xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 4a44a19b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 100;
92 
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 
103 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 
201 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203 
204 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
205 {
206 	if (tp->ecn_flags & TCP_ECN_OK)
207 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209 
210 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 	if (tcp_hdr(skb)->cwr)
213 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
217 {
218 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220 
221 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
224 	case INET_ECN_NOT_ECT:
225 		/* Funny extension: if ECT is not set on a segment,
226 		 * and we already seen ECT on a previous segment,
227 		 * it is probably a retransmit.
228 		 */
229 		if (tp->ecn_flags & TCP_ECN_SEEN)
230 			tcp_enter_quickack_mode((struct sock *)tp);
231 		break;
232 	case INET_ECN_CE:
233 		if (tcp_ca_needs_ecn((struct sock *)tp))
234 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
235 
236 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 			/* Better not delay acks, sender can have a very low cwnd */
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 		}
241 		tp->ecn_flags |= TCP_ECN_SEEN;
242 		break;
243 	default:
244 		if (tcp_ca_needs_ecn((struct sock *)tp))
245 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
246 		tp->ecn_flags |= TCP_ECN_SEEN;
247 		break;
248 	}
249 }
250 
251 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252 {
253 	if (tp->ecn_flags & TCP_ECN_OK)
254 		__tcp_ecn_check_ce(tp, skb);
255 }
256 
257 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
258 {
259 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
260 		tp->ecn_flags &= ~TCP_ECN_OK;
261 }
262 
263 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
264 {
265 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
266 		tp->ecn_flags &= ~TCP_ECN_OK;
267 }
268 
269 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
270 {
271 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
272 		return true;
273 	return false;
274 }
275 
276 /* Buffer size and advertised window tuning.
277  *
278  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
279  */
280 
281 static void tcp_sndbuf_expand(struct sock *sk)
282 {
283 	const struct tcp_sock *tp = tcp_sk(sk);
284 	int sndmem, per_mss;
285 	u32 nr_segs;
286 
287 	/* Worst case is non GSO/TSO : each frame consumes one skb
288 	 * and skb->head is kmalloced using power of two area of memory
289 	 */
290 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
291 		  MAX_TCP_HEADER +
292 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
293 
294 	per_mss = roundup_pow_of_two(per_mss) +
295 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
296 
297 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
298 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
299 
300 	/* Fast Recovery (RFC 5681 3.2) :
301 	 * Cubic needs 1.7 factor, rounded to 2 to include
302 	 * extra cushion (application might react slowly to POLLOUT)
303 	 */
304 	sndmem = 2 * nr_segs * per_mss;
305 
306 	if (sk->sk_sndbuf < sndmem)
307 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
308 }
309 
310 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
311  *
312  * All tcp_full_space() is split to two parts: "network" buffer, allocated
313  * forward and advertised in receiver window (tp->rcv_wnd) and
314  * "application buffer", required to isolate scheduling/application
315  * latencies from network.
316  * window_clamp is maximal advertised window. It can be less than
317  * tcp_full_space(), in this case tcp_full_space() - window_clamp
318  * is reserved for "application" buffer. The less window_clamp is
319  * the smoother our behaviour from viewpoint of network, but the lower
320  * throughput and the higher sensitivity of the connection to losses. 8)
321  *
322  * rcv_ssthresh is more strict window_clamp used at "slow start"
323  * phase to predict further behaviour of this connection.
324  * It is used for two goals:
325  * - to enforce header prediction at sender, even when application
326  *   requires some significant "application buffer". It is check #1.
327  * - to prevent pruning of receive queue because of misprediction
328  *   of receiver window. Check #2.
329  *
330  * The scheme does not work when sender sends good segments opening
331  * window and then starts to feed us spaghetti. But it should work
332  * in common situations. Otherwise, we have to rely on queue collapsing.
333  */
334 
335 /* Slow part of check#2. */
336 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
337 {
338 	struct tcp_sock *tp = tcp_sk(sk);
339 	/* Optimize this! */
340 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
341 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
342 
343 	while (tp->rcv_ssthresh <= window) {
344 		if (truesize <= skb->len)
345 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
346 
347 		truesize >>= 1;
348 		window >>= 1;
349 	}
350 	return 0;
351 }
352 
353 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 
357 	/* Check #1 */
358 	if (tp->rcv_ssthresh < tp->window_clamp &&
359 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
360 	    !sk_under_memory_pressure(sk)) {
361 		int incr;
362 
363 		/* Check #2. Increase window, if skb with such overhead
364 		 * will fit to rcvbuf in future.
365 		 */
366 		if (tcp_win_from_space(skb->truesize) <= skb->len)
367 			incr = 2 * tp->advmss;
368 		else
369 			incr = __tcp_grow_window(sk, skb);
370 
371 		if (incr) {
372 			incr = max_t(int, incr, 2 * skb->len);
373 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
374 					       tp->window_clamp);
375 			inet_csk(sk)->icsk_ack.quick |= 1;
376 		}
377 	}
378 }
379 
380 /* 3. Tuning rcvbuf, when connection enters established state. */
381 static void tcp_fixup_rcvbuf(struct sock *sk)
382 {
383 	u32 mss = tcp_sk(sk)->advmss;
384 	int rcvmem;
385 
386 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
387 		 tcp_default_init_rwnd(mss);
388 
389 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
390 	 * Allow enough cushion so that sender is not limited by our window
391 	 */
392 	if (sysctl_tcp_moderate_rcvbuf)
393 		rcvmem <<= 2;
394 
395 	if (sk->sk_rcvbuf < rcvmem)
396 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
397 }
398 
399 /* 4. Try to fixup all. It is made immediately after connection enters
400  *    established state.
401  */
402 void tcp_init_buffer_space(struct sock *sk)
403 {
404 	struct tcp_sock *tp = tcp_sk(sk);
405 	int maxwin;
406 
407 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
408 		tcp_fixup_rcvbuf(sk);
409 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
410 		tcp_sndbuf_expand(sk);
411 
412 	tp->rcvq_space.space = tp->rcv_wnd;
413 	tp->rcvq_space.time = tcp_time_stamp;
414 	tp->rcvq_space.seq = tp->copied_seq;
415 
416 	maxwin = tcp_full_space(sk);
417 
418 	if (tp->window_clamp >= maxwin) {
419 		tp->window_clamp = maxwin;
420 
421 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
422 			tp->window_clamp = max(maxwin -
423 					       (maxwin >> sysctl_tcp_app_win),
424 					       4 * tp->advmss);
425 	}
426 
427 	/* Force reservation of one segment. */
428 	if (sysctl_tcp_app_win &&
429 	    tp->window_clamp > 2 * tp->advmss &&
430 	    tp->window_clamp + tp->advmss > maxwin)
431 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
432 
433 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
434 	tp->snd_cwnd_stamp = tcp_time_stamp;
435 }
436 
437 /* 5. Recalculate window clamp after socket hit its memory bounds. */
438 static void tcp_clamp_window(struct sock *sk)
439 {
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	struct inet_connection_sock *icsk = inet_csk(sk);
442 
443 	icsk->icsk_ack.quick = 0;
444 
445 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
446 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
447 	    !sk_under_memory_pressure(sk) &&
448 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
449 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
450 				    sysctl_tcp_rmem[2]);
451 	}
452 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
453 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
454 }
455 
456 /* Initialize RCV_MSS value.
457  * RCV_MSS is an our guess about MSS used by the peer.
458  * We haven't any direct information about the MSS.
459  * It's better to underestimate the RCV_MSS rather than overestimate.
460  * Overestimations make us ACKing less frequently than needed.
461  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
462  */
463 void tcp_initialize_rcv_mss(struct sock *sk)
464 {
465 	const struct tcp_sock *tp = tcp_sk(sk);
466 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
467 
468 	hint = min(hint, tp->rcv_wnd / 2);
469 	hint = min(hint, TCP_MSS_DEFAULT);
470 	hint = max(hint, TCP_MIN_MSS);
471 
472 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
473 }
474 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
475 
476 /* Receiver "autotuning" code.
477  *
478  * The algorithm for RTT estimation w/o timestamps is based on
479  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
480  * <http://public.lanl.gov/radiant/pubs.html#DRS>
481  *
482  * More detail on this code can be found at
483  * <http://staff.psc.edu/jheffner/>,
484  * though this reference is out of date.  A new paper
485  * is pending.
486  */
487 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
488 {
489 	u32 new_sample = tp->rcv_rtt_est.rtt;
490 	long m = sample;
491 
492 	if (m == 0)
493 		m = 1;
494 
495 	if (new_sample != 0) {
496 		/* If we sample in larger samples in the non-timestamp
497 		 * case, we could grossly overestimate the RTT especially
498 		 * with chatty applications or bulk transfer apps which
499 		 * are stalled on filesystem I/O.
500 		 *
501 		 * Also, since we are only going for a minimum in the
502 		 * non-timestamp case, we do not smooth things out
503 		 * else with timestamps disabled convergence takes too
504 		 * long.
505 		 */
506 		if (!win_dep) {
507 			m -= (new_sample >> 3);
508 			new_sample += m;
509 		} else {
510 			m <<= 3;
511 			if (m < new_sample)
512 				new_sample = m;
513 		}
514 	} else {
515 		/* No previous measure. */
516 		new_sample = m << 3;
517 	}
518 
519 	if (tp->rcv_rtt_est.rtt != new_sample)
520 		tp->rcv_rtt_est.rtt = new_sample;
521 }
522 
523 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
524 {
525 	if (tp->rcv_rtt_est.time == 0)
526 		goto new_measure;
527 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
528 		return;
529 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
530 
531 new_measure:
532 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
533 	tp->rcv_rtt_est.time = tcp_time_stamp;
534 }
535 
536 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
537 					  const struct sk_buff *skb)
538 {
539 	struct tcp_sock *tp = tcp_sk(sk);
540 	if (tp->rx_opt.rcv_tsecr &&
541 	    (TCP_SKB_CB(skb)->end_seq -
542 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
543 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
544 }
545 
546 /*
547  * This function should be called every time data is copied to user space.
548  * It calculates the appropriate TCP receive buffer space.
549  */
550 void tcp_rcv_space_adjust(struct sock *sk)
551 {
552 	struct tcp_sock *tp = tcp_sk(sk);
553 	int time;
554 	int copied;
555 
556 	time = tcp_time_stamp - tp->rcvq_space.time;
557 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
558 		return;
559 
560 	/* Number of bytes copied to user in last RTT */
561 	copied = tp->copied_seq - tp->rcvq_space.seq;
562 	if (copied <= tp->rcvq_space.space)
563 		goto new_measure;
564 
565 	/* A bit of theory :
566 	 * copied = bytes received in previous RTT, our base window
567 	 * To cope with packet losses, we need a 2x factor
568 	 * To cope with slow start, and sender growing its cwin by 100 %
569 	 * every RTT, we need a 4x factor, because the ACK we are sending
570 	 * now is for the next RTT, not the current one :
571 	 * <prev RTT . ><current RTT .. ><next RTT .... >
572 	 */
573 
574 	if (sysctl_tcp_moderate_rcvbuf &&
575 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
576 		int rcvwin, rcvmem, rcvbuf;
577 
578 		/* minimal window to cope with packet losses, assuming
579 		 * steady state. Add some cushion because of small variations.
580 		 */
581 		rcvwin = (copied << 1) + 16 * tp->advmss;
582 
583 		/* If rate increased by 25%,
584 		 *	assume slow start, rcvwin = 3 * copied
585 		 * If rate increased by 50%,
586 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
587 		 */
588 		if (copied >=
589 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
590 			if (copied >=
591 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
592 				rcvwin <<= 1;
593 			else
594 				rcvwin += (rcvwin >> 1);
595 		}
596 
597 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
598 		while (tcp_win_from_space(rcvmem) < tp->advmss)
599 			rcvmem += 128;
600 
601 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
602 		if (rcvbuf > sk->sk_rcvbuf) {
603 			sk->sk_rcvbuf = rcvbuf;
604 
605 			/* Make the window clamp follow along.  */
606 			tp->window_clamp = rcvwin;
607 		}
608 	}
609 	tp->rcvq_space.space = copied;
610 
611 new_measure:
612 	tp->rcvq_space.seq = tp->copied_seq;
613 	tp->rcvq_space.time = tcp_time_stamp;
614 }
615 
616 /* There is something which you must keep in mind when you analyze the
617  * behavior of the tp->ato delayed ack timeout interval.  When a
618  * connection starts up, we want to ack as quickly as possible.  The
619  * problem is that "good" TCP's do slow start at the beginning of data
620  * transmission.  The means that until we send the first few ACK's the
621  * sender will sit on his end and only queue most of his data, because
622  * he can only send snd_cwnd unacked packets at any given time.  For
623  * each ACK we send, he increments snd_cwnd and transmits more of his
624  * queue.  -DaveM
625  */
626 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
627 {
628 	struct tcp_sock *tp = tcp_sk(sk);
629 	struct inet_connection_sock *icsk = inet_csk(sk);
630 	u32 now;
631 
632 	inet_csk_schedule_ack(sk);
633 
634 	tcp_measure_rcv_mss(sk, skb);
635 
636 	tcp_rcv_rtt_measure(tp);
637 
638 	now = tcp_time_stamp;
639 
640 	if (!icsk->icsk_ack.ato) {
641 		/* The _first_ data packet received, initialize
642 		 * delayed ACK engine.
643 		 */
644 		tcp_incr_quickack(sk);
645 		icsk->icsk_ack.ato = TCP_ATO_MIN;
646 	} else {
647 		int m = now - icsk->icsk_ack.lrcvtime;
648 
649 		if (m <= TCP_ATO_MIN / 2) {
650 			/* The fastest case is the first. */
651 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
652 		} else if (m < icsk->icsk_ack.ato) {
653 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
654 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
655 				icsk->icsk_ack.ato = icsk->icsk_rto;
656 		} else if (m > icsk->icsk_rto) {
657 			/* Too long gap. Apparently sender failed to
658 			 * restart window, so that we send ACKs quickly.
659 			 */
660 			tcp_incr_quickack(sk);
661 			sk_mem_reclaim(sk);
662 		}
663 	}
664 	icsk->icsk_ack.lrcvtime = now;
665 
666 	tcp_ecn_check_ce(tp, skb);
667 
668 	if (skb->len >= 128)
669 		tcp_grow_window(sk, skb);
670 }
671 
672 /* Called to compute a smoothed rtt estimate. The data fed to this
673  * routine either comes from timestamps, or from segments that were
674  * known _not_ to have been retransmitted [see Karn/Partridge
675  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
676  * piece by Van Jacobson.
677  * NOTE: the next three routines used to be one big routine.
678  * To save cycles in the RFC 1323 implementation it was better to break
679  * it up into three procedures. -- erics
680  */
681 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
682 {
683 	struct tcp_sock *tp = tcp_sk(sk);
684 	long m = mrtt_us; /* RTT */
685 	u32 srtt = tp->srtt_us;
686 
687 	/*	The following amusing code comes from Jacobson's
688 	 *	article in SIGCOMM '88.  Note that rtt and mdev
689 	 *	are scaled versions of rtt and mean deviation.
690 	 *	This is designed to be as fast as possible
691 	 *	m stands for "measurement".
692 	 *
693 	 *	On a 1990 paper the rto value is changed to:
694 	 *	RTO = rtt + 4 * mdev
695 	 *
696 	 * Funny. This algorithm seems to be very broken.
697 	 * These formulae increase RTO, when it should be decreased, increase
698 	 * too slowly, when it should be increased quickly, decrease too quickly
699 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
700 	 * does not matter how to _calculate_ it. Seems, it was trap
701 	 * that VJ failed to avoid. 8)
702 	 */
703 	if (srtt != 0) {
704 		m -= (srtt >> 3);	/* m is now error in rtt est */
705 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
706 		if (m < 0) {
707 			m = -m;		/* m is now abs(error) */
708 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
709 			/* This is similar to one of Eifel findings.
710 			 * Eifel blocks mdev updates when rtt decreases.
711 			 * This solution is a bit different: we use finer gain
712 			 * for mdev in this case (alpha*beta).
713 			 * Like Eifel it also prevents growth of rto,
714 			 * but also it limits too fast rto decreases,
715 			 * happening in pure Eifel.
716 			 */
717 			if (m > 0)
718 				m >>= 3;
719 		} else {
720 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
721 		}
722 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
723 		if (tp->mdev_us > tp->mdev_max_us) {
724 			tp->mdev_max_us = tp->mdev_us;
725 			if (tp->mdev_max_us > tp->rttvar_us)
726 				tp->rttvar_us = tp->mdev_max_us;
727 		}
728 		if (after(tp->snd_una, tp->rtt_seq)) {
729 			if (tp->mdev_max_us < tp->rttvar_us)
730 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
731 			tp->rtt_seq = tp->snd_nxt;
732 			tp->mdev_max_us = tcp_rto_min_us(sk);
733 		}
734 	} else {
735 		/* no previous measure. */
736 		srtt = m << 3;		/* take the measured time to be rtt */
737 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
738 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
739 		tp->mdev_max_us = tp->rttvar_us;
740 		tp->rtt_seq = tp->snd_nxt;
741 	}
742 	tp->srtt_us = max(1U, srtt);
743 }
744 
745 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
746  * Note: TCP stack does not yet implement pacing.
747  * FQ packet scheduler can be used to implement cheap but effective
748  * TCP pacing, to smooth the burst on large writes when packets
749  * in flight is significantly lower than cwnd (or rwin)
750  */
751 static void tcp_update_pacing_rate(struct sock *sk)
752 {
753 	const struct tcp_sock *tp = tcp_sk(sk);
754 	u64 rate;
755 
756 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
757 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
758 
759 	rate *= max(tp->snd_cwnd, tp->packets_out);
760 
761 	if (likely(tp->srtt_us))
762 		do_div(rate, tp->srtt_us);
763 
764 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
765 	 * without any lock. We want to make sure compiler wont store
766 	 * intermediate values in this location.
767 	 */
768 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
769 						sk->sk_max_pacing_rate);
770 }
771 
772 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
773  * routine referred to above.
774  */
775 static void tcp_set_rto(struct sock *sk)
776 {
777 	const struct tcp_sock *tp = tcp_sk(sk);
778 	/* Old crap is replaced with new one. 8)
779 	 *
780 	 * More seriously:
781 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
782 	 *    It cannot be less due to utterly erratic ACK generation made
783 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
784 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
785 	 *    is invisible. Actually, Linux-2.4 also generates erratic
786 	 *    ACKs in some circumstances.
787 	 */
788 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
789 
790 	/* 2. Fixups made earlier cannot be right.
791 	 *    If we do not estimate RTO correctly without them,
792 	 *    all the algo is pure shit and should be replaced
793 	 *    with correct one. It is exactly, which we pretend to do.
794 	 */
795 
796 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
797 	 * guarantees that rto is higher.
798 	 */
799 	tcp_bound_rto(sk);
800 }
801 
802 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
803 {
804 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
805 
806 	if (!cwnd)
807 		cwnd = TCP_INIT_CWND;
808 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
809 }
810 
811 /*
812  * Packet counting of FACK is based on in-order assumptions, therefore TCP
813  * disables it when reordering is detected
814  */
815 void tcp_disable_fack(struct tcp_sock *tp)
816 {
817 	/* RFC3517 uses different metric in lost marker => reset on change */
818 	if (tcp_is_fack(tp))
819 		tp->lost_skb_hint = NULL;
820 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
821 }
822 
823 /* Take a notice that peer is sending D-SACKs */
824 static void tcp_dsack_seen(struct tcp_sock *tp)
825 {
826 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
827 }
828 
829 static void tcp_update_reordering(struct sock *sk, const int metric,
830 				  const int ts)
831 {
832 	struct tcp_sock *tp = tcp_sk(sk);
833 	if (metric > tp->reordering) {
834 		int mib_idx;
835 
836 		tp->reordering = min(TCP_MAX_REORDERING, metric);
837 
838 		/* This exciting event is worth to be remembered. 8) */
839 		if (ts)
840 			mib_idx = LINUX_MIB_TCPTSREORDER;
841 		else if (tcp_is_reno(tp))
842 			mib_idx = LINUX_MIB_TCPRENOREORDER;
843 		else if (tcp_is_fack(tp))
844 			mib_idx = LINUX_MIB_TCPFACKREORDER;
845 		else
846 			mib_idx = LINUX_MIB_TCPSACKREORDER;
847 
848 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
849 #if FASTRETRANS_DEBUG > 1
850 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
851 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
852 			 tp->reordering,
853 			 tp->fackets_out,
854 			 tp->sacked_out,
855 			 tp->undo_marker ? tp->undo_retrans : 0);
856 #endif
857 		tcp_disable_fack(tp);
858 	}
859 
860 	if (metric > 0)
861 		tcp_disable_early_retrans(tp);
862 }
863 
864 /* This must be called before lost_out is incremented */
865 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
866 {
867 	if ((tp->retransmit_skb_hint == NULL) ||
868 	    before(TCP_SKB_CB(skb)->seq,
869 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
870 		tp->retransmit_skb_hint = skb;
871 
872 	if (!tp->lost_out ||
873 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
874 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
875 }
876 
877 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
878 {
879 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
880 		tcp_verify_retransmit_hint(tp, skb);
881 
882 		tp->lost_out += tcp_skb_pcount(skb);
883 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
884 	}
885 }
886 
887 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
888 					    struct sk_buff *skb)
889 {
890 	tcp_verify_retransmit_hint(tp, skb);
891 
892 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
893 		tp->lost_out += tcp_skb_pcount(skb);
894 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
895 	}
896 }
897 
898 /* This procedure tags the retransmission queue when SACKs arrive.
899  *
900  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
901  * Packets in queue with these bits set are counted in variables
902  * sacked_out, retrans_out and lost_out, correspondingly.
903  *
904  * Valid combinations are:
905  * Tag  InFlight	Description
906  * 0	1		- orig segment is in flight.
907  * S	0		- nothing flies, orig reached receiver.
908  * L	0		- nothing flies, orig lost by net.
909  * R	2		- both orig and retransmit are in flight.
910  * L|R	1		- orig is lost, retransmit is in flight.
911  * S|R  1		- orig reached receiver, retrans is still in flight.
912  * (L|S|R is logically valid, it could occur when L|R is sacked,
913  *  but it is equivalent to plain S and code short-curcuits it to S.
914  *  L|S is logically invalid, it would mean -1 packet in flight 8))
915  *
916  * These 6 states form finite state machine, controlled by the following events:
917  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
918  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
919  * 3. Loss detection event of two flavors:
920  *	A. Scoreboard estimator decided the packet is lost.
921  *	   A'. Reno "three dupacks" marks head of queue lost.
922  *	   A''. Its FACK modification, head until snd.fack is lost.
923  *	B. SACK arrives sacking SND.NXT at the moment, when the
924  *	   segment was retransmitted.
925  * 4. D-SACK added new rule: D-SACK changes any tag to S.
926  *
927  * It is pleasant to note, that state diagram turns out to be commutative,
928  * so that we are allowed not to be bothered by order of our actions,
929  * when multiple events arrive simultaneously. (see the function below).
930  *
931  * Reordering detection.
932  * --------------------
933  * Reordering metric is maximal distance, which a packet can be displaced
934  * in packet stream. With SACKs we can estimate it:
935  *
936  * 1. SACK fills old hole and the corresponding segment was not
937  *    ever retransmitted -> reordering. Alas, we cannot use it
938  *    when segment was retransmitted.
939  * 2. The last flaw is solved with D-SACK. D-SACK arrives
940  *    for retransmitted and already SACKed segment -> reordering..
941  * Both of these heuristics are not used in Loss state, when we cannot
942  * account for retransmits accurately.
943  *
944  * SACK block validation.
945  * ----------------------
946  *
947  * SACK block range validation checks that the received SACK block fits to
948  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
949  * Note that SND.UNA is not included to the range though being valid because
950  * it means that the receiver is rather inconsistent with itself reporting
951  * SACK reneging when it should advance SND.UNA. Such SACK block this is
952  * perfectly valid, however, in light of RFC2018 which explicitly states
953  * that "SACK block MUST reflect the newest segment.  Even if the newest
954  * segment is going to be discarded ...", not that it looks very clever
955  * in case of head skb. Due to potentional receiver driven attacks, we
956  * choose to avoid immediate execution of a walk in write queue due to
957  * reneging and defer head skb's loss recovery to standard loss recovery
958  * procedure that will eventually trigger (nothing forbids us doing this).
959  *
960  * Implements also blockage to start_seq wrap-around. Problem lies in the
961  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
962  * there's no guarantee that it will be before snd_nxt (n). The problem
963  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
964  * wrap (s_w):
965  *
966  *         <- outs wnd ->                          <- wrapzone ->
967  *         u     e      n                         u_w   e_w  s n_w
968  *         |     |      |                          |     |   |  |
969  * |<------------+------+----- TCP seqno space --------------+---------->|
970  * ...-- <2^31 ->|                                           |<--------...
971  * ...---- >2^31 ------>|                                    |<--------...
972  *
973  * Current code wouldn't be vulnerable but it's better still to discard such
974  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
975  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
976  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
977  * equal to the ideal case (infinite seqno space without wrap caused issues).
978  *
979  * With D-SACK the lower bound is extended to cover sequence space below
980  * SND.UNA down to undo_marker, which is the last point of interest. Yet
981  * again, D-SACK block must not to go across snd_una (for the same reason as
982  * for the normal SACK blocks, explained above). But there all simplicity
983  * ends, TCP might receive valid D-SACKs below that. As long as they reside
984  * fully below undo_marker they do not affect behavior in anyway and can
985  * therefore be safely ignored. In rare cases (which are more or less
986  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
987  * fragmentation and packet reordering past skb's retransmission. To consider
988  * them correctly, the acceptable range must be extended even more though
989  * the exact amount is rather hard to quantify. However, tp->max_window can
990  * be used as an exaggerated estimate.
991  */
992 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
993 				   u32 start_seq, u32 end_seq)
994 {
995 	/* Too far in future, or reversed (interpretation is ambiguous) */
996 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
997 		return false;
998 
999 	/* Nasty start_seq wrap-around check (see comments above) */
1000 	if (!before(start_seq, tp->snd_nxt))
1001 		return false;
1002 
1003 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1004 	 * start_seq == snd_una is non-sensical (see comments above)
1005 	 */
1006 	if (after(start_seq, tp->snd_una))
1007 		return true;
1008 
1009 	if (!is_dsack || !tp->undo_marker)
1010 		return false;
1011 
1012 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1013 	if (after(end_seq, tp->snd_una))
1014 		return false;
1015 
1016 	if (!before(start_seq, tp->undo_marker))
1017 		return true;
1018 
1019 	/* Too old */
1020 	if (!after(end_seq, tp->undo_marker))
1021 		return false;
1022 
1023 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1024 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1025 	 */
1026 	return !before(start_seq, end_seq - tp->max_window);
1027 }
1028 
1029 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1030  * Event "B". Later note: FACK people cheated me again 8), we have to account
1031  * for reordering! Ugly, but should help.
1032  *
1033  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1034  * less than what is now known to be received by the other end (derived from
1035  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1036  * retransmitted skbs to avoid some costly processing per ACKs.
1037  */
1038 static void tcp_mark_lost_retrans(struct sock *sk)
1039 {
1040 	const struct inet_connection_sock *icsk = inet_csk(sk);
1041 	struct tcp_sock *tp = tcp_sk(sk);
1042 	struct sk_buff *skb;
1043 	int cnt = 0;
1044 	u32 new_low_seq = tp->snd_nxt;
1045 	u32 received_upto = tcp_highest_sack_seq(tp);
1046 
1047 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1048 	    !after(received_upto, tp->lost_retrans_low) ||
1049 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1050 		return;
1051 
1052 	tcp_for_write_queue(skb, sk) {
1053 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1054 
1055 		if (skb == tcp_send_head(sk))
1056 			break;
1057 		if (cnt == tp->retrans_out)
1058 			break;
1059 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1060 			continue;
1061 
1062 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1063 			continue;
1064 
1065 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1066 		 * constraint here (see above) but figuring out that at
1067 		 * least tp->reordering SACK blocks reside between ack_seq
1068 		 * and received_upto is not easy task to do cheaply with
1069 		 * the available datastructures.
1070 		 *
1071 		 * Whether FACK should check here for tp->reordering segs
1072 		 * in-between one could argue for either way (it would be
1073 		 * rather simple to implement as we could count fack_count
1074 		 * during the walk and do tp->fackets_out - fack_count).
1075 		 */
1076 		if (after(received_upto, ack_seq)) {
1077 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1078 			tp->retrans_out -= tcp_skb_pcount(skb);
1079 
1080 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1081 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1082 		} else {
1083 			if (before(ack_seq, new_low_seq))
1084 				new_low_seq = ack_seq;
1085 			cnt += tcp_skb_pcount(skb);
1086 		}
1087 	}
1088 
1089 	if (tp->retrans_out)
1090 		tp->lost_retrans_low = new_low_seq;
1091 }
1092 
1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094 			    struct tcp_sack_block_wire *sp, int num_sacks,
1095 			    u32 prior_snd_una)
1096 {
1097 	struct tcp_sock *tp = tcp_sk(sk);
1098 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1100 	bool dup_sack = false;
1101 
1102 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1103 		dup_sack = true;
1104 		tcp_dsack_seen(tp);
1105 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1106 	} else if (num_sacks > 1) {
1107 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1109 
1110 		if (!after(end_seq_0, end_seq_1) &&
1111 		    !before(start_seq_0, start_seq_1)) {
1112 			dup_sack = true;
1113 			tcp_dsack_seen(tp);
1114 			NET_INC_STATS_BH(sock_net(sk),
1115 					LINUX_MIB_TCPDSACKOFORECV);
1116 		}
1117 	}
1118 
1119 	/* D-SACK for already forgotten data... Do dumb counting. */
1120 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1121 	    !after(end_seq_0, prior_snd_una) &&
1122 	    after(end_seq_0, tp->undo_marker))
1123 		tp->undo_retrans--;
1124 
1125 	return dup_sack;
1126 }
1127 
1128 struct tcp_sacktag_state {
1129 	int	reord;
1130 	int	fack_count;
1131 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1132 	int	flag;
1133 };
1134 
1135 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1136  * the incoming SACK may not exactly match but we can find smaller MSS
1137  * aligned portion of it that matches. Therefore we might need to fragment
1138  * which may fail and creates some hassle (caller must handle error case
1139  * returns).
1140  *
1141  * FIXME: this could be merged to shift decision code
1142  */
1143 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1144 				  u32 start_seq, u32 end_seq)
1145 {
1146 	int err;
1147 	bool in_sack;
1148 	unsigned int pkt_len;
1149 	unsigned int mss;
1150 
1151 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1152 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153 
1154 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1155 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1156 		mss = tcp_skb_mss(skb);
1157 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1158 
1159 		if (!in_sack) {
1160 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1161 			if (pkt_len < mss)
1162 				pkt_len = mss;
1163 		} else {
1164 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1165 			if (pkt_len < mss)
1166 				return -EINVAL;
1167 		}
1168 
1169 		/* Round if necessary so that SACKs cover only full MSSes
1170 		 * and/or the remaining small portion (if present)
1171 		 */
1172 		if (pkt_len > mss) {
1173 			unsigned int new_len = (pkt_len / mss) * mss;
1174 			if (!in_sack && new_len < pkt_len) {
1175 				new_len += mss;
1176 				if (new_len >= skb->len)
1177 					return 0;
1178 			}
1179 			pkt_len = new_len;
1180 		}
1181 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1182 		if (err < 0)
1183 			return err;
1184 	}
1185 
1186 	return in_sack;
1187 }
1188 
1189 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1190 static u8 tcp_sacktag_one(struct sock *sk,
1191 			  struct tcp_sacktag_state *state, u8 sacked,
1192 			  u32 start_seq, u32 end_seq,
1193 			  int dup_sack, int pcount,
1194 			  const struct skb_mstamp *xmit_time)
1195 {
1196 	struct tcp_sock *tp = tcp_sk(sk);
1197 	int fack_count = state->fack_count;
1198 
1199 	/* Account D-SACK for retransmitted packet. */
1200 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1202 		    after(end_seq, tp->undo_marker))
1203 			tp->undo_retrans--;
1204 		if (sacked & TCPCB_SACKED_ACKED)
1205 			state->reord = min(fack_count, state->reord);
1206 	}
1207 
1208 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1209 	if (!after(end_seq, tp->snd_una))
1210 		return sacked;
1211 
1212 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1213 		if (sacked & TCPCB_SACKED_RETRANS) {
1214 			/* If the segment is not tagged as lost,
1215 			 * we do not clear RETRANS, believing
1216 			 * that retransmission is still in flight.
1217 			 */
1218 			if (sacked & TCPCB_LOST) {
1219 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1220 				tp->lost_out -= pcount;
1221 				tp->retrans_out -= pcount;
1222 			}
1223 		} else {
1224 			if (!(sacked & TCPCB_RETRANS)) {
1225 				/* New sack for not retransmitted frame,
1226 				 * which was in hole. It is reordering.
1227 				 */
1228 				if (before(start_seq,
1229 					   tcp_highest_sack_seq(tp)))
1230 					state->reord = min(fack_count,
1231 							   state->reord);
1232 				if (!after(end_seq, tp->high_seq))
1233 					state->flag |= FLAG_ORIG_SACK_ACKED;
1234 				/* Pick the earliest sequence sacked for RTT */
1235 				if (state->rtt_us < 0) {
1236 					struct skb_mstamp now;
1237 
1238 					skb_mstamp_get(&now);
1239 					state->rtt_us = skb_mstamp_us_delta(&now,
1240 								xmit_time);
1241 				}
1242 			}
1243 
1244 			if (sacked & TCPCB_LOST) {
1245 				sacked &= ~TCPCB_LOST;
1246 				tp->lost_out -= pcount;
1247 			}
1248 		}
1249 
1250 		sacked |= TCPCB_SACKED_ACKED;
1251 		state->flag |= FLAG_DATA_SACKED;
1252 		tp->sacked_out += pcount;
1253 
1254 		fack_count += pcount;
1255 
1256 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1257 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1258 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1259 			tp->lost_cnt_hint += pcount;
1260 
1261 		if (fack_count > tp->fackets_out)
1262 			tp->fackets_out = fack_count;
1263 	}
1264 
1265 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1266 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1267 	 * are accounted above as well.
1268 	 */
1269 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1270 		sacked &= ~TCPCB_SACKED_RETRANS;
1271 		tp->retrans_out -= pcount;
1272 	}
1273 
1274 	return sacked;
1275 }
1276 
1277 /* Shift newly-SACKed bytes from this skb to the immediately previous
1278  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1279  */
1280 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1281 			    struct tcp_sacktag_state *state,
1282 			    unsigned int pcount, int shifted, int mss,
1283 			    bool dup_sack)
1284 {
1285 	struct tcp_sock *tp = tcp_sk(sk);
1286 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1287 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1288 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1289 
1290 	BUG_ON(!pcount);
1291 
1292 	/* Adjust counters and hints for the newly sacked sequence
1293 	 * range but discard the return value since prev is already
1294 	 * marked. We must tag the range first because the seq
1295 	 * advancement below implicitly advances
1296 	 * tcp_highest_sack_seq() when skb is highest_sack.
1297 	 */
1298 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1299 			start_seq, end_seq, dup_sack, pcount,
1300 			&skb->skb_mstamp);
1301 
1302 	if (skb == tp->lost_skb_hint)
1303 		tp->lost_cnt_hint += pcount;
1304 
1305 	TCP_SKB_CB(prev)->end_seq += shifted;
1306 	TCP_SKB_CB(skb)->seq += shifted;
1307 
1308 	tcp_skb_pcount_add(prev, pcount);
1309 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1310 	tcp_skb_pcount_add(skb, -pcount);
1311 
1312 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1313 	 * in theory this shouldn't be necessary but as long as DSACK
1314 	 * code can come after this skb later on it's better to keep
1315 	 * setting gso_size to something.
1316 	 */
1317 	if (!skb_shinfo(prev)->gso_size) {
1318 		skb_shinfo(prev)->gso_size = mss;
1319 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1320 	}
1321 
1322 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 	if (tcp_skb_pcount(skb) <= 1) {
1324 		skb_shinfo(skb)->gso_size = 0;
1325 		skb_shinfo(skb)->gso_type = 0;
1326 	}
1327 
1328 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330 
1331 	if (skb->len > 0) {
1332 		BUG_ON(!tcp_skb_pcount(skb));
1333 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 		return false;
1335 	}
1336 
1337 	/* Whole SKB was eaten :-) */
1338 
1339 	if (skb == tp->retransmit_skb_hint)
1340 		tp->retransmit_skb_hint = prev;
1341 	if (skb == tp->lost_skb_hint) {
1342 		tp->lost_skb_hint = prev;
1343 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 	}
1345 
1346 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348 		TCP_SKB_CB(prev)->end_seq++;
1349 
1350 	if (skb == tcp_highest_sack(sk))
1351 		tcp_advance_highest_sack(sk, skb);
1352 
1353 	tcp_unlink_write_queue(skb, sk);
1354 	sk_wmem_free_skb(sk, skb);
1355 
1356 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1357 
1358 	return true;
1359 }
1360 
1361 /* I wish gso_size would have a bit more sane initialization than
1362  * something-or-zero which complicates things
1363  */
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1365 {
1366 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367 }
1368 
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1371 {
1372 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373 }
1374 
1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1376  * skb.
1377  */
1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379 					  struct tcp_sacktag_state *state,
1380 					  u32 start_seq, u32 end_seq,
1381 					  bool dup_sack)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct sk_buff *prev;
1385 	int mss;
1386 	int pcount = 0;
1387 	int len;
1388 	int in_sack;
1389 
1390 	if (!sk_can_gso(sk))
1391 		goto fallback;
1392 
1393 	/* Normally R but no L won't result in plain S */
1394 	if (!dup_sack &&
1395 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1396 		goto fallback;
1397 	if (!skb_can_shift(skb))
1398 		goto fallback;
1399 	/* This frame is about to be dropped (was ACKed). */
1400 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1401 		goto fallback;
1402 
1403 	/* Can only happen with delayed DSACK + discard craziness */
1404 	if (unlikely(skb == tcp_write_queue_head(sk)))
1405 		goto fallback;
1406 	prev = tcp_write_queue_prev(sk, skb);
1407 
1408 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1409 		goto fallback;
1410 
1411 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1412 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1413 
1414 	if (in_sack) {
1415 		len = skb->len;
1416 		pcount = tcp_skb_pcount(skb);
1417 		mss = tcp_skb_seglen(skb);
1418 
1419 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 		 * drop this restriction as unnecessary
1421 		 */
1422 		if (mss != tcp_skb_seglen(prev))
1423 			goto fallback;
1424 	} else {
1425 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1426 			goto noop;
1427 		/* CHECKME: This is non-MSS split case only?, this will
1428 		 * cause skipped skbs due to advancing loop btw, original
1429 		 * has that feature too
1430 		 */
1431 		if (tcp_skb_pcount(skb) <= 1)
1432 			goto noop;
1433 
1434 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1435 		if (!in_sack) {
1436 			/* TODO: head merge to next could be attempted here
1437 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1438 			 * though it might not be worth of the additional hassle
1439 			 *
1440 			 * ...we can probably just fallback to what was done
1441 			 * previously. We could try merging non-SACKed ones
1442 			 * as well but it probably isn't going to buy off
1443 			 * because later SACKs might again split them, and
1444 			 * it would make skb timestamp tracking considerably
1445 			 * harder problem.
1446 			 */
1447 			goto fallback;
1448 		}
1449 
1450 		len = end_seq - TCP_SKB_CB(skb)->seq;
1451 		BUG_ON(len < 0);
1452 		BUG_ON(len > skb->len);
1453 
1454 		/* MSS boundaries should be honoured or else pcount will
1455 		 * severely break even though it makes things bit trickier.
1456 		 * Optimize common case to avoid most of the divides
1457 		 */
1458 		mss = tcp_skb_mss(skb);
1459 
1460 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1461 		 * drop this restriction as unnecessary
1462 		 */
1463 		if (mss != tcp_skb_seglen(prev))
1464 			goto fallback;
1465 
1466 		if (len == mss) {
1467 			pcount = 1;
1468 		} else if (len < mss) {
1469 			goto noop;
1470 		} else {
1471 			pcount = len / mss;
1472 			len = pcount * mss;
1473 		}
1474 	}
1475 
1476 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1477 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1478 		goto fallback;
1479 
1480 	if (!skb_shift(prev, skb, len))
1481 		goto fallback;
1482 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1483 		goto out;
1484 
1485 	/* Hole filled allows collapsing with the next as well, this is very
1486 	 * useful when hole on every nth skb pattern happens
1487 	 */
1488 	if (prev == tcp_write_queue_tail(sk))
1489 		goto out;
1490 	skb = tcp_write_queue_next(sk, prev);
1491 
1492 	if (!skb_can_shift(skb) ||
1493 	    (skb == tcp_send_head(sk)) ||
1494 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1495 	    (mss != tcp_skb_seglen(skb)))
1496 		goto out;
1497 
1498 	len = skb->len;
1499 	if (skb_shift(prev, skb, len)) {
1500 		pcount += tcp_skb_pcount(skb);
1501 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1502 	}
1503 
1504 out:
1505 	state->fack_count += pcount;
1506 	return prev;
1507 
1508 noop:
1509 	return skb;
1510 
1511 fallback:
1512 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1513 	return NULL;
1514 }
1515 
1516 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1517 					struct tcp_sack_block *next_dup,
1518 					struct tcp_sacktag_state *state,
1519 					u32 start_seq, u32 end_seq,
1520 					bool dup_sack_in)
1521 {
1522 	struct tcp_sock *tp = tcp_sk(sk);
1523 	struct sk_buff *tmp;
1524 
1525 	tcp_for_write_queue_from(skb, sk) {
1526 		int in_sack = 0;
1527 		bool dup_sack = dup_sack_in;
1528 
1529 		if (skb == tcp_send_head(sk))
1530 			break;
1531 
1532 		/* queue is in-order => we can short-circuit the walk early */
1533 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1534 			break;
1535 
1536 		if ((next_dup != NULL) &&
1537 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538 			in_sack = tcp_match_skb_to_sack(sk, skb,
1539 							next_dup->start_seq,
1540 							next_dup->end_seq);
1541 			if (in_sack > 0)
1542 				dup_sack = true;
1543 		}
1544 
1545 		/* skb reference here is a bit tricky to get right, since
1546 		 * shifting can eat and free both this skb and the next,
1547 		 * so not even _safe variant of the loop is enough.
1548 		 */
1549 		if (in_sack <= 0) {
1550 			tmp = tcp_shift_skb_data(sk, skb, state,
1551 						 start_seq, end_seq, dup_sack);
1552 			if (tmp != NULL) {
1553 				if (tmp != skb) {
1554 					skb = tmp;
1555 					continue;
1556 				}
1557 
1558 				in_sack = 0;
1559 			} else {
1560 				in_sack = tcp_match_skb_to_sack(sk, skb,
1561 								start_seq,
1562 								end_seq);
1563 			}
1564 		}
1565 
1566 		if (unlikely(in_sack < 0))
1567 			break;
1568 
1569 		if (in_sack) {
1570 			TCP_SKB_CB(skb)->sacked =
1571 				tcp_sacktag_one(sk,
1572 						state,
1573 						TCP_SKB_CB(skb)->sacked,
1574 						TCP_SKB_CB(skb)->seq,
1575 						TCP_SKB_CB(skb)->end_seq,
1576 						dup_sack,
1577 						tcp_skb_pcount(skb),
1578 						&skb->skb_mstamp);
1579 
1580 			if (!before(TCP_SKB_CB(skb)->seq,
1581 				    tcp_highest_sack_seq(tp)))
1582 				tcp_advance_highest_sack(sk, skb);
1583 		}
1584 
1585 		state->fack_count += tcp_skb_pcount(skb);
1586 	}
1587 	return skb;
1588 }
1589 
1590 /* Avoid all extra work that is being done by sacktag while walking in
1591  * a normal way
1592  */
1593 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1594 					struct tcp_sacktag_state *state,
1595 					u32 skip_to_seq)
1596 {
1597 	tcp_for_write_queue_from(skb, sk) {
1598 		if (skb == tcp_send_head(sk))
1599 			break;
1600 
1601 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1602 			break;
1603 
1604 		state->fack_count += tcp_skb_pcount(skb);
1605 	}
1606 	return skb;
1607 }
1608 
1609 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1610 						struct sock *sk,
1611 						struct tcp_sack_block *next_dup,
1612 						struct tcp_sacktag_state *state,
1613 						u32 skip_to_seq)
1614 {
1615 	if (next_dup == NULL)
1616 		return skb;
1617 
1618 	if (before(next_dup->start_seq, skip_to_seq)) {
1619 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1620 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1621 				       next_dup->start_seq, next_dup->end_seq,
1622 				       1);
1623 	}
1624 
1625 	return skb;
1626 }
1627 
1628 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1629 {
1630 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1631 }
1632 
1633 static int
1634 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1635 			u32 prior_snd_una, long *sack_rtt_us)
1636 {
1637 	struct tcp_sock *tp = tcp_sk(sk);
1638 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1639 				    TCP_SKB_CB(ack_skb)->sacked);
1640 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1641 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1642 	struct tcp_sack_block *cache;
1643 	struct tcp_sacktag_state state;
1644 	struct sk_buff *skb;
1645 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1646 	int used_sacks;
1647 	bool found_dup_sack = false;
1648 	int i, j;
1649 	int first_sack_index;
1650 
1651 	state.flag = 0;
1652 	state.reord = tp->packets_out;
1653 	state.rtt_us = -1L;
1654 
1655 	if (!tp->sacked_out) {
1656 		if (WARN_ON(tp->fackets_out))
1657 			tp->fackets_out = 0;
1658 		tcp_highest_sack_reset(sk);
1659 	}
1660 
1661 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1662 					 num_sacks, prior_snd_una);
1663 	if (found_dup_sack)
1664 		state.flag |= FLAG_DSACKING_ACK;
1665 
1666 	/* Eliminate too old ACKs, but take into
1667 	 * account more or less fresh ones, they can
1668 	 * contain valid SACK info.
1669 	 */
1670 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1671 		return 0;
1672 
1673 	if (!tp->packets_out)
1674 		goto out;
1675 
1676 	used_sacks = 0;
1677 	first_sack_index = 0;
1678 	for (i = 0; i < num_sacks; i++) {
1679 		bool dup_sack = !i && found_dup_sack;
1680 
1681 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1682 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1683 
1684 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1685 					    sp[used_sacks].start_seq,
1686 					    sp[used_sacks].end_seq)) {
1687 			int mib_idx;
1688 
1689 			if (dup_sack) {
1690 				if (!tp->undo_marker)
1691 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1692 				else
1693 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1694 			} else {
1695 				/* Don't count olds caused by ACK reordering */
1696 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1697 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1698 					continue;
1699 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1700 			}
1701 
1702 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1703 			if (i == 0)
1704 				first_sack_index = -1;
1705 			continue;
1706 		}
1707 
1708 		/* Ignore very old stuff early */
1709 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1710 			continue;
1711 
1712 		used_sacks++;
1713 	}
1714 
1715 	/* order SACK blocks to allow in order walk of the retrans queue */
1716 	for (i = used_sacks - 1; i > 0; i--) {
1717 		for (j = 0; j < i; j++) {
1718 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1719 				swap(sp[j], sp[j + 1]);
1720 
1721 				/* Track where the first SACK block goes to */
1722 				if (j == first_sack_index)
1723 					first_sack_index = j + 1;
1724 			}
1725 		}
1726 	}
1727 
1728 	skb = tcp_write_queue_head(sk);
1729 	state.fack_count = 0;
1730 	i = 0;
1731 
1732 	if (!tp->sacked_out) {
1733 		/* It's already past, so skip checking against it */
1734 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1735 	} else {
1736 		cache = tp->recv_sack_cache;
1737 		/* Skip empty blocks in at head of the cache */
1738 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1739 		       !cache->end_seq)
1740 			cache++;
1741 	}
1742 
1743 	while (i < used_sacks) {
1744 		u32 start_seq = sp[i].start_seq;
1745 		u32 end_seq = sp[i].end_seq;
1746 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1747 		struct tcp_sack_block *next_dup = NULL;
1748 
1749 		if (found_dup_sack && ((i + 1) == first_sack_index))
1750 			next_dup = &sp[i + 1];
1751 
1752 		/* Skip too early cached blocks */
1753 		while (tcp_sack_cache_ok(tp, cache) &&
1754 		       !before(start_seq, cache->end_seq))
1755 			cache++;
1756 
1757 		/* Can skip some work by looking recv_sack_cache? */
1758 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1759 		    after(end_seq, cache->start_seq)) {
1760 
1761 			/* Head todo? */
1762 			if (before(start_seq, cache->start_seq)) {
1763 				skb = tcp_sacktag_skip(skb, sk, &state,
1764 						       start_seq);
1765 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1766 						       &state,
1767 						       start_seq,
1768 						       cache->start_seq,
1769 						       dup_sack);
1770 			}
1771 
1772 			/* Rest of the block already fully processed? */
1773 			if (!after(end_seq, cache->end_seq))
1774 				goto advance_sp;
1775 
1776 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1777 						       &state,
1778 						       cache->end_seq);
1779 
1780 			/* ...tail remains todo... */
1781 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1782 				/* ...but better entrypoint exists! */
1783 				skb = tcp_highest_sack(sk);
1784 				if (skb == NULL)
1785 					break;
1786 				state.fack_count = tp->fackets_out;
1787 				cache++;
1788 				goto walk;
1789 			}
1790 
1791 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1792 			/* Check overlap against next cached too (past this one already) */
1793 			cache++;
1794 			continue;
1795 		}
1796 
1797 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1798 			skb = tcp_highest_sack(sk);
1799 			if (skb == NULL)
1800 				break;
1801 			state.fack_count = tp->fackets_out;
1802 		}
1803 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1804 
1805 walk:
1806 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1807 				       start_seq, end_seq, dup_sack);
1808 
1809 advance_sp:
1810 		i++;
1811 	}
1812 
1813 	/* Clear the head of the cache sack blocks so we can skip it next time */
1814 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1815 		tp->recv_sack_cache[i].start_seq = 0;
1816 		tp->recv_sack_cache[i].end_seq = 0;
1817 	}
1818 	for (j = 0; j < used_sacks; j++)
1819 		tp->recv_sack_cache[i++] = sp[j];
1820 
1821 	tcp_mark_lost_retrans(sk);
1822 
1823 	tcp_verify_left_out(tp);
1824 
1825 	if ((state.reord < tp->fackets_out) &&
1826 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1827 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1828 
1829 out:
1830 
1831 #if FASTRETRANS_DEBUG > 0
1832 	WARN_ON((int)tp->sacked_out < 0);
1833 	WARN_ON((int)tp->lost_out < 0);
1834 	WARN_ON((int)tp->retrans_out < 0);
1835 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1836 #endif
1837 	*sack_rtt_us = state.rtt_us;
1838 	return state.flag;
1839 }
1840 
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843  */
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845 {
1846 	u32 holes;
1847 
1848 	holes = max(tp->lost_out, 1U);
1849 	holes = min(holes, tp->packets_out);
1850 
1851 	if ((tp->sacked_out + holes) > tp->packets_out) {
1852 		tp->sacked_out = tp->packets_out - holes;
1853 		return true;
1854 	}
1855 	return false;
1856 }
1857 
1858 /* If we receive more dupacks than we expected counting segments
1859  * in assumption of absent reordering, interpret this as reordering.
1860  * The only another reason could be bug in receiver TCP.
1861  */
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863 {
1864 	struct tcp_sock *tp = tcp_sk(sk);
1865 	if (tcp_limit_reno_sacked(tp))
1866 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867 }
1868 
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1870 
1871 static void tcp_add_reno_sack(struct sock *sk)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	tp->sacked_out++;
1875 	tcp_check_reno_reordering(sk, 0);
1876 	tcp_verify_left_out(tp);
1877 }
1878 
1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1880 
1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1882 {
1883 	struct tcp_sock *tp = tcp_sk(sk);
1884 
1885 	if (acked > 0) {
1886 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1887 		if (acked - 1 >= tp->sacked_out)
1888 			tp->sacked_out = 0;
1889 		else
1890 			tp->sacked_out -= acked - 1;
1891 	}
1892 	tcp_check_reno_reordering(sk, acked);
1893 	tcp_verify_left_out(tp);
1894 }
1895 
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897 {
1898 	tp->sacked_out = 0;
1899 }
1900 
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1902 {
1903 	tp->retrans_out = 0;
1904 	tp->lost_out = 0;
1905 	tp->undo_marker = 0;
1906 	tp->undo_retrans = -1;
1907 	tp->fackets_out = 0;
1908 	tp->sacked_out = 0;
1909 }
1910 
1911 static inline void tcp_init_undo(struct tcp_sock *tp)
1912 {
1913 	tp->undo_marker = tp->snd_una;
1914 	/* Retransmission still in flight may cause DSACKs later. */
1915 	tp->undo_retrans = tp->retrans_out ? : -1;
1916 }
1917 
1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919  * and reset tags completely, otherwise preserve SACKs. If receiver
1920  * dropped its ofo queue, we will know this due to reneging detection.
1921  */
1922 void tcp_enter_loss(struct sock *sk)
1923 {
1924 	const struct inet_connection_sock *icsk = inet_csk(sk);
1925 	struct tcp_sock *tp = tcp_sk(sk);
1926 	struct sk_buff *skb;
1927 	bool new_recovery = false;
1928 	bool is_reneg;			/* is receiver reneging on SACKs? */
1929 
1930 	/* Reduce ssthresh if it has not yet been made inside this window. */
1931 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932 	    !after(tp->high_seq, tp->snd_una) ||
1933 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934 		new_recovery = true;
1935 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937 		tcp_ca_event(sk, CA_EVENT_LOSS);
1938 		tcp_init_undo(tp);
1939 	}
1940 	tp->snd_cwnd	   = 1;
1941 	tp->snd_cwnd_cnt   = 0;
1942 	tp->snd_cwnd_stamp = tcp_time_stamp;
1943 
1944 	tp->retrans_out = 0;
1945 	tp->lost_out = 0;
1946 
1947 	if (tcp_is_reno(tp))
1948 		tcp_reset_reno_sack(tp);
1949 
1950 	skb = tcp_write_queue_head(sk);
1951 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1952 	if (is_reneg) {
1953 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1954 		tp->sacked_out = 0;
1955 		tp->fackets_out = 0;
1956 	}
1957 	tcp_clear_all_retrans_hints(tp);
1958 
1959 	tcp_for_write_queue(skb, sk) {
1960 		if (skb == tcp_send_head(sk))
1961 			break;
1962 
1963 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967 			tp->lost_out += tcp_skb_pcount(skb);
1968 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1969 		}
1970 	}
1971 	tcp_verify_left_out(tp);
1972 
1973 	/* Timeout in disordered state after receiving substantial DUPACKs
1974 	 * suggests that the degree of reordering is over-estimated.
1975 	 */
1976 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977 	    tp->sacked_out >= sysctl_tcp_reordering)
1978 		tp->reordering = min_t(unsigned int, tp->reordering,
1979 				       sysctl_tcp_reordering);
1980 	tcp_set_ca_state(sk, TCP_CA_Loss);
1981 	tp->high_seq = tp->snd_nxt;
1982 	tcp_ecn_queue_cwr(tp);
1983 
1984 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985 	 * loss recovery is underway except recurring timeout(s) on
1986 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1987 	 */
1988 	tp->frto = sysctl_tcp_frto &&
1989 		   (new_recovery || icsk->icsk_retransmits) &&
1990 		   !inet_csk(sk)->icsk_mtup.probe_size;
1991 }
1992 
1993 /* If ACK arrived pointing to a remembered SACK, it means that our
1994  * remembered SACKs do not reflect real state of receiver i.e.
1995  * receiver _host_ is heavily congested (or buggy).
1996  *
1997  * To avoid big spurious retransmission bursts due to transient SACK
1998  * scoreboard oddities that look like reneging, we give the receiver a
1999  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000  * restore sanity to the SACK scoreboard. If the apparent reneging
2001  * persists until this RTO then we'll clear the SACK scoreboard.
2002  */
2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2004 {
2005 	if (flag & FLAG_SACK_RENEGING) {
2006 		struct tcp_sock *tp = tcp_sk(sk);
2007 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008 					  msecs_to_jiffies(10));
2009 
2010 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011 					  delay, TCP_RTO_MAX);
2012 		return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2018 {
2019 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2020 }
2021 
2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023  * counter when SACK is enabled (without SACK, sacked_out is used for
2024  * that purpose).
2025  *
2026  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027  * segments up to the highest received SACK block so far and holes in
2028  * between them.
2029  *
2030  * With reordering, holes may still be in flight, so RFC3517 recovery
2031  * uses pure sacked_out (total number of SACKed segments) even though
2032  * it violates the RFC that uses duplicate ACKs, often these are equal
2033  * but when e.g. out-of-window ACKs or packet duplication occurs,
2034  * they differ. Since neither occurs due to loss, TCP should really
2035  * ignore them.
2036  */
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2038 {
2039 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2040 }
2041 
2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2043 {
2044 	struct tcp_sock *tp = tcp_sk(sk);
2045 	unsigned long delay;
2046 
2047 	/* Delay early retransmit and entering fast recovery for
2048 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049 	 * available, or RTO is scheduled to fire first.
2050 	 */
2051 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052 	    (flag & FLAG_ECE) || !tp->srtt_us)
2053 		return false;
2054 
2055 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056 		    msecs_to_jiffies(2));
2057 
2058 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2059 		return false;
2060 
2061 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2062 				  TCP_RTO_MAX);
2063 	return true;
2064 }
2065 
2066 /* Linux NewReno/SACK/FACK/ECN state machine.
2067  * --------------------------------------
2068  *
2069  * "Open"	Normal state, no dubious events, fast path.
2070  * "Disorder"   In all the respects it is "Open",
2071  *		but requires a bit more attention. It is entered when
2072  *		we see some SACKs or dupacks. It is split of "Open"
2073  *		mainly to move some processing from fast path to slow one.
2074  * "CWR"	CWND was reduced due to some Congestion Notification event.
2075  *		It can be ECN, ICMP source quench, local device congestion.
2076  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2077  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2078  *
2079  * tcp_fastretrans_alert() is entered:
2080  * - each incoming ACK, if state is not "Open"
2081  * - when arrived ACK is unusual, namely:
2082  *	* SACK
2083  *	* Duplicate ACK.
2084  *	* ECN ECE.
2085  *
2086  * Counting packets in flight is pretty simple.
2087  *
2088  *	in_flight = packets_out - left_out + retrans_out
2089  *
2090  *	packets_out is SND.NXT-SND.UNA counted in packets.
2091  *
2092  *	retrans_out is number of retransmitted segments.
2093  *
2094  *	left_out is number of segments left network, but not ACKed yet.
2095  *
2096  *		left_out = sacked_out + lost_out
2097  *
2098  *     sacked_out: Packets, which arrived to receiver out of order
2099  *		   and hence not ACKed. With SACKs this number is simply
2100  *		   amount of SACKed data. Even without SACKs
2101  *		   it is easy to give pretty reliable estimate of this number,
2102  *		   counting duplicate ACKs.
2103  *
2104  *       lost_out: Packets lost by network. TCP has no explicit
2105  *		   "loss notification" feedback from network (for now).
2106  *		   It means that this number can be only _guessed_.
2107  *		   Actually, it is the heuristics to predict lossage that
2108  *		   distinguishes different algorithms.
2109  *
2110  *	F.e. after RTO, when all the queue is considered as lost,
2111  *	lost_out = packets_out and in_flight = retrans_out.
2112  *
2113  *		Essentially, we have now two algorithms counting
2114  *		lost packets.
2115  *
2116  *		FACK: It is the simplest heuristics. As soon as we decided
2117  *		that something is lost, we decide that _all_ not SACKed
2118  *		packets until the most forward SACK are lost. I.e.
2119  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120  *		It is absolutely correct estimate, if network does not reorder
2121  *		packets. And it loses any connection to reality when reordering
2122  *		takes place. We use FACK by default until reordering
2123  *		is suspected on the path to this destination.
2124  *
2125  *		NewReno: when Recovery is entered, we assume that one segment
2126  *		is lost (classic Reno). While we are in Recovery and
2127  *		a partial ACK arrives, we assume that one more packet
2128  *		is lost (NewReno). This heuristics are the same in NewReno
2129  *		and SACK.
2130  *
2131  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2132  *  deflation etc. CWND is real congestion window, never inflated, changes
2133  *  only according to classic VJ rules.
2134  *
2135  * Really tricky (and requiring careful tuning) part of algorithm
2136  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137  * The first determines the moment _when_ we should reduce CWND and,
2138  * hence, slow down forward transmission. In fact, it determines the moment
2139  * when we decide that hole is caused by loss, rather than by a reorder.
2140  *
2141  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142  * holes, caused by lost packets.
2143  *
2144  * And the most logically complicated part of algorithm is undo
2145  * heuristics. We detect false retransmits due to both too early
2146  * fast retransmit (reordering) and underestimated RTO, analyzing
2147  * timestamps and D-SACKs. When we detect that some segments were
2148  * retransmitted by mistake and CWND reduction was wrong, we undo
2149  * window reduction and abort recovery phase. This logic is hidden
2150  * inside several functions named tcp_try_undo_<something>.
2151  */
2152 
2153 /* This function decides, when we should leave Disordered state
2154  * and enter Recovery phase, reducing congestion window.
2155  *
2156  * Main question: may we further continue forward transmission
2157  * with the same cwnd?
2158  */
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2160 {
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 	__u32 packets_out;
2163 
2164 	/* Trick#1: The loss is proven. */
2165 	if (tp->lost_out)
2166 		return true;
2167 
2168 	/* Not-A-Trick#2 : Classic rule... */
2169 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2170 		return true;
2171 
2172 	/* Trick#4: It is still not OK... But will it be useful to delay
2173 	 * recovery more?
2174 	 */
2175 	packets_out = tp->packets_out;
2176 	if (packets_out <= tp->reordering &&
2177 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178 	    !tcp_may_send_now(sk)) {
2179 		/* We have nothing to send. This connection is limited
2180 		 * either by receiver window or by application.
2181 		 */
2182 		return true;
2183 	}
2184 
2185 	/* If a thin stream is detected, retransmit after first
2186 	 * received dupack. Employ only if SACK is supported in order
2187 	 * to avoid possible corner-case series of spurious retransmissions
2188 	 * Use only if there are no unsent data.
2189 	 */
2190 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2193 		return true;
2194 
2195 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2196 	 * retransmissions due to small network reorderings, we implement
2197 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2198 	 * interval if appropriate.
2199 	 */
2200 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202 	    !tcp_may_send_now(sk))
2203 		return !tcp_pause_early_retransmit(sk, flag);
2204 
2205 	return false;
2206 }
2207 
2208 /* Detect loss in event "A" above by marking head of queue up as lost.
2209  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212  * the maximum SACKed segments to pass before reaching this limit.
2213  */
2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2215 {
2216 	struct tcp_sock *tp = tcp_sk(sk);
2217 	struct sk_buff *skb;
2218 	int cnt, oldcnt;
2219 	int err;
2220 	unsigned int mss;
2221 	/* Use SACK to deduce losses of new sequences sent during recovery */
2222 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2223 
2224 	WARN_ON(packets > tp->packets_out);
2225 	if (tp->lost_skb_hint) {
2226 		skb = tp->lost_skb_hint;
2227 		cnt = tp->lost_cnt_hint;
2228 		/* Head already handled? */
2229 		if (mark_head && skb != tcp_write_queue_head(sk))
2230 			return;
2231 	} else {
2232 		skb = tcp_write_queue_head(sk);
2233 		cnt = 0;
2234 	}
2235 
2236 	tcp_for_write_queue_from(skb, sk) {
2237 		if (skb == tcp_send_head(sk))
2238 			break;
2239 		/* TODO: do this better */
2240 		/* this is not the most efficient way to do this... */
2241 		tp->lost_skb_hint = skb;
2242 		tp->lost_cnt_hint = cnt;
2243 
2244 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2245 			break;
2246 
2247 		oldcnt = cnt;
2248 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250 			cnt += tcp_skb_pcount(skb);
2251 
2252 		if (cnt > packets) {
2253 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255 			    (oldcnt >= packets))
2256 				break;
2257 
2258 			mss = skb_shinfo(skb)->gso_size;
2259 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2260 					   mss, GFP_ATOMIC);
2261 			if (err < 0)
2262 				break;
2263 			cnt = packets;
2264 		}
2265 
2266 		tcp_skb_mark_lost(tp, skb);
2267 
2268 		if (mark_head)
2269 			break;
2270 	}
2271 	tcp_verify_left_out(tp);
2272 }
2273 
2274 /* Account newly detected lost packet(s) */
2275 
2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277 {
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 
2280 	if (tcp_is_reno(tp)) {
2281 		tcp_mark_head_lost(sk, 1, 1);
2282 	} else if (tcp_is_fack(tp)) {
2283 		int lost = tp->fackets_out - tp->reordering;
2284 		if (lost <= 0)
2285 			lost = 1;
2286 		tcp_mark_head_lost(sk, lost, 0);
2287 	} else {
2288 		int sacked_upto = tp->sacked_out - tp->reordering;
2289 		if (sacked_upto >= 0)
2290 			tcp_mark_head_lost(sk, sacked_upto, 0);
2291 		else if (fast_rexmit)
2292 			tcp_mark_head_lost(sk, 1, 1);
2293 	}
2294 }
2295 
2296 /* CWND moderation, preventing bursts due to too big ACKs
2297  * in dubious situations.
2298  */
2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2300 {
2301 	tp->snd_cwnd = min(tp->snd_cwnd,
2302 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303 	tp->snd_cwnd_stamp = tcp_time_stamp;
2304 }
2305 
2306 /* Nothing was retransmitted or returned timestamp is less
2307  * than timestamp of the first retransmission.
2308  */
2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2310 {
2311 	return !tp->retrans_stamp ||
2312 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2314 }
2315 
2316 /* Undo procedures. */
2317 
2318 /* We can clear retrans_stamp when there are no retransmissions in the
2319  * window. It would seem that it is trivially available for us in
2320  * tp->retrans_out, however, that kind of assumptions doesn't consider
2321  * what will happen if errors occur when sending retransmission for the
2322  * second time. ...It could the that such segment has only
2323  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324  * the head skb is enough except for some reneging corner cases that
2325  * are not worth the effort.
2326  *
2327  * Main reason for all this complexity is the fact that connection dying
2328  * time now depends on the validity of the retrans_stamp, in particular,
2329  * that successive retransmissions of a segment must not advance
2330  * retrans_stamp under any conditions.
2331  */
2332 static bool tcp_any_retrans_done(const struct sock *sk)
2333 {
2334 	const struct tcp_sock *tp = tcp_sk(sk);
2335 	struct sk_buff *skb;
2336 
2337 	if (tp->retrans_out)
2338 		return true;
2339 
2340 	skb = tcp_write_queue_head(sk);
2341 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 		return true;
2343 
2344 	return false;
2345 }
2346 
2347 #if FASTRETRANS_DEBUG > 1
2348 static void DBGUNDO(struct sock *sk, const char *msg)
2349 {
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 	struct inet_sock *inet = inet_sk(sk);
2352 
2353 	if (sk->sk_family == AF_INET) {
2354 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355 			 msg,
2356 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2357 			 tp->snd_cwnd, tcp_left_out(tp),
2358 			 tp->snd_ssthresh, tp->prior_ssthresh,
2359 			 tp->packets_out);
2360 	}
2361 #if IS_ENABLED(CONFIG_IPV6)
2362 	else if (sk->sk_family == AF_INET6) {
2363 		struct ipv6_pinfo *np = inet6_sk(sk);
2364 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365 			 msg,
2366 			 &np->daddr, ntohs(inet->inet_dport),
2367 			 tp->snd_cwnd, tcp_left_out(tp),
2368 			 tp->snd_ssthresh, tp->prior_ssthresh,
2369 			 tp->packets_out);
2370 	}
2371 #endif
2372 }
2373 #else
2374 #define DBGUNDO(x...) do { } while (0)
2375 #endif
2376 
2377 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2378 {
2379 	struct tcp_sock *tp = tcp_sk(sk);
2380 
2381 	if (unmark_loss) {
2382 		struct sk_buff *skb;
2383 
2384 		tcp_for_write_queue(skb, sk) {
2385 			if (skb == tcp_send_head(sk))
2386 				break;
2387 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388 		}
2389 		tp->lost_out = 0;
2390 		tcp_clear_all_retrans_hints(tp);
2391 	}
2392 
2393 	if (tp->prior_ssthresh) {
2394 		const struct inet_connection_sock *icsk = inet_csk(sk);
2395 
2396 		if (icsk->icsk_ca_ops->undo_cwnd)
2397 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398 		else
2399 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2400 
2401 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2402 			tp->snd_ssthresh = tp->prior_ssthresh;
2403 			tcp_ecn_withdraw_cwr(tp);
2404 		}
2405 	} else {
2406 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2407 	}
2408 	tp->snd_cwnd_stamp = tcp_time_stamp;
2409 	tp->undo_marker = 0;
2410 }
2411 
2412 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2413 {
2414 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2415 }
2416 
2417 /* People celebrate: "We love our President!" */
2418 static bool tcp_try_undo_recovery(struct sock *sk)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 
2422 	if (tcp_may_undo(tp)) {
2423 		int mib_idx;
2424 
2425 		/* Happy end! We did not retransmit anything
2426 		 * or our original transmission succeeded.
2427 		 */
2428 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429 		tcp_undo_cwnd_reduction(sk, false);
2430 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432 		else
2433 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2434 
2435 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2436 	}
2437 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2438 		/* Hold old state until something *above* high_seq
2439 		 * is ACKed. For Reno it is MUST to prevent false
2440 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2441 		tcp_moderate_cwnd(tp);
2442 		if (!tcp_any_retrans_done(sk))
2443 			tp->retrans_stamp = 0;
2444 		return true;
2445 	}
2446 	tcp_set_ca_state(sk, TCP_CA_Open);
2447 	return false;
2448 }
2449 
2450 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2451 static bool tcp_try_undo_dsack(struct sock *sk)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 
2455 	if (tp->undo_marker && !tp->undo_retrans) {
2456 		DBGUNDO(sk, "D-SACK");
2457 		tcp_undo_cwnd_reduction(sk, false);
2458 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2459 		return true;
2460 	}
2461 	return false;
2462 }
2463 
2464 /* Undo during loss recovery after partial ACK or using F-RTO. */
2465 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 
2469 	if (frto_undo || tcp_may_undo(tp)) {
2470 		tcp_undo_cwnd_reduction(sk, true);
2471 
2472 		DBGUNDO(sk, "partial loss");
2473 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2474 		if (frto_undo)
2475 			NET_INC_STATS_BH(sock_net(sk),
2476 					 LINUX_MIB_TCPSPURIOUSRTOS);
2477 		inet_csk(sk)->icsk_retransmits = 0;
2478 		if (frto_undo || tcp_is_sack(tp))
2479 			tcp_set_ca_state(sk, TCP_CA_Open);
2480 		return true;
2481 	}
2482 	return false;
2483 }
2484 
2485 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2486  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2487  * It computes the number of packets to send (sndcnt) based on packets newly
2488  * delivered:
2489  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2490  *	cwnd reductions across a full RTT.
2491  *   2) If packets in flight is lower than ssthresh (such as due to excess
2492  *	losses and/or application stalls), do not perform any further cwnd
2493  *	reductions, but instead slow start up to ssthresh.
2494  */
2495 static void tcp_init_cwnd_reduction(struct sock *sk)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 
2499 	tp->high_seq = tp->snd_nxt;
2500 	tp->tlp_high_seq = 0;
2501 	tp->snd_cwnd_cnt = 0;
2502 	tp->prior_cwnd = tp->snd_cwnd;
2503 	tp->prr_delivered = 0;
2504 	tp->prr_out = 0;
2505 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2506 	tcp_ecn_queue_cwr(tp);
2507 }
2508 
2509 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510 			       int fast_rexmit)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 	int sndcnt = 0;
2514 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515 	int newly_acked_sacked = prior_unsacked -
2516 				 (tp->packets_out - tp->sacked_out);
2517 
2518 	tp->prr_delivered += newly_acked_sacked;
2519 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2520 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2521 			       tp->prior_cwnd - 1;
2522 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2523 	} else {
2524 		sndcnt = min_t(int, delta,
2525 			       max_t(int, tp->prr_delivered - tp->prr_out,
2526 				     newly_acked_sacked) + 1);
2527 	}
2528 
2529 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2530 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2531 }
2532 
2533 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2534 {
2535 	struct tcp_sock *tp = tcp_sk(sk);
2536 
2537 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2539 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2540 		tp->snd_cwnd = tp->snd_ssthresh;
2541 		tp->snd_cwnd_stamp = tcp_time_stamp;
2542 	}
2543 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544 }
2545 
2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547 void tcp_enter_cwr(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	tp->prior_ssthresh = 0;
2552 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553 		tp->undo_marker = 0;
2554 		tcp_init_cwnd_reduction(sk);
2555 		tcp_set_ca_state(sk, TCP_CA_CWR);
2556 	}
2557 }
2558 
2559 static void tcp_try_keep_open(struct sock *sk)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 	int state = TCP_CA_Open;
2563 
2564 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565 		state = TCP_CA_Disorder;
2566 
2567 	if (inet_csk(sk)->icsk_ca_state != state) {
2568 		tcp_set_ca_state(sk, state);
2569 		tp->high_seq = tp->snd_nxt;
2570 	}
2571 }
2572 
2573 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2574 {
2575 	struct tcp_sock *tp = tcp_sk(sk);
2576 
2577 	tcp_verify_left_out(tp);
2578 
2579 	if (!tcp_any_retrans_done(sk))
2580 		tp->retrans_stamp = 0;
2581 
2582 	if (flag & FLAG_ECE)
2583 		tcp_enter_cwr(sk);
2584 
2585 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586 		tcp_try_keep_open(sk);
2587 	} else {
2588 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2589 	}
2590 }
2591 
2592 static void tcp_mtup_probe_failed(struct sock *sk)
2593 {
2594 	struct inet_connection_sock *icsk = inet_csk(sk);
2595 
2596 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597 	icsk->icsk_mtup.probe_size = 0;
2598 }
2599 
2600 static void tcp_mtup_probe_success(struct sock *sk)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct inet_connection_sock *icsk = inet_csk(sk);
2604 
2605 	/* FIXME: breaks with very large cwnd */
2606 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607 	tp->snd_cwnd = tp->snd_cwnd *
2608 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2609 		       icsk->icsk_mtup.probe_size;
2610 	tp->snd_cwnd_cnt = 0;
2611 	tp->snd_cwnd_stamp = tcp_time_stamp;
2612 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613 
2614 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615 	icsk->icsk_mtup.probe_size = 0;
2616 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617 }
2618 
2619 /* Do a simple retransmit without using the backoff mechanisms in
2620  * tcp_timer. This is used for path mtu discovery.
2621  * The socket is already locked here.
2622  */
2623 void tcp_simple_retransmit(struct sock *sk)
2624 {
2625 	const struct inet_connection_sock *icsk = inet_csk(sk);
2626 	struct tcp_sock *tp = tcp_sk(sk);
2627 	struct sk_buff *skb;
2628 	unsigned int mss = tcp_current_mss(sk);
2629 	u32 prior_lost = tp->lost_out;
2630 
2631 	tcp_for_write_queue(skb, sk) {
2632 		if (skb == tcp_send_head(sk))
2633 			break;
2634 		if (tcp_skb_seglen(skb) > mss &&
2635 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638 				tp->retrans_out -= tcp_skb_pcount(skb);
2639 			}
2640 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2641 		}
2642 	}
2643 
2644 	tcp_clear_retrans_hints_partial(tp);
2645 
2646 	if (prior_lost == tp->lost_out)
2647 		return;
2648 
2649 	if (tcp_is_reno(tp))
2650 		tcp_limit_reno_sacked(tp);
2651 
2652 	tcp_verify_left_out(tp);
2653 
2654 	/* Don't muck with the congestion window here.
2655 	 * Reason is that we do not increase amount of _data_
2656 	 * in network, but units changed and effective
2657 	 * cwnd/ssthresh really reduced now.
2658 	 */
2659 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660 		tp->high_seq = tp->snd_nxt;
2661 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662 		tp->prior_ssthresh = 0;
2663 		tp->undo_marker = 0;
2664 		tcp_set_ca_state(sk, TCP_CA_Loss);
2665 	}
2666 	tcp_xmit_retransmit_queue(sk);
2667 }
2668 EXPORT_SYMBOL(tcp_simple_retransmit);
2669 
2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 	int mib_idx;
2674 
2675 	if (tcp_is_reno(tp))
2676 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677 	else
2678 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2679 
2680 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681 
2682 	tp->prior_ssthresh = 0;
2683 	tcp_init_undo(tp);
2684 
2685 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2686 		if (!ece_ack)
2687 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688 		tcp_init_cwnd_reduction(sk);
2689 	}
2690 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2691 }
2692 
2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2695  */
2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 	bool recovered = !before(tp->snd_una, tp->high_seq);
2700 
2701 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2702 		/* Step 3.b. A timeout is spurious if not all data are
2703 		 * lost, i.e., never-retransmitted data are (s)acked.
2704 		 */
2705 		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2706 			return;
2707 
2708 		if (after(tp->snd_nxt, tp->high_seq) &&
2709 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2710 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2711 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2712 			tp->high_seq = tp->snd_nxt;
2713 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2714 						  TCP_NAGLE_OFF);
2715 			if (after(tp->snd_nxt, tp->high_seq))
2716 				return; /* Step 2.b */
2717 			tp->frto = 0;
2718 		}
2719 	}
2720 
2721 	if (recovered) {
2722 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2723 		tcp_try_undo_recovery(sk);
2724 		return;
2725 	}
2726 	if (tcp_is_reno(tp)) {
2727 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2728 		 * delivered. Lower inflight to clock out (re)tranmissions.
2729 		 */
2730 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2731 			tcp_add_reno_sack(sk);
2732 		else if (flag & FLAG_SND_UNA_ADVANCED)
2733 			tcp_reset_reno_sack(tp);
2734 	}
2735 	if (tcp_try_undo_loss(sk, false))
2736 		return;
2737 	tcp_xmit_retransmit_queue(sk);
2738 }
2739 
2740 /* Undo during fast recovery after partial ACK. */
2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2742 				 const int prior_unsacked)
2743 {
2744 	struct tcp_sock *tp = tcp_sk(sk);
2745 
2746 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2747 		/* Plain luck! Hole if filled with delayed
2748 		 * packet, rather than with a retransmit.
2749 		 */
2750 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2751 
2752 		/* We are getting evidence that the reordering degree is higher
2753 		 * than we realized. If there are no retransmits out then we
2754 		 * can undo. Otherwise we clock out new packets but do not
2755 		 * mark more packets lost or retransmit more.
2756 		 */
2757 		if (tp->retrans_out) {
2758 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2759 			return true;
2760 		}
2761 
2762 		if (!tcp_any_retrans_done(sk))
2763 			tp->retrans_stamp = 0;
2764 
2765 		DBGUNDO(sk, "partial recovery");
2766 		tcp_undo_cwnd_reduction(sk, true);
2767 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2768 		tcp_try_keep_open(sk);
2769 		return true;
2770 	}
2771 	return false;
2772 }
2773 
2774 /* Process an event, which can update packets-in-flight not trivially.
2775  * Main goal of this function is to calculate new estimate for left_out,
2776  * taking into account both packets sitting in receiver's buffer and
2777  * packets lost by network.
2778  *
2779  * Besides that it does CWND reduction, when packet loss is detected
2780  * and changes state of machine.
2781  *
2782  * It does _not_ decide what to send, it is made in function
2783  * tcp_xmit_retransmit_queue().
2784  */
2785 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2786 				  const int prior_unsacked,
2787 				  bool is_dupack, int flag)
2788 {
2789 	struct inet_connection_sock *icsk = inet_csk(sk);
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2792 				    (tcp_fackets_out(tp) > tp->reordering));
2793 	int fast_rexmit = 0;
2794 
2795 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2796 		tp->sacked_out = 0;
2797 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2798 		tp->fackets_out = 0;
2799 
2800 	/* Now state machine starts.
2801 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2802 	if (flag & FLAG_ECE)
2803 		tp->prior_ssthresh = 0;
2804 
2805 	/* B. In all the states check for reneging SACKs. */
2806 	if (tcp_check_sack_reneging(sk, flag))
2807 		return;
2808 
2809 	/* C. Check consistency of the current state. */
2810 	tcp_verify_left_out(tp);
2811 
2812 	/* D. Check state exit conditions. State can be terminated
2813 	 *    when high_seq is ACKed. */
2814 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2815 		WARN_ON(tp->retrans_out != 0);
2816 		tp->retrans_stamp = 0;
2817 	} else if (!before(tp->snd_una, tp->high_seq)) {
2818 		switch (icsk->icsk_ca_state) {
2819 		case TCP_CA_CWR:
2820 			/* CWR is to be held something *above* high_seq
2821 			 * is ACKed for CWR bit to reach receiver. */
2822 			if (tp->snd_una != tp->high_seq) {
2823 				tcp_end_cwnd_reduction(sk);
2824 				tcp_set_ca_state(sk, TCP_CA_Open);
2825 			}
2826 			break;
2827 
2828 		case TCP_CA_Recovery:
2829 			if (tcp_is_reno(tp))
2830 				tcp_reset_reno_sack(tp);
2831 			if (tcp_try_undo_recovery(sk))
2832 				return;
2833 			tcp_end_cwnd_reduction(sk);
2834 			break;
2835 		}
2836 	}
2837 
2838 	/* E. Process state. */
2839 	switch (icsk->icsk_ca_state) {
2840 	case TCP_CA_Recovery:
2841 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2842 			if (tcp_is_reno(tp) && is_dupack)
2843 				tcp_add_reno_sack(sk);
2844 		} else {
2845 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2846 				return;
2847 			/* Partial ACK arrived. Force fast retransmit. */
2848 			do_lost = tcp_is_reno(tp) ||
2849 				  tcp_fackets_out(tp) > tp->reordering;
2850 		}
2851 		if (tcp_try_undo_dsack(sk)) {
2852 			tcp_try_keep_open(sk);
2853 			return;
2854 		}
2855 		break;
2856 	case TCP_CA_Loss:
2857 		tcp_process_loss(sk, flag, is_dupack);
2858 		if (icsk->icsk_ca_state != TCP_CA_Open)
2859 			return;
2860 		/* Fall through to processing in Open state. */
2861 	default:
2862 		if (tcp_is_reno(tp)) {
2863 			if (flag & FLAG_SND_UNA_ADVANCED)
2864 				tcp_reset_reno_sack(tp);
2865 			if (is_dupack)
2866 				tcp_add_reno_sack(sk);
2867 		}
2868 
2869 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2870 			tcp_try_undo_dsack(sk);
2871 
2872 		if (!tcp_time_to_recover(sk, flag)) {
2873 			tcp_try_to_open(sk, flag, prior_unsacked);
2874 			return;
2875 		}
2876 
2877 		/* MTU probe failure: don't reduce cwnd */
2878 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2879 		    icsk->icsk_mtup.probe_size &&
2880 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2881 			tcp_mtup_probe_failed(sk);
2882 			/* Restores the reduction we did in tcp_mtup_probe() */
2883 			tp->snd_cwnd++;
2884 			tcp_simple_retransmit(sk);
2885 			return;
2886 		}
2887 
2888 		/* Otherwise enter Recovery state */
2889 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2890 		fast_rexmit = 1;
2891 	}
2892 
2893 	if (do_lost)
2894 		tcp_update_scoreboard(sk, fast_rexmit);
2895 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2896 	tcp_xmit_retransmit_queue(sk);
2897 }
2898 
2899 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2900 				      long seq_rtt_us, long sack_rtt_us)
2901 {
2902 	const struct tcp_sock *tp = tcp_sk(sk);
2903 
2904 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2905 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2906 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2907 	 * is acked (RFC6298).
2908 	 */
2909 	if (flag & FLAG_RETRANS_DATA_ACKED)
2910 		seq_rtt_us = -1L;
2911 
2912 	if (seq_rtt_us < 0)
2913 		seq_rtt_us = sack_rtt_us;
2914 
2915 	/* RTTM Rule: A TSecr value received in a segment is used to
2916 	 * update the averaged RTT measurement only if the segment
2917 	 * acknowledges some new data, i.e., only if it advances the
2918 	 * left edge of the send window.
2919 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2920 	 */
2921 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2922 	    flag & FLAG_ACKED)
2923 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2924 
2925 	if (seq_rtt_us < 0)
2926 		return false;
2927 
2928 	tcp_rtt_estimator(sk, seq_rtt_us);
2929 	tcp_set_rto(sk);
2930 
2931 	/* RFC6298: only reset backoff on valid RTT measurement. */
2932 	inet_csk(sk)->icsk_backoff = 0;
2933 	return true;
2934 }
2935 
2936 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2937 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2938 {
2939 	struct tcp_sock *tp = tcp_sk(sk);
2940 	long seq_rtt_us = -1L;
2941 
2942 	if (synack_stamp && !tp->total_retrans)
2943 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2944 
2945 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2946 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2947 	 */
2948 	if (!tp->srtt_us)
2949 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2950 }
2951 
2952 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2953 {
2954 	const struct inet_connection_sock *icsk = inet_csk(sk);
2955 
2956 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2957 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2958 }
2959 
2960 /* Restart timer after forward progress on connection.
2961  * RFC2988 recommends to restart timer to now+rto.
2962  */
2963 void tcp_rearm_rto(struct sock *sk)
2964 {
2965 	const struct inet_connection_sock *icsk = inet_csk(sk);
2966 	struct tcp_sock *tp = tcp_sk(sk);
2967 
2968 	/* If the retrans timer is currently being used by Fast Open
2969 	 * for SYN-ACK retrans purpose, stay put.
2970 	 */
2971 	if (tp->fastopen_rsk)
2972 		return;
2973 
2974 	if (!tp->packets_out) {
2975 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2976 	} else {
2977 		u32 rto = inet_csk(sk)->icsk_rto;
2978 		/* Offset the time elapsed after installing regular RTO */
2979 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2980 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2981 			struct sk_buff *skb = tcp_write_queue_head(sk);
2982 			const u32 rto_time_stamp =
2983 				tcp_skb_timestamp(skb) + rto;
2984 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2985 			/* delta may not be positive if the socket is locked
2986 			 * when the retrans timer fires and is rescheduled.
2987 			 */
2988 			if (delta > 0)
2989 				rto = delta;
2990 		}
2991 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2992 					  TCP_RTO_MAX);
2993 	}
2994 }
2995 
2996 /* This function is called when the delayed ER timer fires. TCP enters
2997  * fast recovery and performs fast-retransmit.
2998  */
2999 void tcp_resume_early_retransmit(struct sock *sk)
3000 {
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 
3003 	tcp_rearm_rto(sk);
3004 
3005 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3006 	if (!tp->do_early_retrans)
3007 		return;
3008 
3009 	tcp_enter_recovery(sk, false);
3010 	tcp_update_scoreboard(sk, 1);
3011 	tcp_xmit_retransmit_queue(sk);
3012 }
3013 
3014 /* If we get here, the whole TSO packet has not been acked. */
3015 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3016 {
3017 	struct tcp_sock *tp = tcp_sk(sk);
3018 	u32 packets_acked;
3019 
3020 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3021 
3022 	packets_acked = tcp_skb_pcount(skb);
3023 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3024 		return 0;
3025 	packets_acked -= tcp_skb_pcount(skb);
3026 
3027 	if (packets_acked) {
3028 		BUG_ON(tcp_skb_pcount(skb) == 0);
3029 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030 	}
3031 
3032 	return packets_acked;
3033 }
3034 
3035 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3036 			   u32 prior_snd_una)
3037 {
3038 	const struct skb_shared_info *shinfo;
3039 
3040 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3041 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3042 		return;
3043 
3044 	shinfo = skb_shinfo(skb);
3045 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3046 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3047 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 }
3049 
3050 /* Remove acknowledged frames from the retransmission queue. If our packet
3051  * is before the ack sequence we can discard it as it's confirmed to have
3052  * arrived at the other end.
3053  */
3054 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3055 			       u32 prior_snd_una, long sack_rtt_us)
3056 {
3057 	const struct inet_connection_sock *icsk = inet_csk(sk);
3058 	struct skb_mstamp first_ackt, last_ackt, now;
3059 	struct tcp_sock *tp = tcp_sk(sk);
3060 	u32 prior_sacked = tp->sacked_out;
3061 	u32 reord = tp->packets_out;
3062 	bool fully_acked = true;
3063 	long ca_seq_rtt_us = -1L;
3064 	long seq_rtt_us = -1L;
3065 	struct sk_buff *skb;
3066 	u32 pkts_acked = 0;
3067 	bool rtt_update;
3068 	int flag = 0;
3069 
3070 	first_ackt.v64 = 0;
3071 
3072 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3073 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3074 		u8 sacked = scb->sacked;
3075 		u32 acked_pcount;
3076 
3077 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3078 
3079 		/* Determine how many packets and what bytes were acked, tso and else */
3080 		if (after(scb->end_seq, tp->snd_una)) {
3081 			if (tcp_skb_pcount(skb) == 1 ||
3082 			    !after(tp->snd_una, scb->seq))
3083 				break;
3084 
3085 			acked_pcount = tcp_tso_acked(sk, skb);
3086 			if (!acked_pcount)
3087 				break;
3088 
3089 			fully_acked = false;
3090 		} else {
3091 			/* Speedup tcp_unlink_write_queue() and next loop */
3092 			prefetchw(skb->next);
3093 			acked_pcount = tcp_skb_pcount(skb);
3094 		}
3095 
3096 		if (unlikely(sacked & TCPCB_RETRANS)) {
3097 			if (sacked & TCPCB_SACKED_RETRANS)
3098 				tp->retrans_out -= acked_pcount;
3099 			flag |= FLAG_RETRANS_DATA_ACKED;
3100 		} else {
3101 			last_ackt = skb->skb_mstamp;
3102 			WARN_ON_ONCE(last_ackt.v64 == 0);
3103 			if (!first_ackt.v64)
3104 				first_ackt = last_ackt;
3105 
3106 			if (!(sacked & TCPCB_SACKED_ACKED))
3107 				reord = min(pkts_acked, reord);
3108 			if (!after(scb->end_seq, tp->high_seq))
3109 				flag |= FLAG_ORIG_SACK_ACKED;
3110 		}
3111 
3112 		if (sacked & TCPCB_SACKED_ACKED)
3113 			tp->sacked_out -= acked_pcount;
3114 		if (sacked & TCPCB_LOST)
3115 			tp->lost_out -= acked_pcount;
3116 
3117 		tp->packets_out -= acked_pcount;
3118 		pkts_acked += acked_pcount;
3119 
3120 		/* Initial outgoing SYN's get put onto the write_queue
3121 		 * just like anything else we transmit.  It is not
3122 		 * true data, and if we misinform our callers that
3123 		 * this ACK acks real data, we will erroneously exit
3124 		 * connection startup slow start one packet too
3125 		 * quickly.  This is severely frowned upon behavior.
3126 		 */
3127 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3128 			flag |= FLAG_DATA_ACKED;
3129 		} else {
3130 			flag |= FLAG_SYN_ACKED;
3131 			tp->retrans_stamp = 0;
3132 		}
3133 
3134 		if (!fully_acked)
3135 			break;
3136 
3137 		tcp_unlink_write_queue(skb, sk);
3138 		sk_wmem_free_skb(sk, skb);
3139 		if (unlikely(skb == tp->retransmit_skb_hint))
3140 			tp->retransmit_skb_hint = NULL;
3141 		if (unlikely(skb == tp->lost_skb_hint))
3142 			tp->lost_skb_hint = NULL;
3143 	}
3144 
3145 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3146 		tp->snd_up = tp->snd_una;
3147 
3148 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3149 		flag |= FLAG_SACK_RENEGING;
3150 
3151 	skb_mstamp_get(&now);
3152 	if (likely(first_ackt.v64)) {
3153 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3154 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3155 	}
3156 
3157 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3158 
3159 	if (flag & FLAG_ACKED) {
3160 		const struct tcp_congestion_ops *ca_ops
3161 			= inet_csk(sk)->icsk_ca_ops;
3162 
3163 		tcp_rearm_rto(sk);
3164 		if (unlikely(icsk->icsk_mtup.probe_size &&
3165 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3166 			tcp_mtup_probe_success(sk);
3167 		}
3168 
3169 		if (tcp_is_reno(tp)) {
3170 			tcp_remove_reno_sacks(sk, pkts_acked);
3171 		} else {
3172 			int delta;
3173 
3174 			/* Non-retransmitted hole got filled? That's reordering */
3175 			if (reord < prior_fackets)
3176 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3177 
3178 			delta = tcp_is_fack(tp) ? pkts_acked :
3179 						  prior_sacked - tp->sacked_out;
3180 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3181 		}
3182 
3183 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3184 
3185 		if (ca_ops->pkts_acked)
3186 			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3187 
3188 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3189 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3190 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3191 		 * after when the head was last (re)transmitted. Otherwise the
3192 		 * timeout may continue to extend in loss recovery.
3193 		 */
3194 		tcp_rearm_rto(sk);
3195 	}
3196 
3197 #if FASTRETRANS_DEBUG > 0
3198 	WARN_ON((int)tp->sacked_out < 0);
3199 	WARN_ON((int)tp->lost_out < 0);
3200 	WARN_ON((int)tp->retrans_out < 0);
3201 	if (!tp->packets_out && tcp_is_sack(tp)) {
3202 		icsk = inet_csk(sk);
3203 		if (tp->lost_out) {
3204 			pr_debug("Leak l=%u %d\n",
3205 				 tp->lost_out, icsk->icsk_ca_state);
3206 			tp->lost_out = 0;
3207 		}
3208 		if (tp->sacked_out) {
3209 			pr_debug("Leak s=%u %d\n",
3210 				 tp->sacked_out, icsk->icsk_ca_state);
3211 			tp->sacked_out = 0;
3212 		}
3213 		if (tp->retrans_out) {
3214 			pr_debug("Leak r=%u %d\n",
3215 				 tp->retrans_out, icsk->icsk_ca_state);
3216 			tp->retrans_out = 0;
3217 		}
3218 	}
3219 #endif
3220 	return flag;
3221 }
3222 
3223 static void tcp_ack_probe(struct sock *sk)
3224 {
3225 	const struct tcp_sock *tp = tcp_sk(sk);
3226 	struct inet_connection_sock *icsk = inet_csk(sk);
3227 
3228 	/* Was it a usable window open? */
3229 
3230 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3231 		icsk->icsk_backoff = 0;
3232 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3233 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3234 		 * This function is not for random using!
3235 		 */
3236 	} else {
3237 		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3238 
3239 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3240 					  when, TCP_RTO_MAX);
3241 	}
3242 }
3243 
3244 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3245 {
3246 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3247 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3248 }
3249 
3250 /* Decide wheather to run the increase function of congestion control. */
3251 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3252 {
3253 	if (tcp_in_cwnd_reduction(sk))
3254 		return false;
3255 
3256 	/* If reordering is high then always grow cwnd whenever data is
3257 	 * delivered regardless of its ordering. Otherwise stay conservative
3258 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3259 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3260 	 * cwnd in tcp_fastretrans_alert() based on more states.
3261 	 */
3262 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3263 		return flag & FLAG_FORWARD_PROGRESS;
3264 
3265 	return flag & FLAG_DATA_ACKED;
3266 }
3267 
3268 /* Check that window update is acceptable.
3269  * The function assumes that snd_una<=ack<=snd_next.
3270  */
3271 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3272 					const u32 ack, const u32 ack_seq,
3273 					const u32 nwin)
3274 {
3275 	return	after(ack, tp->snd_una) ||
3276 		after(ack_seq, tp->snd_wl1) ||
3277 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3278 }
3279 
3280 /* Update our send window.
3281  *
3282  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3283  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3284  */
3285 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3286 				 u32 ack_seq)
3287 {
3288 	struct tcp_sock *tp = tcp_sk(sk);
3289 	int flag = 0;
3290 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3291 
3292 	if (likely(!tcp_hdr(skb)->syn))
3293 		nwin <<= tp->rx_opt.snd_wscale;
3294 
3295 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3296 		flag |= FLAG_WIN_UPDATE;
3297 		tcp_update_wl(tp, ack_seq);
3298 
3299 		if (tp->snd_wnd != nwin) {
3300 			tp->snd_wnd = nwin;
3301 
3302 			/* Note, it is the only place, where
3303 			 * fast path is recovered for sending TCP.
3304 			 */
3305 			tp->pred_flags = 0;
3306 			tcp_fast_path_check(sk);
3307 
3308 			if (nwin > tp->max_window) {
3309 				tp->max_window = nwin;
3310 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3311 			}
3312 		}
3313 	}
3314 
3315 	tp->snd_una = ack;
3316 
3317 	return flag;
3318 }
3319 
3320 /* RFC 5961 7 [ACK Throttling] */
3321 static void tcp_send_challenge_ack(struct sock *sk)
3322 {
3323 	/* unprotected vars, we dont care of overwrites */
3324 	static u32 challenge_timestamp;
3325 	static unsigned int challenge_count;
3326 	u32 now = jiffies / HZ;
3327 
3328 	if (now != challenge_timestamp) {
3329 		challenge_timestamp = now;
3330 		challenge_count = 0;
3331 	}
3332 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3333 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3334 		tcp_send_ack(sk);
3335 	}
3336 }
3337 
3338 static void tcp_store_ts_recent(struct tcp_sock *tp)
3339 {
3340 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3341 	tp->rx_opt.ts_recent_stamp = get_seconds();
3342 }
3343 
3344 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3345 {
3346 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3347 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3348 		 * extra check below makes sure this can only happen
3349 		 * for pure ACK frames.  -DaveM
3350 		 *
3351 		 * Not only, also it occurs for expired timestamps.
3352 		 */
3353 
3354 		if (tcp_paws_check(&tp->rx_opt, 0))
3355 			tcp_store_ts_recent(tp);
3356 	}
3357 }
3358 
3359 /* This routine deals with acks during a TLP episode.
3360  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3361  */
3362 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3363 {
3364 	struct tcp_sock *tp = tcp_sk(sk);
3365 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3366 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3367 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3368 
3369 	/* Mark the end of TLP episode on receiving TLP dupack or when
3370 	 * ack is after tlp_high_seq.
3371 	 */
3372 	if (is_tlp_dupack) {
3373 		tp->tlp_high_seq = 0;
3374 		return;
3375 	}
3376 
3377 	if (after(ack, tp->tlp_high_seq)) {
3378 		tp->tlp_high_seq = 0;
3379 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3380 		if (!(flag & FLAG_DSACKING_ACK)) {
3381 			tcp_init_cwnd_reduction(sk);
3382 			tcp_set_ca_state(sk, TCP_CA_CWR);
3383 			tcp_end_cwnd_reduction(sk);
3384 			tcp_try_keep_open(sk);
3385 			NET_INC_STATS_BH(sock_net(sk),
3386 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3387 		}
3388 	}
3389 }
3390 
3391 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3392 {
3393 	const struct inet_connection_sock *icsk = inet_csk(sk);
3394 
3395 	if (icsk->icsk_ca_ops->in_ack_event)
3396 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3397 }
3398 
3399 /* This routine deals with incoming acks, but not outgoing ones. */
3400 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3401 {
3402 	struct inet_connection_sock *icsk = inet_csk(sk);
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	u32 prior_snd_una = tp->snd_una;
3405 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3406 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3407 	bool is_dupack = false;
3408 	u32 prior_fackets;
3409 	int prior_packets = tp->packets_out;
3410 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3411 	int acked = 0; /* Number of packets newly acked */
3412 	long sack_rtt_us = -1L;
3413 
3414 	/* We very likely will need to access write queue head. */
3415 	prefetchw(sk->sk_write_queue.next);
3416 
3417 	/* If the ack is older than previous acks
3418 	 * then we can probably ignore it.
3419 	 */
3420 	if (before(ack, prior_snd_una)) {
3421 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3422 		if (before(ack, prior_snd_una - tp->max_window)) {
3423 			tcp_send_challenge_ack(sk);
3424 			return -1;
3425 		}
3426 		goto old_ack;
3427 	}
3428 
3429 	/* If the ack includes data we haven't sent yet, discard
3430 	 * this segment (RFC793 Section 3.9).
3431 	 */
3432 	if (after(ack, tp->snd_nxt))
3433 		goto invalid_ack;
3434 
3435 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3436 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3437 		tcp_rearm_rto(sk);
3438 
3439 	if (after(ack, prior_snd_una)) {
3440 		flag |= FLAG_SND_UNA_ADVANCED;
3441 		icsk->icsk_retransmits = 0;
3442 	}
3443 
3444 	prior_fackets = tp->fackets_out;
3445 
3446 	/* ts_recent update must be made after we are sure that the packet
3447 	 * is in window.
3448 	 */
3449 	if (flag & FLAG_UPDATE_TS_RECENT)
3450 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3451 
3452 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3453 		/* Window is constant, pure forward advance.
3454 		 * No more checks are required.
3455 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3456 		 */
3457 		tcp_update_wl(tp, ack_seq);
3458 		tp->snd_una = ack;
3459 		flag |= FLAG_WIN_UPDATE;
3460 
3461 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3462 
3463 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3464 	} else {
3465 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3466 
3467 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3468 			flag |= FLAG_DATA;
3469 		else
3470 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3471 
3472 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3473 
3474 		if (TCP_SKB_CB(skb)->sacked)
3475 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3476 							&sack_rtt_us);
3477 
3478 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3479 			flag |= FLAG_ECE;
3480 			ack_ev_flags |= CA_ACK_ECE;
3481 		}
3482 
3483 		if (flag & FLAG_WIN_UPDATE)
3484 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3485 
3486 		tcp_in_ack_event(sk, ack_ev_flags);
3487 	}
3488 
3489 	/* We passed data and got it acked, remove any soft error
3490 	 * log. Something worked...
3491 	 */
3492 	sk->sk_err_soft = 0;
3493 	icsk->icsk_probes_out = 0;
3494 	tp->rcv_tstamp = tcp_time_stamp;
3495 	if (!prior_packets)
3496 		goto no_queue;
3497 
3498 	/* See if we can take anything off of the retransmit queue. */
3499 	acked = tp->packets_out;
3500 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3501 				    sack_rtt_us);
3502 	acked -= tp->packets_out;
3503 
3504 	/* Advance cwnd if state allows */
3505 	if (tcp_may_raise_cwnd(sk, flag))
3506 		tcp_cong_avoid(sk, ack, acked);
3507 
3508 	if (tcp_ack_is_dubious(sk, flag)) {
3509 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3510 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3511 				      is_dupack, flag);
3512 	}
3513 	if (tp->tlp_high_seq)
3514 		tcp_process_tlp_ack(sk, ack, flag);
3515 
3516 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3517 		struct dst_entry *dst = __sk_dst_get(sk);
3518 		if (dst)
3519 			dst_confirm(dst);
3520 	}
3521 
3522 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3523 		tcp_schedule_loss_probe(sk);
3524 	tcp_update_pacing_rate(sk);
3525 	return 1;
3526 
3527 no_queue:
3528 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3529 	if (flag & FLAG_DSACKING_ACK)
3530 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3531 				      is_dupack, flag);
3532 	/* If this ack opens up a zero window, clear backoff.  It was
3533 	 * being used to time the probes, and is probably far higher than
3534 	 * it needs to be for normal retransmission.
3535 	 */
3536 	if (tcp_send_head(sk))
3537 		tcp_ack_probe(sk);
3538 
3539 	if (tp->tlp_high_seq)
3540 		tcp_process_tlp_ack(sk, ack, flag);
3541 	return 1;
3542 
3543 invalid_ack:
3544 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3545 	return -1;
3546 
3547 old_ack:
3548 	/* If data was SACKed, tag it and see if we should send more data.
3549 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3550 	 */
3551 	if (TCP_SKB_CB(skb)->sacked) {
3552 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3553 						&sack_rtt_us);
3554 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3555 				      is_dupack, flag);
3556 	}
3557 
3558 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3559 	return 0;
3560 }
3561 
3562 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3563  * But, this can also be called on packets in the established flow when
3564  * the fast version below fails.
3565  */
3566 void tcp_parse_options(const struct sk_buff *skb,
3567 		       struct tcp_options_received *opt_rx, int estab,
3568 		       struct tcp_fastopen_cookie *foc)
3569 {
3570 	const unsigned char *ptr;
3571 	const struct tcphdr *th = tcp_hdr(skb);
3572 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3573 
3574 	ptr = (const unsigned char *)(th + 1);
3575 	opt_rx->saw_tstamp = 0;
3576 
3577 	while (length > 0) {
3578 		int opcode = *ptr++;
3579 		int opsize;
3580 
3581 		switch (opcode) {
3582 		case TCPOPT_EOL:
3583 			return;
3584 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3585 			length--;
3586 			continue;
3587 		default:
3588 			opsize = *ptr++;
3589 			if (opsize < 2) /* "silly options" */
3590 				return;
3591 			if (opsize > length)
3592 				return;	/* don't parse partial options */
3593 			switch (opcode) {
3594 			case TCPOPT_MSS:
3595 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3596 					u16 in_mss = get_unaligned_be16(ptr);
3597 					if (in_mss) {
3598 						if (opt_rx->user_mss &&
3599 						    opt_rx->user_mss < in_mss)
3600 							in_mss = opt_rx->user_mss;
3601 						opt_rx->mss_clamp = in_mss;
3602 					}
3603 				}
3604 				break;
3605 			case TCPOPT_WINDOW:
3606 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3607 				    !estab && sysctl_tcp_window_scaling) {
3608 					__u8 snd_wscale = *(__u8 *)ptr;
3609 					opt_rx->wscale_ok = 1;
3610 					if (snd_wscale > 14) {
3611 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3612 								     __func__,
3613 								     snd_wscale);
3614 						snd_wscale = 14;
3615 					}
3616 					opt_rx->snd_wscale = snd_wscale;
3617 				}
3618 				break;
3619 			case TCPOPT_TIMESTAMP:
3620 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3621 				    ((estab && opt_rx->tstamp_ok) ||
3622 				     (!estab && sysctl_tcp_timestamps))) {
3623 					opt_rx->saw_tstamp = 1;
3624 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3625 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3626 				}
3627 				break;
3628 			case TCPOPT_SACK_PERM:
3629 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3630 				    !estab && sysctl_tcp_sack) {
3631 					opt_rx->sack_ok = TCP_SACK_SEEN;
3632 					tcp_sack_reset(opt_rx);
3633 				}
3634 				break;
3635 
3636 			case TCPOPT_SACK:
3637 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3638 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3639 				   opt_rx->sack_ok) {
3640 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3641 				}
3642 				break;
3643 #ifdef CONFIG_TCP_MD5SIG
3644 			case TCPOPT_MD5SIG:
3645 				/*
3646 				 * The MD5 Hash has already been
3647 				 * checked (see tcp_v{4,6}_do_rcv()).
3648 				 */
3649 				break;
3650 #endif
3651 			case TCPOPT_EXP:
3652 				/* Fast Open option shares code 254 using a
3653 				 * 16 bits magic number. It's valid only in
3654 				 * SYN or SYN-ACK with an even size.
3655 				 */
3656 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3657 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3658 				    foc == NULL || !th->syn || (opsize & 1))
3659 					break;
3660 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3661 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3662 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3663 					memcpy(foc->val, ptr + 2, foc->len);
3664 				else if (foc->len != 0)
3665 					foc->len = -1;
3666 				break;
3667 
3668 			}
3669 			ptr += opsize-2;
3670 			length -= opsize;
3671 		}
3672 	}
3673 }
3674 EXPORT_SYMBOL(tcp_parse_options);
3675 
3676 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3677 {
3678 	const __be32 *ptr = (const __be32 *)(th + 1);
3679 
3680 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3681 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3682 		tp->rx_opt.saw_tstamp = 1;
3683 		++ptr;
3684 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3685 		++ptr;
3686 		if (*ptr)
3687 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3688 		else
3689 			tp->rx_opt.rcv_tsecr = 0;
3690 		return true;
3691 	}
3692 	return false;
3693 }
3694 
3695 /* Fast parse options. This hopes to only see timestamps.
3696  * If it is wrong it falls back on tcp_parse_options().
3697  */
3698 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3699 				   const struct tcphdr *th, struct tcp_sock *tp)
3700 {
3701 	/* In the spirit of fast parsing, compare doff directly to constant
3702 	 * values.  Because equality is used, short doff can be ignored here.
3703 	 */
3704 	if (th->doff == (sizeof(*th) / 4)) {
3705 		tp->rx_opt.saw_tstamp = 0;
3706 		return false;
3707 	} else if (tp->rx_opt.tstamp_ok &&
3708 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3709 		if (tcp_parse_aligned_timestamp(tp, th))
3710 			return true;
3711 	}
3712 
3713 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3714 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3715 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3716 
3717 	return true;
3718 }
3719 
3720 #ifdef CONFIG_TCP_MD5SIG
3721 /*
3722  * Parse MD5 Signature option
3723  */
3724 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3725 {
3726 	int length = (th->doff << 2) - sizeof(*th);
3727 	const u8 *ptr = (const u8 *)(th + 1);
3728 
3729 	/* If the TCP option is too short, we can short cut */
3730 	if (length < TCPOLEN_MD5SIG)
3731 		return NULL;
3732 
3733 	while (length > 0) {
3734 		int opcode = *ptr++;
3735 		int opsize;
3736 
3737 		switch (opcode) {
3738 		case TCPOPT_EOL:
3739 			return NULL;
3740 		case TCPOPT_NOP:
3741 			length--;
3742 			continue;
3743 		default:
3744 			opsize = *ptr++;
3745 			if (opsize < 2 || opsize > length)
3746 				return NULL;
3747 			if (opcode == TCPOPT_MD5SIG)
3748 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3749 		}
3750 		ptr += opsize - 2;
3751 		length -= opsize;
3752 	}
3753 	return NULL;
3754 }
3755 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3756 #endif
3757 
3758 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3759  *
3760  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3761  * it can pass through stack. So, the following predicate verifies that
3762  * this segment is not used for anything but congestion avoidance or
3763  * fast retransmit. Moreover, we even are able to eliminate most of such
3764  * second order effects, if we apply some small "replay" window (~RTO)
3765  * to timestamp space.
3766  *
3767  * All these measures still do not guarantee that we reject wrapped ACKs
3768  * on networks with high bandwidth, when sequence space is recycled fastly,
3769  * but it guarantees that such events will be very rare and do not affect
3770  * connection seriously. This doesn't look nice, but alas, PAWS is really
3771  * buggy extension.
3772  *
3773  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3774  * states that events when retransmit arrives after original data are rare.
3775  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3776  * the biggest problem on large power networks even with minor reordering.
3777  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3778  * up to bandwidth of 18Gigabit/sec. 8) ]
3779  */
3780 
3781 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3782 {
3783 	const struct tcp_sock *tp = tcp_sk(sk);
3784 	const struct tcphdr *th = tcp_hdr(skb);
3785 	u32 seq = TCP_SKB_CB(skb)->seq;
3786 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3787 
3788 	return (/* 1. Pure ACK with correct sequence number. */
3789 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3790 
3791 		/* 2. ... and duplicate ACK. */
3792 		ack == tp->snd_una &&
3793 
3794 		/* 3. ... and does not update window. */
3795 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3796 
3797 		/* 4. ... and sits in replay window. */
3798 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3799 }
3800 
3801 static inline bool tcp_paws_discard(const struct sock *sk,
3802 				   const struct sk_buff *skb)
3803 {
3804 	const struct tcp_sock *tp = tcp_sk(sk);
3805 
3806 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3807 	       !tcp_disordered_ack(sk, skb);
3808 }
3809 
3810 /* Check segment sequence number for validity.
3811  *
3812  * Segment controls are considered valid, if the segment
3813  * fits to the window after truncation to the window. Acceptability
3814  * of data (and SYN, FIN, of course) is checked separately.
3815  * See tcp_data_queue(), for example.
3816  *
3817  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3818  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3819  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3820  * (borrowed from freebsd)
3821  */
3822 
3823 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3824 {
3825 	return	!before(end_seq, tp->rcv_wup) &&
3826 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3827 }
3828 
3829 /* When we get a reset we do this. */
3830 void tcp_reset(struct sock *sk)
3831 {
3832 	/* We want the right error as BSD sees it (and indeed as we do). */
3833 	switch (sk->sk_state) {
3834 	case TCP_SYN_SENT:
3835 		sk->sk_err = ECONNREFUSED;
3836 		break;
3837 	case TCP_CLOSE_WAIT:
3838 		sk->sk_err = EPIPE;
3839 		break;
3840 	case TCP_CLOSE:
3841 		return;
3842 	default:
3843 		sk->sk_err = ECONNRESET;
3844 	}
3845 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3846 	smp_wmb();
3847 
3848 	if (!sock_flag(sk, SOCK_DEAD))
3849 		sk->sk_error_report(sk);
3850 
3851 	tcp_done(sk);
3852 }
3853 
3854 /*
3855  * 	Process the FIN bit. This now behaves as it is supposed to work
3856  *	and the FIN takes effect when it is validly part of sequence
3857  *	space. Not before when we get holes.
3858  *
3859  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3860  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3861  *	TIME-WAIT)
3862  *
3863  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3864  *	close and we go into CLOSING (and later onto TIME-WAIT)
3865  *
3866  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3867  */
3868 static void tcp_fin(struct sock *sk)
3869 {
3870 	struct tcp_sock *tp = tcp_sk(sk);
3871 	const struct dst_entry *dst;
3872 
3873 	inet_csk_schedule_ack(sk);
3874 
3875 	sk->sk_shutdown |= RCV_SHUTDOWN;
3876 	sock_set_flag(sk, SOCK_DONE);
3877 
3878 	switch (sk->sk_state) {
3879 	case TCP_SYN_RECV:
3880 	case TCP_ESTABLISHED:
3881 		/* Move to CLOSE_WAIT */
3882 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3883 		dst = __sk_dst_get(sk);
3884 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3885 			inet_csk(sk)->icsk_ack.pingpong = 1;
3886 		break;
3887 
3888 	case TCP_CLOSE_WAIT:
3889 	case TCP_CLOSING:
3890 		/* Received a retransmission of the FIN, do
3891 		 * nothing.
3892 		 */
3893 		break;
3894 	case TCP_LAST_ACK:
3895 		/* RFC793: Remain in the LAST-ACK state. */
3896 		break;
3897 
3898 	case TCP_FIN_WAIT1:
3899 		/* This case occurs when a simultaneous close
3900 		 * happens, we must ack the received FIN and
3901 		 * enter the CLOSING state.
3902 		 */
3903 		tcp_send_ack(sk);
3904 		tcp_set_state(sk, TCP_CLOSING);
3905 		break;
3906 	case TCP_FIN_WAIT2:
3907 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3908 		tcp_send_ack(sk);
3909 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3910 		break;
3911 	default:
3912 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3913 		 * cases we should never reach this piece of code.
3914 		 */
3915 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3916 		       __func__, sk->sk_state);
3917 		break;
3918 	}
3919 
3920 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3921 	 * Probably, we should reset in this case. For now drop them.
3922 	 */
3923 	__skb_queue_purge(&tp->out_of_order_queue);
3924 	if (tcp_is_sack(tp))
3925 		tcp_sack_reset(&tp->rx_opt);
3926 	sk_mem_reclaim(sk);
3927 
3928 	if (!sock_flag(sk, SOCK_DEAD)) {
3929 		sk->sk_state_change(sk);
3930 
3931 		/* Do not send POLL_HUP for half duplex close. */
3932 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3933 		    sk->sk_state == TCP_CLOSE)
3934 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3935 		else
3936 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3937 	}
3938 }
3939 
3940 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3941 				  u32 end_seq)
3942 {
3943 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3944 		if (before(seq, sp->start_seq))
3945 			sp->start_seq = seq;
3946 		if (after(end_seq, sp->end_seq))
3947 			sp->end_seq = end_seq;
3948 		return true;
3949 	}
3950 	return false;
3951 }
3952 
3953 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3954 {
3955 	struct tcp_sock *tp = tcp_sk(sk);
3956 
3957 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3958 		int mib_idx;
3959 
3960 		if (before(seq, tp->rcv_nxt))
3961 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3962 		else
3963 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3964 
3965 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3966 
3967 		tp->rx_opt.dsack = 1;
3968 		tp->duplicate_sack[0].start_seq = seq;
3969 		tp->duplicate_sack[0].end_seq = end_seq;
3970 	}
3971 }
3972 
3973 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3974 {
3975 	struct tcp_sock *tp = tcp_sk(sk);
3976 
3977 	if (!tp->rx_opt.dsack)
3978 		tcp_dsack_set(sk, seq, end_seq);
3979 	else
3980 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3981 }
3982 
3983 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3984 {
3985 	struct tcp_sock *tp = tcp_sk(sk);
3986 
3987 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3988 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3989 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3990 		tcp_enter_quickack_mode(sk);
3991 
3992 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3993 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3994 
3995 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3996 				end_seq = tp->rcv_nxt;
3997 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3998 		}
3999 	}
4000 
4001 	tcp_send_ack(sk);
4002 }
4003 
4004 /* These routines update the SACK block as out-of-order packets arrive or
4005  * in-order packets close up the sequence space.
4006  */
4007 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4008 {
4009 	int this_sack;
4010 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4011 	struct tcp_sack_block *swalk = sp + 1;
4012 
4013 	/* See if the recent change to the first SACK eats into
4014 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4015 	 */
4016 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4017 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4018 			int i;
4019 
4020 			/* Zap SWALK, by moving every further SACK up by one slot.
4021 			 * Decrease num_sacks.
4022 			 */
4023 			tp->rx_opt.num_sacks--;
4024 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4025 				sp[i] = sp[i + 1];
4026 			continue;
4027 		}
4028 		this_sack++, swalk++;
4029 	}
4030 }
4031 
4032 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4033 {
4034 	struct tcp_sock *tp = tcp_sk(sk);
4035 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4036 	int cur_sacks = tp->rx_opt.num_sacks;
4037 	int this_sack;
4038 
4039 	if (!cur_sacks)
4040 		goto new_sack;
4041 
4042 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4043 		if (tcp_sack_extend(sp, seq, end_seq)) {
4044 			/* Rotate this_sack to the first one. */
4045 			for (; this_sack > 0; this_sack--, sp--)
4046 				swap(*sp, *(sp - 1));
4047 			if (cur_sacks > 1)
4048 				tcp_sack_maybe_coalesce(tp);
4049 			return;
4050 		}
4051 	}
4052 
4053 	/* Could not find an adjacent existing SACK, build a new one,
4054 	 * put it at the front, and shift everyone else down.  We
4055 	 * always know there is at least one SACK present already here.
4056 	 *
4057 	 * If the sack array is full, forget about the last one.
4058 	 */
4059 	if (this_sack >= TCP_NUM_SACKS) {
4060 		this_sack--;
4061 		tp->rx_opt.num_sacks--;
4062 		sp--;
4063 	}
4064 	for (; this_sack > 0; this_sack--, sp--)
4065 		*sp = *(sp - 1);
4066 
4067 new_sack:
4068 	/* Build the new head SACK, and we're done. */
4069 	sp->start_seq = seq;
4070 	sp->end_seq = end_seq;
4071 	tp->rx_opt.num_sacks++;
4072 }
4073 
4074 /* RCV.NXT advances, some SACKs should be eaten. */
4075 
4076 static void tcp_sack_remove(struct tcp_sock *tp)
4077 {
4078 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4079 	int num_sacks = tp->rx_opt.num_sacks;
4080 	int this_sack;
4081 
4082 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4083 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4084 		tp->rx_opt.num_sacks = 0;
4085 		return;
4086 	}
4087 
4088 	for (this_sack = 0; this_sack < num_sacks;) {
4089 		/* Check if the start of the sack is covered by RCV.NXT. */
4090 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4091 			int i;
4092 
4093 			/* RCV.NXT must cover all the block! */
4094 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4095 
4096 			/* Zap this SACK, by moving forward any other SACKS. */
4097 			for (i = this_sack+1; i < num_sacks; i++)
4098 				tp->selective_acks[i-1] = tp->selective_acks[i];
4099 			num_sacks--;
4100 			continue;
4101 		}
4102 		this_sack++;
4103 		sp++;
4104 	}
4105 	tp->rx_opt.num_sacks = num_sacks;
4106 }
4107 
4108 /**
4109  * tcp_try_coalesce - try to merge skb to prior one
4110  * @sk: socket
4111  * @to: prior buffer
4112  * @from: buffer to add in queue
4113  * @fragstolen: pointer to boolean
4114  *
4115  * Before queueing skb @from after @to, try to merge them
4116  * to reduce overall memory use and queue lengths, if cost is small.
4117  * Packets in ofo or receive queues can stay a long time.
4118  * Better try to coalesce them right now to avoid future collapses.
4119  * Returns true if caller should free @from instead of queueing it
4120  */
4121 static bool tcp_try_coalesce(struct sock *sk,
4122 			     struct sk_buff *to,
4123 			     struct sk_buff *from,
4124 			     bool *fragstolen)
4125 {
4126 	int delta;
4127 
4128 	*fragstolen = false;
4129 
4130 	/* Its possible this segment overlaps with prior segment in queue */
4131 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4132 		return false;
4133 
4134 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4135 		return false;
4136 
4137 	atomic_add(delta, &sk->sk_rmem_alloc);
4138 	sk_mem_charge(sk, delta);
4139 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4140 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4141 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4142 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4143 	return true;
4144 }
4145 
4146 /* This one checks to see if we can put data from the
4147  * out_of_order queue into the receive_queue.
4148  */
4149 static void tcp_ofo_queue(struct sock *sk)
4150 {
4151 	struct tcp_sock *tp = tcp_sk(sk);
4152 	__u32 dsack_high = tp->rcv_nxt;
4153 	struct sk_buff *skb, *tail;
4154 	bool fragstolen, eaten;
4155 
4156 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4157 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4158 			break;
4159 
4160 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4161 			__u32 dsack = dsack_high;
4162 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4163 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4164 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4165 		}
4166 
4167 		__skb_unlink(skb, &tp->out_of_order_queue);
4168 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4169 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4170 			__kfree_skb(skb);
4171 			continue;
4172 		}
4173 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4174 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4175 			   TCP_SKB_CB(skb)->end_seq);
4176 
4177 		tail = skb_peek_tail(&sk->sk_receive_queue);
4178 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4179 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4180 		if (!eaten)
4181 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4182 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4183 			tcp_fin(sk);
4184 		if (eaten)
4185 			kfree_skb_partial(skb, fragstolen);
4186 	}
4187 }
4188 
4189 static bool tcp_prune_ofo_queue(struct sock *sk);
4190 static int tcp_prune_queue(struct sock *sk);
4191 
4192 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4193 				 unsigned int size)
4194 {
4195 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4196 	    !sk_rmem_schedule(sk, skb, size)) {
4197 
4198 		if (tcp_prune_queue(sk) < 0)
4199 			return -1;
4200 
4201 		if (!sk_rmem_schedule(sk, skb, size)) {
4202 			if (!tcp_prune_ofo_queue(sk))
4203 				return -1;
4204 
4205 			if (!sk_rmem_schedule(sk, skb, size))
4206 				return -1;
4207 		}
4208 	}
4209 	return 0;
4210 }
4211 
4212 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4213 {
4214 	struct tcp_sock *tp = tcp_sk(sk);
4215 	struct sk_buff *skb1;
4216 	u32 seq, end_seq;
4217 
4218 	tcp_ecn_check_ce(tp, skb);
4219 
4220 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4221 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4222 		__kfree_skb(skb);
4223 		return;
4224 	}
4225 
4226 	/* Disable header prediction. */
4227 	tp->pred_flags = 0;
4228 	inet_csk_schedule_ack(sk);
4229 
4230 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4231 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4232 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4233 
4234 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4235 	if (!skb1) {
4236 		/* Initial out of order segment, build 1 SACK. */
4237 		if (tcp_is_sack(tp)) {
4238 			tp->rx_opt.num_sacks = 1;
4239 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4240 			tp->selective_acks[0].end_seq =
4241 						TCP_SKB_CB(skb)->end_seq;
4242 		}
4243 		__skb_queue_head(&tp->out_of_order_queue, skb);
4244 		goto end;
4245 	}
4246 
4247 	seq = TCP_SKB_CB(skb)->seq;
4248 	end_seq = TCP_SKB_CB(skb)->end_seq;
4249 
4250 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4251 		bool fragstolen;
4252 
4253 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4254 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4255 		} else {
4256 			tcp_grow_window(sk, skb);
4257 			kfree_skb_partial(skb, fragstolen);
4258 			skb = NULL;
4259 		}
4260 
4261 		if (!tp->rx_opt.num_sacks ||
4262 		    tp->selective_acks[0].end_seq != seq)
4263 			goto add_sack;
4264 
4265 		/* Common case: data arrive in order after hole. */
4266 		tp->selective_acks[0].end_seq = end_seq;
4267 		goto end;
4268 	}
4269 
4270 	/* Find place to insert this segment. */
4271 	while (1) {
4272 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4273 			break;
4274 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4275 			skb1 = NULL;
4276 			break;
4277 		}
4278 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4279 	}
4280 
4281 	/* Do skb overlap to previous one? */
4282 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4283 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4284 			/* All the bits are present. Drop. */
4285 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4286 			__kfree_skb(skb);
4287 			skb = NULL;
4288 			tcp_dsack_set(sk, seq, end_seq);
4289 			goto add_sack;
4290 		}
4291 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4292 			/* Partial overlap. */
4293 			tcp_dsack_set(sk, seq,
4294 				      TCP_SKB_CB(skb1)->end_seq);
4295 		} else {
4296 			if (skb_queue_is_first(&tp->out_of_order_queue,
4297 					       skb1))
4298 				skb1 = NULL;
4299 			else
4300 				skb1 = skb_queue_prev(
4301 					&tp->out_of_order_queue,
4302 					skb1);
4303 		}
4304 	}
4305 	if (!skb1)
4306 		__skb_queue_head(&tp->out_of_order_queue, skb);
4307 	else
4308 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4309 
4310 	/* And clean segments covered by new one as whole. */
4311 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4312 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4313 
4314 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4315 			break;
4316 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4317 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4318 					 end_seq);
4319 			break;
4320 		}
4321 		__skb_unlink(skb1, &tp->out_of_order_queue);
4322 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4323 				 TCP_SKB_CB(skb1)->end_seq);
4324 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4325 		__kfree_skb(skb1);
4326 	}
4327 
4328 add_sack:
4329 	if (tcp_is_sack(tp))
4330 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4331 end:
4332 	if (skb) {
4333 		tcp_grow_window(sk, skb);
4334 		skb_set_owner_r(skb, sk);
4335 	}
4336 }
4337 
4338 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4339 		  bool *fragstolen)
4340 {
4341 	int eaten;
4342 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4343 
4344 	__skb_pull(skb, hdrlen);
4345 	eaten = (tail &&
4346 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4347 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4348 	if (!eaten) {
4349 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4350 		skb_set_owner_r(skb, sk);
4351 	}
4352 	return eaten;
4353 }
4354 
4355 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4356 {
4357 	struct sk_buff *skb;
4358 	bool fragstolen;
4359 
4360 	if (size == 0)
4361 		return 0;
4362 
4363 	skb = alloc_skb(size, sk->sk_allocation);
4364 	if (!skb)
4365 		goto err;
4366 
4367 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4368 		goto err_free;
4369 
4370 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4371 		goto err_free;
4372 
4373 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4374 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4375 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4376 
4377 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4378 		WARN_ON_ONCE(fragstolen); /* should not happen */
4379 		__kfree_skb(skb);
4380 	}
4381 	return size;
4382 
4383 err_free:
4384 	kfree_skb(skb);
4385 err:
4386 	return -ENOMEM;
4387 }
4388 
4389 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4390 {
4391 	struct tcp_sock *tp = tcp_sk(sk);
4392 	int eaten = -1;
4393 	bool fragstolen = false;
4394 
4395 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4396 		goto drop;
4397 
4398 	skb_dst_drop(skb);
4399 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4400 
4401 	tcp_ecn_accept_cwr(tp, skb);
4402 
4403 	tp->rx_opt.dsack = 0;
4404 
4405 	/*  Queue data for delivery to the user.
4406 	 *  Packets in sequence go to the receive queue.
4407 	 *  Out of sequence packets to the out_of_order_queue.
4408 	 */
4409 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4410 		if (tcp_receive_window(tp) == 0)
4411 			goto out_of_window;
4412 
4413 		/* Ok. In sequence. In window. */
4414 		if (tp->ucopy.task == current &&
4415 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4416 		    sock_owned_by_user(sk) && !tp->urg_data) {
4417 			int chunk = min_t(unsigned int, skb->len,
4418 					  tp->ucopy.len);
4419 
4420 			__set_current_state(TASK_RUNNING);
4421 
4422 			local_bh_enable();
4423 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4424 				tp->ucopy.len -= chunk;
4425 				tp->copied_seq += chunk;
4426 				eaten = (chunk == skb->len);
4427 				tcp_rcv_space_adjust(sk);
4428 			}
4429 			local_bh_disable();
4430 		}
4431 
4432 		if (eaten <= 0) {
4433 queue_and_out:
4434 			if (eaten < 0 &&
4435 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4436 				goto drop;
4437 
4438 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4439 		}
4440 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4441 		if (skb->len)
4442 			tcp_event_data_recv(sk, skb);
4443 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4444 			tcp_fin(sk);
4445 
4446 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4447 			tcp_ofo_queue(sk);
4448 
4449 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4450 			 * gap in queue is filled.
4451 			 */
4452 			if (skb_queue_empty(&tp->out_of_order_queue))
4453 				inet_csk(sk)->icsk_ack.pingpong = 0;
4454 		}
4455 
4456 		if (tp->rx_opt.num_sacks)
4457 			tcp_sack_remove(tp);
4458 
4459 		tcp_fast_path_check(sk);
4460 
4461 		if (eaten > 0)
4462 			kfree_skb_partial(skb, fragstolen);
4463 		if (!sock_flag(sk, SOCK_DEAD))
4464 			sk->sk_data_ready(sk);
4465 		return;
4466 	}
4467 
4468 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4469 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4470 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4471 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4472 
4473 out_of_window:
4474 		tcp_enter_quickack_mode(sk);
4475 		inet_csk_schedule_ack(sk);
4476 drop:
4477 		__kfree_skb(skb);
4478 		return;
4479 	}
4480 
4481 	/* Out of window. F.e. zero window probe. */
4482 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4483 		goto out_of_window;
4484 
4485 	tcp_enter_quickack_mode(sk);
4486 
4487 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4488 		/* Partial packet, seq < rcv_next < end_seq */
4489 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4490 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4491 			   TCP_SKB_CB(skb)->end_seq);
4492 
4493 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4494 
4495 		/* If window is closed, drop tail of packet. But after
4496 		 * remembering D-SACK for its head made in previous line.
4497 		 */
4498 		if (!tcp_receive_window(tp))
4499 			goto out_of_window;
4500 		goto queue_and_out;
4501 	}
4502 
4503 	tcp_data_queue_ofo(sk, skb);
4504 }
4505 
4506 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4507 					struct sk_buff_head *list)
4508 {
4509 	struct sk_buff *next = NULL;
4510 
4511 	if (!skb_queue_is_last(list, skb))
4512 		next = skb_queue_next(list, skb);
4513 
4514 	__skb_unlink(skb, list);
4515 	__kfree_skb(skb);
4516 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4517 
4518 	return next;
4519 }
4520 
4521 /* Collapse contiguous sequence of skbs head..tail with
4522  * sequence numbers start..end.
4523  *
4524  * If tail is NULL, this means until the end of the list.
4525  *
4526  * Segments with FIN/SYN are not collapsed (only because this
4527  * simplifies code)
4528  */
4529 static void
4530 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4531 	     struct sk_buff *head, struct sk_buff *tail,
4532 	     u32 start, u32 end)
4533 {
4534 	struct sk_buff *skb, *n;
4535 	bool end_of_skbs;
4536 
4537 	/* First, check that queue is collapsible and find
4538 	 * the point where collapsing can be useful. */
4539 	skb = head;
4540 restart:
4541 	end_of_skbs = true;
4542 	skb_queue_walk_from_safe(list, skb, n) {
4543 		if (skb == tail)
4544 			break;
4545 		/* No new bits? It is possible on ofo queue. */
4546 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4547 			skb = tcp_collapse_one(sk, skb, list);
4548 			if (!skb)
4549 				break;
4550 			goto restart;
4551 		}
4552 
4553 		/* The first skb to collapse is:
4554 		 * - not SYN/FIN and
4555 		 * - bloated or contains data before "start" or
4556 		 *   overlaps to the next one.
4557 		 */
4558 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4559 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4560 		     before(TCP_SKB_CB(skb)->seq, start))) {
4561 			end_of_skbs = false;
4562 			break;
4563 		}
4564 
4565 		if (!skb_queue_is_last(list, skb)) {
4566 			struct sk_buff *next = skb_queue_next(list, skb);
4567 			if (next != tail &&
4568 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4569 				end_of_skbs = false;
4570 				break;
4571 			}
4572 		}
4573 
4574 		/* Decided to skip this, advance start seq. */
4575 		start = TCP_SKB_CB(skb)->end_seq;
4576 	}
4577 	if (end_of_skbs ||
4578 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4579 		return;
4580 
4581 	while (before(start, end)) {
4582 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4583 		struct sk_buff *nskb;
4584 
4585 		nskb = alloc_skb(copy, GFP_ATOMIC);
4586 		if (!nskb)
4587 			return;
4588 
4589 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4590 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4591 		__skb_queue_before(list, skb, nskb);
4592 		skb_set_owner_r(nskb, sk);
4593 
4594 		/* Copy data, releasing collapsed skbs. */
4595 		while (copy > 0) {
4596 			int offset = start - TCP_SKB_CB(skb)->seq;
4597 			int size = TCP_SKB_CB(skb)->end_seq - start;
4598 
4599 			BUG_ON(offset < 0);
4600 			if (size > 0) {
4601 				size = min(copy, size);
4602 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4603 					BUG();
4604 				TCP_SKB_CB(nskb)->end_seq += size;
4605 				copy -= size;
4606 				start += size;
4607 			}
4608 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4609 				skb = tcp_collapse_one(sk, skb, list);
4610 				if (!skb ||
4611 				    skb == tail ||
4612 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4613 					return;
4614 			}
4615 		}
4616 	}
4617 }
4618 
4619 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4620  * and tcp_collapse() them until all the queue is collapsed.
4621  */
4622 static void tcp_collapse_ofo_queue(struct sock *sk)
4623 {
4624 	struct tcp_sock *tp = tcp_sk(sk);
4625 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4626 	struct sk_buff *head;
4627 	u32 start, end;
4628 
4629 	if (skb == NULL)
4630 		return;
4631 
4632 	start = TCP_SKB_CB(skb)->seq;
4633 	end = TCP_SKB_CB(skb)->end_seq;
4634 	head = skb;
4635 
4636 	for (;;) {
4637 		struct sk_buff *next = NULL;
4638 
4639 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4640 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4641 		skb = next;
4642 
4643 		/* Segment is terminated when we see gap or when
4644 		 * we are at the end of all the queue. */
4645 		if (!skb ||
4646 		    after(TCP_SKB_CB(skb)->seq, end) ||
4647 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4648 			tcp_collapse(sk, &tp->out_of_order_queue,
4649 				     head, skb, start, end);
4650 			head = skb;
4651 			if (!skb)
4652 				break;
4653 			/* Start new segment */
4654 			start = TCP_SKB_CB(skb)->seq;
4655 			end = TCP_SKB_CB(skb)->end_seq;
4656 		} else {
4657 			if (before(TCP_SKB_CB(skb)->seq, start))
4658 				start = TCP_SKB_CB(skb)->seq;
4659 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4660 				end = TCP_SKB_CB(skb)->end_seq;
4661 		}
4662 	}
4663 }
4664 
4665 /*
4666  * Purge the out-of-order queue.
4667  * Return true if queue was pruned.
4668  */
4669 static bool tcp_prune_ofo_queue(struct sock *sk)
4670 {
4671 	struct tcp_sock *tp = tcp_sk(sk);
4672 	bool res = false;
4673 
4674 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4675 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4676 		__skb_queue_purge(&tp->out_of_order_queue);
4677 
4678 		/* Reset SACK state.  A conforming SACK implementation will
4679 		 * do the same at a timeout based retransmit.  When a connection
4680 		 * is in a sad state like this, we care only about integrity
4681 		 * of the connection not performance.
4682 		 */
4683 		if (tp->rx_opt.sack_ok)
4684 			tcp_sack_reset(&tp->rx_opt);
4685 		sk_mem_reclaim(sk);
4686 		res = true;
4687 	}
4688 	return res;
4689 }
4690 
4691 /* Reduce allocated memory if we can, trying to get
4692  * the socket within its memory limits again.
4693  *
4694  * Return less than zero if we should start dropping frames
4695  * until the socket owning process reads some of the data
4696  * to stabilize the situation.
4697  */
4698 static int tcp_prune_queue(struct sock *sk)
4699 {
4700 	struct tcp_sock *tp = tcp_sk(sk);
4701 
4702 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4703 
4704 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4705 
4706 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4707 		tcp_clamp_window(sk);
4708 	else if (sk_under_memory_pressure(sk))
4709 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4710 
4711 	tcp_collapse_ofo_queue(sk);
4712 	if (!skb_queue_empty(&sk->sk_receive_queue))
4713 		tcp_collapse(sk, &sk->sk_receive_queue,
4714 			     skb_peek(&sk->sk_receive_queue),
4715 			     NULL,
4716 			     tp->copied_seq, tp->rcv_nxt);
4717 	sk_mem_reclaim(sk);
4718 
4719 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4720 		return 0;
4721 
4722 	/* Collapsing did not help, destructive actions follow.
4723 	 * This must not ever occur. */
4724 
4725 	tcp_prune_ofo_queue(sk);
4726 
4727 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4728 		return 0;
4729 
4730 	/* If we are really being abused, tell the caller to silently
4731 	 * drop receive data on the floor.  It will get retransmitted
4732 	 * and hopefully then we'll have sufficient space.
4733 	 */
4734 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4735 
4736 	/* Massive buffer overcommit. */
4737 	tp->pred_flags = 0;
4738 	return -1;
4739 }
4740 
4741 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4742 {
4743 	const struct tcp_sock *tp = tcp_sk(sk);
4744 
4745 	/* If the user specified a specific send buffer setting, do
4746 	 * not modify it.
4747 	 */
4748 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4749 		return false;
4750 
4751 	/* If we are under global TCP memory pressure, do not expand.  */
4752 	if (sk_under_memory_pressure(sk))
4753 		return false;
4754 
4755 	/* If we are under soft global TCP memory pressure, do not expand.  */
4756 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4757 		return false;
4758 
4759 	/* If we filled the congestion window, do not expand.  */
4760 	if (tp->packets_out >= tp->snd_cwnd)
4761 		return false;
4762 
4763 	return true;
4764 }
4765 
4766 /* When incoming ACK allowed to free some skb from write_queue,
4767  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4768  * on the exit from tcp input handler.
4769  *
4770  * PROBLEM: sndbuf expansion does not work well with largesend.
4771  */
4772 static void tcp_new_space(struct sock *sk)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 
4776 	if (tcp_should_expand_sndbuf(sk)) {
4777 		tcp_sndbuf_expand(sk);
4778 		tp->snd_cwnd_stamp = tcp_time_stamp;
4779 	}
4780 
4781 	sk->sk_write_space(sk);
4782 }
4783 
4784 static void tcp_check_space(struct sock *sk)
4785 {
4786 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4787 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4788 		if (sk->sk_socket &&
4789 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4790 			tcp_new_space(sk);
4791 	}
4792 }
4793 
4794 static inline void tcp_data_snd_check(struct sock *sk)
4795 {
4796 	tcp_push_pending_frames(sk);
4797 	tcp_check_space(sk);
4798 }
4799 
4800 /*
4801  * Check if sending an ack is needed.
4802  */
4803 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4804 {
4805 	struct tcp_sock *tp = tcp_sk(sk);
4806 
4807 	    /* More than one full frame received... */
4808 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4809 	     /* ... and right edge of window advances far enough.
4810 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4811 	      */
4812 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4813 	    /* We ACK each frame or... */
4814 	    tcp_in_quickack_mode(sk) ||
4815 	    /* We have out of order data. */
4816 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4817 		/* Then ack it now */
4818 		tcp_send_ack(sk);
4819 	} else {
4820 		/* Else, send delayed ack. */
4821 		tcp_send_delayed_ack(sk);
4822 	}
4823 }
4824 
4825 static inline void tcp_ack_snd_check(struct sock *sk)
4826 {
4827 	if (!inet_csk_ack_scheduled(sk)) {
4828 		/* We sent a data segment already. */
4829 		return;
4830 	}
4831 	__tcp_ack_snd_check(sk, 1);
4832 }
4833 
4834 /*
4835  *	This routine is only called when we have urgent data
4836  *	signaled. Its the 'slow' part of tcp_urg. It could be
4837  *	moved inline now as tcp_urg is only called from one
4838  *	place. We handle URGent data wrong. We have to - as
4839  *	BSD still doesn't use the correction from RFC961.
4840  *	For 1003.1g we should support a new option TCP_STDURG to permit
4841  *	either form (or just set the sysctl tcp_stdurg).
4842  */
4843 
4844 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4845 {
4846 	struct tcp_sock *tp = tcp_sk(sk);
4847 	u32 ptr = ntohs(th->urg_ptr);
4848 
4849 	if (ptr && !sysctl_tcp_stdurg)
4850 		ptr--;
4851 	ptr += ntohl(th->seq);
4852 
4853 	/* Ignore urgent data that we've already seen and read. */
4854 	if (after(tp->copied_seq, ptr))
4855 		return;
4856 
4857 	/* Do not replay urg ptr.
4858 	 *
4859 	 * NOTE: interesting situation not covered by specs.
4860 	 * Misbehaving sender may send urg ptr, pointing to segment,
4861 	 * which we already have in ofo queue. We are not able to fetch
4862 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4863 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4864 	 * situations. But it is worth to think about possibility of some
4865 	 * DoSes using some hypothetical application level deadlock.
4866 	 */
4867 	if (before(ptr, tp->rcv_nxt))
4868 		return;
4869 
4870 	/* Do we already have a newer (or duplicate) urgent pointer? */
4871 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4872 		return;
4873 
4874 	/* Tell the world about our new urgent pointer. */
4875 	sk_send_sigurg(sk);
4876 
4877 	/* We may be adding urgent data when the last byte read was
4878 	 * urgent. To do this requires some care. We cannot just ignore
4879 	 * tp->copied_seq since we would read the last urgent byte again
4880 	 * as data, nor can we alter copied_seq until this data arrives
4881 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4882 	 *
4883 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4884 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4885 	 * and expect that both A and B disappear from stream. This is _wrong_.
4886 	 * Though this happens in BSD with high probability, this is occasional.
4887 	 * Any application relying on this is buggy. Note also, that fix "works"
4888 	 * only in this artificial test. Insert some normal data between A and B and we will
4889 	 * decline of BSD again. Verdict: it is better to remove to trap
4890 	 * buggy users.
4891 	 */
4892 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4893 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4894 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4895 		tp->copied_seq++;
4896 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4897 			__skb_unlink(skb, &sk->sk_receive_queue);
4898 			__kfree_skb(skb);
4899 		}
4900 	}
4901 
4902 	tp->urg_data = TCP_URG_NOTYET;
4903 	tp->urg_seq = ptr;
4904 
4905 	/* Disable header prediction. */
4906 	tp->pred_flags = 0;
4907 }
4908 
4909 /* This is the 'fast' part of urgent handling. */
4910 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4911 {
4912 	struct tcp_sock *tp = tcp_sk(sk);
4913 
4914 	/* Check if we get a new urgent pointer - normally not. */
4915 	if (th->urg)
4916 		tcp_check_urg(sk, th);
4917 
4918 	/* Do we wait for any urgent data? - normally not... */
4919 	if (tp->urg_data == TCP_URG_NOTYET) {
4920 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4921 			  th->syn;
4922 
4923 		/* Is the urgent pointer pointing into this packet? */
4924 		if (ptr < skb->len) {
4925 			u8 tmp;
4926 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4927 				BUG();
4928 			tp->urg_data = TCP_URG_VALID | tmp;
4929 			if (!sock_flag(sk, SOCK_DEAD))
4930 				sk->sk_data_ready(sk);
4931 		}
4932 	}
4933 }
4934 
4935 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4936 {
4937 	struct tcp_sock *tp = tcp_sk(sk);
4938 	int chunk = skb->len - hlen;
4939 	int err;
4940 
4941 	local_bh_enable();
4942 	if (skb_csum_unnecessary(skb))
4943 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4944 	else
4945 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4946 						       tp->ucopy.iov);
4947 
4948 	if (!err) {
4949 		tp->ucopy.len -= chunk;
4950 		tp->copied_seq += chunk;
4951 		tcp_rcv_space_adjust(sk);
4952 	}
4953 
4954 	local_bh_disable();
4955 	return err;
4956 }
4957 
4958 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4959 					    struct sk_buff *skb)
4960 {
4961 	__sum16 result;
4962 
4963 	if (sock_owned_by_user(sk)) {
4964 		local_bh_enable();
4965 		result = __tcp_checksum_complete(skb);
4966 		local_bh_disable();
4967 	} else {
4968 		result = __tcp_checksum_complete(skb);
4969 	}
4970 	return result;
4971 }
4972 
4973 static inline bool tcp_checksum_complete_user(struct sock *sk,
4974 					     struct sk_buff *skb)
4975 {
4976 	return !skb_csum_unnecessary(skb) &&
4977 	       __tcp_checksum_complete_user(sk, skb);
4978 }
4979 
4980 /* Does PAWS and seqno based validation of an incoming segment, flags will
4981  * play significant role here.
4982  */
4983 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4984 				  const struct tcphdr *th, int syn_inerr)
4985 {
4986 	struct tcp_sock *tp = tcp_sk(sk);
4987 
4988 	/* RFC1323: H1. Apply PAWS check first. */
4989 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4990 	    tcp_paws_discard(sk, skb)) {
4991 		if (!th->rst) {
4992 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4993 			tcp_send_dupack(sk, skb);
4994 			goto discard;
4995 		}
4996 		/* Reset is accepted even if it did not pass PAWS. */
4997 	}
4998 
4999 	/* Step 1: check sequence number */
5000 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5001 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5002 		 * (RST) segments are validated by checking their SEQ-fields."
5003 		 * And page 69: "If an incoming segment is not acceptable,
5004 		 * an acknowledgment should be sent in reply (unless the RST
5005 		 * bit is set, if so drop the segment and return)".
5006 		 */
5007 		if (!th->rst) {
5008 			if (th->syn)
5009 				goto syn_challenge;
5010 			tcp_send_dupack(sk, skb);
5011 		}
5012 		goto discard;
5013 	}
5014 
5015 	/* Step 2: check RST bit */
5016 	if (th->rst) {
5017 		/* RFC 5961 3.2 :
5018 		 * If sequence number exactly matches RCV.NXT, then
5019 		 *     RESET the connection
5020 		 * else
5021 		 *     Send a challenge ACK
5022 		 */
5023 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5024 			tcp_reset(sk);
5025 		else
5026 			tcp_send_challenge_ack(sk);
5027 		goto discard;
5028 	}
5029 
5030 	/* step 3: check security and precedence [ignored] */
5031 
5032 	/* step 4: Check for a SYN
5033 	 * RFC 5691 4.2 : Send a challenge ack
5034 	 */
5035 	if (th->syn) {
5036 syn_challenge:
5037 		if (syn_inerr)
5038 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5039 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5040 		tcp_send_challenge_ack(sk);
5041 		goto discard;
5042 	}
5043 
5044 	return true;
5045 
5046 discard:
5047 	__kfree_skb(skb);
5048 	return false;
5049 }
5050 
5051 /*
5052  *	TCP receive function for the ESTABLISHED state.
5053  *
5054  *	It is split into a fast path and a slow path. The fast path is
5055  * 	disabled when:
5056  *	- A zero window was announced from us - zero window probing
5057  *        is only handled properly in the slow path.
5058  *	- Out of order segments arrived.
5059  *	- Urgent data is expected.
5060  *	- There is no buffer space left
5061  *	- Unexpected TCP flags/window values/header lengths are received
5062  *	  (detected by checking the TCP header against pred_flags)
5063  *	- Data is sent in both directions. Fast path only supports pure senders
5064  *	  or pure receivers (this means either the sequence number or the ack
5065  *	  value must stay constant)
5066  *	- Unexpected TCP option.
5067  *
5068  *	When these conditions are not satisfied it drops into a standard
5069  *	receive procedure patterned after RFC793 to handle all cases.
5070  *	The first three cases are guaranteed by proper pred_flags setting,
5071  *	the rest is checked inline. Fast processing is turned on in
5072  *	tcp_data_queue when everything is OK.
5073  */
5074 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5075 			 const struct tcphdr *th, unsigned int len)
5076 {
5077 	struct tcp_sock *tp = tcp_sk(sk);
5078 
5079 	if (unlikely(sk->sk_rx_dst == NULL))
5080 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5081 	/*
5082 	 *	Header prediction.
5083 	 *	The code loosely follows the one in the famous
5084 	 *	"30 instruction TCP receive" Van Jacobson mail.
5085 	 *
5086 	 *	Van's trick is to deposit buffers into socket queue
5087 	 *	on a device interrupt, to call tcp_recv function
5088 	 *	on the receive process context and checksum and copy
5089 	 *	the buffer to user space. smart...
5090 	 *
5091 	 *	Our current scheme is not silly either but we take the
5092 	 *	extra cost of the net_bh soft interrupt processing...
5093 	 *	We do checksum and copy also but from device to kernel.
5094 	 */
5095 
5096 	tp->rx_opt.saw_tstamp = 0;
5097 
5098 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5099 	 *	if header_prediction is to be made
5100 	 *	'S' will always be tp->tcp_header_len >> 2
5101 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5102 	 *  turn it off	(when there are holes in the receive
5103 	 *	 space for instance)
5104 	 *	PSH flag is ignored.
5105 	 */
5106 
5107 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5108 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5109 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5110 		int tcp_header_len = tp->tcp_header_len;
5111 
5112 		/* Timestamp header prediction: tcp_header_len
5113 		 * is automatically equal to th->doff*4 due to pred_flags
5114 		 * match.
5115 		 */
5116 
5117 		/* Check timestamp */
5118 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5119 			/* No? Slow path! */
5120 			if (!tcp_parse_aligned_timestamp(tp, th))
5121 				goto slow_path;
5122 
5123 			/* If PAWS failed, check it more carefully in slow path */
5124 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5125 				goto slow_path;
5126 
5127 			/* DO NOT update ts_recent here, if checksum fails
5128 			 * and timestamp was corrupted part, it will result
5129 			 * in a hung connection since we will drop all
5130 			 * future packets due to the PAWS test.
5131 			 */
5132 		}
5133 
5134 		if (len <= tcp_header_len) {
5135 			/* Bulk data transfer: sender */
5136 			if (len == tcp_header_len) {
5137 				/* Predicted packet is in window by definition.
5138 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5139 				 * Hence, check seq<=rcv_wup reduces to:
5140 				 */
5141 				if (tcp_header_len ==
5142 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5143 				    tp->rcv_nxt == tp->rcv_wup)
5144 					tcp_store_ts_recent(tp);
5145 
5146 				/* We know that such packets are checksummed
5147 				 * on entry.
5148 				 */
5149 				tcp_ack(sk, skb, 0);
5150 				__kfree_skb(skb);
5151 				tcp_data_snd_check(sk);
5152 				return;
5153 			} else { /* Header too small */
5154 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5155 				goto discard;
5156 			}
5157 		} else {
5158 			int eaten = 0;
5159 			bool fragstolen = false;
5160 
5161 			if (tp->ucopy.task == current &&
5162 			    tp->copied_seq == tp->rcv_nxt &&
5163 			    len - tcp_header_len <= tp->ucopy.len &&
5164 			    sock_owned_by_user(sk)) {
5165 				__set_current_state(TASK_RUNNING);
5166 
5167 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5168 					/* Predicted packet is in window by definition.
5169 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5170 					 * Hence, check seq<=rcv_wup reduces to:
5171 					 */
5172 					if (tcp_header_len ==
5173 					    (sizeof(struct tcphdr) +
5174 					     TCPOLEN_TSTAMP_ALIGNED) &&
5175 					    tp->rcv_nxt == tp->rcv_wup)
5176 						tcp_store_ts_recent(tp);
5177 
5178 					tcp_rcv_rtt_measure_ts(sk, skb);
5179 
5180 					__skb_pull(skb, tcp_header_len);
5181 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5182 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5183 					eaten = 1;
5184 				}
5185 			}
5186 			if (!eaten) {
5187 				if (tcp_checksum_complete_user(sk, skb))
5188 					goto csum_error;
5189 
5190 				if ((int)skb->truesize > sk->sk_forward_alloc)
5191 					goto step5;
5192 
5193 				/* Predicted packet is in window by definition.
5194 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5195 				 * Hence, check seq<=rcv_wup reduces to:
5196 				 */
5197 				if (tcp_header_len ==
5198 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5199 				    tp->rcv_nxt == tp->rcv_wup)
5200 					tcp_store_ts_recent(tp);
5201 
5202 				tcp_rcv_rtt_measure_ts(sk, skb);
5203 
5204 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5205 
5206 				/* Bulk data transfer: receiver */
5207 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5208 						      &fragstolen);
5209 			}
5210 
5211 			tcp_event_data_recv(sk, skb);
5212 
5213 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5214 				/* Well, only one small jumplet in fast path... */
5215 				tcp_ack(sk, skb, FLAG_DATA);
5216 				tcp_data_snd_check(sk);
5217 				if (!inet_csk_ack_scheduled(sk))
5218 					goto no_ack;
5219 			}
5220 
5221 			__tcp_ack_snd_check(sk, 0);
5222 no_ack:
5223 			if (eaten)
5224 				kfree_skb_partial(skb, fragstolen);
5225 			sk->sk_data_ready(sk);
5226 			return;
5227 		}
5228 	}
5229 
5230 slow_path:
5231 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5232 		goto csum_error;
5233 
5234 	if (!th->ack && !th->rst && !th->syn)
5235 		goto discard;
5236 
5237 	/*
5238 	 *	Standard slow path.
5239 	 */
5240 
5241 	if (!tcp_validate_incoming(sk, skb, th, 1))
5242 		return;
5243 
5244 step5:
5245 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5246 		goto discard;
5247 
5248 	tcp_rcv_rtt_measure_ts(sk, skb);
5249 
5250 	/* Process urgent data. */
5251 	tcp_urg(sk, skb, th);
5252 
5253 	/* step 7: process the segment text */
5254 	tcp_data_queue(sk, skb);
5255 
5256 	tcp_data_snd_check(sk);
5257 	tcp_ack_snd_check(sk);
5258 	return;
5259 
5260 csum_error:
5261 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5262 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5263 
5264 discard:
5265 	__kfree_skb(skb);
5266 }
5267 EXPORT_SYMBOL(tcp_rcv_established);
5268 
5269 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5270 {
5271 	struct tcp_sock *tp = tcp_sk(sk);
5272 	struct inet_connection_sock *icsk = inet_csk(sk);
5273 
5274 	tcp_set_state(sk, TCP_ESTABLISHED);
5275 
5276 	if (skb != NULL) {
5277 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5278 		security_inet_conn_established(sk, skb);
5279 	}
5280 
5281 	/* Make sure socket is routed, for correct metrics.  */
5282 	icsk->icsk_af_ops->rebuild_header(sk);
5283 
5284 	tcp_init_metrics(sk);
5285 
5286 	tcp_init_congestion_control(sk);
5287 
5288 	/* Prevent spurious tcp_cwnd_restart() on first data
5289 	 * packet.
5290 	 */
5291 	tp->lsndtime = tcp_time_stamp;
5292 
5293 	tcp_init_buffer_space(sk);
5294 
5295 	if (sock_flag(sk, SOCK_KEEPOPEN))
5296 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5297 
5298 	if (!tp->rx_opt.snd_wscale)
5299 		__tcp_fast_path_on(tp, tp->snd_wnd);
5300 	else
5301 		tp->pred_flags = 0;
5302 
5303 	if (!sock_flag(sk, SOCK_DEAD)) {
5304 		sk->sk_state_change(sk);
5305 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5306 	}
5307 }
5308 
5309 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5310 				    struct tcp_fastopen_cookie *cookie)
5311 {
5312 	struct tcp_sock *tp = tcp_sk(sk);
5313 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5314 	u16 mss = tp->rx_opt.mss_clamp;
5315 	bool syn_drop;
5316 
5317 	if (mss == tp->rx_opt.user_mss) {
5318 		struct tcp_options_received opt;
5319 
5320 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5321 		tcp_clear_options(&opt);
5322 		opt.user_mss = opt.mss_clamp = 0;
5323 		tcp_parse_options(synack, &opt, 0, NULL);
5324 		mss = opt.mss_clamp;
5325 	}
5326 
5327 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5328 		cookie->len = -1;
5329 
5330 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5331 	 * the remote receives only the retransmitted (regular) SYNs: either
5332 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5333 	 */
5334 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5335 
5336 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5337 
5338 	if (data) { /* Retransmit unacked data in SYN */
5339 		tcp_for_write_queue_from(data, sk) {
5340 			if (data == tcp_send_head(sk) ||
5341 			    __tcp_retransmit_skb(sk, data))
5342 				break;
5343 		}
5344 		tcp_rearm_rto(sk);
5345 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5346 		return true;
5347 	}
5348 	tp->syn_data_acked = tp->syn_data;
5349 	if (tp->syn_data_acked)
5350 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5351 	return false;
5352 }
5353 
5354 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5355 					 const struct tcphdr *th, unsigned int len)
5356 {
5357 	struct inet_connection_sock *icsk = inet_csk(sk);
5358 	struct tcp_sock *tp = tcp_sk(sk);
5359 	struct tcp_fastopen_cookie foc = { .len = -1 };
5360 	int saved_clamp = tp->rx_opt.mss_clamp;
5361 
5362 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5363 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5364 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5365 
5366 	if (th->ack) {
5367 		/* rfc793:
5368 		 * "If the state is SYN-SENT then
5369 		 *    first check the ACK bit
5370 		 *      If the ACK bit is set
5371 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5372 		 *        a reset (unless the RST bit is set, if so drop
5373 		 *        the segment and return)"
5374 		 */
5375 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5376 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5377 			goto reset_and_undo;
5378 
5379 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5380 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5381 			     tcp_time_stamp)) {
5382 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5383 			goto reset_and_undo;
5384 		}
5385 
5386 		/* Now ACK is acceptable.
5387 		 *
5388 		 * "If the RST bit is set
5389 		 *    If the ACK was acceptable then signal the user "error:
5390 		 *    connection reset", drop the segment, enter CLOSED state,
5391 		 *    delete TCB, and return."
5392 		 */
5393 
5394 		if (th->rst) {
5395 			tcp_reset(sk);
5396 			goto discard;
5397 		}
5398 
5399 		/* rfc793:
5400 		 *   "fifth, if neither of the SYN or RST bits is set then
5401 		 *    drop the segment and return."
5402 		 *
5403 		 *    See note below!
5404 		 *                                        --ANK(990513)
5405 		 */
5406 		if (!th->syn)
5407 			goto discard_and_undo;
5408 
5409 		/* rfc793:
5410 		 *   "If the SYN bit is on ...
5411 		 *    are acceptable then ...
5412 		 *    (our SYN has been ACKed), change the connection
5413 		 *    state to ESTABLISHED..."
5414 		 */
5415 
5416 		tcp_ecn_rcv_synack(tp, th);
5417 
5418 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5419 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5420 
5421 		/* Ok.. it's good. Set up sequence numbers and
5422 		 * move to established.
5423 		 */
5424 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5425 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5426 
5427 		/* RFC1323: The window in SYN & SYN/ACK segments is
5428 		 * never scaled.
5429 		 */
5430 		tp->snd_wnd = ntohs(th->window);
5431 
5432 		if (!tp->rx_opt.wscale_ok) {
5433 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5434 			tp->window_clamp = min(tp->window_clamp, 65535U);
5435 		}
5436 
5437 		if (tp->rx_opt.saw_tstamp) {
5438 			tp->rx_opt.tstamp_ok	   = 1;
5439 			tp->tcp_header_len =
5440 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5441 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5442 			tcp_store_ts_recent(tp);
5443 		} else {
5444 			tp->tcp_header_len = sizeof(struct tcphdr);
5445 		}
5446 
5447 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5448 			tcp_enable_fack(tp);
5449 
5450 		tcp_mtup_init(sk);
5451 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5452 		tcp_initialize_rcv_mss(sk);
5453 
5454 		/* Remember, tcp_poll() does not lock socket!
5455 		 * Change state from SYN-SENT only after copied_seq
5456 		 * is initialized. */
5457 		tp->copied_seq = tp->rcv_nxt;
5458 
5459 		smp_mb();
5460 
5461 		tcp_finish_connect(sk, skb);
5462 
5463 		if ((tp->syn_fastopen || tp->syn_data) &&
5464 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5465 			return -1;
5466 
5467 		if (sk->sk_write_pending ||
5468 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5469 		    icsk->icsk_ack.pingpong) {
5470 			/* Save one ACK. Data will be ready after
5471 			 * several ticks, if write_pending is set.
5472 			 *
5473 			 * It may be deleted, but with this feature tcpdumps
5474 			 * look so _wonderfully_ clever, that I was not able
5475 			 * to stand against the temptation 8)     --ANK
5476 			 */
5477 			inet_csk_schedule_ack(sk);
5478 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5479 			tcp_enter_quickack_mode(sk);
5480 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5481 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5482 
5483 discard:
5484 			__kfree_skb(skb);
5485 			return 0;
5486 		} else {
5487 			tcp_send_ack(sk);
5488 		}
5489 		return -1;
5490 	}
5491 
5492 	/* No ACK in the segment */
5493 
5494 	if (th->rst) {
5495 		/* rfc793:
5496 		 * "If the RST bit is set
5497 		 *
5498 		 *      Otherwise (no ACK) drop the segment and return."
5499 		 */
5500 
5501 		goto discard_and_undo;
5502 	}
5503 
5504 	/* PAWS check. */
5505 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5506 	    tcp_paws_reject(&tp->rx_opt, 0))
5507 		goto discard_and_undo;
5508 
5509 	if (th->syn) {
5510 		/* We see SYN without ACK. It is attempt of
5511 		 * simultaneous connect with crossed SYNs.
5512 		 * Particularly, it can be connect to self.
5513 		 */
5514 		tcp_set_state(sk, TCP_SYN_RECV);
5515 
5516 		if (tp->rx_opt.saw_tstamp) {
5517 			tp->rx_opt.tstamp_ok = 1;
5518 			tcp_store_ts_recent(tp);
5519 			tp->tcp_header_len =
5520 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5521 		} else {
5522 			tp->tcp_header_len = sizeof(struct tcphdr);
5523 		}
5524 
5525 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5526 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5527 
5528 		/* RFC1323: The window in SYN & SYN/ACK segments is
5529 		 * never scaled.
5530 		 */
5531 		tp->snd_wnd    = ntohs(th->window);
5532 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5533 		tp->max_window = tp->snd_wnd;
5534 
5535 		tcp_ecn_rcv_syn(tp, th);
5536 
5537 		tcp_mtup_init(sk);
5538 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5539 		tcp_initialize_rcv_mss(sk);
5540 
5541 		tcp_send_synack(sk);
5542 #if 0
5543 		/* Note, we could accept data and URG from this segment.
5544 		 * There are no obstacles to make this (except that we must
5545 		 * either change tcp_recvmsg() to prevent it from returning data
5546 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5547 		 *
5548 		 * However, if we ignore data in ACKless segments sometimes,
5549 		 * we have no reasons to accept it sometimes.
5550 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5551 		 * is not flawless. So, discard packet for sanity.
5552 		 * Uncomment this return to process the data.
5553 		 */
5554 		return -1;
5555 #else
5556 		goto discard;
5557 #endif
5558 	}
5559 	/* "fifth, if neither of the SYN or RST bits is set then
5560 	 * drop the segment and return."
5561 	 */
5562 
5563 discard_and_undo:
5564 	tcp_clear_options(&tp->rx_opt);
5565 	tp->rx_opt.mss_clamp = saved_clamp;
5566 	goto discard;
5567 
5568 reset_and_undo:
5569 	tcp_clear_options(&tp->rx_opt);
5570 	tp->rx_opt.mss_clamp = saved_clamp;
5571 	return 1;
5572 }
5573 
5574 /*
5575  *	This function implements the receiving procedure of RFC 793 for
5576  *	all states except ESTABLISHED and TIME_WAIT.
5577  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5578  *	address independent.
5579  */
5580 
5581 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5582 			  const struct tcphdr *th, unsigned int len)
5583 {
5584 	struct tcp_sock *tp = tcp_sk(sk);
5585 	struct inet_connection_sock *icsk = inet_csk(sk);
5586 	struct request_sock *req;
5587 	int queued = 0;
5588 	bool acceptable;
5589 	u32 synack_stamp;
5590 
5591 	tp->rx_opt.saw_tstamp = 0;
5592 
5593 	switch (sk->sk_state) {
5594 	case TCP_CLOSE:
5595 		goto discard;
5596 
5597 	case TCP_LISTEN:
5598 		if (th->ack)
5599 			return 1;
5600 
5601 		if (th->rst)
5602 			goto discard;
5603 
5604 		if (th->syn) {
5605 			if (th->fin)
5606 				goto discard;
5607 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5608 				return 1;
5609 
5610 			/* Now we have several options: In theory there is
5611 			 * nothing else in the frame. KA9Q has an option to
5612 			 * send data with the syn, BSD accepts data with the
5613 			 * syn up to the [to be] advertised window and
5614 			 * Solaris 2.1 gives you a protocol error. For now
5615 			 * we just ignore it, that fits the spec precisely
5616 			 * and avoids incompatibilities. It would be nice in
5617 			 * future to drop through and process the data.
5618 			 *
5619 			 * Now that TTCP is starting to be used we ought to
5620 			 * queue this data.
5621 			 * But, this leaves one open to an easy denial of
5622 			 * service attack, and SYN cookies can't defend
5623 			 * against this problem. So, we drop the data
5624 			 * in the interest of security over speed unless
5625 			 * it's still in use.
5626 			 */
5627 			kfree_skb(skb);
5628 			return 0;
5629 		}
5630 		goto discard;
5631 
5632 	case TCP_SYN_SENT:
5633 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5634 		if (queued >= 0)
5635 			return queued;
5636 
5637 		/* Do step6 onward by hand. */
5638 		tcp_urg(sk, skb, th);
5639 		__kfree_skb(skb);
5640 		tcp_data_snd_check(sk);
5641 		return 0;
5642 	}
5643 
5644 	req = tp->fastopen_rsk;
5645 	if (req != NULL) {
5646 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5647 		    sk->sk_state != TCP_FIN_WAIT1);
5648 
5649 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5650 			goto discard;
5651 	}
5652 
5653 	if (!th->ack && !th->rst && !th->syn)
5654 		goto discard;
5655 
5656 	if (!tcp_validate_incoming(sk, skb, th, 0))
5657 		return 0;
5658 
5659 	/* step 5: check the ACK field */
5660 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5661 				      FLAG_UPDATE_TS_RECENT) > 0;
5662 
5663 	switch (sk->sk_state) {
5664 	case TCP_SYN_RECV:
5665 		if (!acceptable)
5666 			return 1;
5667 
5668 		/* Once we leave TCP_SYN_RECV, we no longer need req
5669 		 * so release it.
5670 		 */
5671 		if (req) {
5672 			synack_stamp = tcp_rsk(req)->snt_synack;
5673 			tp->total_retrans = req->num_retrans;
5674 			reqsk_fastopen_remove(sk, req, false);
5675 		} else {
5676 			synack_stamp = tp->lsndtime;
5677 			/* Make sure socket is routed, for correct metrics. */
5678 			icsk->icsk_af_ops->rebuild_header(sk);
5679 			tcp_init_congestion_control(sk);
5680 
5681 			tcp_mtup_init(sk);
5682 			tp->copied_seq = tp->rcv_nxt;
5683 			tcp_init_buffer_space(sk);
5684 		}
5685 		smp_mb();
5686 		tcp_set_state(sk, TCP_ESTABLISHED);
5687 		sk->sk_state_change(sk);
5688 
5689 		/* Note, that this wakeup is only for marginal crossed SYN case.
5690 		 * Passively open sockets are not waked up, because
5691 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5692 		 */
5693 		if (sk->sk_socket)
5694 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5695 
5696 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5697 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5698 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5699 		tcp_synack_rtt_meas(sk, synack_stamp);
5700 
5701 		if (tp->rx_opt.tstamp_ok)
5702 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5703 
5704 		if (req) {
5705 			/* Re-arm the timer because data may have been sent out.
5706 			 * This is similar to the regular data transmission case
5707 			 * when new data has just been ack'ed.
5708 			 *
5709 			 * (TFO) - we could try to be more aggressive and
5710 			 * retransmitting any data sooner based on when they
5711 			 * are sent out.
5712 			 */
5713 			tcp_rearm_rto(sk);
5714 		} else
5715 			tcp_init_metrics(sk);
5716 
5717 		tcp_update_pacing_rate(sk);
5718 
5719 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5720 		tp->lsndtime = tcp_time_stamp;
5721 
5722 		tcp_initialize_rcv_mss(sk);
5723 		tcp_fast_path_on(tp);
5724 		break;
5725 
5726 	case TCP_FIN_WAIT1: {
5727 		struct dst_entry *dst;
5728 		int tmo;
5729 
5730 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5731 		 * Fast Open socket and this is the first acceptable
5732 		 * ACK we have received, this would have acknowledged
5733 		 * our SYNACK so stop the SYNACK timer.
5734 		 */
5735 		if (req != NULL) {
5736 			/* Return RST if ack_seq is invalid.
5737 			 * Note that RFC793 only says to generate a
5738 			 * DUPACK for it but for TCP Fast Open it seems
5739 			 * better to treat this case like TCP_SYN_RECV
5740 			 * above.
5741 			 */
5742 			if (!acceptable)
5743 				return 1;
5744 			/* We no longer need the request sock. */
5745 			reqsk_fastopen_remove(sk, req, false);
5746 			tcp_rearm_rto(sk);
5747 		}
5748 		if (tp->snd_una != tp->write_seq)
5749 			break;
5750 
5751 		tcp_set_state(sk, TCP_FIN_WAIT2);
5752 		sk->sk_shutdown |= SEND_SHUTDOWN;
5753 
5754 		dst = __sk_dst_get(sk);
5755 		if (dst)
5756 			dst_confirm(dst);
5757 
5758 		if (!sock_flag(sk, SOCK_DEAD)) {
5759 			/* Wake up lingering close() */
5760 			sk->sk_state_change(sk);
5761 			break;
5762 		}
5763 
5764 		if (tp->linger2 < 0 ||
5765 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5766 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5767 			tcp_done(sk);
5768 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5769 			return 1;
5770 		}
5771 
5772 		tmo = tcp_fin_time(sk);
5773 		if (tmo > TCP_TIMEWAIT_LEN) {
5774 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5775 		} else if (th->fin || sock_owned_by_user(sk)) {
5776 			/* Bad case. We could lose such FIN otherwise.
5777 			 * It is not a big problem, but it looks confusing
5778 			 * and not so rare event. We still can lose it now,
5779 			 * if it spins in bh_lock_sock(), but it is really
5780 			 * marginal case.
5781 			 */
5782 			inet_csk_reset_keepalive_timer(sk, tmo);
5783 		} else {
5784 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5785 			goto discard;
5786 		}
5787 		break;
5788 	}
5789 
5790 	case TCP_CLOSING:
5791 		if (tp->snd_una == tp->write_seq) {
5792 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5793 			goto discard;
5794 		}
5795 		break;
5796 
5797 	case TCP_LAST_ACK:
5798 		if (tp->snd_una == tp->write_seq) {
5799 			tcp_update_metrics(sk);
5800 			tcp_done(sk);
5801 			goto discard;
5802 		}
5803 		break;
5804 	}
5805 
5806 	/* step 6: check the URG bit */
5807 	tcp_urg(sk, skb, th);
5808 
5809 	/* step 7: process the segment text */
5810 	switch (sk->sk_state) {
5811 	case TCP_CLOSE_WAIT:
5812 	case TCP_CLOSING:
5813 	case TCP_LAST_ACK:
5814 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5815 			break;
5816 	case TCP_FIN_WAIT1:
5817 	case TCP_FIN_WAIT2:
5818 		/* RFC 793 says to queue data in these states,
5819 		 * RFC 1122 says we MUST send a reset.
5820 		 * BSD 4.4 also does reset.
5821 		 */
5822 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5823 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5824 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5825 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5826 				tcp_reset(sk);
5827 				return 1;
5828 			}
5829 		}
5830 		/* Fall through */
5831 	case TCP_ESTABLISHED:
5832 		tcp_data_queue(sk, skb);
5833 		queued = 1;
5834 		break;
5835 	}
5836 
5837 	/* tcp_data could move socket to TIME-WAIT */
5838 	if (sk->sk_state != TCP_CLOSE) {
5839 		tcp_data_snd_check(sk);
5840 		tcp_ack_snd_check(sk);
5841 	}
5842 
5843 	if (!queued) {
5844 discard:
5845 		__kfree_skb(skb);
5846 	}
5847 	return 0;
5848 }
5849 EXPORT_SYMBOL(tcp_rcv_state_process);
5850 
5851 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5852 {
5853 	struct inet_request_sock *ireq = inet_rsk(req);
5854 
5855 	if (family == AF_INET)
5856 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5857 			       &ireq->ir_rmt_addr, port);
5858 #if IS_ENABLED(CONFIG_IPV6)
5859 	else if (family == AF_INET6)
5860 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5861 			       &ireq->ir_v6_rmt_addr, port);
5862 #endif
5863 }
5864 
5865 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5866  *
5867  * If we receive a SYN packet with these bits set, it means a
5868  * network is playing bad games with TOS bits. In order to
5869  * avoid possible false congestion notifications, we disable
5870  * TCP ECN negociation.
5871  *
5872  * Exception: tcp_ca wants ECN. This is required for DCTCP
5873  * congestion control; it requires setting ECT on all packets,
5874  * including SYN. We inverse the test in this case: If our
5875  * local socket wants ECN, but peer only set ece/cwr (but not
5876  * ECT in IP header) its probably a non-DCTCP aware sender.
5877  */
5878 static void tcp_ecn_create_request(struct request_sock *req,
5879 				   const struct sk_buff *skb,
5880 				   const struct sock *listen_sk)
5881 {
5882 	const struct tcphdr *th = tcp_hdr(skb);
5883 	const struct net *net = sock_net(listen_sk);
5884 	bool th_ecn = th->ece && th->cwr;
5885 	bool ect, need_ecn;
5886 
5887 	if (!th_ecn)
5888 		return;
5889 
5890 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5891 	need_ecn = tcp_ca_needs_ecn(listen_sk);
5892 
5893 	if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
5894 		inet_rsk(req)->ecn_ok = 1;
5895 	else if (ect && need_ecn)
5896 		inet_rsk(req)->ecn_ok = 1;
5897 }
5898 
5899 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5900 		     const struct tcp_request_sock_ops *af_ops,
5901 		     struct sock *sk, struct sk_buff *skb)
5902 {
5903 	struct tcp_options_received tmp_opt;
5904 	struct request_sock *req;
5905 	struct tcp_sock *tp = tcp_sk(sk);
5906 	struct dst_entry *dst = NULL;
5907 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5908 	bool want_cookie = false, fastopen;
5909 	struct flowi fl;
5910 	struct tcp_fastopen_cookie foc = { .len = -1 };
5911 	int err;
5912 
5913 
5914 	/* TW buckets are converted to open requests without
5915 	 * limitations, they conserve resources and peer is
5916 	 * evidently real one.
5917 	 */
5918 	if ((sysctl_tcp_syncookies == 2 ||
5919 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5920 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5921 		if (!want_cookie)
5922 			goto drop;
5923 	}
5924 
5925 
5926 	/* Accept backlog is full. If we have already queued enough
5927 	 * of warm entries in syn queue, drop request. It is better than
5928 	 * clogging syn queue with openreqs with exponentially increasing
5929 	 * timeout.
5930 	 */
5931 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5932 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5933 		goto drop;
5934 	}
5935 
5936 	req = inet_reqsk_alloc(rsk_ops);
5937 	if (!req)
5938 		goto drop;
5939 
5940 	tcp_rsk(req)->af_specific = af_ops;
5941 
5942 	tcp_clear_options(&tmp_opt);
5943 	tmp_opt.mss_clamp = af_ops->mss_clamp;
5944 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
5945 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5946 
5947 	if (want_cookie && !tmp_opt.saw_tstamp)
5948 		tcp_clear_options(&tmp_opt);
5949 
5950 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5951 	tcp_openreq_init(req, &tmp_opt, skb, sk);
5952 
5953 	af_ops->init_req(req, sk, skb);
5954 
5955 	if (security_inet_conn_request(sk, skb, req))
5956 		goto drop_and_free;
5957 
5958 	if (!want_cookie || tmp_opt.tstamp_ok)
5959 		tcp_ecn_create_request(req, skb, sk);
5960 
5961 	if (want_cookie) {
5962 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5963 		req->cookie_ts = tmp_opt.tstamp_ok;
5964 	} else if (!isn) {
5965 		/* VJ's idea. We save last timestamp seen
5966 		 * from the destination in peer table, when entering
5967 		 * state TIME-WAIT, and check against it before
5968 		 * accepting new connection request.
5969 		 *
5970 		 * If "isn" is not zero, this request hit alive
5971 		 * timewait bucket, so that all the necessary checks
5972 		 * are made in the function processing timewait state.
5973 		 */
5974 		if (tcp_death_row.sysctl_tw_recycle) {
5975 			bool strict;
5976 
5977 			dst = af_ops->route_req(sk, &fl, req, &strict);
5978 
5979 			if (dst && strict &&
5980 			    !tcp_peer_is_proven(req, dst, true,
5981 						tmp_opt.saw_tstamp)) {
5982 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5983 				goto drop_and_release;
5984 			}
5985 		}
5986 		/* Kill the following clause, if you dislike this way. */
5987 		else if (!sysctl_tcp_syncookies &&
5988 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5989 			  (sysctl_max_syn_backlog >> 2)) &&
5990 			 !tcp_peer_is_proven(req, dst, false,
5991 					     tmp_opt.saw_tstamp)) {
5992 			/* Without syncookies last quarter of
5993 			 * backlog is filled with destinations,
5994 			 * proven to be alive.
5995 			 * It means that we continue to communicate
5996 			 * to destinations, already remembered
5997 			 * to the moment of synflood.
5998 			 */
5999 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6000 				    rsk_ops->family);
6001 			goto drop_and_release;
6002 		}
6003 
6004 		isn = af_ops->init_seq(skb);
6005 	}
6006 	if (!dst) {
6007 		dst = af_ops->route_req(sk, &fl, req, NULL);
6008 		if (!dst)
6009 			goto drop_and_free;
6010 	}
6011 
6012 	tcp_rsk(req)->snt_isn = isn;
6013 	tcp_openreq_init_rwin(req, sk, dst);
6014 	fastopen = !want_cookie &&
6015 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6016 	err = af_ops->send_synack(sk, dst, &fl, req,
6017 				  skb_get_queue_mapping(skb), &foc);
6018 	if (!fastopen) {
6019 		if (err || want_cookie)
6020 			goto drop_and_free;
6021 
6022 		tcp_rsk(req)->listener = NULL;
6023 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6024 	}
6025 
6026 	return 0;
6027 
6028 drop_and_release:
6029 	dst_release(dst);
6030 drop_and_free:
6031 	reqsk_free(req);
6032 drop:
6033 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6034 	return 0;
6035 }
6036 EXPORT_SYMBOL(tcp_conn_request);
6037