1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 142 unsigned int len) 143 { 144 static bool __once __read_mostly; 145 146 if (!__once) { 147 struct net_device *dev; 148 149 __once = true; 150 151 rcu_read_lock(); 152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 153 if (!dev || len >= dev->mtu) 154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 155 dev ? dev->name : "Unknown driver"); 156 rcu_read_unlock(); 157 } 158 } 159 160 /* Adapt the MSS value used to make delayed ack decision to the 161 * real world. 162 */ 163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const unsigned int lss = icsk->icsk_ack.last_seg_size; 167 unsigned int len; 168 169 icsk->icsk_ack.last_seg_size = 0; 170 171 /* skb->len may jitter because of SACKs, even if peer 172 * sends good full-sized frames. 173 */ 174 len = skb_shinfo(skb)->gso_size ? : skb->len; 175 if (len >= icsk->icsk_ack.rcv_mss) { 176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 177 tcp_sk(sk)->advmss); 178 /* Account for possibly-removed options */ 179 if (unlikely(len > icsk->icsk_ack.rcv_mss + 180 MAX_TCP_OPTION_SPACE)) 181 tcp_gro_dev_warn(sk, skb, len); 182 } else { 183 /* Otherwise, we make more careful check taking into account, 184 * that SACKs block is variable. 185 * 186 * "len" is invariant segment length, including TCP header. 187 */ 188 len += skb->data - skb_transport_header(skb); 189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 190 /* If PSH is not set, packet should be 191 * full sized, provided peer TCP is not badly broken. 192 * This observation (if it is correct 8)) allows 193 * to handle super-low mtu links fairly. 194 */ 195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 197 /* Subtract also invariant (if peer is RFC compliant), 198 * tcp header plus fixed timestamp option length. 199 * Resulting "len" is MSS free of SACK jitter. 200 */ 201 len -= tcp_sk(sk)->tcp_header_len; 202 icsk->icsk_ack.last_seg_size = len; 203 if (len == lss) { 204 icsk->icsk_ack.rcv_mss = len; 205 return; 206 } 207 } 208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 211 } 212 } 213 214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 215 { 216 struct inet_connection_sock *icsk = inet_csk(sk); 217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 218 219 if (quickacks == 0) 220 quickacks = 2; 221 quickacks = min(quickacks, max_quickacks); 222 if (quickacks > icsk->icsk_ack.quick) 223 icsk->icsk_ack.quick = quickacks; 224 } 225 226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 230 tcp_incr_quickack(sk, max_quickacks); 231 inet_csk_exit_pingpong_mode(sk); 232 icsk->icsk_ack.ato = TCP_ATO_MIN; 233 } 234 EXPORT_SYMBOL(tcp_enter_quickack_mode); 235 236 /* Send ACKs quickly, if "quick" count is not exhausted 237 * and the session is not interactive. 238 */ 239 240 static bool tcp_in_quickack_mode(struct sock *sk) 241 { 242 const struct inet_connection_sock *icsk = inet_csk(sk); 243 const struct dst_entry *dst = __sk_dst_get(sk); 244 245 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 247 } 248 249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 250 { 251 if (tp->ecn_flags & TCP_ECN_OK) 252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 253 } 254 255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 256 { 257 if (tcp_hdr(skb)->cwr) { 258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 259 260 /* If the sender is telling us it has entered CWR, then its 261 * cwnd may be very low (even just 1 packet), so we should ACK 262 * immediately. 263 */ 264 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 265 } 266 } 267 268 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 269 { 270 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 271 } 272 273 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 274 { 275 struct tcp_sock *tp = tcp_sk(sk); 276 277 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 278 case INET_ECN_NOT_ECT: 279 /* Funny extension: if ECT is not set on a segment, 280 * and we already seen ECT on a previous segment, 281 * it is probably a retransmit. 282 */ 283 if (tp->ecn_flags & TCP_ECN_SEEN) 284 tcp_enter_quickack_mode(sk, 2); 285 break; 286 case INET_ECN_CE: 287 if (tcp_ca_needs_ecn(sk)) 288 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 289 290 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 291 /* Better not delay acks, sender can have a very low cwnd */ 292 tcp_enter_quickack_mode(sk, 2); 293 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 294 } 295 tp->ecn_flags |= TCP_ECN_SEEN; 296 break; 297 default: 298 if (tcp_ca_needs_ecn(sk)) 299 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 300 tp->ecn_flags |= TCP_ECN_SEEN; 301 break; 302 } 303 } 304 305 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 306 { 307 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 308 __tcp_ecn_check_ce(sk, skb); 309 } 310 311 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 312 { 313 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 314 tp->ecn_flags &= ~TCP_ECN_OK; 315 } 316 317 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 318 { 319 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 320 tp->ecn_flags &= ~TCP_ECN_OK; 321 } 322 323 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 324 { 325 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 326 return true; 327 return false; 328 } 329 330 /* Buffer size and advertised window tuning. 331 * 332 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 333 */ 334 335 static void tcp_sndbuf_expand(struct sock *sk) 336 { 337 const struct tcp_sock *tp = tcp_sk(sk); 338 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 339 int sndmem, per_mss; 340 u32 nr_segs; 341 342 /* Worst case is non GSO/TSO : each frame consumes one skb 343 * and skb->head is kmalloced using power of two area of memory 344 */ 345 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 346 MAX_TCP_HEADER + 347 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 348 349 per_mss = roundup_pow_of_two(per_mss) + 350 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 351 352 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 353 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 354 355 /* Fast Recovery (RFC 5681 3.2) : 356 * Cubic needs 1.7 factor, rounded to 2 to include 357 * extra cushion (application might react slowly to EPOLLOUT) 358 */ 359 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 360 sndmem *= nr_segs * per_mss; 361 362 if (sk->sk_sndbuf < sndmem) 363 WRITE_ONCE(sk->sk_sndbuf, 364 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 365 } 366 367 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 368 * 369 * All tcp_full_space() is split to two parts: "network" buffer, allocated 370 * forward and advertised in receiver window (tp->rcv_wnd) and 371 * "application buffer", required to isolate scheduling/application 372 * latencies from network. 373 * window_clamp is maximal advertised window. It can be less than 374 * tcp_full_space(), in this case tcp_full_space() - window_clamp 375 * is reserved for "application" buffer. The less window_clamp is 376 * the smoother our behaviour from viewpoint of network, but the lower 377 * throughput and the higher sensitivity of the connection to losses. 8) 378 * 379 * rcv_ssthresh is more strict window_clamp used at "slow start" 380 * phase to predict further behaviour of this connection. 381 * It is used for two goals: 382 * - to enforce header prediction at sender, even when application 383 * requires some significant "application buffer". It is check #1. 384 * - to prevent pruning of receive queue because of misprediction 385 * of receiver window. Check #2. 386 * 387 * The scheme does not work when sender sends good segments opening 388 * window and then starts to feed us spaghetti. But it should work 389 * in common situations. Otherwise, we have to rely on queue collapsing. 390 */ 391 392 /* Slow part of check#2. */ 393 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 394 { 395 struct tcp_sock *tp = tcp_sk(sk); 396 /* Optimize this! */ 397 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 398 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 399 400 while (tp->rcv_ssthresh <= window) { 401 if (truesize <= skb->len) 402 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 403 404 truesize >>= 1; 405 window >>= 1; 406 } 407 return 0; 408 } 409 410 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 int room; 414 415 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 416 417 /* Check #1 */ 418 if (room > 0 && !tcp_under_memory_pressure(sk)) { 419 int incr; 420 421 /* Check #2. Increase window, if skb with such overhead 422 * will fit to rcvbuf in future. 423 */ 424 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 425 incr = 2 * tp->advmss; 426 else 427 incr = __tcp_grow_window(sk, skb); 428 429 if (incr) { 430 incr = max_t(int, incr, 2 * skb->len); 431 tp->rcv_ssthresh += min(room, incr); 432 inet_csk(sk)->icsk_ack.quick |= 1; 433 } 434 } 435 } 436 437 /* 3. Try to fixup all. It is made immediately after connection enters 438 * established state. 439 */ 440 void tcp_init_buffer_space(struct sock *sk) 441 { 442 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 443 struct tcp_sock *tp = tcp_sk(sk); 444 int maxwin; 445 446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 447 tcp_sndbuf_expand(sk); 448 449 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 450 tcp_mstamp_refresh(tp); 451 tp->rcvq_space.time = tp->tcp_mstamp; 452 tp->rcvq_space.seq = tp->copied_seq; 453 454 maxwin = tcp_full_space(sk); 455 456 if (tp->window_clamp >= maxwin) { 457 tp->window_clamp = maxwin; 458 459 if (tcp_app_win && maxwin > 4 * tp->advmss) 460 tp->window_clamp = max(maxwin - 461 (maxwin >> tcp_app_win), 462 4 * tp->advmss); 463 } 464 465 /* Force reservation of one segment. */ 466 if (tcp_app_win && 467 tp->window_clamp > 2 * tp->advmss && 468 tp->window_clamp + tp->advmss > maxwin) 469 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 470 471 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 472 tp->snd_cwnd_stamp = tcp_jiffies32; 473 } 474 475 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 476 static void tcp_clamp_window(struct sock *sk) 477 { 478 struct tcp_sock *tp = tcp_sk(sk); 479 struct inet_connection_sock *icsk = inet_csk(sk); 480 struct net *net = sock_net(sk); 481 482 icsk->icsk_ack.quick = 0; 483 484 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 485 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 486 !tcp_under_memory_pressure(sk) && 487 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 488 WRITE_ONCE(sk->sk_rcvbuf, 489 min(atomic_read(&sk->sk_rmem_alloc), 490 net->ipv4.sysctl_tcp_rmem[2])); 491 } 492 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 493 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 494 } 495 496 /* Initialize RCV_MSS value. 497 * RCV_MSS is an our guess about MSS used by the peer. 498 * We haven't any direct information about the MSS. 499 * It's better to underestimate the RCV_MSS rather than overestimate. 500 * Overestimations make us ACKing less frequently than needed. 501 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 502 */ 503 void tcp_initialize_rcv_mss(struct sock *sk) 504 { 505 const struct tcp_sock *tp = tcp_sk(sk); 506 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 507 508 hint = min(hint, tp->rcv_wnd / 2); 509 hint = min(hint, TCP_MSS_DEFAULT); 510 hint = max(hint, TCP_MIN_MSS); 511 512 inet_csk(sk)->icsk_ack.rcv_mss = hint; 513 } 514 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 515 516 /* Receiver "autotuning" code. 517 * 518 * The algorithm for RTT estimation w/o timestamps is based on 519 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 520 * <http://public.lanl.gov/radiant/pubs.html#DRS> 521 * 522 * More detail on this code can be found at 523 * <http://staff.psc.edu/jheffner/>, 524 * though this reference is out of date. A new paper 525 * is pending. 526 */ 527 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 528 { 529 u32 new_sample = tp->rcv_rtt_est.rtt_us; 530 long m = sample; 531 532 if (new_sample != 0) { 533 /* If we sample in larger samples in the non-timestamp 534 * case, we could grossly overestimate the RTT especially 535 * with chatty applications or bulk transfer apps which 536 * are stalled on filesystem I/O. 537 * 538 * Also, since we are only going for a minimum in the 539 * non-timestamp case, we do not smooth things out 540 * else with timestamps disabled convergence takes too 541 * long. 542 */ 543 if (!win_dep) { 544 m -= (new_sample >> 3); 545 new_sample += m; 546 } else { 547 m <<= 3; 548 if (m < new_sample) 549 new_sample = m; 550 } 551 } else { 552 /* No previous measure. */ 553 new_sample = m << 3; 554 } 555 556 tp->rcv_rtt_est.rtt_us = new_sample; 557 } 558 559 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 560 { 561 u32 delta_us; 562 563 if (tp->rcv_rtt_est.time == 0) 564 goto new_measure; 565 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 566 return; 567 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 568 if (!delta_us) 569 delta_us = 1; 570 tcp_rcv_rtt_update(tp, delta_us, 1); 571 572 new_measure: 573 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 574 tp->rcv_rtt_est.time = tp->tcp_mstamp; 575 } 576 577 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 578 const struct sk_buff *skb) 579 { 580 struct tcp_sock *tp = tcp_sk(sk); 581 582 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 583 return; 584 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 585 586 if (TCP_SKB_CB(skb)->end_seq - 587 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 588 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 589 u32 delta_us; 590 591 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 592 if (!delta) 593 delta = 1; 594 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 595 tcp_rcv_rtt_update(tp, delta_us, 0); 596 } 597 } 598 } 599 600 /* 601 * This function should be called every time data is copied to user space. 602 * It calculates the appropriate TCP receive buffer space. 603 */ 604 void tcp_rcv_space_adjust(struct sock *sk) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 u32 copied; 608 int time; 609 610 trace_tcp_rcv_space_adjust(sk); 611 612 tcp_mstamp_refresh(tp); 613 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 614 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 615 return; 616 617 /* Number of bytes copied to user in last RTT */ 618 copied = tp->copied_seq - tp->rcvq_space.seq; 619 if (copied <= tp->rcvq_space.space) 620 goto new_measure; 621 622 /* A bit of theory : 623 * copied = bytes received in previous RTT, our base window 624 * To cope with packet losses, we need a 2x factor 625 * To cope with slow start, and sender growing its cwin by 100 % 626 * every RTT, we need a 4x factor, because the ACK we are sending 627 * now is for the next RTT, not the current one : 628 * <prev RTT . ><current RTT .. ><next RTT .... > 629 */ 630 631 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 632 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 633 int rcvmem, rcvbuf; 634 u64 rcvwin, grow; 635 636 /* minimal window to cope with packet losses, assuming 637 * steady state. Add some cushion because of small variations. 638 */ 639 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 640 641 /* Accommodate for sender rate increase (eg. slow start) */ 642 grow = rcvwin * (copied - tp->rcvq_space.space); 643 do_div(grow, tp->rcvq_space.space); 644 rcvwin += (grow << 1); 645 646 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 647 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 648 rcvmem += 128; 649 650 do_div(rcvwin, tp->advmss); 651 rcvbuf = min_t(u64, rcvwin * rcvmem, 652 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 653 if (rcvbuf > sk->sk_rcvbuf) { 654 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 655 656 /* Make the window clamp follow along. */ 657 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 658 } 659 } 660 tp->rcvq_space.space = copied; 661 662 new_measure: 663 tp->rcvq_space.seq = tp->copied_seq; 664 tp->rcvq_space.time = tp->tcp_mstamp; 665 } 666 667 /* There is something which you must keep in mind when you analyze the 668 * behavior of the tp->ato delayed ack timeout interval. When a 669 * connection starts up, we want to ack as quickly as possible. The 670 * problem is that "good" TCP's do slow start at the beginning of data 671 * transmission. The means that until we send the first few ACK's the 672 * sender will sit on his end and only queue most of his data, because 673 * he can only send snd_cwnd unacked packets at any given time. For 674 * each ACK we send, he increments snd_cwnd and transmits more of his 675 * queue. -DaveM 676 */ 677 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 678 { 679 struct tcp_sock *tp = tcp_sk(sk); 680 struct inet_connection_sock *icsk = inet_csk(sk); 681 u32 now; 682 683 inet_csk_schedule_ack(sk); 684 685 tcp_measure_rcv_mss(sk, skb); 686 687 tcp_rcv_rtt_measure(tp); 688 689 now = tcp_jiffies32; 690 691 if (!icsk->icsk_ack.ato) { 692 /* The _first_ data packet received, initialize 693 * delayed ACK engine. 694 */ 695 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 696 icsk->icsk_ack.ato = TCP_ATO_MIN; 697 } else { 698 int m = now - icsk->icsk_ack.lrcvtime; 699 700 if (m <= TCP_ATO_MIN / 2) { 701 /* The fastest case is the first. */ 702 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 703 } else if (m < icsk->icsk_ack.ato) { 704 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 705 if (icsk->icsk_ack.ato > icsk->icsk_rto) 706 icsk->icsk_ack.ato = icsk->icsk_rto; 707 } else if (m > icsk->icsk_rto) { 708 /* Too long gap. Apparently sender failed to 709 * restart window, so that we send ACKs quickly. 710 */ 711 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 712 sk_mem_reclaim(sk); 713 } 714 } 715 icsk->icsk_ack.lrcvtime = now; 716 717 tcp_ecn_check_ce(sk, skb); 718 719 if (skb->len >= 128) 720 tcp_grow_window(sk, skb); 721 } 722 723 /* Called to compute a smoothed rtt estimate. The data fed to this 724 * routine either comes from timestamps, or from segments that were 725 * known _not_ to have been retransmitted [see Karn/Partridge 726 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 727 * piece by Van Jacobson. 728 * NOTE: the next three routines used to be one big routine. 729 * To save cycles in the RFC 1323 implementation it was better to break 730 * it up into three procedures. -- erics 731 */ 732 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 733 { 734 struct tcp_sock *tp = tcp_sk(sk); 735 long m = mrtt_us; /* RTT */ 736 u32 srtt = tp->srtt_us; 737 738 /* The following amusing code comes from Jacobson's 739 * article in SIGCOMM '88. Note that rtt and mdev 740 * are scaled versions of rtt and mean deviation. 741 * This is designed to be as fast as possible 742 * m stands for "measurement". 743 * 744 * On a 1990 paper the rto value is changed to: 745 * RTO = rtt + 4 * mdev 746 * 747 * Funny. This algorithm seems to be very broken. 748 * These formulae increase RTO, when it should be decreased, increase 749 * too slowly, when it should be increased quickly, decrease too quickly 750 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 751 * does not matter how to _calculate_ it. Seems, it was trap 752 * that VJ failed to avoid. 8) 753 */ 754 if (srtt != 0) { 755 m -= (srtt >> 3); /* m is now error in rtt est */ 756 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 757 if (m < 0) { 758 m = -m; /* m is now abs(error) */ 759 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 760 /* This is similar to one of Eifel findings. 761 * Eifel blocks mdev updates when rtt decreases. 762 * This solution is a bit different: we use finer gain 763 * for mdev in this case (alpha*beta). 764 * Like Eifel it also prevents growth of rto, 765 * but also it limits too fast rto decreases, 766 * happening in pure Eifel. 767 */ 768 if (m > 0) 769 m >>= 3; 770 } else { 771 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 772 } 773 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 774 if (tp->mdev_us > tp->mdev_max_us) { 775 tp->mdev_max_us = tp->mdev_us; 776 if (tp->mdev_max_us > tp->rttvar_us) 777 tp->rttvar_us = tp->mdev_max_us; 778 } 779 if (after(tp->snd_una, tp->rtt_seq)) { 780 if (tp->mdev_max_us < tp->rttvar_us) 781 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 782 tp->rtt_seq = tp->snd_nxt; 783 tp->mdev_max_us = tcp_rto_min_us(sk); 784 785 tcp_bpf_rtt(sk); 786 } 787 } else { 788 /* no previous measure. */ 789 srtt = m << 3; /* take the measured time to be rtt */ 790 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 791 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 792 tp->mdev_max_us = tp->rttvar_us; 793 tp->rtt_seq = tp->snd_nxt; 794 795 tcp_bpf_rtt(sk); 796 } 797 tp->srtt_us = max(1U, srtt); 798 } 799 800 static void tcp_update_pacing_rate(struct sock *sk) 801 { 802 const struct tcp_sock *tp = tcp_sk(sk); 803 u64 rate; 804 805 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 806 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 807 808 /* current rate is (cwnd * mss) / srtt 809 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 810 * In Congestion Avoidance phase, set it to 120 % the current rate. 811 * 812 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 813 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 814 * end of slow start and should slow down. 815 */ 816 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 817 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 818 else 819 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 820 821 rate *= max(tp->snd_cwnd, tp->packets_out); 822 823 if (likely(tp->srtt_us)) 824 do_div(rate, tp->srtt_us); 825 826 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 827 * without any lock. We want to make sure compiler wont store 828 * intermediate values in this location. 829 */ 830 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 831 sk->sk_max_pacing_rate)); 832 } 833 834 /* Calculate rto without backoff. This is the second half of Van Jacobson's 835 * routine referred to above. 836 */ 837 static void tcp_set_rto(struct sock *sk) 838 { 839 const struct tcp_sock *tp = tcp_sk(sk); 840 /* Old crap is replaced with new one. 8) 841 * 842 * More seriously: 843 * 1. If rtt variance happened to be less 50msec, it is hallucination. 844 * It cannot be less due to utterly erratic ACK generation made 845 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 846 * to do with delayed acks, because at cwnd>2 true delack timeout 847 * is invisible. Actually, Linux-2.4 also generates erratic 848 * ACKs in some circumstances. 849 */ 850 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 851 852 /* 2. Fixups made earlier cannot be right. 853 * If we do not estimate RTO correctly without them, 854 * all the algo is pure shit and should be replaced 855 * with correct one. It is exactly, which we pretend to do. 856 */ 857 858 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 859 * guarantees that rto is higher. 860 */ 861 tcp_bound_rto(sk); 862 } 863 864 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 865 { 866 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 867 868 if (!cwnd) 869 cwnd = TCP_INIT_CWND; 870 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 871 } 872 873 /* Take a notice that peer is sending D-SACKs */ 874 static void tcp_dsack_seen(struct tcp_sock *tp) 875 { 876 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 877 tp->rack.dsack_seen = 1; 878 tp->dsack_dups++; 879 } 880 881 /* It's reordering when higher sequence was delivered (i.e. sacked) before 882 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 883 * distance is approximated in full-mss packet distance ("reordering"). 884 */ 885 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 886 const int ts) 887 { 888 struct tcp_sock *tp = tcp_sk(sk); 889 const u32 mss = tp->mss_cache; 890 u32 fack, metric; 891 892 fack = tcp_highest_sack_seq(tp); 893 if (!before(low_seq, fack)) 894 return; 895 896 metric = fack - low_seq; 897 if ((metric > tp->reordering * mss) && mss) { 898 #if FASTRETRANS_DEBUG > 1 899 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 900 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 901 tp->reordering, 902 0, 903 tp->sacked_out, 904 tp->undo_marker ? tp->undo_retrans : 0); 905 #endif 906 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 907 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 908 } 909 910 /* This exciting event is worth to be remembered. 8) */ 911 tp->reord_seen++; 912 NET_INC_STATS(sock_net(sk), 913 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 914 } 915 916 /* This must be called before lost_out is incremented */ 917 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 918 { 919 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 920 (tp->retransmit_skb_hint && 921 before(TCP_SKB_CB(skb)->seq, 922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 923 tp->retransmit_skb_hint = skb; 924 } 925 926 /* Sum the number of packets on the wire we have marked as lost. 927 * There are two cases we care about here: 928 * a) Packet hasn't been marked lost (nor retransmitted), 929 * and this is the first loss. 930 * b) Packet has been marked both lost and retransmitted, 931 * and this means we think it was lost again. 932 */ 933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 934 { 935 __u8 sacked = TCP_SKB_CB(skb)->sacked; 936 937 if (!(sacked & TCPCB_LOST) || 938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 939 tp->lost += tcp_skb_pcount(skb); 940 } 941 942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 943 { 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tp->lost_out += tcp_skb_pcount(skb); 948 tcp_sum_lost(tp, skb); 949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 950 } 951 } 952 953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 954 { 955 tcp_verify_retransmit_hint(tp, skb); 956 957 tcp_sum_lost(tp, skb); 958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 959 tp->lost_out += tcp_skb_pcount(skb); 960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 961 } 962 } 963 964 /* This procedure tags the retransmission queue when SACKs arrive. 965 * 966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 967 * Packets in queue with these bits set are counted in variables 968 * sacked_out, retrans_out and lost_out, correspondingly. 969 * 970 * Valid combinations are: 971 * Tag InFlight Description 972 * 0 1 - orig segment is in flight. 973 * S 0 - nothing flies, orig reached receiver. 974 * L 0 - nothing flies, orig lost by net. 975 * R 2 - both orig and retransmit are in flight. 976 * L|R 1 - orig is lost, retransmit is in flight. 977 * S|R 1 - orig reached receiver, retrans is still in flight. 978 * (L|S|R is logically valid, it could occur when L|R is sacked, 979 * but it is equivalent to plain S and code short-curcuits it to S. 980 * L|S is logically invalid, it would mean -1 packet in flight 8)) 981 * 982 * These 6 states form finite state machine, controlled by the following events: 983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 985 * 3. Loss detection event of two flavors: 986 * A. Scoreboard estimator decided the packet is lost. 987 * A'. Reno "three dupacks" marks head of queue lost. 988 * B. SACK arrives sacking SND.NXT at the moment, when the 989 * segment was retransmitted. 990 * 4. D-SACK added new rule: D-SACK changes any tag to S. 991 * 992 * It is pleasant to note, that state diagram turns out to be commutative, 993 * so that we are allowed not to be bothered by order of our actions, 994 * when multiple events arrive simultaneously. (see the function below). 995 * 996 * Reordering detection. 997 * -------------------- 998 * Reordering metric is maximal distance, which a packet can be displaced 999 * in packet stream. With SACKs we can estimate it: 1000 * 1001 * 1. SACK fills old hole and the corresponding segment was not 1002 * ever retransmitted -> reordering. Alas, we cannot use it 1003 * when segment was retransmitted. 1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1005 * for retransmitted and already SACKed segment -> reordering.. 1006 * Both of these heuristics are not used in Loss state, when we cannot 1007 * account for retransmits accurately. 1008 * 1009 * SACK block validation. 1010 * ---------------------- 1011 * 1012 * SACK block range validation checks that the received SACK block fits to 1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1014 * Note that SND.UNA is not included to the range though being valid because 1015 * it means that the receiver is rather inconsistent with itself reporting 1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1017 * perfectly valid, however, in light of RFC2018 which explicitly states 1018 * that "SACK block MUST reflect the newest segment. Even if the newest 1019 * segment is going to be discarded ...", not that it looks very clever 1020 * in case of head skb. Due to potentional receiver driven attacks, we 1021 * choose to avoid immediate execution of a walk in write queue due to 1022 * reneging and defer head skb's loss recovery to standard loss recovery 1023 * procedure that will eventually trigger (nothing forbids us doing this). 1024 * 1025 * Implements also blockage to start_seq wrap-around. Problem lies in the 1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1027 * there's no guarantee that it will be before snd_nxt (n). The problem 1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1029 * wrap (s_w): 1030 * 1031 * <- outs wnd -> <- wrapzone -> 1032 * u e n u_w e_w s n_w 1033 * | | | | | | | 1034 * |<------------+------+----- TCP seqno space --------------+---------->| 1035 * ...-- <2^31 ->| |<--------... 1036 * ...---- >2^31 ------>| |<--------... 1037 * 1038 * Current code wouldn't be vulnerable but it's better still to discard such 1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1042 * equal to the ideal case (infinite seqno space without wrap caused issues). 1043 * 1044 * With D-SACK the lower bound is extended to cover sequence space below 1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1046 * again, D-SACK block must not to go across snd_una (for the same reason as 1047 * for the normal SACK blocks, explained above). But there all simplicity 1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1049 * fully below undo_marker they do not affect behavior in anyway and can 1050 * therefore be safely ignored. In rare cases (which are more or less 1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1052 * fragmentation and packet reordering past skb's retransmission. To consider 1053 * them correctly, the acceptable range must be extended even more though 1054 * the exact amount is rather hard to quantify. However, tp->max_window can 1055 * be used as an exaggerated estimate. 1056 */ 1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1058 u32 start_seq, u32 end_seq) 1059 { 1060 /* Too far in future, or reversed (interpretation is ambiguous) */ 1061 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1062 return false; 1063 1064 /* Nasty start_seq wrap-around check (see comments above) */ 1065 if (!before(start_seq, tp->snd_nxt)) 1066 return false; 1067 1068 /* In outstanding window? ...This is valid exit for D-SACKs too. 1069 * start_seq == snd_una is non-sensical (see comments above) 1070 */ 1071 if (after(start_seq, tp->snd_una)) 1072 return true; 1073 1074 if (!is_dsack || !tp->undo_marker) 1075 return false; 1076 1077 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1078 if (after(end_seq, tp->snd_una)) 1079 return false; 1080 1081 if (!before(start_seq, tp->undo_marker)) 1082 return true; 1083 1084 /* Too old */ 1085 if (!after(end_seq, tp->undo_marker)) 1086 return false; 1087 1088 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1089 * start_seq < undo_marker and end_seq >= undo_marker. 1090 */ 1091 return !before(start_seq, end_seq - tp->max_window); 1092 } 1093 1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1095 struct tcp_sack_block_wire *sp, int num_sacks, 1096 u32 prior_snd_una) 1097 { 1098 struct tcp_sock *tp = tcp_sk(sk); 1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1101 bool dup_sack = false; 1102 1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1104 dup_sack = true; 1105 tcp_dsack_seen(tp); 1106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1107 } else if (num_sacks > 1) { 1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1110 1111 if (!after(end_seq_0, end_seq_1) && 1112 !before(start_seq_0, start_seq_1)) { 1113 dup_sack = true; 1114 tcp_dsack_seen(tp); 1115 NET_INC_STATS(sock_net(sk), 1116 LINUX_MIB_TCPDSACKOFORECV); 1117 } 1118 } 1119 1120 /* D-SACK for already forgotten data... Do dumb counting. */ 1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1122 !after(end_seq_0, prior_snd_una) && 1123 after(end_seq_0, tp->undo_marker)) 1124 tp->undo_retrans--; 1125 1126 return dup_sack; 1127 } 1128 1129 struct tcp_sacktag_state { 1130 u32 reord; 1131 /* Timestamps for earliest and latest never-retransmitted segment 1132 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1133 * but congestion control should still get an accurate delay signal. 1134 */ 1135 u64 first_sackt; 1136 u64 last_sackt; 1137 struct rate_sample *rate; 1138 int flag; 1139 unsigned int mss_now; 1140 }; 1141 1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1143 * the incoming SACK may not exactly match but we can find smaller MSS 1144 * aligned portion of it that matches. Therefore we might need to fragment 1145 * which may fail and creates some hassle (caller must handle error case 1146 * returns). 1147 * 1148 * FIXME: this could be merged to shift decision code 1149 */ 1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1151 u32 start_seq, u32 end_seq) 1152 { 1153 int err; 1154 bool in_sack; 1155 unsigned int pkt_len; 1156 unsigned int mss; 1157 1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1160 1161 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1163 mss = tcp_skb_mss(skb); 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1165 1166 if (!in_sack) { 1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 pkt_len = mss; 1170 } else { 1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 return -EINVAL; 1174 } 1175 1176 /* Round if necessary so that SACKs cover only full MSSes 1177 * and/or the remaining small portion (if present) 1178 */ 1179 if (pkt_len > mss) { 1180 unsigned int new_len = (pkt_len / mss) * mss; 1181 if (!in_sack && new_len < pkt_len) 1182 new_len += mss; 1183 pkt_len = new_len; 1184 } 1185 1186 if (pkt_len >= skb->len && !in_sack) 1187 return 0; 1188 1189 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1190 pkt_len, mss, GFP_ATOMIC); 1191 if (err < 0) 1192 return err; 1193 } 1194 1195 return in_sack; 1196 } 1197 1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1199 static u8 tcp_sacktag_one(struct sock *sk, 1200 struct tcp_sacktag_state *state, u8 sacked, 1201 u32 start_seq, u32 end_seq, 1202 int dup_sack, int pcount, 1203 u64 xmit_time) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 1207 /* Account D-SACK for retransmitted packet. */ 1208 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1209 if (tp->undo_marker && tp->undo_retrans > 0 && 1210 after(end_seq, tp->undo_marker)) 1211 tp->undo_retrans--; 1212 if ((sacked & TCPCB_SACKED_ACKED) && 1213 before(start_seq, state->reord)) 1214 state->reord = start_seq; 1215 } 1216 1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1218 if (!after(end_seq, tp->snd_una)) 1219 return sacked; 1220 1221 if (!(sacked & TCPCB_SACKED_ACKED)) { 1222 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1223 1224 if (sacked & TCPCB_SACKED_RETRANS) { 1225 /* If the segment is not tagged as lost, 1226 * we do not clear RETRANS, believing 1227 * that retransmission is still in flight. 1228 */ 1229 if (sacked & TCPCB_LOST) { 1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1231 tp->lost_out -= pcount; 1232 tp->retrans_out -= pcount; 1233 } 1234 } else { 1235 if (!(sacked & TCPCB_RETRANS)) { 1236 /* New sack for not retransmitted frame, 1237 * which was in hole. It is reordering. 1238 */ 1239 if (before(start_seq, 1240 tcp_highest_sack_seq(tp)) && 1241 before(start_seq, state->reord)) 1242 state->reord = start_seq; 1243 1244 if (!after(end_seq, tp->high_seq)) 1245 state->flag |= FLAG_ORIG_SACK_ACKED; 1246 if (state->first_sackt == 0) 1247 state->first_sackt = xmit_time; 1248 state->last_sackt = xmit_time; 1249 } 1250 1251 if (sacked & TCPCB_LOST) { 1252 sacked &= ~TCPCB_LOST; 1253 tp->lost_out -= pcount; 1254 } 1255 } 1256 1257 sacked |= TCPCB_SACKED_ACKED; 1258 state->flag |= FLAG_DATA_SACKED; 1259 tp->sacked_out += pcount; 1260 tp->delivered += pcount; /* Out-of-order packets delivered */ 1261 1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1263 if (tp->lost_skb_hint && 1264 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1265 tp->lost_cnt_hint += pcount; 1266 } 1267 1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1269 * frames and clear it. undo_retrans is decreased above, L|R frames 1270 * are accounted above as well. 1271 */ 1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1273 sacked &= ~TCPCB_SACKED_RETRANS; 1274 tp->retrans_out -= pcount; 1275 } 1276 1277 return sacked; 1278 } 1279 1280 /* Shift newly-SACKed bytes from this skb to the immediately previous 1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1282 */ 1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1284 struct sk_buff *skb, 1285 struct tcp_sacktag_state *state, 1286 unsigned int pcount, int shifted, int mss, 1287 bool dup_sack) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1292 1293 BUG_ON(!pcount); 1294 1295 /* Adjust counters and hints for the newly sacked sequence 1296 * range but discard the return value since prev is already 1297 * marked. We must tag the range first because the seq 1298 * advancement below implicitly advances 1299 * tcp_highest_sack_seq() when skb is highest_sack. 1300 */ 1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1302 start_seq, end_seq, dup_sack, pcount, 1303 tcp_skb_timestamp_us(skb)); 1304 tcp_rate_skb_delivered(sk, skb, state->rate); 1305 1306 if (skb == tp->lost_skb_hint) 1307 tp->lost_cnt_hint += pcount; 1308 1309 TCP_SKB_CB(prev)->end_seq += shifted; 1310 TCP_SKB_CB(skb)->seq += shifted; 1311 1312 tcp_skb_pcount_add(prev, pcount); 1313 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1314 tcp_skb_pcount_add(skb, -pcount); 1315 1316 /* When we're adding to gso_segs == 1, gso_size will be zero, 1317 * in theory this shouldn't be necessary but as long as DSACK 1318 * code can come after this skb later on it's better to keep 1319 * setting gso_size to something. 1320 */ 1321 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1322 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) 1326 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1349 TCP_SKB_CB(prev)->end_seq++; 1350 1351 if (skb == tcp_highest_sack(sk)) 1352 tcp_advance_highest_sack(sk, skb); 1353 1354 tcp_skb_collapse_tstamp(prev, skb); 1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1356 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1357 1358 tcp_rtx_queue_unlink_and_free(skb, sk); 1359 1360 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1361 1362 return true; 1363 } 1364 1365 /* I wish gso_size would have a bit more sane initialization than 1366 * something-or-zero which complicates things 1367 */ 1368 static int tcp_skb_seglen(const struct sk_buff *skb) 1369 { 1370 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1371 } 1372 1373 /* Shifting pages past head area doesn't work */ 1374 static int skb_can_shift(const struct sk_buff *skb) 1375 { 1376 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1377 } 1378 1379 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1380 int pcount, int shiftlen) 1381 { 1382 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1383 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1384 * to make sure not storing more than 65535 * 8 bytes per skb, 1385 * even if current MSS is bigger. 1386 */ 1387 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1388 return 0; 1389 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1390 return 0; 1391 return skb_shift(to, from, shiftlen); 1392 } 1393 1394 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1395 * skb. 1396 */ 1397 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1398 struct tcp_sacktag_state *state, 1399 u32 start_seq, u32 end_seq, 1400 bool dup_sack) 1401 { 1402 struct tcp_sock *tp = tcp_sk(sk); 1403 struct sk_buff *prev; 1404 int mss; 1405 int pcount = 0; 1406 int len; 1407 int in_sack; 1408 1409 /* Normally R but no L won't result in plain S */ 1410 if (!dup_sack && 1411 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1412 goto fallback; 1413 if (!skb_can_shift(skb)) 1414 goto fallback; 1415 /* This frame is about to be dropped (was ACKed). */ 1416 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1417 goto fallback; 1418 1419 /* Can only happen with delayed DSACK + discard craziness */ 1420 prev = skb_rb_prev(skb); 1421 if (!prev) 1422 goto fallback; 1423 1424 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1425 goto fallback; 1426 1427 if (!tcp_skb_can_collapse(prev, skb)) 1428 goto fallback; 1429 1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1431 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1432 1433 if (in_sack) { 1434 len = skb->len; 1435 pcount = tcp_skb_pcount(skb); 1436 mss = tcp_skb_seglen(skb); 1437 1438 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1439 * drop this restriction as unnecessary 1440 */ 1441 if (mss != tcp_skb_seglen(prev)) 1442 goto fallback; 1443 } else { 1444 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1445 goto noop; 1446 /* CHECKME: This is non-MSS split case only?, this will 1447 * cause skipped skbs due to advancing loop btw, original 1448 * has that feature too 1449 */ 1450 if (tcp_skb_pcount(skb) <= 1) 1451 goto noop; 1452 1453 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1454 if (!in_sack) { 1455 /* TODO: head merge to next could be attempted here 1456 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1457 * though it might not be worth of the additional hassle 1458 * 1459 * ...we can probably just fallback to what was done 1460 * previously. We could try merging non-SACKed ones 1461 * as well but it probably isn't going to buy off 1462 * because later SACKs might again split them, and 1463 * it would make skb timestamp tracking considerably 1464 * harder problem. 1465 */ 1466 goto fallback; 1467 } 1468 1469 len = end_seq - TCP_SKB_CB(skb)->seq; 1470 BUG_ON(len < 0); 1471 BUG_ON(len > skb->len); 1472 1473 /* MSS boundaries should be honoured or else pcount will 1474 * severely break even though it makes things bit trickier. 1475 * Optimize common case to avoid most of the divides 1476 */ 1477 mss = tcp_skb_mss(skb); 1478 1479 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1480 * drop this restriction as unnecessary 1481 */ 1482 if (mss != tcp_skb_seglen(prev)) 1483 goto fallback; 1484 1485 if (len == mss) { 1486 pcount = 1; 1487 } else if (len < mss) { 1488 goto noop; 1489 } else { 1490 pcount = len / mss; 1491 len = pcount * mss; 1492 } 1493 } 1494 1495 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1496 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1497 goto fallback; 1498 1499 if (!tcp_skb_shift(prev, skb, pcount, len)) 1500 goto fallback; 1501 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1502 goto out; 1503 1504 /* Hole filled allows collapsing with the next as well, this is very 1505 * useful when hole on every nth skb pattern happens 1506 */ 1507 skb = skb_rb_next(prev); 1508 if (!skb) 1509 goto out; 1510 1511 if (!skb_can_shift(skb) || 1512 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1513 (mss != tcp_skb_seglen(skb))) 1514 goto out; 1515 1516 len = skb->len; 1517 pcount = tcp_skb_pcount(skb); 1518 if (tcp_skb_shift(prev, skb, pcount, len)) 1519 tcp_shifted_skb(sk, prev, skb, state, pcount, 1520 len, mss, 0); 1521 1522 out: 1523 return prev; 1524 1525 noop: 1526 return skb; 1527 1528 fallback: 1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1530 return NULL; 1531 } 1532 1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1534 struct tcp_sack_block *next_dup, 1535 struct tcp_sacktag_state *state, 1536 u32 start_seq, u32 end_seq, 1537 bool dup_sack_in) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct sk_buff *tmp; 1541 1542 skb_rbtree_walk_from(skb) { 1543 int in_sack = 0; 1544 bool dup_sack = dup_sack_in; 1545 1546 /* queue is in-order => we can short-circuit the walk early */ 1547 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1548 break; 1549 1550 if (next_dup && 1551 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1552 in_sack = tcp_match_skb_to_sack(sk, skb, 1553 next_dup->start_seq, 1554 next_dup->end_seq); 1555 if (in_sack > 0) 1556 dup_sack = true; 1557 } 1558 1559 /* skb reference here is a bit tricky to get right, since 1560 * shifting can eat and free both this skb and the next, 1561 * so not even _safe variant of the loop is enough. 1562 */ 1563 if (in_sack <= 0) { 1564 tmp = tcp_shift_skb_data(sk, skb, state, 1565 start_seq, end_seq, dup_sack); 1566 if (tmp) { 1567 if (tmp != skb) { 1568 skb = tmp; 1569 continue; 1570 } 1571 1572 in_sack = 0; 1573 } else { 1574 in_sack = tcp_match_skb_to_sack(sk, skb, 1575 start_seq, 1576 end_seq); 1577 } 1578 } 1579 1580 if (unlikely(in_sack < 0)) 1581 break; 1582 1583 if (in_sack) { 1584 TCP_SKB_CB(skb)->sacked = 1585 tcp_sacktag_one(sk, 1586 state, 1587 TCP_SKB_CB(skb)->sacked, 1588 TCP_SKB_CB(skb)->seq, 1589 TCP_SKB_CB(skb)->end_seq, 1590 dup_sack, 1591 tcp_skb_pcount(skb), 1592 tcp_skb_timestamp_us(skb)); 1593 tcp_rate_skb_delivered(sk, skb, state->rate); 1594 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1595 list_del_init(&skb->tcp_tsorted_anchor); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 } 1602 return skb; 1603 } 1604 1605 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1606 { 1607 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1608 struct sk_buff *skb; 1609 1610 while (*p) { 1611 parent = *p; 1612 skb = rb_to_skb(parent); 1613 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1614 p = &parent->rb_left; 1615 continue; 1616 } 1617 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1618 p = &parent->rb_right; 1619 continue; 1620 } 1621 return skb; 1622 } 1623 return NULL; 1624 } 1625 1626 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1627 u32 skip_to_seq) 1628 { 1629 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1630 return skb; 1631 1632 return tcp_sacktag_bsearch(sk, skip_to_seq); 1633 } 1634 1635 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1636 struct sock *sk, 1637 struct tcp_sack_block *next_dup, 1638 struct tcp_sacktag_state *state, 1639 u32 skip_to_seq) 1640 { 1641 if (!next_dup) 1642 return skb; 1643 1644 if (before(next_dup->start_seq, skip_to_seq)) { 1645 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1646 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1647 next_dup->start_seq, next_dup->end_seq, 1648 1); 1649 } 1650 1651 return skb; 1652 } 1653 1654 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1655 { 1656 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1657 } 1658 1659 static int 1660 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1661 u32 prior_snd_una, struct tcp_sacktag_state *state) 1662 { 1663 struct tcp_sock *tp = tcp_sk(sk); 1664 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1665 TCP_SKB_CB(ack_skb)->sacked); 1666 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1667 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1668 struct tcp_sack_block *cache; 1669 struct sk_buff *skb; 1670 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1671 int used_sacks; 1672 bool found_dup_sack = false; 1673 int i, j; 1674 int first_sack_index; 1675 1676 state->flag = 0; 1677 state->reord = tp->snd_nxt; 1678 1679 if (!tp->sacked_out) 1680 tcp_highest_sack_reset(sk); 1681 1682 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1683 num_sacks, prior_snd_una); 1684 if (found_dup_sack) { 1685 state->flag |= FLAG_DSACKING_ACK; 1686 tp->delivered++; /* A spurious retransmission is delivered */ 1687 } 1688 1689 /* Eliminate too old ACKs, but take into 1690 * account more or less fresh ones, they can 1691 * contain valid SACK info. 1692 */ 1693 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1694 return 0; 1695 1696 if (!tp->packets_out) 1697 goto out; 1698 1699 used_sacks = 0; 1700 first_sack_index = 0; 1701 for (i = 0; i < num_sacks; i++) { 1702 bool dup_sack = !i && found_dup_sack; 1703 1704 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1705 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1706 1707 if (!tcp_is_sackblock_valid(tp, dup_sack, 1708 sp[used_sacks].start_seq, 1709 sp[used_sacks].end_seq)) { 1710 int mib_idx; 1711 1712 if (dup_sack) { 1713 if (!tp->undo_marker) 1714 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1715 else 1716 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1717 } else { 1718 /* Don't count olds caused by ACK reordering */ 1719 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1720 !after(sp[used_sacks].end_seq, tp->snd_una)) 1721 continue; 1722 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1723 } 1724 1725 NET_INC_STATS(sock_net(sk), mib_idx); 1726 if (i == 0) 1727 first_sack_index = -1; 1728 continue; 1729 } 1730 1731 /* Ignore very old stuff early */ 1732 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1733 if (i == 0) 1734 first_sack_index = -1; 1735 continue; 1736 } 1737 1738 used_sacks++; 1739 } 1740 1741 /* order SACK blocks to allow in order walk of the retrans queue */ 1742 for (i = used_sacks - 1; i > 0; i--) { 1743 for (j = 0; j < i; j++) { 1744 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1745 swap(sp[j], sp[j + 1]); 1746 1747 /* Track where the first SACK block goes to */ 1748 if (j == first_sack_index) 1749 first_sack_index = j + 1; 1750 } 1751 } 1752 } 1753 1754 state->mss_now = tcp_current_mss(sk); 1755 skb = NULL; 1756 i = 0; 1757 1758 if (!tp->sacked_out) { 1759 /* It's already past, so skip checking against it */ 1760 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1761 } else { 1762 cache = tp->recv_sack_cache; 1763 /* Skip empty blocks in at head of the cache */ 1764 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1765 !cache->end_seq) 1766 cache++; 1767 } 1768 1769 while (i < used_sacks) { 1770 u32 start_seq = sp[i].start_seq; 1771 u32 end_seq = sp[i].end_seq; 1772 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1773 struct tcp_sack_block *next_dup = NULL; 1774 1775 if (found_dup_sack && ((i + 1) == first_sack_index)) 1776 next_dup = &sp[i + 1]; 1777 1778 /* Skip too early cached blocks */ 1779 while (tcp_sack_cache_ok(tp, cache) && 1780 !before(start_seq, cache->end_seq)) 1781 cache++; 1782 1783 /* Can skip some work by looking recv_sack_cache? */ 1784 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1785 after(end_seq, cache->start_seq)) { 1786 1787 /* Head todo? */ 1788 if (before(start_seq, cache->start_seq)) { 1789 skb = tcp_sacktag_skip(skb, sk, start_seq); 1790 skb = tcp_sacktag_walk(skb, sk, next_dup, 1791 state, 1792 start_seq, 1793 cache->start_seq, 1794 dup_sack); 1795 } 1796 1797 /* Rest of the block already fully processed? */ 1798 if (!after(end_seq, cache->end_seq)) 1799 goto advance_sp; 1800 1801 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1802 state, 1803 cache->end_seq); 1804 1805 /* ...tail remains todo... */ 1806 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1807 /* ...but better entrypoint exists! */ 1808 skb = tcp_highest_sack(sk); 1809 if (!skb) 1810 break; 1811 cache++; 1812 goto walk; 1813 } 1814 1815 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1816 /* Check overlap against next cached too (past this one already) */ 1817 cache++; 1818 continue; 1819 } 1820 1821 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1822 skb = tcp_highest_sack(sk); 1823 if (!skb) 1824 break; 1825 } 1826 skb = tcp_sacktag_skip(skb, sk, start_seq); 1827 1828 walk: 1829 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1830 start_seq, end_seq, dup_sack); 1831 1832 advance_sp: 1833 i++; 1834 } 1835 1836 /* Clear the head of the cache sack blocks so we can skip it next time */ 1837 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1838 tp->recv_sack_cache[i].start_seq = 0; 1839 tp->recv_sack_cache[i].end_seq = 0; 1840 } 1841 for (j = 0; j < used_sacks; j++) 1842 tp->recv_sack_cache[i++] = sp[j]; 1843 1844 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1845 tcp_check_sack_reordering(sk, state->reord, 0); 1846 1847 tcp_verify_left_out(tp); 1848 out: 1849 1850 #if FASTRETRANS_DEBUG > 0 1851 WARN_ON((int)tp->sacked_out < 0); 1852 WARN_ON((int)tp->lost_out < 0); 1853 WARN_ON((int)tp->retrans_out < 0); 1854 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1855 #endif 1856 return state->flag; 1857 } 1858 1859 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1860 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1861 */ 1862 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1863 { 1864 u32 holes; 1865 1866 holes = max(tp->lost_out, 1U); 1867 holes = min(holes, tp->packets_out); 1868 1869 if ((tp->sacked_out + holes) > tp->packets_out) { 1870 tp->sacked_out = tp->packets_out - holes; 1871 return true; 1872 } 1873 return false; 1874 } 1875 1876 /* If we receive more dupacks than we expected counting segments 1877 * in assumption of absent reordering, interpret this as reordering. 1878 * The only another reason could be bug in receiver TCP. 1879 */ 1880 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1881 { 1882 struct tcp_sock *tp = tcp_sk(sk); 1883 1884 if (!tcp_limit_reno_sacked(tp)) 1885 return; 1886 1887 tp->reordering = min_t(u32, tp->packets_out + addend, 1888 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1889 tp->reord_seen++; 1890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1891 } 1892 1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1894 1895 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1896 { 1897 if (num_dupack) { 1898 struct tcp_sock *tp = tcp_sk(sk); 1899 u32 prior_sacked = tp->sacked_out; 1900 s32 delivered; 1901 1902 tp->sacked_out += num_dupack; 1903 tcp_check_reno_reordering(sk, 0); 1904 delivered = tp->sacked_out - prior_sacked; 1905 if (delivered > 0) 1906 tp->delivered += delivered; 1907 tcp_verify_left_out(tp); 1908 } 1909 } 1910 1911 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1912 1913 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1914 { 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 1917 if (acked > 0) { 1918 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1919 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1920 if (acked - 1 >= tp->sacked_out) 1921 tp->sacked_out = 0; 1922 else 1923 tp->sacked_out -= acked - 1; 1924 } 1925 tcp_check_reno_reordering(sk, acked); 1926 tcp_verify_left_out(tp); 1927 } 1928 1929 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1930 { 1931 tp->sacked_out = 0; 1932 } 1933 1934 void tcp_clear_retrans(struct tcp_sock *tp) 1935 { 1936 tp->retrans_out = 0; 1937 tp->lost_out = 0; 1938 tp->undo_marker = 0; 1939 tp->undo_retrans = -1; 1940 tp->sacked_out = 0; 1941 } 1942 1943 static inline void tcp_init_undo(struct tcp_sock *tp) 1944 { 1945 tp->undo_marker = tp->snd_una; 1946 /* Retransmission still in flight may cause DSACKs later. */ 1947 tp->undo_retrans = tp->retrans_out ? : -1; 1948 } 1949 1950 static bool tcp_is_rack(const struct sock *sk) 1951 { 1952 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1953 } 1954 1955 /* If we detect SACK reneging, forget all SACK information 1956 * and reset tags completely, otherwise preserve SACKs. If receiver 1957 * dropped its ofo queue, we will know this due to reneging detection. 1958 */ 1959 static void tcp_timeout_mark_lost(struct sock *sk) 1960 { 1961 struct tcp_sock *tp = tcp_sk(sk); 1962 struct sk_buff *skb, *head; 1963 bool is_reneg; /* is receiver reneging on SACKs? */ 1964 1965 head = tcp_rtx_queue_head(sk); 1966 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1967 if (is_reneg) { 1968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1969 tp->sacked_out = 0; 1970 /* Mark SACK reneging until we recover from this loss event. */ 1971 tp->is_sack_reneg = 1; 1972 } else if (tcp_is_reno(tp)) { 1973 tcp_reset_reno_sack(tp); 1974 } 1975 1976 skb = head; 1977 skb_rbtree_walk_from(skb) { 1978 if (is_reneg) 1979 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1980 else if (tcp_is_rack(sk) && skb != head && 1981 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1982 continue; /* Don't mark recently sent ones lost yet */ 1983 tcp_mark_skb_lost(sk, skb); 1984 } 1985 tcp_verify_left_out(tp); 1986 tcp_clear_all_retrans_hints(tp); 1987 } 1988 1989 /* Enter Loss state. */ 1990 void tcp_enter_loss(struct sock *sk) 1991 { 1992 const struct inet_connection_sock *icsk = inet_csk(sk); 1993 struct tcp_sock *tp = tcp_sk(sk); 1994 struct net *net = sock_net(sk); 1995 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1996 1997 tcp_timeout_mark_lost(sk); 1998 1999 /* Reduce ssthresh if it has not yet been made inside this window. */ 2000 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2001 !after(tp->high_seq, tp->snd_una) || 2002 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2003 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2004 tp->prior_cwnd = tp->snd_cwnd; 2005 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2006 tcp_ca_event(sk, CA_EVENT_LOSS); 2007 tcp_init_undo(tp); 2008 } 2009 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2010 tp->snd_cwnd_cnt = 0; 2011 tp->snd_cwnd_stamp = tcp_jiffies32; 2012 2013 /* Timeout in disordered state after receiving substantial DUPACKs 2014 * suggests that the degree of reordering is over-estimated. 2015 */ 2016 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2017 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2018 tp->reordering = min_t(unsigned int, tp->reordering, 2019 net->ipv4.sysctl_tcp_reordering); 2020 tcp_set_ca_state(sk, TCP_CA_Loss); 2021 tp->high_seq = tp->snd_nxt; 2022 tcp_ecn_queue_cwr(tp); 2023 2024 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2025 * loss recovery is underway except recurring timeout(s) on 2026 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2027 */ 2028 tp->frto = net->ipv4.sysctl_tcp_frto && 2029 (new_recovery || icsk->icsk_retransmits) && 2030 !inet_csk(sk)->icsk_mtup.probe_size; 2031 } 2032 2033 /* If ACK arrived pointing to a remembered SACK, it means that our 2034 * remembered SACKs do not reflect real state of receiver i.e. 2035 * receiver _host_ is heavily congested (or buggy). 2036 * 2037 * To avoid big spurious retransmission bursts due to transient SACK 2038 * scoreboard oddities that look like reneging, we give the receiver a 2039 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2040 * restore sanity to the SACK scoreboard. If the apparent reneging 2041 * persists until this RTO then we'll clear the SACK scoreboard. 2042 */ 2043 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2044 { 2045 if (flag & FLAG_SACK_RENEGING) { 2046 struct tcp_sock *tp = tcp_sk(sk); 2047 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2048 msecs_to_jiffies(10)); 2049 2050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2051 delay, TCP_RTO_MAX); 2052 return true; 2053 } 2054 return false; 2055 } 2056 2057 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2058 * counter when SACK is enabled (without SACK, sacked_out is used for 2059 * that purpose). 2060 * 2061 * With reordering, holes may still be in flight, so RFC3517 recovery 2062 * uses pure sacked_out (total number of SACKed segments) even though 2063 * it violates the RFC that uses duplicate ACKs, often these are equal 2064 * but when e.g. out-of-window ACKs or packet duplication occurs, 2065 * they differ. Since neither occurs due to loss, TCP should really 2066 * ignore them. 2067 */ 2068 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2069 { 2070 return tp->sacked_out + 1; 2071 } 2072 2073 /* Linux NewReno/SACK/ECN state machine. 2074 * -------------------------------------- 2075 * 2076 * "Open" Normal state, no dubious events, fast path. 2077 * "Disorder" In all the respects it is "Open", 2078 * but requires a bit more attention. It is entered when 2079 * we see some SACKs or dupacks. It is split of "Open" 2080 * mainly to move some processing from fast path to slow one. 2081 * "CWR" CWND was reduced due to some Congestion Notification event. 2082 * It can be ECN, ICMP source quench, local device congestion. 2083 * "Recovery" CWND was reduced, we are fast-retransmitting. 2084 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2085 * 2086 * tcp_fastretrans_alert() is entered: 2087 * - each incoming ACK, if state is not "Open" 2088 * - when arrived ACK is unusual, namely: 2089 * * SACK 2090 * * Duplicate ACK. 2091 * * ECN ECE. 2092 * 2093 * Counting packets in flight is pretty simple. 2094 * 2095 * in_flight = packets_out - left_out + retrans_out 2096 * 2097 * packets_out is SND.NXT-SND.UNA counted in packets. 2098 * 2099 * retrans_out is number of retransmitted segments. 2100 * 2101 * left_out is number of segments left network, but not ACKed yet. 2102 * 2103 * left_out = sacked_out + lost_out 2104 * 2105 * sacked_out: Packets, which arrived to receiver out of order 2106 * and hence not ACKed. With SACKs this number is simply 2107 * amount of SACKed data. Even without SACKs 2108 * it is easy to give pretty reliable estimate of this number, 2109 * counting duplicate ACKs. 2110 * 2111 * lost_out: Packets lost by network. TCP has no explicit 2112 * "loss notification" feedback from network (for now). 2113 * It means that this number can be only _guessed_. 2114 * Actually, it is the heuristics to predict lossage that 2115 * distinguishes different algorithms. 2116 * 2117 * F.e. after RTO, when all the queue is considered as lost, 2118 * lost_out = packets_out and in_flight = retrans_out. 2119 * 2120 * Essentially, we have now a few algorithms detecting 2121 * lost packets. 2122 * 2123 * If the receiver supports SACK: 2124 * 2125 * RFC6675/3517: It is the conventional algorithm. A packet is 2126 * considered lost if the number of higher sequence packets 2127 * SACKed is greater than or equal the DUPACK thoreshold 2128 * (reordering). This is implemented in tcp_mark_head_lost and 2129 * tcp_update_scoreboard. 2130 * 2131 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2132 * (2017-) that checks timing instead of counting DUPACKs. 2133 * Essentially a packet is considered lost if it's not S/ACKed 2134 * after RTT + reordering_window, where both metrics are 2135 * dynamically measured and adjusted. This is implemented in 2136 * tcp_rack_mark_lost. 2137 * 2138 * If the receiver does not support SACK: 2139 * 2140 * NewReno (RFC6582): in Recovery we assume that one segment 2141 * is lost (classic Reno). While we are in Recovery and 2142 * a partial ACK arrives, we assume that one more packet 2143 * is lost (NewReno). This heuristics are the same in NewReno 2144 * and SACK. 2145 * 2146 * Really tricky (and requiring careful tuning) part of algorithm 2147 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2148 * The first determines the moment _when_ we should reduce CWND and, 2149 * hence, slow down forward transmission. In fact, it determines the moment 2150 * when we decide that hole is caused by loss, rather than by a reorder. 2151 * 2152 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2153 * holes, caused by lost packets. 2154 * 2155 * And the most logically complicated part of algorithm is undo 2156 * heuristics. We detect false retransmits due to both too early 2157 * fast retransmit (reordering) and underestimated RTO, analyzing 2158 * timestamps and D-SACKs. When we detect that some segments were 2159 * retransmitted by mistake and CWND reduction was wrong, we undo 2160 * window reduction and abort recovery phase. This logic is hidden 2161 * inside several functions named tcp_try_undo_<something>. 2162 */ 2163 2164 /* This function decides, when we should leave Disordered state 2165 * and enter Recovery phase, reducing congestion window. 2166 * 2167 * Main question: may we further continue forward transmission 2168 * with the same cwnd? 2169 */ 2170 static bool tcp_time_to_recover(struct sock *sk, int flag) 2171 { 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 2174 /* Trick#1: The loss is proven. */ 2175 if (tp->lost_out) 2176 return true; 2177 2178 /* Not-A-Trick#2 : Classic rule... */ 2179 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2180 return true; 2181 2182 return false; 2183 } 2184 2185 /* Detect loss in event "A" above by marking head of queue up as lost. 2186 * For non-SACK(Reno) senders, the first "packets" number of segments 2187 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2188 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2189 * the maximum SACKed segments to pass before reaching this limit. 2190 */ 2191 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2192 { 2193 struct tcp_sock *tp = tcp_sk(sk); 2194 struct sk_buff *skb; 2195 int cnt, oldcnt, lost; 2196 unsigned int mss; 2197 /* Use SACK to deduce losses of new sequences sent during recovery */ 2198 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2199 2200 WARN_ON(packets > tp->packets_out); 2201 skb = tp->lost_skb_hint; 2202 if (skb) { 2203 /* Head already handled? */ 2204 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2205 return; 2206 cnt = tp->lost_cnt_hint; 2207 } else { 2208 skb = tcp_rtx_queue_head(sk); 2209 cnt = 0; 2210 } 2211 2212 skb_rbtree_walk_from(skb) { 2213 /* TODO: do this better */ 2214 /* this is not the most efficient way to do this... */ 2215 tp->lost_skb_hint = skb; 2216 tp->lost_cnt_hint = cnt; 2217 2218 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2219 break; 2220 2221 oldcnt = cnt; 2222 if (tcp_is_reno(tp) || 2223 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2224 cnt += tcp_skb_pcount(skb); 2225 2226 if (cnt > packets) { 2227 if (tcp_is_sack(tp) || 2228 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2229 (oldcnt >= packets)) 2230 break; 2231 2232 mss = tcp_skb_mss(skb); 2233 /* If needed, chop off the prefix to mark as lost. */ 2234 lost = (packets - oldcnt) * mss; 2235 if (lost < skb->len && 2236 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2237 lost, mss, GFP_ATOMIC) < 0) 2238 break; 2239 cnt = packets; 2240 } 2241 2242 tcp_skb_mark_lost(tp, skb); 2243 2244 if (mark_head) 2245 break; 2246 } 2247 tcp_verify_left_out(tp); 2248 } 2249 2250 /* Account newly detected lost packet(s) */ 2251 2252 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2253 { 2254 struct tcp_sock *tp = tcp_sk(sk); 2255 2256 if (tcp_is_sack(tp)) { 2257 int sacked_upto = tp->sacked_out - tp->reordering; 2258 if (sacked_upto >= 0) 2259 tcp_mark_head_lost(sk, sacked_upto, 0); 2260 else if (fast_rexmit) 2261 tcp_mark_head_lost(sk, 1, 1); 2262 } 2263 } 2264 2265 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2266 { 2267 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2268 before(tp->rx_opt.rcv_tsecr, when); 2269 } 2270 2271 /* skb is spurious retransmitted if the returned timestamp echo 2272 * reply is prior to the skb transmission time 2273 */ 2274 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2275 const struct sk_buff *skb) 2276 { 2277 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2278 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2279 } 2280 2281 /* Nothing was retransmitted or returned timestamp is less 2282 * than timestamp of the first retransmission. 2283 */ 2284 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2285 { 2286 return tp->retrans_stamp && 2287 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2288 } 2289 2290 /* Undo procedures. */ 2291 2292 /* We can clear retrans_stamp when there are no retransmissions in the 2293 * window. It would seem that it is trivially available for us in 2294 * tp->retrans_out, however, that kind of assumptions doesn't consider 2295 * what will happen if errors occur when sending retransmission for the 2296 * second time. ...It could the that such segment has only 2297 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2298 * the head skb is enough except for some reneging corner cases that 2299 * are not worth the effort. 2300 * 2301 * Main reason for all this complexity is the fact that connection dying 2302 * time now depends on the validity of the retrans_stamp, in particular, 2303 * that successive retransmissions of a segment must not advance 2304 * retrans_stamp under any conditions. 2305 */ 2306 static bool tcp_any_retrans_done(const struct sock *sk) 2307 { 2308 const struct tcp_sock *tp = tcp_sk(sk); 2309 struct sk_buff *skb; 2310 2311 if (tp->retrans_out) 2312 return true; 2313 2314 skb = tcp_rtx_queue_head(sk); 2315 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2316 return true; 2317 2318 return false; 2319 } 2320 2321 static void DBGUNDO(struct sock *sk, const char *msg) 2322 { 2323 #if FASTRETRANS_DEBUG > 1 2324 struct tcp_sock *tp = tcp_sk(sk); 2325 struct inet_sock *inet = inet_sk(sk); 2326 2327 if (sk->sk_family == AF_INET) { 2328 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2329 msg, 2330 &inet->inet_daddr, ntohs(inet->inet_dport), 2331 tp->snd_cwnd, tcp_left_out(tp), 2332 tp->snd_ssthresh, tp->prior_ssthresh, 2333 tp->packets_out); 2334 } 2335 #if IS_ENABLED(CONFIG_IPV6) 2336 else if (sk->sk_family == AF_INET6) { 2337 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2338 msg, 2339 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2340 tp->snd_cwnd, tcp_left_out(tp), 2341 tp->snd_ssthresh, tp->prior_ssthresh, 2342 tp->packets_out); 2343 } 2344 #endif 2345 #endif 2346 } 2347 2348 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2349 { 2350 struct tcp_sock *tp = tcp_sk(sk); 2351 2352 if (unmark_loss) { 2353 struct sk_buff *skb; 2354 2355 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2357 } 2358 tp->lost_out = 0; 2359 tcp_clear_all_retrans_hints(tp); 2360 } 2361 2362 if (tp->prior_ssthresh) { 2363 const struct inet_connection_sock *icsk = inet_csk(sk); 2364 2365 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2366 2367 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2368 tp->snd_ssthresh = tp->prior_ssthresh; 2369 tcp_ecn_withdraw_cwr(tp); 2370 } 2371 } 2372 tp->snd_cwnd_stamp = tcp_jiffies32; 2373 tp->undo_marker = 0; 2374 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2375 } 2376 2377 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2378 { 2379 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2380 } 2381 2382 /* People celebrate: "We love our President!" */ 2383 static bool tcp_try_undo_recovery(struct sock *sk) 2384 { 2385 struct tcp_sock *tp = tcp_sk(sk); 2386 2387 if (tcp_may_undo(tp)) { 2388 int mib_idx; 2389 2390 /* Happy end! We did not retransmit anything 2391 * or our original transmission succeeded. 2392 */ 2393 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2394 tcp_undo_cwnd_reduction(sk, false); 2395 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2396 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2397 else 2398 mib_idx = LINUX_MIB_TCPFULLUNDO; 2399 2400 NET_INC_STATS(sock_net(sk), mib_idx); 2401 } else if (tp->rack.reo_wnd_persist) { 2402 tp->rack.reo_wnd_persist--; 2403 } 2404 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2405 /* Hold old state until something *above* high_seq 2406 * is ACKed. For Reno it is MUST to prevent false 2407 * fast retransmits (RFC2582). SACK TCP is safe. */ 2408 if (!tcp_any_retrans_done(sk)) 2409 tp->retrans_stamp = 0; 2410 return true; 2411 } 2412 tcp_set_ca_state(sk, TCP_CA_Open); 2413 tp->is_sack_reneg = 0; 2414 return false; 2415 } 2416 2417 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2418 static bool tcp_try_undo_dsack(struct sock *sk) 2419 { 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 2422 if (tp->undo_marker && !tp->undo_retrans) { 2423 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2424 tp->rack.reo_wnd_persist + 1); 2425 DBGUNDO(sk, "D-SACK"); 2426 tcp_undo_cwnd_reduction(sk, false); 2427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2428 return true; 2429 } 2430 return false; 2431 } 2432 2433 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2434 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2435 { 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 2438 if (frto_undo || tcp_may_undo(tp)) { 2439 tcp_undo_cwnd_reduction(sk, true); 2440 2441 DBGUNDO(sk, "partial loss"); 2442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2443 if (frto_undo) 2444 NET_INC_STATS(sock_net(sk), 2445 LINUX_MIB_TCPSPURIOUSRTOS); 2446 inet_csk(sk)->icsk_retransmits = 0; 2447 if (frto_undo || tcp_is_sack(tp)) { 2448 tcp_set_ca_state(sk, TCP_CA_Open); 2449 tp->is_sack_reneg = 0; 2450 } 2451 return true; 2452 } 2453 return false; 2454 } 2455 2456 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2457 * It computes the number of packets to send (sndcnt) based on packets newly 2458 * delivered: 2459 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2460 * cwnd reductions across a full RTT. 2461 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2462 * But when the retransmits are acked without further losses, PRR 2463 * slow starts cwnd up to ssthresh to speed up the recovery. 2464 */ 2465 static void tcp_init_cwnd_reduction(struct sock *sk) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 tp->high_seq = tp->snd_nxt; 2470 tp->tlp_high_seq = 0; 2471 tp->snd_cwnd_cnt = 0; 2472 tp->prior_cwnd = tp->snd_cwnd; 2473 tp->prr_delivered = 0; 2474 tp->prr_out = 0; 2475 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2476 tcp_ecn_queue_cwr(tp); 2477 } 2478 2479 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2480 { 2481 struct tcp_sock *tp = tcp_sk(sk); 2482 int sndcnt = 0; 2483 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2484 2485 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2486 return; 2487 2488 tp->prr_delivered += newly_acked_sacked; 2489 if (delta < 0) { 2490 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2491 tp->prior_cwnd - 1; 2492 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2493 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2494 FLAG_RETRANS_DATA_ACKED) { 2495 sndcnt = min_t(int, delta, 2496 max_t(int, tp->prr_delivered - tp->prr_out, 2497 newly_acked_sacked) + 1); 2498 } else { 2499 sndcnt = min(delta, newly_acked_sacked); 2500 } 2501 /* Force a fast retransmit upon entering fast recovery */ 2502 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2503 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2504 } 2505 2506 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2507 { 2508 struct tcp_sock *tp = tcp_sk(sk); 2509 2510 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2511 return; 2512 2513 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2514 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2515 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2516 tp->snd_cwnd = tp->snd_ssthresh; 2517 tp->snd_cwnd_stamp = tcp_jiffies32; 2518 } 2519 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2520 } 2521 2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2523 void tcp_enter_cwr(struct sock *sk) 2524 { 2525 struct tcp_sock *tp = tcp_sk(sk); 2526 2527 tp->prior_ssthresh = 0; 2528 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2529 tp->undo_marker = 0; 2530 tcp_init_cwnd_reduction(sk); 2531 tcp_set_ca_state(sk, TCP_CA_CWR); 2532 } 2533 } 2534 EXPORT_SYMBOL(tcp_enter_cwr); 2535 2536 static void tcp_try_keep_open(struct sock *sk) 2537 { 2538 struct tcp_sock *tp = tcp_sk(sk); 2539 int state = TCP_CA_Open; 2540 2541 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2542 state = TCP_CA_Disorder; 2543 2544 if (inet_csk(sk)->icsk_ca_state != state) { 2545 tcp_set_ca_state(sk, state); 2546 tp->high_seq = tp->snd_nxt; 2547 } 2548 } 2549 2550 static void tcp_try_to_open(struct sock *sk, int flag) 2551 { 2552 struct tcp_sock *tp = tcp_sk(sk); 2553 2554 tcp_verify_left_out(tp); 2555 2556 if (!tcp_any_retrans_done(sk)) 2557 tp->retrans_stamp = 0; 2558 2559 if (flag & FLAG_ECE) 2560 tcp_enter_cwr(sk); 2561 2562 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2563 tcp_try_keep_open(sk); 2564 } 2565 } 2566 2567 static void tcp_mtup_probe_failed(struct sock *sk) 2568 { 2569 struct inet_connection_sock *icsk = inet_csk(sk); 2570 2571 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2572 icsk->icsk_mtup.probe_size = 0; 2573 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2574 } 2575 2576 static void tcp_mtup_probe_success(struct sock *sk) 2577 { 2578 struct tcp_sock *tp = tcp_sk(sk); 2579 struct inet_connection_sock *icsk = inet_csk(sk); 2580 2581 /* FIXME: breaks with very large cwnd */ 2582 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2583 tp->snd_cwnd = tp->snd_cwnd * 2584 tcp_mss_to_mtu(sk, tp->mss_cache) / 2585 icsk->icsk_mtup.probe_size; 2586 tp->snd_cwnd_cnt = 0; 2587 tp->snd_cwnd_stamp = tcp_jiffies32; 2588 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2589 2590 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2591 icsk->icsk_mtup.probe_size = 0; 2592 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2593 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2594 } 2595 2596 /* Do a simple retransmit without using the backoff mechanisms in 2597 * tcp_timer. This is used for path mtu discovery. 2598 * The socket is already locked here. 2599 */ 2600 void tcp_simple_retransmit(struct sock *sk) 2601 { 2602 const struct inet_connection_sock *icsk = inet_csk(sk); 2603 struct tcp_sock *tp = tcp_sk(sk); 2604 struct sk_buff *skb; 2605 unsigned int mss = tcp_current_mss(sk); 2606 2607 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2608 if (tcp_skb_seglen(skb) > mss && 2609 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2610 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2611 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2612 tp->retrans_out -= tcp_skb_pcount(skb); 2613 } 2614 tcp_skb_mark_lost_uncond_verify(tp, skb); 2615 } 2616 } 2617 2618 tcp_clear_retrans_hints_partial(tp); 2619 2620 if (!tp->lost_out) 2621 return; 2622 2623 if (tcp_is_reno(tp)) 2624 tcp_limit_reno_sacked(tp); 2625 2626 tcp_verify_left_out(tp); 2627 2628 /* Don't muck with the congestion window here. 2629 * Reason is that we do not increase amount of _data_ 2630 * in network, but units changed and effective 2631 * cwnd/ssthresh really reduced now. 2632 */ 2633 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2634 tp->high_seq = tp->snd_nxt; 2635 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2636 tp->prior_ssthresh = 0; 2637 tp->undo_marker = 0; 2638 tcp_set_ca_state(sk, TCP_CA_Loss); 2639 } 2640 tcp_xmit_retransmit_queue(sk); 2641 } 2642 EXPORT_SYMBOL(tcp_simple_retransmit); 2643 2644 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2645 { 2646 struct tcp_sock *tp = tcp_sk(sk); 2647 int mib_idx; 2648 2649 if (tcp_is_reno(tp)) 2650 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2651 else 2652 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2653 2654 NET_INC_STATS(sock_net(sk), mib_idx); 2655 2656 tp->prior_ssthresh = 0; 2657 tcp_init_undo(tp); 2658 2659 if (!tcp_in_cwnd_reduction(sk)) { 2660 if (!ece_ack) 2661 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2662 tcp_init_cwnd_reduction(sk); 2663 } 2664 tcp_set_ca_state(sk, TCP_CA_Recovery); 2665 } 2666 2667 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2668 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2669 */ 2670 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2671 int *rexmit) 2672 { 2673 struct tcp_sock *tp = tcp_sk(sk); 2674 bool recovered = !before(tp->snd_una, tp->high_seq); 2675 2676 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2677 tcp_try_undo_loss(sk, false)) 2678 return; 2679 2680 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2681 /* Step 3.b. A timeout is spurious if not all data are 2682 * lost, i.e., never-retransmitted data are (s)acked. 2683 */ 2684 if ((flag & FLAG_ORIG_SACK_ACKED) && 2685 tcp_try_undo_loss(sk, true)) 2686 return; 2687 2688 if (after(tp->snd_nxt, tp->high_seq)) { 2689 if (flag & FLAG_DATA_SACKED || num_dupack) 2690 tp->frto = 0; /* Step 3.a. loss was real */ 2691 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2692 tp->high_seq = tp->snd_nxt; 2693 /* Step 2.b. Try send new data (but deferred until cwnd 2694 * is updated in tcp_ack()). Otherwise fall back to 2695 * the conventional recovery. 2696 */ 2697 if (!tcp_write_queue_empty(sk) && 2698 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2699 *rexmit = REXMIT_NEW; 2700 return; 2701 } 2702 tp->frto = 0; 2703 } 2704 } 2705 2706 if (recovered) { 2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2708 tcp_try_undo_recovery(sk); 2709 return; 2710 } 2711 if (tcp_is_reno(tp)) { 2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2713 * delivered. Lower inflight to clock out (re)tranmissions. 2714 */ 2715 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2716 tcp_add_reno_sack(sk, num_dupack); 2717 else if (flag & FLAG_SND_UNA_ADVANCED) 2718 tcp_reset_reno_sack(tp); 2719 } 2720 *rexmit = REXMIT_LOST; 2721 } 2722 2723 /* Undo during fast recovery after partial ACK. */ 2724 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2725 { 2726 struct tcp_sock *tp = tcp_sk(sk); 2727 2728 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2729 /* Plain luck! Hole if filled with delayed 2730 * packet, rather than with a retransmit. Check reordering. 2731 */ 2732 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2733 2734 /* We are getting evidence that the reordering degree is higher 2735 * than we realized. If there are no retransmits out then we 2736 * can undo. Otherwise we clock out new packets but do not 2737 * mark more packets lost or retransmit more. 2738 */ 2739 if (tp->retrans_out) 2740 return true; 2741 2742 if (!tcp_any_retrans_done(sk)) 2743 tp->retrans_stamp = 0; 2744 2745 DBGUNDO(sk, "partial recovery"); 2746 tcp_undo_cwnd_reduction(sk, true); 2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2748 tcp_try_keep_open(sk); 2749 return true; 2750 } 2751 return false; 2752 } 2753 2754 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2755 { 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 2758 if (tcp_rtx_queue_empty(sk)) 2759 return; 2760 2761 if (unlikely(tcp_is_reno(tp))) { 2762 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2763 } else if (tcp_is_rack(sk)) { 2764 u32 prior_retrans = tp->retrans_out; 2765 2766 tcp_rack_mark_lost(sk); 2767 if (prior_retrans > tp->retrans_out) 2768 *ack_flag |= FLAG_LOST_RETRANS; 2769 } 2770 } 2771 2772 static bool tcp_force_fast_retransmit(struct sock *sk) 2773 { 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 2776 return after(tcp_highest_sack_seq(tp), 2777 tp->snd_una + tp->reordering * tp->mss_cache); 2778 } 2779 2780 /* Process an event, which can update packets-in-flight not trivially. 2781 * Main goal of this function is to calculate new estimate for left_out, 2782 * taking into account both packets sitting in receiver's buffer and 2783 * packets lost by network. 2784 * 2785 * Besides that it updates the congestion state when packet loss or ECN 2786 * is detected. But it does not reduce the cwnd, it is done by the 2787 * congestion control later. 2788 * 2789 * It does _not_ decide what to send, it is made in function 2790 * tcp_xmit_retransmit_queue(). 2791 */ 2792 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2793 int num_dupack, int *ack_flag, int *rexmit) 2794 { 2795 struct inet_connection_sock *icsk = inet_csk(sk); 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 int fast_rexmit = 0, flag = *ack_flag; 2798 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2799 tcp_force_fast_retransmit(sk)); 2800 2801 if (!tp->packets_out && tp->sacked_out) 2802 tp->sacked_out = 0; 2803 2804 /* Now state machine starts. 2805 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2806 if (flag & FLAG_ECE) 2807 tp->prior_ssthresh = 0; 2808 2809 /* B. In all the states check for reneging SACKs. */ 2810 if (tcp_check_sack_reneging(sk, flag)) 2811 return; 2812 2813 /* C. Check consistency of the current state. */ 2814 tcp_verify_left_out(tp); 2815 2816 /* D. Check state exit conditions. State can be terminated 2817 * when high_seq is ACKed. */ 2818 if (icsk->icsk_ca_state == TCP_CA_Open) { 2819 WARN_ON(tp->retrans_out != 0); 2820 tp->retrans_stamp = 0; 2821 } else if (!before(tp->snd_una, tp->high_seq)) { 2822 switch (icsk->icsk_ca_state) { 2823 case TCP_CA_CWR: 2824 /* CWR is to be held something *above* high_seq 2825 * is ACKed for CWR bit to reach receiver. */ 2826 if (tp->snd_una != tp->high_seq) { 2827 tcp_end_cwnd_reduction(sk); 2828 tcp_set_ca_state(sk, TCP_CA_Open); 2829 } 2830 break; 2831 2832 case TCP_CA_Recovery: 2833 if (tcp_is_reno(tp)) 2834 tcp_reset_reno_sack(tp); 2835 if (tcp_try_undo_recovery(sk)) 2836 return; 2837 tcp_end_cwnd_reduction(sk); 2838 break; 2839 } 2840 } 2841 2842 /* E. Process state. */ 2843 switch (icsk->icsk_ca_state) { 2844 case TCP_CA_Recovery: 2845 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2846 if (tcp_is_reno(tp)) 2847 tcp_add_reno_sack(sk, num_dupack); 2848 } else { 2849 if (tcp_try_undo_partial(sk, prior_snd_una)) 2850 return; 2851 /* Partial ACK arrived. Force fast retransmit. */ 2852 do_lost = tcp_is_reno(tp) || 2853 tcp_force_fast_retransmit(sk); 2854 } 2855 if (tcp_try_undo_dsack(sk)) { 2856 tcp_try_keep_open(sk); 2857 return; 2858 } 2859 tcp_identify_packet_loss(sk, ack_flag); 2860 break; 2861 case TCP_CA_Loss: 2862 tcp_process_loss(sk, flag, num_dupack, rexmit); 2863 tcp_identify_packet_loss(sk, ack_flag); 2864 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2865 (*ack_flag & FLAG_LOST_RETRANS))) 2866 return; 2867 /* Change state if cwnd is undone or retransmits are lost */ 2868 /* fall through */ 2869 default: 2870 if (tcp_is_reno(tp)) { 2871 if (flag & FLAG_SND_UNA_ADVANCED) 2872 tcp_reset_reno_sack(tp); 2873 tcp_add_reno_sack(sk, num_dupack); 2874 } 2875 2876 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2877 tcp_try_undo_dsack(sk); 2878 2879 tcp_identify_packet_loss(sk, ack_flag); 2880 if (!tcp_time_to_recover(sk, flag)) { 2881 tcp_try_to_open(sk, flag); 2882 return; 2883 } 2884 2885 /* MTU probe failure: don't reduce cwnd */ 2886 if (icsk->icsk_ca_state < TCP_CA_CWR && 2887 icsk->icsk_mtup.probe_size && 2888 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2889 tcp_mtup_probe_failed(sk); 2890 /* Restores the reduction we did in tcp_mtup_probe() */ 2891 tp->snd_cwnd++; 2892 tcp_simple_retransmit(sk); 2893 return; 2894 } 2895 2896 /* Otherwise enter Recovery state */ 2897 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2898 fast_rexmit = 1; 2899 } 2900 2901 if (!tcp_is_rack(sk) && do_lost) 2902 tcp_update_scoreboard(sk, fast_rexmit); 2903 *rexmit = REXMIT_LOST; 2904 } 2905 2906 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2907 { 2908 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2909 struct tcp_sock *tp = tcp_sk(sk); 2910 2911 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2912 /* If the remote keeps returning delayed ACKs, eventually 2913 * the min filter would pick it up and overestimate the 2914 * prop. delay when it expires. Skip suspected delayed ACKs. 2915 */ 2916 return; 2917 } 2918 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2919 rtt_us ? : jiffies_to_usecs(1)); 2920 } 2921 2922 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2923 long seq_rtt_us, long sack_rtt_us, 2924 long ca_rtt_us, struct rate_sample *rs) 2925 { 2926 const struct tcp_sock *tp = tcp_sk(sk); 2927 2928 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2929 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2930 * Karn's algorithm forbids taking RTT if some retransmitted data 2931 * is acked (RFC6298). 2932 */ 2933 if (seq_rtt_us < 0) 2934 seq_rtt_us = sack_rtt_us; 2935 2936 /* RTTM Rule: A TSecr value received in a segment is used to 2937 * update the averaged RTT measurement only if the segment 2938 * acknowledges some new data, i.e., only if it advances the 2939 * left edge of the send window. 2940 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2941 */ 2942 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2943 flag & FLAG_ACKED) { 2944 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2945 2946 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2947 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2948 ca_rtt_us = seq_rtt_us; 2949 } 2950 } 2951 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2952 if (seq_rtt_us < 0) 2953 return false; 2954 2955 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2956 * always taken together with ACK, SACK, or TS-opts. Any negative 2957 * values will be skipped with the seq_rtt_us < 0 check above. 2958 */ 2959 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2960 tcp_rtt_estimator(sk, seq_rtt_us); 2961 tcp_set_rto(sk); 2962 2963 /* RFC6298: only reset backoff on valid RTT measurement. */ 2964 inet_csk(sk)->icsk_backoff = 0; 2965 return true; 2966 } 2967 2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2969 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2970 { 2971 struct rate_sample rs; 2972 long rtt_us = -1L; 2973 2974 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2975 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2976 2977 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2978 } 2979 2980 2981 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2982 { 2983 const struct inet_connection_sock *icsk = inet_csk(sk); 2984 2985 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2986 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2987 } 2988 2989 /* Restart timer after forward progress on connection. 2990 * RFC2988 recommends to restart timer to now+rto. 2991 */ 2992 void tcp_rearm_rto(struct sock *sk) 2993 { 2994 const struct inet_connection_sock *icsk = inet_csk(sk); 2995 struct tcp_sock *tp = tcp_sk(sk); 2996 2997 /* If the retrans timer is currently being used by Fast Open 2998 * for SYN-ACK retrans purpose, stay put. 2999 */ 3000 if (rcu_access_pointer(tp->fastopen_rsk)) 3001 return; 3002 3003 if (!tp->packets_out) { 3004 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3005 } else { 3006 u32 rto = inet_csk(sk)->icsk_rto; 3007 /* Offset the time elapsed after installing regular RTO */ 3008 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3009 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3010 s64 delta_us = tcp_rto_delta_us(sk); 3011 /* delta_us may not be positive if the socket is locked 3012 * when the retrans timer fires and is rescheduled. 3013 */ 3014 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3015 } 3016 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3017 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 3018 } 3019 } 3020 3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3022 static void tcp_set_xmit_timer(struct sock *sk) 3023 { 3024 if (!tcp_schedule_loss_probe(sk, true)) 3025 tcp_rearm_rto(sk); 3026 } 3027 3028 /* If we get here, the whole TSO packet has not been acked. */ 3029 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 u32 packets_acked; 3033 3034 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3035 3036 packets_acked = tcp_skb_pcount(skb); 3037 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3038 return 0; 3039 packets_acked -= tcp_skb_pcount(skb); 3040 3041 if (packets_acked) { 3042 BUG_ON(tcp_skb_pcount(skb) == 0); 3043 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3044 } 3045 3046 return packets_acked; 3047 } 3048 3049 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3050 u32 prior_snd_una) 3051 { 3052 const struct skb_shared_info *shinfo; 3053 3054 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3055 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3056 return; 3057 3058 shinfo = skb_shinfo(skb); 3059 if (!before(shinfo->tskey, prior_snd_una) && 3060 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3061 tcp_skb_tsorted_save(skb) { 3062 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3063 } tcp_skb_tsorted_restore(skb); 3064 } 3065 } 3066 3067 /* Remove acknowledged frames from the retransmission queue. If our packet 3068 * is before the ack sequence we can discard it as it's confirmed to have 3069 * arrived at the other end. 3070 */ 3071 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3072 u32 prior_snd_una, 3073 struct tcp_sacktag_state *sack) 3074 { 3075 const struct inet_connection_sock *icsk = inet_csk(sk); 3076 u64 first_ackt, last_ackt; 3077 struct tcp_sock *tp = tcp_sk(sk); 3078 u32 prior_sacked = tp->sacked_out; 3079 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3080 struct sk_buff *skb, *next; 3081 bool fully_acked = true; 3082 long sack_rtt_us = -1L; 3083 long seq_rtt_us = -1L; 3084 long ca_rtt_us = -1L; 3085 u32 pkts_acked = 0; 3086 u32 last_in_flight = 0; 3087 bool rtt_update; 3088 int flag = 0; 3089 3090 first_ackt = 0; 3091 3092 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3093 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3094 const u32 start_seq = scb->seq; 3095 u8 sacked = scb->sacked; 3096 u32 acked_pcount; 3097 3098 tcp_ack_tstamp(sk, skb, prior_snd_una); 3099 3100 /* Determine how many packets and what bytes were acked, tso and else */ 3101 if (after(scb->end_seq, tp->snd_una)) { 3102 if (tcp_skb_pcount(skb) == 1 || 3103 !after(tp->snd_una, scb->seq)) 3104 break; 3105 3106 acked_pcount = tcp_tso_acked(sk, skb); 3107 if (!acked_pcount) 3108 break; 3109 fully_acked = false; 3110 } else { 3111 acked_pcount = tcp_skb_pcount(skb); 3112 } 3113 3114 if (unlikely(sacked & TCPCB_RETRANS)) { 3115 if (sacked & TCPCB_SACKED_RETRANS) 3116 tp->retrans_out -= acked_pcount; 3117 flag |= FLAG_RETRANS_DATA_ACKED; 3118 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3119 last_ackt = tcp_skb_timestamp_us(skb); 3120 WARN_ON_ONCE(last_ackt == 0); 3121 if (!first_ackt) 3122 first_ackt = last_ackt; 3123 3124 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3125 if (before(start_seq, reord)) 3126 reord = start_seq; 3127 if (!after(scb->end_seq, tp->high_seq)) 3128 flag |= FLAG_ORIG_SACK_ACKED; 3129 } 3130 3131 if (sacked & TCPCB_SACKED_ACKED) { 3132 tp->sacked_out -= acked_pcount; 3133 } else if (tcp_is_sack(tp)) { 3134 tp->delivered += acked_pcount; 3135 if (!tcp_skb_spurious_retrans(tp, skb)) 3136 tcp_rack_advance(tp, sacked, scb->end_seq, 3137 tcp_skb_timestamp_us(skb)); 3138 } 3139 if (sacked & TCPCB_LOST) 3140 tp->lost_out -= acked_pcount; 3141 3142 tp->packets_out -= acked_pcount; 3143 pkts_acked += acked_pcount; 3144 tcp_rate_skb_delivered(sk, skb, sack->rate); 3145 3146 /* Initial outgoing SYN's get put onto the write_queue 3147 * just like anything else we transmit. It is not 3148 * true data, and if we misinform our callers that 3149 * this ACK acks real data, we will erroneously exit 3150 * connection startup slow start one packet too 3151 * quickly. This is severely frowned upon behavior. 3152 */ 3153 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3154 flag |= FLAG_DATA_ACKED; 3155 } else { 3156 flag |= FLAG_SYN_ACKED; 3157 tp->retrans_stamp = 0; 3158 } 3159 3160 if (!fully_acked) 3161 break; 3162 3163 next = skb_rb_next(skb); 3164 if (unlikely(skb == tp->retransmit_skb_hint)) 3165 tp->retransmit_skb_hint = NULL; 3166 if (unlikely(skb == tp->lost_skb_hint)) 3167 tp->lost_skb_hint = NULL; 3168 tcp_highest_sack_replace(sk, skb, next); 3169 tcp_rtx_queue_unlink_and_free(skb, sk); 3170 } 3171 3172 if (!skb) 3173 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3174 3175 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3176 tp->snd_up = tp->snd_una; 3177 3178 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3179 flag |= FLAG_SACK_RENEGING; 3180 3181 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3182 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3183 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3184 3185 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3186 last_in_flight && !prior_sacked && fully_acked && 3187 sack->rate->prior_delivered + 1 == tp->delivered && 3188 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3189 /* Conservatively mark a delayed ACK. It's typically 3190 * from a lone runt packet over the round trip to 3191 * a receiver w/o out-of-order or CE events. 3192 */ 3193 flag |= FLAG_ACK_MAYBE_DELAYED; 3194 } 3195 } 3196 if (sack->first_sackt) { 3197 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3198 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3199 } 3200 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3201 ca_rtt_us, sack->rate); 3202 3203 if (flag & FLAG_ACKED) { 3204 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3205 if (unlikely(icsk->icsk_mtup.probe_size && 3206 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3207 tcp_mtup_probe_success(sk); 3208 } 3209 3210 if (tcp_is_reno(tp)) { 3211 tcp_remove_reno_sacks(sk, pkts_acked); 3212 3213 /* If any of the cumulatively ACKed segments was 3214 * retransmitted, non-SACK case cannot confirm that 3215 * progress was due to original transmission due to 3216 * lack of TCPCB_SACKED_ACKED bits even if some of 3217 * the packets may have been never retransmitted. 3218 */ 3219 if (flag & FLAG_RETRANS_DATA_ACKED) 3220 flag &= ~FLAG_ORIG_SACK_ACKED; 3221 } else { 3222 int delta; 3223 3224 /* Non-retransmitted hole got filled? That's reordering */ 3225 if (before(reord, prior_fack)) 3226 tcp_check_sack_reordering(sk, reord, 0); 3227 3228 delta = prior_sacked - tp->sacked_out; 3229 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3230 } 3231 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3232 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3233 tcp_skb_timestamp_us(skb))) { 3234 /* Do not re-arm RTO if the sack RTT is measured from data sent 3235 * after when the head was last (re)transmitted. Otherwise the 3236 * timeout may continue to extend in loss recovery. 3237 */ 3238 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3239 } 3240 3241 if (icsk->icsk_ca_ops->pkts_acked) { 3242 struct ack_sample sample = { .pkts_acked = pkts_acked, 3243 .rtt_us = sack->rate->rtt_us, 3244 .in_flight = last_in_flight }; 3245 3246 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3247 } 3248 3249 #if FASTRETRANS_DEBUG > 0 3250 WARN_ON((int)tp->sacked_out < 0); 3251 WARN_ON((int)tp->lost_out < 0); 3252 WARN_ON((int)tp->retrans_out < 0); 3253 if (!tp->packets_out && tcp_is_sack(tp)) { 3254 icsk = inet_csk(sk); 3255 if (tp->lost_out) { 3256 pr_debug("Leak l=%u %d\n", 3257 tp->lost_out, icsk->icsk_ca_state); 3258 tp->lost_out = 0; 3259 } 3260 if (tp->sacked_out) { 3261 pr_debug("Leak s=%u %d\n", 3262 tp->sacked_out, icsk->icsk_ca_state); 3263 tp->sacked_out = 0; 3264 } 3265 if (tp->retrans_out) { 3266 pr_debug("Leak r=%u %d\n", 3267 tp->retrans_out, icsk->icsk_ca_state); 3268 tp->retrans_out = 0; 3269 } 3270 } 3271 #endif 3272 return flag; 3273 } 3274 3275 static void tcp_ack_probe(struct sock *sk) 3276 { 3277 struct inet_connection_sock *icsk = inet_csk(sk); 3278 struct sk_buff *head = tcp_send_head(sk); 3279 const struct tcp_sock *tp = tcp_sk(sk); 3280 3281 /* Was it a usable window open? */ 3282 if (!head) 3283 return; 3284 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3285 icsk->icsk_backoff = 0; 3286 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3287 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3288 * This function is not for random using! 3289 */ 3290 } else { 3291 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3292 3293 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3294 when, TCP_RTO_MAX, NULL); 3295 } 3296 } 3297 3298 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3299 { 3300 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3301 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3302 } 3303 3304 /* Decide wheather to run the increase function of congestion control. */ 3305 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3306 { 3307 /* If reordering is high then always grow cwnd whenever data is 3308 * delivered regardless of its ordering. Otherwise stay conservative 3309 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3310 * new SACK or ECE mark may first advance cwnd here and later reduce 3311 * cwnd in tcp_fastretrans_alert() based on more states. 3312 */ 3313 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3314 return flag & FLAG_FORWARD_PROGRESS; 3315 3316 return flag & FLAG_DATA_ACKED; 3317 } 3318 3319 /* The "ultimate" congestion control function that aims to replace the rigid 3320 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3321 * It's called toward the end of processing an ACK with precise rate 3322 * information. All transmission or retransmission are delayed afterwards. 3323 */ 3324 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3325 int flag, const struct rate_sample *rs) 3326 { 3327 const struct inet_connection_sock *icsk = inet_csk(sk); 3328 3329 if (icsk->icsk_ca_ops->cong_control) { 3330 icsk->icsk_ca_ops->cong_control(sk, rs); 3331 return; 3332 } 3333 3334 if (tcp_in_cwnd_reduction(sk)) { 3335 /* Reduce cwnd if state mandates */ 3336 tcp_cwnd_reduction(sk, acked_sacked, flag); 3337 } else if (tcp_may_raise_cwnd(sk, flag)) { 3338 /* Advance cwnd if state allows */ 3339 tcp_cong_avoid(sk, ack, acked_sacked); 3340 } 3341 tcp_update_pacing_rate(sk); 3342 } 3343 3344 /* Check that window update is acceptable. 3345 * The function assumes that snd_una<=ack<=snd_next. 3346 */ 3347 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3348 const u32 ack, const u32 ack_seq, 3349 const u32 nwin) 3350 { 3351 return after(ack, tp->snd_una) || 3352 after(ack_seq, tp->snd_wl1) || 3353 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3354 } 3355 3356 /* If we update tp->snd_una, also update tp->bytes_acked */ 3357 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3358 { 3359 u32 delta = ack - tp->snd_una; 3360 3361 sock_owned_by_me((struct sock *)tp); 3362 tp->bytes_acked += delta; 3363 tp->snd_una = ack; 3364 } 3365 3366 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3367 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3368 { 3369 u32 delta = seq - tp->rcv_nxt; 3370 3371 sock_owned_by_me((struct sock *)tp); 3372 tp->bytes_received += delta; 3373 WRITE_ONCE(tp->rcv_nxt, seq); 3374 } 3375 3376 /* Update our send window. 3377 * 3378 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3379 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3380 */ 3381 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3382 u32 ack_seq) 3383 { 3384 struct tcp_sock *tp = tcp_sk(sk); 3385 int flag = 0; 3386 u32 nwin = ntohs(tcp_hdr(skb)->window); 3387 3388 if (likely(!tcp_hdr(skb)->syn)) 3389 nwin <<= tp->rx_opt.snd_wscale; 3390 3391 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3392 flag |= FLAG_WIN_UPDATE; 3393 tcp_update_wl(tp, ack_seq); 3394 3395 if (tp->snd_wnd != nwin) { 3396 tp->snd_wnd = nwin; 3397 3398 /* Note, it is the only place, where 3399 * fast path is recovered for sending TCP. 3400 */ 3401 tp->pred_flags = 0; 3402 tcp_fast_path_check(sk); 3403 3404 if (!tcp_write_queue_empty(sk)) 3405 tcp_slow_start_after_idle_check(sk); 3406 3407 if (nwin > tp->max_window) { 3408 tp->max_window = nwin; 3409 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3410 } 3411 } 3412 } 3413 3414 tcp_snd_una_update(tp, ack); 3415 3416 return flag; 3417 } 3418 3419 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3420 u32 *last_oow_ack_time) 3421 { 3422 if (*last_oow_ack_time) { 3423 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3424 3425 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3426 NET_INC_STATS(net, mib_idx); 3427 return true; /* rate-limited: don't send yet! */ 3428 } 3429 } 3430 3431 *last_oow_ack_time = tcp_jiffies32; 3432 3433 return false; /* not rate-limited: go ahead, send dupack now! */ 3434 } 3435 3436 /* Return true if we're currently rate-limiting out-of-window ACKs and 3437 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3438 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3439 * attacks that send repeated SYNs or ACKs for the same connection. To 3440 * do this, we do not send a duplicate SYNACK or ACK if the remote 3441 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3442 */ 3443 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3444 int mib_idx, u32 *last_oow_ack_time) 3445 { 3446 /* Data packets without SYNs are not likely part of an ACK loop. */ 3447 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3448 !tcp_hdr(skb)->syn) 3449 return false; 3450 3451 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3452 } 3453 3454 /* RFC 5961 7 [ACK Throttling] */ 3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3456 { 3457 /* unprotected vars, we dont care of overwrites */ 3458 static u32 challenge_timestamp; 3459 static unsigned int challenge_count; 3460 struct tcp_sock *tp = tcp_sk(sk); 3461 struct net *net = sock_net(sk); 3462 u32 count, now; 3463 3464 /* First check our per-socket dupack rate limit. */ 3465 if (__tcp_oow_rate_limited(net, 3466 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3467 &tp->last_oow_ack_time)) 3468 return; 3469 3470 /* Then check host-wide RFC 5961 rate limit. */ 3471 now = jiffies / HZ; 3472 if (now != challenge_timestamp) { 3473 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3474 u32 half = (ack_limit + 1) >> 1; 3475 3476 challenge_timestamp = now; 3477 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3478 } 3479 count = READ_ONCE(challenge_count); 3480 if (count > 0) { 3481 WRITE_ONCE(challenge_count, count - 1); 3482 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3483 tcp_send_ack(sk); 3484 } 3485 } 3486 3487 static void tcp_store_ts_recent(struct tcp_sock *tp) 3488 { 3489 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3490 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3491 } 3492 3493 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3494 { 3495 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3496 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3497 * extra check below makes sure this can only happen 3498 * for pure ACK frames. -DaveM 3499 * 3500 * Not only, also it occurs for expired timestamps. 3501 */ 3502 3503 if (tcp_paws_check(&tp->rx_opt, 0)) 3504 tcp_store_ts_recent(tp); 3505 } 3506 } 3507 3508 /* This routine deals with acks during a TLP episode. 3509 * We mark the end of a TLP episode on receiving TLP dupack or when 3510 * ack is after tlp_high_seq. 3511 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3512 */ 3513 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3514 { 3515 struct tcp_sock *tp = tcp_sk(sk); 3516 3517 if (before(ack, tp->tlp_high_seq)) 3518 return; 3519 3520 if (flag & FLAG_DSACKING_ACK) { 3521 /* This DSACK means original and TLP probe arrived; no loss */ 3522 tp->tlp_high_seq = 0; 3523 } else if (after(ack, tp->tlp_high_seq)) { 3524 /* ACK advances: there was a loss, so reduce cwnd. Reset 3525 * tlp_high_seq in tcp_init_cwnd_reduction() 3526 */ 3527 tcp_init_cwnd_reduction(sk); 3528 tcp_set_ca_state(sk, TCP_CA_CWR); 3529 tcp_end_cwnd_reduction(sk); 3530 tcp_try_keep_open(sk); 3531 NET_INC_STATS(sock_net(sk), 3532 LINUX_MIB_TCPLOSSPROBERECOVERY); 3533 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3534 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3535 /* Pure dupack: original and TLP probe arrived; no loss */ 3536 tp->tlp_high_seq = 0; 3537 } 3538 } 3539 3540 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3541 { 3542 const struct inet_connection_sock *icsk = inet_csk(sk); 3543 3544 if (icsk->icsk_ca_ops->in_ack_event) 3545 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3546 } 3547 3548 /* Congestion control has updated the cwnd already. So if we're in 3549 * loss recovery then now we do any new sends (for FRTO) or 3550 * retransmits (for CA_Loss or CA_recovery) that make sense. 3551 */ 3552 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3553 { 3554 struct tcp_sock *tp = tcp_sk(sk); 3555 3556 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3557 return; 3558 3559 if (unlikely(rexmit == REXMIT_NEW)) { 3560 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3561 TCP_NAGLE_OFF); 3562 if (after(tp->snd_nxt, tp->high_seq)) 3563 return; 3564 tp->frto = 0; 3565 } 3566 tcp_xmit_retransmit_queue(sk); 3567 } 3568 3569 /* Returns the number of packets newly acked or sacked by the current ACK */ 3570 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3571 { 3572 const struct net *net = sock_net(sk); 3573 struct tcp_sock *tp = tcp_sk(sk); 3574 u32 delivered; 3575 3576 delivered = tp->delivered - prior_delivered; 3577 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3578 if (flag & FLAG_ECE) { 3579 tp->delivered_ce += delivered; 3580 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3581 } 3582 return delivered; 3583 } 3584 3585 /* This routine deals with incoming acks, but not outgoing ones. */ 3586 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3587 { 3588 struct inet_connection_sock *icsk = inet_csk(sk); 3589 struct tcp_sock *tp = tcp_sk(sk); 3590 struct tcp_sacktag_state sack_state; 3591 struct rate_sample rs = { .prior_delivered = 0 }; 3592 u32 prior_snd_una = tp->snd_una; 3593 bool is_sack_reneg = tp->is_sack_reneg; 3594 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3595 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3596 int num_dupack = 0; 3597 int prior_packets = tp->packets_out; 3598 u32 delivered = tp->delivered; 3599 u32 lost = tp->lost; 3600 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3601 u32 prior_fack; 3602 3603 sack_state.first_sackt = 0; 3604 sack_state.rate = &rs; 3605 3606 /* We very likely will need to access rtx queue. */ 3607 prefetch(sk->tcp_rtx_queue.rb_node); 3608 3609 /* If the ack is older than previous acks 3610 * then we can probably ignore it. 3611 */ 3612 if (before(ack, prior_snd_una)) { 3613 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3614 if (before(ack, prior_snd_una - tp->max_window)) { 3615 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3616 tcp_send_challenge_ack(sk, skb); 3617 return -1; 3618 } 3619 goto old_ack; 3620 } 3621 3622 /* If the ack includes data we haven't sent yet, discard 3623 * this segment (RFC793 Section 3.9). 3624 */ 3625 if (after(ack, tp->snd_nxt)) 3626 return -1; 3627 3628 if (after(ack, prior_snd_una)) { 3629 flag |= FLAG_SND_UNA_ADVANCED; 3630 icsk->icsk_retransmits = 0; 3631 3632 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3633 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3634 if (icsk->icsk_clean_acked) 3635 icsk->icsk_clean_acked(sk, ack); 3636 #endif 3637 } 3638 3639 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3640 rs.prior_in_flight = tcp_packets_in_flight(tp); 3641 3642 /* ts_recent update must be made after we are sure that the packet 3643 * is in window. 3644 */ 3645 if (flag & FLAG_UPDATE_TS_RECENT) 3646 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3647 3648 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3649 FLAG_SND_UNA_ADVANCED) { 3650 /* Window is constant, pure forward advance. 3651 * No more checks are required. 3652 * Note, we use the fact that SND.UNA>=SND.WL2. 3653 */ 3654 tcp_update_wl(tp, ack_seq); 3655 tcp_snd_una_update(tp, ack); 3656 flag |= FLAG_WIN_UPDATE; 3657 3658 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3659 3660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3661 } else { 3662 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3663 3664 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3665 flag |= FLAG_DATA; 3666 else 3667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3668 3669 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3670 3671 if (TCP_SKB_CB(skb)->sacked) 3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3673 &sack_state); 3674 3675 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3676 flag |= FLAG_ECE; 3677 ack_ev_flags |= CA_ACK_ECE; 3678 } 3679 3680 if (flag & FLAG_WIN_UPDATE) 3681 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3682 3683 tcp_in_ack_event(sk, ack_ev_flags); 3684 } 3685 3686 /* We passed data and got it acked, remove any soft error 3687 * log. Something worked... 3688 */ 3689 sk->sk_err_soft = 0; 3690 icsk->icsk_probes_out = 0; 3691 tp->rcv_tstamp = tcp_jiffies32; 3692 if (!prior_packets) 3693 goto no_queue; 3694 3695 /* See if we can take anything off of the retransmit queue. */ 3696 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3697 3698 tcp_rack_update_reo_wnd(sk, &rs); 3699 3700 if (tp->tlp_high_seq) 3701 tcp_process_tlp_ack(sk, ack, flag); 3702 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3703 if (flag & FLAG_SET_XMIT_TIMER) 3704 tcp_set_xmit_timer(sk); 3705 3706 if (tcp_ack_is_dubious(sk, flag)) { 3707 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3708 num_dupack = 1; 3709 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3710 if (!(flag & FLAG_DATA)) 3711 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3712 } 3713 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3714 &rexmit); 3715 } 3716 3717 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3718 sk_dst_confirm(sk); 3719 3720 delivered = tcp_newly_delivered(sk, delivered, flag); 3721 lost = tp->lost - lost; /* freshly marked lost */ 3722 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3723 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3724 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3725 tcp_xmit_recovery(sk, rexmit); 3726 return 1; 3727 3728 no_queue: 3729 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3730 if (flag & FLAG_DSACKING_ACK) { 3731 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3732 &rexmit); 3733 tcp_newly_delivered(sk, delivered, flag); 3734 } 3735 /* If this ack opens up a zero window, clear backoff. It was 3736 * being used to time the probes, and is probably far higher than 3737 * it needs to be for normal retransmission. 3738 */ 3739 tcp_ack_probe(sk); 3740 3741 if (tp->tlp_high_seq) 3742 tcp_process_tlp_ack(sk, ack, flag); 3743 return 1; 3744 3745 old_ack: 3746 /* If data was SACKed, tag it and see if we should send more data. 3747 * If data was DSACKed, see if we can undo a cwnd reduction. 3748 */ 3749 if (TCP_SKB_CB(skb)->sacked) { 3750 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3751 &sack_state); 3752 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3753 &rexmit); 3754 tcp_newly_delivered(sk, delivered, flag); 3755 tcp_xmit_recovery(sk, rexmit); 3756 } 3757 3758 return 0; 3759 } 3760 3761 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3762 bool syn, struct tcp_fastopen_cookie *foc, 3763 bool exp_opt) 3764 { 3765 /* Valid only in SYN or SYN-ACK with an even length. */ 3766 if (!foc || !syn || len < 0 || (len & 1)) 3767 return; 3768 3769 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3770 len <= TCP_FASTOPEN_COOKIE_MAX) 3771 memcpy(foc->val, cookie, len); 3772 else if (len != 0) 3773 len = -1; 3774 foc->len = len; 3775 foc->exp = exp_opt; 3776 } 3777 3778 static void smc_parse_options(const struct tcphdr *th, 3779 struct tcp_options_received *opt_rx, 3780 const unsigned char *ptr, 3781 int opsize) 3782 { 3783 #if IS_ENABLED(CONFIG_SMC) 3784 if (static_branch_unlikely(&tcp_have_smc)) { 3785 if (th->syn && !(opsize & 1) && 3786 opsize >= TCPOLEN_EXP_SMC_BASE && 3787 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3788 opt_rx->smc_ok = 1; 3789 } 3790 #endif 3791 } 3792 3793 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3794 * value on success. 3795 */ 3796 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3797 { 3798 const unsigned char *ptr = (const unsigned char *)(th + 1); 3799 int length = (th->doff * 4) - sizeof(struct tcphdr); 3800 u16 mss = 0; 3801 3802 while (length > 0) { 3803 int opcode = *ptr++; 3804 int opsize; 3805 3806 switch (opcode) { 3807 case TCPOPT_EOL: 3808 return mss; 3809 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3810 length--; 3811 continue; 3812 default: 3813 if (length < 2) 3814 return mss; 3815 opsize = *ptr++; 3816 if (opsize < 2) /* "silly options" */ 3817 return mss; 3818 if (opsize > length) 3819 return mss; /* fail on partial options */ 3820 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3821 u16 in_mss = get_unaligned_be16(ptr); 3822 3823 if (in_mss) { 3824 if (user_mss && user_mss < in_mss) 3825 in_mss = user_mss; 3826 mss = in_mss; 3827 } 3828 } 3829 ptr += opsize - 2; 3830 length -= opsize; 3831 } 3832 } 3833 return mss; 3834 } 3835 3836 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3837 * But, this can also be called on packets in the established flow when 3838 * the fast version below fails. 3839 */ 3840 void tcp_parse_options(const struct net *net, 3841 const struct sk_buff *skb, 3842 struct tcp_options_received *opt_rx, int estab, 3843 struct tcp_fastopen_cookie *foc) 3844 { 3845 const unsigned char *ptr; 3846 const struct tcphdr *th = tcp_hdr(skb); 3847 int length = (th->doff * 4) - sizeof(struct tcphdr); 3848 3849 ptr = (const unsigned char *)(th + 1); 3850 opt_rx->saw_tstamp = 0; 3851 3852 while (length > 0) { 3853 int opcode = *ptr++; 3854 int opsize; 3855 3856 switch (opcode) { 3857 case TCPOPT_EOL: 3858 return; 3859 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3860 length--; 3861 continue; 3862 default: 3863 if (length < 2) 3864 return; 3865 opsize = *ptr++; 3866 if (opsize < 2) /* "silly options" */ 3867 return; 3868 if (opsize > length) 3869 return; /* don't parse partial options */ 3870 switch (opcode) { 3871 case TCPOPT_MSS: 3872 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3873 u16 in_mss = get_unaligned_be16(ptr); 3874 if (in_mss) { 3875 if (opt_rx->user_mss && 3876 opt_rx->user_mss < in_mss) 3877 in_mss = opt_rx->user_mss; 3878 opt_rx->mss_clamp = in_mss; 3879 } 3880 } 3881 break; 3882 case TCPOPT_WINDOW: 3883 if (opsize == TCPOLEN_WINDOW && th->syn && 3884 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3885 __u8 snd_wscale = *(__u8 *)ptr; 3886 opt_rx->wscale_ok = 1; 3887 if (snd_wscale > TCP_MAX_WSCALE) { 3888 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3889 __func__, 3890 snd_wscale, 3891 TCP_MAX_WSCALE); 3892 snd_wscale = TCP_MAX_WSCALE; 3893 } 3894 opt_rx->snd_wscale = snd_wscale; 3895 } 3896 break; 3897 case TCPOPT_TIMESTAMP: 3898 if ((opsize == TCPOLEN_TIMESTAMP) && 3899 ((estab && opt_rx->tstamp_ok) || 3900 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3901 opt_rx->saw_tstamp = 1; 3902 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3903 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3904 } 3905 break; 3906 case TCPOPT_SACK_PERM: 3907 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3908 !estab && net->ipv4.sysctl_tcp_sack) { 3909 opt_rx->sack_ok = TCP_SACK_SEEN; 3910 tcp_sack_reset(opt_rx); 3911 } 3912 break; 3913 3914 case TCPOPT_SACK: 3915 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3916 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3917 opt_rx->sack_ok) { 3918 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3919 } 3920 break; 3921 #ifdef CONFIG_TCP_MD5SIG 3922 case TCPOPT_MD5SIG: 3923 /* 3924 * The MD5 Hash has already been 3925 * checked (see tcp_v{4,6}_do_rcv()). 3926 */ 3927 break; 3928 #endif 3929 case TCPOPT_MPTCP: 3930 mptcp_parse_option(skb, ptr, opsize, opt_rx); 3931 break; 3932 3933 case TCPOPT_FASTOPEN: 3934 tcp_parse_fastopen_option( 3935 opsize - TCPOLEN_FASTOPEN_BASE, 3936 ptr, th->syn, foc, false); 3937 break; 3938 3939 case TCPOPT_EXP: 3940 /* Fast Open option shares code 254 using a 3941 * 16 bits magic number. 3942 */ 3943 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3944 get_unaligned_be16(ptr) == 3945 TCPOPT_FASTOPEN_MAGIC) 3946 tcp_parse_fastopen_option(opsize - 3947 TCPOLEN_EXP_FASTOPEN_BASE, 3948 ptr + 2, th->syn, foc, true); 3949 else 3950 smc_parse_options(th, opt_rx, ptr, 3951 opsize); 3952 break; 3953 3954 } 3955 ptr += opsize-2; 3956 length -= opsize; 3957 } 3958 } 3959 } 3960 EXPORT_SYMBOL(tcp_parse_options); 3961 3962 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3963 { 3964 const __be32 *ptr = (const __be32 *)(th + 1); 3965 3966 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3967 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3968 tp->rx_opt.saw_tstamp = 1; 3969 ++ptr; 3970 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3971 ++ptr; 3972 if (*ptr) 3973 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3974 else 3975 tp->rx_opt.rcv_tsecr = 0; 3976 return true; 3977 } 3978 return false; 3979 } 3980 3981 /* Fast parse options. This hopes to only see timestamps. 3982 * If it is wrong it falls back on tcp_parse_options(). 3983 */ 3984 static bool tcp_fast_parse_options(const struct net *net, 3985 const struct sk_buff *skb, 3986 const struct tcphdr *th, struct tcp_sock *tp) 3987 { 3988 /* In the spirit of fast parsing, compare doff directly to constant 3989 * values. Because equality is used, short doff can be ignored here. 3990 */ 3991 if (th->doff == (sizeof(*th) / 4)) { 3992 tp->rx_opt.saw_tstamp = 0; 3993 return false; 3994 } else if (tp->rx_opt.tstamp_ok && 3995 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3996 if (tcp_parse_aligned_timestamp(tp, th)) 3997 return true; 3998 } 3999 4000 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4001 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4002 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4003 4004 return true; 4005 } 4006 4007 #ifdef CONFIG_TCP_MD5SIG 4008 /* 4009 * Parse MD5 Signature option 4010 */ 4011 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4012 { 4013 int length = (th->doff << 2) - sizeof(*th); 4014 const u8 *ptr = (const u8 *)(th + 1); 4015 4016 /* If not enough data remaining, we can short cut */ 4017 while (length >= TCPOLEN_MD5SIG) { 4018 int opcode = *ptr++; 4019 int opsize; 4020 4021 switch (opcode) { 4022 case TCPOPT_EOL: 4023 return NULL; 4024 case TCPOPT_NOP: 4025 length--; 4026 continue; 4027 default: 4028 opsize = *ptr++; 4029 if (opsize < 2 || opsize > length) 4030 return NULL; 4031 if (opcode == TCPOPT_MD5SIG) 4032 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4033 } 4034 ptr += opsize - 2; 4035 length -= opsize; 4036 } 4037 return NULL; 4038 } 4039 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4040 #endif 4041 4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4043 * 4044 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4045 * it can pass through stack. So, the following predicate verifies that 4046 * this segment is not used for anything but congestion avoidance or 4047 * fast retransmit. Moreover, we even are able to eliminate most of such 4048 * second order effects, if we apply some small "replay" window (~RTO) 4049 * to timestamp space. 4050 * 4051 * All these measures still do not guarantee that we reject wrapped ACKs 4052 * on networks with high bandwidth, when sequence space is recycled fastly, 4053 * but it guarantees that such events will be very rare and do not affect 4054 * connection seriously. This doesn't look nice, but alas, PAWS is really 4055 * buggy extension. 4056 * 4057 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4058 * states that events when retransmit arrives after original data are rare. 4059 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4060 * the biggest problem on large power networks even with minor reordering. 4061 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4062 * up to bandwidth of 18Gigabit/sec. 8) ] 4063 */ 4064 4065 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4066 { 4067 const struct tcp_sock *tp = tcp_sk(sk); 4068 const struct tcphdr *th = tcp_hdr(skb); 4069 u32 seq = TCP_SKB_CB(skb)->seq; 4070 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4071 4072 return (/* 1. Pure ACK with correct sequence number. */ 4073 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4074 4075 /* 2. ... and duplicate ACK. */ 4076 ack == tp->snd_una && 4077 4078 /* 3. ... and does not update window. */ 4079 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4080 4081 /* 4. ... and sits in replay window. */ 4082 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4083 } 4084 4085 static inline bool tcp_paws_discard(const struct sock *sk, 4086 const struct sk_buff *skb) 4087 { 4088 const struct tcp_sock *tp = tcp_sk(sk); 4089 4090 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4091 !tcp_disordered_ack(sk, skb); 4092 } 4093 4094 /* Check segment sequence number for validity. 4095 * 4096 * Segment controls are considered valid, if the segment 4097 * fits to the window after truncation to the window. Acceptability 4098 * of data (and SYN, FIN, of course) is checked separately. 4099 * See tcp_data_queue(), for example. 4100 * 4101 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4102 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4103 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4104 * (borrowed from freebsd) 4105 */ 4106 4107 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4108 { 4109 return !before(end_seq, tp->rcv_wup) && 4110 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4111 } 4112 4113 /* When we get a reset we do this. */ 4114 void tcp_reset(struct sock *sk) 4115 { 4116 trace_tcp_receive_reset(sk); 4117 4118 /* We want the right error as BSD sees it (and indeed as we do). */ 4119 switch (sk->sk_state) { 4120 case TCP_SYN_SENT: 4121 sk->sk_err = ECONNREFUSED; 4122 break; 4123 case TCP_CLOSE_WAIT: 4124 sk->sk_err = EPIPE; 4125 break; 4126 case TCP_CLOSE: 4127 return; 4128 default: 4129 sk->sk_err = ECONNRESET; 4130 } 4131 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4132 smp_wmb(); 4133 4134 tcp_write_queue_purge(sk); 4135 tcp_done(sk); 4136 4137 if (!sock_flag(sk, SOCK_DEAD)) 4138 sk->sk_error_report(sk); 4139 } 4140 4141 /* 4142 * Process the FIN bit. This now behaves as it is supposed to work 4143 * and the FIN takes effect when it is validly part of sequence 4144 * space. Not before when we get holes. 4145 * 4146 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4147 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4148 * TIME-WAIT) 4149 * 4150 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4151 * close and we go into CLOSING (and later onto TIME-WAIT) 4152 * 4153 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4154 */ 4155 void tcp_fin(struct sock *sk) 4156 { 4157 struct tcp_sock *tp = tcp_sk(sk); 4158 4159 inet_csk_schedule_ack(sk); 4160 4161 sk->sk_shutdown |= RCV_SHUTDOWN; 4162 sock_set_flag(sk, SOCK_DONE); 4163 4164 switch (sk->sk_state) { 4165 case TCP_SYN_RECV: 4166 case TCP_ESTABLISHED: 4167 /* Move to CLOSE_WAIT */ 4168 tcp_set_state(sk, TCP_CLOSE_WAIT); 4169 inet_csk_enter_pingpong_mode(sk); 4170 break; 4171 4172 case TCP_CLOSE_WAIT: 4173 case TCP_CLOSING: 4174 /* Received a retransmission of the FIN, do 4175 * nothing. 4176 */ 4177 break; 4178 case TCP_LAST_ACK: 4179 /* RFC793: Remain in the LAST-ACK state. */ 4180 break; 4181 4182 case TCP_FIN_WAIT1: 4183 /* This case occurs when a simultaneous close 4184 * happens, we must ack the received FIN and 4185 * enter the CLOSING state. 4186 */ 4187 tcp_send_ack(sk); 4188 tcp_set_state(sk, TCP_CLOSING); 4189 break; 4190 case TCP_FIN_WAIT2: 4191 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4192 tcp_send_ack(sk); 4193 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4194 break; 4195 default: 4196 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4197 * cases we should never reach this piece of code. 4198 */ 4199 pr_err("%s: Impossible, sk->sk_state=%d\n", 4200 __func__, sk->sk_state); 4201 break; 4202 } 4203 4204 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4205 * Probably, we should reset in this case. For now drop them. 4206 */ 4207 skb_rbtree_purge(&tp->out_of_order_queue); 4208 if (tcp_is_sack(tp)) 4209 tcp_sack_reset(&tp->rx_opt); 4210 sk_mem_reclaim(sk); 4211 4212 if (!sock_flag(sk, SOCK_DEAD)) { 4213 sk->sk_state_change(sk); 4214 4215 /* Do not send POLL_HUP for half duplex close. */ 4216 if (sk->sk_shutdown == SHUTDOWN_MASK || 4217 sk->sk_state == TCP_CLOSE) 4218 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4219 else 4220 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4221 } 4222 } 4223 4224 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4225 u32 end_seq) 4226 { 4227 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4228 if (before(seq, sp->start_seq)) 4229 sp->start_seq = seq; 4230 if (after(end_seq, sp->end_seq)) 4231 sp->end_seq = end_seq; 4232 return true; 4233 } 4234 return false; 4235 } 4236 4237 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4238 { 4239 struct tcp_sock *tp = tcp_sk(sk); 4240 4241 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4242 int mib_idx; 4243 4244 if (before(seq, tp->rcv_nxt)) 4245 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4246 else 4247 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4248 4249 NET_INC_STATS(sock_net(sk), mib_idx); 4250 4251 tp->rx_opt.dsack = 1; 4252 tp->duplicate_sack[0].start_seq = seq; 4253 tp->duplicate_sack[0].end_seq = end_seq; 4254 } 4255 } 4256 4257 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4258 { 4259 struct tcp_sock *tp = tcp_sk(sk); 4260 4261 if (!tp->rx_opt.dsack) 4262 tcp_dsack_set(sk, seq, end_seq); 4263 else 4264 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4265 } 4266 4267 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4268 { 4269 /* When the ACK path fails or drops most ACKs, the sender would 4270 * timeout and spuriously retransmit the same segment repeatedly. 4271 * The receiver remembers and reflects via DSACKs. Leverage the 4272 * DSACK state and change the txhash to re-route speculatively. 4273 */ 4274 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4275 sk_rethink_txhash(sk); 4276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4277 } 4278 } 4279 4280 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4281 { 4282 struct tcp_sock *tp = tcp_sk(sk); 4283 4284 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4285 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4286 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4287 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4288 4289 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4290 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4291 4292 tcp_rcv_spurious_retrans(sk, skb); 4293 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4294 end_seq = tp->rcv_nxt; 4295 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4296 } 4297 } 4298 4299 tcp_send_ack(sk); 4300 } 4301 4302 /* These routines update the SACK block as out-of-order packets arrive or 4303 * in-order packets close up the sequence space. 4304 */ 4305 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4306 { 4307 int this_sack; 4308 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4309 struct tcp_sack_block *swalk = sp + 1; 4310 4311 /* See if the recent change to the first SACK eats into 4312 * or hits the sequence space of other SACK blocks, if so coalesce. 4313 */ 4314 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4315 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4316 int i; 4317 4318 /* Zap SWALK, by moving every further SACK up by one slot. 4319 * Decrease num_sacks. 4320 */ 4321 tp->rx_opt.num_sacks--; 4322 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4323 sp[i] = sp[i + 1]; 4324 continue; 4325 } 4326 this_sack++, swalk++; 4327 } 4328 } 4329 4330 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4331 { 4332 struct tcp_sock *tp = tcp_sk(sk); 4333 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4334 int cur_sacks = tp->rx_opt.num_sacks; 4335 int this_sack; 4336 4337 if (!cur_sacks) 4338 goto new_sack; 4339 4340 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4341 if (tcp_sack_extend(sp, seq, end_seq)) { 4342 /* Rotate this_sack to the first one. */ 4343 for (; this_sack > 0; this_sack--, sp--) 4344 swap(*sp, *(sp - 1)); 4345 if (cur_sacks > 1) 4346 tcp_sack_maybe_coalesce(tp); 4347 return; 4348 } 4349 } 4350 4351 /* Could not find an adjacent existing SACK, build a new one, 4352 * put it at the front, and shift everyone else down. We 4353 * always know there is at least one SACK present already here. 4354 * 4355 * If the sack array is full, forget about the last one. 4356 */ 4357 if (this_sack >= TCP_NUM_SACKS) { 4358 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4359 tcp_send_ack(sk); 4360 this_sack--; 4361 tp->rx_opt.num_sacks--; 4362 sp--; 4363 } 4364 for (; this_sack > 0; this_sack--, sp--) 4365 *sp = *(sp - 1); 4366 4367 new_sack: 4368 /* Build the new head SACK, and we're done. */ 4369 sp->start_seq = seq; 4370 sp->end_seq = end_seq; 4371 tp->rx_opt.num_sacks++; 4372 } 4373 4374 /* RCV.NXT advances, some SACKs should be eaten. */ 4375 4376 static void tcp_sack_remove(struct tcp_sock *tp) 4377 { 4378 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4379 int num_sacks = tp->rx_opt.num_sacks; 4380 int this_sack; 4381 4382 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4383 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4384 tp->rx_opt.num_sacks = 0; 4385 return; 4386 } 4387 4388 for (this_sack = 0; this_sack < num_sacks;) { 4389 /* Check if the start of the sack is covered by RCV.NXT. */ 4390 if (!before(tp->rcv_nxt, sp->start_seq)) { 4391 int i; 4392 4393 /* RCV.NXT must cover all the block! */ 4394 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4395 4396 /* Zap this SACK, by moving forward any other SACKS. */ 4397 for (i = this_sack+1; i < num_sacks; i++) 4398 tp->selective_acks[i-1] = tp->selective_acks[i]; 4399 num_sacks--; 4400 continue; 4401 } 4402 this_sack++; 4403 sp++; 4404 } 4405 tp->rx_opt.num_sacks = num_sacks; 4406 } 4407 4408 /** 4409 * tcp_try_coalesce - try to merge skb to prior one 4410 * @sk: socket 4411 * @dest: destination queue 4412 * @to: prior buffer 4413 * @from: buffer to add in queue 4414 * @fragstolen: pointer to boolean 4415 * 4416 * Before queueing skb @from after @to, try to merge them 4417 * to reduce overall memory use and queue lengths, if cost is small. 4418 * Packets in ofo or receive queues can stay a long time. 4419 * Better try to coalesce them right now to avoid future collapses. 4420 * Returns true if caller should free @from instead of queueing it 4421 */ 4422 static bool tcp_try_coalesce(struct sock *sk, 4423 struct sk_buff *to, 4424 struct sk_buff *from, 4425 bool *fragstolen) 4426 { 4427 int delta; 4428 4429 *fragstolen = false; 4430 4431 /* Its possible this segment overlaps with prior segment in queue */ 4432 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4433 return false; 4434 4435 if (!mptcp_skb_can_collapse(to, from)) 4436 return false; 4437 4438 #ifdef CONFIG_TLS_DEVICE 4439 if (from->decrypted != to->decrypted) 4440 return false; 4441 #endif 4442 4443 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4444 return false; 4445 4446 atomic_add(delta, &sk->sk_rmem_alloc); 4447 sk_mem_charge(sk, delta); 4448 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4449 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4450 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4451 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4452 4453 if (TCP_SKB_CB(from)->has_rxtstamp) { 4454 TCP_SKB_CB(to)->has_rxtstamp = true; 4455 to->tstamp = from->tstamp; 4456 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4457 } 4458 4459 return true; 4460 } 4461 4462 static bool tcp_ooo_try_coalesce(struct sock *sk, 4463 struct sk_buff *to, 4464 struct sk_buff *from, 4465 bool *fragstolen) 4466 { 4467 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4468 4469 /* In case tcp_drop() is called later, update to->gso_segs */ 4470 if (res) { 4471 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4472 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4473 4474 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4475 } 4476 return res; 4477 } 4478 4479 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4480 { 4481 sk_drops_add(sk, skb); 4482 __kfree_skb(skb); 4483 } 4484 4485 /* This one checks to see if we can put data from the 4486 * out_of_order queue into the receive_queue. 4487 */ 4488 static void tcp_ofo_queue(struct sock *sk) 4489 { 4490 struct tcp_sock *tp = tcp_sk(sk); 4491 __u32 dsack_high = tp->rcv_nxt; 4492 bool fin, fragstolen, eaten; 4493 struct sk_buff *skb, *tail; 4494 struct rb_node *p; 4495 4496 p = rb_first(&tp->out_of_order_queue); 4497 while (p) { 4498 skb = rb_to_skb(p); 4499 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4500 break; 4501 4502 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4503 __u32 dsack = dsack_high; 4504 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4505 dsack_high = TCP_SKB_CB(skb)->end_seq; 4506 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4507 } 4508 p = rb_next(p); 4509 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4510 4511 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4512 tcp_drop(sk, skb); 4513 continue; 4514 } 4515 4516 tail = skb_peek_tail(&sk->sk_receive_queue); 4517 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4518 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4519 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4520 if (!eaten) 4521 __skb_queue_tail(&sk->sk_receive_queue, skb); 4522 else 4523 kfree_skb_partial(skb, fragstolen); 4524 4525 if (unlikely(fin)) { 4526 tcp_fin(sk); 4527 /* tcp_fin() purges tp->out_of_order_queue, 4528 * so we must end this loop right now. 4529 */ 4530 break; 4531 } 4532 } 4533 } 4534 4535 static bool tcp_prune_ofo_queue(struct sock *sk); 4536 static int tcp_prune_queue(struct sock *sk); 4537 4538 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4539 unsigned int size) 4540 { 4541 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4542 !sk_rmem_schedule(sk, skb, size)) { 4543 4544 if (tcp_prune_queue(sk) < 0) 4545 return -1; 4546 4547 while (!sk_rmem_schedule(sk, skb, size)) { 4548 if (!tcp_prune_ofo_queue(sk)) 4549 return -1; 4550 } 4551 } 4552 return 0; 4553 } 4554 4555 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4556 { 4557 struct tcp_sock *tp = tcp_sk(sk); 4558 struct rb_node **p, *parent; 4559 struct sk_buff *skb1; 4560 u32 seq, end_seq; 4561 bool fragstolen; 4562 4563 tcp_ecn_check_ce(sk, skb); 4564 4565 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4567 tcp_drop(sk, skb); 4568 return; 4569 } 4570 4571 /* Disable header prediction. */ 4572 tp->pred_flags = 0; 4573 inet_csk_schedule_ack(sk); 4574 4575 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4577 seq = TCP_SKB_CB(skb)->seq; 4578 end_seq = TCP_SKB_CB(skb)->end_seq; 4579 4580 p = &tp->out_of_order_queue.rb_node; 4581 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4582 /* Initial out of order segment, build 1 SACK. */ 4583 if (tcp_is_sack(tp)) { 4584 tp->rx_opt.num_sacks = 1; 4585 tp->selective_acks[0].start_seq = seq; 4586 tp->selective_acks[0].end_seq = end_seq; 4587 } 4588 rb_link_node(&skb->rbnode, NULL, p); 4589 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4590 tp->ooo_last_skb = skb; 4591 goto end; 4592 } 4593 4594 /* In the typical case, we are adding an skb to the end of the list. 4595 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4596 */ 4597 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4598 skb, &fragstolen)) { 4599 coalesce_done: 4600 tcp_grow_window(sk, skb); 4601 kfree_skb_partial(skb, fragstolen); 4602 skb = NULL; 4603 goto add_sack; 4604 } 4605 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4606 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4607 parent = &tp->ooo_last_skb->rbnode; 4608 p = &parent->rb_right; 4609 goto insert; 4610 } 4611 4612 /* Find place to insert this segment. Handle overlaps on the way. */ 4613 parent = NULL; 4614 while (*p) { 4615 parent = *p; 4616 skb1 = rb_to_skb(parent); 4617 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4618 p = &parent->rb_left; 4619 continue; 4620 } 4621 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4622 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4623 /* All the bits are present. Drop. */ 4624 NET_INC_STATS(sock_net(sk), 4625 LINUX_MIB_TCPOFOMERGE); 4626 tcp_drop(sk, skb); 4627 skb = NULL; 4628 tcp_dsack_set(sk, seq, end_seq); 4629 goto add_sack; 4630 } 4631 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4632 /* Partial overlap. */ 4633 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4634 } else { 4635 /* skb's seq == skb1's seq and skb covers skb1. 4636 * Replace skb1 with skb. 4637 */ 4638 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4639 &tp->out_of_order_queue); 4640 tcp_dsack_extend(sk, 4641 TCP_SKB_CB(skb1)->seq, 4642 TCP_SKB_CB(skb1)->end_seq); 4643 NET_INC_STATS(sock_net(sk), 4644 LINUX_MIB_TCPOFOMERGE); 4645 tcp_drop(sk, skb1); 4646 goto merge_right; 4647 } 4648 } else if (tcp_ooo_try_coalesce(sk, skb1, 4649 skb, &fragstolen)) { 4650 goto coalesce_done; 4651 } 4652 p = &parent->rb_right; 4653 } 4654 insert: 4655 /* Insert segment into RB tree. */ 4656 rb_link_node(&skb->rbnode, parent, p); 4657 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4658 4659 merge_right: 4660 /* Remove other segments covered by skb. */ 4661 while ((skb1 = skb_rb_next(skb)) != NULL) { 4662 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4663 break; 4664 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4665 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4666 end_seq); 4667 break; 4668 } 4669 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4670 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4671 TCP_SKB_CB(skb1)->end_seq); 4672 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4673 tcp_drop(sk, skb1); 4674 } 4675 /* If there is no skb after us, we are the last_skb ! */ 4676 if (!skb1) 4677 tp->ooo_last_skb = skb; 4678 4679 add_sack: 4680 if (tcp_is_sack(tp)) 4681 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4682 end: 4683 if (skb) { 4684 tcp_grow_window(sk, skb); 4685 skb_condense(skb); 4686 skb_set_owner_r(skb, sk); 4687 } 4688 } 4689 4690 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4691 bool *fragstolen) 4692 { 4693 int eaten; 4694 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4695 4696 eaten = (tail && 4697 tcp_try_coalesce(sk, tail, 4698 skb, fragstolen)) ? 1 : 0; 4699 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4700 if (!eaten) { 4701 __skb_queue_tail(&sk->sk_receive_queue, skb); 4702 skb_set_owner_r(skb, sk); 4703 } 4704 return eaten; 4705 } 4706 4707 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4708 { 4709 struct sk_buff *skb; 4710 int err = -ENOMEM; 4711 int data_len = 0; 4712 bool fragstolen; 4713 4714 if (size == 0) 4715 return 0; 4716 4717 if (size > PAGE_SIZE) { 4718 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4719 4720 data_len = npages << PAGE_SHIFT; 4721 size = data_len + (size & ~PAGE_MASK); 4722 } 4723 skb = alloc_skb_with_frags(size - data_len, data_len, 4724 PAGE_ALLOC_COSTLY_ORDER, 4725 &err, sk->sk_allocation); 4726 if (!skb) 4727 goto err; 4728 4729 skb_put(skb, size - data_len); 4730 skb->data_len = data_len; 4731 skb->len = size; 4732 4733 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4734 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4735 goto err_free; 4736 } 4737 4738 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4739 if (err) 4740 goto err_free; 4741 4742 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4743 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4744 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4745 4746 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4747 WARN_ON_ONCE(fragstolen); /* should not happen */ 4748 __kfree_skb(skb); 4749 } 4750 return size; 4751 4752 err_free: 4753 kfree_skb(skb); 4754 err: 4755 return err; 4756 4757 } 4758 4759 void tcp_data_ready(struct sock *sk) 4760 { 4761 const struct tcp_sock *tp = tcp_sk(sk); 4762 int avail = tp->rcv_nxt - tp->copied_seq; 4763 4764 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4765 return; 4766 4767 sk->sk_data_ready(sk); 4768 } 4769 4770 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4771 { 4772 struct tcp_sock *tp = tcp_sk(sk); 4773 bool fragstolen; 4774 int eaten; 4775 4776 if (sk_is_mptcp(sk)) 4777 mptcp_incoming_options(sk, skb, &tp->rx_opt); 4778 4779 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4780 __kfree_skb(skb); 4781 return; 4782 } 4783 skb_dst_drop(skb); 4784 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4785 4786 tcp_ecn_accept_cwr(sk, skb); 4787 4788 tp->rx_opt.dsack = 0; 4789 4790 /* Queue data for delivery to the user. 4791 * Packets in sequence go to the receive queue. 4792 * Out of sequence packets to the out_of_order_queue. 4793 */ 4794 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4795 if (tcp_receive_window(tp) == 0) { 4796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4797 goto out_of_window; 4798 } 4799 4800 /* Ok. In sequence. In window. */ 4801 queue_and_out: 4802 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4803 sk_forced_mem_schedule(sk, skb->truesize); 4804 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4805 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4806 goto drop; 4807 } 4808 4809 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4810 if (skb->len) 4811 tcp_event_data_recv(sk, skb); 4812 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4813 tcp_fin(sk); 4814 4815 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4816 tcp_ofo_queue(sk); 4817 4818 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4819 * gap in queue is filled. 4820 */ 4821 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4822 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4823 } 4824 4825 if (tp->rx_opt.num_sacks) 4826 tcp_sack_remove(tp); 4827 4828 tcp_fast_path_check(sk); 4829 4830 if (eaten > 0) 4831 kfree_skb_partial(skb, fragstolen); 4832 if (!sock_flag(sk, SOCK_DEAD)) 4833 tcp_data_ready(sk); 4834 return; 4835 } 4836 4837 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4838 tcp_rcv_spurious_retrans(sk, skb); 4839 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4840 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4841 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4842 4843 out_of_window: 4844 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4845 inet_csk_schedule_ack(sk); 4846 drop: 4847 tcp_drop(sk, skb); 4848 return; 4849 } 4850 4851 /* Out of window. F.e. zero window probe. */ 4852 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4853 goto out_of_window; 4854 4855 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4856 /* Partial packet, seq < rcv_next < end_seq */ 4857 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4858 4859 /* If window is closed, drop tail of packet. But after 4860 * remembering D-SACK for its head made in previous line. 4861 */ 4862 if (!tcp_receive_window(tp)) { 4863 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4864 goto out_of_window; 4865 } 4866 goto queue_and_out; 4867 } 4868 4869 tcp_data_queue_ofo(sk, skb); 4870 } 4871 4872 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4873 { 4874 if (list) 4875 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4876 4877 return skb_rb_next(skb); 4878 } 4879 4880 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4881 struct sk_buff_head *list, 4882 struct rb_root *root) 4883 { 4884 struct sk_buff *next = tcp_skb_next(skb, list); 4885 4886 if (list) 4887 __skb_unlink(skb, list); 4888 else 4889 rb_erase(&skb->rbnode, root); 4890 4891 __kfree_skb(skb); 4892 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4893 4894 return next; 4895 } 4896 4897 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4898 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4899 { 4900 struct rb_node **p = &root->rb_node; 4901 struct rb_node *parent = NULL; 4902 struct sk_buff *skb1; 4903 4904 while (*p) { 4905 parent = *p; 4906 skb1 = rb_to_skb(parent); 4907 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4908 p = &parent->rb_left; 4909 else 4910 p = &parent->rb_right; 4911 } 4912 rb_link_node(&skb->rbnode, parent, p); 4913 rb_insert_color(&skb->rbnode, root); 4914 } 4915 4916 /* Collapse contiguous sequence of skbs head..tail with 4917 * sequence numbers start..end. 4918 * 4919 * If tail is NULL, this means until the end of the queue. 4920 * 4921 * Segments with FIN/SYN are not collapsed (only because this 4922 * simplifies code) 4923 */ 4924 static void 4925 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4926 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4927 { 4928 struct sk_buff *skb = head, *n; 4929 struct sk_buff_head tmp; 4930 bool end_of_skbs; 4931 4932 /* First, check that queue is collapsible and find 4933 * the point where collapsing can be useful. 4934 */ 4935 restart: 4936 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4937 n = tcp_skb_next(skb, list); 4938 4939 /* No new bits? It is possible on ofo queue. */ 4940 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4941 skb = tcp_collapse_one(sk, skb, list, root); 4942 if (!skb) 4943 break; 4944 goto restart; 4945 } 4946 4947 /* The first skb to collapse is: 4948 * - not SYN/FIN and 4949 * - bloated or contains data before "start" or 4950 * overlaps to the next one and mptcp allow collapsing. 4951 */ 4952 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4953 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4954 before(TCP_SKB_CB(skb)->seq, start))) { 4955 end_of_skbs = false; 4956 break; 4957 } 4958 4959 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 4960 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4961 end_of_skbs = false; 4962 break; 4963 } 4964 4965 /* Decided to skip this, advance start seq. */ 4966 start = TCP_SKB_CB(skb)->end_seq; 4967 } 4968 if (end_of_skbs || 4969 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4970 return; 4971 4972 __skb_queue_head_init(&tmp); 4973 4974 while (before(start, end)) { 4975 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4976 struct sk_buff *nskb; 4977 4978 nskb = alloc_skb(copy, GFP_ATOMIC); 4979 if (!nskb) 4980 break; 4981 4982 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4983 #ifdef CONFIG_TLS_DEVICE 4984 nskb->decrypted = skb->decrypted; 4985 #endif 4986 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4987 if (list) 4988 __skb_queue_before(list, skb, nskb); 4989 else 4990 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4991 skb_set_owner_r(nskb, sk); 4992 mptcp_skb_ext_move(nskb, skb); 4993 4994 /* Copy data, releasing collapsed skbs. */ 4995 while (copy > 0) { 4996 int offset = start - TCP_SKB_CB(skb)->seq; 4997 int size = TCP_SKB_CB(skb)->end_seq - start; 4998 4999 BUG_ON(offset < 0); 5000 if (size > 0) { 5001 size = min(copy, size); 5002 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5003 BUG(); 5004 TCP_SKB_CB(nskb)->end_seq += size; 5005 copy -= size; 5006 start += size; 5007 } 5008 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5009 skb = tcp_collapse_one(sk, skb, list, root); 5010 if (!skb || 5011 skb == tail || 5012 !mptcp_skb_can_collapse(nskb, skb) || 5013 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5014 goto end; 5015 #ifdef CONFIG_TLS_DEVICE 5016 if (skb->decrypted != nskb->decrypted) 5017 goto end; 5018 #endif 5019 } 5020 } 5021 } 5022 end: 5023 skb_queue_walk_safe(&tmp, skb, n) 5024 tcp_rbtree_insert(root, skb); 5025 } 5026 5027 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5028 * and tcp_collapse() them until all the queue is collapsed. 5029 */ 5030 static void tcp_collapse_ofo_queue(struct sock *sk) 5031 { 5032 struct tcp_sock *tp = tcp_sk(sk); 5033 u32 range_truesize, sum_tiny = 0; 5034 struct sk_buff *skb, *head; 5035 u32 start, end; 5036 5037 skb = skb_rb_first(&tp->out_of_order_queue); 5038 new_range: 5039 if (!skb) { 5040 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5041 return; 5042 } 5043 start = TCP_SKB_CB(skb)->seq; 5044 end = TCP_SKB_CB(skb)->end_seq; 5045 range_truesize = skb->truesize; 5046 5047 for (head = skb;;) { 5048 skb = skb_rb_next(skb); 5049 5050 /* Range is terminated when we see a gap or when 5051 * we are at the queue end. 5052 */ 5053 if (!skb || 5054 after(TCP_SKB_CB(skb)->seq, end) || 5055 before(TCP_SKB_CB(skb)->end_seq, start)) { 5056 /* Do not attempt collapsing tiny skbs */ 5057 if (range_truesize != head->truesize || 5058 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5059 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5060 head, skb, start, end); 5061 } else { 5062 sum_tiny += range_truesize; 5063 if (sum_tiny > sk->sk_rcvbuf >> 3) 5064 return; 5065 } 5066 goto new_range; 5067 } 5068 5069 range_truesize += skb->truesize; 5070 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5071 start = TCP_SKB_CB(skb)->seq; 5072 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5073 end = TCP_SKB_CB(skb)->end_seq; 5074 } 5075 } 5076 5077 /* 5078 * Clean the out-of-order queue to make room. 5079 * We drop high sequences packets to : 5080 * 1) Let a chance for holes to be filled. 5081 * 2) not add too big latencies if thousands of packets sit there. 5082 * (But if application shrinks SO_RCVBUF, we could still end up 5083 * freeing whole queue here) 5084 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5085 * 5086 * Return true if queue has shrunk. 5087 */ 5088 static bool tcp_prune_ofo_queue(struct sock *sk) 5089 { 5090 struct tcp_sock *tp = tcp_sk(sk); 5091 struct rb_node *node, *prev; 5092 int goal; 5093 5094 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5095 return false; 5096 5097 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5098 goal = sk->sk_rcvbuf >> 3; 5099 node = &tp->ooo_last_skb->rbnode; 5100 do { 5101 prev = rb_prev(node); 5102 rb_erase(node, &tp->out_of_order_queue); 5103 goal -= rb_to_skb(node)->truesize; 5104 tcp_drop(sk, rb_to_skb(node)); 5105 if (!prev || goal <= 0) { 5106 sk_mem_reclaim(sk); 5107 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5108 !tcp_under_memory_pressure(sk)) 5109 break; 5110 goal = sk->sk_rcvbuf >> 3; 5111 } 5112 node = prev; 5113 } while (node); 5114 tp->ooo_last_skb = rb_to_skb(prev); 5115 5116 /* Reset SACK state. A conforming SACK implementation will 5117 * do the same at a timeout based retransmit. When a connection 5118 * is in a sad state like this, we care only about integrity 5119 * of the connection not performance. 5120 */ 5121 if (tp->rx_opt.sack_ok) 5122 tcp_sack_reset(&tp->rx_opt); 5123 return true; 5124 } 5125 5126 /* Reduce allocated memory if we can, trying to get 5127 * the socket within its memory limits again. 5128 * 5129 * Return less than zero if we should start dropping frames 5130 * until the socket owning process reads some of the data 5131 * to stabilize the situation. 5132 */ 5133 static int tcp_prune_queue(struct sock *sk) 5134 { 5135 struct tcp_sock *tp = tcp_sk(sk); 5136 5137 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5138 5139 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5140 tcp_clamp_window(sk); 5141 else if (tcp_under_memory_pressure(sk)) 5142 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5143 5144 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5145 return 0; 5146 5147 tcp_collapse_ofo_queue(sk); 5148 if (!skb_queue_empty(&sk->sk_receive_queue)) 5149 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5150 skb_peek(&sk->sk_receive_queue), 5151 NULL, 5152 tp->copied_seq, tp->rcv_nxt); 5153 sk_mem_reclaim(sk); 5154 5155 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5156 return 0; 5157 5158 /* Collapsing did not help, destructive actions follow. 5159 * This must not ever occur. */ 5160 5161 tcp_prune_ofo_queue(sk); 5162 5163 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5164 return 0; 5165 5166 /* If we are really being abused, tell the caller to silently 5167 * drop receive data on the floor. It will get retransmitted 5168 * and hopefully then we'll have sufficient space. 5169 */ 5170 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5171 5172 /* Massive buffer overcommit. */ 5173 tp->pred_flags = 0; 5174 return -1; 5175 } 5176 5177 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5178 { 5179 const struct tcp_sock *tp = tcp_sk(sk); 5180 5181 /* If the user specified a specific send buffer setting, do 5182 * not modify it. 5183 */ 5184 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5185 return false; 5186 5187 /* If we are under global TCP memory pressure, do not expand. */ 5188 if (tcp_under_memory_pressure(sk)) 5189 return false; 5190 5191 /* If we are under soft global TCP memory pressure, do not expand. */ 5192 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5193 return false; 5194 5195 /* If we filled the congestion window, do not expand. */ 5196 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5197 return false; 5198 5199 return true; 5200 } 5201 5202 /* When incoming ACK allowed to free some skb from write_queue, 5203 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5204 * on the exit from tcp input handler. 5205 * 5206 * PROBLEM: sndbuf expansion does not work well with largesend. 5207 */ 5208 static void tcp_new_space(struct sock *sk) 5209 { 5210 struct tcp_sock *tp = tcp_sk(sk); 5211 5212 if (tcp_should_expand_sndbuf(sk)) { 5213 tcp_sndbuf_expand(sk); 5214 tp->snd_cwnd_stamp = tcp_jiffies32; 5215 } 5216 5217 sk->sk_write_space(sk); 5218 } 5219 5220 static void tcp_check_space(struct sock *sk) 5221 { 5222 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5223 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5224 /* pairs with tcp_poll() */ 5225 smp_mb(); 5226 if (sk->sk_socket && 5227 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5228 tcp_new_space(sk); 5229 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5230 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5231 } 5232 } 5233 } 5234 5235 static inline void tcp_data_snd_check(struct sock *sk) 5236 { 5237 tcp_push_pending_frames(sk); 5238 tcp_check_space(sk); 5239 } 5240 5241 /* 5242 * Check if sending an ack is needed. 5243 */ 5244 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5245 { 5246 struct tcp_sock *tp = tcp_sk(sk); 5247 unsigned long rtt, delay; 5248 5249 /* More than one full frame received... */ 5250 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5251 /* ... and right edge of window advances far enough. 5252 * (tcp_recvmsg() will send ACK otherwise). 5253 * If application uses SO_RCVLOWAT, we want send ack now if 5254 * we have not received enough bytes to satisfy the condition. 5255 */ 5256 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5257 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5258 /* We ACK each frame or... */ 5259 tcp_in_quickack_mode(sk) || 5260 /* Protocol state mandates a one-time immediate ACK */ 5261 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5262 send_now: 5263 tcp_send_ack(sk); 5264 return; 5265 } 5266 5267 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5268 tcp_send_delayed_ack(sk); 5269 return; 5270 } 5271 5272 if (!tcp_is_sack(tp) || 5273 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5274 goto send_now; 5275 5276 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5277 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5278 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5279 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5280 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5281 tp->compressed_ack = 0; 5282 } 5283 5284 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5285 goto send_now; 5286 5287 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5288 return; 5289 5290 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5291 5292 rtt = tp->rcv_rtt_est.rtt_us; 5293 if (tp->srtt_us && tp->srtt_us < rtt) 5294 rtt = tp->srtt_us; 5295 5296 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5297 rtt * (NSEC_PER_USEC >> 3)/20); 5298 sock_hold(sk); 5299 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5300 HRTIMER_MODE_REL_PINNED_SOFT); 5301 } 5302 5303 static inline void tcp_ack_snd_check(struct sock *sk) 5304 { 5305 if (!inet_csk_ack_scheduled(sk)) { 5306 /* We sent a data segment already. */ 5307 return; 5308 } 5309 __tcp_ack_snd_check(sk, 1); 5310 } 5311 5312 /* 5313 * This routine is only called when we have urgent data 5314 * signaled. Its the 'slow' part of tcp_urg. It could be 5315 * moved inline now as tcp_urg is only called from one 5316 * place. We handle URGent data wrong. We have to - as 5317 * BSD still doesn't use the correction from RFC961. 5318 * For 1003.1g we should support a new option TCP_STDURG to permit 5319 * either form (or just set the sysctl tcp_stdurg). 5320 */ 5321 5322 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5323 { 5324 struct tcp_sock *tp = tcp_sk(sk); 5325 u32 ptr = ntohs(th->urg_ptr); 5326 5327 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5328 ptr--; 5329 ptr += ntohl(th->seq); 5330 5331 /* Ignore urgent data that we've already seen and read. */ 5332 if (after(tp->copied_seq, ptr)) 5333 return; 5334 5335 /* Do not replay urg ptr. 5336 * 5337 * NOTE: interesting situation not covered by specs. 5338 * Misbehaving sender may send urg ptr, pointing to segment, 5339 * which we already have in ofo queue. We are not able to fetch 5340 * such data and will stay in TCP_URG_NOTYET until will be eaten 5341 * by recvmsg(). Seems, we are not obliged to handle such wicked 5342 * situations. But it is worth to think about possibility of some 5343 * DoSes using some hypothetical application level deadlock. 5344 */ 5345 if (before(ptr, tp->rcv_nxt)) 5346 return; 5347 5348 /* Do we already have a newer (or duplicate) urgent pointer? */ 5349 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5350 return; 5351 5352 /* Tell the world about our new urgent pointer. */ 5353 sk_send_sigurg(sk); 5354 5355 /* We may be adding urgent data when the last byte read was 5356 * urgent. To do this requires some care. We cannot just ignore 5357 * tp->copied_seq since we would read the last urgent byte again 5358 * as data, nor can we alter copied_seq until this data arrives 5359 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5360 * 5361 * NOTE. Double Dutch. Rendering to plain English: author of comment 5362 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5363 * and expect that both A and B disappear from stream. This is _wrong_. 5364 * Though this happens in BSD with high probability, this is occasional. 5365 * Any application relying on this is buggy. Note also, that fix "works" 5366 * only in this artificial test. Insert some normal data between A and B and we will 5367 * decline of BSD again. Verdict: it is better to remove to trap 5368 * buggy users. 5369 */ 5370 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5371 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5372 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5373 tp->copied_seq++; 5374 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5375 __skb_unlink(skb, &sk->sk_receive_queue); 5376 __kfree_skb(skb); 5377 } 5378 } 5379 5380 tp->urg_data = TCP_URG_NOTYET; 5381 WRITE_ONCE(tp->urg_seq, ptr); 5382 5383 /* Disable header prediction. */ 5384 tp->pred_flags = 0; 5385 } 5386 5387 /* This is the 'fast' part of urgent handling. */ 5388 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5389 { 5390 struct tcp_sock *tp = tcp_sk(sk); 5391 5392 /* Check if we get a new urgent pointer - normally not. */ 5393 if (th->urg) 5394 tcp_check_urg(sk, th); 5395 5396 /* Do we wait for any urgent data? - normally not... */ 5397 if (tp->urg_data == TCP_URG_NOTYET) { 5398 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5399 th->syn; 5400 5401 /* Is the urgent pointer pointing into this packet? */ 5402 if (ptr < skb->len) { 5403 u8 tmp; 5404 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5405 BUG(); 5406 tp->urg_data = TCP_URG_VALID | tmp; 5407 if (!sock_flag(sk, SOCK_DEAD)) 5408 sk->sk_data_ready(sk); 5409 } 5410 } 5411 } 5412 5413 /* Accept RST for rcv_nxt - 1 after a FIN. 5414 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5415 * FIN is sent followed by a RST packet. The RST is sent with the same 5416 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5417 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5418 * ACKs on the closed socket. In addition middleboxes can drop either the 5419 * challenge ACK or a subsequent RST. 5420 */ 5421 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5422 { 5423 struct tcp_sock *tp = tcp_sk(sk); 5424 5425 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5426 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5427 TCPF_CLOSING)); 5428 } 5429 5430 /* Does PAWS and seqno based validation of an incoming segment, flags will 5431 * play significant role here. 5432 */ 5433 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5434 const struct tcphdr *th, int syn_inerr) 5435 { 5436 struct tcp_sock *tp = tcp_sk(sk); 5437 bool rst_seq_match = false; 5438 5439 /* RFC1323: H1. Apply PAWS check first. */ 5440 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5441 tp->rx_opt.saw_tstamp && 5442 tcp_paws_discard(sk, skb)) { 5443 if (!th->rst) { 5444 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5445 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5446 LINUX_MIB_TCPACKSKIPPEDPAWS, 5447 &tp->last_oow_ack_time)) 5448 tcp_send_dupack(sk, skb); 5449 goto discard; 5450 } 5451 /* Reset is accepted even if it did not pass PAWS. */ 5452 } 5453 5454 /* Step 1: check sequence number */ 5455 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5456 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5457 * (RST) segments are validated by checking their SEQ-fields." 5458 * And page 69: "If an incoming segment is not acceptable, 5459 * an acknowledgment should be sent in reply (unless the RST 5460 * bit is set, if so drop the segment and return)". 5461 */ 5462 if (!th->rst) { 5463 if (th->syn) 5464 goto syn_challenge; 5465 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5466 LINUX_MIB_TCPACKSKIPPEDSEQ, 5467 &tp->last_oow_ack_time)) 5468 tcp_send_dupack(sk, skb); 5469 } else if (tcp_reset_check(sk, skb)) { 5470 tcp_reset(sk); 5471 } 5472 goto discard; 5473 } 5474 5475 /* Step 2: check RST bit */ 5476 if (th->rst) { 5477 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5478 * FIN and SACK too if available): 5479 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5480 * the right-most SACK block, 5481 * then 5482 * RESET the connection 5483 * else 5484 * Send a challenge ACK 5485 */ 5486 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5487 tcp_reset_check(sk, skb)) { 5488 rst_seq_match = true; 5489 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5490 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5491 int max_sack = sp[0].end_seq; 5492 int this_sack; 5493 5494 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5495 ++this_sack) { 5496 max_sack = after(sp[this_sack].end_seq, 5497 max_sack) ? 5498 sp[this_sack].end_seq : max_sack; 5499 } 5500 5501 if (TCP_SKB_CB(skb)->seq == max_sack) 5502 rst_seq_match = true; 5503 } 5504 5505 if (rst_seq_match) 5506 tcp_reset(sk); 5507 else { 5508 /* Disable TFO if RST is out-of-order 5509 * and no data has been received 5510 * for current active TFO socket 5511 */ 5512 if (tp->syn_fastopen && !tp->data_segs_in && 5513 sk->sk_state == TCP_ESTABLISHED) 5514 tcp_fastopen_active_disable(sk); 5515 tcp_send_challenge_ack(sk, skb); 5516 } 5517 goto discard; 5518 } 5519 5520 /* step 3: check security and precedence [ignored] */ 5521 5522 /* step 4: Check for a SYN 5523 * RFC 5961 4.2 : Send a challenge ack 5524 */ 5525 if (th->syn) { 5526 syn_challenge: 5527 if (syn_inerr) 5528 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5530 tcp_send_challenge_ack(sk, skb); 5531 goto discard; 5532 } 5533 5534 return true; 5535 5536 discard: 5537 tcp_drop(sk, skb); 5538 return false; 5539 } 5540 5541 /* 5542 * TCP receive function for the ESTABLISHED state. 5543 * 5544 * It is split into a fast path and a slow path. The fast path is 5545 * disabled when: 5546 * - A zero window was announced from us - zero window probing 5547 * is only handled properly in the slow path. 5548 * - Out of order segments arrived. 5549 * - Urgent data is expected. 5550 * - There is no buffer space left 5551 * - Unexpected TCP flags/window values/header lengths are received 5552 * (detected by checking the TCP header against pred_flags) 5553 * - Data is sent in both directions. Fast path only supports pure senders 5554 * or pure receivers (this means either the sequence number or the ack 5555 * value must stay constant) 5556 * - Unexpected TCP option. 5557 * 5558 * When these conditions are not satisfied it drops into a standard 5559 * receive procedure patterned after RFC793 to handle all cases. 5560 * The first three cases are guaranteed by proper pred_flags setting, 5561 * the rest is checked inline. Fast processing is turned on in 5562 * tcp_data_queue when everything is OK. 5563 */ 5564 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5565 { 5566 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5567 struct tcp_sock *tp = tcp_sk(sk); 5568 unsigned int len = skb->len; 5569 5570 /* TCP congestion window tracking */ 5571 trace_tcp_probe(sk, skb); 5572 5573 tcp_mstamp_refresh(tp); 5574 if (unlikely(!sk->sk_rx_dst)) 5575 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5576 /* 5577 * Header prediction. 5578 * The code loosely follows the one in the famous 5579 * "30 instruction TCP receive" Van Jacobson mail. 5580 * 5581 * Van's trick is to deposit buffers into socket queue 5582 * on a device interrupt, to call tcp_recv function 5583 * on the receive process context and checksum and copy 5584 * the buffer to user space. smart... 5585 * 5586 * Our current scheme is not silly either but we take the 5587 * extra cost of the net_bh soft interrupt processing... 5588 * We do checksum and copy also but from device to kernel. 5589 */ 5590 5591 tp->rx_opt.saw_tstamp = 0; 5592 5593 /* pred_flags is 0xS?10 << 16 + snd_wnd 5594 * if header_prediction is to be made 5595 * 'S' will always be tp->tcp_header_len >> 2 5596 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5597 * turn it off (when there are holes in the receive 5598 * space for instance) 5599 * PSH flag is ignored. 5600 */ 5601 5602 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5603 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5604 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5605 int tcp_header_len = tp->tcp_header_len; 5606 5607 /* Timestamp header prediction: tcp_header_len 5608 * is automatically equal to th->doff*4 due to pred_flags 5609 * match. 5610 */ 5611 5612 /* Check timestamp */ 5613 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5614 /* No? Slow path! */ 5615 if (!tcp_parse_aligned_timestamp(tp, th)) 5616 goto slow_path; 5617 5618 /* If PAWS failed, check it more carefully in slow path */ 5619 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5620 goto slow_path; 5621 5622 /* DO NOT update ts_recent here, if checksum fails 5623 * and timestamp was corrupted part, it will result 5624 * in a hung connection since we will drop all 5625 * future packets due to the PAWS test. 5626 */ 5627 } 5628 5629 if (len <= tcp_header_len) { 5630 /* Bulk data transfer: sender */ 5631 if (len == tcp_header_len) { 5632 /* Predicted packet is in window by definition. 5633 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5634 * Hence, check seq<=rcv_wup reduces to: 5635 */ 5636 if (tcp_header_len == 5637 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5638 tp->rcv_nxt == tp->rcv_wup) 5639 tcp_store_ts_recent(tp); 5640 5641 /* We know that such packets are checksummed 5642 * on entry. 5643 */ 5644 tcp_ack(sk, skb, 0); 5645 __kfree_skb(skb); 5646 tcp_data_snd_check(sk); 5647 /* When receiving pure ack in fast path, update 5648 * last ts ecr directly instead of calling 5649 * tcp_rcv_rtt_measure_ts() 5650 */ 5651 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5652 return; 5653 } else { /* Header too small */ 5654 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5655 goto discard; 5656 } 5657 } else { 5658 int eaten = 0; 5659 bool fragstolen = false; 5660 5661 if (tcp_checksum_complete(skb)) 5662 goto csum_error; 5663 5664 if ((int)skb->truesize > sk->sk_forward_alloc) 5665 goto step5; 5666 5667 /* Predicted packet is in window by definition. 5668 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5669 * Hence, check seq<=rcv_wup reduces to: 5670 */ 5671 if (tcp_header_len == 5672 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5673 tp->rcv_nxt == tp->rcv_wup) 5674 tcp_store_ts_recent(tp); 5675 5676 tcp_rcv_rtt_measure_ts(sk, skb); 5677 5678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5679 5680 /* Bulk data transfer: receiver */ 5681 __skb_pull(skb, tcp_header_len); 5682 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5683 5684 tcp_event_data_recv(sk, skb); 5685 5686 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5687 /* Well, only one small jumplet in fast path... */ 5688 tcp_ack(sk, skb, FLAG_DATA); 5689 tcp_data_snd_check(sk); 5690 if (!inet_csk_ack_scheduled(sk)) 5691 goto no_ack; 5692 } 5693 5694 __tcp_ack_snd_check(sk, 0); 5695 no_ack: 5696 if (eaten) 5697 kfree_skb_partial(skb, fragstolen); 5698 tcp_data_ready(sk); 5699 return; 5700 } 5701 } 5702 5703 slow_path: 5704 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5705 goto csum_error; 5706 5707 if (!th->ack && !th->rst && !th->syn) 5708 goto discard; 5709 5710 /* 5711 * Standard slow path. 5712 */ 5713 5714 if (!tcp_validate_incoming(sk, skb, th, 1)) 5715 return; 5716 5717 step5: 5718 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5719 goto discard; 5720 5721 tcp_rcv_rtt_measure_ts(sk, skb); 5722 5723 /* Process urgent data. */ 5724 tcp_urg(sk, skb, th); 5725 5726 /* step 7: process the segment text */ 5727 tcp_data_queue(sk, skb); 5728 5729 tcp_data_snd_check(sk); 5730 tcp_ack_snd_check(sk); 5731 return; 5732 5733 csum_error: 5734 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5735 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5736 5737 discard: 5738 tcp_drop(sk, skb); 5739 } 5740 EXPORT_SYMBOL(tcp_rcv_established); 5741 5742 void tcp_init_transfer(struct sock *sk, int bpf_op) 5743 { 5744 struct inet_connection_sock *icsk = inet_csk(sk); 5745 struct tcp_sock *tp = tcp_sk(sk); 5746 5747 tcp_mtup_init(sk); 5748 icsk->icsk_af_ops->rebuild_header(sk); 5749 tcp_init_metrics(sk); 5750 5751 /* Initialize the congestion window to start the transfer. 5752 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5753 * retransmitted. In light of RFC6298 more aggressive 1sec 5754 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5755 * retransmission has occurred. 5756 */ 5757 if (tp->total_retrans > 1 && tp->undo_marker) 5758 tp->snd_cwnd = 1; 5759 else 5760 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5761 tp->snd_cwnd_stamp = tcp_jiffies32; 5762 5763 tcp_call_bpf(sk, bpf_op, 0, NULL); 5764 tcp_init_congestion_control(sk); 5765 tcp_init_buffer_space(sk); 5766 } 5767 5768 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5769 { 5770 struct tcp_sock *tp = tcp_sk(sk); 5771 struct inet_connection_sock *icsk = inet_csk(sk); 5772 5773 tcp_set_state(sk, TCP_ESTABLISHED); 5774 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5775 5776 if (skb) { 5777 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5778 security_inet_conn_established(sk, skb); 5779 sk_mark_napi_id(sk, skb); 5780 } 5781 5782 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5783 5784 /* Prevent spurious tcp_cwnd_restart() on first data 5785 * packet. 5786 */ 5787 tp->lsndtime = tcp_jiffies32; 5788 5789 if (sock_flag(sk, SOCK_KEEPOPEN)) 5790 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5791 5792 if (!tp->rx_opt.snd_wscale) 5793 __tcp_fast_path_on(tp, tp->snd_wnd); 5794 else 5795 tp->pred_flags = 0; 5796 } 5797 5798 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5799 struct tcp_fastopen_cookie *cookie) 5800 { 5801 struct tcp_sock *tp = tcp_sk(sk); 5802 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5803 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5804 bool syn_drop = false; 5805 5806 if (mss == tp->rx_opt.user_mss) { 5807 struct tcp_options_received opt; 5808 5809 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5810 tcp_clear_options(&opt); 5811 opt.user_mss = opt.mss_clamp = 0; 5812 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5813 mss = opt.mss_clamp; 5814 } 5815 5816 if (!tp->syn_fastopen) { 5817 /* Ignore an unsolicited cookie */ 5818 cookie->len = -1; 5819 } else if (tp->total_retrans) { 5820 /* SYN timed out and the SYN-ACK neither has a cookie nor 5821 * acknowledges data. Presumably the remote received only 5822 * the retransmitted (regular) SYNs: either the original 5823 * SYN-data or the corresponding SYN-ACK was dropped. 5824 */ 5825 syn_drop = (cookie->len < 0 && data); 5826 } else if (cookie->len < 0 && !tp->syn_data) { 5827 /* We requested a cookie but didn't get it. If we did not use 5828 * the (old) exp opt format then try so next time (try_exp=1). 5829 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5830 */ 5831 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5832 } 5833 5834 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5835 5836 if (data) { /* Retransmit unacked data in SYN */ 5837 if (tp->total_retrans) 5838 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5839 else 5840 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5841 skb_rbtree_walk_from(data) { 5842 if (__tcp_retransmit_skb(sk, data, 1)) 5843 break; 5844 } 5845 tcp_rearm_rto(sk); 5846 NET_INC_STATS(sock_net(sk), 5847 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5848 return true; 5849 } 5850 tp->syn_data_acked = tp->syn_data; 5851 if (tp->syn_data_acked) { 5852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5853 /* SYN-data is counted as two separate packets in tcp_ack() */ 5854 if (tp->delivered > 1) 5855 --tp->delivered; 5856 } 5857 5858 tcp_fastopen_add_skb(sk, synack); 5859 5860 return false; 5861 } 5862 5863 static void smc_check_reset_syn(struct tcp_sock *tp) 5864 { 5865 #if IS_ENABLED(CONFIG_SMC) 5866 if (static_branch_unlikely(&tcp_have_smc)) { 5867 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5868 tp->syn_smc = 0; 5869 } 5870 #endif 5871 } 5872 5873 static void tcp_try_undo_spurious_syn(struct sock *sk) 5874 { 5875 struct tcp_sock *tp = tcp_sk(sk); 5876 u32 syn_stamp; 5877 5878 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5879 * spurious if the ACK's timestamp option echo value matches the 5880 * original SYN timestamp. 5881 */ 5882 syn_stamp = tp->retrans_stamp; 5883 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5884 syn_stamp == tp->rx_opt.rcv_tsecr) 5885 tp->undo_marker = 0; 5886 } 5887 5888 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5889 const struct tcphdr *th) 5890 { 5891 struct inet_connection_sock *icsk = inet_csk(sk); 5892 struct tcp_sock *tp = tcp_sk(sk); 5893 struct tcp_fastopen_cookie foc = { .len = -1 }; 5894 int saved_clamp = tp->rx_opt.mss_clamp; 5895 bool fastopen_fail; 5896 5897 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5898 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5899 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5900 5901 if (th->ack) { 5902 /* rfc793: 5903 * "If the state is SYN-SENT then 5904 * first check the ACK bit 5905 * If the ACK bit is set 5906 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5907 * a reset (unless the RST bit is set, if so drop 5908 * the segment and return)" 5909 */ 5910 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5911 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5912 /* Previous FIN/ACK or RST/ACK might be ignored. */ 5913 if (icsk->icsk_retransmits == 0) 5914 inet_csk_reset_xmit_timer(sk, 5915 ICSK_TIME_RETRANS, 5916 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 5917 goto reset_and_undo; 5918 } 5919 5920 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5921 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5922 tcp_time_stamp(tp))) { 5923 NET_INC_STATS(sock_net(sk), 5924 LINUX_MIB_PAWSACTIVEREJECTED); 5925 goto reset_and_undo; 5926 } 5927 5928 /* Now ACK is acceptable. 5929 * 5930 * "If the RST bit is set 5931 * If the ACK was acceptable then signal the user "error: 5932 * connection reset", drop the segment, enter CLOSED state, 5933 * delete TCB, and return." 5934 */ 5935 5936 if (th->rst) { 5937 tcp_reset(sk); 5938 goto discard; 5939 } 5940 5941 /* rfc793: 5942 * "fifth, if neither of the SYN or RST bits is set then 5943 * drop the segment and return." 5944 * 5945 * See note below! 5946 * --ANK(990513) 5947 */ 5948 if (!th->syn) 5949 goto discard_and_undo; 5950 5951 /* rfc793: 5952 * "If the SYN bit is on ... 5953 * are acceptable then ... 5954 * (our SYN has been ACKed), change the connection 5955 * state to ESTABLISHED..." 5956 */ 5957 5958 tcp_ecn_rcv_synack(tp, th); 5959 5960 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5961 tcp_try_undo_spurious_syn(sk); 5962 tcp_ack(sk, skb, FLAG_SLOWPATH); 5963 5964 /* Ok.. it's good. Set up sequence numbers and 5965 * move to established. 5966 */ 5967 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 5968 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5969 5970 /* RFC1323: The window in SYN & SYN/ACK segments is 5971 * never scaled. 5972 */ 5973 tp->snd_wnd = ntohs(th->window); 5974 5975 if (!tp->rx_opt.wscale_ok) { 5976 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5977 tp->window_clamp = min(tp->window_clamp, 65535U); 5978 } 5979 5980 if (tp->rx_opt.saw_tstamp) { 5981 tp->rx_opt.tstamp_ok = 1; 5982 tp->tcp_header_len = 5983 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5984 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5985 tcp_store_ts_recent(tp); 5986 } else { 5987 tp->tcp_header_len = sizeof(struct tcphdr); 5988 } 5989 5990 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5991 tcp_initialize_rcv_mss(sk); 5992 5993 if (sk_is_mptcp(sk)) 5994 mptcp_rcv_synsent(sk); 5995 5996 /* Remember, tcp_poll() does not lock socket! 5997 * Change state from SYN-SENT only after copied_seq 5998 * is initialized. */ 5999 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6000 6001 smc_check_reset_syn(tp); 6002 6003 smp_mb(); 6004 6005 tcp_finish_connect(sk, skb); 6006 6007 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6008 tcp_rcv_fastopen_synack(sk, skb, &foc); 6009 6010 if (!sock_flag(sk, SOCK_DEAD)) { 6011 sk->sk_state_change(sk); 6012 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6013 } 6014 if (fastopen_fail) 6015 return -1; 6016 if (sk->sk_write_pending || 6017 icsk->icsk_accept_queue.rskq_defer_accept || 6018 inet_csk_in_pingpong_mode(sk)) { 6019 /* Save one ACK. Data will be ready after 6020 * several ticks, if write_pending is set. 6021 * 6022 * It may be deleted, but with this feature tcpdumps 6023 * look so _wonderfully_ clever, that I was not able 6024 * to stand against the temptation 8) --ANK 6025 */ 6026 inet_csk_schedule_ack(sk); 6027 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6028 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6029 TCP_DELACK_MAX, TCP_RTO_MAX); 6030 6031 discard: 6032 tcp_drop(sk, skb); 6033 return 0; 6034 } else { 6035 tcp_send_ack(sk); 6036 } 6037 return -1; 6038 } 6039 6040 /* No ACK in the segment */ 6041 6042 if (th->rst) { 6043 /* rfc793: 6044 * "If the RST bit is set 6045 * 6046 * Otherwise (no ACK) drop the segment and return." 6047 */ 6048 6049 goto discard_and_undo; 6050 } 6051 6052 /* PAWS check. */ 6053 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6054 tcp_paws_reject(&tp->rx_opt, 0)) 6055 goto discard_and_undo; 6056 6057 if (th->syn) { 6058 /* We see SYN without ACK. It is attempt of 6059 * simultaneous connect with crossed SYNs. 6060 * Particularly, it can be connect to self. 6061 */ 6062 tcp_set_state(sk, TCP_SYN_RECV); 6063 6064 if (tp->rx_opt.saw_tstamp) { 6065 tp->rx_opt.tstamp_ok = 1; 6066 tcp_store_ts_recent(tp); 6067 tp->tcp_header_len = 6068 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6069 } else { 6070 tp->tcp_header_len = sizeof(struct tcphdr); 6071 } 6072 6073 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6074 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6075 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6076 6077 /* RFC1323: The window in SYN & SYN/ACK segments is 6078 * never scaled. 6079 */ 6080 tp->snd_wnd = ntohs(th->window); 6081 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6082 tp->max_window = tp->snd_wnd; 6083 6084 tcp_ecn_rcv_syn(tp, th); 6085 6086 tcp_mtup_init(sk); 6087 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6088 tcp_initialize_rcv_mss(sk); 6089 6090 tcp_send_synack(sk); 6091 #if 0 6092 /* Note, we could accept data and URG from this segment. 6093 * There are no obstacles to make this (except that we must 6094 * either change tcp_recvmsg() to prevent it from returning data 6095 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6096 * 6097 * However, if we ignore data in ACKless segments sometimes, 6098 * we have no reasons to accept it sometimes. 6099 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6100 * is not flawless. So, discard packet for sanity. 6101 * Uncomment this return to process the data. 6102 */ 6103 return -1; 6104 #else 6105 goto discard; 6106 #endif 6107 } 6108 /* "fifth, if neither of the SYN or RST bits is set then 6109 * drop the segment and return." 6110 */ 6111 6112 discard_and_undo: 6113 tcp_clear_options(&tp->rx_opt); 6114 tp->rx_opt.mss_clamp = saved_clamp; 6115 goto discard; 6116 6117 reset_and_undo: 6118 tcp_clear_options(&tp->rx_opt); 6119 tp->rx_opt.mss_clamp = saved_clamp; 6120 return 1; 6121 } 6122 6123 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6124 { 6125 struct request_sock *req; 6126 6127 tcp_try_undo_loss(sk, false); 6128 6129 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6130 tcp_sk(sk)->retrans_stamp = 0; 6131 inet_csk(sk)->icsk_retransmits = 0; 6132 6133 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6134 * we no longer need req so release it. 6135 */ 6136 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6137 lockdep_sock_is_held(sk)); 6138 reqsk_fastopen_remove(sk, req, false); 6139 6140 /* Re-arm the timer because data may have been sent out. 6141 * This is similar to the regular data transmission case 6142 * when new data has just been ack'ed. 6143 * 6144 * (TFO) - we could try to be more aggressive and 6145 * retransmitting any data sooner based on when they 6146 * are sent out. 6147 */ 6148 tcp_rearm_rto(sk); 6149 } 6150 6151 /* 6152 * This function implements the receiving procedure of RFC 793 for 6153 * all states except ESTABLISHED and TIME_WAIT. 6154 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6155 * address independent. 6156 */ 6157 6158 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6159 { 6160 struct tcp_sock *tp = tcp_sk(sk); 6161 struct inet_connection_sock *icsk = inet_csk(sk); 6162 const struct tcphdr *th = tcp_hdr(skb); 6163 struct request_sock *req; 6164 int queued = 0; 6165 bool acceptable; 6166 6167 switch (sk->sk_state) { 6168 case TCP_CLOSE: 6169 goto discard; 6170 6171 case TCP_LISTEN: 6172 if (th->ack) 6173 return 1; 6174 6175 if (th->rst) 6176 goto discard; 6177 6178 if (th->syn) { 6179 if (th->fin) 6180 goto discard; 6181 /* It is possible that we process SYN packets from backlog, 6182 * so we need to make sure to disable BH and RCU right there. 6183 */ 6184 rcu_read_lock(); 6185 local_bh_disable(); 6186 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6187 local_bh_enable(); 6188 rcu_read_unlock(); 6189 6190 if (!acceptable) 6191 return 1; 6192 consume_skb(skb); 6193 return 0; 6194 } 6195 goto discard; 6196 6197 case TCP_SYN_SENT: 6198 tp->rx_opt.saw_tstamp = 0; 6199 tcp_mstamp_refresh(tp); 6200 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6201 if (queued >= 0) 6202 return queued; 6203 6204 /* Do step6 onward by hand. */ 6205 tcp_urg(sk, skb, th); 6206 __kfree_skb(skb); 6207 tcp_data_snd_check(sk); 6208 return 0; 6209 } 6210 6211 tcp_mstamp_refresh(tp); 6212 tp->rx_opt.saw_tstamp = 0; 6213 req = rcu_dereference_protected(tp->fastopen_rsk, 6214 lockdep_sock_is_held(sk)); 6215 if (req) { 6216 bool req_stolen; 6217 6218 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6219 sk->sk_state != TCP_FIN_WAIT1); 6220 6221 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6222 goto discard; 6223 } 6224 6225 if (!th->ack && !th->rst && !th->syn) 6226 goto discard; 6227 6228 if (!tcp_validate_incoming(sk, skb, th, 0)) 6229 return 0; 6230 6231 /* step 5: check the ACK field */ 6232 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6233 FLAG_UPDATE_TS_RECENT | 6234 FLAG_NO_CHALLENGE_ACK) > 0; 6235 6236 if (!acceptable) { 6237 if (sk->sk_state == TCP_SYN_RECV) 6238 return 1; /* send one RST */ 6239 tcp_send_challenge_ack(sk, skb); 6240 goto discard; 6241 } 6242 switch (sk->sk_state) { 6243 case TCP_SYN_RECV: 6244 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6245 if (!tp->srtt_us) 6246 tcp_synack_rtt_meas(sk, req); 6247 6248 if (req) { 6249 tcp_rcv_synrecv_state_fastopen(sk); 6250 } else { 6251 tcp_try_undo_spurious_syn(sk); 6252 tp->retrans_stamp = 0; 6253 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6254 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6255 } 6256 smp_mb(); 6257 tcp_set_state(sk, TCP_ESTABLISHED); 6258 sk->sk_state_change(sk); 6259 6260 /* Note, that this wakeup is only for marginal crossed SYN case. 6261 * Passively open sockets are not waked up, because 6262 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6263 */ 6264 if (sk->sk_socket) 6265 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6266 6267 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6268 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6269 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6270 6271 if (tp->rx_opt.tstamp_ok) 6272 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6273 6274 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6275 tcp_update_pacing_rate(sk); 6276 6277 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6278 tp->lsndtime = tcp_jiffies32; 6279 6280 tcp_initialize_rcv_mss(sk); 6281 tcp_fast_path_on(tp); 6282 break; 6283 6284 case TCP_FIN_WAIT1: { 6285 int tmo; 6286 6287 if (req) 6288 tcp_rcv_synrecv_state_fastopen(sk); 6289 6290 if (tp->snd_una != tp->write_seq) 6291 break; 6292 6293 tcp_set_state(sk, TCP_FIN_WAIT2); 6294 sk->sk_shutdown |= SEND_SHUTDOWN; 6295 6296 sk_dst_confirm(sk); 6297 6298 if (!sock_flag(sk, SOCK_DEAD)) { 6299 /* Wake up lingering close() */ 6300 sk->sk_state_change(sk); 6301 break; 6302 } 6303 6304 if (tp->linger2 < 0) { 6305 tcp_done(sk); 6306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6307 return 1; 6308 } 6309 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6310 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6311 /* Receive out of order FIN after close() */ 6312 if (tp->syn_fastopen && th->fin) 6313 tcp_fastopen_active_disable(sk); 6314 tcp_done(sk); 6315 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6316 return 1; 6317 } 6318 6319 tmo = tcp_fin_time(sk); 6320 if (tmo > TCP_TIMEWAIT_LEN) { 6321 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6322 } else if (th->fin || sock_owned_by_user(sk)) { 6323 /* Bad case. We could lose such FIN otherwise. 6324 * It is not a big problem, but it looks confusing 6325 * and not so rare event. We still can lose it now, 6326 * if it spins in bh_lock_sock(), but it is really 6327 * marginal case. 6328 */ 6329 inet_csk_reset_keepalive_timer(sk, tmo); 6330 } else { 6331 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6332 goto discard; 6333 } 6334 break; 6335 } 6336 6337 case TCP_CLOSING: 6338 if (tp->snd_una == tp->write_seq) { 6339 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6340 goto discard; 6341 } 6342 break; 6343 6344 case TCP_LAST_ACK: 6345 if (tp->snd_una == tp->write_seq) { 6346 tcp_update_metrics(sk); 6347 tcp_done(sk); 6348 goto discard; 6349 } 6350 break; 6351 } 6352 6353 /* step 6: check the URG bit */ 6354 tcp_urg(sk, skb, th); 6355 6356 /* step 7: process the segment text */ 6357 switch (sk->sk_state) { 6358 case TCP_CLOSE_WAIT: 6359 case TCP_CLOSING: 6360 case TCP_LAST_ACK: 6361 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6362 if (sk_is_mptcp(sk)) 6363 mptcp_incoming_options(sk, skb, &tp->rx_opt); 6364 break; 6365 } 6366 /* fall through */ 6367 case TCP_FIN_WAIT1: 6368 case TCP_FIN_WAIT2: 6369 /* RFC 793 says to queue data in these states, 6370 * RFC 1122 says we MUST send a reset. 6371 * BSD 4.4 also does reset. 6372 */ 6373 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6374 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6375 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6376 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6377 tcp_reset(sk); 6378 return 1; 6379 } 6380 } 6381 /* Fall through */ 6382 case TCP_ESTABLISHED: 6383 tcp_data_queue(sk, skb); 6384 queued = 1; 6385 break; 6386 } 6387 6388 /* tcp_data could move socket to TIME-WAIT */ 6389 if (sk->sk_state != TCP_CLOSE) { 6390 tcp_data_snd_check(sk); 6391 tcp_ack_snd_check(sk); 6392 } 6393 6394 if (!queued) { 6395 discard: 6396 tcp_drop(sk, skb); 6397 } 6398 return 0; 6399 } 6400 EXPORT_SYMBOL(tcp_rcv_state_process); 6401 6402 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6403 { 6404 struct inet_request_sock *ireq = inet_rsk(req); 6405 6406 if (family == AF_INET) 6407 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6408 &ireq->ir_rmt_addr, port); 6409 #if IS_ENABLED(CONFIG_IPV6) 6410 else if (family == AF_INET6) 6411 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6412 &ireq->ir_v6_rmt_addr, port); 6413 #endif 6414 } 6415 6416 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6417 * 6418 * If we receive a SYN packet with these bits set, it means a 6419 * network is playing bad games with TOS bits. In order to 6420 * avoid possible false congestion notifications, we disable 6421 * TCP ECN negotiation. 6422 * 6423 * Exception: tcp_ca wants ECN. This is required for DCTCP 6424 * congestion control: Linux DCTCP asserts ECT on all packets, 6425 * including SYN, which is most optimal solution; however, 6426 * others, such as FreeBSD do not. 6427 * 6428 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6429 * set, indicating the use of a future TCP extension (such as AccECN). See 6430 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6431 * extensions. 6432 */ 6433 static void tcp_ecn_create_request(struct request_sock *req, 6434 const struct sk_buff *skb, 6435 const struct sock *listen_sk, 6436 const struct dst_entry *dst) 6437 { 6438 const struct tcphdr *th = tcp_hdr(skb); 6439 const struct net *net = sock_net(listen_sk); 6440 bool th_ecn = th->ece && th->cwr; 6441 bool ect, ecn_ok; 6442 u32 ecn_ok_dst; 6443 6444 if (!th_ecn) 6445 return; 6446 6447 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6448 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6449 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6450 6451 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6452 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6453 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6454 inet_rsk(req)->ecn_ok = 1; 6455 } 6456 6457 static void tcp_openreq_init(struct request_sock *req, 6458 const struct tcp_options_received *rx_opt, 6459 struct sk_buff *skb, const struct sock *sk) 6460 { 6461 struct inet_request_sock *ireq = inet_rsk(req); 6462 6463 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6464 req->cookie_ts = 0; 6465 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6466 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6467 tcp_rsk(req)->snt_synack = 0; 6468 tcp_rsk(req)->last_oow_ack_time = 0; 6469 req->mss = rx_opt->mss_clamp; 6470 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6471 ireq->tstamp_ok = rx_opt->tstamp_ok; 6472 ireq->sack_ok = rx_opt->sack_ok; 6473 ireq->snd_wscale = rx_opt->snd_wscale; 6474 ireq->wscale_ok = rx_opt->wscale_ok; 6475 ireq->acked = 0; 6476 ireq->ecn_ok = 0; 6477 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6478 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6479 ireq->ir_mark = inet_request_mark(sk, skb); 6480 #if IS_ENABLED(CONFIG_SMC) 6481 ireq->smc_ok = rx_opt->smc_ok; 6482 #endif 6483 } 6484 6485 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6486 struct sock *sk_listener, 6487 bool attach_listener) 6488 { 6489 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6490 attach_listener); 6491 6492 if (req) { 6493 struct inet_request_sock *ireq = inet_rsk(req); 6494 6495 ireq->ireq_opt = NULL; 6496 #if IS_ENABLED(CONFIG_IPV6) 6497 ireq->pktopts = NULL; 6498 #endif 6499 atomic64_set(&ireq->ir_cookie, 0); 6500 ireq->ireq_state = TCP_NEW_SYN_RECV; 6501 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6502 ireq->ireq_family = sk_listener->sk_family; 6503 } 6504 6505 return req; 6506 } 6507 EXPORT_SYMBOL(inet_reqsk_alloc); 6508 6509 /* 6510 * Return true if a syncookie should be sent 6511 */ 6512 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6513 { 6514 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6515 const char *msg = "Dropping request"; 6516 bool want_cookie = false; 6517 struct net *net = sock_net(sk); 6518 6519 #ifdef CONFIG_SYN_COOKIES 6520 if (net->ipv4.sysctl_tcp_syncookies) { 6521 msg = "Sending cookies"; 6522 want_cookie = true; 6523 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6524 } else 6525 #endif 6526 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6527 6528 if (!queue->synflood_warned && 6529 net->ipv4.sysctl_tcp_syncookies != 2 && 6530 xchg(&queue->synflood_warned, 1) == 0) 6531 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6532 proto, sk->sk_num, msg); 6533 6534 return want_cookie; 6535 } 6536 6537 static void tcp_reqsk_record_syn(const struct sock *sk, 6538 struct request_sock *req, 6539 const struct sk_buff *skb) 6540 { 6541 if (tcp_sk(sk)->save_syn) { 6542 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6543 u32 *copy; 6544 6545 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6546 if (copy) { 6547 copy[0] = len; 6548 memcpy(©[1], skb_network_header(skb), len); 6549 req->saved_syn = copy; 6550 } 6551 } 6552 } 6553 6554 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6555 * used for SYN cookie generation. 6556 */ 6557 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6558 const struct tcp_request_sock_ops *af_ops, 6559 struct sock *sk, struct tcphdr *th) 6560 { 6561 struct tcp_sock *tp = tcp_sk(sk); 6562 u16 mss; 6563 6564 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6565 !inet_csk_reqsk_queue_is_full(sk)) 6566 return 0; 6567 6568 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6569 return 0; 6570 6571 if (sk_acceptq_is_full(sk)) { 6572 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6573 return 0; 6574 } 6575 6576 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6577 if (!mss) 6578 mss = af_ops->mss_clamp; 6579 6580 return mss; 6581 } 6582 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6583 6584 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6585 const struct tcp_request_sock_ops *af_ops, 6586 struct sock *sk, struct sk_buff *skb) 6587 { 6588 struct tcp_fastopen_cookie foc = { .len = -1 }; 6589 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6590 struct tcp_options_received tmp_opt; 6591 struct tcp_sock *tp = tcp_sk(sk); 6592 struct net *net = sock_net(sk); 6593 struct sock *fastopen_sk = NULL; 6594 struct request_sock *req; 6595 bool want_cookie = false; 6596 struct dst_entry *dst; 6597 struct flowi fl; 6598 6599 /* TW buckets are converted to open requests without 6600 * limitations, they conserve resources and peer is 6601 * evidently real one. 6602 */ 6603 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6604 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6605 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6606 if (!want_cookie) 6607 goto drop; 6608 } 6609 6610 if (sk_acceptq_is_full(sk)) { 6611 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6612 goto drop; 6613 } 6614 6615 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6616 if (!req) 6617 goto drop; 6618 6619 tcp_rsk(req)->af_specific = af_ops; 6620 tcp_rsk(req)->ts_off = 0; 6621 #if IS_ENABLED(CONFIG_MPTCP) 6622 tcp_rsk(req)->is_mptcp = 0; 6623 #endif 6624 6625 tcp_clear_options(&tmp_opt); 6626 tmp_opt.mss_clamp = af_ops->mss_clamp; 6627 tmp_opt.user_mss = tp->rx_opt.user_mss; 6628 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6629 want_cookie ? NULL : &foc); 6630 6631 if (want_cookie && !tmp_opt.saw_tstamp) 6632 tcp_clear_options(&tmp_opt); 6633 6634 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6635 tmp_opt.smc_ok = 0; 6636 6637 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6638 tcp_openreq_init(req, &tmp_opt, skb, sk); 6639 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6640 6641 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6642 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6643 6644 af_ops->init_req(req, sk, skb); 6645 6646 if (IS_ENABLED(CONFIG_MPTCP) && want_cookie) 6647 tcp_rsk(req)->is_mptcp = 0; 6648 6649 if (security_inet_conn_request(sk, skb, req)) 6650 goto drop_and_free; 6651 6652 if (tmp_opt.tstamp_ok) 6653 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6654 6655 dst = af_ops->route_req(sk, &fl, req); 6656 if (!dst) 6657 goto drop_and_free; 6658 6659 if (!want_cookie && !isn) { 6660 /* Kill the following clause, if you dislike this way. */ 6661 if (!net->ipv4.sysctl_tcp_syncookies && 6662 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6663 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6664 !tcp_peer_is_proven(req, dst)) { 6665 /* Without syncookies last quarter of 6666 * backlog is filled with destinations, 6667 * proven to be alive. 6668 * It means that we continue to communicate 6669 * to destinations, already remembered 6670 * to the moment of synflood. 6671 */ 6672 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6673 rsk_ops->family); 6674 goto drop_and_release; 6675 } 6676 6677 isn = af_ops->init_seq(skb); 6678 } 6679 6680 tcp_ecn_create_request(req, skb, sk, dst); 6681 6682 if (want_cookie) { 6683 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6684 req->cookie_ts = tmp_opt.tstamp_ok; 6685 if (!tmp_opt.tstamp_ok) 6686 inet_rsk(req)->ecn_ok = 0; 6687 } 6688 6689 tcp_rsk(req)->snt_isn = isn; 6690 tcp_rsk(req)->txhash = net_tx_rndhash(); 6691 tcp_openreq_init_rwin(req, sk, dst); 6692 sk_rx_queue_set(req_to_sk(req), skb); 6693 if (!want_cookie) { 6694 tcp_reqsk_record_syn(sk, req, skb); 6695 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6696 } 6697 if (fastopen_sk) { 6698 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6699 &foc, TCP_SYNACK_FASTOPEN); 6700 /* Add the child socket directly into the accept queue */ 6701 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6702 reqsk_fastopen_remove(fastopen_sk, req, false); 6703 bh_unlock_sock(fastopen_sk); 6704 sock_put(fastopen_sk); 6705 goto drop_and_free; 6706 } 6707 sk->sk_data_ready(sk); 6708 bh_unlock_sock(fastopen_sk); 6709 sock_put(fastopen_sk); 6710 } else { 6711 tcp_rsk(req)->tfo_listener = false; 6712 if (!want_cookie) 6713 inet_csk_reqsk_queue_hash_add(sk, req, 6714 tcp_timeout_init((struct sock *)req)); 6715 af_ops->send_synack(sk, dst, &fl, req, &foc, 6716 !want_cookie ? TCP_SYNACK_NORMAL : 6717 TCP_SYNACK_COOKIE); 6718 if (want_cookie) { 6719 reqsk_free(req); 6720 return 0; 6721 } 6722 } 6723 reqsk_put(req); 6724 return 0; 6725 6726 drop_and_release: 6727 dst_release(dst); 6728 drop_and_free: 6729 __reqsk_free(req); 6730 drop: 6731 tcp_listendrop(sk); 6732 return 0; 6733 } 6734 EXPORT_SYMBOL(tcp_conn_request); 6735