xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 334b427e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_deferred_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
270 }
271 
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
363 }
364 
365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
366  *
367  * All tcp_full_space() is split to two parts: "network" buffer, allocated
368  * forward and advertised in receiver window (tp->rcv_wnd) and
369  * "application buffer", required to isolate scheduling/application
370  * latencies from network.
371  * window_clamp is maximal advertised window. It can be less than
372  * tcp_full_space(), in this case tcp_full_space() - window_clamp
373  * is reserved for "application" buffer. The less window_clamp is
374  * the smoother our behaviour from viewpoint of network, but the lower
375  * throughput and the higher sensitivity of the connection to losses. 8)
376  *
377  * rcv_ssthresh is more strict window_clamp used at "slow start"
378  * phase to predict further behaviour of this connection.
379  * It is used for two goals:
380  * - to enforce header prediction at sender, even when application
381  *   requires some significant "application buffer". It is check #1.
382  * - to prevent pruning of receive queue because of misprediction
383  *   of receiver window. Check #2.
384  *
385  * The scheme does not work when sender sends good segments opening
386  * window and then starts to feed us spaghetti. But it should work
387  * in common situations. Otherwise, we have to rely on queue collapsing.
388  */
389 
390 /* Slow part of check#2. */
391 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 	/* Optimize this! */
395 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
396 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
397 
398 	while (tp->rcv_ssthresh <= window) {
399 		if (truesize <= skb->len)
400 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
401 
402 		truesize >>= 1;
403 		window >>= 1;
404 	}
405 	return 0;
406 }
407 
408 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	int room;
412 
413 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
414 
415 	/* Check #1 */
416 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
417 		int incr;
418 
419 		/* Check #2. Increase window, if skb with such overhead
420 		 * will fit to rcvbuf in future.
421 		 */
422 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
423 			incr = 2 * tp->advmss;
424 		else
425 			incr = __tcp_grow_window(sk, skb);
426 
427 		if (incr) {
428 			incr = max_t(int, incr, 2 * skb->len);
429 			tp->rcv_ssthresh += min(room, incr);
430 			inet_csk(sk)->icsk_ack.quick |= 1;
431 		}
432 	}
433 }
434 
435 /* 3. Try to fixup all. It is made immediately after connection enters
436  *    established state.
437  */
438 void tcp_init_buffer_space(struct sock *sk)
439 {
440 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
441 	struct tcp_sock *tp = tcp_sk(sk);
442 	int maxwin;
443 
444 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
445 		tcp_sndbuf_expand(sk);
446 
447 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
448 	tcp_mstamp_refresh(tp);
449 	tp->rcvq_space.time = tp->tcp_mstamp;
450 	tp->rcvq_space.seq = tp->copied_seq;
451 
452 	maxwin = tcp_full_space(sk);
453 
454 	if (tp->window_clamp >= maxwin) {
455 		tp->window_clamp = maxwin;
456 
457 		if (tcp_app_win && maxwin > 4 * tp->advmss)
458 			tp->window_clamp = max(maxwin -
459 					       (maxwin >> tcp_app_win),
460 					       4 * tp->advmss);
461 	}
462 
463 	/* Force reservation of one segment. */
464 	if (tcp_app_win &&
465 	    tp->window_clamp > 2 * tp->advmss &&
466 	    tp->window_clamp + tp->advmss > maxwin)
467 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
468 
469 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
470 	tp->snd_cwnd_stamp = tcp_jiffies32;
471 }
472 
473 /* 4. Recalculate window clamp after socket hit its memory bounds. */
474 static void tcp_clamp_window(struct sock *sk)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	struct inet_connection_sock *icsk = inet_csk(sk);
478 	struct net *net = sock_net(sk);
479 
480 	icsk->icsk_ack.quick = 0;
481 
482 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
483 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
484 	    !tcp_under_memory_pressure(sk) &&
485 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
486 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
487 				    net->ipv4.sysctl_tcp_rmem[2]);
488 	}
489 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
490 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
491 }
492 
493 /* Initialize RCV_MSS value.
494  * RCV_MSS is an our guess about MSS used by the peer.
495  * We haven't any direct information about the MSS.
496  * It's better to underestimate the RCV_MSS rather than overestimate.
497  * Overestimations make us ACKing less frequently than needed.
498  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
499  */
500 void tcp_initialize_rcv_mss(struct sock *sk)
501 {
502 	const struct tcp_sock *tp = tcp_sk(sk);
503 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
504 
505 	hint = min(hint, tp->rcv_wnd / 2);
506 	hint = min(hint, TCP_MSS_DEFAULT);
507 	hint = max(hint, TCP_MIN_MSS);
508 
509 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
510 }
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
512 
513 /* Receiver "autotuning" code.
514  *
515  * The algorithm for RTT estimation w/o timestamps is based on
516  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517  * <http://public.lanl.gov/radiant/pubs.html#DRS>
518  *
519  * More detail on this code can be found at
520  * <http://staff.psc.edu/jheffner/>,
521  * though this reference is out of date.  A new paper
522  * is pending.
523  */
524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
525 {
526 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
527 	long m = sample;
528 
529 	if (new_sample != 0) {
530 		/* If we sample in larger samples in the non-timestamp
531 		 * case, we could grossly overestimate the RTT especially
532 		 * with chatty applications or bulk transfer apps which
533 		 * are stalled on filesystem I/O.
534 		 *
535 		 * Also, since we are only going for a minimum in the
536 		 * non-timestamp case, we do not smooth things out
537 		 * else with timestamps disabled convergence takes too
538 		 * long.
539 		 */
540 		if (!win_dep) {
541 			m -= (new_sample >> 3);
542 			new_sample += m;
543 		} else {
544 			m <<= 3;
545 			if (m < new_sample)
546 				new_sample = m;
547 		}
548 	} else {
549 		/* No previous measure. */
550 		new_sample = m << 3;
551 	}
552 
553 	tp->rcv_rtt_est.rtt_us = new_sample;
554 }
555 
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
557 {
558 	u32 delta_us;
559 
560 	if (tp->rcv_rtt_est.time == 0)
561 		goto new_measure;
562 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
563 		return;
564 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
565 	if (!delta_us)
566 		delta_us = 1;
567 	tcp_rcv_rtt_update(tp, delta_us, 1);
568 
569 new_measure:
570 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
571 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
572 }
573 
574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
575 					  const struct sk_buff *skb)
576 {
577 	struct tcp_sock *tp = tcp_sk(sk);
578 
579 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
580 		return;
581 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
582 
583 	if (TCP_SKB_CB(skb)->end_seq -
584 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
585 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
586 		u32 delta_us;
587 
588 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
589 			if (!delta)
590 				delta = 1;
591 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
592 			tcp_rcv_rtt_update(tp, delta_us, 0);
593 		}
594 	}
595 }
596 
597 /*
598  * This function should be called every time data is copied to user space.
599  * It calculates the appropriate TCP receive buffer space.
600  */
601 void tcp_rcv_space_adjust(struct sock *sk)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	u32 copied;
605 	int time;
606 
607 	trace_tcp_rcv_space_adjust(sk);
608 
609 	tcp_mstamp_refresh(tp);
610 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
611 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
612 		return;
613 
614 	/* Number of bytes copied to user in last RTT */
615 	copied = tp->copied_seq - tp->rcvq_space.seq;
616 	if (copied <= tp->rcvq_space.space)
617 		goto new_measure;
618 
619 	/* A bit of theory :
620 	 * copied = bytes received in previous RTT, our base window
621 	 * To cope with packet losses, we need a 2x factor
622 	 * To cope with slow start, and sender growing its cwin by 100 %
623 	 * every RTT, we need a 4x factor, because the ACK we are sending
624 	 * now is for the next RTT, not the current one :
625 	 * <prev RTT . ><current RTT .. ><next RTT .... >
626 	 */
627 
628 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
629 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
630 		int rcvmem, rcvbuf;
631 		u64 rcvwin, grow;
632 
633 		/* minimal window to cope with packet losses, assuming
634 		 * steady state. Add some cushion because of small variations.
635 		 */
636 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
637 
638 		/* Accommodate for sender rate increase (eg. slow start) */
639 		grow = rcvwin * (copied - tp->rcvq_space.space);
640 		do_div(grow, tp->rcvq_space.space);
641 		rcvwin += (grow << 1);
642 
643 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
644 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
645 			rcvmem += 128;
646 
647 		do_div(rcvwin, tp->advmss);
648 		rcvbuf = min_t(u64, rcvwin * rcvmem,
649 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
650 		if (rcvbuf > sk->sk_rcvbuf) {
651 			sk->sk_rcvbuf = rcvbuf;
652 
653 			/* Make the window clamp follow along.  */
654 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
655 		}
656 	}
657 	tp->rcvq_space.space = copied;
658 
659 new_measure:
660 	tp->rcvq_space.seq = tp->copied_seq;
661 	tp->rcvq_space.time = tp->tcp_mstamp;
662 }
663 
664 /* There is something which you must keep in mind when you analyze the
665  * behavior of the tp->ato delayed ack timeout interval.  When a
666  * connection starts up, we want to ack as quickly as possible.  The
667  * problem is that "good" TCP's do slow start at the beginning of data
668  * transmission.  The means that until we send the first few ACK's the
669  * sender will sit on his end and only queue most of his data, because
670  * he can only send snd_cwnd unacked packets at any given time.  For
671  * each ACK we send, he increments snd_cwnd and transmits more of his
672  * queue.  -DaveM
673  */
674 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	struct inet_connection_sock *icsk = inet_csk(sk);
678 	u32 now;
679 
680 	inet_csk_schedule_ack(sk);
681 
682 	tcp_measure_rcv_mss(sk, skb);
683 
684 	tcp_rcv_rtt_measure(tp);
685 
686 	now = tcp_jiffies32;
687 
688 	if (!icsk->icsk_ack.ato) {
689 		/* The _first_ data packet received, initialize
690 		 * delayed ACK engine.
691 		 */
692 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
693 		icsk->icsk_ack.ato = TCP_ATO_MIN;
694 	} else {
695 		int m = now - icsk->icsk_ack.lrcvtime;
696 
697 		if (m <= TCP_ATO_MIN / 2) {
698 			/* The fastest case is the first. */
699 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
700 		} else if (m < icsk->icsk_ack.ato) {
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
702 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
703 				icsk->icsk_ack.ato = icsk->icsk_rto;
704 		} else if (m > icsk->icsk_rto) {
705 			/* Too long gap. Apparently sender failed to
706 			 * restart window, so that we send ACKs quickly.
707 			 */
708 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
709 			sk_mem_reclaim(sk);
710 		}
711 	}
712 	icsk->icsk_ack.lrcvtime = now;
713 
714 	tcp_ecn_check_ce(sk, skb);
715 
716 	if (skb->len >= 128)
717 		tcp_grow_window(sk, skb);
718 }
719 
720 /* Called to compute a smoothed rtt estimate. The data fed to this
721  * routine either comes from timestamps, or from segments that were
722  * known _not_ to have been retransmitted [see Karn/Partridge
723  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
724  * piece by Van Jacobson.
725  * NOTE: the next three routines used to be one big routine.
726  * To save cycles in the RFC 1323 implementation it was better to break
727  * it up into three procedures. -- erics
728  */
729 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
730 {
731 	struct tcp_sock *tp = tcp_sk(sk);
732 	long m = mrtt_us; /* RTT */
733 	u32 srtt = tp->srtt_us;
734 
735 	/*	The following amusing code comes from Jacobson's
736 	 *	article in SIGCOMM '88.  Note that rtt and mdev
737 	 *	are scaled versions of rtt and mean deviation.
738 	 *	This is designed to be as fast as possible
739 	 *	m stands for "measurement".
740 	 *
741 	 *	On a 1990 paper the rto value is changed to:
742 	 *	RTO = rtt + 4 * mdev
743 	 *
744 	 * Funny. This algorithm seems to be very broken.
745 	 * These formulae increase RTO, when it should be decreased, increase
746 	 * too slowly, when it should be increased quickly, decrease too quickly
747 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
748 	 * does not matter how to _calculate_ it. Seems, it was trap
749 	 * that VJ failed to avoid. 8)
750 	 */
751 	if (srtt != 0) {
752 		m -= (srtt >> 3);	/* m is now error in rtt est */
753 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
754 		if (m < 0) {
755 			m = -m;		/* m is now abs(error) */
756 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
757 			/* This is similar to one of Eifel findings.
758 			 * Eifel blocks mdev updates when rtt decreases.
759 			 * This solution is a bit different: we use finer gain
760 			 * for mdev in this case (alpha*beta).
761 			 * Like Eifel it also prevents growth of rto,
762 			 * but also it limits too fast rto decreases,
763 			 * happening in pure Eifel.
764 			 */
765 			if (m > 0)
766 				m >>= 3;
767 		} else {
768 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
769 		}
770 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
771 		if (tp->mdev_us > tp->mdev_max_us) {
772 			tp->mdev_max_us = tp->mdev_us;
773 			if (tp->mdev_max_us > tp->rttvar_us)
774 				tp->rttvar_us = tp->mdev_max_us;
775 		}
776 		if (after(tp->snd_una, tp->rtt_seq)) {
777 			if (tp->mdev_max_us < tp->rttvar_us)
778 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
779 			tp->rtt_seq = tp->snd_nxt;
780 			tp->mdev_max_us = tcp_rto_min_us(sk);
781 
782 			tcp_bpf_rtt(sk);
783 		}
784 	} else {
785 		/* no previous measure. */
786 		srtt = m << 3;		/* take the measured time to be rtt */
787 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
788 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
789 		tp->mdev_max_us = tp->rttvar_us;
790 		tp->rtt_seq = tp->snd_nxt;
791 
792 		tcp_bpf_rtt(sk);
793 	}
794 	tp->srtt_us = max(1U, srtt);
795 }
796 
797 static void tcp_update_pacing_rate(struct sock *sk)
798 {
799 	const struct tcp_sock *tp = tcp_sk(sk);
800 	u64 rate;
801 
802 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
803 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
804 
805 	/* current rate is (cwnd * mss) / srtt
806 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
807 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
808 	 *
809 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
810 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
811 	 *	 end of slow start and should slow down.
812 	 */
813 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
814 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
815 	else
816 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
817 
818 	rate *= max(tp->snd_cwnd, tp->packets_out);
819 
820 	if (likely(tp->srtt_us))
821 		do_div(rate, tp->srtt_us);
822 
823 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
824 	 * without any lock. We want to make sure compiler wont store
825 	 * intermediate values in this location.
826 	 */
827 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
828 					     sk->sk_max_pacing_rate));
829 }
830 
831 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
832  * routine referred to above.
833  */
834 static void tcp_set_rto(struct sock *sk)
835 {
836 	const struct tcp_sock *tp = tcp_sk(sk);
837 	/* Old crap is replaced with new one. 8)
838 	 *
839 	 * More seriously:
840 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
841 	 *    It cannot be less due to utterly erratic ACK generation made
842 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
843 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
844 	 *    is invisible. Actually, Linux-2.4 also generates erratic
845 	 *    ACKs in some circumstances.
846 	 */
847 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
848 
849 	/* 2. Fixups made earlier cannot be right.
850 	 *    If we do not estimate RTO correctly without them,
851 	 *    all the algo is pure shit and should be replaced
852 	 *    with correct one. It is exactly, which we pretend to do.
853 	 */
854 
855 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
856 	 * guarantees that rto is higher.
857 	 */
858 	tcp_bound_rto(sk);
859 }
860 
861 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
862 {
863 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
864 
865 	if (!cwnd)
866 		cwnd = TCP_INIT_CWND;
867 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
868 }
869 
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 	tp->rack.dsack_seen = 1;
875 	tp->dsack_dups++;
876 }
877 
878 /* It's reordering when higher sequence was delivered (i.e. sacked) before
879  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
880  * distance is approximated in full-mss packet distance ("reordering").
881  */
882 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
883 				      const int ts)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	const u32 mss = tp->mss_cache;
887 	u32 fack, metric;
888 
889 	fack = tcp_highest_sack_seq(tp);
890 	if (!before(low_seq, fack))
891 		return;
892 
893 	metric = fack - low_seq;
894 	if ((metric > tp->reordering * mss) && mss) {
895 #if FASTRETRANS_DEBUG > 1
896 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 			 tp->reordering,
899 			 0,
900 			 tp->sacked_out,
901 			 tp->undo_marker ? tp->undo_retrans : 0);
902 #endif
903 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
904 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
905 	}
906 
907 	/* This exciting event is worth to be remembered. 8) */
908 	tp->reord_seen++;
909 	NET_INC_STATS(sock_net(sk),
910 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
911 }
912 
913 /* This must be called before lost_out is incremented */
914 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
915 {
916 	if (!tp->retransmit_skb_hint ||
917 	    before(TCP_SKB_CB(skb)->seq,
918 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
919 		tp->retransmit_skb_hint = skb;
920 }
921 
922 /* Sum the number of packets on the wire we have marked as lost.
923  * There are two cases we care about here:
924  * a) Packet hasn't been marked lost (nor retransmitted),
925  *    and this is the first loss.
926  * b) Packet has been marked both lost and retransmitted,
927  *    and this means we think it was lost again.
928  */
929 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
930 {
931 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
932 
933 	if (!(sacked & TCPCB_LOST) ||
934 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
935 		tp->lost += tcp_skb_pcount(skb);
936 }
937 
938 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 {
940 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
941 		tcp_verify_retransmit_hint(tp, skb);
942 
943 		tp->lost_out += tcp_skb_pcount(skb);
944 		tcp_sum_lost(tp, skb);
945 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
946 	}
947 }
948 
949 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
950 {
951 	tcp_verify_retransmit_hint(tp, skb);
952 
953 	tcp_sum_lost(tp, skb);
954 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
955 		tp->lost_out += tcp_skb_pcount(skb);
956 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
957 	}
958 }
959 
960 /* This procedure tags the retransmission queue when SACKs arrive.
961  *
962  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
963  * Packets in queue with these bits set are counted in variables
964  * sacked_out, retrans_out and lost_out, correspondingly.
965  *
966  * Valid combinations are:
967  * Tag  InFlight	Description
968  * 0	1		- orig segment is in flight.
969  * S	0		- nothing flies, orig reached receiver.
970  * L	0		- nothing flies, orig lost by net.
971  * R	2		- both orig and retransmit are in flight.
972  * L|R	1		- orig is lost, retransmit is in flight.
973  * S|R  1		- orig reached receiver, retrans is still in flight.
974  * (L|S|R is logically valid, it could occur when L|R is sacked,
975  *  but it is equivalent to plain S and code short-curcuits it to S.
976  *  L|S is logically invalid, it would mean -1 packet in flight 8))
977  *
978  * These 6 states form finite state machine, controlled by the following events:
979  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
980  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
981  * 3. Loss detection event of two flavors:
982  *	A. Scoreboard estimator decided the packet is lost.
983  *	   A'. Reno "three dupacks" marks head of queue lost.
984  *	B. SACK arrives sacking SND.NXT at the moment, when the
985  *	   segment was retransmitted.
986  * 4. D-SACK added new rule: D-SACK changes any tag to S.
987  *
988  * It is pleasant to note, that state diagram turns out to be commutative,
989  * so that we are allowed not to be bothered by order of our actions,
990  * when multiple events arrive simultaneously. (see the function below).
991  *
992  * Reordering detection.
993  * --------------------
994  * Reordering metric is maximal distance, which a packet can be displaced
995  * in packet stream. With SACKs we can estimate it:
996  *
997  * 1. SACK fills old hole and the corresponding segment was not
998  *    ever retransmitted -> reordering. Alas, we cannot use it
999  *    when segment was retransmitted.
1000  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001  *    for retransmitted and already SACKed segment -> reordering..
1002  * Both of these heuristics are not used in Loss state, when we cannot
1003  * account for retransmits accurately.
1004  *
1005  * SACK block validation.
1006  * ----------------------
1007  *
1008  * SACK block range validation checks that the received SACK block fits to
1009  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010  * Note that SND.UNA is not included to the range though being valid because
1011  * it means that the receiver is rather inconsistent with itself reporting
1012  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013  * perfectly valid, however, in light of RFC2018 which explicitly states
1014  * that "SACK block MUST reflect the newest segment.  Even if the newest
1015  * segment is going to be discarded ...", not that it looks very clever
1016  * in case of head skb. Due to potentional receiver driven attacks, we
1017  * choose to avoid immediate execution of a walk in write queue due to
1018  * reneging and defer head skb's loss recovery to standard loss recovery
1019  * procedure that will eventually trigger (nothing forbids us doing this).
1020  *
1021  * Implements also blockage to start_seq wrap-around. Problem lies in the
1022  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023  * there's no guarantee that it will be before snd_nxt (n). The problem
1024  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025  * wrap (s_w):
1026  *
1027  *         <- outs wnd ->                          <- wrapzone ->
1028  *         u     e      n                         u_w   e_w  s n_w
1029  *         |     |      |                          |     |   |  |
1030  * |<------------+------+----- TCP seqno space --------------+---------->|
1031  * ...-- <2^31 ->|                                           |<--------...
1032  * ...---- >2^31 ------>|                                    |<--------...
1033  *
1034  * Current code wouldn't be vulnerable but it's better still to discard such
1035  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038  * equal to the ideal case (infinite seqno space without wrap caused issues).
1039  *
1040  * With D-SACK the lower bound is extended to cover sequence space below
1041  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042  * again, D-SACK block must not to go across snd_una (for the same reason as
1043  * for the normal SACK blocks, explained above). But there all simplicity
1044  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045  * fully below undo_marker they do not affect behavior in anyway and can
1046  * therefore be safely ignored. In rare cases (which are more or less
1047  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048  * fragmentation and packet reordering past skb's retransmission. To consider
1049  * them correctly, the acceptable range must be extended even more though
1050  * the exact amount is rather hard to quantify. However, tp->max_window can
1051  * be used as an exaggerated estimate.
1052  */
1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 				   u32 start_seq, u32 end_seq)
1055 {
1056 	/* Too far in future, or reversed (interpretation is ambiguous) */
1057 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1058 		return false;
1059 
1060 	/* Nasty start_seq wrap-around check (see comments above) */
1061 	if (!before(start_seq, tp->snd_nxt))
1062 		return false;
1063 
1064 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1065 	 * start_seq == snd_una is non-sensical (see comments above)
1066 	 */
1067 	if (after(start_seq, tp->snd_una))
1068 		return true;
1069 
1070 	if (!is_dsack || !tp->undo_marker)
1071 		return false;
1072 
1073 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1074 	if (after(end_seq, tp->snd_una))
1075 		return false;
1076 
1077 	if (!before(start_seq, tp->undo_marker))
1078 		return true;
1079 
1080 	/* Too old */
1081 	if (!after(end_seq, tp->undo_marker))
1082 		return false;
1083 
1084 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1086 	 */
1087 	return !before(start_seq, end_seq - tp->max_window);
1088 }
1089 
1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 			    struct tcp_sack_block_wire *sp, int num_sacks,
1092 			    u32 prior_snd_una)
1093 {
1094 	struct tcp_sock *tp = tcp_sk(sk);
1095 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1097 	bool dup_sack = false;
1098 
1099 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1100 		dup_sack = true;
1101 		tcp_dsack_seen(tp);
1102 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1103 	} else if (num_sacks > 1) {
1104 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1106 
1107 		if (!after(end_seq_0, end_seq_1) &&
1108 		    !before(start_seq_0, start_seq_1)) {
1109 			dup_sack = true;
1110 			tcp_dsack_seen(tp);
1111 			NET_INC_STATS(sock_net(sk),
1112 					LINUX_MIB_TCPDSACKOFORECV);
1113 		}
1114 	}
1115 
1116 	/* D-SACK for already forgotten data... Do dumb counting. */
1117 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1118 	    !after(end_seq_0, prior_snd_una) &&
1119 	    after(end_seq_0, tp->undo_marker))
1120 		tp->undo_retrans--;
1121 
1122 	return dup_sack;
1123 }
1124 
1125 struct tcp_sacktag_state {
1126 	u32	reord;
1127 	/* Timestamps for earliest and latest never-retransmitted segment
1128 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1129 	 * but congestion control should still get an accurate delay signal.
1130 	 */
1131 	u64	first_sackt;
1132 	u64	last_sackt;
1133 	struct rate_sample *rate;
1134 	int	flag;
1135 	unsigned int mss_now;
1136 };
1137 
1138 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1139  * the incoming SACK may not exactly match but we can find smaller MSS
1140  * aligned portion of it that matches. Therefore we might need to fragment
1141  * which may fail and creates some hassle (caller must handle error case
1142  * returns).
1143  *
1144  * FIXME: this could be merged to shift decision code
1145  */
1146 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1147 				  u32 start_seq, u32 end_seq)
1148 {
1149 	int err;
1150 	bool in_sack;
1151 	unsigned int pkt_len;
1152 	unsigned int mss;
1153 
1154 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1155 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1156 
1157 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1158 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1159 		mss = tcp_skb_mss(skb);
1160 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1161 
1162 		if (!in_sack) {
1163 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				pkt_len = mss;
1166 		} else {
1167 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1168 			if (pkt_len < mss)
1169 				return -EINVAL;
1170 		}
1171 
1172 		/* Round if necessary so that SACKs cover only full MSSes
1173 		 * and/or the remaining small portion (if present)
1174 		 */
1175 		if (pkt_len > mss) {
1176 			unsigned int new_len = (pkt_len / mss) * mss;
1177 			if (!in_sack && new_len < pkt_len)
1178 				new_len += mss;
1179 			pkt_len = new_len;
1180 		}
1181 
1182 		if (pkt_len >= skb->len && !in_sack)
1183 			return 0;
1184 
1185 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1186 				   pkt_len, mss, GFP_ATOMIC);
1187 		if (err < 0)
1188 			return err;
1189 	}
1190 
1191 	return in_sack;
1192 }
1193 
1194 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1195 static u8 tcp_sacktag_one(struct sock *sk,
1196 			  struct tcp_sacktag_state *state, u8 sacked,
1197 			  u32 start_seq, u32 end_seq,
1198 			  int dup_sack, int pcount,
1199 			  u64 xmit_time)
1200 {
1201 	struct tcp_sock *tp = tcp_sk(sk);
1202 
1203 	/* Account D-SACK for retransmitted packet. */
1204 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1205 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1206 		    after(end_seq, tp->undo_marker))
1207 			tp->undo_retrans--;
1208 		if ((sacked & TCPCB_SACKED_ACKED) &&
1209 		    before(start_seq, state->reord))
1210 				state->reord = start_seq;
1211 	}
1212 
1213 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1214 	if (!after(end_seq, tp->snd_una))
1215 		return sacked;
1216 
1217 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1218 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1219 
1220 		if (sacked & TCPCB_SACKED_RETRANS) {
1221 			/* If the segment is not tagged as lost,
1222 			 * we do not clear RETRANS, believing
1223 			 * that retransmission is still in flight.
1224 			 */
1225 			if (sacked & TCPCB_LOST) {
1226 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 				tp->lost_out -= pcount;
1228 				tp->retrans_out -= pcount;
1229 			}
1230 		} else {
1231 			if (!(sacked & TCPCB_RETRANS)) {
1232 				/* New sack for not retransmitted frame,
1233 				 * which was in hole. It is reordering.
1234 				 */
1235 				if (before(start_seq,
1236 					   tcp_highest_sack_seq(tp)) &&
1237 				    before(start_seq, state->reord))
1238 					state->reord = start_seq;
1239 
1240 				if (!after(end_seq, tp->high_seq))
1241 					state->flag |= FLAG_ORIG_SACK_ACKED;
1242 				if (state->first_sackt == 0)
1243 					state->first_sackt = xmit_time;
1244 				state->last_sackt = xmit_time;
1245 			}
1246 
1247 			if (sacked & TCPCB_LOST) {
1248 				sacked &= ~TCPCB_LOST;
1249 				tp->lost_out -= pcount;
1250 			}
1251 		}
1252 
1253 		sacked |= TCPCB_SACKED_ACKED;
1254 		state->flag |= FLAG_DATA_SACKED;
1255 		tp->sacked_out += pcount;
1256 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1257 
1258 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 		if (tp->lost_skb_hint &&
1260 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 			tp->lost_cnt_hint += pcount;
1262 	}
1263 
1264 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1265 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1266 	 * are accounted above as well.
1267 	 */
1268 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1269 		sacked &= ~TCPCB_SACKED_RETRANS;
1270 		tp->retrans_out -= pcount;
1271 	}
1272 
1273 	return sacked;
1274 }
1275 
1276 /* Shift newly-SACKed bytes from this skb to the immediately previous
1277  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1278  */
1279 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1280 			    struct sk_buff *skb,
1281 			    struct tcp_sacktag_state *state,
1282 			    unsigned int pcount, int shifted, int mss,
1283 			    bool dup_sack)
1284 {
1285 	struct tcp_sock *tp = tcp_sk(sk);
1286 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1287 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1288 
1289 	BUG_ON(!pcount);
1290 
1291 	/* Adjust counters and hints for the newly sacked sequence
1292 	 * range but discard the return value since prev is already
1293 	 * marked. We must tag the range first because the seq
1294 	 * advancement below implicitly advances
1295 	 * tcp_highest_sack_seq() when skb is highest_sack.
1296 	 */
1297 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1298 			start_seq, end_seq, dup_sack, pcount,
1299 			tcp_skb_timestamp_us(skb));
1300 	tcp_rate_skb_delivered(sk, skb, state->rate);
1301 
1302 	if (skb == tp->lost_skb_hint)
1303 		tp->lost_cnt_hint += pcount;
1304 
1305 	TCP_SKB_CB(prev)->end_seq += shifted;
1306 	TCP_SKB_CB(skb)->seq += shifted;
1307 
1308 	tcp_skb_pcount_add(prev, pcount);
1309 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1310 	tcp_skb_pcount_add(skb, -pcount);
1311 
1312 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1313 	 * in theory this shouldn't be necessary but as long as DSACK
1314 	 * code can come after this skb later on it's better to keep
1315 	 * setting gso_size to something.
1316 	 */
1317 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1318 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1319 
1320 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1321 	if (tcp_skb_pcount(skb) <= 1)
1322 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1323 
1324 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1325 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1326 
1327 	if (skb->len > 0) {
1328 		BUG_ON(!tcp_skb_pcount(skb));
1329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1330 		return false;
1331 	}
1332 
1333 	/* Whole SKB was eaten :-) */
1334 
1335 	if (skb == tp->retransmit_skb_hint)
1336 		tp->retransmit_skb_hint = prev;
1337 	if (skb == tp->lost_skb_hint) {
1338 		tp->lost_skb_hint = prev;
1339 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1340 	}
1341 
1342 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1343 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1344 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1345 		TCP_SKB_CB(prev)->end_seq++;
1346 
1347 	if (skb == tcp_highest_sack(sk))
1348 		tcp_advance_highest_sack(sk, skb);
1349 
1350 	tcp_skb_collapse_tstamp(prev, skb);
1351 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1352 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1353 
1354 	tcp_rtx_queue_unlink_and_free(skb, sk);
1355 
1356 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1357 
1358 	return true;
1359 }
1360 
1361 /* I wish gso_size would have a bit more sane initialization than
1362  * something-or-zero which complicates things
1363  */
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1365 {
1366 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367 }
1368 
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1371 {
1372 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373 }
1374 
1375 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1376 		  int pcount, int shiftlen)
1377 {
1378 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1379 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1380 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1381 	 * even if current MSS is bigger.
1382 	 */
1383 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1384 		return 0;
1385 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1386 		return 0;
1387 	return skb_shift(to, from, shiftlen);
1388 }
1389 
1390 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1391  * skb.
1392  */
1393 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1394 					  struct tcp_sacktag_state *state,
1395 					  u32 start_seq, u32 end_seq,
1396 					  bool dup_sack)
1397 {
1398 	struct tcp_sock *tp = tcp_sk(sk);
1399 	struct sk_buff *prev;
1400 	int mss;
1401 	int pcount = 0;
1402 	int len;
1403 	int in_sack;
1404 
1405 	/* Normally R but no L won't result in plain S */
1406 	if (!dup_sack &&
1407 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1408 		goto fallback;
1409 	if (!skb_can_shift(skb))
1410 		goto fallback;
1411 	/* This frame is about to be dropped (was ACKed). */
1412 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1413 		goto fallback;
1414 
1415 	/* Can only happen with delayed DSACK + discard craziness */
1416 	prev = skb_rb_prev(skb);
1417 	if (!prev)
1418 		goto fallback;
1419 
1420 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1421 		goto fallback;
1422 
1423 	if (!tcp_skb_can_collapse_to(prev))
1424 		goto fallback;
1425 
1426 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1427 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1428 
1429 	if (in_sack) {
1430 		len = skb->len;
1431 		pcount = tcp_skb_pcount(skb);
1432 		mss = tcp_skb_seglen(skb);
1433 
1434 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 		 * drop this restriction as unnecessary
1436 		 */
1437 		if (mss != tcp_skb_seglen(prev))
1438 			goto fallback;
1439 	} else {
1440 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1441 			goto noop;
1442 		/* CHECKME: This is non-MSS split case only?, this will
1443 		 * cause skipped skbs due to advancing loop btw, original
1444 		 * has that feature too
1445 		 */
1446 		if (tcp_skb_pcount(skb) <= 1)
1447 			goto noop;
1448 
1449 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1450 		if (!in_sack) {
1451 			/* TODO: head merge to next could be attempted here
1452 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1453 			 * though it might not be worth of the additional hassle
1454 			 *
1455 			 * ...we can probably just fallback to what was done
1456 			 * previously. We could try merging non-SACKed ones
1457 			 * as well but it probably isn't going to buy off
1458 			 * because later SACKs might again split them, and
1459 			 * it would make skb timestamp tracking considerably
1460 			 * harder problem.
1461 			 */
1462 			goto fallback;
1463 		}
1464 
1465 		len = end_seq - TCP_SKB_CB(skb)->seq;
1466 		BUG_ON(len < 0);
1467 		BUG_ON(len > skb->len);
1468 
1469 		/* MSS boundaries should be honoured or else pcount will
1470 		 * severely break even though it makes things bit trickier.
1471 		 * Optimize common case to avoid most of the divides
1472 		 */
1473 		mss = tcp_skb_mss(skb);
1474 
1475 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1476 		 * drop this restriction as unnecessary
1477 		 */
1478 		if (mss != tcp_skb_seglen(prev))
1479 			goto fallback;
1480 
1481 		if (len == mss) {
1482 			pcount = 1;
1483 		} else if (len < mss) {
1484 			goto noop;
1485 		} else {
1486 			pcount = len / mss;
1487 			len = pcount * mss;
1488 		}
1489 	}
1490 
1491 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1492 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1493 		goto fallback;
1494 
1495 	if (!tcp_skb_shift(prev, skb, pcount, len))
1496 		goto fallback;
1497 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1498 		goto out;
1499 
1500 	/* Hole filled allows collapsing with the next as well, this is very
1501 	 * useful when hole on every nth skb pattern happens
1502 	 */
1503 	skb = skb_rb_next(prev);
1504 	if (!skb)
1505 		goto out;
1506 
1507 	if (!skb_can_shift(skb) ||
1508 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1509 	    (mss != tcp_skb_seglen(skb)))
1510 		goto out;
1511 
1512 	len = skb->len;
1513 	pcount = tcp_skb_pcount(skb);
1514 	if (tcp_skb_shift(prev, skb, pcount, len))
1515 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1516 				len, mss, 0);
1517 
1518 out:
1519 	return prev;
1520 
1521 noop:
1522 	return skb;
1523 
1524 fallback:
1525 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1526 	return NULL;
1527 }
1528 
1529 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1530 					struct tcp_sack_block *next_dup,
1531 					struct tcp_sacktag_state *state,
1532 					u32 start_seq, u32 end_seq,
1533 					bool dup_sack_in)
1534 {
1535 	struct tcp_sock *tp = tcp_sk(sk);
1536 	struct sk_buff *tmp;
1537 
1538 	skb_rbtree_walk_from(skb) {
1539 		int in_sack = 0;
1540 		bool dup_sack = dup_sack_in;
1541 
1542 		/* queue is in-order => we can short-circuit the walk early */
1543 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1544 			break;
1545 
1546 		if (next_dup  &&
1547 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1548 			in_sack = tcp_match_skb_to_sack(sk, skb,
1549 							next_dup->start_seq,
1550 							next_dup->end_seq);
1551 			if (in_sack > 0)
1552 				dup_sack = true;
1553 		}
1554 
1555 		/* skb reference here is a bit tricky to get right, since
1556 		 * shifting can eat and free both this skb and the next,
1557 		 * so not even _safe variant of the loop is enough.
1558 		 */
1559 		if (in_sack <= 0) {
1560 			tmp = tcp_shift_skb_data(sk, skb, state,
1561 						 start_seq, end_seq, dup_sack);
1562 			if (tmp) {
1563 				if (tmp != skb) {
1564 					skb = tmp;
1565 					continue;
1566 				}
1567 
1568 				in_sack = 0;
1569 			} else {
1570 				in_sack = tcp_match_skb_to_sack(sk, skb,
1571 								start_seq,
1572 								end_seq);
1573 			}
1574 		}
1575 
1576 		if (unlikely(in_sack < 0))
1577 			break;
1578 
1579 		if (in_sack) {
1580 			TCP_SKB_CB(skb)->sacked =
1581 				tcp_sacktag_one(sk,
1582 						state,
1583 						TCP_SKB_CB(skb)->sacked,
1584 						TCP_SKB_CB(skb)->seq,
1585 						TCP_SKB_CB(skb)->end_seq,
1586 						dup_sack,
1587 						tcp_skb_pcount(skb),
1588 						tcp_skb_timestamp_us(skb));
1589 			tcp_rate_skb_delivered(sk, skb, state->rate);
1590 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1591 				list_del_init(&skb->tcp_tsorted_anchor);
1592 
1593 			if (!before(TCP_SKB_CB(skb)->seq,
1594 				    tcp_highest_sack_seq(tp)))
1595 				tcp_advance_highest_sack(sk, skb);
1596 		}
1597 	}
1598 	return skb;
1599 }
1600 
1601 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1602 {
1603 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1604 	struct sk_buff *skb;
1605 
1606 	while (*p) {
1607 		parent = *p;
1608 		skb = rb_to_skb(parent);
1609 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1610 			p = &parent->rb_left;
1611 			continue;
1612 		}
1613 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1614 			p = &parent->rb_right;
1615 			continue;
1616 		}
1617 		return skb;
1618 	}
1619 	return NULL;
1620 }
1621 
1622 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1623 					u32 skip_to_seq)
1624 {
1625 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1626 		return skb;
1627 
1628 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1629 }
1630 
1631 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1632 						struct sock *sk,
1633 						struct tcp_sack_block *next_dup,
1634 						struct tcp_sacktag_state *state,
1635 						u32 skip_to_seq)
1636 {
1637 	if (!next_dup)
1638 		return skb;
1639 
1640 	if (before(next_dup->start_seq, skip_to_seq)) {
1641 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1642 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1643 				       next_dup->start_seq, next_dup->end_seq,
1644 				       1);
1645 	}
1646 
1647 	return skb;
1648 }
1649 
1650 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1651 {
1652 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1653 }
1654 
1655 static int
1656 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1657 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1658 {
1659 	struct tcp_sock *tp = tcp_sk(sk);
1660 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1661 				    TCP_SKB_CB(ack_skb)->sacked);
1662 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1663 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1664 	struct tcp_sack_block *cache;
1665 	struct sk_buff *skb;
1666 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1667 	int used_sacks;
1668 	bool found_dup_sack = false;
1669 	int i, j;
1670 	int first_sack_index;
1671 
1672 	state->flag = 0;
1673 	state->reord = tp->snd_nxt;
1674 
1675 	if (!tp->sacked_out)
1676 		tcp_highest_sack_reset(sk);
1677 
1678 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1679 					 num_sacks, prior_snd_una);
1680 	if (found_dup_sack) {
1681 		state->flag |= FLAG_DSACKING_ACK;
1682 		tp->delivered++; /* A spurious retransmission is delivered */
1683 	}
1684 
1685 	/* Eliminate too old ACKs, but take into
1686 	 * account more or less fresh ones, they can
1687 	 * contain valid SACK info.
1688 	 */
1689 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1690 		return 0;
1691 
1692 	if (!tp->packets_out)
1693 		goto out;
1694 
1695 	used_sacks = 0;
1696 	first_sack_index = 0;
1697 	for (i = 0; i < num_sacks; i++) {
1698 		bool dup_sack = !i && found_dup_sack;
1699 
1700 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1701 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1702 
1703 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1704 					    sp[used_sacks].start_seq,
1705 					    sp[used_sacks].end_seq)) {
1706 			int mib_idx;
1707 
1708 			if (dup_sack) {
1709 				if (!tp->undo_marker)
1710 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1711 				else
1712 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1713 			} else {
1714 				/* Don't count olds caused by ACK reordering */
1715 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1716 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1717 					continue;
1718 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1719 			}
1720 
1721 			NET_INC_STATS(sock_net(sk), mib_idx);
1722 			if (i == 0)
1723 				first_sack_index = -1;
1724 			continue;
1725 		}
1726 
1727 		/* Ignore very old stuff early */
1728 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1729 			continue;
1730 
1731 		used_sacks++;
1732 	}
1733 
1734 	/* order SACK blocks to allow in order walk of the retrans queue */
1735 	for (i = used_sacks - 1; i > 0; i--) {
1736 		for (j = 0; j < i; j++) {
1737 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1738 				swap(sp[j], sp[j + 1]);
1739 
1740 				/* Track where the first SACK block goes to */
1741 				if (j == first_sack_index)
1742 					first_sack_index = j + 1;
1743 			}
1744 		}
1745 	}
1746 
1747 	state->mss_now = tcp_current_mss(sk);
1748 	skb = NULL;
1749 	i = 0;
1750 
1751 	if (!tp->sacked_out) {
1752 		/* It's already past, so skip checking against it */
1753 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1754 	} else {
1755 		cache = tp->recv_sack_cache;
1756 		/* Skip empty blocks in at head of the cache */
1757 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1758 		       !cache->end_seq)
1759 			cache++;
1760 	}
1761 
1762 	while (i < used_sacks) {
1763 		u32 start_seq = sp[i].start_seq;
1764 		u32 end_seq = sp[i].end_seq;
1765 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1766 		struct tcp_sack_block *next_dup = NULL;
1767 
1768 		if (found_dup_sack && ((i + 1) == first_sack_index))
1769 			next_dup = &sp[i + 1];
1770 
1771 		/* Skip too early cached blocks */
1772 		while (tcp_sack_cache_ok(tp, cache) &&
1773 		       !before(start_seq, cache->end_seq))
1774 			cache++;
1775 
1776 		/* Can skip some work by looking recv_sack_cache? */
1777 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1778 		    after(end_seq, cache->start_seq)) {
1779 
1780 			/* Head todo? */
1781 			if (before(start_seq, cache->start_seq)) {
1782 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1783 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1784 						       state,
1785 						       start_seq,
1786 						       cache->start_seq,
1787 						       dup_sack);
1788 			}
1789 
1790 			/* Rest of the block already fully processed? */
1791 			if (!after(end_seq, cache->end_seq))
1792 				goto advance_sp;
1793 
1794 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1795 						       state,
1796 						       cache->end_seq);
1797 
1798 			/* ...tail remains todo... */
1799 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1800 				/* ...but better entrypoint exists! */
1801 				skb = tcp_highest_sack(sk);
1802 				if (!skb)
1803 					break;
1804 				cache++;
1805 				goto walk;
1806 			}
1807 
1808 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1809 			/* Check overlap against next cached too (past this one already) */
1810 			cache++;
1811 			continue;
1812 		}
1813 
1814 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1815 			skb = tcp_highest_sack(sk);
1816 			if (!skb)
1817 				break;
1818 		}
1819 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1820 
1821 walk:
1822 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1823 				       start_seq, end_seq, dup_sack);
1824 
1825 advance_sp:
1826 		i++;
1827 	}
1828 
1829 	/* Clear the head of the cache sack blocks so we can skip it next time */
1830 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1831 		tp->recv_sack_cache[i].start_seq = 0;
1832 		tp->recv_sack_cache[i].end_seq = 0;
1833 	}
1834 	for (j = 0; j < used_sacks; j++)
1835 		tp->recv_sack_cache[i++] = sp[j];
1836 
1837 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1838 		tcp_check_sack_reordering(sk, state->reord, 0);
1839 
1840 	tcp_verify_left_out(tp);
1841 out:
1842 
1843 #if FASTRETRANS_DEBUG > 0
1844 	WARN_ON((int)tp->sacked_out < 0);
1845 	WARN_ON((int)tp->lost_out < 0);
1846 	WARN_ON((int)tp->retrans_out < 0);
1847 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1848 #endif
1849 	return state->flag;
1850 }
1851 
1852 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1853  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1854  */
1855 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1856 {
1857 	u32 holes;
1858 
1859 	holes = max(tp->lost_out, 1U);
1860 	holes = min(holes, tp->packets_out);
1861 
1862 	if ((tp->sacked_out + holes) > tp->packets_out) {
1863 		tp->sacked_out = tp->packets_out - holes;
1864 		return true;
1865 	}
1866 	return false;
1867 }
1868 
1869 /* If we receive more dupacks than we expected counting segments
1870  * in assumption of absent reordering, interpret this as reordering.
1871  * The only another reason could be bug in receiver TCP.
1872  */
1873 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1874 {
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 
1877 	if (!tcp_limit_reno_sacked(tp))
1878 		return;
1879 
1880 	tp->reordering = min_t(u32, tp->packets_out + addend,
1881 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1882 	tp->reord_seen++;
1883 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1884 }
1885 
1886 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1887 
1888 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1889 {
1890 	if (num_dupack) {
1891 		struct tcp_sock *tp = tcp_sk(sk);
1892 		u32 prior_sacked = tp->sacked_out;
1893 		s32 delivered;
1894 
1895 		tp->sacked_out += num_dupack;
1896 		tcp_check_reno_reordering(sk, 0);
1897 		delivered = tp->sacked_out - prior_sacked;
1898 		if (delivered > 0)
1899 			tp->delivered += delivered;
1900 		tcp_verify_left_out(tp);
1901 	}
1902 }
1903 
1904 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1905 
1906 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1907 {
1908 	struct tcp_sock *tp = tcp_sk(sk);
1909 
1910 	if (acked > 0) {
1911 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1912 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1913 		if (acked - 1 >= tp->sacked_out)
1914 			tp->sacked_out = 0;
1915 		else
1916 			tp->sacked_out -= acked - 1;
1917 	}
1918 	tcp_check_reno_reordering(sk, acked);
1919 	tcp_verify_left_out(tp);
1920 }
1921 
1922 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1923 {
1924 	tp->sacked_out = 0;
1925 }
1926 
1927 void tcp_clear_retrans(struct tcp_sock *tp)
1928 {
1929 	tp->retrans_out = 0;
1930 	tp->lost_out = 0;
1931 	tp->undo_marker = 0;
1932 	tp->undo_retrans = -1;
1933 	tp->sacked_out = 0;
1934 }
1935 
1936 static inline void tcp_init_undo(struct tcp_sock *tp)
1937 {
1938 	tp->undo_marker = tp->snd_una;
1939 	/* Retransmission still in flight may cause DSACKs later. */
1940 	tp->undo_retrans = tp->retrans_out ? : -1;
1941 }
1942 
1943 static bool tcp_is_rack(const struct sock *sk)
1944 {
1945 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1946 }
1947 
1948 /* If we detect SACK reneging, forget all SACK information
1949  * and reset tags completely, otherwise preserve SACKs. If receiver
1950  * dropped its ofo queue, we will know this due to reneging detection.
1951  */
1952 static void tcp_timeout_mark_lost(struct sock *sk)
1953 {
1954 	struct tcp_sock *tp = tcp_sk(sk);
1955 	struct sk_buff *skb, *head;
1956 	bool is_reneg;			/* is receiver reneging on SACKs? */
1957 
1958 	head = tcp_rtx_queue_head(sk);
1959 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1960 	if (is_reneg) {
1961 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1962 		tp->sacked_out = 0;
1963 		/* Mark SACK reneging until we recover from this loss event. */
1964 		tp->is_sack_reneg = 1;
1965 	} else if (tcp_is_reno(tp)) {
1966 		tcp_reset_reno_sack(tp);
1967 	}
1968 
1969 	skb = head;
1970 	skb_rbtree_walk_from(skb) {
1971 		if (is_reneg)
1972 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1973 		else if (tcp_is_rack(sk) && skb != head &&
1974 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1975 			continue; /* Don't mark recently sent ones lost yet */
1976 		tcp_mark_skb_lost(sk, skb);
1977 	}
1978 	tcp_verify_left_out(tp);
1979 	tcp_clear_all_retrans_hints(tp);
1980 }
1981 
1982 /* Enter Loss state. */
1983 void tcp_enter_loss(struct sock *sk)
1984 {
1985 	const struct inet_connection_sock *icsk = inet_csk(sk);
1986 	struct tcp_sock *tp = tcp_sk(sk);
1987 	struct net *net = sock_net(sk);
1988 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1989 
1990 	tcp_timeout_mark_lost(sk);
1991 
1992 	/* Reduce ssthresh if it has not yet been made inside this window. */
1993 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1994 	    !after(tp->high_seq, tp->snd_una) ||
1995 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1996 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1997 		tp->prior_cwnd = tp->snd_cwnd;
1998 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1999 		tcp_ca_event(sk, CA_EVENT_LOSS);
2000 		tcp_init_undo(tp);
2001 	}
2002 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2003 	tp->snd_cwnd_cnt   = 0;
2004 	tp->snd_cwnd_stamp = tcp_jiffies32;
2005 
2006 	/* Timeout in disordered state after receiving substantial DUPACKs
2007 	 * suggests that the degree of reordering is over-estimated.
2008 	 */
2009 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2010 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2011 		tp->reordering = min_t(unsigned int, tp->reordering,
2012 				       net->ipv4.sysctl_tcp_reordering);
2013 	tcp_set_ca_state(sk, TCP_CA_Loss);
2014 	tp->high_seq = tp->snd_nxt;
2015 	tcp_ecn_queue_cwr(tp);
2016 
2017 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2018 	 * loss recovery is underway except recurring timeout(s) on
2019 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2020 	 */
2021 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2022 		   (new_recovery || icsk->icsk_retransmits) &&
2023 		   !inet_csk(sk)->icsk_mtup.probe_size;
2024 }
2025 
2026 /* If ACK arrived pointing to a remembered SACK, it means that our
2027  * remembered SACKs do not reflect real state of receiver i.e.
2028  * receiver _host_ is heavily congested (or buggy).
2029  *
2030  * To avoid big spurious retransmission bursts due to transient SACK
2031  * scoreboard oddities that look like reneging, we give the receiver a
2032  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2033  * restore sanity to the SACK scoreboard. If the apparent reneging
2034  * persists until this RTO then we'll clear the SACK scoreboard.
2035  */
2036 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2037 {
2038 	if (flag & FLAG_SACK_RENEGING) {
2039 		struct tcp_sock *tp = tcp_sk(sk);
2040 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2041 					  msecs_to_jiffies(10));
2042 
2043 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2044 					  delay, TCP_RTO_MAX);
2045 		return true;
2046 	}
2047 	return false;
2048 }
2049 
2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2051  * counter when SACK is enabled (without SACK, sacked_out is used for
2052  * that purpose).
2053  *
2054  * With reordering, holes may still be in flight, so RFC3517 recovery
2055  * uses pure sacked_out (total number of SACKed segments) even though
2056  * it violates the RFC that uses duplicate ACKs, often these are equal
2057  * but when e.g. out-of-window ACKs or packet duplication occurs,
2058  * they differ. Since neither occurs due to loss, TCP should really
2059  * ignore them.
2060  */
2061 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2062 {
2063 	return tp->sacked_out + 1;
2064 }
2065 
2066 /* Linux NewReno/SACK/ECN state machine.
2067  * --------------------------------------
2068  *
2069  * "Open"	Normal state, no dubious events, fast path.
2070  * "Disorder"   In all the respects it is "Open",
2071  *		but requires a bit more attention. It is entered when
2072  *		we see some SACKs or dupacks. It is split of "Open"
2073  *		mainly to move some processing from fast path to slow one.
2074  * "CWR"	CWND was reduced due to some Congestion Notification event.
2075  *		It can be ECN, ICMP source quench, local device congestion.
2076  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2077  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2078  *
2079  * tcp_fastretrans_alert() is entered:
2080  * - each incoming ACK, if state is not "Open"
2081  * - when arrived ACK is unusual, namely:
2082  *	* SACK
2083  *	* Duplicate ACK.
2084  *	* ECN ECE.
2085  *
2086  * Counting packets in flight is pretty simple.
2087  *
2088  *	in_flight = packets_out - left_out + retrans_out
2089  *
2090  *	packets_out is SND.NXT-SND.UNA counted in packets.
2091  *
2092  *	retrans_out is number of retransmitted segments.
2093  *
2094  *	left_out is number of segments left network, but not ACKed yet.
2095  *
2096  *		left_out = sacked_out + lost_out
2097  *
2098  *     sacked_out: Packets, which arrived to receiver out of order
2099  *		   and hence not ACKed. With SACKs this number is simply
2100  *		   amount of SACKed data. Even without SACKs
2101  *		   it is easy to give pretty reliable estimate of this number,
2102  *		   counting duplicate ACKs.
2103  *
2104  *       lost_out: Packets lost by network. TCP has no explicit
2105  *		   "loss notification" feedback from network (for now).
2106  *		   It means that this number can be only _guessed_.
2107  *		   Actually, it is the heuristics to predict lossage that
2108  *		   distinguishes different algorithms.
2109  *
2110  *	F.e. after RTO, when all the queue is considered as lost,
2111  *	lost_out = packets_out and in_flight = retrans_out.
2112  *
2113  *		Essentially, we have now a few algorithms detecting
2114  *		lost packets.
2115  *
2116  *		If the receiver supports SACK:
2117  *
2118  *		RFC6675/3517: It is the conventional algorithm. A packet is
2119  *		considered lost if the number of higher sequence packets
2120  *		SACKed is greater than or equal the DUPACK thoreshold
2121  *		(reordering). This is implemented in tcp_mark_head_lost and
2122  *		tcp_update_scoreboard.
2123  *
2124  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2125  *		(2017-) that checks timing instead of counting DUPACKs.
2126  *		Essentially a packet is considered lost if it's not S/ACKed
2127  *		after RTT + reordering_window, where both metrics are
2128  *		dynamically measured and adjusted. This is implemented in
2129  *		tcp_rack_mark_lost.
2130  *
2131  *		If the receiver does not support SACK:
2132  *
2133  *		NewReno (RFC6582): in Recovery we assume that one segment
2134  *		is lost (classic Reno). While we are in Recovery and
2135  *		a partial ACK arrives, we assume that one more packet
2136  *		is lost (NewReno). This heuristics are the same in NewReno
2137  *		and SACK.
2138  *
2139  * Really tricky (and requiring careful tuning) part of algorithm
2140  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2141  * The first determines the moment _when_ we should reduce CWND and,
2142  * hence, slow down forward transmission. In fact, it determines the moment
2143  * when we decide that hole is caused by loss, rather than by a reorder.
2144  *
2145  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2146  * holes, caused by lost packets.
2147  *
2148  * And the most logically complicated part of algorithm is undo
2149  * heuristics. We detect false retransmits due to both too early
2150  * fast retransmit (reordering) and underestimated RTO, analyzing
2151  * timestamps and D-SACKs. When we detect that some segments were
2152  * retransmitted by mistake and CWND reduction was wrong, we undo
2153  * window reduction and abort recovery phase. This logic is hidden
2154  * inside several functions named tcp_try_undo_<something>.
2155  */
2156 
2157 /* This function decides, when we should leave Disordered state
2158  * and enter Recovery phase, reducing congestion window.
2159  *
2160  * Main question: may we further continue forward transmission
2161  * with the same cwnd?
2162  */
2163 static bool tcp_time_to_recover(struct sock *sk, int flag)
2164 {
2165 	struct tcp_sock *tp = tcp_sk(sk);
2166 
2167 	/* Trick#1: The loss is proven. */
2168 	if (tp->lost_out)
2169 		return true;
2170 
2171 	/* Not-A-Trick#2 : Classic rule... */
2172 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2173 		return true;
2174 
2175 	return false;
2176 }
2177 
2178 /* Detect loss in event "A" above by marking head of queue up as lost.
2179  * For non-SACK(Reno) senders, the first "packets" number of segments
2180  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2181  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2182  * the maximum SACKed segments to pass before reaching this limit.
2183  */
2184 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2185 {
2186 	struct tcp_sock *tp = tcp_sk(sk);
2187 	struct sk_buff *skb;
2188 	int cnt, oldcnt, lost;
2189 	unsigned int mss;
2190 	/* Use SACK to deduce losses of new sequences sent during recovery */
2191 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2192 
2193 	WARN_ON(packets > tp->packets_out);
2194 	skb = tp->lost_skb_hint;
2195 	if (skb) {
2196 		/* Head already handled? */
2197 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2198 			return;
2199 		cnt = tp->lost_cnt_hint;
2200 	} else {
2201 		skb = tcp_rtx_queue_head(sk);
2202 		cnt = 0;
2203 	}
2204 
2205 	skb_rbtree_walk_from(skb) {
2206 		/* TODO: do this better */
2207 		/* this is not the most efficient way to do this... */
2208 		tp->lost_skb_hint = skb;
2209 		tp->lost_cnt_hint = cnt;
2210 
2211 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2212 			break;
2213 
2214 		oldcnt = cnt;
2215 		if (tcp_is_reno(tp) ||
2216 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2217 			cnt += tcp_skb_pcount(skb);
2218 
2219 		if (cnt > packets) {
2220 			if (tcp_is_sack(tp) ||
2221 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2222 			    (oldcnt >= packets))
2223 				break;
2224 
2225 			mss = tcp_skb_mss(skb);
2226 			/* If needed, chop off the prefix to mark as lost. */
2227 			lost = (packets - oldcnt) * mss;
2228 			if (lost < skb->len &&
2229 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2230 					 lost, mss, GFP_ATOMIC) < 0)
2231 				break;
2232 			cnt = packets;
2233 		}
2234 
2235 		tcp_skb_mark_lost(tp, skb);
2236 
2237 		if (mark_head)
2238 			break;
2239 	}
2240 	tcp_verify_left_out(tp);
2241 }
2242 
2243 /* Account newly detected lost packet(s) */
2244 
2245 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2246 {
2247 	struct tcp_sock *tp = tcp_sk(sk);
2248 
2249 	if (tcp_is_sack(tp)) {
2250 		int sacked_upto = tp->sacked_out - tp->reordering;
2251 		if (sacked_upto >= 0)
2252 			tcp_mark_head_lost(sk, sacked_upto, 0);
2253 		else if (fast_rexmit)
2254 			tcp_mark_head_lost(sk, 1, 1);
2255 	}
2256 }
2257 
2258 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2259 {
2260 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2261 	       before(tp->rx_opt.rcv_tsecr, when);
2262 }
2263 
2264 /* skb is spurious retransmitted if the returned timestamp echo
2265  * reply is prior to the skb transmission time
2266  */
2267 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2268 				     const struct sk_buff *skb)
2269 {
2270 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2271 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2272 }
2273 
2274 /* Nothing was retransmitted or returned timestamp is less
2275  * than timestamp of the first retransmission.
2276  */
2277 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2278 {
2279 	return tp->retrans_stamp &&
2280 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2281 }
2282 
2283 /* Undo procedures. */
2284 
2285 /* We can clear retrans_stamp when there are no retransmissions in the
2286  * window. It would seem that it is trivially available for us in
2287  * tp->retrans_out, however, that kind of assumptions doesn't consider
2288  * what will happen if errors occur when sending retransmission for the
2289  * second time. ...It could the that such segment has only
2290  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2291  * the head skb is enough except for some reneging corner cases that
2292  * are not worth the effort.
2293  *
2294  * Main reason for all this complexity is the fact that connection dying
2295  * time now depends on the validity of the retrans_stamp, in particular,
2296  * that successive retransmissions of a segment must not advance
2297  * retrans_stamp under any conditions.
2298  */
2299 static bool tcp_any_retrans_done(const struct sock *sk)
2300 {
2301 	const struct tcp_sock *tp = tcp_sk(sk);
2302 	struct sk_buff *skb;
2303 
2304 	if (tp->retrans_out)
2305 		return true;
2306 
2307 	skb = tcp_rtx_queue_head(sk);
2308 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2309 		return true;
2310 
2311 	return false;
2312 }
2313 
2314 static void DBGUNDO(struct sock *sk, const char *msg)
2315 {
2316 #if FASTRETRANS_DEBUG > 1
2317 	struct tcp_sock *tp = tcp_sk(sk);
2318 	struct inet_sock *inet = inet_sk(sk);
2319 
2320 	if (sk->sk_family == AF_INET) {
2321 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2322 			 msg,
2323 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2324 			 tp->snd_cwnd, tcp_left_out(tp),
2325 			 tp->snd_ssthresh, tp->prior_ssthresh,
2326 			 tp->packets_out);
2327 	}
2328 #if IS_ENABLED(CONFIG_IPV6)
2329 	else if (sk->sk_family == AF_INET6) {
2330 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2331 			 msg,
2332 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2333 			 tp->snd_cwnd, tcp_left_out(tp),
2334 			 tp->snd_ssthresh, tp->prior_ssthresh,
2335 			 tp->packets_out);
2336 	}
2337 #endif
2338 #endif
2339 }
2340 
2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 
2345 	if (unmark_loss) {
2346 		struct sk_buff *skb;
2347 
2348 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2349 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2350 		}
2351 		tp->lost_out = 0;
2352 		tcp_clear_all_retrans_hints(tp);
2353 	}
2354 
2355 	if (tp->prior_ssthresh) {
2356 		const struct inet_connection_sock *icsk = inet_csk(sk);
2357 
2358 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2359 
2360 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2361 			tp->snd_ssthresh = tp->prior_ssthresh;
2362 			tcp_ecn_withdraw_cwr(tp);
2363 		}
2364 	}
2365 	tp->snd_cwnd_stamp = tcp_jiffies32;
2366 	tp->undo_marker = 0;
2367 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2368 }
2369 
2370 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2371 {
2372 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2373 }
2374 
2375 /* People celebrate: "We love our President!" */
2376 static bool tcp_try_undo_recovery(struct sock *sk)
2377 {
2378 	struct tcp_sock *tp = tcp_sk(sk);
2379 
2380 	if (tcp_may_undo(tp)) {
2381 		int mib_idx;
2382 
2383 		/* Happy end! We did not retransmit anything
2384 		 * or our original transmission succeeded.
2385 		 */
2386 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2387 		tcp_undo_cwnd_reduction(sk, false);
2388 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2389 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2390 		else
2391 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2392 
2393 		NET_INC_STATS(sock_net(sk), mib_idx);
2394 	} else if (tp->rack.reo_wnd_persist) {
2395 		tp->rack.reo_wnd_persist--;
2396 	}
2397 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2398 		/* Hold old state until something *above* high_seq
2399 		 * is ACKed. For Reno it is MUST to prevent false
2400 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2401 		if (!tcp_any_retrans_done(sk))
2402 			tp->retrans_stamp = 0;
2403 		return true;
2404 	}
2405 	tcp_set_ca_state(sk, TCP_CA_Open);
2406 	tp->is_sack_reneg = 0;
2407 	return false;
2408 }
2409 
2410 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2411 static bool tcp_try_undo_dsack(struct sock *sk)
2412 {
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 
2415 	if (tp->undo_marker && !tp->undo_retrans) {
2416 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2417 					       tp->rack.reo_wnd_persist + 1);
2418 		DBGUNDO(sk, "D-SACK");
2419 		tcp_undo_cwnd_reduction(sk, false);
2420 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2421 		return true;
2422 	}
2423 	return false;
2424 }
2425 
2426 /* Undo during loss recovery after partial ACK or using F-RTO. */
2427 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2428 {
2429 	struct tcp_sock *tp = tcp_sk(sk);
2430 
2431 	if (frto_undo || tcp_may_undo(tp)) {
2432 		tcp_undo_cwnd_reduction(sk, true);
2433 
2434 		DBGUNDO(sk, "partial loss");
2435 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2436 		if (frto_undo)
2437 			NET_INC_STATS(sock_net(sk),
2438 					LINUX_MIB_TCPSPURIOUSRTOS);
2439 		inet_csk(sk)->icsk_retransmits = 0;
2440 		if (frto_undo || tcp_is_sack(tp)) {
2441 			tcp_set_ca_state(sk, TCP_CA_Open);
2442 			tp->is_sack_reneg = 0;
2443 		}
2444 		return true;
2445 	}
2446 	return false;
2447 }
2448 
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450  * It computes the number of packets to send (sndcnt) based on packets newly
2451  * delivered:
2452  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2453  *	cwnd reductions across a full RTT.
2454  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2455  *      But when the retransmits are acked without further losses, PRR
2456  *      slow starts cwnd up to ssthresh to speed up the recovery.
2457  */
2458 static void tcp_init_cwnd_reduction(struct sock *sk)
2459 {
2460 	struct tcp_sock *tp = tcp_sk(sk);
2461 
2462 	tp->high_seq = tp->snd_nxt;
2463 	tp->tlp_high_seq = 0;
2464 	tp->snd_cwnd_cnt = 0;
2465 	tp->prior_cwnd = tp->snd_cwnd;
2466 	tp->prr_delivered = 0;
2467 	tp->prr_out = 0;
2468 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469 	tcp_ecn_queue_cwr(tp);
2470 }
2471 
2472 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2473 {
2474 	struct tcp_sock *tp = tcp_sk(sk);
2475 	int sndcnt = 0;
2476 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2477 
2478 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2479 		return;
2480 
2481 	tp->prr_delivered += newly_acked_sacked;
2482 	if (delta < 0) {
2483 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2484 			       tp->prior_cwnd - 1;
2485 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2486 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2487 		   FLAG_RETRANS_DATA_ACKED) {
2488 		sndcnt = min_t(int, delta,
2489 			       max_t(int, tp->prr_delivered - tp->prr_out,
2490 				     newly_acked_sacked) + 1);
2491 	} else {
2492 		sndcnt = min(delta, newly_acked_sacked);
2493 	}
2494 	/* Force a fast retransmit upon entering fast recovery */
2495 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2496 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2497 }
2498 
2499 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2500 {
2501 	struct tcp_sock *tp = tcp_sk(sk);
2502 
2503 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2504 		return;
2505 
2506 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2508 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2509 		tp->snd_cwnd = tp->snd_ssthresh;
2510 		tp->snd_cwnd_stamp = tcp_jiffies32;
2511 	}
2512 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513 }
2514 
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	tp->prior_ssthresh = 0;
2521 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522 		tp->undo_marker = 0;
2523 		tcp_init_cwnd_reduction(sk);
2524 		tcp_set_ca_state(sk, TCP_CA_CWR);
2525 	}
2526 }
2527 EXPORT_SYMBOL(tcp_enter_cwr);
2528 
2529 static void tcp_try_keep_open(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 	int state = TCP_CA_Open;
2533 
2534 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535 		state = TCP_CA_Disorder;
2536 
2537 	if (inet_csk(sk)->icsk_ca_state != state) {
2538 		tcp_set_ca_state(sk, state);
2539 		tp->high_seq = tp->snd_nxt;
2540 	}
2541 }
2542 
2543 static void tcp_try_to_open(struct sock *sk, int flag)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 
2547 	tcp_verify_left_out(tp);
2548 
2549 	if (!tcp_any_retrans_done(sk))
2550 		tp->retrans_stamp = 0;
2551 
2552 	if (flag & FLAG_ECE)
2553 		tcp_enter_cwr(sk);
2554 
2555 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556 		tcp_try_keep_open(sk);
2557 	}
2558 }
2559 
2560 static void tcp_mtup_probe_failed(struct sock *sk)
2561 {
2562 	struct inet_connection_sock *icsk = inet_csk(sk);
2563 
2564 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565 	icsk->icsk_mtup.probe_size = 0;
2566 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567 }
2568 
2569 static void tcp_mtup_probe_success(struct sock *sk)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 	struct inet_connection_sock *icsk = inet_csk(sk);
2573 
2574 	/* FIXME: breaks with very large cwnd */
2575 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576 	tp->snd_cwnd = tp->snd_cwnd *
2577 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2578 		       icsk->icsk_mtup.probe_size;
2579 	tp->snd_cwnd_cnt = 0;
2580 	tp->snd_cwnd_stamp = tcp_jiffies32;
2581 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582 
2583 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584 	icsk->icsk_mtup.probe_size = 0;
2585 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587 }
2588 
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590  * tcp_timer. This is used for path mtu discovery.
2591  * The socket is already locked here.
2592  */
2593 void tcp_simple_retransmit(struct sock *sk)
2594 {
2595 	const struct inet_connection_sock *icsk = inet_csk(sk);
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 	struct sk_buff *skb;
2598 	unsigned int mss = tcp_current_mss(sk);
2599 
2600 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2601 		if (tcp_skb_seglen(skb) > mss &&
2602 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2603 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2604 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2605 				tp->retrans_out -= tcp_skb_pcount(skb);
2606 			}
2607 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2608 		}
2609 	}
2610 
2611 	tcp_clear_retrans_hints_partial(tp);
2612 
2613 	if (!tp->lost_out)
2614 		return;
2615 
2616 	if (tcp_is_reno(tp))
2617 		tcp_limit_reno_sacked(tp);
2618 
2619 	tcp_verify_left_out(tp);
2620 
2621 	/* Don't muck with the congestion window here.
2622 	 * Reason is that we do not increase amount of _data_
2623 	 * in network, but units changed and effective
2624 	 * cwnd/ssthresh really reduced now.
2625 	 */
2626 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2627 		tp->high_seq = tp->snd_nxt;
2628 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2629 		tp->prior_ssthresh = 0;
2630 		tp->undo_marker = 0;
2631 		tcp_set_ca_state(sk, TCP_CA_Loss);
2632 	}
2633 	tcp_xmit_retransmit_queue(sk);
2634 }
2635 EXPORT_SYMBOL(tcp_simple_retransmit);
2636 
2637 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2638 {
2639 	struct tcp_sock *tp = tcp_sk(sk);
2640 	int mib_idx;
2641 
2642 	if (tcp_is_reno(tp))
2643 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2644 	else
2645 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2646 
2647 	NET_INC_STATS(sock_net(sk), mib_idx);
2648 
2649 	tp->prior_ssthresh = 0;
2650 	tcp_init_undo(tp);
2651 
2652 	if (!tcp_in_cwnd_reduction(sk)) {
2653 		if (!ece_ack)
2654 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2655 		tcp_init_cwnd_reduction(sk);
2656 	}
2657 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2658 }
2659 
2660 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2661  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2662  */
2663 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2664 			     int *rexmit)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 	bool recovered = !before(tp->snd_una, tp->high_seq);
2668 
2669 	if ((flag & FLAG_SND_UNA_ADVANCED || tp->fastopen_rsk) &&
2670 	    tcp_try_undo_loss(sk, false))
2671 		return;
2672 
2673 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2674 		/* Step 3.b. A timeout is spurious if not all data are
2675 		 * lost, i.e., never-retransmitted data are (s)acked.
2676 		 */
2677 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2678 		    tcp_try_undo_loss(sk, true))
2679 			return;
2680 
2681 		if (after(tp->snd_nxt, tp->high_seq)) {
2682 			if (flag & FLAG_DATA_SACKED || num_dupack)
2683 				tp->frto = 0; /* Step 3.a. loss was real */
2684 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2685 			tp->high_seq = tp->snd_nxt;
2686 			/* Step 2.b. Try send new data (but deferred until cwnd
2687 			 * is updated in tcp_ack()). Otherwise fall back to
2688 			 * the conventional recovery.
2689 			 */
2690 			if (!tcp_write_queue_empty(sk) &&
2691 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2692 				*rexmit = REXMIT_NEW;
2693 				return;
2694 			}
2695 			tp->frto = 0;
2696 		}
2697 	}
2698 
2699 	if (recovered) {
2700 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2701 		tcp_try_undo_recovery(sk);
2702 		return;
2703 	}
2704 	if (tcp_is_reno(tp)) {
2705 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2706 		 * delivered. Lower inflight to clock out (re)tranmissions.
2707 		 */
2708 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2709 			tcp_add_reno_sack(sk, num_dupack);
2710 		else if (flag & FLAG_SND_UNA_ADVANCED)
2711 			tcp_reset_reno_sack(tp);
2712 	}
2713 	*rexmit = REXMIT_LOST;
2714 }
2715 
2716 /* Undo during fast recovery after partial ACK. */
2717 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2718 {
2719 	struct tcp_sock *tp = tcp_sk(sk);
2720 
2721 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2722 		/* Plain luck! Hole if filled with delayed
2723 		 * packet, rather than with a retransmit. Check reordering.
2724 		 */
2725 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2726 
2727 		/* We are getting evidence that the reordering degree is higher
2728 		 * than we realized. If there are no retransmits out then we
2729 		 * can undo. Otherwise we clock out new packets but do not
2730 		 * mark more packets lost or retransmit more.
2731 		 */
2732 		if (tp->retrans_out)
2733 			return true;
2734 
2735 		if (!tcp_any_retrans_done(sk))
2736 			tp->retrans_stamp = 0;
2737 
2738 		DBGUNDO(sk, "partial recovery");
2739 		tcp_undo_cwnd_reduction(sk, true);
2740 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2741 		tcp_try_keep_open(sk);
2742 		return true;
2743 	}
2744 	return false;
2745 }
2746 
2747 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2748 {
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 
2751 	if (tcp_rtx_queue_empty(sk))
2752 		return;
2753 
2754 	if (unlikely(tcp_is_reno(tp))) {
2755 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2756 	} else if (tcp_is_rack(sk)) {
2757 		u32 prior_retrans = tp->retrans_out;
2758 
2759 		tcp_rack_mark_lost(sk);
2760 		if (prior_retrans > tp->retrans_out)
2761 			*ack_flag |= FLAG_LOST_RETRANS;
2762 	}
2763 }
2764 
2765 static bool tcp_force_fast_retransmit(struct sock *sk)
2766 {
2767 	struct tcp_sock *tp = tcp_sk(sk);
2768 
2769 	return after(tcp_highest_sack_seq(tp),
2770 		     tp->snd_una + tp->reordering * tp->mss_cache);
2771 }
2772 
2773 /* Process an event, which can update packets-in-flight not trivially.
2774  * Main goal of this function is to calculate new estimate for left_out,
2775  * taking into account both packets sitting in receiver's buffer and
2776  * packets lost by network.
2777  *
2778  * Besides that it updates the congestion state when packet loss or ECN
2779  * is detected. But it does not reduce the cwnd, it is done by the
2780  * congestion control later.
2781  *
2782  * It does _not_ decide what to send, it is made in function
2783  * tcp_xmit_retransmit_queue().
2784  */
2785 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2786 				  int num_dupack, int *ack_flag, int *rexmit)
2787 {
2788 	struct inet_connection_sock *icsk = inet_csk(sk);
2789 	struct tcp_sock *tp = tcp_sk(sk);
2790 	int fast_rexmit = 0, flag = *ack_flag;
2791 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2792 				      tcp_force_fast_retransmit(sk));
2793 
2794 	if (!tp->packets_out && tp->sacked_out)
2795 		tp->sacked_out = 0;
2796 
2797 	/* Now state machine starts.
2798 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2799 	if (flag & FLAG_ECE)
2800 		tp->prior_ssthresh = 0;
2801 
2802 	/* B. In all the states check for reneging SACKs. */
2803 	if (tcp_check_sack_reneging(sk, flag))
2804 		return;
2805 
2806 	/* C. Check consistency of the current state. */
2807 	tcp_verify_left_out(tp);
2808 
2809 	/* D. Check state exit conditions. State can be terminated
2810 	 *    when high_seq is ACKed. */
2811 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2812 		WARN_ON(tp->retrans_out != 0);
2813 		tp->retrans_stamp = 0;
2814 	} else if (!before(tp->snd_una, tp->high_seq)) {
2815 		switch (icsk->icsk_ca_state) {
2816 		case TCP_CA_CWR:
2817 			/* CWR is to be held something *above* high_seq
2818 			 * is ACKed for CWR bit to reach receiver. */
2819 			if (tp->snd_una != tp->high_seq) {
2820 				tcp_end_cwnd_reduction(sk);
2821 				tcp_set_ca_state(sk, TCP_CA_Open);
2822 			}
2823 			break;
2824 
2825 		case TCP_CA_Recovery:
2826 			if (tcp_is_reno(tp))
2827 				tcp_reset_reno_sack(tp);
2828 			if (tcp_try_undo_recovery(sk))
2829 				return;
2830 			tcp_end_cwnd_reduction(sk);
2831 			break;
2832 		}
2833 	}
2834 
2835 	/* E. Process state. */
2836 	switch (icsk->icsk_ca_state) {
2837 	case TCP_CA_Recovery:
2838 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2839 			if (tcp_is_reno(tp))
2840 				tcp_add_reno_sack(sk, num_dupack);
2841 		} else {
2842 			if (tcp_try_undo_partial(sk, prior_snd_una))
2843 				return;
2844 			/* Partial ACK arrived. Force fast retransmit. */
2845 			do_lost = tcp_is_reno(tp) ||
2846 				  tcp_force_fast_retransmit(sk);
2847 		}
2848 		if (tcp_try_undo_dsack(sk)) {
2849 			tcp_try_keep_open(sk);
2850 			return;
2851 		}
2852 		tcp_identify_packet_loss(sk, ack_flag);
2853 		break;
2854 	case TCP_CA_Loss:
2855 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2856 		tcp_identify_packet_loss(sk, ack_flag);
2857 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2858 		      (*ack_flag & FLAG_LOST_RETRANS)))
2859 			return;
2860 		/* Change state if cwnd is undone or retransmits are lost */
2861 		/* fall through */
2862 	default:
2863 		if (tcp_is_reno(tp)) {
2864 			if (flag & FLAG_SND_UNA_ADVANCED)
2865 				tcp_reset_reno_sack(tp);
2866 			tcp_add_reno_sack(sk, num_dupack);
2867 		}
2868 
2869 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2870 			tcp_try_undo_dsack(sk);
2871 
2872 		tcp_identify_packet_loss(sk, ack_flag);
2873 		if (!tcp_time_to_recover(sk, flag)) {
2874 			tcp_try_to_open(sk, flag);
2875 			return;
2876 		}
2877 
2878 		/* MTU probe failure: don't reduce cwnd */
2879 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2880 		    icsk->icsk_mtup.probe_size &&
2881 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2882 			tcp_mtup_probe_failed(sk);
2883 			/* Restores the reduction we did in tcp_mtup_probe() */
2884 			tp->snd_cwnd++;
2885 			tcp_simple_retransmit(sk);
2886 			return;
2887 		}
2888 
2889 		/* Otherwise enter Recovery state */
2890 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2891 		fast_rexmit = 1;
2892 	}
2893 
2894 	if (!tcp_is_rack(sk) && do_lost)
2895 		tcp_update_scoreboard(sk, fast_rexmit);
2896 	*rexmit = REXMIT_LOST;
2897 }
2898 
2899 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2900 {
2901 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2902 	struct tcp_sock *tp = tcp_sk(sk);
2903 
2904 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2905 		/* If the remote keeps returning delayed ACKs, eventually
2906 		 * the min filter would pick it up and overestimate the
2907 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2908 		 */
2909 		return;
2910 	}
2911 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2912 			   rtt_us ? : jiffies_to_usecs(1));
2913 }
2914 
2915 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2916 			       long seq_rtt_us, long sack_rtt_us,
2917 			       long ca_rtt_us, struct rate_sample *rs)
2918 {
2919 	const struct tcp_sock *tp = tcp_sk(sk);
2920 
2921 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2922 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2923 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2924 	 * is acked (RFC6298).
2925 	 */
2926 	if (seq_rtt_us < 0)
2927 		seq_rtt_us = sack_rtt_us;
2928 
2929 	/* RTTM Rule: A TSecr value received in a segment is used to
2930 	 * update the averaged RTT measurement only if the segment
2931 	 * acknowledges some new data, i.e., only if it advances the
2932 	 * left edge of the send window.
2933 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2934 	 */
2935 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2936 	    flag & FLAG_ACKED) {
2937 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2938 
2939 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2940 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2941 			ca_rtt_us = seq_rtt_us;
2942 		}
2943 	}
2944 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2945 	if (seq_rtt_us < 0)
2946 		return false;
2947 
2948 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2949 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2950 	 * values will be skipped with the seq_rtt_us < 0 check above.
2951 	 */
2952 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2953 	tcp_rtt_estimator(sk, seq_rtt_us);
2954 	tcp_set_rto(sk);
2955 
2956 	/* RFC6298: only reset backoff on valid RTT measurement. */
2957 	inet_csk(sk)->icsk_backoff = 0;
2958 	return true;
2959 }
2960 
2961 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2962 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2963 {
2964 	struct rate_sample rs;
2965 	long rtt_us = -1L;
2966 
2967 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2968 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2969 
2970 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2971 }
2972 
2973 
2974 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2975 {
2976 	const struct inet_connection_sock *icsk = inet_csk(sk);
2977 
2978 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2979 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2980 }
2981 
2982 /* Restart timer after forward progress on connection.
2983  * RFC2988 recommends to restart timer to now+rto.
2984  */
2985 void tcp_rearm_rto(struct sock *sk)
2986 {
2987 	const struct inet_connection_sock *icsk = inet_csk(sk);
2988 	struct tcp_sock *tp = tcp_sk(sk);
2989 
2990 	/* If the retrans timer is currently being used by Fast Open
2991 	 * for SYN-ACK retrans purpose, stay put.
2992 	 */
2993 	if (tp->fastopen_rsk)
2994 		return;
2995 
2996 	if (!tp->packets_out) {
2997 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2998 	} else {
2999 		u32 rto = inet_csk(sk)->icsk_rto;
3000 		/* Offset the time elapsed after installing regular RTO */
3001 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3002 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3003 			s64 delta_us = tcp_rto_delta_us(sk);
3004 			/* delta_us may not be positive if the socket is locked
3005 			 * when the retrans timer fires and is rescheduled.
3006 			 */
3007 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3008 		}
3009 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3010 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3011 	}
3012 }
3013 
3014 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3015 static void tcp_set_xmit_timer(struct sock *sk)
3016 {
3017 	if (!tcp_schedule_loss_probe(sk, true))
3018 		tcp_rearm_rto(sk);
3019 }
3020 
3021 /* If we get here, the whole TSO packet has not been acked. */
3022 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3023 {
3024 	struct tcp_sock *tp = tcp_sk(sk);
3025 	u32 packets_acked;
3026 
3027 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3028 
3029 	packets_acked = tcp_skb_pcount(skb);
3030 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3031 		return 0;
3032 	packets_acked -= tcp_skb_pcount(skb);
3033 
3034 	if (packets_acked) {
3035 		BUG_ON(tcp_skb_pcount(skb) == 0);
3036 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3037 	}
3038 
3039 	return packets_acked;
3040 }
3041 
3042 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3043 			   u32 prior_snd_una)
3044 {
3045 	const struct skb_shared_info *shinfo;
3046 
3047 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3048 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3049 		return;
3050 
3051 	shinfo = skb_shinfo(skb);
3052 	if (!before(shinfo->tskey, prior_snd_una) &&
3053 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3054 		tcp_skb_tsorted_save(skb) {
3055 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3056 		} tcp_skb_tsorted_restore(skb);
3057 	}
3058 }
3059 
3060 /* Remove acknowledged frames from the retransmission queue. If our packet
3061  * is before the ack sequence we can discard it as it's confirmed to have
3062  * arrived at the other end.
3063  */
3064 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3065 			       u32 prior_snd_una,
3066 			       struct tcp_sacktag_state *sack)
3067 {
3068 	const struct inet_connection_sock *icsk = inet_csk(sk);
3069 	u64 first_ackt, last_ackt;
3070 	struct tcp_sock *tp = tcp_sk(sk);
3071 	u32 prior_sacked = tp->sacked_out;
3072 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3073 	struct sk_buff *skb, *next;
3074 	bool fully_acked = true;
3075 	long sack_rtt_us = -1L;
3076 	long seq_rtt_us = -1L;
3077 	long ca_rtt_us = -1L;
3078 	u32 pkts_acked = 0;
3079 	u32 last_in_flight = 0;
3080 	bool rtt_update;
3081 	int flag = 0;
3082 
3083 	first_ackt = 0;
3084 
3085 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3086 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3087 		const u32 start_seq = scb->seq;
3088 		u8 sacked = scb->sacked;
3089 		u32 acked_pcount;
3090 
3091 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3092 
3093 		/* Determine how many packets and what bytes were acked, tso and else */
3094 		if (after(scb->end_seq, tp->snd_una)) {
3095 			if (tcp_skb_pcount(skb) == 1 ||
3096 			    !after(tp->snd_una, scb->seq))
3097 				break;
3098 
3099 			acked_pcount = tcp_tso_acked(sk, skb);
3100 			if (!acked_pcount)
3101 				break;
3102 			fully_acked = false;
3103 		} else {
3104 			acked_pcount = tcp_skb_pcount(skb);
3105 		}
3106 
3107 		if (unlikely(sacked & TCPCB_RETRANS)) {
3108 			if (sacked & TCPCB_SACKED_RETRANS)
3109 				tp->retrans_out -= acked_pcount;
3110 			flag |= FLAG_RETRANS_DATA_ACKED;
3111 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3112 			last_ackt = tcp_skb_timestamp_us(skb);
3113 			WARN_ON_ONCE(last_ackt == 0);
3114 			if (!first_ackt)
3115 				first_ackt = last_ackt;
3116 
3117 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3118 			if (before(start_seq, reord))
3119 				reord = start_seq;
3120 			if (!after(scb->end_seq, tp->high_seq))
3121 				flag |= FLAG_ORIG_SACK_ACKED;
3122 		}
3123 
3124 		if (sacked & TCPCB_SACKED_ACKED) {
3125 			tp->sacked_out -= acked_pcount;
3126 		} else if (tcp_is_sack(tp)) {
3127 			tp->delivered += acked_pcount;
3128 			if (!tcp_skb_spurious_retrans(tp, skb))
3129 				tcp_rack_advance(tp, sacked, scb->end_seq,
3130 						 tcp_skb_timestamp_us(skb));
3131 		}
3132 		if (sacked & TCPCB_LOST)
3133 			tp->lost_out -= acked_pcount;
3134 
3135 		tp->packets_out -= acked_pcount;
3136 		pkts_acked += acked_pcount;
3137 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3138 
3139 		/* Initial outgoing SYN's get put onto the write_queue
3140 		 * just like anything else we transmit.  It is not
3141 		 * true data, and if we misinform our callers that
3142 		 * this ACK acks real data, we will erroneously exit
3143 		 * connection startup slow start one packet too
3144 		 * quickly.  This is severely frowned upon behavior.
3145 		 */
3146 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3147 			flag |= FLAG_DATA_ACKED;
3148 		} else {
3149 			flag |= FLAG_SYN_ACKED;
3150 			tp->retrans_stamp = 0;
3151 		}
3152 
3153 		if (!fully_acked)
3154 			break;
3155 
3156 		next = skb_rb_next(skb);
3157 		if (unlikely(skb == tp->retransmit_skb_hint))
3158 			tp->retransmit_skb_hint = NULL;
3159 		if (unlikely(skb == tp->lost_skb_hint))
3160 			tp->lost_skb_hint = NULL;
3161 		tcp_rtx_queue_unlink_and_free(skb, sk);
3162 	}
3163 
3164 	if (!skb)
3165 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3166 
3167 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3168 		tp->snd_up = tp->snd_una;
3169 
3170 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3171 		flag |= FLAG_SACK_RENEGING;
3172 
3173 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3174 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3175 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3176 
3177 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3178 		    last_in_flight && !prior_sacked && fully_acked &&
3179 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3180 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3181 			/* Conservatively mark a delayed ACK. It's typically
3182 			 * from a lone runt packet over the round trip to
3183 			 * a receiver w/o out-of-order or CE events.
3184 			 */
3185 			flag |= FLAG_ACK_MAYBE_DELAYED;
3186 		}
3187 	}
3188 	if (sack->first_sackt) {
3189 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3190 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3191 	}
3192 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3193 					ca_rtt_us, sack->rate);
3194 
3195 	if (flag & FLAG_ACKED) {
3196 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3197 		if (unlikely(icsk->icsk_mtup.probe_size &&
3198 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3199 			tcp_mtup_probe_success(sk);
3200 		}
3201 
3202 		if (tcp_is_reno(tp)) {
3203 			tcp_remove_reno_sacks(sk, pkts_acked);
3204 
3205 			/* If any of the cumulatively ACKed segments was
3206 			 * retransmitted, non-SACK case cannot confirm that
3207 			 * progress was due to original transmission due to
3208 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3209 			 * the packets may have been never retransmitted.
3210 			 */
3211 			if (flag & FLAG_RETRANS_DATA_ACKED)
3212 				flag &= ~FLAG_ORIG_SACK_ACKED;
3213 		} else {
3214 			int delta;
3215 
3216 			/* Non-retransmitted hole got filled? That's reordering */
3217 			if (before(reord, prior_fack))
3218 				tcp_check_sack_reordering(sk, reord, 0);
3219 
3220 			delta = prior_sacked - tp->sacked_out;
3221 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3222 		}
3223 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3224 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3225 						    tcp_skb_timestamp_us(skb))) {
3226 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3227 		 * after when the head was last (re)transmitted. Otherwise the
3228 		 * timeout may continue to extend in loss recovery.
3229 		 */
3230 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3231 	}
3232 
3233 	if (icsk->icsk_ca_ops->pkts_acked) {
3234 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3235 					     .rtt_us = sack->rate->rtt_us,
3236 					     .in_flight = last_in_flight };
3237 
3238 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3239 	}
3240 
3241 #if FASTRETRANS_DEBUG > 0
3242 	WARN_ON((int)tp->sacked_out < 0);
3243 	WARN_ON((int)tp->lost_out < 0);
3244 	WARN_ON((int)tp->retrans_out < 0);
3245 	if (!tp->packets_out && tcp_is_sack(tp)) {
3246 		icsk = inet_csk(sk);
3247 		if (tp->lost_out) {
3248 			pr_debug("Leak l=%u %d\n",
3249 				 tp->lost_out, icsk->icsk_ca_state);
3250 			tp->lost_out = 0;
3251 		}
3252 		if (tp->sacked_out) {
3253 			pr_debug("Leak s=%u %d\n",
3254 				 tp->sacked_out, icsk->icsk_ca_state);
3255 			tp->sacked_out = 0;
3256 		}
3257 		if (tp->retrans_out) {
3258 			pr_debug("Leak r=%u %d\n",
3259 				 tp->retrans_out, icsk->icsk_ca_state);
3260 			tp->retrans_out = 0;
3261 		}
3262 	}
3263 #endif
3264 	return flag;
3265 }
3266 
3267 static void tcp_ack_probe(struct sock *sk)
3268 {
3269 	struct inet_connection_sock *icsk = inet_csk(sk);
3270 	struct sk_buff *head = tcp_send_head(sk);
3271 	const struct tcp_sock *tp = tcp_sk(sk);
3272 
3273 	/* Was it a usable window open? */
3274 	if (!head)
3275 		return;
3276 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3277 		icsk->icsk_backoff = 0;
3278 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3279 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3280 		 * This function is not for random using!
3281 		 */
3282 	} else {
3283 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3284 
3285 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3286 				     when, TCP_RTO_MAX, NULL);
3287 	}
3288 }
3289 
3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3291 {
3292 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3293 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294 }
3295 
3296 /* Decide wheather to run the increase function of congestion control. */
3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3298 {
3299 	/* If reordering is high then always grow cwnd whenever data is
3300 	 * delivered regardless of its ordering. Otherwise stay conservative
3301 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3302 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3303 	 * cwnd in tcp_fastretrans_alert() based on more states.
3304 	 */
3305 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3306 		return flag & FLAG_FORWARD_PROGRESS;
3307 
3308 	return flag & FLAG_DATA_ACKED;
3309 }
3310 
3311 /* The "ultimate" congestion control function that aims to replace the rigid
3312  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3313  * It's called toward the end of processing an ACK with precise rate
3314  * information. All transmission or retransmission are delayed afterwards.
3315  */
3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3317 			     int flag, const struct rate_sample *rs)
3318 {
3319 	const struct inet_connection_sock *icsk = inet_csk(sk);
3320 
3321 	if (icsk->icsk_ca_ops->cong_control) {
3322 		icsk->icsk_ca_ops->cong_control(sk, rs);
3323 		return;
3324 	}
3325 
3326 	if (tcp_in_cwnd_reduction(sk)) {
3327 		/* Reduce cwnd if state mandates */
3328 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3329 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3330 		/* Advance cwnd if state allows */
3331 		tcp_cong_avoid(sk, ack, acked_sacked);
3332 	}
3333 	tcp_update_pacing_rate(sk);
3334 }
3335 
3336 /* Check that window update is acceptable.
3337  * The function assumes that snd_una<=ack<=snd_next.
3338  */
3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3340 					const u32 ack, const u32 ack_seq,
3341 					const u32 nwin)
3342 {
3343 	return	after(ack, tp->snd_una) ||
3344 		after(ack_seq, tp->snd_wl1) ||
3345 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3346 }
3347 
3348 /* If we update tp->snd_una, also update tp->bytes_acked */
3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3350 {
3351 	u32 delta = ack - tp->snd_una;
3352 
3353 	sock_owned_by_me((struct sock *)tp);
3354 	tp->bytes_acked += delta;
3355 	tp->snd_una = ack;
3356 }
3357 
3358 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3359 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3360 {
3361 	u32 delta = seq - tp->rcv_nxt;
3362 
3363 	sock_owned_by_me((struct sock *)tp);
3364 	tp->bytes_received += delta;
3365 	tp->rcv_nxt = seq;
3366 }
3367 
3368 /* Update our send window.
3369  *
3370  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3372  */
3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3374 				 u32 ack_seq)
3375 {
3376 	struct tcp_sock *tp = tcp_sk(sk);
3377 	int flag = 0;
3378 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3379 
3380 	if (likely(!tcp_hdr(skb)->syn))
3381 		nwin <<= tp->rx_opt.snd_wscale;
3382 
3383 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3384 		flag |= FLAG_WIN_UPDATE;
3385 		tcp_update_wl(tp, ack_seq);
3386 
3387 		if (tp->snd_wnd != nwin) {
3388 			tp->snd_wnd = nwin;
3389 
3390 			/* Note, it is the only place, where
3391 			 * fast path is recovered for sending TCP.
3392 			 */
3393 			tp->pred_flags = 0;
3394 			tcp_fast_path_check(sk);
3395 
3396 			if (!tcp_write_queue_empty(sk))
3397 				tcp_slow_start_after_idle_check(sk);
3398 
3399 			if (nwin > tp->max_window) {
3400 				tp->max_window = nwin;
3401 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3402 			}
3403 		}
3404 	}
3405 
3406 	tcp_snd_una_update(tp, ack);
3407 
3408 	return flag;
3409 }
3410 
3411 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3412 				   u32 *last_oow_ack_time)
3413 {
3414 	if (*last_oow_ack_time) {
3415 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3416 
3417 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3418 			NET_INC_STATS(net, mib_idx);
3419 			return true;	/* rate-limited: don't send yet! */
3420 		}
3421 	}
3422 
3423 	*last_oow_ack_time = tcp_jiffies32;
3424 
3425 	return false;	/* not rate-limited: go ahead, send dupack now! */
3426 }
3427 
3428 /* Return true if we're currently rate-limiting out-of-window ACKs and
3429  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3430  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3431  * attacks that send repeated SYNs or ACKs for the same connection. To
3432  * do this, we do not send a duplicate SYNACK or ACK if the remote
3433  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3434  */
3435 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3436 			  int mib_idx, u32 *last_oow_ack_time)
3437 {
3438 	/* Data packets without SYNs are not likely part of an ACK loop. */
3439 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3440 	    !tcp_hdr(skb)->syn)
3441 		return false;
3442 
3443 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3444 }
3445 
3446 /* RFC 5961 7 [ACK Throttling] */
3447 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3448 {
3449 	/* unprotected vars, we dont care of overwrites */
3450 	static u32 challenge_timestamp;
3451 	static unsigned int challenge_count;
3452 	struct tcp_sock *tp = tcp_sk(sk);
3453 	struct net *net = sock_net(sk);
3454 	u32 count, now;
3455 
3456 	/* First check our per-socket dupack rate limit. */
3457 	if (__tcp_oow_rate_limited(net,
3458 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3459 				   &tp->last_oow_ack_time))
3460 		return;
3461 
3462 	/* Then check host-wide RFC 5961 rate limit. */
3463 	now = jiffies / HZ;
3464 	if (now != challenge_timestamp) {
3465 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3466 		u32 half = (ack_limit + 1) >> 1;
3467 
3468 		challenge_timestamp = now;
3469 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3470 	}
3471 	count = READ_ONCE(challenge_count);
3472 	if (count > 0) {
3473 		WRITE_ONCE(challenge_count, count - 1);
3474 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3475 		tcp_send_ack(sk);
3476 	}
3477 }
3478 
3479 static void tcp_store_ts_recent(struct tcp_sock *tp)
3480 {
3481 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3482 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3483 }
3484 
3485 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3486 {
3487 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3488 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3489 		 * extra check below makes sure this can only happen
3490 		 * for pure ACK frames.  -DaveM
3491 		 *
3492 		 * Not only, also it occurs for expired timestamps.
3493 		 */
3494 
3495 		if (tcp_paws_check(&tp->rx_opt, 0))
3496 			tcp_store_ts_recent(tp);
3497 	}
3498 }
3499 
3500 /* This routine deals with acks during a TLP episode.
3501  * We mark the end of a TLP episode on receiving TLP dupack or when
3502  * ack is after tlp_high_seq.
3503  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3504  */
3505 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3506 {
3507 	struct tcp_sock *tp = tcp_sk(sk);
3508 
3509 	if (before(ack, tp->tlp_high_seq))
3510 		return;
3511 
3512 	if (flag & FLAG_DSACKING_ACK) {
3513 		/* This DSACK means original and TLP probe arrived; no loss */
3514 		tp->tlp_high_seq = 0;
3515 	} else if (after(ack, tp->tlp_high_seq)) {
3516 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3517 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3518 		 */
3519 		tcp_init_cwnd_reduction(sk);
3520 		tcp_set_ca_state(sk, TCP_CA_CWR);
3521 		tcp_end_cwnd_reduction(sk);
3522 		tcp_try_keep_open(sk);
3523 		NET_INC_STATS(sock_net(sk),
3524 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3525 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3526 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3527 		/* Pure dupack: original and TLP probe arrived; no loss */
3528 		tp->tlp_high_seq = 0;
3529 	}
3530 }
3531 
3532 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3533 {
3534 	const struct inet_connection_sock *icsk = inet_csk(sk);
3535 
3536 	if (icsk->icsk_ca_ops->in_ack_event)
3537 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3538 }
3539 
3540 /* Congestion control has updated the cwnd already. So if we're in
3541  * loss recovery then now we do any new sends (for FRTO) or
3542  * retransmits (for CA_Loss or CA_recovery) that make sense.
3543  */
3544 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3545 {
3546 	struct tcp_sock *tp = tcp_sk(sk);
3547 
3548 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3549 		return;
3550 
3551 	if (unlikely(rexmit == 2)) {
3552 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3553 					  TCP_NAGLE_OFF);
3554 		if (after(tp->snd_nxt, tp->high_seq))
3555 			return;
3556 		tp->frto = 0;
3557 	}
3558 	tcp_xmit_retransmit_queue(sk);
3559 }
3560 
3561 /* Returns the number of packets newly acked or sacked by the current ACK */
3562 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3563 {
3564 	const struct net *net = sock_net(sk);
3565 	struct tcp_sock *tp = tcp_sk(sk);
3566 	u32 delivered;
3567 
3568 	delivered = tp->delivered - prior_delivered;
3569 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3570 	if (flag & FLAG_ECE) {
3571 		tp->delivered_ce += delivered;
3572 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3573 	}
3574 	return delivered;
3575 }
3576 
3577 /* This routine deals with incoming acks, but not outgoing ones. */
3578 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3579 {
3580 	struct inet_connection_sock *icsk = inet_csk(sk);
3581 	struct tcp_sock *tp = tcp_sk(sk);
3582 	struct tcp_sacktag_state sack_state;
3583 	struct rate_sample rs = { .prior_delivered = 0 };
3584 	u32 prior_snd_una = tp->snd_una;
3585 	bool is_sack_reneg = tp->is_sack_reneg;
3586 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3587 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3588 	int num_dupack = 0;
3589 	int prior_packets = tp->packets_out;
3590 	u32 delivered = tp->delivered;
3591 	u32 lost = tp->lost;
3592 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3593 	u32 prior_fack;
3594 
3595 	sack_state.first_sackt = 0;
3596 	sack_state.rate = &rs;
3597 
3598 	/* We very likely will need to access rtx queue. */
3599 	prefetch(sk->tcp_rtx_queue.rb_node);
3600 
3601 	/* If the ack is older than previous acks
3602 	 * then we can probably ignore it.
3603 	 */
3604 	if (before(ack, prior_snd_una)) {
3605 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3606 		if (before(ack, prior_snd_una - tp->max_window)) {
3607 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3608 				tcp_send_challenge_ack(sk, skb);
3609 			return -1;
3610 		}
3611 		goto old_ack;
3612 	}
3613 
3614 	/* If the ack includes data we haven't sent yet, discard
3615 	 * this segment (RFC793 Section 3.9).
3616 	 */
3617 	if (after(ack, tp->snd_nxt))
3618 		return -1;
3619 
3620 	if (after(ack, prior_snd_una)) {
3621 		flag |= FLAG_SND_UNA_ADVANCED;
3622 		icsk->icsk_retransmits = 0;
3623 
3624 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3625 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3626 			if (icsk->icsk_clean_acked)
3627 				icsk->icsk_clean_acked(sk, ack);
3628 #endif
3629 	}
3630 
3631 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3632 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3633 
3634 	/* ts_recent update must be made after we are sure that the packet
3635 	 * is in window.
3636 	 */
3637 	if (flag & FLAG_UPDATE_TS_RECENT)
3638 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3639 
3640 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3641 	    FLAG_SND_UNA_ADVANCED) {
3642 		/* Window is constant, pure forward advance.
3643 		 * No more checks are required.
3644 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3645 		 */
3646 		tcp_update_wl(tp, ack_seq);
3647 		tcp_snd_una_update(tp, ack);
3648 		flag |= FLAG_WIN_UPDATE;
3649 
3650 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3651 
3652 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3653 	} else {
3654 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3655 
3656 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3657 			flag |= FLAG_DATA;
3658 		else
3659 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3660 
3661 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3662 
3663 		if (TCP_SKB_CB(skb)->sacked)
3664 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3665 							&sack_state);
3666 
3667 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3668 			flag |= FLAG_ECE;
3669 			ack_ev_flags |= CA_ACK_ECE;
3670 		}
3671 
3672 		if (flag & FLAG_WIN_UPDATE)
3673 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3674 
3675 		tcp_in_ack_event(sk, ack_ev_flags);
3676 	}
3677 
3678 	/* We passed data and got it acked, remove any soft error
3679 	 * log. Something worked...
3680 	 */
3681 	sk->sk_err_soft = 0;
3682 	icsk->icsk_probes_out = 0;
3683 	tp->rcv_tstamp = tcp_jiffies32;
3684 	if (!prior_packets)
3685 		goto no_queue;
3686 
3687 	/* See if we can take anything off of the retransmit queue. */
3688 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3689 
3690 	tcp_rack_update_reo_wnd(sk, &rs);
3691 
3692 	if (tp->tlp_high_seq)
3693 		tcp_process_tlp_ack(sk, ack, flag);
3694 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3695 	if (flag & FLAG_SET_XMIT_TIMER)
3696 		tcp_set_xmit_timer(sk);
3697 
3698 	if (tcp_ack_is_dubious(sk, flag)) {
3699 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3700 			num_dupack = 1;
3701 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3702 			if (!(flag & FLAG_DATA))
3703 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3704 		}
3705 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3706 				      &rexmit);
3707 	}
3708 
3709 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3710 		sk_dst_confirm(sk);
3711 
3712 	delivered = tcp_newly_delivered(sk, delivered, flag);
3713 	lost = tp->lost - lost;			/* freshly marked lost */
3714 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3715 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3716 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3717 	tcp_xmit_recovery(sk, rexmit);
3718 	return 1;
3719 
3720 no_queue:
3721 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3722 	if (flag & FLAG_DSACKING_ACK) {
3723 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3724 				      &rexmit);
3725 		tcp_newly_delivered(sk, delivered, flag);
3726 	}
3727 	/* If this ack opens up a zero window, clear backoff.  It was
3728 	 * being used to time the probes, and is probably far higher than
3729 	 * it needs to be for normal retransmission.
3730 	 */
3731 	tcp_ack_probe(sk);
3732 
3733 	if (tp->tlp_high_seq)
3734 		tcp_process_tlp_ack(sk, ack, flag);
3735 	return 1;
3736 
3737 old_ack:
3738 	/* If data was SACKed, tag it and see if we should send more data.
3739 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3740 	 */
3741 	if (TCP_SKB_CB(skb)->sacked) {
3742 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3743 						&sack_state);
3744 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3745 				      &rexmit);
3746 		tcp_newly_delivered(sk, delivered, flag);
3747 		tcp_xmit_recovery(sk, rexmit);
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3754 				      bool syn, struct tcp_fastopen_cookie *foc,
3755 				      bool exp_opt)
3756 {
3757 	/* Valid only in SYN or SYN-ACK with an even length.  */
3758 	if (!foc || !syn || len < 0 || (len & 1))
3759 		return;
3760 
3761 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3762 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3763 		memcpy(foc->val, cookie, len);
3764 	else if (len != 0)
3765 		len = -1;
3766 	foc->len = len;
3767 	foc->exp = exp_opt;
3768 }
3769 
3770 static void smc_parse_options(const struct tcphdr *th,
3771 			      struct tcp_options_received *opt_rx,
3772 			      const unsigned char *ptr,
3773 			      int opsize)
3774 {
3775 #if IS_ENABLED(CONFIG_SMC)
3776 	if (static_branch_unlikely(&tcp_have_smc)) {
3777 		if (th->syn && !(opsize & 1) &&
3778 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3779 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3780 			opt_rx->smc_ok = 1;
3781 	}
3782 #endif
3783 }
3784 
3785 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3786  * But, this can also be called on packets in the established flow when
3787  * the fast version below fails.
3788  */
3789 void tcp_parse_options(const struct net *net,
3790 		       const struct sk_buff *skb,
3791 		       struct tcp_options_received *opt_rx, int estab,
3792 		       struct tcp_fastopen_cookie *foc)
3793 {
3794 	const unsigned char *ptr;
3795 	const struct tcphdr *th = tcp_hdr(skb);
3796 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3797 
3798 	ptr = (const unsigned char *)(th + 1);
3799 	opt_rx->saw_tstamp = 0;
3800 
3801 	while (length > 0) {
3802 		int opcode = *ptr++;
3803 		int opsize;
3804 
3805 		switch (opcode) {
3806 		case TCPOPT_EOL:
3807 			return;
3808 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3809 			length--;
3810 			continue;
3811 		default:
3812 			if (length < 2)
3813 				return;
3814 			opsize = *ptr++;
3815 			if (opsize < 2) /* "silly options" */
3816 				return;
3817 			if (opsize > length)
3818 				return;	/* don't parse partial options */
3819 			switch (opcode) {
3820 			case TCPOPT_MSS:
3821 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3822 					u16 in_mss = get_unaligned_be16(ptr);
3823 					if (in_mss) {
3824 						if (opt_rx->user_mss &&
3825 						    opt_rx->user_mss < in_mss)
3826 							in_mss = opt_rx->user_mss;
3827 						opt_rx->mss_clamp = in_mss;
3828 					}
3829 				}
3830 				break;
3831 			case TCPOPT_WINDOW:
3832 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3833 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3834 					__u8 snd_wscale = *(__u8 *)ptr;
3835 					opt_rx->wscale_ok = 1;
3836 					if (snd_wscale > TCP_MAX_WSCALE) {
3837 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3838 								     __func__,
3839 								     snd_wscale,
3840 								     TCP_MAX_WSCALE);
3841 						snd_wscale = TCP_MAX_WSCALE;
3842 					}
3843 					opt_rx->snd_wscale = snd_wscale;
3844 				}
3845 				break;
3846 			case TCPOPT_TIMESTAMP:
3847 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3848 				    ((estab && opt_rx->tstamp_ok) ||
3849 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3850 					opt_rx->saw_tstamp = 1;
3851 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3852 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3853 				}
3854 				break;
3855 			case TCPOPT_SACK_PERM:
3856 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3857 				    !estab && net->ipv4.sysctl_tcp_sack) {
3858 					opt_rx->sack_ok = TCP_SACK_SEEN;
3859 					tcp_sack_reset(opt_rx);
3860 				}
3861 				break;
3862 
3863 			case TCPOPT_SACK:
3864 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3865 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3866 				   opt_rx->sack_ok) {
3867 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3868 				}
3869 				break;
3870 #ifdef CONFIG_TCP_MD5SIG
3871 			case TCPOPT_MD5SIG:
3872 				/*
3873 				 * The MD5 Hash has already been
3874 				 * checked (see tcp_v{4,6}_do_rcv()).
3875 				 */
3876 				break;
3877 #endif
3878 			case TCPOPT_FASTOPEN:
3879 				tcp_parse_fastopen_option(
3880 					opsize - TCPOLEN_FASTOPEN_BASE,
3881 					ptr, th->syn, foc, false);
3882 				break;
3883 
3884 			case TCPOPT_EXP:
3885 				/* Fast Open option shares code 254 using a
3886 				 * 16 bits magic number.
3887 				 */
3888 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3889 				    get_unaligned_be16(ptr) ==
3890 				    TCPOPT_FASTOPEN_MAGIC)
3891 					tcp_parse_fastopen_option(opsize -
3892 						TCPOLEN_EXP_FASTOPEN_BASE,
3893 						ptr + 2, th->syn, foc, true);
3894 				else
3895 					smc_parse_options(th, opt_rx, ptr,
3896 							  opsize);
3897 				break;
3898 
3899 			}
3900 			ptr += opsize-2;
3901 			length -= opsize;
3902 		}
3903 	}
3904 }
3905 EXPORT_SYMBOL(tcp_parse_options);
3906 
3907 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3908 {
3909 	const __be32 *ptr = (const __be32 *)(th + 1);
3910 
3911 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3912 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3913 		tp->rx_opt.saw_tstamp = 1;
3914 		++ptr;
3915 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3916 		++ptr;
3917 		if (*ptr)
3918 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3919 		else
3920 			tp->rx_opt.rcv_tsecr = 0;
3921 		return true;
3922 	}
3923 	return false;
3924 }
3925 
3926 /* Fast parse options. This hopes to only see timestamps.
3927  * If it is wrong it falls back on tcp_parse_options().
3928  */
3929 static bool tcp_fast_parse_options(const struct net *net,
3930 				   const struct sk_buff *skb,
3931 				   const struct tcphdr *th, struct tcp_sock *tp)
3932 {
3933 	/* In the spirit of fast parsing, compare doff directly to constant
3934 	 * values.  Because equality is used, short doff can be ignored here.
3935 	 */
3936 	if (th->doff == (sizeof(*th) / 4)) {
3937 		tp->rx_opt.saw_tstamp = 0;
3938 		return false;
3939 	} else if (tp->rx_opt.tstamp_ok &&
3940 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3941 		if (tcp_parse_aligned_timestamp(tp, th))
3942 			return true;
3943 	}
3944 
3945 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3946 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3947 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3948 
3949 	return true;
3950 }
3951 
3952 #ifdef CONFIG_TCP_MD5SIG
3953 /*
3954  * Parse MD5 Signature option
3955  */
3956 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3957 {
3958 	int length = (th->doff << 2) - sizeof(*th);
3959 	const u8 *ptr = (const u8 *)(th + 1);
3960 
3961 	/* If not enough data remaining, we can short cut */
3962 	while (length >= TCPOLEN_MD5SIG) {
3963 		int opcode = *ptr++;
3964 		int opsize;
3965 
3966 		switch (opcode) {
3967 		case TCPOPT_EOL:
3968 			return NULL;
3969 		case TCPOPT_NOP:
3970 			length--;
3971 			continue;
3972 		default:
3973 			opsize = *ptr++;
3974 			if (opsize < 2 || opsize > length)
3975 				return NULL;
3976 			if (opcode == TCPOPT_MD5SIG)
3977 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3978 		}
3979 		ptr += opsize - 2;
3980 		length -= opsize;
3981 	}
3982 	return NULL;
3983 }
3984 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3985 #endif
3986 
3987 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3988  *
3989  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3990  * it can pass through stack. So, the following predicate verifies that
3991  * this segment is not used for anything but congestion avoidance or
3992  * fast retransmit. Moreover, we even are able to eliminate most of such
3993  * second order effects, if we apply some small "replay" window (~RTO)
3994  * to timestamp space.
3995  *
3996  * All these measures still do not guarantee that we reject wrapped ACKs
3997  * on networks with high bandwidth, when sequence space is recycled fastly,
3998  * but it guarantees that such events will be very rare and do not affect
3999  * connection seriously. This doesn't look nice, but alas, PAWS is really
4000  * buggy extension.
4001  *
4002  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4003  * states that events when retransmit arrives after original data are rare.
4004  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4005  * the biggest problem on large power networks even with minor reordering.
4006  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4007  * up to bandwidth of 18Gigabit/sec. 8) ]
4008  */
4009 
4010 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4011 {
4012 	const struct tcp_sock *tp = tcp_sk(sk);
4013 	const struct tcphdr *th = tcp_hdr(skb);
4014 	u32 seq = TCP_SKB_CB(skb)->seq;
4015 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4016 
4017 	return (/* 1. Pure ACK with correct sequence number. */
4018 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4019 
4020 		/* 2. ... and duplicate ACK. */
4021 		ack == tp->snd_una &&
4022 
4023 		/* 3. ... and does not update window. */
4024 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4025 
4026 		/* 4. ... and sits in replay window. */
4027 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4028 }
4029 
4030 static inline bool tcp_paws_discard(const struct sock *sk,
4031 				   const struct sk_buff *skb)
4032 {
4033 	const struct tcp_sock *tp = tcp_sk(sk);
4034 
4035 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4036 	       !tcp_disordered_ack(sk, skb);
4037 }
4038 
4039 /* Check segment sequence number for validity.
4040  *
4041  * Segment controls are considered valid, if the segment
4042  * fits to the window after truncation to the window. Acceptability
4043  * of data (and SYN, FIN, of course) is checked separately.
4044  * See tcp_data_queue(), for example.
4045  *
4046  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4047  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4048  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4049  * (borrowed from freebsd)
4050  */
4051 
4052 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4053 {
4054 	return	!before(end_seq, tp->rcv_wup) &&
4055 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4056 }
4057 
4058 /* When we get a reset we do this. */
4059 void tcp_reset(struct sock *sk)
4060 {
4061 	trace_tcp_receive_reset(sk);
4062 
4063 	/* We want the right error as BSD sees it (and indeed as we do). */
4064 	switch (sk->sk_state) {
4065 	case TCP_SYN_SENT:
4066 		sk->sk_err = ECONNREFUSED;
4067 		break;
4068 	case TCP_CLOSE_WAIT:
4069 		sk->sk_err = EPIPE;
4070 		break;
4071 	case TCP_CLOSE:
4072 		return;
4073 	default:
4074 		sk->sk_err = ECONNRESET;
4075 	}
4076 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4077 	smp_wmb();
4078 
4079 	tcp_write_queue_purge(sk);
4080 	tcp_done(sk);
4081 
4082 	if (!sock_flag(sk, SOCK_DEAD))
4083 		sk->sk_error_report(sk);
4084 }
4085 
4086 /*
4087  * 	Process the FIN bit. This now behaves as it is supposed to work
4088  *	and the FIN takes effect when it is validly part of sequence
4089  *	space. Not before when we get holes.
4090  *
4091  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4092  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4093  *	TIME-WAIT)
4094  *
4095  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4096  *	close and we go into CLOSING (and later onto TIME-WAIT)
4097  *
4098  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4099  */
4100 void tcp_fin(struct sock *sk)
4101 {
4102 	struct tcp_sock *tp = tcp_sk(sk);
4103 
4104 	inet_csk_schedule_ack(sk);
4105 
4106 	sk->sk_shutdown |= RCV_SHUTDOWN;
4107 	sock_set_flag(sk, SOCK_DONE);
4108 
4109 	switch (sk->sk_state) {
4110 	case TCP_SYN_RECV:
4111 	case TCP_ESTABLISHED:
4112 		/* Move to CLOSE_WAIT */
4113 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4114 		inet_csk_enter_pingpong_mode(sk);
4115 		break;
4116 
4117 	case TCP_CLOSE_WAIT:
4118 	case TCP_CLOSING:
4119 		/* Received a retransmission of the FIN, do
4120 		 * nothing.
4121 		 */
4122 		break;
4123 	case TCP_LAST_ACK:
4124 		/* RFC793: Remain in the LAST-ACK state. */
4125 		break;
4126 
4127 	case TCP_FIN_WAIT1:
4128 		/* This case occurs when a simultaneous close
4129 		 * happens, we must ack the received FIN and
4130 		 * enter the CLOSING state.
4131 		 */
4132 		tcp_send_ack(sk);
4133 		tcp_set_state(sk, TCP_CLOSING);
4134 		break;
4135 	case TCP_FIN_WAIT2:
4136 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4137 		tcp_send_ack(sk);
4138 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4139 		break;
4140 	default:
4141 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4142 		 * cases we should never reach this piece of code.
4143 		 */
4144 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4145 		       __func__, sk->sk_state);
4146 		break;
4147 	}
4148 
4149 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4150 	 * Probably, we should reset in this case. For now drop them.
4151 	 */
4152 	skb_rbtree_purge(&tp->out_of_order_queue);
4153 	if (tcp_is_sack(tp))
4154 		tcp_sack_reset(&tp->rx_opt);
4155 	sk_mem_reclaim(sk);
4156 
4157 	if (!sock_flag(sk, SOCK_DEAD)) {
4158 		sk->sk_state_change(sk);
4159 
4160 		/* Do not send POLL_HUP for half duplex close. */
4161 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4162 		    sk->sk_state == TCP_CLOSE)
4163 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4164 		else
4165 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4166 	}
4167 }
4168 
4169 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4170 				  u32 end_seq)
4171 {
4172 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4173 		if (before(seq, sp->start_seq))
4174 			sp->start_seq = seq;
4175 		if (after(end_seq, sp->end_seq))
4176 			sp->end_seq = end_seq;
4177 		return true;
4178 	}
4179 	return false;
4180 }
4181 
4182 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4183 {
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 
4186 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4187 		int mib_idx;
4188 
4189 		if (before(seq, tp->rcv_nxt))
4190 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4191 		else
4192 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4193 
4194 		NET_INC_STATS(sock_net(sk), mib_idx);
4195 
4196 		tp->rx_opt.dsack = 1;
4197 		tp->duplicate_sack[0].start_seq = seq;
4198 		tp->duplicate_sack[0].end_seq = end_seq;
4199 	}
4200 }
4201 
4202 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4203 {
4204 	struct tcp_sock *tp = tcp_sk(sk);
4205 
4206 	if (!tp->rx_opt.dsack)
4207 		tcp_dsack_set(sk, seq, end_seq);
4208 	else
4209 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4210 }
4211 
4212 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4213 {
4214 	/* When the ACK path fails or drops most ACKs, the sender would
4215 	 * timeout and spuriously retransmit the same segment repeatedly.
4216 	 * The receiver remembers and reflects via DSACKs. Leverage the
4217 	 * DSACK state and change the txhash to re-route speculatively.
4218 	 */
4219 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4220 		sk_rethink_txhash(sk);
4221 }
4222 
4223 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4224 {
4225 	struct tcp_sock *tp = tcp_sk(sk);
4226 
4227 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4228 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4229 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4230 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4231 
4232 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4233 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4234 
4235 			tcp_rcv_spurious_retrans(sk, skb);
4236 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4237 				end_seq = tp->rcv_nxt;
4238 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4239 		}
4240 	}
4241 
4242 	tcp_send_ack(sk);
4243 }
4244 
4245 /* These routines update the SACK block as out-of-order packets arrive or
4246  * in-order packets close up the sequence space.
4247  */
4248 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4249 {
4250 	int this_sack;
4251 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4252 	struct tcp_sack_block *swalk = sp + 1;
4253 
4254 	/* See if the recent change to the first SACK eats into
4255 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4256 	 */
4257 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4258 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4259 			int i;
4260 
4261 			/* Zap SWALK, by moving every further SACK up by one slot.
4262 			 * Decrease num_sacks.
4263 			 */
4264 			tp->rx_opt.num_sacks--;
4265 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4266 				sp[i] = sp[i + 1];
4267 			continue;
4268 		}
4269 		this_sack++, swalk++;
4270 	}
4271 }
4272 
4273 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4274 {
4275 	struct tcp_sock *tp = tcp_sk(sk);
4276 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4277 	int cur_sacks = tp->rx_opt.num_sacks;
4278 	int this_sack;
4279 
4280 	if (!cur_sacks)
4281 		goto new_sack;
4282 
4283 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4284 		if (tcp_sack_extend(sp, seq, end_seq)) {
4285 			/* Rotate this_sack to the first one. */
4286 			for (; this_sack > 0; this_sack--, sp--)
4287 				swap(*sp, *(sp - 1));
4288 			if (cur_sacks > 1)
4289 				tcp_sack_maybe_coalesce(tp);
4290 			return;
4291 		}
4292 	}
4293 
4294 	/* Could not find an adjacent existing SACK, build a new one,
4295 	 * put it at the front, and shift everyone else down.  We
4296 	 * always know there is at least one SACK present already here.
4297 	 *
4298 	 * If the sack array is full, forget about the last one.
4299 	 */
4300 	if (this_sack >= TCP_NUM_SACKS) {
4301 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4302 			tcp_send_ack(sk);
4303 		this_sack--;
4304 		tp->rx_opt.num_sacks--;
4305 		sp--;
4306 	}
4307 	for (; this_sack > 0; this_sack--, sp--)
4308 		*sp = *(sp - 1);
4309 
4310 new_sack:
4311 	/* Build the new head SACK, and we're done. */
4312 	sp->start_seq = seq;
4313 	sp->end_seq = end_seq;
4314 	tp->rx_opt.num_sacks++;
4315 }
4316 
4317 /* RCV.NXT advances, some SACKs should be eaten. */
4318 
4319 static void tcp_sack_remove(struct tcp_sock *tp)
4320 {
4321 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4322 	int num_sacks = tp->rx_opt.num_sacks;
4323 	int this_sack;
4324 
4325 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4326 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4327 		tp->rx_opt.num_sacks = 0;
4328 		return;
4329 	}
4330 
4331 	for (this_sack = 0; this_sack < num_sacks;) {
4332 		/* Check if the start of the sack is covered by RCV.NXT. */
4333 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4334 			int i;
4335 
4336 			/* RCV.NXT must cover all the block! */
4337 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4338 
4339 			/* Zap this SACK, by moving forward any other SACKS. */
4340 			for (i = this_sack+1; i < num_sacks; i++)
4341 				tp->selective_acks[i-1] = tp->selective_acks[i];
4342 			num_sacks--;
4343 			continue;
4344 		}
4345 		this_sack++;
4346 		sp++;
4347 	}
4348 	tp->rx_opt.num_sacks = num_sacks;
4349 }
4350 
4351 /**
4352  * tcp_try_coalesce - try to merge skb to prior one
4353  * @sk: socket
4354  * @dest: destination queue
4355  * @to: prior buffer
4356  * @from: buffer to add in queue
4357  * @fragstolen: pointer to boolean
4358  *
4359  * Before queueing skb @from after @to, try to merge them
4360  * to reduce overall memory use and queue lengths, if cost is small.
4361  * Packets in ofo or receive queues can stay a long time.
4362  * Better try to coalesce them right now to avoid future collapses.
4363  * Returns true if caller should free @from instead of queueing it
4364  */
4365 static bool tcp_try_coalesce(struct sock *sk,
4366 			     struct sk_buff *to,
4367 			     struct sk_buff *from,
4368 			     bool *fragstolen)
4369 {
4370 	int delta;
4371 
4372 	*fragstolen = false;
4373 
4374 	/* Its possible this segment overlaps with prior segment in queue */
4375 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4376 		return false;
4377 
4378 #ifdef CONFIG_TLS_DEVICE
4379 	if (from->decrypted != to->decrypted)
4380 		return false;
4381 #endif
4382 
4383 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4384 		return false;
4385 
4386 	atomic_add(delta, &sk->sk_rmem_alloc);
4387 	sk_mem_charge(sk, delta);
4388 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4389 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4390 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4391 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4392 
4393 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4394 		TCP_SKB_CB(to)->has_rxtstamp = true;
4395 		to->tstamp = from->tstamp;
4396 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4397 	}
4398 
4399 	return true;
4400 }
4401 
4402 static bool tcp_ooo_try_coalesce(struct sock *sk,
4403 			     struct sk_buff *to,
4404 			     struct sk_buff *from,
4405 			     bool *fragstolen)
4406 {
4407 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4408 
4409 	/* In case tcp_drop() is called later, update to->gso_segs */
4410 	if (res) {
4411 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4412 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4413 
4414 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4415 	}
4416 	return res;
4417 }
4418 
4419 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4420 {
4421 	sk_drops_add(sk, skb);
4422 	__kfree_skb(skb);
4423 }
4424 
4425 /* This one checks to see if we can put data from the
4426  * out_of_order queue into the receive_queue.
4427  */
4428 static void tcp_ofo_queue(struct sock *sk)
4429 {
4430 	struct tcp_sock *tp = tcp_sk(sk);
4431 	__u32 dsack_high = tp->rcv_nxt;
4432 	bool fin, fragstolen, eaten;
4433 	struct sk_buff *skb, *tail;
4434 	struct rb_node *p;
4435 
4436 	p = rb_first(&tp->out_of_order_queue);
4437 	while (p) {
4438 		skb = rb_to_skb(p);
4439 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4440 			break;
4441 
4442 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4443 			__u32 dsack = dsack_high;
4444 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4445 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4446 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4447 		}
4448 		p = rb_next(p);
4449 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4450 
4451 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4452 			tcp_drop(sk, skb);
4453 			continue;
4454 		}
4455 
4456 		tail = skb_peek_tail(&sk->sk_receive_queue);
4457 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4458 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4459 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4460 		if (!eaten)
4461 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4462 		else
4463 			kfree_skb_partial(skb, fragstolen);
4464 
4465 		if (unlikely(fin)) {
4466 			tcp_fin(sk);
4467 			/* tcp_fin() purges tp->out_of_order_queue,
4468 			 * so we must end this loop right now.
4469 			 */
4470 			break;
4471 		}
4472 	}
4473 }
4474 
4475 static bool tcp_prune_ofo_queue(struct sock *sk);
4476 static int tcp_prune_queue(struct sock *sk);
4477 
4478 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4479 				 unsigned int size)
4480 {
4481 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4482 	    !sk_rmem_schedule(sk, skb, size)) {
4483 
4484 		if (tcp_prune_queue(sk) < 0)
4485 			return -1;
4486 
4487 		while (!sk_rmem_schedule(sk, skb, size)) {
4488 			if (!tcp_prune_ofo_queue(sk))
4489 				return -1;
4490 		}
4491 	}
4492 	return 0;
4493 }
4494 
4495 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4496 {
4497 	struct tcp_sock *tp = tcp_sk(sk);
4498 	struct rb_node **p, *parent;
4499 	struct sk_buff *skb1;
4500 	u32 seq, end_seq;
4501 	bool fragstolen;
4502 
4503 	tcp_ecn_check_ce(sk, skb);
4504 
4505 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4506 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4507 		tcp_drop(sk, skb);
4508 		return;
4509 	}
4510 
4511 	/* Disable header prediction. */
4512 	tp->pred_flags = 0;
4513 	inet_csk_schedule_ack(sk);
4514 
4515 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4516 	seq = TCP_SKB_CB(skb)->seq;
4517 	end_seq = TCP_SKB_CB(skb)->end_seq;
4518 
4519 	p = &tp->out_of_order_queue.rb_node;
4520 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4521 		/* Initial out of order segment, build 1 SACK. */
4522 		if (tcp_is_sack(tp)) {
4523 			tp->rx_opt.num_sacks = 1;
4524 			tp->selective_acks[0].start_seq = seq;
4525 			tp->selective_acks[0].end_seq = end_seq;
4526 		}
4527 		rb_link_node(&skb->rbnode, NULL, p);
4528 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4529 		tp->ooo_last_skb = skb;
4530 		goto end;
4531 	}
4532 
4533 	/* In the typical case, we are adding an skb to the end of the list.
4534 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4535 	 */
4536 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4537 				 skb, &fragstolen)) {
4538 coalesce_done:
4539 		tcp_grow_window(sk, skb);
4540 		kfree_skb_partial(skb, fragstolen);
4541 		skb = NULL;
4542 		goto add_sack;
4543 	}
4544 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4545 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4546 		parent = &tp->ooo_last_skb->rbnode;
4547 		p = &parent->rb_right;
4548 		goto insert;
4549 	}
4550 
4551 	/* Find place to insert this segment. Handle overlaps on the way. */
4552 	parent = NULL;
4553 	while (*p) {
4554 		parent = *p;
4555 		skb1 = rb_to_skb(parent);
4556 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4557 			p = &parent->rb_left;
4558 			continue;
4559 		}
4560 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4561 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4562 				/* All the bits are present. Drop. */
4563 				NET_INC_STATS(sock_net(sk),
4564 					      LINUX_MIB_TCPOFOMERGE);
4565 				tcp_drop(sk, skb);
4566 				skb = NULL;
4567 				tcp_dsack_set(sk, seq, end_seq);
4568 				goto add_sack;
4569 			}
4570 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4571 				/* Partial overlap. */
4572 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4573 			} else {
4574 				/* skb's seq == skb1's seq and skb covers skb1.
4575 				 * Replace skb1 with skb.
4576 				 */
4577 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4578 						&tp->out_of_order_queue);
4579 				tcp_dsack_extend(sk,
4580 						 TCP_SKB_CB(skb1)->seq,
4581 						 TCP_SKB_CB(skb1)->end_seq);
4582 				NET_INC_STATS(sock_net(sk),
4583 					      LINUX_MIB_TCPOFOMERGE);
4584 				tcp_drop(sk, skb1);
4585 				goto merge_right;
4586 			}
4587 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4588 						skb, &fragstolen)) {
4589 			goto coalesce_done;
4590 		}
4591 		p = &parent->rb_right;
4592 	}
4593 insert:
4594 	/* Insert segment into RB tree. */
4595 	rb_link_node(&skb->rbnode, parent, p);
4596 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4597 
4598 merge_right:
4599 	/* Remove other segments covered by skb. */
4600 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4601 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4602 			break;
4603 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4604 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4605 					 end_seq);
4606 			break;
4607 		}
4608 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4609 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4610 				 TCP_SKB_CB(skb1)->end_seq);
4611 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4612 		tcp_drop(sk, skb1);
4613 	}
4614 	/* If there is no skb after us, we are the last_skb ! */
4615 	if (!skb1)
4616 		tp->ooo_last_skb = skb;
4617 
4618 add_sack:
4619 	if (tcp_is_sack(tp))
4620 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4621 end:
4622 	if (skb) {
4623 		tcp_grow_window(sk, skb);
4624 		skb_condense(skb);
4625 		skb_set_owner_r(skb, sk);
4626 	}
4627 }
4628 
4629 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4630 				      bool *fragstolen)
4631 {
4632 	int eaten;
4633 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4634 
4635 	eaten = (tail &&
4636 		 tcp_try_coalesce(sk, tail,
4637 				  skb, fragstolen)) ? 1 : 0;
4638 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4639 	if (!eaten) {
4640 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4641 		skb_set_owner_r(skb, sk);
4642 	}
4643 	return eaten;
4644 }
4645 
4646 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4647 {
4648 	struct sk_buff *skb;
4649 	int err = -ENOMEM;
4650 	int data_len = 0;
4651 	bool fragstolen;
4652 
4653 	if (size == 0)
4654 		return 0;
4655 
4656 	if (size > PAGE_SIZE) {
4657 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4658 
4659 		data_len = npages << PAGE_SHIFT;
4660 		size = data_len + (size & ~PAGE_MASK);
4661 	}
4662 	skb = alloc_skb_with_frags(size - data_len, data_len,
4663 				   PAGE_ALLOC_COSTLY_ORDER,
4664 				   &err, sk->sk_allocation);
4665 	if (!skb)
4666 		goto err;
4667 
4668 	skb_put(skb, size - data_len);
4669 	skb->data_len = data_len;
4670 	skb->len = size;
4671 
4672 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4673 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4674 		goto err_free;
4675 	}
4676 
4677 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4678 	if (err)
4679 		goto err_free;
4680 
4681 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4682 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4683 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4684 
4685 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4686 		WARN_ON_ONCE(fragstolen); /* should not happen */
4687 		__kfree_skb(skb);
4688 	}
4689 	return size;
4690 
4691 err_free:
4692 	kfree_skb(skb);
4693 err:
4694 	return err;
4695 
4696 }
4697 
4698 void tcp_data_ready(struct sock *sk)
4699 {
4700 	const struct tcp_sock *tp = tcp_sk(sk);
4701 	int avail = tp->rcv_nxt - tp->copied_seq;
4702 
4703 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4704 		return;
4705 
4706 	sk->sk_data_ready(sk);
4707 }
4708 
4709 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4710 {
4711 	struct tcp_sock *tp = tcp_sk(sk);
4712 	bool fragstolen;
4713 	int eaten;
4714 
4715 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4716 		__kfree_skb(skb);
4717 		return;
4718 	}
4719 	skb_dst_drop(skb);
4720 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4721 
4722 	tcp_ecn_accept_cwr(sk, skb);
4723 
4724 	tp->rx_opt.dsack = 0;
4725 
4726 	/*  Queue data for delivery to the user.
4727 	 *  Packets in sequence go to the receive queue.
4728 	 *  Out of sequence packets to the out_of_order_queue.
4729 	 */
4730 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4731 		if (tcp_receive_window(tp) == 0) {
4732 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4733 			goto out_of_window;
4734 		}
4735 
4736 		/* Ok. In sequence. In window. */
4737 queue_and_out:
4738 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4739 			sk_forced_mem_schedule(sk, skb->truesize);
4740 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4741 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4742 			goto drop;
4743 		}
4744 
4745 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4746 		if (skb->len)
4747 			tcp_event_data_recv(sk, skb);
4748 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4749 			tcp_fin(sk);
4750 
4751 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4752 			tcp_ofo_queue(sk);
4753 
4754 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4755 			 * gap in queue is filled.
4756 			 */
4757 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4758 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4759 		}
4760 
4761 		if (tp->rx_opt.num_sacks)
4762 			tcp_sack_remove(tp);
4763 
4764 		tcp_fast_path_check(sk);
4765 
4766 		if (eaten > 0)
4767 			kfree_skb_partial(skb, fragstolen);
4768 		if (!sock_flag(sk, SOCK_DEAD))
4769 			tcp_data_ready(sk);
4770 		return;
4771 	}
4772 
4773 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4774 		tcp_rcv_spurious_retrans(sk, skb);
4775 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4776 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4777 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4778 
4779 out_of_window:
4780 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4781 		inet_csk_schedule_ack(sk);
4782 drop:
4783 		tcp_drop(sk, skb);
4784 		return;
4785 	}
4786 
4787 	/* Out of window. F.e. zero window probe. */
4788 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4789 		goto out_of_window;
4790 
4791 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4792 		/* Partial packet, seq < rcv_next < end_seq */
4793 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4794 
4795 		/* If window is closed, drop tail of packet. But after
4796 		 * remembering D-SACK for its head made in previous line.
4797 		 */
4798 		if (!tcp_receive_window(tp)) {
4799 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4800 			goto out_of_window;
4801 		}
4802 		goto queue_and_out;
4803 	}
4804 
4805 	tcp_data_queue_ofo(sk, skb);
4806 }
4807 
4808 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4809 {
4810 	if (list)
4811 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4812 
4813 	return skb_rb_next(skb);
4814 }
4815 
4816 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4817 					struct sk_buff_head *list,
4818 					struct rb_root *root)
4819 {
4820 	struct sk_buff *next = tcp_skb_next(skb, list);
4821 
4822 	if (list)
4823 		__skb_unlink(skb, list);
4824 	else
4825 		rb_erase(&skb->rbnode, root);
4826 
4827 	__kfree_skb(skb);
4828 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4829 
4830 	return next;
4831 }
4832 
4833 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4834 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4835 {
4836 	struct rb_node **p = &root->rb_node;
4837 	struct rb_node *parent = NULL;
4838 	struct sk_buff *skb1;
4839 
4840 	while (*p) {
4841 		parent = *p;
4842 		skb1 = rb_to_skb(parent);
4843 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4844 			p = &parent->rb_left;
4845 		else
4846 			p = &parent->rb_right;
4847 	}
4848 	rb_link_node(&skb->rbnode, parent, p);
4849 	rb_insert_color(&skb->rbnode, root);
4850 }
4851 
4852 /* Collapse contiguous sequence of skbs head..tail with
4853  * sequence numbers start..end.
4854  *
4855  * If tail is NULL, this means until the end of the queue.
4856  *
4857  * Segments with FIN/SYN are not collapsed (only because this
4858  * simplifies code)
4859  */
4860 static void
4861 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4862 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4863 {
4864 	struct sk_buff *skb = head, *n;
4865 	struct sk_buff_head tmp;
4866 	bool end_of_skbs;
4867 
4868 	/* First, check that queue is collapsible and find
4869 	 * the point where collapsing can be useful.
4870 	 */
4871 restart:
4872 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4873 		n = tcp_skb_next(skb, list);
4874 
4875 		/* No new bits? It is possible on ofo queue. */
4876 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4877 			skb = tcp_collapse_one(sk, skb, list, root);
4878 			if (!skb)
4879 				break;
4880 			goto restart;
4881 		}
4882 
4883 		/* The first skb to collapse is:
4884 		 * - not SYN/FIN and
4885 		 * - bloated or contains data before "start" or
4886 		 *   overlaps to the next one.
4887 		 */
4888 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4889 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4890 		     before(TCP_SKB_CB(skb)->seq, start))) {
4891 			end_of_skbs = false;
4892 			break;
4893 		}
4894 
4895 		if (n && n != tail &&
4896 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4897 			end_of_skbs = false;
4898 			break;
4899 		}
4900 
4901 		/* Decided to skip this, advance start seq. */
4902 		start = TCP_SKB_CB(skb)->end_seq;
4903 	}
4904 	if (end_of_skbs ||
4905 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4906 		return;
4907 
4908 	__skb_queue_head_init(&tmp);
4909 
4910 	while (before(start, end)) {
4911 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4912 		struct sk_buff *nskb;
4913 
4914 		nskb = alloc_skb(copy, GFP_ATOMIC);
4915 		if (!nskb)
4916 			break;
4917 
4918 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4919 #ifdef CONFIG_TLS_DEVICE
4920 		nskb->decrypted = skb->decrypted;
4921 #endif
4922 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4923 		if (list)
4924 			__skb_queue_before(list, skb, nskb);
4925 		else
4926 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4927 		skb_set_owner_r(nskb, sk);
4928 
4929 		/* Copy data, releasing collapsed skbs. */
4930 		while (copy > 0) {
4931 			int offset = start - TCP_SKB_CB(skb)->seq;
4932 			int size = TCP_SKB_CB(skb)->end_seq - start;
4933 
4934 			BUG_ON(offset < 0);
4935 			if (size > 0) {
4936 				size = min(copy, size);
4937 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4938 					BUG();
4939 				TCP_SKB_CB(nskb)->end_seq += size;
4940 				copy -= size;
4941 				start += size;
4942 			}
4943 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4944 				skb = tcp_collapse_one(sk, skb, list, root);
4945 				if (!skb ||
4946 				    skb == tail ||
4947 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4948 					goto end;
4949 #ifdef CONFIG_TLS_DEVICE
4950 				if (skb->decrypted != nskb->decrypted)
4951 					goto end;
4952 #endif
4953 			}
4954 		}
4955 	}
4956 end:
4957 	skb_queue_walk_safe(&tmp, skb, n)
4958 		tcp_rbtree_insert(root, skb);
4959 }
4960 
4961 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4962  * and tcp_collapse() them until all the queue is collapsed.
4963  */
4964 static void tcp_collapse_ofo_queue(struct sock *sk)
4965 {
4966 	struct tcp_sock *tp = tcp_sk(sk);
4967 	u32 range_truesize, sum_tiny = 0;
4968 	struct sk_buff *skb, *head;
4969 	u32 start, end;
4970 
4971 	skb = skb_rb_first(&tp->out_of_order_queue);
4972 new_range:
4973 	if (!skb) {
4974 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4975 		return;
4976 	}
4977 	start = TCP_SKB_CB(skb)->seq;
4978 	end = TCP_SKB_CB(skb)->end_seq;
4979 	range_truesize = skb->truesize;
4980 
4981 	for (head = skb;;) {
4982 		skb = skb_rb_next(skb);
4983 
4984 		/* Range is terminated when we see a gap or when
4985 		 * we are at the queue end.
4986 		 */
4987 		if (!skb ||
4988 		    after(TCP_SKB_CB(skb)->seq, end) ||
4989 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4990 			/* Do not attempt collapsing tiny skbs */
4991 			if (range_truesize != head->truesize ||
4992 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4993 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4994 					     head, skb, start, end);
4995 			} else {
4996 				sum_tiny += range_truesize;
4997 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4998 					return;
4999 			}
5000 			goto new_range;
5001 		}
5002 
5003 		range_truesize += skb->truesize;
5004 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5005 			start = TCP_SKB_CB(skb)->seq;
5006 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5007 			end = TCP_SKB_CB(skb)->end_seq;
5008 	}
5009 }
5010 
5011 /*
5012  * Clean the out-of-order queue to make room.
5013  * We drop high sequences packets to :
5014  * 1) Let a chance for holes to be filled.
5015  * 2) not add too big latencies if thousands of packets sit there.
5016  *    (But if application shrinks SO_RCVBUF, we could still end up
5017  *     freeing whole queue here)
5018  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5019  *
5020  * Return true if queue has shrunk.
5021  */
5022 static bool tcp_prune_ofo_queue(struct sock *sk)
5023 {
5024 	struct tcp_sock *tp = tcp_sk(sk);
5025 	struct rb_node *node, *prev;
5026 	int goal;
5027 
5028 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5029 		return false;
5030 
5031 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5032 	goal = sk->sk_rcvbuf >> 3;
5033 	node = &tp->ooo_last_skb->rbnode;
5034 	do {
5035 		prev = rb_prev(node);
5036 		rb_erase(node, &tp->out_of_order_queue);
5037 		goal -= rb_to_skb(node)->truesize;
5038 		tcp_drop(sk, rb_to_skb(node));
5039 		if (!prev || goal <= 0) {
5040 			sk_mem_reclaim(sk);
5041 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5042 			    !tcp_under_memory_pressure(sk))
5043 				break;
5044 			goal = sk->sk_rcvbuf >> 3;
5045 		}
5046 		node = prev;
5047 	} while (node);
5048 	tp->ooo_last_skb = rb_to_skb(prev);
5049 
5050 	/* Reset SACK state.  A conforming SACK implementation will
5051 	 * do the same at a timeout based retransmit.  When a connection
5052 	 * is in a sad state like this, we care only about integrity
5053 	 * of the connection not performance.
5054 	 */
5055 	if (tp->rx_opt.sack_ok)
5056 		tcp_sack_reset(&tp->rx_opt);
5057 	return true;
5058 }
5059 
5060 /* Reduce allocated memory if we can, trying to get
5061  * the socket within its memory limits again.
5062  *
5063  * Return less than zero if we should start dropping frames
5064  * until the socket owning process reads some of the data
5065  * to stabilize the situation.
5066  */
5067 static int tcp_prune_queue(struct sock *sk)
5068 {
5069 	struct tcp_sock *tp = tcp_sk(sk);
5070 
5071 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5072 
5073 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5074 		tcp_clamp_window(sk);
5075 	else if (tcp_under_memory_pressure(sk))
5076 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5077 
5078 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5079 		return 0;
5080 
5081 	tcp_collapse_ofo_queue(sk);
5082 	if (!skb_queue_empty(&sk->sk_receive_queue))
5083 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5084 			     skb_peek(&sk->sk_receive_queue),
5085 			     NULL,
5086 			     tp->copied_seq, tp->rcv_nxt);
5087 	sk_mem_reclaim(sk);
5088 
5089 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5090 		return 0;
5091 
5092 	/* Collapsing did not help, destructive actions follow.
5093 	 * This must not ever occur. */
5094 
5095 	tcp_prune_ofo_queue(sk);
5096 
5097 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5098 		return 0;
5099 
5100 	/* If we are really being abused, tell the caller to silently
5101 	 * drop receive data on the floor.  It will get retransmitted
5102 	 * and hopefully then we'll have sufficient space.
5103 	 */
5104 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5105 
5106 	/* Massive buffer overcommit. */
5107 	tp->pred_flags = 0;
5108 	return -1;
5109 }
5110 
5111 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5112 {
5113 	const struct tcp_sock *tp = tcp_sk(sk);
5114 
5115 	/* If the user specified a specific send buffer setting, do
5116 	 * not modify it.
5117 	 */
5118 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5119 		return false;
5120 
5121 	/* If we are under global TCP memory pressure, do not expand.  */
5122 	if (tcp_under_memory_pressure(sk))
5123 		return false;
5124 
5125 	/* If we are under soft global TCP memory pressure, do not expand.  */
5126 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5127 		return false;
5128 
5129 	/* If we filled the congestion window, do not expand.  */
5130 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5131 		return false;
5132 
5133 	return true;
5134 }
5135 
5136 /* When incoming ACK allowed to free some skb from write_queue,
5137  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5138  * on the exit from tcp input handler.
5139  *
5140  * PROBLEM: sndbuf expansion does not work well with largesend.
5141  */
5142 static void tcp_new_space(struct sock *sk)
5143 {
5144 	struct tcp_sock *tp = tcp_sk(sk);
5145 
5146 	if (tcp_should_expand_sndbuf(sk)) {
5147 		tcp_sndbuf_expand(sk);
5148 		tp->snd_cwnd_stamp = tcp_jiffies32;
5149 	}
5150 
5151 	sk->sk_write_space(sk);
5152 }
5153 
5154 static void tcp_check_space(struct sock *sk)
5155 {
5156 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5157 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5158 		/* pairs with tcp_poll() */
5159 		smp_mb();
5160 		if (sk->sk_socket &&
5161 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5162 			tcp_new_space(sk);
5163 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5164 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5165 		}
5166 	}
5167 }
5168 
5169 static inline void tcp_data_snd_check(struct sock *sk)
5170 {
5171 	tcp_push_pending_frames(sk);
5172 	tcp_check_space(sk);
5173 }
5174 
5175 /*
5176  * Check if sending an ack is needed.
5177  */
5178 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5179 {
5180 	struct tcp_sock *tp = tcp_sk(sk);
5181 	unsigned long rtt, delay;
5182 
5183 	    /* More than one full frame received... */
5184 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5185 	     /* ... and right edge of window advances far enough.
5186 	      * (tcp_recvmsg() will send ACK otherwise).
5187 	      * If application uses SO_RCVLOWAT, we want send ack now if
5188 	      * we have not received enough bytes to satisfy the condition.
5189 	      */
5190 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5191 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5192 	    /* We ACK each frame or... */
5193 	    tcp_in_quickack_mode(sk) ||
5194 	    /* Protocol state mandates a one-time immediate ACK */
5195 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5196 send_now:
5197 		tcp_send_ack(sk);
5198 		return;
5199 	}
5200 
5201 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5202 		tcp_send_delayed_ack(sk);
5203 		return;
5204 	}
5205 
5206 	if (!tcp_is_sack(tp) ||
5207 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5208 		goto send_now;
5209 
5210 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5211 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5212 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5213 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5214 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5215 		tp->compressed_ack = 0;
5216 	}
5217 
5218 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5219 		goto send_now;
5220 
5221 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5222 		return;
5223 
5224 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5225 
5226 	rtt = tp->rcv_rtt_est.rtt_us;
5227 	if (tp->srtt_us && tp->srtt_us < rtt)
5228 		rtt = tp->srtt_us;
5229 
5230 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5231 		      rtt * (NSEC_PER_USEC >> 3)/20);
5232 	sock_hold(sk);
5233 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5234 		      HRTIMER_MODE_REL_PINNED_SOFT);
5235 }
5236 
5237 static inline void tcp_ack_snd_check(struct sock *sk)
5238 {
5239 	if (!inet_csk_ack_scheduled(sk)) {
5240 		/* We sent a data segment already. */
5241 		return;
5242 	}
5243 	__tcp_ack_snd_check(sk, 1);
5244 }
5245 
5246 /*
5247  *	This routine is only called when we have urgent data
5248  *	signaled. Its the 'slow' part of tcp_urg. It could be
5249  *	moved inline now as tcp_urg is only called from one
5250  *	place. We handle URGent data wrong. We have to - as
5251  *	BSD still doesn't use the correction from RFC961.
5252  *	For 1003.1g we should support a new option TCP_STDURG to permit
5253  *	either form (or just set the sysctl tcp_stdurg).
5254  */
5255 
5256 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5257 {
5258 	struct tcp_sock *tp = tcp_sk(sk);
5259 	u32 ptr = ntohs(th->urg_ptr);
5260 
5261 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5262 		ptr--;
5263 	ptr += ntohl(th->seq);
5264 
5265 	/* Ignore urgent data that we've already seen and read. */
5266 	if (after(tp->copied_seq, ptr))
5267 		return;
5268 
5269 	/* Do not replay urg ptr.
5270 	 *
5271 	 * NOTE: interesting situation not covered by specs.
5272 	 * Misbehaving sender may send urg ptr, pointing to segment,
5273 	 * which we already have in ofo queue. We are not able to fetch
5274 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5275 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5276 	 * situations. But it is worth to think about possibility of some
5277 	 * DoSes using some hypothetical application level deadlock.
5278 	 */
5279 	if (before(ptr, tp->rcv_nxt))
5280 		return;
5281 
5282 	/* Do we already have a newer (or duplicate) urgent pointer? */
5283 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5284 		return;
5285 
5286 	/* Tell the world about our new urgent pointer. */
5287 	sk_send_sigurg(sk);
5288 
5289 	/* We may be adding urgent data when the last byte read was
5290 	 * urgent. To do this requires some care. We cannot just ignore
5291 	 * tp->copied_seq since we would read the last urgent byte again
5292 	 * as data, nor can we alter copied_seq until this data arrives
5293 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5294 	 *
5295 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5296 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5297 	 * and expect that both A and B disappear from stream. This is _wrong_.
5298 	 * Though this happens in BSD with high probability, this is occasional.
5299 	 * Any application relying on this is buggy. Note also, that fix "works"
5300 	 * only in this artificial test. Insert some normal data between A and B and we will
5301 	 * decline of BSD again. Verdict: it is better to remove to trap
5302 	 * buggy users.
5303 	 */
5304 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5305 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5306 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5307 		tp->copied_seq++;
5308 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5309 			__skb_unlink(skb, &sk->sk_receive_queue);
5310 			__kfree_skb(skb);
5311 		}
5312 	}
5313 
5314 	tp->urg_data = TCP_URG_NOTYET;
5315 	tp->urg_seq = ptr;
5316 
5317 	/* Disable header prediction. */
5318 	tp->pred_flags = 0;
5319 }
5320 
5321 /* This is the 'fast' part of urgent handling. */
5322 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5323 {
5324 	struct tcp_sock *tp = tcp_sk(sk);
5325 
5326 	/* Check if we get a new urgent pointer - normally not. */
5327 	if (th->urg)
5328 		tcp_check_urg(sk, th);
5329 
5330 	/* Do we wait for any urgent data? - normally not... */
5331 	if (tp->urg_data == TCP_URG_NOTYET) {
5332 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5333 			  th->syn;
5334 
5335 		/* Is the urgent pointer pointing into this packet? */
5336 		if (ptr < skb->len) {
5337 			u8 tmp;
5338 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5339 				BUG();
5340 			tp->urg_data = TCP_URG_VALID | tmp;
5341 			if (!sock_flag(sk, SOCK_DEAD))
5342 				sk->sk_data_ready(sk);
5343 		}
5344 	}
5345 }
5346 
5347 /* Accept RST for rcv_nxt - 1 after a FIN.
5348  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5349  * FIN is sent followed by a RST packet. The RST is sent with the same
5350  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5351  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5352  * ACKs on the closed socket. In addition middleboxes can drop either the
5353  * challenge ACK or a subsequent RST.
5354  */
5355 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5356 {
5357 	struct tcp_sock *tp = tcp_sk(sk);
5358 
5359 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5360 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5361 					       TCPF_CLOSING));
5362 }
5363 
5364 /* Does PAWS and seqno based validation of an incoming segment, flags will
5365  * play significant role here.
5366  */
5367 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5368 				  const struct tcphdr *th, int syn_inerr)
5369 {
5370 	struct tcp_sock *tp = tcp_sk(sk);
5371 	bool rst_seq_match = false;
5372 
5373 	/* RFC1323: H1. Apply PAWS check first. */
5374 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5375 	    tp->rx_opt.saw_tstamp &&
5376 	    tcp_paws_discard(sk, skb)) {
5377 		if (!th->rst) {
5378 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5379 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5380 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5381 						  &tp->last_oow_ack_time))
5382 				tcp_send_dupack(sk, skb);
5383 			goto discard;
5384 		}
5385 		/* Reset is accepted even if it did not pass PAWS. */
5386 	}
5387 
5388 	/* Step 1: check sequence number */
5389 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5390 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5391 		 * (RST) segments are validated by checking their SEQ-fields."
5392 		 * And page 69: "If an incoming segment is not acceptable,
5393 		 * an acknowledgment should be sent in reply (unless the RST
5394 		 * bit is set, if so drop the segment and return)".
5395 		 */
5396 		if (!th->rst) {
5397 			if (th->syn)
5398 				goto syn_challenge;
5399 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5400 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5401 						  &tp->last_oow_ack_time))
5402 				tcp_send_dupack(sk, skb);
5403 		} else if (tcp_reset_check(sk, skb)) {
5404 			tcp_reset(sk);
5405 		}
5406 		goto discard;
5407 	}
5408 
5409 	/* Step 2: check RST bit */
5410 	if (th->rst) {
5411 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5412 		 * FIN and SACK too if available):
5413 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5414 		 * the right-most SACK block,
5415 		 * then
5416 		 *     RESET the connection
5417 		 * else
5418 		 *     Send a challenge ACK
5419 		 */
5420 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5421 		    tcp_reset_check(sk, skb)) {
5422 			rst_seq_match = true;
5423 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5424 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5425 			int max_sack = sp[0].end_seq;
5426 			int this_sack;
5427 
5428 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5429 			     ++this_sack) {
5430 				max_sack = after(sp[this_sack].end_seq,
5431 						 max_sack) ?
5432 					sp[this_sack].end_seq : max_sack;
5433 			}
5434 
5435 			if (TCP_SKB_CB(skb)->seq == max_sack)
5436 				rst_seq_match = true;
5437 		}
5438 
5439 		if (rst_seq_match)
5440 			tcp_reset(sk);
5441 		else {
5442 			/* Disable TFO if RST is out-of-order
5443 			 * and no data has been received
5444 			 * for current active TFO socket
5445 			 */
5446 			if (tp->syn_fastopen && !tp->data_segs_in &&
5447 			    sk->sk_state == TCP_ESTABLISHED)
5448 				tcp_fastopen_active_disable(sk);
5449 			tcp_send_challenge_ack(sk, skb);
5450 		}
5451 		goto discard;
5452 	}
5453 
5454 	/* step 3: check security and precedence [ignored] */
5455 
5456 	/* step 4: Check for a SYN
5457 	 * RFC 5961 4.2 : Send a challenge ack
5458 	 */
5459 	if (th->syn) {
5460 syn_challenge:
5461 		if (syn_inerr)
5462 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5464 		tcp_send_challenge_ack(sk, skb);
5465 		goto discard;
5466 	}
5467 
5468 	return true;
5469 
5470 discard:
5471 	tcp_drop(sk, skb);
5472 	return false;
5473 }
5474 
5475 /*
5476  *	TCP receive function for the ESTABLISHED state.
5477  *
5478  *	It is split into a fast path and a slow path. The fast path is
5479  * 	disabled when:
5480  *	- A zero window was announced from us - zero window probing
5481  *        is only handled properly in the slow path.
5482  *	- Out of order segments arrived.
5483  *	- Urgent data is expected.
5484  *	- There is no buffer space left
5485  *	- Unexpected TCP flags/window values/header lengths are received
5486  *	  (detected by checking the TCP header against pred_flags)
5487  *	- Data is sent in both directions. Fast path only supports pure senders
5488  *	  or pure receivers (this means either the sequence number or the ack
5489  *	  value must stay constant)
5490  *	- Unexpected TCP option.
5491  *
5492  *	When these conditions are not satisfied it drops into a standard
5493  *	receive procedure patterned after RFC793 to handle all cases.
5494  *	The first three cases are guaranteed by proper pred_flags setting,
5495  *	the rest is checked inline. Fast processing is turned on in
5496  *	tcp_data_queue when everything is OK.
5497  */
5498 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5499 {
5500 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5501 	struct tcp_sock *tp = tcp_sk(sk);
5502 	unsigned int len = skb->len;
5503 
5504 	/* TCP congestion window tracking */
5505 	trace_tcp_probe(sk, skb);
5506 
5507 	tcp_mstamp_refresh(tp);
5508 	if (unlikely(!sk->sk_rx_dst))
5509 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5510 	/*
5511 	 *	Header prediction.
5512 	 *	The code loosely follows the one in the famous
5513 	 *	"30 instruction TCP receive" Van Jacobson mail.
5514 	 *
5515 	 *	Van's trick is to deposit buffers into socket queue
5516 	 *	on a device interrupt, to call tcp_recv function
5517 	 *	on the receive process context and checksum and copy
5518 	 *	the buffer to user space. smart...
5519 	 *
5520 	 *	Our current scheme is not silly either but we take the
5521 	 *	extra cost of the net_bh soft interrupt processing...
5522 	 *	We do checksum and copy also but from device to kernel.
5523 	 */
5524 
5525 	tp->rx_opt.saw_tstamp = 0;
5526 
5527 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5528 	 *	if header_prediction is to be made
5529 	 *	'S' will always be tp->tcp_header_len >> 2
5530 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5531 	 *  turn it off	(when there are holes in the receive
5532 	 *	 space for instance)
5533 	 *	PSH flag is ignored.
5534 	 */
5535 
5536 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5537 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5538 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5539 		int tcp_header_len = tp->tcp_header_len;
5540 
5541 		/* Timestamp header prediction: tcp_header_len
5542 		 * is automatically equal to th->doff*4 due to pred_flags
5543 		 * match.
5544 		 */
5545 
5546 		/* Check timestamp */
5547 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5548 			/* No? Slow path! */
5549 			if (!tcp_parse_aligned_timestamp(tp, th))
5550 				goto slow_path;
5551 
5552 			/* If PAWS failed, check it more carefully in slow path */
5553 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5554 				goto slow_path;
5555 
5556 			/* DO NOT update ts_recent here, if checksum fails
5557 			 * and timestamp was corrupted part, it will result
5558 			 * in a hung connection since we will drop all
5559 			 * future packets due to the PAWS test.
5560 			 */
5561 		}
5562 
5563 		if (len <= tcp_header_len) {
5564 			/* Bulk data transfer: sender */
5565 			if (len == tcp_header_len) {
5566 				/* Predicted packet is in window by definition.
5567 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5568 				 * Hence, check seq<=rcv_wup reduces to:
5569 				 */
5570 				if (tcp_header_len ==
5571 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5572 				    tp->rcv_nxt == tp->rcv_wup)
5573 					tcp_store_ts_recent(tp);
5574 
5575 				/* We know that such packets are checksummed
5576 				 * on entry.
5577 				 */
5578 				tcp_ack(sk, skb, 0);
5579 				__kfree_skb(skb);
5580 				tcp_data_snd_check(sk);
5581 				/* When receiving pure ack in fast path, update
5582 				 * last ts ecr directly instead of calling
5583 				 * tcp_rcv_rtt_measure_ts()
5584 				 */
5585 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5586 				return;
5587 			} else { /* Header too small */
5588 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5589 				goto discard;
5590 			}
5591 		} else {
5592 			int eaten = 0;
5593 			bool fragstolen = false;
5594 
5595 			if (tcp_checksum_complete(skb))
5596 				goto csum_error;
5597 
5598 			if ((int)skb->truesize > sk->sk_forward_alloc)
5599 				goto step5;
5600 
5601 			/* Predicted packet is in window by definition.
5602 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5603 			 * Hence, check seq<=rcv_wup reduces to:
5604 			 */
5605 			if (tcp_header_len ==
5606 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5607 			    tp->rcv_nxt == tp->rcv_wup)
5608 				tcp_store_ts_recent(tp);
5609 
5610 			tcp_rcv_rtt_measure_ts(sk, skb);
5611 
5612 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5613 
5614 			/* Bulk data transfer: receiver */
5615 			__skb_pull(skb, tcp_header_len);
5616 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5617 
5618 			tcp_event_data_recv(sk, skb);
5619 
5620 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5621 				/* Well, only one small jumplet in fast path... */
5622 				tcp_ack(sk, skb, FLAG_DATA);
5623 				tcp_data_snd_check(sk);
5624 				if (!inet_csk_ack_scheduled(sk))
5625 					goto no_ack;
5626 			}
5627 
5628 			__tcp_ack_snd_check(sk, 0);
5629 no_ack:
5630 			if (eaten)
5631 				kfree_skb_partial(skb, fragstolen);
5632 			tcp_data_ready(sk);
5633 			return;
5634 		}
5635 	}
5636 
5637 slow_path:
5638 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5639 		goto csum_error;
5640 
5641 	if (!th->ack && !th->rst && !th->syn)
5642 		goto discard;
5643 
5644 	/*
5645 	 *	Standard slow path.
5646 	 */
5647 
5648 	if (!tcp_validate_incoming(sk, skb, th, 1))
5649 		return;
5650 
5651 step5:
5652 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5653 		goto discard;
5654 
5655 	tcp_rcv_rtt_measure_ts(sk, skb);
5656 
5657 	/* Process urgent data. */
5658 	tcp_urg(sk, skb, th);
5659 
5660 	/* step 7: process the segment text */
5661 	tcp_data_queue(sk, skb);
5662 
5663 	tcp_data_snd_check(sk);
5664 	tcp_ack_snd_check(sk);
5665 	return;
5666 
5667 csum_error:
5668 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5669 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5670 
5671 discard:
5672 	tcp_drop(sk, skb);
5673 }
5674 EXPORT_SYMBOL(tcp_rcv_established);
5675 
5676 void tcp_init_transfer(struct sock *sk, int bpf_op)
5677 {
5678 	struct inet_connection_sock *icsk = inet_csk(sk);
5679 	struct tcp_sock *tp = tcp_sk(sk);
5680 
5681 	tcp_mtup_init(sk);
5682 	icsk->icsk_af_ops->rebuild_header(sk);
5683 	tcp_init_metrics(sk);
5684 
5685 	/* Initialize the congestion window to start the transfer.
5686 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5687 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5688 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5689 	 * retransmission has occurred.
5690 	 */
5691 	if (tp->total_retrans > 1 && tp->undo_marker)
5692 		tp->snd_cwnd = 1;
5693 	else
5694 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5695 	tp->snd_cwnd_stamp = tcp_jiffies32;
5696 
5697 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5698 	tcp_init_congestion_control(sk);
5699 	tcp_init_buffer_space(sk);
5700 }
5701 
5702 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5703 {
5704 	struct tcp_sock *tp = tcp_sk(sk);
5705 	struct inet_connection_sock *icsk = inet_csk(sk);
5706 
5707 	tcp_set_state(sk, TCP_ESTABLISHED);
5708 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5709 
5710 	if (skb) {
5711 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5712 		security_inet_conn_established(sk, skb);
5713 		sk_mark_napi_id(sk, skb);
5714 	}
5715 
5716 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5717 
5718 	/* Prevent spurious tcp_cwnd_restart() on first data
5719 	 * packet.
5720 	 */
5721 	tp->lsndtime = tcp_jiffies32;
5722 
5723 	if (sock_flag(sk, SOCK_KEEPOPEN))
5724 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5725 
5726 	if (!tp->rx_opt.snd_wscale)
5727 		__tcp_fast_path_on(tp, tp->snd_wnd);
5728 	else
5729 		tp->pred_flags = 0;
5730 }
5731 
5732 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5733 				    struct tcp_fastopen_cookie *cookie)
5734 {
5735 	struct tcp_sock *tp = tcp_sk(sk);
5736 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5737 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5738 	bool syn_drop = false;
5739 
5740 	if (mss == tp->rx_opt.user_mss) {
5741 		struct tcp_options_received opt;
5742 
5743 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5744 		tcp_clear_options(&opt);
5745 		opt.user_mss = opt.mss_clamp = 0;
5746 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5747 		mss = opt.mss_clamp;
5748 	}
5749 
5750 	if (!tp->syn_fastopen) {
5751 		/* Ignore an unsolicited cookie */
5752 		cookie->len = -1;
5753 	} else if (tp->total_retrans) {
5754 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5755 		 * acknowledges data. Presumably the remote received only
5756 		 * the retransmitted (regular) SYNs: either the original
5757 		 * SYN-data or the corresponding SYN-ACK was dropped.
5758 		 */
5759 		syn_drop = (cookie->len < 0 && data);
5760 	} else if (cookie->len < 0 && !tp->syn_data) {
5761 		/* We requested a cookie but didn't get it. If we did not use
5762 		 * the (old) exp opt format then try so next time (try_exp=1).
5763 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5764 		 */
5765 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5766 	}
5767 
5768 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5769 
5770 	if (data) { /* Retransmit unacked data in SYN */
5771 		skb_rbtree_walk_from(data) {
5772 			if (__tcp_retransmit_skb(sk, data, 1))
5773 				break;
5774 		}
5775 		tcp_rearm_rto(sk);
5776 		NET_INC_STATS(sock_net(sk),
5777 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5778 		return true;
5779 	}
5780 	tp->syn_data_acked = tp->syn_data;
5781 	if (tp->syn_data_acked) {
5782 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5783 		/* SYN-data is counted as two separate packets in tcp_ack() */
5784 		if (tp->delivered > 1)
5785 			--tp->delivered;
5786 	}
5787 
5788 	tcp_fastopen_add_skb(sk, synack);
5789 
5790 	return false;
5791 }
5792 
5793 static void smc_check_reset_syn(struct tcp_sock *tp)
5794 {
5795 #if IS_ENABLED(CONFIG_SMC)
5796 	if (static_branch_unlikely(&tcp_have_smc)) {
5797 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5798 			tp->syn_smc = 0;
5799 	}
5800 #endif
5801 }
5802 
5803 static void tcp_try_undo_spurious_syn(struct sock *sk)
5804 {
5805 	struct tcp_sock *tp = tcp_sk(sk);
5806 	u32 syn_stamp;
5807 
5808 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5809 	 * spurious if the ACK's timestamp option echo value matches the
5810 	 * original SYN timestamp.
5811 	 */
5812 	syn_stamp = tp->retrans_stamp;
5813 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5814 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5815 		tp->undo_marker = 0;
5816 }
5817 
5818 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5819 					 const struct tcphdr *th)
5820 {
5821 	struct inet_connection_sock *icsk = inet_csk(sk);
5822 	struct tcp_sock *tp = tcp_sk(sk);
5823 	struct tcp_fastopen_cookie foc = { .len = -1 };
5824 	int saved_clamp = tp->rx_opt.mss_clamp;
5825 	bool fastopen_fail;
5826 
5827 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5828 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5829 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5830 
5831 	if (th->ack) {
5832 		/* rfc793:
5833 		 * "If the state is SYN-SENT then
5834 		 *    first check the ACK bit
5835 		 *      If the ACK bit is set
5836 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5837 		 *        a reset (unless the RST bit is set, if so drop
5838 		 *        the segment and return)"
5839 		 */
5840 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5841 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5842 			goto reset_and_undo;
5843 
5844 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5845 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5846 			     tcp_time_stamp(tp))) {
5847 			NET_INC_STATS(sock_net(sk),
5848 					LINUX_MIB_PAWSACTIVEREJECTED);
5849 			goto reset_and_undo;
5850 		}
5851 
5852 		/* Now ACK is acceptable.
5853 		 *
5854 		 * "If the RST bit is set
5855 		 *    If the ACK was acceptable then signal the user "error:
5856 		 *    connection reset", drop the segment, enter CLOSED state,
5857 		 *    delete TCB, and return."
5858 		 */
5859 
5860 		if (th->rst) {
5861 			tcp_reset(sk);
5862 			goto discard;
5863 		}
5864 
5865 		/* rfc793:
5866 		 *   "fifth, if neither of the SYN or RST bits is set then
5867 		 *    drop the segment and return."
5868 		 *
5869 		 *    See note below!
5870 		 *                                        --ANK(990513)
5871 		 */
5872 		if (!th->syn)
5873 			goto discard_and_undo;
5874 
5875 		/* rfc793:
5876 		 *   "If the SYN bit is on ...
5877 		 *    are acceptable then ...
5878 		 *    (our SYN has been ACKed), change the connection
5879 		 *    state to ESTABLISHED..."
5880 		 */
5881 
5882 		tcp_ecn_rcv_synack(tp, th);
5883 
5884 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5885 		tcp_try_undo_spurious_syn(sk);
5886 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5887 
5888 		/* Ok.. it's good. Set up sequence numbers and
5889 		 * move to established.
5890 		 */
5891 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5892 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5893 
5894 		/* RFC1323: The window in SYN & SYN/ACK segments is
5895 		 * never scaled.
5896 		 */
5897 		tp->snd_wnd = ntohs(th->window);
5898 
5899 		if (!tp->rx_opt.wscale_ok) {
5900 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5901 			tp->window_clamp = min(tp->window_clamp, 65535U);
5902 		}
5903 
5904 		if (tp->rx_opt.saw_tstamp) {
5905 			tp->rx_opt.tstamp_ok	   = 1;
5906 			tp->tcp_header_len =
5907 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5908 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5909 			tcp_store_ts_recent(tp);
5910 		} else {
5911 			tp->tcp_header_len = sizeof(struct tcphdr);
5912 		}
5913 
5914 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5915 		tcp_initialize_rcv_mss(sk);
5916 
5917 		/* Remember, tcp_poll() does not lock socket!
5918 		 * Change state from SYN-SENT only after copied_seq
5919 		 * is initialized. */
5920 		tp->copied_seq = tp->rcv_nxt;
5921 
5922 		smc_check_reset_syn(tp);
5923 
5924 		smp_mb();
5925 
5926 		tcp_finish_connect(sk, skb);
5927 
5928 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5929 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5930 
5931 		if (!sock_flag(sk, SOCK_DEAD)) {
5932 			sk->sk_state_change(sk);
5933 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5934 		}
5935 		if (fastopen_fail)
5936 			return -1;
5937 		if (sk->sk_write_pending ||
5938 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5939 		    inet_csk_in_pingpong_mode(sk)) {
5940 			/* Save one ACK. Data will be ready after
5941 			 * several ticks, if write_pending is set.
5942 			 *
5943 			 * It may be deleted, but with this feature tcpdumps
5944 			 * look so _wonderfully_ clever, that I was not able
5945 			 * to stand against the temptation 8)     --ANK
5946 			 */
5947 			inet_csk_schedule_ack(sk);
5948 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5949 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5950 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5951 
5952 discard:
5953 			tcp_drop(sk, skb);
5954 			return 0;
5955 		} else {
5956 			tcp_send_ack(sk);
5957 		}
5958 		return -1;
5959 	}
5960 
5961 	/* No ACK in the segment */
5962 
5963 	if (th->rst) {
5964 		/* rfc793:
5965 		 * "If the RST bit is set
5966 		 *
5967 		 *      Otherwise (no ACK) drop the segment and return."
5968 		 */
5969 
5970 		goto discard_and_undo;
5971 	}
5972 
5973 	/* PAWS check. */
5974 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5975 	    tcp_paws_reject(&tp->rx_opt, 0))
5976 		goto discard_and_undo;
5977 
5978 	if (th->syn) {
5979 		/* We see SYN without ACK. It is attempt of
5980 		 * simultaneous connect with crossed SYNs.
5981 		 * Particularly, it can be connect to self.
5982 		 */
5983 		tcp_set_state(sk, TCP_SYN_RECV);
5984 
5985 		if (tp->rx_opt.saw_tstamp) {
5986 			tp->rx_opt.tstamp_ok = 1;
5987 			tcp_store_ts_recent(tp);
5988 			tp->tcp_header_len =
5989 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5990 		} else {
5991 			tp->tcp_header_len = sizeof(struct tcphdr);
5992 		}
5993 
5994 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5995 		tp->copied_seq = tp->rcv_nxt;
5996 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5997 
5998 		/* RFC1323: The window in SYN & SYN/ACK segments is
5999 		 * never scaled.
6000 		 */
6001 		tp->snd_wnd    = ntohs(th->window);
6002 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6003 		tp->max_window = tp->snd_wnd;
6004 
6005 		tcp_ecn_rcv_syn(tp, th);
6006 
6007 		tcp_mtup_init(sk);
6008 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6009 		tcp_initialize_rcv_mss(sk);
6010 
6011 		tcp_send_synack(sk);
6012 #if 0
6013 		/* Note, we could accept data and URG from this segment.
6014 		 * There are no obstacles to make this (except that we must
6015 		 * either change tcp_recvmsg() to prevent it from returning data
6016 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6017 		 *
6018 		 * However, if we ignore data in ACKless segments sometimes,
6019 		 * we have no reasons to accept it sometimes.
6020 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6021 		 * is not flawless. So, discard packet for sanity.
6022 		 * Uncomment this return to process the data.
6023 		 */
6024 		return -1;
6025 #else
6026 		goto discard;
6027 #endif
6028 	}
6029 	/* "fifth, if neither of the SYN or RST bits is set then
6030 	 * drop the segment and return."
6031 	 */
6032 
6033 discard_and_undo:
6034 	tcp_clear_options(&tp->rx_opt);
6035 	tp->rx_opt.mss_clamp = saved_clamp;
6036 	goto discard;
6037 
6038 reset_and_undo:
6039 	tcp_clear_options(&tp->rx_opt);
6040 	tp->rx_opt.mss_clamp = saved_clamp;
6041 	return 1;
6042 }
6043 
6044 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6045 {
6046 	tcp_try_undo_loss(sk, false);
6047 
6048 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6049 	tcp_sk(sk)->retrans_stamp = 0;
6050 	inet_csk(sk)->icsk_retransmits = 0;
6051 
6052 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6053 	 * we no longer need req so release it.
6054 	 */
6055 	reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false);
6056 
6057 	/* Re-arm the timer because data may have been sent out.
6058 	 * This is similar to the regular data transmission case
6059 	 * when new data has just been ack'ed.
6060 	 *
6061 	 * (TFO) - we could try to be more aggressive and
6062 	 * retransmitting any data sooner based on when they
6063 	 * are sent out.
6064 	 */
6065 	tcp_rearm_rto(sk);
6066 }
6067 
6068 /*
6069  *	This function implements the receiving procedure of RFC 793 for
6070  *	all states except ESTABLISHED and TIME_WAIT.
6071  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6072  *	address independent.
6073  */
6074 
6075 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6076 {
6077 	struct tcp_sock *tp = tcp_sk(sk);
6078 	struct inet_connection_sock *icsk = inet_csk(sk);
6079 	const struct tcphdr *th = tcp_hdr(skb);
6080 	struct request_sock *req;
6081 	int queued = 0;
6082 	bool acceptable;
6083 
6084 	switch (sk->sk_state) {
6085 	case TCP_CLOSE:
6086 		goto discard;
6087 
6088 	case TCP_LISTEN:
6089 		if (th->ack)
6090 			return 1;
6091 
6092 		if (th->rst)
6093 			goto discard;
6094 
6095 		if (th->syn) {
6096 			if (th->fin)
6097 				goto discard;
6098 			/* It is possible that we process SYN packets from backlog,
6099 			 * so we need to make sure to disable BH and RCU right there.
6100 			 */
6101 			rcu_read_lock();
6102 			local_bh_disable();
6103 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6104 			local_bh_enable();
6105 			rcu_read_unlock();
6106 
6107 			if (!acceptable)
6108 				return 1;
6109 			consume_skb(skb);
6110 			return 0;
6111 		}
6112 		goto discard;
6113 
6114 	case TCP_SYN_SENT:
6115 		tp->rx_opt.saw_tstamp = 0;
6116 		tcp_mstamp_refresh(tp);
6117 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6118 		if (queued >= 0)
6119 			return queued;
6120 
6121 		/* Do step6 onward by hand. */
6122 		tcp_urg(sk, skb, th);
6123 		__kfree_skb(skb);
6124 		tcp_data_snd_check(sk);
6125 		return 0;
6126 	}
6127 
6128 	tcp_mstamp_refresh(tp);
6129 	tp->rx_opt.saw_tstamp = 0;
6130 	req = tp->fastopen_rsk;
6131 	if (req) {
6132 		bool req_stolen;
6133 
6134 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6135 		    sk->sk_state != TCP_FIN_WAIT1);
6136 
6137 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6138 			goto discard;
6139 	}
6140 
6141 	if (!th->ack && !th->rst && !th->syn)
6142 		goto discard;
6143 
6144 	if (!tcp_validate_incoming(sk, skb, th, 0))
6145 		return 0;
6146 
6147 	/* step 5: check the ACK field */
6148 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6149 				      FLAG_UPDATE_TS_RECENT |
6150 				      FLAG_NO_CHALLENGE_ACK) > 0;
6151 
6152 	if (!acceptable) {
6153 		if (sk->sk_state == TCP_SYN_RECV)
6154 			return 1;	/* send one RST */
6155 		tcp_send_challenge_ack(sk, skb);
6156 		goto discard;
6157 	}
6158 	switch (sk->sk_state) {
6159 	case TCP_SYN_RECV:
6160 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6161 		if (!tp->srtt_us)
6162 			tcp_synack_rtt_meas(sk, req);
6163 
6164 		if (req) {
6165 			tcp_rcv_synrecv_state_fastopen(sk);
6166 		} else {
6167 			tcp_try_undo_spurious_syn(sk);
6168 			tp->retrans_stamp = 0;
6169 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6170 			tp->copied_seq = tp->rcv_nxt;
6171 		}
6172 		smp_mb();
6173 		tcp_set_state(sk, TCP_ESTABLISHED);
6174 		sk->sk_state_change(sk);
6175 
6176 		/* Note, that this wakeup is only for marginal crossed SYN case.
6177 		 * Passively open sockets are not waked up, because
6178 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6179 		 */
6180 		if (sk->sk_socket)
6181 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6182 
6183 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6184 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6185 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6186 
6187 		if (tp->rx_opt.tstamp_ok)
6188 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6189 
6190 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6191 			tcp_update_pacing_rate(sk);
6192 
6193 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6194 		tp->lsndtime = tcp_jiffies32;
6195 
6196 		tcp_initialize_rcv_mss(sk);
6197 		tcp_fast_path_on(tp);
6198 		break;
6199 
6200 	case TCP_FIN_WAIT1: {
6201 		int tmo;
6202 
6203 		if (req)
6204 			tcp_rcv_synrecv_state_fastopen(sk);
6205 
6206 		if (tp->snd_una != tp->write_seq)
6207 			break;
6208 
6209 		tcp_set_state(sk, TCP_FIN_WAIT2);
6210 		sk->sk_shutdown |= SEND_SHUTDOWN;
6211 
6212 		sk_dst_confirm(sk);
6213 
6214 		if (!sock_flag(sk, SOCK_DEAD)) {
6215 			/* Wake up lingering close() */
6216 			sk->sk_state_change(sk);
6217 			break;
6218 		}
6219 
6220 		if (tp->linger2 < 0) {
6221 			tcp_done(sk);
6222 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6223 			return 1;
6224 		}
6225 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6226 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6227 			/* Receive out of order FIN after close() */
6228 			if (tp->syn_fastopen && th->fin)
6229 				tcp_fastopen_active_disable(sk);
6230 			tcp_done(sk);
6231 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6232 			return 1;
6233 		}
6234 
6235 		tmo = tcp_fin_time(sk);
6236 		if (tmo > TCP_TIMEWAIT_LEN) {
6237 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6238 		} else if (th->fin || sock_owned_by_user(sk)) {
6239 			/* Bad case. We could lose such FIN otherwise.
6240 			 * It is not a big problem, but it looks confusing
6241 			 * and not so rare event. We still can lose it now,
6242 			 * if it spins in bh_lock_sock(), but it is really
6243 			 * marginal case.
6244 			 */
6245 			inet_csk_reset_keepalive_timer(sk, tmo);
6246 		} else {
6247 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6248 			goto discard;
6249 		}
6250 		break;
6251 	}
6252 
6253 	case TCP_CLOSING:
6254 		if (tp->snd_una == tp->write_seq) {
6255 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6256 			goto discard;
6257 		}
6258 		break;
6259 
6260 	case TCP_LAST_ACK:
6261 		if (tp->snd_una == tp->write_seq) {
6262 			tcp_update_metrics(sk);
6263 			tcp_done(sk);
6264 			goto discard;
6265 		}
6266 		break;
6267 	}
6268 
6269 	/* step 6: check the URG bit */
6270 	tcp_urg(sk, skb, th);
6271 
6272 	/* step 7: process the segment text */
6273 	switch (sk->sk_state) {
6274 	case TCP_CLOSE_WAIT:
6275 	case TCP_CLOSING:
6276 	case TCP_LAST_ACK:
6277 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6278 			break;
6279 		/* fall through */
6280 	case TCP_FIN_WAIT1:
6281 	case TCP_FIN_WAIT2:
6282 		/* RFC 793 says to queue data in these states,
6283 		 * RFC 1122 says we MUST send a reset.
6284 		 * BSD 4.4 also does reset.
6285 		 */
6286 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6287 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6288 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6289 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6290 				tcp_reset(sk);
6291 				return 1;
6292 			}
6293 		}
6294 		/* Fall through */
6295 	case TCP_ESTABLISHED:
6296 		tcp_data_queue(sk, skb);
6297 		queued = 1;
6298 		break;
6299 	}
6300 
6301 	/* tcp_data could move socket to TIME-WAIT */
6302 	if (sk->sk_state != TCP_CLOSE) {
6303 		tcp_data_snd_check(sk);
6304 		tcp_ack_snd_check(sk);
6305 	}
6306 
6307 	if (!queued) {
6308 discard:
6309 		tcp_drop(sk, skb);
6310 	}
6311 	return 0;
6312 }
6313 EXPORT_SYMBOL(tcp_rcv_state_process);
6314 
6315 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6316 {
6317 	struct inet_request_sock *ireq = inet_rsk(req);
6318 
6319 	if (family == AF_INET)
6320 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6321 				    &ireq->ir_rmt_addr, port);
6322 #if IS_ENABLED(CONFIG_IPV6)
6323 	else if (family == AF_INET6)
6324 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6325 				    &ireq->ir_v6_rmt_addr, port);
6326 #endif
6327 }
6328 
6329 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6330  *
6331  * If we receive a SYN packet with these bits set, it means a
6332  * network is playing bad games with TOS bits. In order to
6333  * avoid possible false congestion notifications, we disable
6334  * TCP ECN negotiation.
6335  *
6336  * Exception: tcp_ca wants ECN. This is required for DCTCP
6337  * congestion control: Linux DCTCP asserts ECT on all packets,
6338  * including SYN, which is most optimal solution; however,
6339  * others, such as FreeBSD do not.
6340  *
6341  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6342  * set, indicating the use of a future TCP extension (such as AccECN). See
6343  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6344  * extensions.
6345  */
6346 static void tcp_ecn_create_request(struct request_sock *req,
6347 				   const struct sk_buff *skb,
6348 				   const struct sock *listen_sk,
6349 				   const struct dst_entry *dst)
6350 {
6351 	const struct tcphdr *th = tcp_hdr(skb);
6352 	const struct net *net = sock_net(listen_sk);
6353 	bool th_ecn = th->ece && th->cwr;
6354 	bool ect, ecn_ok;
6355 	u32 ecn_ok_dst;
6356 
6357 	if (!th_ecn)
6358 		return;
6359 
6360 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6361 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6362 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6363 
6364 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6365 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6366 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6367 		inet_rsk(req)->ecn_ok = 1;
6368 }
6369 
6370 static void tcp_openreq_init(struct request_sock *req,
6371 			     const struct tcp_options_received *rx_opt,
6372 			     struct sk_buff *skb, const struct sock *sk)
6373 {
6374 	struct inet_request_sock *ireq = inet_rsk(req);
6375 
6376 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6377 	req->cookie_ts = 0;
6378 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6379 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6380 	tcp_rsk(req)->snt_synack = 0;
6381 	tcp_rsk(req)->last_oow_ack_time = 0;
6382 	req->mss = rx_opt->mss_clamp;
6383 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6384 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6385 	ireq->sack_ok = rx_opt->sack_ok;
6386 	ireq->snd_wscale = rx_opt->snd_wscale;
6387 	ireq->wscale_ok = rx_opt->wscale_ok;
6388 	ireq->acked = 0;
6389 	ireq->ecn_ok = 0;
6390 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6391 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6392 	ireq->ir_mark = inet_request_mark(sk, skb);
6393 #if IS_ENABLED(CONFIG_SMC)
6394 	ireq->smc_ok = rx_opt->smc_ok;
6395 #endif
6396 }
6397 
6398 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6399 				      struct sock *sk_listener,
6400 				      bool attach_listener)
6401 {
6402 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6403 					       attach_listener);
6404 
6405 	if (req) {
6406 		struct inet_request_sock *ireq = inet_rsk(req);
6407 
6408 		ireq->ireq_opt = NULL;
6409 #if IS_ENABLED(CONFIG_IPV6)
6410 		ireq->pktopts = NULL;
6411 #endif
6412 		atomic64_set(&ireq->ir_cookie, 0);
6413 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6414 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6415 		ireq->ireq_family = sk_listener->sk_family;
6416 	}
6417 
6418 	return req;
6419 }
6420 EXPORT_SYMBOL(inet_reqsk_alloc);
6421 
6422 /*
6423  * Return true if a syncookie should be sent
6424  */
6425 static bool tcp_syn_flood_action(const struct sock *sk,
6426 				 const struct sk_buff *skb,
6427 				 const char *proto)
6428 {
6429 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6430 	const char *msg = "Dropping request";
6431 	bool want_cookie = false;
6432 	struct net *net = sock_net(sk);
6433 
6434 #ifdef CONFIG_SYN_COOKIES
6435 	if (net->ipv4.sysctl_tcp_syncookies) {
6436 		msg = "Sending cookies";
6437 		want_cookie = true;
6438 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6439 	} else
6440 #endif
6441 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6442 
6443 	if (!queue->synflood_warned &&
6444 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6445 	    xchg(&queue->synflood_warned, 1) == 0)
6446 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6447 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6448 
6449 	return want_cookie;
6450 }
6451 
6452 static void tcp_reqsk_record_syn(const struct sock *sk,
6453 				 struct request_sock *req,
6454 				 const struct sk_buff *skb)
6455 {
6456 	if (tcp_sk(sk)->save_syn) {
6457 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6458 		u32 *copy;
6459 
6460 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6461 		if (copy) {
6462 			copy[0] = len;
6463 			memcpy(&copy[1], skb_network_header(skb), len);
6464 			req->saved_syn = copy;
6465 		}
6466 	}
6467 }
6468 
6469 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6470 		     const struct tcp_request_sock_ops *af_ops,
6471 		     struct sock *sk, struct sk_buff *skb)
6472 {
6473 	struct tcp_fastopen_cookie foc = { .len = -1 };
6474 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6475 	struct tcp_options_received tmp_opt;
6476 	struct tcp_sock *tp = tcp_sk(sk);
6477 	struct net *net = sock_net(sk);
6478 	struct sock *fastopen_sk = NULL;
6479 	struct request_sock *req;
6480 	bool want_cookie = false;
6481 	struct dst_entry *dst;
6482 	struct flowi fl;
6483 
6484 	/* TW buckets are converted to open requests without
6485 	 * limitations, they conserve resources and peer is
6486 	 * evidently real one.
6487 	 */
6488 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6489 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6490 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6491 		if (!want_cookie)
6492 			goto drop;
6493 	}
6494 
6495 	if (sk_acceptq_is_full(sk)) {
6496 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6497 		goto drop;
6498 	}
6499 
6500 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6501 	if (!req)
6502 		goto drop;
6503 
6504 	tcp_rsk(req)->af_specific = af_ops;
6505 	tcp_rsk(req)->ts_off = 0;
6506 
6507 	tcp_clear_options(&tmp_opt);
6508 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6509 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6510 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6511 			  want_cookie ? NULL : &foc);
6512 
6513 	if (want_cookie && !tmp_opt.saw_tstamp)
6514 		tcp_clear_options(&tmp_opt);
6515 
6516 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6517 		tmp_opt.smc_ok = 0;
6518 
6519 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6520 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6521 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6522 
6523 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6524 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6525 
6526 	af_ops->init_req(req, sk, skb);
6527 
6528 	if (security_inet_conn_request(sk, skb, req))
6529 		goto drop_and_free;
6530 
6531 	if (tmp_opt.tstamp_ok)
6532 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6533 
6534 	dst = af_ops->route_req(sk, &fl, req);
6535 	if (!dst)
6536 		goto drop_and_free;
6537 
6538 	if (!want_cookie && !isn) {
6539 		/* Kill the following clause, if you dislike this way. */
6540 		if (!net->ipv4.sysctl_tcp_syncookies &&
6541 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6542 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6543 		    !tcp_peer_is_proven(req, dst)) {
6544 			/* Without syncookies last quarter of
6545 			 * backlog is filled with destinations,
6546 			 * proven to be alive.
6547 			 * It means that we continue to communicate
6548 			 * to destinations, already remembered
6549 			 * to the moment of synflood.
6550 			 */
6551 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6552 				    rsk_ops->family);
6553 			goto drop_and_release;
6554 		}
6555 
6556 		isn = af_ops->init_seq(skb);
6557 	}
6558 
6559 	tcp_ecn_create_request(req, skb, sk, dst);
6560 
6561 	if (want_cookie) {
6562 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6563 		req->cookie_ts = tmp_opt.tstamp_ok;
6564 		if (!tmp_opt.tstamp_ok)
6565 			inet_rsk(req)->ecn_ok = 0;
6566 	}
6567 
6568 	tcp_rsk(req)->snt_isn = isn;
6569 	tcp_rsk(req)->txhash = net_tx_rndhash();
6570 	tcp_openreq_init_rwin(req, sk, dst);
6571 	sk_rx_queue_set(req_to_sk(req), skb);
6572 	if (!want_cookie) {
6573 		tcp_reqsk_record_syn(sk, req, skb);
6574 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6575 	}
6576 	if (fastopen_sk) {
6577 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6578 				    &foc, TCP_SYNACK_FASTOPEN);
6579 		/* Add the child socket directly into the accept queue */
6580 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6581 			reqsk_fastopen_remove(fastopen_sk, req, false);
6582 			bh_unlock_sock(fastopen_sk);
6583 			sock_put(fastopen_sk);
6584 			goto drop_and_free;
6585 		}
6586 		sk->sk_data_ready(sk);
6587 		bh_unlock_sock(fastopen_sk);
6588 		sock_put(fastopen_sk);
6589 	} else {
6590 		tcp_rsk(req)->tfo_listener = false;
6591 		if (!want_cookie)
6592 			inet_csk_reqsk_queue_hash_add(sk, req,
6593 				tcp_timeout_init((struct sock *)req));
6594 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6595 				    !want_cookie ? TCP_SYNACK_NORMAL :
6596 						   TCP_SYNACK_COOKIE);
6597 		if (want_cookie) {
6598 			reqsk_free(req);
6599 			return 0;
6600 		}
6601 	}
6602 	reqsk_put(req);
6603 	return 0;
6604 
6605 drop_and_release:
6606 	dst_release(dst);
6607 drop_and_free:
6608 	__reqsk_free(req);
6609 drop:
6610 	tcp_listendrop(sk);
6611 	return 0;
6612 }
6613 EXPORT_SYMBOL(tcp_conn_request);
6614