else if (tcp_under_memory_pressure(sk))
5065 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5066 
5067 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5068 		return 0;
5069 
5070 	tcp_collapse_ofo_queue(sk);
5071 	if (!skb_queue_empty(&sk->sk_receive_queue))
5072 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5073 			     skb_peek(&sk->sk_receive_queue),
5074 			     NULL,
5075 			     tp->copied_seq, tp->rcv_nxt);
5076 	sk_mem_reclaim(sk);
5077 
5078 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5079 		return 0;
5080 
5081 	/* Collapsing did not help, destructive actions follow.
5082 	 * This must not ever occur. */
5083 
5084 	tcp_prune_ofo_queue(sk);
5085 
5086 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5087 		return 0;
5088 
5089 	/* If we are really being abused, tell the caller to silently
5090 	 * drop receive data on the floor.  It will get retransmitted
5091 	 * and hopefully then we'll have sufficient space.
5092 	 */
5093 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5094 
5095 	/* Massive buffer overcommit. */
5096 	tp->pred_flags = 0;
5097 	return -1;
5098 }
5099 
5100 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5101 {
5102 	const struct tcp_sock *tp = tcp_sk(sk);
5103 
5104 	/* If the user specified a specific send buffer setting, do
5105 	 * not modify it.
5106 	 */
5107 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5108 		return false;
5109 
5110 	/* If we are under global TCP memory pressure, do not expand.  */
5111 	if (tcp_under_memory_pressure(sk))
5112 		return false;
5113 
5114 	/* If we are under soft global TCP memory pressure, do not expand.  */
5115 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5116 		return false;
5117 
5118 	/* If we filled the congestion window, do not expand.  */
5119 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5120 		return false;
5121 
5122 	return true;
5123 }
5124 
5125 /* When incoming ACK allowed to free some skb from write_queue,
5126  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5127  * on the exit from tcp input handler.
5128  *
5129  * PROBLEM: sndbuf expansion does not work well with largesend.
5130  */
5131 static void tcp_new_space(struct sock *sk)
5132 {
5133 	struct tcp_sock *tp = tcp_sk(sk);
5134 
5135 	if (tcp_should_expand_sndbuf(sk)) {
5136 		tcp_sndbuf_expand(sk);
5137 		tp->snd_cwnd_stamp = tcp_jiffies32;
5138 	}
5139 
5140 	sk->sk_write_space(sk);
5141 }
5142 
5143 static void tcp_check_space(struct sock *sk)
5144 {
5145 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5146 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5147 		/* pairs with tcp_poll() */
5148 		smp_mb();
5149 		if (sk->sk_socket &&
5150 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5151 			tcp_new_space(sk);
5152 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5153 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5154 		}
5155 	}
5156 }
5157 
5158 static inline void tcp_data_snd_check(struct sock *sk)
5159 {
5160 	tcp_push_pending_frames(sk);
5161 	tcp_check_space(sk);
5162 }
5163 
5164 /*
5165  * Check if sending an ack is needed.
5166  */
5167 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5168 {
5169 	struct tcp_sock *tp = tcp_sk(sk);
5170 	unsigned long rtt, delay;
5171 
5172 	    /* More than one full frame received... */
5173 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5174 	     /* ... and right edge of window advances far enough.
5175 	      * (tcp_recvmsg() will send ACK otherwise).
5176 	      * If application uses SO_RCVLOWAT, we want send ack now if
5177 	      * we have not received enough bytes to satisfy the condition.
5178 	      */
5179 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5180 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5181 	    /* We ACK each frame or... */
5182 	    tcp_in_quickack_mode(sk) ||
5183 	    /* Protocol state mandates a one-time immediate ACK */
5184 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5185 send_now:
5186 		tcp_send_ack(sk);
5187 		return;
5188 	}
5189 
5190 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5191 		tcp_send_delayed_ack(sk);
5192 		return;
5193 	}
5194 
5195 	if (!tcp_is_sack(tp) ||
5196 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5197 		goto send_now;
5198 	tp->compressed_ack++;
5199 
5200 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5201 		return;
5202 
5203 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5204 
5205 	rtt = tp->rcv_rtt_est.rtt_us;
5206 	if (tp->srtt_us && tp->srtt_us < rtt)
5207 		rtt = tp->srtt_us;
5208 
5209 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5210 		      rtt * (NSEC_PER_USEC >> 3)/20);
5211 	sock_hold(sk);
5212 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5213 		      HRTIMER_MODE_REL_PINNED_SOFT);
5214 }
5215 
5216 static inline void tcp_ack_snd_check(struct sock *sk)
5217 {
5218 	if (!inet_csk_ack_scheduled(sk)) {
5219 		/* We sent a data segment already. */
5220 		return;
5221 	}
5222 	__tcp_ack_snd_check(sk, 1);
5223 }
5224 
5225 /*
5226  *	This routine is only called when we have urgent data
5227  *	signaled. Its the 'slow' part of tcp_urg. It could be
5228  *	moved inline now as tcp_urg is only called from one
5229  *	place. We handle URGent data wrong. We have to - as
5230  *	BSD still doesn't use the correction from RFC961.
5231  *	For 1003.1g we should support a new option TCP_STDURG to permit
5232  *	either form (or just set the sysctl tcp_stdurg).
5233  */
5234 
5235 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5236 {
5237 	struct tcp_sock *tp = tcp_sk(sk);
5238 	u32 ptr = ntohs(th->urg_ptr);
5239 
5240 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5241 		ptr--;
5242 	ptr += ntohl(th->seq);
5243 
5244 	/* Ignore urgent data that we've already seen and read. */
5245 	if (after(tp->copied_seq, ptr))
5246 		return;
5247 
5248 	/* Do not replay urg ptr.
5249 	 *
5250 	 * NOTE: interesting situation not covered by specs.
5251 	 * Misbehaving sender may send urg ptr, pointing to segment,
5252 	 * which we already have in ofo queue. We are not able to fetch
5253 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5254 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5255 	 * situations. But it is worth to think about possibility of some
5256 	 * DoSes using some hypothetical application level deadlock.
5257 	 */
5258 	if (before(ptr, tp->rcv_nxt))
5259 		return;
5260 
5261 	/* Do we already have a newer (or duplicate) urgent pointer? */
5262 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5263 		return;
5264 
5265 	/* Tell the world about our new urgent pointer. */
5266 	sk_send_sigurg(sk);
5267 
5268 	/* We may be adding urgent data when the last byte read was
5269 	 * urgent. To do this requires some care. We cannot just ignore
5270 	 * tp->copied_seq since we would read the last urgent byte again
5271 	 * as data, nor can we alter copied_seq until this data arrives
5272 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5273 	 *
5274 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5275 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5276 	 * and expect that both A and B disappear from stream. This is _wrong_.
5277 	 * Though this happens in BSD with high probability, this is occasional.
5278 	 * Any application relying on this is buggy. Note also, that fix "works"
5279 	 * only in this artificial test. Insert some normal data between A and B and we will
5280 	 * decline of BSD again. Verdict: it is better to remove to trap
5281 	 * buggy users.
5282 	 */
5283 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5284 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5285 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5286 		tp->copied_seq++;
5287 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5288 			__skb_unlink(skb, &sk->sk_receive_queue);
5289 			__kfree_skb(skb);
5290 		}
5291 	}
5292 
5293 	tp->urg_data = TCP_URG_NOTYET;
5294 	tp->urg_seq = ptr;
5295 
5296 	/* Disable header prediction. */
5297 	tp->pred_flags = 0;
5298 }
5299 
5300 /* This is the 'fast' part of urgent handling. */
5301 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5302 {
5303 	struct tcp_sock *tp = tcp_sk(sk);
5304 
5305 	/* Check if we get a new urgent pointer - normally not. */
5306 	if (th->urg)
5307 		tcp_check_urg(sk, th);
5308 
5309 	/* Do we wait for any urgent data? - normally not... */
5310 	if (tp->urg_data == TCP_URG_NOTYET) {
5311 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5312 			  th->syn;
5313 
5314 		/* Is the urgent pointer pointing into this packet? */
5315 		if (ptr < skb->len) {
5316 			u8 tmp;
5317 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5318 				BUG();
5319 			tp->urg_data = TCP_URG_VALID | tmp;
5320 			if (!sock_flag(sk, SOCK_DEAD))
5321 				sk->sk_data_ready(sk);
5322 		}
5323 	}
5324 }
5325 
5326 /* Accept RST for rcv_nxt - 1 after a FIN.
5327  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5328  * FIN is sent followed by a RST packet. The RST is sent with the same
5329  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5330  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5331  * ACKs on the closed socket. In addition middleboxes can drop either the
5332  * challenge ACK or a subsequent RST.
5333  */
5334 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5335 {
5336 	struct tcp_sock *tp = tcp_sk(sk);
5337 
5338 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5339 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5340 					       TCPF_CLOSING));
5341 }
5342 
5343 /* Does PAWS and seqno based validation of an incoming segment, flags will
5344  * play significant role here.
5345  */
5346 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5347 				  const struct tcphdr *th, int syn_inerr)
5348 {
5349 	struct tcp_sock *tp = tcp_sk(sk);
5350 	bool rst_seq_match = false;
5351 
5352 	/* RFC1323: H1. Apply PAWS check first. */
5353 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5354 	    tp->rx_opt.saw_tstamp &&
5355 	    tcp_paws_discard(sk, skb)) {
5356 		if (!th->rst) {
5357 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5358 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5359 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5360 						  &tp->last_oow_ack_time))
5361 				tcp_send_dupack(sk, skb);
5362 			goto discard;
5363 		}
5364 		/* Reset is accepted even if it did not pass PAWS. */
5365 	}
5366 
5367 	/* Step 1: check sequence number */
5368 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5369 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5370 		 * (RST) segments are validated by checking their SEQ-fields."
5371 		 * And page 69: "If an incoming segment is not acceptable,
5372 		 * an acknowledgment should be sent in reply (unless the RST
5373 		 * bit is set, if so drop the segment and return)".
5374 		 */
5375 		if (!th->rst) {
5376 			if (th->syn)
5377 				goto syn_challenge;
5378 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5379 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5380 						  &tp->last_oow_ack_time))
5381 				tcp_send_dupack(sk, skb);
5382 		} else if (tcp_reset_check(sk, skb)) {
5383 			tcp_reset(sk);
5384 		}
5385 		goto discard;
5386 	}
5387 
5388 	/* Step 2: check RST bit */
5389 	if (th->rst) {
5390 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5391 		 * FIN and SACK too if available):
5392 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5393 		 * the right-most SACK block,
5394 		 * then
5395 		 *     RESET the connection
5396 		 * else
5397 		 *     Send a challenge ACK
5398 		 */
5399 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5400 		    tcp_reset_check(sk, skb)) {
5401 			rst_seq_match = true;
5402 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5403 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5404 			int max_sack = sp[0].end_seq;
5405 			int this_sack;
5406 
5407 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5408 			     ++this_sack) {
5409 				max_sack = after(sp[this_sack].end_seq,
5410 						 max_sack) ?
5411 					sp[this_sack].end_seq : max_sack;
5412 			}
5413 
5414 			if (TCP_SKB_CB(skb)->seq == max_sack)
5415 				rst_seq_match = true;
5416 		}
5417 
5418 		if (rst_seq_match)
5419 			tcp_reset(sk);
5420 		else {
5421 			/* Disable TFO if RST is out-of-order
5422 			 * and no data has been received
5423 			 * for current active TFO socket
5424 			 */
5425 			if (tp->syn_fastopen && !tp->data_segs_in &&
5426 			    sk->sk_state == TCP_ESTABLISHED)
5427 				tcp_fastopen_active_disable(sk);
5428 			tcp_send_challenge_ack(sk, skb);
5429 		}
5430 		goto discard;
5431 	}
5432 
5433 	/* step 3: check security and precedence [ignored] */
5434 
5435 	/* step 4: Check for a SYN
5436 	 * RFC 5961 4.2 : Send a challenge ack
5437 	 */
5438 	if (th->syn) {
5439 syn_challenge:
5440 		if (syn_inerr)
5441 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5442 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5443 		tcp_send_challenge_ack(sk, skb);
5444 		goto discard;
5445 	}
5446 
5447 	return true;
5448 
5449 discard:
5450 	tcp_drop(sk, skb);
5451 	return false;
5452 }
5453 
5454 /*
5455  *	TCP receive function for the ESTABLISHED state.
5456  *
5457  *	It is split into a fast path and a slow path. The fast path is
5458  * 	disabled when:
5459  *	- A zero window was announced from us - zero window probing
5460  *        is only handled properly in the slow path.
5461  *	- Out of order segments arrived.
5462  *	- Urgent data is expected.
5463  *	- There is no buffer space left
5464  *	- Unexpected TCP flags/window values/header lengths are received
5465  *	  (detected by checking the TCP header against pred_flags)
5466  *	- Data is sent in both directions. Fast path only supports pure senders
5467  *	  or pure receivers (this means either the sequence number or the ack
5468  *	  value must stay constant)
5469  *	- Unexpected TCP option.
5470  *
5471  *	When these conditions are not satisfied it drops into a standard
5472  *	receive procedure patterned after RFC793 to handle all cases.
5473  *	The first three cases are guaranteed by proper pred_flags setting,
5474  *	the rest is checked inline. Fast processing is turned on in
5475  *	tcp_data_queue when everything is OK.
5476  */
5477 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5478 {
5479 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5480 	struct tcp_sock *tp = tcp_sk(sk);
5481 	unsigned int len = skb->len;
5482 
5483 	/* TCP congestion window tracking */
5484 	trace_tcp_probe(sk, skb);
5485 
5486 	tcp_mstamp_refresh(tp);
5487 	if (unlikely(!sk->sk_rx_dst))
5488 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5489 	/*
5490 	 *	Header prediction.
5491 	 *	The code loosely follows the one in the famous
5492 	 *	"30 instruction TCP receive" Van Jacobson mail.
5493 	 *
5494 	 *	Van's trick is to deposit buffers into socket queue
5495 	 *	on a device interrupt, to call tcp_recv function
5496 	 *	on the receive process context and checksum and copy
5497 	 *	the buffer to user space. smart...
5498 	 *
5499 	 *	Our current scheme is not silly either but we take the
5500 	 *	extra cost of the net_bh soft interrupt processing...
5501 	 *	We do checksum and copy also but from device to kernel.
5502 	 */
5503 
5504 	tp->rx_opt.saw_tstamp = 0;
5505 
5506 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5507 	 *	if header_prediction is to be made
5508 	 *	'S' will always be tp->tcp_header_len >> 2
5509 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5510 	 *  turn it off	(when there are holes in the receive
5511 	 *	 space for instance)
5512 	 *	PSH flag is ignored.
5513 	 */
5514 
5515 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5516 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5517 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5518 		int tcp_header_len = tp->tcp_header_len;
5519 
5520 		/* Timestamp header prediction: tcp_header_len
5521 		 * is automatically equal to th->doff*4 due to pred_flags
5522 		 * match.
5523 		 */
5524 
5525 		/* Check timestamp */
5526 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5527 			/* No? Slow path! */
5528 			if (!tcp_parse_aligned_timestamp(tp, th))
5529 				goto slow_path;
5530 
5531 			/* If PAWS failed, check it more carefully in slow path */
5532 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5533 				goto slow_path;
5534 
5535 			/* DO NOT update ts_recent here, if checksum fails
5536 			 * and timestamp was corrupted part, it will result
5537 			 * in a hung connection since we will drop all
5538 			 * future packets due to the PAWS test.
5539 			 */
5540 		}
5541 
5542 		if (len <= tcp_header_len) {
5543 			/* Bulk data transfer: sender */
5544 			if (len == tcp_header_len) {
5545 				/* Predicted packet is in window by definition.
5546 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5547 				 * Hence, check seq<=rcv_wup reduces to:
5548 				 */
5549 				if (tcp_header_len ==
5550 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5551 				    tp->rcv_nxt == tp->rcv_wup)
5552 					tcp_store_ts_recent(tp);
5553 
5554 				/* We know that such packets are checksummed
5555 				 * on entry.
5556 				 */
5557 				tcp_ack(sk, skb, 0);
5558 				__kfree_skb(skb);
5559 				tcp_data_snd_check(sk);
5560 				/* When receiving pure ack in fast path, update
5561 				 * last ts ecr directly instead of calling
5562 				 * tcp_rcv_rtt_measure_ts()
5563 				 */
5564 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5565 				return;
5566 			} else { /* Header too small */
5567 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5568 				goto discard;
5569 			}
5570 		} else {
5571 			int eaten = 0;
5572 			bool fragstolen = false;
5573 
5574 			if (tcp_checksum_complete(skb))
5575 				goto csum_error;
5576 
5577 			if ((int)skb->truesize > sk->sk_forward_alloc)
5578 				goto step5;
5579 
5580 			/* Predicted packet is in window by definition.
5581 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5582 			 * Hence, check seq<=rcv_wup reduces to:
5583 			 */
5584 			if (tcp_header_len ==
5585 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5586 			    tp->rcv_nxt == tp->rcv_wup)
5587 				tcp_store_ts_recent(tp);
5588 
5589 			tcp_rcv_rtt_measure_ts(sk, skb);
5590 
5591 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5592 
5593 			/* Bulk data transfer: receiver */
5594 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5595 					      &fragstolen);
5596 
5597 			tcp_event_data_recv(sk, skb);
5598 
5599 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5600 				/* Well, only one small jumplet in fast path... */
5601 				tcp_ack(sk, skb, FLAG_DATA);
5602 				tcp_data_snd_check(sk);
5603 				if (!inet_csk_ack_scheduled(sk))
5604 					goto no_ack;
5605 			}
5606 
5607 			__tcp_ack_snd_check(sk, 0);
5608 no_ack:
5609 			if (eaten)
5610 				kfree_skb_partial(skb, fragstolen);
5611 			tcp_data_ready(sk);
5612 			return;
5613 		}
5614 	}
5615 
5616 slow_path:
5617 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5618 		goto csum_error;
5619 
5620 	if (!th->ack && !th->rst && !th->syn)
5621 		goto discard;
5622 
5623 	/*
5624 	 *	Standard slow path.
5625 	 */
5626 
5627 	if (!tcp_validate_incoming(sk, skb, th, 1))
5628 		return;
5629 
5630 step5:
5631 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5632 		goto discard;
5633 
5634 	tcp_rcv_rtt_measure_ts(sk, skb);
5635 
5636 	/* Process urgent data. */
5637 	tcp_urg(sk, skb, th);
5638 
5639 	/* step 7: process the segment text */
5640 	tcp_data_queue(sk, skb);
5641 
5642 	tcp_data_snd_check(sk);
5643 	tcp_ack_snd_check(sk);
5644 	return;
5645 
5646 csum_error:
5647 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5648 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5649 
5650 discard:
5651 	tcp_drop(sk, skb);
5652 }
5653 EXPORT_SYMBOL(tcp_rcv_established);
5654 
5655 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5656 {
5657 	struct tcp_sock *tp = tcp_sk(sk);
5658 	struct inet_connection_sock *icsk = inet_csk(sk);
5659 
5660 	tcp_set_state(sk, TCP_ESTABLISHED);
5661 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5662 
5663 	if (skb) {
5664 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5665 		security_inet_conn_established(sk, skb);
5666 		sk_mark_napi_id(sk, skb);
5667 	}
5668 
5669 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5670 
5671 	/* Prevent spurious tcp_cwnd_restart() on first data
5672 	 * packet.
5673 	 */
5674 	tp->lsndtime = tcp_jiffies32;
5675 
5676 	if (sock_flag(sk, SOCK_KEEPOPEN))
5677 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5678 
5679 	if (!tp->rx_opt.snd_wscale)
5680 		__tcp_fast_path_on(tp, tp->snd_wnd);
5681 	else
5682 		tp->pred_flags = 0;
5683 }
5684 
5685 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5686 				    struct tcp_fastopen_cookie *cookie)
5687 {
5688 	struct tcp_sock *tp = tcp_sk(sk);
5689 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5690 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5691 	bool syn_drop = false;
5692 
5693 	if (mss == tp->rx_opt.user_mss) {
5694 		struct tcp_options_received opt;
5695 
5696 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5697 		tcp_clear_options(&opt);
5698 		opt.user_mss = opt.mss_clamp = 0;
5699 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5700 		mss = opt.mss_clamp;
5701 	}
5702 
5703 	if (!tp->syn_fastopen) {
5704 		/* Ignore an unsolicited cookie */
5705 		cookie->len = -1;
5706 	} else if (tp->total_retrans) {
5707 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5708 		 * acknowledges data. Presumably the remote received only
5709 		 * the retransmitted (regular) SYNs: either the original
5710 		 * SYN-data or the corresponding SYN-ACK was dropped.
5711 		 */
5712 		syn_drop = (cookie->len < 0 && data);
5713 	} else if (cookie->len < 0 && !tp->syn_data) {
5714 		/* We requested a cookie but didn't get it. If we did not use
5715 		 * the (old) exp opt format then try so next time (try_exp=1).
5716 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5717 		 */
5718 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5719 	}
5720 
5721 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5722 
5723 	if (data) { /* Retransmit unacked data in SYN */
5724 		skb_rbtree_walk_from(data) {
5725 			if (__tcp_retransmit_skb(sk, data, 1))
5726 				break;
5727 		}
5728 		tcp_rearm_rto(sk);
5729 		NET_INC_STATS(sock_net(sk),
5730 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5731 		return true;
5732 	}
5733 	tp->syn_data_acked = tp->syn_data;
5734 	if (tp->syn_data_acked) {
5735 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5736 		/* SYN-data is counted as two separate packets in tcp_ack() */
5737 		if (tp->delivered > 1)
5738 			--tp->delivered;
5739 	}
5740 
5741 	tcp_fastopen_add_skb(sk, synack);
5742 
5743 	return false;
5744 }
5745 
5746 static void smc_check_reset_syn(struct tcp_sock *tp)
5747 {
5748 #if IS_ENABLED(CONFIG_SMC)
5749 	if (static_branch_unlikely(&tcp_have_smc)) {
5750 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5751 			tp->syn_smc = 0;
5752 	}
5753 #endif
5754 }
5755 
5756 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5757 					 const struct tcphdr *th)
5758 {
5759 	struct inet_connection_sock *icsk = inet_csk(sk);
5760 	struct tcp_sock *tp = tcp_sk(sk);
5761 	struct tcp_fastopen_cookie foc = { .len = -1 };
5762 	int saved_clamp = tp->rx_opt.mss_clamp;
5763 	bool fastopen_fail;
5764 
5765 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5766 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5767 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5768 
5769 	if (th->ack) {
5770 		/* rfc793:
5771 		 * "If the state is SYN-SENT then
5772 		 *    first check the ACK bit
5773 		 *      If the ACK bit is set
5774 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5775 		 *        a reset (unless the RST bit is set, if so drop
5776 		 *        the segment and return)"
5777 		 */
5778 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5779 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5780 			goto reset_and_undo;
5781 
5782 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5783 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5784 			     tcp_time_stamp(tp))) {
5785 			NET_INC_STATS(sock_net(sk),
5786 					LINUX_MIB_PAWSACTIVEREJECTED);
5787 			goto reset_and_undo;
5788 		}
5789 
5790 		/* Now ACK is acceptable.
5791 		 *
5792 		 * "If the RST bit is set
5793 		 *    If the ACK was acceptable then signal the user "error:
5794 		 *    connection reset", drop the segment, enter CLOSED state,
5795 		 *    delete TCB, and return."
5796 		 */
5797 
5798 		if (th->rst) {
5799 			tcp_reset(sk);
5800 			goto discard;
5801 		}
5802 
5803 		/* rfc793:
5804 		 *   "fifth, if neither of the SYN or RST bits is set then
5805 		 *    drop the segment and return."
5806 		 *
5807 		 *    See note below!
5808 		 *                                        --ANK(990513)
5809 		 */
5810 		if (!th->syn)
5811 			goto discard_and_undo;
5812 
5813 		/* rfc793:
5814 		 *   "If the SYN bit is on ...
5815 		 *    are acceptable then ...
5816 		 *    (our SYN has been ACKed), change the connection
5817 		 *    state to ESTABLISHED..."
5818 		 */
5819 
5820 		tcp_ecn_rcv_synack(tp, th);
5821 
5822 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5823 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5824 
5825 		/* Ok.. it's good. Set up sequence numbers and
5826 		 * move to established.
5827 		 */
5828 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5829 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5830 
5831 		/* RFC1323: The window in SYN & SYN/ACK segments is
5832 		 * never scaled.
5833 		 */
5834 		tp->snd_wnd = ntohs(th->window);
5835 
5836 		if (!tp->rx_opt.wscale_ok) {
5837 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5838 			tp->window_clamp = min(tp->window_clamp, 65535U);
5839 		}
5840 
5841 		if (tp->rx_opt.saw_tstamp) {
5842 			tp->rx_opt.tstamp_ok	   = 1;
5843 			tp->tcp_header_len =
5844 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5845 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5846 			tcp_store_ts_recent(tp);
5847 		} else {
5848 			tp->tcp_header_len = sizeof(struct tcphdr);
5849 		}
5850 
5851 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5852 		tcp_initialize_rcv_mss(sk);
5853 
5854 		/* Remember, tcp_poll() does not lock socket!
5855 		 * Change state from SYN-SENT only after copied_seq
5856 		 * is initialized. */
5857 		tp->copied_seq = tp->rcv_nxt;
5858 
5859 		smc_check_reset_syn(tp);
5860 
5861 		smp_mb();
5862 
5863 		tcp_finish_connect(sk, skb);
5864 
5865 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5866 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5867 
5868 		if (!sock_flag(sk, SOCK_DEAD)) {
5869 			sk->sk_state_change(sk);
5870 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5871 		}
5872 		if (fastopen_fail)
5873 			return -1;
5874 		if (sk->sk_write_pending ||
5875 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5876 		    icsk->icsk_ack.pingpong) {
5877 			/* Save one ACK. Data will be ready after
5878 			 * several ticks, if write_pending is set.
5879 			 *
5880 			 * It may be deleted, but with this feature tcpdumps
5881 			 * look so _wonderfully_ clever, that I was not able
5882 			 * to stand against the temptation 8)     --ANK
5883 			 */
5884 			inet_csk_schedule_ack(sk);
5885 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5886 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5887 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5888 
5889 discard:
5890 			tcp_drop(sk, skb);
5891 			return 0;
5892 		} else {
5893 			tcp_send_ack(sk);
5894 		}
5895 		return -1;
5896 	}
5897 
5898 	/* No ACK in the segment */
5899 
5900 	if (th->rst) {
5901 		/* rfc793:
5902 		 * "If the RST bit is set
5903 		 *
5904 		 *      Otherwise (no ACK) drop the segment and return."
5905 		 */
5906 
5907 		goto discard_and_undo;
5908 	}
5909 
5910 	/* PAWS check. */
5911 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5912 	    tcp_paws_reject(&tp->rx_opt, 0))
5913 		goto discard_and_undo;
5914 
5915 	if (th->syn) {
5916 		/* We see SYN without ACK. It is attempt of
5917 		 * simultaneous connect with crossed SYNs.
5918 		 * Particularly, it can be connect to self.
5919 		 */
5920 		tcp_set_state(sk, TCP_SYN_RECV);
5921 
5922 		if (tp->rx_opt.saw_tstamp) {
5923 			tp->rx_opt.tstamp_ok = 1;
5924 			tcp_store_ts_recent(tp);
5925 			tp->tcp_header_len =
5926 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5927 		} else {
5928 			tp->tcp_header_len = sizeof(struct tcphdr);
5929 		}
5930 
5931 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5932 		tp->copied_seq = tp->rcv_nxt;
5933 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5934 
5935 		/* RFC1323: The window in SYN & SYN/ACK segments is
5936 		 * never scaled.
5937 		 */
5938 		tp->snd_wnd    = ntohs(th->window);
5939 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5940 		tp->max_window = tp->snd_wnd;
5941 
5942 		tcp_ecn_rcv_syn(tp, th);
5943 
5944 		tcp_mtup_init(sk);
5945 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5946 		tcp_initialize_rcv_mss(sk);
5947 
5948 		tcp_send_synack(sk);
5949 #if 0
5950 		/* Note, we could accept data and URG from this segment.
5951 		 * There are no obstacles to make this (except that we must
5952 		 * either change tcp_recvmsg() to prevent it from returning data
5953 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5954 		 *
5955 		 * However, if we ignore data in ACKless segments sometimes,
5956 		 * we have no reasons to accept it sometimes.
5957 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5958 		 * is not flawless. So, discard packet for sanity.
5959 		 * Uncomment this return to process the data.
5960 		 */
5961 		return -1;
5962 #else
5963 		goto discard;
5964 #endif
5965 	}
5966 	/* "fifth, if neither of the SYN or RST bits is set then
5967 	 * drop the segment and return."
5968 	 */
5969 
5970 discard_and_undo:
5971 	tcp_clear_options(&tp->rx_opt);
5972 	tp->rx_opt.mss_clamp = saved_clamp;
5973 	goto discard;
5974 
5975 reset_and_undo:
5976 	tcp_clear_options(&tp->rx_opt);
5977 	tp->rx_opt.mss_clamp = saved_clamp;
5978 	return 1;
5979 }
5980 
5981 /*
5982  *	This function implements the receiving procedure of RFC 793 for
5983  *	all states except ESTABLISHED and TIME_WAIT.
5984  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5985  *	address independent.
5986  */
5987 
5988 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5989 {
5990 	struct tcp_sock *tp = tcp_sk(sk);
5991 	struct inet_connection_sock *icsk = inet_csk(sk);
5992 	const struct tcphdr *th = tcp_hdr(skb);
5993 	struct request_sock *req;
5994 	int queued = 0;
5995 	bool acceptable;
5996 
5997 	switch (sk->sk_state) {
5998 	case TCP_CLOSE:
5999 		goto discard;
6000 
6001 	case TCP_LISTEN:
6002 		if (th->ack)
6003 			return 1;
6004 
6005 		if (th->rst)
6006 			goto discard;
6007 
6008 		if (th->syn) {
6009 			if (th->fin)
6010 				goto discard;
6011 			/* It is possible that we process SYN packets from backlog,
6012 			 * so we need to make sure to disable BH and RCU right there.
6013 			 */
6014 			rcu_read_lock();
6015 			local_bh_disable();
6016 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6017 			local_bh_enable();
6018 			rcu_read_unlock();
6019 
6020 			if (!acceptable)
6021 				return 1;
6022 			consume_skb(skb);
6023 			return 0;
6024 		}
6025 		goto discard;
6026 
6027 	case TCP_SYN_SENT:
6028 		tp->rx_opt.saw_tstamp = 0;
6029 		tcp_mstamp_refresh(tp);
6030 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6031 		if (queued >= 0)
6032 			return queued;
6033 
6034 		/* Do step6 onward by hand. */
6035 		tcp_urg(sk, skb, th);
6036 		__kfree_skb(skb);
6037 		tcp_data_snd_check(sk);
6038 		return 0;
6039 	}
6040 
6041 	tcp_mstamp_refresh(tp);
6042 	tp->rx_opt.saw_tstamp = 0;
6043 	req = tp->fastopen_rsk;
6044 	if (req) {
6045 		bool req_stolen;
6046 
6047 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6048 		    sk->sk_state != TCP_FIN_WAIT1);
6049 
6050 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6051 			goto discard;
6052 	}
6053 
6054 	if (!th->ack && !th->rst && !th->syn)
6055 		goto discard;
6056 
6057 	if (!tcp_validate_incoming(sk, skb, th, 0))
6058 		return 0;
6059 
6060 	/* step 5: check the ACK field */
6061 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6062 				      FLAG_UPDATE_TS_RECENT |
6063 				      FLAG_NO_CHALLENGE_ACK) > 0;
6064 
6065 	if (!acceptable) {
6066 		if (sk->sk_state == TCP_SYN_RECV)
6067 			return 1;	/* send one RST */
6068 		tcp_send_challenge_ack(sk, skb);
6069 		goto discard;
6070 	}
6071 	switch (sk->sk_state) {
6072 	case TCP_SYN_RECV:
6073 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6074 		if (!tp->srtt_us)
6075 			tcp_synack_rtt_meas(sk, req);
6076 
6077 		/* Once we leave TCP_SYN_RECV, we no longer need req
6078 		 * so release it.
6079 		 */
6080 		if (req) {
6081 			inet_csk(sk)->icsk_retransmits = 0;
6082 			reqsk_fastopen_remove(sk, req, false);
6083 			/* Re-arm the timer because data may have been sent out.
6084 			 * This is similar to the regular data transmission case
6085 			 * when new data has just been ack'ed.
6086 			 *
6087 			 * (TFO) - we could try to be more aggressive and
6088 			 * retransmitting any data sooner based on when they
6089 			 * are sent out.
6090 			 */
6091 			tcp_rearm_rto(sk);
6092 		} else {
6093 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6094 			tp->copied_seq = tp->rcv_nxt;
6095 		}
6096 		smp_mb();
6097 		tcp_set_state(sk, TCP_ESTABLISHED);
6098 		sk->sk_state_change(sk);
6099 
6100 		/* Note, that this wakeup is only for marginal crossed SYN case.
6101 		 * Passively open sockets are not waked up, because
6102 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6103 		 */
6104 		if (sk->sk_socket)
6105 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6106 
6107 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6108 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6109 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6110 
6111 		if (tp->rx_opt.tstamp_ok)
6112 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6113 
6114 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6115 			tcp_update_pacing_rate(sk);
6116 
6117 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6118 		tp->lsndtime = tcp_jiffies32;
6119 
6120 		tcp_initialize_rcv_mss(sk);
6121 		tcp_fast_path_on(tp);
6122 		break;
6123 
6124 	case TCP_FIN_WAIT1: {
6125 		int tmo;
6126 
6127 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6128 		 * Fast Open socket and this is the first acceptable
6129 		 * ACK we have received, this would have acknowledged
6130 		 * our SYNACK so stop the SYNACK timer.
6131 		 */
6132 		if (req) {
6133 			/* We no longer need the request sock. */
6134 			reqsk_fastopen_remove(sk, req, false);
6135 			tcp_rearm_rto(sk);
6136 		}
6137 		if (tp->snd_una != tp->write_seq)
6138 			break;
6139 
6140 		tcp_set_state(sk, TCP_FIN_WAIT2);
6141 		sk->sk_shutdown |= SEND_SHUTDOWN;
6142 
6143 		sk_dst_confirm(sk);
6144 
6145 		if (!sock_flag(sk, SOCK_DEAD)) {
6146 			/* Wake up lingering close() */
6147 			sk->sk_state_change(sk);
6148 			break;
6149 		}
6150 
6151 		if (tp->linger2 < 0) {
6152 			tcp_done(sk);
6153 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6154 			return 1;
6155 		}
6156 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6157 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6158 			/* Receive out of order FIN after close() */
6159 			if (tp->syn_fastopen && th->fin)
6160 				tcp_fastopen_active_disable(sk);
6161 			tcp_done(sk);
6162 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6163 			return 1;
6164 		}
6165 
6166 		tmo = tcp_fin_time(sk);
6167 		if (tmo > TCP_TIMEWAIT_LEN) {
6168 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6169 		} else if (th->fin || sock_owned_by_user(sk)) {
6170 			/* Bad case. We could lose such FIN otherwise.
6171 			 * It is not a big problem, but it looks confusing
6172 			 * and not so rare event. We still can lose it now,
6173 			 * if it spins in bh_lock_sock(), but it is really
6174 			 * marginal case.
6175 			 */
6176 			inet_csk_reset_keepalive_timer(sk, tmo);
6177 		} else {
6178 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6179 			goto discard;
6180 		}
6181 		break;
6182 	}
6183 
6184 	case TCP_CLOSING:
6185 		if (tp->snd_una == tp->write_seq) {
6186 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6187 			goto discard;
6188 		}
6189 		break;
6190 
6191 	case TCP_LAST_ACK:
6192 		if (tp->snd_una == tp->write_seq) {
6193 			tcp_update_metrics(sk);
6194 			tcp_done(sk);
6195 			goto discard;
6196 		}
6197 		break;
6198 	}
6199 
6200 	/* step 6: check the URG bit */
6201 	tcp_urg(sk, skb, th);
6202 
6203 	/* step 7: process the segment text */
6204 	switch (sk->sk_state) {
6205 	case TCP_CLOSE_WAIT:
6206 	case TCP_CLOSING:
6207 	case TCP_LAST_ACK:
6208 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6209 			break;
6210 		/* fall through */
6211 	case TCP_FIN_WAIT1:
6212 	case TCP_FIN_WAIT2:
6213 		/* RFC 793 says to queue data in these states,
6214 		 * RFC 1122 says we MUST send a reset.
6215 		 * BSD 4.4 also does reset.
6216 		 */
6217 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6218 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6219 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6220 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6221 				tcp_reset(sk);
6222 				return 1;
6223 			}
6224 		}
6225 		/* Fall through */
6226 	case TCP_ESTABLISHED:
6227 		tcp_data_queue(sk, skb);
6228 		queued = 1;
6229 		break;
6230 	}
6231 
6232 	/* tcp_data could move socket to TIME-WAIT */
6233 	if (sk->sk_state != TCP_CLOSE) {
6234 		tcp_data_snd_check(sk);
6235 		tcp_ack_snd_check(sk);
6236 	}
6237 
6238 	if (!queued) {
6239 discard:
6240 		tcp_drop(sk, skb);
6241 	}
6242 	return 0;
6243 }
6244 EXPORT_SYMBOL(tcp_rcv_state_process);
6245 
6246 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6247 {
6248 	struct inet_request_sock *ireq = inet_rsk(req);
6249 
6250 	if (family == AF_INET)
6251 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6252 				    &ireq->ir_rmt_addr, port);
6253 #if IS_ENABLED(CONFIG_IPV6)
6254 	else if (family == AF_INET6)
6255 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6256 				    &ireq->ir_v6_rmt_addr, port);
6257 #endif
6258 }
6259 
6260 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6261  *
6262  * If we receive a SYN packet with these bits set, it means a
6263  * network is playing bad games with TOS bits. In order to
6264  * avoid possible false congestion notifications, we disable
6265  * TCP ECN negotiation.
6266  *
6267  * Exception: tcp_ca wants ECN. This is required for DCTCP
6268  * congestion control: Linux DCTCP asserts ECT on all packets,
6269  * including SYN, which is most optimal solution; however,
6270  * others, such as FreeBSD do not.
6271  */
6272 static void tcp_ecn_create_request(struct request_sock *req,
6273 				   const struct sk_buff *skb,
6274 				   const struct sock *listen_sk,
6275 				   const struct dst_entry *dst)
6276 {
6277 	const struct tcphdr *th = tcp_hdr(skb);
6278 	const struct net *net = sock_net(listen_sk);
6279 	bool th_ecn = th->ece && th->cwr;
6280 	bool ect, ecn_ok;
6281 	u32 ecn_ok_dst;
6282 
6283 	if (!th_ecn)
6284 		return;
6285 
6286 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6287 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6288 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6289 
6290 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6291 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6292 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6293 		inet_rsk(req)->ecn_ok = 1;
6294 }
6295 
6296 static void tcp_openreq_init(struct request_sock *req,
6297 			     const struct tcp_options_received *rx_opt,
6298 			     struct sk_buff *skb, const struct sock *sk)
6299 {
6300 	struct inet_request_sock *ireq = inet_rsk(req);
6301 
6302 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6303 	req->cookie_ts = 0;
6304 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6305 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6306 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6307 	tcp_rsk(req)->last_oow_ack_time = 0;
6308 	req->mss = rx_opt->mss_clamp;
6309 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6310 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6311 	ireq->sack_ok = rx_opt->sack_ok;
6312 	ireq->snd_wscale = rx_opt->snd_wscale;
6313 	ireq->wscale_ok = rx_opt->wscale_ok;
6314 	ireq->acked = 0;
6315 	ireq->ecn_ok = 0;
6316 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6317 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6318 	ireq->ir_mark = inet_request_mark(sk, skb);
6319 #if IS_ENABLED(CONFIG_SMC)
6320 	ireq->smc_ok = rx_opt->smc_ok;
6321 #endif
6322 }
6323 
6324 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6325 				      struct sock *sk_listener,
6326 				      bool attach_listener)
6327 {
6328 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6329 					       attach_listener);
6330 
6331 	if (req) {
6332 		struct inet_request_sock *ireq = inet_rsk(req);
6333 
6334 		ireq->ireq_opt = NULL;
6335 #if IS_ENABLED(CONFIG_IPV6)
6336 		ireq->pktopts = NULL;
6337 #endif
6338 		atomic64_set(&ireq->ir_cookie, 0);
6339 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6340 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6341 		ireq->ireq_family = sk_listener->sk_family;
6342 	}
6343 
6344 	return req;
6345 }
6346 EXPORT_SYMBOL(inet_reqsk_alloc);
6347 
6348 /*
6349  * Return true if a syncookie should be sent
6350  */
6351 static bool tcp_syn_flood_action(const struct sock *sk,
6352 				 const struct sk_buff *skb,
6353 				 const char *proto)
6354 {
6355 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6356 	const char *msg = "Dropping request";
6357 	bool want_cookie = false;
6358 	struct net *net = sock_net(sk);
6359 
6360 #ifdef CONFIG_SYN_COOKIES
6361 	if (net->ipv4.sysctl_tcp_syncookies) {
6362 		msg = "Sending cookies";
6363 		want_cookie = true;
6364 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6365 	} else
6366 #endif
6367 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6368 
6369 	if (!queue->synflood_warned &&
6370 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6371 	    xchg(&queue->synflood_warned, 1) == 0)
6372 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6373 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6374 
6375 	return want_cookie;
6376 }
6377 
6378 static void tcp_reqsk_record_syn(const struct sock *sk,
6379 				 struct request_sock *req,
6380 				 const struct sk_buff *skb)
6381 {
6382 	if (tcp_sk(sk)->save_syn) {
6383 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6384 		u32 *copy;
6385 
6386 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6387 		if (copy) {
6388 			copy[0] = len;
6389 			memcpy(&copy[1], skb_network_header(skb), len);
6390 			req->saved_syn = copy;
6391 		}
6392 	}
6393 }
6394 
6395 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6396 		     const struct tcp_request_sock_ops *af_ops,
6397 		     struct sock *sk, struct sk_buff *skb)
6398 {
6399 	struct tcp_fastopen_cookie foc = { .len = -1 };
6400 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6401 	struct tcp_options_received tmp_opt;
6402 	struct tcp_sock *tp = tcp_sk(sk);
6403 	struct net *net = sock_net(sk);
6404 	struct sock *fastopen_sk = NULL;
6405 	struct request_sock *req;
6406 	bool want_cookie = false;
6407 	struct dst_entry *dst;
6408 	struct flowi fl;
6409 
6410 	/* TW buckets are converted to open requests without
6411 	 * limitations, they conserve resources and peer is
6412 	 * evidently real one.
6413 	 */
6414 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6415 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6416 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6417 		if (!want_cookie)
6418 			goto drop;
6419 	}
6420 
6421 	if (sk_acceptq_is_full(sk)) {
6422 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6423 		goto drop;
6424 	}
6425 
6426 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6427 	if (!req)
6428 		goto drop;
6429 
6430 	tcp_rsk(req)->af_specific = af_ops;
6431 	tcp_rsk(req)->ts_off = 0;
6432 
6433 	tcp_clear_options(&tmp_opt);
6434 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6435 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6436 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6437 			  want_cookie ? NULL : &foc);
6438 
6439 	if (want_cookie && !tmp_opt.saw_tstamp)
6440 		tcp_clear_options(&tmp_opt);
6441 
6442 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6443 		tmp_opt.smc_ok = 0;
6444 
6445 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6446 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6447 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6448 
6449 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6450 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6451 
6452 	af_ops->init_req(req, sk, skb);
6453 
6454 	if (security_inet_conn_request(sk, skb, req))
6455 		goto drop_and_free;
6456 
6457 	if (tmp_opt.tstamp_ok)
6458 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6459 
6460 	dst = af_ops->route_req(sk, &fl, req);
6461 	if (!dst)
6462 		goto drop_and_free;
6463 
6464 	if (!want_cookie && !isn) {
6465 		/* Kill the following clause, if you dislike this way. */
6466 		if (!net->ipv4.sysctl_tcp_syncookies &&
6467 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6468 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6469 		    !tcp_peer_is_proven(req, dst)) {
6470 			/* Without syncookies last quarter of
6471 			 * backlog is filled with destinations,
6472 			 * proven to be alive.
6473 			 * It means that we continue to communicate
6474 			 * to destinations, already remembered
6475 			 * to the moment of synflood.
6476 			 */
6477 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6478 				    rsk_ops->family);
6479 			goto drop_and_release;
6480 		}
6481 
6482 		isn = af_ops->init_seq(skb);
6483 	}
6484 
6485 	tcp_ecn_create_request(req, skb, sk, dst);
6486 
6487 	if (want_cookie) {
6488 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6489 		req->cookie_ts = tmp_opt.tstamp_ok;
6490 		if (!tmp_opt.tstamp_ok)
6491 			inet_rsk(req)->ecn_ok = 0;
6492 	}
6493 
6494 	tcp_rsk(req)->snt_isn = isn;
6495 	tcp_rsk(req)->txhash = net_tx_rndhash();
6496 	tcp_openreq_init_rwin(req, sk, dst);
6497 	sk_rx_queue_set(req_to_sk(req), skb);
6498 	if (!want_cookie) {
6499 		tcp_reqsk_record_syn(sk, req, skb);
6500 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6501 	}
6502 	if (fastopen_sk) {
6503 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6504 				    &foc, TCP_SYNACK_FASTOPEN);
6505 		/* Add the child socket directly into the accept queue */
6506 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6507 		sk->sk_data_ready(sk);
6508 		bh_unlock_sock(fastopen_sk);
6509 		sock_put(fastopen_sk);
6510 	} else {
6511 		tcp_rsk(req)->tfo_listener = false;
6512 		if (!want_cookie)
6513 			inet_csk_reqsk_queue_hash_add(sk, req,
6514 				tcp_timeout_init((struct sock *)req));
6515 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6516 				    !want_cookie ? TCP_SYNACK_NORMAL :
6517 						   TCP_SYNACK_COOKIE);
6518 		if (want_cookie) {
6519 			reqsk_free(req);
6520 			return 0;
6521 		}
6522 	}
6523 	reqsk_put(req);
6524 	return 0;
6525 
6526 drop_and_release:
6527 	dst_release(dst);
6528 drop_and_free:
6529 	reqsk_free(req);
6530 drop:
6531 	tcp_listendrop(sk);
6532 	return 0;
6533 }
6534 EXPORT_SYMBOL(tcp_conn_request);
6535