xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 367b8112)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73 
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83 
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117 
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 	struct inet_connection_sock *icsk = inet_csk(sk);
124 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 	unsigned int len;
126 
127 	icsk->icsk_ack.last_seg_size = 0;
128 
129 	/* skb->len may jitter because of SACKs, even if peer
130 	 * sends good full-sized frames.
131 	 */
132 	len = skb_shinfo(skb)->gso_size ? : skb->len;
133 	if (len >= icsk->icsk_ack.rcv_mss) {
134 		icsk->icsk_ack.rcv_mss = len;
135 	} else {
136 		/* Otherwise, we make more careful check taking into account,
137 		 * that SACKs block is variable.
138 		 *
139 		 * "len" is invariant segment length, including TCP header.
140 		 */
141 		len += skb->data - skb_transport_header(skb);
142 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 		    /* If PSH is not set, packet should be
144 		     * full sized, provided peer TCP is not badly broken.
145 		     * This observation (if it is correct 8)) allows
146 		     * to handle super-low mtu links fairly.
147 		     */
148 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 			/* Subtract also invariant (if peer is RFC compliant),
151 			 * tcp header plus fixed timestamp option length.
152 			 * Resulting "len" is MSS free of SACK jitter.
153 			 */
154 			len -= tcp_sk(sk)->tcp_header_len;
155 			icsk->icsk_ack.last_seg_size = len;
156 			if (len == lss) {
157 				icsk->icsk_ack.rcv_mss = len;
158 				return;
159 			}
160 		}
161 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 	}
165 }
166 
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 	struct inet_connection_sock *icsk = inet_csk(sk);
170 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171 
172 	if (quickacks == 0)
173 		quickacks = 2;
174 	if (quickacks > icsk->icsk_ack.quick)
175 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177 
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	tcp_incr_quickack(sk);
182 	icsk->icsk_ack.pingpong = 0;
183 	icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185 
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189 
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 	const struct inet_connection_sock *icsk = inet_csk(sk);
193 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195 
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 	if (tp->ecn_flags & TCP_ECN_OK)
199 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201 
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 	if (tcp_hdr(skb)->cwr)
205 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207 
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212 
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 	if (tp->ecn_flags & TCP_ECN_OK) {
216 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 		/* Funny extension: if ECT is not set on a segment,
219 		 * it is surely retransmit. It is not in ECN RFC,
220 		 * but Linux follows this rule. */
221 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 			tcp_enter_quickack_mode((struct sock *)tp);
223 	}
224 }
225 
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 		tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231 
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 		tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237 
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 		return 1;
242 	return 0;
243 }
244 
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249 
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 		     sizeof(struct sk_buff);
254 
255 	if (sk->sk_sndbuf < 3 * sndmem)
256 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258 
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283 
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 	struct tcp_sock *tp = tcp_sk(sk);
288 	/* Optimize this! */
289 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291 
292 	while (tp->rcv_ssthresh <= window) {
293 		if (truesize <= skb->len)
294 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295 
296 		truesize >>= 1;
297 		window >>= 1;
298 	}
299 	return 0;
300 }
301 
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 	struct tcp_sock *tp = tcp_sk(sk);
305 
306 	/* Check #1 */
307 	if (tp->rcv_ssthresh < tp->window_clamp &&
308 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 	    !tcp_memory_pressure) {
310 		int incr;
311 
312 		/* Check #2. Increase window, if skb with such overhead
313 		 * will fit to rcvbuf in future.
314 		 */
315 		if (tcp_win_from_space(skb->truesize) <= skb->len)
316 			incr = 2 * tp->advmss;
317 		else
318 			incr = __tcp_grow_window(sk, skb);
319 
320 		if (incr) {
321 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 					       tp->window_clamp);
323 			inet_csk(sk)->icsk_ack.quick |= 1;
324 		}
325 	}
326 }
327 
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329 
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334 
335 	/* Try to select rcvbuf so that 4 mss-sized segments
336 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 	 */
339 	while (tcp_win_from_space(rcvmem) < tp->advmss)
340 		rcvmem += 128;
341 	if (sk->sk_rcvbuf < 4 * rcvmem)
342 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344 
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 	struct tcp_sock *tp = tcp_sk(sk);
351 	int maxwin;
352 
353 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 		tcp_fixup_rcvbuf(sk);
355 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 		tcp_fixup_sndbuf(sk);
357 
358 	tp->rcvq_space.space = tp->rcv_wnd;
359 
360 	maxwin = tcp_full_space(sk);
361 
362 	if (tp->window_clamp >= maxwin) {
363 		tp->window_clamp = maxwin;
364 
365 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 			tp->window_clamp = max(maxwin -
367 					       (maxwin >> sysctl_tcp_app_win),
368 					       4 * tp->advmss);
369 	}
370 
371 	/* Force reservation of one segment. */
372 	if (sysctl_tcp_app_win &&
373 	    tp->window_clamp > 2 * tp->advmss &&
374 	    tp->window_clamp + tp->advmss > maxwin)
375 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376 
377 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 	tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380 
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384 	struct tcp_sock *tp = tcp_sk(sk);
385 	struct inet_connection_sock *icsk = inet_csk(sk);
386 
387 	icsk->icsk_ack.quick = 0;
388 
389 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 	    !tcp_memory_pressure &&
392 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 				    sysctl_tcp_rmem[2]);
395 	}
396 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399 
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 	struct tcp_sock *tp = tcp_sk(sk);
410 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411 
412 	hint = min(hint, tp->rcv_wnd / 2);
413 	hint = min(hint, TCP_MIN_RCVMSS);
414 	hint = max(hint, TCP_MIN_MSS);
415 
416 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418 
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 	u32 new_sample = tp->rcv_rtt_est.rtt;
433 	long m = sample;
434 
435 	if (m == 0)
436 		m = 1;
437 
438 	if (new_sample != 0) {
439 		/* If we sample in larger samples in the non-timestamp
440 		 * case, we could grossly overestimate the RTT especially
441 		 * with chatty applications or bulk transfer apps which
442 		 * are stalled on filesystem I/O.
443 		 *
444 		 * Also, since we are only going for a minimum in the
445 		 * non-timestamp case, we do not smooth things out
446 		 * else with timestamps disabled convergence takes too
447 		 * long.
448 		 */
449 		if (!win_dep) {
450 			m -= (new_sample >> 3);
451 			new_sample += m;
452 		} else if (m < new_sample)
453 			new_sample = m << 3;
454 	} else {
455 		/* No previous measure. */
456 		new_sample = m << 3;
457 	}
458 
459 	if (tp->rcv_rtt_est.rtt != new_sample)
460 		tp->rcv_rtt_est.rtt = new_sample;
461 }
462 
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 	if (tp->rcv_rtt_est.time == 0)
466 		goto new_measure;
467 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 		return;
469 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470 
471 new_measure:
472 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 	tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475 
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 					  const struct sk_buff *skb)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	if (tp->rx_opt.rcv_tsecr &&
481 	    (TCP_SKB_CB(skb)->end_seq -
482 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485 
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 	struct tcp_sock *tp = tcp_sk(sk);
493 	int time;
494 	int space;
495 
496 	if (tp->rcvq_space.time == 0)
497 		goto new_measure;
498 
499 	time = tcp_time_stamp - tp->rcvq_space.time;
500 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 		return;
502 
503 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504 
505 	space = max(tp->rcvq_space.space, space);
506 
507 	if (tp->rcvq_space.space != space) {
508 		int rcvmem;
509 
510 		tp->rcvq_space.space = space;
511 
512 		if (sysctl_tcp_moderate_rcvbuf &&
513 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 			int new_clamp = space;
515 
516 			/* Receive space grows, normalize in order to
517 			 * take into account packet headers and sk_buff
518 			 * structure overhead.
519 			 */
520 			space /= tp->advmss;
521 			if (!space)
522 				space = 1;
523 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 				  16 + sizeof(struct sk_buff));
525 			while (tcp_win_from_space(rcvmem) < tp->advmss)
526 				rcvmem += 128;
527 			space *= rcvmem;
528 			space = min(space, sysctl_tcp_rmem[2]);
529 			if (space > sk->sk_rcvbuf) {
530 				sk->sk_rcvbuf = space;
531 
532 				/* Make the window clamp follow along.  */
533 				tp->window_clamp = new_clamp;
534 			}
535 		}
536 	}
537 
538 new_measure:
539 	tp->rcvq_space.seq = tp->copied_seq;
540 	tp->rcvq_space.time = tcp_time_stamp;
541 }
542 
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	struct inet_connection_sock *icsk = inet_csk(sk);
557 	u32 now;
558 
559 	inet_csk_schedule_ack(sk);
560 
561 	tcp_measure_rcv_mss(sk, skb);
562 
563 	tcp_rcv_rtt_measure(tp);
564 
565 	now = tcp_time_stamp;
566 
567 	if (!icsk->icsk_ack.ato) {
568 		/* The _first_ data packet received, initialize
569 		 * delayed ACK engine.
570 		 */
571 		tcp_incr_quickack(sk);
572 		icsk->icsk_ack.ato = TCP_ATO_MIN;
573 	} else {
574 		int m = now - icsk->icsk_ack.lrcvtime;
575 
576 		if (m <= TCP_ATO_MIN / 2) {
577 			/* The fastest case is the first. */
578 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 		} else if (m < icsk->icsk_ack.ato) {
580 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 				icsk->icsk_ack.ato = icsk->icsk_rto;
583 		} else if (m > icsk->icsk_rto) {
584 			/* Too long gap. Apparently sender failed to
585 			 * restart window, so that we send ACKs quickly.
586 			 */
587 			tcp_incr_quickack(sk);
588 			sk_mem_reclaim(sk);
589 		}
590 	}
591 	icsk->icsk_ack.lrcvtime = now;
592 
593 	TCP_ECN_check_ce(tp, skb);
594 
595 	if (skb->len >= 128)
596 		tcp_grow_window(sk, skb);
597 }
598 
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 	struct dst_entry *dst = __sk_dst_get(sk);
602 	u32 rto_min = TCP_RTO_MIN;
603 
604 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 	return rto_min;
607 }
608 
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	long m = mrtt; /* RTT */
622 
623 	/*	The following amusing code comes from Jacobson's
624 	 *	article in SIGCOMM '88.  Note that rtt and mdev
625 	 *	are scaled versions of rtt and mean deviation.
626 	 *	This is designed to be as fast as possible
627 	 *	m stands for "measurement".
628 	 *
629 	 *	On a 1990 paper the rto value is changed to:
630 	 *	RTO = rtt + 4 * mdev
631 	 *
632 	 * Funny. This algorithm seems to be very broken.
633 	 * These formulae increase RTO, when it should be decreased, increase
634 	 * too slowly, when it should be increased quickly, decrease too quickly
635 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 	 * does not matter how to _calculate_ it. Seems, it was trap
637 	 * that VJ failed to avoid. 8)
638 	 */
639 	if (m == 0)
640 		m = 1;
641 	if (tp->srtt != 0) {
642 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
643 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
644 		if (m < 0) {
645 			m = -m;		/* m is now abs(error) */
646 			m -= (tp->mdev >> 2);   /* similar update on mdev */
647 			/* This is similar to one of Eifel findings.
648 			 * Eifel blocks mdev updates when rtt decreases.
649 			 * This solution is a bit different: we use finer gain
650 			 * for mdev in this case (alpha*beta).
651 			 * Like Eifel it also prevents growth of rto,
652 			 * but also it limits too fast rto decreases,
653 			 * happening in pure Eifel.
654 			 */
655 			if (m > 0)
656 				m >>= 3;
657 		} else {
658 			m -= (tp->mdev >> 2);   /* similar update on mdev */
659 		}
660 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
661 		if (tp->mdev > tp->mdev_max) {
662 			tp->mdev_max = tp->mdev;
663 			if (tp->mdev_max > tp->rttvar)
664 				tp->rttvar = tp->mdev_max;
665 		}
666 		if (after(tp->snd_una, tp->rtt_seq)) {
667 			if (tp->mdev_max < tp->rttvar)
668 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 			tp->rtt_seq = tp->snd_nxt;
670 			tp->mdev_max = tcp_rto_min(sk);
671 		}
672 	} else {
673 		/* no previous measure. */
674 		tp->srtt = m << 3;	/* take the measured time to be rtt */
675 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
676 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 		tp->rtt_seq = tp->snd_nxt;
678 	}
679 }
680 
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 	const struct tcp_sock *tp = tcp_sk(sk);
687 	/* Old crap is replaced with new one. 8)
688 	 *
689 	 * More seriously:
690 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 	 *    It cannot be less due to utterly erratic ACK generation made
692 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
694 	 *    is invisible. Actually, Linux-2.4 also generates erratic
695 	 *    ACKs in some circumstances.
696 	 */
697 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698 
699 	/* 2. Fixups made earlier cannot be right.
700 	 *    If we do not estimate RTO correctly without them,
701 	 *    all the algo is pure shit and should be replaced
702 	 *    with correct one. It is exactly, which we pretend to do.
703 	 */
704 }
705 
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714 
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721 	struct tcp_sock *tp = tcp_sk(sk);
722 	struct dst_entry *dst = __sk_dst_get(sk);
723 
724 	if (sysctl_tcp_nometrics_save)
725 		return;
726 
727 	dst_confirm(dst);
728 
729 	if (dst && (dst->flags & DST_HOST)) {
730 		const struct inet_connection_sock *icsk = inet_csk(sk);
731 		int m;
732 		unsigned long rtt;
733 
734 		if (icsk->icsk_backoff || !tp->srtt) {
735 			/* This session failed to estimate rtt. Why?
736 			 * Probably, no packets returned in time.
737 			 * Reset our results.
738 			 */
739 			if (!(dst_metric_locked(dst, RTAX_RTT)))
740 				dst->metrics[RTAX_RTT - 1] = 0;
741 			return;
742 		}
743 
744 		rtt = dst_metric_rtt(dst, RTAX_RTT);
745 		m = rtt - tp->srtt;
746 
747 		/* If newly calculated rtt larger than stored one,
748 		 * store new one. Otherwise, use EWMA. Remember,
749 		 * rtt overestimation is always better than underestimation.
750 		 */
751 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 			if (m <= 0)
753 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 			else
755 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756 		}
757 
758 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 			unsigned long var;
760 			if (m < 0)
761 				m = -m;
762 
763 			/* Scale deviation to rttvar fixed point */
764 			m >>= 1;
765 			if (m < tp->mdev)
766 				m = tp->mdev;
767 
768 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 			if (m >= var)
770 				var = m;
771 			else
772 				var -= (var - m) >> 2;
773 
774 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775 		}
776 
777 		if (tp->snd_ssthresh >= 0xFFFF) {
778 			/* Slow start still did not finish. */
779 			if (dst_metric(dst, RTAX_SSTHRESH) &&
780 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 			if (!dst_metric_locked(dst, RTAX_CWND) &&
784 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 			   icsk->icsk_ca_state == TCP_CA_Open) {
788 			/* Cong. avoidance phase, cwnd is reliable. */
789 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 				dst->metrics[RTAX_SSTHRESH-1] =
791 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 			if (!dst_metric_locked(dst, RTAX_CWND))
793 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 		} else {
795 			/* Else slow start did not finish, cwnd is non-sense,
796 			   ssthresh may be also invalid.
797 			 */
798 			if (!dst_metric_locked(dst, RTAX_CWND))
799 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 			if (dst_metric(dst, RTAX_SSTHRESH) &&
801 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 		}
805 
806 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 			    tp->reordering != sysctl_tcp_reordering)
809 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810 		}
811 	}
812 }
813 
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *	The RFC specifies a window of no more than 4380 bytes
819  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *	is a bit misleading because they use a clamp at 4380 bytes
821  *	rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826 
827 	if (!cwnd) {
828 		if (tp->mss_cache > 1460)
829 			cwnd = 2;
830 		else
831 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832 	}
833 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835 
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839 	struct tcp_sock *tp = tcp_sk(sk);
840 	const struct inet_connection_sock *icsk = inet_csk(sk);
841 
842 	tp->prior_ssthresh = 0;
843 	tp->bytes_acked = 0;
844 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 		tp->undo_marker = 0;
846 		if (set_ssthresh)
847 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 		tp->snd_cwnd = min(tp->snd_cwnd,
849 				   tcp_packets_in_flight(tp) + 1U);
850 		tp->snd_cwnd_cnt = 0;
851 		tp->high_seq = tp->snd_nxt;
852 		tp->snd_cwnd_stamp = tcp_time_stamp;
853 		TCP_ECN_queue_cwr(tp);
854 
855 		tcp_set_ca_state(sk, TCP_CA_CWR);
856 	}
857 }
858 
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 	/* RFC3517 uses different metric in lost marker => reset on change */
866 	if (tcp_is_fack(tp))
867 		tp->lost_skb_hint = NULL;
868 	tp->rx_opt.sack_ok &= ~2;
869 }
870 
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 	tp->rx_opt.sack_ok |= 4;
875 }
876 
877 /* Initialize metrics on socket. */
878 
879 static void tcp_init_metrics(struct sock *sk)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	struct dst_entry *dst = __sk_dst_get(sk);
883 
884 	if (dst == NULL)
885 		goto reset;
886 
887 	dst_confirm(dst);
888 
889 	if (dst_metric_locked(dst, RTAX_CWND))
890 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 	if (dst_metric(dst, RTAX_SSTHRESH)) {
892 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
895 	}
896 	if (dst_metric(dst, RTAX_REORDERING) &&
897 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 		tcp_disable_fack(tp);
899 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 	}
901 
902 	if (dst_metric(dst, RTAX_RTT) == 0)
903 		goto reset;
904 
905 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 		goto reset;
907 
908 	/* Initial rtt is determined from SYN,SYN-ACK.
909 	 * The segment is small and rtt may appear much
910 	 * less than real one. Use per-dst memory
911 	 * to make it more realistic.
912 	 *
913 	 * A bit of theory. RTT is time passed after "normal" sized packet
914 	 * is sent until it is ACKed. In normal circumstances sending small
915 	 * packets force peer to delay ACKs and calculation is correct too.
916 	 * The algorithm is adaptive and, provided we follow specs, it
917 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 	 * tricks sort of "quick acks" for time long enough to decrease RTT
919 	 * to low value, and then abruptly stops to do it and starts to delay
920 	 * ACKs, wait for troubles.
921 	 */
922 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 		tp->rtt_seq = tp->snd_nxt;
925 	}
926 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929 	}
930 	tcp_set_rto(sk);
931 	tcp_bound_rto(sk);
932 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 		goto reset;
934 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 	tp->snd_cwnd_stamp = tcp_time_stamp;
936 	return;
937 
938 reset:
939 	/* Play conservative. If timestamps are not
940 	 * supported, TCP will fail to recalculate correct
941 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
942 	 */
943 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 		tp->srtt = 0;
945 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947 	}
948 }
949 
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 				  const int ts)
952 {
953 	struct tcp_sock *tp = tcp_sk(sk);
954 	if (metric > tp->reordering) {
955 		int mib_idx;
956 
957 		tp->reordering = min(TCP_MAX_REORDERING, metric);
958 
959 		/* This exciting event is worth to be remembered. 8) */
960 		if (ts)
961 			mib_idx = LINUX_MIB_TCPTSREORDER;
962 		else if (tcp_is_reno(tp))
963 			mib_idx = LINUX_MIB_TCPRENOREORDER;
964 		else if (tcp_is_fack(tp))
965 			mib_idx = LINUX_MIB_TCPFACKREORDER;
966 		else
967 			mib_idx = LINUX_MIB_TCPSACKREORDER;
968 
969 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 		       tp->reordering,
974 		       tp->fackets_out,
975 		       tp->sacked_out,
976 		       tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 		tcp_disable_fack(tp);
979 	}
980 }
981 
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985 	if ((tp->retransmit_skb_hint == NULL) ||
986 	    before(TCP_SKB_CB(skb)->seq,
987 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 		tp->retransmit_skb_hint = skb;
989 
990 	if (!tp->lost_out ||
991 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994 
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 		tcp_verify_retransmit_hint(tp, skb);
999 
1000 		tp->lost_out += tcp_skb_pcount(skb);
1001 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 	}
1003 }
1004 
1005 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
1006 {
1007 	tcp_verify_retransmit_hint(tp, skb);
1008 
1009 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1010 		tp->lost_out += tcp_skb_pcount(skb);
1011 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1012 	}
1013 }
1014 
1015 /* This procedure tags the retransmission queue when SACKs arrive.
1016  *
1017  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1018  * Packets in queue with these bits set are counted in variables
1019  * sacked_out, retrans_out and lost_out, correspondingly.
1020  *
1021  * Valid combinations are:
1022  * Tag  InFlight	Description
1023  * 0	1		- orig segment is in flight.
1024  * S	0		- nothing flies, orig reached receiver.
1025  * L	0		- nothing flies, orig lost by net.
1026  * R	2		- both orig and retransmit are in flight.
1027  * L|R	1		- orig is lost, retransmit is in flight.
1028  * S|R  1		- orig reached receiver, retrans is still in flight.
1029  * (L|S|R is logically valid, it could occur when L|R is sacked,
1030  *  but it is equivalent to plain S and code short-curcuits it to S.
1031  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1032  *
1033  * These 6 states form finite state machine, controlled by the following events:
1034  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1035  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1036  * 3. Loss detection event of one of three flavors:
1037  *	A. Scoreboard estimator decided the packet is lost.
1038  *	   A'. Reno "three dupacks" marks head of queue lost.
1039  *	   A''. Its FACK modfication, head until snd.fack is lost.
1040  *	B. SACK arrives sacking data transmitted after never retransmitted
1041  *	   hole was sent out.
1042  *	C. SACK arrives sacking SND.NXT at the moment, when the
1043  *	   segment was retransmitted.
1044  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1045  *
1046  * It is pleasant to note, that state diagram turns out to be commutative,
1047  * so that we are allowed not to be bothered by order of our actions,
1048  * when multiple events arrive simultaneously. (see the function below).
1049  *
1050  * Reordering detection.
1051  * --------------------
1052  * Reordering metric is maximal distance, which a packet can be displaced
1053  * in packet stream. With SACKs we can estimate it:
1054  *
1055  * 1. SACK fills old hole and the corresponding segment was not
1056  *    ever retransmitted -> reordering. Alas, we cannot use it
1057  *    when segment was retransmitted.
1058  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1059  *    for retransmitted and already SACKed segment -> reordering..
1060  * Both of these heuristics are not used in Loss state, when we cannot
1061  * account for retransmits accurately.
1062  *
1063  * SACK block validation.
1064  * ----------------------
1065  *
1066  * SACK block range validation checks that the received SACK block fits to
1067  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1068  * Note that SND.UNA is not included to the range though being valid because
1069  * it means that the receiver is rather inconsistent with itself reporting
1070  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1071  * perfectly valid, however, in light of RFC2018 which explicitly states
1072  * that "SACK block MUST reflect the newest segment.  Even if the newest
1073  * segment is going to be discarded ...", not that it looks very clever
1074  * in case of head skb. Due to potentional receiver driven attacks, we
1075  * choose to avoid immediate execution of a walk in write queue due to
1076  * reneging and defer head skb's loss recovery to standard loss recovery
1077  * procedure that will eventually trigger (nothing forbids us doing this).
1078  *
1079  * Implements also blockage to start_seq wrap-around. Problem lies in the
1080  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1081  * there's no guarantee that it will be before snd_nxt (n). The problem
1082  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1083  * wrap (s_w):
1084  *
1085  *         <- outs wnd ->                          <- wrapzone ->
1086  *         u     e      n                         u_w   e_w  s n_w
1087  *         |     |      |                          |     |   |  |
1088  * |<------------+------+----- TCP seqno space --------------+---------->|
1089  * ...-- <2^31 ->|                                           |<--------...
1090  * ...---- >2^31 ------>|                                    |<--------...
1091  *
1092  * Current code wouldn't be vulnerable but it's better still to discard such
1093  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1094  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1095  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1096  * equal to the ideal case (infinite seqno space without wrap caused issues).
1097  *
1098  * With D-SACK the lower bound is extended to cover sequence space below
1099  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1100  * again, D-SACK block must not to go across snd_una (for the same reason as
1101  * for the normal SACK blocks, explained above). But there all simplicity
1102  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1103  * fully below undo_marker they do not affect behavior in anyway and can
1104  * therefore be safely ignored. In rare cases (which are more or less
1105  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1106  * fragmentation and packet reordering past skb's retransmission. To consider
1107  * them correctly, the acceptable range must be extended even more though
1108  * the exact amount is rather hard to quantify. However, tp->max_window can
1109  * be used as an exaggerated estimate.
1110  */
1111 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1112 				  u32 start_seq, u32 end_seq)
1113 {
1114 	/* Too far in future, or reversed (interpretation is ambiguous) */
1115 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1116 		return 0;
1117 
1118 	/* Nasty start_seq wrap-around check (see comments above) */
1119 	if (!before(start_seq, tp->snd_nxt))
1120 		return 0;
1121 
1122 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1123 	 * start_seq == snd_una is non-sensical (see comments above)
1124 	 */
1125 	if (after(start_seq, tp->snd_una))
1126 		return 1;
1127 
1128 	if (!is_dsack || !tp->undo_marker)
1129 		return 0;
1130 
1131 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1132 	if (!after(end_seq, tp->snd_una))
1133 		return 0;
1134 
1135 	if (!before(start_seq, tp->undo_marker))
1136 		return 1;
1137 
1138 	/* Too old */
1139 	if (!after(end_seq, tp->undo_marker))
1140 		return 0;
1141 
1142 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1143 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1144 	 */
1145 	return !before(start_seq, end_seq - tp->max_window);
1146 }
1147 
1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1149  * Event "C". Later note: FACK people cheated me again 8), we have to account
1150  * for reordering! Ugly, but should help.
1151  *
1152  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1153  * less than what is now known to be received by the other end (derived from
1154  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1155  * retransmitted skbs to avoid some costly processing per ACKs.
1156  */
1157 static void tcp_mark_lost_retrans(struct sock *sk)
1158 {
1159 	const struct inet_connection_sock *icsk = inet_csk(sk);
1160 	struct tcp_sock *tp = tcp_sk(sk);
1161 	struct sk_buff *skb;
1162 	int cnt = 0;
1163 	u32 new_low_seq = tp->snd_nxt;
1164 	u32 received_upto = tcp_highest_sack_seq(tp);
1165 
1166 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1167 	    !after(received_upto, tp->lost_retrans_low) ||
1168 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1169 		return;
1170 
1171 	tcp_for_write_queue(skb, sk) {
1172 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1173 
1174 		if (skb == tcp_send_head(sk))
1175 			break;
1176 		if (cnt == tp->retrans_out)
1177 			break;
1178 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1179 			continue;
1180 
1181 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1182 			continue;
1183 
1184 		if (after(received_upto, ack_seq) &&
1185 		    (tcp_is_fack(tp) ||
1186 		     !before(received_upto,
1187 			     ack_seq + tp->reordering * tp->mss_cache))) {
1188 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189 			tp->retrans_out -= tcp_skb_pcount(skb);
1190 
1191 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1192 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193 		} else {
1194 			if (before(ack_seq, new_low_seq))
1195 				new_low_seq = ack_seq;
1196 			cnt += tcp_skb_pcount(skb);
1197 		}
1198 	}
1199 
1200 	if (tp->retrans_out)
1201 		tp->lost_retrans_low = new_low_seq;
1202 }
1203 
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205 			   struct tcp_sack_block_wire *sp, int num_sacks,
1206 			   u32 prior_snd_una)
1207 {
1208 	struct tcp_sock *tp = tcp_sk(sk);
1209 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211 	int dup_sack = 0;
1212 
1213 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214 		dup_sack = 1;
1215 		tcp_dsack_seen(tp);
1216 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217 	} else if (num_sacks > 1) {
1218 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220 
1221 		if (!after(end_seq_0, end_seq_1) &&
1222 		    !before(start_seq_0, start_seq_1)) {
1223 			dup_sack = 1;
1224 			tcp_dsack_seen(tp);
1225 			NET_INC_STATS_BH(sock_net(sk),
1226 					LINUX_MIB_TCPDSACKOFORECV);
1227 		}
1228 	}
1229 
1230 	/* D-SACK for already forgotten data... Do dumb counting. */
1231 	if (dup_sack &&
1232 	    !after(end_seq_0, prior_snd_una) &&
1233 	    after(end_seq_0, tp->undo_marker))
1234 		tp->undo_retrans--;
1235 
1236 	return dup_sack;
1237 }
1238 
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  */
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246 				 u32 start_seq, u32 end_seq)
1247 {
1248 	int in_sack, err;
1249 	unsigned int pkt_len;
1250 
1251 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1252 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1253 
1254 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1255 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1256 
1257 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1258 
1259 		if (!in_sack)
1260 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1261 		else
1262 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1263 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1264 		if (err < 0)
1265 			return err;
1266 	}
1267 
1268 	return in_sack;
1269 }
1270 
1271 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1272 			   int *reord, int dup_sack, int fack_count)
1273 {
1274 	struct tcp_sock *tp = tcp_sk(sk);
1275 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1276 	int flag = 0;
1277 
1278 	/* Account D-SACK for retransmitted packet. */
1279 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1280 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1281 			tp->undo_retrans--;
1282 		if (sacked & TCPCB_SACKED_ACKED)
1283 			*reord = min(fack_count, *reord);
1284 	}
1285 
1286 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1287 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1288 		return flag;
1289 
1290 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1291 		if (sacked & TCPCB_SACKED_RETRANS) {
1292 			/* If the segment is not tagged as lost,
1293 			 * we do not clear RETRANS, believing
1294 			 * that retransmission is still in flight.
1295 			 */
1296 			if (sacked & TCPCB_LOST) {
1297 				TCP_SKB_CB(skb)->sacked &=
1298 					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1299 				tp->lost_out -= tcp_skb_pcount(skb);
1300 				tp->retrans_out -= tcp_skb_pcount(skb);
1301 			}
1302 		} else {
1303 			if (!(sacked & TCPCB_RETRANS)) {
1304 				/* New sack for not retransmitted frame,
1305 				 * which was in hole. It is reordering.
1306 				 */
1307 				if (before(TCP_SKB_CB(skb)->seq,
1308 					   tcp_highest_sack_seq(tp)))
1309 					*reord = min(fack_count, *reord);
1310 
1311 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1312 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1313 					flag |= FLAG_ONLY_ORIG_SACKED;
1314 			}
1315 
1316 			if (sacked & TCPCB_LOST) {
1317 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1318 				tp->lost_out -= tcp_skb_pcount(skb);
1319 			}
1320 		}
1321 
1322 		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1323 		flag |= FLAG_DATA_SACKED;
1324 		tp->sacked_out += tcp_skb_pcount(skb);
1325 
1326 		fack_count += tcp_skb_pcount(skb);
1327 
1328 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1329 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1330 		    before(TCP_SKB_CB(skb)->seq,
1331 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1332 			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1333 
1334 		if (fack_count > tp->fackets_out)
1335 			tp->fackets_out = fack_count;
1336 
1337 		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1338 			tcp_advance_highest_sack(sk, skb);
1339 	}
1340 
1341 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1342 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1343 	 * are accounted above as well.
1344 	 */
1345 	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1346 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1347 		tp->retrans_out -= tcp_skb_pcount(skb);
1348 	}
1349 
1350 	return flag;
1351 }
1352 
1353 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1354 					struct tcp_sack_block *next_dup,
1355 					u32 start_seq, u32 end_seq,
1356 					int dup_sack_in, int *fack_count,
1357 					int *reord, int *flag)
1358 {
1359 	tcp_for_write_queue_from(skb, sk) {
1360 		int in_sack = 0;
1361 		int dup_sack = dup_sack_in;
1362 
1363 		if (skb == tcp_send_head(sk))
1364 			break;
1365 
1366 		/* queue is in-order => we can short-circuit the walk early */
1367 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1368 			break;
1369 
1370 		if ((next_dup != NULL) &&
1371 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1372 			in_sack = tcp_match_skb_to_sack(sk, skb,
1373 							next_dup->start_seq,
1374 							next_dup->end_seq);
1375 			if (in_sack > 0)
1376 				dup_sack = 1;
1377 		}
1378 
1379 		if (in_sack <= 0)
1380 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1381 							end_seq);
1382 		if (unlikely(in_sack < 0))
1383 			break;
1384 
1385 		if (in_sack)
1386 			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1387 						 *fack_count);
1388 
1389 		*fack_count += tcp_skb_pcount(skb);
1390 	}
1391 	return skb;
1392 }
1393 
1394 /* Avoid all extra work that is being done by sacktag while walking in
1395  * a normal way
1396  */
1397 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1398 					u32 skip_to_seq, int *fack_count)
1399 {
1400 	tcp_for_write_queue_from(skb, sk) {
1401 		if (skb == tcp_send_head(sk))
1402 			break;
1403 
1404 		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1405 			break;
1406 
1407 		*fack_count += tcp_skb_pcount(skb);
1408 	}
1409 	return skb;
1410 }
1411 
1412 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1413 						struct sock *sk,
1414 						struct tcp_sack_block *next_dup,
1415 						u32 skip_to_seq,
1416 						int *fack_count, int *reord,
1417 						int *flag)
1418 {
1419 	if (next_dup == NULL)
1420 		return skb;
1421 
1422 	if (before(next_dup->start_seq, skip_to_seq)) {
1423 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1424 		skb = tcp_sacktag_walk(skb, sk, NULL,
1425 				     next_dup->start_seq, next_dup->end_seq,
1426 				     1, fack_count, reord, flag);
1427 	}
1428 
1429 	return skb;
1430 }
1431 
1432 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1433 {
1434 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1435 }
1436 
1437 static int
1438 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1439 			u32 prior_snd_una)
1440 {
1441 	const struct inet_connection_sock *icsk = inet_csk(sk);
1442 	struct tcp_sock *tp = tcp_sk(sk);
1443 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1444 			      TCP_SKB_CB(ack_skb)->sacked);
1445 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1446 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1447 	struct tcp_sack_block *cache;
1448 	struct sk_buff *skb;
1449 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1450 	int used_sacks;
1451 	int reord = tp->packets_out;
1452 	int flag = 0;
1453 	int found_dup_sack = 0;
1454 	int fack_count;
1455 	int i, j;
1456 	int first_sack_index;
1457 
1458 	if (!tp->sacked_out) {
1459 		if (WARN_ON(tp->fackets_out))
1460 			tp->fackets_out = 0;
1461 		tcp_highest_sack_reset(sk);
1462 	}
1463 
1464 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1465 					 num_sacks, prior_snd_una);
1466 	if (found_dup_sack)
1467 		flag |= FLAG_DSACKING_ACK;
1468 
1469 	/* Eliminate too old ACKs, but take into
1470 	 * account more or less fresh ones, they can
1471 	 * contain valid SACK info.
1472 	 */
1473 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1474 		return 0;
1475 
1476 	if (!tp->packets_out)
1477 		goto out;
1478 
1479 	used_sacks = 0;
1480 	first_sack_index = 0;
1481 	for (i = 0; i < num_sacks; i++) {
1482 		int dup_sack = !i && found_dup_sack;
1483 
1484 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1485 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1486 
1487 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1488 					    sp[used_sacks].start_seq,
1489 					    sp[used_sacks].end_seq)) {
1490 			int mib_idx;
1491 
1492 			if (dup_sack) {
1493 				if (!tp->undo_marker)
1494 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1495 				else
1496 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1497 			} else {
1498 				/* Don't count olds caused by ACK reordering */
1499 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1500 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1501 					continue;
1502 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1503 			}
1504 
1505 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1506 			if (i == 0)
1507 				first_sack_index = -1;
1508 			continue;
1509 		}
1510 
1511 		/* Ignore very old stuff early */
1512 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1513 			continue;
1514 
1515 		used_sacks++;
1516 	}
1517 
1518 	/* order SACK blocks to allow in order walk of the retrans queue */
1519 	for (i = used_sacks - 1; i > 0; i--) {
1520 		for (j = 0; j < i; j++) {
1521 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1522 				struct tcp_sack_block tmp;
1523 
1524 				tmp = sp[j];
1525 				sp[j] = sp[j + 1];
1526 				sp[j + 1] = tmp;
1527 
1528 				/* Track where the first SACK block goes to */
1529 				if (j == first_sack_index)
1530 					first_sack_index = j + 1;
1531 			}
1532 		}
1533 	}
1534 
1535 	skb = tcp_write_queue_head(sk);
1536 	fack_count = 0;
1537 	i = 0;
1538 
1539 	if (!tp->sacked_out) {
1540 		/* It's already past, so skip checking against it */
1541 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1542 	} else {
1543 		cache = tp->recv_sack_cache;
1544 		/* Skip empty blocks in at head of the cache */
1545 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1546 		       !cache->end_seq)
1547 			cache++;
1548 	}
1549 
1550 	while (i < used_sacks) {
1551 		u32 start_seq = sp[i].start_seq;
1552 		u32 end_seq = sp[i].end_seq;
1553 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1554 		struct tcp_sack_block *next_dup = NULL;
1555 
1556 		if (found_dup_sack && ((i + 1) == first_sack_index))
1557 			next_dup = &sp[i + 1];
1558 
1559 		/* Event "B" in the comment above. */
1560 		if (after(end_seq, tp->high_seq))
1561 			flag |= FLAG_DATA_LOST;
1562 
1563 		/* Skip too early cached blocks */
1564 		while (tcp_sack_cache_ok(tp, cache) &&
1565 		       !before(start_seq, cache->end_seq))
1566 			cache++;
1567 
1568 		/* Can skip some work by looking recv_sack_cache? */
1569 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1570 		    after(end_seq, cache->start_seq)) {
1571 
1572 			/* Head todo? */
1573 			if (before(start_seq, cache->start_seq)) {
1574 				skb = tcp_sacktag_skip(skb, sk, start_seq,
1575 						       &fack_count);
1576 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1577 						       start_seq,
1578 						       cache->start_seq,
1579 						       dup_sack, &fack_count,
1580 						       &reord, &flag);
1581 			}
1582 
1583 			/* Rest of the block already fully processed? */
1584 			if (!after(end_seq, cache->end_seq))
1585 				goto advance_sp;
1586 
1587 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1588 						       cache->end_seq,
1589 						       &fack_count, &reord,
1590 						       &flag);
1591 
1592 			/* ...tail remains todo... */
1593 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1594 				/* ...but better entrypoint exists! */
1595 				skb = tcp_highest_sack(sk);
1596 				if (skb == NULL)
1597 					break;
1598 				fack_count = tp->fackets_out;
1599 				cache++;
1600 				goto walk;
1601 			}
1602 
1603 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1604 					       &fack_count);
1605 			/* Check overlap against next cached too (past this one already) */
1606 			cache++;
1607 			continue;
1608 		}
1609 
1610 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1611 			skb = tcp_highest_sack(sk);
1612 			if (skb == NULL)
1613 				break;
1614 			fack_count = tp->fackets_out;
1615 		}
1616 		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1617 
1618 walk:
1619 		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1620 				       dup_sack, &fack_count, &reord, &flag);
1621 
1622 advance_sp:
1623 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1624 		 * due to in-order walk
1625 		 */
1626 		if (after(end_seq, tp->frto_highmark))
1627 			flag &= ~FLAG_ONLY_ORIG_SACKED;
1628 
1629 		i++;
1630 	}
1631 
1632 	/* Clear the head of the cache sack blocks so we can skip it next time */
1633 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1634 		tp->recv_sack_cache[i].start_seq = 0;
1635 		tp->recv_sack_cache[i].end_seq = 0;
1636 	}
1637 	for (j = 0; j < used_sacks; j++)
1638 		tp->recv_sack_cache[i++] = sp[j];
1639 
1640 	tcp_mark_lost_retrans(sk);
1641 
1642 	tcp_verify_left_out(tp);
1643 
1644 	if ((reord < tp->fackets_out) &&
1645 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1646 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1647 		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1648 
1649 out:
1650 
1651 #if FASTRETRANS_DEBUG > 0
1652 	WARN_ON((int)tp->sacked_out < 0);
1653 	WARN_ON((int)tp->lost_out < 0);
1654 	WARN_ON((int)tp->retrans_out < 0);
1655 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1656 #endif
1657 	return flag;
1658 }
1659 
1660 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1661  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1662  */
1663 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1664 {
1665 	u32 holes;
1666 
1667 	holes = max(tp->lost_out, 1U);
1668 	holes = min(holes, tp->packets_out);
1669 
1670 	if ((tp->sacked_out + holes) > tp->packets_out) {
1671 		tp->sacked_out = tp->packets_out - holes;
1672 		return 1;
1673 	}
1674 	return 0;
1675 }
1676 
1677 /* If we receive more dupacks than we expected counting segments
1678  * in assumption of absent reordering, interpret this as reordering.
1679  * The only another reason could be bug in receiver TCP.
1680  */
1681 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1682 {
1683 	struct tcp_sock *tp = tcp_sk(sk);
1684 	if (tcp_limit_reno_sacked(tp))
1685 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1686 }
1687 
1688 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1689 
1690 static void tcp_add_reno_sack(struct sock *sk)
1691 {
1692 	struct tcp_sock *tp = tcp_sk(sk);
1693 	tp->sacked_out++;
1694 	tcp_check_reno_reordering(sk, 0);
1695 	tcp_verify_left_out(tp);
1696 }
1697 
1698 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1699 
1700 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1701 {
1702 	struct tcp_sock *tp = tcp_sk(sk);
1703 
1704 	if (acked > 0) {
1705 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1706 		if (acked - 1 >= tp->sacked_out)
1707 			tp->sacked_out = 0;
1708 		else
1709 			tp->sacked_out -= acked - 1;
1710 	}
1711 	tcp_check_reno_reordering(sk, acked);
1712 	tcp_verify_left_out(tp);
1713 }
1714 
1715 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1716 {
1717 	tp->sacked_out = 0;
1718 }
1719 
1720 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1721 {
1722 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1723 }
1724 
1725 /* F-RTO can only be used if TCP has never retransmitted anything other than
1726  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1727  */
1728 int tcp_use_frto(struct sock *sk)
1729 {
1730 	const struct tcp_sock *tp = tcp_sk(sk);
1731 	const struct inet_connection_sock *icsk = inet_csk(sk);
1732 	struct sk_buff *skb;
1733 
1734 	if (!sysctl_tcp_frto)
1735 		return 0;
1736 
1737 	/* MTU probe and F-RTO won't really play nicely along currently */
1738 	if (icsk->icsk_mtup.probe_size)
1739 		return 0;
1740 
1741 	if (tcp_is_sackfrto(tp))
1742 		return 1;
1743 
1744 	/* Avoid expensive walking of rexmit queue if possible */
1745 	if (tp->retrans_out > 1)
1746 		return 0;
1747 
1748 	skb = tcp_write_queue_head(sk);
1749 	if (tcp_skb_is_last(sk, skb))
1750 		return 1;
1751 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1752 	tcp_for_write_queue_from(skb, sk) {
1753 		if (skb == tcp_send_head(sk))
1754 			break;
1755 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1756 			return 0;
1757 		/* Short-circuit when first non-SACKed skb has been checked */
1758 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1759 			break;
1760 	}
1761 	return 1;
1762 }
1763 
1764 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1765  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1766  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1767  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1768  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1769  * bits are handled if the Loss state is really to be entered (in
1770  * tcp_enter_frto_loss).
1771  *
1772  * Do like tcp_enter_loss() would; when RTO expires the second time it
1773  * does:
1774  *  "Reduce ssthresh if it has not yet been made inside this window."
1775  */
1776 void tcp_enter_frto(struct sock *sk)
1777 {
1778 	const struct inet_connection_sock *icsk = inet_csk(sk);
1779 	struct tcp_sock *tp = tcp_sk(sk);
1780 	struct sk_buff *skb;
1781 
1782 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1783 	    tp->snd_una == tp->high_seq ||
1784 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1785 	     !icsk->icsk_retransmits)) {
1786 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1787 		/* Our state is too optimistic in ssthresh() call because cwnd
1788 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1789 		 * recovery has not yet completed. Pattern would be this: RTO,
1790 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1791 		 * up here twice).
1792 		 * RFC4138 should be more specific on what to do, even though
1793 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1794 		 * due to back-off and complexity of triggering events ...
1795 		 */
1796 		if (tp->frto_counter) {
1797 			u32 stored_cwnd;
1798 			stored_cwnd = tp->snd_cwnd;
1799 			tp->snd_cwnd = 2;
1800 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1801 			tp->snd_cwnd = stored_cwnd;
1802 		} else {
1803 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1804 		}
1805 		/* ... in theory, cong.control module could do "any tricks" in
1806 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1807 		 * counter would have to be faked before the call occurs. We
1808 		 * consider that too expensive, unlikely and hacky, so modules
1809 		 * using these in ssthresh() must deal these incompatibility
1810 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1811 		 */
1812 		tcp_ca_event(sk, CA_EVENT_FRTO);
1813 	}
1814 
1815 	tp->undo_marker = tp->snd_una;
1816 	tp->undo_retrans = 0;
1817 
1818 	skb = tcp_write_queue_head(sk);
1819 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1820 		tp->undo_marker = 0;
1821 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1822 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1823 		tp->retrans_out -= tcp_skb_pcount(skb);
1824 	}
1825 	tcp_verify_left_out(tp);
1826 
1827 	/* Too bad if TCP was application limited */
1828 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1829 
1830 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1831 	 * The last condition is necessary at least in tp->frto_counter case.
1832 	 */
1833 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1834 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1835 	    after(tp->high_seq, tp->snd_una)) {
1836 		tp->frto_highmark = tp->high_seq;
1837 	} else {
1838 		tp->frto_highmark = tp->snd_nxt;
1839 	}
1840 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1841 	tp->high_seq = tp->snd_nxt;
1842 	tp->frto_counter = 1;
1843 }
1844 
1845 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1846  * which indicates that we should follow the traditional RTO recovery,
1847  * i.e. mark everything lost and do go-back-N retransmission.
1848  */
1849 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1850 {
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 	struct sk_buff *skb;
1853 
1854 	tp->lost_out = 0;
1855 	tp->retrans_out = 0;
1856 	if (tcp_is_reno(tp))
1857 		tcp_reset_reno_sack(tp);
1858 
1859 	tcp_for_write_queue(skb, sk) {
1860 		if (skb == tcp_send_head(sk))
1861 			break;
1862 
1863 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1864 		/*
1865 		 * Count the retransmission made on RTO correctly (only when
1866 		 * waiting for the first ACK and did not get it)...
1867 		 */
1868 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1869 			/* For some reason this R-bit might get cleared? */
1870 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1871 				tp->retrans_out += tcp_skb_pcount(skb);
1872 			/* ...enter this if branch just for the first segment */
1873 			flag |= FLAG_DATA_ACKED;
1874 		} else {
1875 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1876 				tp->undo_marker = 0;
1877 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1878 		}
1879 
1880 		/* Marking forward transmissions that were made after RTO lost
1881 		 * can cause unnecessary retransmissions in some scenarios,
1882 		 * SACK blocks will mitigate that in some but not in all cases.
1883 		 * We used to not mark them but it was causing break-ups with
1884 		 * receivers that do only in-order receival.
1885 		 *
1886 		 * TODO: we could detect presence of such receiver and select
1887 		 * different behavior per flow.
1888 		 */
1889 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1890 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1891 			tp->lost_out += tcp_skb_pcount(skb);
1892 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1893 		}
1894 	}
1895 	tcp_verify_left_out(tp);
1896 
1897 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1898 	tp->snd_cwnd_cnt = 0;
1899 	tp->snd_cwnd_stamp = tcp_time_stamp;
1900 	tp->frto_counter = 0;
1901 	tp->bytes_acked = 0;
1902 
1903 	tp->reordering = min_t(unsigned int, tp->reordering,
1904 			       sysctl_tcp_reordering);
1905 	tcp_set_ca_state(sk, TCP_CA_Loss);
1906 	tp->high_seq = tp->snd_nxt;
1907 	TCP_ECN_queue_cwr(tp);
1908 
1909 	tcp_clear_all_retrans_hints(tp);
1910 }
1911 
1912 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1913 {
1914 	tp->retrans_out = 0;
1915 	tp->lost_out = 0;
1916 
1917 	tp->undo_marker = 0;
1918 	tp->undo_retrans = 0;
1919 }
1920 
1921 void tcp_clear_retrans(struct tcp_sock *tp)
1922 {
1923 	tcp_clear_retrans_partial(tp);
1924 
1925 	tp->fackets_out = 0;
1926 	tp->sacked_out = 0;
1927 }
1928 
1929 /* Enter Loss state. If "how" is not zero, forget all SACK information
1930  * and reset tags completely, otherwise preserve SACKs. If receiver
1931  * dropped its ofo queue, we will know this due to reneging detection.
1932  */
1933 void tcp_enter_loss(struct sock *sk, int how)
1934 {
1935 	const struct inet_connection_sock *icsk = inet_csk(sk);
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 	struct sk_buff *skb;
1938 
1939 	/* Reduce ssthresh if it has not yet been made inside this window. */
1940 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1941 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1942 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1943 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1944 		tcp_ca_event(sk, CA_EVENT_LOSS);
1945 	}
1946 	tp->snd_cwnd	   = 1;
1947 	tp->snd_cwnd_cnt   = 0;
1948 	tp->snd_cwnd_stamp = tcp_time_stamp;
1949 
1950 	tp->bytes_acked = 0;
1951 	tcp_clear_retrans_partial(tp);
1952 
1953 	if (tcp_is_reno(tp))
1954 		tcp_reset_reno_sack(tp);
1955 
1956 	if (!how) {
1957 		/* Push undo marker, if it was plain RTO and nothing
1958 		 * was retransmitted. */
1959 		tp->undo_marker = tp->snd_una;
1960 	} else {
1961 		tp->sacked_out = 0;
1962 		tp->fackets_out = 0;
1963 	}
1964 	tcp_clear_all_retrans_hints(tp);
1965 
1966 	tcp_for_write_queue(skb, sk) {
1967 		if (skb == tcp_send_head(sk))
1968 			break;
1969 
1970 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1971 			tp->undo_marker = 0;
1972 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1973 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1974 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976 			tp->lost_out += tcp_skb_pcount(skb);
1977 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1978 		}
1979 	}
1980 	tcp_verify_left_out(tp);
1981 
1982 	tp->reordering = min_t(unsigned int, tp->reordering,
1983 			       sysctl_tcp_reordering);
1984 	tcp_set_ca_state(sk, TCP_CA_Loss);
1985 	tp->high_seq = tp->snd_nxt;
1986 	TCP_ECN_queue_cwr(tp);
1987 	/* Abort F-RTO algorithm if one is in progress */
1988 	tp->frto_counter = 0;
1989 }
1990 
1991 /* If ACK arrived pointing to a remembered SACK, it means that our
1992  * remembered SACKs do not reflect real state of receiver i.e.
1993  * receiver _host_ is heavily congested (or buggy).
1994  *
1995  * Do processing similar to RTO timeout.
1996  */
1997 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1998 {
1999 	if (flag & FLAG_SACK_RENEGING) {
2000 		struct inet_connection_sock *icsk = inet_csk(sk);
2001 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2002 
2003 		tcp_enter_loss(sk, 1);
2004 		icsk->icsk_retransmits++;
2005 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2006 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2007 					  icsk->icsk_rto, TCP_RTO_MAX);
2008 		return 1;
2009 	}
2010 	return 0;
2011 }
2012 
2013 static inline int tcp_fackets_out(struct tcp_sock *tp)
2014 {
2015 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2016 }
2017 
2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2019  * counter when SACK is enabled (without SACK, sacked_out is used for
2020  * that purpose).
2021  *
2022  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2023  * segments up to the highest received SACK block so far and holes in
2024  * between them.
2025  *
2026  * With reordering, holes may still be in flight, so RFC3517 recovery
2027  * uses pure sacked_out (total number of SACKed segments) even though
2028  * it violates the RFC that uses duplicate ACKs, often these are equal
2029  * but when e.g. out-of-window ACKs or packet duplication occurs,
2030  * they differ. Since neither occurs due to loss, TCP should really
2031  * ignore them.
2032  */
2033 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2034 {
2035 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2036 }
2037 
2038 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2039 {
2040 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2041 }
2042 
2043 static inline int tcp_head_timedout(struct sock *sk)
2044 {
2045 	struct tcp_sock *tp = tcp_sk(sk);
2046 
2047 	return tp->packets_out &&
2048 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2049 }
2050 
2051 /* Linux NewReno/SACK/FACK/ECN state machine.
2052  * --------------------------------------
2053  *
2054  * "Open"	Normal state, no dubious events, fast path.
2055  * "Disorder"   In all the respects it is "Open",
2056  *		but requires a bit more attention. It is entered when
2057  *		we see some SACKs or dupacks. It is split of "Open"
2058  *		mainly to move some processing from fast path to slow one.
2059  * "CWR"	CWND was reduced due to some Congestion Notification event.
2060  *		It can be ECN, ICMP source quench, local device congestion.
2061  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2062  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2063  *
2064  * tcp_fastretrans_alert() is entered:
2065  * - each incoming ACK, if state is not "Open"
2066  * - when arrived ACK is unusual, namely:
2067  *	* SACK
2068  *	* Duplicate ACK.
2069  *	* ECN ECE.
2070  *
2071  * Counting packets in flight is pretty simple.
2072  *
2073  *	in_flight = packets_out - left_out + retrans_out
2074  *
2075  *	packets_out is SND.NXT-SND.UNA counted in packets.
2076  *
2077  *	retrans_out is number of retransmitted segments.
2078  *
2079  *	left_out is number of segments left network, but not ACKed yet.
2080  *
2081  *		left_out = sacked_out + lost_out
2082  *
2083  *     sacked_out: Packets, which arrived to receiver out of order
2084  *		   and hence not ACKed. With SACKs this number is simply
2085  *		   amount of SACKed data. Even without SACKs
2086  *		   it is easy to give pretty reliable estimate of this number,
2087  *		   counting duplicate ACKs.
2088  *
2089  *       lost_out: Packets lost by network. TCP has no explicit
2090  *		   "loss notification" feedback from network (for now).
2091  *		   It means that this number can be only _guessed_.
2092  *		   Actually, it is the heuristics to predict lossage that
2093  *		   distinguishes different algorithms.
2094  *
2095  *	F.e. after RTO, when all the queue is considered as lost,
2096  *	lost_out = packets_out and in_flight = retrans_out.
2097  *
2098  *		Essentially, we have now two algorithms counting
2099  *		lost packets.
2100  *
2101  *		FACK: It is the simplest heuristics. As soon as we decided
2102  *		that something is lost, we decide that _all_ not SACKed
2103  *		packets until the most forward SACK are lost. I.e.
2104  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105  *		It is absolutely correct estimate, if network does not reorder
2106  *		packets. And it loses any connection to reality when reordering
2107  *		takes place. We use FACK by default until reordering
2108  *		is suspected on the path to this destination.
2109  *
2110  *		NewReno: when Recovery is entered, we assume that one segment
2111  *		is lost (classic Reno). While we are in Recovery and
2112  *		a partial ACK arrives, we assume that one more packet
2113  *		is lost (NewReno). This heuristics are the same in NewReno
2114  *		and SACK.
2115  *
2116  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2117  *  deflation etc. CWND is real congestion window, never inflated, changes
2118  *  only according to classic VJ rules.
2119  *
2120  * Really tricky (and requiring careful tuning) part of algorithm
2121  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122  * The first determines the moment _when_ we should reduce CWND and,
2123  * hence, slow down forward transmission. In fact, it determines the moment
2124  * when we decide that hole is caused by loss, rather than by a reorder.
2125  *
2126  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127  * holes, caused by lost packets.
2128  *
2129  * And the most logically complicated part of algorithm is undo
2130  * heuristics. We detect false retransmits due to both too early
2131  * fast retransmit (reordering) and underestimated RTO, analyzing
2132  * timestamps and D-SACKs. When we detect that some segments were
2133  * retransmitted by mistake and CWND reduction was wrong, we undo
2134  * window reduction and abort recovery phase. This logic is hidden
2135  * inside several functions named tcp_try_undo_<something>.
2136  */
2137 
2138 /* This function decides, when we should leave Disordered state
2139  * and enter Recovery phase, reducing congestion window.
2140  *
2141  * Main question: may we further continue forward transmission
2142  * with the same cwnd?
2143  */
2144 static int tcp_time_to_recover(struct sock *sk)
2145 {
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 	__u32 packets_out;
2148 
2149 	/* Do not perform any recovery during F-RTO algorithm */
2150 	if (tp->frto_counter)
2151 		return 0;
2152 
2153 	/* Trick#1: The loss is proven. */
2154 	if (tp->lost_out)
2155 		return 1;
2156 
2157 	/* Not-A-Trick#2 : Classic rule... */
2158 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2159 		return 1;
2160 
2161 	/* Trick#3 : when we use RFC2988 timer restart, fast
2162 	 * retransmit can be triggered by timeout of queue head.
2163 	 */
2164 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2165 		return 1;
2166 
2167 	/* Trick#4: It is still not OK... But will it be useful to delay
2168 	 * recovery more?
2169 	 */
2170 	packets_out = tp->packets_out;
2171 	if (packets_out <= tp->reordering &&
2172 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2173 	    !tcp_may_send_now(sk)) {
2174 		/* We have nothing to send. This connection is limited
2175 		 * either by receiver window or by application.
2176 		 */
2177 		return 1;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2184  * is against sacked "cnt", otherwise it's against facked "cnt"
2185  */
2186 static void tcp_mark_head_lost(struct sock *sk, int packets)
2187 {
2188 	struct tcp_sock *tp = tcp_sk(sk);
2189 	struct sk_buff *skb;
2190 	int cnt, oldcnt;
2191 	int err;
2192 	unsigned int mss;
2193 
2194 	WARN_ON(packets > tp->packets_out);
2195 	if (tp->lost_skb_hint) {
2196 		skb = tp->lost_skb_hint;
2197 		cnt = tp->lost_cnt_hint;
2198 	} else {
2199 		skb = tcp_write_queue_head(sk);
2200 		cnt = 0;
2201 	}
2202 
2203 	tcp_for_write_queue_from(skb, sk) {
2204 		if (skb == tcp_send_head(sk))
2205 			break;
2206 		/* TODO: do this better */
2207 		/* this is not the most efficient way to do this... */
2208 		tp->lost_skb_hint = skb;
2209 		tp->lost_cnt_hint = cnt;
2210 
2211 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2212 			break;
2213 
2214 		oldcnt = cnt;
2215 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2216 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2217 			cnt += tcp_skb_pcount(skb);
2218 
2219 		if (cnt > packets) {
2220 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2221 				break;
2222 
2223 			mss = skb_shinfo(skb)->gso_size;
2224 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2225 			if (err < 0)
2226 				break;
2227 			cnt = packets;
2228 		}
2229 
2230 		tcp_skb_mark_lost(tp, skb);
2231 	}
2232 	tcp_verify_left_out(tp);
2233 }
2234 
2235 /* Account newly detected lost packet(s) */
2236 
2237 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2238 {
2239 	struct tcp_sock *tp = tcp_sk(sk);
2240 
2241 	if (tcp_is_reno(tp)) {
2242 		tcp_mark_head_lost(sk, 1);
2243 	} else if (tcp_is_fack(tp)) {
2244 		int lost = tp->fackets_out - tp->reordering;
2245 		if (lost <= 0)
2246 			lost = 1;
2247 		tcp_mark_head_lost(sk, lost);
2248 	} else {
2249 		int sacked_upto = tp->sacked_out - tp->reordering;
2250 		if (sacked_upto < fast_rexmit)
2251 			sacked_upto = fast_rexmit;
2252 		tcp_mark_head_lost(sk, sacked_upto);
2253 	}
2254 
2255 	/* New heuristics: it is possible only after we switched
2256 	 * to restart timer each time when something is ACKed.
2257 	 * Hence, we can detect timed out packets during fast
2258 	 * retransmit without falling to slow start.
2259 	 */
2260 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2261 		struct sk_buff *skb;
2262 
2263 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2264 			: tcp_write_queue_head(sk);
2265 
2266 		tcp_for_write_queue_from(skb, sk) {
2267 			if (skb == tcp_send_head(sk))
2268 				break;
2269 			if (!tcp_skb_timedout(sk, skb))
2270 				break;
2271 
2272 			tcp_skb_mark_lost(tp, skb);
2273 		}
2274 
2275 		tp->scoreboard_skb_hint = skb;
2276 
2277 		tcp_verify_left_out(tp);
2278 	}
2279 }
2280 
2281 /* CWND moderation, preventing bursts due to too big ACKs
2282  * in dubious situations.
2283  */
2284 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2285 {
2286 	tp->snd_cwnd = min(tp->snd_cwnd,
2287 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2288 	tp->snd_cwnd_stamp = tcp_time_stamp;
2289 }
2290 
2291 /* Lower bound on congestion window is slow start threshold
2292  * unless congestion avoidance choice decides to overide it.
2293  */
2294 static inline u32 tcp_cwnd_min(const struct sock *sk)
2295 {
2296 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2297 
2298 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2299 }
2300 
2301 /* Decrease cwnd each second ack. */
2302 static void tcp_cwnd_down(struct sock *sk, int flag)
2303 {
2304 	struct tcp_sock *tp = tcp_sk(sk);
2305 	int decr = tp->snd_cwnd_cnt + 1;
2306 
2307 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2308 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2309 		tp->snd_cwnd_cnt = decr & 1;
2310 		decr >>= 1;
2311 
2312 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2313 			tp->snd_cwnd -= decr;
2314 
2315 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2316 		tp->snd_cwnd_stamp = tcp_time_stamp;
2317 	}
2318 }
2319 
2320 /* Nothing was retransmitted or returned timestamp is less
2321  * than timestamp of the first retransmission.
2322  */
2323 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2324 {
2325 	return !tp->retrans_stamp ||
2326 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2327 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2328 }
2329 
2330 /* Undo procedures. */
2331 
2332 #if FASTRETRANS_DEBUG > 1
2333 static void DBGUNDO(struct sock *sk, const char *msg)
2334 {
2335 	struct tcp_sock *tp = tcp_sk(sk);
2336 	struct inet_sock *inet = inet_sk(sk);
2337 
2338 	if (sk->sk_family == AF_INET) {
2339 		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2340 		       msg,
2341 		       NIPQUAD(inet->daddr), ntohs(inet->dport),
2342 		       tp->snd_cwnd, tcp_left_out(tp),
2343 		       tp->snd_ssthresh, tp->prior_ssthresh,
2344 		       tp->packets_out);
2345 	}
2346 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2347 	else if (sk->sk_family == AF_INET6) {
2348 		struct ipv6_pinfo *np = inet6_sk(sk);
2349 		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2350 		       msg,
2351 		       NIP6(np->daddr), ntohs(inet->dport),
2352 		       tp->snd_cwnd, tcp_left_out(tp),
2353 		       tp->snd_ssthresh, tp->prior_ssthresh,
2354 		       tp->packets_out);
2355 	}
2356 #endif
2357 }
2358 #else
2359 #define DBGUNDO(x...) do { } while (0)
2360 #endif
2361 
2362 static void tcp_undo_cwr(struct sock *sk, const int undo)
2363 {
2364 	struct tcp_sock *tp = tcp_sk(sk);
2365 
2366 	if (tp->prior_ssthresh) {
2367 		const struct inet_connection_sock *icsk = inet_csk(sk);
2368 
2369 		if (icsk->icsk_ca_ops->undo_cwnd)
2370 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2371 		else
2372 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2373 
2374 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2375 			tp->snd_ssthresh = tp->prior_ssthresh;
2376 			TCP_ECN_withdraw_cwr(tp);
2377 		}
2378 	} else {
2379 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2380 	}
2381 	tcp_moderate_cwnd(tp);
2382 	tp->snd_cwnd_stamp = tcp_time_stamp;
2383 }
2384 
2385 static inline int tcp_may_undo(struct tcp_sock *tp)
2386 {
2387 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388 }
2389 
2390 /* People celebrate: "We love our President!" */
2391 static int tcp_try_undo_recovery(struct sock *sk)
2392 {
2393 	struct tcp_sock *tp = tcp_sk(sk);
2394 
2395 	if (tcp_may_undo(tp)) {
2396 		int mib_idx;
2397 
2398 		/* Happy end! We did not retransmit anything
2399 		 * or our original transmission succeeded.
2400 		 */
2401 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402 		tcp_undo_cwr(sk, 1);
2403 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405 		else
2406 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2407 
2408 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2409 		tp->undo_marker = 0;
2410 	}
2411 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2412 		/* Hold old state until something *above* high_seq
2413 		 * is ACKed. For Reno it is MUST to prevent false
2414 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2415 		tcp_moderate_cwnd(tp);
2416 		return 1;
2417 	}
2418 	tcp_set_ca_state(sk, TCP_CA_Open);
2419 	return 0;
2420 }
2421 
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static void tcp_try_undo_dsack(struct sock *sk)
2424 {
2425 	struct tcp_sock *tp = tcp_sk(sk);
2426 
2427 	if (tp->undo_marker && !tp->undo_retrans) {
2428 		DBGUNDO(sk, "D-SACK");
2429 		tcp_undo_cwr(sk, 1);
2430 		tp->undo_marker = 0;
2431 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432 	}
2433 }
2434 
2435 /* Undo during fast recovery after partial ACK. */
2436 
2437 static int tcp_try_undo_partial(struct sock *sk, int acked)
2438 {
2439 	struct tcp_sock *tp = tcp_sk(sk);
2440 	/* Partial ACK arrived. Force Hoe's retransmit. */
2441 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2442 
2443 	if (tcp_may_undo(tp)) {
2444 		/* Plain luck! Hole if filled with delayed
2445 		 * packet, rather than with a retransmit.
2446 		 */
2447 		if (tp->retrans_out == 0)
2448 			tp->retrans_stamp = 0;
2449 
2450 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2451 
2452 		DBGUNDO(sk, "Hoe");
2453 		tcp_undo_cwr(sk, 0);
2454 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2455 
2456 		/* So... Do not make Hoe's retransmit yet.
2457 		 * If the first packet was delayed, the rest
2458 		 * ones are most probably delayed as well.
2459 		 */
2460 		failed = 0;
2461 	}
2462 	return failed;
2463 }
2464 
2465 /* Undo during loss recovery after partial ACK. */
2466 static int tcp_try_undo_loss(struct sock *sk)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	if (tcp_may_undo(tp)) {
2471 		struct sk_buff *skb;
2472 		tcp_for_write_queue(skb, sk) {
2473 			if (skb == tcp_send_head(sk))
2474 				break;
2475 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2476 		}
2477 
2478 		tcp_clear_all_retrans_hints(tp);
2479 
2480 		DBGUNDO(sk, "partial loss");
2481 		tp->lost_out = 0;
2482 		tcp_undo_cwr(sk, 1);
2483 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2484 		inet_csk(sk)->icsk_retransmits = 0;
2485 		tp->undo_marker = 0;
2486 		if (tcp_is_sack(tp))
2487 			tcp_set_ca_state(sk, TCP_CA_Open);
2488 		return 1;
2489 	}
2490 	return 0;
2491 }
2492 
2493 static inline void tcp_complete_cwr(struct sock *sk)
2494 {
2495 	struct tcp_sock *tp = tcp_sk(sk);
2496 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2497 	tp->snd_cwnd_stamp = tcp_time_stamp;
2498 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2499 }
2500 
2501 static void tcp_try_keep_open(struct sock *sk)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 	int state = TCP_CA_Open;
2505 
2506 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2507 		state = TCP_CA_Disorder;
2508 
2509 	if (inet_csk(sk)->icsk_ca_state != state) {
2510 		tcp_set_ca_state(sk, state);
2511 		tp->high_seq = tp->snd_nxt;
2512 	}
2513 }
2514 
2515 static void tcp_try_to_open(struct sock *sk, int flag)
2516 {
2517 	struct tcp_sock *tp = tcp_sk(sk);
2518 
2519 	tcp_verify_left_out(tp);
2520 
2521 	if (!tp->frto_counter && tp->retrans_out == 0)
2522 		tp->retrans_stamp = 0;
2523 
2524 	if (flag & FLAG_ECE)
2525 		tcp_enter_cwr(sk, 1);
2526 
2527 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2528 		tcp_try_keep_open(sk);
2529 		tcp_moderate_cwnd(tp);
2530 	} else {
2531 		tcp_cwnd_down(sk, flag);
2532 	}
2533 }
2534 
2535 static void tcp_mtup_probe_failed(struct sock *sk)
2536 {
2537 	struct inet_connection_sock *icsk = inet_csk(sk);
2538 
2539 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2540 	icsk->icsk_mtup.probe_size = 0;
2541 }
2542 
2543 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 	struct inet_connection_sock *icsk = inet_csk(sk);
2547 
2548 	/* FIXME: breaks with very large cwnd */
2549 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2550 	tp->snd_cwnd = tp->snd_cwnd *
2551 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2552 		       icsk->icsk_mtup.probe_size;
2553 	tp->snd_cwnd_cnt = 0;
2554 	tp->snd_cwnd_stamp = tcp_time_stamp;
2555 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2556 
2557 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2558 	icsk->icsk_mtup.probe_size = 0;
2559 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2560 }
2561 
2562 /* Process an event, which can update packets-in-flight not trivially.
2563  * Main goal of this function is to calculate new estimate for left_out,
2564  * taking into account both packets sitting in receiver's buffer and
2565  * packets lost by network.
2566  *
2567  * Besides that it does CWND reduction, when packet loss is detected
2568  * and changes state of machine.
2569  *
2570  * It does _not_ decide what to send, it is made in function
2571  * tcp_xmit_retransmit_queue().
2572  */
2573 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2574 {
2575 	struct inet_connection_sock *icsk = inet_csk(sk);
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2578 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2579 				    (tcp_fackets_out(tp) > tp->reordering));
2580 	int fast_rexmit = 0, mib_idx;
2581 
2582 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2583 		tp->sacked_out = 0;
2584 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2585 		tp->fackets_out = 0;
2586 
2587 	/* Now state machine starts.
2588 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2589 	if (flag & FLAG_ECE)
2590 		tp->prior_ssthresh = 0;
2591 
2592 	/* B. In all the states check for reneging SACKs. */
2593 	if (tcp_check_sack_reneging(sk, flag))
2594 		return;
2595 
2596 	/* C. Process data loss notification, provided it is valid. */
2597 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2598 	    before(tp->snd_una, tp->high_seq) &&
2599 	    icsk->icsk_ca_state != TCP_CA_Open &&
2600 	    tp->fackets_out > tp->reordering) {
2601 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2602 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2603 	}
2604 
2605 	/* D. Check consistency of the current state. */
2606 	tcp_verify_left_out(tp);
2607 
2608 	/* E. Check state exit conditions. State can be terminated
2609 	 *    when high_seq is ACKed. */
2610 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2611 		WARN_ON(tp->retrans_out != 0);
2612 		tp->retrans_stamp = 0;
2613 	} else if (!before(tp->snd_una, tp->high_seq)) {
2614 		switch (icsk->icsk_ca_state) {
2615 		case TCP_CA_Loss:
2616 			icsk->icsk_retransmits = 0;
2617 			if (tcp_try_undo_recovery(sk))
2618 				return;
2619 			break;
2620 
2621 		case TCP_CA_CWR:
2622 			/* CWR is to be held something *above* high_seq
2623 			 * is ACKed for CWR bit to reach receiver. */
2624 			if (tp->snd_una != tp->high_seq) {
2625 				tcp_complete_cwr(sk);
2626 				tcp_set_ca_state(sk, TCP_CA_Open);
2627 			}
2628 			break;
2629 
2630 		case TCP_CA_Disorder:
2631 			tcp_try_undo_dsack(sk);
2632 			if (!tp->undo_marker ||
2633 			    /* For SACK case do not Open to allow to undo
2634 			     * catching for all duplicate ACKs. */
2635 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2636 				tp->undo_marker = 0;
2637 				tcp_set_ca_state(sk, TCP_CA_Open);
2638 			}
2639 			break;
2640 
2641 		case TCP_CA_Recovery:
2642 			if (tcp_is_reno(tp))
2643 				tcp_reset_reno_sack(tp);
2644 			if (tcp_try_undo_recovery(sk))
2645 				return;
2646 			tcp_complete_cwr(sk);
2647 			break;
2648 		}
2649 	}
2650 
2651 	/* F. Process state. */
2652 	switch (icsk->icsk_ca_state) {
2653 	case TCP_CA_Recovery:
2654 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2655 			if (tcp_is_reno(tp) && is_dupack)
2656 				tcp_add_reno_sack(sk);
2657 		} else
2658 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2659 		break;
2660 	case TCP_CA_Loss:
2661 		if (flag & FLAG_DATA_ACKED)
2662 			icsk->icsk_retransmits = 0;
2663 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2664 			tcp_reset_reno_sack(tp);
2665 		if (!tcp_try_undo_loss(sk)) {
2666 			tcp_moderate_cwnd(tp);
2667 			tcp_xmit_retransmit_queue(sk);
2668 			return;
2669 		}
2670 		if (icsk->icsk_ca_state != TCP_CA_Open)
2671 			return;
2672 		/* Loss is undone; fall through to processing in Open state. */
2673 	default:
2674 		if (tcp_is_reno(tp)) {
2675 			if (flag & FLAG_SND_UNA_ADVANCED)
2676 				tcp_reset_reno_sack(tp);
2677 			if (is_dupack)
2678 				tcp_add_reno_sack(sk);
2679 		}
2680 
2681 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2682 			tcp_try_undo_dsack(sk);
2683 
2684 		if (!tcp_time_to_recover(sk)) {
2685 			tcp_try_to_open(sk, flag);
2686 			return;
2687 		}
2688 
2689 		/* MTU probe failure: don't reduce cwnd */
2690 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2691 		    icsk->icsk_mtup.probe_size &&
2692 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2693 			tcp_mtup_probe_failed(sk);
2694 			/* Restores the reduction we did in tcp_mtup_probe() */
2695 			tp->snd_cwnd++;
2696 			tcp_simple_retransmit(sk);
2697 			return;
2698 		}
2699 
2700 		/* Otherwise enter Recovery state */
2701 
2702 		if (tcp_is_reno(tp))
2703 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
2704 		else
2705 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2706 
2707 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2708 
2709 		tp->high_seq = tp->snd_nxt;
2710 		tp->prior_ssthresh = 0;
2711 		tp->undo_marker = tp->snd_una;
2712 		tp->undo_retrans = tp->retrans_out;
2713 
2714 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2715 			if (!(flag & FLAG_ECE))
2716 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2717 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2718 			TCP_ECN_queue_cwr(tp);
2719 		}
2720 
2721 		tp->bytes_acked = 0;
2722 		tp->snd_cwnd_cnt = 0;
2723 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2724 		fast_rexmit = 1;
2725 	}
2726 
2727 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2728 		tcp_update_scoreboard(sk, fast_rexmit);
2729 	tcp_cwnd_down(sk, flag);
2730 	tcp_xmit_retransmit_queue(sk);
2731 }
2732 
2733 /* Read draft-ietf-tcplw-high-performance before mucking
2734  * with this code. (Supersedes RFC1323)
2735  */
2736 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2737 {
2738 	/* RTTM Rule: A TSecr value received in a segment is used to
2739 	 * update the averaged RTT measurement only if the segment
2740 	 * acknowledges some new data, i.e., only if it advances the
2741 	 * left edge of the send window.
2742 	 *
2743 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2744 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2745 	 *
2746 	 * Changed: reset backoff as soon as we see the first valid sample.
2747 	 * If we do not, we get strongly overestimated rto. With timestamps
2748 	 * samples are accepted even from very old segments: f.e., when rtt=1
2749 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2750 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2751 	 * in window is lost... Voila.	 			--ANK (010210)
2752 	 */
2753 	struct tcp_sock *tp = tcp_sk(sk);
2754 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2755 	tcp_rtt_estimator(sk, seq_rtt);
2756 	tcp_set_rto(sk);
2757 	inet_csk(sk)->icsk_backoff = 0;
2758 	tcp_bound_rto(sk);
2759 }
2760 
2761 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2762 {
2763 	/* We don't have a timestamp. Can only use
2764 	 * packets that are not retransmitted to determine
2765 	 * rtt estimates. Also, we must not reset the
2766 	 * backoff for rto until we get a non-retransmitted
2767 	 * packet. This allows us to deal with a situation
2768 	 * where the network delay has increased suddenly.
2769 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2770 	 */
2771 
2772 	if (flag & FLAG_RETRANS_DATA_ACKED)
2773 		return;
2774 
2775 	tcp_rtt_estimator(sk, seq_rtt);
2776 	tcp_set_rto(sk);
2777 	inet_csk(sk)->icsk_backoff = 0;
2778 	tcp_bound_rto(sk);
2779 }
2780 
2781 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2782 				      const s32 seq_rtt)
2783 {
2784 	const struct tcp_sock *tp = tcp_sk(sk);
2785 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2786 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2787 		tcp_ack_saw_tstamp(sk, flag);
2788 	else if (seq_rtt >= 0)
2789 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2790 }
2791 
2792 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2793 {
2794 	const struct inet_connection_sock *icsk = inet_csk(sk);
2795 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2796 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2797 }
2798 
2799 /* Restart timer after forward progress on connection.
2800  * RFC2988 recommends to restart timer to now+rto.
2801  */
2802 static void tcp_rearm_rto(struct sock *sk)
2803 {
2804 	struct tcp_sock *tp = tcp_sk(sk);
2805 
2806 	if (!tp->packets_out) {
2807 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2808 	} else {
2809 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2810 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2811 	}
2812 }
2813 
2814 /* If we get here, the whole TSO packet has not been acked. */
2815 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	u32 packets_acked;
2819 
2820 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2821 
2822 	packets_acked = tcp_skb_pcount(skb);
2823 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2824 		return 0;
2825 	packets_acked -= tcp_skb_pcount(skb);
2826 
2827 	if (packets_acked) {
2828 		BUG_ON(tcp_skb_pcount(skb) == 0);
2829 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2830 	}
2831 
2832 	return packets_acked;
2833 }
2834 
2835 /* Remove acknowledged frames from the retransmission queue. If our packet
2836  * is before the ack sequence we can discard it as it's confirmed to have
2837  * arrived at the other end.
2838  */
2839 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2840 			       u32 prior_snd_una)
2841 {
2842 	struct tcp_sock *tp = tcp_sk(sk);
2843 	const struct inet_connection_sock *icsk = inet_csk(sk);
2844 	struct sk_buff *skb;
2845 	u32 now = tcp_time_stamp;
2846 	int fully_acked = 1;
2847 	int flag = 0;
2848 	u32 pkts_acked = 0;
2849 	u32 reord = tp->packets_out;
2850 	u32 prior_sacked = tp->sacked_out;
2851 	s32 seq_rtt = -1;
2852 	s32 ca_seq_rtt = -1;
2853 	ktime_t last_ackt = net_invalid_timestamp();
2854 
2855 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2856 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2857 		u32 end_seq;
2858 		u32 acked_pcount;
2859 		u8 sacked = scb->sacked;
2860 
2861 		/* Determine how many packets and what bytes were acked, tso and else */
2862 		if (after(scb->end_seq, tp->snd_una)) {
2863 			if (tcp_skb_pcount(skb) == 1 ||
2864 			    !after(tp->snd_una, scb->seq))
2865 				break;
2866 
2867 			acked_pcount = tcp_tso_acked(sk, skb);
2868 			if (!acked_pcount)
2869 				break;
2870 
2871 			fully_acked = 0;
2872 			end_seq = tp->snd_una;
2873 		} else {
2874 			acked_pcount = tcp_skb_pcount(skb);
2875 			end_seq = scb->end_seq;
2876 		}
2877 
2878 		/* MTU probing checks */
2879 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2880 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2881 			tcp_mtup_probe_success(sk, skb);
2882 		}
2883 
2884 		if (sacked & TCPCB_RETRANS) {
2885 			if (sacked & TCPCB_SACKED_RETRANS)
2886 				tp->retrans_out -= acked_pcount;
2887 			flag |= FLAG_RETRANS_DATA_ACKED;
2888 			ca_seq_rtt = -1;
2889 			seq_rtt = -1;
2890 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2891 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2892 		} else {
2893 			ca_seq_rtt = now - scb->when;
2894 			last_ackt = skb->tstamp;
2895 			if (seq_rtt < 0) {
2896 				seq_rtt = ca_seq_rtt;
2897 			}
2898 			if (!(sacked & TCPCB_SACKED_ACKED))
2899 				reord = min(pkts_acked, reord);
2900 		}
2901 
2902 		if (sacked & TCPCB_SACKED_ACKED)
2903 			tp->sacked_out -= acked_pcount;
2904 		if (sacked & TCPCB_LOST)
2905 			tp->lost_out -= acked_pcount;
2906 
2907 		tp->packets_out -= acked_pcount;
2908 		pkts_acked += acked_pcount;
2909 
2910 		/* Initial outgoing SYN's get put onto the write_queue
2911 		 * just like anything else we transmit.  It is not
2912 		 * true data, and if we misinform our callers that
2913 		 * this ACK acks real data, we will erroneously exit
2914 		 * connection startup slow start one packet too
2915 		 * quickly.  This is severely frowned upon behavior.
2916 		 */
2917 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2918 			flag |= FLAG_DATA_ACKED;
2919 		} else {
2920 			flag |= FLAG_SYN_ACKED;
2921 			tp->retrans_stamp = 0;
2922 		}
2923 
2924 		if (!fully_acked)
2925 			break;
2926 
2927 		tcp_unlink_write_queue(skb, sk);
2928 		sk_wmem_free_skb(sk, skb);
2929 		tp->scoreboard_skb_hint = NULL;
2930 		if (skb == tp->retransmit_skb_hint)
2931 			tp->retransmit_skb_hint = NULL;
2932 		if (skb == tp->lost_skb_hint)
2933 			tp->lost_skb_hint = NULL;
2934 	}
2935 
2936 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
2937 		tp->snd_up = tp->snd_una;
2938 
2939 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2940 		flag |= FLAG_SACK_RENEGING;
2941 
2942 	if (flag & FLAG_ACKED) {
2943 		const struct tcp_congestion_ops *ca_ops
2944 			= inet_csk(sk)->icsk_ca_ops;
2945 
2946 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2947 		tcp_rearm_rto(sk);
2948 
2949 		if (tcp_is_reno(tp)) {
2950 			tcp_remove_reno_sacks(sk, pkts_acked);
2951 		} else {
2952 			/* Non-retransmitted hole got filled? That's reordering */
2953 			if (reord < prior_fackets)
2954 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2955 
2956 			/* No need to care for underflows here because
2957 			 * the lost_skb_hint gets NULLed if we're past it
2958 			 * (or something non-trivial happened)
2959 			 */
2960 			if (tcp_is_fack(tp))
2961 				tp->lost_cnt_hint -= pkts_acked;
2962 			else
2963 				tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
2964 		}
2965 
2966 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2967 
2968 		if (ca_ops->pkts_acked) {
2969 			s32 rtt_us = -1;
2970 
2971 			/* Is the ACK triggering packet unambiguous? */
2972 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2973 				/* High resolution needed and available? */
2974 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2975 				    !ktime_equal(last_ackt,
2976 						 net_invalid_timestamp()))
2977 					rtt_us = ktime_us_delta(ktime_get_real(),
2978 								last_ackt);
2979 				else if (ca_seq_rtt > 0)
2980 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2981 			}
2982 
2983 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2984 		}
2985 	}
2986 
2987 #if FASTRETRANS_DEBUG > 0
2988 	WARN_ON((int)tp->sacked_out < 0);
2989 	WARN_ON((int)tp->lost_out < 0);
2990 	WARN_ON((int)tp->retrans_out < 0);
2991 	if (!tp->packets_out && tcp_is_sack(tp)) {
2992 		icsk = inet_csk(sk);
2993 		if (tp->lost_out) {
2994 			printk(KERN_DEBUG "Leak l=%u %d\n",
2995 			       tp->lost_out, icsk->icsk_ca_state);
2996 			tp->lost_out = 0;
2997 		}
2998 		if (tp->sacked_out) {
2999 			printk(KERN_DEBUG "Leak s=%u %d\n",
3000 			       tp->sacked_out, icsk->icsk_ca_state);
3001 			tp->sacked_out = 0;
3002 		}
3003 		if (tp->retrans_out) {
3004 			printk(KERN_DEBUG "Leak r=%u %d\n",
3005 			       tp->retrans_out, icsk->icsk_ca_state);
3006 			tp->retrans_out = 0;
3007 		}
3008 	}
3009 #endif
3010 	return flag;
3011 }
3012 
3013 static void tcp_ack_probe(struct sock *sk)
3014 {
3015 	const struct tcp_sock *tp = tcp_sk(sk);
3016 	struct inet_connection_sock *icsk = inet_csk(sk);
3017 
3018 	/* Was it a usable window open? */
3019 
3020 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3021 		icsk->icsk_backoff = 0;
3022 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3023 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3024 		 * This function is not for random using!
3025 		 */
3026 	} else {
3027 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3028 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3029 					  TCP_RTO_MAX);
3030 	}
3031 }
3032 
3033 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3034 {
3035 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3036 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3037 }
3038 
3039 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3040 {
3041 	const struct tcp_sock *tp = tcp_sk(sk);
3042 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3043 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3044 }
3045 
3046 /* Check that window update is acceptable.
3047  * The function assumes that snd_una<=ack<=snd_next.
3048  */
3049 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3050 					const u32 ack, const u32 ack_seq,
3051 					const u32 nwin)
3052 {
3053 	return (after(ack, tp->snd_una) ||
3054 		after(ack_seq, tp->snd_wl1) ||
3055 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3056 }
3057 
3058 /* Update our send window.
3059  *
3060  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3061  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3062  */
3063 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3064 				 u32 ack_seq)
3065 {
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 	int flag = 0;
3068 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3069 
3070 	if (likely(!tcp_hdr(skb)->syn))
3071 		nwin <<= tp->rx_opt.snd_wscale;
3072 
3073 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3074 		flag |= FLAG_WIN_UPDATE;
3075 		tcp_update_wl(tp, ack, ack_seq);
3076 
3077 		if (tp->snd_wnd != nwin) {
3078 			tp->snd_wnd = nwin;
3079 
3080 			/* Note, it is the only place, where
3081 			 * fast path is recovered for sending TCP.
3082 			 */
3083 			tp->pred_flags = 0;
3084 			tcp_fast_path_check(sk);
3085 
3086 			if (nwin > tp->max_window) {
3087 				tp->max_window = nwin;
3088 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3089 			}
3090 		}
3091 	}
3092 
3093 	tp->snd_una = ack;
3094 
3095 	return flag;
3096 }
3097 
3098 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3099  * continue in congestion avoidance.
3100  */
3101 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3102 {
3103 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3104 	tp->snd_cwnd_cnt = 0;
3105 	tp->bytes_acked = 0;
3106 	TCP_ECN_queue_cwr(tp);
3107 	tcp_moderate_cwnd(tp);
3108 }
3109 
3110 /* A conservative spurious RTO response algorithm: reduce cwnd using
3111  * rate halving and continue in congestion avoidance.
3112  */
3113 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3114 {
3115 	tcp_enter_cwr(sk, 0);
3116 }
3117 
3118 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3119 {
3120 	if (flag & FLAG_ECE)
3121 		tcp_ratehalving_spur_to_response(sk);
3122 	else
3123 		tcp_undo_cwr(sk, 1);
3124 }
3125 
3126 /* F-RTO spurious RTO detection algorithm (RFC4138)
3127  *
3128  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3129  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3130  * window (but not to or beyond highest sequence sent before RTO):
3131  *   On First ACK,  send two new segments out.
3132  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3133  *                  algorithm is not part of the F-RTO detection algorithm
3134  *                  given in RFC4138 but can be selected separately).
3135  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3136  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3137  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3138  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3139  *
3140  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3141  * original window even after we transmit two new data segments.
3142  *
3143  * SACK version:
3144  *   on first step, wait until first cumulative ACK arrives, then move to
3145  *   the second step. In second step, the next ACK decides.
3146  *
3147  * F-RTO is implemented (mainly) in four functions:
3148  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3149  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3150  *     called when tcp_use_frto() showed green light
3151  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3152  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3153  *     to prove that the RTO is indeed spurious. It transfers the control
3154  *     from F-RTO to the conventional RTO recovery
3155  */
3156 static int tcp_process_frto(struct sock *sk, int flag)
3157 {
3158 	struct tcp_sock *tp = tcp_sk(sk);
3159 
3160 	tcp_verify_left_out(tp);
3161 
3162 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3163 	if (flag & FLAG_DATA_ACKED)
3164 		inet_csk(sk)->icsk_retransmits = 0;
3165 
3166 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3167 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3168 		tp->undo_marker = 0;
3169 
3170 	if (!before(tp->snd_una, tp->frto_highmark)) {
3171 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3172 		return 1;
3173 	}
3174 
3175 	if (!tcp_is_sackfrto(tp)) {
3176 		/* RFC4138 shortcoming in step 2; should also have case c):
3177 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3178 		 * data, winupdate
3179 		 */
3180 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3181 			return 1;
3182 
3183 		if (!(flag & FLAG_DATA_ACKED)) {
3184 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3185 					    flag);
3186 			return 1;
3187 		}
3188 	} else {
3189 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3190 			/* Prevent sending of new data. */
3191 			tp->snd_cwnd = min(tp->snd_cwnd,
3192 					   tcp_packets_in_flight(tp));
3193 			return 1;
3194 		}
3195 
3196 		if ((tp->frto_counter >= 2) &&
3197 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3198 		     ((flag & FLAG_DATA_SACKED) &&
3199 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3200 			/* RFC4138 shortcoming (see comment above) */
3201 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3202 			    (flag & FLAG_NOT_DUP))
3203 				return 1;
3204 
3205 			tcp_enter_frto_loss(sk, 3, flag);
3206 			return 1;
3207 		}
3208 	}
3209 
3210 	if (tp->frto_counter == 1) {
3211 		/* tcp_may_send_now needs to see updated state */
3212 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3213 		tp->frto_counter = 2;
3214 
3215 		if (!tcp_may_send_now(sk))
3216 			tcp_enter_frto_loss(sk, 2, flag);
3217 
3218 		return 1;
3219 	} else {
3220 		switch (sysctl_tcp_frto_response) {
3221 		case 2:
3222 			tcp_undo_spur_to_response(sk, flag);
3223 			break;
3224 		case 1:
3225 			tcp_conservative_spur_to_response(tp);
3226 			break;
3227 		default:
3228 			tcp_ratehalving_spur_to_response(sk);
3229 			break;
3230 		}
3231 		tp->frto_counter = 0;
3232 		tp->undo_marker = 0;
3233 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3234 	}
3235 	return 0;
3236 }
3237 
3238 /* This routine deals with incoming acks, but not outgoing ones. */
3239 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3240 {
3241 	struct inet_connection_sock *icsk = inet_csk(sk);
3242 	struct tcp_sock *tp = tcp_sk(sk);
3243 	u32 prior_snd_una = tp->snd_una;
3244 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3245 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3246 	u32 prior_in_flight;
3247 	u32 prior_fackets;
3248 	int prior_packets;
3249 	int frto_cwnd = 0;
3250 
3251 	/* If the ack is newer than sent or older than previous acks
3252 	 * then we can probably ignore it.
3253 	 */
3254 	if (after(ack, tp->snd_nxt))
3255 		goto uninteresting_ack;
3256 
3257 	if (before(ack, prior_snd_una))
3258 		goto old_ack;
3259 
3260 	if (after(ack, prior_snd_una))
3261 		flag |= FLAG_SND_UNA_ADVANCED;
3262 
3263 	if (sysctl_tcp_abc) {
3264 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3265 			tp->bytes_acked += ack - prior_snd_una;
3266 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3267 			/* we assume just one segment left network */
3268 			tp->bytes_acked += min(ack - prior_snd_una,
3269 					       tp->mss_cache);
3270 	}
3271 
3272 	prior_fackets = tp->fackets_out;
3273 	prior_in_flight = tcp_packets_in_flight(tp);
3274 
3275 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3276 		/* Window is constant, pure forward advance.
3277 		 * No more checks are required.
3278 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3279 		 */
3280 		tcp_update_wl(tp, ack, ack_seq);
3281 		tp->snd_una = ack;
3282 		flag |= FLAG_WIN_UPDATE;
3283 
3284 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3285 
3286 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3287 	} else {
3288 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3289 			flag |= FLAG_DATA;
3290 		else
3291 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3292 
3293 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3294 
3295 		if (TCP_SKB_CB(skb)->sacked)
3296 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3297 
3298 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3299 			flag |= FLAG_ECE;
3300 
3301 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3302 	}
3303 
3304 	/* We passed data and got it acked, remove any soft error
3305 	 * log. Something worked...
3306 	 */
3307 	sk->sk_err_soft = 0;
3308 	icsk->icsk_probes_out = 0;
3309 	tp->rcv_tstamp = tcp_time_stamp;
3310 	prior_packets = tp->packets_out;
3311 	if (!prior_packets)
3312 		goto no_queue;
3313 
3314 	/* See if we can take anything off of the retransmit queue. */
3315 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3316 
3317 	if (tp->frto_counter)
3318 		frto_cwnd = tcp_process_frto(sk, flag);
3319 	/* Guarantee sacktag reordering detection against wrap-arounds */
3320 	if (before(tp->frto_highmark, tp->snd_una))
3321 		tp->frto_highmark = 0;
3322 
3323 	if (tcp_ack_is_dubious(sk, flag)) {
3324 		/* Advance CWND, if state allows this. */
3325 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3326 		    tcp_may_raise_cwnd(sk, flag))
3327 			tcp_cong_avoid(sk, ack, prior_in_flight);
3328 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3329 				      flag);
3330 	} else {
3331 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3332 			tcp_cong_avoid(sk, ack, prior_in_flight);
3333 	}
3334 
3335 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3336 		dst_confirm(sk->sk_dst_cache);
3337 
3338 	return 1;
3339 
3340 no_queue:
3341 	/* If this ack opens up a zero window, clear backoff.  It was
3342 	 * being used to time the probes, and is probably far higher than
3343 	 * it needs to be for normal retransmission.
3344 	 */
3345 	if (tcp_send_head(sk))
3346 		tcp_ack_probe(sk);
3347 	return 1;
3348 
3349 old_ack:
3350 	if (TCP_SKB_CB(skb)->sacked) {
3351 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3352 		if (icsk->icsk_ca_state == TCP_CA_Open)
3353 			tcp_try_keep_open(sk);
3354 	}
3355 
3356 uninteresting_ack:
3357 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3358 	return 0;
3359 }
3360 
3361 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3362  * But, this can also be called on packets in the established flow when
3363  * the fast version below fails.
3364  */
3365 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3366 		       int estab)
3367 {
3368 	unsigned char *ptr;
3369 	struct tcphdr *th = tcp_hdr(skb);
3370 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3371 
3372 	ptr = (unsigned char *)(th + 1);
3373 	opt_rx->saw_tstamp = 0;
3374 
3375 	while (length > 0) {
3376 		int opcode = *ptr++;
3377 		int opsize;
3378 
3379 		switch (opcode) {
3380 		case TCPOPT_EOL:
3381 			return;
3382 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3383 			length--;
3384 			continue;
3385 		default:
3386 			opsize = *ptr++;
3387 			if (opsize < 2) /* "silly options" */
3388 				return;
3389 			if (opsize > length)
3390 				return;	/* don't parse partial options */
3391 			switch (opcode) {
3392 			case TCPOPT_MSS:
3393 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3394 					u16 in_mss = get_unaligned_be16(ptr);
3395 					if (in_mss) {
3396 						if (opt_rx->user_mss &&
3397 						    opt_rx->user_mss < in_mss)
3398 							in_mss = opt_rx->user_mss;
3399 						opt_rx->mss_clamp = in_mss;
3400 					}
3401 				}
3402 				break;
3403 			case TCPOPT_WINDOW:
3404 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3405 				    !estab && sysctl_tcp_window_scaling) {
3406 					__u8 snd_wscale = *(__u8 *)ptr;
3407 					opt_rx->wscale_ok = 1;
3408 					if (snd_wscale > 14) {
3409 						if (net_ratelimit())
3410 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3411 							       "scaling value %d >14 received.\n",
3412 							       snd_wscale);
3413 						snd_wscale = 14;
3414 					}
3415 					opt_rx->snd_wscale = snd_wscale;
3416 				}
3417 				break;
3418 			case TCPOPT_TIMESTAMP:
3419 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3420 				    ((estab && opt_rx->tstamp_ok) ||
3421 				     (!estab && sysctl_tcp_timestamps))) {
3422 					opt_rx->saw_tstamp = 1;
3423 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3424 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3425 				}
3426 				break;
3427 			case TCPOPT_SACK_PERM:
3428 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3429 				    !estab && sysctl_tcp_sack) {
3430 					opt_rx->sack_ok = 1;
3431 					tcp_sack_reset(opt_rx);
3432 				}
3433 				break;
3434 
3435 			case TCPOPT_SACK:
3436 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3437 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3438 				   opt_rx->sack_ok) {
3439 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3440 				}
3441 				break;
3442 #ifdef CONFIG_TCP_MD5SIG
3443 			case TCPOPT_MD5SIG:
3444 				/*
3445 				 * The MD5 Hash has already been
3446 				 * checked (see tcp_v{4,6}_do_rcv()).
3447 				 */
3448 				break;
3449 #endif
3450 			}
3451 
3452 			ptr += opsize-2;
3453 			length -= opsize;
3454 		}
3455 	}
3456 }
3457 
3458 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3459 {
3460 	__be32 *ptr = (__be32 *)(th + 1);
3461 
3462 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3463 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3464 		tp->rx_opt.saw_tstamp = 1;
3465 		++ptr;
3466 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3467 		++ptr;
3468 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3469 		return 1;
3470 	}
3471 	return 0;
3472 }
3473 
3474 /* Fast parse options. This hopes to only see timestamps.
3475  * If it is wrong it falls back on tcp_parse_options().
3476  */
3477 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3478 				  struct tcp_sock *tp)
3479 {
3480 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3481 		tp->rx_opt.saw_tstamp = 0;
3482 		return 0;
3483 	} else if (tp->rx_opt.tstamp_ok &&
3484 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3485 		if (tcp_parse_aligned_timestamp(tp, th))
3486 			return 1;
3487 	}
3488 	tcp_parse_options(skb, &tp->rx_opt, 1);
3489 	return 1;
3490 }
3491 
3492 #ifdef CONFIG_TCP_MD5SIG
3493 /*
3494  * Parse MD5 Signature option
3495  */
3496 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3497 {
3498 	int length = (th->doff << 2) - sizeof (*th);
3499 	u8 *ptr = (u8*)(th + 1);
3500 
3501 	/* If the TCP option is too short, we can short cut */
3502 	if (length < TCPOLEN_MD5SIG)
3503 		return NULL;
3504 
3505 	while (length > 0) {
3506 		int opcode = *ptr++;
3507 		int opsize;
3508 
3509 		switch(opcode) {
3510 		case TCPOPT_EOL:
3511 			return NULL;
3512 		case TCPOPT_NOP:
3513 			length--;
3514 			continue;
3515 		default:
3516 			opsize = *ptr++;
3517 			if (opsize < 2 || opsize > length)
3518 				return NULL;
3519 			if (opcode == TCPOPT_MD5SIG)
3520 				return ptr;
3521 		}
3522 		ptr += opsize - 2;
3523 		length -= opsize;
3524 	}
3525 	return NULL;
3526 }
3527 #endif
3528 
3529 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3530 {
3531 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3532 	tp->rx_opt.ts_recent_stamp = get_seconds();
3533 }
3534 
3535 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3536 {
3537 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3538 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3539 		 * extra check below makes sure this can only happen
3540 		 * for pure ACK frames.  -DaveM
3541 		 *
3542 		 * Not only, also it occurs for expired timestamps.
3543 		 */
3544 
3545 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3546 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3547 			tcp_store_ts_recent(tp);
3548 	}
3549 }
3550 
3551 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3552  *
3553  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3554  * it can pass through stack. So, the following predicate verifies that
3555  * this segment is not used for anything but congestion avoidance or
3556  * fast retransmit. Moreover, we even are able to eliminate most of such
3557  * second order effects, if we apply some small "replay" window (~RTO)
3558  * to timestamp space.
3559  *
3560  * All these measures still do not guarantee that we reject wrapped ACKs
3561  * on networks with high bandwidth, when sequence space is recycled fastly,
3562  * but it guarantees that such events will be very rare and do not affect
3563  * connection seriously. This doesn't look nice, but alas, PAWS is really
3564  * buggy extension.
3565  *
3566  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3567  * states that events when retransmit arrives after original data are rare.
3568  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3569  * the biggest problem on large power networks even with minor reordering.
3570  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3571  * up to bandwidth of 18Gigabit/sec. 8) ]
3572  */
3573 
3574 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3575 {
3576 	struct tcp_sock *tp = tcp_sk(sk);
3577 	struct tcphdr *th = tcp_hdr(skb);
3578 	u32 seq = TCP_SKB_CB(skb)->seq;
3579 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3580 
3581 	return (/* 1. Pure ACK with correct sequence number. */
3582 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3583 
3584 		/* 2. ... and duplicate ACK. */
3585 		ack == tp->snd_una &&
3586 
3587 		/* 3. ... and does not update window. */
3588 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3589 
3590 		/* 4. ... and sits in replay window. */
3591 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3592 }
3593 
3594 static inline int tcp_paws_discard(const struct sock *sk,
3595 				   const struct sk_buff *skb)
3596 {
3597 	const struct tcp_sock *tp = tcp_sk(sk);
3598 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3599 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3600 		!tcp_disordered_ack(sk, skb));
3601 }
3602 
3603 /* Check segment sequence number for validity.
3604  *
3605  * Segment controls are considered valid, if the segment
3606  * fits to the window after truncation to the window. Acceptability
3607  * of data (and SYN, FIN, of course) is checked separately.
3608  * See tcp_data_queue(), for example.
3609  *
3610  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3611  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3612  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3613  * (borrowed from freebsd)
3614  */
3615 
3616 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3617 {
3618 	return	!before(end_seq, tp->rcv_wup) &&
3619 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3620 }
3621 
3622 /* When we get a reset we do this. */
3623 static void tcp_reset(struct sock *sk)
3624 {
3625 	/* We want the right error as BSD sees it (and indeed as we do). */
3626 	switch (sk->sk_state) {
3627 	case TCP_SYN_SENT:
3628 		sk->sk_err = ECONNREFUSED;
3629 		break;
3630 	case TCP_CLOSE_WAIT:
3631 		sk->sk_err = EPIPE;
3632 		break;
3633 	case TCP_CLOSE:
3634 		return;
3635 	default:
3636 		sk->sk_err = ECONNRESET;
3637 	}
3638 
3639 	if (!sock_flag(sk, SOCK_DEAD))
3640 		sk->sk_error_report(sk);
3641 
3642 	tcp_done(sk);
3643 }
3644 
3645 /*
3646  * 	Process the FIN bit. This now behaves as it is supposed to work
3647  *	and the FIN takes effect when it is validly part of sequence
3648  *	space. Not before when we get holes.
3649  *
3650  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3651  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3652  *	TIME-WAIT)
3653  *
3654  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3655  *	close and we go into CLOSING (and later onto TIME-WAIT)
3656  *
3657  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3658  */
3659 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3660 {
3661 	struct tcp_sock *tp = tcp_sk(sk);
3662 
3663 	inet_csk_schedule_ack(sk);
3664 
3665 	sk->sk_shutdown |= RCV_SHUTDOWN;
3666 	sock_set_flag(sk, SOCK_DONE);
3667 
3668 	switch (sk->sk_state) {
3669 	case TCP_SYN_RECV:
3670 	case TCP_ESTABLISHED:
3671 		/* Move to CLOSE_WAIT */
3672 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3673 		inet_csk(sk)->icsk_ack.pingpong = 1;
3674 		break;
3675 
3676 	case TCP_CLOSE_WAIT:
3677 	case TCP_CLOSING:
3678 		/* Received a retransmission of the FIN, do
3679 		 * nothing.
3680 		 */
3681 		break;
3682 	case TCP_LAST_ACK:
3683 		/* RFC793: Remain in the LAST-ACK state. */
3684 		break;
3685 
3686 	case TCP_FIN_WAIT1:
3687 		/* This case occurs when a simultaneous close
3688 		 * happens, we must ack the received FIN and
3689 		 * enter the CLOSING state.
3690 		 */
3691 		tcp_send_ack(sk);
3692 		tcp_set_state(sk, TCP_CLOSING);
3693 		break;
3694 	case TCP_FIN_WAIT2:
3695 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3696 		tcp_send_ack(sk);
3697 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3698 		break;
3699 	default:
3700 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3701 		 * cases we should never reach this piece of code.
3702 		 */
3703 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3704 		       __func__, sk->sk_state);
3705 		break;
3706 	}
3707 
3708 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3709 	 * Probably, we should reset in this case. For now drop them.
3710 	 */
3711 	__skb_queue_purge(&tp->out_of_order_queue);
3712 	if (tcp_is_sack(tp))
3713 		tcp_sack_reset(&tp->rx_opt);
3714 	sk_mem_reclaim(sk);
3715 
3716 	if (!sock_flag(sk, SOCK_DEAD)) {
3717 		sk->sk_state_change(sk);
3718 
3719 		/* Do not send POLL_HUP for half duplex close. */
3720 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3721 		    sk->sk_state == TCP_CLOSE)
3722 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3723 		else
3724 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3725 	}
3726 }
3727 
3728 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3729 				  u32 end_seq)
3730 {
3731 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3732 		if (before(seq, sp->start_seq))
3733 			sp->start_seq = seq;
3734 		if (after(end_seq, sp->end_seq))
3735 			sp->end_seq = end_seq;
3736 		return 1;
3737 	}
3738 	return 0;
3739 }
3740 
3741 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3742 {
3743 	struct tcp_sock *tp = tcp_sk(sk);
3744 
3745 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3746 		int mib_idx;
3747 
3748 		if (before(seq, tp->rcv_nxt))
3749 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3750 		else
3751 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3752 
3753 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3754 
3755 		tp->rx_opt.dsack = 1;
3756 		tp->duplicate_sack[0].start_seq = seq;
3757 		tp->duplicate_sack[0].end_seq = end_seq;
3758 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3759 	}
3760 }
3761 
3762 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3763 {
3764 	struct tcp_sock *tp = tcp_sk(sk);
3765 
3766 	if (!tp->rx_opt.dsack)
3767 		tcp_dsack_set(sk, seq, end_seq);
3768 	else
3769 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3770 }
3771 
3772 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3773 {
3774 	struct tcp_sock *tp = tcp_sk(sk);
3775 
3776 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3777 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3778 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3779 		tcp_enter_quickack_mode(sk);
3780 
3781 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3782 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3783 
3784 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3785 				end_seq = tp->rcv_nxt;
3786 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3787 		}
3788 	}
3789 
3790 	tcp_send_ack(sk);
3791 }
3792 
3793 /* These routines update the SACK block as out-of-order packets arrive or
3794  * in-order packets close up the sequence space.
3795  */
3796 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3797 {
3798 	int this_sack;
3799 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3800 	struct tcp_sack_block *swalk = sp + 1;
3801 
3802 	/* See if the recent change to the first SACK eats into
3803 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3804 	 */
3805 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3806 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3807 			int i;
3808 
3809 			/* Zap SWALK, by moving every further SACK up by one slot.
3810 			 * Decrease num_sacks.
3811 			 */
3812 			tp->rx_opt.num_sacks--;
3813 			tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3814 					       tp->rx_opt.dsack;
3815 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3816 				sp[i] = sp[i + 1];
3817 			continue;
3818 		}
3819 		this_sack++, swalk++;
3820 	}
3821 }
3822 
3823 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3824 				 struct tcp_sack_block *sack2)
3825 {
3826 	__u32 tmp;
3827 
3828 	tmp = sack1->start_seq;
3829 	sack1->start_seq = sack2->start_seq;
3830 	sack2->start_seq = tmp;
3831 
3832 	tmp = sack1->end_seq;
3833 	sack1->end_seq = sack2->end_seq;
3834 	sack2->end_seq = tmp;
3835 }
3836 
3837 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3838 {
3839 	struct tcp_sock *tp = tcp_sk(sk);
3840 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3841 	int cur_sacks = tp->rx_opt.num_sacks;
3842 	int this_sack;
3843 
3844 	if (!cur_sacks)
3845 		goto new_sack;
3846 
3847 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3848 		if (tcp_sack_extend(sp, seq, end_seq)) {
3849 			/* Rotate this_sack to the first one. */
3850 			for (; this_sack > 0; this_sack--, sp--)
3851 				tcp_sack_swap(sp, sp - 1);
3852 			if (cur_sacks > 1)
3853 				tcp_sack_maybe_coalesce(tp);
3854 			return;
3855 		}
3856 	}
3857 
3858 	/* Could not find an adjacent existing SACK, build a new one,
3859 	 * put it at the front, and shift everyone else down.  We
3860 	 * always know there is at least one SACK present already here.
3861 	 *
3862 	 * If the sack array is full, forget about the last one.
3863 	 */
3864 	if (this_sack >= TCP_NUM_SACKS) {
3865 		this_sack--;
3866 		tp->rx_opt.num_sacks--;
3867 		sp--;
3868 	}
3869 	for (; this_sack > 0; this_sack--, sp--)
3870 		*sp = *(sp - 1);
3871 
3872 new_sack:
3873 	/* Build the new head SACK, and we're done. */
3874 	sp->start_seq = seq;
3875 	sp->end_seq = end_seq;
3876 	tp->rx_opt.num_sacks++;
3877 	tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3878 }
3879 
3880 /* RCV.NXT advances, some SACKs should be eaten. */
3881 
3882 static void tcp_sack_remove(struct tcp_sock *tp)
3883 {
3884 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3885 	int num_sacks = tp->rx_opt.num_sacks;
3886 	int this_sack;
3887 
3888 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3889 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3890 		tp->rx_opt.num_sacks = 0;
3891 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3892 		return;
3893 	}
3894 
3895 	for (this_sack = 0; this_sack < num_sacks;) {
3896 		/* Check if the start of the sack is covered by RCV.NXT. */
3897 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3898 			int i;
3899 
3900 			/* RCV.NXT must cover all the block! */
3901 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3902 
3903 			/* Zap this SACK, by moving forward any other SACKS. */
3904 			for (i=this_sack+1; i < num_sacks; i++)
3905 				tp->selective_acks[i-1] = tp->selective_acks[i];
3906 			num_sacks--;
3907 			continue;
3908 		}
3909 		this_sack++;
3910 		sp++;
3911 	}
3912 	if (num_sacks != tp->rx_opt.num_sacks) {
3913 		tp->rx_opt.num_sacks = num_sacks;
3914 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3915 				       tp->rx_opt.dsack;
3916 	}
3917 }
3918 
3919 /* This one checks to see if we can put data from the
3920  * out_of_order queue into the receive_queue.
3921  */
3922 static void tcp_ofo_queue(struct sock *sk)
3923 {
3924 	struct tcp_sock *tp = tcp_sk(sk);
3925 	__u32 dsack_high = tp->rcv_nxt;
3926 	struct sk_buff *skb;
3927 
3928 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3929 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3930 			break;
3931 
3932 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3933 			__u32 dsack = dsack_high;
3934 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3935 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3936 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3937 		}
3938 
3939 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3940 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3941 			__skb_unlink(skb, &tp->out_of_order_queue);
3942 			__kfree_skb(skb);
3943 			continue;
3944 		}
3945 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3946 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3947 			   TCP_SKB_CB(skb)->end_seq);
3948 
3949 		__skb_unlink(skb, &tp->out_of_order_queue);
3950 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3951 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3952 		if (tcp_hdr(skb)->fin)
3953 			tcp_fin(skb, sk, tcp_hdr(skb));
3954 	}
3955 }
3956 
3957 static int tcp_prune_ofo_queue(struct sock *sk);
3958 static int tcp_prune_queue(struct sock *sk);
3959 
3960 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3961 {
3962 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3963 	    !sk_rmem_schedule(sk, size)) {
3964 
3965 		if (tcp_prune_queue(sk) < 0)
3966 			return -1;
3967 
3968 		if (!sk_rmem_schedule(sk, size)) {
3969 			if (!tcp_prune_ofo_queue(sk))
3970 				return -1;
3971 
3972 			if (!sk_rmem_schedule(sk, size))
3973 				return -1;
3974 		}
3975 	}
3976 	return 0;
3977 }
3978 
3979 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3980 {
3981 	struct tcphdr *th = tcp_hdr(skb);
3982 	struct tcp_sock *tp = tcp_sk(sk);
3983 	int eaten = -1;
3984 
3985 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3986 		goto drop;
3987 
3988 	__skb_pull(skb, th->doff * 4);
3989 
3990 	TCP_ECN_accept_cwr(tp, skb);
3991 
3992 	if (tp->rx_opt.dsack) {
3993 		tp->rx_opt.dsack = 0;
3994 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3995 	}
3996 
3997 	/*  Queue data for delivery to the user.
3998 	 *  Packets in sequence go to the receive queue.
3999 	 *  Out of sequence packets to the out_of_order_queue.
4000 	 */
4001 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4002 		if (tcp_receive_window(tp) == 0)
4003 			goto out_of_window;
4004 
4005 		/* Ok. In sequence. In window. */
4006 		if (tp->ucopy.task == current &&
4007 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4008 		    sock_owned_by_user(sk) && !tp->urg_data) {
4009 			int chunk = min_t(unsigned int, skb->len,
4010 					  tp->ucopy.len);
4011 
4012 			__set_current_state(TASK_RUNNING);
4013 
4014 			local_bh_enable();
4015 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4016 				tp->ucopy.len -= chunk;
4017 				tp->copied_seq += chunk;
4018 				eaten = (chunk == skb->len && !th->fin);
4019 				tcp_rcv_space_adjust(sk);
4020 			}
4021 			local_bh_disable();
4022 		}
4023 
4024 		if (eaten <= 0) {
4025 queue_and_out:
4026 			if (eaten < 0 &&
4027 			    tcp_try_rmem_schedule(sk, skb->truesize))
4028 				goto drop;
4029 
4030 			skb_set_owner_r(skb, sk);
4031 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4032 		}
4033 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4034 		if (skb->len)
4035 			tcp_event_data_recv(sk, skb);
4036 		if (th->fin)
4037 			tcp_fin(skb, sk, th);
4038 
4039 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4040 			tcp_ofo_queue(sk);
4041 
4042 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4043 			 * gap in queue is filled.
4044 			 */
4045 			if (skb_queue_empty(&tp->out_of_order_queue))
4046 				inet_csk(sk)->icsk_ack.pingpong = 0;
4047 		}
4048 
4049 		if (tp->rx_opt.num_sacks)
4050 			tcp_sack_remove(tp);
4051 
4052 		tcp_fast_path_check(sk);
4053 
4054 		if (eaten > 0)
4055 			__kfree_skb(skb);
4056 		else if (!sock_flag(sk, SOCK_DEAD))
4057 			sk->sk_data_ready(sk, 0);
4058 		return;
4059 	}
4060 
4061 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4062 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4063 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4064 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4065 
4066 out_of_window:
4067 		tcp_enter_quickack_mode(sk);
4068 		inet_csk_schedule_ack(sk);
4069 drop:
4070 		__kfree_skb(skb);
4071 		return;
4072 	}
4073 
4074 	/* Out of window. F.e. zero window probe. */
4075 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4076 		goto out_of_window;
4077 
4078 	tcp_enter_quickack_mode(sk);
4079 
4080 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4081 		/* Partial packet, seq < rcv_next < end_seq */
4082 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4083 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4084 			   TCP_SKB_CB(skb)->end_seq);
4085 
4086 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4087 
4088 		/* If window is closed, drop tail of packet. But after
4089 		 * remembering D-SACK for its head made in previous line.
4090 		 */
4091 		if (!tcp_receive_window(tp))
4092 			goto out_of_window;
4093 		goto queue_and_out;
4094 	}
4095 
4096 	TCP_ECN_check_ce(tp, skb);
4097 
4098 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4099 		goto drop;
4100 
4101 	/* Disable header prediction. */
4102 	tp->pred_flags = 0;
4103 	inet_csk_schedule_ack(sk);
4104 
4105 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4106 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4107 
4108 	skb_set_owner_r(skb, sk);
4109 
4110 	if (!skb_peek(&tp->out_of_order_queue)) {
4111 		/* Initial out of order segment, build 1 SACK. */
4112 		if (tcp_is_sack(tp)) {
4113 			tp->rx_opt.num_sacks = 1;
4114 			tp->rx_opt.dsack     = 0;
4115 			tp->rx_opt.eff_sacks = 1;
4116 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4117 			tp->selective_acks[0].end_seq =
4118 						TCP_SKB_CB(skb)->end_seq;
4119 		}
4120 		__skb_queue_head(&tp->out_of_order_queue, skb);
4121 	} else {
4122 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4123 		u32 seq = TCP_SKB_CB(skb)->seq;
4124 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4125 
4126 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4127 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4128 
4129 			if (!tp->rx_opt.num_sacks ||
4130 			    tp->selective_acks[0].end_seq != seq)
4131 				goto add_sack;
4132 
4133 			/* Common case: data arrive in order after hole. */
4134 			tp->selective_acks[0].end_seq = end_seq;
4135 			return;
4136 		}
4137 
4138 		/* Find place to insert this segment. */
4139 		do {
4140 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4141 				break;
4142 		} while ((skb1 = skb1->prev) !=
4143 			 (struct sk_buff *)&tp->out_of_order_queue);
4144 
4145 		/* Do skb overlap to previous one? */
4146 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4147 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4148 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4149 				/* All the bits are present. Drop. */
4150 				__kfree_skb(skb);
4151 				tcp_dsack_set(sk, seq, end_seq);
4152 				goto add_sack;
4153 			}
4154 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4155 				/* Partial overlap. */
4156 				tcp_dsack_set(sk, seq,
4157 					      TCP_SKB_CB(skb1)->end_seq);
4158 			} else {
4159 				skb1 = skb1->prev;
4160 			}
4161 		}
4162 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4163 
4164 		/* And clean segments covered by new one as whole. */
4165 		while ((skb1 = skb->next) !=
4166 		       (struct sk_buff *)&tp->out_of_order_queue &&
4167 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4168 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4169 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4170 						 end_seq);
4171 				break;
4172 			}
4173 			__skb_unlink(skb1, &tp->out_of_order_queue);
4174 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4175 					 TCP_SKB_CB(skb1)->end_seq);
4176 			__kfree_skb(skb1);
4177 		}
4178 
4179 add_sack:
4180 		if (tcp_is_sack(tp))
4181 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4182 	}
4183 }
4184 
4185 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4186 					struct sk_buff_head *list)
4187 {
4188 	struct sk_buff *next = skb->next;
4189 
4190 	__skb_unlink(skb, list);
4191 	__kfree_skb(skb);
4192 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4193 
4194 	return next;
4195 }
4196 
4197 /* Collapse contiguous sequence of skbs head..tail with
4198  * sequence numbers start..end.
4199  * Segments with FIN/SYN are not collapsed (only because this
4200  * simplifies code)
4201  */
4202 static void
4203 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4204 	     struct sk_buff *head, struct sk_buff *tail,
4205 	     u32 start, u32 end)
4206 {
4207 	struct sk_buff *skb;
4208 
4209 	/* First, check that queue is collapsible and find
4210 	 * the point where collapsing can be useful. */
4211 	for (skb = head; skb != tail;) {
4212 		/* No new bits? It is possible on ofo queue. */
4213 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4214 			skb = tcp_collapse_one(sk, skb, list);
4215 			continue;
4216 		}
4217 
4218 		/* The first skb to collapse is:
4219 		 * - not SYN/FIN and
4220 		 * - bloated or contains data before "start" or
4221 		 *   overlaps to the next one.
4222 		 */
4223 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4224 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4225 		     before(TCP_SKB_CB(skb)->seq, start) ||
4226 		     (skb->next != tail &&
4227 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4228 			break;
4229 
4230 		/* Decided to skip this, advance start seq. */
4231 		start = TCP_SKB_CB(skb)->end_seq;
4232 		skb = skb->next;
4233 	}
4234 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4235 		return;
4236 
4237 	while (before(start, end)) {
4238 		struct sk_buff *nskb;
4239 		unsigned int header = skb_headroom(skb);
4240 		int copy = SKB_MAX_ORDER(header, 0);
4241 
4242 		/* Too big header? This can happen with IPv6. */
4243 		if (copy < 0)
4244 			return;
4245 		if (end - start < copy)
4246 			copy = end - start;
4247 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4248 		if (!nskb)
4249 			return;
4250 
4251 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4252 		skb_set_network_header(nskb, (skb_network_header(skb) -
4253 					      skb->head));
4254 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4255 						skb->head));
4256 		skb_reserve(nskb, header);
4257 		memcpy(nskb->head, skb->head, header);
4258 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4259 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4260 		__skb_queue_before(list, skb, nskb);
4261 		skb_set_owner_r(nskb, sk);
4262 
4263 		/* Copy data, releasing collapsed skbs. */
4264 		while (copy > 0) {
4265 			int offset = start - TCP_SKB_CB(skb)->seq;
4266 			int size = TCP_SKB_CB(skb)->end_seq - start;
4267 
4268 			BUG_ON(offset < 0);
4269 			if (size > 0) {
4270 				size = min(copy, size);
4271 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4272 					BUG();
4273 				TCP_SKB_CB(nskb)->end_seq += size;
4274 				copy -= size;
4275 				start += size;
4276 			}
4277 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4278 				skb = tcp_collapse_one(sk, skb, list);
4279 				if (skb == tail ||
4280 				    tcp_hdr(skb)->syn ||
4281 				    tcp_hdr(skb)->fin)
4282 					return;
4283 			}
4284 		}
4285 	}
4286 }
4287 
4288 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4289  * and tcp_collapse() them until all the queue is collapsed.
4290  */
4291 static void tcp_collapse_ofo_queue(struct sock *sk)
4292 {
4293 	struct tcp_sock *tp = tcp_sk(sk);
4294 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4295 	struct sk_buff *head;
4296 	u32 start, end;
4297 
4298 	if (skb == NULL)
4299 		return;
4300 
4301 	start = TCP_SKB_CB(skb)->seq;
4302 	end = TCP_SKB_CB(skb)->end_seq;
4303 	head = skb;
4304 
4305 	for (;;) {
4306 		skb = skb->next;
4307 
4308 		/* Segment is terminated when we see gap or when
4309 		 * we are at the end of all the queue. */
4310 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4311 		    after(TCP_SKB_CB(skb)->seq, end) ||
4312 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4313 			tcp_collapse(sk, &tp->out_of_order_queue,
4314 				     head, skb, start, end);
4315 			head = skb;
4316 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4317 				break;
4318 			/* Start new segment */
4319 			start = TCP_SKB_CB(skb)->seq;
4320 			end = TCP_SKB_CB(skb)->end_seq;
4321 		} else {
4322 			if (before(TCP_SKB_CB(skb)->seq, start))
4323 				start = TCP_SKB_CB(skb)->seq;
4324 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4325 				end = TCP_SKB_CB(skb)->end_seq;
4326 		}
4327 	}
4328 }
4329 
4330 /*
4331  * Purge the out-of-order queue.
4332  * Return true if queue was pruned.
4333  */
4334 static int tcp_prune_ofo_queue(struct sock *sk)
4335 {
4336 	struct tcp_sock *tp = tcp_sk(sk);
4337 	int res = 0;
4338 
4339 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4340 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4341 		__skb_queue_purge(&tp->out_of_order_queue);
4342 
4343 		/* Reset SACK state.  A conforming SACK implementation will
4344 		 * do the same at a timeout based retransmit.  When a connection
4345 		 * is in a sad state like this, we care only about integrity
4346 		 * of the connection not performance.
4347 		 */
4348 		if (tp->rx_opt.sack_ok)
4349 			tcp_sack_reset(&tp->rx_opt);
4350 		sk_mem_reclaim(sk);
4351 		res = 1;
4352 	}
4353 	return res;
4354 }
4355 
4356 /* Reduce allocated memory if we can, trying to get
4357  * the socket within its memory limits again.
4358  *
4359  * Return less than zero if we should start dropping frames
4360  * until the socket owning process reads some of the data
4361  * to stabilize the situation.
4362  */
4363 static int tcp_prune_queue(struct sock *sk)
4364 {
4365 	struct tcp_sock *tp = tcp_sk(sk);
4366 
4367 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4368 
4369 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4370 
4371 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4372 		tcp_clamp_window(sk);
4373 	else if (tcp_memory_pressure)
4374 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4375 
4376 	tcp_collapse_ofo_queue(sk);
4377 	tcp_collapse(sk, &sk->sk_receive_queue,
4378 		     sk->sk_receive_queue.next,
4379 		     (struct sk_buff *)&sk->sk_receive_queue,
4380 		     tp->copied_seq, tp->rcv_nxt);
4381 	sk_mem_reclaim(sk);
4382 
4383 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4384 		return 0;
4385 
4386 	/* Collapsing did not help, destructive actions follow.
4387 	 * This must not ever occur. */
4388 
4389 	tcp_prune_ofo_queue(sk);
4390 
4391 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4392 		return 0;
4393 
4394 	/* If we are really being abused, tell the caller to silently
4395 	 * drop receive data on the floor.  It will get retransmitted
4396 	 * and hopefully then we'll have sufficient space.
4397 	 */
4398 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4399 
4400 	/* Massive buffer overcommit. */
4401 	tp->pred_flags = 0;
4402 	return -1;
4403 }
4404 
4405 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4406  * As additional protections, we do not touch cwnd in retransmission phases,
4407  * and if application hit its sndbuf limit recently.
4408  */
4409 void tcp_cwnd_application_limited(struct sock *sk)
4410 {
4411 	struct tcp_sock *tp = tcp_sk(sk);
4412 
4413 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4414 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4415 		/* Limited by application or receiver window. */
4416 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4417 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4418 		if (win_used < tp->snd_cwnd) {
4419 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4420 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4421 		}
4422 		tp->snd_cwnd_used = 0;
4423 	}
4424 	tp->snd_cwnd_stamp = tcp_time_stamp;
4425 }
4426 
4427 static int tcp_should_expand_sndbuf(struct sock *sk)
4428 {
4429 	struct tcp_sock *tp = tcp_sk(sk);
4430 
4431 	/* If the user specified a specific send buffer setting, do
4432 	 * not modify it.
4433 	 */
4434 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4435 		return 0;
4436 
4437 	/* If we are under global TCP memory pressure, do not expand.  */
4438 	if (tcp_memory_pressure)
4439 		return 0;
4440 
4441 	/* If we are under soft global TCP memory pressure, do not expand.  */
4442 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4443 		return 0;
4444 
4445 	/* If we filled the congestion window, do not expand.  */
4446 	if (tp->packets_out >= tp->snd_cwnd)
4447 		return 0;
4448 
4449 	return 1;
4450 }
4451 
4452 /* When incoming ACK allowed to free some skb from write_queue,
4453  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4454  * on the exit from tcp input handler.
4455  *
4456  * PROBLEM: sndbuf expansion does not work well with largesend.
4457  */
4458 static void tcp_new_space(struct sock *sk)
4459 {
4460 	struct tcp_sock *tp = tcp_sk(sk);
4461 
4462 	if (tcp_should_expand_sndbuf(sk)) {
4463 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4464 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4465 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4466 				     tp->reordering + 1);
4467 		sndmem *= 2 * demanded;
4468 		if (sndmem > sk->sk_sndbuf)
4469 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4470 		tp->snd_cwnd_stamp = tcp_time_stamp;
4471 	}
4472 
4473 	sk->sk_write_space(sk);
4474 }
4475 
4476 static void tcp_check_space(struct sock *sk)
4477 {
4478 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4479 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4480 		if (sk->sk_socket &&
4481 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4482 			tcp_new_space(sk);
4483 	}
4484 }
4485 
4486 static inline void tcp_data_snd_check(struct sock *sk)
4487 {
4488 	tcp_push_pending_frames(sk);
4489 	tcp_check_space(sk);
4490 }
4491 
4492 /*
4493  * Check if sending an ack is needed.
4494  */
4495 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4496 {
4497 	struct tcp_sock *tp = tcp_sk(sk);
4498 
4499 	    /* More than one full frame received... */
4500 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4501 	     /* ... and right edge of window advances far enough.
4502 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4503 	      */
4504 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4505 	    /* We ACK each frame or... */
4506 	    tcp_in_quickack_mode(sk) ||
4507 	    /* We have out of order data. */
4508 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4509 		/* Then ack it now */
4510 		tcp_send_ack(sk);
4511 	} else {
4512 		/* Else, send delayed ack. */
4513 		tcp_send_delayed_ack(sk);
4514 	}
4515 }
4516 
4517 static inline void tcp_ack_snd_check(struct sock *sk)
4518 {
4519 	if (!inet_csk_ack_scheduled(sk)) {
4520 		/* We sent a data segment already. */
4521 		return;
4522 	}
4523 	__tcp_ack_snd_check(sk, 1);
4524 }
4525 
4526 /*
4527  *	This routine is only called when we have urgent data
4528  *	signaled. Its the 'slow' part of tcp_urg. It could be
4529  *	moved inline now as tcp_urg is only called from one
4530  *	place. We handle URGent data wrong. We have to - as
4531  *	BSD still doesn't use the correction from RFC961.
4532  *	For 1003.1g we should support a new option TCP_STDURG to permit
4533  *	either form (or just set the sysctl tcp_stdurg).
4534  */
4535 
4536 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4537 {
4538 	struct tcp_sock *tp = tcp_sk(sk);
4539 	u32 ptr = ntohs(th->urg_ptr);
4540 
4541 	if (ptr && !sysctl_tcp_stdurg)
4542 		ptr--;
4543 	ptr += ntohl(th->seq);
4544 
4545 	/* Ignore urgent data that we've already seen and read. */
4546 	if (after(tp->copied_seq, ptr))
4547 		return;
4548 
4549 	/* Do not replay urg ptr.
4550 	 *
4551 	 * NOTE: interesting situation not covered by specs.
4552 	 * Misbehaving sender may send urg ptr, pointing to segment,
4553 	 * which we already have in ofo queue. We are not able to fetch
4554 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4555 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4556 	 * situations. But it is worth to think about possibility of some
4557 	 * DoSes using some hypothetical application level deadlock.
4558 	 */
4559 	if (before(ptr, tp->rcv_nxt))
4560 		return;
4561 
4562 	/* Do we already have a newer (or duplicate) urgent pointer? */
4563 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4564 		return;
4565 
4566 	/* Tell the world about our new urgent pointer. */
4567 	sk_send_sigurg(sk);
4568 
4569 	/* We may be adding urgent data when the last byte read was
4570 	 * urgent. To do this requires some care. We cannot just ignore
4571 	 * tp->copied_seq since we would read the last urgent byte again
4572 	 * as data, nor can we alter copied_seq until this data arrives
4573 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4574 	 *
4575 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4576 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4577 	 * and expect that both A and B disappear from stream. This is _wrong_.
4578 	 * Though this happens in BSD with high probability, this is occasional.
4579 	 * Any application relying on this is buggy. Note also, that fix "works"
4580 	 * only in this artificial test. Insert some normal data between A and B and we will
4581 	 * decline of BSD again. Verdict: it is better to remove to trap
4582 	 * buggy users.
4583 	 */
4584 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4585 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4586 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4587 		tp->copied_seq++;
4588 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4589 			__skb_unlink(skb, &sk->sk_receive_queue);
4590 			__kfree_skb(skb);
4591 		}
4592 	}
4593 
4594 	tp->urg_data = TCP_URG_NOTYET;
4595 	tp->urg_seq = ptr;
4596 
4597 	/* Disable header prediction. */
4598 	tp->pred_flags = 0;
4599 }
4600 
4601 /* This is the 'fast' part of urgent handling. */
4602 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4603 {
4604 	struct tcp_sock *tp = tcp_sk(sk);
4605 
4606 	/* Check if we get a new urgent pointer - normally not. */
4607 	if (th->urg)
4608 		tcp_check_urg(sk, th);
4609 
4610 	/* Do we wait for any urgent data? - normally not... */
4611 	if (tp->urg_data == TCP_URG_NOTYET) {
4612 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4613 			  th->syn;
4614 
4615 		/* Is the urgent pointer pointing into this packet? */
4616 		if (ptr < skb->len) {
4617 			u8 tmp;
4618 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4619 				BUG();
4620 			tp->urg_data = TCP_URG_VALID | tmp;
4621 			if (!sock_flag(sk, SOCK_DEAD))
4622 				sk->sk_data_ready(sk, 0);
4623 		}
4624 	}
4625 }
4626 
4627 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4628 {
4629 	struct tcp_sock *tp = tcp_sk(sk);
4630 	int chunk = skb->len - hlen;
4631 	int err;
4632 
4633 	local_bh_enable();
4634 	if (skb_csum_unnecessary(skb))
4635 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4636 	else
4637 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4638 						       tp->ucopy.iov);
4639 
4640 	if (!err) {
4641 		tp->ucopy.len -= chunk;
4642 		tp->copied_seq += chunk;
4643 		tcp_rcv_space_adjust(sk);
4644 	}
4645 
4646 	local_bh_disable();
4647 	return err;
4648 }
4649 
4650 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4651 					    struct sk_buff *skb)
4652 {
4653 	__sum16 result;
4654 
4655 	if (sock_owned_by_user(sk)) {
4656 		local_bh_enable();
4657 		result = __tcp_checksum_complete(skb);
4658 		local_bh_disable();
4659 	} else {
4660 		result = __tcp_checksum_complete(skb);
4661 	}
4662 	return result;
4663 }
4664 
4665 static inline int tcp_checksum_complete_user(struct sock *sk,
4666 					     struct sk_buff *skb)
4667 {
4668 	return !skb_csum_unnecessary(skb) &&
4669 	       __tcp_checksum_complete_user(sk, skb);
4670 }
4671 
4672 #ifdef CONFIG_NET_DMA
4673 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4674 				  int hlen)
4675 {
4676 	struct tcp_sock *tp = tcp_sk(sk);
4677 	int chunk = skb->len - hlen;
4678 	int dma_cookie;
4679 	int copied_early = 0;
4680 
4681 	if (tp->ucopy.wakeup)
4682 		return 0;
4683 
4684 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4685 		tp->ucopy.dma_chan = get_softnet_dma();
4686 
4687 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4688 
4689 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4690 							 skb, hlen,
4691 							 tp->ucopy.iov, chunk,
4692 							 tp->ucopy.pinned_list);
4693 
4694 		if (dma_cookie < 0)
4695 			goto out;
4696 
4697 		tp->ucopy.dma_cookie = dma_cookie;
4698 		copied_early = 1;
4699 
4700 		tp->ucopy.len -= chunk;
4701 		tp->copied_seq += chunk;
4702 		tcp_rcv_space_adjust(sk);
4703 
4704 		if ((tp->ucopy.len == 0) ||
4705 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4706 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4707 			tp->ucopy.wakeup = 1;
4708 			sk->sk_data_ready(sk, 0);
4709 		}
4710 	} else if (chunk > 0) {
4711 		tp->ucopy.wakeup = 1;
4712 		sk->sk_data_ready(sk, 0);
4713 	}
4714 out:
4715 	return copied_early;
4716 }
4717 #endif /* CONFIG_NET_DMA */
4718 
4719 /* Does PAWS and seqno based validation of an incoming segment, flags will
4720  * play significant role here.
4721  */
4722 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4723 			      struct tcphdr *th, int syn_inerr)
4724 {
4725 	struct tcp_sock *tp = tcp_sk(sk);
4726 
4727 	/* RFC1323: H1. Apply PAWS check first. */
4728 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4729 	    tcp_paws_discard(sk, skb)) {
4730 		if (!th->rst) {
4731 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4732 			tcp_send_dupack(sk, skb);
4733 			goto discard;
4734 		}
4735 		/* Reset is accepted even if it did not pass PAWS. */
4736 	}
4737 
4738 	/* Step 1: check sequence number */
4739 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4740 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4741 		 * (RST) segments are validated by checking their SEQ-fields."
4742 		 * And page 69: "If an incoming segment is not acceptable,
4743 		 * an acknowledgment should be sent in reply (unless the RST
4744 		 * bit is set, if so drop the segment and return)".
4745 		 */
4746 		if (!th->rst)
4747 			tcp_send_dupack(sk, skb);
4748 		goto discard;
4749 	}
4750 
4751 	/* Step 2: check RST bit */
4752 	if (th->rst) {
4753 		tcp_reset(sk);
4754 		goto discard;
4755 	}
4756 
4757 	/* ts_recent update must be made after we are sure that the packet
4758 	 * is in window.
4759 	 */
4760 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4761 
4762 	/* step 3: check security and precedence [ignored] */
4763 
4764 	/* step 4: Check for a SYN in window. */
4765 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4766 		if (syn_inerr)
4767 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4768 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4769 		tcp_reset(sk);
4770 		return -1;
4771 	}
4772 
4773 	return 1;
4774 
4775 discard:
4776 	__kfree_skb(skb);
4777 	return 0;
4778 }
4779 
4780 /*
4781  *	TCP receive function for the ESTABLISHED state.
4782  *
4783  *	It is split into a fast path and a slow path. The fast path is
4784  * 	disabled when:
4785  *	- A zero window was announced from us - zero window probing
4786  *        is only handled properly in the slow path.
4787  *	- Out of order segments arrived.
4788  *	- Urgent data is expected.
4789  *	- There is no buffer space left
4790  *	- Unexpected TCP flags/window values/header lengths are received
4791  *	  (detected by checking the TCP header against pred_flags)
4792  *	- Data is sent in both directions. Fast path only supports pure senders
4793  *	  or pure receivers (this means either the sequence number or the ack
4794  *	  value must stay constant)
4795  *	- Unexpected TCP option.
4796  *
4797  *	When these conditions are not satisfied it drops into a standard
4798  *	receive procedure patterned after RFC793 to handle all cases.
4799  *	The first three cases are guaranteed by proper pred_flags setting,
4800  *	the rest is checked inline. Fast processing is turned on in
4801  *	tcp_data_queue when everything is OK.
4802  */
4803 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4804 			struct tcphdr *th, unsigned len)
4805 {
4806 	struct tcp_sock *tp = tcp_sk(sk);
4807 	int res;
4808 
4809 	/*
4810 	 *	Header prediction.
4811 	 *	The code loosely follows the one in the famous
4812 	 *	"30 instruction TCP receive" Van Jacobson mail.
4813 	 *
4814 	 *	Van's trick is to deposit buffers into socket queue
4815 	 *	on a device interrupt, to call tcp_recv function
4816 	 *	on the receive process context and checksum and copy
4817 	 *	the buffer to user space. smart...
4818 	 *
4819 	 *	Our current scheme is not silly either but we take the
4820 	 *	extra cost of the net_bh soft interrupt processing...
4821 	 *	We do checksum and copy also but from device to kernel.
4822 	 */
4823 
4824 	tp->rx_opt.saw_tstamp = 0;
4825 
4826 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4827 	 *	if header_prediction is to be made
4828 	 *	'S' will always be tp->tcp_header_len >> 2
4829 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4830 	 *  turn it off	(when there are holes in the receive
4831 	 *	 space for instance)
4832 	 *	PSH flag is ignored.
4833 	 */
4834 
4835 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4836 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4837 		int tcp_header_len = tp->tcp_header_len;
4838 
4839 		/* Timestamp header prediction: tcp_header_len
4840 		 * is automatically equal to th->doff*4 due to pred_flags
4841 		 * match.
4842 		 */
4843 
4844 		/* Check timestamp */
4845 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4846 			/* No? Slow path! */
4847 			if (!tcp_parse_aligned_timestamp(tp, th))
4848 				goto slow_path;
4849 
4850 			/* If PAWS failed, check it more carefully in slow path */
4851 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4852 				goto slow_path;
4853 
4854 			/* DO NOT update ts_recent here, if checksum fails
4855 			 * and timestamp was corrupted part, it will result
4856 			 * in a hung connection since we will drop all
4857 			 * future packets due to the PAWS test.
4858 			 */
4859 		}
4860 
4861 		if (len <= tcp_header_len) {
4862 			/* Bulk data transfer: sender */
4863 			if (len == tcp_header_len) {
4864 				/* Predicted packet is in window by definition.
4865 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4866 				 * Hence, check seq<=rcv_wup reduces to:
4867 				 */
4868 				if (tcp_header_len ==
4869 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4870 				    tp->rcv_nxt == tp->rcv_wup)
4871 					tcp_store_ts_recent(tp);
4872 
4873 				/* We know that such packets are checksummed
4874 				 * on entry.
4875 				 */
4876 				tcp_ack(sk, skb, 0);
4877 				__kfree_skb(skb);
4878 				tcp_data_snd_check(sk);
4879 				return 0;
4880 			} else { /* Header too small */
4881 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4882 				goto discard;
4883 			}
4884 		} else {
4885 			int eaten = 0;
4886 			int copied_early = 0;
4887 
4888 			if (tp->copied_seq == tp->rcv_nxt &&
4889 			    len - tcp_header_len <= tp->ucopy.len) {
4890 #ifdef CONFIG_NET_DMA
4891 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4892 					copied_early = 1;
4893 					eaten = 1;
4894 				}
4895 #endif
4896 				if (tp->ucopy.task == current &&
4897 				    sock_owned_by_user(sk) && !copied_early) {
4898 					__set_current_state(TASK_RUNNING);
4899 
4900 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4901 						eaten = 1;
4902 				}
4903 				if (eaten) {
4904 					/* Predicted packet is in window by definition.
4905 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4906 					 * Hence, check seq<=rcv_wup reduces to:
4907 					 */
4908 					if (tcp_header_len ==
4909 					    (sizeof(struct tcphdr) +
4910 					     TCPOLEN_TSTAMP_ALIGNED) &&
4911 					    tp->rcv_nxt == tp->rcv_wup)
4912 						tcp_store_ts_recent(tp);
4913 
4914 					tcp_rcv_rtt_measure_ts(sk, skb);
4915 
4916 					__skb_pull(skb, tcp_header_len);
4917 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4918 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4919 				}
4920 				if (copied_early)
4921 					tcp_cleanup_rbuf(sk, skb->len);
4922 			}
4923 			if (!eaten) {
4924 				if (tcp_checksum_complete_user(sk, skb))
4925 					goto csum_error;
4926 
4927 				/* Predicted packet is in window by definition.
4928 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4929 				 * Hence, check seq<=rcv_wup reduces to:
4930 				 */
4931 				if (tcp_header_len ==
4932 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4933 				    tp->rcv_nxt == tp->rcv_wup)
4934 					tcp_store_ts_recent(tp);
4935 
4936 				tcp_rcv_rtt_measure_ts(sk, skb);
4937 
4938 				if ((int)skb->truesize > sk->sk_forward_alloc)
4939 					goto step5;
4940 
4941 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4942 
4943 				/* Bulk data transfer: receiver */
4944 				__skb_pull(skb, tcp_header_len);
4945 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4946 				skb_set_owner_r(skb, sk);
4947 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4948 			}
4949 
4950 			tcp_event_data_recv(sk, skb);
4951 
4952 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4953 				/* Well, only one small jumplet in fast path... */
4954 				tcp_ack(sk, skb, FLAG_DATA);
4955 				tcp_data_snd_check(sk);
4956 				if (!inet_csk_ack_scheduled(sk))
4957 					goto no_ack;
4958 			}
4959 
4960 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
4961 				__tcp_ack_snd_check(sk, 0);
4962 no_ack:
4963 #ifdef CONFIG_NET_DMA
4964 			if (copied_early)
4965 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4966 			else
4967 #endif
4968 			if (eaten)
4969 				__kfree_skb(skb);
4970 			else
4971 				sk->sk_data_ready(sk, 0);
4972 			return 0;
4973 		}
4974 	}
4975 
4976 slow_path:
4977 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4978 		goto csum_error;
4979 
4980 	/*
4981 	 *	Standard slow path.
4982 	 */
4983 
4984 	res = tcp_validate_incoming(sk, skb, th, 1);
4985 	if (res <= 0)
4986 		return -res;
4987 
4988 step5:
4989 	if (th->ack)
4990 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4991 
4992 	tcp_rcv_rtt_measure_ts(sk, skb);
4993 
4994 	/* Process urgent data. */
4995 	tcp_urg(sk, skb, th);
4996 
4997 	/* step 7: process the segment text */
4998 	tcp_data_queue(sk, skb);
4999 
5000 	tcp_data_snd_check(sk);
5001 	tcp_ack_snd_check(sk);
5002 	return 0;
5003 
5004 csum_error:
5005 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5006 
5007 discard:
5008 	__kfree_skb(skb);
5009 	return 0;
5010 }
5011 
5012 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5013 					 struct tcphdr *th, unsigned len)
5014 {
5015 	struct tcp_sock *tp = tcp_sk(sk);
5016 	struct inet_connection_sock *icsk = inet_csk(sk);
5017 	int saved_clamp = tp->rx_opt.mss_clamp;
5018 
5019 	tcp_parse_options(skb, &tp->rx_opt, 0);
5020 
5021 	if (th->ack) {
5022 		/* rfc793:
5023 		 * "If the state is SYN-SENT then
5024 		 *    first check the ACK bit
5025 		 *      If the ACK bit is set
5026 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5027 		 *        a reset (unless the RST bit is set, if so drop
5028 		 *        the segment and return)"
5029 		 *
5030 		 *  We do not send data with SYN, so that RFC-correct
5031 		 *  test reduces to:
5032 		 */
5033 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5034 			goto reset_and_undo;
5035 
5036 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5037 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5038 			     tcp_time_stamp)) {
5039 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5040 			goto reset_and_undo;
5041 		}
5042 
5043 		/* Now ACK is acceptable.
5044 		 *
5045 		 * "If the RST bit is set
5046 		 *    If the ACK was acceptable then signal the user "error:
5047 		 *    connection reset", drop the segment, enter CLOSED state,
5048 		 *    delete TCB, and return."
5049 		 */
5050 
5051 		if (th->rst) {
5052 			tcp_reset(sk);
5053 			goto discard;
5054 		}
5055 
5056 		/* rfc793:
5057 		 *   "fifth, if neither of the SYN or RST bits is set then
5058 		 *    drop the segment and return."
5059 		 *
5060 		 *    See note below!
5061 		 *                                        --ANK(990513)
5062 		 */
5063 		if (!th->syn)
5064 			goto discard_and_undo;
5065 
5066 		/* rfc793:
5067 		 *   "If the SYN bit is on ...
5068 		 *    are acceptable then ...
5069 		 *    (our SYN has been ACKed), change the connection
5070 		 *    state to ESTABLISHED..."
5071 		 */
5072 
5073 		TCP_ECN_rcv_synack(tp, th);
5074 
5075 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5076 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5077 
5078 		/* Ok.. it's good. Set up sequence numbers and
5079 		 * move to established.
5080 		 */
5081 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5082 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5083 
5084 		/* RFC1323: The window in SYN & SYN/ACK segments is
5085 		 * never scaled.
5086 		 */
5087 		tp->snd_wnd = ntohs(th->window);
5088 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5089 
5090 		if (!tp->rx_opt.wscale_ok) {
5091 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5092 			tp->window_clamp = min(tp->window_clamp, 65535U);
5093 		}
5094 
5095 		if (tp->rx_opt.saw_tstamp) {
5096 			tp->rx_opt.tstamp_ok	   = 1;
5097 			tp->tcp_header_len =
5098 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5099 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5100 			tcp_store_ts_recent(tp);
5101 		} else {
5102 			tp->tcp_header_len = sizeof(struct tcphdr);
5103 		}
5104 
5105 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5106 			tcp_enable_fack(tp);
5107 
5108 		tcp_mtup_init(sk);
5109 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5110 		tcp_initialize_rcv_mss(sk);
5111 
5112 		/* Remember, tcp_poll() does not lock socket!
5113 		 * Change state from SYN-SENT only after copied_seq
5114 		 * is initialized. */
5115 		tp->copied_seq = tp->rcv_nxt;
5116 		smp_mb();
5117 		tcp_set_state(sk, TCP_ESTABLISHED);
5118 
5119 		security_inet_conn_established(sk, skb);
5120 
5121 		/* Make sure socket is routed, for correct metrics.  */
5122 		icsk->icsk_af_ops->rebuild_header(sk);
5123 
5124 		tcp_init_metrics(sk);
5125 
5126 		tcp_init_congestion_control(sk);
5127 
5128 		/* Prevent spurious tcp_cwnd_restart() on first data
5129 		 * packet.
5130 		 */
5131 		tp->lsndtime = tcp_time_stamp;
5132 
5133 		tcp_init_buffer_space(sk);
5134 
5135 		if (sock_flag(sk, SOCK_KEEPOPEN))
5136 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5137 
5138 		if (!tp->rx_opt.snd_wscale)
5139 			__tcp_fast_path_on(tp, tp->snd_wnd);
5140 		else
5141 			tp->pred_flags = 0;
5142 
5143 		if (!sock_flag(sk, SOCK_DEAD)) {
5144 			sk->sk_state_change(sk);
5145 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5146 		}
5147 
5148 		if (sk->sk_write_pending ||
5149 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5150 		    icsk->icsk_ack.pingpong) {
5151 			/* Save one ACK. Data will be ready after
5152 			 * several ticks, if write_pending is set.
5153 			 *
5154 			 * It may be deleted, but with this feature tcpdumps
5155 			 * look so _wonderfully_ clever, that I was not able
5156 			 * to stand against the temptation 8)     --ANK
5157 			 */
5158 			inet_csk_schedule_ack(sk);
5159 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5160 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5161 			tcp_incr_quickack(sk);
5162 			tcp_enter_quickack_mode(sk);
5163 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5164 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5165 
5166 discard:
5167 			__kfree_skb(skb);
5168 			return 0;
5169 		} else {
5170 			tcp_send_ack(sk);
5171 		}
5172 		return -1;
5173 	}
5174 
5175 	/* No ACK in the segment */
5176 
5177 	if (th->rst) {
5178 		/* rfc793:
5179 		 * "If the RST bit is set
5180 		 *
5181 		 *      Otherwise (no ACK) drop the segment and return."
5182 		 */
5183 
5184 		goto discard_and_undo;
5185 	}
5186 
5187 	/* PAWS check. */
5188 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5189 	    tcp_paws_check(&tp->rx_opt, 0))
5190 		goto discard_and_undo;
5191 
5192 	if (th->syn) {
5193 		/* We see SYN without ACK. It is attempt of
5194 		 * simultaneous connect with crossed SYNs.
5195 		 * Particularly, it can be connect to self.
5196 		 */
5197 		tcp_set_state(sk, TCP_SYN_RECV);
5198 
5199 		if (tp->rx_opt.saw_tstamp) {
5200 			tp->rx_opt.tstamp_ok = 1;
5201 			tcp_store_ts_recent(tp);
5202 			tp->tcp_header_len =
5203 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5204 		} else {
5205 			tp->tcp_header_len = sizeof(struct tcphdr);
5206 		}
5207 
5208 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5209 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5210 
5211 		/* RFC1323: The window in SYN & SYN/ACK segments is
5212 		 * never scaled.
5213 		 */
5214 		tp->snd_wnd    = ntohs(th->window);
5215 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5216 		tp->max_window = tp->snd_wnd;
5217 
5218 		TCP_ECN_rcv_syn(tp, th);
5219 
5220 		tcp_mtup_init(sk);
5221 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5222 		tcp_initialize_rcv_mss(sk);
5223 
5224 		tcp_send_synack(sk);
5225 #if 0
5226 		/* Note, we could accept data and URG from this segment.
5227 		 * There are no obstacles to make this.
5228 		 *
5229 		 * However, if we ignore data in ACKless segments sometimes,
5230 		 * we have no reasons to accept it sometimes.
5231 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5232 		 * is not flawless. So, discard packet for sanity.
5233 		 * Uncomment this return to process the data.
5234 		 */
5235 		return -1;
5236 #else
5237 		goto discard;
5238 #endif
5239 	}
5240 	/* "fifth, if neither of the SYN or RST bits is set then
5241 	 * drop the segment and return."
5242 	 */
5243 
5244 discard_and_undo:
5245 	tcp_clear_options(&tp->rx_opt);
5246 	tp->rx_opt.mss_clamp = saved_clamp;
5247 	goto discard;
5248 
5249 reset_and_undo:
5250 	tcp_clear_options(&tp->rx_opt);
5251 	tp->rx_opt.mss_clamp = saved_clamp;
5252 	return 1;
5253 }
5254 
5255 /*
5256  *	This function implements the receiving procedure of RFC 793 for
5257  *	all states except ESTABLISHED and TIME_WAIT.
5258  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5259  *	address independent.
5260  */
5261 
5262 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5263 			  struct tcphdr *th, unsigned len)
5264 {
5265 	struct tcp_sock *tp = tcp_sk(sk);
5266 	struct inet_connection_sock *icsk = inet_csk(sk);
5267 	int queued = 0;
5268 	int res;
5269 
5270 	tp->rx_opt.saw_tstamp = 0;
5271 
5272 	switch (sk->sk_state) {
5273 	case TCP_CLOSE:
5274 		goto discard;
5275 
5276 	case TCP_LISTEN:
5277 		if (th->ack)
5278 			return 1;
5279 
5280 		if (th->rst)
5281 			goto discard;
5282 
5283 		if (th->syn) {
5284 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5285 				return 1;
5286 
5287 			/* Now we have several options: In theory there is
5288 			 * nothing else in the frame. KA9Q has an option to
5289 			 * send data with the syn, BSD accepts data with the
5290 			 * syn up to the [to be] advertised window and
5291 			 * Solaris 2.1 gives you a protocol error. For now
5292 			 * we just ignore it, that fits the spec precisely
5293 			 * and avoids incompatibilities. It would be nice in
5294 			 * future to drop through and process the data.
5295 			 *
5296 			 * Now that TTCP is starting to be used we ought to
5297 			 * queue this data.
5298 			 * But, this leaves one open to an easy denial of
5299 			 * service attack, and SYN cookies can't defend
5300 			 * against this problem. So, we drop the data
5301 			 * in the interest of security over speed unless
5302 			 * it's still in use.
5303 			 */
5304 			kfree_skb(skb);
5305 			return 0;
5306 		}
5307 		goto discard;
5308 
5309 	case TCP_SYN_SENT:
5310 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5311 		if (queued >= 0)
5312 			return queued;
5313 
5314 		/* Do step6 onward by hand. */
5315 		tcp_urg(sk, skb, th);
5316 		__kfree_skb(skb);
5317 		tcp_data_snd_check(sk);
5318 		return 0;
5319 	}
5320 
5321 	res = tcp_validate_incoming(sk, skb, th, 0);
5322 	if (res <= 0)
5323 		return -res;
5324 
5325 	/* step 5: check the ACK field */
5326 	if (th->ack) {
5327 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5328 
5329 		switch (sk->sk_state) {
5330 		case TCP_SYN_RECV:
5331 			if (acceptable) {
5332 				tp->copied_seq = tp->rcv_nxt;
5333 				smp_mb();
5334 				tcp_set_state(sk, TCP_ESTABLISHED);
5335 				sk->sk_state_change(sk);
5336 
5337 				/* Note, that this wakeup is only for marginal
5338 				 * crossed SYN case. Passively open sockets
5339 				 * are not waked up, because sk->sk_sleep ==
5340 				 * NULL and sk->sk_socket == NULL.
5341 				 */
5342 				if (sk->sk_socket)
5343 					sk_wake_async(sk,
5344 						      SOCK_WAKE_IO, POLL_OUT);
5345 
5346 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5347 				tp->snd_wnd = ntohs(th->window) <<
5348 					      tp->rx_opt.snd_wscale;
5349 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5350 					    TCP_SKB_CB(skb)->seq);
5351 
5352 				/* tcp_ack considers this ACK as duplicate
5353 				 * and does not calculate rtt.
5354 				 * Fix it at least with timestamps.
5355 				 */
5356 				if (tp->rx_opt.saw_tstamp &&
5357 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5358 					tcp_ack_saw_tstamp(sk, 0);
5359 
5360 				if (tp->rx_opt.tstamp_ok)
5361 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5362 
5363 				/* Make sure socket is routed, for
5364 				 * correct metrics.
5365 				 */
5366 				icsk->icsk_af_ops->rebuild_header(sk);
5367 
5368 				tcp_init_metrics(sk);
5369 
5370 				tcp_init_congestion_control(sk);
5371 
5372 				/* Prevent spurious tcp_cwnd_restart() on
5373 				 * first data packet.
5374 				 */
5375 				tp->lsndtime = tcp_time_stamp;
5376 
5377 				tcp_mtup_init(sk);
5378 				tcp_initialize_rcv_mss(sk);
5379 				tcp_init_buffer_space(sk);
5380 				tcp_fast_path_on(tp);
5381 			} else {
5382 				return 1;
5383 			}
5384 			break;
5385 
5386 		case TCP_FIN_WAIT1:
5387 			if (tp->snd_una == tp->write_seq) {
5388 				tcp_set_state(sk, TCP_FIN_WAIT2);
5389 				sk->sk_shutdown |= SEND_SHUTDOWN;
5390 				dst_confirm(sk->sk_dst_cache);
5391 
5392 				if (!sock_flag(sk, SOCK_DEAD))
5393 					/* Wake up lingering close() */
5394 					sk->sk_state_change(sk);
5395 				else {
5396 					int tmo;
5397 
5398 					if (tp->linger2 < 0 ||
5399 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5400 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5401 						tcp_done(sk);
5402 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5403 						return 1;
5404 					}
5405 
5406 					tmo = tcp_fin_time(sk);
5407 					if (tmo > TCP_TIMEWAIT_LEN) {
5408 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5409 					} else if (th->fin || sock_owned_by_user(sk)) {
5410 						/* Bad case. We could lose such FIN otherwise.
5411 						 * It is not a big problem, but it looks confusing
5412 						 * and not so rare event. We still can lose it now,
5413 						 * if it spins in bh_lock_sock(), but it is really
5414 						 * marginal case.
5415 						 */
5416 						inet_csk_reset_keepalive_timer(sk, tmo);
5417 					} else {
5418 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5419 						goto discard;
5420 					}
5421 				}
5422 			}
5423 			break;
5424 
5425 		case TCP_CLOSING:
5426 			if (tp->snd_una == tp->write_seq) {
5427 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5428 				goto discard;
5429 			}
5430 			break;
5431 
5432 		case TCP_LAST_ACK:
5433 			if (tp->snd_una == tp->write_seq) {
5434 				tcp_update_metrics(sk);
5435 				tcp_done(sk);
5436 				goto discard;
5437 			}
5438 			break;
5439 		}
5440 	} else
5441 		goto discard;
5442 
5443 	/* step 6: check the URG bit */
5444 	tcp_urg(sk, skb, th);
5445 
5446 	/* step 7: process the segment text */
5447 	switch (sk->sk_state) {
5448 	case TCP_CLOSE_WAIT:
5449 	case TCP_CLOSING:
5450 	case TCP_LAST_ACK:
5451 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5452 			break;
5453 	case TCP_FIN_WAIT1:
5454 	case TCP_FIN_WAIT2:
5455 		/* RFC 793 says to queue data in these states,
5456 		 * RFC 1122 says we MUST send a reset.
5457 		 * BSD 4.4 also does reset.
5458 		 */
5459 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5460 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5461 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5462 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5463 				tcp_reset(sk);
5464 				return 1;
5465 			}
5466 		}
5467 		/* Fall through */
5468 	case TCP_ESTABLISHED:
5469 		tcp_data_queue(sk, skb);
5470 		queued = 1;
5471 		break;
5472 	}
5473 
5474 	/* tcp_data could move socket to TIME-WAIT */
5475 	if (sk->sk_state != TCP_CLOSE) {
5476 		tcp_data_snd_check(sk);
5477 		tcp_ack_snd_check(sk);
5478 	}
5479 
5480 	if (!queued) {
5481 discard:
5482 		__kfree_skb(skb);
5483 	}
5484 	return 0;
5485 }
5486 
5487 EXPORT_SYMBOL(sysctl_tcp_ecn);
5488 EXPORT_SYMBOL(sysctl_tcp_reordering);
5489 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5490 EXPORT_SYMBOL(tcp_parse_options);
5491 #ifdef CONFIG_TCP_MD5SIG
5492 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5493 #endif
5494 EXPORT_SYMBOL(tcp_rcv_established);
5495 EXPORT_SYMBOL(tcp_rcv_state_process);
5496 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5497