1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <net/dst.h> 68 #include <net/tcp.h> 69 #include <net/inet_common.h> 70 #include <linux/ipsec.h> 71 #include <asm/unaligned.h> 72 #include <net/netdma.h> 73 74 int sysctl_tcp_timestamps __read_mostly = 1; 75 int sysctl_tcp_window_scaling __read_mostly = 1; 76 int sysctl_tcp_sack __read_mostly = 1; 77 int sysctl_tcp_fack __read_mostly = 1; 78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 79 int sysctl_tcp_ecn __read_mostly; 80 int sysctl_tcp_dsack __read_mostly = 1; 81 int sysctl_tcp_app_win __read_mostly = 31; 82 int sysctl_tcp_adv_win_scale __read_mostly = 2; 83 84 int sysctl_tcp_stdurg __read_mostly; 85 int sysctl_tcp_rfc1337 __read_mostly; 86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 87 int sysctl_tcp_frto __read_mostly = 2; 88 int sysctl_tcp_frto_response __read_mostly; 89 int sysctl_tcp_nometrics_save __read_mostly; 90 91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 92 int sysctl_tcp_abc __read_mostly; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 114 115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 117 118 /* Adapt the MSS value used to make delayed ack decision to the 119 * real world. 120 */ 121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 122 { 123 struct inet_connection_sock *icsk = inet_csk(sk); 124 const unsigned int lss = icsk->icsk_ack.last_seg_size; 125 unsigned int len; 126 127 icsk->icsk_ack.last_seg_size = 0; 128 129 /* skb->len may jitter because of SACKs, even if peer 130 * sends good full-sized frames. 131 */ 132 len = skb_shinfo(skb)->gso_size ? : skb->len; 133 if (len >= icsk->icsk_ack.rcv_mss) { 134 icsk->icsk_ack.rcv_mss = len; 135 } else { 136 /* Otherwise, we make more careful check taking into account, 137 * that SACKs block is variable. 138 * 139 * "len" is invariant segment length, including TCP header. 140 */ 141 len += skb->data - skb_transport_header(skb); 142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 143 /* If PSH is not set, packet should be 144 * full sized, provided peer TCP is not badly broken. 145 * This observation (if it is correct 8)) allows 146 * to handle super-low mtu links fairly. 147 */ 148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 150 /* Subtract also invariant (if peer is RFC compliant), 151 * tcp header plus fixed timestamp option length. 152 * Resulting "len" is MSS free of SACK jitter. 153 */ 154 len -= tcp_sk(sk)->tcp_header_len; 155 icsk->icsk_ack.last_seg_size = len; 156 if (len == lss) { 157 icsk->icsk_ack.rcv_mss = len; 158 return; 159 } 160 } 161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 164 } 165 } 166 167 static void tcp_incr_quickack(struct sock *sk) 168 { 169 struct inet_connection_sock *icsk = inet_csk(sk); 170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 171 172 if (quickacks == 0) 173 quickacks = 2; 174 if (quickacks > icsk->icsk_ack.quick) 175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 176 } 177 178 void tcp_enter_quickack_mode(struct sock *sk) 179 { 180 struct inet_connection_sock *icsk = inet_csk(sk); 181 tcp_incr_quickack(sk); 182 icsk->icsk_ack.pingpong = 0; 183 icsk->icsk_ack.ato = TCP_ATO_MIN; 184 } 185 186 /* Send ACKs quickly, if "quick" count is not exhausted 187 * and the session is not interactive. 188 */ 189 190 static inline int tcp_in_quickack_mode(const struct sock *sk) 191 { 192 const struct inet_connection_sock *icsk = inet_csk(sk); 193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 194 } 195 196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 197 { 198 if (tp->ecn_flags & TCP_ECN_OK) 199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 200 } 201 202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 203 { 204 if (tcp_hdr(skb)->cwr) 205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 206 } 207 208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 209 { 210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 211 } 212 213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 214 { 215 if (tp->ecn_flags & TCP_ECN_OK) { 216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 218 /* Funny extension: if ECT is not set on a segment, 219 * it is surely retransmit. It is not in ECN RFC, 220 * but Linux follows this rule. */ 221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 222 tcp_enter_quickack_mode((struct sock *)tp); 223 } 224 } 225 226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 227 { 228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 229 tp->ecn_flags &= ~TCP_ECN_OK; 230 } 231 232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 233 { 234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 235 tp->ecn_flags &= ~TCP_ECN_OK; 236 } 237 238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 239 { 240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 241 return 1; 242 return 0; 243 } 244 245 /* Buffer size and advertised window tuning. 246 * 247 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 248 */ 249 250 static void tcp_fixup_sndbuf(struct sock *sk) 251 { 252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 253 sizeof(struct sk_buff); 254 255 if (sk->sk_sndbuf < 3 * sndmem) 256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 257 } 258 259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 260 * 261 * All tcp_full_space() is split to two parts: "network" buffer, allocated 262 * forward and advertised in receiver window (tp->rcv_wnd) and 263 * "application buffer", required to isolate scheduling/application 264 * latencies from network. 265 * window_clamp is maximal advertised window. It can be less than 266 * tcp_full_space(), in this case tcp_full_space() - window_clamp 267 * is reserved for "application" buffer. The less window_clamp is 268 * the smoother our behaviour from viewpoint of network, but the lower 269 * throughput and the higher sensitivity of the connection to losses. 8) 270 * 271 * rcv_ssthresh is more strict window_clamp used at "slow start" 272 * phase to predict further behaviour of this connection. 273 * It is used for two goals: 274 * - to enforce header prediction at sender, even when application 275 * requires some significant "application buffer". It is check #1. 276 * - to prevent pruning of receive queue because of misprediction 277 * of receiver window. Check #2. 278 * 279 * The scheme does not work when sender sends good segments opening 280 * window and then starts to feed us spaghetti. But it should work 281 * in common situations. Otherwise, we have to rely on queue collapsing. 282 */ 283 284 /* Slow part of check#2. */ 285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 286 { 287 struct tcp_sock *tp = tcp_sk(sk); 288 /* Optimize this! */ 289 int truesize = tcp_win_from_space(skb->truesize) >> 1; 290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 291 292 while (tp->rcv_ssthresh <= window) { 293 if (truesize <= skb->len) 294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 295 296 truesize >>= 1; 297 window >>= 1; 298 } 299 return 0; 300 } 301 302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 303 { 304 struct tcp_sock *tp = tcp_sk(sk); 305 306 /* Check #1 */ 307 if (tp->rcv_ssthresh < tp->window_clamp && 308 (int)tp->rcv_ssthresh < tcp_space(sk) && 309 !tcp_memory_pressure) { 310 int incr; 311 312 /* Check #2. Increase window, if skb with such overhead 313 * will fit to rcvbuf in future. 314 */ 315 if (tcp_win_from_space(skb->truesize) <= skb->len) 316 incr = 2 * tp->advmss; 317 else 318 incr = __tcp_grow_window(sk, skb); 319 320 if (incr) { 321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 322 tp->window_clamp); 323 inet_csk(sk)->icsk_ack.quick |= 1; 324 } 325 } 326 } 327 328 /* 3. Tuning rcvbuf, when connection enters established state. */ 329 330 static void tcp_fixup_rcvbuf(struct sock *sk) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 334 335 /* Try to select rcvbuf so that 4 mss-sized segments 336 * will fit to window and corresponding skbs will fit to our rcvbuf. 337 * (was 3; 4 is minimum to allow fast retransmit to work.) 338 */ 339 while (tcp_win_from_space(rcvmem) < tp->advmss) 340 rcvmem += 128; 341 if (sk->sk_rcvbuf < 4 * rcvmem) 342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 343 } 344 345 /* 4. Try to fixup all. It is made immediately after connection enters 346 * established state. 347 */ 348 static void tcp_init_buffer_space(struct sock *sk) 349 { 350 struct tcp_sock *tp = tcp_sk(sk); 351 int maxwin; 352 353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 354 tcp_fixup_rcvbuf(sk); 355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 356 tcp_fixup_sndbuf(sk); 357 358 tp->rcvq_space.space = tp->rcv_wnd; 359 360 maxwin = tcp_full_space(sk); 361 362 if (tp->window_clamp >= maxwin) { 363 tp->window_clamp = maxwin; 364 365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 366 tp->window_clamp = max(maxwin - 367 (maxwin >> sysctl_tcp_app_win), 368 4 * tp->advmss); 369 } 370 371 /* Force reservation of one segment. */ 372 if (sysctl_tcp_app_win && 373 tp->window_clamp > 2 * tp->advmss && 374 tp->window_clamp + tp->advmss > maxwin) 375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 376 377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 378 tp->snd_cwnd_stamp = tcp_time_stamp; 379 } 380 381 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 382 static void tcp_clamp_window(struct sock *sk) 383 { 384 struct tcp_sock *tp = tcp_sk(sk); 385 struct inet_connection_sock *icsk = inet_csk(sk); 386 387 icsk->icsk_ack.quick = 0; 388 389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 391 !tcp_memory_pressure && 392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 394 sysctl_tcp_rmem[2]); 395 } 396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 398 } 399 400 /* Initialize RCV_MSS value. 401 * RCV_MSS is an our guess about MSS used by the peer. 402 * We haven't any direct information about the MSS. 403 * It's better to underestimate the RCV_MSS rather than overestimate. 404 * Overestimations make us ACKing less frequently than needed. 405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 406 */ 407 void tcp_initialize_rcv_mss(struct sock *sk) 408 { 409 struct tcp_sock *tp = tcp_sk(sk); 410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 411 412 hint = min(hint, tp->rcv_wnd / 2); 413 hint = min(hint, TCP_MIN_RCVMSS); 414 hint = max(hint, TCP_MIN_MSS); 415 416 inet_csk(sk)->icsk_ack.rcv_mss = hint; 417 } 418 419 /* Receiver "autotuning" code. 420 * 421 * The algorithm for RTT estimation w/o timestamps is based on 422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 424 * 425 * More detail on this code can be found at 426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 427 * though this reference is out of date. A new paper 428 * is pending. 429 */ 430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 431 { 432 u32 new_sample = tp->rcv_rtt_est.rtt; 433 long m = sample; 434 435 if (m == 0) 436 m = 1; 437 438 if (new_sample != 0) { 439 /* If we sample in larger samples in the non-timestamp 440 * case, we could grossly overestimate the RTT especially 441 * with chatty applications or bulk transfer apps which 442 * are stalled on filesystem I/O. 443 * 444 * Also, since we are only going for a minimum in the 445 * non-timestamp case, we do not smooth things out 446 * else with timestamps disabled convergence takes too 447 * long. 448 */ 449 if (!win_dep) { 450 m -= (new_sample >> 3); 451 new_sample += m; 452 } else if (m < new_sample) 453 new_sample = m << 3; 454 } else { 455 /* No previous measure. */ 456 new_sample = m << 3; 457 } 458 459 if (tp->rcv_rtt_est.rtt != new_sample) 460 tp->rcv_rtt_est.rtt = new_sample; 461 } 462 463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 464 { 465 if (tp->rcv_rtt_est.time == 0) 466 goto new_measure; 467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 468 return; 469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 470 471 new_measure: 472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 473 tp->rcv_rtt_est.time = tcp_time_stamp; 474 } 475 476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 477 const struct sk_buff *skb) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 if (tp->rx_opt.rcv_tsecr && 481 (TCP_SKB_CB(skb)->end_seq - 482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 484 } 485 486 /* 487 * This function should be called every time data is copied to user space. 488 * It calculates the appropriate TCP receive buffer space. 489 */ 490 void tcp_rcv_space_adjust(struct sock *sk) 491 { 492 struct tcp_sock *tp = tcp_sk(sk); 493 int time; 494 int space; 495 496 if (tp->rcvq_space.time == 0) 497 goto new_measure; 498 499 time = tcp_time_stamp - tp->rcvq_space.time; 500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 501 return; 502 503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 504 505 space = max(tp->rcvq_space.space, space); 506 507 if (tp->rcvq_space.space != space) { 508 int rcvmem; 509 510 tp->rcvq_space.space = space; 511 512 if (sysctl_tcp_moderate_rcvbuf && 513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 514 int new_clamp = space; 515 516 /* Receive space grows, normalize in order to 517 * take into account packet headers and sk_buff 518 * structure overhead. 519 */ 520 space /= tp->advmss; 521 if (!space) 522 space = 1; 523 rcvmem = (tp->advmss + MAX_TCP_HEADER + 524 16 + sizeof(struct sk_buff)); 525 while (tcp_win_from_space(rcvmem) < tp->advmss) 526 rcvmem += 128; 527 space *= rcvmem; 528 space = min(space, sysctl_tcp_rmem[2]); 529 if (space > sk->sk_rcvbuf) { 530 sk->sk_rcvbuf = space; 531 532 /* Make the window clamp follow along. */ 533 tp->window_clamp = new_clamp; 534 } 535 } 536 } 537 538 new_measure: 539 tp->rcvq_space.seq = tp->copied_seq; 540 tp->rcvq_space.time = tcp_time_stamp; 541 } 542 543 /* There is something which you must keep in mind when you analyze the 544 * behavior of the tp->ato delayed ack timeout interval. When a 545 * connection starts up, we want to ack as quickly as possible. The 546 * problem is that "good" TCP's do slow start at the beginning of data 547 * transmission. The means that until we send the first few ACK's the 548 * sender will sit on his end and only queue most of his data, because 549 * he can only send snd_cwnd unacked packets at any given time. For 550 * each ACK we send, he increments snd_cwnd and transmits more of his 551 * queue. -DaveM 552 */ 553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 554 { 555 struct tcp_sock *tp = tcp_sk(sk); 556 struct inet_connection_sock *icsk = inet_csk(sk); 557 u32 now; 558 559 inet_csk_schedule_ack(sk); 560 561 tcp_measure_rcv_mss(sk, skb); 562 563 tcp_rcv_rtt_measure(tp); 564 565 now = tcp_time_stamp; 566 567 if (!icsk->icsk_ack.ato) { 568 /* The _first_ data packet received, initialize 569 * delayed ACK engine. 570 */ 571 tcp_incr_quickack(sk); 572 icsk->icsk_ack.ato = TCP_ATO_MIN; 573 } else { 574 int m = now - icsk->icsk_ack.lrcvtime; 575 576 if (m <= TCP_ATO_MIN / 2) { 577 /* The fastest case is the first. */ 578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 579 } else if (m < icsk->icsk_ack.ato) { 580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 581 if (icsk->icsk_ack.ato > icsk->icsk_rto) 582 icsk->icsk_ack.ato = icsk->icsk_rto; 583 } else if (m > icsk->icsk_rto) { 584 /* Too long gap. Apparently sender failed to 585 * restart window, so that we send ACKs quickly. 586 */ 587 tcp_incr_quickack(sk); 588 sk_mem_reclaim(sk); 589 } 590 } 591 icsk->icsk_ack.lrcvtime = now; 592 593 TCP_ECN_check_ce(tp, skb); 594 595 if (skb->len >= 128) 596 tcp_grow_window(sk, skb); 597 } 598 599 static u32 tcp_rto_min(struct sock *sk) 600 { 601 struct dst_entry *dst = __sk_dst_get(sk); 602 u32 rto_min = TCP_RTO_MIN; 603 604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 606 return rto_min; 607 } 608 609 /* Called to compute a smoothed rtt estimate. The data fed to this 610 * routine either comes from timestamps, or from segments that were 611 * known _not_ to have been retransmitted [see Karn/Partridge 612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 613 * piece by Van Jacobson. 614 * NOTE: the next three routines used to be one big routine. 615 * To save cycles in the RFC 1323 implementation it was better to break 616 * it up into three procedures. -- erics 617 */ 618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 619 { 620 struct tcp_sock *tp = tcp_sk(sk); 621 long m = mrtt; /* RTT */ 622 623 /* The following amusing code comes from Jacobson's 624 * article in SIGCOMM '88. Note that rtt and mdev 625 * are scaled versions of rtt and mean deviation. 626 * This is designed to be as fast as possible 627 * m stands for "measurement". 628 * 629 * On a 1990 paper the rto value is changed to: 630 * RTO = rtt + 4 * mdev 631 * 632 * Funny. This algorithm seems to be very broken. 633 * These formulae increase RTO, when it should be decreased, increase 634 * too slowly, when it should be increased quickly, decrease too quickly 635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 636 * does not matter how to _calculate_ it. Seems, it was trap 637 * that VJ failed to avoid. 8) 638 */ 639 if (m == 0) 640 m = 1; 641 if (tp->srtt != 0) { 642 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 644 if (m < 0) { 645 m = -m; /* m is now abs(error) */ 646 m -= (tp->mdev >> 2); /* similar update on mdev */ 647 /* This is similar to one of Eifel findings. 648 * Eifel blocks mdev updates when rtt decreases. 649 * This solution is a bit different: we use finer gain 650 * for mdev in this case (alpha*beta). 651 * Like Eifel it also prevents growth of rto, 652 * but also it limits too fast rto decreases, 653 * happening in pure Eifel. 654 */ 655 if (m > 0) 656 m >>= 3; 657 } else { 658 m -= (tp->mdev >> 2); /* similar update on mdev */ 659 } 660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 661 if (tp->mdev > tp->mdev_max) { 662 tp->mdev_max = tp->mdev; 663 if (tp->mdev_max > tp->rttvar) 664 tp->rttvar = tp->mdev_max; 665 } 666 if (after(tp->snd_una, tp->rtt_seq)) { 667 if (tp->mdev_max < tp->rttvar) 668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 669 tp->rtt_seq = tp->snd_nxt; 670 tp->mdev_max = tcp_rto_min(sk); 671 } 672 } else { 673 /* no previous measure. */ 674 tp->srtt = m << 3; /* take the measured time to be rtt */ 675 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 677 tp->rtt_seq = tp->snd_nxt; 678 } 679 } 680 681 /* Calculate rto without backoff. This is the second half of Van Jacobson's 682 * routine referred to above. 683 */ 684 static inline void tcp_set_rto(struct sock *sk) 685 { 686 const struct tcp_sock *tp = tcp_sk(sk); 687 /* Old crap is replaced with new one. 8) 688 * 689 * More seriously: 690 * 1. If rtt variance happened to be less 50msec, it is hallucination. 691 * It cannot be less due to utterly erratic ACK generation made 692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 693 * to do with delayed acks, because at cwnd>2 true delack timeout 694 * is invisible. Actually, Linux-2.4 also generates erratic 695 * ACKs in some circumstances. 696 */ 697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 698 699 /* 2. Fixups made earlier cannot be right. 700 * If we do not estimate RTO correctly without them, 701 * all the algo is pure shit and should be replaced 702 * with correct one. It is exactly, which we pretend to do. 703 */ 704 } 705 706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 707 * guarantees that rto is higher. 708 */ 709 static inline void tcp_bound_rto(struct sock *sk) 710 { 711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 713 } 714 715 /* Save metrics learned by this TCP session. 716 This function is called only, when TCP finishes successfully 717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 718 */ 719 void tcp_update_metrics(struct sock *sk) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 struct dst_entry *dst = __sk_dst_get(sk); 723 724 if (sysctl_tcp_nometrics_save) 725 return; 726 727 dst_confirm(dst); 728 729 if (dst && (dst->flags & DST_HOST)) { 730 const struct inet_connection_sock *icsk = inet_csk(sk); 731 int m; 732 unsigned long rtt; 733 734 if (icsk->icsk_backoff || !tp->srtt) { 735 /* This session failed to estimate rtt. Why? 736 * Probably, no packets returned in time. 737 * Reset our results. 738 */ 739 if (!(dst_metric_locked(dst, RTAX_RTT))) 740 dst->metrics[RTAX_RTT - 1] = 0; 741 return; 742 } 743 744 rtt = dst_metric_rtt(dst, RTAX_RTT); 745 m = rtt - tp->srtt; 746 747 /* If newly calculated rtt larger than stored one, 748 * store new one. Otherwise, use EWMA. Remember, 749 * rtt overestimation is always better than underestimation. 750 */ 751 if (!(dst_metric_locked(dst, RTAX_RTT))) { 752 if (m <= 0) 753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 754 else 755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 756 } 757 758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 759 unsigned long var; 760 if (m < 0) 761 m = -m; 762 763 /* Scale deviation to rttvar fixed point */ 764 m >>= 1; 765 if (m < tp->mdev) 766 m = tp->mdev; 767 768 var = dst_metric_rtt(dst, RTAX_RTTVAR); 769 if (m >= var) 770 var = m; 771 else 772 var -= (var - m) >> 2; 773 774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 775 } 776 777 if (tp->snd_ssthresh >= 0xFFFF) { 778 /* Slow start still did not finish. */ 779 if (dst_metric(dst, RTAX_SSTHRESH) && 780 !dst_metric_locked(dst, RTAX_SSTHRESH) && 781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 783 if (!dst_metric_locked(dst, RTAX_CWND) && 784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 786 } else if (tp->snd_cwnd > tp->snd_ssthresh && 787 icsk->icsk_ca_state == TCP_CA_Open) { 788 /* Cong. avoidance phase, cwnd is reliable. */ 789 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 790 dst->metrics[RTAX_SSTHRESH-1] = 791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 792 if (!dst_metric_locked(dst, RTAX_CWND)) 793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 794 } else { 795 /* Else slow start did not finish, cwnd is non-sense, 796 ssthresh may be also invalid. 797 */ 798 if (!dst_metric_locked(dst, RTAX_CWND)) 799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 800 if (dst_metric(dst, RTAX_SSTHRESH) && 801 !dst_metric_locked(dst, RTAX_SSTHRESH) && 802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 804 } 805 806 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 808 tp->reordering != sysctl_tcp_reordering) 809 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 810 } 811 } 812 } 813 814 /* Numbers are taken from RFC3390. 815 * 816 * John Heffner states: 817 * 818 * The RFC specifies a window of no more than 4380 bytes 819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 820 * is a bit misleading because they use a clamp at 4380 bytes 821 * rather than use a multiplier in the relevant range. 822 */ 823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 824 { 825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 826 827 if (!cwnd) { 828 if (tp->mss_cache > 1460) 829 cwnd = 2; 830 else 831 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 832 } 833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 834 } 835 836 /* Set slow start threshold and cwnd not falling to slow start */ 837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 838 { 839 struct tcp_sock *tp = tcp_sk(sk); 840 const struct inet_connection_sock *icsk = inet_csk(sk); 841 842 tp->prior_ssthresh = 0; 843 tp->bytes_acked = 0; 844 if (icsk->icsk_ca_state < TCP_CA_CWR) { 845 tp->undo_marker = 0; 846 if (set_ssthresh) 847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 848 tp->snd_cwnd = min(tp->snd_cwnd, 849 tcp_packets_in_flight(tp) + 1U); 850 tp->snd_cwnd_cnt = 0; 851 tp->high_seq = tp->snd_nxt; 852 tp->snd_cwnd_stamp = tcp_time_stamp; 853 TCP_ECN_queue_cwr(tp); 854 855 tcp_set_ca_state(sk, TCP_CA_CWR); 856 } 857 } 858 859 /* 860 * Packet counting of FACK is based on in-order assumptions, therefore TCP 861 * disables it when reordering is detected 862 */ 863 static void tcp_disable_fack(struct tcp_sock *tp) 864 { 865 /* RFC3517 uses different metric in lost marker => reset on change */ 866 if (tcp_is_fack(tp)) 867 tp->lost_skb_hint = NULL; 868 tp->rx_opt.sack_ok &= ~2; 869 } 870 871 /* Take a notice that peer is sending D-SACKs */ 872 static void tcp_dsack_seen(struct tcp_sock *tp) 873 { 874 tp->rx_opt.sack_ok |= 4; 875 } 876 877 /* Initialize metrics on socket. */ 878 879 static void tcp_init_metrics(struct sock *sk) 880 { 881 struct tcp_sock *tp = tcp_sk(sk); 882 struct dst_entry *dst = __sk_dst_get(sk); 883 884 if (dst == NULL) 885 goto reset; 886 887 dst_confirm(dst); 888 889 if (dst_metric_locked(dst, RTAX_CWND)) 890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 891 if (dst_metric(dst, RTAX_SSTHRESH)) { 892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 894 tp->snd_ssthresh = tp->snd_cwnd_clamp; 895 } 896 if (dst_metric(dst, RTAX_REORDERING) && 897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 898 tcp_disable_fack(tp); 899 tp->reordering = dst_metric(dst, RTAX_REORDERING); 900 } 901 902 if (dst_metric(dst, RTAX_RTT) == 0) 903 goto reset; 904 905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 906 goto reset; 907 908 /* Initial rtt is determined from SYN,SYN-ACK. 909 * The segment is small and rtt may appear much 910 * less than real one. Use per-dst memory 911 * to make it more realistic. 912 * 913 * A bit of theory. RTT is time passed after "normal" sized packet 914 * is sent until it is ACKed. In normal circumstances sending small 915 * packets force peer to delay ACKs and calculation is correct too. 916 * The algorithm is adaptive and, provided we follow specs, it 917 * NEVER underestimate RTT. BUT! If peer tries to make some clever 918 * tricks sort of "quick acks" for time long enough to decrease RTT 919 * to low value, and then abruptly stops to do it and starts to delay 920 * ACKs, wait for troubles. 921 */ 922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 924 tp->rtt_seq = tp->snd_nxt; 925 } 926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 929 } 930 tcp_set_rto(sk); 931 tcp_bound_rto(sk); 932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 933 goto reset; 934 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 935 tp->snd_cwnd_stamp = tcp_time_stamp; 936 return; 937 938 reset: 939 /* Play conservative. If timestamps are not 940 * supported, TCP will fail to recalculate correct 941 * rtt, if initial rto is too small. FORGET ALL AND RESET! 942 */ 943 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 944 tp->srtt = 0; 945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 947 } 948 } 949 950 static void tcp_update_reordering(struct sock *sk, const int metric, 951 const int ts) 952 { 953 struct tcp_sock *tp = tcp_sk(sk); 954 if (metric > tp->reordering) { 955 int mib_idx; 956 957 tp->reordering = min(TCP_MAX_REORDERING, metric); 958 959 /* This exciting event is worth to be remembered. 8) */ 960 if (ts) 961 mib_idx = LINUX_MIB_TCPTSREORDER; 962 else if (tcp_is_reno(tp)) 963 mib_idx = LINUX_MIB_TCPRENOREORDER; 964 else if (tcp_is_fack(tp)) 965 mib_idx = LINUX_MIB_TCPFACKREORDER; 966 else 967 mib_idx = LINUX_MIB_TCPSACKREORDER; 968 969 NET_INC_STATS_BH(sock_net(sk), mib_idx); 970 #if FASTRETRANS_DEBUG > 1 971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 973 tp->reordering, 974 tp->fackets_out, 975 tp->sacked_out, 976 tp->undo_marker ? tp->undo_retrans : 0); 977 #endif 978 tcp_disable_fack(tp); 979 } 980 } 981 982 /* This must be called before lost_out is incremented */ 983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 984 { 985 if ((tp->retransmit_skb_hint == NULL) || 986 before(TCP_SKB_CB(skb)->seq, 987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 988 tp->retransmit_skb_hint = skb; 989 990 if (!tp->lost_out || 991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 993 } 994 995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 996 { 997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 998 tcp_verify_retransmit_hint(tp, skb); 999 1000 tp->lost_out += tcp_skb_pcount(skb); 1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1002 } 1003 } 1004 1005 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 1006 { 1007 tcp_verify_retransmit_hint(tp, skb); 1008 1009 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1010 tp->lost_out += tcp_skb_pcount(skb); 1011 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1012 } 1013 } 1014 1015 /* This procedure tags the retransmission queue when SACKs arrive. 1016 * 1017 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1018 * Packets in queue with these bits set are counted in variables 1019 * sacked_out, retrans_out and lost_out, correspondingly. 1020 * 1021 * Valid combinations are: 1022 * Tag InFlight Description 1023 * 0 1 - orig segment is in flight. 1024 * S 0 - nothing flies, orig reached receiver. 1025 * L 0 - nothing flies, orig lost by net. 1026 * R 2 - both orig and retransmit are in flight. 1027 * L|R 1 - orig is lost, retransmit is in flight. 1028 * S|R 1 - orig reached receiver, retrans is still in flight. 1029 * (L|S|R is logically valid, it could occur when L|R is sacked, 1030 * but it is equivalent to plain S and code short-curcuits it to S. 1031 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1032 * 1033 * These 6 states form finite state machine, controlled by the following events: 1034 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1035 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1036 * 3. Loss detection event of one of three flavors: 1037 * A. Scoreboard estimator decided the packet is lost. 1038 * A'. Reno "three dupacks" marks head of queue lost. 1039 * A''. Its FACK modfication, head until snd.fack is lost. 1040 * B. SACK arrives sacking data transmitted after never retransmitted 1041 * hole was sent out. 1042 * C. SACK arrives sacking SND.NXT at the moment, when the 1043 * segment was retransmitted. 1044 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1045 * 1046 * It is pleasant to note, that state diagram turns out to be commutative, 1047 * so that we are allowed not to be bothered by order of our actions, 1048 * when multiple events arrive simultaneously. (see the function below). 1049 * 1050 * Reordering detection. 1051 * -------------------- 1052 * Reordering metric is maximal distance, which a packet can be displaced 1053 * in packet stream. With SACKs we can estimate it: 1054 * 1055 * 1. SACK fills old hole and the corresponding segment was not 1056 * ever retransmitted -> reordering. Alas, we cannot use it 1057 * when segment was retransmitted. 1058 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1059 * for retransmitted and already SACKed segment -> reordering.. 1060 * Both of these heuristics are not used in Loss state, when we cannot 1061 * account for retransmits accurately. 1062 * 1063 * SACK block validation. 1064 * ---------------------- 1065 * 1066 * SACK block range validation checks that the received SACK block fits to 1067 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1068 * Note that SND.UNA is not included to the range though being valid because 1069 * it means that the receiver is rather inconsistent with itself reporting 1070 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1071 * perfectly valid, however, in light of RFC2018 which explicitly states 1072 * that "SACK block MUST reflect the newest segment. Even if the newest 1073 * segment is going to be discarded ...", not that it looks very clever 1074 * in case of head skb. Due to potentional receiver driven attacks, we 1075 * choose to avoid immediate execution of a walk in write queue due to 1076 * reneging and defer head skb's loss recovery to standard loss recovery 1077 * procedure that will eventually trigger (nothing forbids us doing this). 1078 * 1079 * Implements also blockage to start_seq wrap-around. Problem lies in the 1080 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1081 * there's no guarantee that it will be before snd_nxt (n). The problem 1082 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1083 * wrap (s_w): 1084 * 1085 * <- outs wnd -> <- wrapzone -> 1086 * u e n u_w e_w s n_w 1087 * | | | | | | | 1088 * |<------------+------+----- TCP seqno space --------------+---------->| 1089 * ...-- <2^31 ->| |<--------... 1090 * ...---- >2^31 ------>| |<--------... 1091 * 1092 * Current code wouldn't be vulnerable but it's better still to discard such 1093 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1094 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1095 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1096 * equal to the ideal case (infinite seqno space without wrap caused issues). 1097 * 1098 * With D-SACK the lower bound is extended to cover sequence space below 1099 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1100 * again, D-SACK block must not to go across snd_una (for the same reason as 1101 * for the normal SACK blocks, explained above). But there all simplicity 1102 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1103 * fully below undo_marker they do not affect behavior in anyway and can 1104 * therefore be safely ignored. In rare cases (which are more or less 1105 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1106 * fragmentation and packet reordering past skb's retransmission. To consider 1107 * them correctly, the acceptable range must be extended even more though 1108 * the exact amount is rather hard to quantify. However, tp->max_window can 1109 * be used as an exaggerated estimate. 1110 */ 1111 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1112 u32 start_seq, u32 end_seq) 1113 { 1114 /* Too far in future, or reversed (interpretation is ambiguous) */ 1115 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1116 return 0; 1117 1118 /* Nasty start_seq wrap-around check (see comments above) */ 1119 if (!before(start_seq, tp->snd_nxt)) 1120 return 0; 1121 1122 /* In outstanding window? ...This is valid exit for D-SACKs too. 1123 * start_seq == snd_una is non-sensical (see comments above) 1124 */ 1125 if (after(start_seq, tp->snd_una)) 1126 return 1; 1127 1128 if (!is_dsack || !tp->undo_marker) 1129 return 0; 1130 1131 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1132 if (!after(end_seq, tp->snd_una)) 1133 return 0; 1134 1135 if (!before(start_seq, tp->undo_marker)) 1136 return 1; 1137 1138 /* Too old */ 1139 if (!after(end_seq, tp->undo_marker)) 1140 return 0; 1141 1142 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1143 * start_seq < undo_marker and end_seq >= undo_marker. 1144 */ 1145 return !before(start_seq, end_seq - tp->max_window); 1146 } 1147 1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1149 * Event "C". Later note: FACK people cheated me again 8), we have to account 1150 * for reordering! Ugly, but should help. 1151 * 1152 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1153 * less than what is now known to be received by the other end (derived from 1154 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1155 * retransmitted skbs to avoid some costly processing per ACKs. 1156 */ 1157 static void tcp_mark_lost_retrans(struct sock *sk) 1158 { 1159 const struct inet_connection_sock *icsk = inet_csk(sk); 1160 struct tcp_sock *tp = tcp_sk(sk); 1161 struct sk_buff *skb; 1162 int cnt = 0; 1163 u32 new_low_seq = tp->snd_nxt; 1164 u32 received_upto = tcp_highest_sack_seq(tp); 1165 1166 if (!tcp_is_fack(tp) || !tp->retrans_out || 1167 !after(received_upto, tp->lost_retrans_low) || 1168 icsk->icsk_ca_state != TCP_CA_Recovery) 1169 return; 1170 1171 tcp_for_write_queue(skb, sk) { 1172 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1173 1174 if (skb == tcp_send_head(sk)) 1175 break; 1176 if (cnt == tp->retrans_out) 1177 break; 1178 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1179 continue; 1180 1181 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1182 continue; 1183 1184 if (after(received_upto, ack_seq) && 1185 (tcp_is_fack(tp) || 1186 !before(received_upto, 1187 ack_seq + tp->reordering * tp->mss_cache))) { 1188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1189 tp->retrans_out -= tcp_skb_pcount(skb); 1190 1191 tcp_skb_mark_lost_uncond_verify(tp, skb); 1192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1193 } else { 1194 if (before(ack_seq, new_low_seq)) 1195 new_low_seq = ack_seq; 1196 cnt += tcp_skb_pcount(skb); 1197 } 1198 } 1199 1200 if (tp->retrans_out) 1201 tp->lost_retrans_low = new_low_seq; 1202 } 1203 1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1205 struct tcp_sack_block_wire *sp, int num_sacks, 1206 u32 prior_snd_una) 1207 { 1208 struct tcp_sock *tp = tcp_sk(sk); 1209 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1210 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1211 int dup_sack = 0; 1212 1213 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1214 dup_sack = 1; 1215 tcp_dsack_seen(tp); 1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1217 } else if (num_sacks > 1) { 1218 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1219 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1220 1221 if (!after(end_seq_0, end_seq_1) && 1222 !before(start_seq_0, start_seq_1)) { 1223 dup_sack = 1; 1224 tcp_dsack_seen(tp); 1225 NET_INC_STATS_BH(sock_net(sk), 1226 LINUX_MIB_TCPDSACKOFORECV); 1227 } 1228 } 1229 1230 /* D-SACK for already forgotten data... Do dumb counting. */ 1231 if (dup_sack && 1232 !after(end_seq_0, prior_snd_una) && 1233 after(end_seq_0, tp->undo_marker)) 1234 tp->undo_retrans--; 1235 1236 return dup_sack; 1237 } 1238 1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1240 * the incoming SACK may not exactly match but we can find smaller MSS 1241 * aligned portion of it that matches. Therefore we might need to fragment 1242 * which may fail and creates some hassle (caller must handle error case 1243 * returns). 1244 */ 1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1246 u32 start_seq, u32 end_seq) 1247 { 1248 int in_sack, err; 1249 unsigned int pkt_len; 1250 1251 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1252 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1253 1254 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1255 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1256 1257 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1258 1259 if (!in_sack) 1260 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1261 else 1262 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1263 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size); 1264 if (err < 0) 1265 return err; 1266 } 1267 1268 return in_sack; 1269 } 1270 1271 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1272 int *reord, int dup_sack, int fack_count) 1273 { 1274 struct tcp_sock *tp = tcp_sk(sk); 1275 u8 sacked = TCP_SKB_CB(skb)->sacked; 1276 int flag = 0; 1277 1278 /* Account D-SACK for retransmitted packet. */ 1279 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1280 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1281 tp->undo_retrans--; 1282 if (sacked & TCPCB_SACKED_ACKED) 1283 *reord = min(fack_count, *reord); 1284 } 1285 1286 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1287 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1288 return flag; 1289 1290 if (!(sacked & TCPCB_SACKED_ACKED)) { 1291 if (sacked & TCPCB_SACKED_RETRANS) { 1292 /* If the segment is not tagged as lost, 1293 * we do not clear RETRANS, believing 1294 * that retransmission is still in flight. 1295 */ 1296 if (sacked & TCPCB_LOST) { 1297 TCP_SKB_CB(skb)->sacked &= 1298 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1299 tp->lost_out -= tcp_skb_pcount(skb); 1300 tp->retrans_out -= tcp_skb_pcount(skb); 1301 } 1302 } else { 1303 if (!(sacked & TCPCB_RETRANS)) { 1304 /* New sack for not retransmitted frame, 1305 * which was in hole. It is reordering. 1306 */ 1307 if (before(TCP_SKB_CB(skb)->seq, 1308 tcp_highest_sack_seq(tp))) 1309 *reord = min(fack_count, *reord); 1310 1311 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1313 flag |= FLAG_ONLY_ORIG_SACKED; 1314 } 1315 1316 if (sacked & TCPCB_LOST) { 1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1318 tp->lost_out -= tcp_skb_pcount(skb); 1319 } 1320 } 1321 1322 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1323 flag |= FLAG_DATA_SACKED; 1324 tp->sacked_out += tcp_skb_pcount(skb); 1325 1326 fack_count += tcp_skb_pcount(skb); 1327 1328 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1329 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1330 before(TCP_SKB_CB(skb)->seq, 1331 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1332 tp->lost_cnt_hint += tcp_skb_pcount(skb); 1333 1334 if (fack_count > tp->fackets_out) 1335 tp->fackets_out = fack_count; 1336 1337 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 1338 tcp_advance_highest_sack(sk, skb); 1339 } 1340 1341 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1342 * frames and clear it. undo_retrans is decreased above, L|R frames 1343 * are accounted above as well. 1344 */ 1345 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) { 1346 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1347 tp->retrans_out -= tcp_skb_pcount(skb); 1348 } 1349 1350 return flag; 1351 } 1352 1353 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1354 struct tcp_sack_block *next_dup, 1355 u32 start_seq, u32 end_seq, 1356 int dup_sack_in, int *fack_count, 1357 int *reord, int *flag) 1358 { 1359 tcp_for_write_queue_from(skb, sk) { 1360 int in_sack = 0; 1361 int dup_sack = dup_sack_in; 1362 1363 if (skb == tcp_send_head(sk)) 1364 break; 1365 1366 /* queue is in-order => we can short-circuit the walk early */ 1367 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1368 break; 1369 1370 if ((next_dup != NULL) && 1371 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1372 in_sack = tcp_match_skb_to_sack(sk, skb, 1373 next_dup->start_seq, 1374 next_dup->end_seq); 1375 if (in_sack > 0) 1376 dup_sack = 1; 1377 } 1378 1379 if (in_sack <= 0) 1380 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, 1381 end_seq); 1382 if (unlikely(in_sack < 0)) 1383 break; 1384 1385 if (in_sack) 1386 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack, 1387 *fack_count); 1388 1389 *fack_count += tcp_skb_pcount(skb); 1390 } 1391 return skb; 1392 } 1393 1394 /* Avoid all extra work that is being done by sacktag while walking in 1395 * a normal way 1396 */ 1397 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1398 u32 skip_to_seq, int *fack_count) 1399 { 1400 tcp_for_write_queue_from(skb, sk) { 1401 if (skb == tcp_send_head(sk)) 1402 break; 1403 1404 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1405 break; 1406 1407 *fack_count += tcp_skb_pcount(skb); 1408 } 1409 return skb; 1410 } 1411 1412 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1413 struct sock *sk, 1414 struct tcp_sack_block *next_dup, 1415 u32 skip_to_seq, 1416 int *fack_count, int *reord, 1417 int *flag) 1418 { 1419 if (next_dup == NULL) 1420 return skb; 1421 1422 if (before(next_dup->start_seq, skip_to_seq)) { 1423 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count); 1424 skb = tcp_sacktag_walk(skb, sk, NULL, 1425 next_dup->start_seq, next_dup->end_seq, 1426 1, fack_count, reord, flag); 1427 } 1428 1429 return skb; 1430 } 1431 1432 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1433 { 1434 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1435 } 1436 1437 static int 1438 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1439 u32 prior_snd_una) 1440 { 1441 const struct inet_connection_sock *icsk = inet_csk(sk); 1442 struct tcp_sock *tp = tcp_sk(sk); 1443 unsigned char *ptr = (skb_transport_header(ack_skb) + 1444 TCP_SKB_CB(ack_skb)->sacked); 1445 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1446 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1447 struct tcp_sack_block *cache; 1448 struct sk_buff *skb; 1449 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1450 int used_sacks; 1451 int reord = tp->packets_out; 1452 int flag = 0; 1453 int found_dup_sack = 0; 1454 int fack_count; 1455 int i, j; 1456 int first_sack_index; 1457 1458 if (!tp->sacked_out) { 1459 if (WARN_ON(tp->fackets_out)) 1460 tp->fackets_out = 0; 1461 tcp_highest_sack_reset(sk); 1462 } 1463 1464 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1465 num_sacks, prior_snd_una); 1466 if (found_dup_sack) 1467 flag |= FLAG_DSACKING_ACK; 1468 1469 /* Eliminate too old ACKs, but take into 1470 * account more or less fresh ones, they can 1471 * contain valid SACK info. 1472 */ 1473 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1474 return 0; 1475 1476 if (!tp->packets_out) 1477 goto out; 1478 1479 used_sacks = 0; 1480 first_sack_index = 0; 1481 for (i = 0; i < num_sacks; i++) { 1482 int dup_sack = !i && found_dup_sack; 1483 1484 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1485 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1486 1487 if (!tcp_is_sackblock_valid(tp, dup_sack, 1488 sp[used_sacks].start_seq, 1489 sp[used_sacks].end_seq)) { 1490 int mib_idx; 1491 1492 if (dup_sack) { 1493 if (!tp->undo_marker) 1494 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1495 else 1496 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1497 } else { 1498 /* Don't count olds caused by ACK reordering */ 1499 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1500 !after(sp[used_sacks].end_seq, tp->snd_una)) 1501 continue; 1502 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1503 } 1504 1505 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1506 if (i == 0) 1507 first_sack_index = -1; 1508 continue; 1509 } 1510 1511 /* Ignore very old stuff early */ 1512 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1513 continue; 1514 1515 used_sacks++; 1516 } 1517 1518 /* order SACK blocks to allow in order walk of the retrans queue */ 1519 for (i = used_sacks - 1; i > 0; i--) { 1520 for (j = 0; j < i; j++) { 1521 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1522 struct tcp_sack_block tmp; 1523 1524 tmp = sp[j]; 1525 sp[j] = sp[j + 1]; 1526 sp[j + 1] = tmp; 1527 1528 /* Track where the first SACK block goes to */ 1529 if (j == first_sack_index) 1530 first_sack_index = j + 1; 1531 } 1532 } 1533 } 1534 1535 skb = tcp_write_queue_head(sk); 1536 fack_count = 0; 1537 i = 0; 1538 1539 if (!tp->sacked_out) { 1540 /* It's already past, so skip checking against it */ 1541 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1542 } else { 1543 cache = tp->recv_sack_cache; 1544 /* Skip empty blocks in at head of the cache */ 1545 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1546 !cache->end_seq) 1547 cache++; 1548 } 1549 1550 while (i < used_sacks) { 1551 u32 start_seq = sp[i].start_seq; 1552 u32 end_seq = sp[i].end_seq; 1553 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1554 struct tcp_sack_block *next_dup = NULL; 1555 1556 if (found_dup_sack && ((i + 1) == first_sack_index)) 1557 next_dup = &sp[i + 1]; 1558 1559 /* Event "B" in the comment above. */ 1560 if (after(end_seq, tp->high_seq)) 1561 flag |= FLAG_DATA_LOST; 1562 1563 /* Skip too early cached blocks */ 1564 while (tcp_sack_cache_ok(tp, cache) && 1565 !before(start_seq, cache->end_seq)) 1566 cache++; 1567 1568 /* Can skip some work by looking recv_sack_cache? */ 1569 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1570 after(end_seq, cache->start_seq)) { 1571 1572 /* Head todo? */ 1573 if (before(start_seq, cache->start_seq)) { 1574 skb = tcp_sacktag_skip(skb, sk, start_seq, 1575 &fack_count); 1576 skb = tcp_sacktag_walk(skb, sk, next_dup, 1577 start_seq, 1578 cache->start_seq, 1579 dup_sack, &fack_count, 1580 &reord, &flag); 1581 } 1582 1583 /* Rest of the block already fully processed? */ 1584 if (!after(end_seq, cache->end_seq)) 1585 goto advance_sp; 1586 1587 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1588 cache->end_seq, 1589 &fack_count, &reord, 1590 &flag); 1591 1592 /* ...tail remains todo... */ 1593 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1594 /* ...but better entrypoint exists! */ 1595 skb = tcp_highest_sack(sk); 1596 if (skb == NULL) 1597 break; 1598 fack_count = tp->fackets_out; 1599 cache++; 1600 goto walk; 1601 } 1602 1603 skb = tcp_sacktag_skip(skb, sk, cache->end_seq, 1604 &fack_count); 1605 /* Check overlap against next cached too (past this one already) */ 1606 cache++; 1607 continue; 1608 } 1609 1610 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1611 skb = tcp_highest_sack(sk); 1612 if (skb == NULL) 1613 break; 1614 fack_count = tp->fackets_out; 1615 } 1616 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count); 1617 1618 walk: 1619 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq, 1620 dup_sack, &fack_count, &reord, &flag); 1621 1622 advance_sp: 1623 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1624 * due to in-order walk 1625 */ 1626 if (after(end_seq, tp->frto_highmark)) 1627 flag &= ~FLAG_ONLY_ORIG_SACKED; 1628 1629 i++; 1630 } 1631 1632 /* Clear the head of the cache sack blocks so we can skip it next time */ 1633 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1634 tp->recv_sack_cache[i].start_seq = 0; 1635 tp->recv_sack_cache[i].end_seq = 0; 1636 } 1637 for (j = 0; j < used_sacks; j++) 1638 tp->recv_sack_cache[i++] = sp[j]; 1639 1640 tcp_mark_lost_retrans(sk); 1641 1642 tcp_verify_left_out(tp); 1643 1644 if ((reord < tp->fackets_out) && 1645 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1646 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1647 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 1648 1649 out: 1650 1651 #if FASTRETRANS_DEBUG > 0 1652 WARN_ON((int)tp->sacked_out < 0); 1653 WARN_ON((int)tp->lost_out < 0); 1654 WARN_ON((int)tp->retrans_out < 0); 1655 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1656 #endif 1657 return flag; 1658 } 1659 1660 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1661 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1662 */ 1663 int tcp_limit_reno_sacked(struct tcp_sock *tp) 1664 { 1665 u32 holes; 1666 1667 holes = max(tp->lost_out, 1U); 1668 holes = min(holes, tp->packets_out); 1669 1670 if ((tp->sacked_out + holes) > tp->packets_out) { 1671 tp->sacked_out = tp->packets_out - holes; 1672 return 1; 1673 } 1674 return 0; 1675 } 1676 1677 /* If we receive more dupacks than we expected counting segments 1678 * in assumption of absent reordering, interpret this as reordering. 1679 * The only another reason could be bug in receiver TCP. 1680 */ 1681 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1682 { 1683 struct tcp_sock *tp = tcp_sk(sk); 1684 if (tcp_limit_reno_sacked(tp)) 1685 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1686 } 1687 1688 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1689 1690 static void tcp_add_reno_sack(struct sock *sk) 1691 { 1692 struct tcp_sock *tp = tcp_sk(sk); 1693 tp->sacked_out++; 1694 tcp_check_reno_reordering(sk, 0); 1695 tcp_verify_left_out(tp); 1696 } 1697 1698 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1699 1700 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1701 { 1702 struct tcp_sock *tp = tcp_sk(sk); 1703 1704 if (acked > 0) { 1705 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1706 if (acked - 1 >= tp->sacked_out) 1707 tp->sacked_out = 0; 1708 else 1709 tp->sacked_out -= acked - 1; 1710 } 1711 tcp_check_reno_reordering(sk, acked); 1712 tcp_verify_left_out(tp); 1713 } 1714 1715 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1716 { 1717 tp->sacked_out = 0; 1718 } 1719 1720 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1721 { 1722 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1723 } 1724 1725 /* F-RTO can only be used if TCP has never retransmitted anything other than 1726 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1727 */ 1728 int tcp_use_frto(struct sock *sk) 1729 { 1730 const struct tcp_sock *tp = tcp_sk(sk); 1731 const struct inet_connection_sock *icsk = inet_csk(sk); 1732 struct sk_buff *skb; 1733 1734 if (!sysctl_tcp_frto) 1735 return 0; 1736 1737 /* MTU probe and F-RTO won't really play nicely along currently */ 1738 if (icsk->icsk_mtup.probe_size) 1739 return 0; 1740 1741 if (tcp_is_sackfrto(tp)) 1742 return 1; 1743 1744 /* Avoid expensive walking of rexmit queue if possible */ 1745 if (tp->retrans_out > 1) 1746 return 0; 1747 1748 skb = tcp_write_queue_head(sk); 1749 if (tcp_skb_is_last(sk, skb)) 1750 return 1; 1751 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1752 tcp_for_write_queue_from(skb, sk) { 1753 if (skb == tcp_send_head(sk)) 1754 break; 1755 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1756 return 0; 1757 /* Short-circuit when first non-SACKed skb has been checked */ 1758 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1759 break; 1760 } 1761 return 1; 1762 } 1763 1764 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1765 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1766 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1767 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1768 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1769 * bits are handled if the Loss state is really to be entered (in 1770 * tcp_enter_frto_loss). 1771 * 1772 * Do like tcp_enter_loss() would; when RTO expires the second time it 1773 * does: 1774 * "Reduce ssthresh if it has not yet been made inside this window." 1775 */ 1776 void tcp_enter_frto(struct sock *sk) 1777 { 1778 const struct inet_connection_sock *icsk = inet_csk(sk); 1779 struct tcp_sock *tp = tcp_sk(sk); 1780 struct sk_buff *skb; 1781 1782 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1783 tp->snd_una == tp->high_seq || 1784 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1785 !icsk->icsk_retransmits)) { 1786 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1787 /* Our state is too optimistic in ssthresh() call because cwnd 1788 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1789 * recovery has not yet completed. Pattern would be this: RTO, 1790 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1791 * up here twice). 1792 * RFC4138 should be more specific on what to do, even though 1793 * RTO is quite unlikely to occur after the first Cumulative ACK 1794 * due to back-off and complexity of triggering events ... 1795 */ 1796 if (tp->frto_counter) { 1797 u32 stored_cwnd; 1798 stored_cwnd = tp->snd_cwnd; 1799 tp->snd_cwnd = 2; 1800 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1801 tp->snd_cwnd = stored_cwnd; 1802 } else { 1803 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1804 } 1805 /* ... in theory, cong.control module could do "any tricks" in 1806 * ssthresh(), which means that ca_state, lost bits and lost_out 1807 * counter would have to be faked before the call occurs. We 1808 * consider that too expensive, unlikely and hacky, so modules 1809 * using these in ssthresh() must deal these incompatibility 1810 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1811 */ 1812 tcp_ca_event(sk, CA_EVENT_FRTO); 1813 } 1814 1815 tp->undo_marker = tp->snd_una; 1816 tp->undo_retrans = 0; 1817 1818 skb = tcp_write_queue_head(sk); 1819 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1820 tp->undo_marker = 0; 1821 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1822 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1823 tp->retrans_out -= tcp_skb_pcount(skb); 1824 } 1825 tcp_verify_left_out(tp); 1826 1827 /* Too bad if TCP was application limited */ 1828 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1829 1830 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1831 * The last condition is necessary at least in tp->frto_counter case. 1832 */ 1833 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 1834 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1835 after(tp->high_seq, tp->snd_una)) { 1836 tp->frto_highmark = tp->high_seq; 1837 } else { 1838 tp->frto_highmark = tp->snd_nxt; 1839 } 1840 tcp_set_ca_state(sk, TCP_CA_Disorder); 1841 tp->high_seq = tp->snd_nxt; 1842 tp->frto_counter = 1; 1843 } 1844 1845 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1846 * which indicates that we should follow the traditional RTO recovery, 1847 * i.e. mark everything lost and do go-back-N retransmission. 1848 */ 1849 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1850 { 1851 struct tcp_sock *tp = tcp_sk(sk); 1852 struct sk_buff *skb; 1853 1854 tp->lost_out = 0; 1855 tp->retrans_out = 0; 1856 if (tcp_is_reno(tp)) 1857 tcp_reset_reno_sack(tp); 1858 1859 tcp_for_write_queue(skb, sk) { 1860 if (skb == tcp_send_head(sk)) 1861 break; 1862 1863 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1864 /* 1865 * Count the retransmission made on RTO correctly (only when 1866 * waiting for the first ACK and did not get it)... 1867 */ 1868 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 1869 /* For some reason this R-bit might get cleared? */ 1870 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1871 tp->retrans_out += tcp_skb_pcount(skb); 1872 /* ...enter this if branch just for the first segment */ 1873 flag |= FLAG_DATA_ACKED; 1874 } else { 1875 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1876 tp->undo_marker = 0; 1877 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1878 } 1879 1880 /* Marking forward transmissions that were made after RTO lost 1881 * can cause unnecessary retransmissions in some scenarios, 1882 * SACK blocks will mitigate that in some but not in all cases. 1883 * We used to not mark them but it was causing break-ups with 1884 * receivers that do only in-order receival. 1885 * 1886 * TODO: we could detect presence of such receiver and select 1887 * different behavior per flow. 1888 */ 1889 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1890 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1891 tp->lost_out += tcp_skb_pcount(skb); 1892 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1893 } 1894 } 1895 tcp_verify_left_out(tp); 1896 1897 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1898 tp->snd_cwnd_cnt = 0; 1899 tp->snd_cwnd_stamp = tcp_time_stamp; 1900 tp->frto_counter = 0; 1901 tp->bytes_acked = 0; 1902 1903 tp->reordering = min_t(unsigned int, tp->reordering, 1904 sysctl_tcp_reordering); 1905 tcp_set_ca_state(sk, TCP_CA_Loss); 1906 tp->high_seq = tp->snd_nxt; 1907 TCP_ECN_queue_cwr(tp); 1908 1909 tcp_clear_all_retrans_hints(tp); 1910 } 1911 1912 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1913 { 1914 tp->retrans_out = 0; 1915 tp->lost_out = 0; 1916 1917 tp->undo_marker = 0; 1918 tp->undo_retrans = 0; 1919 } 1920 1921 void tcp_clear_retrans(struct tcp_sock *tp) 1922 { 1923 tcp_clear_retrans_partial(tp); 1924 1925 tp->fackets_out = 0; 1926 tp->sacked_out = 0; 1927 } 1928 1929 /* Enter Loss state. If "how" is not zero, forget all SACK information 1930 * and reset tags completely, otherwise preserve SACKs. If receiver 1931 * dropped its ofo queue, we will know this due to reneging detection. 1932 */ 1933 void tcp_enter_loss(struct sock *sk, int how) 1934 { 1935 const struct inet_connection_sock *icsk = inet_csk(sk); 1936 struct tcp_sock *tp = tcp_sk(sk); 1937 struct sk_buff *skb; 1938 1939 /* Reduce ssthresh if it has not yet been made inside this window. */ 1940 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1941 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1942 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1943 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1944 tcp_ca_event(sk, CA_EVENT_LOSS); 1945 } 1946 tp->snd_cwnd = 1; 1947 tp->snd_cwnd_cnt = 0; 1948 tp->snd_cwnd_stamp = tcp_time_stamp; 1949 1950 tp->bytes_acked = 0; 1951 tcp_clear_retrans_partial(tp); 1952 1953 if (tcp_is_reno(tp)) 1954 tcp_reset_reno_sack(tp); 1955 1956 if (!how) { 1957 /* Push undo marker, if it was plain RTO and nothing 1958 * was retransmitted. */ 1959 tp->undo_marker = tp->snd_una; 1960 } else { 1961 tp->sacked_out = 0; 1962 tp->fackets_out = 0; 1963 } 1964 tcp_clear_all_retrans_hints(tp); 1965 1966 tcp_for_write_queue(skb, sk) { 1967 if (skb == tcp_send_head(sk)) 1968 break; 1969 1970 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1971 tp->undo_marker = 0; 1972 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1973 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1976 tp->lost_out += tcp_skb_pcount(skb); 1977 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1978 } 1979 } 1980 tcp_verify_left_out(tp); 1981 1982 tp->reordering = min_t(unsigned int, tp->reordering, 1983 sysctl_tcp_reordering); 1984 tcp_set_ca_state(sk, TCP_CA_Loss); 1985 tp->high_seq = tp->snd_nxt; 1986 TCP_ECN_queue_cwr(tp); 1987 /* Abort F-RTO algorithm if one is in progress */ 1988 tp->frto_counter = 0; 1989 } 1990 1991 /* If ACK arrived pointing to a remembered SACK, it means that our 1992 * remembered SACKs do not reflect real state of receiver i.e. 1993 * receiver _host_ is heavily congested (or buggy). 1994 * 1995 * Do processing similar to RTO timeout. 1996 */ 1997 static int tcp_check_sack_reneging(struct sock *sk, int flag) 1998 { 1999 if (flag & FLAG_SACK_RENEGING) { 2000 struct inet_connection_sock *icsk = inet_csk(sk); 2001 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2002 2003 tcp_enter_loss(sk, 1); 2004 icsk->icsk_retransmits++; 2005 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2007 icsk->icsk_rto, TCP_RTO_MAX); 2008 return 1; 2009 } 2010 return 0; 2011 } 2012 2013 static inline int tcp_fackets_out(struct tcp_sock *tp) 2014 { 2015 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2016 } 2017 2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2019 * counter when SACK is enabled (without SACK, sacked_out is used for 2020 * that purpose). 2021 * 2022 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2023 * segments up to the highest received SACK block so far and holes in 2024 * between them. 2025 * 2026 * With reordering, holes may still be in flight, so RFC3517 recovery 2027 * uses pure sacked_out (total number of SACKed segments) even though 2028 * it violates the RFC that uses duplicate ACKs, often these are equal 2029 * but when e.g. out-of-window ACKs or packet duplication occurs, 2030 * they differ. Since neither occurs due to loss, TCP should really 2031 * ignore them. 2032 */ 2033 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 2034 { 2035 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2036 } 2037 2038 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2039 { 2040 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2041 } 2042 2043 static inline int tcp_head_timedout(struct sock *sk) 2044 { 2045 struct tcp_sock *tp = tcp_sk(sk); 2046 2047 return tp->packets_out && 2048 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2049 } 2050 2051 /* Linux NewReno/SACK/FACK/ECN state machine. 2052 * -------------------------------------- 2053 * 2054 * "Open" Normal state, no dubious events, fast path. 2055 * "Disorder" In all the respects it is "Open", 2056 * but requires a bit more attention. It is entered when 2057 * we see some SACKs or dupacks. It is split of "Open" 2058 * mainly to move some processing from fast path to slow one. 2059 * "CWR" CWND was reduced due to some Congestion Notification event. 2060 * It can be ECN, ICMP source quench, local device congestion. 2061 * "Recovery" CWND was reduced, we are fast-retransmitting. 2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2063 * 2064 * tcp_fastretrans_alert() is entered: 2065 * - each incoming ACK, if state is not "Open" 2066 * - when arrived ACK is unusual, namely: 2067 * * SACK 2068 * * Duplicate ACK. 2069 * * ECN ECE. 2070 * 2071 * Counting packets in flight is pretty simple. 2072 * 2073 * in_flight = packets_out - left_out + retrans_out 2074 * 2075 * packets_out is SND.NXT-SND.UNA counted in packets. 2076 * 2077 * retrans_out is number of retransmitted segments. 2078 * 2079 * left_out is number of segments left network, but not ACKed yet. 2080 * 2081 * left_out = sacked_out + lost_out 2082 * 2083 * sacked_out: Packets, which arrived to receiver out of order 2084 * and hence not ACKed. With SACKs this number is simply 2085 * amount of SACKed data. Even without SACKs 2086 * it is easy to give pretty reliable estimate of this number, 2087 * counting duplicate ACKs. 2088 * 2089 * lost_out: Packets lost by network. TCP has no explicit 2090 * "loss notification" feedback from network (for now). 2091 * It means that this number can be only _guessed_. 2092 * Actually, it is the heuristics to predict lossage that 2093 * distinguishes different algorithms. 2094 * 2095 * F.e. after RTO, when all the queue is considered as lost, 2096 * lost_out = packets_out and in_flight = retrans_out. 2097 * 2098 * Essentially, we have now two algorithms counting 2099 * lost packets. 2100 * 2101 * FACK: It is the simplest heuristics. As soon as we decided 2102 * that something is lost, we decide that _all_ not SACKed 2103 * packets until the most forward SACK are lost. I.e. 2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2105 * It is absolutely correct estimate, if network does not reorder 2106 * packets. And it loses any connection to reality when reordering 2107 * takes place. We use FACK by default until reordering 2108 * is suspected on the path to this destination. 2109 * 2110 * NewReno: when Recovery is entered, we assume that one segment 2111 * is lost (classic Reno). While we are in Recovery and 2112 * a partial ACK arrives, we assume that one more packet 2113 * is lost (NewReno). This heuristics are the same in NewReno 2114 * and SACK. 2115 * 2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2117 * deflation etc. CWND is real congestion window, never inflated, changes 2118 * only according to classic VJ rules. 2119 * 2120 * Really tricky (and requiring careful tuning) part of algorithm 2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2122 * The first determines the moment _when_ we should reduce CWND and, 2123 * hence, slow down forward transmission. In fact, it determines the moment 2124 * when we decide that hole is caused by loss, rather than by a reorder. 2125 * 2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2127 * holes, caused by lost packets. 2128 * 2129 * And the most logically complicated part of algorithm is undo 2130 * heuristics. We detect false retransmits due to both too early 2131 * fast retransmit (reordering) and underestimated RTO, analyzing 2132 * timestamps and D-SACKs. When we detect that some segments were 2133 * retransmitted by mistake and CWND reduction was wrong, we undo 2134 * window reduction and abort recovery phase. This logic is hidden 2135 * inside several functions named tcp_try_undo_<something>. 2136 */ 2137 2138 /* This function decides, when we should leave Disordered state 2139 * and enter Recovery phase, reducing congestion window. 2140 * 2141 * Main question: may we further continue forward transmission 2142 * with the same cwnd? 2143 */ 2144 static int tcp_time_to_recover(struct sock *sk) 2145 { 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 __u32 packets_out; 2148 2149 /* Do not perform any recovery during F-RTO algorithm */ 2150 if (tp->frto_counter) 2151 return 0; 2152 2153 /* Trick#1: The loss is proven. */ 2154 if (tp->lost_out) 2155 return 1; 2156 2157 /* Not-A-Trick#2 : Classic rule... */ 2158 if (tcp_dupack_heurestics(tp) > tp->reordering) 2159 return 1; 2160 2161 /* Trick#3 : when we use RFC2988 timer restart, fast 2162 * retransmit can be triggered by timeout of queue head. 2163 */ 2164 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2165 return 1; 2166 2167 /* Trick#4: It is still not OK... But will it be useful to delay 2168 * recovery more? 2169 */ 2170 packets_out = tp->packets_out; 2171 if (packets_out <= tp->reordering && 2172 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2173 !tcp_may_send_now(sk)) { 2174 /* We have nothing to send. This connection is limited 2175 * either by receiver window or by application. 2176 */ 2177 return 1; 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2184 * is against sacked "cnt", otherwise it's against facked "cnt" 2185 */ 2186 static void tcp_mark_head_lost(struct sock *sk, int packets) 2187 { 2188 struct tcp_sock *tp = tcp_sk(sk); 2189 struct sk_buff *skb; 2190 int cnt, oldcnt; 2191 int err; 2192 unsigned int mss; 2193 2194 WARN_ON(packets > tp->packets_out); 2195 if (tp->lost_skb_hint) { 2196 skb = tp->lost_skb_hint; 2197 cnt = tp->lost_cnt_hint; 2198 } else { 2199 skb = tcp_write_queue_head(sk); 2200 cnt = 0; 2201 } 2202 2203 tcp_for_write_queue_from(skb, sk) { 2204 if (skb == tcp_send_head(sk)) 2205 break; 2206 /* TODO: do this better */ 2207 /* this is not the most efficient way to do this... */ 2208 tp->lost_skb_hint = skb; 2209 tp->lost_cnt_hint = cnt; 2210 2211 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2212 break; 2213 2214 oldcnt = cnt; 2215 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2216 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2217 cnt += tcp_skb_pcount(skb); 2218 2219 if (cnt > packets) { 2220 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2221 break; 2222 2223 mss = skb_shinfo(skb)->gso_size; 2224 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2225 if (err < 0) 2226 break; 2227 cnt = packets; 2228 } 2229 2230 tcp_skb_mark_lost(tp, skb); 2231 } 2232 tcp_verify_left_out(tp); 2233 } 2234 2235 /* Account newly detected lost packet(s) */ 2236 2237 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2238 { 2239 struct tcp_sock *tp = tcp_sk(sk); 2240 2241 if (tcp_is_reno(tp)) { 2242 tcp_mark_head_lost(sk, 1); 2243 } else if (tcp_is_fack(tp)) { 2244 int lost = tp->fackets_out - tp->reordering; 2245 if (lost <= 0) 2246 lost = 1; 2247 tcp_mark_head_lost(sk, lost); 2248 } else { 2249 int sacked_upto = tp->sacked_out - tp->reordering; 2250 if (sacked_upto < fast_rexmit) 2251 sacked_upto = fast_rexmit; 2252 tcp_mark_head_lost(sk, sacked_upto); 2253 } 2254 2255 /* New heuristics: it is possible only after we switched 2256 * to restart timer each time when something is ACKed. 2257 * Hence, we can detect timed out packets during fast 2258 * retransmit without falling to slow start. 2259 */ 2260 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) { 2261 struct sk_buff *skb; 2262 2263 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 2264 : tcp_write_queue_head(sk); 2265 2266 tcp_for_write_queue_from(skb, sk) { 2267 if (skb == tcp_send_head(sk)) 2268 break; 2269 if (!tcp_skb_timedout(sk, skb)) 2270 break; 2271 2272 tcp_skb_mark_lost(tp, skb); 2273 } 2274 2275 tp->scoreboard_skb_hint = skb; 2276 2277 tcp_verify_left_out(tp); 2278 } 2279 } 2280 2281 /* CWND moderation, preventing bursts due to too big ACKs 2282 * in dubious situations. 2283 */ 2284 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2285 { 2286 tp->snd_cwnd = min(tp->snd_cwnd, 2287 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2288 tp->snd_cwnd_stamp = tcp_time_stamp; 2289 } 2290 2291 /* Lower bound on congestion window is slow start threshold 2292 * unless congestion avoidance choice decides to overide it. 2293 */ 2294 static inline u32 tcp_cwnd_min(const struct sock *sk) 2295 { 2296 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2297 2298 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2299 } 2300 2301 /* Decrease cwnd each second ack. */ 2302 static void tcp_cwnd_down(struct sock *sk, int flag) 2303 { 2304 struct tcp_sock *tp = tcp_sk(sk); 2305 int decr = tp->snd_cwnd_cnt + 1; 2306 2307 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2308 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2309 tp->snd_cwnd_cnt = decr & 1; 2310 decr >>= 1; 2311 2312 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2313 tp->snd_cwnd -= decr; 2314 2315 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2316 tp->snd_cwnd_stamp = tcp_time_stamp; 2317 } 2318 } 2319 2320 /* Nothing was retransmitted or returned timestamp is less 2321 * than timestamp of the first retransmission. 2322 */ 2323 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2324 { 2325 return !tp->retrans_stamp || 2326 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2327 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2328 } 2329 2330 /* Undo procedures. */ 2331 2332 #if FASTRETRANS_DEBUG > 1 2333 static void DBGUNDO(struct sock *sk, const char *msg) 2334 { 2335 struct tcp_sock *tp = tcp_sk(sk); 2336 struct inet_sock *inet = inet_sk(sk); 2337 2338 if (sk->sk_family == AF_INET) { 2339 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n", 2340 msg, 2341 NIPQUAD(inet->daddr), ntohs(inet->dport), 2342 tp->snd_cwnd, tcp_left_out(tp), 2343 tp->snd_ssthresh, tp->prior_ssthresh, 2344 tp->packets_out); 2345 } 2346 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2347 else if (sk->sk_family == AF_INET6) { 2348 struct ipv6_pinfo *np = inet6_sk(sk); 2349 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n", 2350 msg, 2351 NIP6(np->daddr), ntohs(inet->dport), 2352 tp->snd_cwnd, tcp_left_out(tp), 2353 tp->snd_ssthresh, tp->prior_ssthresh, 2354 tp->packets_out); 2355 } 2356 #endif 2357 } 2358 #else 2359 #define DBGUNDO(x...) do { } while (0) 2360 #endif 2361 2362 static void tcp_undo_cwr(struct sock *sk, const int undo) 2363 { 2364 struct tcp_sock *tp = tcp_sk(sk); 2365 2366 if (tp->prior_ssthresh) { 2367 const struct inet_connection_sock *icsk = inet_csk(sk); 2368 2369 if (icsk->icsk_ca_ops->undo_cwnd) 2370 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2371 else 2372 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2373 2374 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2375 tp->snd_ssthresh = tp->prior_ssthresh; 2376 TCP_ECN_withdraw_cwr(tp); 2377 } 2378 } else { 2379 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2380 } 2381 tcp_moderate_cwnd(tp); 2382 tp->snd_cwnd_stamp = tcp_time_stamp; 2383 } 2384 2385 static inline int tcp_may_undo(struct tcp_sock *tp) 2386 { 2387 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2388 } 2389 2390 /* People celebrate: "We love our President!" */ 2391 static int tcp_try_undo_recovery(struct sock *sk) 2392 { 2393 struct tcp_sock *tp = tcp_sk(sk); 2394 2395 if (tcp_may_undo(tp)) { 2396 int mib_idx; 2397 2398 /* Happy end! We did not retransmit anything 2399 * or our original transmission succeeded. 2400 */ 2401 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2402 tcp_undo_cwr(sk, 1); 2403 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2404 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2405 else 2406 mib_idx = LINUX_MIB_TCPFULLUNDO; 2407 2408 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2409 tp->undo_marker = 0; 2410 } 2411 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2412 /* Hold old state until something *above* high_seq 2413 * is ACKed. For Reno it is MUST to prevent false 2414 * fast retransmits (RFC2582). SACK TCP is safe. */ 2415 tcp_moderate_cwnd(tp); 2416 return 1; 2417 } 2418 tcp_set_ca_state(sk, TCP_CA_Open); 2419 return 0; 2420 } 2421 2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2423 static void tcp_try_undo_dsack(struct sock *sk) 2424 { 2425 struct tcp_sock *tp = tcp_sk(sk); 2426 2427 if (tp->undo_marker && !tp->undo_retrans) { 2428 DBGUNDO(sk, "D-SACK"); 2429 tcp_undo_cwr(sk, 1); 2430 tp->undo_marker = 0; 2431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2432 } 2433 } 2434 2435 /* Undo during fast recovery after partial ACK. */ 2436 2437 static int tcp_try_undo_partial(struct sock *sk, int acked) 2438 { 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 /* Partial ACK arrived. Force Hoe's retransmit. */ 2441 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2442 2443 if (tcp_may_undo(tp)) { 2444 /* Plain luck! Hole if filled with delayed 2445 * packet, rather than with a retransmit. 2446 */ 2447 if (tp->retrans_out == 0) 2448 tp->retrans_stamp = 0; 2449 2450 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2451 2452 DBGUNDO(sk, "Hoe"); 2453 tcp_undo_cwr(sk, 0); 2454 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2455 2456 /* So... Do not make Hoe's retransmit yet. 2457 * If the first packet was delayed, the rest 2458 * ones are most probably delayed as well. 2459 */ 2460 failed = 0; 2461 } 2462 return failed; 2463 } 2464 2465 /* Undo during loss recovery after partial ACK. */ 2466 static int tcp_try_undo_loss(struct sock *sk) 2467 { 2468 struct tcp_sock *tp = tcp_sk(sk); 2469 2470 if (tcp_may_undo(tp)) { 2471 struct sk_buff *skb; 2472 tcp_for_write_queue(skb, sk) { 2473 if (skb == tcp_send_head(sk)) 2474 break; 2475 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2476 } 2477 2478 tcp_clear_all_retrans_hints(tp); 2479 2480 DBGUNDO(sk, "partial loss"); 2481 tp->lost_out = 0; 2482 tcp_undo_cwr(sk, 1); 2483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2484 inet_csk(sk)->icsk_retransmits = 0; 2485 tp->undo_marker = 0; 2486 if (tcp_is_sack(tp)) 2487 tcp_set_ca_state(sk, TCP_CA_Open); 2488 return 1; 2489 } 2490 return 0; 2491 } 2492 2493 static inline void tcp_complete_cwr(struct sock *sk) 2494 { 2495 struct tcp_sock *tp = tcp_sk(sk); 2496 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2497 tp->snd_cwnd_stamp = tcp_time_stamp; 2498 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2499 } 2500 2501 static void tcp_try_keep_open(struct sock *sk) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 int state = TCP_CA_Open; 2505 2506 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2507 state = TCP_CA_Disorder; 2508 2509 if (inet_csk(sk)->icsk_ca_state != state) { 2510 tcp_set_ca_state(sk, state); 2511 tp->high_seq = tp->snd_nxt; 2512 } 2513 } 2514 2515 static void tcp_try_to_open(struct sock *sk, int flag) 2516 { 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 2519 tcp_verify_left_out(tp); 2520 2521 if (!tp->frto_counter && tp->retrans_out == 0) 2522 tp->retrans_stamp = 0; 2523 2524 if (flag & FLAG_ECE) 2525 tcp_enter_cwr(sk, 1); 2526 2527 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2528 tcp_try_keep_open(sk); 2529 tcp_moderate_cwnd(tp); 2530 } else { 2531 tcp_cwnd_down(sk, flag); 2532 } 2533 } 2534 2535 static void tcp_mtup_probe_failed(struct sock *sk) 2536 { 2537 struct inet_connection_sock *icsk = inet_csk(sk); 2538 2539 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2540 icsk->icsk_mtup.probe_size = 0; 2541 } 2542 2543 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 struct inet_connection_sock *icsk = inet_csk(sk); 2547 2548 /* FIXME: breaks with very large cwnd */ 2549 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2550 tp->snd_cwnd = tp->snd_cwnd * 2551 tcp_mss_to_mtu(sk, tp->mss_cache) / 2552 icsk->icsk_mtup.probe_size; 2553 tp->snd_cwnd_cnt = 0; 2554 tp->snd_cwnd_stamp = tcp_time_stamp; 2555 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2556 2557 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2558 icsk->icsk_mtup.probe_size = 0; 2559 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2560 } 2561 2562 /* Process an event, which can update packets-in-flight not trivially. 2563 * Main goal of this function is to calculate new estimate for left_out, 2564 * taking into account both packets sitting in receiver's buffer and 2565 * packets lost by network. 2566 * 2567 * Besides that it does CWND reduction, when packet loss is detected 2568 * and changes state of machine. 2569 * 2570 * It does _not_ decide what to send, it is made in function 2571 * tcp_xmit_retransmit_queue(). 2572 */ 2573 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2574 { 2575 struct inet_connection_sock *icsk = inet_csk(sk); 2576 struct tcp_sock *tp = tcp_sk(sk); 2577 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2578 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2579 (tcp_fackets_out(tp) > tp->reordering)); 2580 int fast_rexmit = 0, mib_idx; 2581 2582 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2583 tp->sacked_out = 0; 2584 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2585 tp->fackets_out = 0; 2586 2587 /* Now state machine starts. 2588 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2589 if (flag & FLAG_ECE) 2590 tp->prior_ssthresh = 0; 2591 2592 /* B. In all the states check for reneging SACKs. */ 2593 if (tcp_check_sack_reneging(sk, flag)) 2594 return; 2595 2596 /* C. Process data loss notification, provided it is valid. */ 2597 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2598 before(tp->snd_una, tp->high_seq) && 2599 icsk->icsk_ca_state != TCP_CA_Open && 2600 tp->fackets_out > tp->reordering) { 2601 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2602 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2603 } 2604 2605 /* D. Check consistency of the current state. */ 2606 tcp_verify_left_out(tp); 2607 2608 /* E. Check state exit conditions. State can be terminated 2609 * when high_seq is ACKed. */ 2610 if (icsk->icsk_ca_state == TCP_CA_Open) { 2611 WARN_ON(tp->retrans_out != 0); 2612 tp->retrans_stamp = 0; 2613 } else if (!before(tp->snd_una, tp->high_seq)) { 2614 switch (icsk->icsk_ca_state) { 2615 case TCP_CA_Loss: 2616 icsk->icsk_retransmits = 0; 2617 if (tcp_try_undo_recovery(sk)) 2618 return; 2619 break; 2620 2621 case TCP_CA_CWR: 2622 /* CWR is to be held something *above* high_seq 2623 * is ACKed for CWR bit to reach receiver. */ 2624 if (tp->snd_una != tp->high_seq) { 2625 tcp_complete_cwr(sk); 2626 tcp_set_ca_state(sk, TCP_CA_Open); 2627 } 2628 break; 2629 2630 case TCP_CA_Disorder: 2631 tcp_try_undo_dsack(sk); 2632 if (!tp->undo_marker || 2633 /* For SACK case do not Open to allow to undo 2634 * catching for all duplicate ACKs. */ 2635 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2636 tp->undo_marker = 0; 2637 tcp_set_ca_state(sk, TCP_CA_Open); 2638 } 2639 break; 2640 2641 case TCP_CA_Recovery: 2642 if (tcp_is_reno(tp)) 2643 tcp_reset_reno_sack(tp); 2644 if (tcp_try_undo_recovery(sk)) 2645 return; 2646 tcp_complete_cwr(sk); 2647 break; 2648 } 2649 } 2650 2651 /* F. Process state. */ 2652 switch (icsk->icsk_ca_state) { 2653 case TCP_CA_Recovery: 2654 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2655 if (tcp_is_reno(tp) && is_dupack) 2656 tcp_add_reno_sack(sk); 2657 } else 2658 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2659 break; 2660 case TCP_CA_Loss: 2661 if (flag & FLAG_DATA_ACKED) 2662 icsk->icsk_retransmits = 0; 2663 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 2664 tcp_reset_reno_sack(tp); 2665 if (!tcp_try_undo_loss(sk)) { 2666 tcp_moderate_cwnd(tp); 2667 tcp_xmit_retransmit_queue(sk); 2668 return; 2669 } 2670 if (icsk->icsk_ca_state != TCP_CA_Open) 2671 return; 2672 /* Loss is undone; fall through to processing in Open state. */ 2673 default: 2674 if (tcp_is_reno(tp)) { 2675 if (flag & FLAG_SND_UNA_ADVANCED) 2676 tcp_reset_reno_sack(tp); 2677 if (is_dupack) 2678 tcp_add_reno_sack(sk); 2679 } 2680 2681 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2682 tcp_try_undo_dsack(sk); 2683 2684 if (!tcp_time_to_recover(sk)) { 2685 tcp_try_to_open(sk, flag); 2686 return; 2687 } 2688 2689 /* MTU probe failure: don't reduce cwnd */ 2690 if (icsk->icsk_ca_state < TCP_CA_CWR && 2691 icsk->icsk_mtup.probe_size && 2692 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2693 tcp_mtup_probe_failed(sk); 2694 /* Restores the reduction we did in tcp_mtup_probe() */ 2695 tp->snd_cwnd++; 2696 tcp_simple_retransmit(sk); 2697 return; 2698 } 2699 2700 /* Otherwise enter Recovery state */ 2701 2702 if (tcp_is_reno(tp)) 2703 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2704 else 2705 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2706 2707 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2708 2709 tp->high_seq = tp->snd_nxt; 2710 tp->prior_ssthresh = 0; 2711 tp->undo_marker = tp->snd_una; 2712 tp->undo_retrans = tp->retrans_out; 2713 2714 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2715 if (!(flag & FLAG_ECE)) 2716 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2717 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2718 TCP_ECN_queue_cwr(tp); 2719 } 2720 2721 tp->bytes_acked = 0; 2722 tp->snd_cwnd_cnt = 0; 2723 tcp_set_ca_state(sk, TCP_CA_Recovery); 2724 fast_rexmit = 1; 2725 } 2726 2727 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 2728 tcp_update_scoreboard(sk, fast_rexmit); 2729 tcp_cwnd_down(sk, flag); 2730 tcp_xmit_retransmit_queue(sk); 2731 } 2732 2733 /* Read draft-ietf-tcplw-high-performance before mucking 2734 * with this code. (Supersedes RFC1323) 2735 */ 2736 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2737 { 2738 /* RTTM Rule: A TSecr value received in a segment is used to 2739 * update the averaged RTT measurement only if the segment 2740 * acknowledges some new data, i.e., only if it advances the 2741 * left edge of the send window. 2742 * 2743 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2744 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2745 * 2746 * Changed: reset backoff as soon as we see the first valid sample. 2747 * If we do not, we get strongly overestimated rto. With timestamps 2748 * samples are accepted even from very old segments: f.e., when rtt=1 2749 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2750 * answer arrives rto becomes 120 seconds! If at least one of segments 2751 * in window is lost... Voila. --ANK (010210) 2752 */ 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2755 tcp_rtt_estimator(sk, seq_rtt); 2756 tcp_set_rto(sk); 2757 inet_csk(sk)->icsk_backoff = 0; 2758 tcp_bound_rto(sk); 2759 } 2760 2761 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2762 { 2763 /* We don't have a timestamp. Can only use 2764 * packets that are not retransmitted to determine 2765 * rtt estimates. Also, we must not reset the 2766 * backoff for rto until we get a non-retransmitted 2767 * packet. This allows us to deal with a situation 2768 * where the network delay has increased suddenly. 2769 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2770 */ 2771 2772 if (flag & FLAG_RETRANS_DATA_ACKED) 2773 return; 2774 2775 tcp_rtt_estimator(sk, seq_rtt); 2776 tcp_set_rto(sk); 2777 inet_csk(sk)->icsk_backoff = 0; 2778 tcp_bound_rto(sk); 2779 } 2780 2781 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2782 const s32 seq_rtt) 2783 { 2784 const struct tcp_sock *tp = tcp_sk(sk); 2785 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2786 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2787 tcp_ack_saw_tstamp(sk, flag); 2788 else if (seq_rtt >= 0) 2789 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2790 } 2791 2792 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 2793 { 2794 const struct inet_connection_sock *icsk = inet_csk(sk); 2795 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 2796 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2797 } 2798 2799 /* Restart timer after forward progress on connection. 2800 * RFC2988 recommends to restart timer to now+rto. 2801 */ 2802 static void tcp_rearm_rto(struct sock *sk) 2803 { 2804 struct tcp_sock *tp = tcp_sk(sk); 2805 2806 if (!tp->packets_out) { 2807 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2808 } else { 2809 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2810 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2811 } 2812 } 2813 2814 /* If we get here, the whole TSO packet has not been acked. */ 2815 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2816 { 2817 struct tcp_sock *tp = tcp_sk(sk); 2818 u32 packets_acked; 2819 2820 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2821 2822 packets_acked = tcp_skb_pcount(skb); 2823 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2824 return 0; 2825 packets_acked -= tcp_skb_pcount(skb); 2826 2827 if (packets_acked) { 2828 BUG_ON(tcp_skb_pcount(skb) == 0); 2829 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2830 } 2831 2832 return packets_acked; 2833 } 2834 2835 /* Remove acknowledged frames from the retransmission queue. If our packet 2836 * is before the ack sequence we can discard it as it's confirmed to have 2837 * arrived at the other end. 2838 */ 2839 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 2840 u32 prior_snd_una) 2841 { 2842 struct tcp_sock *tp = tcp_sk(sk); 2843 const struct inet_connection_sock *icsk = inet_csk(sk); 2844 struct sk_buff *skb; 2845 u32 now = tcp_time_stamp; 2846 int fully_acked = 1; 2847 int flag = 0; 2848 u32 pkts_acked = 0; 2849 u32 reord = tp->packets_out; 2850 u32 prior_sacked = tp->sacked_out; 2851 s32 seq_rtt = -1; 2852 s32 ca_seq_rtt = -1; 2853 ktime_t last_ackt = net_invalid_timestamp(); 2854 2855 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 2856 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2857 u32 end_seq; 2858 u32 acked_pcount; 2859 u8 sacked = scb->sacked; 2860 2861 /* Determine how many packets and what bytes were acked, tso and else */ 2862 if (after(scb->end_seq, tp->snd_una)) { 2863 if (tcp_skb_pcount(skb) == 1 || 2864 !after(tp->snd_una, scb->seq)) 2865 break; 2866 2867 acked_pcount = tcp_tso_acked(sk, skb); 2868 if (!acked_pcount) 2869 break; 2870 2871 fully_acked = 0; 2872 end_seq = tp->snd_una; 2873 } else { 2874 acked_pcount = tcp_skb_pcount(skb); 2875 end_seq = scb->end_seq; 2876 } 2877 2878 /* MTU probing checks */ 2879 if (fully_acked && icsk->icsk_mtup.probe_size && 2880 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { 2881 tcp_mtup_probe_success(sk, skb); 2882 } 2883 2884 if (sacked & TCPCB_RETRANS) { 2885 if (sacked & TCPCB_SACKED_RETRANS) 2886 tp->retrans_out -= acked_pcount; 2887 flag |= FLAG_RETRANS_DATA_ACKED; 2888 ca_seq_rtt = -1; 2889 seq_rtt = -1; 2890 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 2891 flag |= FLAG_NONHEAD_RETRANS_ACKED; 2892 } else { 2893 ca_seq_rtt = now - scb->when; 2894 last_ackt = skb->tstamp; 2895 if (seq_rtt < 0) { 2896 seq_rtt = ca_seq_rtt; 2897 } 2898 if (!(sacked & TCPCB_SACKED_ACKED)) 2899 reord = min(pkts_acked, reord); 2900 } 2901 2902 if (sacked & TCPCB_SACKED_ACKED) 2903 tp->sacked_out -= acked_pcount; 2904 if (sacked & TCPCB_LOST) 2905 tp->lost_out -= acked_pcount; 2906 2907 tp->packets_out -= acked_pcount; 2908 pkts_acked += acked_pcount; 2909 2910 /* Initial outgoing SYN's get put onto the write_queue 2911 * just like anything else we transmit. It is not 2912 * true data, and if we misinform our callers that 2913 * this ACK acks real data, we will erroneously exit 2914 * connection startup slow start one packet too 2915 * quickly. This is severely frowned upon behavior. 2916 */ 2917 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2918 flag |= FLAG_DATA_ACKED; 2919 } else { 2920 flag |= FLAG_SYN_ACKED; 2921 tp->retrans_stamp = 0; 2922 } 2923 2924 if (!fully_acked) 2925 break; 2926 2927 tcp_unlink_write_queue(skb, sk); 2928 sk_wmem_free_skb(sk, skb); 2929 tp->scoreboard_skb_hint = NULL; 2930 if (skb == tp->retransmit_skb_hint) 2931 tp->retransmit_skb_hint = NULL; 2932 if (skb == tp->lost_skb_hint) 2933 tp->lost_skb_hint = NULL; 2934 } 2935 2936 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 2937 tp->snd_up = tp->snd_una; 2938 2939 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2940 flag |= FLAG_SACK_RENEGING; 2941 2942 if (flag & FLAG_ACKED) { 2943 const struct tcp_congestion_ops *ca_ops 2944 = inet_csk(sk)->icsk_ca_ops; 2945 2946 tcp_ack_update_rtt(sk, flag, seq_rtt); 2947 tcp_rearm_rto(sk); 2948 2949 if (tcp_is_reno(tp)) { 2950 tcp_remove_reno_sacks(sk, pkts_acked); 2951 } else { 2952 /* Non-retransmitted hole got filled? That's reordering */ 2953 if (reord < prior_fackets) 2954 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 2955 2956 /* No need to care for underflows here because 2957 * the lost_skb_hint gets NULLed if we're past it 2958 * (or something non-trivial happened) 2959 */ 2960 if (tcp_is_fack(tp)) 2961 tp->lost_cnt_hint -= pkts_acked; 2962 else 2963 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out; 2964 } 2965 2966 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 2967 2968 if (ca_ops->pkts_acked) { 2969 s32 rtt_us = -1; 2970 2971 /* Is the ACK triggering packet unambiguous? */ 2972 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 2973 /* High resolution needed and available? */ 2974 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 2975 !ktime_equal(last_ackt, 2976 net_invalid_timestamp())) 2977 rtt_us = ktime_us_delta(ktime_get_real(), 2978 last_ackt); 2979 else if (ca_seq_rtt > 0) 2980 rtt_us = jiffies_to_usecs(ca_seq_rtt); 2981 } 2982 2983 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 2984 } 2985 } 2986 2987 #if FASTRETRANS_DEBUG > 0 2988 WARN_ON((int)tp->sacked_out < 0); 2989 WARN_ON((int)tp->lost_out < 0); 2990 WARN_ON((int)tp->retrans_out < 0); 2991 if (!tp->packets_out && tcp_is_sack(tp)) { 2992 icsk = inet_csk(sk); 2993 if (tp->lost_out) { 2994 printk(KERN_DEBUG "Leak l=%u %d\n", 2995 tp->lost_out, icsk->icsk_ca_state); 2996 tp->lost_out = 0; 2997 } 2998 if (tp->sacked_out) { 2999 printk(KERN_DEBUG "Leak s=%u %d\n", 3000 tp->sacked_out, icsk->icsk_ca_state); 3001 tp->sacked_out = 0; 3002 } 3003 if (tp->retrans_out) { 3004 printk(KERN_DEBUG "Leak r=%u %d\n", 3005 tp->retrans_out, icsk->icsk_ca_state); 3006 tp->retrans_out = 0; 3007 } 3008 } 3009 #endif 3010 return flag; 3011 } 3012 3013 static void tcp_ack_probe(struct sock *sk) 3014 { 3015 const struct tcp_sock *tp = tcp_sk(sk); 3016 struct inet_connection_sock *icsk = inet_csk(sk); 3017 3018 /* Was it a usable window open? */ 3019 3020 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3021 icsk->icsk_backoff = 0; 3022 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3023 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3024 * This function is not for random using! 3025 */ 3026 } else { 3027 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3028 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3029 TCP_RTO_MAX); 3030 } 3031 } 3032 3033 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3034 { 3035 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3036 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3037 } 3038 3039 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3040 { 3041 const struct tcp_sock *tp = tcp_sk(sk); 3042 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3043 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3044 } 3045 3046 /* Check that window update is acceptable. 3047 * The function assumes that snd_una<=ack<=snd_next. 3048 */ 3049 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3050 const u32 ack, const u32 ack_seq, 3051 const u32 nwin) 3052 { 3053 return (after(ack, tp->snd_una) || 3054 after(ack_seq, tp->snd_wl1) || 3055 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3056 } 3057 3058 /* Update our send window. 3059 * 3060 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3061 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3062 */ 3063 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3064 u32 ack_seq) 3065 { 3066 struct tcp_sock *tp = tcp_sk(sk); 3067 int flag = 0; 3068 u32 nwin = ntohs(tcp_hdr(skb)->window); 3069 3070 if (likely(!tcp_hdr(skb)->syn)) 3071 nwin <<= tp->rx_opt.snd_wscale; 3072 3073 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3074 flag |= FLAG_WIN_UPDATE; 3075 tcp_update_wl(tp, ack, ack_seq); 3076 3077 if (tp->snd_wnd != nwin) { 3078 tp->snd_wnd = nwin; 3079 3080 /* Note, it is the only place, where 3081 * fast path is recovered for sending TCP. 3082 */ 3083 tp->pred_flags = 0; 3084 tcp_fast_path_check(sk); 3085 3086 if (nwin > tp->max_window) { 3087 tp->max_window = nwin; 3088 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3089 } 3090 } 3091 } 3092 3093 tp->snd_una = ack; 3094 3095 return flag; 3096 } 3097 3098 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3099 * continue in congestion avoidance. 3100 */ 3101 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3102 { 3103 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3104 tp->snd_cwnd_cnt = 0; 3105 tp->bytes_acked = 0; 3106 TCP_ECN_queue_cwr(tp); 3107 tcp_moderate_cwnd(tp); 3108 } 3109 3110 /* A conservative spurious RTO response algorithm: reduce cwnd using 3111 * rate halving and continue in congestion avoidance. 3112 */ 3113 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3114 { 3115 tcp_enter_cwr(sk, 0); 3116 } 3117 3118 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3119 { 3120 if (flag & FLAG_ECE) 3121 tcp_ratehalving_spur_to_response(sk); 3122 else 3123 tcp_undo_cwr(sk, 1); 3124 } 3125 3126 /* F-RTO spurious RTO detection algorithm (RFC4138) 3127 * 3128 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3129 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3130 * window (but not to or beyond highest sequence sent before RTO): 3131 * On First ACK, send two new segments out. 3132 * On Second ACK, RTO was likely spurious. Do spurious response (response 3133 * algorithm is not part of the F-RTO detection algorithm 3134 * given in RFC4138 but can be selected separately). 3135 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3136 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3137 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3138 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3139 * 3140 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3141 * original window even after we transmit two new data segments. 3142 * 3143 * SACK version: 3144 * on first step, wait until first cumulative ACK arrives, then move to 3145 * the second step. In second step, the next ACK decides. 3146 * 3147 * F-RTO is implemented (mainly) in four functions: 3148 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3149 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3150 * called when tcp_use_frto() showed green light 3151 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3152 * - tcp_enter_frto_loss() is called if there is not enough evidence 3153 * to prove that the RTO is indeed spurious. It transfers the control 3154 * from F-RTO to the conventional RTO recovery 3155 */ 3156 static int tcp_process_frto(struct sock *sk, int flag) 3157 { 3158 struct tcp_sock *tp = tcp_sk(sk); 3159 3160 tcp_verify_left_out(tp); 3161 3162 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3163 if (flag & FLAG_DATA_ACKED) 3164 inet_csk(sk)->icsk_retransmits = 0; 3165 3166 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3167 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3168 tp->undo_marker = 0; 3169 3170 if (!before(tp->snd_una, tp->frto_highmark)) { 3171 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3172 return 1; 3173 } 3174 3175 if (!tcp_is_sackfrto(tp)) { 3176 /* RFC4138 shortcoming in step 2; should also have case c): 3177 * ACK isn't duplicate nor advances window, e.g., opposite dir 3178 * data, winupdate 3179 */ 3180 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3181 return 1; 3182 3183 if (!(flag & FLAG_DATA_ACKED)) { 3184 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3185 flag); 3186 return 1; 3187 } 3188 } else { 3189 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3190 /* Prevent sending of new data. */ 3191 tp->snd_cwnd = min(tp->snd_cwnd, 3192 tcp_packets_in_flight(tp)); 3193 return 1; 3194 } 3195 3196 if ((tp->frto_counter >= 2) && 3197 (!(flag & FLAG_FORWARD_PROGRESS) || 3198 ((flag & FLAG_DATA_SACKED) && 3199 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3200 /* RFC4138 shortcoming (see comment above) */ 3201 if (!(flag & FLAG_FORWARD_PROGRESS) && 3202 (flag & FLAG_NOT_DUP)) 3203 return 1; 3204 3205 tcp_enter_frto_loss(sk, 3, flag); 3206 return 1; 3207 } 3208 } 3209 3210 if (tp->frto_counter == 1) { 3211 /* tcp_may_send_now needs to see updated state */ 3212 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3213 tp->frto_counter = 2; 3214 3215 if (!tcp_may_send_now(sk)) 3216 tcp_enter_frto_loss(sk, 2, flag); 3217 3218 return 1; 3219 } else { 3220 switch (sysctl_tcp_frto_response) { 3221 case 2: 3222 tcp_undo_spur_to_response(sk, flag); 3223 break; 3224 case 1: 3225 tcp_conservative_spur_to_response(tp); 3226 break; 3227 default: 3228 tcp_ratehalving_spur_to_response(sk); 3229 break; 3230 } 3231 tp->frto_counter = 0; 3232 tp->undo_marker = 0; 3233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3234 } 3235 return 0; 3236 } 3237 3238 /* This routine deals with incoming acks, but not outgoing ones. */ 3239 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3240 { 3241 struct inet_connection_sock *icsk = inet_csk(sk); 3242 struct tcp_sock *tp = tcp_sk(sk); 3243 u32 prior_snd_una = tp->snd_una; 3244 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3245 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3246 u32 prior_in_flight; 3247 u32 prior_fackets; 3248 int prior_packets; 3249 int frto_cwnd = 0; 3250 3251 /* If the ack is newer than sent or older than previous acks 3252 * then we can probably ignore it. 3253 */ 3254 if (after(ack, tp->snd_nxt)) 3255 goto uninteresting_ack; 3256 3257 if (before(ack, prior_snd_una)) 3258 goto old_ack; 3259 3260 if (after(ack, prior_snd_una)) 3261 flag |= FLAG_SND_UNA_ADVANCED; 3262 3263 if (sysctl_tcp_abc) { 3264 if (icsk->icsk_ca_state < TCP_CA_CWR) 3265 tp->bytes_acked += ack - prior_snd_una; 3266 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3267 /* we assume just one segment left network */ 3268 tp->bytes_acked += min(ack - prior_snd_una, 3269 tp->mss_cache); 3270 } 3271 3272 prior_fackets = tp->fackets_out; 3273 prior_in_flight = tcp_packets_in_flight(tp); 3274 3275 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3276 /* Window is constant, pure forward advance. 3277 * No more checks are required. 3278 * Note, we use the fact that SND.UNA>=SND.WL2. 3279 */ 3280 tcp_update_wl(tp, ack, ack_seq); 3281 tp->snd_una = ack; 3282 flag |= FLAG_WIN_UPDATE; 3283 3284 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3285 3286 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3287 } else { 3288 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3289 flag |= FLAG_DATA; 3290 else 3291 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3292 3293 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3294 3295 if (TCP_SKB_CB(skb)->sacked) 3296 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3297 3298 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3299 flag |= FLAG_ECE; 3300 3301 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3302 } 3303 3304 /* We passed data and got it acked, remove any soft error 3305 * log. Something worked... 3306 */ 3307 sk->sk_err_soft = 0; 3308 icsk->icsk_probes_out = 0; 3309 tp->rcv_tstamp = tcp_time_stamp; 3310 prior_packets = tp->packets_out; 3311 if (!prior_packets) 3312 goto no_queue; 3313 3314 /* See if we can take anything off of the retransmit queue. */ 3315 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3316 3317 if (tp->frto_counter) 3318 frto_cwnd = tcp_process_frto(sk, flag); 3319 /* Guarantee sacktag reordering detection against wrap-arounds */ 3320 if (before(tp->frto_highmark, tp->snd_una)) 3321 tp->frto_highmark = 0; 3322 3323 if (tcp_ack_is_dubious(sk, flag)) { 3324 /* Advance CWND, if state allows this. */ 3325 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3326 tcp_may_raise_cwnd(sk, flag)) 3327 tcp_cong_avoid(sk, ack, prior_in_flight); 3328 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3329 flag); 3330 } else { 3331 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3332 tcp_cong_avoid(sk, ack, prior_in_flight); 3333 } 3334 3335 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3336 dst_confirm(sk->sk_dst_cache); 3337 3338 return 1; 3339 3340 no_queue: 3341 /* If this ack opens up a zero window, clear backoff. It was 3342 * being used to time the probes, and is probably far higher than 3343 * it needs to be for normal retransmission. 3344 */ 3345 if (tcp_send_head(sk)) 3346 tcp_ack_probe(sk); 3347 return 1; 3348 3349 old_ack: 3350 if (TCP_SKB_CB(skb)->sacked) { 3351 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3352 if (icsk->icsk_ca_state == TCP_CA_Open) 3353 tcp_try_keep_open(sk); 3354 } 3355 3356 uninteresting_ack: 3357 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3358 return 0; 3359 } 3360 3361 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3362 * But, this can also be called on packets in the established flow when 3363 * the fast version below fails. 3364 */ 3365 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3366 int estab) 3367 { 3368 unsigned char *ptr; 3369 struct tcphdr *th = tcp_hdr(skb); 3370 int length = (th->doff * 4) - sizeof(struct tcphdr); 3371 3372 ptr = (unsigned char *)(th + 1); 3373 opt_rx->saw_tstamp = 0; 3374 3375 while (length > 0) { 3376 int opcode = *ptr++; 3377 int opsize; 3378 3379 switch (opcode) { 3380 case TCPOPT_EOL: 3381 return; 3382 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3383 length--; 3384 continue; 3385 default: 3386 opsize = *ptr++; 3387 if (opsize < 2) /* "silly options" */ 3388 return; 3389 if (opsize > length) 3390 return; /* don't parse partial options */ 3391 switch (opcode) { 3392 case TCPOPT_MSS: 3393 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3394 u16 in_mss = get_unaligned_be16(ptr); 3395 if (in_mss) { 3396 if (opt_rx->user_mss && 3397 opt_rx->user_mss < in_mss) 3398 in_mss = opt_rx->user_mss; 3399 opt_rx->mss_clamp = in_mss; 3400 } 3401 } 3402 break; 3403 case TCPOPT_WINDOW: 3404 if (opsize == TCPOLEN_WINDOW && th->syn && 3405 !estab && sysctl_tcp_window_scaling) { 3406 __u8 snd_wscale = *(__u8 *)ptr; 3407 opt_rx->wscale_ok = 1; 3408 if (snd_wscale > 14) { 3409 if (net_ratelimit()) 3410 printk(KERN_INFO "tcp_parse_options: Illegal window " 3411 "scaling value %d >14 received.\n", 3412 snd_wscale); 3413 snd_wscale = 14; 3414 } 3415 opt_rx->snd_wscale = snd_wscale; 3416 } 3417 break; 3418 case TCPOPT_TIMESTAMP: 3419 if ((opsize == TCPOLEN_TIMESTAMP) && 3420 ((estab && opt_rx->tstamp_ok) || 3421 (!estab && sysctl_tcp_timestamps))) { 3422 opt_rx->saw_tstamp = 1; 3423 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3424 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3425 } 3426 break; 3427 case TCPOPT_SACK_PERM: 3428 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3429 !estab && sysctl_tcp_sack) { 3430 opt_rx->sack_ok = 1; 3431 tcp_sack_reset(opt_rx); 3432 } 3433 break; 3434 3435 case TCPOPT_SACK: 3436 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3437 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3438 opt_rx->sack_ok) { 3439 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3440 } 3441 break; 3442 #ifdef CONFIG_TCP_MD5SIG 3443 case TCPOPT_MD5SIG: 3444 /* 3445 * The MD5 Hash has already been 3446 * checked (see tcp_v{4,6}_do_rcv()). 3447 */ 3448 break; 3449 #endif 3450 } 3451 3452 ptr += opsize-2; 3453 length -= opsize; 3454 } 3455 } 3456 } 3457 3458 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3459 { 3460 __be32 *ptr = (__be32 *)(th + 1); 3461 3462 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3463 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3464 tp->rx_opt.saw_tstamp = 1; 3465 ++ptr; 3466 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3467 ++ptr; 3468 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3469 return 1; 3470 } 3471 return 0; 3472 } 3473 3474 /* Fast parse options. This hopes to only see timestamps. 3475 * If it is wrong it falls back on tcp_parse_options(). 3476 */ 3477 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3478 struct tcp_sock *tp) 3479 { 3480 if (th->doff == sizeof(struct tcphdr) >> 2) { 3481 tp->rx_opt.saw_tstamp = 0; 3482 return 0; 3483 } else if (tp->rx_opt.tstamp_ok && 3484 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3485 if (tcp_parse_aligned_timestamp(tp, th)) 3486 return 1; 3487 } 3488 tcp_parse_options(skb, &tp->rx_opt, 1); 3489 return 1; 3490 } 3491 3492 #ifdef CONFIG_TCP_MD5SIG 3493 /* 3494 * Parse MD5 Signature option 3495 */ 3496 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3497 { 3498 int length = (th->doff << 2) - sizeof (*th); 3499 u8 *ptr = (u8*)(th + 1); 3500 3501 /* If the TCP option is too short, we can short cut */ 3502 if (length < TCPOLEN_MD5SIG) 3503 return NULL; 3504 3505 while (length > 0) { 3506 int opcode = *ptr++; 3507 int opsize; 3508 3509 switch(opcode) { 3510 case TCPOPT_EOL: 3511 return NULL; 3512 case TCPOPT_NOP: 3513 length--; 3514 continue; 3515 default: 3516 opsize = *ptr++; 3517 if (opsize < 2 || opsize > length) 3518 return NULL; 3519 if (opcode == TCPOPT_MD5SIG) 3520 return ptr; 3521 } 3522 ptr += opsize - 2; 3523 length -= opsize; 3524 } 3525 return NULL; 3526 } 3527 #endif 3528 3529 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3530 { 3531 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3532 tp->rx_opt.ts_recent_stamp = get_seconds(); 3533 } 3534 3535 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3536 { 3537 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3538 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3539 * extra check below makes sure this can only happen 3540 * for pure ACK frames. -DaveM 3541 * 3542 * Not only, also it occurs for expired timestamps. 3543 */ 3544 3545 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3546 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3547 tcp_store_ts_recent(tp); 3548 } 3549 } 3550 3551 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3552 * 3553 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3554 * it can pass through stack. So, the following predicate verifies that 3555 * this segment is not used for anything but congestion avoidance or 3556 * fast retransmit. Moreover, we even are able to eliminate most of such 3557 * second order effects, if we apply some small "replay" window (~RTO) 3558 * to timestamp space. 3559 * 3560 * All these measures still do not guarantee that we reject wrapped ACKs 3561 * on networks with high bandwidth, when sequence space is recycled fastly, 3562 * but it guarantees that such events will be very rare and do not affect 3563 * connection seriously. This doesn't look nice, but alas, PAWS is really 3564 * buggy extension. 3565 * 3566 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3567 * states that events when retransmit arrives after original data are rare. 3568 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3569 * the biggest problem on large power networks even with minor reordering. 3570 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3571 * up to bandwidth of 18Gigabit/sec. 8) ] 3572 */ 3573 3574 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3575 { 3576 struct tcp_sock *tp = tcp_sk(sk); 3577 struct tcphdr *th = tcp_hdr(skb); 3578 u32 seq = TCP_SKB_CB(skb)->seq; 3579 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3580 3581 return (/* 1. Pure ACK with correct sequence number. */ 3582 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3583 3584 /* 2. ... and duplicate ACK. */ 3585 ack == tp->snd_una && 3586 3587 /* 3. ... and does not update window. */ 3588 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3589 3590 /* 4. ... and sits in replay window. */ 3591 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3592 } 3593 3594 static inline int tcp_paws_discard(const struct sock *sk, 3595 const struct sk_buff *skb) 3596 { 3597 const struct tcp_sock *tp = tcp_sk(sk); 3598 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3599 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3600 !tcp_disordered_ack(sk, skb)); 3601 } 3602 3603 /* Check segment sequence number for validity. 3604 * 3605 * Segment controls are considered valid, if the segment 3606 * fits to the window after truncation to the window. Acceptability 3607 * of data (and SYN, FIN, of course) is checked separately. 3608 * See tcp_data_queue(), for example. 3609 * 3610 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3611 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3612 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3613 * (borrowed from freebsd) 3614 */ 3615 3616 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3617 { 3618 return !before(end_seq, tp->rcv_wup) && 3619 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3620 } 3621 3622 /* When we get a reset we do this. */ 3623 static void tcp_reset(struct sock *sk) 3624 { 3625 /* We want the right error as BSD sees it (and indeed as we do). */ 3626 switch (sk->sk_state) { 3627 case TCP_SYN_SENT: 3628 sk->sk_err = ECONNREFUSED; 3629 break; 3630 case TCP_CLOSE_WAIT: 3631 sk->sk_err = EPIPE; 3632 break; 3633 case TCP_CLOSE: 3634 return; 3635 default: 3636 sk->sk_err = ECONNRESET; 3637 } 3638 3639 if (!sock_flag(sk, SOCK_DEAD)) 3640 sk->sk_error_report(sk); 3641 3642 tcp_done(sk); 3643 } 3644 3645 /* 3646 * Process the FIN bit. This now behaves as it is supposed to work 3647 * and the FIN takes effect when it is validly part of sequence 3648 * space. Not before when we get holes. 3649 * 3650 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3651 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3652 * TIME-WAIT) 3653 * 3654 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3655 * close and we go into CLOSING (and later onto TIME-WAIT) 3656 * 3657 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3658 */ 3659 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3660 { 3661 struct tcp_sock *tp = tcp_sk(sk); 3662 3663 inet_csk_schedule_ack(sk); 3664 3665 sk->sk_shutdown |= RCV_SHUTDOWN; 3666 sock_set_flag(sk, SOCK_DONE); 3667 3668 switch (sk->sk_state) { 3669 case TCP_SYN_RECV: 3670 case TCP_ESTABLISHED: 3671 /* Move to CLOSE_WAIT */ 3672 tcp_set_state(sk, TCP_CLOSE_WAIT); 3673 inet_csk(sk)->icsk_ack.pingpong = 1; 3674 break; 3675 3676 case TCP_CLOSE_WAIT: 3677 case TCP_CLOSING: 3678 /* Received a retransmission of the FIN, do 3679 * nothing. 3680 */ 3681 break; 3682 case TCP_LAST_ACK: 3683 /* RFC793: Remain in the LAST-ACK state. */ 3684 break; 3685 3686 case TCP_FIN_WAIT1: 3687 /* This case occurs when a simultaneous close 3688 * happens, we must ack the received FIN and 3689 * enter the CLOSING state. 3690 */ 3691 tcp_send_ack(sk); 3692 tcp_set_state(sk, TCP_CLOSING); 3693 break; 3694 case TCP_FIN_WAIT2: 3695 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3696 tcp_send_ack(sk); 3697 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3698 break; 3699 default: 3700 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3701 * cases we should never reach this piece of code. 3702 */ 3703 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3704 __func__, sk->sk_state); 3705 break; 3706 } 3707 3708 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3709 * Probably, we should reset in this case. For now drop them. 3710 */ 3711 __skb_queue_purge(&tp->out_of_order_queue); 3712 if (tcp_is_sack(tp)) 3713 tcp_sack_reset(&tp->rx_opt); 3714 sk_mem_reclaim(sk); 3715 3716 if (!sock_flag(sk, SOCK_DEAD)) { 3717 sk->sk_state_change(sk); 3718 3719 /* Do not send POLL_HUP for half duplex close. */ 3720 if (sk->sk_shutdown == SHUTDOWN_MASK || 3721 sk->sk_state == TCP_CLOSE) 3722 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3723 else 3724 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3725 } 3726 } 3727 3728 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3729 u32 end_seq) 3730 { 3731 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3732 if (before(seq, sp->start_seq)) 3733 sp->start_seq = seq; 3734 if (after(end_seq, sp->end_seq)) 3735 sp->end_seq = end_seq; 3736 return 1; 3737 } 3738 return 0; 3739 } 3740 3741 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3742 { 3743 struct tcp_sock *tp = tcp_sk(sk); 3744 3745 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3746 int mib_idx; 3747 3748 if (before(seq, tp->rcv_nxt)) 3749 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3750 else 3751 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3752 3753 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3754 3755 tp->rx_opt.dsack = 1; 3756 tp->duplicate_sack[0].start_seq = seq; 3757 tp->duplicate_sack[0].end_seq = end_seq; 3758 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1; 3759 } 3760 } 3761 3762 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3763 { 3764 struct tcp_sock *tp = tcp_sk(sk); 3765 3766 if (!tp->rx_opt.dsack) 3767 tcp_dsack_set(sk, seq, end_seq); 3768 else 3769 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3770 } 3771 3772 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3773 { 3774 struct tcp_sock *tp = tcp_sk(sk); 3775 3776 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3777 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3778 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3779 tcp_enter_quickack_mode(sk); 3780 3781 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3782 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3783 3784 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3785 end_seq = tp->rcv_nxt; 3786 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3787 } 3788 } 3789 3790 tcp_send_ack(sk); 3791 } 3792 3793 /* These routines update the SACK block as out-of-order packets arrive or 3794 * in-order packets close up the sequence space. 3795 */ 3796 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3797 { 3798 int this_sack; 3799 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3800 struct tcp_sack_block *swalk = sp + 1; 3801 3802 /* See if the recent change to the first SACK eats into 3803 * or hits the sequence space of other SACK blocks, if so coalesce. 3804 */ 3805 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3806 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3807 int i; 3808 3809 /* Zap SWALK, by moving every further SACK up by one slot. 3810 * Decrease num_sacks. 3811 */ 3812 tp->rx_opt.num_sacks--; 3813 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 3814 tp->rx_opt.dsack; 3815 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3816 sp[i] = sp[i + 1]; 3817 continue; 3818 } 3819 this_sack++, swalk++; 3820 } 3821 } 3822 3823 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, 3824 struct tcp_sack_block *sack2) 3825 { 3826 __u32 tmp; 3827 3828 tmp = sack1->start_seq; 3829 sack1->start_seq = sack2->start_seq; 3830 sack2->start_seq = tmp; 3831 3832 tmp = sack1->end_seq; 3833 sack1->end_seq = sack2->end_seq; 3834 sack2->end_seq = tmp; 3835 } 3836 3837 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3838 { 3839 struct tcp_sock *tp = tcp_sk(sk); 3840 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3841 int cur_sacks = tp->rx_opt.num_sacks; 3842 int this_sack; 3843 3844 if (!cur_sacks) 3845 goto new_sack; 3846 3847 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3848 if (tcp_sack_extend(sp, seq, end_seq)) { 3849 /* Rotate this_sack to the first one. */ 3850 for (; this_sack > 0; this_sack--, sp--) 3851 tcp_sack_swap(sp, sp - 1); 3852 if (cur_sacks > 1) 3853 tcp_sack_maybe_coalesce(tp); 3854 return; 3855 } 3856 } 3857 3858 /* Could not find an adjacent existing SACK, build a new one, 3859 * put it at the front, and shift everyone else down. We 3860 * always know there is at least one SACK present already here. 3861 * 3862 * If the sack array is full, forget about the last one. 3863 */ 3864 if (this_sack >= TCP_NUM_SACKS) { 3865 this_sack--; 3866 tp->rx_opt.num_sacks--; 3867 sp--; 3868 } 3869 for (; this_sack > 0; this_sack--, sp--) 3870 *sp = *(sp - 1); 3871 3872 new_sack: 3873 /* Build the new head SACK, and we're done. */ 3874 sp->start_seq = seq; 3875 sp->end_seq = end_seq; 3876 tp->rx_opt.num_sacks++; 3877 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 3878 } 3879 3880 /* RCV.NXT advances, some SACKs should be eaten. */ 3881 3882 static void tcp_sack_remove(struct tcp_sock *tp) 3883 { 3884 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3885 int num_sacks = tp->rx_opt.num_sacks; 3886 int this_sack; 3887 3888 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3889 if (skb_queue_empty(&tp->out_of_order_queue)) { 3890 tp->rx_opt.num_sacks = 0; 3891 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3892 return; 3893 } 3894 3895 for (this_sack = 0; this_sack < num_sacks;) { 3896 /* Check if the start of the sack is covered by RCV.NXT. */ 3897 if (!before(tp->rcv_nxt, sp->start_seq)) { 3898 int i; 3899 3900 /* RCV.NXT must cover all the block! */ 3901 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 3902 3903 /* Zap this SACK, by moving forward any other SACKS. */ 3904 for (i=this_sack+1; i < num_sacks; i++) 3905 tp->selective_acks[i-1] = tp->selective_acks[i]; 3906 num_sacks--; 3907 continue; 3908 } 3909 this_sack++; 3910 sp++; 3911 } 3912 if (num_sacks != tp->rx_opt.num_sacks) { 3913 tp->rx_opt.num_sacks = num_sacks; 3914 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 3915 tp->rx_opt.dsack; 3916 } 3917 } 3918 3919 /* This one checks to see if we can put data from the 3920 * out_of_order queue into the receive_queue. 3921 */ 3922 static void tcp_ofo_queue(struct sock *sk) 3923 { 3924 struct tcp_sock *tp = tcp_sk(sk); 3925 __u32 dsack_high = tp->rcv_nxt; 3926 struct sk_buff *skb; 3927 3928 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3929 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3930 break; 3931 3932 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3933 __u32 dsack = dsack_high; 3934 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3935 dsack_high = TCP_SKB_CB(skb)->end_seq; 3936 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 3937 } 3938 3939 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3940 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3941 __skb_unlink(skb, &tp->out_of_order_queue); 3942 __kfree_skb(skb); 3943 continue; 3944 } 3945 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3946 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3947 TCP_SKB_CB(skb)->end_seq); 3948 3949 __skb_unlink(skb, &tp->out_of_order_queue); 3950 __skb_queue_tail(&sk->sk_receive_queue, skb); 3951 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3952 if (tcp_hdr(skb)->fin) 3953 tcp_fin(skb, sk, tcp_hdr(skb)); 3954 } 3955 } 3956 3957 static int tcp_prune_ofo_queue(struct sock *sk); 3958 static int tcp_prune_queue(struct sock *sk); 3959 3960 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 3961 { 3962 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3963 !sk_rmem_schedule(sk, size)) { 3964 3965 if (tcp_prune_queue(sk) < 0) 3966 return -1; 3967 3968 if (!sk_rmem_schedule(sk, size)) { 3969 if (!tcp_prune_ofo_queue(sk)) 3970 return -1; 3971 3972 if (!sk_rmem_schedule(sk, size)) 3973 return -1; 3974 } 3975 } 3976 return 0; 3977 } 3978 3979 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3980 { 3981 struct tcphdr *th = tcp_hdr(skb); 3982 struct tcp_sock *tp = tcp_sk(sk); 3983 int eaten = -1; 3984 3985 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3986 goto drop; 3987 3988 __skb_pull(skb, th->doff * 4); 3989 3990 TCP_ECN_accept_cwr(tp, skb); 3991 3992 if (tp->rx_opt.dsack) { 3993 tp->rx_opt.dsack = 0; 3994 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks; 3995 } 3996 3997 /* Queue data for delivery to the user. 3998 * Packets in sequence go to the receive queue. 3999 * Out of sequence packets to the out_of_order_queue. 4000 */ 4001 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4002 if (tcp_receive_window(tp) == 0) 4003 goto out_of_window; 4004 4005 /* Ok. In sequence. In window. */ 4006 if (tp->ucopy.task == current && 4007 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4008 sock_owned_by_user(sk) && !tp->urg_data) { 4009 int chunk = min_t(unsigned int, skb->len, 4010 tp->ucopy.len); 4011 4012 __set_current_state(TASK_RUNNING); 4013 4014 local_bh_enable(); 4015 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4016 tp->ucopy.len -= chunk; 4017 tp->copied_seq += chunk; 4018 eaten = (chunk == skb->len && !th->fin); 4019 tcp_rcv_space_adjust(sk); 4020 } 4021 local_bh_disable(); 4022 } 4023 4024 if (eaten <= 0) { 4025 queue_and_out: 4026 if (eaten < 0 && 4027 tcp_try_rmem_schedule(sk, skb->truesize)) 4028 goto drop; 4029 4030 skb_set_owner_r(skb, sk); 4031 __skb_queue_tail(&sk->sk_receive_queue, skb); 4032 } 4033 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4034 if (skb->len) 4035 tcp_event_data_recv(sk, skb); 4036 if (th->fin) 4037 tcp_fin(skb, sk, th); 4038 4039 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4040 tcp_ofo_queue(sk); 4041 4042 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4043 * gap in queue is filled. 4044 */ 4045 if (skb_queue_empty(&tp->out_of_order_queue)) 4046 inet_csk(sk)->icsk_ack.pingpong = 0; 4047 } 4048 4049 if (tp->rx_opt.num_sacks) 4050 tcp_sack_remove(tp); 4051 4052 tcp_fast_path_check(sk); 4053 4054 if (eaten > 0) 4055 __kfree_skb(skb); 4056 else if (!sock_flag(sk, SOCK_DEAD)) 4057 sk->sk_data_ready(sk, 0); 4058 return; 4059 } 4060 4061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4062 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4064 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4065 4066 out_of_window: 4067 tcp_enter_quickack_mode(sk); 4068 inet_csk_schedule_ack(sk); 4069 drop: 4070 __kfree_skb(skb); 4071 return; 4072 } 4073 4074 /* Out of window. F.e. zero window probe. */ 4075 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4076 goto out_of_window; 4077 4078 tcp_enter_quickack_mode(sk); 4079 4080 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4081 /* Partial packet, seq < rcv_next < end_seq */ 4082 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4083 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4084 TCP_SKB_CB(skb)->end_seq); 4085 4086 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4087 4088 /* If window is closed, drop tail of packet. But after 4089 * remembering D-SACK for its head made in previous line. 4090 */ 4091 if (!tcp_receive_window(tp)) 4092 goto out_of_window; 4093 goto queue_and_out; 4094 } 4095 4096 TCP_ECN_check_ce(tp, skb); 4097 4098 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4099 goto drop; 4100 4101 /* Disable header prediction. */ 4102 tp->pred_flags = 0; 4103 inet_csk_schedule_ack(sk); 4104 4105 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4106 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4107 4108 skb_set_owner_r(skb, sk); 4109 4110 if (!skb_peek(&tp->out_of_order_queue)) { 4111 /* Initial out of order segment, build 1 SACK. */ 4112 if (tcp_is_sack(tp)) { 4113 tp->rx_opt.num_sacks = 1; 4114 tp->rx_opt.dsack = 0; 4115 tp->rx_opt.eff_sacks = 1; 4116 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4117 tp->selective_acks[0].end_seq = 4118 TCP_SKB_CB(skb)->end_seq; 4119 } 4120 __skb_queue_head(&tp->out_of_order_queue, skb); 4121 } else { 4122 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4123 u32 seq = TCP_SKB_CB(skb)->seq; 4124 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4125 4126 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4127 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4128 4129 if (!tp->rx_opt.num_sacks || 4130 tp->selective_acks[0].end_seq != seq) 4131 goto add_sack; 4132 4133 /* Common case: data arrive in order after hole. */ 4134 tp->selective_acks[0].end_seq = end_seq; 4135 return; 4136 } 4137 4138 /* Find place to insert this segment. */ 4139 do { 4140 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4141 break; 4142 } while ((skb1 = skb1->prev) != 4143 (struct sk_buff *)&tp->out_of_order_queue); 4144 4145 /* Do skb overlap to previous one? */ 4146 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4147 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4148 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4149 /* All the bits are present. Drop. */ 4150 __kfree_skb(skb); 4151 tcp_dsack_set(sk, seq, end_seq); 4152 goto add_sack; 4153 } 4154 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4155 /* Partial overlap. */ 4156 tcp_dsack_set(sk, seq, 4157 TCP_SKB_CB(skb1)->end_seq); 4158 } else { 4159 skb1 = skb1->prev; 4160 } 4161 } 4162 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4163 4164 /* And clean segments covered by new one as whole. */ 4165 while ((skb1 = skb->next) != 4166 (struct sk_buff *)&tp->out_of_order_queue && 4167 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4168 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4169 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4170 end_seq); 4171 break; 4172 } 4173 __skb_unlink(skb1, &tp->out_of_order_queue); 4174 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4175 TCP_SKB_CB(skb1)->end_seq); 4176 __kfree_skb(skb1); 4177 } 4178 4179 add_sack: 4180 if (tcp_is_sack(tp)) 4181 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4182 } 4183 } 4184 4185 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4186 struct sk_buff_head *list) 4187 { 4188 struct sk_buff *next = skb->next; 4189 4190 __skb_unlink(skb, list); 4191 __kfree_skb(skb); 4192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4193 4194 return next; 4195 } 4196 4197 /* Collapse contiguous sequence of skbs head..tail with 4198 * sequence numbers start..end. 4199 * Segments with FIN/SYN are not collapsed (only because this 4200 * simplifies code) 4201 */ 4202 static void 4203 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4204 struct sk_buff *head, struct sk_buff *tail, 4205 u32 start, u32 end) 4206 { 4207 struct sk_buff *skb; 4208 4209 /* First, check that queue is collapsible and find 4210 * the point where collapsing can be useful. */ 4211 for (skb = head; skb != tail;) { 4212 /* No new bits? It is possible on ofo queue. */ 4213 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4214 skb = tcp_collapse_one(sk, skb, list); 4215 continue; 4216 } 4217 4218 /* The first skb to collapse is: 4219 * - not SYN/FIN and 4220 * - bloated or contains data before "start" or 4221 * overlaps to the next one. 4222 */ 4223 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4224 (tcp_win_from_space(skb->truesize) > skb->len || 4225 before(TCP_SKB_CB(skb)->seq, start) || 4226 (skb->next != tail && 4227 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4228 break; 4229 4230 /* Decided to skip this, advance start seq. */ 4231 start = TCP_SKB_CB(skb)->end_seq; 4232 skb = skb->next; 4233 } 4234 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4235 return; 4236 4237 while (before(start, end)) { 4238 struct sk_buff *nskb; 4239 unsigned int header = skb_headroom(skb); 4240 int copy = SKB_MAX_ORDER(header, 0); 4241 4242 /* Too big header? This can happen with IPv6. */ 4243 if (copy < 0) 4244 return; 4245 if (end - start < copy) 4246 copy = end - start; 4247 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4248 if (!nskb) 4249 return; 4250 4251 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4252 skb_set_network_header(nskb, (skb_network_header(skb) - 4253 skb->head)); 4254 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4255 skb->head)); 4256 skb_reserve(nskb, header); 4257 memcpy(nskb->head, skb->head, header); 4258 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4259 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4260 __skb_queue_before(list, skb, nskb); 4261 skb_set_owner_r(nskb, sk); 4262 4263 /* Copy data, releasing collapsed skbs. */ 4264 while (copy > 0) { 4265 int offset = start - TCP_SKB_CB(skb)->seq; 4266 int size = TCP_SKB_CB(skb)->end_seq - start; 4267 4268 BUG_ON(offset < 0); 4269 if (size > 0) { 4270 size = min(copy, size); 4271 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4272 BUG(); 4273 TCP_SKB_CB(nskb)->end_seq += size; 4274 copy -= size; 4275 start += size; 4276 } 4277 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4278 skb = tcp_collapse_one(sk, skb, list); 4279 if (skb == tail || 4280 tcp_hdr(skb)->syn || 4281 tcp_hdr(skb)->fin) 4282 return; 4283 } 4284 } 4285 } 4286 } 4287 4288 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4289 * and tcp_collapse() them until all the queue is collapsed. 4290 */ 4291 static void tcp_collapse_ofo_queue(struct sock *sk) 4292 { 4293 struct tcp_sock *tp = tcp_sk(sk); 4294 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4295 struct sk_buff *head; 4296 u32 start, end; 4297 4298 if (skb == NULL) 4299 return; 4300 4301 start = TCP_SKB_CB(skb)->seq; 4302 end = TCP_SKB_CB(skb)->end_seq; 4303 head = skb; 4304 4305 for (;;) { 4306 skb = skb->next; 4307 4308 /* Segment is terminated when we see gap or when 4309 * we are at the end of all the queue. */ 4310 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4311 after(TCP_SKB_CB(skb)->seq, end) || 4312 before(TCP_SKB_CB(skb)->end_seq, start)) { 4313 tcp_collapse(sk, &tp->out_of_order_queue, 4314 head, skb, start, end); 4315 head = skb; 4316 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4317 break; 4318 /* Start new segment */ 4319 start = TCP_SKB_CB(skb)->seq; 4320 end = TCP_SKB_CB(skb)->end_seq; 4321 } else { 4322 if (before(TCP_SKB_CB(skb)->seq, start)) 4323 start = TCP_SKB_CB(skb)->seq; 4324 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4325 end = TCP_SKB_CB(skb)->end_seq; 4326 } 4327 } 4328 } 4329 4330 /* 4331 * Purge the out-of-order queue. 4332 * Return true if queue was pruned. 4333 */ 4334 static int tcp_prune_ofo_queue(struct sock *sk) 4335 { 4336 struct tcp_sock *tp = tcp_sk(sk); 4337 int res = 0; 4338 4339 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4340 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4341 __skb_queue_purge(&tp->out_of_order_queue); 4342 4343 /* Reset SACK state. A conforming SACK implementation will 4344 * do the same at a timeout based retransmit. When a connection 4345 * is in a sad state like this, we care only about integrity 4346 * of the connection not performance. 4347 */ 4348 if (tp->rx_opt.sack_ok) 4349 tcp_sack_reset(&tp->rx_opt); 4350 sk_mem_reclaim(sk); 4351 res = 1; 4352 } 4353 return res; 4354 } 4355 4356 /* Reduce allocated memory if we can, trying to get 4357 * the socket within its memory limits again. 4358 * 4359 * Return less than zero if we should start dropping frames 4360 * until the socket owning process reads some of the data 4361 * to stabilize the situation. 4362 */ 4363 static int tcp_prune_queue(struct sock *sk) 4364 { 4365 struct tcp_sock *tp = tcp_sk(sk); 4366 4367 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4368 4369 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4370 4371 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4372 tcp_clamp_window(sk); 4373 else if (tcp_memory_pressure) 4374 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4375 4376 tcp_collapse_ofo_queue(sk); 4377 tcp_collapse(sk, &sk->sk_receive_queue, 4378 sk->sk_receive_queue.next, 4379 (struct sk_buff *)&sk->sk_receive_queue, 4380 tp->copied_seq, tp->rcv_nxt); 4381 sk_mem_reclaim(sk); 4382 4383 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4384 return 0; 4385 4386 /* Collapsing did not help, destructive actions follow. 4387 * This must not ever occur. */ 4388 4389 tcp_prune_ofo_queue(sk); 4390 4391 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4392 return 0; 4393 4394 /* If we are really being abused, tell the caller to silently 4395 * drop receive data on the floor. It will get retransmitted 4396 * and hopefully then we'll have sufficient space. 4397 */ 4398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4399 4400 /* Massive buffer overcommit. */ 4401 tp->pred_flags = 0; 4402 return -1; 4403 } 4404 4405 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4406 * As additional protections, we do not touch cwnd in retransmission phases, 4407 * and if application hit its sndbuf limit recently. 4408 */ 4409 void tcp_cwnd_application_limited(struct sock *sk) 4410 { 4411 struct tcp_sock *tp = tcp_sk(sk); 4412 4413 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4414 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4415 /* Limited by application or receiver window. */ 4416 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4417 u32 win_used = max(tp->snd_cwnd_used, init_win); 4418 if (win_used < tp->snd_cwnd) { 4419 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4420 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4421 } 4422 tp->snd_cwnd_used = 0; 4423 } 4424 tp->snd_cwnd_stamp = tcp_time_stamp; 4425 } 4426 4427 static int tcp_should_expand_sndbuf(struct sock *sk) 4428 { 4429 struct tcp_sock *tp = tcp_sk(sk); 4430 4431 /* If the user specified a specific send buffer setting, do 4432 * not modify it. 4433 */ 4434 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4435 return 0; 4436 4437 /* If we are under global TCP memory pressure, do not expand. */ 4438 if (tcp_memory_pressure) 4439 return 0; 4440 4441 /* If we are under soft global TCP memory pressure, do not expand. */ 4442 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4443 return 0; 4444 4445 /* If we filled the congestion window, do not expand. */ 4446 if (tp->packets_out >= tp->snd_cwnd) 4447 return 0; 4448 4449 return 1; 4450 } 4451 4452 /* When incoming ACK allowed to free some skb from write_queue, 4453 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4454 * on the exit from tcp input handler. 4455 * 4456 * PROBLEM: sndbuf expansion does not work well with largesend. 4457 */ 4458 static void tcp_new_space(struct sock *sk) 4459 { 4460 struct tcp_sock *tp = tcp_sk(sk); 4461 4462 if (tcp_should_expand_sndbuf(sk)) { 4463 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4464 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4465 int demanded = max_t(unsigned int, tp->snd_cwnd, 4466 tp->reordering + 1); 4467 sndmem *= 2 * demanded; 4468 if (sndmem > sk->sk_sndbuf) 4469 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4470 tp->snd_cwnd_stamp = tcp_time_stamp; 4471 } 4472 4473 sk->sk_write_space(sk); 4474 } 4475 4476 static void tcp_check_space(struct sock *sk) 4477 { 4478 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4479 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4480 if (sk->sk_socket && 4481 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4482 tcp_new_space(sk); 4483 } 4484 } 4485 4486 static inline void tcp_data_snd_check(struct sock *sk) 4487 { 4488 tcp_push_pending_frames(sk); 4489 tcp_check_space(sk); 4490 } 4491 4492 /* 4493 * Check if sending an ack is needed. 4494 */ 4495 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4496 { 4497 struct tcp_sock *tp = tcp_sk(sk); 4498 4499 /* More than one full frame received... */ 4500 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4501 /* ... and right edge of window advances far enough. 4502 * (tcp_recvmsg() will send ACK otherwise). Or... 4503 */ 4504 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4505 /* We ACK each frame or... */ 4506 tcp_in_quickack_mode(sk) || 4507 /* We have out of order data. */ 4508 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4509 /* Then ack it now */ 4510 tcp_send_ack(sk); 4511 } else { 4512 /* Else, send delayed ack. */ 4513 tcp_send_delayed_ack(sk); 4514 } 4515 } 4516 4517 static inline void tcp_ack_snd_check(struct sock *sk) 4518 { 4519 if (!inet_csk_ack_scheduled(sk)) { 4520 /* We sent a data segment already. */ 4521 return; 4522 } 4523 __tcp_ack_snd_check(sk, 1); 4524 } 4525 4526 /* 4527 * This routine is only called when we have urgent data 4528 * signaled. Its the 'slow' part of tcp_urg. It could be 4529 * moved inline now as tcp_urg is only called from one 4530 * place. We handle URGent data wrong. We have to - as 4531 * BSD still doesn't use the correction from RFC961. 4532 * For 1003.1g we should support a new option TCP_STDURG to permit 4533 * either form (or just set the sysctl tcp_stdurg). 4534 */ 4535 4536 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4537 { 4538 struct tcp_sock *tp = tcp_sk(sk); 4539 u32 ptr = ntohs(th->urg_ptr); 4540 4541 if (ptr && !sysctl_tcp_stdurg) 4542 ptr--; 4543 ptr += ntohl(th->seq); 4544 4545 /* Ignore urgent data that we've already seen and read. */ 4546 if (after(tp->copied_seq, ptr)) 4547 return; 4548 4549 /* Do not replay urg ptr. 4550 * 4551 * NOTE: interesting situation not covered by specs. 4552 * Misbehaving sender may send urg ptr, pointing to segment, 4553 * which we already have in ofo queue. We are not able to fetch 4554 * such data and will stay in TCP_URG_NOTYET until will be eaten 4555 * by recvmsg(). Seems, we are not obliged to handle such wicked 4556 * situations. But it is worth to think about possibility of some 4557 * DoSes using some hypothetical application level deadlock. 4558 */ 4559 if (before(ptr, tp->rcv_nxt)) 4560 return; 4561 4562 /* Do we already have a newer (or duplicate) urgent pointer? */ 4563 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4564 return; 4565 4566 /* Tell the world about our new urgent pointer. */ 4567 sk_send_sigurg(sk); 4568 4569 /* We may be adding urgent data when the last byte read was 4570 * urgent. To do this requires some care. We cannot just ignore 4571 * tp->copied_seq since we would read the last urgent byte again 4572 * as data, nor can we alter copied_seq until this data arrives 4573 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4574 * 4575 * NOTE. Double Dutch. Rendering to plain English: author of comment 4576 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4577 * and expect that both A and B disappear from stream. This is _wrong_. 4578 * Though this happens in BSD with high probability, this is occasional. 4579 * Any application relying on this is buggy. Note also, that fix "works" 4580 * only in this artificial test. Insert some normal data between A and B and we will 4581 * decline of BSD again. Verdict: it is better to remove to trap 4582 * buggy users. 4583 */ 4584 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4585 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4586 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4587 tp->copied_seq++; 4588 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4589 __skb_unlink(skb, &sk->sk_receive_queue); 4590 __kfree_skb(skb); 4591 } 4592 } 4593 4594 tp->urg_data = TCP_URG_NOTYET; 4595 tp->urg_seq = ptr; 4596 4597 /* Disable header prediction. */ 4598 tp->pred_flags = 0; 4599 } 4600 4601 /* This is the 'fast' part of urgent handling. */ 4602 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4603 { 4604 struct tcp_sock *tp = tcp_sk(sk); 4605 4606 /* Check if we get a new urgent pointer - normally not. */ 4607 if (th->urg) 4608 tcp_check_urg(sk, th); 4609 4610 /* Do we wait for any urgent data? - normally not... */ 4611 if (tp->urg_data == TCP_URG_NOTYET) { 4612 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4613 th->syn; 4614 4615 /* Is the urgent pointer pointing into this packet? */ 4616 if (ptr < skb->len) { 4617 u8 tmp; 4618 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4619 BUG(); 4620 tp->urg_data = TCP_URG_VALID | tmp; 4621 if (!sock_flag(sk, SOCK_DEAD)) 4622 sk->sk_data_ready(sk, 0); 4623 } 4624 } 4625 } 4626 4627 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4628 { 4629 struct tcp_sock *tp = tcp_sk(sk); 4630 int chunk = skb->len - hlen; 4631 int err; 4632 4633 local_bh_enable(); 4634 if (skb_csum_unnecessary(skb)) 4635 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4636 else 4637 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4638 tp->ucopy.iov); 4639 4640 if (!err) { 4641 tp->ucopy.len -= chunk; 4642 tp->copied_seq += chunk; 4643 tcp_rcv_space_adjust(sk); 4644 } 4645 4646 local_bh_disable(); 4647 return err; 4648 } 4649 4650 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4651 struct sk_buff *skb) 4652 { 4653 __sum16 result; 4654 4655 if (sock_owned_by_user(sk)) { 4656 local_bh_enable(); 4657 result = __tcp_checksum_complete(skb); 4658 local_bh_disable(); 4659 } else { 4660 result = __tcp_checksum_complete(skb); 4661 } 4662 return result; 4663 } 4664 4665 static inline int tcp_checksum_complete_user(struct sock *sk, 4666 struct sk_buff *skb) 4667 { 4668 return !skb_csum_unnecessary(skb) && 4669 __tcp_checksum_complete_user(sk, skb); 4670 } 4671 4672 #ifdef CONFIG_NET_DMA 4673 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4674 int hlen) 4675 { 4676 struct tcp_sock *tp = tcp_sk(sk); 4677 int chunk = skb->len - hlen; 4678 int dma_cookie; 4679 int copied_early = 0; 4680 4681 if (tp->ucopy.wakeup) 4682 return 0; 4683 4684 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4685 tp->ucopy.dma_chan = get_softnet_dma(); 4686 4687 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4688 4689 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4690 skb, hlen, 4691 tp->ucopy.iov, chunk, 4692 tp->ucopy.pinned_list); 4693 4694 if (dma_cookie < 0) 4695 goto out; 4696 4697 tp->ucopy.dma_cookie = dma_cookie; 4698 copied_early = 1; 4699 4700 tp->ucopy.len -= chunk; 4701 tp->copied_seq += chunk; 4702 tcp_rcv_space_adjust(sk); 4703 4704 if ((tp->ucopy.len == 0) || 4705 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4706 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4707 tp->ucopy.wakeup = 1; 4708 sk->sk_data_ready(sk, 0); 4709 } 4710 } else if (chunk > 0) { 4711 tp->ucopy.wakeup = 1; 4712 sk->sk_data_ready(sk, 0); 4713 } 4714 out: 4715 return copied_early; 4716 } 4717 #endif /* CONFIG_NET_DMA */ 4718 4719 /* Does PAWS and seqno based validation of an incoming segment, flags will 4720 * play significant role here. 4721 */ 4722 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4723 struct tcphdr *th, int syn_inerr) 4724 { 4725 struct tcp_sock *tp = tcp_sk(sk); 4726 4727 /* RFC1323: H1. Apply PAWS check first. */ 4728 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4729 tcp_paws_discard(sk, skb)) { 4730 if (!th->rst) { 4731 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4732 tcp_send_dupack(sk, skb); 4733 goto discard; 4734 } 4735 /* Reset is accepted even if it did not pass PAWS. */ 4736 } 4737 4738 /* Step 1: check sequence number */ 4739 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4740 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4741 * (RST) segments are validated by checking their SEQ-fields." 4742 * And page 69: "If an incoming segment is not acceptable, 4743 * an acknowledgment should be sent in reply (unless the RST 4744 * bit is set, if so drop the segment and return)". 4745 */ 4746 if (!th->rst) 4747 tcp_send_dupack(sk, skb); 4748 goto discard; 4749 } 4750 4751 /* Step 2: check RST bit */ 4752 if (th->rst) { 4753 tcp_reset(sk); 4754 goto discard; 4755 } 4756 4757 /* ts_recent update must be made after we are sure that the packet 4758 * is in window. 4759 */ 4760 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4761 4762 /* step 3: check security and precedence [ignored] */ 4763 4764 /* step 4: Check for a SYN in window. */ 4765 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4766 if (syn_inerr) 4767 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 4768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 4769 tcp_reset(sk); 4770 return -1; 4771 } 4772 4773 return 1; 4774 4775 discard: 4776 __kfree_skb(skb); 4777 return 0; 4778 } 4779 4780 /* 4781 * TCP receive function for the ESTABLISHED state. 4782 * 4783 * It is split into a fast path and a slow path. The fast path is 4784 * disabled when: 4785 * - A zero window was announced from us - zero window probing 4786 * is only handled properly in the slow path. 4787 * - Out of order segments arrived. 4788 * - Urgent data is expected. 4789 * - There is no buffer space left 4790 * - Unexpected TCP flags/window values/header lengths are received 4791 * (detected by checking the TCP header against pred_flags) 4792 * - Data is sent in both directions. Fast path only supports pure senders 4793 * or pure receivers (this means either the sequence number or the ack 4794 * value must stay constant) 4795 * - Unexpected TCP option. 4796 * 4797 * When these conditions are not satisfied it drops into a standard 4798 * receive procedure patterned after RFC793 to handle all cases. 4799 * The first three cases are guaranteed by proper pred_flags setting, 4800 * the rest is checked inline. Fast processing is turned on in 4801 * tcp_data_queue when everything is OK. 4802 */ 4803 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4804 struct tcphdr *th, unsigned len) 4805 { 4806 struct tcp_sock *tp = tcp_sk(sk); 4807 int res; 4808 4809 /* 4810 * Header prediction. 4811 * The code loosely follows the one in the famous 4812 * "30 instruction TCP receive" Van Jacobson mail. 4813 * 4814 * Van's trick is to deposit buffers into socket queue 4815 * on a device interrupt, to call tcp_recv function 4816 * on the receive process context and checksum and copy 4817 * the buffer to user space. smart... 4818 * 4819 * Our current scheme is not silly either but we take the 4820 * extra cost of the net_bh soft interrupt processing... 4821 * We do checksum and copy also but from device to kernel. 4822 */ 4823 4824 tp->rx_opt.saw_tstamp = 0; 4825 4826 /* pred_flags is 0xS?10 << 16 + snd_wnd 4827 * if header_prediction is to be made 4828 * 'S' will always be tp->tcp_header_len >> 2 4829 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4830 * turn it off (when there are holes in the receive 4831 * space for instance) 4832 * PSH flag is ignored. 4833 */ 4834 4835 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4836 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4837 int tcp_header_len = tp->tcp_header_len; 4838 4839 /* Timestamp header prediction: tcp_header_len 4840 * is automatically equal to th->doff*4 due to pred_flags 4841 * match. 4842 */ 4843 4844 /* Check timestamp */ 4845 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4846 /* No? Slow path! */ 4847 if (!tcp_parse_aligned_timestamp(tp, th)) 4848 goto slow_path; 4849 4850 /* If PAWS failed, check it more carefully in slow path */ 4851 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4852 goto slow_path; 4853 4854 /* DO NOT update ts_recent here, if checksum fails 4855 * and timestamp was corrupted part, it will result 4856 * in a hung connection since we will drop all 4857 * future packets due to the PAWS test. 4858 */ 4859 } 4860 4861 if (len <= tcp_header_len) { 4862 /* Bulk data transfer: sender */ 4863 if (len == tcp_header_len) { 4864 /* Predicted packet is in window by definition. 4865 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4866 * Hence, check seq<=rcv_wup reduces to: 4867 */ 4868 if (tcp_header_len == 4869 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4870 tp->rcv_nxt == tp->rcv_wup) 4871 tcp_store_ts_recent(tp); 4872 4873 /* We know that such packets are checksummed 4874 * on entry. 4875 */ 4876 tcp_ack(sk, skb, 0); 4877 __kfree_skb(skb); 4878 tcp_data_snd_check(sk); 4879 return 0; 4880 } else { /* Header too small */ 4881 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 4882 goto discard; 4883 } 4884 } else { 4885 int eaten = 0; 4886 int copied_early = 0; 4887 4888 if (tp->copied_seq == tp->rcv_nxt && 4889 len - tcp_header_len <= tp->ucopy.len) { 4890 #ifdef CONFIG_NET_DMA 4891 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4892 copied_early = 1; 4893 eaten = 1; 4894 } 4895 #endif 4896 if (tp->ucopy.task == current && 4897 sock_owned_by_user(sk) && !copied_early) { 4898 __set_current_state(TASK_RUNNING); 4899 4900 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4901 eaten = 1; 4902 } 4903 if (eaten) { 4904 /* Predicted packet is in window by definition. 4905 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4906 * Hence, check seq<=rcv_wup reduces to: 4907 */ 4908 if (tcp_header_len == 4909 (sizeof(struct tcphdr) + 4910 TCPOLEN_TSTAMP_ALIGNED) && 4911 tp->rcv_nxt == tp->rcv_wup) 4912 tcp_store_ts_recent(tp); 4913 4914 tcp_rcv_rtt_measure_ts(sk, skb); 4915 4916 __skb_pull(skb, tcp_header_len); 4917 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4918 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 4919 } 4920 if (copied_early) 4921 tcp_cleanup_rbuf(sk, skb->len); 4922 } 4923 if (!eaten) { 4924 if (tcp_checksum_complete_user(sk, skb)) 4925 goto csum_error; 4926 4927 /* Predicted packet is in window by definition. 4928 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4929 * Hence, check seq<=rcv_wup reduces to: 4930 */ 4931 if (tcp_header_len == 4932 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4933 tp->rcv_nxt == tp->rcv_wup) 4934 tcp_store_ts_recent(tp); 4935 4936 tcp_rcv_rtt_measure_ts(sk, skb); 4937 4938 if ((int)skb->truesize > sk->sk_forward_alloc) 4939 goto step5; 4940 4941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 4942 4943 /* Bulk data transfer: receiver */ 4944 __skb_pull(skb, tcp_header_len); 4945 __skb_queue_tail(&sk->sk_receive_queue, skb); 4946 skb_set_owner_r(skb, sk); 4947 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4948 } 4949 4950 tcp_event_data_recv(sk, skb); 4951 4952 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4953 /* Well, only one small jumplet in fast path... */ 4954 tcp_ack(sk, skb, FLAG_DATA); 4955 tcp_data_snd_check(sk); 4956 if (!inet_csk_ack_scheduled(sk)) 4957 goto no_ack; 4958 } 4959 4960 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 4961 __tcp_ack_snd_check(sk, 0); 4962 no_ack: 4963 #ifdef CONFIG_NET_DMA 4964 if (copied_early) 4965 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4966 else 4967 #endif 4968 if (eaten) 4969 __kfree_skb(skb); 4970 else 4971 sk->sk_data_ready(sk, 0); 4972 return 0; 4973 } 4974 } 4975 4976 slow_path: 4977 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 4978 goto csum_error; 4979 4980 /* 4981 * Standard slow path. 4982 */ 4983 4984 res = tcp_validate_incoming(sk, skb, th, 1); 4985 if (res <= 0) 4986 return -res; 4987 4988 step5: 4989 if (th->ack) 4990 tcp_ack(sk, skb, FLAG_SLOWPATH); 4991 4992 tcp_rcv_rtt_measure_ts(sk, skb); 4993 4994 /* Process urgent data. */ 4995 tcp_urg(sk, skb, th); 4996 4997 /* step 7: process the segment text */ 4998 tcp_data_queue(sk, skb); 4999 5000 tcp_data_snd_check(sk); 5001 tcp_ack_snd_check(sk); 5002 return 0; 5003 5004 csum_error: 5005 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5006 5007 discard: 5008 __kfree_skb(skb); 5009 return 0; 5010 } 5011 5012 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5013 struct tcphdr *th, unsigned len) 5014 { 5015 struct tcp_sock *tp = tcp_sk(sk); 5016 struct inet_connection_sock *icsk = inet_csk(sk); 5017 int saved_clamp = tp->rx_opt.mss_clamp; 5018 5019 tcp_parse_options(skb, &tp->rx_opt, 0); 5020 5021 if (th->ack) { 5022 /* rfc793: 5023 * "If the state is SYN-SENT then 5024 * first check the ACK bit 5025 * If the ACK bit is set 5026 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5027 * a reset (unless the RST bit is set, if so drop 5028 * the segment and return)" 5029 * 5030 * We do not send data with SYN, so that RFC-correct 5031 * test reduces to: 5032 */ 5033 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5034 goto reset_and_undo; 5035 5036 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5037 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5038 tcp_time_stamp)) { 5039 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5040 goto reset_and_undo; 5041 } 5042 5043 /* Now ACK is acceptable. 5044 * 5045 * "If the RST bit is set 5046 * If the ACK was acceptable then signal the user "error: 5047 * connection reset", drop the segment, enter CLOSED state, 5048 * delete TCB, and return." 5049 */ 5050 5051 if (th->rst) { 5052 tcp_reset(sk); 5053 goto discard; 5054 } 5055 5056 /* rfc793: 5057 * "fifth, if neither of the SYN or RST bits is set then 5058 * drop the segment and return." 5059 * 5060 * See note below! 5061 * --ANK(990513) 5062 */ 5063 if (!th->syn) 5064 goto discard_and_undo; 5065 5066 /* rfc793: 5067 * "If the SYN bit is on ... 5068 * are acceptable then ... 5069 * (our SYN has been ACKed), change the connection 5070 * state to ESTABLISHED..." 5071 */ 5072 5073 TCP_ECN_rcv_synack(tp, th); 5074 5075 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5076 tcp_ack(sk, skb, FLAG_SLOWPATH); 5077 5078 /* Ok.. it's good. Set up sequence numbers and 5079 * move to established. 5080 */ 5081 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5082 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5083 5084 /* RFC1323: The window in SYN & SYN/ACK segments is 5085 * never scaled. 5086 */ 5087 tp->snd_wnd = ntohs(th->window); 5088 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 5089 5090 if (!tp->rx_opt.wscale_ok) { 5091 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5092 tp->window_clamp = min(tp->window_clamp, 65535U); 5093 } 5094 5095 if (tp->rx_opt.saw_tstamp) { 5096 tp->rx_opt.tstamp_ok = 1; 5097 tp->tcp_header_len = 5098 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5099 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5100 tcp_store_ts_recent(tp); 5101 } else { 5102 tp->tcp_header_len = sizeof(struct tcphdr); 5103 } 5104 5105 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5106 tcp_enable_fack(tp); 5107 5108 tcp_mtup_init(sk); 5109 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5110 tcp_initialize_rcv_mss(sk); 5111 5112 /* Remember, tcp_poll() does not lock socket! 5113 * Change state from SYN-SENT only after copied_seq 5114 * is initialized. */ 5115 tp->copied_seq = tp->rcv_nxt; 5116 smp_mb(); 5117 tcp_set_state(sk, TCP_ESTABLISHED); 5118 5119 security_inet_conn_established(sk, skb); 5120 5121 /* Make sure socket is routed, for correct metrics. */ 5122 icsk->icsk_af_ops->rebuild_header(sk); 5123 5124 tcp_init_metrics(sk); 5125 5126 tcp_init_congestion_control(sk); 5127 5128 /* Prevent spurious tcp_cwnd_restart() on first data 5129 * packet. 5130 */ 5131 tp->lsndtime = tcp_time_stamp; 5132 5133 tcp_init_buffer_space(sk); 5134 5135 if (sock_flag(sk, SOCK_KEEPOPEN)) 5136 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5137 5138 if (!tp->rx_opt.snd_wscale) 5139 __tcp_fast_path_on(tp, tp->snd_wnd); 5140 else 5141 tp->pred_flags = 0; 5142 5143 if (!sock_flag(sk, SOCK_DEAD)) { 5144 sk->sk_state_change(sk); 5145 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5146 } 5147 5148 if (sk->sk_write_pending || 5149 icsk->icsk_accept_queue.rskq_defer_accept || 5150 icsk->icsk_ack.pingpong) { 5151 /* Save one ACK. Data will be ready after 5152 * several ticks, if write_pending is set. 5153 * 5154 * It may be deleted, but with this feature tcpdumps 5155 * look so _wonderfully_ clever, that I was not able 5156 * to stand against the temptation 8) --ANK 5157 */ 5158 inet_csk_schedule_ack(sk); 5159 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5160 icsk->icsk_ack.ato = TCP_ATO_MIN; 5161 tcp_incr_quickack(sk); 5162 tcp_enter_quickack_mode(sk); 5163 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5164 TCP_DELACK_MAX, TCP_RTO_MAX); 5165 5166 discard: 5167 __kfree_skb(skb); 5168 return 0; 5169 } else { 5170 tcp_send_ack(sk); 5171 } 5172 return -1; 5173 } 5174 5175 /* No ACK in the segment */ 5176 5177 if (th->rst) { 5178 /* rfc793: 5179 * "If the RST bit is set 5180 * 5181 * Otherwise (no ACK) drop the segment and return." 5182 */ 5183 5184 goto discard_and_undo; 5185 } 5186 5187 /* PAWS check. */ 5188 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5189 tcp_paws_check(&tp->rx_opt, 0)) 5190 goto discard_and_undo; 5191 5192 if (th->syn) { 5193 /* We see SYN without ACK. It is attempt of 5194 * simultaneous connect with crossed SYNs. 5195 * Particularly, it can be connect to self. 5196 */ 5197 tcp_set_state(sk, TCP_SYN_RECV); 5198 5199 if (tp->rx_opt.saw_tstamp) { 5200 tp->rx_opt.tstamp_ok = 1; 5201 tcp_store_ts_recent(tp); 5202 tp->tcp_header_len = 5203 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5204 } else { 5205 tp->tcp_header_len = sizeof(struct tcphdr); 5206 } 5207 5208 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5209 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5210 5211 /* RFC1323: The window in SYN & SYN/ACK segments is 5212 * never scaled. 5213 */ 5214 tp->snd_wnd = ntohs(th->window); 5215 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5216 tp->max_window = tp->snd_wnd; 5217 5218 TCP_ECN_rcv_syn(tp, th); 5219 5220 tcp_mtup_init(sk); 5221 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5222 tcp_initialize_rcv_mss(sk); 5223 5224 tcp_send_synack(sk); 5225 #if 0 5226 /* Note, we could accept data and URG from this segment. 5227 * There are no obstacles to make this. 5228 * 5229 * However, if we ignore data in ACKless segments sometimes, 5230 * we have no reasons to accept it sometimes. 5231 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5232 * is not flawless. So, discard packet for sanity. 5233 * Uncomment this return to process the data. 5234 */ 5235 return -1; 5236 #else 5237 goto discard; 5238 #endif 5239 } 5240 /* "fifth, if neither of the SYN or RST bits is set then 5241 * drop the segment and return." 5242 */ 5243 5244 discard_and_undo: 5245 tcp_clear_options(&tp->rx_opt); 5246 tp->rx_opt.mss_clamp = saved_clamp; 5247 goto discard; 5248 5249 reset_and_undo: 5250 tcp_clear_options(&tp->rx_opt); 5251 tp->rx_opt.mss_clamp = saved_clamp; 5252 return 1; 5253 } 5254 5255 /* 5256 * This function implements the receiving procedure of RFC 793 for 5257 * all states except ESTABLISHED and TIME_WAIT. 5258 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5259 * address independent. 5260 */ 5261 5262 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5263 struct tcphdr *th, unsigned len) 5264 { 5265 struct tcp_sock *tp = tcp_sk(sk); 5266 struct inet_connection_sock *icsk = inet_csk(sk); 5267 int queued = 0; 5268 int res; 5269 5270 tp->rx_opt.saw_tstamp = 0; 5271 5272 switch (sk->sk_state) { 5273 case TCP_CLOSE: 5274 goto discard; 5275 5276 case TCP_LISTEN: 5277 if (th->ack) 5278 return 1; 5279 5280 if (th->rst) 5281 goto discard; 5282 5283 if (th->syn) { 5284 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5285 return 1; 5286 5287 /* Now we have several options: In theory there is 5288 * nothing else in the frame. KA9Q has an option to 5289 * send data with the syn, BSD accepts data with the 5290 * syn up to the [to be] advertised window and 5291 * Solaris 2.1 gives you a protocol error. For now 5292 * we just ignore it, that fits the spec precisely 5293 * and avoids incompatibilities. It would be nice in 5294 * future to drop through and process the data. 5295 * 5296 * Now that TTCP is starting to be used we ought to 5297 * queue this data. 5298 * But, this leaves one open to an easy denial of 5299 * service attack, and SYN cookies can't defend 5300 * against this problem. So, we drop the data 5301 * in the interest of security over speed unless 5302 * it's still in use. 5303 */ 5304 kfree_skb(skb); 5305 return 0; 5306 } 5307 goto discard; 5308 5309 case TCP_SYN_SENT: 5310 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5311 if (queued >= 0) 5312 return queued; 5313 5314 /* Do step6 onward by hand. */ 5315 tcp_urg(sk, skb, th); 5316 __kfree_skb(skb); 5317 tcp_data_snd_check(sk); 5318 return 0; 5319 } 5320 5321 res = tcp_validate_incoming(sk, skb, th, 0); 5322 if (res <= 0) 5323 return -res; 5324 5325 /* step 5: check the ACK field */ 5326 if (th->ack) { 5327 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 5328 5329 switch (sk->sk_state) { 5330 case TCP_SYN_RECV: 5331 if (acceptable) { 5332 tp->copied_seq = tp->rcv_nxt; 5333 smp_mb(); 5334 tcp_set_state(sk, TCP_ESTABLISHED); 5335 sk->sk_state_change(sk); 5336 5337 /* Note, that this wakeup is only for marginal 5338 * crossed SYN case. Passively open sockets 5339 * are not waked up, because sk->sk_sleep == 5340 * NULL and sk->sk_socket == NULL. 5341 */ 5342 if (sk->sk_socket) 5343 sk_wake_async(sk, 5344 SOCK_WAKE_IO, POLL_OUT); 5345 5346 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5347 tp->snd_wnd = ntohs(th->window) << 5348 tp->rx_opt.snd_wscale; 5349 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 5350 TCP_SKB_CB(skb)->seq); 5351 5352 /* tcp_ack considers this ACK as duplicate 5353 * and does not calculate rtt. 5354 * Fix it at least with timestamps. 5355 */ 5356 if (tp->rx_opt.saw_tstamp && 5357 tp->rx_opt.rcv_tsecr && !tp->srtt) 5358 tcp_ack_saw_tstamp(sk, 0); 5359 5360 if (tp->rx_opt.tstamp_ok) 5361 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5362 5363 /* Make sure socket is routed, for 5364 * correct metrics. 5365 */ 5366 icsk->icsk_af_ops->rebuild_header(sk); 5367 5368 tcp_init_metrics(sk); 5369 5370 tcp_init_congestion_control(sk); 5371 5372 /* Prevent spurious tcp_cwnd_restart() on 5373 * first data packet. 5374 */ 5375 tp->lsndtime = tcp_time_stamp; 5376 5377 tcp_mtup_init(sk); 5378 tcp_initialize_rcv_mss(sk); 5379 tcp_init_buffer_space(sk); 5380 tcp_fast_path_on(tp); 5381 } else { 5382 return 1; 5383 } 5384 break; 5385 5386 case TCP_FIN_WAIT1: 5387 if (tp->snd_una == tp->write_seq) { 5388 tcp_set_state(sk, TCP_FIN_WAIT2); 5389 sk->sk_shutdown |= SEND_SHUTDOWN; 5390 dst_confirm(sk->sk_dst_cache); 5391 5392 if (!sock_flag(sk, SOCK_DEAD)) 5393 /* Wake up lingering close() */ 5394 sk->sk_state_change(sk); 5395 else { 5396 int tmo; 5397 5398 if (tp->linger2 < 0 || 5399 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5400 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5401 tcp_done(sk); 5402 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5403 return 1; 5404 } 5405 5406 tmo = tcp_fin_time(sk); 5407 if (tmo > TCP_TIMEWAIT_LEN) { 5408 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5409 } else if (th->fin || sock_owned_by_user(sk)) { 5410 /* Bad case. We could lose such FIN otherwise. 5411 * It is not a big problem, but it looks confusing 5412 * and not so rare event. We still can lose it now, 5413 * if it spins in bh_lock_sock(), but it is really 5414 * marginal case. 5415 */ 5416 inet_csk_reset_keepalive_timer(sk, tmo); 5417 } else { 5418 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5419 goto discard; 5420 } 5421 } 5422 } 5423 break; 5424 5425 case TCP_CLOSING: 5426 if (tp->snd_una == tp->write_seq) { 5427 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5428 goto discard; 5429 } 5430 break; 5431 5432 case TCP_LAST_ACK: 5433 if (tp->snd_una == tp->write_seq) { 5434 tcp_update_metrics(sk); 5435 tcp_done(sk); 5436 goto discard; 5437 } 5438 break; 5439 } 5440 } else 5441 goto discard; 5442 5443 /* step 6: check the URG bit */ 5444 tcp_urg(sk, skb, th); 5445 5446 /* step 7: process the segment text */ 5447 switch (sk->sk_state) { 5448 case TCP_CLOSE_WAIT: 5449 case TCP_CLOSING: 5450 case TCP_LAST_ACK: 5451 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5452 break; 5453 case TCP_FIN_WAIT1: 5454 case TCP_FIN_WAIT2: 5455 /* RFC 793 says to queue data in these states, 5456 * RFC 1122 says we MUST send a reset. 5457 * BSD 4.4 also does reset. 5458 */ 5459 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5460 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5461 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5462 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5463 tcp_reset(sk); 5464 return 1; 5465 } 5466 } 5467 /* Fall through */ 5468 case TCP_ESTABLISHED: 5469 tcp_data_queue(sk, skb); 5470 queued = 1; 5471 break; 5472 } 5473 5474 /* tcp_data could move socket to TIME-WAIT */ 5475 if (sk->sk_state != TCP_CLOSE) { 5476 tcp_data_snd_check(sk); 5477 tcp_ack_snd_check(sk); 5478 } 5479 5480 if (!queued) { 5481 discard: 5482 __kfree_skb(skb); 5483 } 5484 return 0; 5485 } 5486 5487 EXPORT_SYMBOL(sysctl_tcp_ecn); 5488 EXPORT_SYMBOL(sysctl_tcp_reordering); 5489 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5490 EXPORT_SYMBOL(tcp_parse_options); 5491 #ifdef CONFIG_TCP_MD5SIG 5492 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5493 #endif 5494 EXPORT_SYMBOL(tcp_rcv_established); 5495 EXPORT_SYMBOL(tcp_rcv_state_process); 5496 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5497