1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 EXPORT_SYMBOL(sysctl_tcp_reordering); 85 int sysctl_tcp_dsack __read_mostly = 1; 86 int sysctl_tcp_app_win __read_mostly = 31; 87 int sysctl_tcp_adv_win_scale __read_mostly = 1; 88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 89 90 /* rfc5961 challenge ack rate limiting */ 91 int sysctl_tcp_challenge_ack_limit = 100; 92 93 int sysctl_tcp_stdurg __read_mostly; 94 int sysctl_tcp_rfc1337 __read_mostly; 95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 96 int sysctl_tcp_frto __read_mostly = 2; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 109 #define FLAG_ECE 0x40 /* ECE in this ACK */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 static void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline bool tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 202 } 203 204 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 205 { 206 if (tp->ecn_flags & TCP_ECN_OK) 207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 208 } 209 210 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 211 { 212 if (tcp_hdr(skb)->cwr) 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214 } 215 216 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 217 { 218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 219 } 220 221 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 222 { 223 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 224 case INET_ECN_NOT_ECT: 225 /* Funny extension: if ECT is not set on a segment, 226 * and we already seen ECT on a previous segment, 227 * it is probably a retransmit. 228 */ 229 if (tp->ecn_flags & TCP_ECN_SEEN) 230 tcp_enter_quickack_mode((struct sock *)tp); 231 break; 232 case INET_ECN_CE: 233 if (tcp_ca_needs_ecn((struct sock *)tp)) 234 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 235 236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 237 /* Better not delay acks, sender can have a very low cwnd */ 238 tcp_enter_quickack_mode((struct sock *)tp); 239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 240 } 241 tp->ecn_flags |= TCP_ECN_SEEN; 242 break; 243 default: 244 if (tcp_ca_needs_ecn((struct sock *)tp)) 245 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 246 tp->ecn_flags |= TCP_ECN_SEEN; 247 break; 248 } 249 } 250 251 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 252 { 253 if (tp->ecn_flags & TCP_ECN_OK) 254 __tcp_ecn_check_ce(tp, skb); 255 } 256 257 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 258 { 259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 260 tp->ecn_flags &= ~TCP_ECN_OK; 261 } 262 263 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 264 { 265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 266 tp->ecn_flags &= ~TCP_ECN_OK; 267 } 268 269 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 270 { 271 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 272 return true; 273 return false; 274 } 275 276 /* Buffer size and advertised window tuning. 277 * 278 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 279 */ 280 281 static void tcp_sndbuf_expand(struct sock *sk) 282 { 283 const struct tcp_sock *tp = tcp_sk(sk); 284 int sndmem, per_mss; 285 u32 nr_segs; 286 287 /* Worst case is non GSO/TSO : each frame consumes one skb 288 * and skb->head is kmalloced using power of two area of memory 289 */ 290 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 291 MAX_TCP_HEADER + 292 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 293 294 per_mss = roundup_pow_of_two(per_mss) + 295 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 296 297 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 298 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 299 300 /* Fast Recovery (RFC 5681 3.2) : 301 * Cubic needs 1.7 factor, rounded to 2 to include 302 * extra cushion (application might react slowly to POLLOUT) 303 */ 304 sndmem = 2 * nr_segs * per_mss; 305 306 if (sk->sk_sndbuf < sndmem) 307 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 308 } 309 310 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 311 * 312 * All tcp_full_space() is split to two parts: "network" buffer, allocated 313 * forward and advertised in receiver window (tp->rcv_wnd) and 314 * "application buffer", required to isolate scheduling/application 315 * latencies from network. 316 * window_clamp is maximal advertised window. It can be less than 317 * tcp_full_space(), in this case tcp_full_space() - window_clamp 318 * is reserved for "application" buffer. The less window_clamp is 319 * the smoother our behaviour from viewpoint of network, but the lower 320 * throughput and the higher sensitivity of the connection to losses. 8) 321 * 322 * rcv_ssthresh is more strict window_clamp used at "slow start" 323 * phase to predict further behaviour of this connection. 324 * It is used for two goals: 325 * - to enforce header prediction at sender, even when application 326 * requires some significant "application buffer". It is check #1. 327 * - to prevent pruning of receive queue because of misprediction 328 * of receiver window. Check #2. 329 * 330 * The scheme does not work when sender sends good segments opening 331 * window and then starts to feed us spaghetti. But it should work 332 * in common situations. Otherwise, we have to rely on queue collapsing. 333 */ 334 335 /* Slow part of check#2. */ 336 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 337 { 338 struct tcp_sock *tp = tcp_sk(sk); 339 /* Optimize this! */ 340 int truesize = tcp_win_from_space(skb->truesize) >> 1; 341 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 342 343 while (tp->rcv_ssthresh <= window) { 344 if (truesize <= skb->len) 345 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 346 347 truesize >>= 1; 348 window >>= 1; 349 } 350 return 0; 351 } 352 353 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 357 /* Check #1 */ 358 if (tp->rcv_ssthresh < tp->window_clamp && 359 (int)tp->rcv_ssthresh < tcp_space(sk) && 360 !sk_under_memory_pressure(sk)) { 361 int incr; 362 363 /* Check #2. Increase window, if skb with such overhead 364 * will fit to rcvbuf in future. 365 */ 366 if (tcp_win_from_space(skb->truesize) <= skb->len) 367 incr = 2 * tp->advmss; 368 else 369 incr = __tcp_grow_window(sk, skb); 370 371 if (incr) { 372 incr = max_t(int, incr, 2 * skb->len); 373 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 374 tp->window_clamp); 375 inet_csk(sk)->icsk_ack.quick |= 1; 376 } 377 } 378 } 379 380 /* 3. Tuning rcvbuf, when connection enters established state. */ 381 static void tcp_fixup_rcvbuf(struct sock *sk) 382 { 383 u32 mss = tcp_sk(sk)->advmss; 384 int rcvmem; 385 386 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 387 tcp_default_init_rwnd(mss); 388 389 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 390 * Allow enough cushion so that sender is not limited by our window 391 */ 392 if (sysctl_tcp_moderate_rcvbuf) 393 rcvmem <<= 2; 394 395 if (sk->sk_rcvbuf < rcvmem) 396 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 397 } 398 399 /* 4. Try to fixup all. It is made immediately after connection enters 400 * established state. 401 */ 402 void tcp_init_buffer_space(struct sock *sk) 403 { 404 struct tcp_sock *tp = tcp_sk(sk); 405 int maxwin; 406 407 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 408 tcp_fixup_rcvbuf(sk); 409 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 410 tcp_sndbuf_expand(sk); 411 412 tp->rcvq_space.space = tp->rcv_wnd; 413 tp->rcvq_space.time = tcp_time_stamp; 414 tp->rcvq_space.seq = tp->copied_seq; 415 416 maxwin = tcp_full_space(sk); 417 418 if (tp->window_clamp >= maxwin) { 419 tp->window_clamp = maxwin; 420 421 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 422 tp->window_clamp = max(maxwin - 423 (maxwin >> sysctl_tcp_app_win), 424 4 * tp->advmss); 425 } 426 427 /* Force reservation of one segment. */ 428 if (sysctl_tcp_app_win && 429 tp->window_clamp > 2 * tp->advmss && 430 tp->window_clamp + tp->advmss > maxwin) 431 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 432 433 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 434 tp->snd_cwnd_stamp = tcp_time_stamp; 435 } 436 437 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 438 static void tcp_clamp_window(struct sock *sk) 439 { 440 struct tcp_sock *tp = tcp_sk(sk); 441 struct inet_connection_sock *icsk = inet_csk(sk); 442 443 icsk->icsk_ack.quick = 0; 444 445 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 446 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 447 !sk_under_memory_pressure(sk) && 448 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 449 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 450 sysctl_tcp_rmem[2]); 451 } 452 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 453 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 454 } 455 456 /* Initialize RCV_MSS value. 457 * RCV_MSS is an our guess about MSS used by the peer. 458 * We haven't any direct information about the MSS. 459 * It's better to underestimate the RCV_MSS rather than overestimate. 460 * Overestimations make us ACKing less frequently than needed. 461 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 462 */ 463 void tcp_initialize_rcv_mss(struct sock *sk) 464 { 465 const struct tcp_sock *tp = tcp_sk(sk); 466 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 467 468 hint = min(hint, tp->rcv_wnd / 2); 469 hint = min(hint, TCP_MSS_DEFAULT); 470 hint = max(hint, TCP_MIN_MSS); 471 472 inet_csk(sk)->icsk_ack.rcv_mss = hint; 473 } 474 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 475 476 /* Receiver "autotuning" code. 477 * 478 * The algorithm for RTT estimation w/o timestamps is based on 479 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 480 * <http://public.lanl.gov/radiant/pubs.html#DRS> 481 * 482 * More detail on this code can be found at 483 * <http://staff.psc.edu/jheffner/>, 484 * though this reference is out of date. A new paper 485 * is pending. 486 */ 487 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 488 { 489 u32 new_sample = tp->rcv_rtt_est.rtt; 490 long m = sample; 491 492 if (m == 0) 493 m = 1; 494 495 if (new_sample != 0) { 496 /* If we sample in larger samples in the non-timestamp 497 * case, we could grossly overestimate the RTT especially 498 * with chatty applications or bulk transfer apps which 499 * are stalled on filesystem I/O. 500 * 501 * Also, since we are only going for a minimum in the 502 * non-timestamp case, we do not smooth things out 503 * else with timestamps disabled convergence takes too 504 * long. 505 */ 506 if (!win_dep) { 507 m -= (new_sample >> 3); 508 new_sample += m; 509 } else { 510 m <<= 3; 511 if (m < new_sample) 512 new_sample = m; 513 } 514 } else { 515 /* No previous measure. */ 516 new_sample = m << 3; 517 } 518 519 if (tp->rcv_rtt_est.rtt != new_sample) 520 tp->rcv_rtt_est.rtt = new_sample; 521 } 522 523 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 524 { 525 if (tp->rcv_rtt_est.time == 0) 526 goto new_measure; 527 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 528 return; 529 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 530 531 new_measure: 532 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 533 tp->rcv_rtt_est.time = tcp_time_stamp; 534 } 535 536 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 537 const struct sk_buff *skb) 538 { 539 struct tcp_sock *tp = tcp_sk(sk); 540 if (tp->rx_opt.rcv_tsecr && 541 (TCP_SKB_CB(skb)->end_seq - 542 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 543 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 544 } 545 546 /* 547 * This function should be called every time data is copied to user space. 548 * It calculates the appropriate TCP receive buffer space. 549 */ 550 void tcp_rcv_space_adjust(struct sock *sk) 551 { 552 struct tcp_sock *tp = tcp_sk(sk); 553 int time; 554 int copied; 555 556 time = tcp_time_stamp - tp->rcvq_space.time; 557 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 558 return; 559 560 /* Number of bytes copied to user in last RTT */ 561 copied = tp->copied_seq - tp->rcvq_space.seq; 562 if (copied <= tp->rcvq_space.space) 563 goto new_measure; 564 565 /* A bit of theory : 566 * copied = bytes received in previous RTT, our base window 567 * To cope with packet losses, we need a 2x factor 568 * To cope with slow start, and sender growing its cwin by 100 % 569 * every RTT, we need a 4x factor, because the ACK we are sending 570 * now is for the next RTT, not the current one : 571 * <prev RTT . ><current RTT .. ><next RTT .... > 572 */ 573 574 if (sysctl_tcp_moderate_rcvbuf && 575 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 576 int rcvwin, rcvmem, rcvbuf; 577 578 /* minimal window to cope with packet losses, assuming 579 * steady state. Add some cushion because of small variations. 580 */ 581 rcvwin = (copied << 1) + 16 * tp->advmss; 582 583 /* If rate increased by 25%, 584 * assume slow start, rcvwin = 3 * copied 585 * If rate increased by 50%, 586 * assume sender can use 2x growth, rcvwin = 4 * copied 587 */ 588 if (copied >= 589 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 592 rcvwin <<= 1; 593 else 594 rcvwin += (rcvwin >> 1); 595 } 596 597 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 598 while (tcp_win_from_space(rcvmem) < tp->advmss) 599 rcvmem += 128; 600 601 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 602 if (rcvbuf > sk->sk_rcvbuf) { 603 sk->sk_rcvbuf = rcvbuf; 604 605 /* Make the window clamp follow along. */ 606 tp->window_clamp = rcvwin; 607 } 608 } 609 tp->rcvq_space.space = copied; 610 611 new_measure: 612 tp->rcvq_space.seq = tp->copied_seq; 613 tp->rcvq_space.time = tcp_time_stamp; 614 } 615 616 /* There is something which you must keep in mind when you analyze the 617 * behavior of the tp->ato delayed ack timeout interval. When a 618 * connection starts up, we want to ack as quickly as possible. The 619 * problem is that "good" TCP's do slow start at the beginning of data 620 * transmission. The means that until we send the first few ACK's the 621 * sender will sit on his end and only queue most of his data, because 622 * he can only send snd_cwnd unacked packets at any given time. For 623 * each ACK we send, he increments snd_cwnd and transmits more of his 624 * queue. -DaveM 625 */ 626 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 627 { 628 struct tcp_sock *tp = tcp_sk(sk); 629 struct inet_connection_sock *icsk = inet_csk(sk); 630 u32 now; 631 632 inet_csk_schedule_ack(sk); 633 634 tcp_measure_rcv_mss(sk, skb); 635 636 tcp_rcv_rtt_measure(tp); 637 638 now = tcp_time_stamp; 639 640 if (!icsk->icsk_ack.ato) { 641 /* The _first_ data packet received, initialize 642 * delayed ACK engine. 643 */ 644 tcp_incr_quickack(sk); 645 icsk->icsk_ack.ato = TCP_ATO_MIN; 646 } else { 647 int m = now - icsk->icsk_ack.lrcvtime; 648 649 if (m <= TCP_ATO_MIN / 2) { 650 /* The fastest case is the first. */ 651 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 652 } else if (m < icsk->icsk_ack.ato) { 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 654 if (icsk->icsk_ack.ato > icsk->icsk_rto) 655 icsk->icsk_ack.ato = icsk->icsk_rto; 656 } else if (m > icsk->icsk_rto) { 657 /* Too long gap. Apparently sender failed to 658 * restart window, so that we send ACKs quickly. 659 */ 660 tcp_incr_quickack(sk); 661 sk_mem_reclaim(sk); 662 } 663 } 664 icsk->icsk_ack.lrcvtime = now; 665 666 tcp_ecn_check_ce(tp, skb); 667 668 if (skb->len >= 128) 669 tcp_grow_window(sk, skb); 670 } 671 672 /* Called to compute a smoothed rtt estimate. The data fed to this 673 * routine either comes from timestamps, or from segments that were 674 * known _not_ to have been retransmitted [see Karn/Partridge 675 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 676 * piece by Van Jacobson. 677 * NOTE: the next three routines used to be one big routine. 678 * To save cycles in the RFC 1323 implementation it was better to break 679 * it up into three procedures. -- erics 680 */ 681 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 682 { 683 struct tcp_sock *tp = tcp_sk(sk); 684 long m = mrtt_us; /* RTT */ 685 u32 srtt = tp->srtt_us; 686 687 /* The following amusing code comes from Jacobson's 688 * article in SIGCOMM '88. Note that rtt and mdev 689 * are scaled versions of rtt and mean deviation. 690 * This is designed to be as fast as possible 691 * m stands for "measurement". 692 * 693 * On a 1990 paper the rto value is changed to: 694 * RTO = rtt + 4 * mdev 695 * 696 * Funny. This algorithm seems to be very broken. 697 * These formulae increase RTO, when it should be decreased, increase 698 * too slowly, when it should be increased quickly, decrease too quickly 699 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 700 * does not matter how to _calculate_ it. Seems, it was trap 701 * that VJ failed to avoid. 8) 702 */ 703 if (srtt != 0) { 704 m -= (srtt >> 3); /* m is now error in rtt est */ 705 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 706 if (m < 0) { 707 m = -m; /* m is now abs(error) */ 708 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 709 /* This is similar to one of Eifel findings. 710 * Eifel blocks mdev updates when rtt decreases. 711 * This solution is a bit different: we use finer gain 712 * for mdev in this case (alpha*beta). 713 * Like Eifel it also prevents growth of rto, 714 * but also it limits too fast rto decreases, 715 * happening in pure Eifel. 716 */ 717 if (m > 0) 718 m >>= 3; 719 } else { 720 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 721 } 722 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 723 if (tp->mdev_us > tp->mdev_max_us) { 724 tp->mdev_max_us = tp->mdev_us; 725 if (tp->mdev_max_us > tp->rttvar_us) 726 tp->rttvar_us = tp->mdev_max_us; 727 } 728 if (after(tp->snd_una, tp->rtt_seq)) { 729 if (tp->mdev_max_us < tp->rttvar_us) 730 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 731 tp->rtt_seq = tp->snd_nxt; 732 tp->mdev_max_us = tcp_rto_min_us(sk); 733 } 734 } else { 735 /* no previous measure. */ 736 srtt = m << 3; /* take the measured time to be rtt */ 737 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 738 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 739 tp->mdev_max_us = tp->rttvar_us; 740 tp->rtt_seq = tp->snd_nxt; 741 } 742 tp->srtt_us = max(1U, srtt); 743 } 744 745 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 746 * Note: TCP stack does not yet implement pacing. 747 * FQ packet scheduler can be used to implement cheap but effective 748 * TCP pacing, to smooth the burst on large writes when packets 749 * in flight is significantly lower than cwnd (or rwin) 750 */ 751 static void tcp_update_pacing_rate(struct sock *sk) 752 { 753 const struct tcp_sock *tp = tcp_sk(sk); 754 u64 rate; 755 756 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 757 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 758 759 rate *= max(tp->snd_cwnd, tp->packets_out); 760 761 if (likely(tp->srtt_us)) 762 do_div(rate, tp->srtt_us); 763 764 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 765 * without any lock. We want to make sure compiler wont store 766 * intermediate values in this location. 767 */ 768 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 769 sk->sk_max_pacing_rate); 770 } 771 772 /* Calculate rto without backoff. This is the second half of Van Jacobson's 773 * routine referred to above. 774 */ 775 static void tcp_set_rto(struct sock *sk) 776 { 777 const struct tcp_sock *tp = tcp_sk(sk); 778 /* Old crap is replaced with new one. 8) 779 * 780 * More seriously: 781 * 1. If rtt variance happened to be less 50msec, it is hallucination. 782 * It cannot be less due to utterly erratic ACK generation made 783 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 784 * to do with delayed acks, because at cwnd>2 true delack timeout 785 * is invisible. Actually, Linux-2.4 also generates erratic 786 * ACKs in some circumstances. 787 */ 788 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 789 790 /* 2. Fixups made earlier cannot be right. 791 * If we do not estimate RTO correctly without them, 792 * all the algo is pure shit and should be replaced 793 * with correct one. It is exactly, which we pretend to do. 794 */ 795 796 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 797 * guarantees that rto is higher. 798 */ 799 tcp_bound_rto(sk); 800 } 801 802 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 803 { 804 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 805 806 if (!cwnd) 807 cwnd = TCP_INIT_CWND; 808 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 809 } 810 811 /* 812 * Packet counting of FACK is based on in-order assumptions, therefore TCP 813 * disables it when reordering is detected 814 */ 815 void tcp_disable_fack(struct tcp_sock *tp) 816 { 817 /* RFC3517 uses different metric in lost marker => reset on change */ 818 if (tcp_is_fack(tp)) 819 tp->lost_skb_hint = NULL; 820 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 821 } 822 823 /* Take a notice that peer is sending D-SACKs */ 824 static void tcp_dsack_seen(struct tcp_sock *tp) 825 { 826 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 827 } 828 829 static void tcp_update_reordering(struct sock *sk, const int metric, 830 const int ts) 831 { 832 struct tcp_sock *tp = tcp_sk(sk); 833 if (metric > tp->reordering) { 834 int mib_idx; 835 836 tp->reordering = min(TCP_MAX_REORDERING, metric); 837 838 /* This exciting event is worth to be remembered. 8) */ 839 if (ts) 840 mib_idx = LINUX_MIB_TCPTSREORDER; 841 else if (tcp_is_reno(tp)) 842 mib_idx = LINUX_MIB_TCPRENOREORDER; 843 else if (tcp_is_fack(tp)) 844 mib_idx = LINUX_MIB_TCPFACKREORDER; 845 else 846 mib_idx = LINUX_MIB_TCPSACKREORDER; 847 848 NET_INC_STATS_BH(sock_net(sk), mib_idx); 849 #if FASTRETRANS_DEBUG > 1 850 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 851 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 852 tp->reordering, 853 tp->fackets_out, 854 tp->sacked_out, 855 tp->undo_marker ? tp->undo_retrans : 0); 856 #endif 857 tcp_disable_fack(tp); 858 } 859 860 if (metric > 0) 861 tcp_disable_early_retrans(tp); 862 } 863 864 /* This must be called before lost_out is incremented */ 865 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 866 { 867 if ((tp->retransmit_skb_hint == NULL) || 868 before(TCP_SKB_CB(skb)->seq, 869 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 870 tp->retransmit_skb_hint = skb; 871 872 if (!tp->lost_out || 873 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 874 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 875 } 876 877 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 878 { 879 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 880 tcp_verify_retransmit_hint(tp, skb); 881 882 tp->lost_out += tcp_skb_pcount(skb); 883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 884 } 885 } 886 887 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 888 struct sk_buff *skb) 889 { 890 tcp_verify_retransmit_hint(tp, skb); 891 892 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 893 tp->lost_out += tcp_skb_pcount(skb); 894 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 895 } 896 } 897 898 /* This procedure tags the retransmission queue when SACKs arrive. 899 * 900 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 901 * Packets in queue with these bits set are counted in variables 902 * sacked_out, retrans_out and lost_out, correspondingly. 903 * 904 * Valid combinations are: 905 * Tag InFlight Description 906 * 0 1 - orig segment is in flight. 907 * S 0 - nothing flies, orig reached receiver. 908 * L 0 - nothing flies, orig lost by net. 909 * R 2 - both orig and retransmit are in flight. 910 * L|R 1 - orig is lost, retransmit is in flight. 911 * S|R 1 - orig reached receiver, retrans is still in flight. 912 * (L|S|R is logically valid, it could occur when L|R is sacked, 913 * but it is equivalent to plain S and code short-curcuits it to S. 914 * L|S is logically invalid, it would mean -1 packet in flight 8)) 915 * 916 * These 6 states form finite state machine, controlled by the following events: 917 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 918 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 919 * 3. Loss detection event of two flavors: 920 * A. Scoreboard estimator decided the packet is lost. 921 * A'. Reno "three dupacks" marks head of queue lost. 922 * A''. Its FACK modification, head until snd.fack is lost. 923 * B. SACK arrives sacking SND.NXT at the moment, when the 924 * segment was retransmitted. 925 * 4. D-SACK added new rule: D-SACK changes any tag to S. 926 * 927 * It is pleasant to note, that state diagram turns out to be commutative, 928 * so that we are allowed not to be bothered by order of our actions, 929 * when multiple events arrive simultaneously. (see the function below). 930 * 931 * Reordering detection. 932 * -------------------- 933 * Reordering metric is maximal distance, which a packet can be displaced 934 * in packet stream. With SACKs we can estimate it: 935 * 936 * 1. SACK fills old hole and the corresponding segment was not 937 * ever retransmitted -> reordering. Alas, we cannot use it 938 * when segment was retransmitted. 939 * 2. The last flaw is solved with D-SACK. D-SACK arrives 940 * for retransmitted and already SACKed segment -> reordering.. 941 * Both of these heuristics are not used in Loss state, when we cannot 942 * account for retransmits accurately. 943 * 944 * SACK block validation. 945 * ---------------------- 946 * 947 * SACK block range validation checks that the received SACK block fits to 948 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 949 * Note that SND.UNA is not included to the range though being valid because 950 * it means that the receiver is rather inconsistent with itself reporting 951 * SACK reneging when it should advance SND.UNA. Such SACK block this is 952 * perfectly valid, however, in light of RFC2018 which explicitly states 953 * that "SACK block MUST reflect the newest segment. Even if the newest 954 * segment is going to be discarded ...", not that it looks very clever 955 * in case of head skb. Due to potentional receiver driven attacks, we 956 * choose to avoid immediate execution of a walk in write queue due to 957 * reneging and defer head skb's loss recovery to standard loss recovery 958 * procedure that will eventually trigger (nothing forbids us doing this). 959 * 960 * Implements also blockage to start_seq wrap-around. Problem lies in the 961 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 962 * there's no guarantee that it will be before snd_nxt (n). The problem 963 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 964 * wrap (s_w): 965 * 966 * <- outs wnd -> <- wrapzone -> 967 * u e n u_w e_w s n_w 968 * | | | | | | | 969 * |<------------+------+----- TCP seqno space --------------+---------->| 970 * ...-- <2^31 ->| |<--------... 971 * ...---- >2^31 ------>| |<--------... 972 * 973 * Current code wouldn't be vulnerable but it's better still to discard such 974 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 975 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 976 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 977 * equal to the ideal case (infinite seqno space without wrap caused issues). 978 * 979 * With D-SACK the lower bound is extended to cover sequence space below 980 * SND.UNA down to undo_marker, which is the last point of interest. Yet 981 * again, D-SACK block must not to go across snd_una (for the same reason as 982 * for the normal SACK blocks, explained above). But there all simplicity 983 * ends, TCP might receive valid D-SACKs below that. As long as they reside 984 * fully below undo_marker they do not affect behavior in anyway and can 985 * therefore be safely ignored. In rare cases (which are more or less 986 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 987 * fragmentation and packet reordering past skb's retransmission. To consider 988 * them correctly, the acceptable range must be extended even more though 989 * the exact amount is rather hard to quantify. However, tp->max_window can 990 * be used as an exaggerated estimate. 991 */ 992 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 993 u32 start_seq, u32 end_seq) 994 { 995 /* Too far in future, or reversed (interpretation is ambiguous) */ 996 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 997 return false; 998 999 /* Nasty start_seq wrap-around check (see comments above) */ 1000 if (!before(start_seq, tp->snd_nxt)) 1001 return false; 1002 1003 /* In outstanding window? ...This is valid exit for D-SACKs too. 1004 * start_seq == snd_una is non-sensical (see comments above) 1005 */ 1006 if (after(start_seq, tp->snd_una)) 1007 return true; 1008 1009 if (!is_dsack || !tp->undo_marker) 1010 return false; 1011 1012 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1013 if (after(end_seq, tp->snd_una)) 1014 return false; 1015 1016 if (!before(start_seq, tp->undo_marker)) 1017 return true; 1018 1019 /* Too old */ 1020 if (!after(end_seq, tp->undo_marker)) 1021 return false; 1022 1023 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1024 * start_seq < undo_marker and end_seq >= undo_marker. 1025 */ 1026 return !before(start_seq, end_seq - tp->max_window); 1027 } 1028 1029 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1030 * Event "B". Later note: FACK people cheated me again 8), we have to account 1031 * for reordering! Ugly, but should help. 1032 * 1033 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1034 * less than what is now known to be received by the other end (derived from 1035 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1036 * retransmitted skbs to avoid some costly processing per ACKs. 1037 */ 1038 static void tcp_mark_lost_retrans(struct sock *sk) 1039 { 1040 const struct inet_connection_sock *icsk = inet_csk(sk); 1041 struct tcp_sock *tp = tcp_sk(sk); 1042 struct sk_buff *skb; 1043 int cnt = 0; 1044 u32 new_low_seq = tp->snd_nxt; 1045 u32 received_upto = tcp_highest_sack_seq(tp); 1046 1047 if (!tcp_is_fack(tp) || !tp->retrans_out || 1048 !after(received_upto, tp->lost_retrans_low) || 1049 icsk->icsk_ca_state != TCP_CA_Recovery) 1050 return; 1051 1052 tcp_for_write_queue(skb, sk) { 1053 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1054 1055 if (skb == tcp_send_head(sk)) 1056 break; 1057 if (cnt == tp->retrans_out) 1058 break; 1059 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1060 continue; 1061 1062 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1063 continue; 1064 1065 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1066 * constraint here (see above) but figuring out that at 1067 * least tp->reordering SACK blocks reside between ack_seq 1068 * and received_upto is not easy task to do cheaply with 1069 * the available datastructures. 1070 * 1071 * Whether FACK should check here for tp->reordering segs 1072 * in-between one could argue for either way (it would be 1073 * rather simple to implement as we could count fack_count 1074 * during the walk and do tp->fackets_out - fack_count). 1075 */ 1076 if (after(received_upto, ack_seq)) { 1077 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1078 tp->retrans_out -= tcp_skb_pcount(skb); 1079 1080 tcp_skb_mark_lost_uncond_verify(tp, skb); 1081 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1082 } else { 1083 if (before(ack_seq, new_low_seq)) 1084 new_low_seq = ack_seq; 1085 cnt += tcp_skb_pcount(skb); 1086 } 1087 } 1088 1089 if (tp->retrans_out) 1090 tp->lost_retrans_low = new_low_seq; 1091 } 1092 1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1094 struct tcp_sack_block_wire *sp, int num_sacks, 1095 u32 prior_snd_una) 1096 { 1097 struct tcp_sock *tp = tcp_sk(sk); 1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1100 bool dup_sack = false; 1101 1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1103 dup_sack = true; 1104 tcp_dsack_seen(tp); 1105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1106 } else if (num_sacks > 1) { 1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1109 1110 if (!after(end_seq_0, end_seq_1) && 1111 !before(start_seq_0, start_seq_1)) { 1112 dup_sack = true; 1113 tcp_dsack_seen(tp); 1114 NET_INC_STATS_BH(sock_net(sk), 1115 LINUX_MIB_TCPDSACKOFORECV); 1116 } 1117 } 1118 1119 /* D-SACK for already forgotten data... Do dumb counting. */ 1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1121 !after(end_seq_0, prior_snd_una) && 1122 after(end_seq_0, tp->undo_marker)) 1123 tp->undo_retrans--; 1124 1125 return dup_sack; 1126 } 1127 1128 struct tcp_sacktag_state { 1129 int reord; 1130 int fack_count; 1131 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1132 int flag; 1133 }; 1134 1135 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1136 * the incoming SACK may not exactly match but we can find smaller MSS 1137 * aligned portion of it that matches. Therefore we might need to fragment 1138 * which may fail and creates some hassle (caller must handle error case 1139 * returns). 1140 * 1141 * FIXME: this could be merged to shift decision code 1142 */ 1143 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1144 u32 start_seq, u32 end_seq) 1145 { 1146 int err; 1147 bool in_sack; 1148 unsigned int pkt_len; 1149 unsigned int mss; 1150 1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1152 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1153 1154 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1155 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1156 mss = tcp_skb_mss(skb); 1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1158 1159 if (!in_sack) { 1160 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1161 if (pkt_len < mss) 1162 pkt_len = mss; 1163 } else { 1164 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1165 if (pkt_len < mss) 1166 return -EINVAL; 1167 } 1168 1169 /* Round if necessary so that SACKs cover only full MSSes 1170 * and/or the remaining small portion (if present) 1171 */ 1172 if (pkt_len > mss) { 1173 unsigned int new_len = (pkt_len / mss) * mss; 1174 if (!in_sack && new_len < pkt_len) { 1175 new_len += mss; 1176 if (new_len >= skb->len) 1177 return 0; 1178 } 1179 pkt_len = new_len; 1180 } 1181 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1182 if (err < 0) 1183 return err; 1184 } 1185 1186 return in_sack; 1187 } 1188 1189 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1190 static u8 tcp_sacktag_one(struct sock *sk, 1191 struct tcp_sacktag_state *state, u8 sacked, 1192 u32 start_seq, u32 end_seq, 1193 int dup_sack, int pcount, 1194 const struct skb_mstamp *xmit_time) 1195 { 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 int fack_count = state->fack_count; 1198 1199 /* Account D-SACK for retransmitted packet. */ 1200 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1201 if (tp->undo_marker && tp->undo_retrans > 0 && 1202 after(end_seq, tp->undo_marker)) 1203 tp->undo_retrans--; 1204 if (sacked & TCPCB_SACKED_ACKED) 1205 state->reord = min(fack_count, state->reord); 1206 } 1207 1208 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1209 if (!after(end_seq, tp->snd_una)) 1210 return sacked; 1211 1212 if (!(sacked & TCPCB_SACKED_ACKED)) { 1213 if (sacked & TCPCB_SACKED_RETRANS) { 1214 /* If the segment is not tagged as lost, 1215 * we do not clear RETRANS, believing 1216 * that retransmission is still in flight. 1217 */ 1218 if (sacked & TCPCB_LOST) { 1219 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1220 tp->lost_out -= pcount; 1221 tp->retrans_out -= pcount; 1222 } 1223 } else { 1224 if (!(sacked & TCPCB_RETRANS)) { 1225 /* New sack for not retransmitted frame, 1226 * which was in hole. It is reordering. 1227 */ 1228 if (before(start_seq, 1229 tcp_highest_sack_seq(tp))) 1230 state->reord = min(fack_count, 1231 state->reord); 1232 if (!after(end_seq, tp->high_seq)) 1233 state->flag |= FLAG_ORIG_SACK_ACKED; 1234 /* Pick the earliest sequence sacked for RTT */ 1235 if (state->rtt_us < 0) { 1236 struct skb_mstamp now; 1237 1238 skb_mstamp_get(&now); 1239 state->rtt_us = skb_mstamp_us_delta(&now, 1240 xmit_time); 1241 } 1242 } 1243 1244 if (sacked & TCPCB_LOST) { 1245 sacked &= ~TCPCB_LOST; 1246 tp->lost_out -= pcount; 1247 } 1248 } 1249 1250 sacked |= TCPCB_SACKED_ACKED; 1251 state->flag |= FLAG_DATA_SACKED; 1252 tp->sacked_out += pcount; 1253 1254 fack_count += pcount; 1255 1256 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1257 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1258 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1259 tp->lost_cnt_hint += pcount; 1260 1261 if (fack_count > tp->fackets_out) 1262 tp->fackets_out = fack_count; 1263 } 1264 1265 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1266 * frames and clear it. undo_retrans is decreased above, L|R frames 1267 * are accounted above as well. 1268 */ 1269 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1270 sacked &= ~TCPCB_SACKED_RETRANS; 1271 tp->retrans_out -= pcount; 1272 } 1273 1274 return sacked; 1275 } 1276 1277 /* Shift newly-SACKed bytes from this skb to the immediately previous 1278 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1279 */ 1280 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1281 struct tcp_sacktag_state *state, 1282 unsigned int pcount, int shifted, int mss, 1283 bool dup_sack) 1284 { 1285 struct tcp_sock *tp = tcp_sk(sk); 1286 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1287 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1288 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1289 1290 BUG_ON(!pcount); 1291 1292 /* Adjust counters and hints for the newly sacked sequence 1293 * range but discard the return value since prev is already 1294 * marked. We must tag the range first because the seq 1295 * advancement below implicitly advances 1296 * tcp_highest_sack_seq() when skb is highest_sack. 1297 */ 1298 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1299 start_seq, end_seq, dup_sack, pcount, 1300 &skb->skb_mstamp); 1301 1302 if (skb == tp->lost_skb_hint) 1303 tp->lost_cnt_hint += pcount; 1304 1305 TCP_SKB_CB(prev)->end_seq += shifted; 1306 TCP_SKB_CB(skb)->seq += shifted; 1307 1308 tcp_skb_pcount_add(prev, pcount); 1309 BUG_ON(tcp_skb_pcount(skb) < pcount); 1310 tcp_skb_pcount_add(skb, -pcount); 1311 1312 /* When we're adding to gso_segs == 1, gso_size will be zero, 1313 * in theory this shouldn't be necessary but as long as DSACK 1314 * code can come after this skb later on it's better to keep 1315 * setting gso_size to something. 1316 */ 1317 if (!skb_shinfo(prev)->gso_size) { 1318 skb_shinfo(prev)->gso_size = mss; 1319 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1320 } 1321 1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1323 if (tcp_skb_pcount(skb) <= 1) { 1324 skb_shinfo(skb)->gso_size = 0; 1325 skb_shinfo(skb)->gso_type = 0; 1326 } 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1348 TCP_SKB_CB(prev)->end_seq++; 1349 1350 if (skb == tcp_highest_sack(sk)) 1351 tcp_advance_highest_sack(sk, skb); 1352 1353 tcp_unlink_write_queue(skb, sk); 1354 sk_wmem_free_skb(sk, skb); 1355 1356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1357 1358 return true; 1359 } 1360 1361 /* I wish gso_size would have a bit more sane initialization than 1362 * something-or-zero which complicates things 1363 */ 1364 static int tcp_skb_seglen(const struct sk_buff *skb) 1365 { 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1367 } 1368 1369 /* Shifting pages past head area doesn't work */ 1370 static int skb_can_shift(const struct sk_buff *skb) 1371 { 1372 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1373 } 1374 1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1376 * skb. 1377 */ 1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1379 struct tcp_sacktag_state *state, 1380 u32 start_seq, u32 end_seq, 1381 bool dup_sack) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct sk_buff *prev; 1385 int mss; 1386 int pcount = 0; 1387 int len; 1388 int in_sack; 1389 1390 if (!sk_can_gso(sk)) 1391 goto fallback; 1392 1393 /* Normally R but no L won't result in plain S */ 1394 if (!dup_sack && 1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1396 goto fallback; 1397 if (!skb_can_shift(skb)) 1398 goto fallback; 1399 /* This frame is about to be dropped (was ACKed). */ 1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1401 goto fallback; 1402 1403 /* Can only happen with delayed DSACK + discard craziness */ 1404 if (unlikely(skb == tcp_write_queue_head(sk))) 1405 goto fallback; 1406 prev = tcp_write_queue_prev(sk, skb); 1407 1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1409 goto fallback; 1410 1411 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1412 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1413 1414 if (in_sack) { 1415 len = skb->len; 1416 pcount = tcp_skb_pcount(skb); 1417 mss = tcp_skb_seglen(skb); 1418 1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1420 * drop this restriction as unnecessary 1421 */ 1422 if (mss != tcp_skb_seglen(prev)) 1423 goto fallback; 1424 } else { 1425 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1426 goto noop; 1427 /* CHECKME: This is non-MSS split case only?, this will 1428 * cause skipped skbs due to advancing loop btw, original 1429 * has that feature too 1430 */ 1431 if (tcp_skb_pcount(skb) <= 1) 1432 goto noop; 1433 1434 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1435 if (!in_sack) { 1436 /* TODO: head merge to next could be attempted here 1437 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1438 * though it might not be worth of the additional hassle 1439 * 1440 * ...we can probably just fallback to what was done 1441 * previously. We could try merging non-SACKed ones 1442 * as well but it probably isn't going to buy off 1443 * because later SACKs might again split them, and 1444 * it would make skb timestamp tracking considerably 1445 * harder problem. 1446 */ 1447 goto fallback; 1448 } 1449 1450 len = end_seq - TCP_SKB_CB(skb)->seq; 1451 BUG_ON(len < 0); 1452 BUG_ON(len > skb->len); 1453 1454 /* MSS boundaries should be honoured or else pcount will 1455 * severely break even though it makes things bit trickier. 1456 * Optimize common case to avoid most of the divides 1457 */ 1458 mss = tcp_skb_mss(skb); 1459 1460 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1461 * drop this restriction as unnecessary 1462 */ 1463 if (mss != tcp_skb_seglen(prev)) 1464 goto fallback; 1465 1466 if (len == mss) { 1467 pcount = 1; 1468 } else if (len < mss) { 1469 goto noop; 1470 } else { 1471 pcount = len / mss; 1472 len = pcount * mss; 1473 } 1474 } 1475 1476 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1477 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1478 goto fallback; 1479 1480 if (!skb_shift(prev, skb, len)) 1481 goto fallback; 1482 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1483 goto out; 1484 1485 /* Hole filled allows collapsing with the next as well, this is very 1486 * useful when hole on every nth skb pattern happens 1487 */ 1488 if (prev == tcp_write_queue_tail(sk)) 1489 goto out; 1490 skb = tcp_write_queue_next(sk, prev); 1491 1492 if (!skb_can_shift(skb) || 1493 (skb == tcp_send_head(sk)) || 1494 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1495 (mss != tcp_skb_seglen(skb))) 1496 goto out; 1497 1498 len = skb->len; 1499 if (skb_shift(prev, skb, len)) { 1500 pcount += tcp_skb_pcount(skb); 1501 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1502 } 1503 1504 out: 1505 state->fack_count += pcount; 1506 return prev; 1507 1508 noop: 1509 return skb; 1510 1511 fallback: 1512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1513 return NULL; 1514 } 1515 1516 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1517 struct tcp_sack_block *next_dup, 1518 struct tcp_sacktag_state *state, 1519 u32 start_seq, u32 end_seq, 1520 bool dup_sack_in) 1521 { 1522 struct tcp_sock *tp = tcp_sk(sk); 1523 struct sk_buff *tmp; 1524 1525 tcp_for_write_queue_from(skb, sk) { 1526 int in_sack = 0; 1527 bool dup_sack = dup_sack_in; 1528 1529 if (skb == tcp_send_head(sk)) 1530 break; 1531 1532 /* queue is in-order => we can short-circuit the walk early */ 1533 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1534 break; 1535 1536 if ((next_dup != NULL) && 1537 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1538 in_sack = tcp_match_skb_to_sack(sk, skb, 1539 next_dup->start_seq, 1540 next_dup->end_seq); 1541 if (in_sack > 0) 1542 dup_sack = true; 1543 } 1544 1545 /* skb reference here is a bit tricky to get right, since 1546 * shifting can eat and free both this skb and the next, 1547 * so not even _safe variant of the loop is enough. 1548 */ 1549 if (in_sack <= 0) { 1550 tmp = tcp_shift_skb_data(sk, skb, state, 1551 start_seq, end_seq, dup_sack); 1552 if (tmp != NULL) { 1553 if (tmp != skb) { 1554 skb = tmp; 1555 continue; 1556 } 1557 1558 in_sack = 0; 1559 } else { 1560 in_sack = tcp_match_skb_to_sack(sk, skb, 1561 start_seq, 1562 end_seq); 1563 } 1564 } 1565 1566 if (unlikely(in_sack < 0)) 1567 break; 1568 1569 if (in_sack) { 1570 TCP_SKB_CB(skb)->sacked = 1571 tcp_sacktag_one(sk, 1572 state, 1573 TCP_SKB_CB(skb)->sacked, 1574 TCP_SKB_CB(skb)->seq, 1575 TCP_SKB_CB(skb)->end_seq, 1576 dup_sack, 1577 tcp_skb_pcount(skb), 1578 &skb->skb_mstamp); 1579 1580 if (!before(TCP_SKB_CB(skb)->seq, 1581 tcp_highest_sack_seq(tp))) 1582 tcp_advance_highest_sack(sk, skb); 1583 } 1584 1585 state->fack_count += tcp_skb_pcount(skb); 1586 } 1587 return skb; 1588 } 1589 1590 /* Avoid all extra work that is being done by sacktag while walking in 1591 * a normal way 1592 */ 1593 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1594 struct tcp_sacktag_state *state, 1595 u32 skip_to_seq) 1596 { 1597 tcp_for_write_queue_from(skb, sk) { 1598 if (skb == tcp_send_head(sk)) 1599 break; 1600 1601 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1602 break; 1603 1604 state->fack_count += tcp_skb_pcount(skb); 1605 } 1606 return skb; 1607 } 1608 1609 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1610 struct sock *sk, 1611 struct tcp_sack_block *next_dup, 1612 struct tcp_sacktag_state *state, 1613 u32 skip_to_seq) 1614 { 1615 if (next_dup == NULL) 1616 return skb; 1617 1618 if (before(next_dup->start_seq, skip_to_seq)) { 1619 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1620 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1621 next_dup->start_seq, next_dup->end_seq, 1622 1); 1623 } 1624 1625 return skb; 1626 } 1627 1628 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1629 { 1630 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1631 } 1632 1633 static int 1634 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1635 u32 prior_snd_una, long *sack_rtt_us) 1636 { 1637 struct tcp_sock *tp = tcp_sk(sk); 1638 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1639 TCP_SKB_CB(ack_skb)->sacked); 1640 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1641 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1642 struct tcp_sack_block *cache; 1643 struct tcp_sacktag_state state; 1644 struct sk_buff *skb; 1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1646 int used_sacks; 1647 bool found_dup_sack = false; 1648 int i, j; 1649 int first_sack_index; 1650 1651 state.flag = 0; 1652 state.reord = tp->packets_out; 1653 state.rtt_us = -1L; 1654 1655 if (!tp->sacked_out) { 1656 if (WARN_ON(tp->fackets_out)) 1657 tp->fackets_out = 0; 1658 tcp_highest_sack_reset(sk); 1659 } 1660 1661 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1662 num_sacks, prior_snd_una); 1663 if (found_dup_sack) 1664 state.flag |= FLAG_DSACKING_ACK; 1665 1666 /* Eliminate too old ACKs, but take into 1667 * account more or less fresh ones, they can 1668 * contain valid SACK info. 1669 */ 1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1671 return 0; 1672 1673 if (!tp->packets_out) 1674 goto out; 1675 1676 used_sacks = 0; 1677 first_sack_index = 0; 1678 for (i = 0; i < num_sacks; i++) { 1679 bool dup_sack = !i && found_dup_sack; 1680 1681 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1682 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1683 1684 if (!tcp_is_sackblock_valid(tp, dup_sack, 1685 sp[used_sacks].start_seq, 1686 sp[used_sacks].end_seq)) { 1687 int mib_idx; 1688 1689 if (dup_sack) { 1690 if (!tp->undo_marker) 1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1692 else 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1694 } else { 1695 /* Don't count olds caused by ACK reordering */ 1696 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1697 !after(sp[used_sacks].end_seq, tp->snd_una)) 1698 continue; 1699 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1700 } 1701 1702 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1703 if (i == 0) 1704 first_sack_index = -1; 1705 continue; 1706 } 1707 1708 /* Ignore very old stuff early */ 1709 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1710 continue; 1711 1712 used_sacks++; 1713 } 1714 1715 /* order SACK blocks to allow in order walk of the retrans queue */ 1716 for (i = used_sacks - 1; i > 0; i--) { 1717 for (j = 0; j < i; j++) { 1718 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1719 swap(sp[j], sp[j + 1]); 1720 1721 /* Track where the first SACK block goes to */ 1722 if (j == first_sack_index) 1723 first_sack_index = j + 1; 1724 } 1725 } 1726 } 1727 1728 skb = tcp_write_queue_head(sk); 1729 state.fack_count = 0; 1730 i = 0; 1731 1732 if (!tp->sacked_out) { 1733 /* It's already past, so skip checking against it */ 1734 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1735 } else { 1736 cache = tp->recv_sack_cache; 1737 /* Skip empty blocks in at head of the cache */ 1738 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1739 !cache->end_seq) 1740 cache++; 1741 } 1742 1743 while (i < used_sacks) { 1744 u32 start_seq = sp[i].start_seq; 1745 u32 end_seq = sp[i].end_seq; 1746 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1747 struct tcp_sack_block *next_dup = NULL; 1748 1749 if (found_dup_sack && ((i + 1) == first_sack_index)) 1750 next_dup = &sp[i + 1]; 1751 1752 /* Skip too early cached blocks */ 1753 while (tcp_sack_cache_ok(tp, cache) && 1754 !before(start_seq, cache->end_seq)) 1755 cache++; 1756 1757 /* Can skip some work by looking recv_sack_cache? */ 1758 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1759 after(end_seq, cache->start_seq)) { 1760 1761 /* Head todo? */ 1762 if (before(start_seq, cache->start_seq)) { 1763 skb = tcp_sacktag_skip(skb, sk, &state, 1764 start_seq); 1765 skb = tcp_sacktag_walk(skb, sk, next_dup, 1766 &state, 1767 start_seq, 1768 cache->start_seq, 1769 dup_sack); 1770 } 1771 1772 /* Rest of the block already fully processed? */ 1773 if (!after(end_seq, cache->end_seq)) 1774 goto advance_sp; 1775 1776 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1777 &state, 1778 cache->end_seq); 1779 1780 /* ...tail remains todo... */ 1781 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1782 /* ...but better entrypoint exists! */ 1783 skb = tcp_highest_sack(sk); 1784 if (skb == NULL) 1785 break; 1786 state.fack_count = tp->fackets_out; 1787 cache++; 1788 goto walk; 1789 } 1790 1791 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1792 /* Check overlap against next cached too (past this one already) */ 1793 cache++; 1794 continue; 1795 } 1796 1797 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1798 skb = tcp_highest_sack(sk); 1799 if (skb == NULL) 1800 break; 1801 state.fack_count = tp->fackets_out; 1802 } 1803 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1804 1805 walk: 1806 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1807 start_seq, end_seq, dup_sack); 1808 1809 advance_sp: 1810 i++; 1811 } 1812 1813 /* Clear the head of the cache sack blocks so we can skip it next time */ 1814 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1815 tp->recv_sack_cache[i].start_seq = 0; 1816 tp->recv_sack_cache[i].end_seq = 0; 1817 } 1818 for (j = 0; j < used_sacks; j++) 1819 tp->recv_sack_cache[i++] = sp[j]; 1820 1821 tcp_mark_lost_retrans(sk); 1822 1823 tcp_verify_left_out(tp); 1824 1825 if ((state.reord < tp->fackets_out) && 1826 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1827 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1828 1829 out: 1830 1831 #if FASTRETRANS_DEBUG > 0 1832 WARN_ON((int)tp->sacked_out < 0); 1833 WARN_ON((int)tp->lost_out < 0); 1834 WARN_ON((int)tp->retrans_out < 0); 1835 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1836 #endif 1837 *sack_rtt_us = state.rtt_us; 1838 return state.flag; 1839 } 1840 1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1843 */ 1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1845 { 1846 u32 holes; 1847 1848 holes = max(tp->lost_out, 1U); 1849 holes = min(holes, tp->packets_out); 1850 1851 if ((tp->sacked_out + holes) > tp->packets_out) { 1852 tp->sacked_out = tp->packets_out - holes; 1853 return true; 1854 } 1855 return false; 1856 } 1857 1858 /* If we receive more dupacks than we expected counting segments 1859 * in assumption of absent reordering, interpret this as reordering. 1860 * The only another reason could be bug in receiver TCP. 1861 */ 1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 if (tcp_limit_reno_sacked(tp)) 1866 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1867 } 1868 1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1870 1871 static void tcp_add_reno_sack(struct sock *sk) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 tp->sacked_out++; 1875 tcp_check_reno_reordering(sk, 0); 1876 tcp_verify_left_out(tp); 1877 } 1878 1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1880 1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1882 { 1883 struct tcp_sock *tp = tcp_sk(sk); 1884 1885 if (acked > 0) { 1886 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1887 if (acked - 1 >= tp->sacked_out) 1888 tp->sacked_out = 0; 1889 else 1890 tp->sacked_out -= acked - 1; 1891 } 1892 tcp_check_reno_reordering(sk, acked); 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1897 { 1898 tp->sacked_out = 0; 1899 } 1900 1901 void tcp_clear_retrans(struct tcp_sock *tp) 1902 { 1903 tp->retrans_out = 0; 1904 tp->lost_out = 0; 1905 tp->undo_marker = 0; 1906 tp->undo_retrans = -1; 1907 tp->fackets_out = 0; 1908 tp->sacked_out = 0; 1909 } 1910 1911 static inline void tcp_init_undo(struct tcp_sock *tp) 1912 { 1913 tp->undo_marker = tp->snd_una; 1914 /* Retransmission still in flight may cause DSACKs later. */ 1915 tp->undo_retrans = tp->retrans_out ? : -1; 1916 } 1917 1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1919 * and reset tags completely, otherwise preserve SACKs. If receiver 1920 * dropped its ofo queue, we will know this due to reneging detection. 1921 */ 1922 void tcp_enter_loss(struct sock *sk) 1923 { 1924 const struct inet_connection_sock *icsk = inet_csk(sk); 1925 struct tcp_sock *tp = tcp_sk(sk); 1926 struct sk_buff *skb; 1927 bool new_recovery = false; 1928 bool is_reneg; /* is receiver reneging on SACKs? */ 1929 1930 /* Reduce ssthresh if it has not yet been made inside this window. */ 1931 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1932 !after(tp->high_seq, tp->snd_una) || 1933 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1934 new_recovery = true; 1935 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1936 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1937 tcp_ca_event(sk, CA_EVENT_LOSS); 1938 tcp_init_undo(tp); 1939 } 1940 tp->snd_cwnd = 1; 1941 tp->snd_cwnd_cnt = 0; 1942 tp->snd_cwnd_stamp = tcp_time_stamp; 1943 1944 tp->retrans_out = 0; 1945 tp->lost_out = 0; 1946 1947 if (tcp_is_reno(tp)) 1948 tcp_reset_reno_sack(tp); 1949 1950 skb = tcp_write_queue_head(sk); 1951 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1952 if (is_reneg) { 1953 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1954 tp->sacked_out = 0; 1955 tp->fackets_out = 0; 1956 } 1957 tcp_clear_all_retrans_hints(tp); 1958 1959 tcp_for_write_queue(skb, sk) { 1960 if (skb == tcp_send_head(sk)) 1961 break; 1962 1963 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1966 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1967 tp->lost_out += tcp_skb_pcount(skb); 1968 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1969 } 1970 } 1971 tcp_verify_left_out(tp); 1972 1973 /* Timeout in disordered state after receiving substantial DUPACKs 1974 * suggests that the degree of reordering is over-estimated. 1975 */ 1976 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1977 tp->sacked_out >= sysctl_tcp_reordering) 1978 tp->reordering = min_t(unsigned int, tp->reordering, 1979 sysctl_tcp_reordering); 1980 tcp_set_ca_state(sk, TCP_CA_Loss); 1981 tp->high_seq = tp->snd_nxt; 1982 tcp_ecn_queue_cwr(tp); 1983 1984 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1985 * loss recovery is underway except recurring timeout(s) on 1986 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1987 */ 1988 tp->frto = sysctl_tcp_frto && 1989 (new_recovery || icsk->icsk_retransmits) && 1990 !inet_csk(sk)->icsk_mtup.probe_size; 1991 } 1992 1993 /* If ACK arrived pointing to a remembered SACK, it means that our 1994 * remembered SACKs do not reflect real state of receiver i.e. 1995 * receiver _host_ is heavily congested (or buggy). 1996 * 1997 * To avoid big spurious retransmission bursts due to transient SACK 1998 * scoreboard oddities that look like reneging, we give the receiver a 1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2000 * restore sanity to the SACK scoreboard. If the apparent reneging 2001 * persists until this RTO then we'll clear the SACK scoreboard. 2002 */ 2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2004 { 2005 if (flag & FLAG_SACK_RENEGING) { 2006 struct tcp_sock *tp = tcp_sk(sk); 2007 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2008 msecs_to_jiffies(10)); 2009 2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2011 delay, TCP_RTO_MAX); 2012 return true; 2013 } 2014 return false; 2015 } 2016 2017 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2018 { 2019 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2020 } 2021 2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2023 * counter when SACK is enabled (without SACK, sacked_out is used for 2024 * that purpose). 2025 * 2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2027 * segments up to the highest received SACK block so far and holes in 2028 * between them. 2029 * 2030 * With reordering, holes may still be in flight, so RFC3517 recovery 2031 * uses pure sacked_out (total number of SACKed segments) even though 2032 * it violates the RFC that uses duplicate ACKs, often these are equal 2033 * but when e.g. out-of-window ACKs or packet duplication occurs, 2034 * they differ. Since neither occurs due to loss, TCP should really 2035 * ignore them. 2036 */ 2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2038 { 2039 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2040 } 2041 2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2043 { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 unsigned long delay; 2046 2047 /* Delay early retransmit and entering fast recovery for 2048 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2049 * available, or RTO is scheduled to fire first. 2050 */ 2051 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2052 (flag & FLAG_ECE) || !tp->srtt_us) 2053 return false; 2054 2055 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2056 msecs_to_jiffies(2)); 2057 2058 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2059 return false; 2060 2061 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2062 TCP_RTO_MAX); 2063 return true; 2064 } 2065 2066 /* Linux NewReno/SACK/FACK/ECN state machine. 2067 * -------------------------------------- 2068 * 2069 * "Open" Normal state, no dubious events, fast path. 2070 * "Disorder" In all the respects it is "Open", 2071 * but requires a bit more attention. It is entered when 2072 * we see some SACKs or dupacks. It is split of "Open" 2073 * mainly to move some processing from fast path to slow one. 2074 * "CWR" CWND was reduced due to some Congestion Notification event. 2075 * It can be ECN, ICMP source quench, local device congestion. 2076 * "Recovery" CWND was reduced, we are fast-retransmitting. 2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2078 * 2079 * tcp_fastretrans_alert() is entered: 2080 * - each incoming ACK, if state is not "Open" 2081 * - when arrived ACK is unusual, namely: 2082 * * SACK 2083 * * Duplicate ACK. 2084 * * ECN ECE. 2085 * 2086 * Counting packets in flight is pretty simple. 2087 * 2088 * in_flight = packets_out - left_out + retrans_out 2089 * 2090 * packets_out is SND.NXT-SND.UNA counted in packets. 2091 * 2092 * retrans_out is number of retransmitted segments. 2093 * 2094 * left_out is number of segments left network, but not ACKed yet. 2095 * 2096 * left_out = sacked_out + lost_out 2097 * 2098 * sacked_out: Packets, which arrived to receiver out of order 2099 * and hence not ACKed. With SACKs this number is simply 2100 * amount of SACKed data. Even without SACKs 2101 * it is easy to give pretty reliable estimate of this number, 2102 * counting duplicate ACKs. 2103 * 2104 * lost_out: Packets lost by network. TCP has no explicit 2105 * "loss notification" feedback from network (for now). 2106 * It means that this number can be only _guessed_. 2107 * Actually, it is the heuristics to predict lossage that 2108 * distinguishes different algorithms. 2109 * 2110 * F.e. after RTO, when all the queue is considered as lost, 2111 * lost_out = packets_out and in_flight = retrans_out. 2112 * 2113 * Essentially, we have now two algorithms counting 2114 * lost packets. 2115 * 2116 * FACK: It is the simplest heuristics. As soon as we decided 2117 * that something is lost, we decide that _all_ not SACKed 2118 * packets until the most forward SACK are lost. I.e. 2119 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2120 * It is absolutely correct estimate, if network does not reorder 2121 * packets. And it loses any connection to reality when reordering 2122 * takes place. We use FACK by default until reordering 2123 * is suspected on the path to this destination. 2124 * 2125 * NewReno: when Recovery is entered, we assume that one segment 2126 * is lost (classic Reno). While we are in Recovery and 2127 * a partial ACK arrives, we assume that one more packet 2128 * is lost (NewReno). This heuristics are the same in NewReno 2129 * and SACK. 2130 * 2131 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2132 * deflation etc. CWND is real congestion window, never inflated, changes 2133 * only according to classic VJ rules. 2134 * 2135 * Really tricky (and requiring careful tuning) part of algorithm 2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2137 * The first determines the moment _when_ we should reduce CWND and, 2138 * hence, slow down forward transmission. In fact, it determines the moment 2139 * when we decide that hole is caused by loss, rather than by a reorder. 2140 * 2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2142 * holes, caused by lost packets. 2143 * 2144 * And the most logically complicated part of algorithm is undo 2145 * heuristics. We detect false retransmits due to both too early 2146 * fast retransmit (reordering) and underestimated RTO, analyzing 2147 * timestamps and D-SACKs. When we detect that some segments were 2148 * retransmitted by mistake and CWND reduction was wrong, we undo 2149 * window reduction and abort recovery phase. This logic is hidden 2150 * inside several functions named tcp_try_undo_<something>. 2151 */ 2152 2153 /* This function decides, when we should leave Disordered state 2154 * and enter Recovery phase, reducing congestion window. 2155 * 2156 * Main question: may we further continue forward transmission 2157 * with the same cwnd? 2158 */ 2159 static bool tcp_time_to_recover(struct sock *sk, int flag) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 __u32 packets_out; 2163 2164 /* Trick#1: The loss is proven. */ 2165 if (tp->lost_out) 2166 return true; 2167 2168 /* Not-A-Trick#2 : Classic rule... */ 2169 if (tcp_dupack_heuristics(tp) > tp->reordering) 2170 return true; 2171 2172 /* Trick#4: It is still not OK... But will it be useful to delay 2173 * recovery more? 2174 */ 2175 packets_out = tp->packets_out; 2176 if (packets_out <= tp->reordering && 2177 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2178 !tcp_may_send_now(sk)) { 2179 /* We have nothing to send. This connection is limited 2180 * either by receiver window or by application. 2181 */ 2182 return true; 2183 } 2184 2185 /* If a thin stream is detected, retransmit after first 2186 * received dupack. Employ only if SACK is supported in order 2187 * to avoid possible corner-case series of spurious retransmissions 2188 * Use only if there are no unsent data. 2189 */ 2190 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2191 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2192 tcp_is_sack(tp) && !tcp_send_head(sk)) 2193 return true; 2194 2195 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2196 * retransmissions due to small network reorderings, we implement 2197 * Mitigation A.3 in the RFC and delay the retransmission for a short 2198 * interval if appropriate. 2199 */ 2200 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2201 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2202 !tcp_may_send_now(sk)) 2203 return !tcp_pause_early_retransmit(sk, flag); 2204 2205 return false; 2206 } 2207 2208 /* Detect loss in event "A" above by marking head of queue up as lost. 2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2212 * the maximum SACKed segments to pass before reaching this limit. 2213 */ 2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2215 { 2216 struct tcp_sock *tp = tcp_sk(sk); 2217 struct sk_buff *skb; 2218 int cnt, oldcnt; 2219 int err; 2220 unsigned int mss; 2221 /* Use SACK to deduce losses of new sequences sent during recovery */ 2222 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2223 2224 WARN_ON(packets > tp->packets_out); 2225 if (tp->lost_skb_hint) { 2226 skb = tp->lost_skb_hint; 2227 cnt = tp->lost_cnt_hint; 2228 /* Head already handled? */ 2229 if (mark_head && skb != tcp_write_queue_head(sk)) 2230 return; 2231 } else { 2232 skb = tcp_write_queue_head(sk); 2233 cnt = 0; 2234 } 2235 2236 tcp_for_write_queue_from(skb, sk) { 2237 if (skb == tcp_send_head(sk)) 2238 break; 2239 /* TODO: do this better */ 2240 /* this is not the most efficient way to do this... */ 2241 tp->lost_skb_hint = skb; 2242 tp->lost_cnt_hint = cnt; 2243 2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2245 break; 2246 2247 oldcnt = cnt; 2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2250 cnt += tcp_skb_pcount(skb); 2251 2252 if (cnt > packets) { 2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2255 (oldcnt >= packets)) 2256 break; 2257 2258 mss = skb_shinfo(skb)->gso_size; 2259 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2260 mss, GFP_ATOMIC); 2261 if (err < 0) 2262 break; 2263 cnt = packets; 2264 } 2265 2266 tcp_skb_mark_lost(tp, skb); 2267 2268 if (mark_head) 2269 break; 2270 } 2271 tcp_verify_left_out(tp); 2272 } 2273 2274 /* Account newly detected lost packet(s) */ 2275 2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 2280 if (tcp_is_reno(tp)) { 2281 tcp_mark_head_lost(sk, 1, 1); 2282 } else if (tcp_is_fack(tp)) { 2283 int lost = tp->fackets_out - tp->reordering; 2284 if (lost <= 0) 2285 lost = 1; 2286 tcp_mark_head_lost(sk, lost, 0); 2287 } else { 2288 int sacked_upto = tp->sacked_out - tp->reordering; 2289 if (sacked_upto >= 0) 2290 tcp_mark_head_lost(sk, sacked_upto, 0); 2291 else if (fast_rexmit) 2292 tcp_mark_head_lost(sk, 1, 1); 2293 } 2294 } 2295 2296 /* CWND moderation, preventing bursts due to too big ACKs 2297 * in dubious situations. 2298 */ 2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2300 { 2301 tp->snd_cwnd = min(tp->snd_cwnd, 2302 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2303 tp->snd_cwnd_stamp = tcp_time_stamp; 2304 } 2305 2306 /* Nothing was retransmitted or returned timestamp is less 2307 * than timestamp of the first retransmission. 2308 */ 2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2310 { 2311 return !tp->retrans_stamp || 2312 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2313 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2314 } 2315 2316 /* Undo procedures. */ 2317 2318 /* We can clear retrans_stamp when there are no retransmissions in the 2319 * window. It would seem that it is trivially available for us in 2320 * tp->retrans_out, however, that kind of assumptions doesn't consider 2321 * what will happen if errors occur when sending retransmission for the 2322 * second time. ...It could the that such segment has only 2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2324 * the head skb is enough except for some reneging corner cases that 2325 * are not worth the effort. 2326 * 2327 * Main reason for all this complexity is the fact that connection dying 2328 * time now depends on the validity of the retrans_stamp, in particular, 2329 * that successive retransmissions of a segment must not advance 2330 * retrans_stamp under any conditions. 2331 */ 2332 static bool tcp_any_retrans_done(const struct sock *sk) 2333 { 2334 const struct tcp_sock *tp = tcp_sk(sk); 2335 struct sk_buff *skb; 2336 2337 if (tp->retrans_out) 2338 return true; 2339 2340 skb = tcp_write_queue_head(sk); 2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2342 return true; 2343 2344 return false; 2345 } 2346 2347 #if FASTRETRANS_DEBUG > 1 2348 static void DBGUNDO(struct sock *sk, const char *msg) 2349 { 2350 struct tcp_sock *tp = tcp_sk(sk); 2351 struct inet_sock *inet = inet_sk(sk); 2352 2353 if (sk->sk_family == AF_INET) { 2354 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2355 msg, 2356 &inet->inet_daddr, ntohs(inet->inet_dport), 2357 tp->snd_cwnd, tcp_left_out(tp), 2358 tp->snd_ssthresh, tp->prior_ssthresh, 2359 tp->packets_out); 2360 } 2361 #if IS_ENABLED(CONFIG_IPV6) 2362 else if (sk->sk_family == AF_INET6) { 2363 struct ipv6_pinfo *np = inet6_sk(sk); 2364 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2365 msg, 2366 &np->daddr, ntohs(inet->inet_dport), 2367 tp->snd_cwnd, tcp_left_out(tp), 2368 tp->snd_ssthresh, tp->prior_ssthresh, 2369 tp->packets_out); 2370 } 2371 #endif 2372 } 2373 #else 2374 #define DBGUNDO(x...) do { } while (0) 2375 #endif 2376 2377 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2378 { 2379 struct tcp_sock *tp = tcp_sk(sk); 2380 2381 if (unmark_loss) { 2382 struct sk_buff *skb; 2383 2384 tcp_for_write_queue(skb, sk) { 2385 if (skb == tcp_send_head(sk)) 2386 break; 2387 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2388 } 2389 tp->lost_out = 0; 2390 tcp_clear_all_retrans_hints(tp); 2391 } 2392 2393 if (tp->prior_ssthresh) { 2394 const struct inet_connection_sock *icsk = inet_csk(sk); 2395 2396 if (icsk->icsk_ca_ops->undo_cwnd) 2397 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2398 else 2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2400 2401 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2402 tp->snd_ssthresh = tp->prior_ssthresh; 2403 tcp_ecn_withdraw_cwr(tp); 2404 } 2405 } else { 2406 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2407 } 2408 tp->snd_cwnd_stamp = tcp_time_stamp; 2409 tp->undo_marker = 0; 2410 } 2411 2412 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2413 { 2414 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2415 } 2416 2417 /* People celebrate: "We love our President!" */ 2418 static bool tcp_try_undo_recovery(struct sock *sk) 2419 { 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 2422 if (tcp_may_undo(tp)) { 2423 int mib_idx; 2424 2425 /* Happy end! We did not retransmit anything 2426 * or our original transmission succeeded. 2427 */ 2428 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2429 tcp_undo_cwnd_reduction(sk, false); 2430 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2431 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2432 else 2433 mib_idx = LINUX_MIB_TCPFULLUNDO; 2434 2435 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2436 } 2437 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2438 /* Hold old state until something *above* high_seq 2439 * is ACKed. For Reno it is MUST to prevent false 2440 * fast retransmits (RFC2582). SACK TCP is safe. */ 2441 tcp_moderate_cwnd(tp); 2442 if (!tcp_any_retrans_done(sk)) 2443 tp->retrans_stamp = 0; 2444 return true; 2445 } 2446 tcp_set_ca_state(sk, TCP_CA_Open); 2447 return false; 2448 } 2449 2450 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2451 static bool tcp_try_undo_dsack(struct sock *sk) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 2455 if (tp->undo_marker && !tp->undo_retrans) { 2456 DBGUNDO(sk, "D-SACK"); 2457 tcp_undo_cwnd_reduction(sk, false); 2458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2459 return true; 2460 } 2461 return false; 2462 } 2463 2464 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2465 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 if (frto_undo || tcp_may_undo(tp)) { 2470 tcp_undo_cwnd_reduction(sk, true); 2471 2472 DBGUNDO(sk, "partial loss"); 2473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2474 if (frto_undo) 2475 NET_INC_STATS_BH(sock_net(sk), 2476 LINUX_MIB_TCPSPURIOUSRTOS); 2477 inet_csk(sk)->icsk_retransmits = 0; 2478 if (frto_undo || tcp_is_sack(tp)) 2479 tcp_set_ca_state(sk, TCP_CA_Open); 2480 return true; 2481 } 2482 return false; 2483 } 2484 2485 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2486 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2487 * It computes the number of packets to send (sndcnt) based on packets newly 2488 * delivered: 2489 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2490 * cwnd reductions across a full RTT. 2491 * 2) If packets in flight is lower than ssthresh (such as due to excess 2492 * losses and/or application stalls), do not perform any further cwnd 2493 * reductions, but instead slow start up to ssthresh. 2494 */ 2495 static void tcp_init_cwnd_reduction(struct sock *sk) 2496 { 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 2499 tp->high_seq = tp->snd_nxt; 2500 tp->tlp_high_seq = 0; 2501 tp->snd_cwnd_cnt = 0; 2502 tp->prior_cwnd = tp->snd_cwnd; 2503 tp->prr_delivered = 0; 2504 tp->prr_out = 0; 2505 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2506 tcp_ecn_queue_cwr(tp); 2507 } 2508 2509 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2510 int fast_rexmit) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 int sndcnt = 0; 2514 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2515 int newly_acked_sacked = prior_unsacked - 2516 (tp->packets_out - tp->sacked_out); 2517 2518 tp->prr_delivered += newly_acked_sacked; 2519 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2520 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2521 tp->prior_cwnd - 1; 2522 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2523 } else { 2524 sndcnt = min_t(int, delta, 2525 max_t(int, tp->prr_delivered - tp->prr_out, 2526 newly_acked_sacked) + 1); 2527 } 2528 2529 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2530 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2531 } 2532 2533 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2538 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2539 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2540 tp->snd_cwnd = tp->snd_ssthresh; 2541 tp->snd_cwnd_stamp = tcp_time_stamp; 2542 } 2543 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2544 } 2545 2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2547 void tcp_enter_cwr(struct sock *sk) 2548 { 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 2551 tp->prior_ssthresh = 0; 2552 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2553 tp->undo_marker = 0; 2554 tcp_init_cwnd_reduction(sk); 2555 tcp_set_ca_state(sk, TCP_CA_CWR); 2556 } 2557 } 2558 2559 static void tcp_try_keep_open(struct sock *sk) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 int state = TCP_CA_Open; 2563 2564 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2565 state = TCP_CA_Disorder; 2566 2567 if (inet_csk(sk)->icsk_ca_state != state) { 2568 tcp_set_ca_state(sk, state); 2569 tp->high_seq = tp->snd_nxt; 2570 } 2571 } 2572 2573 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2574 { 2575 struct tcp_sock *tp = tcp_sk(sk); 2576 2577 tcp_verify_left_out(tp); 2578 2579 if (!tcp_any_retrans_done(sk)) 2580 tp->retrans_stamp = 0; 2581 2582 if (flag & FLAG_ECE) 2583 tcp_enter_cwr(sk); 2584 2585 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2586 tcp_try_keep_open(sk); 2587 } else { 2588 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2589 } 2590 } 2591 2592 static void tcp_mtup_probe_failed(struct sock *sk) 2593 { 2594 struct inet_connection_sock *icsk = inet_csk(sk); 2595 2596 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2597 icsk->icsk_mtup.probe_size = 0; 2598 } 2599 2600 static void tcp_mtup_probe_success(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 struct inet_connection_sock *icsk = inet_csk(sk); 2604 2605 /* FIXME: breaks with very large cwnd */ 2606 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2607 tp->snd_cwnd = tp->snd_cwnd * 2608 tcp_mss_to_mtu(sk, tp->mss_cache) / 2609 icsk->icsk_mtup.probe_size; 2610 tp->snd_cwnd_cnt = 0; 2611 tp->snd_cwnd_stamp = tcp_time_stamp; 2612 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2613 2614 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2615 icsk->icsk_mtup.probe_size = 0; 2616 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2617 } 2618 2619 /* Do a simple retransmit without using the backoff mechanisms in 2620 * tcp_timer. This is used for path mtu discovery. 2621 * The socket is already locked here. 2622 */ 2623 void tcp_simple_retransmit(struct sock *sk) 2624 { 2625 const struct inet_connection_sock *icsk = inet_csk(sk); 2626 struct tcp_sock *tp = tcp_sk(sk); 2627 struct sk_buff *skb; 2628 unsigned int mss = tcp_current_mss(sk); 2629 u32 prior_lost = tp->lost_out; 2630 2631 tcp_for_write_queue(skb, sk) { 2632 if (skb == tcp_send_head(sk)) 2633 break; 2634 if (tcp_skb_seglen(skb) > mss && 2635 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2638 tp->retrans_out -= tcp_skb_pcount(skb); 2639 } 2640 tcp_skb_mark_lost_uncond_verify(tp, skb); 2641 } 2642 } 2643 2644 tcp_clear_retrans_hints_partial(tp); 2645 2646 if (prior_lost == tp->lost_out) 2647 return; 2648 2649 if (tcp_is_reno(tp)) 2650 tcp_limit_reno_sacked(tp); 2651 2652 tcp_verify_left_out(tp); 2653 2654 /* Don't muck with the congestion window here. 2655 * Reason is that we do not increase amount of _data_ 2656 * in network, but units changed and effective 2657 * cwnd/ssthresh really reduced now. 2658 */ 2659 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2660 tp->high_seq = tp->snd_nxt; 2661 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2662 tp->prior_ssthresh = 0; 2663 tp->undo_marker = 0; 2664 tcp_set_ca_state(sk, TCP_CA_Loss); 2665 } 2666 tcp_xmit_retransmit_queue(sk); 2667 } 2668 EXPORT_SYMBOL(tcp_simple_retransmit); 2669 2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 int mib_idx; 2674 2675 if (tcp_is_reno(tp)) 2676 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2677 else 2678 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2679 2680 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2681 2682 tp->prior_ssthresh = 0; 2683 tcp_init_undo(tp); 2684 2685 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2686 if (!ece_ack) 2687 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2688 tcp_init_cwnd_reduction(sk); 2689 } 2690 tcp_set_ca_state(sk, TCP_CA_Recovery); 2691 } 2692 2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2694 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2695 */ 2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 bool recovered = !before(tp->snd_una, tp->high_seq); 2700 2701 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2702 /* Step 3.b. A timeout is spurious if not all data are 2703 * lost, i.e., never-retransmitted data are (s)acked. 2704 */ 2705 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) 2706 return; 2707 2708 if (after(tp->snd_nxt, tp->high_seq) && 2709 (flag & FLAG_DATA_SACKED || is_dupack)) { 2710 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2711 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2712 tp->high_seq = tp->snd_nxt; 2713 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2714 TCP_NAGLE_OFF); 2715 if (after(tp->snd_nxt, tp->high_seq)) 2716 return; /* Step 2.b */ 2717 tp->frto = 0; 2718 } 2719 } 2720 2721 if (recovered) { 2722 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2723 tcp_try_undo_recovery(sk); 2724 return; 2725 } 2726 if (tcp_is_reno(tp)) { 2727 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2728 * delivered. Lower inflight to clock out (re)tranmissions. 2729 */ 2730 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2731 tcp_add_reno_sack(sk); 2732 else if (flag & FLAG_SND_UNA_ADVANCED) 2733 tcp_reset_reno_sack(tp); 2734 } 2735 if (tcp_try_undo_loss(sk, false)) 2736 return; 2737 tcp_xmit_retransmit_queue(sk); 2738 } 2739 2740 /* Undo during fast recovery after partial ACK. */ 2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2742 const int prior_unsacked) 2743 { 2744 struct tcp_sock *tp = tcp_sk(sk); 2745 2746 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2747 /* Plain luck! Hole if filled with delayed 2748 * packet, rather than with a retransmit. 2749 */ 2750 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2751 2752 /* We are getting evidence that the reordering degree is higher 2753 * than we realized. If there are no retransmits out then we 2754 * can undo. Otherwise we clock out new packets but do not 2755 * mark more packets lost or retransmit more. 2756 */ 2757 if (tp->retrans_out) { 2758 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2759 return true; 2760 } 2761 2762 if (!tcp_any_retrans_done(sk)) 2763 tp->retrans_stamp = 0; 2764 2765 DBGUNDO(sk, "partial recovery"); 2766 tcp_undo_cwnd_reduction(sk, true); 2767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2768 tcp_try_keep_open(sk); 2769 return true; 2770 } 2771 return false; 2772 } 2773 2774 /* Process an event, which can update packets-in-flight not trivially. 2775 * Main goal of this function is to calculate new estimate for left_out, 2776 * taking into account both packets sitting in receiver's buffer and 2777 * packets lost by network. 2778 * 2779 * Besides that it does CWND reduction, when packet loss is detected 2780 * and changes state of machine. 2781 * 2782 * It does _not_ decide what to send, it is made in function 2783 * tcp_xmit_retransmit_queue(). 2784 */ 2785 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2786 const int prior_unsacked, 2787 bool is_dupack, int flag) 2788 { 2789 struct inet_connection_sock *icsk = inet_csk(sk); 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2792 (tcp_fackets_out(tp) > tp->reordering)); 2793 int fast_rexmit = 0; 2794 2795 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2796 tp->sacked_out = 0; 2797 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2798 tp->fackets_out = 0; 2799 2800 /* Now state machine starts. 2801 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2802 if (flag & FLAG_ECE) 2803 tp->prior_ssthresh = 0; 2804 2805 /* B. In all the states check for reneging SACKs. */ 2806 if (tcp_check_sack_reneging(sk, flag)) 2807 return; 2808 2809 /* C. Check consistency of the current state. */ 2810 tcp_verify_left_out(tp); 2811 2812 /* D. Check state exit conditions. State can be terminated 2813 * when high_seq is ACKed. */ 2814 if (icsk->icsk_ca_state == TCP_CA_Open) { 2815 WARN_ON(tp->retrans_out != 0); 2816 tp->retrans_stamp = 0; 2817 } else if (!before(tp->snd_una, tp->high_seq)) { 2818 switch (icsk->icsk_ca_state) { 2819 case TCP_CA_CWR: 2820 /* CWR is to be held something *above* high_seq 2821 * is ACKed for CWR bit to reach receiver. */ 2822 if (tp->snd_una != tp->high_seq) { 2823 tcp_end_cwnd_reduction(sk); 2824 tcp_set_ca_state(sk, TCP_CA_Open); 2825 } 2826 break; 2827 2828 case TCP_CA_Recovery: 2829 if (tcp_is_reno(tp)) 2830 tcp_reset_reno_sack(tp); 2831 if (tcp_try_undo_recovery(sk)) 2832 return; 2833 tcp_end_cwnd_reduction(sk); 2834 break; 2835 } 2836 } 2837 2838 /* E. Process state. */ 2839 switch (icsk->icsk_ca_state) { 2840 case TCP_CA_Recovery: 2841 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2842 if (tcp_is_reno(tp) && is_dupack) 2843 tcp_add_reno_sack(sk); 2844 } else { 2845 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2846 return; 2847 /* Partial ACK arrived. Force fast retransmit. */ 2848 do_lost = tcp_is_reno(tp) || 2849 tcp_fackets_out(tp) > tp->reordering; 2850 } 2851 if (tcp_try_undo_dsack(sk)) { 2852 tcp_try_keep_open(sk); 2853 return; 2854 } 2855 break; 2856 case TCP_CA_Loss: 2857 tcp_process_loss(sk, flag, is_dupack); 2858 if (icsk->icsk_ca_state != TCP_CA_Open) 2859 return; 2860 /* Fall through to processing in Open state. */ 2861 default: 2862 if (tcp_is_reno(tp)) { 2863 if (flag & FLAG_SND_UNA_ADVANCED) 2864 tcp_reset_reno_sack(tp); 2865 if (is_dupack) 2866 tcp_add_reno_sack(sk); 2867 } 2868 2869 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2870 tcp_try_undo_dsack(sk); 2871 2872 if (!tcp_time_to_recover(sk, flag)) { 2873 tcp_try_to_open(sk, flag, prior_unsacked); 2874 return; 2875 } 2876 2877 /* MTU probe failure: don't reduce cwnd */ 2878 if (icsk->icsk_ca_state < TCP_CA_CWR && 2879 icsk->icsk_mtup.probe_size && 2880 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2881 tcp_mtup_probe_failed(sk); 2882 /* Restores the reduction we did in tcp_mtup_probe() */ 2883 tp->snd_cwnd++; 2884 tcp_simple_retransmit(sk); 2885 return; 2886 } 2887 2888 /* Otherwise enter Recovery state */ 2889 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2890 fast_rexmit = 1; 2891 } 2892 2893 if (do_lost) 2894 tcp_update_scoreboard(sk, fast_rexmit); 2895 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2896 tcp_xmit_retransmit_queue(sk); 2897 } 2898 2899 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2900 long seq_rtt_us, long sack_rtt_us) 2901 { 2902 const struct tcp_sock *tp = tcp_sk(sk); 2903 2904 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2905 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2906 * Karn's algorithm forbids taking RTT if some retransmitted data 2907 * is acked (RFC6298). 2908 */ 2909 if (flag & FLAG_RETRANS_DATA_ACKED) 2910 seq_rtt_us = -1L; 2911 2912 if (seq_rtt_us < 0) 2913 seq_rtt_us = sack_rtt_us; 2914 2915 /* RTTM Rule: A TSecr value received in a segment is used to 2916 * update the averaged RTT measurement only if the segment 2917 * acknowledges some new data, i.e., only if it advances the 2918 * left edge of the send window. 2919 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2920 */ 2921 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2922 flag & FLAG_ACKED) 2923 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2924 2925 if (seq_rtt_us < 0) 2926 return false; 2927 2928 tcp_rtt_estimator(sk, seq_rtt_us); 2929 tcp_set_rto(sk); 2930 2931 /* RFC6298: only reset backoff on valid RTT measurement. */ 2932 inet_csk(sk)->icsk_backoff = 0; 2933 return true; 2934 } 2935 2936 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2937 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2938 { 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 long seq_rtt_us = -1L; 2941 2942 if (synack_stamp && !tp->total_retrans) 2943 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2944 2945 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2946 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2947 */ 2948 if (!tp->srtt_us) 2949 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2950 } 2951 2952 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2953 { 2954 const struct inet_connection_sock *icsk = inet_csk(sk); 2955 2956 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2957 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2958 } 2959 2960 /* Restart timer after forward progress on connection. 2961 * RFC2988 recommends to restart timer to now+rto. 2962 */ 2963 void tcp_rearm_rto(struct sock *sk) 2964 { 2965 const struct inet_connection_sock *icsk = inet_csk(sk); 2966 struct tcp_sock *tp = tcp_sk(sk); 2967 2968 /* If the retrans timer is currently being used by Fast Open 2969 * for SYN-ACK retrans purpose, stay put. 2970 */ 2971 if (tp->fastopen_rsk) 2972 return; 2973 2974 if (!tp->packets_out) { 2975 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2976 } else { 2977 u32 rto = inet_csk(sk)->icsk_rto; 2978 /* Offset the time elapsed after installing regular RTO */ 2979 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2980 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2981 struct sk_buff *skb = tcp_write_queue_head(sk); 2982 const u32 rto_time_stamp = 2983 tcp_skb_timestamp(skb) + rto; 2984 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2985 /* delta may not be positive if the socket is locked 2986 * when the retrans timer fires and is rescheduled. 2987 */ 2988 if (delta > 0) 2989 rto = delta; 2990 } 2991 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2992 TCP_RTO_MAX); 2993 } 2994 } 2995 2996 /* This function is called when the delayed ER timer fires. TCP enters 2997 * fast recovery and performs fast-retransmit. 2998 */ 2999 void tcp_resume_early_retransmit(struct sock *sk) 3000 { 3001 struct tcp_sock *tp = tcp_sk(sk); 3002 3003 tcp_rearm_rto(sk); 3004 3005 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3006 if (!tp->do_early_retrans) 3007 return; 3008 3009 tcp_enter_recovery(sk, false); 3010 tcp_update_scoreboard(sk, 1); 3011 tcp_xmit_retransmit_queue(sk); 3012 } 3013 3014 /* If we get here, the whole TSO packet has not been acked. */ 3015 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3016 { 3017 struct tcp_sock *tp = tcp_sk(sk); 3018 u32 packets_acked; 3019 3020 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3021 3022 packets_acked = tcp_skb_pcount(skb); 3023 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3024 return 0; 3025 packets_acked -= tcp_skb_pcount(skb); 3026 3027 if (packets_acked) { 3028 BUG_ON(tcp_skb_pcount(skb) == 0); 3029 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3030 } 3031 3032 return packets_acked; 3033 } 3034 3035 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3036 u32 prior_snd_una) 3037 { 3038 const struct skb_shared_info *shinfo; 3039 3040 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3041 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3042 return; 3043 3044 shinfo = skb_shinfo(skb); 3045 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3046 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3047 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3048 } 3049 3050 /* Remove acknowledged frames from the retransmission queue. If our packet 3051 * is before the ack sequence we can discard it as it's confirmed to have 3052 * arrived at the other end. 3053 */ 3054 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3055 u32 prior_snd_una, long sack_rtt_us) 3056 { 3057 const struct inet_connection_sock *icsk = inet_csk(sk); 3058 struct skb_mstamp first_ackt, last_ackt, now; 3059 struct tcp_sock *tp = tcp_sk(sk); 3060 u32 prior_sacked = tp->sacked_out; 3061 u32 reord = tp->packets_out; 3062 bool fully_acked = true; 3063 long ca_seq_rtt_us = -1L; 3064 long seq_rtt_us = -1L; 3065 struct sk_buff *skb; 3066 u32 pkts_acked = 0; 3067 bool rtt_update; 3068 int flag = 0; 3069 3070 first_ackt.v64 = 0; 3071 3072 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3073 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3074 u8 sacked = scb->sacked; 3075 u32 acked_pcount; 3076 3077 tcp_ack_tstamp(sk, skb, prior_snd_una); 3078 3079 /* Determine how many packets and what bytes were acked, tso and else */ 3080 if (after(scb->end_seq, tp->snd_una)) { 3081 if (tcp_skb_pcount(skb) == 1 || 3082 !after(tp->snd_una, scb->seq)) 3083 break; 3084 3085 acked_pcount = tcp_tso_acked(sk, skb); 3086 if (!acked_pcount) 3087 break; 3088 3089 fully_acked = false; 3090 } else { 3091 /* Speedup tcp_unlink_write_queue() and next loop */ 3092 prefetchw(skb->next); 3093 acked_pcount = tcp_skb_pcount(skb); 3094 } 3095 3096 if (unlikely(sacked & TCPCB_RETRANS)) { 3097 if (sacked & TCPCB_SACKED_RETRANS) 3098 tp->retrans_out -= acked_pcount; 3099 flag |= FLAG_RETRANS_DATA_ACKED; 3100 } else { 3101 last_ackt = skb->skb_mstamp; 3102 WARN_ON_ONCE(last_ackt.v64 == 0); 3103 if (!first_ackt.v64) 3104 first_ackt = last_ackt; 3105 3106 if (!(sacked & TCPCB_SACKED_ACKED)) 3107 reord = min(pkts_acked, reord); 3108 if (!after(scb->end_seq, tp->high_seq)) 3109 flag |= FLAG_ORIG_SACK_ACKED; 3110 } 3111 3112 if (sacked & TCPCB_SACKED_ACKED) 3113 tp->sacked_out -= acked_pcount; 3114 if (sacked & TCPCB_LOST) 3115 tp->lost_out -= acked_pcount; 3116 3117 tp->packets_out -= acked_pcount; 3118 pkts_acked += acked_pcount; 3119 3120 /* Initial outgoing SYN's get put onto the write_queue 3121 * just like anything else we transmit. It is not 3122 * true data, and if we misinform our callers that 3123 * this ACK acks real data, we will erroneously exit 3124 * connection startup slow start one packet too 3125 * quickly. This is severely frowned upon behavior. 3126 */ 3127 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3128 flag |= FLAG_DATA_ACKED; 3129 } else { 3130 flag |= FLAG_SYN_ACKED; 3131 tp->retrans_stamp = 0; 3132 } 3133 3134 if (!fully_acked) 3135 break; 3136 3137 tcp_unlink_write_queue(skb, sk); 3138 sk_wmem_free_skb(sk, skb); 3139 if (unlikely(skb == tp->retransmit_skb_hint)) 3140 tp->retransmit_skb_hint = NULL; 3141 if (unlikely(skb == tp->lost_skb_hint)) 3142 tp->lost_skb_hint = NULL; 3143 } 3144 3145 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3146 tp->snd_up = tp->snd_una; 3147 3148 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3149 flag |= FLAG_SACK_RENEGING; 3150 3151 skb_mstamp_get(&now); 3152 if (likely(first_ackt.v64)) { 3153 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3154 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3155 } 3156 3157 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3158 3159 if (flag & FLAG_ACKED) { 3160 const struct tcp_congestion_ops *ca_ops 3161 = inet_csk(sk)->icsk_ca_ops; 3162 3163 tcp_rearm_rto(sk); 3164 if (unlikely(icsk->icsk_mtup.probe_size && 3165 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3166 tcp_mtup_probe_success(sk); 3167 } 3168 3169 if (tcp_is_reno(tp)) { 3170 tcp_remove_reno_sacks(sk, pkts_acked); 3171 } else { 3172 int delta; 3173 3174 /* Non-retransmitted hole got filled? That's reordering */ 3175 if (reord < prior_fackets) 3176 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3177 3178 delta = tcp_is_fack(tp) ? pkts_acked : 3179 prior_sacked - tp->sacked_out; 3180 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3181 } 3182 3183 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3184 3185 if (ca_ops->pkts_acked) 3186 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us); 3187 3188 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3189 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3190 /* Do not re-arm RTO if the sack RTT is measured from data sent 3191 * after when the head was last (re)transmitted. Otherwise the 3192 * timeout may continue to extend in loss recovery. 3193 */ 3194 tcp_rearm_rto(sk); 3195 } 3196 3197 #if FASTRETRANS_DEBUG > 0 3198 WARN_ON((int)tp->sacked_out < 0); 3199 WARN_ON((int)tp->lost_out < 0); 3200 WARN_ON((int)tp->retrans_out < 0); 3201 if (!tp->packets_out && tcp_is_sack(tp)) { 3202 icsk = inet_csk(sk); 3203 if (tp->lost_out) { 3204 pr_debug("Leak l=%u %d\n", 3205 tp->lost_out, icsk->icsk_ca_state); 3206 tp->lost_out = 0; 3207 } 3208 if (tp->sacked_out) { 3209 pr_debug("Leak s=%u %d\n", 3210 tp->sacked_out, icsk->icsk_ca_state); 3211 tp->sacked_out = 0; 3212 } 3213 if (tp->retrans_out) { 3214 pr_debug("Leak r=%u %d\n", 3215 tp->retrans_out, icsk->icsk_ca_state); 3216 tp->retrans_out = 0; 3217 } 3218 } 3219 #endif 3220 return flag; 3221 } 3222 3223 static void tcp_ack_probe(struct sock *sk) 3224 { 3225 const struct tcp_sock *tp = tcp_sk(sk); 3226 struct inet_connection_sock *icsk = inet_csk(sk); 3227 3228 /* Was it a usable window open? */ 3229 3230 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3231 icsk->icsk_backoff = 0; 3232 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3233 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3234 * This function is not for random using! 3235 */ 3236 } else { 3237 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3238 3239 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3240 when, TCP_RTO_MAX); 3241 } 3242 } 3243 3244 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3245 { 3246 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3247 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3248 } 3249 3250 /* Decide wheather to run the increase function of congestion control. */ 3251 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3252 { 3253 if (tcp_in_cwnd_reduction(sk)) 3254 return false; 3255 3256 /* If reordering is high then always grow cwnd whenever data is 3257 * delivered regardless of its ordering. Otherwise stay conservative 3258 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3259 * new SACK or ECE mark may first advance cwnd here and later reduce 3260 * cwnd in tcp_fastretrans_alert() based on more states. 3261 */ 3262 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3263 return flag & FLAG_FORWARD_PROGRESS; 3264 3265 return flag & FLAG_DATA_ACKED; 3266 } 3267 3268 /* Check that window update is acceptable. 3269 * The function assumes that snd_una<=ack<=snd_next. 3270 */ 3271 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3272 const u32 ack, const u32 ack_seq, 3273 const u32 nwin) 3274 { 3275 return after(ack, tp->snd_una) || 3276 after(ack_seq, tp->snd_wl1) || 3277 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3278 } 3279 3280 /* Update our send window. 3281 * 3282 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3283 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3284 */ 3285 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3286 u32 ack_seq) 3287 { 3288 struct tcp_sock *tp = tcp_sk(sk); 3289 int flag = 0; 3290 u32 nwin = ntohs(tcp_hdr(skb)->window); 3291 3292 if (likely(!tcp_hdr(skb)->syn)) 3293 nwin <<= tp->rx_opt.snd_wscale; 3294 3295 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3296 flag |= FLAG_WIN_UPDATE; 3297 tcp_update_wl(tp, ack_seq); 3298 3299 if (tp->snd_wnd != nwin) { 3300 tp->snd_wnd = nwin; 3301 3302 /* Note, it is the only place, where 3303 * fast path is recovered for sending TCP. 3304 */ 3305 tp->pred_flags = 0; 3306 tcp_fast_path_check(sk); 3307 3308 if (nwin > tp->max_window) { 3309 tp->max_window = nwin; 3310 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3311 } 3312 } 3313 } 3314 3315 tp->snd_una = ack; 3316 3317 return flag; 3318 } 3319 3320 /* RFC 5961 7 [ACK Throttling] */ 3321 static void tcp_send_challenge_ack(struct sock *sk) 3322 { 3323 /* unprotected vars, we dont care of overwrites */ 3324 static u32 challenge_timestamp; 3325 static unsigned int challenge_count; 3326 u32 now = jiffies / HZ; 3327 3328 if (now != challenge_timestamp) { 3329 challenge_timestamp = now; 3330 challenge_count = 0; 3331 } 3332 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3334 tcp_send_ack(sk); 3335 } 3336 } 3337 3338 static void tcp_store_ts_recent(struct tcp_sock *tp) 3339 { 3340 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3341 tp->rx_opt.ts_recent_stamp = get_seconds(); 3342 } 3343 3344 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3345 { 3346 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3347 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3348 * extra check below makes sure this can only happen 3349 * for pure ACK frames. -DaveM 3350 * 3351 * Not only, also it occurs for expired timestamps. 3352 */ 3353 3354 if (tcp_paws_check(&tp->rx_opt, 0)) 3355 tcp_store_ts_recent(tp); 3356 } 3357 } 3358 3359 /* This routine deals with acks during a TLP episode. 3360 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3361 */ 3362 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3363 { 3364 struct tcp_sock *tp = tcp_sk(sk); 3365 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3366 !(flag & (FLAG_SND_UNA_ADVANCED | 3367 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3368 3369 /* Mark the end of TLP episode on receiving TLP dupack or when 3370 * ack is after tlp_high_seq. 3371 */ 3372 if (is_tlp_dupack) { 3373 tp->tlp_high_seq = 0; 3374 return; 3375 } 3376 3377 if (after(ack, tp->tlp_high_seq)) { 3378 tp->tlp_high_seq = 0; 3379 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3380 if (!(flag & FLAG_DSACKING_ACK)) { 3381 tcp_init_cwnd_reduction(sk); 3382 tcp_set_ca_state(sk, TCP_CA_CWR); 3383 tcp_end_cwnd_reduction(sk); 3384 tcp_try_keep_open(sk); 3385 NET_INC_STATS_BH(sock_net(sk), 3386 LINUX_MIB_TCPLOSSPROBERECOVERY); 3387 } 3388 } 3389 } 3390 3391 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3392 { 3393 const struct inet_connection_sock *icsk = inet_csk(sk); 3394 3395 if (icsk->icsk_ca_ops->in_ack_event) 3396 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3397 } 3398 3399 /* This routine deals with incoming acks, but not outgoing ones. */ 3400 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3401 { 3402 struct inet_connection_sock *icsk = inet_csk(sk); 3403 struct tcp_sock *tp = tcp_sk(sk); 3404 u32 prior_snd_una = tp->snd_una; 3405 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3406 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3407 bool is_dupack = false; 3408 u32 prior_fackets; 3409 int prior_packets = tp->packets_out; 3410 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3411 int acked = 0; /* Number of packets newly acked */ 3412 long sack_rtt_us = -1L; 3413 3414 /* We very likely will need to access write queue head. */ 3415 prefetchw(sk->sk_write_queue.next); 3416 3417 /* If the ack is older than previous acks 3418 * then we can probably ignore it. 3419 */ 3420 if (before(ack, prior_snd_una)) { 3421 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3422 if (before(ack, prior_snd_una - tp->max_window)) { 3423 tcp_send_challenge_ack(sk); 3424 return -1; 3425 } 3426 goto old_ack; 3427 } 3428 3429 /* If the ack includes data we haven't sent yet, discard 3430 * this segment (RFC793 Section 3.9). 3431 */ 3432 if (after(ack, tp->snd_nxt)) 3433 goto invalid_ack; 3434 3435 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3436 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3437 tcp_rearm_rto(sk); 3438 3439 if (after(ack, prior_snd_una)) { 3440 flag |= FLAG_SND_UNA_ADVANCED; 3441 icsk->icsk_retransmits = 0; 3442 } 3443 3444 prior_fackets = tp->fackets_out; 3445 3446 /* ts_recent update must be made after we are sure that the packet 3447 * is in window. 3448 */ 3449 if (flag & FLAG_UPDATE_TS_RECENT) 3450 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3451 3452 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3453 /* Window is constant, pure forward advance. 3454 * No more checks are required. 3455 * Note, we use the fact that SND.UNA>=SND.WL2. 3456 */ 3457 tcp_update_wl(tp, ack_seq); 3458 tp->snd_una = ack; 3459 flag |= FLAG_WIN_UPDATE; 3460 3461 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3462 3463 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3464 } else { 3465 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3466 3467 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3468 flag |= FLAG_DATA; 3469 else 3470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3471 3472 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3473 3474 if (TCP_SKB_CB(skb)->sacked) 3475 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3476 &sack_rtt_us); 3477 3478 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3479 flag |= FLAG_ECE; 3480 ack_ev_flags |= CA_ACK_ECE; 3481 } 3482 3483 if (flag & FLAG_WIN_UPDATE) 3484 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3485 3486 tcp_in_ack_event(sk, ack_ev_flags); 3487 } 3488 3489 /* We passed data and got it acked, remove any soft error 3490 * log. Something worked... 3491 */ 3492 sk->sk_err_soft = 0; 3493 icsk->icsk_probes_out = 0; 3494 tp->rcv_tstamp = tcp_time_stamp; 3495 if (!prior_packets) 3496 goto no_queue; 3497 3498 /* See if we can take anything off of the retransmit queue. */ 3499 acked = tp->packets_out; 3500 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3501 sack_rtt_us); 3502 acked -= tp->packets_out; 3503 3504 /* Advance cwnd if state allows */ 3505 if (tcp_may_raise_cwnd(sk, flag)) 3506 tcp_cong_avoid(sk, ack, acked); 3507 3508 if (tcp_ack_is_dubious(sk, flag)) { 3509 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3510 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3511 is_dupack, flag); 3512 } 3513 if (tp->tlp_high_seq) 3514 tcp_process_tlp_ack(sk, ack, flag); 3515 3516 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3517 struct dst_entry *dst = __sk_dst_get(sk); 3518 if (dst) 3519 dst_confirm(dst); 3520 } 3521 3522 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3523 tcp_schedule_loss_probe(sk); 3524 tcp_update_pacing_rate(sk); 3525 return 1; 3526 3527 no_queue: 3528 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3529 if (flag & FLAG_DSACKING_ACK) 3530 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3531 is_dupack, flag); 3532 /* If this ack opens up a zero window, clear backoff. It was 3533 * being used to time the probes, and is probably far higher than 3534 * it needs to be for normal retransmission. 3535 */ 3536 if (tcp_send_head(sk)) 3537 tcp_ack_probe(sk); 3538 3539 if (tp->tlp_high_seq) 3540 tcp_process_tlp_ack(sk, ack, flag); 3541 return 1; 3542 3543 invalid_ack: 3544 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3545 return -1; 3546 3547 old_ack: 3548 /* If data was SACKed, tag it and see if we should send more data. 3549 * If data was DSACKed, see if we can undo a cwnd reduction. 3550 */ 3551 if (TCP_SKB_CB(skb)->sacked) { 3552 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3553 &sack_rtt_us); 3554 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3555 is_dupack, flag); 3556 } 3557 3558 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3559 return 0; 3560 } 3561 3562 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3563 * But, this can also be called on packets in the established flow when 3564 * the fast version below fails. 3565 */ 3566 void tcp_parse_options(const struct sk_buff *skb, 3567 struct tcp_options_received *opt_rx, int estab, 3568 struct tcp_fastopen_cookie *foc) 3569 { 3570 const unsigned char *ptr; 3571 const struct tcphdr *th = tcp_hdr(skb); 3572 int length = (th->doff * 4) - sizeof(struct tcphdr); 3573 3574 ptr = (const unsigned char *)(th + 1); 3575 opt_rx->saw_tstamp = 0; 3576 3577 while (length > 0) { 3578 int opcode = *ptr++; 3579 int opsize; 3580 3581 switch (opcode) { 3582 case TCPOPT_EOL: 3583 return; 3584 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3585 length--; 3586 continue; 3587 default: 3588 opsize = *ptr++; 3589 if (opsize < 2) /* "silly options" */ 3590 return; 3591 if (opsize > length) 3592 return; /* don't parse partial options */ 3593 switch (opcode) { 3594 case TCPOPT_MSS: 3595 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3596 u16 in_mss = get_unaligned_be16(ptr); 3597 if (in_mss) { 3598 if (opt_rx->user_mss && 3599 opt_rx->user_mss < in_mss) 3600 in_mss = opt_rx->user_mss; 3601 opt_rx->mss_clamp = in_mss; 3602 } 3603 } 3604 break; 3605 case TCPOPT_WINDOW: 3606 if (opsize == TCPOLEN_WINDOW && th->syn && 3607 !estab && sysctl_tcp_window_scaling) { 3608 __u8 snd_wscale = *(__u8 *)ptr; 3609 opt_rx->wscale_ok = 1; 3610 if (snd_wscale > 14) { 3611 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3612 __func__, 3613 snd_wscale); 3614 snd_wscale = 14; 3615 } 3616 opt_rx->snd_wscale = snd_wscale; 3617 } 3618 break; 3619 case TCPOPT_TIMESTAMP: 3620 if ((opsize == TCPOLEN_TIMESTAMP) && 3621 ((estab && opt_rx->tstamp_ok) || 3622 (!estab && sysctl_tcp_timestamps))) { 3623 opt_rx->saw_tstamp = 1; 3624 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3625 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3626 } 3627 break; 3628 case TCPOPT_SACK_PERM: 3629 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3630 !estab && sysctl_tcp_sack) { 3631 opt_rx->sack_ok = TCP_SACK_SEEN; 3632 tcp_sack_reset(opt_rx); 3633 } 3634 break; 3635 3636 case TCPOPT_SACK: 3637 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3638 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3639 opt_rx->sack_ok) { 3640 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3641 } 3642 break; 3643 #ifdef CONFIG_TCP_MD5SIG 3644 case TCPOPT_MD5SIG: 3645 /* 3646 * The MD5 Hash has already been 3647 * checked (see tcp_v{4,6}_do_rcv()). 3648 */ 3649 break; 3650 #endif 3651 case TCPOPT_EXP: 3652 /* Fast Open option shares code 254 using a 3653 * 16 bits magic number. It's valid only in 3654 * SYN or SYN-ACK with an even size. 3655 */ 3656 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3657 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3658 foc == NULL || !th->syn || (opsize & 1)) 3659 break; 3660 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3661 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3662 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3663 memcpy(foc->val, ptr + 2, foc->len); 3664 else if (foc->len != 0) 3665 foc->len = -1; 3666 break; 3667 3668 } 3669 ptr += opsize-2; 3670 length -= opsize; 3671 } 3672 } 3673 } 3674 EXPORT_SYMBOL(tcp_parse_options); 3675 3676 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3677 { 3678 const __be32 *ptr = (const __be32 *)(th + 1); 3679 3680 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3681 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3682 tp->rx_opt.saw_tstamp = 1; 3683 ++ptr; 3684 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3685 ++ptr; 3686 if (*ptr) 3687 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3688 else 3689 tp->rx_opt.rcv_tsecr = 0; 3690 return true; 3691 } 3692 return false; 3693 } 3694 3695 /* Fast parse options. This hopes to only see timestamps. 3696 * If it is wrong it falls back on tcp_parse_options(). 3697 */ 3698 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3699 const struct tcphdr *th, struct tcp_sock *tp) 3700 { 3701 /* In the spirit of fast parsing, compare doff directly to constant 3702 * values. Because equality is used, short doff can be ignored here. 3703 */ 3704 if (th->doff == (sizeof(*th) / 4)) { 3705 tp->rx_opt.saw_tstamp = 0; 3706 return false; 3707 } else if (tp->rx_opt.tstamp_ok && 3708 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3709 if (tcp_parse_aligned_timestamp(tp, th)) 3710 return true; 3711 } 3712 3713 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3714 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3715 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3716 3717 return true; 3718 } 3719 3720 #ifdef CONFIG_TCP_MD5SIG 3721 /* 3722 * Parse MD5 Signature option 3723 */ 3724 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3725 { 3726 int length = (th->doff << 2) - sizeof(*th); 3727 const u8 *ptr = (const u8 *)(th + 1); 3728 3729 /* If the TCP option is too short, we can short cut */ 3730 if (length < TCPOLEN_MD5SIG) 3731 return NULL; 3732 3733 while (length > 0) { 3734 int opcode = *ptr++; 3735 int opsize; 3736 3737 switch (opcode) { 3738 case TCPOPT_EOL: 3739 return NULL; 3740 case TCPOPT_NOP: 3741 length--; 3742 continue; 3743 default: 3744 opsize = *ptr++; 3745 if (opsize < 2 || opsize > length) 3746 return NULL; 3747 if (opcode == TCPOPT_MD5SIG) 3748 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3749 } 3750 ptr += opsize - 2; 3751 length -= opsize; 3752 } 3753 return NULL; 3754 } 3755 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3756 #endif 3757 3758 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3759 * 3760 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3761 * it can pass through stack. So, the following predicate verifies that 3762 * this segment is not used for anything but congestion avoidance or 3763 * fast retransmit. Moreover, we even are able to eliminate most of such 3764 * second order effects, if we apply some small "replay" window (~RTO) 3765 * to timestamp space. 3766 * 3767 * All these measures still do not guarantee that we reject wrapped ACKs 3768 * on networks with high bandwidth, when sequence space is recycled fastly, 3769 * but it guarantees that such events will be very rare and do not affect 3770 * connection seriously. This doesn't look nice, but alas, PAWS is really 3771 * buggy extension. 3772 * 3773 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3774 * states that events when retransmit arrives after original data are rare. 3775 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3776 * the biggest problem on large power networks even with minor reordering. 3777 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3778 * up to bandwidth of 18Gigabit/sec. 8) ] 3779 */ 3780 3781 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3782 { 3783 const struct tcp_sock *tp = tcp_sk(sk); 3784 const struct tcphdr *th = tcp_hdr(skb); 3785 u32 seq = TCP_SKB_CB(skb)->seq; 3786 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3787 3788 return (/* 1. Pure ACK with correct sequence number. */ 3789 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3790 3791 /* 2. ... and duplicate ACK. */ 3792 ack == tp->snd_una && 3793 3794 /* 3. ... and does not update window. */ 3795 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3796 3797 /* 4. ... and sits in replay window. */ 3798 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3799 } 3800 3801 static inline bool tcp_paws_discard(const struct sock *sk, 3802 const struct sk_buff *skb) 3803 { 3804 const struct tcp_sock *tp = tcp_sk(sk); 3805 3806 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3807 !tcp_disordered_ack(sk, skb); 3808 } 3809 3810 /* Check segment sequence number for validity. 3811 * 3812 * Segment controls are considered valid, if the segment 3813 * fits to the window after truncation to the window. Acceptability 3814 * of data (and SYN, FIN, of course) is checked separately. 3815 * See tcp_data_queue(), for example. 3816 * 3817 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3818 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3819 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3820 * (borrowed from freebsd) 3821 */ 3822 3823 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3824 { 3825 return !before(end_seq, tp->rcv_wup) && 3826 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3827 } 3828 3829 /* When we get a reset we do this. */ 3830 void tcp_reset(struct sock *sk) 3831 { 3832 /* We want the right error as BSD sees it (and indeed as we do). */ 3833 switch (sk->sk_state) { 3834 case TCP_SYN_SENT: 3835 sk->sk_err = ECONNREFUSED; 3836 break; 3837 case TCP_CLOSE_WAIT: 3838 sk->sk_err = EPIPE; 3839 break; 3840 case TCP_CLOSE: 3841 return; 3842 default: 3843 sk->sk_err = ECONNRESET; 3844 } 3845 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3846 smp_wmb(); 3847 3848 if (!sock_flag(sk, SOCK_DEAD)) 3849 sk->sk_error_report(sk); 3850 3851 tcp_done(sk); 3852 } 3853 3854 /* 3855 * Process the FIN bit. This now behaves as it is supposed to work 3856 * and the FIN takes effect when it is validly part of sequence 3857 * space. Not before when we get holes. 3858 * 3859 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3860 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3861 * TIME-WAIT) 3862 * 3863 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3864 * close and we go into CLOSING (and later onto TIME-WAIT) 3865 * 3866 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3867 */ 3868 static void tcp_fin(struct sock *sk) 3869 { 3870 struct tcp_sock *tp = tcp_sk(sk); 3871 const struct dst_entry *dst; 3872 3873 inet_csk_schedule_ack(sk); 3874 3875 sk->sk_shutdown |= RCV_SHUTDOWN; 3876 sock_set_flag(sk, SOCK_DONE); 3877 3878 switch (sk->sk_state) { 3879 case TCP_SYN_RECV: 3880 case TCP_ESTABLISHED: 3881 /* Move to CLOSE_WAIT */ 3882 tcp_set_state(sk, TCP_CLOSE_WAIT); 3883 dst = __sk_dst_get(sk); 3884 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3885 inet_csk(sk)->icsk_ack.pingpong = 1; 3886 break; 3887 3888 case TCP_CLOSE_WAIT: 3889 case TCP_CLOSING: 3890 /* Received a retransmission of the FIN, do 3891 * nothing. 3892 */ 3893 break; 3894 case TCP_LAST_ACK: 3895 /* RFC793: Remain in the LAST-ACK state. */ 3896 break; 3897 3898 case TCP_FIN_WAIT1: 3899 /* This case occurs when a simultaneous close 3900 * happens, we must ack the received FIN and 3901 * enter the CLOSING state. 3902 */ 3903 tcp_send_ack(sk); 3904 tcp_set_state(sk, TCP_CLOSING); 3905 break; 3906 case TCP_FIN_WAIT2: 3907 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3908 tcp_send_ack(sk); 3909 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3910 break; 3911 default: 3912 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3913 * cases we should never reach this piece of code. 3914 */ 3915 pr_err("%s: Impossible, sk->sk_state=%d\n", 3916 __func__, sk->sk_state); 3917 break; 3918 } 3919 3920 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3921 * Probably, we should reset in this case. For now drop them. 3922 */ 3923 __skb_queue_purge(&tp->out_of_order_queue); 3924 if (tcp_is_sack(tp)) 3925 tcp_sack_reset(&tp->rx_opt); 3926 sk_mem_reclaim(sk); 3927 3928 if (!sock_flag(sk, SOCK_DEAD)) { 3929 sk->sk_state_change(sk); 3930 3931 /* Do not send POLL_HUP for half duplex close. */ 3932 if (sk->sk_shutdown == SHUTDOWN_MASK || 3933 sk->sk_state == TCP_CLOSE) 3934 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3935 else 3936 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3937 } 3938 } 3939 3940 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3941 u32 end_seq) 3942 { 3943 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3944 if (before(seq, sp->start_seq)) 3945 sp->start_seq = seq; 3946 if (after(end_seq, sp->end_seq)) 3947 sp->end_seq = end_seq; 3948 return true; 3949 } 3950 return false; 3951 } 3952 3953 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3954 { 3955 struct tcp_sock *tp = tcp_sk(sk); 3956 3957 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3958 int mib_idx; 3959 3960 if (before(seq, tp->rcv_nxt)) 3961 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3962 else 3963 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3964 3965 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3966 3967 tp->rx_opt.dsack = 1; 3968 tp->duplicate_sack[0].start_seq = seq; 3969 tp->duplicate_sack[0].end_seq = end_seq; 3970 } 3971 } 3972 3973 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3974 { 3975 struct tcp_sock *tp = tcp_sk(sk); 3976 3977 if (!tp->rx_opt.dsack) 3978 tcp_dsack_set(sk, seq, end_seq); 3979 else 3980 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3981 } 3982 3983 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3984 { 3985 struct tcp_sock *tp = tcp_sk(sk); 3986 3987 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3988 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3989 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3990 tcp_enter_quickack_mode(sk); 3991 3992 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3993 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3994 3995 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3996 end_seq = tp->rcv_nxt; 3997 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3998 } 3999 } 4000 4001 tcp_send_ack(sk); 4002 } 4003 4004 /* These routines update the SACK block as out-of-order packets arrive or 4005 * in-order packets close up the sequence space. 4006 */ 4007 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4008 { 4009 int this_sack; 4010 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4011 struct tcp_sack_block *swalk = sp + 1; 4012 4013 /* See if the recent change to the first SACK eats into 4014 * or hits the sequence space of other SACK blocks, if so coalesce. 4015 */ 4016 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4017 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4018 int i; 4019 4020 /* Zap SWALK, by moving every further SACK up by one slot. 4021 * Decrease num_sacks. 4022 */ 4023 tp->rx_opt.num_sacks--; 4024 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4025 sp[i] = sp[i + 1]; 4026 continue; 4027 } 4028 this_sack++, swalk++; 4029 } 4030 } 4031 4032 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4033 { 4034 struct tcp_sock *tp = tcp_sk(sk); 4035 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4036 int cur_sacks = tp->rx_opt.num_sacks; 4037 int this_sack; 4038 4039 if (!cur_sacks) 4040 goto new_sack; 4041 4042 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4043 if (tcp_sack_extend(sp, seq, end_seq)) { 4044 /* Rotate this_sack to the first one. */ 4045 for (; this_sack > 0; this_sack--, sp--) 4046 swap(*sp, *(sp - 1)); 4047 if (cur_sacks > 1) 4048 tcp_sack_maybe_coalesce(tp); 4049 return; 4050 } 4051 } 4052 4053 /* Could not find an adjacent existing SACK, build a new one, 4054 * put it at the front, and shift everyone else down. We 4055 * always know there is at least one SACK present already here. 4056 * 4057 * If the sack array is full, forget about the last one. 4058 */ 4059 if (this_sack >= TCP_NUM_SACKS) { 4060 this_sack--; 4061 tp->rx_opt.num_sacks--; 4062 sp--; 4063 } 4064 for (; this_sack > 0; this_sack--, sp--) 4065 *sp = *(sp - 1); 4066 4067 new_sack: 4068 /* Build the new head SACK, and we're done. */ 4069 sp->start_seq = seq; 4070 sp->end_seq = end_seq; 4071 tp->rx_opt.num_sacks++; 4072 } 4073 4074 /* RCV.NXT advances, some SACKs should be eaten. */ 4075 4076 static void tcp_sack_remove(struct tcp_sock *tp) 4077 { 4078 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4079 int num_sacks = tp->rx_opt.num_sacks; 4080 int this_sack; 4081 4082 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4083 if (skb_queue_empty(&tp->out_of_order_queue)) { 4084 tp->rx_opt.num_sacks = 0; 4085 return; 4086 } 4087 4088 for (this_sack = 0; this_sack < num_sacks;) { 4089 /* Check if the start of the sack is covered by RCV.NXT. */ 4090 if (!before(tp->rcv_nxt, sp->start_seq)) { 4091 int i; 4092 4093 /* RCV.NXT must cover all the block! */ 4094 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4095 4096 /* Zap this SACK, by moving forward any other SACKS. */ 4097 for (i = this_sack+1; i < num_sacks; i++) 4098 tp->selective_acks[i-1] = tp->selective_acks[i]; 4099 num_sacks--; 4100 continue; 4101 } 4102 this_sack++; 4103 sp++; 4104 } 4105 tp->rx_opt.num_sacks = num_sacks; 4106 } 4107 4108 /** 4109 * tcp_try_coalesce - try to merge skb to prior one 4110 * @sk: socket 4111 * @to: prior buffer 4112 * @from: buffer to add in queue 4113 * @fragstolen: pointer to boolean 4114 * 4115 * Before queueing skb @from after @to, try to merge them 4116 * to reduce overall memory use and queue lengths, if cost is small. 4117 * Packets in ofo or receive queues can stay a long time. 4118 * Better try to coalesce them right now to avoid future collapses. 4119 * Returns true if caller should free @from instead of queueing it 4120 */ 4121 static bool tcp_try_coalesce(struct sock *sk, 4122 struct sk_buff *to, 4123 struct sk_buff *from, 4124 bool *fragstolen) 4125 { 4126 int delta; 4127 4128 *fragstolen = false; 4129 4130 /* Its possible this segment overlaps with prior segment in queue */ 4131 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4132 return false; 4133 4134 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4135 return false; 4136 4137 atomic_add(delta, &sk->sk_rmem_alloc); 4138 sk_mem_charge(sk, delta); 4139 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4140 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4141 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4142 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4143 return true; 4144 } 4145 4146 /* This one checks to see if we can put data from the 4147 * out_of_order queue into the receive_queue. 4148 */ 4149 static void tcp_ofo_queue(struct sock *sk) 4150 { 4151 struct tcp_sock *tp = tcp_sk(sk); 4152 __u32 dsack_high = tp->rcv_nxt; 4153 struct sk_buff *skb, *tail; 4154 bool fragstolen, eaten; 4155 4156 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4157 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4158 break; 4159 4160 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4161 __u32 dsack = dsack_high; 4162 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4163 dsack_high = TCP_SKB_CB(skb)->end_seq; 4164 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4165 } 4166 4167 __skb_unlink(skb, &tp->out_of_order_queue); 4168 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4169 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4170 __kfree_skb(skb); 4171 continue; 4172 } 4173 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4174 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4175 TCP_SKB_CB(skb)->end_seq); 4176 4177 tail = skb_peek_tail(&sk->sk_receive_queue); 4178 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4179 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4180 if (!eaten) 4181 __skb_queue_tail(&sk->sk_receive_queue, skb); 4182 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4183 tcp_fin(sk); 4184 if (eaten) 4185 kfree_skb_partial(skb, fragstolen); 4186 } 4187 } 4188 4189 static bool tcp_prune_ofo_queue(struct sock *sk); 4190 static int tcp_prune_queue(struct sock *sk); 4191 4192 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4193 unsigned int size) 4194 { 4195 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4196 !sk_rmem_schedule(sk, skb, size)) { 4197 4198 if (tcp_prune_queue(sk) < 0) 4199 return -1; 4200 4201 if (!sk_rmem_schedule(sk, skb, size)) { 4202 if (!tcp_prune_ofo_queue(sk)) 4203 return -1; 4204 4205 if (!sk_rmem_schedule(sk, skb, size)) 4206 return -1; 4207 } 4208 } 4209 return 0; 4210 } 4211 4212 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4213 { 4214 struct tcp_sock *tp = tcp_sk(sk); 4215 struct sk_buff *skb1; 4216 u32 seq, end_seq; 4217 4218 tcp_ecn_check_ce(tp, skb); 4219 4220 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4222 __kfree_skb(skb); 4223 return; 4224 } 4225 4226 /* Disable header prediction. */ 4227 tp->pred_flags = 0; 4228 inet_csk_schedule_ack(sk); 4229 4230 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4231 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4232 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4233 4234 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4235 if (!skb1) { 4236 /* Initial out of order segment, build 1 SACK. */ 4237 if (tcp_is_sack(tp)) { 4238 tp->rx_opt.num_sacks = 1; 4239 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4240 tp->selective_acks[0].end_seq = 4241 TCP_SKB_CB(skb)->end_seq; 4242 } 4243 __skb_queue_head(&tp->out_of_order_queue, skb); 4244 goto end; 4245 } 4246 4247 seq = TCP_SKB_CB(skb)->seq; 4248 end_seq = TCP_SKB_CB(skb)->end_seq; 4249 4250 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4251 bool fragstolen; 4252 4253 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4254 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4255 } else { 4256 tcp_grow_window(sk, skb); 4257 kfree_skb_partial(skb, fragstolen); 4258 skb = NULL; 4259 } 4260 4261 if (!tp->rx_opt.num_sacks || 4262 tp->selective_acks[0].end_seq != seq) 4263 goto add_sack; 4264 4265 /* Common case: data arrive in order after hole. */ 4266 tp->selective_acks[0].end_seq = end_seq; 4267 goto end; 4268 } 4269 4270 /* Find place to insert this segment. */ 4271 while (1) { 4272 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4273 break; 4274 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4275 skb1 = NULL; 4276 break; 4277 } 4278 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4279 } 4280 4281 /* Do skb overlap to previous one? */ 4282 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4283 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4284 /* All the bits are present. Drop. */ 4285 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4286 __kfree_skb(skb); 4287 skb = NULL; 4288 tcp_dsack_set(sk, seq, end_seq); 4289 goto add_sack; 4290 } 4291 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4292 /* Partial overlap. */ 4293 tcp_dsack_set(sk, seq, 4294 TCP_SKB_CB(skb1)->end_seq); 4295 } else { 4296 if (skb_queue_is_first(&tp->out_of_order_queue, 4297 skb1)) 4298 skb1 = NULL; 4299 else 4300 skb1 = skb_queue_prev( 4301 &tp->out_of_order_queue, 4302 skb1); 4303 } 4304 } 4305 if (!skb1) 4306 __skb_queue_head(&tp->out_of_order_queue, skb); 4307 else 4308 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4309 4310 /* And clean segments covered by new one as whole. */ 4311 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4312 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4313 4314 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4315 break; 4316 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4317 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4318 end_seq); 4319 break; 4320 } 4321 __skb_unlink(skb1, &tp->out_of_order_queue); 4322 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4323 TCP_SKB_CB(skb1)->end_seq); 4324 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4325 __kfree_skb(skb1); 4326 } 4327 4328 add_sack: 4329 if (tcp_is_sack(tp)) 4330 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4331 end: 4332 if (skb) { 4333 tcp_grow_window(sk, skb); 4334 skb_set_owner_r(skb, sk); 4335 } 4336 } 4337 4338 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4339 bool *fragstolen) 4340 { 4341 int eaten; 4342 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4343 4344 __skb_pull(skb, hdrlen); 4345 eaten = (tail && 4346 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4347 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4348 if (!eaten) { 4349 __skb_queue_tail(&sk->sk_receive_queue, skb); 4350 skb_set_owner_r(skb, sk); 4351 } 4352 return eaten; 4353 } 4354 4355 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4356 { 4357 struct sk_buff *skb; 4358 bool fragstolen; 4359 4360 if (size == 0) 4361 return 0; 4362 4363 skb = alloc_skb(size, sk->sk_allocation); 4364 if (!skb) 4365 goto err; 4366 4367 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4368 goto err_free; 4369 4370 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4371 goto err_free; 4372 4373 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4374 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4375 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4376 4377 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4378 WARN_ON_ONCE(fragstolen); /* should not happen */ 4379 __kfree_skb(skb); 4380 } 4381 return size; 4382 4383 err_free: 4384 kfree_skb(skb); 4385 err: 4386 return -ENOMEM; 4387 } 4388 4389 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4390 { 4391 struct tcp_sock *tp = tcp_sk(sk); 4392 int eaten = -1; 4393 bool fragstolen = false; 4394 4395 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4396 goto drop; 4397 4398 skb_dst_drop(skb); 4399 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4400 4401 tcp_ecn_accept_cwr(tp, skb); 4402 4403 tp->rx_opt.dsack = 0; 4404 4405 /* Queue data for delivery to the user. 4406 * Packets in sequence go to the receive queue. 4407 * Out of sequence packets to the out_of_order_queue. 4408 */ 4409 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4410 if (tcp_receive_window(tp) == 0) 4411 goto out_of_window; 4412 4413 /* Ok. In sequence. In window. */ 4414 if (tp->ucopy.task == current && 4415 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4416 sock_owned_by_user(sk) && !tp->urg_data) { 4417 int chunk = min_t(unsigned int, skb->len, 4418 tp->ucopy.len); 4419 4420 __set_current_state(TASK_RUNNING); 4421 4422 local_bh_enable(); 4423 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4424 tp->ucopy.len -= chunk; 4425 tp->copied_seq += chunk; 4426 eaten = (chunk == skb->len); 4427 tcp_rcv_space_adjust(sk); 4428 } 4429 local_bh_disable(); 4430 } 4431 4432 if (eaten <= 0) { 4433 queue_and_out: 4434 if (eaten < 0 && 4435 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4436 goto drop; 4437 4438 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4439 } 4440 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4441 if (skb->len) 4442 tcp_event_data_recv(sk, skb); 4443 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4444 tcp_fin(sk); 4445 4446 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4447 tcp_ofo_queue(sk); 4448 4449 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4450 * gap in queue is filled. 4451 */ 4452 if (skb_queue_empty(&tp->out_of_order_queue)) 4453 inet_csk(sk)->icsk_ack.pingpong = 0; 4454 } 4455 4456 if (tp->rx_opt.num_sacks) 4457 tcp_sack_remove(tp); 4458 4459 tcp_fast_path_check(sk); 4460 4461 if (eaten > 0) 4462 kfree_skb_partial(skb, fragstolen); 4463 if (!sock_flag(sk, SOCK_DEAD)) 4464 sk->sk_data_ready(sk); 4465 return; 4466 } 4467 4468 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4469 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4471 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4472 4473 out_of_window: 4474 tcp_enter_quickack_mode(sk); 4475 inet_csk_schedule_ack(sk); 4476 drop: 4477 __kfree_skb(skb); 4478 return; 4479 } 4480 4481 /* Out of window. F.e. zero window probe. */ 4482 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4483 goto out_of_window; 4484 4485 tcp_enter_quickack_mode(sk); 4486 4487 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4488 /* Partial packet, seq < rcv_next < end_seq */ 4489 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4490 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4491 TCP_SKB_CB(skb)->end_seq); 4492 4493 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4494 4495 /* If window is closed, drop tail of packet. But after 4496 * remembering D-SACK for its head made in previous line. 4497 */ 4498 if (!tcp_receive_window(tp)) 4499 goto out_of_window; 4500 goto queue_and_out; 4501 } 4502 4503 tcp_data_queue_ofo(sk, skb); 4504 } 4505 4506 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4507 struct sk_buff_head *list) 4508 { 4509 struct sk_buff *next = NULL; 4510 4511 if (!skb_queue_is_last(list, skb)) 4512 next = skb_queue_next(list, skb); 4513 4514 __skb_unlink(skb, list); 4515 __kfree_skb(skb); 4516 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4517 4518 return next; 4519 } 4520 4521 /* Collapse contiguous sequence of skbs head..tail with 4522 * sequence numbers start..end. 4523 * 4524 * If tail is NULL, this means until the end of the list. 4525 * 4526 * Segments with FIN/SYN are not collapsed (only because this 4527 * simplifies code) 4528 */ 4529 static void 4530 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4531 struct sk_buff *head, struct sk_buff *tail, 4532 u32 start, u32 end) 4533 { 4534 struct sk_buff *skb, *n; 4535 bool end_of_skbs; 4536 4537 /* First, check that queue is collapsible and find 4538 * the point where collapsing can be useful. */ 4539 skb = head; 4540 restart: 4541 end_of_skbs = true; 4542 skb_queue_walk_from_safe(list, skb, n) { 4543 if (skb == tail) 4544 break; 4545 /* No new bits? It is possible on ofo queue. */ 4546 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4547 skb = tcp_collapse_one(sk, skb, list); 4548 if (!skb) 4549 break; 4550 goto restart; 4551 } 4552 4553 /* The first skb to collapse is: 4554 * - not SYN/FIN and 4555 * - bloated or contains data before "start" or 4556 * overlaps to the next one. 4557 */ 4558 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4559 (tcp_win_from_space(skb->truesize) > skb->len || 4560 before(TCP_SKB_CB(skb)->seq, start))) { 4561 end_of_skbs = false; 4562 break; 4563 } 4564 4565 if (!skb_queue_is_last(list, skb)) { 4566 struct sk_buff *next = skb_queue_next(list, skb); 4567 if (next != tail && 4568 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4569 end_of_skbs = false; 4570 break; 4571 } 4572 } 4573 4574 /* Decided to skip this, advance start seq. */ 4575 start = TCP_SKB_CB(skb)->end_seq; 4576 } 4577 if (end_of_skbs || 4578 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4579 return; 4580 4581 while (before(start, end)) { 4582 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4583 struct sk_buff *nskb; 4584 4585 nskb = alloc_skb(copy, GFP_ATOMIC); 4586 if (!nskb) 4587 return; 4588 4589 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4590 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4591 __skb_queue_before(list, skb, nskb); 4592 skb_set_owner_r(nskb, sk); 4593 4594 /* Copy data, releasing collapsed skbs. */ 4595 while (copy > 0) { 4596 int offset = start - TCP_SKB_CB(skb)->seq; 4597 int size = TCP_SKB_CB(skb)->end_seq - start; 4598 4599 BUG_ON(offset < 0); 4600 if (size > 0) { 4601 size = min(copy, size); 4602 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4603 BUG(); 4604 TCP_SKB_CB(nskb)->end_seq += size; 4605 copy -= size; 4606 start += size; 4607 } 4608 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4609 skb = tcp_collapse_one(sk, skb, list); 4610 if (!skb || 4611 skb == tail || 4612 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4613 return; 4614 } 4615 } 4616 } 4617 } 4618 4619 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4620 * and tcp_collapse() them until all the queue is collapsed. 4621 */ 4622 static void tcp_collapse_ofo_queue(struct sock *sk) 4623 { 4624 struct tcp_sock *tp = tcp_sk(sk); 4625 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4626 struct sk_buff *head; 4627 u32 start, end; 4628 4629 if (skb == NULL) 4630 return; 4631 4632 start = TCP_SKB_CB(skb)->seq; 4633 end = TCP_SKB_CB(skb)->end_seq; 4634 head = skb; 4635 4636 for (;;) { 4637 struct sk_buff *next = NULL; 4638 4639 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4640 next = skb_queue_next(&tp->out_of_order_queue, skb); 4641 skb = next; 4642 4643 /* Segment is terminated when we see gap or when 4644 * we are at the end of all the queue. */ 4645 if (!skb || 4646 after(TCP_SKB_CB(skb)->seq, end) || 4647 before(TCP_SKB_CB(skb)->end_seq, start)) { 4648 tcp_collapse(sk, &tp->out_of_order_queue, 4649 head, skb, start, end); 4650 head = skb; 4651 if (!skb) 4652 break; 4653 /* Start new segment */ 4654 start = TCP_SKB_CB(skb)->seq; 4655 end = TCP_SKB_CB(skb)->end_seq; 4656 } else { 4657 if (before(TCP_SKB_CB(skb)->seq, start)) 4658 start = TCP_SKB_CB(skb)->seq; 4659 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4660 end = TCP_SKB_CB(skb)->end_seq; 4661 } 4662 } 4663 } 4664 4665 /* 4666 * Purge the out-of-order queue. 4667 * Return true if queue was pruned. 4668 */ 4669 static bool tcp_prune_ofo_queue(struct sock *sk) 4670 { 4671 struct tcp_sock *tp = tcp_sk(sk); 4672 bool res = false; 4673 4674 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4675 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4676 __skb_queue_purge(&tp->out_of_order_queue); 4677 4678 /* Reset SACK state. A conforming SACK implementation will 4679 * do the same at a timeout based retransmit. When a connection 4680 * is in a sad state like this, we care only about integrity 4681 * of the connection not performance. 4682 */ 4683 if (tp->rx_opt.sack_ok) 4684 tcp_sack_reset(&tp->rx_opt); 4685 sk_mem_reclaim(sk); 4686 res = true; 4687 } 4688 return res; 4689 } 4690 4691 /* Reduce allocated memory if we can, trying to get 4692 * the socket within its memory limits again. 4693 * 4694 * Return less than zero if we should start dropping frames 4695 * until the socket owning process reads some of the data 4696 * to stabilize the situation. 4697 */ 4698 static int tcp_prune_queue(struct sock *sk) 4699 { 4700 struct tcp_sock *tp = tcp_sk(sk); 4701 4702 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4703 4704 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4705 4706 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4707 tcp_clamp_window(sk); 4708 else if (sk_under_memory_pressure(sk)) 4709 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4710 4711 tcp_collapse_ofo_queue(sk); 4712 if (!skb_queue_empty(&sk->sk_receive_queue)) 4713 tcp_collapse(sk, &sk->sk_receive_queue, 4714 skb_peek(&sk->sk_receive_queue), 4715 NULL, 4716 tp->copied_seq, tp->rcv_nxt); 4717 sk_mem_reclaim(sk); 4718 4719 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4720 return 0; 4721 4722 /* Collapsing did not help, destructive actions follow. 4723 * This must not ever occur. */ 4724 4725 tcp_prune_ofo_queue(sk); 4726 4727 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4728 return 0; 4729 4730 /* If we are really being abused, tell the caller to silently 4731 * drop receive data on the floor. It will get retransmitted 4732 * and hopefully then we'll have sufficient space. 4733 */ 4734 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4735 4736 /* Massive buffer overcommit. */ 4737 tp->pred_flags = 0; 4738 return -1; 4739 } 4740 4741 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4742 { 4743 const struct tcp_sock *tp = tcp_sk(sk); 4744 4745 /* If the user specified a specific send buffer setting, do 4746 * not modify it. 4747 */ 4748 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4749 return false; 4750 4751 /* If we are under global TCP memory pressure, do not expand. */ 4752 if (sk_under_memory_pressure(sk)) 4753 return false; 4754 4755 /* If we are under soft global TCP memory pressure, do not expand. */ 4756 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4757 return false; 4758 4759 /* If we filled the congestion window, do not expand. */ 4760 if (tp->packets_out >= tp->snd_cwnd) 4761 return false; 4762 4763 return true; 4764 } 4765 4766 /* When incoming ACK allowed to free some skb from write_queue, 4767 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4768 * on the exit from tcp input handler. 4769 * 4770 * PROBLEM: sndbuf expansion does not work well with largesend. 4771 */ 4772 static void tcp_new_space(struct sock *sk) 4773 { 4774 struct tcp_sock *tp = tcp_sk(sk); 4775 4776 if (tcp_should_expand_sndbuf(sk)) { 4777 tcp_sndbuf_expand(sk); 4778 tp->snd_cwnd_stamp = tcp_time_stamp; 4779 } 4780 4781 sk->sk_write_space(sk); 4782 } 4783 4784 static void tcp_check_space(struct sock *sk) 4785 { 4786 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4787 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4788 if (sk->sk_socket && 4789 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4790 tcp_new_space(sk); 4791 } 4792 } 4793 4794 static inline void tcp_data_snd_check(struct sock *sk) 4795 { 4796 tcp_push_pending_frames(sk); 4797 tcp_check_space(sk); 4798 } 4799 4800 /* 4801 * Check if sending an ack is needed. 4802 */ 4803 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4804 { 4805 struct tcp_sock *tp = tcp_sk(sk); 4806 4807 /* More than one full frame received... */ 4808 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4809 /* ... and right edge of window advances far enough. 4810 * (tcp_recvmsg() will send ACK otherwise). Or... 4811 */ 4812 __tcp_select_window(sk) >= tp->rcv_wnd) || 4813 /* We ACK each frame or... */ 4814 tcp_in_quickack_mode(sk) || 4815 /* We have out of order data. */ 4816 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4817 /* Then ack it now */ 4818 tcp_send_ack(sk); 4819 } else { 4820 /* Else, send delayed ack. */ 4821 tcp_send_delayed_ack(sk); 4822 } 4823 } 4824 4825 static inline void tcp_ack_snd_check(struct sock *sk) 4826 { 4827 if (!inet_csk_ack_scheduled(sk)) { 4828 /* We sent a data segment already. */ 4829 return; 4830 } 4831 __tcp_ack_snd_check(sk, 1); 4832 } 4833 4834 /* 4835 * This routine is only called when we have urgent data 4836 * signaled. Its the 'slow' part of tcp_urg. It could be 4837 * moved inline now as tcp_urg is only called from one 4838 * place. We handle URGent data wrong. We have to - as 4839 * BSD still doesn't use the correction from RFC961. 4840 * For 1003.1g we should support a new option TCP_STDURG to permit 4841 * either form (or just set the sysctl tcp_stdurg). 4842 */ 4843 4844 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4845 { 4846 struct tcp_sock *tp = tcp_sk(sk); 4847 u32 ptr = ntohs(th->urg_ptr); 4848 4849 if (ptr && !sysctl_tcp_stdurg) 4850 ptr--; 4851 ptr += ntohl(th->seq); 4852 4853 /* Ignore urgent data that we've already seen and read. */ 4854 if (after(tp->copied_seq, ptr)) 4855 return; 4856 4857 /* Do not replay urg ptr. 4858 * 4859 * NOTE: interesting situation not covered by specs. 4860 * Misbehaving sender may send urg ptr, pointing to segment, 4861 * which we already have in ofo queue. We are not able to fetch 4862 * such data and will stay in TCP_URG_NOTYET until will be eaten 4863 * by recvmsg(). Seems, we are not obliged to handle such wicked 4864 * situations. But it is worth to think about possibility of some 4865 * DoSes using some hypothetical application level deadlock. 4866 */ 4867 if (before(ptr, tp->rcv_nxt)) 4868 return; 4869 4870 /* Do we already have a newer (or duplicate) urgent pointer? */ 4871 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4872 return; 4873 4874 /* Tell the world about our new urgent pointer. */ 4875 sk_send_sigurg(sk); 4876 4877 /* We may be adding urgent data when the last byte read was 4878 * urgent. To do this requires some care. We cannot just ignore 4879 * tp->copied_seq since we would read the last urgent byte again 4880 * as data, nor can we alter copied_seq until this data arrives 4881 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4882 * 4883 * NOTE. Double Dutch. Rendering to plain English: author of comment 4884 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4885 * and expect that both A and B disappear from stream. This is _wrong_. 4886 * Though this happens in BSD with high probability, this is occasional. 4887 * Any application relying on this is buggy. Note also, that fix "works" 4888 * only in this artificial test. Insert some normal data between A and B and we will 4889 * decline of BSD again. Verdict: it is better to remove to trap 4890 * buggy users. 4891 */ 4892 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4893 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4894 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4895 tp->copied_seq++; 4896 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4897 __skb_unlink(skb, &sk->sk_receive_queue); 4898 __kfree_skb(skb); 4899 } 4900 } 4901 4902 tp->urg_data = TCP_URG_NOTYET; 4903 tp->urg_seq = ptr; 4904 4905 /* Disable header prediction. */ 4906 tp->pred_flags = 0; 4907 } 4908 4909 /* This is the 'fast' part of urgent handling. */ 4910 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4911 { 4912 struct tcp_sock *tp = tcp_sk(sk); 4913 4914 /* Check if we get a new urgent pointer - normally not. */ 4915 if (th->urg) 4916 tcp_check_urg(sk, th); 4917 4918 /* Do we wait for any urgent data? - normally not... */ 4919 if (tp->urg_data == TCP_URG_NOTYET) { 4920 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4921 th->syn; 4922 4923 /* Is the urgent pointer pointing into this packet? */ 4924 if (ptr < skb->len) { 4925 u8 tmp; 4926 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4927 BUG(); 4928 tp->urg_data = TCP_URG_VALID | tmp; 4929 if (!sock_flag(sk, SOCK_DEAD)) 4930 sk->sk_data_ready(sk); 4931 } 4932 } 4933 } 4934 4935 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4936 { 4937 struct tcp_sock *tp = tcp_sk(sk); 4938 int chunk = skb->len - hlen; 4939 int err; 4940 4941 local_bh_enable(); 4942 if (skb_csum_unnecessary(skb)) 4943 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4944 else 4945 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4946 tp->ucopy.iov); 4947 4948 if (!err) { 4949 tp->ucopy.len -= chunk; 4950 tp->copied_seq += chunk; 4951 tcp_rcv_space_adjust(sk); 4952 } 4953 4954 local_bh_disable(); 4955 return err; 4956 } 4957 4958 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4959 struct sk_buff *skb) 4960 { 4961 __sum16 result; 4962 4963 if (sock_owned_by_user(sk)) { 4964 local_bh_enable(); 4965 result = __tcp_checksum_complete(skb); 4966 local_bh_disable(); 4967 } else { 4968 result = __tcp_checksum_complete(skb); 4969 } 4970 return result; 4971 } 4972 4973 static inline bool tcp_checksum_complete_user(struct sock *sk, 4974 struct sk_buff *skb) 4975 { 4976 return !skb_csum_unnecessary(skb) && 4977 __tcp_checksum_complete_user(sk, skb); 4978 } 4979 4980 /* Does PAWS and seqno based validation of an incoming segment, flags will 4981 * play significant role here. 4982 */ 4983 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4984 const struct tcphdr *th, int syn_inerr) 4985 { 4986 struct tcp_sock *tp = tcp_sk(sk); 4987 4988 /* RFC1323: H1. Apply PAWS check first. */ 4989 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4990 tcp_paws_discard(sk, skb)) { 4991 if (!th->rst) { 4992 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4993 tcp_send_dupack(sk, skb); 4994 goto discard; 4995 } 4996 /* Reset is accepted even if it did not pass PAWS. */ 4997 } 4998 4999 /* Step 1: check sequence number */ 5000 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5001 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5002 * (RST) segments are validated by checking their SEQ-fields." 5003 * And page 69: "If an incoming segment is not acceptable, 5004 * an acknowledgment should be sent in reply (unless the RST 5005 * bit is set, if so drop the segment and return)". 5006 */ 5007 if (!th->rst) { 5008 if (th->syn) 5009 goto syn_challenge; 5010 tcp_send_dupack(sk, skb); 5011 } 5012 goto discard; 5013 } 5014 5015 /* Step 2: check RST bit */ 5016 if (th->rst) { 5017 /* RFC 5961 3.2 : 5018 * If sequence number exactly matches RCV.NXT, then 5019 * RESET the connection 5020 * else 5021 * Send a challenge ACK 5022 */ 5023 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5024 tcp_reset(sk); 5025 else 5026 tcp_send_challenge_ack(sk); 5027 goto discard; 5028 } 5029 5030 /* step 3: check security and precedence [ignored] */ 5031 5032 /* step 4: Check for a SYN 5033 * RFC 5691 4.2 : Send a challenge ack 5034 */ 5035 if (th->syn) { 5036 syn_challenge: 5037 if (syn_inerr) 5038 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5039 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5040 tcp_send_challenge_ack(sk); 5041 goto discard; 5042 } 5043 5044 return true; 5045 5046 discard: 5047 __kfree_skb(skb); 5048 return false; 5049 } 5050 5051 /* 5052 * TCP receive function for the ESTABLISHED state. 5053 * 5054 * It is split into a fast path and a slow path. The fast path is 5055 * disabled when: 5056 * - A zero window was announced from us - zero window probing 5057 * is only handled properly in the slow path. 5058 * - Out of order segments arrived. 5059 * - Urgent data is expected. 5060 * - There is no buffer space left 5061 * - Unexpected TCP flags/window values/header lengths are received 5062 * (detected by checking the TCP header against pred_flags) 5063 * - Data is sent in both directions. Fast path only supports pure senders 5064 * or pure receivers (this means either the sequence number or the ack 5065 * value must stay constant) 5066 * - Unexpected TCP option. 5067 * 5068 * When these conditions are not satisfied it drops into a standard 5069 * receive procedure patterned after RFC793 to handle all cases. 5070 * The first three cases are guaranteed by proper pred_flags setting, 5071 * the rest is checked inline. Fast processing is turned on in 5072 * tcp_data_queue when everything is OK. 5073 */ 5074 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5075 const struct tcphdr *th, unsigned int len) 5076 { 5077 struct tcp_sock *tp = tcp_sk(sk); 5078 5079 if (unlikely(sk->sk_rx_dst == NULL)) 5080 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5081 /* 5082 * Header prediction. 5083 * The code loosely follows the one in the famous 5084 * "30 instruction TCP receive" Van Jacobson mail. 5085 * 5086 * Van's trick is to deposit buffers into socket queue 5087 * on a device interrupt, to call tcp_recv function 5088 * on the receive process context and checksum and copy 5089 * the buffer to user space. smart... 5090 * 5091 * Our current scheme is not silly either but we take the 5092 * extra cost of the net_bh soft interrupt processing... 5093 * We do checksum and copy also but from device to kernel. 5094 */ 5095 5096 tp->rx_opt.saw_tstamp = 0; 5097 5098 /* pred_flags is 0xS?10 << 16 + snd_wnd 5099 * if header_prediction is to be made 5100 * 'S' will always be tp->tcp_header_len >> 2 5101 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5102 * turn it off (when there are holes in the receive 5103 * space for instance) 5104 * PSH flag is ignored. 5105 */ 5106 5107 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5108 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5109 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5110 int tcp_header_len = tp->tcp_header_len; 5111 5112 /* Timestamp header prediction: tcp_header_len 5113 * is automatically equal to th->doff*4 due to pred_flags 5114 * match. 5115 */ 5116 5117 /* Check timestamp */ 5118 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5119 /* No? Slow path! */ 5120 if (!tcp_parse_aligned_timestamp(tp, th)) 5121 goto slow_path; 5122 5123 /* If PAWS failed, check it more carefully in slow path */ 5124 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5125 goto slow_path; 5126 5127 /* DO NOT update ts_recent here, if checksum fails 5128 * and timestamp was corrupted part, it will result 5129 * in a hung connection since we will drop all 5130 * future packets due to the PAWS test. 5131 */ 5132 } 5133 5134 if (len <= tcp_header_len) { 5135 /* Bulk data transfer: sender */ 5136 if (len == tcp_header_len) { 5137 /* Predicted packet is in window by definition. 5138 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5139 * Hence, check seq<=rcv_wup reduces to: 5140 */ 5141 if (tcp_header_len == 5142 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5143 tp->rcv_nxt == tp->rcv_wup) 5144 tcp_store_ts_recent(tp); 5145 5146 /* We know that such packets are checksummed 5147 * on entry. 5148 */ 5149 tcp_ack(sk, skb, 0); 5150 __kfree_skb(skb); 5151 tcp_data_snd_check(sk); 5152 return; 5153 } else { /* Header too small */ 5154 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5155 goto discard; 5156 } 5157 } else { 5158 int eaten = 0; 5159 bool fragstolen = false; 5160 5161 if (tp->ucopy.task == current && 5162 tp->copied_seq == tp->rcv_nxt && 5163 len - tcp_header_len <= tp->ucopy.len && 5164 sock_owned_by_user(sk)) { 5165 __set_current_state(TASK_RUNNING); 5166 5167 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5168 /* Predicted packet is in window by definition. 5169 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5170 * Hence, check seq<=rcv_wup reduces to: 5171 */ 5172 if (tcp_header_len == 5173 (sizeof(struct tcphdr) + 5174 TCPOLEN_TSTAMP_ALIGNED) && 5175 tp->rcv_nxt == tp->rcv_wup) 5176 tcp_store_ts_recent(tp); 5177 5178 tcp_rcv_rtt_measure_ts(sk, skb); 5179 5180 __skb_pull(skb, tcp_header_len); 5181 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5182 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5183 eaten = 1; 5184 } 5185 } 5186 if (!eaten) { 5187 if (tcp_checksum_complete_user(sk, skb)) 5188 goto csum_error; 5189 5190 if ((int)skb->truesize > sk->sk_forward_alloc) 5191 goto step5; 5192 5193 /* Predicted packet is in window by definition. 5194 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5195 * Hence, check seq<=rcv_wup reduces to: 5196 */ 5197 if (tcp_header_len == 5198 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5199 tp->rcv_nxt == tp->rcv_wup) 5200 tcp_store_ts_recent(tp); 5201 5202 tcp_rcv_rtt_measure_ts(sk, skb); 5203 5204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5205 5206 /* Bulk data transfer: receiver */ 5207 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5208 &fragstolen); 5209 } 5210 5211 tcp_event_data_recv(sk, skb); 5212 5213 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5214 /* Well, only one small jumplet in fast path... */ 5215 tcp_ack(sk, skb, FLAG_DATA); 5216 tcp_data_snd_check(sk); 5217 if (!inet_csk_ack_scheduled(sk)) 5218 goto no_ack; 5219 } 5220 5221 __tcp_ack_snd_check(sk, 0); 5222 no_ack: 5223 if (eaten) 5224 kfree_skb_partial(skb, fragstolen); 5225 sk->sk_data_ready(sk); 5226 return; 5227 } 5228 } 5229 5230 slow_path: 5231 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5232 goto csum_error; 5233 5234 if (!th->ack && !th->rst && !th->syn) 5235 goto discard; 5236 5237 /* 5238 * Standard slow path. 5239 */ 5240 5241 if (!tcp_validate_incoming(sk, skb, th, 1)) 5242 return; 5243 5244 step5: 5245 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5246 goto discard; 5247 5248 tcp_rcv_rtt_measure_ts(sk, skb); 5249 5250 /* Process urgent data. */ 5251 tcp_urg(sk, skb, th); 5252 5253 /* step 7: process the segment text */ 5254 tcp_data_queue(sk, skb); 5255 5256 tcp_data_snd_check(sk); 5257 tcp_ack_snd_check(sk); 5258 return; 5259 5260 csum_error: 5261 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5262 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5263 5264 discard: 5265 __kfree_skb(skb); 5266 } 5267 EXPORT_SYMBOL(tcp_rcv_established); 5268 5269 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5270 { 5271 struct tcp_sock *tp = tcp_sk(sk); 5272 struct inet_connection_sock *icsk = inet_csk(sk); 5273 5274 tcp_set_state(sk, TCP_ESTABLISHED); 5275 5276 if (skb != NULL) { 5277 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5278 security_inet_conn_established(sk, skb); 5279 } 5280 5281 /* Make sure socket is routed, for correct metrics. */ 5282 icsk->icsk_af_ops->rebuild_header(sk); 5283 5284 tcp_init_metrics(sk); 5285 5286 tcp_init_congestion_control(sk); 5287 5288 /* Prevent spurious tcp_cwnd_restart() on first data 5289 * packet. 5290 */ 5291 tp->lsndtime = tcp_time_stamp; 5292 5293 tcp_init_buffer_space(sk); 5294 5295 if (sock_flag(sk, SOCK_KEEPOPEN)) 5296 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5297 5298 if (!tp->rx_opt.snd_wscale) 5299 __tcp_fast_path_on(tp, tp->snd_wnd); 5300 else 5301 tp->pred_flags = 0; 5302 5303 if (!sock_flag(sk, SOCK_DEAD)) { 5304 sk->sk_state_change(sk); 5305 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5306 } 5307 } 5308 5309 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5310 struct tcp_fastopen_cookie *cookie) 5311 { 5312 struct tcp_sock *tp = tcp_sk(sk); 5313 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5314 u16 mss = tp->rx_opt.mss_clamp; 5315 bool syn_drop; 5316 5317 if (mss == tp->rx_opt.user_mss) { 5318 struct tcp_options_received opt; 5319 5320 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5321 tcp_clear_options(&opt); 5322 opt.user_mss = opt.mss_clamp = 0; 5323 tcp_parse_options(synack, &opt, 0, NULL); 5324 mss = opt.mss_clamp; 5325 } 5326 5327 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5328 cookie->len = -1; 5329 5330 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5331 * the remote receives only the retransmitted (regular) SYNs: either 5332 * the original SYN-data or the corresponding SYN-ACK is lost. 5333 */ 5334 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5335 5336 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5337 5338 if (data) { /* Retransmit unacked data in SYN */ 5339 tcp_for_write_queue_from(data, sk) { 5340 if (data == tcp_send_head(sk) || 5341 __tcp_retransmit_skb(sk, data)) 5342 break; 5343 } 5344 tcp_rearm_rto(sk); 5345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5346 return true; 5347 } 5348 tp->syn_data_acked = tp->syn_data; 5349 if (tp->syn_data_acked) 5350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5351 return false; 5352 } 5353 5354 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5355 const struct tcphdr *th, unsigned int len) 5356 { 5357 struct inet_connection_sock *icsk = inet_csk(sk); 5358 struct tcp_sock *tp = tcp_sk(sk); 5359 struct tcp_fastopen_cookie foc = { .len = -1 }; 5360 int saved_clamp = tp->rx_opt.mss_clamp; 5361 5362 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5363 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5364 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5365 5366 if (th->ack) { 5367 /* rfc793: 5368 * "If the state is SYN-SENT then 5369 * first check the ACK bit 5370 * If the ACK bit is set 5371 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5372 * a reset (unless the RST bit is set, if so drop 5373 * the segment and return)" 5374 */ 5375 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5376 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5377 goto reset_and_undo; 5378 5379 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5380 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5381 tcp_time_stamp)) { 5382 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5383 goto reset_and_undo; 5384 } 5385 5386 /* Now ACK is acceptable. 5387 * 5388 * "If the RST bit is set 5389 * If the ACK was acceptable then signal the user "error: 5390 * connection reset", drop the segment, enter CLOSED state, 5391 * delete TCB, and return." 5392 */ 5393 5394 if (th->rst) { 5395 tcp_reset(sk); 5396 goto discard; 5397 } 5398 5399 /* rfc793: 5400 * "fifth, if neither of the SYN or RST bits is set then 5401 * drop the segment and return." 5402 * 5403 * See note below! 5404 * --ANK(990513) 5405 */ 5406 if (!th->syn) 5407 goto discard_and_undo; 5408 5409 /* rfc793: 5410 * "If the SYN bit is on ... 5411 * are acceptable then ... 5412 * (our SYN has been ACKed), change the connection 5413 * state to ESTABLISHED..." 5414 */ 5415 5416 tcp_ecn_rcv_synack(tp, th); 5417 5418 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5419 tcp_ack(sk, skb, FLAG_SLOWPATH); 5420 5421 /* Ok.. it's good. Set up sequence numbers and 5422 * move to established. 5423 */ 5424 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5425 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5426 5427 /* RFC1323: The window in SYN & SYN/ACK segments is 5428 * never scaled. 5429 */ 5430 tp->snd_wnd = ntohs(th->window); 5431 5432 if (!tp->rx_opt.wscale_ok) { 5433 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5434 tp->window_clamp = min(tp->window_clamp, 65535U); 5435 } 5436 5437 if (tp->rx_opt.saw_tstamp) { 5438 tp->rx_opt.tstamp_ok = 1; 5439 tp->tcp_header_len = 5440 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5441 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5442 tcp_store_ts_recent(tp); 5443 } else { 5444 tp->tcp_header_len = sizeof(struct tcphdr); 5445 } 5446 5447 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5448 tcp_enable_fack(tp); 5449 5450 tcp_mtup_init(sk); 5451 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5452 tcp_initialize_rcv_mss(sk); 5453 5454 /* Remember, tcp_poll() does not lock socket! 5455 * Change state from SYN-SENT only after copied_seq 5456 * is initialized. */ 5457 tp->copied_seq = tp->rcv_nxt; 5458 5459 smp_mb(); 5460 5461 tcp_finish_connect(sk, skb); 5462 5463 if ((tp->syn_fastopen || tp->syn_data) && 5464 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5465 return -1; 5466 5467 if (sk->sk_write_pending || 5468 icsk->icsk_accept_queue.rskq_defer_accept || 5469 icsk->icsk_ack.pingpong) { 5470 /* Save one ACK. Data will be ready after 5471 * several ticks, if write_pending is set. 5472 * 5473 * It may be deleted, but with this feature tcpdumps 5474 * look so _wonderfully_ clever, that I was not able 5475 * to stand against the temptation 8) --ANK 5476 */ 5477 inet_csk_schedule_ack(sk); 5478 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5479 tcp_enter_quickack_mode(sk); 5480 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5481 TCP_DELACK_MAX, TCP_RTO_MAX); 5482 5483 discard: 5484 __kfree_skb(skb); 5485 return 0; 5486 } else { 5487 tcp_send_ack(sk); 5488 } 5489 return -1; 5490 } 5491 5492 /* No ACK in the segment */ 5493 5494 if (th->rst) { 5495 /* rfc793: 5496 * "If the RST bit is set 5497 * 5498 * Otherwise (no ACK) drop the segment and return." 5499 */ 5500 5501 goto discard_and_undo; 5502 } 5503 5504 /* PAWS check. */ 5505 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5506 tcp_paws_reject(&tp->rx_opt, 0)) 5507 goto discard_and_undo; 5508 5509 if (th->syn) { 5510 /* We see SYN without ACK. It is attempt of 5511 * simultaneous connect with crossed SYNs. 5512 * Particularly, it can be connect to self. 5513 */ 5514 tcp_set_state(sk, TCP_SYN_RECV); 5515 5516 if (tp->rx_opt.saw_tstamp) { 5517 tp->rx_opt.tstamp_ok = 1; 5518 tcp_store_ts_recent(tp); 5519 tp->tcp_header_len = 5520 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5521 } else { 5522 tp->tcp_header_len = sizeof(struct tcphdr); 5523 } 5524 5525 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5526 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5527 5528 /* RFC1323: The window in SYN & SYN/ACK segments is 5529 * never scaled. 5530 */ 5531 tp->snd_wnd = ntohs(th->window); 5532 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5533 tp->max_window = tp->snd_wnd; 5534 5535 tcp_ecn_rcv_syn(tp, th); 5536 5537 tcp_mtup_init(sk); 5538 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5539 tcp_initialize_rcv_mss(sk); 5540 5541 tcp_send_synack(sk); 5542 #if 0 5543 /* Note, we could accept data and URG from this segment. 5544 * There are no obstacles to make this (except that we must 5545 * either change tcp_recvmsg() to prevent it from returning data 5546 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5547 * 5548 * However, if we ignore data in ACKless segments sometimes, 5549 * we have no reasons to accept it sometimes. 5550 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5551 * is not flawless. So, discard packet for sanity. 5552 * Uncomment this return to process the data. 5553 */ 5554 return -1; 5555 #else 5556 goto discard; 5557 #endif 5558 } 5559 /* "fifth, if neither of the SYN or RST bits is set then 5560 * drop the segment and return." 5561 */ 5562 5563 discard_and_undo: 5564 tcp_clear_options(&tp->rx_opt); 5565 tp->rx_opt.mss_clamp = saved_clamp; 5566 goto discard; 5567 5568 reset_and_undo: 5569 tcp_clear_options(&tp->rx_opt); 5570 tp->rx_opt.mss_clamp = saved_clamp; 5571 return 1; 5572 } 5573 5574 /* 5575 * This function implements the receiving procedure of RFC 793 for 5576 * all states except ESTABLISHED and TIME_WAIT. 5577 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5578 * address independent. 5579 */ 5580 5581 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5582 const struct tcphdr *th, unsigned int len) 5583 { 5584 struct tcp_sock *tp = tcp_sk(sk); 5585 struct inet_connection_sock *icsk = inet_csk(sk); 5586 struct request_sock *req; 5587 int queued = 0; 5588 bool acceptable; 5589 u32 synack_stamp; 5590 5591 tp->rx_opt.saw_tstamp = 0; 5592 5593 switch (sk->sk_state) { 5594 case TCP_CLOSE: 5595 goto discard; 5596 5597 case TCP_LISTEN: 5598 if (th->ack) 5599 return 1; 5600 5601 if (th->rst) 5602 goto discard; 5603 5604 if (th->syn) { 5605 if (th->fin) 5606 goto discard; 5607 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5608 return 1; 5609 5610 /* Now we have several options: In theory there is 5611 * nothing else in the frame. KA9Q has an option to 5612 * send data with the syn, BSD accepts data with the 5613 * syn up to the [to be] advertised window and 5614 * Solaris 2.1 gives you a protocol error. For now 5615 * we just ignore it, that fits the spec precisely 5616 * and avoids incompatibilities. It would be nice in 5617 * future to drop through and process the data. 5618 * 5619 * Now that TTCP is starting to be used we ought to 5620 * queue this data. 5621 * But, this leaves one open to an easy denial of 5622 * service attack, and SYN cookies can't defend 5623 * against this problem. So, we drop the data 5624 * in the interest of security over speed unless 5625 * it's still in use. 5626 */ 5627 kfree_skb(skb); 5628 return 0; 5629 } 5630 goto discard; 5631 5632 case TCP_SYN_SENT: 5633 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5634 if (queued >= 0) 5635 return queued; 5636 5637 /* Do step6 onward by hand. */ 5638 tcp_urg(sk, skb, th); 5639 __kfree_skb(skb); 5640 tcp_data_snd_check(sk); 5641 return 0; 5642 } 5643 5644 req = tp->fastopen_rsk; 5645 if (req != NULL) { 5646 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5647 sk->sk_state != TCP_FIN_WAIT1); 5648 5649 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5650 goto discard; 5651 } 5652 5653 if (!th->ack && !th->rst && !th->syn) 5654 goto discard; 5655 5656 if (!tcp_validate_incoming(sk, skb, th, 0)) 5657 return 0; 5658 5659 /* step 5: check the ACK field */ 5660 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5661 FLAG_UPDATE_TS_RECENT) > 0; 5662 5663 switch (sk->sk_state) { 5664 case TCP_SYN_RECV: 5665 if (!acceptable) 5666 return 1; 5667 5668 /* Once we leave TCP_SYN_RECV, we no longer need req 5669 * so release it. 5670 */ 5671 if (req) { 5672 synack_stamp = tcp_rsk(req)->snt_synack; 5673 tp->total_retrans = req->num_retrans; 5674 reqsk_fastopen_remove(sk, req, false); 5675 } else { 5676 synack_stamp = tp->lsndtime; 5677 /* Make sure socket is routed, for correct metrics. */ 5678 icsk->icsk_af_ops->rebuild_header(sk); 5679 tcp_init_congestion_control(sk); 5680 5681 tcp_mtup_init(sk); 5682 tp->copied_seq = tp->rcv_nxt; 5683 tcp_init_buffer_space(sk); 5684 } 5685 smp_mb(); 5686 tcp_set_state(sk, TCP_ESTABLISHED); 5687 sk->sk_state_change(sk); 5688 5689 /* Note, that this wakeup is only for marginal crossed SYN case. 5690 * Passively open sockets are not waked up, because 5691 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5692 */ 5693 if (sk->sk_socket) 5694 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5695 5696 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5697 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5698 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5699 tcp_synack_rtt_meas(sk, synack_stamp); 5700 5701 if (tp->rx_opt.tstamp_ok) 5702 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5703 5704 if (req) { 5705 /* Re-arm the timer because data may have been sent out. 5706 * This is similar to the regular data transmission case 5707 * when new data has just been ack'ed. 5708 * 5709 * (TFO) - we could try to be more aggressive and 5710 * retransmitting any data sooner based on when they 5711 * are sent out. 5712 */ 5713 tcp_rearm_rto(sk); 5714 } else 5715 tcp_init_metrics(sk); 5716 5717 tcp_update_pacing_rate(sk); 5718 5719 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5720 tp->lsndtime = tcp_time_stamp; 5721 5722 tcp_initialize_rcv_mss(sk); 5723 tcp_fast_path_on(tp); 5724 break; 5725 5726 case TCP_FIN_WAIT1: { 5727 struct dst_entry *dst; 5728 int tmo; 5729 5730 /* If we enter the TCP_FIN_WAIT1 state and we are a 5731 * Fast Open socket and this is the first acceptable 5732 * ACK we have received, this would have acknowledged 5733 * our SYNACK so stop the SYNACK timer. 5734 */ 5735 if (req != NULL) { 5736 /* Return RST if ack_seq is invalid. 5737 * Note that RFC793 only says to generate a 5738 * DUPACK for it but for TCP Fast Open it seems 5739 * better to treat this case like TCP_SYN_RECV 5740 * above. 5741 */ 5742 if (!acceptable) 5743 return 1; 5744 /* We no longer need the request sock. */ 5745 reqsk_fastopen_remove(sk, req, false); 5746 tcp_rearm_rto(sk); 5747 } 5748 if (tp->snd_una != tp->write_seq) 5749 break; 5750 5751 tcp_set_state(sk, TCP_FIN_WAIT2); 5752 sk->sk_shutdown |= SEND_SHUTDOWN; 5753 5754 dst = __sk_dst_get(sk); 5755 if (dst) 5756 dst_confirm(dst); 5757 5758 if (!sock_flag(sk, SOCK_DEAD)) { 5759 /* Wake up lingering close() */ 5760 sk->sk_state_change(sk); 5761 break; 5762 } 5763 5764 if (tp->linger2 < 0 || 5765 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5766 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5767 tcp_done(sk); 5768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5769 return 1; 5770 } 5771 5772 tmo = tcp_fin_time(sk); 5773 if (tmo > TCP_TIMEWAIT_LEN) { 5774 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5775 } else if (th->fin || sock_owned_by_user(sk)) { 5776 /* Bad case. We could lose such FIN otherwise. 5777 * It is not a big problem, but it looks confusing 5778 * and not so rare event. We still can lose it now, 5779 * if it spins in bh_lock_sock(), but it is really 5780 * marginal case. 5781 */ 5782 inet_csk_reset_keepalive_timer(sk, tmo); 5783 } else { 5784 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5785 goto discard; 5786 } 5787 break; 5788 } 5789 5790 case TCP_CLOSING: 5791 if (tp->snd_una == tp->write_seq) { 5792 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5793 goto discard; 5794 } 5795 break; 5796 5797 case TCP_LAST_ACK: 5798 if (tp->snd_una == tp->write_seq) { 5799 tcp_update_metrics(sk); 5800 tcp_done(sk); 5801 goto discard; 5802 } 5803 break; 5804 } 5805 5806 /* step 6: check the URG bit */ 5807 tcp_urg(sk, skb, th); 5808 5809 /* step 7: process the segment text */ 5810 switch (sk->sk_state) { 5811 case TCP_CLOSE_WAIT: 5812 case TCP_CLOSING: 5813 case TCP_LAST_ACK: 5814 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5815 break; 5816 case TCP_FIN_WAIT1: 5817 case TCP_FIN_WAIT2: 5818 /* RFC 793 says to queue data in these states, 5819 * RFC 1122 says we MUST send a reset. 5820 * BSD 4.4 also does reset. 5821 */ 5822 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5823 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5824 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5826 tcp_reset(sk); 5827 return 1; 5828 } 5829 } 5830 /* Fall through */ 5831 case TCP_ESTABLISHED: 5832 tcp_data_queue(sk, skb); 5833 queued = 1; 5834 break; 5835 } 5836 5837 /* tcp_data could move socket to TIME-WAIT */ 5838 if (sk->sk_state != TCP_CLOSE) { 5839 tcp_data_snd_check(sk); 5840 tcp_ack_snd_check(sk); 5841 } 5842 5843 if (!queued) { 5844 discard: 5845 __kfree_skb(skb); 5846 } 5847 return 0; 5848 } 5849 EXPORT_SYMBOL(tcp_rcv_state_process); 5850 5851 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5852 { 5853 struct inet_request_sock *ireq = inet_rsk(req); 5854 5855 if (family == AF_INET) 5856 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 5857 &ireq->ir_rmt_addr, port); 5858 #if IS_ENABLED(CONFIG_IPV6) 5859 else if (family == AF_INET6) 5860 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"), 5861 &ireq->ir_v6_rmt_addr, port); 5862 #endif 5863 } 5864 5865 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5866 * 5867 * If we receive a SYN packet with these bits set, it means a 5868 * network is playing bad games with TOS bits. In order to 5869 * avoid possible false congestion notifications, we disable 5870 * TCP ECN negociation. 5871 * 5872 * Exception: tcp_ca wants ECN. This is required for DCTCP 5873 * congestion control; it requires setting ECT on all packets, 5874 * including SYN. We inverse the test in this case: If our 5875 * local socket wants ECN, but peer only set ece/cwr (but not 5876 * ECT in IP header) its probably a non-DCTCP aware sender. 5877 */ 5878 static void tcp_ecn_create_request(struct request_sock *req, 5879 const struct sk_buff *skb, 5880 const struct sock *listen_sk) 5881 { 5882 const struct tcphdr *th = tcp_hdr(skb); 5883 const struct net *net = sock_net(listen_sk); 5884 bool th_ecn = th->ece && th->cwr; 5885 bool ect, need_ecn; 5886 5887 if (!th_ecn) 5888 return; 5889 5890 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5891 need_ecn = tcp_ca_needs_ecn(listen_sk); 5892 5893 if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn) 5894 inet_rsk(req)->ecn_ok = 1; 5895 else if (ect && need_ecn) 5896 inet_rsk(req)->ecn_ok = 1; 5897 } 5898 5899 int tcp_conn_request(struct request_sock_ops *rsk_ops, 5900 const struct tcp_request_sock_ops *af_ops, 5901 struct sock *sk, struct sk_buff *skb) 5902 { 5903 struct tcp_options_received tmp_opt; 5904 struct request_sock *req; 5905 struct tcp_sock *tp = tcp_sk(sk); 5906 struct dst_entry *dst = NULL; 5907 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 5908 bool want_cookie = false, fastopen; 5909 struct flowi fl; 5910 struct tcp_fastopen_cookie foc = { .len = -1 }; 5911 int err; 5912 5913 5914 /* TW buckets are converted to open requests without 5915 * limitations, they conserve resources and peer is 5916 * evidently real one. 5917 */ 5918 if ((sysctl_tcp_syncookies == 2 || 5919 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 5920 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 5921 if (!want_cookie) 5922 goto drop; 5923 } 5924 5925 5926 /* Accept backlog is full. If we have already queued enough 5927 * of warm entries in syn queue, drop request. It is better than 5928 * clogging syn queue with openreqs with exponentially increasing 5929 * timeout. 5930 */ 5931 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 5932 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 5933 goto drop; 5934 } 5935 5936 req = inet_reqsk_alloc(rsk_ops); 5937 if (!req) 5938 goto drop; 5939 5940 tcp_rsk(req)->af_specific = af_ops; 5941 5942 tcp_clear_options(&tmp_opt); 5943 tmp_opt.mss_clamp = af_ops->mss_clamp; 5944 tmp_opt.user_mss = tp->rx_opt.user_mss; 5945 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 5946 5947 if (want_cookie && !tmp_opt.saw_tstamp) 5948 tcp_clear_options(&tmp_opt); 5949 5950 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 5951 tcp_openreq_init(req, &tmp_opt, skb, sk); 5952 5953 af_ops->init_req(req, sk, skb); 5954 5955 if (security_inet_conn_request(sk, skb, req)) 5956 goto drop_and_free; 5957 5958 if (!want_cookie || tmp_opt.tstamp_ok) 5959 tcp_ecn_create_request(req, skb, sk); 5960 5961 if (want_cookie) { 5962 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 5963 req->cookie_ts = tmp_opt.tstamp_ok; 5964 } else if (!isn) { 5965 /* VJ's idea. We save last timestamp seen 5966 * from the destination in peer table, when entering 5967 * state TIME-WAIT, and check against it before 5968 * accepting new connection request. 5969 * 5970 * If "isn" is not zero, this request hit alive 5971 * timewait bucket, so that all the necessary checks 5972 * are made in the function processing timewait state. 5973 */ 5974 if (tcp_death_row.sysctl_tw_recycle) { 5975 bool strict; 5976 5977 dst = af_ops->route_req(sk, &fl, req, &strict); 5978 5979 if (dst && strict && 5980 !tcp_peer_is_proven(req, dst, true, 5981 tmp_opt.saw_tstamp)) { 5982 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 5983 goto drop_and_release; 5984 } 5985 } 5986 /* Kill the following clause, if you dislike this way. */ 5987 else if (!sysctl_tcp_syncookies && 5988 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 5989 (sysctl_max_syn_backlog >> 2)) && 5990 !tcp_peer_is_proven(req, dst, false, 5991 tmp_opt.saw_tstamp)) { 5992 /* Without syncookies last quarter of 5993 * backlog is filled with destinations, 5994 * proven to be alive. 5995 * It means that we continue to communicate 5996 * to destinations, already remembered 5997 * to the moment of synflood. 5998 */ 5999 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6000 rsk_ops->family); 6001 goto drop_and_release; 6002 } 6003 6004 isn = af_ops->init_seq(skb); 6005 } 6006 if (!dst) { 6007 dst = af_ops->route_req(sk, &fl, req, NULL); 6008 if (!dst) 6009 goto drop_and_free; 6010 } 6011 6012 tcp_rsk(req)->snt_isn = isn; 6013 tcp_openreq_init_rwin(req, sk, dst); 6014 fastopen = !want_cookie && 6015 tcp_try_fastopen(sk, skb, req, &foc, dst); 6016 err = af_ops->send_synack(sk, dst, &fl, req, 6017 skb_get_queue_mapping(skb), &foc); 6018 if (!fastopen) { 6019 if (err || want_cookie) 6020 goto drop_and_free; 6021 6022 tcp_rsk(req)->listener = NULL; 6023 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6024 } 6025 6026 return 0; 6027 6028 drop_and_release: 6029 dst_release(dst); 6030 drop_and_free: 6031 reqsk_free(req); 6032 drop: 6033 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6034 return 0; 6035 } 6036 EXPORT_SYMBOL(tcp_conn_request); 6037