1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 241 tcp_sk(sk)->advmss); 242 /* Account for possibly-removed options */ 243 if (unlikely(len > icsk->icsk_ack.rcv_mss + 244 MAX_TCP_OPTION_SPACE)) 245 tcp_gro_dev_warn(sk, skb, len); 246 } else { 247 /* Otherwise, we make more careful check taking into account, 248 * that SACKs block is variable. 249 * 250 * "len" is invariant segment length, including TCP header. 251 */ 252 len += skb->data - skb_transport_header(skb); 253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 254 /* If PSH is not set, packet should be 255 * full sized, provided peer TCP is not badly broken. 256 * This observation (if it is correct 8)) allows 257 * to handle super-low mtu links fairly. 258 */ 259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 261 /* Subtract also invariant (if peer is RFC compliant), 262 * tcp header plus fixed timestamp option length. 263 * Resulting "len" is MSS free of SACK jitter. 264 */ 265 len -= tcp_sk(sk)->tcp_header_len; 266 icsk->icsk_ack.last_seg_size = len; 267 if (len == lss) { 268 icsk->icsk_ack.rcv_mss = len; 269 return; 270 } 271 } 272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 275 } 276 } 277 278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 279 { 280 struct inet_connection_sock *icsk = inet_csk(sk); 281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 282 283 if (quickacks == 0) 284 quickacks = 2; 285 quickacks = min(quickacks, max_quickacks); 286 if (quickacks > icsk->icsk_ack.quick) 287 icsk->icsk_ack.quick = quickacks; 288 } 289 290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 291 { 292 struct inet_connection_sock *icsk = inet_csk(sk); 293 294 tcp_incr_quickack(sk, max_quickacks); 295 inet_csk_exit_pingpong_mode(sk); 296 icsk->icsk_ack.ato = TCP_ATO_MIN; 297 } 298 EXPORT_SYMBOL(tcp_enter_quickack_mode); 299 300 /* Send ACKs quickly, if "quick" count is not exhausted 301 * and the session is not interactive. 302 */ 303 304 static bool tcp_in_quickack_mode(struct sock *sk) 305 { 306 const struct inet_connection_sock *icsk = inet_csk(sk); 307 const struct dst_entry *dst = __sk_dst_get(sk); 308 309 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 311 } 312 313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 314 { 315 if (tp->ecn_flags & TCP_ECN_OK) 316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 317 } 318 319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 320 { 321 if (tcp_hdr(skb)->cwr) { 322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 323 324 /* If the sender is telling us it has entered CWR, then its 325 * cwnd may be very low (even just 1 packet), so we should ACK 326 * immediately. 327 */ 328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 330 } 331 } 332 333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 334 { 335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 336 } 337 338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 343 case INET_ECN_NOT_ECT: 344 /* Funny extension: if ECT is not set on a segment, 345 * and we already seen ECT on a previous segment, 346 * it is probably a retransmit. 347 */ 348 if (tp->ecn_flags & TCP_ECN_SEEN) 349 tcp_enter_quickack_mode(sk, 2); 350 break; 351 case INET_ECN_CE: 352 if (tcp_ca_needs_ecn(sk)) 353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 354 355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 356 /* Better not delay acks, sender can have a very low cwnd */ 357 tcp_enter_quickack_mode(sk, 2); 358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 359 } 360 tp->ecn_flags |= TCP_ECN_SEEN; 361 break; 362 default: 363 if (tcp_ca_needs_ecn(sk)) 364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 365 tp->ecn_flags |= TCP_ECN_SEEN; 366 break; 367 } 368 } 369 370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 371 { 372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 373 __tcp_ecn_check_ce(sk, skb); 374 } 375 376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 377 { 378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 379 tp->ecn_flags &= ~TCP_ECN_OK; 380 } 381 382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 383 { 384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 385 tp->ecn_flags &= ~TCP_ECN_OK; 386 } 387 388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 389 { 390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 391 return true; 392 return false; 393 } 394 395 /* Buffer size and advertised window tuning. 396 * 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 398 */ 399 400 static void tcp_sndbuf_expand(struct sock *sk) 401 { 402 const struct tcp_sock *tp = tcp_sk(sk); 403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 404 int sndmem, per_mss; 405 u32 nr_segs; 406 407 /* Worst case is non GSO/TSO : each frame consumes one skb 408 * and skb->head is kmalloced using power of two area of memory 409 */ 410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 411 MAX_TCP_HEADER + 412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 414 per_mss = roundup_pow_of_two(per_mss) + 415 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 416 417 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 419 420 /* Fast Recovery (RFC 5681 3.2) : 421 * Cubic needs 1.7 factor, rounded to 2 to include 422 * extra cushion (application might react slowly to EPOLLOUT) 423 */ 424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 425 sndmem *= nr_segs * per_mss; 426 427 if (sk->sk_sndbuf < sndmem) 428 WRITE_ONCE(sk->sk_sndbuf, 429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 430 } 431 432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 433 * 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated 435 * forward and advertised in receiver window (tp->rcv_wnd) and 436 * "application buffer", required to isolate scheduling/application 437 * latencies from network. 438 * window_clamp is maximal advertised window. It can be less than 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp 440 * is reserved for "application" buffer. The less window_clamp is 441 * the smoother our behaviour from viewpoint of network, but the lower 442 * throughput and the higher sensitivity of the connection to losses. 8) 443 * 444 * rcv_ssthresh is more strict window_clamp used at "slow start" 445 * phase to predict further behaviour of this connection. 446 * It is used for two goals: 447 * - to enforce header prediction at sender, even when application 448 * requires some significant "application buffer". It is check #1. 449 * - to prevent pruning of receive queue because of misprediction 450 * of receiver window. Check #2. 451 * 452 * The scheme does not work when sender sends good segments opening 453 * window and then starts to feed us spaghetti. But it should work 454 * in common situations. Otherwise, we have to rely on queue collapsing. 455 */ 456 457 /* Slow part of check#2. */ 458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 459 unsigned int skbtruesize) 460 { 461 struct tcp_sock *tp = tcp_sk(sk); 462 /* Optimize this! */ 463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 465 466 while (tp->rcv_ssthresh <= window) { 467 if (truesize <= skb->len) 468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 469 470 truesize >>= 1; 471 window >>= 1; 472 } 473 return 0; 474 } 475 476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 477 * can play nice with us, as sk_buff and skb->head might be either 478 * freed or shared with up to MAX_SKB_FRAGS segments. 479 * Only give a boost to drivers using page frag(s) to hold the frame(s), 480 * and if no payload was pulled in skb->head before reaching us. 481 */ 482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 483 { 484 u32 truesize = skb->truesize; 485 486 if (adjust && !skb_headlen(skb)) { 487 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 488 /* paranoid check, some drivers might be buggy */ 489 if (unlikely((int)truesize < (int)skb->len)) 490 truesize = skb->truesize; 491 } 492 return truesize; 493 } 494 495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 496 bool adjust) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 int room; 500 501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 502 503 if (room <= 0) 504 return; 505 506 /* Check #1 */ 507 if (!tcp_under_memory_pressure(sk)) { 508 unsigned int truesize = truesize_adjust(adjust, skb); 509 int incr; 510 511 /* Check #2. Increase window, if skb with such overhead 512 * will fit to rcvbuf in future. 513 */ 514 if (tcp_win_from_space(sk, truesize) <= skb->len) 515 incr = 2 * tp->advmss; 516 else 517 incr = __tcp_grow_window(sk, skb, truesize); 518 519 if (incr) { 520 incr = max_t(int, incr, 2 * skb->len); 521 tp->rcv_ssthresh += min(room, incr); 522 inet_csk(sk)->icsk_ack.quick |= 1; 523 } 524 } else { 525 /* Under pressure: 526 * Adjust rcv_ssthresh according to reserved mem 527 */ 528 tcp_adjust_rcv_ssthresh(sk); 529 } 530 } 531 532 /* 3. Try to fixup all. It is made immediately after connection enters 533 * established state. 534 */ 535 static void tcp_init_buffer_space(struct sock *sk) 536 { 537 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 538 struct tcp_sock *tp = tcp_sk(sk); 539 int maxwin; 540 541 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 542 tcp_sndbuf_expand(sk); 543 544 tcp_mstamp_refresh(tp); 545 tp->rcvq_space.time = tp->tcp_mstamp; 546 tp->rcvq_space.seq = tp->copied_seq; 547 548 maxwin = tcp_full_space(sk); 549 550 if (tp->window_clamp >= maxwin) { 551 tp->window_clamp = maxwin; 552 553 if (tcp_app_win && maxwin > 4 * tp->advmss) 554 tp->window_clamp = max(maxwin - 555 (maxwin >> tcp_app_win), 556 4 * tp->advmss); 557 } 558 559 /* Force reservation of one segment. */ 560 if (tcp_app_win && 561 tp->window_clamp > 2 * tp->advmss && 562 tp->window_clamp + tp->advmss > maxwin) 563 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 564 565 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 566 tp->snd_cwnd_stamp = tcp_jiffies32; 567 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 568 (u32)TCP_INIT_CWND * tp->advmss); 569 } 570 571 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 572 static void tcp_clamp_window(struct sock *sk) 573 { 574 struct tcp_sock *tp = tcp_sk(sk); 575 struct inet_connection_sock *icsk = inet_csk(sk); 576 struct net *net = sock_net(sk); 577 578 icsk->icsk_ack.quick = 0; 579 580 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 582 !tcp_under_memory_pressure(sk) && 583 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 584 WRITE_ONCE(sk->sk_rcvbuf, 585 min(atomic_read(&sk->sk_rmem_alloc), 586 net->ipv4.sysctl_tcp_rmem[2])); 587 } 588 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 589 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 590 } 591 592 /* Initialize RCV_MSS value. 593 * RCV_MSS is an our guess about MSS used by the peer. 594 * We haven't any direct information about the MSS. 595 * It's better to underestimate the RCV_MSS rather than overestimate. 596 * Overestimations make us ACKing less frequently than needed. 597 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 598 */ 599 void tcp_initialize_rcv_mss(struct sock *sk) 600 { 601 const struct tcp_sock *tp = tcp_sk(sk); 602 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 603 604 hint = min(hint, tp->rcv_wnd / 2); 605 hint = min(hint, TCP_MSS_DEFAULT); 606 hint = max(hint, TCP_MIN_MSS); 607 608 inet_csk(sk)->icsk_ack.rcv_mss = hint; 609 } 610 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 611 612 /* Receiver "autotuning" code. 613 * 614 * The algorithm for RTT estimation w/o timestamps is based on 615 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 616 * <https://public.lanl.gov/radiant/pubs.html#DRS> 617 * 618 * More detail on this code can be found at 619 * <http://staff.psc.edu/jheffner/>, 620 * though this reference is out of date. A new paper 621 * is pending. 622 */ 623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 624 { 625 u32 new_sample = tp->rcv_rtt_est.rtt_us; 626 long m = sample; 627 628 if (new_sample != 0) { 629 /* If we sample in larger samples in the non-timestamp 630 * case, we could grossly overestimate the RTT especially 631 * with chatty applications or bulk transfer apps which 632 * are stalled on filesystem I/O. 633 * 634 * Also, since we are only going for a minimum in the 635 * non-timestamp case, we do not smooth things out 636 * else with timestamps disabled convergence takes too 637 * long. 638 */ 639 if (!win_dep) { 640 m -= (new_sample >> 3); 641 new_sample += m; 642 } else { 643 m <<= 3; 644 if (m < new_sample) 645 new_sample = m; 646 } 647 } else { 648 /* No previous measure. */ 649 new_sample = m << 3; 650 } 651 652 tp->rcv_rtt_est.rtt_us = new_sample; 653 } 654 655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 656 { 657 u32 delta_us; 658 659 if (tp->rcv_rtt_est.time == 0) 660 goto new_measure; 661 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 662 return; 663 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 664 if (!delta_us) 665 delta_us = 1; 666 tcp_rcv_rtt_update(tp, delta_us, 1); 667 668 new_measure: 669 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 670 tp->rcv_rtt_est.time = tp->tcp_mstamp; 671 } 672 673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 674 const struct sk_buff *skb) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 678 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 679 return; 680 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 681 682 if (TCP_SKB_CB(skb)->end_seq - 683 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 684 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 685 u32 delta_us; 686 687 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 688 if (!delta) 689 delta = 1; 690 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 691 tcp_rcv_rtt_update(tp, delta_us, 0); 692 } 693 } 694 } 695 696 /* 697 * This function should be called every time data is copied to user space. 698 * It calculates the appropriate TCP receive buffer space. 699 */ 700 void tcp_rcv_space_adjust(struct sock *sk) 701 { 702 struct tcp_sock *tp = tcp_sk(sk); 703 u32 copied; 704 int time; 705 706 trace_tcp_rcv_space_adjust(sk); 707 708 tcp_mstamp_refresh(tp); 709 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 710 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 711 return; 712 713 /* Number of bytes copied to user in last RTT */ 714 copied = tp->copied_seq - tp->rcvq_space.seq; 715 if (copied <= tp->rcvq_space.space) 716 goto new_measure; 717 718 /* A bit of theory : 719 * copied = bytes received in previous RTT, our base window 720 * To cope with packet losses, we need a 2x factor 721 * To cope with slow start, and sender growing its cwin by 100 % 722 * every RTT, we need a 4x factor, because the ACK we are sending 723 * now is for the next RTT, not the current one : 724 * <prev RTT . ><current RTT .. ><next RTT .... > 725 */ 726 727 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 728 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 729 int rcvmem, rcvbuf; 730 u64 rcvwin, grow; 731 732 /* minimal window to cope with packet losses, assuming 733 * steady state. Add some cushion because of small variations. 734 */ 735 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 736 737 /* Accommodate for sender rate increase (eg. slow start) */ 738 grow = rcvwin * (copied - tp->rcvq_space.space); 739 do_div(grow, tp->rcvq_space.space); 740 rcvwin += (grow << 1); 741 742 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 743 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 744 rcvmem += 128; 745 746 do_div(rcvwin, tp->advmss); 747 rcvbuf = min_t(u64, rcvwin * rcvmem, 748 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 749 if (rcvbuf > sk->sk_rcvbuf) { 750 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 751 752 /* Make the window clamp follow along. */ 753 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 754 } 755 } 756 tp->rcvq_space.space = copied; 757 758 new_measure: 759 tp->rcvq_space.seq = tp->copied_seq; 760 tp->rcvq_space.time = tp->tcp_mstamp; 761 } 762 763 /* There is something which you must keep in mind when you analyze the 764 * behavior of the tp->ato delayed ack timeout interval. When a 765 * connection starts up, we want to ack as quickly as possible. The 766 * problem is that "good" TCP's do slow start at the beginning of data 767 * transmission. The means that until we send the first few ACK's the 768 * sender will sit on his end and only queue most of his data, because 769 * he can only send snd_cwnd unacked packets at any given time. For 770 * each ACK we send, he increments snd_cwnd and transmits more of his 771 * queue. -DaveM 772 */ 773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 774 { 775 struct tcp_sock *tp = tcp_sk(sk); 776 struct inet_connection_sock *icsk = inet_csk(sk); 777 u32 now; 778 779 inet_csk_schedule_ack(sk); 780 781 tcp_measure_rcv_mss(sk, skb); 782 783 tcp_rcv_rtt_measure(tp); 784 785 now = tcp_jiffies32; 786 787 if (!icsk->icsk_ack.ato) { 788 /* The _first_ data packet received, initialize 789 * delayed ACK engine. 790 */ 791 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 792 icsk->icsk_ack.ato = TCP_ATO_MIN; 793 } else { 794 int m = now - icsk->icsk_ack.lrcvtime; 795 796 if (m <= TCP_ATO_MIN / 2) { 797 /* The fastest case is the first. */ 798 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 799 } else if (m < icsk->icsk_ack.ato) { 800 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 801 if (icsk->icsk_ack.ato > icsk->icsk_rto) 802 icsk->icsk_ack.ato = icsk->icsk_rto; 803 } else if (m > icsk->icsk_rto) { 804 /* Too long gap. Apparently sender failed to 805 * restart window, so that we send ACKs quickly. 806 */ 807 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 808 sk_mem_reclaim(sk); 809 } 810 } 811 icsk->icsk_ack.lrcvtime = now; 812 813 tcp_ecn_check_ce(sk, skb); 814 815 if (skb->len >= 128) 816 tcp_grow_window(sk, skb, true); 817 } 818 819 /* Called to compute a smoothed rtt estimate. The data fed to this 820 * routine either comes from timestamps, or from segments that were 821 * known _not_ to have been retransmitted [see Karn/Partridge 822 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 823 * piece by Van Jacobson. 824 * NOTE: the next three routines used to be one big routine. 825 * To save cycles in the RFC 1323 implementation it was better to break 826 * it up into three procedures. -- erics 827 */ 828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 long m = mrtt_us; /* RTT */ 832 u32 srtt = tp->srtt_us; 833 834 /* The following amusing code comes from Jacobson's 835 * article in SIGCOMM '88. Note that rtt and mdev 836 * are scaled versions of rtt and mean deviation. 837 * This is designed to be as fast as possible 838 * m stands for "measurement". 839 * 840 * On a 1990 paper the rto value is changed to: 841 * RTO = rtt + 4 * mdev 842 * 843 * Funny. This algorithm seems to be very broken. 844 * These formulae increase RTO, when it should be decreased, increase 845 * too slowly, when it should be increased quickly, decrease too quickly 846 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 847 * does not matter how to _calculate_ it. Seems, it was trap 848 * that VJ failed to avoid. 8) 849 */ 850 if (srtt != 0) { 851 m -= (srtt >> 3); /* m is now error in rtt est */ 852 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 853 if (m < 0) { 854 m = -m; /* m is now abs(error) */ 855 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 856 /* This is similar to one of Eifel findings. 857 * Eifel blocks mdev updates when rtt decreases. 858 * This solution is a bit different: we use finer gain 859 * for mdev in this case (alpha*beta). 860 * Like Eifel it also prevents growth of rto, 861 * but also it limits too fast rto decreases, 862 * happening in pure Eifel. 863 */ 864 if (m > 0) 865 m >>= 3; 866 } else { 867 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 868 } 869 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 870 if (tp->mdev_us > tp->mdev_max_us) { 871 tp->mdev_max_us = tp->mdev_us; 872 if (tp->mdev_max_us > tp->rttvar_us) 873 tp->rttvar_us = tp->mdev_max_us; 874 } 875 if (after(tp->snd_una, tp->rtt_seq)) { 876 if (tp->mdev_max_us < tp->rttvar_us) 877 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 878 tp->rtt_seq = tp->snd_nxt; 879 tp->mdev_max_us = tcp_rto_min_us(sk); 880 881 tcp_bpf_rtt(sk); 882 } 883 } else { 884 /* no previous measure. */ 885 srtt = m << 3; /* take the measured time to be rtt */ 886 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 887 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 888 tp->mdev_max_us = tp->rttvar_us; 889 tp->rtt_seq = tp->snd_nxt; 890 891 tcp_bpf_rtt(sk); 892 } 893 tp->srtt_us = max(1U, srtt); 894 } 895 896 static void tcp_update_pacing_rate(struct sock *sk) 897 { 898 const struct tcp_sock *tp = tcp_sk(sk); 899 u64 rate; 900 901 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 902 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 903 904 /* current rate is (cwnd * mss) / srtt 905 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 906 * In Congestion Avoidance phase, set it to 120 % the current rate. 907 * 908 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 909 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 910 * end of slow start and should slow down. 911 */ 912 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 913 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 914 else 915 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 916 917 rate *= max(tp->snd_cwnd, tp->packets_out); 918 919 if (likely(tp->srtt_us)) 920 do_div(rate, tp->srtt_us); 921 922 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 923 * without any lock. We want to make sure compiler wont store 924 * intermediate values in this location. 925 */ 926 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 927 sk->sk_max_pacing_rate)); 928 } 929 930 /* Calculate rto without backoff. This is the second half of Van Jacobson's 931 * routine referred to above. 932 */ 933 static void tcp_set_rto(struct sock *sk) 934 { 935 const struct tcp_sock *tp = tcp_sk(sk); 936 /* Old crap is replaced with new one. 8) 937 * 938 * More seriously: 939 * 1. If rtt variance happened to be less 50msec, it is hallucination. 940 * It cannot be less due to utterly erratic ACK generation made 941 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 942 * to do with delayed acks, because at cwnd>2 true delack timeout 943 * is invisible. Actually, Linux-2.4 also generates erratic 944 * ACKs in some circumstances. 945 */ 946 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 947 948 /* 2. Fixups made earlier cannot be right. 949 * If we do not estimate RTO correctly without them, 950 * all the algo is pure shit and should be replaced 951 * with correct one. It is exactly, which we pretend to do. 952 */ 953 954 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 955 * guarantees that rto is higher. 956 */ 957 tcp_bound_rto(sk); 958 } 959 960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 961 { 962 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 963 964 if (!cwnd) 965 cwnd = TCP_INIT_CWND; 966 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 967 } 968 969 struct tcp_sacktag_state { 970 /* Timestamps for earliest and latest never-retransmitted segment 971 * that was SACKed. RTO needs the earliest RTT to stay conservative, 972 * but congestion control should still get an accurate delay signal. 973 */ 974 u64 first_sackt; 975 u64 last_sackt; 976 u32 reord; 977 u32 sack_delivered; 978 int flag; 979 unsigned int mss_now; 980 struct rate_sample *rate; 981 }; 982 983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 984 * and spurious retransmission information if this DSACK is unlikely caused by 985 * sender's action: 986 * - DSACKed sequence range is larger than maximum receiver's window. 987 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 988 */ 989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 990 u32 end_seq, struct tcp_sacktag_state *state) 991 { 992 u32 seq_len, dup_segs = 1; 993 994 if (!before(start_seq, end_seq)) 995 return 0; 996 997 seq_len = end_seq - start_seq; 998 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 999 if (seq_len > tp->max_window) 1000 return 0; 1001 if (seq_len > tp->mss_cache) 1002 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1003 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1004 state->flag |= FLAG_DSACK_TLP; 1005 1006 tp->dsack_dups += dup_segs; 1007 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1008 if (tp->dsack_dups > tp->total_retrans) 1009 return 0; 1010 1011 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1012 /* We increase the RACK ordering window in rounds where we receive 1013 * DSACKs that may have been due to reordering causing RACK to trigger 1014 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1015 * without having seen reordering, or that match TLP probes (TLP 1016 * is timer-driven, not triggered by RACK). 1017 */ 1018 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1019 tp->rack.dsack_seen = 1; 1020 1021 state->flag |= FLAG_DSACKING_ACK; 1022 /* A spurious retransmission is delivered */ 1023 state->sack_delivered += dup_segs; 1024 1025 return dup_segs; 1026 } 1027 1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1029 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1030 * distance is approximated in full-mss packet distance ("reordering"). 1031 */ 1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1033 const int ts) 1034 { 1035 struct tcp_sock *tp = tcp_sk(sk); 1036 const u32 mss = tp->mss_cache; 1037 u32 fack, metric; 1038 1039 fack = tcp_highest_sack_seq(tp); 1040 if (!before(low_seq, fack)) 1041 return; 1042 1043 metric = fack - low_seq; 1044 if ((metric > tp->reordering * mss) && mss) { 1045 #if FASTRETRANS_DEBUG > 1 1046 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1047 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1048 tp->reordering, 1049 0, 1050 tp->sacked_out, 1051 tp->undo_marker ? tp->undo_retrans : 0); 1052 #endif 1053 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1054 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1055 } 1056 1057 /* This exciting event is worth to be remembered. 8) */ 1058 tp->reord_seen++; 1059 NET_INC_STATS(sock_net(sk), 1060 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1061 } 1062 1063 /* This must be called before lost_out or retrans_out are updated 1064 * on a new loss, because we want to know if all skbs previously 1065 * known to be lost have already been retransmitted, indicating 1066 * that this newly lost skb is our next skb to retransmit. 1067 */ 1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1069 { 1070 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1071 (tp->retransmit_skb_hint && 1072 before(TCP_SKB_CB(skb)->seq, 1073 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1074 tp->retransmit_skb_hint = skb; 1075 } 1076 1077 /* Sum the number of packets on the wire we have marked as lost, and 1078 * notify the congestion control module that the given skb was marked lost. 1079 */ 1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1081 { 1082 tp->lost += tcp_skb_pcount(skb); 1083 } 1084 1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1086 { 1087 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1088 struct tcp_sock *tp = tcp_sk(sk); 1089 1090 if (sacked & TCPCB_SACKED_ACKED) 1091 return; 1092 1093 tcp_verify_retransmit_hint(tp, skb); 1094 if (sacked & TCPCB_LOST) { 1095 if (sacked & TCPCB_SACKED_RETRANS) { 1096 /* Account for retransmits that are lost again */ 1097 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1098 tp->retrans_out -= tcp_skb_pcount(skb); 1099 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1100 tcp_skb_pcount(skb)); 1101 tcp_notify_skb_loss_event(tp, skb); 1102 } 1103 } else { 1104 tp->lost_out += tcp_skb_pcount(skb); 1105 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1106 tcp_notify_skb_loss_event(tp, skb); 1107 } 1108 } 1109 1110 /* Updates the delivered and delivered_ce counts */ 1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1112 bool ece_ack) 1113 { 1114 tp->delivered += delivered; 1115 if (ece_ack) 1116 tp->delivered_ce += delivered; 1117 } 1118 1119 /* This procedure tags the retransmission queue when SACKs arrive. 1120 * 1121 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1122 * Packets in queue with these bits set are counted in variables 1123 * sacked_out, retrans_out and lost_out, correspondingly. 1124 * 1125 * Valid combinations are: 1126 * Tag InFlight Description 1127 * 0 1 - orig segment is in flight. 1128 * S 0 - nothing flies, orig reached receiver. 1129 * L 0 - nothing flies, orig lost by net. 1130 * R 2 - both orig and retransmit are in flight. 1131 * L|R 1 - orig is lost, retransmit is in flight. 1132 * S|R 1 - orig reached receiver, retrans is still in flight. 1133 * (L|S|R is logically valid, it could occur when L|R is sacked, 1134 * but it is equivalent to plain S and code short-curcuits it to S. 1135 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1136 * 1137 * These 6 states form finite state machine, controlled by the following events: 1138 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1139 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1140 * 3. Loss detection event of two flavors: 1141 * A. Scoreboard estimator decided the packet is lost. 1142 * A'. Reno "three dupacks" marks head of queue lost. 1143 * B. SACK arrives sacking SND.NXT at the moment, when the 1144 * segment was retransmitted. 1145 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1146 * 1147 * It is pleasant to note, that state diagram turns out to be commutative, 1148 * so that we are allowed not to be bothered by order of our actions, 1149 * when multiple events arrive simultaneously. (see the function below). 1150 * 1151 * Reordering detection. 1152 * -------------------- 1153 * Reordering metric is maximal distance, which a packet can be displaced 1154 * in packet stream. With SACKs we can estimate it: 1155 * 1156 * 1. SACK fills old hole and the corresponding segment was not 1157 * ever retransmitted -> reordering. Alas, we cannot use it 1158 * when segment was retransmitted. 1159 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1160 * for retransmitted and already SACKed segment -> reordering.. 1161 * Both of these heuristics are not used in Loss state, when we cannot 1162 * account for retransmits accurately. 1163 * 1164 * SACK block validation. 1165 * ---------------------- 1166 * 1167 * SACK block range validation checks that the received SACK block fits to 1168 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1169 * Note that SND.UNA is not included to the range though being valid because 1170 * it means that the receiver is rather inconsistent with itself reporting 1171 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1172 * perfectly valid, however, in light of RFC2018 which explicitly states 1173 * that "SACK block MUST reflect the newest segment. Even if the newest 1174 * segment is going to be discarded ...", not that it looks very clever 1175 * in case of head skb. Due to potentional receiver driven attacks, we 1176 * choose to avoid immediate execution of a walk in write queue due to 1177 * reneging and defer head skb's loss recovery to standard loss recovery 1178 * procedure that will eventually trigger (nothing forbids us doing this). 1179 * 1180 * Implements also blockage to start_seq wrap-around. Problem lies in the 1181 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1182 * there's no guarantee that it will be before snd_nxt (n). The problem 1183 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1184 * wrap (s_w): 1185 * 1186 * <- outs wnd -> <- wrapzone -> 1187 * u e n u_w e_w s n_w 1188 * | | | | | | | 1189 * |<------------+------+----- TCP seqno space --------------+---------->| 1190 * ...-- <2^31 ->| |<--------... 1191 * ...---- >2^31 ------>| |<--------... 1192 * 1193 * Current code wouldn't be vulnerable but it's better still to discard such 1194 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1195 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1196 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1197 * equal to the ideal case (infinite seqno space without wrap caused issues). 1198 * 1199 * With D-SACK the lower bound is extended to cover sequence space below 1200 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1201 * again, D-SACK block must not to go across snd_una (for the same reason as 1202 * for the normal SACK blocks, explained above). But there all simplicity 1203 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1204 * fully below undo_marker they do not affect behavior in anyway and can 1205 * therefore be safely ignored. In rare cases (which are more or less 1206 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1207 * fragmentation and packet reordering past skb's retransmission. To consider 1208 * them correctly, the acceptable range must be extended even more though 1209 * the exact amount is rather hard to quantify. However, tp->max_window can 1210 * be used as an exaggerated estimate. 1211 */ 1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1213 u32 start_seq, u32 end_seq) 1214 { 1215 /* Too far in future, or reversed (interpretation is ambiguous) */ 1216 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1217 return false; 1218 1219 /* Nasty start_seq wrap-around check (see comments above) */ 1220 if (!before(start_seq, tp->snd_nxt)) 1221 return false; 1222 1223 /* In outstanding window? ...This is valid exit for D-SACKs too. 1224 * start_seq == snd_una is non-sensical (see comments above) 1225 */ 1226 if (after(start_seq, tp->snd_una)) 1227 return true; 1228 1229 if (!is_dsack || !tp->undo_marker) 1230 return false; 1231 1232 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1233 if (after(end_seq, tp->snd_una)) 1234 return false; 1235 1236 if (!before(start_seq, tp->undo_marker)) 1237 return true; 1238 1239 /* Too old */ 1240 if (!after(end_seq, tp->undo_marker)) 1241 return false; 1242 1243 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1244 * start_seq < undo_marker and end_seq >= undo_marker. 1245 */ 1246 return !before(start_seq, end_seq - tp->max_window); 1247 } 1248 1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1250 struct tcp_sack_block_wire *sp, int num_sacks, 1251 u32 prior_snd_una, struct tcp_sacktag_state *state) 1252 { 1253 struct tcp_sock *tp = tcp_sk(sk); 1254 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1255 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1256 u32 dup_segs; 1257 1258 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1259 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1260 } else if (num_sacks > 1) { 1261 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1262 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1263 1264 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1265 return false; 1266 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1267 } else { 1268 return false; 1269 } 1270 1271 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1272 if (!dup_segs) { /* Skip dubious DSACK */ 1273 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1274 return false; 1275 } 1276 1277 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1278 1279 /* D-SACK for already forgotten data... Do dumb counting. */ 1280 if (tp->undo_marker && tp->undo_retrans > 0 && 1281 !after(end_seq_0, prior_snd_una) && 1282 after(end_seq_0, tp->undo_marker)) 1283 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1284 1285 return true; 1286 } 1287 1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1289 * the incoming SACK may not exactly match but we can find smaller MSS 1290 * aligned portion of it that matches. Therefore we might need to fragment 1291 * which may fail and creates some hassle (caller must handle error case 1292 * returns). 1293 * 1294 * FIXME: this could be merged to shift decision code 1295 */ 1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1297 u32 start_seq, u32 end_seq) 1298 { 1299 int err; 1300 bool in_sack; 1301 unsigned int pkt_len; 1302 unsigned int mss; 1303 1304 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1305 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1306 1307 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1308 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1309 mss = tcp_skb_mss(skb); 1310 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1311 1312 if (!in_sack) { 1313 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1314 if (pkt_len < mss) 1315 pkt_len = mss; 1316 } else { 1317 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1318 if (pkt_len < mss) 1319 return -EINVAL; 1320 } 1321 1322 /* Round if necessary so that SACKs cover only full MSSes 1323 * and/or the remaining small portion (if present) 1324 */ 1325 if (pkt_len > mss) { 1326 unsigned int new_len = (pkt_len / mss) * mss; 1327 if (!in_sack && new_len < pkt_len) 1328 new_len += mss; 1329 pkt_len = new_len; 1330 } 1331 1332 if (pkt_len >= skb->len && !in_sack) 1333 return 0; 1334 1335 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1336 pkt_len, mss, GFP_ATOMIC); 1337 if (err < 0) 1338 return err; 1339 } 1340 1341 return in_sack; 1342 } 1343 1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1345 static u8 tcp_sacktag_one(struct sock *sk, 1346 struct tcp_sacktag_state *state, u8 sacked, 1347 u32 start_seq, u32 end_seq, 1348 int dup_sack, int pcount, 1349 u64 xmit_time) 1350 { 1351 struct tcp_sock *tp = tcp_sk(sk); 1352 1353 /* Account D-SACK for retransmitted packet. */ 1354 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1355 if (tp->undo_marker && tp->undo_retrans > 0 && 1356 after(end_seq, tp->undo_marker)) 1357 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1358 if ((sacked & TCPCB_SACKED_ACKED) && 1359 before(start_seq, state->reord)) 1360 state->reord = start_seq; 1361 } 1362 1363 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1364 if (!after(end_seq, tp->snd_una)) 1365 return sacked; 1366 1367 if (!(sacked & TCPCB_SACKED_ACKED)) { 1368 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1369 1370 if (sacked & TCPCB_SACKED_RETRANS) { 1371 /* If the segment is not tagged as lost, 1372 * we do not clear RETRANS, believing 1373 * that retransmission is still in flight. 1374 */ 1375 if (sacked & TCPCB_LOST) { 1376 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1377 tp->lost_out -= pcount; 1378 tp->retrans_out -= pcount; 1379 } 1380 } else { 1381 if (!(sacked & TCPCB_RETRANS)) { 1382 /* New sack for not retransmitted frame, 1383 * which was in hole. It is reordering. 1384 */ 1385 if (before(start_seq, 1386 tcp_highest_sack_seq(tp)) && 1387 before(start_seq, state->reord)) 1388 state->reord = start_seq; 1389 1390 if (!after(end_seq, tp->high_seq)) 1391 state->flag |= FLAG_ORIG_SACK_ACKED; 1392 if (state->first_sackt == 0) 1393 state->first_sackt = xmit_time; 1394 state->last_sackt = xmit_time; 1395 } 1396 1397 if (sacked & TCPCB_LOST) { 1398 sacked &= ~TCPCB_LOST; 1399 tp->lost_out -= pcount; 1400 } 1401 } 1402 1403 sacked |= TCPCB_SACKED_ACKED; 1404 state->flag |= FLAG_DATA_SACKED; 1405 tp->sacked_out += pcount; 1406 /* Out-of-order packets delivered */ 1407 state->sack_delivered += pcount; 1408 1409 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1410 if (tp->lost_skb_hint && 1411 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1412 tp->lost_cnt_hint += pcount; 1413 } 1414 1415 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1416 * frames and clear it. undo_retrans is decreased above, L|R frames 1417 * are accounted above as well. 1418 */ 1419 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1420 sacked &= ~TCPCB_SACKED_RETRANS; 1421 tp->retrans_out -= pcount; 1422 } 1423 1424 return sacked; 1425 } 1426 1427 /* Shift newly-SACKed bytes from this skb to the immediately previous 1428 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1429 */ 1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1431 struct sk_buff *skb, 1432 struct tcp_sacktag_state *state, 1433 unsigned int pcount, int shifted, int mss, 1434 bool dup_sack) 1435 { 1436 struct tcp_sock *tp = tcp_sk(sk); 1437 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1438 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1439 1440 BUG_ON(!pcount); 1441 1442 /* Adjust counters and hints for the newly sacked sequence 1443 * range but discard the return value since prev is already 1444 * marked. We must tag the range first because the seq 1445 * advancement below implicitly advances 1446 * tcp_highest_sack_seq() when skb is highest_sack. 1447 */ 1448 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1449 start_seq, end_seq, dup_sack, pcount, 1450 tcp_skb_timestamp_us(skb)); 1451 tcp_rate_skb_delivered(sk, skb, state->rate); 1452 1453 if (skb == tp->lost_skb_hint) 1454 tp->lost_cnt_hint += pcount; 1455 1456 TCP_SKB_CB(prev)->end_seq += shifted; 1457 TCP_SKB_CB(skb)->seq += shifted; 1458 1459 tcp_skb_pcount_add(prev, pcount); 1460 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1461 tcp_skb_pcount_add(skb, -pcount); 1462 1463 /* When we're adding to gso_segs == 1, gso_size will be zero, 1464 * in theory this shouldn't be necessary but as long as DSACK 1465 * code can come after this skb later on it's better to keep 1466 * setting gso_size to something. 1467 */ 1468 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1469 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1470 1471 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1472 if (tcp_skb_pcount(skb) <= 1) 1473 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1474 1475 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1476 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1477 1478 if (skb->len > 0) { 1479 BUG_ON(!tcp_skb_pcount(skb)); 1480 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1481 return false; 1482 } 1483 1484 /* Whole SKB was eaten :-) */ 1485 1486 if (skb == tp->retransmit_skb_hint) 1487 tp->retransmit_skb_hint = prev; 1488 if (skb == tp->lost_skb_hint) { 1489 tp->lost_skb_hint = prev; 1490 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1491 } 1492 1493 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1494 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1495 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1496 TCP_SKB_CB(prev)->end_seq++; 1497 1498 if (skb == tcp_highest_sack(sk)) 1499 tcp_advance_highest_sack(sk, skb); 1500 1501 tcp_skb_collapse_tstamp(prev, skb); 1502 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1503 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1504 1505 tcp_rtx_queue_unlink_and_free(skb, sk); 1506 1507 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1508 1509 return true; 1510 } 1511 1512 /* I wish gso_size would have a bit more sane initialization than 1513 * something-or-zero which complicates things 1514 */ 1515 static int tcp_skb_seglen(const struct sk_buff *skb) 1516 { 1517 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1518 } 1519 1520 /* Shifting pages past head area doesn't work */ 1521 static int skb_can_shift(const struct sk_buff *skb) 1522 { 1523 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1524 } 1525 1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1527 int pcount, int shiftlen) 1528 { 1529 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1530 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1531 * to make sure not storing more than 65535 * 8 bytes per skb, 1532 * even if current MSS is bigger. 1533 */ 1534 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1535 return 0; 1536 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1537 return 0; 1538 return skb_shift(to, from, shiftlen); 1539 } 1540 1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1542 * skb. 1543 */ 1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1545 struct tcp_sacktag_state *state, 1546 u32 start_seq, u32 end_seq, 1547 bool dup_sack) 1548 { 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 struct sk_buff *prev; 1551 int mss; 1552 int pcount = 0; 1553 int len; 1554 int in_sack; 1555 1556 /* Normally R but no L won't result in plain S */ 1557 if (!dup_sack && 1558 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1559 goto fallback; 1560 if (!skb_can_shift(skb)) 1561 goto fallback; 1562 /* This frame is about to be dropped (was ACKed). */ 1563 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1564 goto fallback; 1565 1566 /* Can only happen with delayed DSACK + discard craziness */ 1567 prev = skb_rb_prev(skb); 1568 if (!prev) 1569 goto fallback; 1570 1571 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1572 goto fallback; 1573 1574 if (!tcp_skb_can_collapse(prev, skb)) 1575 goto fallback; 1576 1577 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1578 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1579 1580 if (in_sack) { 1581 len = skb->len; 1582 pcount = tcp_skb_pcount(skb); 1583 mss = tcp_skb_seglen(skb); 1584 1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1586 * drop this restriction as unnecessary 1587 */ 1588 if (mss != tcp_skb_seglen(prev)) 1589 goto fallback; 1590 } else { 1591 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1592 goto noop; 1593 /* CHECKME: This is non-MSS split case only?, this will 1594 * cause skipped skbs due to advancing loop btw, original 1595 * has that feature too 1596 */ 1597 if (tcp_skb_pcount(skb) <= 1) 1598 goto noop; 1599 1600 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1601 if (!in_sack) { 1602 /* TODO: head merge to next could be attempted here 1603 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1604 * though it might not be worth of the additional hassle 1605 * 1606 * ...we can probably just fallback to what was done 1607 * previously. We could try merging non-SACKed ones 1608 * as well but it probably isn't going to buy off 1609 * because later SACKs might again split them, and 1610 * it would make skb timestamp tracking considerably 1611 * harder problem. 1612 */ 1613 goto fallback; 1614 } 1615 1616 len = end_seq - TCP_SKB_CB(skb)->seq; 1617 BUG_ON(len < 0); 1618 BUG_ON(len > skb->len); 1619 1620 /* MSS boundaries should be honoured or else pcount will 1621 * severely break even though it makes things bit trickier. 1622 * Optimize common case to avoid most of the divides 1623 */ 1624 mss = tcp_skb_mss(skb); 1625 1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1627 * drop this restriction as unnecessary 1628 */ 1629 if (mss != tcp_skb_seglen(prev)) 1630 goto fallback; 1631 1632 if (len == mss) { 1633 pcount = 1; 1634 } else if (len < mss) { 1635 goto noop; 1636 } else { 1637 pcount = len / mss; 1638 len = pcount * mss; 1639 } 1640 } 1641 1642 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1643 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1644 goto fallback; 1645 1646 if (!tcp_skb_shift(prev, skb, pcount, len)) 1647 goto fallback; 1648 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1649 goto out; 1650 1651 /* Hole filled allows collapsing with the next as well, this is very 1652 * useful when hole on every nth skb pattern happens 1653 */ 1654 skb = skb_rb_next(prev); 1655 if (!skb) 1656 goto out; 1657 1658 if (!skb_can_shift(skb) || 1659 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1660 (mss != tcp_skb_seglen(skb))) 1661 goto out; 1662 1663 len = skb->len; 1664 pcount = tcp_skb_pcount(skb); 1665 if (tcp_skb_shift(prev, skb, pcount, len)) 1666 tcp_shifted_skb(sk, prev, skb, state, pcount, 1667 len, mss, 0); 1668 1669 out: 1670 return prev; 1671 1672 noop: 1673 return skb; 1674 1675 fallback: 1676 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1677 return NULL; 1678 } 1679 1680 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1681 struct tcp_sack_block *next_dup, 1682 struct tcp_sacktag_state *state, 1683 u32 start_seq, u32 end_seq, 1684 bool dup_sack_in) 1685 { 1686 struct tcp_sock *tp = tcp_sk(sk); 1687 struct sk_buff *tmp; 1688 1689 skb_rbtree_walk_from(skb) { 1690 int in_sack = 0; 1691 bool dup_sack = dup_sack_in; 1692 1693 /* queue is in-order => we can short-circuit the walk early */ 1694 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1695 break; 1696 1697 if (next_dup && 1698 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1699 in_sack = tcp_match_skb_to_sack(sk, skb, 1700 next_dup->start_seq, 1701 next_dup->end_seq); 1702 if (in_sack > 0) 1703 dup_sack = true; 1704 } 1705 1706 /* skb reference here is a bit tricky to get right, since 1707 * shifting can eat and free both this skb and the next, 1708 * so not even _safe variant of the loop is enough. 1709 */ 1710 if (in_sack <= 0) { 1711 tmp = tcp_shift_skb_data(sk, skb, state, 1712 start_seq, end_seq, dup_sack); 1713 if (tmp) { 1714 if (tmp != skb) { 1715 skb = tmp; 1716 continue; 1717 } 1718 1719 in_sack = 0; 1720 } else { 1721 in_sack = tcp_match_skb_to_sack(sk, skb, 1722 start_seq, 1723 end_seq); 1724 } 1725 } 1726 1727 if (unlikely(in_sack < 0)) 1728 break; 1729 1730 if (in_sack) { 1731 TCP_SKB_CB(skb)->sacked = 1732 tcp_sacktag_one(sk, 1733 state, 1734 TCP_SKB_CB(skb)->sacked, 1735 TCP_SKB_CB(skb)->seq, 1736 TCP_SKB_CB(skb)->end_seq, 1737 dup_sack, 1738 tcp_skb_pcount(skb), 1739 tcp_skb_timestamp_us(skb)); 1740 tcp_rate_skb_delivered(sk, skb, state->rate); 1741 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1742 list_del_init(&skb->tcp_tsorted_anchor); 1743 1744 if (!before(TCP_SKB_CB(skb)->seq, 1745 tcp_highest_sack_seq(tp))) 1746 tcp_advance_highest_sack(sk, skb); 1747 } 1748 } 1749 return skb; 1750 } 1751 1752 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1753 { 1754 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1755 struct sk_buff *skb; 1756 1757 while (*p) { 1758 parent = *p; 1759 skb = rb_to_skb(parent); 1760 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1761 p = &parent->rb_left; 1762 continue; 1763 } 1764 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1765 p = &parent->rb_right; 1766 continue; 1767 } 1768 return skb; 1769 } 1770 return NULL; 1771 } 1772 1773 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1774 u32 skip_to_seq) 1775 { 1776 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1777 return skb; 1778 1779 return tcp_sacktag_bsearch(sk, skip_to_seq); 1780 } 1781 1782 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1783 struct sock *sk, 1784 struct tcp_sack_block *next_dup, 1785 struct tcp_sacktag_state *state, 1786 u32 skip_to_seq) 1787 { 1788 if (!next_dup) 1789 return skb; 1790 1791 if (before(next_dup->start_seq, skip_to_seq)) { 1792 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1793 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1794 next_dup->start_seq, next_dup->end_seq, 1795 1); 1796 } 1797 1798 return skb; 1799 } 1800 1801 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1802 { 1803 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1804 } 1805 1806 static int 1807 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1808 u32 prior_snd_una, struct tcp_sacktag_state *state) 1809 { 1810 struct tcp_sock *tp = tcp_sk(sk); 1811 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1812 TCP_SKB_CB(ack_skb)->sacked); 1813 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1814 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1815 struct tcp_sack_block *cache; 1816 struct sk_buff *skb; 1817 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1818 int used_sacks; 1819 bool found_dup_sack = false; 1820 int i, j; 1821 int first_sack_index; 1822 1823 state->flag = 0; 1824 state->reord = tp->snd_nxt; 1825 1826 if (!tp->sacked_out) 1827 tcp_highest_sack_reset(sk); 1828 1829 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1830 num_sacks, prior_snd_una, state); 1831 1832 /* Eliminate too old ACKs, but take into 1833 * account more or less fresh ones, they can 1834 * contain valid SACK info. 1835 */ 1836 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1837 return 0; 1838 1839 if (!tp->packets_out) 1840 goto out; 1841 1842 used_sacks = 0; 1843 first_sack_index = 0; 1844 for (i = 0; i < num_sacks; i++) { 1845 bool dup_sack = !i && found_dup_sack; 1846 1847 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1848 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1849 1850 if (!tcp_is_sackblock_valid(tp, dup_sack, 1851 sp[used_sacks].start_seq, 1852 sp[used_sacks].end_seq)) { 1853 int mib_idx; 1854 1855 if (dup_sack) { 1856 if (!tp->undo_marker) 1857 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1858 else 1859 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1860 } else { 1861 /* Don't count olds caused by ACK reordering */ 1862 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1863 !after(sp[used_sacks].end_seq, tp->snd_una)) 1864 continue; 1865 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1866 } 1867 1868 NET_INC_STATS(sock_net(sk), mib_idx); 1869 if (i == 0) 1870 first_sack_index = -1; 1871 continue; 1872 } 1873 1874 /* Ignore very old stuff early */ 1875 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1876 if (i == 0) 1877 first_sack_index = -1; 1878 continue; 1879 } 1880 1881 used_sacks++; 1882 } 1883 1884 /* order SACK blocks to allow in order walk of the retrans queue */ 1885 for (i = used_sacks - 1; i > 0; i--) { 1886 for (j = 0; j < i; j++) { 1887 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1888 swap(sp[j], sp[j + 1]); 1889 1890 /* Track where the first SACK block goes to */ 1891 if (j == first_sack_index) 1892 first_sack_index = j + 1; 1893 } 1894 } 1895 } 1896 1897 state->mss_now = tcp_current_mss(sk); 1898 skb = NULL; 1899 i = 0; 1900 1901 if (!tp->sacked_out) { 1902 /* It's already past, so skip checking against it */ 1903 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1904 } else { 1905 cache = tp->recv_sack_cache; 1906 /* Skip empty blocks in at head of the cache */ 1907 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1908 !cache->end_seq) 1909 cache++; 1910 } 1911 1912 while (i < used_sacks) { 1913 u32 start_seq = sp[i].start_seq; 1914 u32 end_seq = sp[i].end_seq; 1915 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1916 struct tcp_sack_block *next_dup = NULL; 1917 1918 if (found_dup_sack && ((i + 1) == first_sack_index)) 1919 next_dup = &sp[i + 1]; 1920 1921 /* Skip too early cached blocks */ 1922 while (tcp_sack_cache_ok(tp, cache) && 1923 !before(start_seq, cache->end_seq)) 1924 cache++; 1925 1926 /* Can skip some work by looking recv_sack_cache? */ 1927 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1928 after(end_seq, cache->start_seq)) { 1929 1930 /* Head todo? */ 1931 if (before(start_seq, cache->start_seq)) { 1932 skb = tcp_sacktag_skip(skb, sk, start_seq); 1933 skb = tcp_sacktag_walk(skb, sk, next_dup, 1934 state, 1935 start_seq, 1936 cache->start_seq, 1937 dup_sack); 1938 } 1939 1940 /* Rest of the block already fully processed? */ 1941 if (!after(end_seq, cache->end_seq)) 1942 goto advance_sp; 1943 1944 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1945 state, 1946 cache->end_seq); 1947 1948 /* ...tail remains todo... */ 1949 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1950 /* ...but better entrypoint exists! */ 1951 skb = tcp_highest_sack(sk); 1952 if (!skb) 1953 break; 1954 cache++; 1955 goto walk; 1956 } 1957 1958 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1959 /* Check overlap against next cached too (past this one already) */ 1960 cache++; 1961 continue; 1962 } 1963 1964 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1965 skb = tcp_highest_sack(sk); 1966 if (!skb) 1967 break; 1968 } 1969 skb = tcp_sacktag_skip(skb, sk, start_seq); 1970 1971 walk: 1972 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1973 start_seq, end_seq, dup_sack); 1974 1975 advance_sp: 1976 i++; 1977 } 1978 1979 /* Clear the head of the cache sack blocks so we can skip it next time */ 1980 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1981 tp->recv_sack_cache[i].start_seq = 0; 1982 tp->recv_sack_cache[i].end_seq = 0; 1983 } 1984 for (j = 0; j < used_sacks; j++) 1985 tp->recv_sack_cache[i++] = sp[j]; 1986 1987 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1988 tcp_check_sack_reordering(sk, state->reord, 0); 1989 1990 tcp_verify_left_out(tp); 1991 out: 1992 1993 #if FASTRETRANS_DEBUG > 0 1994 WARN_ON((int)tp->sacked_out < 0); 1995 WARN_ON((int)tp->lost_out < 0); 1996 WARN_ON((int)tp->retrans_out < 0); 1997 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1998 #endif 1999 return state->flag; 2000 } 2001 2002 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2003 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2004 */ 2005 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2006 { 2007 u32 holes; 2008 2009 holes = max(tp->lost_out, 1U); 2010 holes = min(holes, tp->packets_out); 2011 2012 if ((tp->sacked_out + holes) > tp->packets_out) { 2013 tp->sacked_out = tp->packets_out - holes; 2014 return true; 2015 } 2016 return false; 2017 } 2018 2019 /* If we receive more dupacks than we expected counting segments 2020 * in assumption of absent reordering, interpret this as reordering. 2021 * The only another reason could be bug in receiver TCP. 2022 */ 2023 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2024 { 2025 struct tcp_sock *tp = tcp_sk(sk); 2026 2027 if (!tcp_limit_reno_sacked(tp)) 2028 return; 2029 2030 tp->reordering = min_t(u32, tp->packets_out + addend, 2031 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 2032 tp->reord_seen++; 2033 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2034 } 2035 2036 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2037 2038 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2039 { 2040 if (num_dupack) { 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 u32 prior_sacked = tp->sacked_out; 2043 s32 delivered; 2044 2045 tp->sacked_out += num_dupack; 2046 tcp_check_reno_reordering(sk, 0); 2047 delivered = tp->sacked_out - prior_sacked; 2048 if (delivered > 0) 2049 tcp_count_delivered(tp, delivered, ece_ack); 2050 tcp_verify_left_out(tp); 2051 } 2052 } 2053 2054 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2055 2056 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2057 { 2058 struct tcp_sock *tp = tcp_sk(sk); 2059 2060 if (acked > 0) { 2061 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2062 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2063 ece_ack); 2064 if (acked - 1 >= tp->sacked_out) 2065 tp->sacked_out = 0; 2066 else 2067 tp->sacked_out -= acked - 1; 2068 } 2069 tcp_check_reno_reordering(sk, acked); 2070 tcp_verify_left_out(tp); 2071 } 2072 2073 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2074 { 2075 tp->sacked_out = 0; 2076 } 2077 2078 void tcp_clear_retrans(struct tcp_sock *tp) 2079 { 2080 tp->retrans_out = 0; 2081 tp->lost_out = 0; 2082 tp->undo_marker = 0; 2083 tp->undo_retrans = -1; 2084 tp->sacked_out = 0; 2085 } 2086 2087 static inline void tcp_init_undo(struct tcp_sock *tp) 2088 { 2089 tp->undo_marker = tp->snd_una; 2090 /* Retransmission still in flight may cause DSACKs later. */ 2091 tp->undo_retrans = tp->retrans_out ? : -1; 2092 } 2093 2094 static bool tcp_is_rack(const struct sock *sk) 2095 { 2096 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 2097 } 2098 2099 /* If we detect SACK reneging, forget all SACK information 2100 * and reset tags completely, otherwise preserve SACKs. If receiver 2101 * dropped its ofo queue, we will know this due to reneging detection. 2102 */ 2103 static void tcp_timeout_mark_lost(struct sock *sk) 2104 { 2105 struct tcp_sock *tp = tcp_sk(sk); 2106 struct sk_buff *skb, *head; 2107 bool is_reneg; /* is receiver reneging on SACKs? */ 2108 2109 head = tcp_rtx_queue_head(sk); 2110 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2111 if (is_reneg) { 2112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2113 tp->sacked_out = 0; 2114 /* Mark SACK reneging until we recover from this loss event. */ 2115 tp->is_sack_reneg = 1; 2116 } else if (tcp_is_reno(tp)) { 2117 tcp_reset_reno_sack(tp); 2118 } 2119 2120 skb = head; 2121 skb_rbtree_walk_from(skb) { 2122 if (is_reneg) 2123 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2124 else if (tcp_is_rack(sk) && skb != head && 2125 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2126 continue; /* Don't mark recently sent ones lost yet */ 2127 tcp_mark_skb_lost(sk, skb); 2128 } 2129 tcp_verify_left_out(tp); 2130 tcp_clear_all_retrans_hints(tp); 2131 } 2132 2133 /* Enter Loss state. */ 2134 void tcp_enter_loss(struct sock *sk) 2135 { 2136 const struct inet_connection_sock *icsk = inet_csk(sk); 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 struct net *net = sock_net(sk); 2139 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2140 2141 tcp_timeout_mark_lost(sk); 2142 2143 /* Reduce ssthresh if it has not yet been made inside this window. */ 2144 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2145 !after(tp->high_seq, tp->snd_una) || 2146 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2147 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2148 tp->prior_cwnd = tp->snd_cwnd; 2149 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2150 tcp_ca_event(sk, CA_EVENT_LOSS); 2151 tcp_init_undo(tp); 2152 } 2153 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2154 tp->snd_cwnd_cnt = 0; 2155 tp->snd_cwnd_stamp = tcp_jiffies32; 2156 2157 /* Timeout in disordered state after receiving substantial DUPACKs 2158 * suggests that the degree of reordering is over-estimated. 2159 */ 2160 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2161 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2162 tp->reordering = min_t(unsigned int, tp->reordering, 2163 net->ipv4.sysctl_tcp_reordering); 2164 tcp_set_ca_state(sk, TCP_CA_Loss); 2165 tp->high_seq = tp->snd_nxt; 2166 tcp_ecn_queue_cwr(tp); 2167 2168 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2169 * loss recovery is underway except recurring timeout(s) on 2170 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2171 */ 2172 tp->frto = net->ipv4.sysctl_tcp_frto && 2173 (new_recovery || icsk->icsk_retransmits) && 2174 !inet_csk(sk)->icsk_mtup.probe_size; 2175 } 2176 2177 /* If ACK arrived pointing to a remembered SACK, it means that our 2178 * remembered SACKs do not reflect real state of receiver i.e. 2179 * receiver _host_ is heavily congested (or buggy). 2180 * 2181 * To avoid big spurious retransmission bursts due to transient SACK 2182 * scoreboard oddities that look like reneging, we give the receiver a 2183 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2184 * restore sanity to the SACK scoreboard. If the apparent reneging 2185 * persists until this RTO then we'll clear the SACK scoreboard. 2186 */ 2187 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2188 { 2189 if (flag & FLAG_SACK_RENEGING) { 2190 struct tcp_sock *tp = tcp_sk(sk); 2191 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2192 msecs_to_jiffies(10)); 2193 2194 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2195 delay, TCP_RTO_MAX); 2196 return true; 2197 } 2198 return false; 2199 } 2200 2201 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2202 * counter when SACK is enabled (without SACK, sacked_out is used for 2203 * that purpose). 2204 * 2205 * With reordering, holes may still be in flight, so RFC3517 recovery 2206 * uses pure sacked_out (total number of SACKed segments) even though 2207 * it violates the RFC that uses duplicate ACKs, often these are equal 2208 * but when e.g. out-of-window ACKs or packet duplication occurs, 2209 * they differ. Since neither occurs due to loss, TCP should really 2210 * ignore them. 2211 */ 2212 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2213 { 2214 return tp->sacked_out + 1; 2215 } 2216 2217 /* Linux NewReno/SACK/ECN state machine. 2218 * -------------------------------------- 2219 * 2220 * "Open" Normal state, no dubious events, fast path. 2221 * "Disorder" In all the respects it is "Open", 2222 * but requires a bit more attention. It is entered when 2223 * we see some SACKs or dupacks. It is split of "Open" 2224 * mainly to move some processing from fast path to slow one. 2225 * "CWR" CWND was reduced due to some Congestion Notification event. 2226 * It can be ECN, ICMP source quench, local device congestion. 2227 * "Recovery" CWND was reduced, we are fast-retransmitting. 2228 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2229 * 2230 * tcp_fastretrans_alert() is entered: 2231 * - each incoming ACK, if state is not "Open" 2232 * - when arrived ACK is unusual, namely: 2233 * * SACK 2234 * * Duplicate ACK. 2235 * * ECN ECE. 2236 * 2237 * Counting packets in flight is pretty simple. 2238 * 2239 * in_flight = packets_out - left_out + retrans_out 2240 * 2241 * packets_out is SND.NXT-SND.UNA counted in packets. 2242 * 2243 * retrans_out is number of retransmitted segments. 2244 * 2245 * left_out is number of segments left network, but not ACKed yet. 2246 * 2247 * left_out = sacked_out + lost_out 2248 * 2249 * sacked_out: Packets, which arrived to receiver out of order 2250 * and hence not ACKed. With SACKs this number is simply 2251 * amount of SACKed data. Even without SACKs 2252 * it is easy to give pretty reliable estimate of this number, 2253 * counting duplicate ACKs. 2254 * 2255 * lost_out: Packets lost by network. TCP has no explicit 2256 * "loss notification" feedback from network (for now). 2257 * It means that this number can be only _guessed_. 2258 * Actually, it is the heuristics to predict lossage that 2259 * distinguishes different algorithms. 2260 * 2261 * F.e. after RTO, when all the queue is considered as lost, 2262 * lost_out = packets_out and in_flight = retrans_out. 2263 * 2264 * Essentially, we have now a few algorithms detecting 2265 * lost packets. 2266 * 2267 * If the receiver supports SACK: 2268 * 2269 * RFC6675/3517: It is the conventional algorithm. A packet is 2270 * considered lost if the number of higher sequence packets 2271 * SACKed is greater than or equal the DUPACK thoreshold 2272 * (reordering). This is implemented in tcp_mark_head_lost and 2273 * tcp_update_scoreboard. 2274 * 2275 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2276 * (2017-) that checks timing instead of counting DUPACKs. 2277 * Essentially a packet is considered lost if it's not S/ACKed 2278 * after RTT + reordering_window, where both metrics are 2279 * dynamically measured and adjusted. This is implemented in 2280 * tcp_rack_mark_lost. 2281 * 2282 * If the receiver does not support SACK: 2283 * 2284 * NewReno (RFC6582): in Recovery we assume that one segment 2285 * is lost (classic Reno). While we are in Recovery and 2286 * a partial ACK arrives, we assume that one more packet 2287 * is lost (NewReno). This heuristics are the same in NewReno 2288 * and SACK. 2289 * 2290 * Really tricky (and requiring careful tuning) part of algorithm 2291 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2292 * The first determines the moment _when_ we should reduce CWND and, 2293 * hence, slow down forward transmission. In fact, it determines the moment 2294 * when we decide that hole is caused by loss, rather than by a reorder. 2295 * 2296 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2297 * holes, caused by lost packets. 2298 * 2299 * And the most logically complicated part of algorithm is undo 2300 * heuristics. We detect false retransmits due to both too early 2301 * fast retransmit (reordering) and underestimated RTO, analyzing 2302 * timestamps and D-SACKs. When we detect that some segments were 2303 * retransmitted by mistake and CWND reduction was wrong, we undo 2304 * window reduction and abort recovery phase. This logic is hidden 2305 * inside several functions named tcp_try_undo_<something>. 2306 */ 2307 2308 /* This function decides, when we should leave Disordered state 2309 * and enter Recovery phase, reducing congestion window. 2310 * 2311 * Main question: may we further continue forward transmission 2312 * with the same cwnd? 2313 */ 2314 static bool tcp_time_to_recover(struct sock *sk, int flag) 2315 { 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 2318 /* Trick#1: The loss is proven. */ 2319 if (tp->lost_out) 2320 return true; 2321 2322 /* Not-A-Trick#2 : Classic rule... */ 2323 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2324 return true; 2325 2326 return false; 2327 } 2328 2329 /* Detect loss in event "A" above by marking head of queue up as lost. 2330 * For RFC3517 SACK, a segment is considered lost if it 2331 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2332 * the maximum SACKed segments to pass before reaching this limit. 2333 */ 2334 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2335 { 2336 struct tcp_sock *tp = tcp_sk(sk); 2337 struct sk_buff *skb; 2338 int cnt; 2339 /* Use SACK to deduce losses of new sequences sent during recovery */ 2340 const u32 loss_high = tp->snd_nxt; 2341 2342 WARN_ON(packets > tp->packets_out); 2343 skb = tp->lost_skb_hint; 2344 if (skb) { 2345 /* Head already handled? */ 2346 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2347 return; 2348 cnt = tp->lost_cnt_hint; 2349 } else { 2350 skb = tcp_rtx_queue_head(sk); 2351 cnt = 0; 2352 } 2353 2354 skb_rbtree_walk_from(skb) { 2355 /* TODO: do this better */ 2356 /* this is not the most efficient way to do this... */ 2357 tp->lost_skb_hint = skb; 2358 tp->lost_cnt_hint = cnt; 2359 2360 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2361 break; 2362 2363 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2364 cnt += tcp_skb_pcount(skb); 2365 2366 if (cnt > packets) 2367 break; 2368 2369 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2370 tcp_mark_skb_lost(sk, skb); 2371 2372 if (mark_head) 2373 break; 2374 } 2375 tcp_verify_left_out(tp); 2376 } 2377 2378 /* Account newly detected lost packet(s) */ 2379 2380 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 2384 if (tcp_is_sack(tp)) { 2385 int sacked_upto = tp->sacked_out - tp->reordering; 2386 if (sacked_upto >= 0) 2387 tcp_mark_head_lost(sk, sacked_upto, 0); 2388 else if (fast_rexmit) 2389 tcp_mark_head_lost(sk, 1, 1); 2390 } 2391 } 2392 2393 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2394 { 2395 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2396 before(tp->rx_opt.rcv_tsecr, when); 2397 } 2398 2399 /* skb is spurious retransmitted if the returned timestamp echo 2400 * reply is prior to the skb transmission time 2401 */ 2402 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2403 const struct sk_buff *skb) 2404 { 2405 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2406 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2407 } 2408 2409 /* Nothing was retransmitted or returned timestamp is less 2410 * than timestamp of the first retransmission. 2411 */ 2412 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2413 { 2414 return tp->retrans_stamp && 2415 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2416 } 2417 2418 /* Undo procedures. */ 2419 2420 /* We can clear retrans_stamp when there are no retransmissions in the 2421 * window. It would seem that it is trivially available for us in 2422 * tp->retrans_out, however, that kind of assumptions doesn't consider 2423 * what will happen if errors occur when sending retransmission for the 2424 * second time. ...It could the that such segment has only 2425 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2426 * the head skb is enough except for some reneging corner cases that 2427 * are not worth the effort. 2428 * 2429 * Main reason for all this complexity is the fact that connection dying 2430 * time now depends on the validity of the retrans_stamp, in particular, 2431 * that successive retransmissions of a segment must not advance 2432 * retrans_stamp under any conditions. 2433 */ 2434 static bool tcp_any_retrans_done(const struct sock *sk) 2435 { 2436 const struct tcp_sock *tp = tcp_sk(sk); 2437 struct sk_buff *skb; 2438 2439 if (tp->retrans_out) 2440 return true; 2441 2442 skb = tcp_rtx_queue_head(sk); 2443 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2444 return true; 2445 2446 return false; 2447 } 2448 2449 static void DBGUNDO(struct sock *sk, const char *msg) 2450 { 2451 #if FASTRETRANS_DEBUG > 1 2452 struct tcp_sock *tp = tcp_sk(sk); 2453 struct inet_sock *inet = inet_sk(sk); 2454 2455 if (sk->sk_family == AF_INET) { 2456 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2457 msg, 2458 &inet->inet_daddr, ntohs(inet->inet_dport), 2459 tp->snd_cwnd, tcp_left_out(tp), 2460 tp->snd_ssthresh, tp->prior_ssthresh, 2461 tp->packets_out); 2462 } 2463 #if IS_ENABLED(CONFIG_IPV6) 2464 else if (sk->sk_family == AF_INET6) { 2465 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2466 msg, 2467 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2468 tp->snd_cwnd, tcp_left_out(tp), 2469 tp->snd_ssthresh, tp->prior_ssthresh, 2470 tp->packets_out); 2471 } 2472 #endif 2473 #endif 2474 } 2475 2476 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 2480 if (unmark_loss) { 2481 struct sk_buff *skb; 2482 2483 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2484 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2485 } 2486 tp->lost_out = 0; 2487 tcp_clear_all_retrans_hints(tp); 2488 } 2489 2490 if (tp->prior_ssthresh) { 2491 const struct inet_connection_sock *icsk = inet_csk(sk); 2492 2493 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2494 2495 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2496 tp->snd_ssthresh = tp->prior_ssthresh; 2497 tcp_ecn_withdraw_cwr(tp); 2498 } 2499 } 2500 tp->snd_cwnd_stamp = tcp_jiffies32; 2501 tp->undo_marker = 0; 2502 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2503 } 2504 2505 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2506 { 2507 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2508 } 2509 2510 /* People celebrate: "We love our President!" */ 2511 static bool tcp_try_undo_recovery(struct sock *sk) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 2515 if (tcp_may_undo(tp)) { 2516 int mib_idx; 2517 2518 /* Happy end! We did not retransmit anything 2519 * or our original transmission succeeded. 2520 */ 2521 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2522 tcp_undo_cwnd_reduction(sk, false); 2523 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2524 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2525 else 2526 mib_idx = LINUX_MIB_TCPFULLUNDO; 2527 2528 NET_INC_STATS(sock_net(sk), mib_idx); 2529 } else if (tp->rack.reo_wnd_persist) { 2530 tp->rack.reo_wnd_persist--; 2531 } 2532 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2533 /* Hold old state until something *above* high_seq 2534 * is ACKed. For Reno it is MUST to prevent false 2535 * fast retransmits (RFC2582). SACK TCP is safe. */ 2536 if (!tcp_any_retrans_done(sk)) 2537 tp->retrans_stamp = 0; 2538 return true; 2539 } 2540 tcp_set_ca_state(sk, TCP_CA_Open); 2541 tp->is_sack_reneg = 0; 2542 return false; 2543 } 2544 2545 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2546 static bool tcp_try_undo_dsack(struct sock *sk) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 2550 if (tp->undo_marker && !tp->undo_retrans) { 2551 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2552 tp->rack.reo_wnd_persist + 1); 2553 DBGUNDO(sk, "D-SACK"); 2554 tcp_undo_cwnd_reduction(sk, false); 2555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2556 return true; 2557 } 2558 return false; 2559 } 2560 2561 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2562 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 if (frto_undo || tcp_may_undo(tp)) { 2567 tcp_undo_cwnd_reduction(sk, true); 2568 2569 DBGUNDO(sk, "partial loss"); 2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2571 if (frto_undo) 2572 NET_INC_STATS(sock_net(sk), 2573 LINUX_MIB_TCPSPURIOUSRTOS); 2574 inet_csk(sk)->icsk_retransmits = 0; 2575 if (frto_undo || tcp_is_sack(tp)) { 2576 tcp_set_ca_state(sk, TCP_CA_Open); 2577 tp->is_sack_reneg = 0; 2578 } 2579 return true; 2580 } 2581 return false; 2582 } 2583 2584 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2585 * It computes the number of packets to send (sndcnt) based on packets newly 2586 * delivered: 2587 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2588 * cwnd reductions across a full RTT. 2589 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2590 * But when SND_UNA is acked without further losses, 2591 * slow starts cwnd up to ssthresh to speed up the recovery. 2592 */ 2593 static void tcp_init_cwnd_reduction(struct sock *sk) 2594 { 2595 struct tcp_sock *tp = tcp_sk(sk); 2596 2597 tp->high_seq = tp->snd_nxt; 2598 tp->tlp_high_seq = 0; 2599 tp->snd_cwnd_cnt = 0; 2600 tp->prior_cwnd = tp->snd_cwnd; 2601 tp->prr_delivered = 0; 2602 tp->prr_out = 0; 2603 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2604 tcp_ecn_queue_cwr(tp); 2605 } 2606 2607 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2608 { 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 int sndcnt = 0; 2611 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2612 2613 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2614 return; 2615 2616 tp->prr_delivered += newly_acked_sacked; 2617 if (delta < 0) { 2618 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2619 tp->prior_cwnd - 1; 2620 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2621 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) { 2622 sndcnt = min_t(int, delta, 2623 max_t(int, tp->prr_delivered - tp->prr_out, 2624 newly_acked_sacked) + 1); 2625 } else { 2626 sndcnt = min(delta, newly_acked_sacked); 2627 } 2628 /* Force a fast retransmit upon entering fast recovery */ 2629 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2630 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2631 } 2632 2633 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2634 { 2635 struct tcp_sock *tp = tcp_sk(sk); 2636 2637 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2638 return; 2639 2640 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2641 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2642 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2643 tp->snd_cwnd = tp->snd_ssthresh; 2644 tp->snd_cwnd_stamp = tcp_jiffies32; 2645 } 2646 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2647 } 2648 2649 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2650 void tcp_enter_cwr(struct sock *sk) 2651 { 2652 struct tcp_sock *tp = tcp_sk(sk); 2653 2654 tp->prior_ssthresh = 0; 2655 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2656 tp->undo_marker = 0; 2657 tcp_init_cwnd_reduction(sk); 2658 tcp_set_ca_state(sk, TCP_CA_CWR); 2659 } 2660 } 2661 EXPORT_SYMBOL(tcp_enter_cwr); 2662 2663 static void tcp_try_keep_open(struct sock *sk) 2664 { 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 int state = TCP_CA_Open; 2667 2668 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2669 state = TCP_CA_Disorder; 2670 2671 if (inet_csk(sk)->icsk_ca_state != state) { 2672 tcp_set_ca_state(sk, state); 2673 tp->high_seq = tp->snd_nxt; 2674 } 2675 } 2676 2677 static void tcp_try_to_open(struct sock *sk, int flag) 2678 { 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 2681 tcp_verify_left_out(tp); 2682 2683 if (!tcp_any_retrans_done(sk)) 2684 tp->retrans_stamp = 0; 2685 2686 if (flag & FLAG_ECE) 2687 tcp_enter_cwr(sk); 2688 2689 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2690 tcp_try_keep_open(sk); 2691 } 2692 } 2693 2694 static void tcp_mtup_probe_failed(struct sock *sk) 2695 { 2696 struct inet_connection_sock *icsk = inet_csk(sk); 2697 2698 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2699 icsk->icsk_mtup.probe_size = 0; 2700 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2701 } 2702 2703 static void tcp_mtup_probe_success(struct sock *sk) 2704 { 2705 struct tcp_sock *tp = tcp_sk(sk); 2706 struct inet_connection_sock *icsk = inet_csk(sk); 2707 2708 /* FIXME: breaks with very large cwnd */ 2709 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2710 tp->snd_cwnd = tp->snd_cwnd * 2711 tcp_mss_to_mtu(sk, tp->mss_cache) / 2712 icsk->icsk_mtup.probe_size; 2713 tp->snd_cwnd_cnt = 0; 2714 tp->snd_cwnd_stamp = tcp_jiffies32; 2715 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2716 2717 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2718 icsk->icsk_mtup.probe_size = 0; 2719 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2721 } 2722 2723 /* Do a simple retransmit without using the backoff mechanisms in 2724 * tcp_timer. This is used for path mtu discovery. 2725 * The socket is already locked here. 2726 */ 2727 void tcp_simple_retransmit(struct sock *sk) 2728 { 2729 const struct inet_connection_sock *icsk = inet_csk(sk); 2730 struct tcp_sock *tp = tcp_sk(sk); 2731 struct sk_buff *skb; 2732 int mss; 2733 2734 /* A fastopen SYN request is stored as two separate packets within 2735 * the retransmit queue, this is done by tcp_send_syn_data(). 2736 * As a result simply checking the MSS of the frames in the queue 2737 * will not work for the SYN packet. 2738 * 2739 * Us being here is an indication of a path MTU issue so we can 2740 * assume that the fastopen SYN was lost and just mark all the 2741 * frames in the retransmit queue as lost. We will use an MSS of 2742 * -1 to mark all frames as lost, otherwise compute the current MSS. 2743 */ 2744 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2745 mss = -1; 2746 else 2747 mss = tcp_current_mss(sk); 2748 2749 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2750 if (tcp_skb_seglen(skb) > mss) 2751 tcp_mark_skb_lost(sk, skb); 2752 } 2753 2754 tcp_clear_retrans_hints_partial(tp); 2755 2756 if (!tp->lost_out) 2757 return; 2758 2759 if (tcp_is_reno(tp)) 2760 tcp_limit_reno_sacked(tp); 2761 2762 tcp_verify_left_out(tp); 2763 2764 /* Don't muck with the congestion window here. 2765 * Reason is that we do not increase amount of _data_ 2766 * in network, but units changed and effective 2767 * cwnd/ssthresh really reduced now. 2768 */ 2769 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2770 tp->high_seq = tp->snd_nxt; 2771 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2772 tp->prior_ssthresh = 0; 2773 tp->undo_marker = 0; 2774 tcp_set_ca_state(sk, TCP_CA_Loss); 2775 } 2776 tcp_xmit_retransmit_queue(sk); 2777 } 2778 EXPORT_SYMBOL(tcp_simple_retransmit); 2779 2780 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2781 { 2782 struct tcp_sock *tp = tcp_sk(sk); 2783 int mib_idx; 2784 2785 if (tcp_is_reno(tp)) 2786 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2787 else 2788 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2789 2790 NET_INC_STATS(sock_net(sk), mib_idx); 2791 2792 tp->prior_ssthresh = 0; 2793 tcp_init_undo(tp); 2794 2795 if (!tcp_in_cwnd_reduction(sk)) { 2796 if (!ece_ack) 2797 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2798 tcp_init_cwnd_reduction(sk); 2799 } 2800 tcp_set_ca_state(sk, TCP_CA_Recovery); 2801 } 2802 2803 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2804 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2805 */ 2806 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2807 int *rexmit) 2808 { 2809 struct tcp_sock *tp = tcp_sk(sk); 2810 bool recovered = !before(tp->snd_una, tp->high_seq); 2811 2812 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2813 tcp_try_undo_loss(sk, false)) 2814 return; 2815 2816 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2817 /* Step 3.b. A timeout is spurious if not all data are 2818 * lost, i.e., never-retransmitted data are (s)acked. 2819 */ 2820 if ((flag & FLAG_ORIG_SACK_ACKED) && 2821 tcp_try_undo_loss(sk, true)) 2822 return; 2823 2824 if (after(tp->snd_nxt, tp->high_seq)) { 2825 if (flag & FLAG_DATA_SACKED || num_dupack) 2826 tp->frto = 0; /* Step 3.a. loss was real */ 2827 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2828 tp->high_seq = tp->snd_nxt; 2829 /* Step 2.b. Try send new data (but deferred until cwnd 2830 * is updated in tcp_ack()). Otherwise fall back to 2831 * the conventional recovery. 2832 */ 2833 if (!tcp_write_queue_empty(sk) && 2834 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2835 *rexmit = REXMIT_NEW; 2836 return; 2837 } 2838 tp->frto = 0; 2839 } 2840 } 2841 2842 if (recovered) { 2843 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2844 tcp_try_undo_recovery(sk); 2845 return; 2846 } 2847 if (tcp_is_reno(tp)) { 2848 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2849 * delivered. Lower inflight to clock out (re)tranmissions. 2850 */ 2851 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2852 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2853 else if (flag & FLAG_SND_UNA_ADVANCED) 2854 tcp_reset_reno_sack(tp); 2855 } 2856 *rexmit = REXMIT_LOST; 2857 } 2858 2859 static bool tcp_force_fast_retransmit(struct sock *sk) 2860 { 2861 struct tcp_sock *tp = tcp_sk(sk); 2862 2863 return after(tcp_highest_sack_seq(tp), 2864 tp->snd_una + tp->reordering * tp->mss_cache); 2865 } 2866 2867 /* Undo during fast recovery after partial ACK. */ 2868 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2869 bool *do_lost) 2870 { 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 2873 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2874 /* Plain luck! Hole if filled with delayed 2875 * packet, rather than with a retransmit. Check reordering. 2876 */ 2877 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2878 2879 /* We are getting evidence that the reordering degree is higher 2880 * than we realized. If there are no retransmits out then we 2881 * can undo. Otherwise we clock out new packets but do not 2882 * mark more packets lost or retransmit more. 2883 */ 2884 if (tp->retrans_out) 2885 return true; 2886 2887 if (!tcp_any_retrans_done(sk)) 2888 tp->retrans_stamp = 0; 2889 2890 DBGUNDO(sk, "partial recovery"); 2891 tcp_undo_cwnd_reduction(sk, true); 2892 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2893 tcp_try_keep_open(sk); 2894 } else { 2895 /* Partial ACK arrived. Force fast retransmit. */ 2896 *do_lost = tcp_force_fast_retransmit(sk); 2897 } 2898 return false; 2899 } 2900 2901 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2902 { 2903 struct tcp_sock *tp = tcp_sk(sk); 2904 2905 if (tcp_rtx_queue_empty(sk)) 2906 return; 2907 2908 if (unlikely(tcp_is_reno(tp))) { 2909 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2910 } else if (tcp_is_rack(sk)) { 2911 u32 prior_retrans = tp->retrans_out; 2912 2913 if (tcp_rack_mark_lost(sk)) 2914 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2915 if (prior_retrans > tp->retrans_out) 2916 *ack_flag |= FLAG_LOST_RETRANS; 2917 } 2918 } 2919 2920 /* Process an event, which can update packets-in-flight not trivially. 2921 * Main goal of this function is to calculate new estimate for left_out, 2922 * taking into account both packets sitting in receiver's buffer and 2923 * packets lost by network. 2924 * 2925 * Besides that it updates the congestion state when packet loss or ECN 2926 * is detected. But it does not reduce the cwnd, it is done by the 2927 * congestion control later. 2928 * 2929 * It does _not_ decide what to send, it is made in function 2930 * tcp_xmit_retransmit_queue(). 2931 */ 2932 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2933 int num_dupack, int *ack_flag, int *rexmit) 2934 { 2935 struct inet_connection_sock *icsk = inet_csk(sk); 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 int fast_rexmit = 0, flag = *ack_flag; 2938 bool ece_ack = flag & FLAG_ECE; 2939 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2940 tcp_force_fast_retransmit(sk)); 2941 2942 if (!tp->packets_out && tp->sacked_out) 2943 tp->sacked_out = 0; 2944 2945 /* Now state machine starts. 2946 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2947 if (ece_ack) 2948 tp->prior_ssthresh = 0; 2949 2950 /* B. In all the states check for reneging SACKs. */ 2951 if (tcp_check_sack_reneging(sk, flag)) 2952 return; 2953 2954 /* C. Check consistency of the current state. */ 2955 tcp_verify_left_out(tp); 2956 2957 /* D. Check state exit conditions. State can be terminated 2958 * when high_seq is ACKed. */ 2959 if (icsk->icsk_ca_state == TCP_CA_Open) { 2960 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2961 tp->retrans_stamp = 0; 2962 } else if (!before(tp->snd_una, tp->high_seq)) { 2963 switch (icsk->icsk_ca_state) { 2964 case TCP_CA_CWR: 2965 /* CWR is to be held something *above* high_seq 2966 * is ACKed for CWR bit to reach receiver. */ 2967 if (tp->snd_una != tp->high_seq) { 2968 tcp_end_cwnd_reduction(sk); 2969 tcp_set_ca_state(sk, TCP_CA_Open); 2970 } 2971 break; 2972 2973 case TCP_CA_Recovery: 2974 if (tcp_is_reno(tp)) 2975 tcp_reset_reno_sack(tp); 2976 if (tcp_try_undo_recovery(sk)) 2977 return; 2978 tcp_end_cwnd_reduction(sk); 2979 break; 2980 } 2981 } 2982 2983 /* E. Process state. */ 2984 switch (icsk->icsk_ca_state) { 2985 case TCP_CA_Recovery: 2986 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2987 if (tcp_is_reno(tp)) 2988 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2989 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 2990 return; 2991 2992 if (tcp_try_undo_dsack(sk)) 2993 tcp_try_keep_open(sk); 2994 2995 tcp_identify_packet_loss(sk, ack_flag); 2996 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 2997 if (!tcp_time_to_recover(sk, flag)) 2998 return; 2999 /* Undo reverts the recovery state. If loss is evident, 3000 * starts a new recovery (e.g. reordering then loss); 3001 */ 3002 tcp_enter_recovery(sk, ece_ack); 3003 } 3004 break; 3005 case TCP_CA_Loss: 3006 tcp_process_loss(sk, flag, num_dupack, rexmit); 3007 tcp_identify_packet_loss(sk, ack_flag); 3008 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3009 (*ack_flag & FLAG_LOST_RETRANS))) 3010 return; 3011 /* Change state if cwnd is undone or retransmits are lost */ 3012 fallthrough; 3013 default: 3014 if (tcp_is_reno(tp)) { 3015 if (flag & FLAG_SND_UNA_ADVANCED) 3016 tcp_reset_reno_sack(tp); 3017 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3018 } 3019 3020 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3021 tcp_try_undo_dsack(sk); 3022 3023 tcp_identify_packet_loss(sk, ack_flag); 3024 if (!tcp_time_to_recover(sk, flag)) { 3025 tcp_try_to_open(sk, flag); 3026 return; 3027 } 3028 3029 /* MTU probe failure: don't reduce cwnd */ 3030 if (icsk->icsk_ca_state < TCP_CA_CWR && 3031 icsk->icsk_mtup.probe_size && 3032 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3033 tcp_mtup_probe_failed(sk); 3034 /* Restores the reduction we did in tcp_mtup_probe() */ 3035 tp->snd_cwnd++; 3036 tcp_simple_retransmit(sk); 3037 return; 3038 } 3039 3040 /* Otherwise enter Recovery state */ 3041 tcp_enter_recovery(sk, ece_ack); 3042 fast_rexmit = 1; 3043 } 3044 3045 if (!tcp_is_rack(sk) && do_lost) 3046 tcp_update_scoreboard(sk, fast_rexmit); 3047 *rexmit = REXMIT_LOST; 3048 } 3049 3050 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3051 { 3052 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 3053 struct tcp_sock *tp = tcp_sk(sk); 3054 3055 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3056 /* If the remote keeps returning delayed ACKs, eventually 3057 * the min filter would pick it up and overestimate the 3058 * prop. delay when it expires. Skip suspected delayed ACKs. 3059 */ 3060 return; 3061 } 3062 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3063 rtt_us ? : jiffies_to_usecs(1)); 3064 } 3065 3066 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3067 long seq_rtt_us, long sack_rtt_us, 3068 long ca_rtt_us, struct rate_sample *rs) 3069 { 3070 const struct tcp_sock *tp = tcp_sk(sk); 3071 3072 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3073 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3074 * Karn's algorithm forbids taking RTT if some retransmitted data 3075 * is acked (RFC6298). 3076 */ 3077 if (seq_rtt_us < 0) 3078 seq_rtt_us = sack_rtt_us; 3079 3080 /* RTTM Rule: A TSecr value received in a segment is used to 3081 * update the averaged RTT measurement only if the segment 3082 * acknowledges some new data, i.e., only if it advances the 3083 * left edge of the send window. 3084 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3085 */ 3086 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3087 flag & FLAG_ACKED) { 3088 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3089 3090 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3091 if (!delta) 3092 delta = 1; 3093 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3094 ca_rtt_us = seq_rtt_us; 3095 } 3096 } 3097 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3098 if (seq_rtt_us < 0) 3099 return false; 3100 3101 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3102 * always taken together with ACK, SACK, or TS-opts. Any negative 3103 * values will be skipped with the seq_rtt_us < 0 check above. 3104 */ 3105 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3106 tcp_rtt_estimator(sk, seq_rtt_us); 3107 tcp_set_rto(sk); 3108 3109 /* RFC6298: only reset backoff on valid RTT measurement. */ 3110 inet_csk(sk)->icsk_backoff = 0; 3111 return true; 3112 } 3113 3114 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3115 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3116 { 3117 struct rate_sample rs; 3118 long rtt_us = -1L; 3119 3120 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3121 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3122 3123 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3124 } 3125 3126 3127 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3128 { 3129 const struct inet_connection_sock *icsk = inet_csk(sk); 3130 3131 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3132 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3133 } 3134 3135 /* Restart timer after forward progress on connection. 3136 * RFC2988 recommends to restart timer to now+rto. 3137 */ 3138 void tcp_rearm_rto(struct sock *sk) 3139 { 3140 const struct inet_connection_sock *icsk = inet_csk(sk); 3141 struct tcp_sock *tp = tcp_sk(sk); 3142 3143 /* If the retrans timer is currently being used by Fast Open 3144 * for SYN-ACK retrans purpose, stay put. 3145 */ 3146 if (rcu_access_pointer(tp->fastopen_rsk)) 3147 return; 3148 3149 if (!tp->packets_out) { 3150 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3151 } else { 3152 u32 rto = inet_csk(sk)->icsk_rto; 3153 /* Offset the time elapsed after installing regular RTO */ 3154 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3155 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3156 s64 delta_us = tcp_rto_delta_us(sk); 3157 /* delta_us may not be positive if the socket is locked 3158 * when the retrans timer fires and is rescheduled. 3159 */ 3160 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3161 } 3162 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3163 TCP_RTO_MAX); 3164 } 3165 } 3166 3167 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3168 static void tcp_set_xmit_timer(struct sock *sk) 3169 { 3170 if (!tcp_schedule_loss_probe(sk, true)) 3171 tcp_rearm_rto(sk); 3172 } 3173 3174 /* If we get here, the whole TSO packet has not been acked. */ 3175 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3176 { 3177 struct tcp_sock *tp = tcp_sk(sk); 3178 u32 packets_acked; 3179 3180 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3181 3182 packets_acked = tcp_skb_pcount(skb); 3183 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3184 return 0; 3185 packets_acked -= tcp_skb_pcount(skb); 3186 3187 if (packets_acked) { 3188 BUG_ON(tcp_skb_pcount(skb) == 0); 3189 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3190 } 3191 3192 return packets_acked; 3193 } 3194 3195 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3196 const struct sk_buff *ack_skb, u32 prior_snd_una) 3197 { 3198 const struct skb_shared_info *shinfo; 3199 3200 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3201 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3202 return; 3203 3204 shinfo = skb_shinfo(skb); 3205 if (!before(shinfo->tskey, prior_snd_una) && 3206 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3207 tcp_skb_tsorted_save(skb) { 3208 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3209 } tcp_skb_tsorted_restore(skb); 3210 } 3211 } 3212 3213 /* Remove acknowledged frames from the retransmission queue. If our packet 3214 * is before the ack sequence we can discard it as it's confirmed to have 3215 * arrived at the other end. 3216 */ 3217 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3218 u32 prior_fack, u32 prior_snd_una, 3219 struct tcp_sacktag_state *sack, bool ece_ack) 3220 { 3221 const struct inet_connection_sock *icsk = inet_csk(sk); 3222 u64 first_ackt, last_ackt; 3223 struct tcp_sock *tp = tcp_sk(sk); 3224 u32 prior_sacked = tp->sacked_out; 3225 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3226 struct sk_buff *skb, *next; 3227 bool fully_acked = true; 3228 long sack_rtt_us = -1L; 3229 long seq_rtt_us = -1L; 3230 long ca_rtt_us = -1L; 3231 u32 pkts_acked = 0; 3232 bool rtt_update; 3233 int flag = 0; 3234 3235 first_ackt = 0; 3236 3237 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3238 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3239 const u32 start_seq = scb->seq; 3240 u8 sacked = scb->sacked; 3241 u32 acked_pcount; 3242 3243 /* Determine how many packets and what bytes were acked, tso and else */ 3244 if (after(scb->end_seq, tp->snd_una)) { 3245 if (tcp_skb_pcount(skb) == 1 || 3246 !after(tp->snd_una, scb->seq)) 3247 break; 3248 3249 acked_pcount = tcp_tso_acked(sk, skb); 3250 if (!acked_pcount) 3251 break; 3252 fully_acked = false; 3253 } else { 3254 acked_pcount = tcp_skb_pcount(skb); 3255 } 3256 3257 if (unlikely(sacked & TCPCB_RETRANS)) { 3258 if (sacked & TCPCB_SACKED_RETRANS) 3259 tp->retrans_out -= acked_pcount; 3260 flag |= FLAG_RETRANS_DATA_ACKED; 3261 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3262 last_ackt = tcp_skb_timestamp_us(skb); 3263 WARN_ON_ONCE(last_ackt == 0); 3264 if (!first_ackt) 3265 first_ackt = last_ackt; 3266 3267 if (before(start_seq, reord)) 3268 reord = start_seq; 3269 if (!after(scb->end_seq, tp->high_seq)) 3270 flag |= FLAG_ORIG_SACK_ACKED; 3271 } 3272 3273 if (sacked & TCPCB_SACKED_ACKED) { 3274 tp->sacked_out -= acked_pcount; 3275 } else if (tcp_is_sack(tp)) { 3276 tcp_count_delivered(tp, acked_pcount, ece_ack); 3277 if (!tcp_skb_spurious_retrans(tp, skb)) 3278 tcp_rack_advance(tp, sacked, scb->end_seq, 3279 tcp_skb_timestamp_us(skb)); 3280 } 3281 if (sacked & TCPCB_LOST) 3282 tp->lost_out -= acked_pcount; 3283 3284 tp->packets_out -= acked_pcount; 3285 pkts_acked += acked_pcount; 3286 tcp_rate_skb_delivered(sk, skb, sack->rate); 3287 3288 /* Initial outgoing SYN's get put onto the write_queue 3289 * just like anything else we transmit. It is not 3290 * true data, and if we misinform our callers that 3291 * this ACK acks real data, we will erroneously exit 3292 * connection startup slow start one packet too 3293 * quickly. This is severely frowned upon behavior. 3294 */ 3295 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3296 flag |= FLAG_DATA_ACKED; 3297 } else { 3298 flag |= FLAG_SYN_ACKED; 3299 tp->retrans_stamp = 0; 3300 } 3301 3302 if (!fully_acked) 3303 break; 3304 3305 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3306 3307 next = skb_rb_next(skb); 3308 if (unlikely(skb == tp->retransmit_skb_hint)) 3309 tp->retransmit_skb_hint = NULL; 3310 if (unlikely(skb == tp->lost_skb_hint)) 3311 tp->lost_skb_hint = NULL; 3312 tcp_highest_sack_replace(sk, skb, next); 3313 tcp_rtx_queue_unlink_and_free(skb, sk); 3314 } 3315 3316 if (!skb) 3317 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3318 3319 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3320 tp->snd_up = tp->snd_una; 3321 3322 if (skb) { 3323 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3324 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3325 flag |= FLAG_SACK_RENEGING; 3326 } 3327 3328 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3329 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3330 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3331 3332 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3333 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3334 sack->rate->prior_delivered + 1 == tp->delivered && 3335 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3336 /* Conservatively mark a delayed ACK. It's typically 3337 * from a lone runt packet over the round trip to 3338 * a receiver w/o out-of-order or CE events. 3339 */ 3340 flag |= FLAG_ACK_MAYBE_DELAYED; 3341 } 3342 } 3343 if (sack->first_sackt) { 3344 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3345 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3346 } 3347 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3348 ca_rtt_us, sack->rate); 3349 3350 if (flag & FLAG_ACKED) { 3351 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3352 if (unlikely(icsk->icsk_mtup.probe_size && 3353 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3354 tcp_mtup_probe_success(sk); 3355 } 3356 3357 if (tcp_is_reno(tp)) { 3358 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3359 3360 /* If any of the cumulatively ACKed segments was 3361 * retransmitted, non-SACK case cannot confirm that 3362 * progress was due to original transmission due to 3363 * lack of TCPCB_SACKED_ACKED bits even if some of 3364 * the packets may have been never retransmitted. 3365 */ 3366 if (flag & FLAG_RETRANS_DATA_ACKED) 3367 flag &= ~FLAG_ORIG_SACK_ACKED; 3368 } else { 3369 int delta; 3370 3371 /* Non-retransmitted hole got filled? That's reordering */ 3372 if (before(reord, prior_fack)) 3373 tcp_check_sack_reordering(sk, reord, 0); 3374 3375 delta = prior_sacked - tp->sacked_out; 3376 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3377 } 3378 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3379 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3380 tcp_skb_timestamp_us(skb))) { 3381 /* Do not re-arm RTO if the sack RTT is measured from data sent 3382 * after when the head was last (re)transmitted. Otherwise the 3383 * timeout may continue to extend in loss recovery. 3384 */ 3385 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3386 } 3387 3388 if (icsk->icsk_ca_ops->pkts_acked) { 3389 struct ack_sample sample = { .pkts_acked = pkts_acked, 3390 .rtt_us = sack->rate->rtt_us }; 3391 3392 sample.in_flight = tp->mss_cache * 3393 (tp->delivered - sack->rate->prior_delivered); 3394 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3395 } 3396 3397 #if FASTRETRANS_DEBUG > 0 3398 WARN_ON((int)tp->sacked_out < 0); 3399 WARN_ON((int)tp->lost_out < 0); 3400 WARN_ON((int)tp->retrans_out < 0); 3401 if (!tp->packets_out && tcp_is_sack(tp)) { 3402 icsk = inet_csk(sk); 3403 if (tp->lost_out) { 3404 pr_debug("Leak l=%u %d\n", 3405 tp->lost_out, icsk->icsk_ca_state); 3406 tp->lost_out = 0; 3407 } 3408 if (tp->sacked_out) { 3409 pr_debug("Leak s=%u %d\n", 3410 tp->sacked_out, icsk->icsk_ca_state); 3411 tp->sacked_out = 0; 3412 } 3413 if (tp->retrans_out) { 3414 pr_debug("Leak r=%u %d\n", 3415 tp->retrans_out, icsk->icsk_ca_state); 3416 tp->retrans_out = 0; 3417 } 3418 } 3419 #endif 3420 return flag; 3421 } 3422 3423 static void tcp_ack_probe(struct sock *sk) 3424 { 3425 struct inet_connection_sock *icsk = inet_csk(sk); 3426 struct sk_buff *head = tcp_send_head(sk); 3427 const struct tcp_sock *tp = tcp_sk(sk); 3428 3429 /* Was it a usable window open? */ 3430 if (!head) 3431 return; 3432 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3433 icsk->icsk_backoff = 0; 3434 icsk->icsk_probes_tstamp = 0; 3435 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3436 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3437 * This function is not for random using! 3438 */ 3439 } else { 3440 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3441 3442 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3443 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3444 } 3445 } 3446 3447 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3448 { 3449 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3450 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3451 } 3452 3453 /* Decide wheather to run the increase function of congestion control. */ 3454 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3455 { 3456 /* If reordering is high then always grow cwnd whenever data is 3457 * delivered regardless of its ordering. Otherwise stay conservative 3458 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3459 * new SACK or ECE mark may first advance cwnd here and later reduce 3460 * cwnd in tcp_fastretrans_alert() based on more states. 3461 */ 3462 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3463 return flag & FLAG_FORWARD_PROGRESS; 3464 3465 return flag & FLAG_DATA_ACKED; 3466 } 3467 3468 /* The "ultimate" congestion control function that aims to replace the rigid 3469 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3470 * It's called toward the end of processing an ACK with precise rate 3471 * information. All transmission or retransmission are delayed afterwards. 3472 */ 3473 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3474 int flag, const struct rate_sample *rs) 3475 { 3476 const struct inet_connection_sock *icsk = inet_csk(sk); 3477 3478 if (icsk->icsk_ca_ops->cong_control) { 3479 icsk->icsk_ca_ops->cong_control(sk, rs); 3480 return; 3481 } 3482 3483 if (tcp_in_cwnd_reduction(sk)) { 3484 /* Reduce cwnd if state mandates */ 3485 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3486 } else if (tcp_may_raise_cwnd(sk, flag)) { 3487 /* Advance cwnd if state allows */ 3488 tcp_cong_avoid(sk, ack, acked_sacked); 3489 } 3490 tcp_update_pacing_rate(sk); 3491 } 3492 3493 /* Check that window update is acceptable. 3494 * The function assumes that snd_una<=ack<=snd_next. 3495 */ 3496 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3497 const u32 ack, const u32 ack_seq, 3498 const u32 nwin) 3499 { 3500 return after(ack, tp->snd_una) || 3501 after(ack_seq, tp->snd_wl1) || 3502 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3503 } 3504 3505 /* If we update tp->snd_una, also update tp->bytes_acked */ 3506 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3507 { 3508 u32 delta = ack - tp->snd_una; 3509 3510 sock_owned_by_me((struct sock *)tp); 3511 tp->bytes_acked += delta; 3512 tp->snd_una = ack; 3513 } 3514 3515 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3516 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3517 { 3518 u32 delta = seq - tp->rcv_nxt; 3519 3520 sock_owned_by_me((struct sock *)tp); 3521 tp->bytes_received += delta; 3522 WRITE_ONCE(tp->rcv_nxt, seq); 3523 } 3524 3525 /* Update our send window. 3526 * 3527 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3528 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3529 */ 3530 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3531 u32 ack_seq) 3532 { 3533 struct tcp_sock *tp = tcp_sk(sk); 3534 int flag = 0; 3535 u32 nwin = ntohs(tcp_hdr(skb)->window); 3536 3537 if (likely(!tcp_hdr(skb)->syn)) 3538 nwin <<= tp->rx_opt.snd_wscale; 3539 3540 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3541 flag |= FLAG_WIN_UPDATE; 3542 tcp_update_wl(tp, ack_seq); 3543 3544 if (tp->snd_wnd != nwin) { 3545 tp->snd_wnd = nwin; 3546 3547 /* Note, it is the only place, where 3548 * fast path is recovered for sending TCP. 3549 */ 3550 tp->pred_flags = 0; 3551 tcp_fast_path_check(sk); 3552 3553 if (!tcp_write_queue_empty(sk)) 3554 tcp_slow_start_after_idle_check(sk); 3555 3556 if (nwin > tp->max_window) { 3557 tp->max_window = nwin; 3558 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3559 } 3560 } 3561 } 3562 3563 tcp_snd_una_update(tp, ack); 3564 3565 return flag; 3566 } 3567 3568 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3569 u32 *last_oow_ack_time) 3570 { 3571 if (*last_oow_ack_time) { 3572 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3573 3574 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3575 NET_INC_STATS(net, mib_idx); 3576 return true; /* rate-limited: don't send yet! */ 3577 } 3578 } 3579 3580 *last_oow_ack_time = tcp_jiffies32; 3581 3582 return false; /* not rate-limited: go ahead, send dupack now! */ 3583 } 3584 3585 /* Return true if we're currently rate-limiting out-of-window ACKs and 3586 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3587 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3588 * attacks that send repeated SYNs or ACKs for the same connection. To 3589 * do this, we do not send a duplicate SYNACK or ACK if the remote 3590 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3591 */ 3592 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3593 int mib_idx, u32 *last_oow_ack_time) 3594 { 3595 /* Data packets without SYNs are not likely part of an ACK loop. */ 3596 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3597 !tcp_hdr(skb)->syn) 3598 return false; 3599 3600 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3601 } 3602 3603 /* RFC 5961 7 [ACK Throttling] */ 3604 static void tcp_send_challenge_ack(struct sock *sk) 3605 { 3606 /* unprotected vars, we dont care of overwrites */ 3607 static u32 challenge_timestamp; 3608 static unsigned int challenge_count; 3609 struct tcp_sock *tp = tcp_sk(sk); 3610 struct net *net = sock_net(sk); 3611 u32 count, now; 3612 3613 /* First check our per-socket dupack rate limit. */ 3614 if (__tcp_oow_rate_limited(net, 3615 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3616 &tp->last_oow_ack_time)) 3617 return; 3618 3619 /* Then check host-wide RFC 5961 rate limit. */ 3620 now = jiffies / HZ; 3621 if (now != challenge_timestamp) { 3622 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3623 u32 half = (ack_limit + 1) >> 1; 3624 3625 challenge_timestamp = now; 3626 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3627 } 3628 count = READ_ONCE(challenge_count); 3629 if (count > 0) { 3630 WRITE_ONCE(challenge_count, count - 1); 3631 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3632 tcp_send_ack(sk); 3633 } 3634 } 3635 3636 static void tcp_store_ts_recent(struct tcp_sock *tp) 3637 { 3638 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3639 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3640 } 3641 3642 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3643 { 3644 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3645 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3646 * extra check below makes sure this can only happen 3647 * for pure ACK frames. -DaveM 3648 * 3649 * Not only, also it occurs for expired timestamps. 3650 */ 3651 3652 if (tcp_paws_check(&tp->rx_opt, 0)) 3653 tcp_store_ts_recent(tp); 3654 } 3655 } 3656 3657 /* This routine deals with acks during a TLP episode and ends an episode by 3658 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3659 */ 3660 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3661 { 3662 struct tcp_sock *tp = tcp_sk(sk); 3663 3664 if (before(ack, tp->tlp_high_seq)) 3665 return; 3666 3667 if (!tp->tlp_retrans) { 3668 /* TLP of new data has been acknowledged */ 3669 tp->tlp_high_seq = 0; 3670 } else if (flag & FLAG_DSACK_TLP) { 3671 /* This DSACK means original and TLP probe arrived; no loss */ 3672 tp->tlp_high_seq = 0; 3673 } else if (after(ack, tp->tlp_high_seq)) { 3674 /* ACK advances: there was a loss, so reduce cwnd. Reset 3675 * tlp_high_seq in tcp_init_cwnd_reduction() 3676 */ 3677 tcp_init_cwnd_reduction(sk); 3678 tcp_set_ca_state(sk, TCP_CA_CWR); 3679 tcp_end_cwnd_reduction(sk); 3680 tcp_try_keep_open(sk); 3681 NET_INC_STATS(sock_net(sk), 3682 LINUX_MIB_TCPLOSSPROBERECOVERY); 3683 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3684 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3685 /* Pure dupack: original and TLP probe arrived; no loss */ 3686 tp->tlp_high_seq = 0; 3687 } 3688 } 3689 3690 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3691 { 3692 const struct inet_connection_sock *icsk = inet_csk(sk); 3693 3694 if (icsk->icsk_ca_ops->in_ack_event) 3695 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3696 } 3697 3698 /* Congestion control has updated the cwnd already. So if we're in 3699 * loss recovery then now we do any new sends (for FRTO) or 3700 * retransmits (for CA_Loss or CA_recovery) that make sense. 3701 */ 3702 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3703 { 3704 struct tcp_sock *tp = tcp_sk(sk); 3705 3706 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3707 return; 3708 3709 if (unlikely(rexmit == REXMIT_NEW)) { 3710 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3711 TCP_NAGLE_OFF); 3712 if (after(tp->snd_nxt, tp->high_seq)) 3713 return; 3714 tp->frto = 0; 3715 } 3716 tcp_xmit_retransmit_queue(sk); 3717 } 3718 3719 /* Returns the number of packets newly acked or sacked by the current ACK */ 3720 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3721 { 3722 const struct net *net = sock_net(sk); 3723 struct tcp_sock *tp = tcp_sk(sk); 3724 u32 delivered; 3725 3726 delivered = tp->delivered - prior_delivered; 3727 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3728 if (flag & FLAG_ECE) 3729 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3730 3731 return delivered; 3732 } 3733 3734 /* This routine deals with incoming acks, but not outgoing ones. */ 3735 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3736 { 3737 struct inet_connection_sock *icsk = inet_csk(sk); 3738 struct tcp_sock *tp = tcp_sk(sk); 3739 struct tcp_sacktag_state sack_state; 3740 struct rate_sample rs = { .prior_delivered = 0 }; 3741 u32 prior_snd_una = tp->snd_una; 3742 bool is_sack_reneg = tp->is_sack_reneg; 3743 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3744 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3745 int num_dupack = 0; 3746 int prior_packets = tp->packets_out; 3747 u32 delivered = tp->delivered; 3748 u32 lost = tp->lost; 3749 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3750 u32 prior_fack; 3751 3752 sack_state.first_sackt = 0; 3753 sack_state.rate = &rs; 3754 sack_state.sack_delivered = 0; 3755 3756 /* We very likely will need to access rtx queue. */ 3757 prefetch(sk->tcp_rtx_queue.rb_node); 3758 3759 /* If the ack is older than previous acks 3760 * then we can probably ignore it. 3761 */ 3762 if (before(ack, prior_snd_una)) { 3763 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3764 if (before(ack, prior_snd_una - tp->max_window)) { 3765 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3766 tcp_send_challenge_ack(sk); 3767 return -1; 3768 } 3769 goto old_ack; 3770 } 3771 3772 /* If the ack includes data we haven't sent yet, discard 3773 * this segment (RFC793 Section 3.9). 3774 */ 3775 if (after(ack, tp->snd_nxt)) 3776 return -1; 3777 3778 if (after(ack, prior_snd_una)) { 3779 flag |= FLAG_SND_UNA_ADVANCED; 3780 icsk->icsk_retransmits = 0; 3781 3782 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3783 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3784 if (icsk->icsk_clean_acked) 3785 icsk->icsk_clean_acked(sk, ack); 3786 #endif 3787 } 3788 3789 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3790 rs.prior_in_flight = tcp_packets_in_flight(tp); 3791 3792 /* ts_recent update must be made after we are sure that the packet 3793 * is in window. 3794 */ 3795 if (flag & FLAG_UPDATE_TS_RECENT) 3796 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3797 3798 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3799 FLAG_SND_UNA_ADVANCED) { 3800 /* Window is constant, pure forward advance. 3801 * No more checks are required. 3802 * Note, we use the fact that SND.UNA>=SND.WL2. 3803 */ 3804 tcp_update_wl(tp, ack_seq); 3805 tcp_snd_una_update(tp, ack); 3806 flag |= FLAG_WIN_UPDATE; 3807 3808 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3809 3810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3811 } else { 3812 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3813 3814 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3815 flag |= FLAG_DATA; 3816 else 3817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3818 3819 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3820 3821 if (TCP_SKB_CB(skb)->sacked) 3822 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3823 &sack_state); 3824 3825 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3826 flag |= FLAG_ECE; 3827 ack_ev_flags |= CA_ACK_ECE; 3828 } 3829 3830 if (sack_state.sack_delivered) 3831 tcp_count_delivered(tp, sack_state.sack_delivered, 3832 flag & FLAG_ECE); 3833 3834 if (flag & FLAG_WIN_UPDATE) 3835 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3836 3837 tcp_in_ack_event(sk, ack_ev_flags); 3838 } 3839 3840 /* This is a deviation from RFC3168 since it states that: 3841 * "When the TCP data sender is ready to set the CWR bit after reducing 3842 * the congestion window, it SHOULD set the CWR bit only on the first 3843 * new data packet that it transmits." 3844 * We accept CWR on pure ACKs to be more robust 3845 * with widely-deployed TCP implementations that do this. 3846 */ 3847 tcp_ecn_accept_cwr(sk, skb); 3848 3849 /* We passed data and got it acked, remove any soft error 3850 * log. Something worked... 3851 */ 3852 sk->sk_err_soft = 0; 3853 icsk->icsk_probes_out = 0; 3854 tp->rcv_tstamp = tcp_jiffies32; 3855 if (!prior_packets) 3856 goto no_queue; 3857 3858 /* See if we can take anything off of the retransmit queue. */ 3859 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3860 &sack_state, flag & FLAG_ECE); 3861 3862 tcp_rack_update_reo_wnd(sk, &rs); 3863 3864 if (tp->tlp_high_seq) 3865 tcp_process_tlp_ack(sk, ack, flag); 3866 3867 if (tcp_ack_is_dubious(sk, flag)) { 3868 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3869 num_dupack = 1; 3870 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3871 if (!(flag & FLAG_DATA)) 3872 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3873 } 3874 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3875 &rexmit); 3876 } 3877 3878 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3879 if (flag & FLAG_SET_XMIT_TIMER) 3880 tcp_set_xmit_timer(sk); 3881 3882 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3883 sk_dst_confirm(sk); 3884 3885 delivered = tcp_newly_delivered(sk, delivered, flag); 3886 lost = tp->lost - lost; /* freshly marked lost */ 3887 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3888 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3889 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3890 tcp_xmit_recovery(sk, rexmit); 3891 return 1; 3892 3893 no_queue: 3894 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3895 if (flag & FLAG_DSACKING_ACK) { 3896 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3897 &rexmit); 3898 tcp_newly_delivered(sk, delivered, flag); 3899 } 3900 /* If this ack opens up a zero window, clear backoff. It was 3901 * being used to time the probes, and is probably far higher than 3902 * it needs to be for normal retransmission. 3903 */ 3904 tcp_ack_probe(sk); 3905 3906 if (tp->tlp_high_seq) 3907 tcp_process_tlp_ack(sk, ack, flag); 3908 return 1; 3909 3910 old_ack: 3911 /* If data was SACKed, tag it and see if we should send more data. 3912 * If data was DSACKed, see if we can undo a cwnd reduction. 3913 */ 3914 if (TCP_SKB_CB(skb)->sacked) { 3915 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3916 &sack_state); 3917 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3918 &rexmit); 3919 tcp_newly_delivered(sk, delivered, flag); 3920 tcp_xmit_recovery(sk, rexmit); 3921 } 3922 3923 return 0; 3924 } 3925 3926 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3927 bool syn, struct tcp_fastopen_cookie *foc, 3928 bool exp_opt) 3929 { 3930 /* Valid only in SYN or SYN-ACK with an even length. */ 3931 if (!foc || !syn || len < 0 || (len & 1)) 3932 return; 3933 3934 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3935 len <= TCP_FASTOPEN_COOKIE_MAX) 3936 memcpy(foc->val, cookie, len); 3937 else if (len != 0) 3938 len = -1; 3939 foc->len = len; 3940 foc->exp = exp_opt; 3941 } 3942 3943 static bool smc_parse_options(const struct tcphdr *th, 3944 struct tcp_options_received *opt_rx, 3945 const unsigned char *ptr, 3946 int opsize) 3947 { 3948 #if IS_ENABLED(CONFIG_SMC) 3949 if (static_branch_unlikely(&tcp_have_smc)) { 3950 if (th->syn && !(opsize & 1) && 3951 opsize >= TCPOLEN_EXP_SMC_BASE && 3952 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3953 opt_rx->smc_ok = 1; 3954 return true; 3955 } 3956 } 3957 #endif 3958 return false; 3959 } 3960 3961 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3962 * value on success. 3963 */ 3964 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3965 { 3966 const unsigned char *ptr = (const unsigned char *)(th + 1); 3967 int length = (th->doff * 4) - sizeof(struct tcphdr); 3968 u16 mss = 0; 3969 3970 while (length > 0) { 3971 int opcode = *ptr++; 3972 int opsize; 3973 3974 switch (opcode) { 3975 case TCPOPT_EOL: 3976 return mss; 3977 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3978 length--; 3979 continue; 3980 default: 3981 if (length < 2) 3982 return mss; 3983 opsize = *ptr++; 3984 if (opsize < 2) /* "silly options" */ 3985 return mss; 3986 if (opsize > length) 3987 return mss; /* fail on partial options */ 3988 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3989 u16 in_mss = get_unaligned_be16(ptr); 3990 3991 if (in_mss) { 3992 if (user_mss && user_mss < in_mss) 3993 in_mss = user_mss; 3994 mss = in_mss; 3995 } 3996 } 3997 ptr += opsize - 2; 3998 length -= opsize; 3999 } 4000 } 4001 return mss; 4002 } 4003 4004 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4005 * But, this can also be called on packets in the established flow when 4006 * the fast version below fails. 4007 */ 4008 void tcp_parse_options(const struct net *net, 4009 const struct sk_buff *skb, 4010 struct tcp_options_received *opt_rx, int estab, 4011 struct tcp_fastopen_cookie *foc) 4012 { 4013 const unsigned char *ptr; 4014 const struct tcphdr *th = tcp_hdr(skb); 4015 int length = (th->doff * 4) - sizeof(struct tcphdr); 4016 4017 ptr = (const unsigned char *)(th + 1); 4018 opt_rx->saw_tstamp = 0; 4019 opt_rx->saw_unknown = 0; 4020 4021 while (length > 0) { 4022 int opcode = *ptr++; 4023 int opsize; 4024 4025 switch (opcode) { 4026 case TCPOPT_EOL: 4027 return; 4028 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4029 length--; 4030 continue; 4031 default: 4032 if (length < 2) 4033 return; 4034 opsize = *ptr++; 4035 if (opsize < 2) /* "silly options" */ 4036 return; 4037 if (opsize > length) 4038 return; /* don't parse partial options */ 4039 switch (opcode) { 4040 case TCPOPT_MSS: 4041 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4042 u16 in_mss = get_unaligned_be16(ptr); 4043 if (in_mss) { 4044 if (opt_rx->user_mss && 4045 opt_rx->user_mss < in_mss) 4046 in_mss = opt_rx->user_mss; 4047 opt_rx->mss_clamp = in_mss; 4048 } 4049 } 4050 break; 4051 case TCPOPT_WINDOW: 4052 if (opsize == TCPOLEN_WINDOW && th->syn && 4053 !estab && net->ipv4.sysctl_tcp_window_scaling) { 4054 __u8 snd_wscale = *(__u8 *)ptr; 4055 opt_rx->wscale_ok = 1; 4056 if (snd_wscale > TCP_MAX_WSCALE) { 4057 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4058 __func__, 4059 snd_wscale, 4060 TCP_MAX_WSCALE); 4061 snd_wscale = TCP_MAX_WSCALE; 4062 } 4063 opt_rx->snd_wscale = snd_wscale; 4064 } 4065 break; 4066 case TCPOPT_TIMESTAMP: 4067 if ((opsize == TCPOLEN_TIMESTAMP) && 4068 ((estab && opt_rx->tstamp_ok) || 4069 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 4070 opt_rx->saw_tstamp = 1; 4071 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4072 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4073 } 4074 break; 4075 case TCPOPT_SACK_PERM: 4076 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4077 !estab && net->ipv4.sysctl_tcp_sack) { 4078 opt_rx->sack_ok = TCP_SACK_SEEN; 4079 tcp_sack_reset(opt_rx); 4080 } 4081 break; 4082 4083 case TCPOPT_SACK: 4084 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4085 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4086 opt_rx->sack_ok) { 4087 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4088 } 4089 break; 4090 #ifdef CONFIG_TCP_MD5SIG 4091 case TCPOPT_MD5SIG: 4092 /* 4093 * The MD5 Hash has already been 4094 * checked (see tcp_v{4,6}_do_rcv()). 4095 */ 4096 break; 4097 #endif 4098 case TCPOPT_FASTOPEN: 4099 tcp_parse_fastopen_option( 4100 opsize - TCPOLEN_FASTOPEN_BASE, 4101 ptr, th->syn, foc, false); 4102 break; 4103 4104 case TCPOPT_EXP: 4105 /* Fast Open option shares code 254 using a 4106 * 16 bits magic number. 4107 */ 4108 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4109 get_unaligned_be16(ptr) == 4110 TCPOPT_FASTOPEN_MAGIC) { 4111 tcp_parse_fastopen_option(opsize - 4112 TCPOLEN_EXP_FASTOPEN_BASE, 4113 ptr + 2, th->syn, foc, true); 4114 break; 4115 } 4116 4117 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4118 break; 4119 4120 opt_rx->saw_unknown = 1; 4121 break; 4122 4123 default: 4124 opt_rx->saw_unknown = 1; 4125 } 4126 ptr += opsize-2; 4127 length -= opsize; 4128 } 4129 } 4130 } 4131 EXPORT_SYMBOL(tcp_parse_options); 4132 4133 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4134 { 4135 const __be32 *ptr = (const __be32 *)(th + 1); 4136 4137 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4138 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4139 tp->rx_opt.saw_tstamp = 1; 4140 ++ptr; 4141 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4142 ++ptr; 4143 if (*ptr) 4144 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4145 else 4146 tp->rx_opt.rcv_tsecr = 0; 4147 return true; 4148 } 4149 return false; 4150 } 4151 4152 /* Fast parse options. This hopes to only see timestamps. 4153 * If it is wrong it falls back on tcp_parse_options(). 4154 */ 4155 static bool tcp_fast_parse_options(const struct net *net, 4156 const struct sk_buff *skb, 4157 const struct tcphdr *th, struct tcp_sock *tp) 4158 { 4159 /* In the spirit of fast parsing, compare doff directly to constant 4160 * values. Because equality is used, short doff can be ignored here. 4161 */ 4162 if (th->doff == (sizeof(*th) / 4)) { 4163 tp->rx_opt.saw_tstamp = 0; 4164 return false; 4165 } else if (tp->rx_opt.tstamp_ok && 4166 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4167 if (tcp_parse_aligned_timestamp(tp, th)) 4168 return true; 4169 } 4170 4171 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4172 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4173 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4174 4175 return true; 4176 } 4177 4178 #ifdef CONFIG_TCP_MD5SIG 4179 /* 4180 * Parse MD5 Signature option 4181 */ 4182 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4183 { 4184 int length = (th->doff << 2) - sizeof(*th); 4185 const u8 *ptr = (const u8 *)(th + 1); 4186 4187 /* If not enough data remaining, we can short cut */ 4188 while (length >= TCPOLEN_MD5SIG) { 4189 int opcode = *ptr++; 4190 int opsize; 4191 4192 switch (opcode) { 4193 case TCPOPT_EOL: 4194 return NULL; 4195 case TCPOPT_NOP: 4196 length--; 4197 continue; 4198 default: 4199 opsize = *ptr++; 4200 if (opsize < 2 || opsize > length) 4201 return NULL; 4202 if (opcode == TCPOPT_MD5SIG) 4203 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4204 } 4205 ptr += opsize - 2; 4206 length -= opsize; 4207 } 4208 return NULL; 4209 } 4210 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4211 #endif 4212 4213 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4214 * 4215 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4216 * it can pass through stack. So, the following predicate verifies that 4217 * this segment is not used for anything but congestion avoidance or 4218 * fast retransmit. Moreover, we even are able to eliminate most of such 4219 * second order effects, if we apply some small "replay" window (~RTO) 4220 * to timestamp space. 4221 * 4222 * All these measures still do not guarantee that we reject wrapped ACKs 4223 * on networks with high bandwidth, when sequence space is recycled fastly, 4224 * but it guarantees that such events will be very rare and do not affect 4225 * connection seriously. This doesn't look nice, but alas, PAWS is really 4226 * buggy extension. 4227 * 4228 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4229 * states that events when retransmit arrives after original data are rare. 4230 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4231 * the biggest problem on large power networks even with minor reordering. 4232 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4233 * up to bandwidth of 18Gigabit/sec. 8) ] 4234 */ 4235 4236 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4237 { 4238 const struct tcp_sock *tp = tcp_sk(sk); 4239 const struct tcphdr *th = tcp_hdr(skb); 4240 u32 seq = TCP_SKB_CB(skb)->seq; 4241 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4242 4243 return (/* 1. Pure ACK with correct sequence number. */ 4244 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4245 4246 /* 2. ... and duplicate ACK. */ 4247 ack == tp->snd_una && 4248 4249 /* 3. ... and does not update window. */ 4250 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4251 4252 /* 4. ... and sits in replay window. */ 4253 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4254 } 4255 4256 static inline bool tcp_paws_discard(const struct sock *sk, 4257 const struct sk_buff *skb) 4258 { 4259 const struct tcp_sock *tp = tcp_sk(sk); 4260 4261 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4262 !tcp_disordered_ack(sk, skb); 4263 } 4264 4265 /* Check segment sequence number for validity. 4266 * 4267 * Segment controls are considered valid, if the segment 4268 * fits to the window after truncation to the window. Acceptability 4269 * of data (and SYN, FIN, of course) is checked separately. 4270 * See tcp_data_queue(), for example. 4271 * 4272 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4273 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4274 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4275 * (borrowed from freebsd) 4276 */ 4277 4278 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4279 { 4280 return !before(end_seq, tp->rcv_wup) && 4281 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4282 } 4283 4284 /* When we get a reset we do this. */ 4285 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4286 { 4287 trace_tcp_receive_reset(sk); 4288 4289 /* mptcp can't tell us to ignore reset pkts, 4290 * so just ignore the return value of mptcp_incoming_options(). 4291 */ 4292 if (sk_is_mptcp(sk)) 4293 mptcp_incoming_options(sk, skb); 4294 4295 /* We want the right error as BSD sees it (and indeed as we do). */ 4296 switch (sk->sk_state) { 4297 case TCP_SYN_SENT: 4298 sk->sk_err = ECONNREFUSED; 4299 break; 4300 case TCP_CLOSE_WAIT: 4301 sk->sk_err = EPIPE; 4302 break; 4303 case TCP_CLOSE: 4304 return; 4305 default: 4306 sk->sk_err = ECONNRESET; 4307 } 4308 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4309 smp_wmb(); 4310 4311 tcp_write_queue_purge(sk); 4312 tcp_done(sk); 4313 4314 if (!sock_flag(sk, SOCK_DEAD)) 4315 sk_error_report(sk); 4316 } 4317 4318 /* 4319 * Process the FIN bit. This now behaves as it is supposed to work 4320 * and the FIN takes effect when it is validly part of sequence 4321 * space. Not before when we get holes. 4322 * 4323 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4324 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4325 * TIME-WAIT) 4326 * 4327 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4328 * close and we go into CLOSING (and later onto TIME-WAIT) 4329 * 4330 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4331 */ 4332 void tcp_fin(struct sock *sk) 4333 { 4334 struct tcp_sock *tp = tcp_sk(sk); 4335 4336 inet_csk_schedule_ack(sk); 4337 4338 sk->sk_shutdown |= RCV_SHUTDOWN; 4339 sock_set_flag(sk, SOCK_DONE); 4340 4341 switch (sk->sk_state) { 4342 case TCP_SYN_RECV: 4343 case TCP_ESTABLISHED: 4344 /* Move to CLOSE_WAIT */ 4345 tcp_set_state(sk, TCP_CLOSE_WAIT); 4346 inet_csk_enter_pingpong_mode(sk); 4347 break; 4348 4349 case TCP_CLOSE_WAIT: 4350 case TCP_CLOSING: 4351 /* Received a retransmission of the FIN, do 4352 * nothing. 4353 */ 4354 break; 4355 case TCP_LAST_ACK: 4356 /* RFC793: Remain in the LAST-ACK state. */ 4357 break; 4358 4359 case TCP_FIN_WAIT1: 4360 /* This case occurs when a simultaneous close 4361 * happens, we must ack the received FIN and 4362 * enter the CLOSING state. 4363 */ 4364 tcp_send_ack(sk); 4365 tcp_set_state(sk, TCP_CLOSING); 4366 break; 4367 case TCP_FIN_WAIT2: 4368 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4369 tcp_send_ack(sk); 4370 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4371 break; 4372 default: 4373 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4374 * cases we should never reach this piece of code. 4375 */ 4376 pr_err("%s: Impossible, sk->sk_state=%d\n", 4377 __func__, sk->sk_state); 4378 break; 4379 } 4380 4381 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4382 * Probably, we should reset in this case. For now drop them. 4383 */ 4384 skb_rbtree_purge(&tp->out_of_order_queue); 4385 if (tcp_is_sack(tp)) 4386 tcp_sack_reset(&tp->rx_opt); 4387 sk_mem_reclaim(sk); 4388 4389 if (!sock_flag(sk, SOCK_DEAD)) { 4390 sk->sk_state_change(sk); 4391 4392 /* Do not send POLL_HUP for half duplex close. */ 4393 if (sk->sk_shutdown == SHUTDOWN_MASK || 4394 sk->sk_state == TCP_CLOSE) 4395 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4396 else 4397 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4398 } 4399 } 4400 4401 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4402 u32 end_seq) 4403 { 4404 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4405 if (before(seq, sp->start_seq)) 4406 sp->start_seq = seq; 4407 if (after(end_seq, sp->end_seq)) 4408 sp->end_seq = end_seq; 4409 return true; 4410 } 4411 return false; 4412 } 4413 4414 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4415 { 4416 struct tcp_sock *tp = tcp_sk(sk); 4417 4418 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4419 int mib_idx; 4420 4421 if (before(seq, tp->rcv_nxt)) 4422 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4423 else 4424 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4425 4426 NET_INC_STATS(sock_net(sk), mib_idx); 4427 4428 tp->rx_opt.dsack = 1; 4429 tp->duplicate_sack[0].start_seq = seq; 4430 tp->duplicate_sack[0].end_seq = end_seq; 4431 } 4432 } 4433 4434 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4435 { 4436 struct tcp_sock *tp = tcp_sk(sk); 4437 4438 if (!tp->rx_opt.dsack) 4439 tcp_dsack_set(sk, seq, end_seq); 4440 else 4441 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4442 } 4443 4444 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4445 { 4446 /* When the ACK path fails or drops most ACKs, the sender would 4447 * timeout and spuriously retransmit the same segment repeatedly. 4448 * The receiver remembers and reflects via DSACKs. Leverage the 4449 * DSACK state and change the txhash to re-route speculatively. 4450 */ 4451 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4452 sk_rethink_txhash(sk)) 4453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4454 } 4455 4456 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4457 { 4458 struct tcp_sock *tp = tcp_sk(sk); 4459 4460 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4461 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4462 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4463 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4464 4465 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4466 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4467 4468 tcp_rcv_spurious_retrans(sk, skb); 4469 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4470 end_seq = tp->rcv_nxt; 4471 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4472 } 4473 } 4474 4475 tcp_send_ack(sk); 4476 } 4477 4478 /* These routines update the SACK block as out-of-order packets arrive or 4479 * in-order packets close up the sequence space. 4480 */ 4481 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4482 { 4483 int this_sack; 4484 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4485 struct tcp_sack_block *swalk = sp + 1; 4486 4487 /* See if the recent change to the first SACK eats into 4488 * or hits the sequence space of other SACK blocks, if so coalesce. 4489 */ 4490 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4491 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4492 int i; 4493 4494 /* Zap SWALK, by moving every further SACK up by one slot. 4495 * Decrease num_sacks. 4496 */ 4497 tp->rx_opt.num_sacks--; 4498 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4499 sp[i] = sp[i + 1]; 4500 continue; 4501 } 4502 this_sack++; 4503 swalk++; 4504 } 4505 } 4506 4507 static void tcp_sack_compress_send_ack(struct sock *sk) 4508 { 4509 struct tcp_sock *tp = tcp_sk(sk); 4510 4511 if (!tp->compressed_ack) 4512 return; 4513 4514 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4515 __sock_put(sk); 4516 4517 /* Since we have to send one ack finally, 4518 * substract one from tp->compressed_ack to keep 4519 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4520 */ 4521 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4522 tp->compressed_ack - 1); 4523 4524 tp->compressed_ack = 0; 4525 tcp_send_ack(sk); 4526 } 4527 4528 /* Reasonable amount of sack blocks included in TCP SACK option 4529 * The max is 4, but this becomes 3 if TCP timestamps are there. 4530 * Given that SACK packets might be lost, be conservative and use 2. 4531 */ 4532 #define TCP_SACK_BLOCKS_EXPECTED 2 4533 4534 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4535 { 4536 struct tcp_sock *tp = tcp_sk(sk); 4537 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4538 int cur_sacks = tp->rx_opt.num_sacks; 4539 int this_sack; 4540 4541 if (!cur_sacks) 4542 goto new_sack; 4543 4544 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4545 if (tcp_sack_extend(sp, seq, end_seq)) { 4546 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4547 tcp_sack_compress_send_ack(sk); 4548 /* Rotate this_sack to the first one. */ 4549 for (; this_sack > 0; this_sack--, sp--) 4550 swap(*sp, *(sp - 1)); 4551 if (cur_sacks > 1) 4552 tcp_sack_maybe_coalesce(tp); 4553 return; 4554 } 4555 } 4556 4557 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4558 tcp_sack_compress_send_ack(sk); 4559 4560 /* Could not find an adjacent existing SACK, build a new one, 4561 * put it at the front, and shift everyone else down. We 4562 * always know there is at least one SACK present already here. 4563 * 4564 * If the sack array is full, forget about the last one. 4565 */ 4566 if (this_sack >= TCP_NUM_SACKS) { 4567 this_sack--; 4568 tp->rx_opt.num_sacks--; 4569 sp--; 4570 } 4571 for (; this_sack > 0; this_sack--, sp--) 4572 *sp = *(sp - 1); 4573 4574 new_sack: 4575 /* Build the new head SACK, and we're done. */ 4576 sp->start_seq = seq; 4577 sp->end_seq = end_seq; 4578 tp->rx_opt.num_sacks++; 4579 } 4580 4581 /* RCV.NXT advances, some SACKs should be eaten. */ 4582 4583 static void tcp_sack_remove(struct tcp_sock *tp) 4584 { 4585 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4586 int num_sacks = tp->rx_opt.num_sacks; 4587 int this_sack; 4588 4589 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4590 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4591 tp->rx_opt.num_sacks = 0; 4592 return; 4593 } 4594 4595 for (this_sack = 0; this_sack < num_sacks;) { 4596 /* Check if the start of the sack is covered by RCV.NXT. */ 4597 if (!before(tp->rcv_nxt, sp->start_seq)) { 4598 int i; 4599 4600 /* RCV.NXT must cover all the block! */ 4601 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4602 4603 /* Zap this SACK, by moving forward any other SACKS. */ 4604 for (i = this_sack+1; i < num_sacks; i++) 4605 tp->selective_acks[i-1] = tp->selective_acks[i]; 4606 num_sacks--; 4607 continue; 4608 } 4609 this_sack++; 4610 sp++; 4611 } 4612 tp->rx_opt.num_sacks = num_sacks; 4613 } 4614 4615 /** 4616 * tcp_try_coalesce - try to merge skb to prior one 4617 * @sk: socket 4618 * @to: prior buffer 4619 * @from: buffer to add in queue 4620 * @fragstolen: pointer to boolean 4621 * 4622 * Before queueing skb @from after @to, try to merge them 4623 * to reduce overall memory use and queue lengths, if cost is small. 4624 * Packets in ofo or receive queues can stay a long time. 4625 * Better try to coalesce them right now to avoid future collapses. 4626 * Returns true if caller should free @from instead of queueing it 4627 */ 4628 static bool tcp_try_coalesce(struct sock *sk, 4629 struct sk_buff *to, 4630 struct sk_buff *from, 4631 bool *fragstolen) 4632 { 4633 int delta; 4634 4635 *fragstolen = false; 4636 4637 /* Its possible this segment overlaps with prior segment in queue */ 4638 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4639 return false; 4640 4641 if (!mptcp_skb_can_collapse(to, from)) 4642 return false; 4643 4644 #ifdef CONFIG_TLS_DEVICE 4645 if (from->decrypted != to->decrypted) 4646 return false; 4647 #endif 4648 4649 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4650 return false; 4651 4652 atomic_add(delta, &sk->sk_rmem_alloc); 4653 sk_mem_charge(sk, delta); 4654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4655 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4656 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4657 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4658 4659 if (TCP_SKB_CB(from)->has_rxtstamp) { 4660 TCP_SKB_CB(to)->has_rxtstamp = true; 4661 to->tstamp = from->tstamp; 4662 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4663 } 4664 4665 return true; 4666 } 4667 4668 static bool tcp_ooo_try_coalesce(struct sock *sk, 4669 struct sk_buff *to, 4670 struct sk_buff *from, 4671 bool *fragstolen) 4672 { 4673 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4674 4675 /* In case tcp_drop() is called later, update to->gso_segs */ 4676 if (res) { 4677 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4678 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4679 4680 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4681 } 4682 return res; 4683 } 4684 4685 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4686 { 4687 sk_drops_add(sk, skb); 4688 __kfree_skb(skb); 4689 } 4690 4691 /* This one checks to see if we can put data from the 4692 * out_of_order queue into the receive_queue. 4693 */ 4694 static void tcp_ofo_queue(struct sock *sk) 4695 { 4696 struct tcp_sock *tp = tcp_sk(sk); 4697 __u32 dsack_high = tp->rcv_nxt; 4698 bool fin, fragstolen, eaten; 4699 struct sk_buff *skb, *tail; 4700 struct rb_node *p; 4701 4702 p = rb_first(&tp->out_of_order_queue); 4703 while (p) { 4704 skb = rb_to_skb(p); 4705 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4706 break; 4707 4708 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4709 __u32 dsack = dsack_high; 4710 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4711 dsack_high = TCP_SKB_CB(skb)->end_seq; 4712 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4713 } 4714 p = rb_next(p); 4715 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4716 4717 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4718 tcp_drop(sk, skb); 4719 continue; 4720 } 4721 4722 tail = skb_peek_tail(&sk->sk_receive_queue); 4723 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4724 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4725 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4726 if (!eaten) 4727 __skb_queue_tail(&sk->sk_receive_queue, skb); 4728 else 4729 kfree_skb_partial(skb, fragstolen); 4730 4731 if (unlikely(fin)) { 4732 tcp_fin(sk); 4733 /* tcp_fin() purges tp->out_of_order_queue, 4734 * so we must end this loop right now. 4735 */ 4736 break; 4737 } 4738 } 4739 } 4740 4741 static bool tcp_prune_ofo_queue(struct sock *sk); 4742 static int tcp_prune_queue(struct sock *sk); 4743 4744 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4745 unsigned int size) 4746 { 4747 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4748 !sk_rmem_schedule(sk, skb, size)) { 4749 4750 if (tcp_prune_queue(sk) < 0) 4751 return -1; 4752 4753 while (!sk_rmem_schedule(sk, skb, size)) { 4754 if (!tcp_prune_ofo_queue(sk)) 4755 return -1; 4756 } 4757 } 4758 return 0; 4759 } 4760 4761 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4762 { 4763 struct tcp_sock *tp = tcp_sk(sk); 4764 struct rb_node **p, *parent; 4765 struct sk_buff *skb1; 4766 u32 seq, end_seq; 4767 bool fragstolen; 4768 4769 tcp_ecn_check_ce(sk, skb); 4770 4771 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4772 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4773 sk->sk_data_ready(sk); 4774 tcp_drop(sk, skb); 4775 return; 4776 } 4777 4778 /* Disable header prediction. */ 4779 tp->pred_flags = 0; 4780 inet_csk_schedule_ack(sk); 4781 4782 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4783 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4784 seq = TCP_SKB_CB(skb)->seq; 4785 end_seq = TCP_SKB_CB(skb)->end_seq; 4786 4787 p = &tp->out_of_order_queue.rb_node; 4788 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4789 /* Initial out of order segment, build 1 SACK. */ 4790 if (tcp_is_sack(tp)) { 4791 tp->rx_opt.num_sacks = 1; 4792 tp->selective_acks[0].start_seq = seq; 4793 tp->selective_acks[0].end_seq = end_seq; 4794 } 4795 rb_link_node(&skb->rbnode, NULL, p); 4796 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4797 tp->ooo_last_skb = skb; 4798 goto end; 4799 } 4800 4801 /* In the typical case, we are adding an skb to the end of the list. 4802 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4803 */ 4804 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4805 skb, &fragstolen)) { 4806 coalesce_done: 4807 /* For non sack flows, do not grow window to force DUPACK 4808 * and trigger fast retransmit. 4809 */ 4810 if (tcp_is_sack(tp)) 4811 tcp_grow_window(sk, skb, true); 4812 kfree_skb_partial(skb, fragstolen); 4813 skb = NULL; 4814 goto add_sack; 4815 } 4816 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4817 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4818 parent = &tp->ooo_last_skb->rbnode; 4819 p = &parent->rb_right; 4820 goto insert; 4821 } 4822 4823 /* Find place to insert this segment. Handle overlaps on the way. */ 4824 parent = NULL; 4825 while (*p) { 4826 parent = *p; 4827 skb1 = rb_to_skb(parent); 4828 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4829 p = &parent->rb_left; 4830 continue; 4831 } 4832 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4833 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4834 /* All the bits are present. Drop. */ 4835 NET_INC_STATS(sock_net(sk), 4836 LINUX_MIB_TCPOFOMERGE); 4837 tcp_drop(sk, skb); 4838 skb = NULL; 4839 tcp_dsack_set(sk, seq, end_seq); 4840 goto add_sack; 4841 } 4842 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4843 /* Partial overlap. */ 4844 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4845 } else { 4846 /* skb's seq == skb1's seq and skb covers skb1. 4847 * Replace skb1 with skb. 4848 */ 4849 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4850 &tp->out_of_order_queue); 4851 tcp_dsack_extend(sk, 4852 TCP_SKB_CB(skb1)->seq, 4853 TCP_SKB_CB(skb1)->end_seq); 4854 NET_INC_STATS(sock_net(sk), 4855 LINUX_MIB_TCPOFOMERGE); 4856 tcp_drop(sk, skb1); 4857 goto merge_right; 4858 } 4859 } else if (tcp_ooo_try_coalesce(sk, skb1, 4860 skb, &fragstolen)) { 4861 goto coalesce_done; 4862 } 4863 p = &parent->rb_right; 4864 } 4865 insert: 4866 /* Insert segment into RB tree. */ 4867 rb_link_node(&skb->rbnode, parent, p); 4868 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4869 4870 merge_right: 4871 /* Remove other segments covered by skb. */ 4872 while ((skb1 = skb_rb_next(skb)) != NULL) { 4873 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4874 break; 4875 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4876 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4877 end_seq); 4878 break; 4879 } 4880 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4881 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4882 TCP_SKB_CB(skb1)->end_seq); 4883 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4884 tcp_drop(sk, skb1); 4885 } 4886 /* If there is no skb after us, we are the last_skb ! */ 4887 if (!skb1) 4888 tp->ooo_last_skb = skb; 4889 4890 add_sack: 4891 if (tcp_is_sack(tp)) 4892 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4893 end: 4894 if (skb) { 4895 /* For non sack flows, do not grow window to force DUPACK 4896 * and trigger fast retransmit. 4897 */ 4898 if (tcp_is_sack(tp)) 4899 tcp_grow_window(sk, skb, false); 4900 skb_condense(skb); 4901 skb_set_owner_r(skb, sk); 4902 } 4903 } 4904 4905 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4906 bool *fragstolen) 4907 { 4908 int eaten; 4909 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4910 4911 eaten = (tail && 4912 tcp_try_coalesce(sk, tail, 4913 skb, fragstolen)) ? 1 : 0; 4914 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4915 if (!eaten) { 4916 __skb_queue_tail(&sk->sk_receive_queue, skb); 4917 skb_set_owner_r(skb, sk); 4918 } 4919 return eaten; 4920 } 4921 4922 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4923 { 4924 struct sk_buff *skb; 4925 int err = -ENOMEM; 4926 int data_len = 0; 4927 bool fragstolen; 4928 4929 if (size == 0) 4930 return 0; 4931 4932 if (size > PAGE_SIZE) { 4933 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4934 4935 data_len = npages << PAGE_SHIFT; 4936 size = data_len + (size & ~PAGE_MASK); 4937 } 4938 skb = alloc_skb_with_frags(size - data_len, data_len, 4939 PAGE_ALLOC_COSTLY_ORDER, 4940 &err, sk->sk_allocation); 4941 if (!skb) 4942 goto err; 4943 4944 skb_put(skb, size - data_len); 4945 skb->data_len = data_len; 4946 skb->len = size; 4947 4948 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4949 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4950 goto err_free; 4951 } 4952 4953 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4954 if (err) 4955 goto err_free; 4956 4957 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4958 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4959 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4960 4961 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4962 WARN_ON_ONCE(fragstolen); /* should not happen */ 4963 __kfree_skb(skb); 4964 } 4965 return size; 4966 4967 err_free: 4968 kfree_skb(skb); 4969 err: 4970 return err; 4971 4972 } 4973 4974 void tcp_data_ready(struct sock *sk) 4975 { 4976 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 4977 sk->sk_data_ready(sk); 4978 } 4979 4980 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4981 { 4982 struct tcp_sock *tp = tcp_sk(sk); 4983 bool fragstolen; 4984 int eaten; 4985 4986 /* If a subflow has been reset, the packet should not continue 4987 * to be processed, drop the packet. 4988 */ 4989 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 4990 __kfree_skb(skb); 4991 return; 4992 } 4993 4994 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4995 __kfree_skb(skb); 4996 return; 4997 } 4998 skb_dst_drop(skb); 4999 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5000 5001 tp->rx_opt.dsack = 0; 5002 5003 /* Queue data for delivery to the user. 5004 * Packets in sequence go to the receive queue. 5005 * Out of sequence packets to the out_of_order_queue. 5006 */ 5007 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5008 if (tcp_receive_window(tp) == 0) { 5009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5010 goto out_of_window; 5011 } 5012 5013 /* Ok. In sequence. In window. */ 5014 queue_and_out: 5015 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5016 sk_forced_mem_schedule(sk, skb->truesize); 5017 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5018 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5019 sk->sk_data_ready(sk); 5020 goto drop; 5021 } 5022 5023 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5024 if (skb->len) 5025 tcp_event_data_recv(sk, skb); 5026 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5027 tcp_fin(sk); 5028 5029 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5030 tcp_ofo_queue(sk); 5031 5032 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5033 * gap in queue is filled. 5034 */ 5035 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5036 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5037 } 5038 5039 if (tp->rx_opt.num_sacks) 5040 tcp_sack_remove(tp); 5041 5042 tcp_fast_path_check(sk); 5043 5044 if (eaten > 0) 5045 kfree_skb_partial(skb, fragstolen); 5046 if (!sock_flag(sk, SOCK_DEAD)) 5047 tcp_data_ready(sk); 5048 return; 5049 } 5050 5051 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5052 tcp_rcv_spurious_retrans(sk, skb); 5053 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5054 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5055 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5056 5057 out_of_window: 5058 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5059 inet_csk_schedule_ack(sk); 5060 drop: 5061 tcp_drop(sk, skb); 5062 return; 5063 } 5064 5065 /* Out of window. F.e. zero window probe. */ 5066 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 5067 goto out_of_window; 5068 5069 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5070 /* Partial packet, seq < rcv_next < end_seq */ 5071 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5072 5073 /* If window is closed, drop tail of packet. But after 5074 * remembering D-SACK for its head made in previous line. 5075 */ 5076 if (!tcp_receive_window(tp)) { 5077 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5078 goto out_of_window; 5079 } 5080 goto queue_and_out; 5081 } 5082 5083 tcp_data_queue_ofo(sk, skb); 5084 } 5085 5086 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5087 { 5088 if (list) 5089 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5090 5091 return skb_rb_next(skb); 5092 } 5093 5094 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5095 struct sk_buff_head *list, 5096 struct rb_root *root) 5097 { 5098 struct sk_buff *next = tcp_skb_next(skb, list); 5099 5100 if (list) 5101 __skb_unlink(skb, list); 5102 else 5103 rb_erase(&skb->rbnode, root); 5104 5105 __kfree_skb(skb); 5106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5107 5108 return next; 5109 } 5110 5111 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5112 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5113 { 5114 struct rb_node **p = &root->rb_node; 5115 struct rb_node *parent = NULL; 5116 struct sk_buff *skb1; 5117 5118 while (*p) { 5119 parent = *p; 5120 skb1 = rb_to_skb(parent); 5121 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5122 p = &parent->rb_left; 5123 else 5124 p = &parent->rb_right; 5125 } 5126 rb_link_node(&skb->rbnode, parent, p); 5127 rb_insert_color(&skb->rbnode, root); 5128 } 5129 5130 /* Collapse contiguous sequence of skbs head..tail with 5131 * sequence numbers start..end. 5132 * 5133 * If tail is NULL, this means until the end of the queue. 5134 * 5135 * Segments with FIN/SYN are not collapsed (only because this 5136 * simplifies code) 5137 */ 5138 static void 5139 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5140 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5141 { 5142 struct sk_buff *skb = head, *n; 5143 struct sk_buff_head tmp; 5144 bool end_of_skbs; 5145 5146 /* First, check that queue is collapsible and find 5147 * the point where collapsing can be useful. 5148 */ 5149 restart: 5150 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5151 n = tcp_skb_next(skb, list); 5152 5153 /* No new bits? It is possible on ofo queue. */ 5154 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5155 skb = tcp_collapse_one(sk, skb, list, root); 5156 if (!skb) 5157 break; 5158 goto restart; 5159 } 5160 5161 /* The first skb to collapse is: 5162 * - not SYN/FIN and 5163 * - bloated or contains data before "start" or 5164 * overlaps to the next one and mptcp allow collapsing. 5165 */ 5166 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5167 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5168 before(TCP_SKB_CB(skb)->seq, start))) { 5169 end_of_skbs = false; 5170 break; 5171 } 5172 5173 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5174 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5175 end_of_skbs = false; 5176 break; 5177 } 5178 5179 /* Decided to skip this, advance start seq. */ 5180 start = TCP_SKB_CB(skb)->end_seq; 5181 } 5182 if (end_of_skbs || 5183 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5184 return; 5185 5186 __skb_queue_head_init(&tmp); 5187 5188 while (before(start, end)) { 5189 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5190 struct sk_buff *nskb; 5191 5192 nskb = alloc_skb(copy, GFP_ATOMIC); 5193 if (!nskb) 5194 break; 5195 5196 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5197 #ifdef CONFIG_TLS_DEVICE 5198 nskb->decrypted = skb->decrypted; 5199 #endif 5200 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5201 if (list) 5202 __skb_queue_before(list, skb, nskb); 5203 else 5204 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5205 skb_set_owner_r(nskb, sk); 5206 mptcp_skb_ext_move(nskb, skb); 5207 5208 /* Copy data, releasing collapsed skbs. */ 5209 while (copy > 0) { 5210 int offset = start - TCP_SKB_CB(skb)->seq; 5211 int size = TCP_SKB_CB(skb)->end_seq - start; 5212 5213 BUG_ON(offset < 0); 5214 if (size > 0) { 5215 size = min(copy, size); 5216 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5217 BUG(); 5218 TCP_SKB_CB(nskb)->end_seq += size; 5219 copy -= size; 5220 start += size; 5221 } 5222 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5223 skb = tcp_collapse_one(sk, skb, list, root); 5224 if (!skb || 5225 skb == tail || 5226 !mptcp_skb_can_collapse(nskb, skb) || 5227 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5228 goto end; 5229 #ifdef CONFIG_TLS_DEVICE 5230 if (skb->decrypted != nskb->decrypted) 5231 goto end; 5232 #endif 5233 } 5234 } 5235 } 5236 end: 5237 skb_queue_walk_safe(&tmp, skb, n) 5238 tcp_rbtree_insert(root, skb); 5239 } 5240 5241 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5242 * and tcp_collapse() them until all the queue is collapsed. 5243 */ 5244 static void tcp_collapse_ofo_queue(struct sock *sk) 5245 { 5246 struct tcp_sock *tp = tcp_sk(sk); 5247 u32 range_truesize, sum_tiny = 0; 5248 struct sk_buff *skb, *head; 5249 u32 start, end; 5250 5251 skb = skb_rb_first(&tp->out_of_order_queue); 5252 new_range: 5253 if (!skb) { 5254 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5255 return; 5256 } 5257 start = TCP_SKB_CB(skb)->seq; 5258 end = TCP_SKB_CB(skb)->end_seq; 5259 range_truesize = skb->truesize; 5260 5261 for (head = skb;;) { 5262 skb = skb_rb_next(skb); 5263 5264 /* Range is terminated when we see a gap or when 5265 * we are at the queue end. 5266 */ 5267 if (!skb || 5268 after(TCP_SKB_CB(skb)->seq, end) || 5269 before(TCP_SKB_CB(skb)->end_seq, start)) { 5270 /* Do not attempt collapsing tiny skbs */ 5271 if (range_truesize != head->truesize || 5272 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5273 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5274 head, skb, start, end); 5275 } else { 5276 sum_tiny += range_truesize; 5277 if (sum_tiny > sk->sk_rcvbuf >> 3) 5278 return; 5279 } 5280 goto new_range; 5281 } 5282 5283 range_truesize += skb->truesize; 5284 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5285 start = TCP_SKB_CB(skb)->seq; 5286 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5287 end = TCP_SKB_CB(skb)->end_seq; 5288 } 5289 } 5290 5291 /* 5292 * Clean the out-of-order queue to make room. 5293 * We drop high sequences packets to : 5294 * 1) Let a chance for holes to be filled. 5295 * 2) not add too big latencies if thousands of packets sit there. 5296 * (But if application shrinks SO_RCVBUF, we could still end up 5297 * freeing whole queue here) 5298 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5299 * 5300 * Return true if queue has shrunk. 5301 */ 5302 static bool tcp_prune_ofo_queue(struct sock *sk) 5303 { 5304 struct tcp_sock *tp = tcp_sk(sk); 5305 struct rb_node *node, *prev; 5306 int goal; 5307 5308 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5309 return false; 5310 5311 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5312 goal = sk->sk_rcvbuf >> 3; 5313 node = &tp->ooo_last_skb->rbnode; 5314 do { 5315 prev = rb_prev(node); 5316 rb_erase(node, &tp->out_of_order_queue); 5317 goal -= rb_to_skb(node)->truesize; 5318 tcp_drop(sk, rb_to_skb(node)); 5319 if (!prev || goal <= 0) { 5320 sk_mem_reclaim(sk); 5321 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5322 !tcp_under_memory_pressure(sk)) 5323 break; 5324 goal = sk->sk_rcvbuf >> 3; 5325 } 5326 node = prev; 5327 } while (node); 5328 tp->ooo_last_skb = rb_to_skb(prev); 5329 5330 /* Reset SACK state. A conforming SACK implementation will 5331 * do the same at a timeout based retransmit. When a connection 5332 * is in a sad state like this, we care only about integrity 5333 * of the connection not performance. 5334 */ 5335 if (tp->rx_opt.sack_ok) 5336 tcp_sack_reset(&tp->rx_opt); 5337 return true; 5338 } 5339 5340 /* Reduce allocated memory if we can, trying to get 5341 * the socket within its memory limits again. 5342 * 5343 * Return less than zero if we should start dropping frames 5344 * until the socket owning process reads some of the data 5345 * to stabilize the situation. 5346 */ 5347 static int tcp_prune_queue(struct sock *sk) 5348 { 5349 struct tcp_sock *tp = tcp_sk(sk); 5350 5351 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5352 5353 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5354 tcp_clamp_window(sk); 5355 else if (tcp_under_memory_pressure(sk)) 5356 tcp_adjust_rcv_ssthresh(sk); 5357 5358 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5359 return 0; 5360 5361 tcp_collapse_ofo_queue(sk); 5362 if (!skb_queue_empty(&sk->sk_receive_queue)) 5363 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5364 skb_peek(&sk->sk_receive_queue), 5365 NULL, 5366 tp->copied_seq, tp->rcv_nxt); 5367 sk_mem_reclaim(sk); 5368 5369 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5370 return 0; 5371 5372 /* Collapsing did not help, destructive actions follow. 5373 * This must not ever occur. */ 5374 5375 tcp_prune_ofo_queue(sk); 5376 5377 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5378 return 0; 5379 5380 /* If we are really being abused, tell the caller to silently 5381 * drop receive data on the floor. It will get retransmitted 5382 * and hopefully then we'll have sufficient space. 5383 */ 5384 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5385 5386 /* Massive buffer overcommit. */ 5387 tp->pred_flags = 0; 5388 return -1; 5389 } 5390 5391 static bool tcp_should_expand_sndbuf(struct sock *sk) 5392 { 5393 const struct tcp_sock *tp = tcp_sk(sk); 5394 5395 /* If the user specified a specific send buffer setting, do 5396 * not modify it. 5397 */ 5398 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5399 return false; 5400 5401 /* If we are under global TCP memory pressure, do not expand. */ 5402 if (tcp_under_memory_pressure(sk)) { 5403 int unused_mem = sk_unused_reserved_mem(sk); 5404 5405 /* Adjust sndbuf according to reserved mem. But make sure 5406 * it never goes below SOCK_MIN_SNDBUF. 5407 * See sk_stream_moderate_sndbuf() for more details. 5408 */ 5409 if (unused_mem > SOCK_MIN_SNDBUF) 5410 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5411 5412 return false; 5413 } 5414 5415 /* If we are under soft global TCP memory pressure, do not expand. */ 5416 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5417 return false; 5418 5419 /* If we filled the congestion window, do not expand. */ 5420 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5421 return false; 5422 5423 return true; 5424 } 5425 5426 static void tcp_new_space(struct sock *sk) 5427 { 5428 struct tcp_sock *tp = tcp_sk(sk); 5429 5430 if (tcp_should_expand_sndbuf(sk)) { 5431 tcp_sndbuf_expand(sk); 5432 tp->snd_cwnd_stamp = tcp_jiffies32; 5433 } 5434 5435 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5436 } 5437 5438 static void tcp_check_space(struct sock *sk) 5439 { 5440 /* pairs with tcp_poll() */ 5441 smp_mb(); 5442 if (sk->sk_socket && 5443 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5444 tcp_new_space(sk); 5445 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5446 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5447 } 5448 } 5449 5450 static inline void tcp_data_snd_check(struct sock *sk) 5451 { 5452 tcp_push_pending_frames(sk); 5453 tcp_check_space(sk); 5454 } 5455 5456 /* 5457 * Check if sending an ack is needed. 5458 */ 5459 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5460 { 5461 struct tcp_sock *tp = tcp_sk(sk); 5462 unsigned long rtt, delay; 5463 5464 /* More than one full frame received... */ 5465 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5466 /* ... and right edge of window advances far enough. 5467 * (tcp_recvmsg() will send ACK otherwise). 5468 * If application uses SO_RCVLOWAT, we want send ack now if 5469 * we have not received enough bytes to satisfy the condition. 5470 */ 5471 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5472 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5473 /* We ACK each frame or... */ 5474 tcp_in_quickack_mode(sk) || 5475 /* Protocol state mandates a one-time immediate ACK */ 5476 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5477 send_now: 5478 tcp_send_ack(sk); 5479 return; 5480 } 5481 5482 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5483 tcp_send_delayed_ack(sk); 5484 return; 5485 } 5486 5487 if (!tcp_is_sack(tp) || 5488 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5489 goto send_now; 5490 5491 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5492 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5493 tp->dup_ack_counter = 0; 5494 } 5495 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5496 tp->dup_ack_counter++; 5497 goto send_now; 5498 } 5499 tp->compressed_ack++; 5500 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5501 return; 5502 5503 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5504 5505 rtt = tp->rcv_rtt_est.rtt_us; 5506 if (tp->srtt_us && tp->srtt_us < rtt) 5507 rtt = tp->srtt_us; 5508 5509 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5510 rtt * (NSEC_PER_USEC >> 3)/20); 5511 sock_hold(sk); 5512 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5513 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5514 HRTIMER_MODE_REL_PINNED_SOFT); 5515 } 5516 5517 static inline void tcp_ack_snd_check(struct sock *sk) 5518 { 5519 if (!inet_csk_ack_scheduled(sk)) { 5520 /* We sent a data segment already. */ 5521 return; 5522 } 5523 __tcp_ack_snd_check(sk, 1); 5524 } 5525 5526 /* 5527 * This routine is only called when we have urgent data 5528 * signaled. Its the 'slow' part of tcp_urg. It could be 5529 * moved inline now as tcp_urg is only called from one 5530 * place. We handle URGent data wrong. We have to - as 5531 * BSD still doesn't use the correction from RFC961. 5532 * For 1003.1g we should support a new option TCP_STDURG to permit 5533 * either form (or just set the sysctl tcp_stdurg). 5534 */ 5535 5536 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5537 { 5538 struct tcp_sock *tp = tcp_sk(sk); 5539 u32 ptr = ntohs(th->urg_ptr); 5540 5541 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5542 ptr--; 5543 ptr += ntohl(th->seq); 5544 5545 /* Ignore urgent data that we've already seen and read. */ 5546 if (after(tp->copied_seq, ptr)) 5547 return; 5548 5549 /* Do not replay urg ptr. 5550 * 5551 * NOTE: interesting situation not covered by specs. 5552 * Misbehaving sender may send urg ptr, pointing to segment, 5553 * which we already have in ofo queue. We are not able to fetch 5554 * such data and will stay in TCP_URG_NOTYET until will be eaten 5555 * by recvmsg(). Seems, we are not obliged to handle such wicked 5556 * situations. But it is worth to think about possibility of some 5557 * DoSes using some hypothetical application level deadlock. 5558 */ 5559 if (before(ptr, tp->rcv_nxt)) 5560 return; 5561 5562 /* Do we already have a newer (or duplicate) urgent pointer? */ 5563 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5564 return; 5565 5566 /* Tell the world about our new urgent pointer. */ 5567 sk_send_sigurg(sk); 5568 5569 /* We may be adding urgent data when the last byte read was 5570 * urgent. To do this requires some care. We cannot just ignore 5571 * tp->copied_seq since we would read the last urgent byte again 5572 * as data, nor can we alter copied_seq until this data arrives 5573 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5574 * 5575 * NOTE. Double Dutch. Rendering to plain English: author of comment 5576 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5577 * and expect that both A and B disappear from stream. This is _wrong_. 5578 * Though this happens in BSD with high probability, this is occasional. 5579 * Any application relying on this is buggy. Note also, that fix "works" 5580 * only in this artificial test. Insert some normal data between A and B and we will 5581 * decline of BSD again. Verdict: it is better to remove to trap 5582 * buggy users. 5583 */ 5584 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5585 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5586 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5587 tp->copied_seq++; 5588 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5589 __skb_unlink(skb, &sk->sk_receive_queue); 5590 __kfree_skb(skb); 5591 } 5592 } 5593 5594 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5595 WRITE_ONCE(tp->urg_seq, ptr); 5596 5597 /* Disable header prediction. */ 5598 tp->pred_flags = 0; 5599 } 5600 5601 /* This is the 'fast' part of urgent handling. */ 5602 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5603 { 5604 struct tcp_sock *tp = tcp_sk(sk); 5605 5606 /* Check if we get a new urgent pointer - normally not. */ 5607 if (unlikely(th->urg)) 5608 tcp_check_urg(sk, th); 5609 5610 /* Do we wait for any urgent data? - normally not... */ 5611 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5612 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5613 th->syn; 5614 5615 /* Is the urgent pointer pointing into this packet? */ 5616 if (ptr < skb->len) { 5617 u8 tmp; 5618 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5619 BUG(); 5620 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5621 if (!sock_flag(sk, SOCK_DEAD)) 5622 sk->sk_data_ready(sk); 5623 } 5624 } 5625 } 5626 5627 /* Accept RST for rcv_nxt - 1 after a FIN. 5628 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5629 * FIN is sent followed by a RST packet. The RST is sent with the same 5630 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5631 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5632 * ACKs on the closed socket. In addition middleboxes can drop either the 5633 * challenge ACK or a subsequent RST. 5634 */ 5635 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5636 { 5637 struct tcp_sock *tp = tcp_sk(sk); 5638 5639 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5640 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5641 TCPF_CLOSING)); 5642 } 5643 5644 /* Does PAWS and seqno based validation of an incoming segment, flags will 5645 * play significant role here. 5646 */ 5647 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5648 const struct tcphdr *th, int syn_inerr) 5649 { 5650 struct tcp_sock *tp = tcp_sk(sk); 5651 bool rst_seq_match = false; 5652 5653 /* RFC1323: H1. Apply PAWS check first. */ 5654 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5655 tp->rx_opt.saw_tstamp && 5656 tcp_paws_discard(sk, skb)) { 5657 if (!th->rst) { 5658 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5659 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5660 LINUX_MIB_TCPACKSKIPPEDPAWS, 5661 &tp->last_oow_ack_time)) 5662 tcp_send_dupack(sk, skb); 5663 goto discard; 5664 } 5665 /* Reset is accepted even if it did not pass PAWS. */ 5666 } 5667 5668 /* Step 1: check sequence number */ 5669 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5670 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5671 * (RST) segments are validated by checking their SEQ-fields." 5672 * And page 69: "If an incoming segment is not acceptable, 5673 * an acknowledgment should be sent in reply (unless the RST 5674 * bit is set, if so drop the segment and return)". 5675 */ 5676 if (!th->rst) { 5677 if (th->syn) 5678 goto syn_challenge; 5679 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5680 LINUX_MIB_TCPACKSKIPPEDSEQ, 5681 &tp->last_oow_ack_time)) 5682 tcp_send_dupack(sk, skb); 5683 } else if (tcp_reset_check(sk, skb)) { 5684 tcp_reset(sk, skb); 5685 } 5686 goto discard; 5687 } 5688 5689 /* Step 2: check RST bit */ 5690 if (th->rst) { 5691 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5692 * FIN and SACK too if available): 5693 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5694 * the right-most SACK block, 5695 * then 5696 * RESET the connection 5697 * else 5698 * Send a challenge ACK 5699 */ 5700 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5701 tcp_reset_check(sk, skb)) { 5702 rst_seq_match = true; 5703 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5704 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5705 int max_sack = sp[0].end_seq; 5706 int this_sack; 5707 5708 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5709 ++this_sack) { 5710 max_sack = after(sp[this_sack].end_seq, 5711 max_sack) ? 5712 sp[this_sack].end_seq : max_sack; 5713 } 5714 5715 if (TCP_SKB_CB(skb)->seq == max_sack) 5716 rst_seq_match = true; 5717 } 5718 5719 if (rst_seq_match) 5720 tcp_reset(sk, skb); 5721 else { 5722 /* Disable TFO if RST is out-of-order 5723 * and no data has been received 5724 * for current active TFO socket 5725 */ 5726 if (tp->syn_fastopen && !tp->data_segs_in && 5727 sk->sk_state == TCP_ESTABLISHED) 5728 tcp_fastopen_active_disable(sk); 5729 tcp_send_challenge_ack(sk); 5730 } 5731 goto discard; 5732 } 5733 5734 /* step 3: check security and precedence [ignored] */ 5735 5736 /* step 4: Check for a SYN 5737 * RFC 5961 4.2 : Send a challenge ack 5738 */ 5739 if (th->syn) { 5740 syn_challenge: 5741 if (syn_inerr) 5742 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5744 tcp_send_challenge_ack(sk); 5745 goto discard; 5746 } 5747 5748 bpf_skops_parse_hdr(sk, skb); 5749 5750 return true; 5751 5752 discard: 5753 tcp_drop(sk, skb); 5754 return false; 5755 } 5756 5757 /* 5758 * TCP receive function for the ESTABLISHED state. 5759 * 5760 * It is split into a fast path and a slow path. The fast path is 5761 * disabled when: 5762 * - A zero window was announced from us - zero window probing 5763 * is only handled properly in the slow path. 5764 * - Out of order segments arrived. 5765 * - Urgent data is expected. 5766 * - There is no buffer space left 5767 * - Unexpected TCP flags/window values/header lengths are received 5768 * (detected by checking the TCP header against pred_flags) 5769 * - Data is sent in both directions. Fast path only supports pure senders 5770 * or pure receivers (this means either the sequence number or the ack 5771 * value must stay constant) 5772 * - Unexpected TCP option. 5773 * 5774 * When these conditions are not satisfied it drops into a standard 5775 * receive procedure patterned after RFC793 to handle all cases. 5776 * The first three cases are guaranteed by proper pred_flags setting, 5777 * the rest is checked inline. Fast processing is turned on in 5778 * tcp_data_queue when everything is OK. 5779 */ 5780 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5781 { 5782 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5783 struct tcp_sock *tp = tcp_sk(sk); 5784 unsigned int len = skb->len; 5785 5786 /* TCP congestion window tracking */ 5787 trace_tcp_probe(sk, skb); 5788 5789 tcp_mstamp_refresh(tp); 5790 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5791 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5792 /* 5793 * Header prediction. 5794 * The code loosely follows the one in the famous 5795 * "30 instruction TCP receive" Van Jacobson mail. 5796 * 5797 * Van's trick is to deposit buffers into socket queue 5798 * on a device interrupt, to call tcp_recv function 5799 * on the receive process context and checksum and copy 5800 * the buffer to user space. smart... 5801 * 5802 * Our current scheme is not silly either but we take the 5803 * extra cost of the net_bh soft interrupt processing... 5804 * We do checksum and copy also but from device to kernel. 5805 */ 5806 5807 tp->rx_opt.saw_tstamp = 0; 5808 5809 /* pred_flags is 0xS?10 << 16 + snd_wnd 5810 * if header_prediction is to be made 5811 * 'S' will always be tp->tcp_header_len >> 2 5812 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5813 * turn it off (when there are holes in the receive 5814 * space for instance) 5815 * PSH flag is ignored. 5816 */ 5817 5818 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5819 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5820 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5821 int tcp_header_len = tp->tcp_header_len; 5822 5823 /* Timestamp header prediction: tcp_header_len 5824 * is automatically equal to th->doff*4 due to pred_flags 5825 * match. 5826 */ 5827 5828 /* Check timestamp */ 5829 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5830 /* No? Slow path! */ 5831 if (!tcp_parse_aligned_timestamp(tp, th)) 5832 goto slow_path; 5833 5834 /* If PAWS failed, check it more carefully in slow path */ 5835 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5836 goto slow_path; 5837 5838 /* DO NOT update ts_recent here, if checksum fails 5839 * and timestamp was corrupted part, it will result 5840 * in a hung connection since we will drop all 5841 * future packets due to the PAWS test. 5842 */ 5843 } 5844 5845 if (len <= tcp_header_len) { 5846 /* Bulk data transfer: sender */ 5847 if (len == tcp_header_len) { 5848 /* Predicted packet is in window by definition. 5849 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5850 * Hence, check seq<=rcv_wup reduces to: 5851 */ 5852 if (tcp_header_len == 5853 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5854 tp->rcv_nxt == tp->rcv_wup) 5855 tcp_store_ts_recent(tp); 5856 5857 /* We know that such packets are checksummed 5858 * on entry. 5859 */ 5860 tcp_ack(sk, skb, 0); 5861 __kfree_skb(skb); 5862 tcp_data_snd_check(sk); 5863 /* When receiving pure ack in fast path, update 5864 * last ts ecr directly instead of calling 5865 * tcp_rcv_rtt_measure_ts() 5866 */ 5867 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5868 return; 5869 } else { /* Header too small */ 5870 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5871 goto discard; 5872 } 5873 } else { 5874 int eaten = 0; 5875 bool fragstolen = false; 5876 5877 if (tcp_checksum_complete(skb)) 5878 goto csum_error; 5879 5880 if ((int)skb->truesize > sk->sk_forward_alloc) 5881 goto step5; 5882 5883 /* Predicted packet is in window by definition. 5884 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5885 * Hence, check seq<=rcv_wup reduces to: 5886 */ 5887 if (tcp_header_len == 5888 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5889 tp->rcv_nxt == tp->rcv_wup) 5890 tcp_store_ts_recent(tp); 5891 5892 tcp_rcv_rtt_measure_ts(sk, skb); 5893 5894 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5895 5896 /* Bulk data transfer: receiver */ 5897 __skb_pull(skb, tcp_header_len); 5898 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5899 5900 tcp_event_data_recv(sk, skb); 5901 5902 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5903 /* Well, only one small jumplet in fast path... */ 5904 tcp_ack(sk, skb, FLAG_DATA); 5905 tcp_data_snd_check(sk); 5906 if (!inet_csk_ack_scheduled(sk)) 5907 goto no_ack; 5908 } else { 5909 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5910 } 5911 5912 __tcp_ack_snd_check(sk, 0); 5913 no_ack: 5914 if (eaten) 5915 kfree_skb_partial(skb, fragstolen); 5916 tcp_data_ready(sk); 5917 return; 5918 } 5919 } 5920 5921 slow_path: 5922 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5923 goto csum_error; 5924 5925 if (!th->ack && !th->rst && !th->syn) 5926 goto discard; 5927 5928 /* 5929 * Standard slow path. 5930 */ 5931 5932 if (!tcp_validate_incoming(sk, skb, th, 1)) 5933 return; 5934 5935 step5: 5936 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5937 goto discard; 5938 5939 tcp_rcv_rtt_measure_ts(sk, skb); 5940 5941 /* Process urgent data. */ 5942 tcp_urg(sk, skb, th); 5943 5944 /* step 7: process the segment text */ 5945 tcp_data_queue(sk, skb); 5946 5947 tcp_data_snd_check(sk); 5948 tcp_ack_snd_check(sk); 5949 return; 5950 5951 csum_error: 5952 trace_tcp_bad_csum(skb); 5953 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5954 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5955 5956 discard: 5957 tcp_drop(sk, skb); 5958 } 5959 EXPORT_SYMBOL(tcp_rcv_established); 5960 5961 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5962 { 5963 struct inet_connection_sock *icsk = inet_csk(sk); 5964 struct tcp_sock *tp = tcp_sk(sk); 5965 5966 tcp_mtup_init(sk); 5967 icsk->icsk_af_ops->rebuild_header(sk); 5968 tcp_init_metrics(sk); 5969 5970 /* Initialize the congestion window to start the transfer. 5971 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5972 * retransmitted. In light of RFC6298 more aggressive 1sec 5973 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5974 * retransmission has occurred. 5975 */ 5976 if (tp->total_retrans > 1 && tp->undo_marker) 5977 tp->snd_cwnd = 1; 5978 else 5979 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5980 tp->snd_cwnd_stamp = tcp_jiffies32; 5981 5982 bpf_skops_established(sk, bpf_op, skb); 5983 /* Initialize congestion control unless BPF initialized it already: */ 5984 if (!icsk->icsk_ca_initialized) 5985 tcp_init_congestion_control(sk); 5986 tcp_init_buffer_space(sk); 5987 } 5988 5989 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5990 { 5991 struct tcp_sock *tp = tcp_sk(sk); 5992 struct inet_connection_sock *icsk = inet_csk(sk); 5993 5994 tcp_set_state(sk, TCP_ESTABLISHED); 5995 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5996 5997 if (skb) { 5998 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5999 security_inet_conn_established(sk, skb); 6000 sk_mark_napi_id(sk, skb); 6001 } 6002 6003 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6004 6005 /* Prevent spurious tcp_cwnd_restart() on first data 6006 * packet. 6007 */ 6008 tp->lsndtime = tcp_jiffies32; 6009 6010 if (sock_flag(sk, SOCK_KEEPOPEN)) 6011 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6012 6013 if (!tp->rx_opt.snd_wscale) 6014 __tcp_fast_path_on(tp, tp->snd_wnd); 6015 else 6016 tp->pred_flags = 0; 6017 } 6018 6019 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6020 struct tcp_fastopen_cookie *cookie) 6021 { 6022 struct tcp_sock *tp = tcp_sk(sk); 6023 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6024 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6025 bool syn_drop = false; 6026 6027 if (mss == tp->rx_opt.user_mss) { 6028 struct tcp_options_received opt; 6029 6030 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6031 tcp_clear_options(&opt); 6032 opt.user_mss = opt.mss_clamp = 0; 6033 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6034 mss = opt.mss_clamp; 6035 } 6036 6037 if (!tp->syn_fastopen) { 6038 /* Ignore an unsolicited cookie */ 6039 cookie->len = -1; 6040 } else if (tp->total_retrans) { 6041 /* SYN timed out and the SYN-ACK neither has a cookie nor 6042 * acknowledges data. Presumably the remote received only 6043 * the retransmitted (regular) SYNs: either the original 6044 * SYN-data or the corresponding SYN-ACK was dropped. 6045 */ 6046 syn_drop = (cookie->len < 0 && data); 6047 } else if (cookie->len < 0 && !tp->syn_data) { 6048 /* We requested a cookie but didn't get it. If we did not use 6049 * the (old) exp opt format then try so next time (try_exp=1). 6050 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6051 */ 6052 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6053 } 6054 6055 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6056 6057 if (data) { /* Retransmit unacked data in SYN */ 6058 if (tp->total_retrans) 6059 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6060 else 6061 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6062 skb_rbtree_walk_from(data) 6063 tcp_mark_skb_lost(sk, data); 6064 tcp_xmit_retransmit_queue(sk); 6065 NET_INC_STATS(sock_net(sk), 6066 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6067 return true; 6068 } 6069 tp->syn_data_acked = tp->syn_data; 6070 if (tp->syn_data_acked) { 6071 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6072 /* SYN-data is counted as two separate packets in tcp_ack() */ 6073 if (tp->delivered > 1) 6074 --tp->delivered; 6075 } 6076 6077 tcp_fastopen_add_skb(sk, synack); 6078 6079 return false; 6080 } 6081 6082 static void smc_check_reset_syn(struct tcp_sock *tp) 6083 { 6084 #if IS_ENABLED(CONFIG_SMC) 6085 if (static_branch_unlikely(&tcp_have_smc)) { 6086 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6087 tp->syn_smc = 0; 6088 } 6089 #endif 6090 } 6091 6092 static void tcp_try_undo_spurious_syn(struct sock *sk) 6093 { 6094 struct tcp_sock *tp = tcp_sk(sk); 6095 u32 syn_stamp; 6096 6097 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6098 * spurious if the ACK's timestamp option echo value matches the 6099 * original SYN timestamp. 6100 */ 6101 syn_stamp = tp->retrans_stamp; 6102 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6103 syn_stamp == tp->rx_opt.rcv_tsecr) 6104 tp->undo_marker = 0; 6105 } 6106 6107 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6108 const struct tcphdr *th) 6109 { 6110 struct inet_connection_sock *icsk = inet_csk(sk); 6111 struct tcp_sock *tp = tcp_sk(sk); 6112 struct tcp_fastopen_cookie foc = { .len = -1 }; 6113 int saved_clamp = tp->rx_opt.mss_clamp; 6114 bool fastopen_fail; 6115 6116 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6117 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6118 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6119 6120 if (th->ack) { 6121 /* rfc793: 6122 * "If the state is SYN-SENT then 6123 * first check the ACK bit 6124 * If the ACK bit is set 6125 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6126 * a reset (unless the RST bit is set, if so drop 6127 * the segment and return)" 6128 */ 6129 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6130 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6131 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6132 if (icsk->icsk_retransmits == 0) 6133 inet_csk_reset_xmit_timer(sk, 6134 ICSK_TIME_RETRANS, 6135 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6136 goto reset_and_undo; 6137 } 6138 6139 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6140 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6141 tcp_time_stamp(tp))) { 6142 NET_INC_STATS(sock_net(sk), 6143 LINUX_MIB_PAWSACTIVEREJECTED); 6144 goto reset_and_undo; 6145 } 6146 6147 /* Now ACK is acceptable. 6148 * 6149 * "If the RST bit is set 6150 * If the ACK was acceptable then signal the user "error: 6151 * connection reset", drop the segment, enter CLOSED state, 6152 * delete TCB, and return." 6153 */ 6154 6155 if (th->rst) { 6156 tcp_reset(sk, skb); 6157 goto discard; 6158 } 6159 6160 /* rfc793: 6161 * "fifth, if neither of the SYN or RST bits is set then 6162 * drop the segment and return." 6163 * 6164 * See note below! 6165 * --ANK(990513) 6166 */ 6167 if (!th->syn) 6168 goto discard_and_undo; 6169 6170 /* rfc793: 6171 * "If the SYN bit is on ... 6172 * are acceptable then ... 6173 * (our SYN has been ACKed), change the connection 6174 * state to ESTABLISHED..." 6175 */ 6176 6177 tcp_ecn_rcv_synack(tp, th); 6178 6179 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6180 tcp_try_undo_spurious_syn(sk); 6181 tcp_ack(sk, skb, FLAG_SLOWPATH); 6182 6183 /* Ok.. it's good. Set up sequence numbers and 6184 * move to established. 6185 */ 6186 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6187 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6188 6189 /* RFC1323: The window in SYN & SYN/ACK segments is 6190 * never scaled. 6191 */ 6192 tp->snd_wnd = ntohs(th->window); 6193 6194 if (!tp->rx_opt.wscale_ok) { 6195 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6196 tp->window_clamp = min(tp->window_clamp, 65535U); 6197 } 6198 6199 if (tp->rx_opt.saw_tstamp) { 6200 tp->rx_opt.tstamp_ok = 1; 6201 tp->tcp_header_len = 6202 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6203 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6204 tcp_store_ts_recent(tp); 6205 } else { 6206 tp->tcp_header_len = sizeof(struct tcphdr); 6207 } 6208 6209 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6210 tcp_initialize_rcv_mss(sk); 6211 6212 /* Remember, tcp_poll() does not lock socket! 6213 * Change state from SYN-SENT only after copied_seq 6214 * is initialized. */ 6215 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6216 6217 smc_check_reset_syn(tp); 6218 6219 smp_mb(); 6220 6221 tcp_finish_connect(sk, skb); 6222 6223 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6224 tcp_rcv_fastopen_synack(sk, skb, &foc); 6225 6226 if (!sock_flag(sk, SOCK_DEAD)) { 6227 sk->sk_state_change(sk); 6228 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6229 } 6230 if (fastopen_fail) 6231 return -1; 6232 if (sk->sk_write_pending || 6233 icsk->icsk_accept_queue.rskq_defer_accept || 6234 inet_csk_in_pingpong_mode(sk)) { 6235 /* Save one ACK. Data will be ready after 6236 * several ticks, if write_pending is set. 6237 * 6238 * It may be deleted, but with this feature tcpdumps 6239 * look so _wonderfully_ clever, that I was not able 6240 * to stand against the temptation 8) --ANK 6241 */ 6242 inet_csk_schedule_ack(sk); 6243 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6244 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6245 TCP_DELACK_MAX, TCP_RTO_MAX); 6246 6247 discard: 6248 tcp_drop(sk, skb); 6249 return 0; 6250 } else { 6251 tcp_send_ack(sk); 6252 } 6253 return -1; 6254 } 6255 6256 /* No ACK in the segment */ 6257 6258 if (th->rst) { 6259 /* rfc793: 6260 * "If the RST bit is set 6261 * 6262 * Otherwise (no ACK) drop the segment and return." 6263 */ 6264 6265 goto discard_and_undo; 6266 } 6267 6268 /* PAWS check. */ 6269 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6270 tcp_paws_reject(&tp->rx_opt, 0)) 6271 goto discard_and_undo; 6272 6273 if (th->syn) { 6274 /* We see SYN without ACK. It is attempt of 6275 * simultaneous connect with crossed SYNs. 6276 * Particularly, it can be connect to self. 6277 */ 6278 tcp_set_state(sk, TCP_SYN_RECV); 6279 6280 if (tp->rx_opt.saw_tstamp) { 6281 tp->rx_opt.tstamp_ok = 1; 6282 tcp_store_ts_recent(tp); 6283 tp->tcp_header_len = 6284 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6285 } else { 6286 tp->tcp_header_len = sizeof(struct tcphdr); 6287 } 6288 6289 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6290 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6291 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6292 6293 /* RFC1323: The window in SYN & SYN/ACK segments is 6294 * never scaled. 6295 */ 6296 tp->snd_wnd = ntohs(th->window); 6297 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6298 tp->max_window = tp->snd_wnd; 6299 6300 tcp_ecn_rcv_syn(tp, th); 6301 6302 tcp_mtup_init(sk); 6303 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6304 tcp_initialize_rcv_mss(sk); 6305 6306 tcp_send_synack(sk); 6307 #if 0 6308 /* Note, we could accept data and URG from this segment. 6309 * There are no obstacles to make this (except that we must 6310 * either change tcp_recvmsg() to prevent it from returning data 6311 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6312 * 6313 * However, if we ignore data in ACKless segments sometimes, 6314 * we have no reasons to accept it sometimes. 6315 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6316 * is not flawless. So, discard packet for sanity. 6317 * Uncomment this return to process the data. 6318 */ 6319 return -1; 6320 #else 6321 goto discard; 6322 #endif 6323 } 6324 /* "fifth, if neither of the SYN or RST bits is set then 6325 * drop the segment and return." 6326 */ 6327 6328 discard_and_undo: 6329 tcp_clear_options(&tp->rx_opt); 6330 tp->rx_opt.mss_clamp = saved_clamp; 6331 goto discard; 6332 6333 reset_and_undo: 6334 tcp_clear_options(&tp->rx_opt); 6335 tp->rx_opt.mss_clamp = saved_clamp; 6336 return 1; 6337 } 6338 6339 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6340 { 6341 struct request_sock *req; 6342 6343 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6344 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6345 */ 6346 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6347 tcp_try_undo_loss(sk, false); 6348 6349 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6350 tcp_sk(sk)->retrans_stamp = 0; 6351 inet_csk(sk)->icsk_retransmits = 0; 6352 6353 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6354 * we no longer need req so release it. 6355 */ 6356 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6357 lockdep_sock_is_held(sk)); 6358 reqsk_fastopen_remove(sk, req, false); 6359 6360 /* Re-arm the timer because data may have been sent out. 6361 * This is similar to the regular data transmission case 6362 * when new data has just been ack'ed. 6363 * 6364 * (TFO) - we could try to be more aggressive and 6365 * retransmitting any data sooner based on when they 6366 * are sent out. 6367 */ 6368 tcp_rearm_rto(sk); 6369 } 6370 6371 /* 6372 * This function implements the receiving procedure of RFC 793 for 6373 * all states except ESTABLISHED and TIME_WAIT. 6374 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6375 * address independent. 6376 */ 6377 6378 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6379 { 6380 struct tcp_sock *tp = tcp_sk(sk); 6381 struct inet_connection_sock *icsk = inet_csk(sk); 6382 const struct tcphdr *th = tcp_hdr(skb); 6383 struct request_sock *req; 6384 int queued = 0; 6385 bool acceptable; 6386 6387 switch (sk->sk_state) { 6388 case TCP_CLOSE: 6389 goto discard; 6390 6391 case TCP_LISTEN: 6392 if (th->ack) 6393 return 1; 6394 6395 if (th->rst) 6396 goto discard; 6397 6398 if (th->syn) { 6399 if (th->fin) 6400 goto discard; 6401 /* It is possible that we process SYN packets from backlog, 6402 * so we need to make sure to disable BH and RCU right there. 6403 */ 6404 rcu_read_lock(); 6405 local_bh_disable(); 6406 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6407 local_bh_enable(); 6408 rcu_read_unlock(); 6409 6410 if (!acceptable) 6411 return 1; 6412 consume_skb(skb); 6413 return 0; 6414 } 6415 goto discard; 6416 6417 case TCP_SYN_SENT: 6418 tp->rx_opt.saw_tstamp = 0; 6419 tcp_mstamp_refresh(tp); 6420 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6421 if (queued >= 0) 6422 return queued; 6423 6424 /* Do step6 onward by hand. */ 6425 tcp_urg(sk, skb, th); 6426 __kfree_skb(skb); 6427 tcp_data_snd_check(sk); 6428 return 0; 6429 } 6430 6431 tcp_mstamp_refresh(tp); 6432 tp->rx_opt.saw_tstamp = 0; 6433 req = rcu_dereference_protected(tp->fastopen_rsk, 6434 lockdep_sock_is_held(sk)); 6435 if (req) { 6436 bool req_stolen; 6437 6438 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6439 sk->sk_state != TCP_FIN_WAIT1); 6440 6441 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6442 goto discard; 6443 } 6444 6445 if (!th->ack && !th->rst && !th->syn) 6446 goto discard; 6447 6448 if (!tcp_validate_incoming(sk, skb, th, 0)) 6449 return 0; 6450 6451 /* step 5: check the ACK field */ 6452 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6453 FLAG_UPDATE_TS_RECENT | 6454 FLAG_NO_CHALLENGE_ACK) > 0; 6455 6456 if (!acceptable) { 6457 if (sk->sk_state == TCP_SYN_RECV) 6458 return 1; /* send one RST */ 6459 tcp_send_challenge_ack(sk); 6460 goto discard; 6461 } 6462 switch (sk->sk_state) { 6463 case TCP_SYN_RECV: 6464 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6465 if (!tp->srtt_us) 6466 tcp_synack_rtt_meas(sk, req); 6467 6468 if (req) { 6469 tcp_rcv_synrecv_state_fastopen(sk); 6470 } else { 6471 tcp_try_undo_spurious_syn(sk); 6472 tp->retrans_stamp = 0; 6473 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6474 skb); 6475 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6476 } 6477 smp_mb(); 6478 tcp_set_state(sk, TCP_ESTABLISHED); 6479 sk->sk_state_change(sk); 6480 6481 /* Note, that this wakeup is only for marginal crossed SYN case. 6482 * Passively open sockets are not waked up, because 6483 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6484 */ 6485 if (sk->sk_socket) 6486 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6487 6488 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6489 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6490 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6491 6492 if (tp->rx_opt.tstamp_ok) 6493 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6494 6495 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6496 tcp_update_pacing_rate(sk); 6497 6498 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6499 tp->lsndtime = tcp_jiffies32; 6500 6501 tcp_initialize_rcv_mss(sk); 6502 tcp_fast_path_on(tp); 6503 break; 6504 6505 case TCP_FIN_WAIT1: { 6506 int tmo; 6507 6508 if (req) 6509 tcp_rcv_synrecv_state_fastopen(sk); 6510 6511 if (tp->snd_una != tp->write_seq) 6512 break; 6513 6514 tcp_set_state(sk, TCP_FIN_WAIT2); 6515 sk->sk_shutdown |= SEND_SHUTDOWN; 6516 6517 sk_dst_confirm(sk); 6518 6519 if (!sock_flag(sk, SOCK_DEAD)) { 6520 /* Wake up lingering close() */ 6521 sk->sk_state_change(sk); 6522 break; 6523 } 6524 6525 if (tp->linger2 < 0) { 6526 tcp_done(sk); 6527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6528 return 1; 6529 } 6530 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6531 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6532 /* Receive out of order FIN after close() */ 6533 if (tp->syn_fastopen && th->fin) 6534 tcp_fastopen_active_disable(sk); 6535 tcp_done(sk); 6536 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6537 return 1; 6538 } 6539 6540 tmo = tcp_fin_time(sk); 6541 if (tmo > TCP_TIMEWAIT_LEN) { 6542 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6543 } else if (th->fin || sock_owned_by_user(sk)) { 6544 /* Bad case. We could lose such FIN otherwise. 6545 * It is not a big problem, but it looks confusing 6546 * and not so rare event. We still can lose it now, 6547 * if it spins in bh_lock_sock(), but it is really 6548 * marginal case. 6549 */ 6550 inet_csk_reset_keepalive_timer(sk, tmo); 6551 } else { 6552 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6553 goto discard; 6554 } 6555 break; 6556 } 6557 6558 case TCP_CLOSING: 6559 if (tp->snd_una == tp->write_seq) { 6560 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6561 goto discard; 6562 } 6563 break; 6564 6565 case TCP_LAST_ACK: 6566 if (tp->snd_una == tp->write_seq) { 6567 tcp_update_metrics(sk); 6568 tcp_done(sk); 6569 goto discard; 6570 } 6571 break; 6572 } 6573 6574 /* step 6: check the URG bit */ 6575 tcp_urg(sk, skb, th); 6576 6577 /* step 7: process the segment text */ 6578 switch (sk->sk_state) { 6579 case TCP_CLOSE_WAIT: 6580 case TCP_CLOSING: 6581 case TCP_LAST_ACK: 6582 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6583 /* If a subflow has been reset, the packet should not 6584 * continue to be processed, drop the packet. 6585 */ 6586 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6587 goto discard; 6588 break; 6589 } 6590 fallthrough; 6591 case TCP_FIN_WAIT1: 6592 case TCP_FIN_WAIT2: 6593 /* RFC 793 says to queue data in these states, 6594 * RFC 1122 says we MUST send a reset. 6595 * BSD 4.4 also does reset. 6596 */ 6597 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6598 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6599 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6601 tcp_reset(sk, skb); 6602 return 1; 6603 } 6604 } 6605 fallthrough; 6606 case TCP_ESTABLISHED: 6607 tcp_data_queue(sk, skb); 6608 queued = 1; 6609 break; 6610 } 6611 6612 /* tcp_data could move socket to TIME-WAIT */ 6613 if (sk->sk_state != TCP_CLOSE) { 6614 tcp_data_snd_check(sk); 6615 tcp_ack_snd_check(sk); 6616 } 6617 6618 if (!queued) { 6619 discard: 6620 tcp_drop(sk, skb); 6621 } 6622 return 0; 6623 } 6624 EXPORT_SYMBOL(tcp_rcv_state_process); 6625 6626 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6627 { 6628 struct inet_request_sock *ireq = inet_rsk(req); 6629 6630 if (family == AF_INET) 6631 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6632 &ireq->ir_rmt_addr, port); 6633 #if IS_ENABLED(CONFIG_IPV6) 6634 else if (family == AF_INET6) 6635 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6636 &ireq->ir_v6_rmt_addr, port); 6637 #endif 6638 } 6639 6640 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6641 * 6642 * If we receive a SYN packet with these bits set, it means a 6643 * network is playing bad games with TOS bits. In order to 6644 * avoid possible false congestion notifications, we disable 6645 * TCP ECN negotiation. 6646 * 6647 * Exception: tcp_ca wants ECN. This is required for DCTCP 6648 * congestion control: Linux DCTCP asserts ECT on all packets, 6649 * including SYN, which is most optimal solution; however, 6650 * others, such as FreeBSD do not. 6651 * 6652 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6653 * set, indicating the use of a future TCP extension (such as AccECN). See 6654 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6655 * extensions. 6656 */ 6657 static void tcp_ecn_create_request(struct request_sock *req, 6658 const struct sk_buff *skb, 6659 const struct sock *listen_sk, 6660 const struct dst_entry *dst) 6661 { 6662 const struct tcphdr *th = tcp_hdr(skb); 6663 const struct net *net = sock_net(listen_sk); 6664 bool th_ecn = th->ece && th->cwr; 6665 bool ect, ecn_ok; 6666 u32 ecn_ok_dst; 6667 6668 if (!th_ecn) 6669 return; 6670 6671 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6672 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6673 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6674 6675 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6676 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6677 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6678 inet_rsk(req)->ecn_ok = 1; 6679 } 6680 6681 static void tcp_openreq_init(struct request_sock *req, 6682 const struct tcp_options_received *rx_opt, 6683 struct sk_buff *skb, const struct sock *sk) 6684 { 6685 struct inet_request_sock *ireq = inet_rsk(req); 6686 6687 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6688 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6689 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6690 tcp_rsk(req)->snt_synack = 0; 6691 tcp_rsk(req)->last_oow_ack_time = 0; 6692 req->mss = rx_opt->mss_clamp; 6693 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6694 ireq->tstamp_ok = rx_opt->tstamp_ok; 6695 ireq->sack_ok = rx_opt->sack_ok; 6696 ireq->snd_wscale = rx_opt->snd_wscale; 6697 ireq->wscale_ok = rx_opt->wscale_ok; 6698 ireq->acked = 0; 6699 ireq->ecn_ok = 0; 6700 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6701 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6702 ireq->ir_mark = inet_request_mark(sk, skb); 6703 #if IS_ENABLED(CONFIG_SMC) 6704 ireq->smc_ok = rx_opt->smc_ok; 6705 #endif 6706 } 6707 6708 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6709 struct sock *sk_listener, 6710 bool attach_listener) 6711 { 6712 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6713 attach_listener); 6714 6715 if (req) { 6716 struct inet_request_sock *ireq = inet_rsk(req); 6717 6718 ireq->ireq_opt = NULL; 6719 #if IS_ENABLED(CONFIG_IPV6) 6720 ireq->pktopts = NULL; 6721 #endif 6722 atomic64_set(&ireq->ir_cookie, 0); 6723 ireq->ireq_state = TCP_NEW_SYN_RECV; 6724 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6725 ireq->ireq_family = sk_listener->sk_family; 6726 } 6727 6728 return req; 6729 } 6730 EXPORT_SYMBOL(inet_reqsk_alloc); 6731 6732 /* 6733 * Return true if a syncookie should be sent 6734 */ 6735 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6736 { 6737 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6738 const char *msg = "Dropping request"; 6739 bool want_cookie = false; 6740 struct net *net = sock_net(sk); 6741 6742 #ifdef CONFIG_SYN_COOKIES 6743 if (net->ipv4.sysctl_tcp_syncookies) { 6744 msg = "Sending cookies"; 6745 want_cookie = true; 6746 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6747 } else 6748 #endif 6749 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6750 6751 if (!queue->synflood_warned && 6752 net->ipv4.sysctl_tcp_syncookies != 2 && 6753 xchg(&queue->synflood_warned, 1) == 0) 6754 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6755 proto, sk->sk_num, msg); 6756 6757 return want_cookie; 6758 } 6759 6760 static void tcp_reqsk_record_syn(const struct sock *sk, 6761 struct request_sock *req, 6762 const struct sk_buff *skb) 6763 { 6764 if (tcp_sk(sk)->save_syn) { 6765 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6766 struct saved_syn *saved_syn; 6767 u32 mac_hdrlen; 6768 void *base; 6769 6770 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6771 base = skb_mac_header(skb); 6772 mac_hdrlen = skb_mac_header_len(skb); 6773 len += mac_hdrlen; 6774 } else { 6775 base = skb_network_header(skb); 6776 mac_hdrlen = 0; 6777 } 6778 6779 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6780 GFP_ATOMIC); 6781 if (saved_syn) { 6782 saved_syn->mac_hdrlen = mac_hdrlen; 6783 saved_syn->network_hdrlen = skb_network_header_len(skb); 6784 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6785 memcpy(saved_syn->data, base, len); 6786 req->saved_syn = saved_syn; 6787 } 6788 } 6789 } 6790 6791 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6792 * used for SYN cookie generation. 6793 */ 6794 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6795 const struct tcp_request_sock_ops *af_ops, 6796 struct sock *sk, struct tcphdr *th) 6797 { 6798 struct tcp_sock *tp = tcp_sk(sk); 6799 u16 mss; 6800 6801 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6802 !inet_csk_reqsk_queue_is_full(sk)) 6803 return 0; 6804 6805 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6806 return 0; 6807 6808 if (sk_acceptq_is_full(sk)) { 6809 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6810 return 0; 6811 } 6812 6813 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6814 if (!mss) 6815 mss = af_ops->mss_clamp; 6816 6817 return mss; 6818 } 6819 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6820 6821 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6822 const struct tcp_request_sock_ops *af_ops, 6823 struct sock *sk, struct sk_buff *skb) 6824 { 6825 struct tcp_fastopen_cookie foc = { .len = -1 }; 6826 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6827 struct tcp_options_received tmp_opt; 6828 struct tcp_sock *tp = tcp_sk(sk); 6829 struct net *net = sock_net(sk); 6830 struct sock *fastopen_sk = NULL; 6831 struct request_sock *req; 6832 bool want_cookie = false; 6833 struct dst_entry *dst; 6834 struct flowi fl; 6835 6836 /* TW buckets are converted to open requests without 6837 * limitations, they conserve resources and peer is 6838 * evidently real one. 6839 */ 6840 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6841 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6842 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6843 if (!want_cookie) 6844 goto drop; 6845 } 6846 6847 if (sk_acceptq_is_full(sk)) { 6848 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6849 goto drop; 6850 } 6851 6852 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6853 if (!req) 6854 goto drop; 6855 6856 req->syncookie = want_cookie; 6857 tcp_rsk(req)->af_specific = af_ops; 6858 tcp_rsk(req)->ts_off = 0; 6859 #if IS_ENABLED(CONFIG_MPTCP) 6860 tcp_rsk(req)->is_mptcp = 0; 6861 #endif 6862 6863 tcp_clear_options(&tmp_opt); 6864 tmp_opt.mss_clamp = af_ops->mss_clamp; 6865 tmp_opt.user_mss = tp->rx_opt.user_mss; 6866 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6867 want_cookie ? NULL : &foc); 6868 6869 if (want_cookie && !tmp_opt.saw_tstamp) 6870 tcp_clear_options(&tmp_opt); 6871 6872 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6873 tmp_opt.smc_ok = 0; 6874 6875 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6876 tcp_openreq_init(req, &tmp_opt, skb, sk); 6877 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6878 6879 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6880 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6881 6882 dst = af_ops->route_req(sk, skb, &fl, req); 6883 if (!dst) 6884 goto drop_and_free; 6885 6886 if (tmp_opt.tstamp_ok) 6887 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6888 6889 if (!want_cookie && !isn) { 6890 /* Kill the following clause, if you dislike this way. */ 6891 if (!net->ipv4.sysctl_tcp_syncookies && 6892 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6893 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6894 !tcp_peer_is_proven(req, dst)) { 6895 /* Without syncookies last quarter of 6896 * backlog is filled with destinations, 6897 * proven to be alive. 6898 * It means that we continue to communicate 6899 * to destinations, already remembered 6900 * to the moment of synflood. 6901 */ 6902 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6903 rsk_ops->family); 6904 goto drop_and_release; 6905 } 6906 6907 isn = af_ops->init_seq(skb); 6908 } 6909 6910 tcp_ecn_create_request(req, skb, sk, dst); 6911 6912 if (want_cookie) { 6913 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6914 if (!tmp_opt.tstamp_ok) 6915 inet_rsk(req)->ecn_ok = 0; 6916 } 6917 6918 tcp_rsk(req)->snt_isn = isn; 6919 tcp_rsk(req)->txhash = net_tx_rndhash(); 6920 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6921 tcp_openreq_init_rwin(req, sk, dst); 6922 sk_rx_queue_set(req_to_sk(req), skb); 6923 if (!want_cookie) { 6924 tcp_reqsk_record_syn(sk, req, skb); 6925 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6926 } 6927 if (fastopen_sk) { 6928 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6929 &foc, TCP_SYNACK_FASTOPEN, skb); 6930 /* Add the child socket directly into the accept queue */ 6931 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6932 reqsk_fastopen_remove(fastopen_sk, req, false); 6933 bh_unlock_sock(fastopen_sk); 6934 sock_put(fastopen_sk); 6935 goto drop_and_free; 6936 } 6937 sk->sk_data_ready(sk); 6938 bh_unlock_sock(fastopen_sk); 6939 sock_put(fastopen_sk); 6940 } else { 6941 tcp_rsk(req)->tfo_listener = false; 6942 if (!want_cookie) 6943 inet_csk_reqsk_queue_hash_add(sk, req, 6944 tcp_timeout_init((struct sock *)req)); 6945 af_ops->send_synack(sk, dst, &fl, req, &foc, 6946 !want_cookie ? TCP_SYNACK_NORMAL : 6947 TCP_SYNACK_COOKIE, 6948 skb); 6949 if (want_cookie) { 6950 reqsk_free(req); 6951 return 0; 6952 } 6953 } 6954 reqsk_put(req); 6955 return 0; 6956 6957 drop_and_release: 6958 dst_release(dst); 6959 drop_and_free: 6960 __reqsk_free(req); 6961 drop: 6962 tcp_listendrop(sk); 6963 return 0; 6964 } 6965 EXPORT_SYMBOL(tcp_conn_request); 6966