1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 241 tcp_sk(sk)->advmss); 242 /* Account for possibly-removed options */ 243 if (unlikely(len > icsk->icsk_ack.rcv_mss + 244 MAX_TCP_OPTION_SPACE)) 245 tcp_gro_dev_warn(sk, skb, len); 246 } else { 247 /* Otherwise, we make more careful check taking into account, 248 * that SACKs block is variable. 249 * 250 * "len" is invariant segment length, including TCP header. 251 */ 252 len += skb->data - skb_transport_header(skb); 253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 254 /* If PSH is not set, packet should be 255 * full sized, provided peer TCP is not badly broken. 256 * This observation (if it is correct 8)) allows 257 * to handle super-low mtu links fairly. 258 */ 259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 261 /* Subtract also invariant (if peer is RFC compliant), 262 * tcp header plus fixed timestamp option length. 263 * Resulting "len" is MSS free of SACK jitter. 264 */ 265 len -= tcp_sk(sk)->tcp_header_len; 266 icsk->icsk_ack.last_seg_size = len; 267 if (len == lss) { 268 icsk->icsk_ack.rcv_mss = len; 269 return; 270 } 271 } 272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 275 } 276 } 277 278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 279 { 280 struct inet_connection_sock *icsk = inet_csk(sk); 281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 282 283 if (quickacks == 0) 284 quickacks = 2; 285 quickacks = min(quickacks, max_quickacks); 286 if (quickacks > icsk->icsk_ack.quick) 287 icsk->icsk_ack.quick = quickacks; 288 } 289 290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 291 { 292 struct inet_connection_sock *icsk = inet_csk(sk); 293 294 tcp_incr_quickack(sk, max_quickacks); 295 inet_csk_exit_pingpong_mode(sk); 296 icsk->icsk_ack.ato = TCP_ATO_MIN; 297 } 298 EXPORT_SYMBOL(tcp_enter_quickack_mode); 299 300 /* Send ACKs quickly, if "quick" count is not exhausted 301 * and the session is not interactive. 302 */ 303 304 static bool tcp_in_quickack_mode(struct sock *sk) 305 { 306 const struct inet_connection_sock *icsk = inet_csk(sk); 307 const struct dst_entry *dst = __sk_dst_get(sk); 308 309 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 311 } 312 313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 314 { 315 if (tp->ecn_flags & TCP_ECN_OK) 316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 317 } 318 319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 320 { 321 if (tcp_hdr(skb)->cwr) { 322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 323 324 /* If the sender is telling us it has entered CWR, then its 325 * cwnd may be very low (even just 1 packet), so we should ACK 326 * immediately. 327 */ 328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 330 } 331 } 332 333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 334 { 335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 336 } 337 338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 343 case INET_ECN_NOT_ECT: 344 /* Funny extension: if ECT is not set on a segment, 345 * and we already seen ECT on a previous segment, 346 * it is probably a retransmit. 347 */ 348 if (tp->ecn_flags & TCP_ECN_SEEN) 349 tcp_enter_quickack_mode(sk, 2); 350 break; 351 case INET_ECN_CE: 352 if (tcp_ca_needs_ecn(sk)) 353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 354 355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 356 /* Better not delay acks, sender can have a very low cwnd */ 357 tcp_enter_quickack_mode(sk, 2); 358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 359 } 360 tp->ecn_flags |= TCP_ECN_SEEN; 361 break; 362 default: 363 if (tcp_ca_needs_ecn(sk)) 364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 365 tp->ecn_flags |= TCP_ECN_SEEN; 366 break; 367 } 368 } 369 370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 371 { 372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 373 __tcp_ecn_check_ce(sk, skb); 374 } 375 376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 377 { 378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 379 tp->ecn_flags &= ~TCP_ECN_OK; 380 } 381 382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 383 { 384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 385 tp->ecn_flags &= ~TCP_ECN_OK; 386 } 387 388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 389 { 390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 391 return true; 392 return false; 393 } 394 395 /* Buffer size and advertised window tuning. 396 * 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 398 */ 399 400 static void tcp_sndbuf_expand(struct sock *sk) 401 { 402 const struct tcp_sock *tp = tcp_sk(sk); 403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 404 int sndmem, per_mss; 405 u32 nr_segs; 406 407 /* Worst case is non GSO/TSO : each frame consumes one skb 408 * and skb->head is kmalloced using power of two area of memory 409 */ 410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 411 MAX_TCP_HEADER + 412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 414 per_mss = roundup_pow_of_two(per_mss) + 415 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 416 417 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 419 420 /* Fast Recovery (RFC 5681 3.2) : 421 * Cubic needs 1.7 factor, rounded to 2 to include 422 * extra cushion (application might react slowly to EPOLLOUT) 423 */ 424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 425 sndmem *= nr_segs * per_mss; 426 427 if (sk->sk_sndbuf < sndmem) 428 WRITE_ONCE(sk->sk_sndbuf, 429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 430 } 431 432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 433 * 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated 435 * forward and advertised in receiver window (tp->rcv_wnd) and 436 * "application buffer", required to isolate scheduling/application 437 * latencies from network. 438 * window_clamp is maximal advertised window. It can be less than 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp 440 * is reserved for "application" buffer. The less window_clamp is 441 * the smoother our behaviour from viewpoint of network, but the lower 442 * throughput and the higher sensitivity of the connection to losses. 8) 443 * 444 * rcv_ssthresh is more strict window_clamp used at "slow start" 445 * phase to predict further behaviour of this connection. 446 * It is used for two goals: 447 * - to enforce header prediction at sender, even when application 448 * requires some significant "application buffer". It is check #1. 449 * - to prevent pruning of receive queue because of misprediction 450 * of receiver window. Check #2. 451 * 452 * The scheme does not work when sender sends good segments opening 453 * window and then starts to feed us spaghetti. But it should work 454 * in common situations. Otherwise, we have to rely on queue collapsing. 455 */ 456 457 /* Slow part of check#2. */ 458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 459 unsigned int skbtruesize) 460 { 461 struct tcp_sock *tp = tcp_sk(sk); 462 /* Optimize this! */ 463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 465 466 while (tp->rcv_ssthresh <= window) { 467 if (truesize <= skb->len) 468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 469 470 truesize >>= 1; 471 window >>= 1; 472 } 473 return 0; 474 } 475 476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 477 * can play nice with us, as sk_buff and skb->head might be either 478 * freed or shared with up to MAX_SKB_FRAGS segments. 479 * Only give a boost to drivers using page frag(s) to hold the frame(s), 480 * and if no payload was pulled in skb->head before reaching us. 481 */ 482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 483 { 484 u32 truesize = skb->truesize; 485 486 if (adjust && !skb_headlen(skb)) { 487 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 488 /* paranoid check, some drivers might be buggy */ 489 if (unlikely((int)truesize < (int)skb->len)) 490 truesize = skb->truesize; 491 } 492 return truesize; 493 } 494 495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 496 bool adjust) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 int room; 500 501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 502 503 /* Check #1 */ 504 if (room > 0 && !tcp_under_memory_pressure(sk)) { 505 unsigned int truesize = truesize_adjust(adjust, skb); 506 int incr; 507 508 /* Check #2. Increase window, if skb with such overhead 509 * will fit to rcvbuf in future. 510 */ 511 if (tcp_win_from_space(sk, truesize) <= skb->len) 512 incr = 2 * tp->advmss; 513 else 514 incr = __tcp_grow_window(sk, skb, truesize); 515 516 if (incr) { 517 incr = max_t(int, incr, 2 * skb->len); 518 tp->rcv_ssthresh += min(room, incr); 519 inet_csk(sk)->icsk_ack.quick |= 1; 520 } 521 } 522 } 523 524 /* 3. Try to fixup all. It is made immediately after connection enters 525 * established state. 526 */ 527 static void tcp_init_buffer_space(struct sock *sk) 528 { 529 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 530 struct tcp_sock *tp = tcp_sk(sk); 531 int maxwin; 532 533 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 534 tcp_sndbuf_expand(sk); 535 536 tcp_mstamp_refresh(tp); 537 tp->rcvq_space.time = tp->tcp_mstamp; 538 tp->rcvq_space.seq = tp->copied_seq; 539 540 maxwin = tcp_full_space(sk); 541 542 if (tp->window_clamp >= maxwin) { 543 tp->window_clamp = maxwin; 544 545 if (tcp_app_win && maxwin > 4 * tp->advmss) 546 tp->window_clamp = max(maxwin - 547 (maxwin >> tcp_app_win), 548 4 * tp->advmss); 549 } 550 551 /* Force reservation of one segment. */ 552 if (tcp_app_win && 553 tp->window_clamp > 2 * tp->advmss && 554 tp->window_clamp + tp->advmss > maxwin) 555 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 556 557 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 558 tp->snd_cwnd_stamp = tcp_jiffies32; 559 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 560 (u32)TCP_INIT_CWND * tp->advmss); 561 } 562 563 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 564 static void tcp_clamp_window(struct sock *sk) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 struct inet_connection_sock *icsk = inet_csk(sk); 568 struct net *net = sock_net(sk); 569 570 icsk->icsk_ack.quick = 0; 571 572 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 573 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 574 !tcp_under_memory_pressure(sk) && 575 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 576 WRITE_ONCE(sk->sk_rcvbuf, 577 min(atomic_read(&sk->sk_rmem_alloc), 578 net->ipv4.sysctl_tcp_rmem[2])); 579 } 580 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 581 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 582 } 583 584 /* Initialize RCV_MSS value. 585 * RCV_MSS is an our guess about MSS used by the peer. 586 * We haven't any direct information about the MSS. 587 * It's better to underestimate the RCV_MSS rather than overestimate. 588 * Overestimations make us ACKing less frequently than needed. 589 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 590 */ 591 void tcp_initialize_rcv_mss(struct sock *sk) 592 { 593 const struct tcp_sock *tp = tcp_sk(sk); 594 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 595 596 hint = min(hint, tp->rcv_wnd / 2); 597 hint = min(hint, TCP_MSS_DEFAULT); 598 hint = max(hint, TCP_MIN_MSS); 599 600 inet_csk(sk)->icsk_ack.rcv_mss = hint; 601 } 602 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 603 604 /* Receiver "autotuning" code. 605 * 606 * The algorithm for RTT estimation w/o timestamps is based on 607 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 608 * <https://public.lanl.gov/radiant/pubs.html#DRS> 609 * 610 * More detail on this code can be found at 611 * <http://staff.psc.edu/jheffner/>, 612 * though this reference is out of date. A new paper 613 * is pending. 614 */ 615 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 616 { 617 u32 new_sample = tp->rcv_rtt_est.rtt_us; 618 long m = sample; 619 620 if (new_sample != 0) { 621 /* If we sample in larger samples in the non-timestamp 622 * case, we could grossly overestimate the RTT especially 623 * with chatty applications or bulk transfer apps which 624 * are stalled on filesystem I/O. 625 * 626 * Also, since we are only going for a minimum in the 627 * non-timestamp case, we do not smooth things out 628 * else with timestamps disabled convergence takes too 629 * long. 630 */ 631 if (!win_dep) { 632 m -= (new_sample >> 3); 633 new_sample += m; 634 } else { 635 m <<= 3; 636 if (m < new_sample) 637 new_sample = m; 638 } 639 } else { 640 /* No previous measure. */ 641 new_sample = m << 3; 642 } 643 644 tp->rcv_rtt_est.rtt_us = new_sample; 645 } 646 647 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 648 { 649 u32 delta_us; 650 651 if (tp->rcv_rtt_est.time == 0) 652 goto new_measure; 653 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 654 return; 655 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 656 if (!delta_us) 657 delta_us = 1; 658 tcp_rcv_rtt_update(tp, delta_us, 1); 659 660 new_measure: 661 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 662 tp->rcv_rtt_est.time = tp->tcp_mstamp; 663 } 664 665 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 666 const struct sk_buff *skb) 667 { 668 struct tcp_sock *tp = tcp_sk(sk); 669 670 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 671 return; 672 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 673 674 if (TCP_SKB_CB(skb)->end_seq - 675 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 676 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 677 u32 delta_us; 678 679 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 680 if (!delta) 681 delta = 1; 682 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 683 tcp_rcv_rtt_update(tp, delta_us, 0); 684 } 685 } 686 } 687 688 /* 689 * This function should be called every time data is copied to user space. 690 * It calculates the appropriate TCP receive buffer space. 691 */ 692 void tcp_rcv_space_adjust(struct sock *sk) 693 { 694 struct tcp_sock *tp = tcp_sk(sk); 695 u32 copied; 696 int time; 697 698 trace_tcp_rcv_space_adjust(sk); 699 700 tcp_mstamp_refresh(tp); 701 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 702 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 703 return; 704 705 /* Number of bytes copied to user in last RTT */ 706 copied = tp->copied_seq - tp->rcvq_space.seq; 707 if (copied <= tp->rcvq_space.space) 708 goto new_measure; 709 710 /* A bit of theory : 711 * copied = bytes received in previous RTT, our base window 712 * To cope with packet losses, we need a 2x factor 713 * To cope with slow start, and sender growing its cwin by 100 % 714 * every RTT, we need a 4x factor, because the ACK we are sending 715 * now is for the next RTT, not the current one : 716 * <prev RTT . ><current RTT .. ><next RTT .... > 717 */ 718 719 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 720 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 721 int rcvmem, rcvbuf; 722 u64 rcvwin, grow; 723 724 /* minimal window to cope with packet losses, assuming 725 * steady state. Add some cushion because of small variations. 726 */ 727 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 728 729 /* Accommodate for sender rate increase (eg. slow start) */ 730 grow = rcvwin * (copied - tp->rcvq_space.space); 731 do_div(grow, tp->rcvq_space.space); 732 rcvwin += (grow << 1); 733 734 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 735 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 736 rcvmem += 128; 737 738 do_div(rcvwin, tp->advmss); 739 rcvbuf = min_t(u64, rcvwin * rcvmem, 740 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 741 if (rcvbuf > sk->sk_rcvbuf) { 742 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 743 744 /* Make the window clamp follow along. */ 745 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 746 } 747 } 748 tp->rcvq_space.space = copied; 749 750 new_measure: 751 tp->rcvq_space.seq = tp->copied_seq; 752 tp->rcvq_space.time = tp->tcp_mstamp; 753 } 754 755 /* There is something which you must keep in mind when you analyze the 756 * behavior of the tp->ato delayed ack timeout interval. When a 757 * connection starts up, we want to ack as quickly as possible. The 758 * problem is that "good" TCP's do slow start at the beginning of data 759 * transmission. The means that until we send the first few ACK's the 760 * sender will sit on his end and only queue most of his data, because 761 * he can only send snd_cwnd unacked packets at any given time. For 762 * each ACK we send, he increments snd_cwnd and transmits more of his 763 * queue. -DaveM 764 */ 765 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 766 { 767 struct tcp_sock *tp = tcp_sk(sk); 768 struct inet_connection_sock *icsk = inet_csk(sk); 769 u32 now; 770 771 inet_csk_schedule_ack(sk); 772 773 tcp_measure_rcv_mss(sk, skb); 774 775 tcp_rcv_rtt_measure(tp); 776 777 now = tcp_jiffies32; 778 779 if (!icsk->icsk_ack.ato) { 780 /* The _first_ data packet received, initialize 781 * delayed ACK engine. 782 */ 783 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 784 icsk->icsk_ack.ato = TCP_ATO_MIN; 785 } else { 786 int m = now - icsk->icsk_ack.lrcvtime; 787 788 if (m <= TCP_ATO_MIN / 2) { 789 /* The fastest case is the first. */ 790 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 791 } else if (m < icsk->icsk_ack.ato) { 792 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 793 if (icsk->icsk_ack.ato > icsk->icsk_rto) 794 icsk->icsk_ack.ato = icsk->icsk_rto; 795 } else if (m > icsk->icsk_rto) { 796 /* Too long gap. Apparently sender failed to 797 * restart window, so that we send ACKs quickly. 798 */ 799 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 800 sk_mem_reclaim(sk); 801 } 802 } 803 icsk->icsk_ack.lrcvtime = now; 804 805 tcp_ecn_check_ce(sk, skb); 806 807 if (skb->len >= 128) 808 tcp_grow_window(sk, skb, true); 809 } 810 811 /* Called to compute a smoothed rtt estimate. The data fed to this 812 * routine either comes from timestamps, or from segments that were 813 * known _not_ to have been retransmitted [see Karn/Partridge 814 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 815 * piece by Van Jacobson. 816 * NOTE: the next three routines used to be one big routine. 817 * To save cycles in the RFC 1323 implementation it was better to break 818 * it up into three procedures. -- erics 819 */ 820 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 821 { 822 struct tcp_sock *tp = tcp_sk(sk); 823 long m = mrtt_us; /* RTT */ 824 u32 srtt = tp->srtt_us; 825 826 /* The following amusing code comes from Jacobson's 827 * article in SIGCOMM '88. Note that rtt and mdev 828 * are scaled versions of rtt and mean deviation. 829 * This is designed to be as fast as possible 830 * m stands for "measurement". 831 * 832 * On a 1990 paper the rto value is changed to: 833 * RTO = rtt + 4 * mdev 834 * 835 * Funny. This algorithm seems to be very broken. 836 * These formulae increase RTO, when it should be decreased, increase 837 * too slowly, when it should be increased quickly, decrease too quickly 838 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 839 * does not matter how to _calculate_ it. Seems, it was trap 840 * that VJ failed to avoid. 8) 841 */ 842 if (srtt != 0) { 843 m -= (srtt >> 3); /* m is now error in rtt est */ 844 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 845 if (m < 0) { 846 m = -m; /* m is now abs(error) */ 847 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 848 /* This is similar to one of Eifel findings. 849 * Eifel blocks mdev updates when rtt decreases. 850 * This solution is a bit different: we use finer gain 851 * for mdev in this case (alpha*beta). 852 * Like Eifel it also prevents growth of rto, 853 * but also it limits too fast rto decreases, 854 * happening in pure Eifel. 855 */ 856 if (m > 0) 857 m >>= 3; 858 } else { 859 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 860 } 861 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 862 if (tp->mdev_us > tp->mdev_max_us) { 863 tp->mdev_max_us = tp->mdev_us; 864 if (tp->mdev_max_us > tp->rttvar_us) 865 tp->rttvar_us = tp->mdev_max_us; 866 } 867 if (after(tp->snd_una, tp->rtt_seq)) { 868 if (tp->mdev_max_us < tp->rttvar_us) 869 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 870 tp->rtt_seq = tp->snd_nxt; 871 tp->mdev_max_us = tcp_rto_min_us(sk); 872 873 tcp_bpf_rtt(sk); 874 } 875 } else { 876 /* no previous measure. */ 877 srtt = m << 3; /* take the measured time to be rtt */ 878 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 879 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 880 tp->mdev_max_us = tp->rttvar_us; 881 tp->rtt_seq = tp->snd_nxt; 882 883 tcp_bpf_rtt(sk); 884 } 885 tp->srtt_us = max(1U, srtt); 886 } 887 888 static void tcp_update_pacing_rate(struct sock *sk) 889 { 890 const struct tcp_sock *tp = tcp_sk(sk); 891 u64 rate; 892 893 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 894 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 895 896 /* current rate is (cwnd * mss) / srtt 897 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 898 * In Congestion Avoidance phase, set it to 120 % the current rate. 899 * 900 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 901 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 902 * end of slow start and should slow down. 903 */ 904 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 905 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 906 else 907 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 908 909 rate *= max(tp->snd_cwnd, tp->packets_out); 910 911 if (likely(tp->srtt_us)) 912 do_div(rate, tp->srtt_us); 913 914 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 915 * without any lock. We want to make sure compiler wont store 916 * intermediate values in this location. 917 */ 918 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 919 sk->sk_max_pacing_rate)); 920 } 921 922 /* Calculate rto without backoff. This is the second half of Van Jacobson's 923 * routine referred to above. 924 */ 925 static void tcp_set_rto(struct sock *sk) 926 { 927 const struct tcp_sock *tp = tcp_sk(sk); 928 /* Old crap is replaced with new one. 8) 929 * 930 * More seriously: 931 * 1. If rtt variance happened to be less 50msec, it is hallucination. 932 * It cannot be less due to utterly erratic ACK generation made 933 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 934 * to do with delayed acks, because at cwnd>2 true delack timeout 935 * is invisible. Actually, Linux-2.4 also generates erratic 936 * ACKs in some circumstances. 937 */ 938 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 939 940 /* 2. Fixups made earlier cannot be right. 941 * If we do not estimate RTO correctly without them, 942 * all the algo is pure shit and should be replaced 943 * with correct one. It is exactly, which we pretend to do. 944 */ 945 946 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 947 * guarantees that rto is higher. 948 */ 949 tcp_bound_rto(sk); 950 } 951 952 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 953 { 954 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 955 956 if (!cwnd) 957 cwnd = TCP_INIT_CWND; 958 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 959 } 960 961 struct tcp_sacktag_state { 962 /* Timestamps for earliest and latest never-retransmitted segment 963 * that was SACKed. RTO needs the earliest RTT to stay conservative, 964 * but congestion control should still get an accurate delay signal. 965 */ 966 u64 first_sackt; 967 u64 last_sackt; 968 u32 reord; 969 u32 sack_delivered; 970 int flag; 971 unsigned int mss_now; 972 struct rate_sample *rate; 973 }; 974 975 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 976 * and spurious retransmission information if this DSACK is unlikely caused by 977 * sender's action: 978 * - DSACKed sequence range is larger than maximum receiver's window. 979 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 980 */ 981 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 982 u32 end_seq, struct tcp_sacktag_state *state) 983 { 984 u32 seq_len, dup_segs = 1; 985 986 if (!before(start_seq, end_seq)) 987 return 0; 988 989 seq_len = end_seq - start_seq; 990 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 991 if (seq_len > tp->max_window) 992 return 0; 993 if (seq_len > tp->mss_cache) 994 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 995 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 996 state->flag |= FLAG_DSACK_TLP; 997 998 tp->dsack_dups += dup_segs; 999 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1000 if (tp->dsack_dups > tp->total_retrans) 1001 return 0; 1002 1003 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1004 /* We increase the RACK ordering window in rounds where we receive 1005 * DSACKs that may have been due to reordering causing RACK to trigger 1006 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1007 * without having seen reordering, or that match TLP probes (TLP 1008 * is timer-driven, not triggered by RACK). 1009 */ 1010 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1011 tp->rack.dsack_seen = 1; 1012 1013 state->flag |= FLAG_DSACKING_ACK; 1014 /* A spurious retransmission is delivered */ 1015 state->sack_delivered += dup_segs; 1016 1017 return dup_segs; 1018 } 1019 1020 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1021 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1022 * distance is approximated in full-mss packet distance ("reordering"). 1023 */ 1024 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1025 const int ts) 1026 { 1027 struct tcp_sock *tp = tcp_sk(sk); 1028 const u32 mss = tp->mss_cache; 1029 u32 fack, metric; 1030 1031 fack = tcp_highest_sack_seq(tp); 1032 if (!before(low_seq, fack)) 1033 return; 1034 1035 metric = fack - low_seq; 1036 if ((metric > tp->reordering * mss) && mss) { 1037 #if FASTRETRANS_DEBUG > 1 1038 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1039 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1040 tp->reordering, 1041 0, 1042 tp->sacked_out, 1043 tp->undo_marker ? tp->undo_retrans : 0); 1044 #endif 1045 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1046 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1047 } 1048 1049 /* This exciting event is worth to be remembered. 8) */ 1050 tp->reord_seen++; 1051 NET_INC_STATS(sock_net(sk), 1052 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1053 } 1054 1055 /* This must be called before lost_out or retrans_out are updated 1056 * on a new loss, because we want to know if all skbs previously 1057 * known to be lost have already been retransmitted, indicating 1058 * that this newly lost skb is our next skb to retransmit. 1059 */ 1060 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1061 { 1062 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1063 (tp->retransmit_skb_hint && 1064 before(TCP_SKB_CB(skb)->seq, 1065 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1066 tp->retransmit_skb_hint = skb; 1067 } 1068 1069 /* Sum the number of packets on the wire we have marked as lost, and 1070 * notify the congestion control module that the given skb was marked lost. 1071 */ 1072 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1073 { 1074 tp->lost += tcp_skb_pcount(skb); 1075 } 1076 1077 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1078 { 1079 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1080 struct tcp_sock *tp = tcp_sk(sk); 1081 1082 if (sacked & TCPCB_SACKED_ACKED) 1083 return; 1084 1085 tcp_verify_retransmit_hint(tp, skb); 1086 if (sacked & TCPCB_LOST) { 1087 if (sacked & TCPCB_SACKED_RETRANS) { 1088 /* Account for retransmits that are lost again */ 1089 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1090 tp->retrans_out -= tcp_skb_pcount(skb); 1091 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1092 tcp_skb_pcount(skb)); 1093 tcp_notify_skb_loss_event(tp, skb); 1094 } 1095 } else { 1096 tp->lost_out += tcp_skb_pcount(skb); 1097 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1098 tcp_notify_skb_loss_event(tp, skb); 1099 } 1100 } 1101 1102 /* Updates the delivered and delivered_ce counts */ 1103 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1104 bool ece_ack) 1105 { 1106 tp->delivered += delivered; 1107 if (ece_ack) 1108 tp->delivered_ce += delivered; 1109 } 1110 1111 /* This procedure tags the retransmission queue when SACKs arrive. 1112 * 1113 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1114 * Packets in queue with these bits set are counted in variables 1115 * sacked_out, retrans_out and lost_out, correspondingly. 1116 * 1117 * Valid combinations are: 1118 * Tag InFlight Description 1119 * 0 1 - orig segment is in flight. 1120 * S 0 - nothing flies, orig reached receiver. 1121 * L 0 - nothing flies, orig lost by net. 1122 * R 2 - both orig and retransmit are in flight. 1123 * L|R 1 - orig is lost, retransmit is in flight. 1124 * S|R 1 - orig reached receiver, retrans is still in flight. 1125 * (L|S|R is logically valid, it could occur when L|R is sacked, 1126 * but it is equivalent to plain S and code short-curcuits it to S. 1127 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1128 * 1129 * These 6 states form finite state machine, controlled by the following events: 1130 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1131 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1132 * 3. Loss detection event of two flavors: 1133 * A. Scoreboard estimator decided the packet is lost. 1134 * A'. Reno "three dupacks" marks head of queue lost. 1135 * B. SACK arrives sacking SND.NXT at the moment, when the 1136 * segment was retransmitted. 1137 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1138 * 1139 * It is pleasant to note, that state diagram turns out to be commutative, 1140 * so that we are allowed not to be bothered by order of our actions, 1141 * when multiple events arrive simultaneously. (see the function below). 1142 * 1143 * Reordering detection. 1144 * -------------------- 1145 * Reordering metric is maximal distance, which a packet can be displaced 1146 * in packet stream. With SACKs we can estimate it: 1147 * 1148 * 1. SACK fills old hole and the corresponding segment was not 1149 * ever retransmitted -> reordering. Alas, we cannot use it 1150 * when segment was retransmitted. 1151 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1152 * for retransmitted and already SACKed segment -> reordering.. 1153 * Both of these heuristics are not used in Loss state, when we cannot 1154 * account for retransmits accurately. 1155 * 1156 * SACK block validation. 1157 * ---------------------- 1158 * 1159 * SACK block range validation checks that the received SACK block fits to 1160 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1161 * Note that SND.UNA is not included to the range though being valid because 1162 * it means that the receiver is rather inconsistent with itself reporting 1163 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1164 * perfectly valid, however, in light of RFC2018 which explicitly states 1165 * that "SACK block MUST reflect the newest segment. Even if the newest 1166 * segment is going to be discarded ...", not that it looks very clever 1167 * in case of head skb. Due to potentional receiver driven attacks, we 1168 * choose to avoid immediate execution of a walk in write queue due to 1169 * reneging and defer head skb's loss recovery to standard loss recovery 1170 * procedure that will eventually trigger (nothing forbids us doing this). 1171 * 1172 * Implements also blockage to start_seq wrap-around. Problem lies in the 1173 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1174 * there's no guarantee that it will be before snd_nxt (n). The problem 1175 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1176 * wrap (s_w): 1177 * 1178 * <- outs wnd -> <- wrapzone -> 1179 * u e n u_w e_w s n_w 1180 * | | | | | | | 1181 * |<------------+------+----- TCP seqno space --------------+---------->| 1182 * ...-- <2^31 ->| |<--------... 1183 * ...---- >2^31 ------>| |<--------... 1184 * 1185 * Current code wouldn't be vulnerable but it's better still to discard such 1186 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1187 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1188 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1189 * equal to the ideal case (infinite seqno space without wrap caused issues). 1190 * 1191 * With D-SACK the lower bound is extended to cover sequence space below 1192 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1193 * again, D-SACK block must not to go across snd_una (for the same reason as 1194 * for the normal SACK blocks, explained above). But there all simplicity 1195 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1196 * fully below undo_marker they do not affect behavior in anyway and can 1197 * therefore be safely ignored. In rare cases (which are more or less 1198 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1199 * fragmentation and packet reordering past skb's retransmission. To consider 1200 * them correctly, the acceptable range must be extended even more though 1201 * the exact amount is rather hard to quantify. However, tp->max_window can 1202 * be used as an exaggerated estimate. 1203 */ 1204 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1205 u32 start_seq, u32 end_seq) 1206 { 1207 /* Too far in future, or reversed (interpretation is ambiguous) */ 1208 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1209 return false; 1210 1211 /* Nasty start_seq wrap-around check (see comments above) */ 1212 if (!before(start_seq, tp->snd_nxt)) 1213 return false; 1214 1215 /* In outstanding window? ...This is valid exit for D-SACKs too. 1216 * start_seq == snd_una is non-sensical (see comments above) 1217 */ 1218 if (after(start_seq, tp->snd_una)) 1219 return true; 1220 1221 if (!is_dsack || !tp->undo_marker) 1222 return false; 1223 1224 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1225 if (after(end_seq, tp->snd_una)) 1226 return false; 1227 1228 if (!before(start_seq, tp->undo_marker)) 1229 return true; 1230 1231 /* Too old */ 1232 if (!after(end_seq, tp->undo_marker)) 1233 return false; 1234 1235 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1236 * start_seq < undo_marker and end_seq >= undo_marker. 1237 */ 1238 return !before(start_seq, end_seq - tp->max_window); 1239 } 1240 1241 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1242 struct tcp_sack_block_wire *sp, int num_sacks, 1243 u32 prior_snd_una, struct tcp_sacktag_state *state) 1244 { 1245 struct tcp_sock *tp = tcp_sk(sk); 1246 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1247 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1248 u32 dup_segs; 1249 1250 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1252 } else if (num_sacks > 1) { 1253 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1254 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1255 1256 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1257 return false; 1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1259 } else { 1260 return false; 1261 } 1262 1263 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1264 if (!dup_segs) { /* Skip dubious DSACK */ 1265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1266 return false; 1267 } 1268 1269 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1270 1271 /* D-SACK for already forgotten data... Do dumb counting. */ 1272 if (tp->undo_marker && tp->undo_retrans > 0 && 1273 !after(end_seq_0, prior_snd_una) && 1274 after(end_seq_0, tp->undo_marker)) 1275 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1276 1277 return true; 1278 } 1279 1280 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1281 * the incoming SACK may not exactly match but we can find smaller MSS 1282 * aligned portion of it that matches. Therefore we might need to fragment 1283 * which may fail and creates some hassle (caller must handle error case 1284 * returns). 1285 * 1286 * FIXME: this could be merged to shift decision code 1287 */ 1288 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1289 u32 start_seq, u32 end_seq) 1290 { 1291 int err; 1292 bool in_sack; 1293 unsigned int pkt_len; 1294 unsigned int mss; 1295 1296 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1297 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1298 1299 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1300 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1301 mss = tcp_skb_mss(skb); 1302 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1303 1304 if (!in_sack) { 1305 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1306 if (pkt_len < mss) 1307 pkt_len = mss; 1308 } else { 1309 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1310 if (pkt_len < mss) 1311 return -EINVAL; 1312 } 1313 1314 /* Round if necessary so that SACKs cover only full MSSes 1315 * and/or the remaining small portion (if present) 1316 */ 1317 if (pkt_len > mss) { 1318 unsigned int new_len = (pkt_len / mss) * mss; 1319 if (!in_sack && new_len < pkt_len) 1320 new_len += mss; 1321 pkt_len = new_len; 1322 } 1323 1324 if (pkt_len >= skb->len && !in_sack) 1325 return 0; 1326 1327 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1328 pkt_len, mss, GFP_ATOMIC); 1329 if (err < 0) 1330 return err; 1331 } 1332 1333 return in_sack; 1334 } 1335 1336 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1337 static u8 tcp_sacktag_one(struct sock *sk, 1338 struct tcp_sacktag_state *state, u8 sacked, 1339 u32 start_seq, u32 end_seq, 1340 int dup_sack, int pcount, 1341 u64 xmit_time) 1342 { 1343 struct tcp_sock *tp = tcp_sk(sk); 1344 1345 /* Account D-SACK for retransmitted packet. */ 1346 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1347 if (tp->undo_marker && tp->undo_retrans > 0 && 1348 after(end_seq, tp->undo_marker)) 1349 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1350 if ((sacked & TCPCB_SACKED_ACKED) && 1351 before(start_seq, state->reord)) 1352 state->reord = start_seq; 1353 } 1354 1355 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1356 if (!after(end_seq, tp->snd_una)) 1357 return sacked; 1358 1359 if (!(sacked & TCPCB_SACKED_ACKED)) { 1360 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1361 1362 if (sacked & TCPCB_SACKED_RETRANS) { 1363 /* If the segment is not tagged as lost, 1364 * we do not clear RETRANS, believing 1365 * that retransmission is still in flight. 1366 */ 1367 if (sacked & TCPCB_LOST) { 1368 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1369 tp->lost_out -= pcount; 1370 tp->retrans_out -= pcount; 1371 } 1372 } else { 1373 if (!(sacked & TCPCB_RETRANS)) { 1374 /* New sack for not retransmitted frame, 1375 * which was in hole. It is reordering. 1376 */ 1377 if (before(start_seq, 1378 tcp_highest_sack_seq(tp)) && 1379 before(start_seq, state->reord)) 1380 state->reord = start_seq; 1381 1382 if (!after(end_seq, tp->high_seq)) 1383 state->flag |= FLAG_ORIG_SACK_ACKED; 1384 if (state->first_sackt == 0) 1385 state->first_sackt = xmit_time; 1386 state->last_sackt = xmit_time; 1387 } 1388 1389 if (sacked & TCPCB_LOST) { 1390 sacked &= ~TCPCB_LOST; 1391 tp->lost_out -= pcount; 1392 } 1393 } 1394 1395 sacked |= TCPCB_SACKED_ACKED; 1396 state->flag |= FLAG_DATA_SACKED; 1397 tp->sacked_out += pcount; 1398 /* Out-of-order packets delivered */ 1399 state->sack_delivered += pcount; 1400 1401 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1402 if (tp->lost_skb_hint && 1403 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1404 tp->lost_cnt_hint += pcount; 1405 } 1406 1407 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1408 * frames and clear it. undo_retrans is decreased above, L|R frames 1409 * are accounted above as well. 1410 */ 1411 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1412 sacked &= ~TCPCB_SACKED_RETRANS; 1413 tp->retrans_out -= pcount; 1414 } 1415 1416 return sacked; 1417 } 1418 1419 /* Shift newly-SACKed bytes from this skb to the immediately previous 1420 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1421 */ 1422 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1423 struct sk_buff *skb, 1424 struct tcp_sacktag_state *state, 1425 unsigned int pcount, int shifted, int mss, 1426 bool dup_sack) 1427 { 1428 struct tcp_sock *tp = tcp_sk(sk); 1429 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1430 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1431 1432 BUG_ON(!pcount); 1433 1434 /* Adjust counters and hints for the newly sacked sequence 1435 * range but discard the return value since prev is already 1436 * marked. We must tag the range first because the seq 1437 * advancement below implicitly advances 1438 * tcp_highest_sack_seq() when skb is highest_sack. 1439 */ 1440 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1441 start_seq, end_seq, dup_sack, pcount, 1442 tcp_skb_timestamp_us(skb)); 1443 tcp_rate_skb_delivered(sk, skb, state->rate); 1444 1445 if (skb == tp->lost_skb_hint) 1446 tp->lost_cnt_hint += pcount; 1447 1448 TCP_SKB_CB(prev)->end_seq += shifted; 1449 TCP_SKB_CB(skb)->seq += shifted; 1450 1451 tcp_skb_pcount_add(prev, pcount); 1452 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1453 tcp_skb_pcount_add(skb, -pcount); 1454 1455 /* When we're adding to gso_segs == 1, gso_size will be zero, 1456 * in theory this shouldn't be necessary but as long as DSACK 1457 * code can come after this skb later on it's better to keep 1458 * setting gso_size to something. 1459 */ 1460 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1461 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1462 1463 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1464 if (tcp_skb_pcount(skb) <= 1) 1465 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1466 1467 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1468 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1469 1470 if (skb->len > 0) { 1471 BUG_ON(!tcp_skb_pcount(skb)); 1472 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1473 return false; 1474 } 1475 1476 /* Whole SKB was eaten :-) */ 1477 1478 if (skb == tp->retransmit_skb_hint) 1479 tp->retransmit_skb_hint = prev; 1480 if (skb == tp->lost_skb_hint) { 1481 tp->lost_skb_hint = prev; 1482 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1483 } 1484 1485 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1486 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1487 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1488 TCP_SKB_CB(prev)->end_seq++; 1489 1490 if (skb == tcp_highest_sack(sk)) 1491 tcp_advance_highest_sack(sk, skb); 1492 1493 tcp_skb_collapse_tstamp(prev, skb); 1494 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1495 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1496 1497 tcp_rtx_queue_unlink_and_free(skb, sk); 1498 1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1500 1501 return true; 1502 } 1503 1504 /* I wish gso_size would have a bit more sane initialization than 1505 * something-or-zero which complicates things 1506 */ 1507 static int tcp_skb_seglen(const struct sk_buff *skb) 1508 { 1509 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1510 } 1511 1512 /* Shifting pages past head area doesn't work */ 1513 static int skb_can_shift(const struct sk_buff *skb) 1514 { 1515 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1516 } 1517 1518 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1519 int pcount, int shiftlen) 1520 { 1521 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1522 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1523 * to make sure not storing more than 65535 * 8 bytes per skb, 1524 * even if current MSS is bigger. 1525 */ 1526 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1527 return 0; 1528 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1529 return 0; 1530 return skb_shift(to, from, shiftlen); 1531 } 1532 1533 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1534 * skb. 1535 */ 1536 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1537 struct tcp_sacktag_state *state, 1538 u32 start_seq, u32 end_seq, 1539 bool dup_sack) 1540 { 1541 struct tcp_sock *tp = tcp_sk(sk); 1542 struct sk_buff *prev; 1543 int mss; 1544 int pcount = 0; 1545 int len; 1546 int in_sack; 1547 1548 /* Normally R but no L won't result in plain S */ 1549 if (!dup_sack && 1550 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1551 goto fallback; 1552 if (!skb_can_shift(skb)) 1553 goto fallback; 1554 /* This frame is about to be dropped (was ACKed). */ 1555 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1556 goto fallback; 1557 1558 /* Can only happen with delayed DSACK + discard craziness */ 1559 prev = skb_rb_prev(skb); 1560 if (!prev) 1561 goto fallback; 1562 1563 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1564 goto fallback; 1565 1566 if (!tcp_skb_can_collapse(prev, skb)) 1567 goto fallback; 1568 1569 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1570 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1571 1572 if (in_sack) { 1573 len = skb->len; 1574 pcount = tcp_skb_pcount(skb); 1575 mss = tcp_skb_seglen(skb); 1576 1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1578 * drop this restriction as unnecessary 1579 */ 1580 if (mss != tcp_skb_seglen(prev)) 1581 goto fallback; 1582 } else { 1583 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1584 goto noop; 1585 /* CHECKME: This is non-MSS split case only?, this will 1586 * cause skipped skbs due to advancing loop btw, original 1587 * has that feature too 1588 */ 1589 if (tcp_skb_pcount(skb) <= 1) 1590 goto noop; 1591 1592 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1593 if (!in_sack) { 1594 /* TODO: head merge to next could be attempted here 1595 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1596 * though it might not be worth of the additional hassle 1597 * 1598 * ...we can probably just fallback to what was done 1599 * previously. We could try merging non-SACKed ones 1600 * as well but it probably isn't going to buy off 1601 * because later SACKs might again split them, and 1602 * it would make skb timestamp tracking considerably 1603 * harder problem. 1604 */ 1605 goto fallback; 1606 } 1607 1608 len = end_seq - TCP_SKB_CB(skb)->seq; 1609 BUG_ON(len < 0); 1610 BUG_ON(len > skb->len); 1611 1612 /* MSS boundaries should be honoured or else pcount will 1613 * severely break even though it makes things bit trickier. 1614 * Optimize common case to avoid most of the divides 1615 */ 1616 mss = tcp_skb_mss(skb); 1617 1618 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1619 * drop this restriction as unnecessary 1620 */ 1621 if (mss != tcp_skb_seglen(prev)) 1622 goto fallback; 1623 1624 if (len == mss) { 1625 pcount = 1; 1626 } else if (len < mss) { 1627 goto noop; 1628 } else { 1629 pcount = len / mss; 1630 len = pcount * mss; 1631 } 1632 } 1633 1634 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1635 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1636 goto fallback; 1637 1638 if (!tcp_skb_shift(prev, skb, pcount, len)) 1639 goto fallback; 1640 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1641 goto out; 1642 1643 /* Hole filled allows collapsing with the next as well, this is very 1644 * useful when hole on every nth skb pattern happens 1645 */ 1646 skb = skb_rb_next(prev); 1647 if (!skb) 1648 goto out; 1649 1650 if (!skb_can_shift(skb) || 1651 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1652 (mss != tcp_skb_seglen(skb))) 1653 goto out; 1654 1655 len = skb->len; 1656 pcount = tcp_skb_pcount(skb); 1657 if (tcp_skb_shift(prev, skb, pcount, len)) 1658 tcp_shifted_skb(sk, prev, skb, state, pcount, 1659 len, mss, 0); 1660 1661 out: 1662 return prev; 1663 1664 noop: 1665 return skb; 1666 1667 fallback: 1668 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1669 return NULL; 1670 } 1671 1672 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1673 struct tcp_sack_block *next_dup, 1674 struct tcp_sacktag_state *state, 1675 u32 start_seq, u32 end_seq, 1676 bool dup_sack_in) 1677 { 1678 struct tcp_sock *tp = tcp_sk(sk); 1679 struct sk_buff *tmp; 1680 1681 skb_rbtree_walk_from(skb) { 1682 int in_sack = 0; 1683 bool dup_sack = dup_sack_in; 1684 1685 /* queue is in-order => we can short-circuit the walk early */ 1686 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1687 break; 1688 1689 if (next_dup && 1690 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1691 in_sack = tcp_match_skb_to_sack(sk, skb, 1692 next_dup->start_seq, 1693 next_dup->end_seq); 1694 if (in_sack > 0) 1695 dup_sack = true; 1696 } 1697 1698 /* skb reference here is a bit tricky to get right, since 1699 * shifting can eat and free both this skb and the next, 1700 * so not even _safe variant of the loop is enough. 1701 */ 1702 if (in_sack <= 0) { 1703 tmp = tcp_shift_skb_data(sk, skb, state, 1704 start_seq, end_seq, dup_sack); 1705 if (tmp) { 1706 if (tmp != skb) { 1707 skb = tmp; 1708 continue; 1709 } 1710 1711 in_sack = 0; 1712 } else { 1713 in_sack = tcp_match_skb_to_sack(sk, skb, 1714 start_seq, 1715 end_seq); 1716 } 1717 } 1718 1719 if (unlikely(in_sack < 0)) 1720 break; 1721 1722 if (in_sack) { 1723 TCP_SKB_CB(skb)->sacked = 1724 tcp_sacktag_one(sk, 1725 state, 1726 TCP_SKB_CB(skb)->sacked, 1727 TCP_SKB_CB(skb)->seq, 1728 TCP_SKB_CB(skb)->end_seq, 1729 dup_sack, 1730 tcp_skb_pcount(skb), 1731 tcp_skb_timestamp_us(skb)); 1732 tcp_rate_skb_delivered(sk, skb, state->rate); 1733 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1734 list_del_init(&skb->tcp_tsorted_anchor); 1735 1736 if (!before(TCP_SKB_CB(skb)->seq, 1737 tcp_highest_sack_seq(tp))) 1738 tcp_advance_highest_sack(sk, skb); 1739 } 1740 } 1741 return skb; 1742 } 1743 1744 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1745 { 1746 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1747 struct sk_buff *skb; 1748 1749 while (*p) { 1750 parent = *p; 1751 skb = rb_to_skb(parent); 1752 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1753 p = &parent->rb_left; 1754 continue; 1755 } 1756 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1757 p = &parent->rb_right; 1758 continue; 1759 } 1760 return skb; 1761 } 1762 return NULL; 1763 } 1764 1765 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1766 u32 skip_to_seq) 1767 { 1768 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1769 return skb; 1770 1771 return tcp_sacktag_bsearch(sk, skip_to_seq); 1772 } 1773 1774 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1775 struct sock *sk, 1776 struct tcp_sack_block *next_dup, 1777 struct tcp_sacktag_state *state, 1778 u32 skip_to_seq) 1779 { 1780 if (!next_dup) 1781 return skb; 1782 1783 if (before(next_dup->start_seq, skip_to_seq)) { 1784 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1785 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1786 next_dup->start_seq, next_dup->end_seq, 1787 1); 1788 } 1789 1790 return skb; 1791 } 1792 1793 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1794 { 1795 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1796 } 1797 1798 static int 1799 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1800 u32 prior_snd_una, struct tcp_sacktag_state *state) 1801 { 1802 struct tcp_sock *tp = tcp_sk(sk); 1803 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1804 TCP_SKB_CB(ack_skb)->sacked); 1805 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1806 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1807 struct tcp_sack_block *cache; 1808 struct sk_buff *skb; 1809 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1810 int used_sacks; 1811 bool found_dup_sack = false; 1812 int i, j; 1813 int first_sack_index; 1814 1815 state->flag = 0; 1816 state->reord = tp->snd_nxt; 1817 1818 if (!tp->sacked_out) 1819 tcp_highest_sack_reset(sk); 1820 1821 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1822 num_sacks, prior_snd_una, state); 1823 1824 /* Eliminate too old ACKs, but take into 1825 * account more or less fresh ones, they can 1826 * contain valid SACK info. 1827 */ 1828 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1829 return 0; 1830 1831 if (!tp->packets_out) 1832 goto out; 1833 1834 used_sacks = 0; 1835 first_sack_index = 0; 1836 for (i = 0; i < num_sacks; i++) { 1837 bool dup_sack = !i && found_dup_sack; 1838 1839 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1840 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1841 1842 if (!tcp_is_sackblock_valid(tp, dup_sack, 1843 sp[used_sacks].start_seq, 1844 sp[used_sacks].end_seq)) { 1845 int mib_idx; 1846 1847 if (dup_sack) { 1848 if (!tp->undo_marker) 1849 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1850 else 1851 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1852 } else { 1853 /* Don't count olds caused by ACK reordering */ 1854 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1855 !after(sp[used_sacks].end_seq, tp->snd_una)) 1856 continue; 1857 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1858 } 1859 1860 NET_INC_STATS(sock_net(sk), mib_idx); 1861 if (i == 0) 1862 first_sack_index = -1; 1863 continue; 1864 } 1865 1866 /* Ignore very old stuff early */ 1867 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1868 if (i == 0) 1869 first_sack_index = -1; 1870 continue; 1871 } 1872 1873 used_sacks++; 1874 } 1875 1876 /* order SACK blocks to allow in order walk of the retrans queue */ 1877 for (i = used_sacks - 1; i > 0; i--) { 1878 for (j = 0; j < i; j++) { 1879 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1880 swap(sp[j], sp[j + 1]); 1881 1882 /* Track where the first SACK block goes to */ 1883 if (j == first_sack_index) 1884 first_sack_index = j + 1; 1885 } 1886 } 1887 } 1888 1889 state->mss_now = tcp_current_mss(sk); 1890 skb = NULL; 1891 i = 0; 1892 1893 if (!tp->sacked_out) { 1894 /* It's already past, so skip checking against it */ 1895 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1896 } else { 1897 cache = tp->recv_sack_cache; 1898 /* Skip empty blocks in at head of the cache */ 1899 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1900 !cache->end_seq) 1901 cache++; 1902 } 1903 1904 while (i < used_sacks) { 1905 u32 start_seq = sp[i].start_seq; 1906 u32 end_seq = sp[i].end_seq; 1907 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1908 struct tcp_sack_block *next_dup = NULL; 1909 1910 if (found_dup_sack && ((i + 1) == first_sack_index)) 1911 next_dup = &sp[i + 1]; 1912 1913 /* Skip too early cached blocks */ 1914 while (tcp_sack_cache_ok(tp, cache) && 1915 !before(start_seq, cache->end_seq)) 1916 cache++; 1917 1918 /* Can skip some work by looking recv_sack_cache? */ 1919 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1920 after(end_seq, cache->start_seq)) { 1921 1922 /* Head todo? */ 1923 if (before(start_seq, cache->start_seq)) { 1924 skb = tcp_sacktag_skip(skb, sk, start_seq); 1925 skb = tcp_sacktag_walk(skb, sk, next_dup, 1926 state, 1927 start_seq, 1928 cache->start_seq, 1929 dup_sack); 1930 } 1931 1932 /* Rest of the block already fully processed? */ 1933 if (!after(end_seq, cache->end_seq)) 1934 goto advance_sp; 1935 1936 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1937 state, 1938 cache->end_seq); 1939 1940 /* ...tail remains todo... */ 1941 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1942 /* ...but better entrypoint exists! */ 1943 skb = tcp_highest_sack(sk); 1944 if (!skb) 1945 break; 1946 cache++; 1947 goto walk; 1948 } 1949 1950 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1951 /* Check overlap against next cached too (past this one already) */ 1952 cache++; 1953 continue; 1954 } 1955 1956 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1957 skb = tcp_highest_sack(sk); 1958 if (!skb) 1959 break; 1960 } 1961 skb = tcp_sacktag_skip(skb, sk, start_seq); 1962 1963 walk: 1964 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1965 start_seq, end_seq, dup_sack); 1966 1967 advance_sp: 1968 i++; 1969 } 1970 1971 /* Clear the head of the cache sack blocks so we can skip it next time */ 1972 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1973 tp->recv_sack_cache[i].start_seq = 0; 1974 tp->recv_sack_cache[i].end_seq = 0; 1975 } 1976 for (j = 0; j < used_sacks; j++) 1977 tp->recv_sack_cache[i++] = sp[j]; 1978 1979 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1980 tcp_check_sack_reordering(sk, state->reord, 0); 1981 1982 tcp_verify_left_out(tp); 1983 out: 1984 1985 #if FASTRETRANS_DEBUG > 0 1986 WARN_ON((int)tp->sacked_out < 0); 1987 WARN_ON((int)tp->lost_out < 0); 1988 WARN_ON((int)tp->retrans_out < 0); 1989 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1990 #endif 1991 return state->flag; 1992 } 1993 1994 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1995 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1996 */ 1997 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1998 { 1999 u32 holes; 2000 2001 holes = max(tp->lost_out, 1U); 2002 holes = min(holes, tp->packets_out); 2003 2004 if ((tp->sacked_out + holes) > tp->packets_out) { 2005 tp->sacked_out = tp->packets_out - holes; 2006 return true; 2007 } 2008 return false; 2009 } 2010 2011 /* If we receive more dupacks than we expected counting segments 2012 * in assumption of absent reordering, interpret this as reordering. 2013 * The only another reason could be bug in receiver TCP. 2014 */ 2015 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2016 { 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 2019 if (!tcp_limit_reno_sacked(tp)) 2020 return; 2021 2022 tp->reordering = min_t(u32, tp->packets_out + addend, 2023 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 2024 tp->reord_seen++; 2025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2026 } 2027 2028 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2029 2030 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2031 { 2032 if (num_dupack) { 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 u32 prior_sacked = tp->sacked_out; 2035 s32 delivered; 2036 2037 tp->sacked_out += num_dupack; 2038 tcp_check_reno_reordering(sk, 0); 2039 delivered = tp->sacked_out - prior_sacked; 2040 if (delivered > 0) 2041 tcp_count_delivered(tp, delivered, ece_ack); 2042 tcp_verify_left_out(tp); 2043 } 2044 } 2045 2046 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2047 2048 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2049 { 2050 struct tcp_sock *tp = tcp_sk(sk); 2051 2052 if (acked > 0) { 2053 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2054 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2055 ece_ack); 2056 if (acked - 1 >= tp->sacked_out) 2057 tp->sacked_out = 0; 2058 else 2059 tp->sacked_out -= acked - 1; 2060 } 2061 tcp_check_reno_reordering(sk, acked); 2062 tcp_verify_left_out(tp); 2063 } 2064 2065 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2066 { 2067 tp->sacked_out = 0; 2068 } 2069 2070 void tcp_clear_retrans(struct tcp_sock *tp) 2071 { 2072 tp->retrans_out = 0; 2073 tp->lost_out = 0; 2074 tp->undo_marker = 0; 2075 tp->undo_retrans = -1; 2076 tp->sacked_out = 0; 2077 } 2078 2079 static inline void tcp_init_undo(struct tcp_sock *tp) 2080 { 2081 tp->undo_marker = tp->snd_una; 2082 /* Retransmission still in flight may cause DSACKs later. */ 2083 tp->undo_retrans = tp->retrans_out ? : -1; 2084 } 2085 2086 static bool tcp_is_rack(const struct sock *sk) 2087 { 2088 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 2089 } 2090 2091 /* If we detect SACK reneging, forget all SACK information 2092 * and reset tags completely, otherwise preserve SACKs. If receiver 2093 * dropped its ofo queue, we will know this due to reneging detection. 2094 */ 2095 static void tcp_timeout_mark_lost(struct sock *sk) 2096 { 2097 struct tcp_sock *tp = tcp_sk(sk); 2098 struct sk_buff *skb, *head; 2099 bool is_reneg; /* is receiver reneging on SACKs? */ 2100 2101 head = tcp_rtx_queue_head(sk); 2102 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2103 if (is_reneg) { 2104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2105 tp->sacked_out = 0; 2106 /* Mark SACK reneging until we recover from this loss event. */ 2107 tp->is_sack_reneg = 1; 2108 } else if (tcp_is_reno(tp)) { 2109 tcp_reset_reno_sack(tp); 2110 } 2111 2112 skb = head; 2113 skb_rbtree_walk_from(skb) { 2114 if (is_reneg) 2115 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2116 else if (tcp_is_rack(sk) && skb != head && 2117 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2118 continue; /* Don't mark recently sent ones lost yet */ 2119 tcp_mark_skb_lost(sk, skb); 2120 } 2121 tcp_verify_left_out(tp); 2122 tcp_clear_all_retrans_hints(tp); 2123 } 2124 2125 /* Enter Loss state. */ 2126 void tcp_enter_loss(struct sock *sk) 2127 { 2128 const struct inet_connection_sock *icsk = inet_csk(sk); 2129 struct tcp_sock *tp = tcp_sk(sk); 2130 struct net *net = sock_net(sk); 2131 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2132 2133 tcp_timeout_mark_lost(sk); 2134 2135 /* Reduce ssthresh if it has not yet been made inside this window. */ 2136 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2137 !after(tp->high_seq, tp->snd_una) || 2138 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2139 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2140 tp->prior_cwnd = tp->snd_cwnd; 2141 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2142 tcp_ca_event(sk, CA_EVENT_LOSS); 2143 tcp_init_undo(tp); 2144 } 2145 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2146 tp->snd_cwnd_cnt = 0; 2147 tp->snd_cwnd_stamp = tcp_jiffies32; 2148 2149 /* Timeout in disordered state after receiving substantial DUPACKs 2150 * suggests that the degree of reordering is over-estimated. 2151 */ 2152 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2153 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2154 tp->reordering = min_t(unsigned int, tp->reordering, 2155 net->ipv4.sysctl_tcp_reordering); 2156 tcp_set_ca_state(sk, TCP_CA_Loss); 2157 tp->high_seq = tp->snd_nxt; 2158 tcp_ecn_queue_cwr(tp); 2159 2160 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2161 * loss recovery is underway except recurring timeout(s) on 2162 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2163 */ 2164 tp->frto = net->ipv4.sysctl_tcp_frto && 2165 (new_recovery || icsk->icsk_retransmits) && 2166 !inet_csk(sk)->icsk_mtup.probe_size; 2167 } 2168 2169 /* If ACK arrived pointing to a remembered SACK, it means that our 2170 * remembered SACKs do not reflect real state of receiver i.e. 2171 * receiver _host_ is heavily congested (or buggy). 2172 * 2173 * To avoid big spurious retransmission bursts due to transient SACK 2174 * scoreboard oddities that look like reneging, we give the receiver a 2175 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2176 * restore sanity to the SACK scoreboard. If the apparent reneging 2177 * persists until this RTO then we'll clear the SACK scoreboard. 2178 */ 2179 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2180 { 2181 if (flag & FLAG_SACK_RENEGING) { 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2184 msecs_to_jiffies(10)); 2185 2186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2187 delay, TCP_RTO_MAX); 2188 return true; 2189 } 2190 return false; 2191 } 2192 2193 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2194 * counter when SACK is enabled (without SACK, sacked_out is used for 2195 * that purpose). 2196 * 2197 * With reordering, holes may still be in flight, so RFC3517 recovery 2198 * uses pure sacked_out (total number of SACKed segments) even though 2199 * it violates the RFC that uses duplicate ACKs, often these are equal 2200 * but when e.g. out-of-window ACKs or packet duplication occurs, 2201 * they differ. Since neither occurs due to loss, TCP should really 2202 * ignore them. 2203 */ 2204 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2205 { 2206 return tp->sacked_out + 1; 2207 } 2208 2209 /* Linux NewReno/SACK/ECN state machine. 2210 * -------------------------------------- 2211 * 2212 * "Open" Normal state, no dubious events, fast path. 2213 * "Disorder" In all the respects it is "Open", 2214 * but requires a bit more attention. It is entered when 2215 * we see some SACKs or dupacks. It is split of "Open" 2216 * mainly to move some processing from fast path to slow one. 2217 * "CWR" CWND was reduced due to some Congestion Notification event. 2218 * It can be ECN, ICMP source quench, local device congestion. 2219 * "Recovery" CWND was reduced, we are fast-retransmitting. 2220 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2221 * 2222 * tcp_fastretrans_alert() is entered: 2223 * - each incoming ACK, if state is not "Open" 2224 * - when arrived ACK is unusual, namely: 2225 * * SACK 2226 * * Duplicate ACK. 2227 * * ECN ECE. 2228 * 2229 * Counting packets in flight is pretty simple. 2230 * 2231 * in_flight = packets_out - left_out + retrans_out 2232 * 2233 * packets_out is SND.NXT-SND.UNA counted in packets. 2234 * 2235 * retrans_out is number of retransmitted segments. 2236 * 2237 * left_out is number of segments left network, but not ACKed yet. 2238 * 2239 * left_out = sacked_out + lost_out 2240 * 2241 * sacked_out: Packets, which arrived to receiver out of order 2242 * and hence not ACKed. With SACKs this number is simply 2243 * amount of SACKed data. Even without SACKs 2244 * it is easy to give pretty reliable estimate of this number, 2245 * counting duplicate ACKs. 2246 * 2247 * lost_out: Packets lost by network. TCP has no explicit 2248 * "loss notification" feedback from network (for now). 2249 * It means that this number can be only _guessed_. 2250 * Actually, it is the heuristics to predict lossage that 2251 * distinguishes different algorithms. 2252 * 2253 * F.e. after RTO, when all the queue is considered as lost, 2254 * lost_out = packets_out and in_flight = retrans_out. 2255 * 2256 * Essentially, we have now a few algorithms detecting 2257 * lost packets. 2258 * 2259 * If the receiver supports SACK: 2260 * 2261 * RFC6675/3517: It is the conventional algorithm. A packet is 2262 * considered lost if the number of higher sequence packets 2263 * SACKed is greater than or equal the DUPACK thoreshold 2264 * (reordering). This is implemented in tcp_mark_head_lost and 2265 * tcp_update_scoreboard. 2266 * 2267 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2268 * (2017-) that checks timing instead of counting DUPACKs. 2269 * Essentially a packet is considered lost if it's not S/ACKed 2270 * after RTT + reordering_window, where both metrics are 2271 * dynamically measured and adjusted. This is implemented in 2272 * tcp_rack_mark_lost. 2273 * 2274 * If the receiver does not support SACK: 2275 * 2276 * NewReno (RFC6582): in Recovery we assume that one segment 2277 * is lost (classic Reno). While we are in Recovery and 2278 * a partial ACK arrives, we assume that one more packet 2279 * is lost (NewReno). This heuristics are the same in NewReno 2280 * and SACK. 2281 * 2282 * Really tricky (and requiring careful tuning) part of algorithm 2283 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2284 * The first determines the moment _when_ we should reduce CWND and, 2285 * hence, slow down forward transmission. In fact, it determines the moment 2286 * when we decide that hole is caused by loss, rather than by a reorder. 2287 * 2288 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2289 * holes, caused by lost packets. 2290 * 2291 * And the most logically complicated part of algorithm is undo 2292 * heuristics. We detect false retransmits due to both too early 2293 * fast retransmit (reordering) and underestimated RTO, analyzing 2294 * timestamps and D-SACKs. When we detect that some segments were 2295 * retransmitted by mistake and CWND reduction was wrong, we undo 2296 * window reduction and abort recovery phase. This logic is hidden 2297 * inside several functions named tcp_try_undo_<something>. 2298 */ 2299 2300 /* This function decides, when we should leave Disordered state 2301 * and enter Recovery phase, reducing congestion window. 2302 * 2303 * Main question: may we further continue forward transmission 2304 * with the same cwnd? 2305 */ 2306 static bool tcp_time_to_recover(struct sock *sk, int flag) 2307 { 2308 struct tcp_sock *tp = tcp_sk(sk); 2309 2310 /* Trick#1: The loss is proven. */ 2311 if (tp->lost_out) 2312 return true; 2313 2314 /* Not-A-Trick#2 : Classic rule... */ 2315 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2316 return true; 2317 2318 return false; 2319 } 2320 2321 /* Detect loss in event "A" above by marking head of queue up as lost. 2322 * For RFC3517 SACK, a segment is considered lost if it 2323 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2324 * the maximum SACKed segments to pass before reaching this limit. 2325 */ 2326 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2327 { 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 struct sk_buff *skb; 2330 int cnt; 2331 /* Use SACK to deduce losses of new sequences sent during recovery */ 2332 const u32 loss_high = tp->snd_nxt; 2333 2334 WARN_ON(packets > tp->packets_out); 2335 skb = tp->lost_skb_hint; 2336 if (skb) { 2337 /* Head already handled? */ 2338 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2339 return; 2340 cnt = tp->lost_cnt_hint; 2341 } else { 2342 skb = tcp_rtx_queue_head(sk); 2343 cnt = 0; 2344 } 2345 2346 skb_rbtree_walk_from(skb) { 2347 /* TODO: do this better */ 2348 /* this is not the most efficient way to do this... */ 2349 tp->lost_skb_hint = skb; 2350 tp->lost_cnt_hint = cnt; 2351 2352 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2353 break; 2354 2355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2356 cnt += tcp_skb_pcount(skb); 2357 2358 if (cnt > packets) 2359 break; 2360 2361 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2362 tcp_mark_skb_lost(sk, skb); 2363 2364 if (mark_head) 2365 break; 2366 } 2367 tcp_verify_left_out(tp); 2368 } 2369 2370 /* Account newly detected lost packet(s) */ 2371 2372 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2373 { 2374 struct tcp_sock *tp = tcp_sk(sk); 2375 2376 if (tcp_is_sack(tp)) { 2377 int sacked_upto = tp->sacked_out - tp->reordering; 2378 if (sacked_upto >= 0) 2379 tcp_mark_head_lost(sk, sacked_upto, 0); 2380 else if (fast_rexmit) 2381 tcp_mark_head_lost(sk, 1, 1); 2382 } 2383 } 2384 2385 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2386 { 2387 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2388 before(tp->rx_opt.rcv_tsecr, when); 2389 } 2390 2391 /* skb is spurious retransmitted if the returned timestamp echo 2392 * reply is prior to the skb transmission time 2393 */ 2394 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2395 const struct sk_buff *skb) 2396 { 2397 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2398 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2399 } 2400 2401 /* Nothing was retransmitted or returned timestamp is less 2402 * than timestamp of the first retransmission. 2403 */ 2404 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2405 { 2406 return tp->retrans_stamp && 2407 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2408 } 2409 2410 /* Undo procedures. */ 2411 2412 /* We can clear retrans_stamp when there are no retransmissions in the 2413 * window. It would seem that it is trivially available for us in 2414 * tp->retrans_out, however, that kind of assumptions doesn't consider 2415 * what will happen if errors occur when sending retransmission for the 2416 * second time. ...It could the that such segment has only 2417 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2418 * the head skb is enough except for some reneging corner cases that 2419 * are not worth the effort. 2420 * 2421 * Main reason for all this complexity is the fact that connection dying 2422 * time now depends on the validity of the retrans_stamp, in particular, 2423 * that successive retransmissions of a segment must not advance 2424 * retrans_stamp under any conditions. 2425 */ 2426 static bool tcp_any_retrans_done(const struct sock *sk) 2427 { 2428 const struct tcp_sock *tp = tcp_sk(sk); 2429 struct sk_buff *skb; 2430 2431 if (tp->retrans_out) 2432 return true; 2433 2434 skb = tcp_rtx_queue_head(sk); 2435 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2436 return true; 2437 2438 return false; 2439 } 2440 2441 static void DBGUNDO(struct sock *sk, const char *msg) 2442 { 2443 #if FASTRETRANS_DEBUG > 1 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 struct inet_sock *inet = inet_sk(sk); 2446 2447 if (sk->sk_family == AF_INET) { 2448 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2449 msg, 2450 &inet->inet_daddr, ntohs(inet->inet_dport), 2451 tp->snd_cwnd, tcp_left_out(tp), 2452 tp->snd_ssthresh, tp->prior_ssthresh, 2453 tp->packets_out); 2454 } 2455 #if IS_ENABLED(CONFIG_IPV6) 2456 else if (sk->sk_family == AF_INET6) { 2457 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2458 msg, 2459 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2460 tp->snd_cwnd, tcp_left_out(tp), 2461 tp->snd_ssthresh, tp->prior_ssthresh, 2462 tp->packets_out); 2463 } 2464 #endif 2465 #endif 2466 } 2467 2468 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2469 { 2470 struct tcp_sock *tp = tcp_sk(sk); 2471 2472 if (unmark_loss) { 2473 struct sk_buff *skb; 2474 2475 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2476 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2477 } 2478 tp->lost_out = 0; 2479 tcp_clear_all_retrans_hints(tp); 2480 } 2481 2482 if (tp->prior_ssthresh) { 2483 const struct inet_connection_sock *icsk = inet_csk(sk); 2484 2485 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2486 2487 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2488 tp->snd_ssthresh = tp->prior_ssthresh; 2489 tcp_ecn_withdraw_cwr(tp); 2490 } 2491 } 2492 tp->snd_cwnd_stamp = tcp_jiffies32; 2493 tp->undo_marker = 0; 2494 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2495 } 2496 2497 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2498 { 2499 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2500 } 2501 2502 /* People celebrate: "We love our President!" */ 2503 static bool tcp_try_undo_recovery(struct sock *sk) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 2507 if (tcp_may_undo(tp)) { 2508 int mib_idx; 2509 2510 /* Happy end! We did not retransmit anything 2511 * or our original transmission succeeded. 2512 */ 2513 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2514 tcp_undo_cwnd_reduction(sk, false); 2515 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2516 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2517 else 2518 mib_idx = LINUX_MIB_TCPFULLUNDO; 2519 2520 NET_INC_STATS(sock_net(sk), mib_idx); 2521 } else if (tp->rack.reo_wnd_persist) { 2522 tp->rack.reo_wnd_persist--; 2523 } 2524 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2525 /* Hold old state until something *above* high_seq 2526 * is ACKed. For Reno it is MUST to prevent false 2527 * fast retransmits (RFC2582). SACK TCP is safe. */ 2528 if (!tcp_any_retrans_done(sk)) 2529 tp->retrans_stamp = 0; 2530 return true; 2531 } 2532 tcp_set_ca_state(sk, TCP_CA_Open); 2533 tp->is_sack_reneg = 0; 2534 return false; 2535 } 2536 2537 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2538 static bool tcp_try_undo_dsack(struct sock *sk) 2539 { 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 2542 if (tp->undo_marker && !tp->undo_retrans) { 2543 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2544 tp->rack.reo_wnd_persist + 1); 2545 DBGUNDO(sk, "D-SACK"); 2546 tcp_undo_cwnd_reduction(sk, false); 2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2548 return true; 2549 } 2550 return false; 2551 } 2552 2553 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2554 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 2558 if (frto_undo || tcp_may_undo(tp)) { 2559 tcp_undo_cwnd_reduction(sk, true); 2560 2561 DBGUNDO(sk, "partial loss"); 2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2563 if (frto_undo) 2564 NET_INC_STATS(sock_net(sk), 2565 LINUX_MIB_TCPSPURIOUSRTOS); 2566 inet_csk(sk)->icsk_retransmits = 0; 2567 if (frto_undo || tcp_is_sack(tp)) { 2568 tcp_set_ca_state(sk, TCP_CA_Open); 2569 tp->is_sack_reneg = 0; 2570 } 2571 return true; 2572 } 2573 return false; 2574 } 2575 2576 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2577 * It computes the number of packets to send (sndcnt) based on packets newly 2578 * delivered: 2579 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2580 * cwnd reductions across a full RTT. 2581 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2582 * But when SND_UNA is acked without further losses, 2583 * slow starts cwnd up to ssthresh to speed up the recovery. 2584 */ 2585 static void tcp_init_cwnd_reduction(struct sock *sk) 2586 { 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 2589 tp->high_seq = tp->snd_nxt; 2590 tp->tlp_high_seq = 0; 2591 tp->snd_cwnd_cnt = 0; 2592 tp->prior_cwnd = tp->snd_cwnd; 2593 tp->prr_delivered = 0; 2594 tp->prr_out = 0; 2595 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2596 tcp_ecn_queue_cwr(tp); 2597 } 2598 2599 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2600 { 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 int sndcnt = 0; 2603 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2604 2605 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2606 return; 2607 2608 tp->prr_delivered += newly_acked_sacked; 2609 if (delta < 0) { 2610 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2611 tp->prior_cwnd - 1; 2612 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2613 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) { 2614 sndcnt = min_t(int, delta, 2615 max_t(int, tp->prr_delivered - tp->prr_out, 2616 newly_acked_sacked) + 1); 2617 } else { 2618 sndcnt = min(delta, newly_acked_sacked); 2619 } 2620 /* Force a fast retransmit upon entering fast recovery */ 2621 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2622 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2623 } 2624 2625 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2626 { 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 2629 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2630 return; 2631 2632 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2633 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2634 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2635 tp->snd_cwnd = tp->snd_ssthresh; 2636 tp->snd_cwnd_stamp = tcp_jiffies32; 2637 } 2638 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2639 } 2640 2641 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2642 void tcp_enter_cwr(struct sock *sk) 2643 { 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 2646 tp->prior_ssthresh = 0; 2647 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2648 tp->undo_marker = 0; 2649 tcp_init_cwnd_reduction(sk); 2650 tcp_set_ca_state(sk, TCP_CA_CWR); 2651 } 2652 } 2653 EXPORT_SYMBOL(tcp_enter_cwr); 2654 2655 static void tcp_try_keep_open(struct sock *sk) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 int state = TCP_CA_Open; 2659 2660 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2661 state = TCP_CA_Disorder; 2662 2663 if (inet_csk(sk)->icsk_ca_state != state) { 2664 tcp_set_ca_state(sk, state); 2665 tp->high_seq = tp->snd_nxt; 2666 } 2667 } 2668 2669 static void tcp_try_to_open(struct sock *sk, int flag) 2670 { 2671 struct tcp_sock *tp = tcp_sk(sk); 2672 2673 tcp_verify_left_out(tp); 2674 2675 if (!tcp_any_retrans_done(sk)) 2676 tp->retrans_stamp = 0; 2677 2678 if (flag & FLAG_ECE) 2679 tcp_enter_cwr(sk); 2680 2681 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2682 tcp_try_keep_open(sk); 2683 } 2684 } 2685 2686 static void tcp_mtup_probe_failed(struct sock *sk) 2687 { 2688 struct inet_connection_sock *icsk = inet_csk(sk); 2689 2690 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2691 icsk->icsk_mtup.probe_size = 0; 2692 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2693 } 2694 2695 static void tcp_mtup_probe_success(struct sock *sk) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 struct inet_connection_sock *icsk = inet_csk(sk); 2699 2700 /* FIXME: breaks with very large cwnd */ 2701 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2702 tp->snd_cwnd = tp->snd_cwnd * 2703 tcp_mss_to_mtu(sk, tp->mss_cache) / 2704 icsk->icsk_mtup.probe_size; 2705 tp->snd_cwnd_cnt = 0; 2706 tp->snd_cwnd_stamp = tcp_jiffies32; 2707 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2708 2709 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2710 icsk->icsk_mtup.probe_size = 0; 2711 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2713 } 2714 2715 /* Do a simple retransmit without using the backoff mechanisms in 2716 * tcp_timer. This is used for path mtu discovery. 2717 * The socket is already locked here. 2718 */ 2719 void tcp_simple_retransmit(struct sock *sk) 2720 { 2721 const struct inet_connection_sock *icsk = inet_csk(sk); 2722 struct tcp_sock *tp = tcp_sk(sk); 2723 struct sk_buff *skb; 2724 int mss; 2725 2726 /* A fastopen SYN request is stored as two separate packets within 2727 * the retransmit queue, this is done by tcp_send_syn_data(). 2728 * As a result simply checking the MSS of the frames in the queue 2729 * will not work for the SYN packet. 2730 * 2731 * Us being here is an indication of a path MTU issue so we can 2732 * assume that the fastopen SYN was lost and just mark all the 2733 * frames in the retransmit queue as lost. We will use an MSS of 2734 * -1 to mark all frames as lost, otherwise compute the current MSS. 2735 */ 2736 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2737 mss = -1; 2738 else 2739 mss = tcp_current_mss(sk); 2740 2741 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2742 if (tcp_skb_seglen(skb) > mss) 2743 tcp_mark_skb_lost(sk, skb); 2744 } 2745 2746 tcp_clear_retrans_hints_partial(tp); 2747 2748 if (!tp->lost_out) 2749 return; 2750 2751 if (tcp_is_reno(tp)) 2752 tcp_limit_reno_sacked(tp); 2753 2754 tcp_verify_left_out(tp); 2755 2756 /* Don't muck with the congestion window here. 2757 * Reason is that we do not increase amount of _data_ 2758 * in network, but units changed and effective 2759 * cwnd/ssthresh really reduced now. 2760 */ 2761 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2762 tp->high_seq = tp->snd_nxt; 2763 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2764 tp->prior_ssthresh = 0; 2765 tp->undo_marker = 0; 2766 tcp_set_ca_state(sk, TCP_CA_Loss); 2767 } 2768 tcp_xmit_retransmit_queue(sk); 2769 } 2770 EXPORT_SYMBOL(tcp_simple_retransmit); 2771 2772 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2773 { 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 int mib_idx; 2776 2777 if (tcp_is_reno(tp)) 2778 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2779 else 2780 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2781 2782 NET_INC_STATS(sock_net(sk), mib_idx); 2783 2784 tp->prior_ssthresh = 0; 2785 tcp_init_undo(tp); 2786 2787 if (!tcp_in_cwnd_reduction(sk)) { 2788 if (!ece_ack) 2789 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2790 tcp_init_cwnd_reduction(sk); 2791 } 2792 tcp_set_ca_state(sk, TCP_CA_Recovery); 2793 } 2794 2795 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2796 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2797 */ 2798 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2799 int *rexmit) 2800 { 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 bool recovered = !before(tp->snd_una, tp->high_seq); 2803 2804 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2805 tcp_try_undo_loss(sk, false)) 2806 return; 2807 2808 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2809 /* Step 3.b. A timeout is spurious if not all data are 2810 * lost, i.e., never-retransmitted data are (s)acked. 2811 */ 2812 if ((flag & FLAG_ORIG_SACK_ACKED) && 2813 tcp_try_undo_loss(sk, true)) 2814 return; 2815 2816 if (after(tp->snd_nxt, tp->high_seq)) { 2817 if (flag & FLAG_DATA_SACKED || num_dupack) 2818 tp->frto = 0; /* Step 3.a. loss was real */ 2819 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2820 tp->high_seq = tp->snd_nxt; 2821 /* Step 2.b. Try send new data (but deferred until cwnd 2822 * is updated in tcp_ack()). Otherwise fall back to 2823 * the conventional recovery. 2824 */ 2825 if (!tcp_write_queue_empty(sk) && 2826 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2827 *rexmit = REXMIT_NEW; 2828 return; 2829 } 2830 tp->frto = 0; 2831 } 2832 } 2833 2834 if (recovered) { 2835 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2836 tcp_try_undo_recovery(sk); 2837 return; 2838 } 2839 if (tcp_is_reno(tp)) { 2840 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2841 * delivered. Lower inflight to clock out (re)tranmissions. 2842 */ 2843 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2844 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2845 else if (flag & FLAG_SND_UNA_ADVANCED) 2846 tcp_reset_reno_sack(tp); 2847 } 2848 *rexmit = REXMIT_LOST; 2849 } 2850 2851 static bool tcp_force_fast_retransmit(struct sock *sk) 2852 { 2853 struct tcp_sock *tp = tcp_sk(sk); 2854 2855 return after(tcp_highest_sack_seq(tp), 2856 tp->snd_una + tp->reordering * tp->mss_cache); 2857 } 2858 2859 /* Undo during fast recovery after partial ACK. */ 2860 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2861 bool *do_lost) 2862 { 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 2865 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2866 /* Plain luck! Hole if filled with delayed 2867 * packet, rather than with a retransmit. Check reordering. 2868 */ 2869 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2870 2871 /* We are getting evidence that the reordering degree is higher 2872 * than we realized. If there are no retransmits out then we 2873 * can undo. Otherwise we clock out new packets but do not 2874 * mark more packets lost or retransmit more. 2875 */ 2876 if (tp->retrans_out) 2877 return true; 2878 2879 if (!tcp_any_retrans_done(sk)) 2880 tp->retrans_stamp = 0; 2881 2882 DBGUNDO(sk, "partial recovery"); 2883 tcp_undo_cwnd_reduction(sk, true); 2884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2885 tcp_try_keep_open(sk); 2886 } else { 2887 /* Partial ACK arrived. Force fast retransmit. */ 2888 *do_lost = tcp_force_fast_retransmit(sk); 2889 } 2890 return false; 2891 } 2892 2893 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2894 { 2895 struct tcp_sock *tp = tcp_sk(sk); 2896 2897 if (tcp_rtx_queue_empty(sk)) 2898 return; 2899 2900 if (unlikely(tcp_is_reno(tp))) { 2901 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2902 } else if (tcp_is_rack(sk)) { 2903 u32 prior_retrans = tp->retrans_out; 2904 2905 if (tcp_rack_mark_lost(sk)) 2906 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2907 if (prior_retrans > tp->retrans_out) 2908 *ack_flag |= FLAG_LOST_RETRANS; 2909 } 2910 } 2911 2912 /* Process an event, which can update packets-in-flight not trivially. 2913 * Main goal of this function is to calculate new estimate for left_out, 2914 * taking into account both packets sitting in receiver's buffer and 2915 * packets lost by network. 2916 * 2917 * Besides that it updates the congestion state when packet loss or ECN 2918 * is detected. But it does not reduce the cwnd, it is done by the 2919 * congestion control later. 2920 * 2921 * It does _not_ decide what to send, it is made in function 2922 * tcp_xmit_retransmit_queue(). 2923 */ 2924 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2925 int num_dupack, int *ack_flag, int *rexmit) 2926 { 2927 struct inet_connection_sock *icsk = inet_csk(sk); 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 int fast_rexmit = 0, flag = *ack_flag; 2930 bool ece_ack = flag & FLAG_ECE; 2931 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2932 tcp_force_fast_retransmit(sk)); 2933 2934 if (!tp->packets_out && tp->sacked_out) 2935 tp->sacked_out = 0; 2936 2937 /* Now state machine starts. 2938 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2939 if (ece_ack) 2940 tp->prior_ssthresh = 0; 2941 2942 /* B. In all the states check for reneging SACKs. */ 2943 if (tcp_check_sack_reneging(sk, flag)) 2944 return; 2945 2946 /* C. Check consistency of the current state. */ 2947 tcp_verify_left_out(tp); 2948 2949 /* D. Check state exit conditions. State can be terminated 2950 * when high_seq is ACKed. */ 2951 if (icsk->icsk_ca_state == TCP_CA_Open) { 2952 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2953 tp->retrans_stamp = 0; 2954 } else if (!before(tp->snd_una, tp->high_seq)) { 2955 switch (icsk->icsk_ca_state) { 2956 case TCP_CA_CWR: 2957 /* CWR is to be held something *above* high_seq 2958 * is ACKed for CWR bit to reach receiver. */ 2959 if (tp->snd_una != tp->high_seq) { 2960 tcp_end_cwnd_reduction(sk); 2961 tcp_set_ca_state(sk, TCP_CA_Open); 2962 } 2963 break; 2964 2965 case TCP_CA_Recovery: 2966 if (tcp_is_reno(tp)) 2967 tcp_reset_reno_sack(tp); 2968 if (tcp_try_undo_recovery(sk)) 2969 return; 2970 tcp_end_cwnd_reduction(sk); 2971 break; 2972 } 2973 } 2974 2975 /* E. Process state. */ 2976 switch (icsk->icsk_ca_state) { 2977 case TCP_CA_Recovery: 2978 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2979 if (tcp_is_reno(tp)) 2980 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2981 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 2982 return; 2983 2984 if (tcp_try_undo_dsack(sk)) 2985 tcp_try_keep_open(sk); 2986 2987 tcp_identify_packet_loss(sk, ack_flag); 2988 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 2989 if (!tcp_time_to_recover(sk, flag)) 2990 return; 2991 /* Undo reverts the recovery state. If loss is evident, 2992 * starts a new recovery (e.g. reordering then loss); 2993 */ 2994 tcp_enter_recovery(sk, ece_ack); 2995 } 2996 break; 2997 case TCP_CA_Loss: 2998 tcp_process_loss(sk, flag, num_dupack, rexmit); 2999 tcp_identify_packet_loss(sk, ack_flag); 3000 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3001 (*ack_flag & FLAG_LOST_RETRANS))) 3002 return; 3003 /* Change state if cwnd is undone or retransmits are lost */ 3004 fallthrough; 3005 default: 3006 if (tcp_is_reno(tp)) { 3007 if (flag & FLAG_SND_UNA_ADVANCED) 3008 tcp_reset_reno_sack(tp); 3009 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3010 } 3011 3012 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3013 tcp_try_undo_dsack(sk); 3014 3015 tcp_identify_packet_loss(sk, ack_flag); 3016 if (!tcp_time_to_recover(sk, flag)) { 3017 tcp_try_to_open(sk, flag); 3018 return; 3019 } 3020 3021 /* MTU probe failure: don't reduce cwnd */ 3022 if (icsk->icsk_ca_state < TCP_CA_CWR && 3023 icsk->icsk_mtup.probe_size && 3024 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3025 tcp_mtup_probe_failed(sk); 3026 /* Restores the reduction we did in tcp_mtup_probe() */ 3027 tp->snd_cwnd++; 3028 tcp_simple_retransmit(sk); 3029 return; 3030 } 3031 3032 /* Otherwise enter Recovery state */ 3033 tcp_enter_recovery(sk, ece_ack); 3034 fast_rexmit = 1; 3035 } 3036 3037 if (!tcp_is_rack(sk) && do_lost) 3038 tcp_update_scoreboard(sk, fast_rexmit); 3039 *rexmit = REXMIT_LOST; 3040 } 3041 3042 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3043 { 3044 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 3045 struct tcp_sock *tp = tcp_sk(sk); 3046 3047 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3048 /* If the remote keeps returning delayed ACKs, eventually 3049 * the min filter would pick it up and overestimate the 3050 * prop. delay when it expires. Skip suspected delayed ACKs. 3051 */ 3052 return; 3053 } 3054 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3055 rtt_us ? : jiffies_to_usecs(1)); 3056 } 3057 3058 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3059 long seq_rtt_us, long sack_rtt_us, 3060 long ca_rtt_us, struct rate_sample *rs) 3061 { 3062 const struct tcp_sock *tp = tcp_sk(sk); 3063 3064 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3065 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3066 * Karn's algorithm forbids taking RTT if some retransmitted data 3067 * is acked (RFC6298). 3068 */ 3069 if (seq_rtt_us < 0) 3070 seq_rtt_us = sack_rtt_us; 3071 3072 /* RTTM Rule: A TSecr value received in a segment is used to 3073 * update the averaged RTT measurement only if the segment 3074 * acknowledges some new data, i.e., only if it advances the 3075 * left edge of the send window. 3076 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3077 */ 3078 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3079 flag & FLAG_ACKED) { 3080 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3081 3082 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3083 if (!delta) 3084 delta = 1; 3085 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3086 ca_rtt_us = seq_rtt_us; 3087 } 3088 } 3089 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3090 if (seq_rtt_us < 0) 3091 return false; 3092 3093 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3094 * always taken together with ACK, SACK, or TS-opts. Any negative 3095 * values will be skipped with the seq_rtt_us < 0 check above. 3096 */ 3097 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3098 tcp_rtt_estimator(sk, seq_rtt_us); 3099 tcp_set_rto(sk); 3100 3101 /* RFC6298: only reset backoff on valid RTT measurement. */ 3102 inet_csk(sk)->icsk_backoff = 0; 3103 return true; 3104 } 3105 3106 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3107 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3108 { 3109 struct rate_sample rs; 3110 long rtt_us = -1L; 3111 3112 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3113 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3114 3115 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3116 } 3117 3118 3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3120 { 3121 const struct inet_connection_sock *icsk = inet_csk(sk); 3122 3123 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3124 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3125 } 3126 3127 /* Restart timer after forward progress on connection. 3128 * RFC2988 recommends to restart timer to now+rto. 3129 */ 3130 void tcp_rearm_rto(struct sock *sk) 3131 { 3132 const struct inet_connection_sock *icsk = inet_csk(sk); 3133 struct tcp_sock *tp = tcp_sk(sk); 3134 3135 /* If the retrans timer is currently being used by Fast Open 3136 * for SYN-ACK retrans purpose, stay put. 3137 */ 3138 if (rcu_access_pointer(tp->fastopen_rsk)) 3139 return; 3140 3141 if (!tp->packets_out) { 3142 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3143 } else { 3144 u32 rto = inet_csk(sk)->icsk_rto; 3145 /* Offset the time elapsed after installing regular RTO */ 3146 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3147 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3148 s64 delta_us = tcp_rto_delta_us(sk); 3149 /* delta_us may not be positive if the socket is locked 3150 * when the retrans timer fires and is rescheduled. 3151 */ 3152 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3153 } 3154 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3155 TCP_RTO_MAX); 3156 } 3157 } 3158 3159 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3160 static void tcp_set_xmit_timer(struct sock *sk) 3161 { 3162 if (!tcp_schedule_loss_probe(sk, true)) 3163 tcp_rearm_rto(sk); 3164 } 3165 3166 /* If we get here, the whole TSO packet has not been acked. */ 3167 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3168 { 3169 struct tcp_sock *tp = tcp_sk(sk); 3170 u32 packets_acked; 3171 3172 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3173 3174 packets_acked = tcp_skb_pcount(skb); 3175 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3176 return 0; 3177 packets_acked -= tcp_skb_pcount(skb); 3178 3179 if (packets_acked) { 3180 BUG_ON(tcp_skb_pcount(skb) == 0); 3181 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3182 } 3183 3184 return packets_acked; 3185 } 3186 3187 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3188 const struct sk_buff *ack_skb, u32 prior_snd_una) 3189 { 3190 const struct skb_shared_info *shinfo; 3191 3192 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3193 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3194 return; 3195 3196 shinfo = skb_shinfo(skb); 3197 if (!before(shinfo->tskey, prior_snd_una) && 3198 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3199 tcp_skb_tsorted_save(skb) { 3200 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3201 } tcp_skb_tsorted_restore(skb); 3202 } 3203 } 3204 3205 /* Remove acknowledged frames from the retransmission queue. If our packet 3206 * is before the ack sequence we can discard it as it's confirmed to have 3207 * arrived at the other end. 3208 */ 3209 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3210 u32 prior_fack, u32 prior_snd_una, 3211 struct tcp_sacktag_state *sack, bool ece_ack) 3212 { 3213 const struct inet_connection_sock *icsk = inet_csk(sk); 3214 u64 first_ackt, last_ackt; 3215 struct tcp_sock *tp = tcp_sk(sk); 3216 u32 prior_sacked = tp->sacked_out; 3217 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3218 struct sk_buff *skb, *next; 3219 bool fully_acked = true; 3220 long sack_rtt_us = -1L; 3221 long seq_rtt_us = -1L; 3222 long ca_rtt_us = -1L; 3223 u32 pkts_acked = 0; 3224 u32 last_in_flight = 0; 3225 bool rtt_update; 3226 int flag = 0; 3227 3228 first_ackt = 0; 3229 3230 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3231 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3232 const u32 start_seq = scb->seq; 3233 u8 sacked = scb->sacked; 3234 u32 acked_pcount; 3235 3236 /* Determine how many packets and what bytes were acked, tso and else */ 3237 if (after(scb->end_seq, tp->snd_una)) { 3238 if (tcp_skb_pcount(skb) == 1 || 3239 !after(tp->snd_una, scb->seq)) 3240 break; 3241 3242 acked_pcount = tcp_tso_acked(sk, skb); 3243 if (!acked_pcount) 3244 break; 3245 fully_acked = false; 3246 } else { 3247 acked_pcount = tcp_skb_pcount(skb); 3248 } 3249 3250 if (unlikely(sacked & TCPCB_RETRANS)) { 3251 if (sacked & TCPCB_SACKED_RETRANS) 3252 tp->retrans_out -= acked_pcount; 3253 flag |= FLAG_RETRANS_DATA_ACKED; 3254 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3255 last_ackt = tcp_skb_timestamp_us(skb); 3256 WARN_ON_ONCE(last_ackt == 0); 3257 if (!first_ackt) 3258 first_ackt = last_ackt; 3259 3260 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3261 if (before(start_seq, reord)) 3262 reord = start_seq; 3263 if (!after(scb->end_seq, tp->high_seq)) 3264 flag |= FLAG_ORIG_SACK_ACKED; 3265 } 3266 3267 if (sacked & TCPCB_SACKED_ACKED) { 3268 tp->sacked_out -= acked_pcount; 3269 } else if (tcp_is_sack(tp)) { 3270 tcp_count_delivered(tp, acked_pcount, ece_ack); 3271 if (!tcp_skb_spurious_retrans(tp, skb)) 3272 tcp_rack_advance(tp, sacked, scb->end_seq, 3273 tcp_skb_timestamp_us(skb)); 3274 } 3275 if (sacked & TCPCB_LOST) 3276 tp->lost_out -= acked_pcount; 3277 3278 tp->packets_out -= acked_pcount; 3279 pkts_acked += acked_pcount; 3280 tcp_rate_skb_delivered(sk, skb, sack->rate); 3281 3282 /* Initial outgoing SYN's get put onto the write_queue 3283 * just like anything else we transmit. It is not 3284 * true data, and if we misinform our callers that 3285 * this ACK acks real data, we will erroneously exit 3286 * connection startup slow start one packet too 3287 * quickly. This is severely frowned upon behavior. 3288 */ 3289 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3290 flag |= FLAG_DATA_ACKED; 3291 } else { 3292 flag |= FLAG_SYN_ACKED; 3293 tp->retrans_stamp = 0; 3294 } 3295 3296 if (!fully_acked) 3297 break; 3298 3299 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3300 3301 next = skb_rb_next(skb); 3302 if (unlikely(skb == tp->retransmit_skb_hint)) 3303 tp->retransmit_skb_hint = NULL; 3304 if (unlikely(skb == tp->lost_skb_hint)) 3305 tp->lost_skb_hint = NULL; 3306 tcp_highest_sack_replace(sk, skb, next); 3307 tcp_rtx_queue_unlink_and_free(skb, sk); 3308 } 3309 3310 if (!skb) 3311 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3312 3313 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3314 tp->snd_up = tp->snd_una; 3315 3316 if (skb) { 3317 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3318 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3319 flag |= FLAG_SACK_RENEGING; 3320 } 3321 3322 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3323 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3324 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3325 3326 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3327 last_in_flight && !prior_sacked && fully_acked && 3328 sack->rate->prior_delivered + 1 == tp->delivered && 3329 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3330 /* Conservatively mark a delayed ACK. It's typically 3331 * from a lone runt packet over the round trip to 3332 * a receiver w/o out-of-order or CE events. 3333 */ 3334 flag |= FLAG_ACK_MAYBE_DELAYED; 3335 } 3336 } 3337 if (sack->first_sackt) { 3338 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3339 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3340 } 3341 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3342 ca_rtt_us, sack->rate); 3343 3344 if (flag & FLAG_ACKED) { 3345 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3346 if (unlikely(icsk->icsk_mtup.probe_size && 3347 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3348 tcp_mtup_probe_success(sk); 3349 } 3350 3351 if (tcp_is_reno(tp)) { 3352 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3353 3354 /* If any of the cumulatively ACKed segments was 3355 * retransmitted, non-SACK case cannot confirm that 3356 * progress was due to original transmission due to 3357 * lack of TCPCB_SACKED_ACKED bits even if some of 3358 * the packets may have been never retransmitted. 3359 */ 3360 if (flag & FLAG_RETRANS_DATA_ACKED) 3361 flag &= ~FLAG_ORIG_SACK_ACKED; 3362 } else { 3363 int delta; 3364 3365 /* Non-retransmitted hole got filled? That's reordering */ 3366 if (before(reord, prior_fack)) 3367 tcp_check_sack_reordering(sk, reord, 0); 3368 3369 delta = prior_sacked - tp->sacked_out; 3370 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3371 } 3372 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3373 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3374 tcp_skb_timestamp_us(skb))) { 3375 /* Do not re-arm RTO if the sack RTT is measured from data sent 3376 * after when the head was last (re)transmitted. Otherwise the 3377 * timeout may continue to extend in loss recovery. 3378 */ 3379 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3380 } 3381 3382 if (icsk->icsk_ca_ops->pkts_acked) { 3383 struct ack_sample sample = { .pkts_acked = pkts_acked, 3384 .rtt_us = sack->rate->rtt_us, 3385 .in_flight = last_in_flight }; 3386 3387 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3388 } 3389 3390 #if FASTRETRANS_DEBUG > 0 3391 WARN_ON((int)tp->sacked_out < 0); 3392 WARN_ON((int)tp->lost_out < 0); 3393 WARN_ON((int)tp->retrans_out < 0); 3394 if (!tp->packets_out && tcp_is_sack(tp)) { 3395 icsk = inet_csk(sk); 3396 if (tp->lost_out) { 3397 pr_debug("Leak l=%u %d\n", 3398 tp->lost_out, icsk->icsk_ca_state); 3399 tp->lost_out = 0; 3400 } 3401 if (tp->sacked_out) { 3402 pr_debug("Leak s=%u %d\n", 3403 tp->sacked_out, icsk->icsk_ca_state); 3404 tp->sacked_out = 0; 3405 } 3406 if (tp->retrans_out) { 3407 pr_debug("Leak r=%u %d\n", 3408 tp->retrans_out, icsk->icsk_ca_state); 3409 tp->retrans_out = 0; 3410 } 3411 } 3412 #endif 3413 return flag; 3414 } 3415 3416 static void tcp_ack_probe(struct sock *sk) 3417 { 3418 struct inet_connection_sock *icsk = inet_csk(sk); 3419 struct sk_buff *head = tcp_send_head(sk); 3420 const struct tcp_sock *tp = tcp_sk(sk); 3421 3422 /* Was it a usable window open? */ 3423 if (!head) 3424 return; 3425 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3426 icsk->icsk_backoff = 0; 3427 icsk->icsk_probes_tstamp = 0; 3428 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3429 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3430 * This function is not for random using! 3431 */ 3432 } else { 3433 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3434 3435 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3436 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3437 } 3438 } 3439 3440 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3441 { 3442 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3443 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3444 } 3445 3446 /* Decide wheather to run the increase function of congestion control. */ 3447 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3448 { 3449 /* If reordering is high then always grow cwnd whenever data is 3450 * delivered regardless of its ordering. Otherwise stay conservative 3451 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3452 * new SACK or ECE mark may first advance cwnd here and later reduce 3453 * cwnd in tcp_fastretrans_alert() based on more states. 3454 */ 3455 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3456 return flag & FLAG_FORWARD_PROGRESS; 3457 3458 return flag & FLAG_DATA_ACKED; 3459 } 3460 3461 /* The "ultimate" congestion control function that aims to replace the rigid 3462 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3463 * It's called toward the end of processing an ACK with precise rate 3464 * information. All transmission or retransmission are delayed afterwards. 3465 */ 3466 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3467 int flag, const struct rate_sample *rs) 3468 { 3469 const struct inet_connection_sock *icsk = inet_csk(sk); 3470 3471 if (icsk->icsk_ca_ops->cong_control) { 3472 icsk->icsk_ca_ops->cong_control(sk, rs); 3473 return; 3474 } 3475 3476 if (tcp_in_cwnd_reduction(sk)) { 3477 /* Reduce cwnd if state mandates */ 3478 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3479 } else if (tcp_may_raise_cwnd(sk, flag)) { 3480 /* Advance cwnd if state allows */ 3481 tcp_cong_avoid(sk, ack, acked_sacked); 3482 } 3483 tcp_update_pacing_rate(sk); 3484 } 3485 3486 /* Check that window update is acceptable. 3487 * The function assumes that snd_una<=ack<=snd_next. 3488 */ 3489 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3490 const u32 ack, const u32 ack_seq, 3491 const u32 nwin) 3492 { 3493 return after(ack, tp->snd_una) || 3494 after(ack_seq, tp->snd_wl1) || 3495 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3496 } 3497 3498 /* If we update tp->snd_una, also update tp->bytes_acked */ 3499 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3500 { 3501 u32 delta = ack - tp->snd_una; 3502 3503 sock_owned_by_me((struct sock *)tp); 3504 tp->bytes_acked += delta; 3505 tp->snd_una = ack; 3506 } 3507 3508 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3509 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3510 { 3511 u32 delta = seq - tp->rcv_nxt; 3512 3513 sock_owned_by_me((struct sock *)tp); 3514 tp->bytes_received += delta; 3515 WRITE_ONCE(tp->rcv_nxt, seq); 3516 } 3517 3518 /* Update our send window. 3519 * 3520 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3521 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3522 */ 3523 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3524 u32 ack_seq) 3525 { 3526 struct tcp_sock *tp = tcp_sk(sk); 3527 int flag = 0; 3528 u32 nwin = ntohs(tcp_hdr(skb)->window); 3529 3530 if (likely(!tcp_hdr(skb)->syn)) 3531 nwin <<= tp->rx_opt.snd_wscale; 3532 3533 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3534 flag |= FLAG_WIN_UPDATE; 3535 tcp_update_wl(tp, ack_seq); 3536 3537 if (tp->snd_wnd != nwin) { 3538 tp->snd_wnd = nwin; 3539 3540 /* Note, it is the only place, where 3541 * fast path is recovered for sending TCP. 3542 */ 3543 tp->pred_flags = 0; 3544 tcp_fast_path_check(sk); 3545 3546 if (!tcp_write_queue_empty(sk)) 3547 tcp_slow_start_after_idle_check(sk); 3548 3549 if (nwin > tp->max_window) { 3550 tp->max_window = nwin; 3551 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3552 } 3553 } 3554 } 3555 3556 tcp_snd_una_update(tp, ack); 3557 3558 return flag; 3559 } 3560 3561 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3562 u32 *last_oow_ack_time) 3563 { 3564 if (*last_oow_ack_time) { 3565 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3566 3567 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3568 NET_INC_STATS(net, mib_idx); 3569 return true; /* rate-limited: don't send yet! */ 3570 } 3571 } 3572 3573 *last_oow_ack_time = tcp_jiffies32; 3574 3575 return false; /* not rate-limited: go ahead, send dupack now! */ 3576 } 3577 3578 /* Return true if we're currently rate-limiting out-of-window ACKs and 3579 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3580 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3581 * attacks that send repeated SYNs or ACKs for the same connection. To 3582 * do this, we do not send a duplicate SYNACK or ACK if the remote 3583 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3584 */ 3585 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3586 int mib_idx, u32 *last_oow_ack_time) 3587 { 3588 /* Data packets without SYNs are not likely part of an ACK loop. */ 3589 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3590 !tcp_hdr(skb)->syn) 3591 return false; 3592 3593 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3594 } 3595 3596 /* RFC 5961 7 [ACK Throttling] */ 3597 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3598 { 3599 /* unprotected vars, we dont care of overwrites */ 3600 static u32 challenge_timestamp; 3601 static unsigned int challenge_count; 3602 struct tcp_sock *tp = tcp_sk(sk); 3603 struct net *net = sock_net(sk); 3604 u32 count, now; 3605 3606 /* First check our per-socket dupack rate limit. */ 3607 if (__tcp_oow_rate_limited(net, 3608 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3609 &tp->last_oow_ack_time)) 3610 return; 3611 3612 /* Then check host-wide RFC 5961 rate limit. */ 3613 now = jiffies / HZ; 3614 if (now != challenge_timestamp) { 3615 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3616 u32 half = (ack_limit + 1) >> 1; 3617 3618 challenge_timestamp = now; 3619 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3620 } 3621 count = READ_ONCE(challenge_count); 3622 if (count > 0) { 3623 WRITE_ONCE(challenge_count, count - 1); 3624 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3625 tcp_send_ack(sk); 3626 } 3627 } 3628 3629 static void tcp_store_ts_recent(struct tcp_sock *tp) 3630 { 3631 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3632 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3633 } 3634 3635 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3636 { 3637 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3638 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3639 * extra check below makes sure this can only happen 3640 * for pure ACK frames. -DaveM 3641 * 3642 * Not only, also it occurs for expired timestamps. 3643 */ 3644 3645 if (tcp_paws_check(&tp->rx_opt, 0)) 3646 tcp_store_ts_recent(tp); 3647 } 3648 } 3649 3650 /* This routine deals with acks during a TLP episode and ends an episode by 3651 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3652 */ 3653 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3654 { 3655 struct tcp_sock *tp = tcp_sk(sk); 3656 3657 if (before(ack, tp->tlp_high_seq)) 3658 return; 3659 3660 if (!tp->tlp_retrans) { 3661 /* TLP of new data has been acknowledged */ 3662 tp->tlp_high_seq = 0; 3663 } else if (flag & FLAG_DSACK_TLP) { 3664 /* This DSACK means original and TLP probe arrived; no loss */ 3665 tp->tlp_high_seq = 0; 3666 } else if (after(ack, tp->tlp_high_seq)) { 3667 /* ACK advances: there was a loss, so reduce cwnd. Reset 3668 * tlp_high_seq in tcp_init_cwnd_reduction() 3669 */ 3670 tcp_init_cwnd_reduction(sk); 3671 tcp_set_ca_state(sk, TCP_CA_CWR); 3672 tcp_end_cwnd_reduction(sk); 3673 tcp_try_keep_open(sk); 3674 NET_INC_STATS(sock_net(sk), 3675 LINUX_MIB_TCPLOSSPROBERECOVERY); 3676 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3677 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3678 /* Pure dupack: original and TLP probe arrived; no loss */ 3679 tp->tlp_high_seq = 0; 3680 } 3681 } 3682 3683 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3684 { 3685 const struct inet_connection_sock *icsk = inet_csk(sk); 3686 3687 if (icsk->icsk_ca_ops->in_ack_event) 3688 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3689 } 3690 3691 /* Congestion control has updated the cwnd already. So if we're in 3692 * loss recovery then now we do any new sends (for FRTO) or 3693 * retransmits (for CA_Loss or CA_recovery) that make sense. 3694 */ 3695 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3696 { 3697 struct tcp_sock *tp = tcp_sk(sk); 3698 3699 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3700 return; 3701 3702 if (unlikely(rexmit == REXMIT_NEW)) { 3703 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3704 TCP_NAGLE_OFF); 3705 if (after(tp->snd_nxt, tp->high_seq)) 3706 return; 3707 tp->frto = 0; 3708 } 3709 tcp_xmit_retransmit_queue(sk); 3710 } 3711 3712 /* Returns the number of packets newly acked or sacked by the current ACK */ 3713 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3714 { 3715 const struct net *net = sock_net(sk); 3716 struct tcp_sock *tp = tcp_sk(sk); 3717 u32 delivered; 3718 3719 delivered = tp->delivered - prior_delivered; 3720 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3721 if (flag & FLAG_ECE) 3722 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3723 3724 return delivered; 3725 } 3726 3727 /* This routine deals with incoming acks, but not outgoing ones. */ 3728 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3729 { 3730 struct inet_connection_sock *icsk = inet_csk(sk); 3731 struct tcp_sock *tp = tcp_sk(sk); 3732 struct tcp_sacktag_state sack_state; 3733 struct rate_sample rs = { .prior_delivered = 0 }; 3734 u32 prior_snd_una = tp->snd_una; 3735 bool is_sack_reneg = tp->is_sack_reneg; 3736 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3737 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3738 int num_dupack = 0; 3739 int prior_packets = tp->packets_out; 3740 u32 delivered = tp->delivered; 3741 u32 lost = tp->lost; 3742 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3743 u32 prior_fack; 3744 3745 sack_state.first_sackt = 0; 3746 sack_state.rate = &rs; 3747 sack_state.sack_delivered = 0; 3748 3749 /* We very likely will need to access rtx queue. */ 3750 prefetch(sk->tcp_rtx_queue.rb_node); 3751 3752 /* If the ack is older than previous acks 3753 * then we can probably ignore it. 3754 */ 3755 if (before(ack, prior_snd_una)) { 3756 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3757 if (before(ack, prior_snd_una - tp->max_window)) { 3758 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3759 tcp_send_challenge_ack(sk, skb); 3760 return -1; 3761 } 3762 goto old_ack; 3763 } 3764 3765 /* If the ack includes data we haven't sent yet, discard 3766 * this segment (RFC793 Section 3.9). 3767 */ 3768 if (after(ack, tp->snd_nxt)) 3769 return -1; 3770 3771 if (after(ack, prior_snd_una)) { 3772 flag |= FLAG_SND_UNA_ADVANCED; 3773 icsk->icsk_retransmits = 0; 3774 3775 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3776 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3777 if (icsk->icsk_clean_acked) 3778 icsk->icsk_clean_acked(sk, ack); 3779 #endif 3780 } 3781 3782 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3783 rs.prior_in_flight = tcp_packets_in_flight(tp); 3784 3785 /* ts_recent update must be made after we are sure that the packet 3786 * is in window. 3787 */ 3788 if (flag & FLAG_UPDATE_TS_RECENT) 3789 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3790 3791 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3792 FLAG_SND_UNA_ADVANCED) { 3793 /* Window is constant, pure forward advance. 3794 * No more checks are required. 3795 * Note, we use the fact that SND.UNA>=SND.WL2. 3796 */ 3797 tcp_update_wl(tp, ack_seq); 3798 tcp_snd_una_update(tp, ack); 3799 flag |= FLAG_WIN_UPDATE; 3800 3801 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3802 3803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3804 } else { 3805 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3806 3807 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3808 flag |= FLAG_DATA; 3809 else 3810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3811 3812 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3813 3814 if (TCP_SKB_CB(skb)->sacked) 3815 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3816 &sack_state); 3817 3818 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3819 flag |= FLAG_ECE; 3820 ack_ev_flags |= CA_ACK_ECE; 3821 } 3822 3823 if (sack_state.sack_delivered) 3824 tcp_count_delivered(tp, sack_state.sack_delivered, 3825 flag & FLAG_ECE); 3826 3827 if (flag & FLAG_WIN_UPDATE) 3828 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3829 3830 tcp_in_ack_event(sk, ack_ev_flags); 3831 } 3832 3833 /* This is a deviation from RFC3168 since it states that: 3834 * "When the TCP data sender is ready to set the CWR bit after reducing 3835 * the congestion window, it SHOULD set the CWR bit only on the first 3836 * new data packet that it transmits." 3837 * We accept CWR on pure ACKs to be more robust 3838 * with widely-deployed TCP implementations that do this. 3839 */ 3840 tcp_ecn_accept_cwr(sk, skb); 3841 3842 /* We passed data and got it acked, remove any soft error 3843 * log. Something worked... 3844 */ 3845 sk->sk_err_soft = 0; 3846 icsk->icsk_probes_out = 0; 3847 tp->rcv_tstamp = tcp_jiffies32; 3848 if (!prior_packets) 3849 goto no_queue; 3850 3851 /* See if we can take anything off of the retransmit queue. */ 3852 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3853 &sack_state, flag & FLAG_ECE); 3854 3855 tcp_rack_update_reo_wnd(sk, &rs); 3856 3857 if (tp->tlp_high_seq) 3858 tcp_process_tlp_ack(sk, ack, flag); 3859 3860 if (tcp_ack_is_dubious(sk, flag)) { 3861 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3862 num_dupack = 1; 3863 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3864 if (!(flag & FLAG_DATA)) 3865 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3866 } 3867 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3868 &rexmit); 3869 } 3870 3871 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3872 if (flag & FLAG_SET_XMIT_TIMER) 3873 tcp_set_xmit_timer(sk); 3874 3875 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3876 sk_dst_confirm(sk); 3877 3878 delivered = tcp_newly_delivered(sk, delivered, flag); 3879 lost = tp->lost - lost; /* freshly marked lost */ 3880 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3881 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3882 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3883 tcp_xmit_recovery(sk, rexmit); 3884 return 1; 3885 3886 no_queue: 3887 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3888 if (flag & FLAG_DSACKING_ACK) { 3889 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3890 &rexmit); 3891 tcp_newly_delivered(sk, delivered, flag); 3892 } 3893 /* If this ack opens up a zero window, clear backoff. It was 3894 * being used to time the probes, and is probably far higher than 3895 * it needs to be for normal retransmission. 3896 */ 3897 tcp_ack_probe(sk); 3898 3899 if (tp->tlp_high_seq) 3900 tcp_process_tlp_ack(sk, ack, flag); 3901 return 1; 3902 3903 old_ack: 3904 /* If data was SACKed, tag it and see if we should send more data. 3905 * If data was DSACKed, see if we can undo a cwnd reduction. 3906 */ 3907 if (TCP_SKB_CB(skb)->sacked) { 3908 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3909 &sack_state); 3910 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3911 &rexmit); 3912 tcp_newly_delivered(sk, delivered, flag); 3913 tcp_xmit_recovery(sk, rexmit); 3914 } 3915 3916 return 0; 3917 } 3918 3919 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3920 bool syn, struct tcp_fastopen_cookie *foc, 3921 bool exp_opt) 3922 { 3923 /* Valid only in SYN or SYN-ACK with an even length. */ 3924 if (!foc || !syn || len < 0 || (len & 1)) 3925 return; 3926 3927 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3928 len <= TCP_FASTOPEN_COOKIE_MAX) 3929 memcpy(foc->val, cookie, len); 3930 else if (len != 0) 3931 len = -1; 3932 foc->len = len; 3933 foc->exp = exp_opt; 3934 } 3935 3936 static bool smc_parse_options(const struct tcphdr *th, 3937 struct tcp_options_received *opt_rx, 3938 const unsigned char *ptr, 3939 int opsize) 3940 { 3941 #if IS_ENABLED(CONFIG_SMC) 3942 if (static_branch_unlikely(&tcp_have_smc)) { 3943 if (th->syn && !(opsize & 1) && 3944 opsize >= TCPOLEN_EXP_SMC_BASE && 3945 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3946 opt_rx->smc_ok = 1; 3947 return true; 3948 } 3949 } 3950 #endif 3951 return false; 3952 } 3953 3954 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3955 * value on success. 3956 */ 3957 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3958 { 3959 const unsigned char *ptr = (const unsigned char *)(th + 1); 3960 int length = (th->doff * 4) - sizeof(struct tcphdr); 3961 u16 mss = 0; 3962 3963 while (length > 0) { 3964 int opcode = *ptr++; 3965 int opsize; 3966 3967 switch (opcode) { 3968 case TCPOPT_EOL: 3969 return mss; 3970 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3971 length--; 3972 continue; 3973 default: 3974 if (length < 2) 3975 return mss; 3976 opsize = *ptr++; 3977 if (opsize < 2) /* "silly options" */ 3978 return mss; 3979 if (opsize > length) 3980 return mss; /* fail on partial options */ 3981 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3982 u16 in_mss = get_unaligned_be16(ptr); 3983 3984 if (in_mss) { 3985 if (user_mss && user_mss < in_mss) 3986 in_mss = user_mss; 3987 mss = in_mss; 3988 } 3989 } 3990 ptr += opsize - 2; 3991 length -= opsize; 3992 } 3993 } 3994 return mss; 3995 } 3996 3997 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3998 * But, this can also be called on packets in the established flow when 3999 * the fast version below fails. 4000 */ 4001 void tcp_parse_options(const struct net *net, 4002 const struct sk_buff *skb, 4003 struct tcp_options_received *opt_rx, int estab, 4004 struct tcp_fastopen_cookie *foc) 4005 { 4006 const unsigned char *ptr; 4007 const struct tcphdr *th = tcp_hdr(skb); 4008 int length = (th->doff * 4) - sizeof(struct tcphdr); 4009 4010 ptr = (const unsigned char *)(th + 1); 4011 opt_rx->saw_tstamp = 0; 4012 opt_rx->saw_unknown = 0; 4013 4014 while (length > 0) { 4015 int opcode = *ptr++; 4016 int opsize; 4017 4018 switch (opcode) { 4019 case TCPOPT_EOL: 4020 return; 4021 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4022 length--; 4023 continue; 4024 default: 4025 if (length < 2) 4026 return; 4027 opsize = *ptr++; 4028 if (opsize < 2) /* "silly options" */ 4029 return; 4030 if (opsize > length) 4031 return; /* don't parse partial options */ 4032 switch (opcode) { 4033 case TCPOPT_MSS: 4034 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4035 u16 in_mss = get_unaligned_be16(ptr); 4036 if (in_mss) { 4037 if (opt_rx->user_mss && 4038 opt_rx->user_mss < in_mss) 4039 in_mss = opt_rx->user_mss; 4040 opt_rx->mss_clamp = in_mss; 4041 } 4042 } 4043 break; 4044 case TCPOPT_WINDOW: 4045 if (opsize == TCPOLEN_WINDOW && th->syn && 4046 !estab && net->ipv4.sysctl_tcp_window_scaling) { 4047 __u8 snd_wscale = *(__u8 *)ptr; 4048 opt_rx->wscale_ok = 1; 4049 if (snd_wscale > TCP_MAX_WSCALE) { 4050 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4051 __func__, 4052 snd_wscale, 4053 TCP_MAX_WSCALE); 4054 snd_wscale = TCP_MAX_WSCALE; 4055 } 4056 opt_rx->snd_wscale = snd_wscale; 4057 } 4058 break; 4059 case TCPOPT_TIMESTAMP: 4060 if ((opsize == TCPOLEN_TIMESTAMP) && 4061 ((estab && opt_rx->tstamp_ok) || 4062 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 4063 opt_rx->saw_tstamp = 1; 4064 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4065 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4066 } 4067 break; 4068 case TCPOPT_SACK_PERM: 4069 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4070 !estab && net->ipv4.sysctl_tcp_sack) { 4071 opt_rx->sack_ok = TCP_SACK_SEEN; 4072 tcp_sack_reset(opt_rx); 4073 } 4074 break; 4075 4076 case TCPOPT_SACK: 4077 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4078 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4079 opt_rx->sack_ok) { 4080 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4081 } 4082 break; 4083 #ifdef CONFIG_TCP_MD5SIG 4084 case TCPOPT_MD5SIG: 4085 /* 4086 * The MD5 Hash has already been 4087 * checked (see tcp_v{4,6}_do_rcv()). 4088 */ 4089 break; 4090 #endif 4091 case TCPOPT_FASTOPEN: 4092 tcp_parse_fastopen_option( 4093 opsize - TCPOLEN_FASTOPEN_BASE, 4094 ptr, th->syn, foc, false); 4095 break; 4096 4097 case TCPOPT_EXP: 4098 /* Fast Open option shares code 254 using a 4099 * 16 bits magic number. 4100 */ 4101 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4102 get_unaligned_be16(ptr) == 4103 TCPOPT_FASTOPEN_MAGIC) { 4104 tcp_parse_fastopen_option(opsize - 4105 TCPOLEN_EXP_FASTOPEN_BASE, 4106 ptr + 2, th->syn, foc, true); 4107 break; 4108 } 4109 4110 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4111 break; 4112 4113 opt_rx->saw_unknown = 1; 4114 break; 4115 4116 default: 4117 opt_rx->saw_unknown = 1; 4118 } 4119 ptr += opsize-2; 4120 length -= opsize; 4121 } 4122 } 4123 } 4124 EXPORT_SYMBOL(tcp_parse_options); 4125 4126 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4127 { 4128 const __be32 *ptr = (const __be32 *)(th + 1); 4129 4130 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4131 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4132 tp->rx_opt.saw_tstamp = 1; 4133 ++ptr; 4134 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4135 ++ptr; 4136 if (*ptr) 4137 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4138 else 4139 tp->rx_opt.rcv_tsecr = 0; 4140 return true; 4141 } 4142 return false; 4143 } 4144 4145 /* Fast parse options. This hopes to only see timestamps. 4146 * If it is wrong it falls back on tcp_parse_options(). 4147 */ 4148 static bool tcp_fast_parse_options(const struct net *net, 4149 const struct sk_buff *skb, 4150 const struct tcphdr *th, struct tcp_sock *tp) 4151 { 4152 /* In the spirit of fast parsing, compare doff directly to constant 4153 * values. Because equality is used, short doff can be ignored here. 4154 */ 4155 if (th->doff == (sizeof(*th) / 4)) { 4156 tp->rx_opt.saw_tstamp = 0; 4157 return false; 4158 } else if (tp->rx_opt.tstamp_ok && 4159 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4160 if (tcp_parse_aligned_timestamp(tp, th)) 4161 return true; 4162 } 4163 4164 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4165 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4166 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4167 4168 return true; 4169 } 4170 4171 #ifdef CONFIG_TCP_MD5SIG 4172 /* 4173 * Parse MD5 Signature option 4174 */ 4175 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4176 { 4177 int length = (th->doff << 2) - sizeof(*th); 4178 const u8 *ptr = (const u8 *)(th + 1); 4179 4180 /* If not enough data remaining, we can short cut */ 4181 while (length >= TCPOLEN_MD5SIG) { 4182 int opcode = *ptr++; 4183 int opsize; 4184 4185 switch (opcode) { 4186 case TCPOPT_EOL: 4187 return NULL; 4188 case TCPOPT_NOP: 4189 length--; 4190 continue; 4191 default: 4192 opsize = *ptr++; 4193 if (opsize < 2 || opsize > length) 4194 return NULL; 4195 if (opcode == TCPOPT_MD5SIG) 4196 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4197 } 4198 ptr += opsize - 2; 4199 length -= opsize; 4200 } 4201 return NULL; 4202 } 4203 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4204 #endif 4205 4206 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4207 * 4208 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4209 * it can pass through stack. So, the following predicate verifies that 4210 * this segment is not used for anything but congestion avoidance or 4211 * fast retransmit. Moreover, we even are able to eliminate most of such 4212 * second order effects, if we apply some small "replay" window (~RTO) 4213 * to timestamp space. 4214 * 4215 * All these measures still do not guarantee that we reject wrapped ACKs 4216 * on networks with high bandwidth, when sequence space is recycled fastly, 4217 * but it guarantees that such events will be very rare and do not affect 4218 * connection seriously. This doesn't look nice, but alas, PAWS is really 4219 * buggy extension. 4220 * 4221 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4222 * states that events when retransmit arrives after original data are rare. 4223 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4224 * the biggest problem on large power networks even with minor reordering. 4225 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4226 * up to bandwidth of 18Gigabit/sec. 8) ] 4227 */ 4228 4229 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4230 { 4231 const struct tcp_sock *tp = tcp_sk(sk); 4232 const struct tcphdr *th = tcp_hdr(skb); 4233 u32 seq = TCP_SKB_CB(skb)->seq; 4234 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4235 4236 return (/* 1. Pure ACK with correct sequence number. */ 4237 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4238 4239 /* 2. ... and duplicate ACK. */ 4240 ack == tp->snd_una && 4241 4242 /* 3. ... and does not update window. */ 4243 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4244 4245 /* 4. ... and sits in replay window. */ 4246 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4247 } 4248 4249 static inline bool tcp_paws_discard(const struct sock *sk, 4250 const struct sk_buff *skb) 4251 { 4252 const struct tcp_sock *tp = tcp_sk(sk); 4253 4254 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4255 !tcp_disordered_ack(sk, skb); 4256 } 4257 4258 /* Check segment sequence number for validity. 4259 * 4260 * Segment controls are considered valid, if the segment 4261 * fits to the window after truncation to the window. Acceptability 4262 * of data (and SYN, FIN, of course) is checked separately. 4263 * See tcp_data_queue(), for example. 4264 * 4265 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4266 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4267 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4268 * (borrowed from freebsd) 4269 */ 4270 4271 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4272 { 4273 return !before(end_seq, tp->rcv_wup) && 4274 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4275 } 4276 4277 /* When we get a reset we do this. */ 4278 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4279 { 4280 trace_tcp_receive_reset(sk); 4281 4282 /* mptcp can't tell us to ignore reset pkts, 4283 * so just ignore the return value of mptcp_incoming_options(). 4284 */ 4285 if (sk_is_mptcp(sk)) 4286 mptcp_incoming_options(sk, skb); 4287 4288 /* We want the right error as BSD sees it (and indeed as we do). */ 4289 switch (sk->sk_state) { 4290 case TCP_SYN_SENT: 4291 sk->sk_err = ECONNREFUSED; 4292 break; 4293 case TCP_CLOSE_WAIT: 4294 sk->sk_err = EPIPE; 4295 break; 4296 case TCP_CLOSE: 4297 return; 4298 default: 4299 sk->sk_err = ECONNRESET; 4300 } 4301 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4302 smp_wmb(); 4303 4304 tcp_write_queue_purge(sk); 4305 tcp_done(sk); 4306 4307 if (!sock_flag(sk, SOCK_DEAD)) 4308 sk_error_report(sk); 4309 } 4310 4311 /* 4312 * Process the FIN bit. This now behaves as it is supposed to work 4313 * and the FIN takes effect when it is validly part of sequence 4314 * space. Not before when we get holes. 4315 * 4316 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4317 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4318 * TIME-WAIT) 4319 * 4320 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4321 * close and we go into CLOSING (and later onto TIME-WAIT) 4322 * 4323 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4324 */ 4325 void tcp_fin(struct sock *sk) 4326 { 4327 struct tcp_sock *tp = tcp_sk(sk); 4328 4329 inet_csk_schedule_ack(sk); 4330 4331 sk->sk_shutdown |= RCV_SHUTDOWN; 4332 sock_set_flag(sk, SOCK_DONE); 4333 4334 switch (sk->sk_state) { 4335 case TCP_SYN_RECV: 4336 case TCP_ESTABLISHED: 4337 /* Move to CLOSE_WAIT */ 4338 tcp_set_state(sk, TCP_CLOSE_WAIT); 4339 inet_csk_enter_pingpong_mode(sk); 4340 break; 4341 4342 case TCP_CLOSE_WAIT: 4343 case TCP_CLOSING: 4344 /* Received a retransmission of the FIN, do 4345 * nothing. 4346 */ 4347 break; 4348 case TCP_LAST_ACK: 4349 /* RFC793: Remain in the LAST-ACK state. */ 4350 break; 4351 4352 case TCP_FIN_WAIT1: 4353 /* This case occurs when a simultaneous close 4354 * happens, we must ack the received FIN and 4355 * enter the CLOSING state. 4356 */ 4357 tcp_send_ack(sk); 4358 tcp_set_state(sk, TCP_CLOSING); 4359 break; 4360 case TCP_FIN_WAIT2: 4361 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4362 tcp_send_ack(sk); 4363 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4364 break; 4365 default: 4366 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4367 * cases we should never reach this piece of code. 4368 */ 4369 pr_err("%s: Impossible, sk->sk_state=%d\n", 4370 __func__, sk->sk_state); 4371 break; 4372 } 4373 4374 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4375 * Probably, we should reset in this case. For now drop them. 4376 */ 4377 skb_rbtree_purge(&tp->out_of_order_queue); 4378 if (tcp_is_sack(tp)) 4379 tcp_sack_reset(&tp->rx_opt); 4380 sk_mem_reclaim(sk); 4381 4382 if (!sock_flag(sk, SOCK_DEAD)) { 4383 sk->sk_state_change(sk); 4384 4385 /* Do not send POLL_HUP for half duplex close. */ 4386 if (sk->sk_shutdown == SHUTDOWN_MASK || 4387 sk->sk_state == TCP_CLOSE) 4388 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4389 else 4390 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4391 } 4392 } 4393 4394 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4395 u32 end_seq) 4396 { 4397 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4398 if (before(seq, sp->start_seq)) 4399 sp->start_seq = seq; 4400 if (after(end_seq, sp->end_seq)) 4401 sp->end_seq = end_seq; 4402 return true; 4403 } 4404 return false; 4405 } 4406 4407 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4408 { 4409 struct tcp_sock *tp = tcp_sk(sk); 4410 4411 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4412 int mib_idx; 4413 4414 if (before(seq, tp->rcv_nxt)) 4415 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4416 else 4417 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4418 4419 NET_INC_STATS(sock_net(sk), mib_idx); 4420 4421 tp->rx_opt.dsack = 1; 4422 tp->duplicate_sack[0].start_seq = seq; 4423 tp->duplicate_sack[0].end_seq = end_seq; 4424 } 4425 } 4426 4427 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4428 { 4429 struct tcp_sock *tp = tcp_sk(sk); 4430 4431 if (!tp->rx_opt.dsack) 4432 tcp_dsack_set(sk, seq, end_seq); 4433 else 4434 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4435 } 4436 4437 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4438 { 4439 /* When the ACK path fails or drops most ACKs, the sender would 4440 * timeout and spuriously retransmit the same segment repeatedly. 4441 * The receiver remembers and reflects via DSACKs. Leverage the 4442 * DSACK state and change the txhash to re-route speculatively. 4443 */ 4444 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4445 sk_rethink_txhash(sk)) 4446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4447 } 4448 4449 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4450 { 4451 struct tcp_sock *tp = tcp_sk(sk); 4452 4453 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4454 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4455 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4456 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4457 4458 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4459 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4460 4461 tcp_rcv_spurious_retrans(sk, skb); 4462 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4463 end_seq = tp->rcv_nxt; 4464 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4465 } 4466 } 4467 4468 tcp_send_ack(sk); 4469 } 4470 4471 /* These routines update the SACK block as out-of-order packets arrive or 4472 * in-order packets close up the sequence space. 4473 */ 4474 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4475 { 4476 int this_sack; 4477 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4478 struct tcp_sack_block *swalk = sp + 1; 4479 4480 /* See if the recent change to the first SACK eats into 4481 * or hits the sequence space of other SACK blocks, if so coalesce. 4482 */ 4483 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4484 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4485 int i; 4486 4487 /* Zap SWALK, by moving every further SACK up by one slot. 4488 * Decrease num_sacks. 4489 */ 4490 tp->rx_opt.num_sacks--; 4491 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4492 sp[i] = sp[i + 1]; 4493 continue; 4494 } 4495 this_sack++; 4496 swalk++; 4497 } 4498 } 4499 4500 static void tcp_sack_compress_send_ack(struct sock *sk) 4501 { 4502 struct tcp_sock *tp = tcp_sk(sk); 4503 4504 if (!tp->compressed_ack) 4505 return; 4506 4507 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4508 __sock_put(sk); 4509 4510 /* Since we have to send one ack finally, 4511 * substract one from tp->compressed_ack to keep 4512 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4513 */ 4514 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4515 tp->compressed_ack - 1); 4516 4517 tp->compressed_ack = 0; 4518 tcp_send_ack(sk); 4519 } 4520 4521 /* Reasonable amount of sack blocks included in TCP SACK option 4522 * The max is 4, but this becomes 3 if TCP timestamps are there. 4523 * Given that SACK packets might be lost, be conservative and use 2. 4524 */ 4525 #define TCP_SACK_BLOCKS_EXPECTED 2 4526 4527 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4528 { 4529 struct tcp_sock *tp = tcp_sk(sk); 4530 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4531 int cur_sacks = tp->rx_opt.num_sacks; 4532 int this_sack; 4533 4534 if (!cur_sacks) 4535 goto new_sack; 4536 4537 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4538 if (tcp_sack_extend(sp, seq, end_seq)) { 4539 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4540 tcp_sack_compress_send_ack(sk); 4541 /* Rotate this_sack to the first one. */ 4542 for (; this_sack > 0; this_sack--, sp--) 4543 swap(*sp, *(sp - 1)); 4544 if (cur_sacks > 1) 4545 tcp_sack_maybe_coalesce(tp); 4546 return; 4547 } 4548 } 4549 4550 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4551 tcp_sack_compress_send_ack(sk); 4552 4553 /* Could not find an adjacent existing SACK, build a new one, 4554 * put it at the front, and shift everyone else down. We 4555 * always know there is at least one SACK present already here. 4556 * 4557 * If the sack array is full, forget about the last one. 4558 */ 4559 if (this_sack >= TCP_NUM_SACKS) { 4560 this_sack--; 4561 tp->rx_opt.num_sacks--; 4562 sp--; 4563 } 4564 for (; this_sack > 0; this_sack--, sp--) 4565 *sp = *(sp - 1); 4566 4567 new_sack: 4568 /* Build the new head SACK, and we're done. */ 4569 sp->start_seq = seq; 4570 sp->end_seq = end_seq; 4571 tp->rx_opt.num_sacks++; 4572 } 4573 4574 /* RCV.NXT advances, some SACKs should be eaten. */ 4575 4576 static void tcp_sack_remove(struct tcp_sock *tp) 4577 { 4578 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4579 int num_sacks = tp->rx_opt.num_sacks; 4580 int this_sack; 4581 4582 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4583 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4584 tp->rx_opt.num_sacks = 0; 4585 return; 4586 } 4587 4588 for (this_sack = 0; this_sack < num_sacks;) { 4589 /* Check if the start of the sack is covered by RCV.NXT. */ 4590 if (!before(tp->rcv_nxt, sp->start_seq)) { 4591 int i; 4592 4593 /* RCV.NXT must cover all the block! */ 4594 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4595 4596 /* Zap this SACK, by moving forward any other SACKS. */ 4597 for (i = this_sack+1; i < num_sacks; i++) 4598 tp->selective_acks[i-1] = tp->selective_acks[i]; 4599 num_sacks--; 4600 continue; 4601 } 4602 this_sack++; 4603 sp++; 4604 } 4605 tp->rx_opt.num_sacks = num_sacks; 4606 } 4607 4608 /** 4609 * tcp_try_coalesce - try to merge skb to prior one 4610 * @sk: socket 4611 * @to: prior buffer 4612 * @from: buffer to add in queue 4613 * @fragstolen: pointer to boolean 4614 * 4615 * Before queueing skb @from after @to, try to merge them 4616 * to reduce overall memory use and queue lengths, if cost is small. 4617 * Packets in ofo or receive queues can stay a long time. 4618 * Better try to coalesce them right now to avoid future collapses. 4619 * Returns true if caller should free @from instead of queueing it 4620 */ 4621 static bool tcp_try_coalesce(struct sock *sk, 4622 struct sk_buff *to, 4623 struct sk_buff *from, 4624 bool *fragstolen) 4625 { 4626 int delta; 4627 4628 *fragstolen = false; 4629 4630 /* Its possible this segment overlaps with prior segment in queue */ 4631 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4632 return false; 4633 4634 if (!mptcp_skb_can_collapse(to, from)) 4635 return false; 4636 4637 #ifdef CONFIG_TLS_DEVICE 4638 if (from->decrypted != to->decrypted) 4639 return false; 4640 #endif 4641 4642 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4643 return false; 4644 4645 atomic_add(delta, &sk->sk_rmem_alloc); 4646 sk_mem_charge(sk, delta); 4647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4648 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4649 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4650 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4651 4652 if (TCP_SKB_CB(from)->has_rxtstamp) { 4653 TCP_SKB_CB(to)->has_rxtstamp = true; 4654 to->tstamp = from->tstamp; 4655 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4656 } 4657 4658 return true; 4659 } 4660 4661 static bool tcp_ooo_try_coalesce(struct sock *sk, 4662 struct sk_buff *to, 4663 struct sk_buff *from, 4664 bool *fragstolen) 4665 { 4666 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4667 4668 /* In case tcp_drop() is called later, update to->gso_segs */ 4669 if (res) { 4670 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4671 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4672 4673 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4674 } 4675 return res; 4676 } 4677 4678 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4679 { 4680 sk_drops_add(sk, skb); 4681 __kfree_skb(skb); 4682 } 4683 4684 /* This one checks to see if we can put data from the 4685 * out_of_order queue into the receive_queue. 4686 */ 4687 static void tcp_ofo_queue(struct sock *sk) 4688 { 4689 struct tcp_sock *tp = tcp_sk(sk); 4690 __u32 dsack_high = tp->rcv_nxt; 4691 bool fin, fragstolen, eaten; 4692 struct sk_buff *skb, *tail; 4693 struct rb_node *p; 4694 4695 p = rb_first(&tp->out_of_order_queue); 4696 while (p) { 4697 skb = rb_to_skb(p); 4698 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4699 break; 4700 4701 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4702 __u32 dsack = dsack_high; 4703 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4704 dsack_high = TCP_SKB_CB(skb)->end_seq; 4705 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4706 } 4707 p = rb_next(p); 4708 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4709 4710 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4711 tcp_drop(sk, skb); 4712 continue; 4713 } 4714 4715 tail = skb_peek_tail(&sk->sk_receive_queue); 4716 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4717 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4718 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4719 if (!eaten) 4720 __skb_queue_tail(&sk->sk_receive_queue, skb); 4721 else 4722 kfree_skb_partial(skb, fragstolen); 4723 4724 if (unlikely(fin)) { 4725 tcp_fin(sk); 4726 /* tcp_fin() purges tp->out_of_order_queue, 4727 * so we must end this loop right now. 4728 */ 4729 break; 4730 } 4731 } 4732 } 4733 4734 static bool tcp_prune_ofo_queue(struct sock *sk); 4735 static int tcp_prune_queue(struct sock *sk); 4736 4737 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4738 unsigned int size) 4739 { 4740 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4741 !sk_rmem_schedule(sk, skb, size)) { 4742 4743 if (tcp_prune_queue(sk) < 0) 4744 return -1; 4745 4746 while (!sk_rmem_schedule(sk, skb, size)) { 4747 if (!tcp_prune_ofo_queue(sk)) 4748 return -1; 4749 } 4750 } 4751 return 0; 4752 } 4753 4754 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4755 { 4756 struct tcp_sock *tp = tcp_sk(sk); 4757 struct rb_node **p, *parent; 4758 struct sk_buff *skb1; 4759 u32 seq, end_seq; 4760 bool fragstolen; 4761 4762 tcp_ecn_check_ce(sk, skb); 4763 4764 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4766 sk->sk_data_ready(sk); 4767 tcp_drop(sk, skb); 4768 return; 4769 } 4770 4771 /* Disable header prediction. */ 4772 tp->pred_flags = 0; 4773 inet_csk_schedule_ack(sk); 4774 4775 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4777 seq = TCP_SKB_CB(skb)->seq; 4778 end_seq = TCP_SKB_CB(skb)->end_seq; 4779 4780 p = &tp->out_of_order_queue.rb_node; 4781 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4782 /* Initial out of order segment, build 1 SACK. */ 4783 if (tcp_is_sack(tp)) { 4784 tp->rx_opt.num_sacks = 1; 4785 tp->selective_acks[0].start_seq = seq; 4786 tp->selective_acks[0].end_seq = end_seq; 4787 } 4788 rb_link_node(&skb->rbnode, NULL, p); 4789 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4790 tp->ooo_last_skb = skb; 4791 goto end; 4792 } 4793 4794 /* In the typical case, we are adding an skb to the end of the list. 4795 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4796 */ 4797 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4798 skb, &fragstolen)) { 4799 coalesce_done: 4800 /* For non sack flows, do not grow window to force DUPACK 4801 * and trigger fast retransmit. 4802 */ 4803 if (tcp_is_sack(tp)) 4804 tcp_grow_window(sk, skb, true); 4805 kfree_skb_partial(skb, fragstolen); 4806 skb = NULL; 4807 goto add_sack; 4808 } 4809 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4810 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4811 parent = &tp->ooo_last_skb->rbnode; 4812 p = &parent->rb_right; 4813 goto insert; 4814 } 4815 4816 /* Find place to insert this segment. Handle overlaps on the way. */ 4817 parent = NULL; 4818 while (*p) { 4819 parent = *p; 4820 skb1 = rb_to_skb(parent); 4821 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4822 p = &parent->rb_left; 4823 continue; 4824 } 4825 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4826 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4827 /* All the bits are present. Drop. */ 4828 NET_INC_STATS(sock_net(sk), 4829 LINUX_MIB_TCPOFOMERGE); 4830 tcp_drop(sk, skb); 4831 skb = NULL; 4832 tcp_dsack_set(sk, seq, end_seq); 4833 goto add_sack; 4834 } 4835 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4836 /* Partial overlap. */ 4837 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4838 } else { 4839 /* skb's seq == skb1's seq and skb covers skb1. 4840 * Replace skb1 with skb. 4841 */ 4842 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4843 &tp->out_of_order_queue); 4844 tcp_dsack_extend(sk, 4845 TCP_SKB_CB(skb1)->seq, 4846 TCP_SKB_CB(skb1)->end_seq); 4847 NET_INC_STATS(sock_net(sk), 4848 LINUX_MIB_TCPOFOMERGE); 4849 tcp_drop(sk, skb1); 4850 goto merge_right; 4851 } 4852 } else if (tcp_ooo_try_coalesce(sk, skb1, 4853 skb, &fragstolen)) { 4854 goto coalesce_done; 4855 } 4856 p = &parent->rb_right; 4857 } 4858 insert: 4859 /* Insert segment into RB tree. */ 4860 rb_link_node(&skb->rbnode, parent, p); 4861 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4862 4863 merge_right: 4864 /* Remove other segments covered by skb. */ 4865 while ((skb1 = skb_rb_next(skb)) != NULL) { 4866 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4867 break; 4868 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4869 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4870 end_seq); 4871 break; 4872 } 4873 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4874 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4875 TCP_SKB_CB(skb1)->end_seq); 4876 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4877 tcp_drop(sk, skb1); 4878 } 4879 /* If there is no skb after us, we are the last_skb ! */ 4880 if (!skb1) 4881 tp->ooo_last_skb = skb; 4882 4883 add_sack: 4884 if (tcp_is_sack(tp)) 4885 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4886 end: 4887 if (skb) { 4888 /* For non sack flows, do not grow window to force DUPACK 4889 * and trigger fast retransmit. 4890 */ 4891 if (tcp_is_sack(tp)) 4892 tcp_grow_window(sk, skb, false); 4893 skb_condense(skb); 4894 skb_set_owner_r(skb, sk); 4895 } 4896 } 4897 4898 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4899 bool *fragstolen) 4900 { 4901 int eaten; 4902 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4903 4904 eaten = (tail && 4905 tcp_try_coalesce(sk, tail, 4906 skb, fragstolen)) ? 1 : 0; 4907 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4908 if (!eaten) { 4909 __skb_queue_tail(&sk->sk_receive_queue, skb); 4910 skb_set_owner_r(skb, sk); 4911 } 4912 return eaten; 4913 } 4914 4915 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4916 { 4917 struct sk_buff *skb; 4918 int err = -ENOMEM; 4919 int data_len = 0; 4920 bool fragstolen; 4921 4922 if (size == 0) 4923 return 0; 4924 4925 if (size > PAGE_SIZE) { 4926 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4927 4928 data_len = npages << PAGE_SHIFT; 4929 size = data_len + (size & ~PAGE_MASK); 4930 } 4931 skb = alloc_skb_with_frags(size - data_len, data_len, 4932 PAGE_ALLOC_COSTLY_ORDER, 4933 &err, sk->sk_allocation); 4934 if (!skb) 4935 goto err; 4936 4937 skb_put(skb, size - data_len); 4938 skb->data_len = data_len; 4939 skb->len = size; 4940 4941 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4943 goto err_free; 4944 } 4945 4946 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4947 if (err) 4948 goto err_free; 4949 4950 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4951 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4952 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4953 4954 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4955 WARN_ON_ONCE(fragstolen); /* should not happen */ 4956 __kfree_skb(skb); 4957 } 4958 return size; 4959 4960 err_free: 4961 kfree_skb(skb); 4962 err: 4963 return err; 4964 4965 } 4966 4967 void tcp_data_ready(struct sock *sk) 4968 { 4969 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 4970 sk->sk_data_ready(sk); 4971 } 4972 4973 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4974 { 4975 struct tcp_sock *tp = tcp_sk(sk); 4976 bool fragstolen; 4977 int eaten; 4978 4979 /* If a subflow has been reset, the packet should not continue 4980 * to be processed, drop the packet. 4981 */ 4982 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 4983 __kfree_skb(skb); 4984 return; 4985 } 4986 4987 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4988 __kfree_skb(skb); 4989 return; 4990 } 4991 skb_dst_drop(skb); 4992 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4993 4994 tp->rx_opt.dsack = 0; 4995 4996 /* Queue data for delivery to the user. 4997 * Packets in sequence go to the receive queue. 4998 * Out of sequence packets to the out_of_order_queue. 4999 */ 5000 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5001 if (tcp_receive_window(tp) == 0) { 5002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5003 goto out_of_window; 5004 } 5005 5006 /* Ok. In sequence. In window. */ 5007 queue_and_out: 5008 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5009 sk_forced_mem_schedule(sk, skb->truesize); 5010 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5011 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5012 sk->sk_data_ready(sk); 5013 goto drop; 5014 } 5015 5016 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5017 if (skb->len) 5018 tcp_event_data_recv(sk, skb); 5019 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5020 tcp_fin(sk); 5021 5022 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5023 tcp_ofo_queue(sk); 5024 5025 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5026 * gap in queue is filled. 5027 */ 5028 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5029 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5030 } 5031 5032 if (tp->rx_opt.num_sacks) 5033 tcp_sack_remove(tp); 5034 5035 tcp_fast_path_check(sk); 5036 5037 if (eaten > 0) 5038 kfree_skb_partial(skb, fragstolen); 5039 if (!sock_flag(sk, SOCK_DEAD)) 5040 tcp_data_ready(sk); 5041 return; 5042 } 5043 5044 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5045 tcp_rcv_spurious_retrans(sk, skb); 5046 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5047 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5048 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5049 5050 out_of_window: 5051 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5052 inet_csk_schedule_ack(sk); 5053 drop: 5054 tcp_drop(sk, skb); 5055 return; 5056 } 5057 5058 /* Out of window. F.e. zero window probe. */ 5059 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 5060 goto out_of_window; 5061 5062 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5063 /* Partial packet, seq < rcv_next < end_seq */ 5064 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5065 5066 /* If window is closed, drop tail of packet. But after 5067 * remembering D-SACK for its head made in previous line. 5068 */ 5069 if (!tcp_receive_window(tp)) { 5070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5071 goto out_of_window; 5072 } 5073 goto queue_and_out; 5074 } 5075 5076 tcp_data_queue_ofo(sk, skb); 5077 } 5078 5079 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5080 { 5081 if (list) 5082 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5083 5084 return skb_rb_next(skb); 5085 } 5086 5087 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5088 struct sk_buff_head *list, 5089 struct rb_root *root) 5090 { 5091 struct sk_buff *next = tcp_skb_next(skb, list); 5092 5093 if (list) 5094 __skb_unlink(skb, list); 5095 else 5096 rb_erase(&skb->rbnode, root); 5097 5098 __kfree_skb(skb); 5099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5100 5101 return next; 5102 } 5103 5104 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5105 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5106 { 5107 struct rb_node **p = &root->rb_node; 5108 struct rb_node *parent = NULL; 5109 struct sk_buff *skb1; 5110 5111 while (*p) { 5112 parent = *p; 5113 skb1 = rb_to_skb(parent); 5114 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5115 p = &parent->rb_left; 5116 else 5117 p = &parent->rb_right; 5118 } 5119 rb_link_node(&skb->rbnode, parent, p); 5120 rb_insert_color(&skb->rbnode, root); 5121 } 5122 5123 /* Collapse contiguous sequence of skbs head..tail with 5124 * sequence numbers start..end. 5125 * 5126 * If tail is NULL, this means until the end of the queue. 5127 * 5128 * Segments with FIN/SYN are not collapsed (only because this 5129 * simplifies code) 5130 */ 5131 static void 5132 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5133 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5134 { 5135 struct sk_buff *skb = head, *n; 5136 struct sk_buff_head tmp; 5137 bool end_of_skbs; 5138 5139 /* First, check that queue is collapsible and find 5140 * the point where collapsing can be useful. 5141 */ 5142 restart: 5143 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5144 n = tcp_skb_next(skb, list); 5145 5146 /* No new bits? It is possible on ofo queue. */ 5147 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5148 skb = tcp_collapse_one(sk, skb, list, root); 5149 if (!skb) 5150 break; 5151 goto restart; 5152 } 5153 5154 /* The first skb to collapse is: 5155 * - not SYN/FIN and 5156 * - bloated or contains data before "start" or 5157 * overlaps to the next one and mptcp allow collapsing. 5158 */ 5159 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5160 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5161 before(TCP_SKB_CB(skb)->seq, start))) { 5162 end_of_skbs = false; 5163 break; 5164 } 5165 5166 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5167 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5168 end_of_skbs = false; 5169 break; 5170 } 5171 5172 /* Decided to skip this, advance start seq. */ 5173 start = TCP_SKB_CB(skb)->end_seq; 5174 } 5175 if (end_of_skbs || 5176 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5177 return; 5178 5179 __skb_queue_head_init(&tmp); 5180 5181 while (before(start, end)) { 5182 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5183 struct sk_buff *nskb; 5184 5185 nskb = alloc_skb(copy, GFP_ATOMIC); 5186 if (!nskb) 5187 break; 5188 5189 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5190 #ifdef CONFIG_TLS_DEVICE 5191 nskb->decrypted = skb->decrypted; 5192 #endif 5193 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5194 if (list) 5195 __skb_queue_before(list, skb, nskb); 5196 else 5197 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5198 skb_set_owner_r(nskb, sk); 5199 mptcp_skb_ext_move(nskb, skb); 5200 5201 /* Copy data, releasing collapsed skbs. */ 5202 while (copy > 0) { 5203 int offset = start - TCP_SKB_CB(skb)->seq; 5204 int size = TCP_SKB_CB(skb)->end_seq - start; 5205 5206 BUG_ON(offset < 0); 5207 if (size > 0) { 5208 size = min(copy, size); 5209 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5210 BUG(); 5211 TCP_SKB_CB(nskb)->end_seq += size; 5212 copy -= size; 5213 start += size; 5214 } 5215 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5216 skb = tcp_collapse_one(sk, skb, list, root); 5217 if (!skb || 5218 skb == tail || 5219 !mptcp_skb_can_collapse(nskb, skb) || 5220 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5221 goto end; 5222 #ifdef CONFIG_TLS_DEVICE 5223 if (skb->decrypted != nskb->decrypted) 5224 goto end; 5225 #endif 5226 } 5227 } 5228 } 5229 end: 5230 skb_queue_walk_safe(&tmp, skb, n) 5231 tcp_rbtree_insert(root, skb); 5232 } 5233 5234 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5235 * and tcp_collapse() them until all the queue is collapsed. 5236 */ 5237 static void tcp_collapse_ofo_queue(struct sock *sk) 5238 { 5239 struct tcp_sock *tp = tcp_sk(sk); 5240 u32 range_truesize, sum_tiny = 0; 5241 struct sk_buff *skb, *head; 5242 u32 start, end; 5243 5244 skb = skb_rb_first(&tp->out_of_order_queue); 5245 new_range: 5246 if (!skb) { 5247 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5248 return; 5249 } 5250 start = TCP_SKB_CB(skb)->seq; 5251 end = TCP_SKB_CB(skb)->end_seq; 5252 range_truesize = skb->truesize; 5253 5254 for (head = skb;;) { 5255 skb = skb_rb_next(skb); 5256 5257 /* Range is terminated when we see a gap or when 5258 * we are at the queue end. 5259 */ 5260 if (!skb || 5261 after(TCP_SKB_CB(skb)->seq, end) || 5262 before(TCP_SKB_CB(skb)->end_seq, start)) { 5263 /* Do not attempt collapsing tiny skbs */ 5264 if (range_truesize != head->truesize || 5265 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5266 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5267 head, skb, start, end); 5268 } else { 5269 sum_tiny += range_truesize; 5270 if (sum_tiny > sk->sk_rcvbuf >> 3) 5271 return; 5272 } 5273 goto new_range; 5274 } 5275 5276 range_truesize += skb->truesize; 5277 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5278 start = TCP_SKB_CB(skb)->seq; 5279 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5280 end = TCP_SKB_CB(skb)->end_seq; 5281 } 5282 } 5283 5284 /* 5285 * Clean the out-of-order queue to make room. 5286 * We drop high sequences packets to : 5287 * 1) Let a chance for holes to be filled. 5288 * 2) not add too big latencies if thousands of packets sit there. 5289 * (But if application shrinks SO_RCVBUF, we could still end up 5290 * freeing whole queue here) 5291 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5292 * 5293 * Return true if queue has shrunk. 5294 */ 5295 static bool tcp_prune_ofo_queue(struct sock *sk) 5296 { 5297 struct tcp_sock *tp = tcp_sk(sk); 5298 struct rb_node *node, *prev; 5299 int goal; 5300 5301 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5302 return false; 5303 5304 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5305 goal = sk->sk_rcvbuf >> 3; 5306 node = &tp->ooo_last_skb->rbnode; 5307 do { 5308 prev = rb_prev(node); 5309 rb_erase(node, &tp->out_of_order_queue); 5310 goal -= rb_to_skb(node)->truesize; 5311 tcp_drop(sk, rb_to_skb(node)); 5312 if (!prev || goal <= 0) { 5313 sk_mem_reclaim(sk); 5314 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5315 !tcp_under_memory_pressure(sk)) 5316 break; 5317 goal = sk->sk_rcvbuf >> 3; 5318 } 5319 node = prev; 5320 } while (node); 5321 tp->ooo_last_skb = rb_to_skb(prev); 5322 5323 /* Reset SACK state. A conforming SACK implementation will 5324 * do the same at a timeout based retransmit. When a connection 5325 * is in a sad state like this, we care only about integrity 5326 * of the connection not performance. 5327 */ 5328 if (tp->rx_opt.sack_ok) 5329 tcp_sack_reset(&tp->rx_opt); 5330 return true; 5331 } 5332 5333 /* Reduce allocated memory if we can, trying to get 5334 * the socket within its memory limits again. 5335 * 5336 * Return less than zero if we should start dropping frames 5337 * until the socket owning process reads some of the data 5338 * to stabilize the situation. 5339 */ 5340 static int tcp_prune_queue(struct sock *sk) 5341 { 5342 struct tcp_sock *tp = tcp_sk(sk); 5343 5344 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5345 5346 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5347 tcp_clamp_window(sk); 5348 else if (tcp_under_memory_pressure(sk)) 5349 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5350 5351 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5352 return 0; 5353 5354 tcp_collapse_ofo_queue(sk); 5355 if (!skb_queue_empty(&sk->sk_receive_queue)) 5356 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5357 skb_peek(&sk->sk_receive_queue), 5358 NULL, 5359 tp->copied_seq, tp->rcv_nxt); 5360 sk_mem_reclaim(sk); 5361 5362 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5363 return 0; 5364 5365 /* Collapsing did not help, destructive actions follow. 5366 * This must not ever occur. */ 5367 5368 tcp_prune_ofo_queue(sk); 5369 5370 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5371 return 0; 5372 5373 /* If we are really being abused, tell the caller to silently 5374 * drop receive data on the floor. It will get retransmitted 5375 * and hopefully then we'll have sufficient space. 5376 */ 5377 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5378 5379 /* Massive buffer overcommit. */ 5380 tp->pred_flags = 0; 5381 return -1; 5382 } 5383 5384 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5385 { 5386 const struct tcp_sock *tp = tcp_sk(sk); 5387 5388 /* If the user specified a specific send buffer setting, do 5389 * not modify it. 5390 */ 5391 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5392 return false; 5393 5394 /* If we are under global TCP memory pressure, do not expand. */ 5395 if (tcp_under_memory_pressure(sk)) 5396 return false; 5397 5398 /* If we are under soft global TCP memory pressure, do not expand. */ 5399 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5400 return false; 5401 5402 /* If we filled the congestion window, do not expand. */ 5403 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5404 return false; 5405 5406 return true; 5407 } 5408 5409 static void tcp_new_space(struct sock *sk) 5410 { 5411 struct tcp_sock *tp = tcp_sk(sk); 5412 5413 if (tcp_should_expand_sndbuf(sk)) { 5414 tcp_sndbuf_expand(sk); 5415 tp->snd_cwnd_stamp = tcp_jiffies32; 5416 } 5417 5418 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5419 } 5420 5421 static void tcp_check_space(struct sock *sk) 5422 { 5423 /* pairs with tcp_poll() */ 5424 smp_mb(); 5425 if (sk->sk_socket && 5426 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5427 tcp_new_space(sk); 5428 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5429 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5430 } 5431 } 5432 5433 static inline void tcp_data_snd_check(struct sock *sk) 5434 { 5435 tcp_push_pending_frames(sk); 5436 tcp_check_space(sk); 5437 } 5438 5439 /* 5440 * Check if sending an ack is needed. 5441 */ 5442 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5443 { 5444 struct tcp_sock *tp = tcp_sk(sk); 5445 unsigned long rtt, delay; 5446 5447 /* More than one full frame received... */ 5448 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5449 /* ... and right edge of window advances far enough. 5450 * (tcp_recvmsg() will send ACK otherwise). 5451 * If application uses SO_RCVLOWAT, we want send ack now if 5452 * we have not received enough bytes to satisfy the condition. 5453 */ 5454 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5455 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5456 /* We ACK each frame or... */ 5457 tcp_in_quickack_mode(sk) || 5458 /* Protocol state mandates a one-time immediate ACK */ 5459 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5460 send_now: 5461 tcp_send_ack(sk); 5462 return; 5463 } 5464 5465 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5466 tcp_send_delayed_ack(sk); 5467 return; 5468 } 5469 5470 if (!tcp_is_sack(tp) || 5471 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5472 goto send_now; 5473 5474 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5475 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5476 tp->dup_ack_counter = 0; 5477 } 5478 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5479 tp->dup_ack_counter++; 5480 goto send_now; 5481 } 5482 tp->compressed_ack++; 5483 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5484 return; 5485 5486 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5487 5488 rtt = tp->rcv_rtt_est.rtt_us; 5489 if (tp->srtt_us && tp->srtt_us < rtt) 5490 rtt = tp->srtt_us; 5491 5492 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5493 rtt * (NSEC_PER_USEC >> 3)/20); 5494 sock_hold(sk); 5495 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5496 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5497 HRTIMER_MODE_REL_PINNED_SOFT); 5498 } 5499 5500 static inline void tcp_ack_snd_check(struct sock *sk) 5501 { 5502 if (!inet_csk_ack_scheduled(sk)) { 5503 /* We sent a data segment already. */ 5504 return; 5505 } 5506 __tcp_ack_snd_check(sk, 1); 5507 } 5508 5509 /* 5510 * This routine is only called when we have urgent data 5511 * signaled. Its the 'slow' part of tcp_urg. It could be 5512 * moved inline now as tcp_urg is only called from one 5513 * place. We handle URGent data wrong. We have to - as 5514 * BSD still doesn't use the correction from RFC961. 5515 * For 1003.1g we should support a new option TCP_STDURG to permit 5516 * either form (or just set the sysctl tcp_stdurg). 5517 */ 5518 5519 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5520 { 5521 struct tcp_sock *tp = tcp_sk(sk); 5522 u32 ptr = ntohs(th->urg_ptr); 5523 5524 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5525 ptr--; 5526 ptr += ntohl(th->seq); 5527 5528 /* Ignore urgent data that we've already seen and read. */ 5529 if (after(tp->copied_seq, ptr)) 5530 return; 5531 5532 /* Do not replay urg ptr. 5533 * 5534 * NOTE: interesting situation not covered by specs. 5535 * Misbehaving sender may send urg ptr, pointing to segment, 5536 * which we already have in ofo queue. We are not able to fetch 5537 * such data and will stay in TCP_URG_NOTYET until will be eaten 5538 * by recvmsg(). Seems, we are not obliged to handle such wicked 5539 * situations. But it is worth to think about possibility of some 5540 * DoSes using some hypothetical application level deadlock. 5541 */ 5542 if (before(ptr, tp->rcv_nxt)) 5543 return; 5544 5545 /* Do we already have a newer (or duplicate) urgent pointer? */ 5546 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5547 return; 5548 5549 /* Tell the world about our new urgent pointer. */ 5550 sk_send_sigurg(sk); 5551 5552 /* We may be adding urgent data when the last byte read was 5553 * urgent. To do this requires some care. We cannot just ignore 5554 * tp->copied_seq since we would read the last urgent byte again 5555 * as data, nor can we alter copied_seq until this data arrives 5556 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5557 * 5558 * NOTE. Double Dutch. Rendering to plain English: author of comment 5559 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5560 * and expect that both A and B disappear from stream. This is _wrong_. 5561 * Though this happens in BSD with high probability, this is occasional. 5562 * Any application relying on this is buggy. Note also, that fix "works" 5563 * only in this artificial test. Insert some normal data between A and B and we will 5564 * decline of BSD again. Verdict: it is better to remove to trap 5565 * buggy users. 5566 */ 5567 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5568 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5569 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5570 tp->copied_seq++; 5571 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5572 __skb_unlink(skb, &sk->sk_receive_queue); 5573 __kfree_skb(skb); 5574 } 5575 } 5576 5577 tp->urg_data = TCP_URG_NOTYET; 5578 WRITE_ONCE(tp->urg_seq, ptr); 5579 5580 /* Disable header prediction. */ 5581 tp->pred_flags = 0; 5582 } 5583 5584 /* This is the 'fast' part of urgent handling. */ 5585 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5586 { 5587 struct tcp_sock *tp = tcp_sk(sk); 5588 5589 /* Check if we get a new urgent pointer - normally not. */ 5590 if (th->urg) 5591 tcp_check_urg(sk, th); 5592 5593 /* Do we wait for any urgent data? - normally not... */ 5594 if (tp->urg_data == TCP_URG_NOTYET) { 5595 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5596 th->syn; 5597 5598 /* Is the urgent pointer pointing into this packet? */ 5599 if (ptr < skb->len) { 5600 u8 tmp; 5601 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5602 BUG(); 5603 tp->urg_data = TCP_URG_VALID | tmp; 5604 if (!sock_flag(sk, SOCK_DEAD)) 5605 sk->sk_data_ready(sk); 5606 } 5607 } 5608 } 5609 5610 /* Accept RST for rcv_nxt - 1 after a FIN. 5611 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5612 * FIN is sent followed by a RST packet. The RST is sent with the same 5613 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5614 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5615 * ACKs on the closed socket. In addition middleboxes can drop either the 5616 * challenge ACK or a subsequent RST. 5617 */ 5618 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5619 { 5620 struct tcp_sock *tp = tcp_sk(sk); 5621 5622 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5623 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5624 TCPF_CLOSING)); 5625 } 5626 5627 /* Does PAWS and seqno based validation of an incoming segment, flags will 5628 * play significant role here. 5629 */ 5630 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5631 const struct tcphdr *th, int syn_inerr) 5632 { 5633 struct tcp_sock *tp = tcp_sk(sk); 5634 bool rst_seq_match = false; 5635 5636 /* RFC1323: H1. Apply PAWS check first. */ 5637 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5638 tp->rx_opt.saw_tstamp && 5639 tcp_paws_discard(sk, skb)) { 5640 if (!th->rst) { 5641 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5642 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5643 LINUX_MIB_TCPACKSKIPPEDPAWS, 5644 &tp->last_oow_ack_time)) 5645 tcp_send_dupack(sk, skb); 5646 goto discard; 5647 } 5648 /* Reset is accepted even if it did not pass PAWS. */ 5649 } 5650 5651 /* Step 1: check sequence number */ 5652 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5653 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5654 * (RST) segments are validated by checking their SEQ-fields." 5655 * And page 69: "If an incoming segment is not acceptable, 5656 * an acknowledgment should be sent in reply (unless the RST 5657 * bit is set, if so drop the segment and return)". 5658 */ 5659 if (!th->rst) { 5660 if (th->syn) 5661 goto syn_challenge; 5662 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5663 LINUX_MIB_TCPACKSKIPPEDSEQ, 5664 &tp->last_oow_ack_time)) 5665 tcp_send_dupack(sk, skb); 5666 } else if (tcp_reset_check(sk, skb)) { 5667 tcp_reset(sk, skb); 5668 } 5669 goto discard; 5670 } 5671 5672 /* Step 2: check RST bit */ 5673 if (th->rst) { 5674 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5675 * FIN and SACK too if available): 5676 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5677 * the right-most SACK block, 5678 * then 5679 * RESET the connection 5680 * else 5681 * Send a challenge ACK 5682 */ 5683 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5684 tcp_reset_check(sk, skb)) { 5685 rst_seq_match = true; 5686 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5687 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5688 int max_sack = sp[0].end_seq; 5689 int this_sack; 5690 5691 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5692 ++this_sack) { 5693 max_sack = after(sp[this_sack].end_seq, 5694 max_sack) ? 5695 sp[this_sack].end_seq : max_sack; 5696 } 5697 5698 if (TCP_SKB_CB(skb)->seq == max_sack) 5699 rst_seq_match = true; 5700 } 5701 5702 if (rst_seq_match) 5703 tcp_reset(sk, skb); 5704 else { 5705 /* Disable TFO if RST is out-of-order 5706 * and no data has been received 5707 * for current active TFO socket 5708 */ 5709 if (tp->syn_fastopen && !tp->data_segs_in && 5710 sk->sk_state == TCP_ESTABLISHED) 5711 tcp_fastopen_active_disable(sk); 5712 tcp_send_challenge_ack(sk, skb); 5713 } 5714 goto discard; 5715 } 5716 5717 /* step 3: check security and precedence [ignored] */ 5718 5719 /* step 4: Check for a SYN 5720 * RFC 5961 4.2 : Send a challenge ack 5721 */ 5722 if (th->syn) { 5723 syn_challenge: 5724 if (syn_inerr) 5725 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5727 tcp_send_challenge_ack(sk, skb); 5728 goto discard; 5729 } 5730 5731 bpf_skops_parse_hdr(sk, skb); 5732 5733 return true; 5734 5735 discard: 5736 tcp_drop(sk, skb); 5737 return false; 5738 } 5739 5740 /* 5741 * TCP receive function for the ESTABLISHED state. 5742 * 5743 * It is split into a fast path and a slow path. The fast path is 5744 * disabled when: 5745 * - A zero window was announced from us - zero window probing 5746 * is only handled properly in the slow path. 5747 * - Out of order segments arrived. 5748 * - Urgent data is expected. 5749 * - There is no buffer space left 5750 * - Unexpected TCP flags/window values/header lengths are received 5751 * (detected by checking the TCP header against pred_flags) 5752 * - Data is sent in both directions. Fast path only supports pure senders 5753 * or pure receivers (this means either the sequence number or the ack 5754 * value must stay constant) 5755 * - Unexpected TCP option. 5756 * 5757 * When these conditions are not satisfied it drops into a standard 5758 * receive procedure patterned after RFC793 to handle all cases. 5759 * The first three cases are guaranteed by proper pred_flags setting, 5760 * the rest is checked inline. Fast processing is turned on in 5761 * tcp_data_queue when everything is OK. 5762 */ 5763 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5764 { 5765 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5766 struct tcp_sock *tp = tcp_sk(sk); 5767 unsigned int len = skb->len; 5768 5769 /* TCP congestion window tracking */ 5770 trace_tcp_probe(sk, skb); 5771 5772 tcp_mstamp_refresh(tp); 5773 if (unlikely(!sk->sk_rx_dst)) 5774 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5775 /* 5776 * Header prediction. 5777 * The code loosely follows the one in the famous 5778 * "30 instruction TCP receive" Van Jacobson mail. 5779 * 5780 * Van's trick is to deposit buffers into socket queue 5781 * on a device interrupt, to call tcp_recv function 5782 * on the receive process context and checksum and copy 5783 * the buffer to user space. smart... 5784 * 5785 * Our current scheme is not silly either but we take the 5786 * extra cost of the net_bh soft interrupt processing... 5787 * We do checksum and copy also but from device to kernel. 5788 */ 5789 5790 tp->rx_opt.saw_tstamp = 0; 5791 5792 /* pred_flags is 0xS?10 << 16 + snd_wnd 5793 * if header_prediction is to be made 5794 * 'S' will always be tp->tcp_header_len >> 2 5795 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5796 * turn it off (when there are holes in the receive 5797 * space for instance) 5798 * PSH flag is ignored. 5799 */ 5800 5801 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5802 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5803 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5804 int tcp_header_len = tp->tcp_header_len; 5805 5806 /* Timestamp header prediction: tcp_header_len 5807 * is automatically equal to th->doff*4 due to pred_flags 5808 * match. 5809 */ 5810 5811 /* Check timestamp */ 5812 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5813 /* No? Slow path! */ 5814 if (!tcp_parse_aligned_timestamp(tp, th)) 5815 goto slow_path; 5816 5817 /* If PAWS failed, check it more carefully in slow path */ 5818 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5819 goto slow_path; 5820 5821 /* DO NOT update ts_recent here, if checksum fails 5822 * and timestamp was corrupted part, it will result 5823 * in a hung connection since we will drop all 5824 * future packets due to the PAWS test. 5825 */ 5826 } 5827 5828 if (len <= tcp_header_len) { 5829 /* Bulk data transfer: sender */ 5830 if (len == tcp_header_len) { 5831 /* Predicted packet is in window by definition. 5832 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5833 * Hence, check seq<=rcv_wup reduces to: 5834 */ 5835 if (tcp_header_len == 5836 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5837 tp->rcv_nxt == tp->rcv_wup) 5838 tcp_store_ts_recent(tp); 5839 5840 /* We know that such packets are checksummed 5841 * on entry. 5842 */ 5843 tcp_ack(sk, skb, 0); 5844 __kfree_skb(skb); 5845 tcp_data_snd_check(sk); 5846 /* When receiving pure ack in fast path, update 5847 * last ts ecr directly instead of calling 5848 * tcp_rcv_rtt_measure_ts() 5849 */ 5850 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5851 return; 5852 } else { /* Header too small */ 5853 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5854 goto discard; 5855 } 5856 } else { 5857 int eaten = 0; 5858 bool fragstolen = false; 5859 5860 if (tcp_checksum_complete(skb)) 5861 goto csum_error; 5862 5863 if ((int)skb->truesize > sk->sk_forward_alloc) 5864 goto step5; 5865 5866 /* Predicted packet is in window by definition. 5867 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5868 * Hence, check seq<=rcv_wup reduces to: 5869 */ 5870 if (tcp_header_len == 5871 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5872 tp->rcv_nxt == tp->rcv_wup) 5873 tcp_store_ts_recent(tp); 5874 5875 tcp_rcv_rtt_measure_ts(sk, skb); 5876 5877 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5878 5879 /* Bulk data transfer: receiver */ 5880 __skb_pull(skb, tcp_header_len); 5881 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5882 5883 tcp_event_data_recv(sk, skb); 5884 5885 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5886 /* Well, only one small jumplet in fast path... */ 5887 tcp_ack(sk, skb, FLAG_DATA); 5888 tcp_data_snd_check(sk); 5889 if (!inet_csk_ack_scheduled(sk)) 5890 goto no_ack; 5891 } else { 5892 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5893 } 5894 5895 __tcp_ack_snd_check(sk, 0); 5896 no_ack: 5897 if (eaten) 5898 kfree_skb_partial(skb, fragstolen); 5899 tcp_data_ready(sk); 5900 return; 5901 } 5902 } 5903 5904 slow_path: 5905 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5906 goto csum_error; 5907 5908 if (!th->ack && !th->rst && !th->syn) 5909 goto discard; 5910 5911 /* 5912 * Standard slow path. 5913 */ 5914 5915 if (!tcp_validate_incoming(sk, skb, th, 1)) 5916 return; 5917 5918 step5: 5919 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5920 goto discard; 5921 5922 tcp_rcv_rtt_measure_ts(sk, skb); 5923 5924 /* Process urgent data. */ 5925 tcp_urg(sk, skb, th); 5926 5927 /* step 7: process the segment text */ 5928 tcp_data_queue(sk, skb); 5929 5930 tcp_data_snd_check(sk); 5931 tcp_ack_snd_check(sk); 5932 return; 5933 5934 csum_error: 5935 trace_tcp_bad_csum(skb); 5936 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5937 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5938 5939 discard: 5940 tcp_drop(sk, skb); 5941 } 5942 EXPORT_SYMBOL(tcp_rcv_established); 5943 5944 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5945 { 5946 struct inet_connection_sock *icsk = inet_csk(sk); 5947 struct tcp_sock *tp = tcp_sk(sk); 5948 5949 tcp_mtup_init(sk); 5950 icsk->icsk_af_ops->rebuild_header(sk); 5951 tcp_init_metrics(sk); 5952 5953 /* Initialize the congestion window to start the transfer. 5954 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5955 * retransmitted. In light of RFC6298 more aggressive 1sec 5956 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5957 * retransmission has occurred. 5958 */ 5959 if (tp->total_retrans > 1 && tp->undo_marker) 5960 tp->snd_cwnd = 1; 5961 else 5962 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5963 tp->snd_cwnd_stamp = tcp_jiffies32; 5964 5965 bpf_skops_established(sk, bpf_op, skb); 5966 /* Initialize congestion control unless BPF initialized it already: */ 5967 if (!icsk->icsk_ca_initialized) 5968 tcp_init_congestion_control(sk); 5969 tcp_init_buffer_space(sk); 5970 } 5971 5972 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5973 { 5974 struct tcp_sock *tp = tcp_sk(sk); 5975 struct inet_connection_sock *icsk = inet_csk(sk); 5976 5977 tcp_set_state(sk, TCP_ESTABLISHED); 5978 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5979 5980 if (skb) { 5981 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5982 security_inet_conn_established(sk, skb); 5983 sk_mark_napi_id(sk, skb); 5984 } 5985 5986 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 5987 5988 /* Prevent spurious tcp_cwnd_restart() on first data 5989 * packet. 5990 */ 5991 tp->lsndtime = tcp_jiffies32; 5992 5993 if (sock_flag(sk, SOCK_KEEPOPEN)) 5994 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5995 5996 if (!tp->rx_opt.snd_wscale) 5997 __tcp_fast_path_on(tp, tp->snd_wnd); 5998 else 5999 tp->pred_flags = 0; 6000 } 6001 6002 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6003 struct tcp_fastopen_cookie *cookie) 6004 { 6005 struct tcp_sock *tp = tcp_sk(sk); 6006 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6007 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6008 bool syn_drop = false; 6009 6010 if (mss == tp->rx_opt.user_mss) { 6011 struct tcp_options_received opt; 6012 6013 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6014 tcp_clear_options(&opt); 6015 opt.user_mss = opt.mss_clamp = 0; 6016 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6017 mss = opt.mss_clamp; 6018 } 6019 6020 if (!tp->syn_fastopen) { 6021 /* Ignore an unsolicited cookie */ 6022 cookie->len = -1; 6023 } else if (tp->total_retrans) { 6024 /* SYN timed out and the SYN-ACK neither has a cookie nor 6025 * acknowledges data. Presumably the remote received only 6026 * the retransmitted (regular) SYNs: either the original 6027 * SYN-data or the corresponding SYN-ACK was dropped. 6028 */ 6029 syn_drop = (cookie->len < 0 && data); 6030 } else if (cookie->len < 0 && !tp->syn_data) { 6031 /* We requested a cookie but didn't get it. If we did not use 6032 * the (old) exp opt format then try so next time (try_exp=1). 6033 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6034 */ 6035 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6036 } 6037 6038 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6039 6040 if (data) { /* Retransmit unacked data in SYN */ 6041 if (tp->total_retrans) 6042 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6043 else 6044 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6045 skb_rbtree_walk_from(data) 6046 tcp_mark_skb_lost(sk, data); 6047 tcp_xmit_retransmit_queue(sk); 6048 NET_INC_STATS(sock_net(sk), 6049 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6050 return true; 6051 } 6052 tp->syn_data_acked = tp->syn_data; 6053 if (tp->syn_data_acked) { 6054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6055 /* SYN-data is counted as two separate packets in tcp_ack() */ 6056 if (tp->delivered > 1) 6057 --tp->delivered; 6058 } 6059 6060 tcp_fastopen_add_skb(sk, synack); 6061 6062 return false; 6063 } 6064 6065 static void smc_check_reset_syn(struct tcp_sock *tp) 6066 { 6067 #if IS_ENABLED(CONFIG_SMC) 6068 if (static_branch_unlikely(&tcp_have_smc)) { 6069 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6070 tp->syn_smc = 0; 6071 } 6072 #endif 6073 } 6074 6075 static void tcp_try_undo_spurious_syn(struct sock *sk) 6076 { 6077 struct tcp_sock *tp = tcp_sk(sk); 6078 u32 syn_stamp; 6079 6080 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6081 * spurious if the ACK's timestamp option echo value matches the 6082 * original SYN timestamp. 6083 */ 6084 syn_stamp = tp->retrans_stamp; 6085 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6086 syn_stamp == tp->rx_opt.rcv_tsecr) 6087 tp->undo_marker = 0; 6088 } 6089 6090 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6091 const struct tcphdr *th) 6092 { 6093 struct inet_connection_sock *icsk = inet_csk(sk); 6094 struct tcp_sock *tp = tcp_sk(sk); 6095 struct tcp_fastopen_cookie foc = { .len = -1 }; 6096 int saved_clamp = tp->rx_opt.mss_clamp; 6097 bool fastopen_fail; 6098 6099 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6100 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6101 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6102 6103 if (th->ack) { 6104 /* rfc793: 6105 * "If the state is SYN-SENT then 6106 * first check the ACK bit 6107 * If the ACK bit is set 6108 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6109 * a reset (unless the RST bit is set, if so drop 6110 * the segment and return)" 6111 */ 6112 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6113 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6114 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6115 if (icsk->icsk_retransmits == 0) 6116 inet_csk_reset_xmit_timer(sk, 6117 ICSK_TIME_RETRANS, 6118 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6119 goto reset_and_undo; 6120 } 6121 6122 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6123 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6124 tcp_time_stamp(tp))) { 6125 NET_INC_STATS(sock_net(sk), 6126 LINUX_MIB_PAWSACTIVEREJECTED); 6127 goto reset_and_undo; 6128 } 6129 6130 /* Now ACK is acceptable. 6131 * 6132 * "If the RST bit is set 6133 * If the ACK was acceptable then signal the user "error: 6134 * connection reset", drop the segment, enter CLOSED state, 6135 * delete TCB, and return." 6136 */ 6137 6138 if (th->rst) { 6139 tcp_reset(sk, skb); 6140 goto discard; 6141 } 6142 6143 /* rfc793: 6144 * "fifth, if neither of the SYN or RST bits is set then 6145 * drop the segment and return." 6146 * 6147 * See note below! 6148 * --ANK(990513) 6149 */ 6150 if (!th->syn) 6151 goto discard_and_undo; 6152 6153 /* rfc793: 6154 * "If the SYN bit is on ... 6155 * are acceptable then ... 6156 * (our SYN has been ACKed), change the connection 6157 * state to ESTABLISHED..." 6158 */ 6159 6160 tcp_ecn_rcv_synack(tp, th); 6161 6162 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6163 tcp_try_undo_spurious_syn(sk); 6164 tcp_ack(sk, skb, FLAG_SLOWPATH); 6165 6166 /* Ok.. it's good. Set up sequence numbers and 6167 * move to established. 6168 */ 6169 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6170 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6171 6172 /* RFC1323: The window in SYN & SYN/ACK segments is 6173 * never scaled. 6174 */ 6175 tp->snd_wnd = ntohs(th->window); 6176 6177 if (!tp->rx_opt.wscale_ok) { 6178 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6179 tp->window_clamp = min(tp->window_clamp, 65535U); 6180 } 6181 6182 if (tp->rx_opt.saw_tstamp) { 6183 tp->rx_opt.tstamp_ok = 1; 6184 tp->tcp_header_len = 6185 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6186 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6187 tcp_store_ts_recent(tp); 6188 } else { 6189 tp->tcp_header_len = sizeof(struct tcphdr); 6190 } 6191 6192 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6193 tcp_initialize_rcv_mss(sk); 6194 6195 /* Remember, tcp_poll() does not lock socket! 6196 * Change state from SYN-SENT only after copied_seq 6197 * is initialized. */ 6198 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6199 6200 smc_check_reset_syn(tp); 6201 6202 smp_mb(); 6203 6204 tcp_finish_connect(sk, skb); 6205 6206 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6207 tcp_rcv_fastopen_synack(sk, skb, &foc); 6208 6209 if (!sock_flag(sk, SOCK_DEAD)) { 6210 sk->sk_state_change(sk); 6211 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6212 } 6213 if (fastopen_fail) 6214 return -1; 6215 if (sk->sk_write_pending || 6216 icsk->icsk_accept_queue.rskq_defer_accept || 6217 inet_csk_in_pingpong_mode(sk)) { 6218 /* Save one ACK. Data will be ready after 6219 * several ticks, if write_pending is set. 6220 * 6221 * It may be deleted, but with this feature tcpdumps 6222 * look so _wonderfully_ clever, that I was not able 6223 * to stand against the temptation 8) --ANK 6224 */ 6225 inet_csk_schedule_ack(sk); 6226 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6227 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6228 TCP_DELACK_MAX, TCP_RTO_MAX); 6229 6230 discard: 6231 tcp_drop(sk, skb); 6232 return 0; 6233 } else { 6234 tcp_send_ack(sk); 6235 } 6236 return -1; 6237 } 6238 6239 /* No ACK in the segment */ 6240 6241 if (th->rst) { 6242 /* rfc793: 6243 * "If the RST bit is set 6244 * 6245 * Otherwise (no ACK) drop the segment and return." 6246 */ 6247 6248 goto discard_and_undo; 6249 } 6250 6251 /* PAWS check. */ 6252 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6253 tcp_paws_reject(&tp->rx_opt, 0)) 6254 goto discard_and_undo; 6255 6256 if (th->syn) { 6257 /* We see SYN without ACK. It is attempt of 6258 * simultaneous connect with crossed SYNs. 6259 * Particularly, it can be connect to self. 6260 */ 6261 tcp_set_state(sk, TCP_SYN_RECV); 6262 6263 if (tp->rx_opt.saw_tstamp) { 6264 tp->rx_opt.tstamp_ok = 1; 6265 tcp_store_ts_recent(tp); 6266 tp->tcp_header_len = 6267 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6268 } else { 6269 tp->tcp_header_len = sizeof(struct tcphdr); 6270 } 6271 6272 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6273 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6274 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6275 6276 /* RFC1323: The window in SYN & SYN/ACK segments is 6277 * never scaled. 6278 */ 6279 tp->snd_wnd = ntohs(th->window); 6280 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6281 tp->max_window = tp->snd_wnd; 6282 6283 tcp_ecn_rcv_syn(tp, th); 6284 6285 tcp_mtup_init(sk); 6286 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6287 tcp_initialize_rcv_mss(sk); 6288 6289 tcp_send_synack(sk); 6290 #if 0 6291 /* Note, we could accept data and URG from this segment. 6292 * There are no obstacles to make this (except that we must 6293 * either change tcp_recvmsg() to prevent it from returning data 6294 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6295 * 6296 * However, if we ignore data in ACKless segments sometimes, 6297 * we have no reasons to accept it sometimes. 6298 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6299 * is not flawless. So, discard packet for sanity. 6300 * Uncomment this return to process the data. 6301 */ 6302 return -1; 6303 #else 6304 goto discard; 6305 #endif 6306 } 6307 /* "fifth, if neither of the SYN or RST bits is set then 6308 * drop the segment and return." 6309 */ 6310 6311 discard_and_undo: 6312 tcp_clear_options(&tp->rx_opt); 6313 tp->rx_opt.mss_clamp = saved_clamp; 6314 goto discard; 6315 6316 reset_and_undo: 6317 tcp_clear_options(&tp->rx_opt); 6318 tp->rx_opt.mss_clamp = saved_clamp; 6319 return 1; 6320 } 6321 6322 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6323 { 6324 struct request_sock *req; 6325 6326 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6327 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6328 */ 6329 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6330 tcp_try_undo_loss(sk, false); 6331 6332 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6333 tcp_sk(sk)->retrans_stamp = 0; 6334 inet_csk(sk)->icsk_retransmits = 0; 6335 6336 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6337 * we no longer need req so release it. 6338 */ 6339 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6340 lockdep_sock_is_held(sk)); 6341 reqsk_fastopen_remove(sk, req, false); 6342 6343 /* Re-arm the timer because data may have been sent out. 6344 * This is similar to the regular data transmission case 6345 * when new data has just been ack'ed. 6346 * 6347 * (TFO) - we could try to be more aggressive and 6348 * retransmitting any data sooner based on when they 6349 * are sent out. 6350 */ 6351 tcp_rearm_rto(sk); 6352 } 6353 6354 /* 6355 * This function implements the receiving procedure of RFC 793 for 6356 * all states except ESTABLISHED and TIME_WAIT. 6357 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6358 * address independent. 6359 */ 6360 6361 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6362 { 6363 struct tcp_sock *tp = tcp_sk(sk); 6364 struct inet_connection_sock *icsk = inet_csk(sk); 6365 const struct tcphdr *th = tcp_hdr(skb); 6366 struct request_sock *req; 6367 int queued = 0; 6368 bool acceptable; 6369 6370 switch (sk->sk_state) { 6371 case TCP_CLOSE: 6372 goto discard; 6373 6374 case TCP_LISTEN: 6375 if (th->ack) 6376 return 1; 6377 6378 if (th->rst) 6379 goto discard; 6380 6381 if (th->syn) { 6382 if (th->fin) 6383 goto discard; 6384 /* It is possible that we process SYN packets from backlog, 6385 * so we need to make sure to disable BH and RCU right there. 6386 */ 6387 rcu_read_lock(); 6388 local_bh_disable(); 6389 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6390 local_bh_enable(); 6391 rcu_read_unlock(); 6392 6393 if (!acceptable) 6394 return 1; 6395 consume_skb(skb); 6396 return 0; 6397 } 6398 goto discard; 6399 6400 case TCP_SYN_SENT: 6401 tp->rx_opt.saw_tstamp = 0; 6402 tcp_mstamp_refresh(tp); 6403 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6404 if (queued >= 0) 6405 return queued; 6406 6407 /* Do step6 onward by hand. */ 6408 tcp_urg(sk, skb, th); 6409 __kfree_skb(skb); 6410 tcp_data_snd_check(sk); 6411 return 0; 6412 } 6413 6414 tcp_mstamp_refresh(tp); 6415 tp->rx_opt.saw_tstamp = 0; 6416 req = rcu_dereference_protected(tp->fastopen_rsk, 6417 lockdep_sock_is_held(sk)); 6418 if (req) { 6419 bool req_stolen; 6420 6421 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6422 sk->sk_state != TCP_FIN_WAIT1); 6423 6424 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6425 goto discard; 6426 } 6427 6428 if (!th->ack && !th->rst && !th->syn) 6429 goto discard; 6430 6431 if (!tcp_validate_incoming(sk, skb, th, 0)) 6432 return 0; 6433 6434 /* step 5: check the ACK field */ 6435 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6436 FLAG_UPDATE_TS_RECENT | 6437 FLAG_NO_CHALLENGE_ACK) > 0; 6438 6439 if (!acceptable) { 6440 if (sk->sk_state == TCP_SYN_RECV) 6441 return 1; /* send one RST */ 6442 tcp_send_challenge_ack(sk, skb); 6443 goto discard; 6444 } 6445 switch (sk->sk_state) { 6446 case TCP_SYN_RECV: 6447 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6448 if (!tp->srtt_us) 6449 tcp_synack_rtt_meas(sk, req); 6450 6451 if (req) { 6452 tcp_rcv_synrecv_state_fastopen(sk); 6453 } else { 6454 tcp_try_undo_spurious_syn(sk); 6455 tp->retrans_stamp = 0; 6456 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6457 skb); 6458 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6459 } 6460 smp_mb(); 6461 tcp_set_state(sk, TCP_ESTABLISHED); 6462 sk->sk_state_change(sk); 6463 6464 /* Note, that this wakeup is only for marginal crossed SYN case. 6465 * Passively open sockets are not waked up, because 6466 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6467 */ 6468 if (sk->sk_socket) 6469 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6470 6471 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6472 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6473 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6474 6475 if (tp->rx_opt.tstamp_ok) 6476 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6477 6478 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6479 tcp_update_pacing_rate(sk); 6480 6481 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6482 tp->lsndtime = tcp_jiffies32; 6483 6484 tcp_initialize_rcv_mss(sk); 6485 tcp_fast_path_on(tp); 6486 break; 6487 6488 case TCP_FIN_WAIT1: { 6489 int tmo; 6490 6491 if (req) 6492 tcp_rcv_synrecv_state_fastopen(sk); 6493 6494 if (tp->snd_una != tp->write_seq) 6495 break; 6496 6497 tcp_set_state(sk, TCP_FIN_WAIT2); 6498 sk->sk_shutdown |= SEND_SHUTDOWN; 6499 6500 sk_dst_confirm(sk); 6501 6502 if (!sock_flag(sk, SOCK_DEAD)) { 6503 /* Wake up lingering close() */ 6504 sk->sk_state_change(sk); 6505 break; 6506 } 6507 6508 if (tp->linger2 < 0) { 6509 tcp_done(sk); 6510 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6511 return 1; 6512 } 6513 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6514 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6515 /* Receive out of order FIN after close() */ 6516 if (tp->syn_fastopen && th->fin) 6517 tcp_fastopen_active_disable(sk); 6518 tcp_done(sk); 6519 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6520 return 1; 6521 } 6522 6523 tmo = tcp_fin_time(sk); 6524 if (tmo > TCP_TIMEWAIT_LEN) { 6525 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6526 } else if (th->fin || sock_owned_by_user(sk)) { 6527 /* Bad case. We could lose such FIN otherwise. 6528 * It is not a big problem, but it looks confusing 6529 * and not so rare event. We still can lose it now, 6530 * if it spins in bh_lock_sock(), but it is really 6531 * marginal case. 6532 */ 6533 inet_csk_reset_keepalive_timer(sk, tmo); 6534 } else { 6535 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6536 goto discard; 6537 } 6538 break; 6539 } 6540 6541 case TCP_CLOSING: 6542 if (tp->snd_una == tp->write_seq) { 6543 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6544 goto discard; 6545 } 6546 break; 6547 6548 case TCP_LAST_ACK: 6549 if (tp->snd_una == tp->write_seq) { 6550 tcp_update_metrics(sk); 6551 tcp_done(sk); 6552 goto discard; 6553 } 6554 break; 6555 } 6556 6557 /* step 6: check the URG bit */ 6558 tcp_urg(sk, skb, th); 6559 6560 /* step 7: process the segment text */ 6561 switch (sk->sk_state) { 6562 case TCP_CLOSE_WAIT: 6563 case TCP_CLOSING: 6564 case TCP_LAST_ACK: 6565 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6566 /* If a subflow has been reset, the packet should not 6567 * continue to be processed, drop the packet. 6568 */ 6569 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6570 goto discard; 6571 break; 6572 } 6573 fallthrough; 6574 case TCP_FIN_WAIT1: 6575 case TCP_FIN_WAIT2: 6576 /* RFC 793 says to queue data in these states, 6577 * RFC 1122 says we MUST send a reset. 6578 * BSD 4.4 also does reset. 6579 */ 6580 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6581 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6582 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6584 tcp_reset(sk, skb); 6585 return 1; 6586 } 6587 } 6588 fallthrough; 6589 case TCP_ESTABLISHED: 6590 tcp_data_queue(sk, skb); 6591 queued = 1; 6592 break; 6593 } 6594 6595 /* tcp_data could move socket to TIME-WAIT */ 6596 if (sk->sk_state != TCP_CLOSE) { 6597 tcp_data_snd_check(sk); 6598 tcp_ack_snd_check(sk); 6599 } 6600 6601 if (!queued) { 6602 discard: 6603 tcp_drop(sk, skb); 6604 } 6605 return 0; 6606 } 6607 EXPORT_SYMBOL(tcp_rcv_state_process); 6608 6609 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6610 { 6611 struct inet_request_sock *ireq = inet_rsk(req); 6612 6613 if (family == AF_INET) 6614 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6615 &ireq->ir_rmt_addr, port); 6616 #if IS_ENABLED(CONFIG_IPV6) 6617 else if (family == AF_INET6) 6618 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6619 &ireq->ir_v6_rmt_addr, port); 6620 #endif 6621 } 6622 6623 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6624 * 6625 * If we receive a SYN packet with these bits set, it means a 6626 * network is playing bad games with TOS bits. In order to 6627 * avoid possible false congestion notifications, we disable 6628 * TCP ECN negotiation. 6629 * 6630 * Exception: tcp_ca wants ECN. This is required for DCTCP 6631 * congestion control: Linux DCTCP asserts ECT on all packets, 6632 * including SYN, which is most optimal solution; however, 6633 * others, such as FreeBSD do not. 6634 * 6635 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6636 * set, indicating the use of a future TCP extension (such as AccECN). See 6637 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6638 * extensions. 6639 */ 6640 static void tcp_ecn_create_request(struct request_sock *req, 6641 const struct sk_buff *skb, 6642 const struct sock *listen_sk, 6643 const struct dst_entry *dst) 6644 { 6645 const struct tcphdr *th = tcp_hdr(skb); 6646 const struct net *net = sock_net(listen_sk); 6647 bool th_ecn = th->ece && th->cwr; 6648 bool ect, ecn_ok; 6649 u32 ecn_ok_dst; 6650 6651 if (!th_ecn) 6652 return; 6653 6654 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6655 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6656 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6657 6658 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6659 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6660 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6661 inet_rsk(req)->ecn_ok = 1; 6662 } 6663 6664 static void tcp_openreq_init(struct request_sock *req, 6665 const struct tcp_options_received *rx_opt, 6666 struct sk_buff *skb, const struct sock *sk) 6667 { 6668 struct inet_request_sock *ireq = inet_rsk(req); 6669 6670 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6671 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6672 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6673 tcp_rsk(req)->snt_synack = 0; 6674 tcp_rsk(req)->last_oow_ack_time = 0; 6675 req->mss = rx_opt->mss_clamp; 6676 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6677 ireq->tstamp_ok = rx_opt->tstamp_ok; 6678 ireq->sack_ok = rx_opt->sack_ok; 6679 ireq->snd_wscale = rx_opt->snd_wscale; 6680 ireq->wscale_ok = rx_opt->wscale_ok; 6681 ireq->acked = 0; 6682 ireq->ecn_ok = 0; 6683 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6684 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6685 ireq->ir_mark = inet_request_mark(sk, skb); 6686 #if IS_ENABLED(CONFIG_SMC) 6687 ireq->smc_ok = rx_opt->smc_ok; 6688 #endif 6689 } 6690 6691 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6692 struct sock *sk_listener, 6693 bool attach_listener) 6694 { 6695 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6696 attach_listener); 6697 6698 if (req) { 6699 struct inet_request_sock *ireq = inet_rsk(req); 6700 6701 ireq->ireq_opt = NULL; 6702 #if IS_ENABLED(CONFIG_IPV6) 6703 ireq->pktopts = NULL; 6704 #endif 6705 atomic64_set(&ireq->ir_cookie, 0); 6706 ireq->ireq_state = TCP_NEW_SYN_RECV; 6707 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6708 ireq->ireq_family = sk_listener->sk_family; 6709 } 6710 6711 return req; 6712 } 6713 EXPORT_SYMBOL(inet_reqsk_alloc); 6714 6715 /* 6716 * Return true if a syncookie should be sent 6717 */ 6718 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6719 { 6720 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6721 const char *msg = "Dropping request"; 6722 bool want_cookie = false; 6723 struct net *net = sock_net(sk); 6724 6725 #ifdef CONFIG_SYN_COOKIES 6726 if (net->ipv4.sysctl_tcp_syncookies) { 6727 msg = "Sending cookies"; 6728 want_cookie = true; 6729 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6730 } else 6731 #endif 6732 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6733 6734 if (!queue->synflood_warned && 6735 net->ipv4.sysctl_tcp_syncookies != 2 && 6736 xchg(&queue->synflood_warned, 1) == 0) 6737 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6738 proto, sk->sk_num, msg); 6739 6740 return want_cookie; 6741 } 6742 6743 static void tcp_reqsk_record_syn(const struct sock *sk, 6744 struct request_sock *req, 6745 const struct sk_buff *skb) 6746 { 6747 if (tcp_sk(sk)->save_syn) { 6748 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6749 struct saved_syn *saved_syn; 6750 u32 mac_hdrlen; 6751 void *base; 6752 6753 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6754 base = skb_mac_header(skb); 6755 mac_hdrlen = skb_mac_header_len(skb); 6756 len += mac_hdrlen; 6757 } else { 6758 base = skb_network_header(skb); 6759 mac_hdrlen = 0; 6760 } 6761 6762 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6763 GFP_ATOMIC); 6764 if (saved_syn) { 6765 saved_syn->mac_hdrlen = mac_hdrlen; 6766 saved_syn->network_hdrlen = skb_network_header_len(skb); 6767 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6768 memcpy(saved_syn->data, base, len); 6769 req->saved_syn = saved_syn; 6770 } 6771 } 6772 } 6773 6774 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6775 * used for SYN cookie generation. 6776 */ 6777 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6778 const struct tcp_request_sock_ops *af_ops, 6779 struct sock *sk, struct tcphdr *th) 6780 { 6781 struct tcp_sock *tp = tcp_sk(sk); 6782 u16 mss; 6783 6784 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6785 !inet_csk_reqsk_queue_is_full(sk)) 6786 return 0; 6787 6788 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6789 return 0; 6790 6791 if (sk_acceptq_is_full(sk)) { 6792 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6793 return 0; 6794 } 6795 6796 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6797 if (!mss) 6798 mss = af_ops->mss_clamp; 6799 6800 return mss; 6801 } 6802 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6803 6804 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6805 const struct tcp_request_sock_ops *af_ops, 6806 struct sock *sk, struct sk_buff *skb) 6807 { 6808 struct tcp_fastopen_cookie foc = { .len = -1 }; 6809 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6810 struct tcp_options_received tmp_opt; 6811 struct tcp_sock *tp = tcp_sk(sk); 6812 struct net *net = sock_net(sk); 6813 struct sock *fastopen_sk = NULL; 6814 struct request_sock *req; 6815 bool want_cookie = false; 6816 struct dst_entry *dst; 6817 struct flowi fl; 6818 6819 /* TW buckets are converted to open requests without 6820 * limitations, they conserve resources and peer is 6821 * evidently real one. 6822 */ 6823 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6824 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6825 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6826 if (!want_cookie) 6827 goto drop; 6828 } 6829 6830 if (sk_acceptq_is_full(sk)) { 6831 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6832 goto drop; 6833 } 6834 6835 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6836 if (!req) 6837 goto drop; 6838 6839 req->syncookie = want_cookie; 6840 tcp_rsk(req)->af_specific = af_ops; 6841 tcp_rsk(req)->ts_off = 0; 6842 #if IS_ENABLED(CONFIG_MPTCP) 6843 tcp_rsk(req)->is_mptcp = 0; 6844 #endif 6845 6846 tcp_clear_options(&tmp_opt); 6847 tmp_opt.mss_clamp = af_ops->mss_clamp; 6848 tmp_opt.user_mss = tp->rx_opt.user_mss; 6849 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6850 want_cookie ? NULL : &foc); 6851 6852 if (want_cookie && !tmp_opt.saw_tstamp) 6853 tcp_clear_options(&tmp_opt); 6854 6855 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6856 tmp_opt.smc_ok = 0; 6857 6858 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6859 tcp_openreq_init(req, &tmp_opt, skb, sk); 6860 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6861 6862 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6863 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6864 6865 dst = af_ops->route_req(sk, skb, &fl, req); 6866 if (!dst) 6867 goto drop_and_free; 6868 6869 if (tmp_opt.tstamp_ok) 6870 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6871 6872 if (!want_cookie && !isn) { 6873 /* Kill the following clause, if you dislike this way. */ 6874 if (!net->ipv4.sysctl_tcp_syncookies && 6875 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6876 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6877 !tcp_peer_is_proven(req, dst)) { 6878 /* Without syncookies last quarter of 6879 * backlog is filled with destinations, 6880 * proven to be alive. 6881 * It means that we continue to communicate 6882 * to destinations, already remembered 6883 * to the moment of synflood. 6884 */ 6885 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6886 rsk_ops->family); 6887 goto drop_and_release; 6888 } 6889 6890 isn = af_ops->init_seq(skb); 6891 } 6892 6893 tcp_ecn_create_request(req, skb, sk, dst); 6894 6895 if (want_cookie) { 6896 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6897 if (!tmp_opt.tstamp_ok) 6898 inet_rsk(req)->ecn_ok = 0; 6899 } 6900 6901 tcp_rsk(req)->snt_isn = isn; 6902 tcp_rsk(req)->txhash = net_tx_rndhash(); 6903 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6904 tcp_openreq_init_rwin(req, sk, dst); 6905 sk_rx_queue_set(req_to_sk(req), skb); 6906 if (!want_cookie) { 6907 tcp_reqsk_record_syn(sk, req, skb); 6908 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6909 } 6910 if (fastopen_sk) { 6911 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6912 &foc, TCP_SYNACK_FASTOPEN, skb); 6913 /* Add the child socket directly into the accept queue */ 6914 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6915 reqsk_fastopen_remove(fastopen_sk, req, false); 6916 bh_unlock_sock(fastopen_sk); 6917 sock_put(fastopen_sk); 6918 goto drop_and_free; 6919 } 6920 sk->sk_data_ready(sk); 6921 bh_unlock_sock(fastopen_sk); 6922 sock_put(fastopen_sk); 6923 } else { 6924 tcp_rsk(req)->tfo_listener = false; 6925 if (!want_cookie) 6926 inet_csk_reqsk_queue_hash_add(sk, req, 6927 tcp_timeout_init((struct sock *)req)); 6928 af_ops->send_synack(sk, dst, &fl, req, &foc, 6929 !want_cookie ? TCP_SYNACK_NORMAL : 6930 TCP_SYNACK_COOKIE, 6931 skb); 6932 if (want_cookie) { 6933 reqsk_free(req); 6934 return 0; 6935 } 6936 } 6937 reqsk_put(req); 6938 return 0; 6939 6940 drop_and_release: 6941 dst_release(dst); 6942 drop_and_free: 6943 __reqsk_free(req); 6944 drop: 6945 tcp_listendrop(sk); 6946 return 0; 6947 } 6948 EXPORT_SYMBOL(tcp_conn_request); 6949