1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_fack __read_mostly; 80 int sysctl_tcp_max_reordering __read_mostly = 300; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 1; 84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 85 86 /* rfc5961 challenge ack rate limiting */ 87 int sysctl_tcp_challenge_ack_limit = 1000; 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 95 int sysctl_tcp_early_retrans __read_mostly = 3; 96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 97 98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 104 #define FLAG_ECE 0x40 /* ECE in this ACK */ 105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 110 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 112 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 113 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 114 115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 119 120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 122 123 #define REXMIT_NONE 0 /* no loss recovery to do */ 124 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 125 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 126 127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 128 unsigned int len) 129 { 130 static bool __once __read_mostly; 131 132 if (!__once) { 133 struct net_device *dev; 134 135 __once = true; 136 137 rcu_read_lock(); 138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 139 if (!dev || len >= dev->mtu) 140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 141 dev ? dev->name : "Unknown driver"); 142 rcu_read_unlock(); 143 } 144 } 145 146 /* Adapt the MSS value used to make delayed ack decision to the 147 * real world. 148 */ 149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 150 { 151 struct inet_connection_sock *icsk = inet_csk(sk); 152 const unsigned int lss = icsk->icsk_ack.last_seg_size; 153 unsigned int len; 154 155 icsk->icsk_ack.last_seg_size = 0; 156 157 /* skb->len may jitter because of SACKs, even if peer 158 * sends good full-sized frames. 159 */ 160 len = skb_shinfo(skb)->gso_size ? : skb->len; 161 if (len >= icsk->icsk_ack.rcv_mss) { 162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 163 tcp_sk(sk)->advmss); 164 /* Account for possibly-removed options */ 165 if (unlikely(len > icsk->icsk_ack.rcv_mss + 166 MAX_TCP_OPTION_SPACE)) 167 tcp_gro_dev_warn(sk, skb, len); 168 } else { 169 /* Otherwise, we make more careful check taking into account, 170 * that SACKs block is variable. 171 * 172 * "len" is invariant segment length, including TCP header. 173 */ 174 len += skb->data - skb_transport_header(skb); 175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 176 /* If PSH is not set, packet should be 177 * full sized, provided peer TCP is not badly broken. 178 * This observation (if it is correct 8)) allows 179 * to handle super-low mtu links fairly. 180 */ 181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 183 /* Subtract also invariant (if peer is RFC compliant), 184 * tcp header plus fixed timestamp option length. 185 * Resulting "len" is MSS free of SACK jitter. 186 */ 187 len -= tcp_sk(sk)->tcp_header_len; 188 icsk->icsk_ack.last_seg_size = len; 189 if (len == lss) { 190 icsk->icsk_ack.rcv_mss = len; 191 return; 192 } 193 } 194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 197 } 198 } 199 200 static void tcp_incr_quickack(struct sock *sk) 201 { 202 struct inet_connection_sock *icsk = inet_csk(sk); 203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 204 205 if (quickacks == 0) 206 quickacks = 2; 207 if (quickacks > icsk->icsk_ack.quick) 208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 209 } 210 211 static void tcp_enter_quickack_mode(struct sock *sk) 212 { 213 struct inet_connection_sock *icsk = inet_csk(sk); 214 tcp_incr_quickack(sk); 215 icsk->icsk_ack.pingpong = 0; 216 icsk->icsk_ack.ato = TCP_ATO_MIN; 217 } 218 219 /* Send ACKs quickly, if "quick" count is not exhausted 220 * and the session is not interactive. 221 */ 222 223 static bool tcp_in_quickack_mode(struct sock *sk) 224 { 225 const struct inet_connection_sock *icsk = inet_csk(sk); 226 const struct dst_entry *dst = __sk_dst_get(sk); 227 228 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 230 } 231 232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 233 { 234 if (tp->ecn_flags & TCP_ECN_OK) 235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 236 } 237 238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 239 { 240 if (tcp_hdr(skb)->cwr) 241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 242 } 243 244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 245 { 246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 247 } 248 249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 250 { 251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 252 case INET_ECN_NOT_ECT: 253 /* Funny extension: if ECT is not set on a segment, 254 * and we already seen ECT on a previous segment, 255 * it is probably a retransmit. 256 */ 257 if (tp->ecn_flags & TCP_ECN_SEEN) 258 tcp_enter_quickack_mode((struct sock *)tp); 259 break; 260 case INET_ECN_CE: 261 if (tcp_ca_needs_ecn((struct sock *)tp)) 262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 263 264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 265 /* Better not delay acks, sender can have a very low cwnd */ 266 tcp_enter_quickack_mode((struct sock *)tp); 267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 268 } 269 tp->ecn_flags |= TCP_ECN_SEEN; 270 break; 271 default: 272 if (tcp_ca_needs_ecn((struct sock *)tp)) 273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 274 tp->ecn_flags |= TCP_ECN_SEEN; 275 break; 276 } 277 } 278 279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 280 { 281 if (tp->ecn_flags & TCP_ECN_OK) 282 __tcp_ecn_check_ce(tp, skb); 283 } 284 285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 286 { 287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 288 tp->ecn_flags &= ~TCP_ECN_OK; 289 } 290 291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 292 { 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 294 tp->ecn_flags &= ~TCP_ECN_OK; 295 } 296 297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 298 { 299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 300 return true; 301 return false; 302 } 303 304 /* Buffer size and advertised window tuning. 305 * 306 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 307 */ 308 309 static void tcp_sndbuf_expand(struct sock *sk) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 313 int sndmem, per_mss; 314 u32 nr_segs; 315 316 /* Worst case is non GSO/TSO : each frame consumes one skb 317 * and skb->head is kmalloced using power of two area of memory 318 */ 319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 320 MAX_TCP_HEADER + 321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 322 323 per_mss = roundup_pow_of_two(per_mss) + 324 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 325 326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 328 329 /* Fast Recovery (RFC 5681 3.2) : 330 * Cubic needs 1.7 factor, rounded to 2 to include 331 * extra cushion (application might react slowly to POLLOUT) 332 */ 333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 334 sndmem *= nr_segs * per_mss; 335 336 if (sk->sk_sndbuf < sndmem) 337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 338 } 339 340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 341 * 342 * All tcp_full_space() is split to two parts: "network" buffer, allocated 343 * forward and advertised in receiver window (tp->rcv_wnd) and 344 * "application buffer", required to isolate scheduling/application 345 * latencies from network. 346 * window_clamp is maximal advertised window. It can be less than 347 * tcp_full_space(), in this case tcp_full_space() - window_clamp 348 * is reserved for "application" buffer. The less window_clamp is 349 * the smoother our behaviour from viewpoint of network, but the lower 350 * throughput and the higher sensitivity of the connection to losses. 8) 351 * 352 * rcv_ssthresh is more strict window_clamp used at "slow start" 353 * phase to predict further behaviour of this connection. 354 * It is used for two goals: 355 * - to enforce header prediction at sender, even when application 356 * requires some significant "application buffer". It is check #1. 357 * - to prevent pruning of receive queue because of misprediction 358 * of receiver window. Check #2. 359 * 360 * The scheme does not work when sender sends good segments opening 361 * window and then starts to feed us spaghetti. But it should work 362 * in common situations. Otherwise, we have to rely on queue collapsing. 363 */ 364 365 /* Slow part of check#2. */ 366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 /* Optimize this! */ 370 int truesize = tcp_win_from_space(skb->truesize) >> 1; 371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 372 373 while (tp->rcv_ssthresh <= window) { 374 if (truesize <= skb->len) 375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 376 377 truesize >>= 1; 378 window >>= 1; 379 } 380 return 0; 381 } 382 383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 387 /* Check #1 */ 388 if (tp->rcv_ssthresh < tp->window_clamp && 389 (int)tp->rcv_ssthresh < tcp_space(sk) && 390 !tcp_under_memory_pressure(sk)) { 391 int incr; 392 393 /* Check #2. Increase window, if skb with such overhead 394 * will fit to rcvbuf in future. 395 */ 396 if (tcp_win_from_space(skb->truesize) <= skb->len) 397 incr = 2 * tp->advmss; 398 else 399 incr = __tcp_grow_window(sk, skb); 400 401 if (incr) { 402 incr = max_t(int, incr, 2 * skb->len); 403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 404 tp->window_clamp); 405 inet_csk(sk)->icsk_ack.quick |= 1; 406 } 407 } 408 } 409 410 /* 3. Tuning rcvbuf, when connection enters established state. */ 411 static void tcp_fixup_rcvbuf(struct sock *sk) 412 { 413 u32 mss = tcp_sk(sk)->advmss; 414 int rcvmem; 415 416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 417 tcp_default_init_rwnd(mss); 418 419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 420 * Allow enough cushion so that sender is not limited by our window 421 */ 422 if (sysctl_tcp_moderate_rcvbuf) 423 rcvmem <<= 2; 424 425 if (sk->sk_rcvbuf < rcvmem) 426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 427 } 428 429 /* 4. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 int maxwin; 436 437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 438 tcp_fixup_rcvbuf(sk); 439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 440 tcp_sndbuf_expand(sk); 441 442 tp->rcvq_space.space = tp->rcv_wnd; 443 tcp_mstamp_refresh(tp); 444 tp->rcvq_space.time = tp->tcp_mstamp; 445 tp->rcvq_space.seq = tp->copied_seq; 446 447 maxwin = tcp_full_space(sk); 448 449 if (tp->window_clamp >= maxwin) { 450 tp->window_clamp = maxwin; 451 452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 453 tp->window_clamp = max(maxwin - 454 (maxwin >> sysctl_tcp_app_win), 455 4 * tp->advmss); 456 } 457 458 /* Force reservation of one segment. */ 459 if (sysctl_tcp_app_win && 460 tp->window_clamp > 2 * tp->advmss && 461 tp->window_clamp + tp->advmss > maxwin) 462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 463 464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 465 tp->snd_cwnd_stamp = tcp_jiffies32; 466 } 467 468 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 469 static void tcp_clamp_window(struct sock *sk) 470 { 471 struct tcp_sock *tp = tcp_sk(sk); 472 struct inet_connection_sock *icsk = inet_csk(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (m == 0) 524 m = 1; 525 526 if (new_sample != 0) { 527 /* If we sample in larger samples in the non-timestamp 528 * case, we could grossly overestimate the RTT especially 529 * with chatty applications or bulk transfer apps which 530 * are stalled on filesystem I/O. 531 * 532 * Also, since we are only going for a minimum in the 533 * non-timestamp case, we do not smooth things out 534 * else with timestamps disabled convergence takes too 535 * long. 536 */ 537 if (!win_dep) { 538 m -= (new_sample >> 3); 539 new_sample += m; 540 } else { 541 m <<= 3; 542 if (m < new_sample) 543 new_sample = m; 544 } 545 } else { 546 /* No previous measure. */ 547 new_sample = m << 3; 548 } 549 550 tp->rcv_rtt_est.rtt_us = new_sample; 551 } 552 553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 554 { 555 u32 delta_us; 556 557 if (tp->rcv_rtt_est.time == 0) 558 goto new_measure; 559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 560 return; 561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 562 tcp_rcv_rtt_update(tp, delta_us, 1); 563 564 new_measure: 565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 566 tp->rcv_rtt_est.time = tp->tcp_mstamp; 567 } 568 569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 570 const struct sk_buff *skb) 571 { 572 struct tcp_sock *tp = tcp_sk(sk); 573 574 if (tp->rx_opt.rcv_tsecr && 575 (TCP_SKB_CB(skb)->end_seq - 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 579 580 tcp_rcv_rtt_update(tp, delta_us, 0); 581 } 582 } 583 584 /* 585 * This function should be called every time data is copied to user space. 586 * It calculates the appropriate TCP receive buffer space. 587 */ 588 void tcp_rcv_space_adjust(struct sock *sk) 589 { 590 struct tcp_sock *tp = tcp_sk(sk); 591 int time; 592 int copied; 593 594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 596 return; 597 598 /* Number of bytes copied to user in last RTT */ 599 copied = tp->copied_seq - tp->rcvq_space.seq; 600 if (copied <= tp->rcvq_space.space) 601 goto new_measure; 602 603 /* A bit of theory : 604 * copied = bytes received in previous RTT, our base window 605 * To cope with packet losses, we need a 2x factor 606 * To cope with slow start, and sender growing its cwin by 100 % 607 * every RTT, we need a 4x factor, because the ACK we are sending 608 * now is for the next RTT, not the current one : 609 * <prev RTT . ><current RTT .. ><next RTT .... > 610 */ 611 612 if (sysctl_tcp_moderate_rcvbuf && 613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 614 int rcvwin, rcvmem, rcvbuf; 615 616 /* minimal window to cope with packet losses, assuming 617 * steady state. Add some cushion because of small variations. 618 */ 619 rcvwin = (copied << 1) + 16 * tp->advmss; 620 621 /* If rate increased by 25%, 622 * assume slow start, rcvwin = 3 * copied 623 * If rate increased by 50%, 624 * assume sender can use 2x growth, rcvwin = 4 * copied 625 */ 626 if (copied >= 627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 628 if (copied >= 629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 630 rcvwin <<= 1; 631 else 632 rcvwin += (rcvwin >> 1); 633 } 634 635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 636 while (tcp_win_from_space(rcvmem) < tp->advmss) 637 rcvmem += 128; 638 639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 640 if (rcvbuf > sk->sk_rcvbuf) { 641 sk->sk_rcvbuf = rcvbuf; 642 643 /* Make the window clamp follow along. */ 644 tp->window_clamp = rcvwin; 645 } 646 } 647 tp->rcvq_space.space = copied; 648 649 new_measure: 650 tp->rcvq_space.seq = tp->copied_seq; 651 tp->rcvq_space.time = tp->tcp_mstamp; 652 } 653 654 /* There is something which you must keep in mind when you analyze the 655 * behavior of the tp->ato delayed ack timeout interval. When a 656 * connection starts up, we want to ack as quickly as possible. The 657 * problem is that "good" TCP's do slow start at the beginning of data 658 * transmission. The means that until we send the first few ACK's the 659 * sender will sit on his end and only queue most of his data, because 660 * he can only send snd_cwnd unacked packets at any given time. For 661 * each ACK we send, he increments snd_cwnd and transmits more of his 662 * queue. -DaveM 663 */ 664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 665 { 666 struct tcp_sock *tp = tcp_sk(sk); 667 struct inet_connection_sock *icsk = inet_csk(sk); 668 u32 now; 669 670 inet_csk_schedule_ack(sk); 671 672 tcp_measure_rcv_mss(sk, skb); 673 674 tcp_rcv_rtt_measure(tp); 675 676 now = tcp_jiffies32; 677 678 if (!icsk->icsk_ack.ato) { 679 /* The _first_ data packet received, initialize 680 * delayed ACK engine. 681 */ 682 tcp_incr_quickack(sk); 683 icsk->icsk_ack.ato = TCP_ATO_MIN; 684 } else { 685 int m = now - icsk->icsk_ack.lrcvtime; 686 687 if (m <= TCP_ATO_MIN / 2) { 688 /* The fastest case is the first. */ 689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 690 } else if (m < icsk->icsk_ack.ato) { 691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 692 if (icsk->icsk_ack.ato > icsk->icsk_rto) 693 icsk->icsk_ack.ato = icsk->icsk_rto; 694 } else if (m > icsk->icsk_rto) { 695 /* Too long gap. Apparently sender failed to 696 * restart window, so that we send ACKs quickly. 697 */ 698 tcp_incr_quickack(sk); 699 sk_mem_reclaim(sk); 700 } 701 } 702 icsk->icsk_ack.lrcvtime = now; 703 704 tcp_ecn_check_ce(tp, skb); 705 706 if (skb->len >= 128) 707 tcp_grow_window(sk, skb); 708 } 709 710 /* Called to compute a smoothed rtt estimate. The data fed to this 711 * routine either comes from timestamps, or from segments that were 712 * known _not_ to have been retransmitted [see Karn/Partridge 713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 714 * piece by Van Jacobson. 715 * NOTE: the next three routines used to be one big routine. 716 * To save cycles in the RFC 1323 implementation it was better to break 717 * it up into three procedures. -- erics 718 */ 719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 long m = mrtt_us; /* RTT */ 723 u32 srtt = tp->srtt_us; 724 725 /* The following amusing code comes from Jacobson's 726 * article in SIGCOMM '88. Note that rtt and mdev 727 * are scaled versions of rtt and mean deviation. 728 * This is designed to be as fast as possible 729 * m stands for "measurement". 730 * 731 * On a 1990 paper the rto value is changed to: 732 * RTO = rtt + 4 * mdev 733 * 734 * Funny. This algorithm seems to be very broken. 735 * These formulae increase RTO, when it should be decreased, increase 736 * too slowly, when it should be increased quickly, decrease too quickly 737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 738 * does not matter how to _calculate_ it. Seems, it was trap 739 * that VJ failed to avoid. 8) 740 */ 741 if (srtt != 0) { 742 m -= (srtt >> 3); /* m is now error in rtt est */ 743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 744 if (m < 0) { 745 m = -m; /* m is now abs(error) */ 746 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 747 /* This is similar to one of Eifel findings. 748 * Eifel blocks mdev updates when rtt decreases. 749 * This solution is a bit different: we use finer gain 750 * for mdev in this case (alpha*beta). 751 * Like Eifel it also prevents growth of rto, 752 * but also it limits too fast rto decreases, 753 * happening in pure Eifel. 754 */ 755 if (m > 0) 756 m >>= 3; 757 } else { 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 } 760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 761 if (tp->mdev_us > tp->mdev_max_us) { 762 tp->mdev_max_us = tp->mdev_us; 763 if (tp->mdev_max_us > tp->rttvar_us) 764 tp->rttvar_us = tp->mdev_max_us; 765 } 766 if (after(tp->snd_una, tp->rtt_seq)) { 767 if (tp->mdev_max_us < tp->rttvar_us) 768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 769 tp->rtt_seq = tp->snd_nxt; 770 tp->mdev_max_us = tcp_rto_min_us(sk); 771 } 772 } else { 773 /* no previous measure. */ 774 srtt = m << 3; /* take the measured time to be rtt */ 775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 777 tp->mdev_max_us = tp->rttvar_us; 778 tp->rtt_seq = tp->snd_nxt; 779 } 780 tp->srtt_us = max(1U, srtt); 781 } 782 783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 784 * Note: TCP stack does not yet implement pacing. 785 * FQ packet scheduler can be used to implement cheap but effective 786 * TCP pacing, to smooth the burst on large writes when packets 787 * in flight is significantly lower than cwnd (or rwin) 788 */ 789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 791 792 static void tcp_update_pacing_rate(struct sock *sk) 793 { 794 const struct tcp_sock *tp = tcp_sk(sk); 795 u64 rate; 796 797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 799 800 /* current rate is (cwnd * mss) / srtt 801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 802 * In Congestion Avoidance phase, set it to 120 % the current rate. 803 * 804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 806 * end of slow start and should slow down. 807 */ 808 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 809 rate *= sysctl_tcp_pacing_ss_ratio; 810 else 811 rate *= sysctl_tcp_pacing_ca_ratio; 812 813 rate *= max(tp->snd_cwnd, tp->packets_out); 814 815 if (likely(tp->srtt_us)) 816 do_div(rate, tp->srtt_us); 817 818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 819 * without any lock. We want to make sure compiler wont store 820 * intermediate values in this location. 821 */ 822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 823 sk->sk_max_pacing_rate); 824 } 825 826 /* Calculate rto without backoff. This is the second half of Van Jacobson's 827 * routine referred to above. 828 */ 829 static void tcp_set_rto(struct sock *sk) 830 { 831 const struct tcp_sock *tp = tcp_sk(sk); 832 /* Old crap is replaced with new one. 8) 833 * 834 * More seriously: 835 * 1. If rtt variance happened to be less 50msec, it is hallucination. 836 * It cannot be less due to utterly erratic ACK generation made 837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 838 * to do with delayed acks, because at cwnd>2 true delack timeout 839 * is invisible. Actually, Linux-2.4 also generates erratic 840 * ACKs in some circumstances. 841 */ 842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 843 844 /* 2. Fixups made earlier cannot be right. 845 * If we do not estimate RTO correctly without them, 846 * all the algo is pure shit and should be replaced 847 * with correct one. It is exactly, which we pretend to do. 848 */ 849 850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 851 * guarantees that rto is higher. 852 */ 853 tcp_bound_rto(sk); 854 } 855 856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 857 { 858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 859 860 if (!cwnd) 861 cwnd = TCP_INIT_CWND; 862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 863 } 864 865 /* 866 * Packet counting of FACK is based on in-order assumptions, therefore TCP 867 * disables it when reordering is detected 868 */ 869 void tcp_disable_fack(struct tcp_sock *tp) 870 { 871 /* RFC3517 uses different metric in lost marker => reset on change */ 872 if (tcp_is_fack(tp)) 873 tp->lost_skb_hint = NULL; 874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 875 } 876 877 /* Take a notice that peer is sending D-SACKs */ 878 static void tcp_dsack_seen(struct tcp_sock *tp) 879 { 880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 881 } 882 883 static void tcp_update_reordering(struct sock *sk, const int metric, 884 const int ts) 885 { 886 struct tcp_sock *tp = tcp_sk(sk); 887 int mib_idx; 888 889 if (WARN_ON_ONCE(metric < 0)) 890 return; 891 892 if (metric > tp->reordering) { 893 tp->reordering = min(sysctl_tcp_max_reordering, metric); 894 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 tp->fackets_out, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tcp_disable_fack(tp); 904 } 905 906 tp->rack.reord = 1; 907 908 /* This exciting event is worth to be remembered. 8) */ 909 if (ts) 910 mib_idx = LINUX_MIB_TCPTSREORDER; 911 else if (tcp_is_reno(tp)) 912 mib_idx = LINUX_MIB_TCPRENOREORDER; 913 else if (tcp_is_fack(tp)) 914 mib_idx = LINUX_MIB_TCPFACKREORDER; 915 else 916 mib_idx = LINUX_MIB_TCPSACKREORDER; 917 918 NET_INC_STATS(sock_net(sk), mib_idx); 919 } 920 921 /* This must be called before lost_out is incremented */ 922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 923 { 924 if (!tp->retransmit_skb_hint || 925 before(TCP_SKB_CB(skb)->seq, 926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 927 tp->retransmit_skb_hint = skb; 928 } 929 930 /* Sum the number of packets on the wire we have marked as lost. 931 * There are two cases we care about here: 932 * a) Packet hasn't been marked lost (nor retransmitted), 933 * and this is the first loss. 934 * b) Packet has been marked both lost and retransmitted, 935 * and this means we think it was lost again. 936 */ 937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 __u8 sacked = TCP_SKB_CB(skb)->sacked; 940 941 if (!(sacked & TCPCB_LOST) || 942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 943 tp->lost += tcp_skb_pcount(skb); 944 } 945 946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 947 { 948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 949 tcp_verify_retransmit_hint(tp, skb); 950 951 tp->lost_out += tcp_skb_pcount(skb); 952 tcp_sum_lost(tp, skb); 953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 954 } 955 } 956 957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 958 { 959 tcp_verify_retransmit_hint(tp, skb); 960 961 tcp_sum_lost(tp, skb); 962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 963 tp->lost_out += tcp_skb_pcount(skb); 964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 965 } 966 } 967 968 /* This procedure tags the retransmission queue when SACKs arrive. 969 * 970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 971 * Packets in queue with these bits set are counted in variables 972 * sacked_out, retrans_out and lost_out, correspondingly. 973 * 974 * Valid combinations are: 975 * Tag InFlight Description 976 * 0 1 - orig segment is in flight. 977 * S 0 - nothing flies, orig reached receiver. 978 * L 0 - nothing flies, orig lost by net. 979 * R 2 - both orig and retransmit are in flight. 980 * L|R 1 - orig is lost, retransmit is in flight. 981 * S|R 1 - orig reached receiver, retrans is still in flight. 982 * (L|S|R is logically valid, it could occur when L|R is sacked, 983 * but it is equivalent to plain S and code short-curcuits it to S. 984 * L|S is logically invalid, it would mean -1 packet in flight 8)) 985 * 986 * These 6 states form finite state machine, controlled by the following events: 987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 989 * 3. Loss detection event of two flavors: 990 * A. Scoreboard estimator decided the packet is lost. 991 * A'. Reno "three dupacks" marks head of queue lost. 992 * A''. Its FACK modification, head until snd.fack is lost. 993 * B. SACK arrives sacking SND.NXT at the moment, when the 994 * segment was retransmitted. 995 * 4. D-SACK added new rule: D-SACK changes any tag to S. 996 * 997 * It is pleasant to note, that state diagram turns out to be commutative, 998 * so that we are allowed not to be bothered by order of our actions, 999 * when multiple events arrive simultaneously. (see the function below). 1000 * 1001 * Reordering detection. 1002 * -------------------- 1003 * Reordering metric is maximal distance, which a packet can be displaced 1004 * in packet stream. With SACKs we can estimate it: 1005 * 1006 * 1. SACK fills old hole and the corresponding segment was not 1007 * ever retransmitted -> reordering. Alas, we cannot use it 1008 * when segment was retransmitted. 1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1010 * for retransmitted and already SACKed segment -> reordering.. 1011 * Both of these heuristics are not used in Loss state, when we cannot 1012 * account for retransmits accurately. 1013 * 1014 * SACK block validation. 1015 * ---------------------- 1016 * 1017 * SACK block range validation checks that the received SACK block fits to 1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1019 * Note that SND.UNA is not included to the range though being valid because 1020 * it means that the receiver is rather inconsistent with itself reporting 1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1022 * perfectly valid, however, in light of RFC2018 which explicitly states 1023 * that "SACK block MUST reflect the newest segment. Even if the newest 1024 * segment is going to be discarded ...", not that it looks very clever 1025 * in case of head skb. Due to potentional receiver driven attacks, we 1026 * choose to avoid immediate execution of a walk in write queue due to 1027 * reneging and defer head skb's loss recovery to standard loss recovery 1028 * procedure that will eventually trigger (nothing forbids us doing this). 1029 * 1030 * Implements also blockage to start_seq wrap-around. Problem lies in the 1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1032 * there's no guarantee that it will be before snd_nxt (n). The problem 1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1034 * wrap (s_w): 1035 * 1036 * <- outs wnd -> <- wrapzone -> 1037 * u e n u_w e_w s n_w 1038 * | | | | | | | 1039 * |<------------+------+----- TCP seqno space --------------+---------->| 1040 * ...-- <2^31 ->| |<--------... 1041 * ...---- >2^31 ------>| |<--------... 1042 * 1043 * Current code wouldn't be vulnerable but it's better still to discard such 1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1047 * equal to the ideal case (infinite seqno space without wrap caused issues). 1048 * 1049 * With D-SACK the lower bound is extended to cover sequence space below 1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1051 * again, D-SACK block must not to go across snd_una (for the same reason as 1052 * for the normal SACK blocks, explained above). But there all simplicity 1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1054 * fully below undo_marker they do not affect behavior in anyway and can 1055 * therefore be safely ignored. In rare cases (which are more or less 1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1057 * fragmentation and packet reordering past skb's retransmission. To consider 1058 * them correctly, the acceptable range must be extended even more though 1059 * the exact amount is rather hard to quantify. However, tp->max_window can 1060 * be used as an exaggerated estimate. 1061 */ 1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1063 u32 start_seq, u32 end_seq) 1064 { 1065 /* Too far in future, or reversed (interpretation is ambiguous) */ 1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1067 return false; 1068 1069 /* Nasty start_seq wrap-around check (see comments above) */ 1070 if (!before(start_seq, tp->snd_nxt)) 1071 return false; 1072 1073 /* In outstanding window? ...This is valid exit for D-SACKs too. 1074 * start_seq == snd_una is non-sensical (see comments above) 1075 */ 1076 if (after(start_seq, tp->snd_una)) 1077 return true; 1078 1079 if (!is_dsack || !tp->undo_marker) 1080 return false; 1081 1082 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1083 if (after(end_seq, tp->snd_una)) 1084 return false; 1085 1086 if (!before(start_seq, tp->undo_marker)) 1087 return true; 1088 1089 /* Too old */ 1090 if (!after(end_seq, tp->undo_marker)) 1091 return false; 1092 1093 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1094 * start_seq < undo_marker and end_seq >= undo_marker. 1095 */ 1096 return !before(start_seq, end_seq - tp->max_window); 1097 } 1098 1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1100 struct tcp_sack_block_wire *sp, int num_sacks, 1101 u32 prior_snd_una) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1106 bool dup_sack = false; 1107 1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1112 } else if (num_sacks > 1) { 1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1115 1116 if (!after(end_seq_0, end_seq_1) && 1117 !before(start_seq_0, start_seq_1)) { 1118 dup_sack = true; 1119 tcp_dsack_seen(tp); 1120 NET_INC_STATS(sock_net(sk), 1121 LINUX_MIB_TCPDSACKOFORECV); 1122 } 1123 } 1124 1125 /* D-SACK for already forgotten data... Do dumb counting. */ 1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1127 !after(end_seq_0, prior_snd_una) && 1128 after(end_seq_0, tp->undo_marker)) 1129 tp->undo_retrans--; 1130 1131 return dup_sack; 1132 } 1133 1134 struct tcp_sacktag_state { 1135 int reord; 1136 int fack_count; 1137 /* Timestamps for earliest and latest never-retransmitted segment 1138 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1139 * but congestion control should still get an accurate delay signal. 1140 */ 1141 u64 first_sackt; 1142 u64 last_sackt; 1143 struct rate_sample *rate; 1144 int flag; 1145 }; 1146 1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1148 * the incoming SACK may not exactly match but we can find smaller MSS 1149 * aligned portion of it that matches. Therefore we might need to fragment 1150 * which may fail and creates some hassle (caller must handle error case 1151 * returns). 1152 * 1153 * FIXME: this could be merged to shift decision code 1154 */ 1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1156 u32 start_seq, u32 end_seq) 1157 { 1158 int err; 1159 bool in_sack; 1160 unsigned int pkt_len; 1161 unsigned int mss; 1162 1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1165 1166 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1168 mss = tcp_skb_mss(skb); 1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1170 1171 if (!in_sack) { 1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 pkt_len = mss; 1175 } else { 1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1177 if (pkt_len < mss) 1178 return -EINVAL; 1179 } 1180 1181 /* Round if necessary so that SACKs cover only full MSSes 1182 * and/or the remaining small portion (if present) 1183 */ 1184 if (pkt_len > mss) { 1185 unsigned int new_len = (pkt_len / mss) * mss; 1186 if (!in_sack && new_len < pkt_len) 1187 new_len += mss; 1188 pkt_len = new_len; 1189 } 1190 1191 if (pkt_len >= skb->len && !in_sack) 1192 return 0; 1193 1194 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1195 if (err < 0) 1196 return err; 1197 } 1198 1199 return in_sack; 1200 } 1201 1202 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1203 static u8 tcp_sacktag_one(struct sock *sk, 1204 struct tcp_sacktag_state *state, u8 sacked, 1205 u32 start_seq, u32 end_seq, 1206 int dup_sack, int pcount, 1207 u64 xmit_time) 1208 { 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 int fack_count = state->fack_count; 1211 1212 /* Account D-SACK for retransmitted packet. */ 1213 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1214 if (tp->undo_marker && tp->undo_retrans > 0 && 1215 after(end_seq, tp->undo_marker)) 1216 tp->undo_retrans--; 1217 if (sacked & TCPCB_SACKED_ACKED) 1218 state->reord = min(fack_count, state->reord); 1219 } 1220 1221 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1222 if (!after(end_seq, tp->snd_una)) 1223 return sacked; 1224 1225 if (!(sacked & TCPCB_SACKED_ACKED)) { 1226 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1227 1228 if (sacked & TCPCB_SACKED_RETRANS) { 1229 /* If the segment is not tagged as lost, 1230 * we do not clear RETRANS, believing 1231 * that retransmission is still in flight. 1232 */ 1233 if (sacked & TCPCB_LOST) { 1234 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1235 tp->lost_out -= pcount; 1236 tp->retrans_out -= pcount; 1237 } 1238 } else { 1239 if (!(sacked & TCPCB_RETRANS)) { 1240 /* New sack for not retransmitted frame, 1241 * which was in hole. It is reordering. 1242 */ 1243 if (before(start_seq, 1244 tcp_highest_sack_seq(tp))) 1245 state->reord = min(fack_count, 1246 state->reord); 1247 if (!after(end_seq, tp->high_seq)) 1248 state->flag |= FLAG_ORIG_SACK_ACKED; 1249 if (state->first_sackt == 0) 1250 state->first_sackt = xmit_time; 1251 state->last_sackt = xmit_time; 1252 } 1253 1254 if (sacked & TCPCB_LOST) { 1255 sacked &= ~TCPCB_LOST; 1256 tp->lost_out -= pcount; 1257 } 1258 } 1259 1260 sacked |= TCPCB_SACKED_ACKED; 1261 state->flag |= FLAG_DATA_SACKED; 1262 tp->sacked_out += pcount; 1263 tp->delivered += pcount; /* Out-of-order packets delivered */ 1264 1265 fack_count += pcount; 1266 1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1268 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1270 tp->lost_cnt_hint += pcount; 1271 1272 if (fack_count > tp->fackets_out) 1273 tp->fackets_out = fack_count; 1274 } 1275 1276 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1277 * frames and clear it. undo_retrans is decreased above, L|R frames 1278 * are accounted above as well. 1279 */ 1280 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1281 sacked &= ~TCPCB_SACKED_RETRANS; 1282 tp->retrans_out -= pcount; 1283 } 1284 1285 return sacked; 1286 } 1287 1288 /* Shift newly-SACKed bytes from this skb to the immediately previous 1289 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1290 */ 1291 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1292 struct tcp_sacktag_state *state, 1293 unsigned int pcount, int shifted, int mss, 1294 bool dup_sack) 1295 { 1296 struct tcp_sock *tp = tcp_sk(sk); 1297 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1298 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1299 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1300 1301 BUG_ON(!pcount); 1302 1303 /* Adjust counters and hints for the newly sacked sequence 1304 * range but discard the return value since prev is already 1305 * marked. We must tag the range first because the seq 1306 * advancement below implicitly advances 1307 * tcp_highest_sack_seq() when skb is highest_sack. 1308 */ 1309 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1310 start_seq, end_seq, dup_sack, pcount, 1311 skb->skb_mstamp); 1312 tcp_rate_skb_delivered(sk, skb, state->rate); 1313 1314 if (skb == tp->lost_skb_hint) 1315 tp->lost_cnt_hint += pcount; 1316 1317 TCP_SKB_CB(prev)->end_seq += shifted; 1318 TCP_SKB_CB(skb)->seq += shifted; 1319 1320 tcp_skb_pcount_add(prev, pcount); 1321 BUG_ON(tcp_skb_pcount(skb) < pcount); 1322 tcp_skb_pcount_add(skb, -pcount); 1323 1324 /* When we're adding to gso_segs == 1, gso_size will be zero, 1325 * in theory this shouldn't be necessary but as long as DSACK 1326 * code can come after this skb later on it's better to keep 1327 * setting gso_size to something. 1328 */ 1329 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1330 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1331 1332 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1333 if (tcp_skb_pcount(skb) <= 1) 1334 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1335 1336 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1337 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1338 1339 if (skb->len > 0) { 1340 BUG_ON(!tcp_skb_pcount(skb)); 1341 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1342 return false; 1343 } 1344 1345 /* Whole SKB was eaten :-) */ 1346 1347 if (skb == tp->retransmit_skb_hint) 1348 tp->retransmit_skb_hint = prev; 1349 if (skb == tp->lost_skb_hint) { 1350 tp->lost_skb_hint = prev; 1351 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1352 } 1353 1354 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1355 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1356 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1357 TCP_SKB_CB(prev)->end_seq++; 1358 1359 if (skb == tcp_highest_sack(sk)) 1360 tcp_advance_highest_sack(sk, skb); 1361 1362 tcp_skb_collapse_tstamp(prev, skb); 1363 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1364 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1365 1366 tcp_unlink_write_queue(skb, sk); 1367 sk_wmem_free_skb(sk, skb); 1368 1369 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1370 1371 return true; 1372 } 1373 1374 /* I wish gso_size would have a bit more sane initialization than 1375 * something-or-zero which complicates things 1376 */ 1377 static int tcp_skb_seglen(const struct sk_buff *skb) 1378 { 1379 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1380 } 1381 1382 /* Shifting pages past head area doesn't work */ 1383 static int skb_can_shift(const struct sk_buff *skb) 1384 { 1385 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1386 } 1387 1388 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1389 * skb. 1390 */ 1391 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1392 struct tcp_sacktag_state *state, 1393 u32 start_seq, u32 end_seq, 1394 bool dup_sack) 1395 { 1396 struct tcp_sock *tp = tcp_sk(sk); 1397 struct sk_buff *prev; 1398 int mss; 1399 int pcount = 0; 1400 int len; 1401 int in_sack; 1402 1403 if (!sk_can_gso(sk)) 1404 goto fallback; 1405 1406 /* Normally R but no L won't result in plain S */ 1407 if (!dup_sack && 1408 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1409 goto fallback; 1410 if (!skb_can_shift(skb)) 1411 goto fallback; 1412 /* This frame is about to be dropped (was ACKed). */ 1413 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1414 goto fallback; 1415 1416 /* Can only happen with delayed DSACK + discard craziness */ 1417 if (unlikely(skb == tcp_write_queue_head(sk))) 1418 goto fallback; 1419 prev = tcp_write_queue_prev(sk, skb); 1420 1421 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1422 goto fallback; 1423 1424 if (!tcp_skb_can_collapse_to(prev)) 1425 goto fallback; 1426 1427 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1428 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1429 1430 if (in_sack) { 1431 len = skb->len; 1432 pcount = tcp_skb_pcount(skb); 1433 mss = tcp_skb_seglen(skb); 1434 1435 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1436 * drop this restriction as unnecessary 1437 */ 1438 if (mss != tcp_skb_seglen(prev)) 1439 goto fallback; 1440 } else { 1441 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1442 goto noop; 1443 /* CHECKME: This is non-MSS split case only?, this will 1444 * cause skipped skbs due to advancing loop btw, original 1445 * has that feature too 1446 */ 1447 if (tcp_skb_pcount(skb) <= 1) 1448 goto noop; 1449 1450 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1451 if (!in_sack) { 1452 /* TODO: head merge to next could be attempted here 1453 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1454 * though it might not be worth of the additional hassle 1455 * 1456 * ...we can probably just fallback to what was done 1457 * previously. We could try merging non-SACKed ones 1458 * as well but it probably isn't going to buy off 1459 * because later SACKs might again split them, and 1460 * it would make skb timestamp tracking considerably 1461 * harder problem. 1462 */ 1463 goto fallback; 1464 } 1465 1466 len = end_seq - TCP_SKB_CB(skb)->seq; 1467 BUG_ON(len < 0); 1468 BUG_ON(len > skb->len); 1469 1470 /* MSS boundaries should be honoured or else pcount will 1471 * severely break even though it makes things bit trickier. 1472 * Optimize common case to avoid most of the divides 1473 */ 1474 mss = tcp_skb_mss(skb); 1475 1476 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1477 * drop this restriction as unnecessary 1478 */ 1479 if (mss != tcp_skb_seglen(prev)) 1480 goto fallback; 1481 1482 if (len == mss) { 1483 pcount = 1; 1484 } else if (len < mss) { 1485 goto noop; 1486 } else { 1487 pcount = len / mss; 1488 len = pcount * mss; 1489 } 1490 } 1491 1492 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1493 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1494 goto fallback; 1495 1496 if (!skb_shift(prev, skb, len)) 1497 goto fallback; 1498 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1499 goto out; 1500 1501 /* Hole filled allows collapsing with the next as well, this is very 1502 * useful when hole on every nth skb pattern happens 1503 */ 1504 if (prev == tcp_write_queue_tail(sk)) 1505 goto out; 1506 skb = tcp_write_queue_next(sk, prev); 1507 1508 if (!skb_can_shift(skb) || 1509 (skb == tcp_send_head(sk)) || 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1511 (mss != tcp_skb_seglen(skb))) 1512 goto out; 1513 1514 len = skb->len; 1515 if (skb_shift(prev, skb, len)) { 1516 pcount += tcp_skb_pcount(skb); 1517 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1518 } 1519 1520 out: 1521 state->fack_count += pcount; 1522 return prev; 1523 1524 noop: 1525 return skb; 1526 1527 fallback: 1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1529 return NULL; 1530 } 1531 1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1533 struct tcp_sack_block *next_dup, 1534 struct tcp_sacktag_state *state, 1535 u32 start_seq, u32 end_seq, 1536 bool dup_sack_in) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 struct sk_buff *tmp; 1540 1541 tcp_for_write_queue_from(skb, sk) { 1542 int in_sack = 0; 1543 bool dup_sack = dup_sack_in; 1544 1545 if (skb == tcp_send_head(sk)) 1546 break; 1547 1548 /* queue is in-order => we can short-circuit the walk early */ 1549 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1550 break; 1551 1552 if (next_dup && 1553 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1554 in_sack = tcp_match_skb_to_sack(sk, skb, 1555 next_dup->start_seq, 1556 next_dup->end_seq); 1557 if (in_sack > 0) 1558 dup_sack = true; 1559 } 1560 1561 /* skb reference here is a bit tricky to get right, since 1562 * shifting can eat and free both this skb and the next, 1563 * so not even _safe variant of the loop is enough. 1564 */ 1565 if (in_sack <= 0) { 1566 tmp = tcp_shift_skb_data(sk, skb, state, 1567 start_seq, end_seq, dup_sack); 1568 if (tmp) { 1569 if (tmp != skb) { 1570 skb = tmp; 1571 continue; 1572 } 1573 1574 in_sack = 0; 1575 } else { 1576 in_sack = tcp_match_skb_to_sack(sk, skb, 1577 start_seq, 1578 end_seq); 1579 } 1580 } 1581 1582 if (unlikely(in_sack < 0)) 1583 break; 1584 1585 if (in_sack) { 1586 TCP_SKB_CB(skb)->sacked = 1587 tcp_sacktag_one(sk, 1588 state, 1589 TCP_SKB_CB(skb)->sacked, 1590 TCP_SKB_CB(skb)->seq, 1591 TCP_SKB_CB(skb)->end_seq, 1592 dup_sack, 1593 tcp_skb_pcount(skb), 1594 skb->skb_mstamp); 1595 tcp_rate_skb_delivered(sk, skb, state->rate); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 1602 state->fack_count += tcp_skb_pcount(skb); 1603 } 1604 return skb; 1605 } 1606 1607 /* Avoid all extra work that is being done by sacktag while walking in 1608 * a normal way 1609 */ 1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 tcp_for_write_queue_from(skb, sk) { 1615 if (skb == tcp_send_head(sk)) 1616 break; 1617 1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1619 break; 1620 1621 state->fack_count += tcp_skb_pcount(skb); 1622 } 1623 return skb; 1624 } 1625 1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1627 struct sock *sk, 1628 struct tcp_sack_block *next_dup, 1629 struct tcp_sacktag_state *state, 1630 u32 skip_to_seq) 1631 { 1632 if (!next_dup) 1633 return skb; 1634 1635 if (before(next_dup->start_seq, skip_to_seq)) { 1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1637 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1638 next_dup->start_seq, next_dup->end_seq, 1639 1); 1640 } 1641 1642 return skb; 1643 } 1644 1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1646 { 1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1648 } 1649 1650 static int 1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1652 u32 prior_snd_una, struct tcp_sacktag_state *state) 1653 { 1654 struct tcp_sock *tp = tcp_sk(sk); 1655 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1656 TCP_SKB_CB(ack_skb)->sacked); 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1658 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1659 struct tcp_sack_block *cache; 1660 struct sk_buff *skb; 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1662 int used_sacks; 1663 bool found_dup_sack = false; 1664 int i, j; 1665 int first_sack_index; 1666 1667 state->flag = 0; 1668 state->reord = tp->packets_out; 1669 1670 if (!tp->sacked_out) { 1671 if (WARN_ON(tp->fackets_out)) 1672 tp->fackets_out = 0; 1673 tcp_highest_sack_reset(sk); 1674 } 1675 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1677 num_sacks, prior_snd_una); 1678 if (found_dup_sack) { 1679 state->flag |= FLAG_DSACKING_ACK; 1680 tp->delivered++; /* A spurious retransmission is delivered */ 1681 } 1682 1683 /* Eliminate too old ACKs, but take into 1684 * account more or less fresh ones, they can 1685 * contain valid SACK info. 1686 */ 1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1688 return 0; 1689 1690 if (!tp->packets_out) 1691 goto out; 1692 1693 used_sacks = 0; 1694 first_sack_index = 0; 1695 for (i = 0; i < num_sacks; i++) { 1696 bool dup_sack = !i && found_dup_sack; 1697 1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1700 1701 if (!tcp_is_sackblock_valid(tp, dup_sack, 1702 sp[used_sacks].start_seq, 1703 sp[used_sacks].end_seq)) { 1704 int mib_idx; 1705 1706 if (dup_sack) { 1707 if (!tp->undo_marker) 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1709 else 1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1711 } else { 1712 /* Don't count olds caused by ACK reordering */ 1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1714 !after(sp[used_sacks].end_seq, tp->snd_una)) 1715 continue; 1716 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1717 } 1718 1719 NET_INC_STATS(sock_net(sk), mib_idx); 1720 if (i == 0) 1721 first_sack_index = -1; 1722 continue; 1723 } 1724 1725 /* Ignore very old stuff early */ 1726 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1727 continue; 1728 1729 used_sacks++; 1730 } 1731 1732 /* order SACK blocks to allow in order walk of the retrans queue */ 1733 for (i = used_sacks - 1; i > 0; i--) { 1734 for (j = 0; j < i; j++) { 1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1736 swap(sp[j], sp[j + 1]); 1737 1738 /* Track where the first SACK block goes to */ 1739 if (j == first_sack_index) 1740 first_sack_index = j + 1; 1741 } 1742 } 1743 } 1744 1745 skb = tcp_write_queue_head(sk); 1746 state->fack_count = 0; 1747 i = 0; 1748 1749 if (!tp->sacked_out) { 1750 /* It's already past, so skip checking against it */ 1751 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1752 } else { 1753 cache = tp->recv_sack_cache; 1754 /* Skip empty blocks in at head of the cache */ 1755 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1756 !cache->end_seq) 1757 cache++; 1758 } 1759 1760 while (i < used_sacks) { 1761 u32 start_seq = sp[i].start_seq; 1762 u32 end_seq = sp[i].end_seq; 1763 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1764 struct tcp_sack_block *next_dup = NULL; 1765 1766 if (found_dup_sack && ((i + 1) == first_sack_index)) 1767 next_dup = &sp[i + 1]; 1768 1769 /* Skip too early cached blocks */ 1770 while (tcp_sack_cache_ok(tp, cache) && 1771 !before(start_seq, cache->end_seq)) 1772 cache++; 1773 1774 /* Can skip some work by looking recv_sack_cache? */ 1775 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1776 after(end_seq, cache->start_seq)) { 1777 1778 /* Head todo? */ 1779 if (before(start_seq, cache->start_seq)) { 1780 skb = tcp_sacktag_skip(skb, sk, state, 1781 start_seq); 1782 skb = tcp_sacktag_walk(skb, sk, next_dup, 1783 state, 1784 start_seq, 1785 cache->start_seq, 1786 dup_sack); 1787 } 1788 1789 /* Rest of the block already fully processed? */ 1790 if (!after(end_seq, cache->end_seq)) 1791 goto advance_sp; 1792 1793 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1794 state, 1795 cache->end_seq); 1796 1797 /* ...tail remains todo... */ 1798 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1799 /* ...but better entrypoint exists! */ 1800 skb = tcp_highest_sack(sk); 1801 if (!skb) 1802 break; 1803 state->fack_count = tp->fackets_out; 1804 cache++; 1805 goto walk; 1806 } 1807 1808 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1809 /* Check overlap against next cached too (past this one already) */ 1810 cache++; 1811 continue; 1812 } 1813 1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1815 skb = tcp_highest_sack(sk); 1816 if (!skb) 1817 break; 1818 state->fack_count = tp->fackets_out; 1819 } 1820 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1821 1822 walk: 1823 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1824 start_seq, end_seq, dup_sack); 1825 1826 advance_sp: 1827 i++; 1828 } 1829 1830 /* Clear the head of the cache sack blocks so we can skip it next time */ 1831 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1832 tp->recv_sack_cache[i].start_seq = 0; 1833 tp->recv_sack_cache[i].end_seq = 0; 1834 } 1835 for (j = 0; j < used_sacks; j++) 1836 tp->recv_sack_cache[i++] = sp[j]; 1837 1838 if ((state->reord < tp->fackets_out) && 1839 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1840 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1841 1842 tcp_verify_left_out(tp); 1843 out: 1844 1845 #if FASTRETRANS_DEBUG > 0 1846 WARN_ON((int)tp->sacked_out < 0); 1847 WARN_ON((int)tp->lost_out < 0); 1848 WARN_ON((int)tp->retrans_out < 0); 1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1850 #endif 1851 return state->flag; 1852 } 1853 1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1856 */ 1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1858 { 1859 u32 holes; 1860 1861 holes = max(tp->lost_out, 1U); 1862 holes = min(holes, tp->packets_out); 1863 1864 if ((tp->sacked_out + holes) > tp->packets_out) { 1865 tp->sacked_out = tp->packets_out - holes; 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 /* If we receive more dupacks than we expected counting segments 1872 * in assumption of absent reordering, interpret this as reordering. 1873 * The only another reason could be bug in receiver TCP. 1874 */ 1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1876 { 1877 struct tcp_sock *tp = tcp_sk(sk); 1878 if (tcp_limit_reno_sacked(tp)) 1879 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1880 } 1881 1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1883 1884 static void tcp_add_reno_sack(struct sock *sk) 1885 { 1886 struct tcp_sock *tp = tcp_sk(sk); 1887 u32 prior_sacked = tp->sacked_out; 1888 1889 tp->sacked_out++; 1890 tcp_check_reno_reordering(sk, 0); 1891 if (tp->sacked_out > prior_sacked) 1892 tp->delivered++; /* Some out-of-order packet is delivered */ 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1897 1898 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1899 { 1900 struct tcp_sock *tp = tcp_sk(sk); 1901 1902 if (acked > 0) { 1903 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1904 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1905 if (acked - 1 >= tp->sacked_out) 1906 tp->sacked_out = 0; 1907 else 1908 tp->sacked_out -= acked - 1; 1909 } 1910 tcp_check_reno_reordering(sk, acked); 1911 tcp_verify_left_out(tp); 1912 } 1913 1914 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1915 { 1916 tp->sacked_out = 0; 1917 } 1918 1919 void tcp_clear_retrans(struct tcp_sock *tp) 1920 { 1921 tp->retrans_out = 0; 1922 tp->lost_out = 0; 1923 tp->undo_marker = 0; 1924 tp->undo_retrans = -1; 1925 tp->fackets_out = 0; 1926 tp->sacked_out = 0; 1927 } 1928 1929 static inline void tcp_init_undo(struct tcp_sock *tp) 1930 { 1931 tp->undo_marker = tp->snd_una; 1932 /* Retransmission still in flight may cause DSACKs later. */ 1933 tp->undo_retrans = tp->retrans_out ? : -1; 1934 } 1935 1936 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1937 * and reset tags completely, otherwise preserve SACKs. If receiver 1938 * dropped its ofo queue, we will know this due to reneging detection. 1939 */ 1940 void tcp_enter_loss(struct sock *sk) 1941 { 1942 const struct inet_connection_sock *icsk = inet_csk(sk); 1943 struct tcp_sock *tp = tcp_sk(sk); 1944 struct net *net = sock_net(sk); 1945 struct sk_buff *skb; 1946 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1947 bool is_reneg; /* is receiver reneging on SACKs? */ 1948 bool mark_lost; 1949 1950 /* Reduce ssthresh if it has not yet been made inside this window. */ 1951 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1952 !after(tp->high_seq, tp->snd_una) || 1953 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1954 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1955 tp->prior_cwnd = tp->snd_cwnd; 1956 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1957 tcp_ca_event(sk, CA_EVENT_LOSS); 1958 tcp_init_undo(tp); 1959 } 1960 tp->snd_cwnd = 1; 1961 tp->snd_cwnd_cnt = 0; 1962 tp->snd_cwnd_stamp = tcp_jiffies32; 1963 1964 tp->retrans_out = 0; 1965 tp->lost_out = 0; 1966 1967 if (tcp_is_reno(tp)) 1968 tcp_reset_reno_sack(tp); 1969 1970 skb = tcp_write_queue_head(sk); 1971 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1972 if (is_reneg) { 1973 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1974 tp->sacked_out = 0; 1975 tp->fackets_out = 0; 1976 } 1977 tcp_clear_all_retrans_hints(tp); 1978 1979 tcp_for_write_queue(skb, sk) { 1980 if (skb == tcp_send_head(sk)) 1981 break; 1982 1983 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1984 is_reneg); 1985 if (mark_lost) 1986 tcp_sum_lost(tp, skb); 1987 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1988 if (mark_lost) { 1989 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1991 tp->lost_out += tcp_skb_pcount(skb); 1992 } 1993 } 1994 tcp_verify_left_out(tp); 1995 1996 /* Timeout in disordered state after receiving substantial DUPACKs 1997 * suggests that the degree of reordering is over-estimated. 1998 */ 1999 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2000 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2001 tp->reordering = min_t(unsigned int, tp->reordering, 2002 net->ipv4.sysctl_tcp_reordering); 2003 tcp_set_ca_state(sk, TCP_CA_Loss); 2004 tp->high_seq = tp->snd_nxt; 2005 tcp_ecn_queue_cwr(tp); 2006 2007 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2008 * loss recovery is underway except recurring timeout(s) on 2009 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2010 * 2011 * In theory F-RTO can be used repeatedly during loss recovery. 2012 * In practice this interacts badly with broken middle-boxes that 2013 * falsely raise the receive window, which results in repeated 2014 * timeouts and stop-and-go behavior. 2015 */ 2016 tp->frto = sysctl_tcp_frto && 2017 (new_recovery || icsk->icsk_retransmits) && 2018 !inet_csk(sk)->icsk_mtup.probe_size; 2019 } 2020 2021 /* If ACK arrived pointing to a remembered SACK, it means that our 2022 * remembered SACKs do not reflect real state of receiver i.e. 2023 * receiver _host_ is heavily congested (or buggy). 2024 * 2025 * To avoid big spurious retransmission bursts due to transient SACK 2026 * scoreboard oddities that look like reneging, we give the receiver a 2027 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2028 * restore sanity to the SACK scoreboard. If the apparent reneging 2029 * persists until this RTO then we'll clear the SACK scoreboard. 2030 */ 2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2032 { 2033 if (flag & FLAG_SACK_RENEGING) { 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2036 msecs_to_jiffies(10)); 2037 2038 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2039 delay, TCP_RTO_MAX); 2040 return true; 2041 } 2042 return false; 2043 } 2044 2045 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2046 { 2047 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2048 } 2049 2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2051 * counter when SACK is enabled (without SACK, sacked_out is used for 2052 * that purpose). 2053 * 2054 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2055 * segments up to the highest received SACK block so far and holes in 2056 * between them. 2057 * 2058 * With reordering, holes may still be in flight, so RFC3517 recovery 2059 * uses pure sacked_out (total number of SACKed segments) even though 2060 * it violates the RFC that uses duplicate ACKs, often these are equal 2061 * but when e.g. out-of-window ACKs or packet duplication occurs, 2062 * they differ. Since neither occurs due to loss, TCP should really 2063 * ignore them. 2064 */ 2065 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2066 { 2067 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2068 } 2069 2070 /* Linux NewReno/SACK/FACK/ECN state machine. 2071 * -------------------------------------- 2072 * 2073 * "Open" Normal state, no dubious events, fast path. 2074 * "Disorder" In all the respects it is "Open", 2075 * but requires a bit more attention. It is entered when 2076 * we see some SACKs or dupacks. It is split of "Open" 2077 * mainly to move some processing from fast path to slow one. 2078 * "CWR" CWND was reduced due to some Congestion Notification event. 2079 * It can be ECN, ICMP source quench, local device congestion. 2080 * "Recovery" CWND was reduced, we are fast-retransmitting. 2081 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2082 * 2083 * tcp_fastretrans_alert() is entered: 2084 * - each incoming ACK, if state is not "Open" 2085 * - when arrived ACK is unusual, namely: 2086 * * SACK 2087 * * Duplicate ACK. 2088 * * ECN ECE. 2089 * 2090 * Counting packets in flight is pretty simple. 2091 * 2092 * in_flight = packets_out - left_out + retrans_out 2093 * 2094 * packets_out is SND.NXT-SND.UNA counted in packets. 2095 * 2096 * retrans_out is number of retransmitted segments. 2097 * 2098 * left_out is number of segments left network, but not ACKed yet. 2099 * 2100 * left_out = sacked_out + lost_out 2101 * 2102 * sacked_out: Packets, which arrived to receiver out of order 2103 * and hence not ACKed. With SACKs this number is simply 2104 * amount of SACKed data. Even without SACKs 2105 * it is easy to give pretty reliable estimate of this number, 2106 * counting duplicate ACKs. 2107 * 2108 * lost_out: Packets lost by network. TCP has no explicit 2109 * "loss notification" feedback from network (for now). 2110 * It means that this number can be only _guessed_. 2111 * Actually, it is the heuristics to predict lossage that 2112 * distinguishes different algorithms. 2113 * 2114 * F.e. after RTO, when all the queue is considered as lost, 2115 * lost_out = packets_out and in_flight = retrans_out. 2116 * 2117 * Essentially, we have now a few algorithms detecting 2118 * lost packets. 2119 * 2120 * If the receiver supports SACK: 2121 * 2122 * RFC6675/3517: It is the conventional algorithm. A packet is 2123 * considered lost if the number of higher sequence packets 2124 * SACKed is greater than or equal the DUPACK thoreshold 2125 * (reordering). This is implemented in tcp_mark_head_lost and 2126 * tcp_update_scoreboard. 2127 * 2128 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2129 * (2017-) that checks timing instead of counting DUPACKs. 2130 * Essentially a packet is considered lost if it's not S/ACKed 2131 * after RTT + reordering_window, where both metrics are 2132 * dynamically measured and adjusted. This is implemented in 2133 * tcp_rack_mark_lost. 2134 * 2135 * FACK (Disabled by default. Subsumbed by RACK): 2136 * It is the simplest heuristics. As soon as we decided 2137 * that something is lost, we decide that _all_ not SACKed 2138 * packets until the most forward SACK are lost. I.e. 2139 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2140 * It is absolutely correct estimate, if network does not reorder 2141 * packets. And it loses any connection to reality when reordering 2142 * takes place. We use FACK by default until reordering 2143 * is suspected on the path to this destination. 2144 * 2145 * If the receiver does not support SACK: 2146 * 2147 * NewReno (RFC6582): in Recovery we assume that one segment 2148 * is lost (classic Reno). While we are in Recovery and 2149 * a partial ACK arrives, we assume that one more packet 2150 * is lost (NewReno). This heuristics are the same in NewReno 2151 * and SACK. 2152 * 2153 * Really tricky (and requiring careful tuning) part of algorithm 2154 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2155 * The first determines the moment _when_ we should reduce CWND and, 2156 * hence, slow down forward transmission. In fact, it determines the moment 2157 * when we decide that hole is caused by loss, rather than by a reorder. 2158 * 2159 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2160 * holes, caused by lost packets. 2161 * 2162 * And the most logically complicated part of algorithm is undo 2163 * heuristics. We detect false retransmits due to both too early 2164 * fast retransmit (reordering) and underestimated RTO, analyzing 2165 * timestamps and D-SACKs. When we detect that some segments were 2166 * retransmitted by mistake and CWND reduction was wrong, we undo 2167 * window reduction and abort recovery phase. This logic is hidden 2168 * inside several functions named tcp_try_undo_<something>. 2169 */ 2170 2171 /* This function decides, when we should leave Disordered state 2172 * and enter Recovery phase, reducing congestion window. 2173 * 2174 * Main question: may we further continue forward transmission 2175 * with the same cwnd? 2176 */ 2177 static bool tcp_time_to_recover(struct sock *sk, int flag) 2178 { 2179 struct tcp_sock *tp = tcp_sk(sk); 2180 2181 /* Trick#1: The loss is proven. */ 2182 if (tp->lost_out) 2183 return true; 2184 2185 /* Not-A-Trick#2 : Classic rule... */ 2186 if (tcp_dupack_heuristics(tp) > tp->reordering) 2187 return true; 2188 2189 return false; 2190 } 2191 2192 /* Detect loss in event "A" above by marking head of queue up as lost. 2193 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2194 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2195 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2196 * the maximum SACKed segments to pass before reaching this limit. 2197 */ 2198 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2199 { 2200 struct tcp_sock *tp = tcp_sk(sk); 2201 struct sk_buff *skb; 2202 int cnt, oldcnt, lost; 2203 unsigned int mss; 2204 /* Use SACK to deduce losses of new sequences sent during recovery */ 2205 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2206 2207 WARN_ON(packets > tp->packets_out); 2208 if (tp->lost_skb_hint) { 2209 skb = tp->lost_skb_hint; 2210 cnt = tp->lost_cnt_hint; 2211 /* Head already handled? */ 2212 if (mark_head && skb != tcp_write_queue_head(sk)) 2213 return; 2214 } else { 2215 skb = tcp_write_queue_head(sk); 2216 cnt = 0; 2217 } 2218 2219 tcp_for_write_queue_from(skb, sk) { 2220 if (skb == tcp_send_head(sk)) 2221 break; 2222 /* TODO: do this better */ 2223 /* this is not the most efficient way to do this... */ 2224 tp->lost_skb_hint = skb; 2225 tp->lost_cnt_hint = cnt; 2226 2227 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2228 break; 2229 2230 oldcnt = cnt; 2231 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2233 cnt += tcp_skb_pcount(skb); 2234 2235 if (cnt > packets) { 2236 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2237 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2238 (oldcnt >= packets)) 2239 break; 2240 2241 mss = tcp_skb_mss(skb); 2242 /* If needed, chop off the prefix to mark as lost. */ 2243 lost = (packets - oldcnt) * mss; 2244 if (lost < skb->len && 2245 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2246 break; 2247 cnt = packets; 2248 } 2249 2250 tcp_skb_mark_lost(tp, skb); 2251 2252 if (mark_head) 2253 break; 2254 } 2255 tcp_verify_left_out(tp); 2256 } 2257 2258 /* Account newly detected lost packet(s) */ 2259 2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2261 { 2262 struct tcp_sock *tp = tcp_sk(sk); 2263 2264 if (tcp_is_reno(tp)) { 2265 tcp_mark_head_lost(sk, 1, 1); 2266 } else if (tcp_is_fack(tp)) { 2267 int lost = tp->fackets_out - tp->reordering; 2268 if (lost <= 0) 2269 lost = 1; 2270 tcp_mark_head_lost(sk, lost, 0); 2271 } else { 2272 int sacked_upto = tp->sacked_out - tp->reordering; 2273 if (sacked_upto >= 0) 2274 tcp_mark_head_lost(sk, sacked_upto, 0); 2275 else if (fast_rexmit) 2276 tcp_mark_head_lost(sk, 1, 1); 2277 } 2278 } 2279 2280 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2281 { 2282 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2283 before(tp->rx_opt.rcv_tsecr, when); 2284 } 2285 2286 /* skb is spurious retransmitted if the returned timestamp echo 2287 * reply is prior to the skb transmission time 2288 */ 2289 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2290 const struct sk_buff *skb) 2291 { 2292 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2293 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2294 } 2295 2296 /* Nothing was retransmitted or returned timestamp is less 2297 * than timestamp of the first retransmission. 2298 */ 2299 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2300 { 2301 return !tp->retrans_stamp || 2302 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2303 } 2304 2305 /* Undo procedures. */ 2306 2307 /* We can clear retrans_stamp when there are no retransmissions in the 2308 * window. It would seem that it is trivially available for us in 2309 * tp->retrans_out, however, that kind of assumptions doesn't consider 2310 * what will happen if errors occur when sending retransmission for the 2311 * second time. ...It could the that such segment has only 2312 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2313 * the head skb is enough except for some reneging corner cases that 2314 * are not worth the effort. 2315 * 2316 * Main reason for all this complexity is the fact that connection dying 2317 * time now depends on the validity of the retrans_stamp, in particular, 2318 * that successive retransmissions of a segment must not advance 2319 * retrans_stamp under any conditions. 2320 */ 2321 static bool tcp_any_retrans_done(const struct sock *sk) 2322 { 2323 const struct tcp_sock *tp = tcp_sk(sk); 2324 struct sk_buff *skb; 2325 2326 if (tp->retrans_out) 2327 return true; 2328 2329 skb = tcp_write_queue_head(sk); 2330 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2331 return true; 2332 2333 return false; 2334 } 2335 2336 static void DBGUNDO(struct sock *sk, const char *msg) 2337 { 2338 #if FASTRETRANS_DEBUG > 1 2339 struct tcp_sock *tp = tcp_sk(sk); 2340 struct inet_sock *inet = inet_sk(sk); 2341 2342 if (sk->sk_family == AF_INET) { 2343 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2344 msg, 2345 &inet->inet_daddr, ntohs(inet->inet_dport), 2346 tp->snd_cwnd, tcp_left_out(tp), 2347 tp->snd_ssthresh, tp->prior_ssthresh, 2348 tp->packets_out); 2349 } 2350 #if IS_ENABLED(CONFIG_IPV6) 2351 else if (sk->sk_family == AF_INET6) { 2352 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2353 msg, 2354 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2355 tp->snd_cwnd, tcp_left_out(tp), 2356 tp->snd_ssthresh, tp->prior_ssthresh, 2357 tp->packets_out); 2358 } 2359 #endif 2360 #endif 2361 } 2362 2363 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2364 { 2365 struct tcp_sock *tp = tcp_sk(sk); 2366 2367 if (unmark_loss) { 2368 struct sk_buff *skb; 2369 2370 tcp_for_write_queue(skb, sk) { 2371 if (skb == tcp_send_head(sk)) 2372 break; 2373 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2374 } 2375 tp->lost_out = 0; 2376 tcp_clear_all_retrans_hints(tp); 2377 } 2378 2379 if (tp->prior_ssthresh) { 2380 const struct inet_connection_sock *icsk = inet_csk(sk); 2381 2382 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2383 2384 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2385 tp->snd_ssthresh = tp->prior_ssthresh; 2386 tcp_ecn_withdraw_cwr(tp); 2387 } 2388 } 2389 tp->snd_cwnd_stamp = tcp_jiffies32; 2390 tp->undo_marker = 0; 2391 } 2392 2393 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2394 { 2395 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2396 } 2397 2398 /* People celebrate: "We love our President!" */ 2399 static bool tcp_try_undo_recovery(struct sock *sk) 2400 { 2401 struct tcp_sock *tp = tcp_sk(sk); 2402 2403 if (tcp_may_undo(tp)) { 2404 int mib_idx; 2405 2406 /* Happy end! We did not retransmit anything 2407 * or our original transmission succeeded. 2408 */ 2409 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2410 tcp_undo_cwnd_reduction(sk, false); 2411 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2412 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2413 else 2414 mib_idx = LINUX_MIB_TCPFULLUNDO; 2415 2416 NET_INC_STATS(sock_net(sk), mib_idx); 2417 } 2418 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2419 /* Hold old state until something *above* high_seq 2420 * is ACKed. For Reno it is MUST to prevent false 2421 * fast retransmits (RFC2582). SACK TCP is safe. */ 2422 if (!tcp_any_retrans_done(sk)) 2423 tp->retrans_stamp = 0; 2424 return true; 2425 } 2426 tcp_set_ca_state(sk, TCP_CA_Open); 2427 return false; 2428 } 2429 2430 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2431 static bool tcp_try_undo_dsack(struct sock *sk) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (tp->undo_marker && !tp->undo_retrans) { 2436 DBGUNDO(sk, "D-SACK"); 2437 tcp_undo_cwnd_reduction(sk, false); 2438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2439 return true; 2440 } 2441 return false; 2442 } 2443 2444 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2445 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2446 { 2447 struct tcp_sock *tp = tcp_sk(sk); 2448 2449 if (frto_undo || tcp_may_undo(tp)) { 2450 tcp_undo_cwnd_reduction(sk, true); 2451 2452 DBGUNDO(sk, "partial loss"); 2453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2454 if (frto_undo) 2455 NET_INC_STATS(sock_net(sk), 2456 LINUX_MIB_TCPSPURIOUSRTOS); 2457 inet_csk(sk)->icsk_retransmits = 0; 2458 if (frto_undo || tcp_is_sack(tp)) 2459 tcp_set_ca_state(sk, TCP_CA_Open); 2460 return true; 2461 } 2462 return false; 2463 } 2464 2465 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2466 * It computes the number of packets to send (sndcnt) based on packets newly 2467 * delivered: 2468 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2469 * cwnd reductions across a full RTT. 2470 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2471 * But when the retransmits are acked without further losses, PRR 2472 * slow starts cwnd up to ssthresh to speed up the recovery. 2473 */ 2474 static void tcp_init_cwnd_reduction(struct sock *sk) 2475 { 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 2478 tp->high_seq = tp->snd_nxt; 2479 tp->tlp_high_seq = 0; 2480 tp->snd_cwnd_cnt = 0; 2481 tp->prior_cwnd = tp->snd_cwnd; 2482 tp->prr_delivered = 0; 2483 tp->prr_out = 0; 2484 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2485 tcp_ecn_queue_cwr(tp); 2486 } 2487 2488 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2489 { 2490 struct tcp_sock *tp = tcp_sk(sk); 2491 int sndcnt = 0; 2492 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2493 2494 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2495 return; 2496 2497 tp->prr_delivered += newly_acked_sacked; 2498 if (delta < 0) { 2499 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2500 tp->prior_cwnd - 1; 2501 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2502 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2503 !(flag & FLAG_LOST_RETRANS)) { 2504 sndcnt = min_t(int, delta, 2505 max_t(int, tp->prr_delivered - tp->prr_out, 2506 newly_acked_sacked) + 1); 2507 } else { 2508 sndcnt = min(delta, newly_acked_sacked); 2509 } 2510 /* Force a fast retransmit upon entering fast recovery */ 2511 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2512 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2513 } 2514 2515 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2516 { 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 2519 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2520 return; 2521 2522 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2523 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2524 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2525 tp->snd_cwnd = tp->snd_ssthresh; 2526 tp->snd_cwnd_stamp = tcp_jiffies32; 2527 } 2528 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2529 } 2530 2531 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2532 void tcp_enter_cwr(struct sock *sk) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 2536 tp->prior_ssthresh = 0; 2537 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2538 tp->undo_marker = 0; 2539 tcp_init_cwnd_reduction(sk); 2540 tcp_set_ca_state(sk, TCP_CA_CWR); 2541 } 2542 } 2543 EXPORT_SYMBOL(tcp_enter_cwr); 2544 2545 static void tcp_try_keep_open(struct sock *sk) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 int state = TCP_CA_Open; 2549 2550 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2551 state = TCP_CA_Disorder; 2552 2553 if (inet_csk(sk)->icsk_ca_state != state) { 2554 tcp_set_ca_state(sk, state); 2555 tp->high_seq = tp->snd_nxt; 2556 } 2557 } 2558 2559 static void tcp_try_to_open(struct sock *sk, int flag) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 2563 tcp_verify_left_out(tp); 2564 2565 if (!tcp_any_retrans_done(sk)) 2566 tp->retrans_stamp = 0; 2567 2568 if (flag & FLAG_ECE) 2569 tcp_enter_cwr(sk); 2570 2571 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2572 tcp_try_keep_open(sk); 2573 } 2574 } 2575 2576 static void tcp_mtup_probe_failed(struct sock *sk) 2577 { 2578 struct inet_connection_sock *icsk = inet_csk(sk); 2579 2580 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2581 icsk->icsk_mtup.probe_size = 0; 2582 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2583 } 2584 2585 static void tcp_mtup_probe_success(struct sock *sk) 2586 { 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 2590 /* FIXME: breaks with very large cwnd */ 2591 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2592 tp->snd_cwnd = tp->snd_cwnd * 2593 tcp_mss_to_mtu(sk, tp->mss_cache) / 2594 icsk->icsk_mtup.probe_size; 2595 tp->snd_cwnd_cnt = 0; 2596 tp->snd_cwnd_stamp = tcp_jiffies32; 2597 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2598 2599 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2600 icsk->icsk_mtup.probe_size = 0; 2601 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2602 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2603 } 2604 2605 /* Do a simple retransmit without using the backoff mechanisms in 2606 * tcp_timer. This is used for path mtu discovery. 2607 * The socket is already locked here. 2608 */ 2609 void tcp_simple_retransmit(struct sock *sk) 2610 { 2611 const struct inet_connection_sock *icsk = inet_csk(sk); 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 struct sk_buff *skb; 2614 unsigned int mss = tcp_current_mss(sk); 2615 u32 prior_lost = tp->lost_out; 2616 2617 tcp_for_write_queue(skb, sk) { 2618 if (skb == tcp_send_head(sk)) 2619 break; 2620 if (tcp_skb_seglen(skb) > mss && 2621 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2622 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2623 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2624 tp->retrans_out -= tcp_skb_pcount(skb); 2625 } 2626 tcp_skb_mark_lost_uncond_verify(tp, skb); 2627 } 2628 } 2629 2630 tcp_clear_retrans_hints_partial(tp); 2631 2632 if (prior_lost == tp->lost_out) 2633 return; 2634 2635 if (tcp_is_reno(tp)) 2636 tcp_limit_reno_sacked(tp); 2637 2638 tcp_verify_left_out(tp); 2639 2640 /* Don't muck with the congestion window here. 2641 * Reason is that we do not increase amount of _data_ 2642 * in network, but units changed and effective 2643 * cwnd/ssthresh really reduced now. 2644 */ 2645 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2646 tp->high_seq = tp->snd_nxt; 2647 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2648 tp->prior_ssthresh = 0; 2649 tp->undo_marker = 0; 2650 tcp_set_ca_state(sk, TCP_CA_Loss); 2651 } 2652 tcp_xmit_retransmit_queue(sk); 2653 } 2654 EXPORT_SYMBOL(tcp_simple_retransmit); 2655 2656 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2657 { 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 int mib_idx; 2660 2661 if (tcp_is_reno(tp)) 2662 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2663 else 2664 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2665 2666 NET_INC_STATS(sock_net(sk), mib_idx); 2667 2668 tp->prior_ssthresh = 0; 2669 tcp_init_undo(tp); 2670 2671 if (!tcp_in_cwnd_reduction(sk)) { 2672 if (!ece_ack) 2673 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2674 tcp_init_cwnd_reduction(sk); 2675 } 2676 tcp_set_ca_state(sk, TCP_CA_Recovery); 2677 } 2678 2679 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2680 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2681 */ 2682 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2683 int *rexmit) 2684 { 2685 struct tcp_sock *tp = tcp_sk(sk); 2686 bool recovered = !before(tp->snd_una, tp->high_seq); 2687 2688 if ((flag & FLAG_SND_UNA_ADVANCED) && 2689 tcp_try_undo_loss(sk, false)) 2690 return; 2691 2692 /* The ACK (s)acks some never-retransmitted data meaning not all 2693 * the data packets before the timeout were lost. Therefore we 2694 * undo the congestion window and state. This is essentially 2695 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2696 * a retransmitted skb is permantly marked, we can apply such an 2697 * operation even if F-RTO was not used. 2698 */ 2699 if ((flag & FLAG_ORIG_SACK_ACKED) && 2700 tcp_try_undo_loss(sk, tp->undo_marker)) 2701 return; 2702 2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2704 if (after(tp->snd_nxt, tp->high_seq)) { 2705 if (flag & FLAG_DATA_SACKED || is_dupack) 2706 tp->frto = 0; /* Step 3.a. loss was real */ 2707 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2708 tp->high_seq = tp->snd_nxt; 2709 /* Step 2.b. Try send new data (but deferred until cwnd 2710 * is updated in tcp_ack()). Otherwise fall back to 2711 * the conventional recovery. 2712 */ 2713 if (tcp_send_head(sk) && 2714 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2715 *rexmit = REXMIT_NEW; 2716 return; 2717 } 2718 tp->frto = 0; 2719 } 2720 } 2721 2722 if (recovered) { 2723 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2724 tcp_try_undo_recovery(sk); 2725 return; 2726 } 2727 if (tcp_is_reno(tp)) { 2728 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2729 * delivered. Lower inflight to clock out (re)tranmissions. 2730 */ 2731 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2732 tcp_add_reno_sack(sk); 2733 else if (flag & FLAG_SND_UNA_ADVANCED) 2734 tcp_reset_reno_sack(tp); 2735 } 2736 *rexmit = REXMIT_LOST; 2737 } 2738 2739 /* Undo during fast recovery after partial ACK. */ 2740 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2741 { 2742 struct tcp_sock *tp = tcp_sk(sk); 2743 2744 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2745 /* Plain luck! Hole if filled with delayed 2746 * packet, rather than with a retransmit. 2747 */ 2748 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2749 2750 /* We are getting evidence that the reordering degree is higher 2751 * than we realized. If there are no retransmits out then we 2752 * can undo. Otherwise we clock out new packets but do not 2753 * mark more packets lost or retransmit more. 2754 */ 2755 if (tp->retrans_out) 2756 return true; 2757 2758 if (!tcp_any_retrans_done(sk)) 2759 tp->retrans_stamp = 0; 2760 2761 DBGUNDO(sk, "partial recovery"); 2762 tcp_undo_cwnd_reduction(sk, true); 2763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2764 tcp_try_keep_open(sk); 2765 return true; 2766 } 2767 return false; 2768 } 2769 2770 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2771 { 2772 struct tcp_sock *tp = tcp_sk(sk); 2773 2774 /* Use RACK to detect loss */ 2775 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2776 u32 prior_retrans = tp->retrans_out; 2777 2778 tcp_rack_mark_lost(sk); 2779 if (prior_retrans > tp->retrans_out) 2780 *ack_flag |= FLAG_LOST_RETRANS; 2781 } 2782 } 2783 2784 /* Process an event, which can update packets-in-flight not trivially. 2785 * Main goal of this function is to calculate new estimate for left_out, 2786 * taking into account both packets sitting in receiver's buffer and 2787 * packets lost by network. 2788 * 2789 * Besides that it updates the congestion state when packet loss or ECN 2790 * is detected. But it does not reduce the cwnd, it is done by the 2791 * congestion control later. 2792 * 2793 * It does _not_ decide what to send, it is made in function 2794 * tcp_xmit_retransmit_queue(). 2795 */ 2796 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2797 bool is_dupack, int *ack_flag, int *rexmit) 2798 { 2799 struct inet_connection_sock *icsk = inet_csk(sk); 2800 struct tcp_sock *tp = tcp_sk(sk); 2801 int fast_rexmit = 0, flag = *ack_flag; 2802 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2803 (tcp_fackets_out(tp) > tp->reordering)); 2804 2805 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2806 tp->sacked_out = 0; 2807 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2808 tp->fackets_out = 0; 2809 2810 /* Now state machine starts. 2811 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2812 if (flag & FLAG_ECE) 2813 tp->prior_ssthresh = 0; 2814 2815 /* B. In all the states check for reneging SACKs. */ 2816 if (tcp_check_sack_reneging(sk, flag)) 2817 return; 2818 2819 /* C. Check consistency of the current state. */ 2820 tcp_verify_left_out(tp); 2821 2822 /* D. Check state exit conditions. State can be terminated 2823 * when high_seq is ACKed. */ 2824 if (icsk->icsk_ca_state == TCP_CA_Open) { 2825 WARN_ON(tp->retrans_out != 0); 2826 tp->retrans_stamp = 0; 2827 } else if (!before(tp->snd_una, tp->high_seq)) { 2828 switch (icsk->icsk_ca_state) { 2829 case TCP_CA_CWR: 2830 /* CWR is to be held something *above* high_seq 2831 * is ACKed for CWR bit to reach receiver. */ 2832 if (tp->snd_una != tp->high_seq) { 2833 tcp_end_cwnd_reduction(sk); 2834 tcp_set_ca_state(sk, TCP_CA_Open); 2835 } 2836 break; 2837 2838 case TCP_CA_Recovery: 2839 if (tcp_is_reno(tp)) 2840 tcp_reset_reno_sack(tp); 2841 if (tcp_try_undo_recovery(sk)) 2842 return; 2843 tcp_end_cwnd_reduction(sk); 2844 break; 2845 } 2846 } 2847 2848 /* E. Process state. */ 2849 switch (icsk->icsk_ca_state) { 2850 case TCP_CA_Recovery: 2851 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2852 if (tcp_is_reno(tp) && is_dupack) 2853 tcp_add_reno_sack(sk); 2854 } else { 2855 if (tcp_try_undo_partial(sk, acked)) 2856 return; 2857 /* Partial ACK arrived. Force fast retransmit. */ 2858 do_lost = tcp_is_reno(tp) || 2859 tcp_fackets_out(tp) > tp->reordering; 2860 } 2861 if (tcp_try_undo_dsack(sk)) { 2862 tcp_try_keep_open(sk); 2863 return; 2864 } 2865 tcp_rack_identify_loss(sk, ack_flag); 2866 break; 2867 case TCP_CA_Loss: 2868 tcp_process_loss(sk, flag, is_dupack, rexmit); 2869 tcp_rack_identify_loss(sk, ack_flag); 2870 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2871 (*ack_flag & FLAG_LOST_RETRANS))) 2872 return; 2873 /* Change state if cwnd is undone or retransmits are lost */ 2874 default: 2875 if (tcp_is_reno(tp)) { 2876 if (flag & FLAG_SND_UNA_ADVANCED) 2877 tcp_reset_reno_sack(tp); 2878 if (is_dupack) 2879 tcp_add_reno_sack(sk); 2880 } 2881 2882 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2883 tcp_try_undo_dsack(sk); 2884 2885 tcp_rack_identify_loss(sk, ack_flag); 2886 if (!tcp_time_to_recover(sk, flag)) { 2887 tcp_try_to_open(sk, flag); 2888 return; 2889 } 2890 2891 /* MTU probe failure: don't reduce cwnd */ 2892 if (icsk->icsk_ca_state < TCP_CA_CWR && 2893 icsk->icsk_mtup.probe_size && 2894 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2895 tcp_mtup_probe_failed(sk); 2896 /* Restores the reduction we did in tcp_mtup_probe() */ 2897 tp->snd_cwnd++; 2898 tcp_simple_retransmit(sk); 2899 return; 2900 } 2901 2902 /* Otherwise enter Recovery state */ 2903 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2904 fast_rexmit = 1; 2905 } 2906 2907 if (do_lost) 2908 tcp_update_scoreboard(sk, fast_rexmit); 2909 *rexmit = REXMIT_LOST; 2910 } 2911 2912 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2913 { 2914 struct tcp_sock *tp = tcp_sk(sk); 2915 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2916 2917 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2918 rtt_us ? : jiffies_to_usecs(1)); 2919 } 2920 2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2922 long seq_rtt_us, long sack_rtt_us, 2923 long ca_rtt_us, struct rate_sample *rs) 2924 { 2925 const struct tcp_sock *tp = tcp_sk(sk); 2926 2927 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2928 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2929 * Karn's algorithm forbids taking RTT if some retransmitted data 2930 * is acked (RFC6298). 2931 */ 2932 if (seq_rtt_us < 0) 2933 seq_rtt_us = sack_rtt_us; 2934 2935 /* RTTM Rule: A TSecr value received in a segment is used to 2936 * update the averaged RTT measurement only if the segment 2937 * acknowledges some new data, i.e., only if it advances the 2938 * left edge of the send window. 2939 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2940 */ 2941 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2942 flag & FLAG_ACKED) { 2943 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2944 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2945 2946 seq_rtt_us = ca_rtt_us = delta_us; 2947 } 2948 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2949 if (seq_rtt_us < 0) 2950 return false; 2951 2952 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2953 * always taken together with ACK, SACK, or TS-opts. Any negative 2954 * values will be skipped with the seq_rtt_us < 0 check above. 2955 */ 2956 tcp_update_rtt_min(sk, ca_rtt_us); 2957 tcp_rtt_estimator(sk, seq_rtt_us); 2958 tcp_set_rto(sk); 2959 2960 /* RFC6298: only reset backoff on valid RTT measurement. */ 2961 inet_csk(sk)->icsk_backoff = 0; 2962 return true; 2963 } 2964 2965 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2966 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2967 { 2968 struct rate_sample rs; 2969 long rtt_us = -1L; 2970 2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2972 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2973 2974 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2975 } 2976 2977 2978 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2979 { 2980 const struct inet_connection_sock *icsk = inet_csk(sk); 2981 2982 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2983 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2984 } 2985 2986 /* Restart timer after forward progress on connection. 2987 * RFC2988 recommends to restart timer to now+rto. 2988 */ 2989 void tcp_rearm_rto(struct sock *sk) 2990 { 2991 const struct inet_connection_sock *icsk = inet_csk(sk); 2992 struct tcp_sock *tp = tcp_sk(sk); 2993 2994 /* If the retrans timer is currently being used by Fast Open 2995 * for SYN-ACK retrans purpose, stay put. 2996 */ 2997 if (tp->fastopen_rsk) 2998 return; 2999 3000 if (!tp->packets_out) { 3001 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3002 } else { 3003 u32 rto = inet_csk(sk)->icsk_rto; 3004 /* Offset the time elapsed after installing regular RTO */ 3005 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3006 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3007 s64 delta_us = tcp_rto_delta_us(sk); 3008 /* delta_us may not be positive if the socket is locked 3009 * when the retrans timer fires and is rescheduled. 3010 */ 3011 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3012 } 3013 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3014 TCP_RTO_MAX); 3015 } 3016 } 3017 3018 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3019 static void tcp_set_xmit_timer(struct sock *sk) 3020 { 3021 if (!tcp_schedule_loss_probe(sk)) 3022 tcp_rearm_rto(sk); 3023 } 3024 3025 /* If we get here, the whole TSO packet has not been acked. */ 3026 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3027 { 3028 struct tcp_sock *tp = tcp_sk(sk); 3029 u32 packets_acked; 3030 3031 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3032 3033 packets_acked = tcp_skb_pcount(skb); 3034 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3035 return 0; 3036 packets_acked -= tcp_skb_pcount(skb); 3037 3038 if (packets_acked) { 3039 BUG_ON(tcp_skb_pcount(skb) == 0); 3040 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3041 } 3042 3043 return packets_acked; 3044 } 3045 3046 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3047 u32 prior_snd_una) 3048 { 3049 const struct skb_shared_info *shinfo; 3050 3051 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3052 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3053 return; 3054 3055 shinfo = skb_shinfo(skb); 3056 if (!before(shinfo->tskey, prior_snd_una) && 3057 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3058 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3059 } 3060 3061 /* Remove acknowledged frames from the retransmission queue. If our packet 3062 * is before the ack sequence we can discard it as it's confirmed to have 3063 * arrived at the other end. 3064 */ 3065 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3066 u32 prior_snd_una, int *acked, 3067 struct tcp_sacktag_state *sack) 3068 { 3069 const struct inet_connection_sock *icsk = inet_csk(sk); 3070 u64 first_ackt, last_ackt; 3071 struct tcp_sock *tp = tcp_sk(sk); 3072 u32 prior_sacked = tp->sacked_out; 3073 u32 reord = tp->packets_out; 3074 bool fully_acked = true; 3075 long sack_rtt_us = -1L; 3076 long seq_rtt_us = -1L; 3077 long ca_rtt_us = -1L; 3078 struct sk_buff *skb; 3079 u32 pkts_acked = 0; 3080 u32 last_in_flight = 0; 3081 bool rtt_update; 3082 int flag = 0; 3083 3084 first_ackt = 0; 3085 3086 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3087 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3088 u8 sacked = scb->sacked; 3089 u32 acked_pcount; 3090 3091 tcp_ack_tstamp(sk, skb, prior_snd_una); 3092 3093 /* Determine how many packets and what bytes were acked, tso and else */ 3094 if (after(scb->end_seq, tp->snd_una)) { 3095 if (tcp_skb_pcount(skb) == 1 || 3096 !after(tp->snd_una, scb->seq)) 3097 break; 3098 3099 acked_pcount = tcp_tso_acked(sk, skb); 3100 if (!acked_pcount) 3101 break; 3102 fully_acked = false; 3103 } else { 3104 /* Speedup tcp_unlink_write_queue() and next loop */ 3105 prefetchw(skb->next); 3106 acked_pcount = tcp_skb_pcount(skb); 3107 } 3108 3109 if (unlikely(sacked & TCPCB_RETRANS)) { 3110 if (sacked & TCPCB_SACKED_RETRANS) 3111 tp->retrans_out -= acked_pcount; 3112 flag |= FLAG_RETRANS_DATA_ACKED; 3113 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3114 last_ackt = skb->skb_mstamp; 3115 WARN_ON_ONCE(last_ackt == 0); 3116 if (!first_ackt) 3117 first_ackt = last_ackt; 3118 3119 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3120 reord = min(pkts_acked, reord); 3121 if (!after(scb->end_seq, tp->high_seq)) 3122 flag |= FLAG_ORIG_SACK_ACKED; 3123 } 3124 3125 if (sacked & TCPCB_SACKED_ACKED) { 3126 tp->sacked_out -= acked_pcount; 3127 } else if (tcp_is_sack(tp)) { 3128 tp->delivered += acked_pcount; 3129 if (!tcp_skb_spurious_retrans(tp, skb)) 3130 tcp_rack_advance(tp, sacked, scb->end_seq, 3131 skb->skb_mstamp); 3132 } 3133 if (sacked & TCPCB_LOST) 3134 tp->lost_out -= acked_pcount; 3135 3136 tp->packets_out -= acked_pcount; 3137 pkts_acked += acked_pcount; 3138 tcp_rate_skb_delivered(sk, skb, sack->rate); 3139 3140 /* Initial outgoing SYN's get put onto the write_queue 3141 * just like anything else we transmit. It is not 3142 * true data, and if we misinform our callers that 3143 * this ACK acks real data, we will erroneously exit 3144 * connection startup slow start one packet too 3145 * quickly. This is severely frowned upon behavior. 3146 */ 3147 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3148 flag |= FLAG_DATA_ACKED; 3149 } else { 3150 flag |= FLAG_SYN_ACKED; 3151 tp->retrans_stamp = 0; 3152 } 3153 3154 if (!fully_acked) 3155 break; 3156 3157 tcp_unlink_write_queue(skb, sk); 3158 sk_wmem_free_skb(sk, skb); 3159 if (unlikely(skb == tp->retransmit_skb_hint)) 3160 tp->retransmit_skb_hint = NULL; 3161 if (unlikely(skb == tp->lost_skb_hint)) 3162 tp->lost_skb_hint = NULL; 3163 } 3164 3165 if (!skb) 3166 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3167 3168 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3169 tp->snd_up = tp->snd_una; 3170 3171 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3172 flag |= FLAG_SACK_RENEGING; 3173 3174 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3175 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3176 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3177 } 3178 if (sack->first_sackt) { 3179 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3180 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3181 } 3182 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3183 ca_rtt_us, sack->rate); 3184 3185 if (flag & FLAG_ACKED) { 3186 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3187 if (unlikely(icsk->icsk_mtup.probe_size && 3188 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3189 tcp_mtup_probe_success(sk); 3190 } 3191 3192 if (tcp_is_reno(tp)) { 3193 tcp_remove_reno_sacks(sk, pkts_acked); 3194 } else { 3195 int delta; 3196 3197 /* Non-retransmitted hole got filled? That's reordering */ 3198 if (reord < prior_fackets && reord <= tp->fackets_out) 3199 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3200 3201 delta = tcp_is_fack(tp) ? pkts_acked : 3202 prior_sacked - tp->sacked_out; 3203 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3204 } 3205 3206 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3207 3208 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3209 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3210 /* Do not re-arm RTO if the sack RTT is measured from data sent 3211 * after when the head was last (re)transmitted. Otherwise the 3212 * timeout may continue to extend in loss recovery. 3213 */ 3214 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3215 } 3216 3217 if (icsk->icsk_ca_ops->pkts_acked) { 3218 struct ack_sample sample = { .pkts_acked = pkts_acked, 3219 .rtt_us = sack->rate->rtt_us, 3220 .in_flight = last_in_flight }; 3221 3222 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3223 } 3224 3225 #if FASTRETRANS_DEBUG > 0 3226 WARN_ON((int)tp->sacked_out < 0); 3227 WARN_ON((int)tp->lost_out < 0); 3228 WARN_ON((int)tp->retrans_out < 0); 3229 if (!tp->packets_out && tcp_is_sack(tp)) { 3230 icsk = inet_csk(sk); 3231 if (tp->lost_out) { 3232 pr_debug("Leak l=%u %d\n", 3233 tp->lost_out, icsk->icsk_ca_state); 3234 tp->lost_out = 0; 3235 } 3236 if (tp->sacked_out) { 3237 pr_debug("Leak s=%u %d\n", 3238 tp->sacked_out, icsk->icsk_ca_state); 3239 tp->sacked_out = 0; 3240 } 3241 if (tp->retrans_out) { 3242 pr_debug("Leak r=%u %d\n", 3243 tp->retrans_out, icsk->icsk_ca_state); 3244 tp->retrans_out = 0; 3245 } 3246 } 3247 #endif 3248 *acked = pkts_acked; 3249 return flag; 3250 } 3251 3252 static void tcp_ack_probe(struct sock *sk) 3253 { 3254 const struct tcp_sock *tp = tcp_sk(sk); 3255 struct inet_connection_sock *icsk = inet_csk(sk); 3256 3257 /* Was it a usable window open? */ 3258 3259 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3260 icsk->icsk_backoff = 0; 3261 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3262 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3263 * This function is not for random using! 3264 */ 3265 } else { 3266 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3267 3268 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3269 when, TCP_RTO_MAX); 3270 } 3271 } 3272 3273 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3274 { 3275 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3276 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3277 } 3278 3279 /* Decide wheather to run the increase function of congestion control. */ 3280 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3281 { 3282 /* If reordering is high then always grow cwnd whenever data is 3283 * delivered regardless of its ordering. Otherwise stay conservative 3284 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3285 * new SACK or ECE mark may first advance cwnd here and later reduce 3286 * cwnd in tcp_fastretrans_alert() based on more states. 3287 */ 3288 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3289 return flag & FLAG_FORWARD_PROGRESS; 3290 3291 return flag & FLAG_DATA_ACKED; 3292 } 3293 3294 /* The "ultimate" congestion control function that aims to replace the rigid 3295 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3296 * It's called toward the end of processing an ACK with precise rate 3297 * information. All transmission or retransmission are delayed afterwards. 3298 */ 3299 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3300 int flag, const struct rate_sample *rs) 3301 { 3302 const struct inet_connection_sock *icsk = inet_csk(sk); 3303 3304 if (icsk->icsk_ca_ops->cong_control) { 3305 icsk->icsk_ca_ops->cong_control(sk, rs); 3306 return; 3307 } 3308 3309 if (tcp_in_cwnd_reduction(sk)) { 3310 /* Reduce cwnd if state mandates */ 3311 tcp_cwnd_reduction(sk, acked_sacked, flag); 3312 } else if (tcp_may_raise_cwnd(sk, flag)) { 3313 /* Advance cwnd if state allows */ 3314 tcp_cong_avoid(sk, ack, acked_sacked); 3315 } 3316 tcp_update_pacing_rate(sk); 3317 } 3318 3319 /* Check that window update is acceptable. 3320 * The function assumes that snd_una<=ack<=snd_next. 3321 */ 3322 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3323 const u32 ack, const u32 ack_seq, 3324 const u32 nwin) 3325 { 3326 return after(ack, tp->snd_una) || 3327 after(ack_seq, tp->snd_wl1) || 3328 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3329 } 3330 3331 /* If we update tp->snd_una, also update tp->bytes_acked */ 3332 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3333 { 3334 u32 delta = ack - tp->snd_una; 3335 3336 sock_owned_by_me((struct sock *)tp); 3337 tp->bytes_acked += delta; 3338 tp->snd_una = ack; 3339 } 3340 3341 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3342 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3343 { 3344 u32 delta = seq - tp->rcv_nxt; 3345 3346 sock_owned_by_me((struct sock *)tp); 3347 tp->bytes_received += delta; 3348 tp->rcv_nxt = seq; 3349 } 3350 3351 /* Update our send window. 3352 * 3353 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3354 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3355 */ 3356 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3357 u32 ack_seq) 3358 { 3359 struct tcp_sock *tp = tcp_sk(sk); 3360 int flag = 0; 3361 u32 nwin = ntohs(tcp_hdr(skb)->window); 3362 3363 if (likely(!tcp_hdr(skb)->syn)) 3364 nwin <<= tp->rx_opt.snd_wscale; 3365 3366 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3367 flag |= FLAG_WIN_UPDATE; 3368 tcp_update_wl(tp, ack_seq); 3369 3370 if (tp->snd_wnd != nwin) { 3371 tp->snd_wnd = nwin; 3372 3373 /* Note, it is the only place, where 3374 * fast path is recovered for sending TCP. 3375 */ 3376 tp->pred_flags = 0; 3377 tcp_fast_path_check(sk); 3378 3379 if (tcp_send_head(sk)) 3380 tcp_slow_start_after_idle_check(sk); 3381 3382 if (nwin > tp->max_window) { 3383 tp->max_window = nwin; 3384 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3385 } 3386 } 3387 } 3388 3389 tcp_snd_una_update(tp, ack); 3390 3391 return flag; 3392 } 3393 3394 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3395 u32 *last_oow_ack_time) 3396 { 3397 if (*last_oow_ack_time) { 3398 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3399 3400 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3401 NET_INC_STATS(net, mib_idx); 3402 return true; /* rate-limited: don't send yet! */ 3403 } 3404 } 3405 3406 *last_oow_ack_time = tcp_jiffies32; 3407 3408 return false; /* not rate-limited: go ahead, send dupack now! */ 3409 } 3410 3411 /* Return true if we're currently rate-limiting out-of-window ACKs and 3412 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3413 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3414 * attacks that send repeated SYNs or ACKs for the same connection. To 3415 * do this, we do not send a duplicate SYNACK or ACK if the remote 3416 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3417 */ 3418 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3419 int mib_idx, u32 *last_oow_ack_time) 3420 { 3421 /* Data packets without SYNs are not likely part of an ACK loop. */ 3422 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3423 !tcp_hdr(skb)->syn) 3424 return false; 3425 3426 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3427 } 3428 3429 /* RFC 5961 7 [ACK Throttling] */ 3430 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3431 { 3432 /* unprotected vars, we dont care of overwrites */ 3433 static u32 challenge_timestamp; 3434 static unsigned int challenge_count; 3435 struct tcp_sock *tp = tcp_sk(sk); 3436 u32 count, now; 3437 3438 /* First check our per-socket dupack rate limit. */ 3439 if (__tcp_oow_rate_limited(sock_net(sk), 3440 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3441 &tp->last_oow_ack_time)) 3442 return; 3443 3444 /* Then check host-wide RFC 5961 rate limit. */ 3445 now = jiffies / HZ; 3446 if (now != challenge_timestamp) { 3447 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3448 3449 challenge_timestamp = now; 3450 WRITE_ONCE(challenge_count, half + 3451 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3452 } 3453 count = READ_ONCE(challenge_count); 3454 if (count > 0) { 3455 WRITE_ONCE(challenge_count, count - 1); 3456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3457 tcp_send_ack(sk); 3458 } 3459 } 3460 3461 static void tcp_store_ts_recent(struct tcp_sock *tp) 3462 { 3463 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3464 tp->rx_opt.ts_recent_stamp = get_seconds(); 3465 } 3466 3467 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3468 { 3469 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3470 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3471 * extra check below makes sure this can only happen 3472 * for pure ACK frames. -DaveM 3473 * 3474 * Not only, also it occurs for expired timestamps. 3475 */ 3476 3477 if (tcp_paws_check(&tp->rx_opt, 0)) 3478 tcp_store_ts_recent(tp); 3479 } 3480 } 3481 3482 /* This routine deals with acks during a TLP episode. 3483 * We mark the end of a TLP episode on receiving TLP dupack or when 3484 * ack is after tlp_high_seq. 3485 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3486 */ 3487 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3488 { 3489 struct tcp_sock *tp = tcp_sk(sk); 3490 3491 if (before(ack, tp->tlp_high_seq)) 3492 return; 3493 3494 if (flag & FLAG_DSACKING_ACK) { 3495 /* This DSACK means original and TLP probe arrived; no loss */ 3496 tp->tlp_high_seq = 0; 3497 } else if (after(ack, tp->tlp_high_seq)) { 3498 /* ACK advances: there was a loss, so reduce cwnd. Reset 3499 * tlp_high_seq in tcp_init_cwnd_reduction() 3500 */ 3501 tcp_init_cwnd_reduction(sk); 3502 tcp_set_ca_state(sk, TCP_CA_CWR); 3503 tcp_end_cwnd_reduction(sk); 3504 tcp_try_keep_open(sk); 3505 NET_INC_STATS(sock_net(sk), 3506 LINUX_MIB_TCPLOSSPROBERECOVERY); 3507 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3508 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3509 /* Pure dupack: original and TLP probe arrived; no loss */ 3510 tp->tlp_high_seq = 0; 3511 } 3512 } 3513 3514 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3515 { 3516 const struct inet_connection_sock *icsk = inet_csk(sk); 3517 3518 if (icsk->icsk_ca_ops->in_ack_event) 3519 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3520 } 3521 3522 /* Congestion control has updated the cwnd already. So if we're in 3523 * loss recovery then now we do any new sends (for FRTO) or 3524 * retransmits (for CA_Loss or CA_recovery) that make sense. 3525 */ 3526 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3527 { 3528 struct tcp_sock *tp = tcp_sk(sk); 3529 3530 if (rexmit == REXMIT_NONE) 3531 return; 3532 3533 if (unlikely(rexmit == 2)) { 3534 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3535 TCP_NAGLE_OFF); 3536 if (after(tp->snd_nxt, tp->high_seq)) 3537 return; 3538 tp->frto = 0; 3539 } 3540 tcp_xmit_retransmit_queue(sk); 3541 } 3542 3543 /* This routine deals with incoming acks, but not outgoing ones. */ 3544 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3545 { 3546 struct inet_connection_sock *icsk = inet_csk(sk); 3547 struct tcp_sock *tp = tcp_sk(sk); 3548 struct tcp_sacktag_state sack_state; 3549 struct rate_sample rs = { .prior_delivered = 0 }; 3550 u32 prior_snd_una = tp->snd_una; 3551 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3552 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3553 bool is_dupack = false; 3554 u32 prior_fackets; 3555 int prior_packets = tp->packets_out; 3556 u32 delivered = tp->delivered; 3557 u32 lost = tp->lost; 3558 int acked = 0; /* Number of packets newly acked */ 3559 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3560 3561 sack_state.first_sackt = 0; 3562 sack_state.rate = &rs; 3563 3564 /* We very likely will need to access write queue head. */ 3565 prefetchw(sk->sk_write_queue.next); 3566 3567 /* If the ack is older than previous acks 3568 * then we can probably ignore it. 3569 */ 3570 if (before(ack, prior_snd_una)) { 3571 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3572 if (before(ack, prior_snd_una - tp->max_window)) { 3573 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3574 tcp_send_challenge_ack(sk, skb); 3575 return -1; 3576 } 3577 goto old_ack; 3578 } 3579 3580 /* If the ack includes data we haven't sent yet, discard 3581 * this segment (RFC793 Section 3.9). 3582 */ 3583 if (after(ack, tp->snd_nxt)) 3584 goto invalid_ack; 3585 3586 if (after(ack, prior_snd_una)) { 3587 flag |= FLAG_SND_UNA_ADVANCED; 3588 icsk->icsk_retransmits = 0; 3589 } 3590 3591 prior_fackets = tp->fackets_out; 3592 rs.prior_in_flight = tcp_packets_in_flight(tp); 3593 3594 /* ts_recent update must be made after we are sure that the packet 3595 * is in window. 3596 */ 3597 if (flag & FLAG_UPDATE_TS_RECENT) 3598 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3599 3600 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3601 /* Window is constant, pure forward advance. 3602 * No more checks are required. 3603 * Note, we use the fact that SND.UNA>=SND.WL2. 3604 */ 3605 tcp_update_wl(tp, ack_seq); 3606 tcp_snd_una_update(tp, ack); 3607 flag |= FLAG_WIN_UPDATE; 3608 3609 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3610 3611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3612 } else { 3613 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3614 3615 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3616 flag |= FLAG_DATA; 3617 else 3618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3619 3620 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3621 3622 if (TCP_SKB_CB(skb)->sacked) 3623 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3624 &sack_state); 3625 3626 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3627 flag |= FLAG_ECE; 3628 ack_ev_flags |= CA_ACK_ECE; 3629 } 3630 3631 if (flag & FLAG_WIN_UPDATE) 3632 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3633 3634 tcp_in_ack_event(sk, ack_ev_flags); 3635 } 3636 3637 /* We passed data and got it acked, remove any soft error 3638 * log. Something worked... 3639 */ 3640 sk->sk_err_soft = 0; 3641 icsk->icsk_probes_out = 0; 3642 tp->rcv_tstamp = tcp_jiffies32; 3643 if (!prior_packets) 3644 goto no_queue; 3645 3646 /* See if we can take anything off of the retransmit queue. */ 3647 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3648 &sack_state); 3649 3650 if (tp->tlp_high_seq) 3651 tcp_process_tlp_ack(sk, ack, flag); 3652 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3653 if (flag & FLAG_SET_XMIT_TIMER) 3654 tcp_set_xmit_timer(sk); 3655 3656 if (tcp_ack_is_dubious(sk, flag)) { 3657 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3658 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3659 } 3660 3661 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3662 sk_dst_confirm(sk); 3663 3664 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3665 lost = tp->lost - lost; /* freshly marked lost */ 3666 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3667 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3668 tcp_xmit_recovery(sk, rexmit); 3669 return 1; 3670 3671 no_queue: 3672 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3673 if (flag & FLAG_DSACKING_ACK) 3674 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3675 /* If this ack opens up a zero window, clear backoff. It was 3676 * being used to time the probes, and is probably far higher than 3677 * it needs to be for normal retransmission. 3678 */ 3679 if (tcp_send_head(sk)) 3680 tcp_ack_probe(sk); 3681 3682 if (tp->tlp_high_seq) 3683 tcp_process_tlp_ack(sk, ack, flag); 3684 return 1; 3685 3686 invalid_ack: 3687 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3688 return -1; 3689 3690 old_ack: 3691 /* If data was SACKed, tag it and see if we should send more data. 3692 * If data was DSACKed, see if we can undo a cwnd reduction. 3693 */ 3694 if (TCP_SKB_CB(skb)->sacked) { 3695 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3696 &sack_state); 3697 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3698 tcp_xmit_recovery(sk, rexmit); 3699 } 3700 3701 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3702 return 0; 3703 } 3704 3705 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3706 bool syn, struct tcp_fastopen_cookie *foc, 3707 bool exp_opt) 3708 { 3709 /* Valid only in SYN or SYN-ACK with an even length. */ 3710 if (!foc || !syn || len < 0 || (len & 1)) 3711 return; 3712 3713 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3714 len <= TCP_FASTOPEN_COOKIE_MAX) 3715 memcpy(foc->val, cookie, len); 3716 else if (len != 0) 3717 len = -1; 3718 foc->len = len; 3719 foc->exp = exp_opt; 3720 } 3721 3722 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3723 * But, this can also be called on packets in the established flow when 3724 * the fast version below fails. 3725 */ 3726 void tcp_parse_options(const struct net *net, 3727 const struct sk_buff *skb, 3728 struct tcp_options_received *opt_rx, int estab, 3729 struct tcp_fastopen_cookie *foc) 3730 { 3731 const unsigned char *ptr; 3732 const struct tcphdr *th = tcp_hdr(skb); 3733 int length = (th->doff * 4) - sizeof(struct tcphdr); 3734 3735 ptr = (const unsigned char *)(th + 1); 3736 opt_rx->saw_tstamp = 0; 3737 3738 while (length > 0) { 3739 int opcode = *ptr++; 3740 int opsize; 3741 3742 switch (opcode) { 3743 case TCPOPT_EOL: 3744 return; 3745 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3746 length--; 3747 continue; 3748 default: 3749 opsize = *ptr++; 3750 if (opsize < 2) /* "silly options" */ 3751 return; 3752 if (opsize > length) 3753 return; /* don't parse partial options */ 3754 switch (opcode) { 3755 case TCPOPT_MSS: 3756 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3757 u16 in_mss = get_unaligned_be16(ptr); 3758 if (in_mss) { 3759 if (opt_rx->user_mss && 3760 opt_rx->user_mss < in_mss) 3761 in_mss = opt_rx->user_mss; 3762 opt_rx->mss_clamp = in_mss; 3763 } 3764 } 3765 break; 3766 case TCPOPT_WINDOW: 3767 if (opsize == TCPOLEN_WINDOW && th->syn && 3768 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3769 __u8 snd_wscale = *(__u8 *)ptr; 3770 opt_rx->wscale_ok = 1; 3771 if (snd_wscale > TCP_MAX_WSCALE) { 3772 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3773 __func__, 3774 snd_wscale, 3775 TCP_MAX_WSCALE); 3776 snd_wscale = TCP_MAX_WSCALE; 3777 } 3778 opt_rx->snd_wscale = snd_wscale; 3779 } 3780 break; 3781 case TCPOPT_TIMESTAMP: 3782 if ((opsize == TCPOLEN_TIMESTAMP) && 3783 ((estab && opt_rx->tstamp_ok) || 3784 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3785 opt_rx->saw_tstamp = 1; 3786 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3787 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3788 } 3789 break; 3790 case TCPOPT_SACK_PERM: 3791 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3792 !estab && net->ipv4.sysctl_tcp_sack) { 3793 opt_rx->sack_ok = TCP_SACK_SEEN; 3794 tcp_sack_reset(opt_rx); 3795 } 3796 break; 3797 3798 case TCPOPT_SACK: 3799 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3800 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3801 opt_rx->sack_ok) { 3802 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3803 } 3804 break; 3805 #ifdef CONFIG_TCP_MD5SIG 3806 case TCPOPT_MD5SIG: 3807 /* 3808 * The MD5 Hash has already been 3809 * checked (see tcp_v{4,6}_do_rcv()). 3810 */ 3811 break; 3812 #endif 3813 case TCPOPT_FASTOPEN: 3814 tcp_parse_fastopen_option( 3815 opsize - TCPOLEN_FASTOPEN_BASE, 3816 ptr, th->syn, foc, false); 3817 break; 3818 3819 case TCPOPT_EXP: 3820 /* Fast Open option shares code 254 using a 3821 * 16 bits magic number. 3822 */ 3823 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3824 get_unaligned_be16(ptr) == 3825 TCPOPT_FASTOPEN_MAGIC) 3826 tcp_parse_fastopen_option(opsize - 3827 TCPOLEN_EXP_FASTOPEN_BASE, 3828 ptr + 2, th->syn, foc, true); 3829 break; 3830 3831 } 3832 ptr += opsize-2; 3833 length -= opsize; 3834 } 3835 } 3836 } 3837 EXPORT_SYMBOL(tcp_parse_options); 3838 3839 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3840 { 3841 const __be32 *ptr = (const __be32 *)(th + 1); 3842 3843 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3844 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3845 tp->rx_opt.saw_tstamp = 1; 3846 ++ptr; 3847 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3848 ++ptr; 3849 if (*ptr) 3850 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3851 else 3852 tp->rx_opt.rcv_tsecr = 0; 3853 return true; 3854 } 3855 return false; 3856 } 3857 3858 /* Fast parse options. This hopes to only see timestamps. 3859 * If it is wrong it falls back on tcp_parse_options(). 3860 */ 3861 static bool tcp_fast_parse_options(const struct net *net, 3862 const struct sk_buff *skb, 3863 const struct tcphdr *th, struct tcp_sock *tp) 3864 { 3865 /* In the spirit of fast parsing, compare doff directly to constant 3866 * values. Because equality is used, short doff can be ignored here. 3867 */ 3868 if (th->doff == (sizeof(*th) / 4)) { 3869 tp->rx_opt.saw_tstamp = 0; 3870 return false; 3871 } else if (tp->rx_opt.tstamp_ok && 3872 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3873 if (tcp_parse_aligned_timestamp(tp, th)) 3874 return true; 3875 } 3876 3877 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3878 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3879 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3880 3881 return true; 3882 } 3883 3884 #ifdef CONFIG_TCP_MD5SIG 3885 /* 3886 * Parse MD5 Signature option 3887 */ 3888 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3889 { 3890 int length = (th->doff << 2) - sizeof(*th); 3891 const u8 *ptr = (const u8 *)(th + 1); 3892 3893 /* If the TCP option is too short, we can short cut */ 3894 if (length < TCPOLEN_MD5SIG) 3895 return NULL; 3896 3897 while (length > 0) { 3898 int opcode = *ptr++; 3899 int opsize; 3900 3901 switch (opcode) { 3902 case TCPOPT_EOL: 3903 return NULL; 3904 case TCPOPT_NOP: 3905 length--; 3906 continue; 3907 default: 3908 opsize = *ptr++; 3909 if (opsize < 2 || opsize > length) 3910 return NULL; 3911 if (opcode == TCPOPT_MD5SIG) 3912 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3913 } 3914 ptr += opsize - 2; 3915 length -= opsize; 3916 } 3917 return NULL; 3918 } 3919 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3920 #endif 3921 3922 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3923 * 3924 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3925 * it can pass through stack. So, the following predicate verifies that 3926 * this segment is not used for anything but congestion avoidance or 3927 * fast retransmit. Moreover, we even are able to eliminate most of such 3928 * second order effects, if we apply some small "replay" window (~RTO) 3929 * to timestamp space. 3930 * 3931 * All these measures still do not guarantee that we reject wrapped ACKs 3932 * on networks with high bandwidth, when sequence space is recycled fastly, 3933 * but it guarantees that such events will be very rare and do not affect 3934 * connection seriously. This doesn't look nice, but alas, PAWS is really 3935 * buggy extension. 3936 * 3937 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3938 * states that events when retransmit arrives after original data are rare. 3939 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3940 * the biggest problem on large power networks even with minor reordering. 3941 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3942 * up to bandwidth of 18Gigabit/sec. 8) ] 3943 */ 3944 3945 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3946 { 3947 const struct tcp_sock *tp = tcp_sk(sk); 3948 const struct tcphdr *th = tcp_hdr(skb); 3949 u32 seq = TCP_SKB_CB(skb)->seq; 3950 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3951 3952 return (/* 1. Pure ACK with correct sequence number. */ 3953 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3954 3955 /* 2. ... and duplicate ACK. */ 3956 ack == tp->snd_una && 3957 3958 /* 3. ... and does not update window. */ 3959 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3960 3961 /* 4. ... and sits in replay window. */ 3962 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3963 } 3964 3965 static inline bool tcp_paws_discard(const struct sock *sk, 3966 const struct sk_buff *skb) 3967 { 3968 const struct tcp_sock *tp = tcp_sk(sk); 3969 3970 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3971 !tcp_disordered_ack(sk, skb); 3972 } 3973 3974 /* Check segment sequence number for validity. 3975 * 3976 * Segment controls are considered valid, if the segment 3977 * fits to the window after truncation to the window. Acceptability 3978 * of data (and SYN, FIN, of course) is checked separately. 3979 * See tcp_data_queue(), for example. 3980 * 3981 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3982 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3983 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3984 * (borrowed from freebsd) 3985 */ 3986 3987 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3988 { 3989 return !before(end_seq, tp->rcv_wup) && 3990 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3991 } 3992 3993 /* When we get a reset we do this. */ 3994 void tcp_reset(struct sock *sk) 3995 { 3996 /* We want the right error as BSD sees it (and indeed as we do). */ 3997 switch (sk->sk_state) { 3998 case TCP_SYN_SENT: 3999 sk->sk_err = ECONNREFUSED; 4000 break; 4001 case TCP_CLOSE_WAIT: 4002 sk->sk_err = EPIPE; 4003 break; 4004 case TCP_CLOSE: 4005 return; 4006 default: 4007 sk->sk_err = ECONNRESET; 4008 } 4009 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4010 smp_wmb(); 4011 4012 tcp_done(sk); 4013 4014 if (!sock_flag(sk, SOCK_DEAD)) 4015 sk->sk_error_report(sk); 4016 } 4017 4018 /* 4019 * Process the FIN bit. This now behaves as it is supposed to work 4020 * and the FIN takes effect when it is validly part of sequence 4021 * space. Not before when we get holes. 4022 * 4023 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4024 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4025 * TIME-WAIT) 4026 * 4027 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4028 * close and we go into CLOSING (and later onto TIME-WAIT) 4029 * 4030 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4031 */ 4032 void tcp_fin(struct sock *sk) 4033 { 4034 struct tcp_sock *tp = tcp_sk(sk); 4035 4036 inet_csk_schedule_ack(sk); 4037 4038 sk->sk_shutdown |= RCV_SHUTDOWN; 4039 sock_set_flag(sk, SOCK_DONE); 4040 4041 switch (sk->sk_state) { 4042 case TCP_SYN_RECV: 4043 case TCP_ESTABLISHED: 4044 /* Move to CLOSE_WAIT */ 4045 tcp_set_state(sk, TCP_CLOSE_WAIT); 4046 inet_csk(sk)->icsk_ack.pingpong = 1; 4047 break; 4048 4049 case TCP_CLOSE_WAIT: 4050 case TCP_CLOSING: 4051 /* Received a retransmission of the FIN, do 4052 * nothing. 4053 */ 4054 break; 4055 case TCP_LAST_ACK: 4056 /* RFC793: Remain in the LAST-ACK state. */ 4057 break; 4058 4059 case TCP_FIN_WAIT1: 4060 /* This case occurs when a simultaneous close 4061 * happens, we must ack the received FIN and 4062 * enter the CLOSING state. 4063 */ 4064 tcp_send_ack(sk); 4065 tcp_set_state(sk, TCP_CLOSING); 4066 break; 4067 case TCP_FIN_WAIT2: 4068 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4069 tcp_send_ack(sk); 4070 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4071 break; 4072 default: 4073 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4074 * cases we should never reach this piece of code. 4075 */ 4076 pr_err("%s: Impossible, sk->sk_state=%d\n", 4077 __func__, sk->sk_state); 4078 break; 4079 } 4080 4081 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4082 * Probably, we should reset in this case. For now drop them. 4083 */ 4084 skb_rbtree_purge(&tp->out_of_order_queue); 4085 if (tcp_is_sack(tp)) 4086 tcp_sack_reset(&tp->rx_opt); 4087 sk_mem_reclaim(sk); 4088 4089 if (!sock_flag(sk, SOCK_DEAD)) { 4090 sk->sk_state_change(sk); 4091 4092 /* Do not send POLL_HUP for half duplex close. */ 4093 if (sk->sk_shutdown == SHUTDOWN_MASK || 4094 sk->sk_state == TCP_CLOSE) 4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4096 else 4097 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4098 } 4099 } 4100 4101 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4102 u32 end_seq) 4103 { 4104 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4105 if (before(seq, sp->start_seq)) 4106 sp->start_seq = seq; 4107 if (after(end_seq, sp->end_seq)) 4108 sp->end_seq = end_seq; 4109 return true; 4110 } 4111 return false; 4112 } 4113 4114 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4115 { 4116 struct tcp_sock *tp = tcp_sk(sk); 4117 4118 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4119 int mib_idx; 4120 4121 if (before(seq, tp->rcv_nxt)) 4122 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4123 else 4124 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4125 4126 NET_INC_STATS(sock_net(sk), mib_idx); 4127 4128 tp->rx_opt.dsack = 1; 4129 tp->duplicate_sack[0].start_seq = seq; 4130 tp->duplicate_sack[0].end_seq = end_seq; 4131 } 4132 } 4133 4134 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4135 { 4136 struct tcp_sock *tp = tcp_sk(sk); 4137 4138 if (!tp->rx_opt.dsack) 4139 tcp_dsack_set(sk, seq, end_seq); 4140 else 4141 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4142 } 4143 4144 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4145 { 4146 struct tcp_sock *tp = tcp_sk(sk); 4147 4148 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4149 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4150 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4151 tcp_enter_quickack_mode(sk); 4152 4153 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4154 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4155 4156 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4157 end_seq = tp->rcv_nxt; 4158 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4159 } 4160 } 4161 4162 tcp_send_ack(sk); 4163 } 4164 4165 /* These routines update the SACK block as out-of-order packets arrive or 4166 * in-order packets close up the sequence space. 4167 */ 4168 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4169 { 4170 int this_sack; 4171 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4172 struct tcp_sack_block *swalk = sp + 1; 4173 4174 /* See if the recent change to the first SACK eats into 4175 * or hits the sequence space of other SACK blocks, if so coalesce. 4176 */ 4177 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4178 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4179 int i; 4180 4181 /* Zap SWALK, by moving every further SACK up by one slot. 4182 * Decrease num_sacks. 4183 */ 4184 tp->rx_opt.num_sacks--; 4185 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4186 sp[i] = sp[i + 1]; 4187 continue; 4188 } 4189 this_sack++, swalk++; 4190 } 4191 } 4192 4193 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4194 { 4195 struct tcp_sock *tp = tcp_sk(sk); 4196 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4197 int cur_sacks = tp->rx_opt.num_sacks; 4198 int this_sack; 4199 4200 if (!cur_sacks) 4201 goto new_sack; 4202 4203 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4204 if (tcp_sack_extend(sp, seq, end_seq)) { 4205 /* Rotate this_sack to the first one. */ 4206 for (; this_sack > 0; this_sack--, sp--) 4207 swap(*sp, *(sp - 1)); 4208 if (cur_sacks > 1) 4209 tcp_sack_maybe_coalesce(tp); 4210 return; 4211 } 4212 } 4213 4214 /* Could not find an adjacent existing SACK, build a new one, 4215 * put it at the front, and shift everyone else down. We 4216 * always know there is at least one SACK present already here. 4217 * 4218 * If the sack array is full, forget about the last one. 4219 */ 4220 if (this_sack >= TCP_NUM_SACKS) { 4221 this_sack--; 4222 tp->rx_opt.num_sacks--; 4223 sp--; 4224 } 4225 for (; this_sack > 0; this_sack--, sp--) 4226 *sp = *(sp - 1); 4227 4228 new_sack: 4229 /* Build the new head SACK, and we're done. */ 4230 sp->start_seq = seq; 4231 sp->end_seq = end_seq; 4232 tp->rx_opt.num_sacks++; 4233 } 4234 4235 /* RCV.NXT advances, some SACKs should be eaten. */ 4236 4237 static void tcp_sack_remove(struct tcp_sock *tp) 4238 { 4239 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4240 int num_sacks = tp->rx_opt.num_sacks; 4241 int this_sack; 4242 4243 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4244 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4245 tp->rx_opt.num_sacks = 0; 4246 return; 4247 } 4248 4249 for (this_sack = 0; this_sack < num_sacks;) { 4250 /* Check if the start of the sack is covered by RCV.NXT. */ 4251 if (!before(tp->rcv_nxt, sp->start_seq)) { 4252 int i; 4253 4254 /* RCV.NXT must cover all the block! */ 4255 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4256 4257 /* Zap this SACK, by moving forward any other SACKS. */ 4258 for (i = this_sack+1; i < num_sacks; i++) 4259 tp->selective_acks[i-1] = tp->selective_acks[i]; 4260 num_sacks--; 4261 continue; 4262 } 4263 this_sack++; 4264 sp++; 4265 } 4266 tp->rx_opt.num_sacks = num_sacks; 4267 } 4268 4269 /** 4270 * tcp_try_coalesce - try to merge skb to prior one 4271 * @sk: socket 4272 * @dest: destination queue 4273 * @to: prior buffer 4274 * @from: buffer to add in queue 4275 * @fragstolen: pointer to boolean 4276 * 4277 * Before queueing skb @from after @to, try to merge them 4278 * to reduce overall memory use and queue lengths, if cost is small. 4279 * Packets in ofo or receive queues can stay a long time. 4280 * Better try to coalesce them right now to avoid future collapses. 4281 * Returns true if caller should free @from instead of queueing it 4282 */ 4283 static bool tcp_try_coalesce(struct sock *sk, 4284 struct sk_buff *to, 4285 struct sk_buff *from, 4286 bool *fragstolen) 4287 { 4288 int delta; 4289 4290 *fragstolen = false; 4291 4292 /* Its possible this segment overlaps with prior segment in queue */ 4293 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4294 return false; 4295 4296 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4297 return false; 4298 4299 atomic_add(delta, &sk->sk_rmem_alloc); 4300 sk_mem_charge(sk, delta); 4301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4302 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4303 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4304 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4305 4306 if (TCP_SKB_CB(from)->has_rxtstamp) { 4307 TCP_SKB_CB(to)->has_rxtstamp = true; 4308 to->tstamp = from->tstamp; 4309 } 4310 4311 return true; 4312 } 4313 4314 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4315 { 4316 sk_drops_add(sk, skb); 4317 __kfree_skb(skb); 4318 } 4319 4320 /* This one checks to see if we can put data from the 4321 * out_of_order queue into the receive_queue. 4322 */ 4323 static void tcp_ofo_queue(struct sock *sk) 4324 { 4325 struct tcp_sock *tp = tcp_sk(sk); 4326 __u32 dsack_high = tp->rcv_nxt; 4327 bool fin, fragstolen, eaten; 4328 struct sk_buff *skb, *tail; 4329 struct rb_node *p; 4330 4331 p = rb_first(&tp->out_of_order_queue); 4332 while (p) { 4333 skb = rb_entry(p, struct sk_buff, rbnode); 4334 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4335 break; 4336 4337 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4338 __u32 dsack = dsack_high; 4339 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4340 dsack_high = TCP_SKB_CB(skb)->end_seq; 4341 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4342 } 4343 p = rb_next(p); 4344 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4345 4346 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4347 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4348 tcp_drop(sk, skb); 4349 continue; 4350 } 4351 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4352 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4353 TCP_SKB_CB(skb)->end_seq); 4354 4355 tail = skb_peek_tail(&sk->sk_receive_queue); 4356 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4357 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4358 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4359 if (!eaten) 4360 __skb_queue_tail(&sk->sk_receive_queue, skb); 4361 else 4362 kfree_skb_partial(skb, fragstolen); 4363 4364 if (unlikely(fin)) { 4365 tcp_fin(sk); 4366 /* tcp_fin() purges tp->out_of_order_queue, 4367 * so we must end this loop right now. 4368 */ 4369 break; 4370 } 4371 } 4372 } 4373 4374 static bool tcp_prune_ofo_queue(struct sock *sk); 4375 static int tcp_prune_queue(struct sock *sk); 4376 4377 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4378 unsigned int size) 4379 { 4380 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4381 !sk_rmem_schedule(sk, skb, size)) { 4382 4383 if (tcp_prune_queue(sk) < 0) 4384 return -1; 4385 4386 while (!sk_rmem_schedule(sk, skb, size)) { 4387 if (!tcp_prune_ofo_queue(sk)) 4388 return -1; 4389 } 4390 } 4391 return 0; 4392 } 4393 4394 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4395 { 4396 struct tcp_sock *tp = tcp_sk(sk); 4397 struct rb_node **p, *q, *parent; 4398 struct sk_buff *skb1; 4399 u32 seq, end_seq; 4400 bool fragstolen; 4401 4402 tcp_ecn_check_ce(tp, skb); 4403 4404 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4406 tcp_drop(sk, skb); 4407 return; 4408 } 4409 4410 /* Disable header prediction. */ 4411 tp->pred_flags = 0; 4412 inet_csk_schedule_ack(sk); 4413 4414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4415 seq = TCP_SKB_CB(skb)->seq; 4416 end_seq = TCP_SKB_CB(skb)->end_seq; 4417 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4418 tp->rcv_nxt, seq, end_seq); 4419 4420 p = &tp->out_of_order_queue.rb_node; 4421 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4422 /* Initial out of order segment, build 1 SACK. */ 4423 if (tcp_is_sack(tp)) { 4424 tp->rx_opt.num_sacks = 1; 4425 tp->selective_acks[0].start_seq = seq; 4426 tp->selective_acks[0].end_seq = end_seq; 4427 } 4428 rb_link_node(&skb->rbnode, NULL, p); 4429 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4430 tp->ooo_last_skb = skb; 4431 goto end; 4432 } 4433 4434 /* In the typical case, we are adding an skb to the end of the list. 4435 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4436 */ 4437 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4438 skb, &fragstolen)) { 4439 coalesce_done: 4440 tcp_grow_window(sk, skb); 4441 kfree_skb_partial(skb, fragstolen); 4442 skb = NULL; 4443 goto add_sack; 4444 } 4445 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4446 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4447 parent = &tp->ooo_last_skb->rbnode; 4448 p = &parent->rb_right; 4449 goto insert; 4450 } 4451 4452 /* Find place to insert this segment. Handle overlaps on the way. */ 4453 parent = NULL; 4454 while (*p) { 4455 parent = *p; 4456 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4457 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4458 p = &parent->rb_left; 4459 continue; 4460 } 4461 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4462 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4463 /* All the bits are present. Drop. */ 4464 NET_INC_STATS(sock_net(sk), 4465 LINUX_MIB_TCPOFOMERGE); 4466 __kfree_skb(skb); 4467 skb = NULL; 4468 tcp_dsack_set(sk, seq, end_seq); 4469 goto add_sack; 4470 } 4471 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4472 /* Partial overlap. */ 4473 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4474 } else { 4475 /* skb's seq == skb1's seq and skb covers skb1. 4476 * Replace skb1 with skb. 4477 */ 4478 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4479 &tp->out_of_order_queue); 4480 tcp_dsack_extend(sk, 4481 TCP_SKB_CB(skb1)->seq, 4482 TCP_SKB_CB(skb1)->end_seq); 4483 NET_INC_STATS(sock_net(sk), 4484 LINUX_MIB_TCPOFOMERGE); 4485 __kfree_skb(skb1); 4486 goto merge_right; 4487 } 4488 } else if (tcp_try_coalesce(sk, skb1, 4489 skb, &fragstolen)) { 4490 goto coalesce_done; 4491 } 4492 p = &parent->rb_right; 4493 } 4494 insert: 4495 /* Insert segment into RB tree. */ 4496 rb_link_node(&skb->rbnode, parent, p); 4497 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4498 4499 merge_right: 4500 /* Remove other segments covered by skb. */ 4501 while ((q = rb_next(&skb->rbnode)) != NULL) { 4502 skb1 = rb_entry(q, struct sk_buff, rbnode); 4503 4504 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4505 break; 4506 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4507 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4508 end_seq); 4509 break; 4510 } 4511 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4512 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4513 TCP_SKB_CB(skb1)->end_seq); 4514 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4515 tcp_drop(sk, skb1); 4516 } 4517 /* If there is no skb after us, we are the last_skb ! */ 4518 if (!q) 4519 tp->ooo_last_skb = skb; 4520 4521 add_sack: 4522 if (tcp_is_sack(tp)) 4523 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4524 end: 4525 if (skb) { 4526 tcp_grow_window(sk, skb); 4527 skb_condense(skb); 4528 skb_set_owner_r(skb, sk); 4529 } 4530 } 4531 4532 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4533 bool *fragstolen) 4534 { 4535 int eaten; 4536 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4537 4538 __skb_pull(skb, hdrlen); 4539 eaten = (tail && 4540 tcp_try_coalesce(sk, tail, 4541 skb, fragstolen)) ? 1 : 0; 4542 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4543 if (!eaten) { 4544 __skb_queue_tail(&sk->sk_receive_queue, skb); 4545 skb_set_owner_r(skb, sk); 4546 } 4547 return eaten; 4548 } 4549 4550 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4551 { 4552 struct sk_buff *skb; 4553 int err = -ENOMEM; 4554 int data_len = 0; 4555 bool fragstolen; 4556 4557 if (size == 0) 4558 return 0; 4559 4560 if (size > PAGE_SIZE) { 4561 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4562 4563 data_len = npages << PAGE_SHIFT; 4564 size = data_len + (size & ~PAGE_MASK); 4565 } 4566 skb = alloc_skb_with_frags(size - data_len, data_len, 4567 PAGE_ALLOC_COSTLY_ORDER, 4568 &err, sk->sk_allocation); 4569 if (!skb) 4570 goto err; 4571 4572 skb_put(skb, size - data_len); 4573 skb->data_len = data_len; 4574 skb->len = size; 4575 4576 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4577 goto err_free; 4578 4579 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4580 if (err) 4581 goto err_free; 4582 4583 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4584 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4585 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4586 4587 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4588 WARN_ON_ONCE(fragstolen); /* should not happen */ 4589 __kfree_skb(skb); 4590 } 4591 return size; 4592 4593 err_free: 4594 kfree_skb(skb); 4595 err: 4596 return err; 4597 4598 } 4599 4600 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4601 { 4602 struct tcp_sock *tp = tcp_sk(sk); 4603 bool fragstolen; 4604 int eaten; 4605 4606 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4607 __kfree_skb(skb); 4608 return; 4609 } 4610 skb_dst_drop(skb); 4611 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4612 4613 tcp_ecn_accept_cwr(tp, skb); 4614 4615 tp->rx_opt.dsack = 0; 4616 4617 /* Queue data for delivery to the user. 4618 * Packets in sequence go to the receive queue. 4619 * Out of sequence packets to the out_of_order_queue. 4620 */ 4621 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4622 if (tcp_receive_window(tp) == 0) 4623 goto out_of_window; 4624 4625 /* Ok. In sequence. In window. */ 4626 queue_and_out: 4627 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4628 sk_forced_mem_schedule(sk, skb->truesize); 4629 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4630 goto drop; 4631 4632 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4633 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4634 if (skb->len) 4635 tcp_event_data_recv(sk, skb); 4636 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4637 tcp_fin(sk); 4638 4639 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4640 tcp_ofo_queue(sk); 4641 4642 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4643 * gap in queue is filled. 4644 */ 4645 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4646 inet_csk(sk)->icsk_ack.pingpong = 0; 4647 } 4648 4649 if (tp->rx_opt.num_sacks) 4650 tcp_sack_remove(tp); 4651 4652 tcp_fast_path_check(sk); 4653 4654 if (eaten > 0) 4655 kfree_skb_partial(skb, fragstolen); 4656 if (!sock_flag(sk, SOCK_DEAD)) 4657 sk->sk_data_ready(sk); 4658 return; 4659 } 4660 4661 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4662 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4663 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4664 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4665 4666 out_of_window: 4667 tcp_enter_quickack_mode(sk); 4668 inet_csk_schedule_ack(sk); 4669 drop: 4670 tcp_drop(sk, skb); 4671 return; 4672 } 4673 4674 /* Out of window. F.e. zero window probe. */ 4675 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4676 goto out_of_window; 4677 4678 tcp_enter_quickack_mode(sk); 4679 4680 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4681 /* Partial packet, seq < rcv_next < end_seq */ 4682 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4683 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4684 TCP_SKB_CB(skb)->end_seq); 4685 4686 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4687 4688 /* If window is closed, drop tail of packet. But after 4689 * remembering D-SACK for its head made in previous line. 4690 */ 4691 if (!tcp_receive_window(tp)) 4692 goto out_of_window; 4693 goto queue_and_out; 4694 } 4695 4696 tcp_data_queue_ofo(sk, skb); 4697 } 4698 4699 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4700 { 4701 if (list) 4702 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4703 4704 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4705 } 4706 4707 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4708 struct sk_buff_head *list, 4709 struct rb_root *root) 4710 { 4711 struct sk_buff *next = tcp_skb_next(skb, list); 4712 4713 if (list) 4714 __skb_unlink(skb, list); 4715 else 4716 rb_erase(&skb->rbnode, root); 4717 4718 __kfree_skb(skb); 4719 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4720 4721 return next; 4722 } 4723 4724 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4725 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4726 { 4727 struct rb_node **p = &root->rb_node; 4728 struct rb_node *parent = NULL; 4729 struct sk_buff *skb1; 4730 4731 while (*p) { 4732 parent = *p; 4733 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4734 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4735 p = &parent->rb_left; 4736 else 4737 p = &parent->rb_right; 4738 } 4739 rb_link_node(&skb->rbnode, parent, p); 4740 rb_insert_color(&skb->rbnode, root); 4741 } 4742 4743 /* Collapse contiguous sequence of skbs head..tail with 4744 * sequence numbers start..end. 4745 * 4746 * If tail is NULL, this means until the end of the queue. 4747 * 4748 * Segments with FIN/SYN are not collapsed (only because this 4749 * simplifies code) 4750 */ 4751 static void 4752 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4753 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4754 { 4755 struct sk_buff *skb = head, *n; 4756 struct sk_buff_head tmp; 4757 bool end_of_skbs; 4758 4759 /* First, check that queue is collapsible and find 4760 * the point where collapsing can be useful. 4761 */ 4762 restart: 4763 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4764 n = tcp_skb_next(skb, list); 4765 4766 /* No new bits? It is possible on ofo queue. */ 4767 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4768 skb = tcp_collapse_one(sk, skb, list, root); 4769 if (!skb) 4770 break; 4771 goto restart; 4772 } 4773 4774 /* The first skb to collapse is: 4775 * - not SYN/FIN and 4776 * - bloated or contains data before "start" or 4777 * overlaps to the next one. 4778 */ 4779 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4780 (tcp_win_from_space(skb->truesize) > skb->len || 4781 before(TCP_SKB_CB(skb)->seq, start))) { 4782 end_of_skbs = false; 4783 break; 4784 } 4785 4786 if (n && n != tail && 4787 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4788 end_of_skbs = false; 4789 break; 4790 } 4791 4792 /* Decided to skip this, advance start seq. */ 4793 start = TCP_SKB_CB(skb)->end_seq; 4794 } 4795 if (end_of_skbs || 4796 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4797 return; 4798 4799 __skb_queue_head_init(&tmp); 4800 4801 while (before(start, end)) { 4802 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4803 struct sk_buff *nskb; 4804 4805 nskb = alloc_skb(copy, GFP_ATOMIC); 4806 if (!nskb) 4807 break; 4808 4809 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4810 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4811 if (list) 4812 __skb_queue_before(list, skb, nskb); 4813 else 4814 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4815 skb_set_owner_r(nskb, sk); 4816 4817 /* Copy data, releasing collapsed skbs. */ 4818 while (copy > 0) { 4819 int offset = start - TCP_SKB_CB(skb)->seq; 4820 int size = TCP_SKB_CB(skb)->end_seq - start; 4821 4822 BUG_ON(offset < 0); 4823 if (size > 0) { 4824 size = min(copy, size); 4825 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4826 BUG(); 4827 TCP_SKB_CB(nskb)->end_seq += size; 4828 copy -= size; 4829 start += size; 4830 } 4831 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4832 skb = tcp_collapse_one(sk, skb, list, root); 4833 if (!skb || 4834 skb == tail || 4835 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4836 goto end; 4837 } 4838 } 4839 } 4840 end: 4841 skb_queue_walk_safe(&tmp, skb, n) 4842 tcp_rbtree_insert(root, skb); 4843 } 4844 4845 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4846 * and tcp_collapse() them until all the queue is collapsed. 4847 */ 4848 static void tcp_collapse_ofo_queue(struct sock *sk) 4849 { 4850 struct tcp_sock *tp = tcp_sk(sk); 4851 struct sk_buff *skb, *head; 4852 struct rb_node *p; 4853 u32 start, end; 4854 4855 p = rb_first(&tp->out_of_order_queue); 4856 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4857 new_range: 4858 if (!skb) { 4859 p = rb_last(&tp->out_of_order_queue); 4860 /* Note: This is possible p is NULL here. We do not 4861 * use rb_entry_safe(), as ooo_last_skb is valid only 4862 * if rbtree is not empty. 4863 */ 4864 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4865 return; 4866 } 4867 start = TCP_SKB_CB(skb)->seq; 4868 end = TCP_SKB_CB(skb)->end_seq; 4869 4870 for (head = skb;;) { 4871 skb = tcp_skb_next(skb, NULL); 4872 4873 /* Range is terminated when we see a gap or when 4874 * we are at the queue end. 4875 */ 4876 if (!skb || 4877 after(TCP_SKB_CB(skb)->seq, end) || 4878 before(TCP_SKB_CB(skb)->end_seq, start)) { 4879 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4880 head, skb, start, end); 4881 goto new_range; 4882 } 4883 4884 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4885 start = TCP_SKB_CB(skb)->seq; 4886 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4887 end = TCP_SKB_CB(skb)->end_seq; 4888 } 4889 } 4890 4891 /* 4892 * Clean the out-of-order queue to make room. 4893 * We drop high sequences packets to : 4894 * 1) Let a chance for holes to be filled. 4895 * 2) not add too big latencies if thousands of packets sit there. 4896 * (But if application shrinks SO_RCVBUF, we could still end up 4897 * freeing whole queue here) 4898 * 4899 * Return true if queue has shrunk. 4900 */ 4901 static bool tcp_prune_ofo_queue(struct sock *sk) 4902 { 4903 struct tcp_sock *tp = tcp_sk(sk); 4904 struct rb_node *node, *prev; 4905 4906 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4907 return false; 4908 4909 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4910 node = &tp->ooo_last_skb->rbnode; 4911 do { 4912 prev = rb_prev(node); 4913 rb_erase(node, &tp->out_of_order_queue); 4914 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4915 sk_mem_reclaim(sk); 4916 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4917 !tcp_under_memory_pressure(sk)) 4918 break; 4919 node = prev; 4920 } while (node); 4921 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4922 4923 /* Reset SACK state. A conforming SACK implementation will 4924 * do the same at a timeout based retransmit. When a connection 4925 * is in a sad state like this, we care only about integrity 4926 * of the connection not performance. 4927 */ 4928 if (tp->rx_opt.sack_ok) 4929 tcp_sack_reset(&tp->rx_opt); 4930 return true; 4931 } 4932 4933 /* Reduce allocated memory if we can, trying to get 4934 * the socket within its memory limits again. 4935 * 4936 * Return less than zero if we should start dropping frames 4937 * until the socket owning process reads some of the data 4938 * to stabilize the situation. 4939 */ 4940 static int tcp_prune_queue(struct sock *sk) 4941 { 4942 struct tcp_sock *tp = tcp_sk(sk); 4943 4944 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4945 4946 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4947 4948 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4949 tcp_clamp_window(sk); 4950 else if (tcp_under_memory_pressure(sk)) 4951 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4952 4953 tcp_collapse_ofo_queue(sk); 4954 if (!skb_queue_empty(&sk->sk_receive_queue)) 4955 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4956 skb_peek(&sk->sk_receive_queue), 4957 NULL, 4958 tp->copied_seq, tp->rcv_nxt); 4959 sk_mem_reclaim(sk); 4960 4961 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4962 return 0; 4963 4964 /* Collapsing did not help, destructive actions follow. 4965 * This must not ever occur. */ 4966 4967 tcp_prune_ofo_queue(sk); 4968 4969 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4970 return 0; 4971 4972 /* If we are really being abused, tell the caller to silently 4973 * drop receive data on the floor. It will get retransmitted 4974 * and hopefully then we'll have sufficient space. 4975 */ 4976 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4977 4978 /* Massive buffer overcommit. */ 4979 tp->pred_flags = 0; 4980 return -1; 4981 } 4982 4983 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4984 { 4985 const struct tcp_sock *tp = tcp_sk(sk); 4986 4987 /* If the user specified a specific send buffer setting, do 4988 * not modify it. 4989 */ 4990 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4991 return false; 4992 4993 /* If we are under global TCP memory pressure, do not expand. */ 4994 if (tcp_under_memory_pressure(sk)) 4995 return false; 4996 4997 /* If we are under soft global TCP memory pressure, do not expand. */ 4998 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4999 return false; 5000 5001 /* If we filled the congestion window, do not expand. */ 5002 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5003 return false; 5004 5005 return true; 5006 } 5007 5008 /* When incoming ACK allowed to free some skb from write_queue, 5009 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5010 * on the exit from tcp input handler. 5011 * 5012 * PROBLEM: sndbuf expansion does not work well with largesend. 5013 */ 5014 static void tcp_new_space(struct sock *sk) 5015 { 5016 struct tcp_sock *tp = tcp_sk(sk); 5017 5018 if (tcp_should_expand_sndbuf(sk)) { 5019 tcp_sndbuf_expand(sk); 5020 tp->snd_cwnd_stamp = tcp_jiffies32; 5021 } 5022 5023 sk->sk_write_space(sk); 5024 } 5025 5026 static void tcp_check_space(struct sock *sk) 5027 { 5028 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5029 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5030 /* pairs with tcp_poll() */ 5031 smp_mb(); 5032 if (sk->sk_socket && 5033 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5034 tcp_new_space(sk); 5035 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5036 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5037 } 5038 } 5039 } 5040 5041 static inline void tcp_data_snd_check(struct sock *sk) 5042 { 5043 tcp_push_pending_frames(sk); 5044 tcp_check_space(sk); 5045 } 5046 5047 /* 5048 * Check if sending an ack is needed. 5049 */ 5050 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5051 { 5052 struct tcp_sock *tp = tcp_sk(sk); 5053 5054 /* More than one full frame received... */ 5055 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5056 /* ... and right edge of window advances far enough. 5057 * (tcp_recvmsg() will send ACK otherwise). Or... 5058 */ 5059 __tcp_select_window(sk) >= tp->rcv_wnd) || 5060 /* We ACK each frame or... */ 5061 tcp_in_quickack_mode(sk) || 5062 /* We have out of order data. */ 5063 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5064 /* Then ack it now */ 5065 tcp_send_ack(sk); 5066 } else { 5067 /* Else, send delayed ack. */ 5068 tcp_send_delayed_ack(sk); 5069 } 5070 } 5071 5072 static inline void tcp_ack_snd_check(struct sock *sk) 5073 { 5074 if (!inet_csk_ack_scheduled(sk)) { 5075 /* We sent a data segment already. */ 5076 return; 5077 } 5078 __tcp_ack_snd_check(sk, 1); 5079 } 5080 5081 /* 5082 * This routine is only called when we have urgent data 5083 * signaled. Its the 'slow' part of tcp_urg. It could be 5084 * moved inline now as tcp_urg is only called from one 5085 * place. We handle URGent data wrong. We have to - as 5086 * BSD still doesn't use the correction from RFC961. 5087 * For 1003.1g we should support a new option TCP_STDURG to permit 5088 * either form (or just set the sysctl tcp_stdurg). 5089 */ 5090 5091 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5092 { 5093 struct tcp_sock *tp = tcp_sk(sk); 5094 u32 ptr = ntohs(th->urg_ptr); 5095 5096 if (ptr && !sysctl_tcp_stdurg) 5097 ptr--; 5098 ptr += ntohl(th->seq); 5099 5100 /* Ignore urgent data that we've already seen and read. */ 5101 if (after(tp->copied_seq, ptr)) 5102 return; 5103 5104 /* Do not replay urg ptr. 5105 * 5106 * NOTE: interesting situation not covered by specs. 5107 * Misbehaving sender may send urg ptr, pointing to segment, 5108 * which we already have in ofo queue. We are not able to fetch 5109 * such data and will stay in TCP_URG_NOTYET until will be eaten 5110 * by recvmsg(). Seems, we are not obliged to handle such wicked 5111 * situations. But it is worth to think about possibility of some 5112 * DoSes using some hypothetical application level deadlock. 5113 */ 5114 if (before(ptr, tp->rcv_nxt)) 5115 return; 5116 5117 /* Do we already have a newer (or duplicate) urgent pointer? */ 5118 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5119 return; 5120 5121 /* Tell the world about our new urgent pointer. */ 5122 sk_send_sigurg(sk); 5123 5124 /* We may be adding urgent data when the last byte read was 5125 * urgent. To do this requires some care. We cannot just ignore 5126 * tp->copied_seq since we would read the last urgent byte again 5127 * as data, nor can we alter copied_seq until this data arrives 5128 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5129 * 5130 * NOTE. Double Dutch. Rendering to plain English: author of comment 5131 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5132 * and expect that both A and B disappear from stream. This is _wrong_. 5133 * Though this happens in BSD with high probability, this is occasional. 5134 * Any application relying on this is buggy. Note also, that fix "works" 5135 * only in this artificial test. Insert some normal data between A and B and we will 5136 * decline of BSD again. Verdict: it is better to remove to trap 5137 * buggy users. 5138 */ 5139 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5140 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5141 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5142 tp->copied_seq++; 5143 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5144 __skb_unlink(skb, &sk->sk_receive_queue); 5145 __kfree_skb(skb); 5146 } 5147 } 5148 5149 tp->urg_data = TCP_URG_NOTYET; 5150 tp->urg_seq = ptr; 5151 5152 /* Disable header prediction. */ 5153 tp->pred_flags = 0; 5154 } 5155 5156 /* This is the 'fast' part of urgent handling. */ 5157 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5158 { 5159 struct tcp_sock *tp = tcp_sk(sk); 5160 5161 /* Check if we get a new urgent pointer - normally not. */ 5162 if (th->urg) 5163 tcp_check_urg(sk, th); 5164 5165 /* Do we wait for any urgent data? - normally not... */ 5166 if (tp->urg_data == TCP_URG_NOTYET) { 5167 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5168 th->syn; 5169 5170 /* Is the urgent pointer pointing into this packet? */ 5171 if (ptr < skb->len) { 5172 u8 tmp; 5173 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5174 BUG(); 5175 tp->urg_data = TCP_URG_VALID | tmp; 5176 if (!sock_flag(sk, SOCK_DEAD)) 5177 sk->sk_data_ready(sk); 5178 } 5179 } 5180 } 5181 5182 /* Accept RST for rcv_nxt - 1 after a FIN. 5183 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5184 * FIN is sent followed by a RST packet. The RST is sent with the same 5185 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5186 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5187 * ACKs on the closed socket. In addition middleboxes can drop either the 5188 * challenge ACK or a subsequent RST. 5189 */ 5190 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5191 { 5192 struct tcp_sock *tp = tcp_sk(sk); 5193 5194 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5195 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5196 TCPF_CLOSING)); 5197 } 5198 5199 /* Does PAWS and seqno based validation of an incoming segment, flags will 5200 * play significant role here. 5201 */ 5202 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5203 const struct tcphdr *th, int syn_inerr) 5204 { 5205 struct tcp_sock *tp = tcp_sk(sk); 5206 bool rst_seq_match = false; 5207 5208 /* RFC1323: H1. Apply PAWS check first. */ 5209 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5210 tp->rx_opt.saw_tstamp && 5211 tcp_paws_discard(sk, skb)) { 5212 if (!th->rst) { 5213 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5214 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5215 LINUX_MIB_TCPACKSKIPPEDPAWS, 5216 &tp->last_oow_ack_time)) 5217 tcp_send_dupack(sk, skb); 5218 goto discard; 5219 } 5220 /* Reset is accepted even if it did not pass PAWS. */ 5221 } 5222 5223 /* Step 1: check sequence number */ 5224 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5225 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5226 * (RST) segments are validated by checking their SEQ-fields." 5227 * And page 69: "If an incoming segment is not acceptable, 5228 * an acknowledgment should be sent in reply (unless the RST 5229 * bit is set, if so drop the segment and return)". 5230 */ 5231 if (!th->rst) { 5232 if (th->syn) 5233 goto syn_challenge; 5234 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5235 LINUX_MIB_TCPACKSKIPPEDSEQ, 5236 &tp->last_oow_ack_time)) 5237 tcp_send_dupack(sk, skb); 5238 } else if (tcp_reset_check(sk, skb)) { 5239 tcp_reset(sk); 5240 } 5241 goto discard; 5242 } 5243 5244 /* Step 2: check RST bit */ 5245 if (th->rst) { 5246 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5247 * FIN and SACK too if available): 5248 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5249 * the right-most SACK block, 5250 * then 5251 * RESET the connection 5252 * else 5253 * Send a challenge ACK 5254 */ 5255 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5256 tcp_reset_check(sk, skb)) { 5257 rst_seq_match = true; 5258 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5259 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5260 int max_sack = sp[0].end_seq; 5261 int this_sack; 5262 5263 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5264 ++this_sack) { 5265 max_sack = after(sp[this_sack].end_seq, 5266 max_sack) ? 5267 sp[this_sack].end_seq : max_sack; 5268 } 5269 5270 if (TCP_SKB_CB(skb)->seq == max_sack) 5271 rst_seq_match = true; 5272 } 5273 5274 if (rst_seq_match) 5275 tcp_reset(sk); 5276 else { 5277 /* Disable TFO if RST is out-of-order 5278 * and no data has been received 5279 * for current active TFO socket 5280 */ 5281 if (tp->syn_fastopen && !tp->data_segs_in && 5282 sk->sk_state == TCP_ESTABLISHED) 5283 tcp_fastopen_active_disable(sk); 5284 tcp_send_challenge_ack(sk, skb); 5285 } 5286 goto discard; 5287 } 5288 5289 /* step 3: check security and precedence [ignored] */ 5290 5291 /* step 4: Check for a SYN 5292 * RFC 5961 4.2 : Send a challenge ack 5293 */ 5294 if (th->syn) { 5295 syn_challenge: 5296 if (syn_inerr) 5297 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5299 tcp_send_challenge_ack(sk, skb); 5300 goto discard; 5301 } 5302 5303 return true; 5304 5305 discard: 5306 tcp_drop(sk, skb); 5307 return false; 5308 } 5309 5310 /* 5311 * TCP receive function for the ESTABLISHED state. 5312 * 5313 * It is split into a fast path and a slow path. The fast path is 5314 * disabled when: 5315 * - A zero window was announced from us - zero window probing 5316 * is only handled properly in the slow path. 5317 * - Out of order segments arrived. 5318 * - Urgent data is expected. 5319 * - There is no buffer space left 5320 * - Unexpected TCP flags/window values/header lengths are received 5321 * (detected by checking the TCP header against pred_flags) 5322 * - Data is sent in both directions. Fast path only supports pure senders 5323 * or pure receivers (this means either the sequence number or the ack 5324 * value must stay constant) 5325 * - Unexpected TCP option. 5326 * 5327 * When these conditions are not satisfied it drops into a standard 5328 * receive procedure patterned after RFC793 to handle all cases. 5329 * The first three cases are guaranteed by proper pred_flags setting, 5330 * the rest is checked inline. Fast processing is turned on in 5331 * tcp_data_queue when everything is OK. 5332 */ 5333 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5334 const struct tcphdr *th) 5335 { 5336 unsigned int len = skb->len; 5337 struct tcp_sock *tp = tcp_sk(sk); 5338 5339 tcp_mstamp_refresh(tp); 5340 if (unlikely(!sk->sk_rx_dst)) 5341 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5342 /* 5343 * Header prediction. 5344 * The code loosely follows the one in the famous 5345 * "30 instruction TCP receive" Van Jacobson mail. 5346 * 5347 * Van's trick is to deposit buffers into socket queue 5348 * on a device interrupt, to call tcp_recv function 5349 * on the receive process context and checksum and copy 5350 * the buffer to user space. smart... 5351 * 5352 * Our current scheme is not silly either but we take the 5353 * extra cost of the net_bh soft interrupt processing... 5354 * We do checksum and copy also but from device to kernel. 5355 */ 5356 5357 tp->rx_opt.saw_tstamp = 0; 5358 5359 /* pred_flags is 0xS?10 << 16 + snd_wnd 5360 * if header_prediction is to be made 5361 * 'S' will always be tp->tcp_header_len >> 2 5362 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5363 * turn it off (when there are holes in the receive 5364 * space for instance) 5365 * PSH flag is ignored. 5366 */ 5367 5368 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5369 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5370 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5371 int tcp_header_len = tp->tcp_header_len; 5372 5373 /* Timestamp header prediction: tcp_header_len 5374 * is automatically equal to th->doff*4 due to pred_flags 5375 * match. 5376 */ 5377 5378 /* Check timestamp */ 5379 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5380 /* No? Slow path! */ 5381 if (!tcp_parse_aligned_timestamp(tp, th)) 5382 goto slow_path; 5383 5384 /* If PAWS failed, check it more carefully in slow path */ 5385 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5386 goto slow_path; 5387 5388 /* DO NOT update ts_recent here, if checksum fails 5389 * and timestamp was corrupted part, it will result 5390 * in a hung connection since we will drop all 5391 * future packets due to the PAWS test. 5392 */ 5393 } 5394 5395 if (len <= tcp_header_len) { 5396 /* Bulk data transfer: sender */ 5397 if (len == tcp_header_len) { 5398 /* Predicted packet is in window by definition. 5399 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5400 * Hence, check seq<=rcv_wup reduces to: 5401 */ 5402 if (tcp_header_len == 5403 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5404 tp->rcv_nxt == tp->rcv_wup) 5405 tcp_store_ts_recent(tp); 5406 5407 /* We know that such packets are checksummed 5408 * on entry. 5409 */ 5410 tcp_ack(sk, skb, 0); 5411 __kfree_skb(skb); 5412 tcp_data_snd_check(sk); 5413 return; 5414 } else { /* Header too small */ 5415 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5416 goto discard; 5417 } 5418 } else { 5419 int eaten = 0; 5420 bool fragstolen = false; 5421 5422 if (tcp_checksum_complete(skb)) 5423 goto csum_error; 5424 5425 if ((int)skb->truesize > sk->sk_forward_alloc) 5426 goto step5; 5427 5428 /* Predicted packet is in window by definition. 5429 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5430 * Hence, check seq<=rcv_wup reduces to: 5431 */ 5432 if (tcp_header_len == 5433 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5434 tp->rcv_nxt == tp->rcv_wup) 5435 tcp_store_ts_recent(tp); 5436 5437 tcp_rcv_rtt_measure_ts(sk, skb); 5438 5439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5440 5441 /* Bulk data transfer: receiver */ 5442 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5443 &fragstolen); 5444 5445 tcp_event_data_recv(sk, skb); 5446 5447 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5448 /* Well, only one small jumplet in fast path... */ 5449 tcp_ack(sk, skb, FLAG_DATA); 5450 tcp_data_snd_check(sk); 5451 if (!inet_csk_ack_scheduled(sk)) 5452 goto no_ack; 5453 } 5454 5455 __tcp_ack_snd_check(sk, 0); 5456 no_ack: 5457 if (eaten) 5458 kfree_skb_partial(skb, fragstolen); 5459 sk->sk_data_ready(sk); 5460 return; 5461 } 5462 } 5463 5464 slow_path: 5465 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5466 goto csum_error; 5467 5468 if (!th->ack && !th->rst && !th->syn) 5469 goto discard; 5470 5471 /* 5472 * Standard slow path. 5473 */ 5474 5475 if (!tcp_validate_incoming(sk, skb, th, 1)) 5476 return; 5477 5478 step5: 5479 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5480 goto discard; 5481 5482 tcp_rcv_rtt_measure_ts(sk, skb); 5483 5484 /* Process urgent data. */ 5485 tcp_urg(sk, skb, th); 5486 5487 /* step 7: process the segment text */ 5488 tcp_data_queue(sk, skb); 5489 5490 tcp_data_snd_check(sk); 5491 tcp_ack_snd_check(sk); 5492 return; 5493 5494 csum_error: 5495 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5496 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5497 5498 discard: 5499 tcp_drop(sk, skb); 5500 } 5501 EXPORT_SYMBOL(tcp_rcv_established); 5502 5503 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5504 { 5505 struct tcp_sock *tp = tcp_sk(sk); 5506 struct inet_connection_sock *icsk = inet_csk(sk); 5507 5508 tcp_set_state(sk, TCP_ESTABLISHED); 5509 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5510 5511 if (skb) { 5512 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5513 security_inet_conn_established(sk, skb); 5514 } 5515 5516 /* Make sure socket is routed, for correct metrics. */ 5517 icsk->icsk_af_ops->rebuild_header(sk); 5518 5519 tcp_init_metrics(sk); 5520 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5521 tcp_init_congestion_control(sk); 5522 5523 /* Prevent spurious tcp_cwnd_restart() on first data 5524 * packet. 5525 */ 5526 tp->lsndtime = tcp_jiffies32; 5527 5528 tcp_init_buffer_space(sk); 5529 5530 if (sock_flag(sk, SOCK_KEEPOPEN)) 5531 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5532 5533 if (!tp->rx_opt.snd_wscale) 5534 __tcp_fast_path_on(tp, tp->snd_wnd); 5535 else 5536 tp->pred_flags = 0; 5537 } 5538 5539 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5540 struct tcp_fastopen_cookie *cookie) 5541 { 5542 struct tcp_sock *tp = tcp_sk(sk); 5543 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5544 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5545 bool syn_drop = false; 5546 5547 if (mss == tp->rx_opt.user_mss) { 5548 struct tcp_options_received opt; 5549 5550 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5551 tcp_clear_options(&opt); 5552 opt.user_mss = opt.mss_clamp = 0; 5553 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5554 mss = opt.mss_clamp; 5555 } 5556 5557 if (!tp->syn_fastopen) { 5558 /* Ignore an unsolicited cookie */ 5559 cookie->len = -1; 5560 } else if (tp->total_retrans) { 5561 /* SYN timed out and the SYN-ACK neither has a cookie nor 5562 * acknowledges data. Presumably the remote received only 5563 * the retransmitted (regular) SYNs: either the original 5564 * SYN-data or the corresponding SYN-ACK was dropped. 5565 */ 5566 syn_drop = (cookie->len < 0 && data); 5567 } else if (cookie->len < 0 && !tp->syn_data) { 5568 /* We requested a cookie but didn't get it. If we did not use 5569 * the (old) exp opt format then try so next time (try_exp=1). 5570 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5571 */ 5572 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5573 } 5574 5575 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5576 5577 if (data) { /* Retransmit unacked data in SYN */ 5578 tcp_for_write_queue_from(data, sk) { 5579 if (data == tcp_send_head(sk) || 5580 __tcp_retransmit_skb(sk, data, 1)) 5581 break; 5582 } 5583 tcp_rearm_rto(sk); 5584 NET_INC_STATS(sock_net(sk), 5585 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5586 return true; 5587 } 5588 tp->syn_data_acked = tp->syn_data; 5589 if (tp->syn_data_acked) 5590 NET_INC_STATS(sock_net(sk), 5591 LINUX_MIB_TCPFASTOPENACTIVE); 5592 5593 tcp_fastopen_add_skb(sk, synack); 5594 5595 return false; 5596 } 5597 5598 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5599 const struct tcphdr *th) 5600 { 5601 struct inet_connection_sock *icsk = inet_csk(sk); 5602 struct tcp_sock *tp = tcp_sk(sk); 5603 struct tcp_fastopen_cookie foc = { .len = -1 }; 5604 int saved_clamp = tp->rx_opt.mss_clamp; 5605 bool fastopen_fail; 5606 5607 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5608 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5609 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5610 5611 if (th->ack) { 5612 /* rfc793: 5613 * "If the state is SYN-SENT then 5614 * first check the ACK bit 5615 * If the ACK bit is set 5616 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5617 * a reset (unless the RST bit is set, if so drop 5618 * the segment and return)" 5619 */ 5620 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5621 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5622 goto reset_and_undo; 5623 5624 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5625 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5626 tcp_time_stamp(tp))) { 5627 NET_INC_STATS(sock_net(sk), 5628 LINUX_MIB_PAWSACTIVEREJECTED); 5629 goto reset_and_undo; 5630 } 5631 5632 /* Now ACK is acceptable. 5633 * 5634 * "If the RST bit is set 5635 * If the ACK was acceptable then signal the user "error: 5636 * connection reset", drop the segment, enter CLOSED state, 5637 * delete TCB, and return." 5638 */ 5639 5640 if (th->rst) { 5641 tcp_reset(sk); 5642 goto discard; 5643 } 5644 5645 /* rfc793: 5646 * "fifth, if neither of the SYN or RST bits is set then 5647 * drop the segment and return." 5648 * 5649 * See note below! 5650 * --ANK(990513) 5651 */ 5652 if (!th->syn) 5653 goto discard_and_undo; 5654 5655 /* rfc793: 5656 * "If the SYN bit is on ... 5657 * are acceptable then ... 5658 * (our SYN has been ACKed), change the connection 5659 * state to ESTABLISHED..." 5660 */ 5661 5662 tcp_ecn_rcv_synack(tp, th); 5663 5664 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5665 tcp_ack(sk, skb, FLAG_SLOWPATH); 5666 5667 /* Ok.. it's good. Set up sequence numbers and 5668 * move to established. 5669 */ 5670 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5671 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5672 5673 /* RFC1323: The window in SYN & SYN/ACK segments is 5674 * never scaled. 5675 */ 5676 tp->snd_wnd = ntohs(th->window); 5677 5678 if (!tp->rx_opt.wscale_ok) { 5679 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5680 tp->window_clamp = min(tp->window_clamp, 65535U); 5681 } 5682 5683 if (tp->rx_opt.saw_tstamp) { 5684 tp->rx_opt.tstamp_ok = 1; 5685 tp->tcp_header_len = 5686 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5687 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5688 tcp_store_ts_recent(tp); 5689 } else { 5690 tp->tcp_header_len = sizeof(struct tcphdr); 5691 } 5692 5693 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5694 tcp_enable_fack(tp); 5695 5696 tcp_mtup_init(sk); 5697 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5698 tcp_initialize_rcv_mss(sk); 5699 5700 /* Remember, tcp_poll() does not lock socket! 5701 * Change state from SYN-SENT only after copied_seq 5702 * is initialized. */ 5703 tp->copied_seq = tp->rcv_nxt; 5704 5705 smp_mb(); 5706 5707 tcp_finish_connect(sk, skb); 5708 5709 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5710 tcp_rcv_fastopen_synack(sk, skb, &foc); 5711 5712 if (!sock_flag(sk, SOCK_DEAD)) { 5713 sk->sk_state_change(sk); 5714 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5715 } 5716 if (fastopen_fail) 5717 return -1; 5718 if (sk->sk_write_pending || 5719 icsk->icsk_accept_queue.rskq_defer_accept || 5720 icsk->icsk_ack.pingpong) { 5721 /* Save one ACK. Data will be ready after 5722 * several ticks, if write_pending is set. 5723 * 5724 * It may be deleted, but with this feature tcpdumps 5725 * look so _wonderfully_ clever, that I was not able 5726 * to stand against the temptation 8) --ANK 5727 */ 5728 inet_csk_schedule_ack(sk); 5729 tcp_enter_quickack_mode(sk); 5730 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5731 TCP_DELACK_MAX, TCP_RTO_MAX); 5732 5733 discard: 5734 tcp_drop(sk, skb); 5735 return 0; 5736 } else { 5737 tcp_send_ack(sk); 5738 } 5739 return -1; 5740 } 5741 5742 /* No ACK in the segment */ 5743 5744 if (th->rst) { 5745 /* rfc793: 5746 * "If the RST bit is set 5747 * 5748 * Otherwise (no ACK) drop the segment and return." 5749 */ 5750 5751 goto discard_and_undo; 5752 } 5753 5754 /* PAWS check. */ 5755 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5756 tcp_paws_reject(&tp->rx_opt, 0)) 5757 goto discard_and_undo; 5758 5759 if (th->syn) { 5760 /* We see SYN without ACK. It is attempt of 5761 * simultaneous connect with crossed SYNs. 5762 * Particularly, it can be connect to self. 5763 */ 5764 tcp_set_state(sk, TCP_SYN_RECV); 5765 5766 if (tp->rx_opt.saw_tstamp) { 5767 tp->rx_opt.tstamp_ok = 1; 5768 tcp_store_ts_recent(tp); 5769 tp->tcp_header_len = 5770 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5771 } else { 5772 tp->tcp_header_len = sizeof(struct tcphdr); 5773 } 5774 5775 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5776 tp->copied_seq = tp->rcv_nxt; 5777 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5778 5779 /* RFC1323: The window in SYN & SYN/ACK segments is 5780 * never scaled. 5781 */ 5782 tp->snd_wnd = ntohs(th->window); 5783 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5784 tp->max_window = tp->snd_wnd; 5785 5786 tcp_ecn_rcv_syn(tp, th); 5787 5788 tcp_mtup_init(sk); 5789 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5790 tcp_initialize_rcv_mss(sk); 5791 5792 tcp_send_synack(sk); 5793 #if 0 5794 /* Note, we could accept data and URG from this segment. 5795 * There are no obstacles to make this (except that we must 5796 * either change tcp_recvmsg() to prevent it from returning data 5797 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5798 * 5799 * However, if we ignore data in ACKless segments sometimes, 5800 * we have no reasons to accept it sometimes. 5801 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5802 * is not flawless. So, discard packet for sanity. 5803 * Uncomment this return to process the data. 5804 */ 5805 return -1; 5806 #else 5807 goto discard; 5808 #endif 5809 } 5810 /* "fifth, if neither of the SYN or RST bits is set then 5811 * drop the segment and return." 5812 */ 5813 5814 discard_and_undo: 5815 tcp_clear_options(&tp->rx_opt); 5816 tp->rx_opt.mss_clamp = saved_clamp; 5817 goto discard; 5818 5819 reset_and_undo: 5820 tcp_clear_options(&tp->rx_opt); 5821 tp->rx_opt.mss_clamp = saved_clamp; 5822 return 1; 5823 } 5824 5825 /* 5826 * This function implements the receiving procedure of RFC 793 for 5827 * all states except ESTABLISHED and TIME_WAIT. 5828 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5829 * address independent. 5830 */ 5831 5832 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5833 { 5834 struct tcp_sock *tp = tcp_sk(sk); 5835 struct inet_connection_sock *icsk = inet_csk(sk); 5836 const struct tcphdr *th = tcp_hdr(skb); 5837 struct request_sock *req; 5838 int queued = 0; 5839 bool acceptable; 5840 5841 switch (sk->sk_state) { 5842 case TCP_CLOSE: 5843 goto discard; 5844 5845 case TCP_LISTEN: 5846 if (th->ack) 5847 return 1; 5848 5849 if (th->rst) 5850 goto discard; 5851 5852 if (th->syn) { 5853 if (th->fin) 5854 goto discard; 5855 /* It is possible that we process SYN packets from backlog, 5856 * so we need to make sure to disable BH right there. 5857 */ 5858 local_bh_disable(); 5859 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5860 local_bh_enable(); 5861 5862 if (!acceptable) 5863 return 1; 5864 consume_skb(skb); 5865 return 0; 5866 } 5867 goto discard; 5868 5869 case TCP_SYN_SENT: 5870 tp->rx_opt.saw_tstamp = 0; 5871 tcp_mstamp_refresh(tp); 5872 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5873 if (queued >= 0) 5874 return queued; 5875 5876 /* Do step6 onward by hand. */ 5877 tcp_urg(sk, skb, th); 5878 __kfree_skb(skb); 5879 tcp_data_snd_check(sk); 5880 return 0; 5881 } 5882 5883 tcp_mstamp_refresh(tp); 5884 tp->rx_opt.saw_tstamp = 0; 5885 req = tp->fastopen_rsk; 5886 if (req) { 5887 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5888 sk->sk_state != TCP_FIN_WAIT1); 5889 5890 if (!tcp_check_req(sk, skb, req, true)) 5891 goto discard; 5892 } 5893 5894 if (!th->ack && !th->rst && !th->syn) 5895 goto discard; 5896 5897 if (!tcp_validate_incoming(sk, skb, th, 0)) 5898 return 0; 5899 5900 /* step 5: check the ACK field */ 5901 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5902 FLAG_UPDATE_TS_RECENT | 5903 FLAG_NO_CHALLENGE_ACK) > 0; 5904 5905 if (!acceptable) { 5906 if (sk->sk_state == TCP_SYN_RECV) 5907 return 1; /* send one RST */ 5908 tcp_send_challenge_ack(sk, skb); 5909 goto discard; 5910 } 5911 switch (sk->sk_state) { 5912 case TCP_SYN_RECV: 5913 if (!tp->srtt_us) 5914 tcp_synack_rtt_meas(sk, req); 5915 5916 /* Once we leave TCP_SYN_RECV, we no longer need req 5917 * so release it. 5918 */ 5919 if (req) { 5920 inet_csk(sk)->icsk_retransmits = 0; 5921 reqsk_fastopen_remove(sk, req, false); 5922 } else { 5923 /* Make sure socket is routed, for correct metrics. */ 5924 icsk->icsk_af_ops->rebuild_header(sk); 5925 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5926 tcp_init_congestion_control(sk); 5927 5928 tcp_mtup_init(sk); 5929 tp->copied_seq = tp->rcv_nxt; 5930 tcp_init_buffer_space(sk); 5931 } 5932 smp_mb(); 5933 tcp_set_state(sk, TCP_ESTABLISHED); 5934 sk->sk_state_change(sk); 5935 5936 /* Note, that this wakeup is only for marginal crossed SYN case. 5937 * Passively open sockets are not waked up, because 5938 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5939 */ 5940 if (sk->sk_socket) 5941 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5942 5943 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5944 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5945 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5946 5947 if (tp->rx_opt.tstamp_ok) 5948 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5949 5950 if (req) { 5951 /* Re-arm the timer because data may have been sent out. 5952 * This is similar to the regular data transmission case 5953 * when new data has just been ack'ed. 5954 * 5955 * (TFO) - we could try to be more aggressive and 5956 * retransmitting any data sooner based on when they 5957 * are sent out. 5958 */ 5959 tcp_rearm_rto(sk); 5960 } else 5961 tcp_init_metrics(sk); 5962 5963 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5964 tcp_update_pacing_rate(sk); 5965 5966 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5967 tp->lsndtime = tcp_jiffies32; 5968 5969 tcp_initialize_rcv_mss(sk); 5970 tcp_fast_path_on(tp); 5971 break; 5972 5973 case TCP_FIN_WAIT1: { 5974 int tmo; 5975 5976 /* If we enter the TCP_FIN_WAIT1 state and we are a 5977 * Fast Open socket and this is the first acceptable 5978 * ACK we have received, this would have acknowledged 5979 * our SYNACK so stop the SYNACK timer. 5980 */ 5981 if (req) { 5982 /* We no longer need the request sock. */ 5983 reqsk_fastopen_remove(sk, req, false); 5984 tcp_rearm_rto(sk); 5985 } 5986 if (tp->snd_una != tp->write_seq) 5987 break; 5988 5989 tcp_set_state(sk, TCP_FIN_WAIT2); 5990 sk->sk_shutdown |= SEND_SHUTDOWN; 5991 5992 sk_dst_confirm(sk); 5993 5994 if (!sock_flag(sk, SOCK_DEAD)) { 5995 /* Wake up lingering close() */ 5996 sk->sk_state_change(sk); 5997 break; 5998 } 5999 6000 if (tp->linger2 < 0) { 6001 tcp_done(sk); 6002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6003 return 1; 6004 } 6005 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6006 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6007 /* Receive out of order FIN after close() */ 6008 if (tp->syn_fastopen && th->fin) 6009 tcp_fastopen_active_disable(sk); 6010 tcp_done(sk); 6011 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6012 return 1; 6013 } 6014 6015 tmo = tcp_fin_time(sk); 6016 if (tmo > TCP_TIMEWAIT_LEN) { 6017 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6018 } else if (th->fin || sock_owned_by_user(sk)) { 6019 /* Bad case. We could lose such FIN otherwise. 6020 * It is not a big problem, but it looks confusing 6021 * and not so rare event. We still can lose it now, 6022 * if it spins in bh_lock_sock(), but it is really 6023 * marginal case. 6024 */ 6025 inet_csk_reset_keepalive_timer(sk, tmo); 6026 } else { 6027 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6028 goto discard; 6029 } 6030 break; 6031 } 6032 6033 case TCP_CLOSING: 6034 if (tp->snd_una == tp->write_seq) { 6035 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6036 goto discard; 6037 } 6038 break; 6039 6040 case TCP_LAST_ACK: 6041 if (tp->snd_una == tp->write_seq) { 6042 tcp_update_metrics(sk); 6043 tcp_done(sk); 6044 goto discard; 6045 } 6046 break; 6047 } 6048 6049 /* step 6: check the URG bit */ 6050 tcp_urg(sk, skb, th); 6051 6052 /* step 7: process the segment text */ 6053 switch (sk->sk_state) { 6054 case TCP_CLOSE_WAIT: 6055 case TCP_CLOSING: 6056 case TCP_LAST_ACK: 6057 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6058 break; 6059 case TCP_FIN_WAIT1: 6060 case TCP_FIN_WAIT2: 6061 /* RFC 793 says to queue data in these states, 6062 * RFC 1122 says we MUST send a reset. 6063 * BSD 4.4 also does reset. 6064 */ 6065 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6066 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6067 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6069 tcp_reset(sk); 6070 return 1; 6071 } 6072 } 6073 /* Fall through */ 6074 case TCP_ESTABLISHED: 6075 tcp_data_queue(sk, skb); 6076 queued = 1; 6077 break; 6078 } 6079 6080 /* tcp_data could move socket to TIME-WAIT */ 6081 if (sk->sk_state != TCP_CLOSE) { 6082 tcp_data_snd_check(sk); 6083 tcp_ack_snd_check(sk); 6084 } 6085 6086 if (!queued) { 6087 discard: 6088 tcp_drop(sk, skb); 6089 } 6090 return 0; 6091 } 6092 EXPORT_SYMBOL(tcp_rcv_state_process); 6093 6094 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6095 { 6096 struct inet_request_sock *ireq = inet_rsk(req); 6097 6098 if (family == AF_INET) 6099 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6100 &ireq->ir_rmt_addr, port); 6101 #if IS_ENABLED(CONFIG_IPV6) 6102 else if (family == AF_INET6) 6103 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6104 &ireq->ir_v6_rmt_addr, port); 6105 #endif 6106 } 6107 6108 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6109 * 6110 * If we receive a SYN packet with these bits set, it means a 6111 * network is playing bad games with TOS bits. In order to 6112 * avoid possible false congestion notifications, we disable 6113 * TCP ECN negotiation. 6114 * 6115 * Exception: tcp_ca wants ECN. This is required for DCTCP 6116 * congestion control: Linux DCTCP asserts ECT on all packets, 6117 * including SYN, which is most optimal solution; however, 6118 * others, such as FreeBSD do not. 6119 */ 6120 static void tcp_ecn_create_request(struct request_sock *req, 6121 const struct sk_buff *skb, 6122 const struct sock *listen_sk, 6123 const struct dst_entry *dst) 6124 { 6125 const struct tcphdr *th = tcp_hdr(skb); 6126 const struct net *net = sock_net(listen_sk); 6127 bool th_ecn = th->ece && th->cwr; 6128 bool ect, ecn_ok; 6129 u32 ecn_ok_dst; 6130 6131 if (!th_ecn) 6132 return; 6133 6134 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6135 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6136 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6137 6138 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6139 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6140 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6141 inet_rsk(req)->ecn_ok = 1; 6142 } 6143 6144 static void tcp_openreq_init(struct request_sock *req, 6145 const struct tcp_options_received *rx_opt, 6146 struct sk_buff *skb, const struct sock *sk) 6147 { 6148 struct inet_request_sock *ireq = inet_rsk(req); 6149 6150 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6151 req->cookie_ts = 0; 6152 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6153 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6154 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6155 tcp_rsk(req)->last_oow_ack_time = 0; 6156 req->mss = rx_opt->mss_clamp; 6157 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6158 ireq->tstamp_ok = rx_opt->tstamp_ok; 6159 ireq->sack_ok = rx_opt->sack_ok; 6160 ireq->snd_wscale = rx_opt->snd_wscale; 6161 ireq->wscale_ok = rx_opt->wscale_ok; 6162 ireq->acked = 0; 6163 ireq->ecn_ok = 0; 6164 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6165 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6166 ireq->ir_mark = inet_request_mark(sk, skb); 6167 } 6168 6169 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6170 struct sock *sk_listener, 6171 bool attach_listener) 6172 { 6173 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6174 attach_listener); 6175 6176 if (req) { 6177 struct inet_request_sock *ireq = inet_rsk(req); 6178 6179 kmemcheck_annotate_bitfield(ireq, flags); 6180 ireq->opt = NULL; 6181 #if IS_ENABLED(CONFIG_IPV6) 6182 ireq->pktopts = NULL; 6183 #endif 6184 atomic64_set(&ireq->ir_cookie, 0); 6185 ireq->ireq_state = TCP_NEW_SYN_RECV; 6186 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6187 ireq->ireq_family = sk_listener->sk_family; 6188 } 6189 6190 return req; 6191 } 6192 EXPORT_SYMBOL(inet_reqsk_alloc); 6193 6194 /* 6195 * Return true if a syncookie should be sent 6196 */ 6197 static bool tcp_syn_flood_action(const struct sock *sk, 6198 const struct sk_buff *skb, 6199 const char *proto) 6200 { 6201 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6202 const char *msg = "Dropping request"; 6203 bool want_cookie = false; 6204 struct net *net = sock_net(sk); 6205 6206 #ifdef CONFIG_SYN_COOKIES 6207 if (net->ipv4.sysctl_tcp_syncookies) { 6208 msg = "Sending cookies"; 6209 want_cookie = true; 6210 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6211 } else 6212 #endif 6213 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6214 6215 if (!queue->synflood_warned && 6216 net->ipv4.sysctl_tcp_syncookies != 2 && 6217 xchg(&queue->synflood_warned, 1) == 0) 6218 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6219 proto, ntohs(tcp_hdr(skb)->dest), msg); 6220 6221 return want_cookie; 6222 } 6223 6224 static void tcp_reqsk_record_syn(const struct sock *sk, 6225 struct request_sock *req, 6226 const struct sk_buff *skb) 6227 { 6228 if (tcp_sk(sk)->save_syn) { 6229 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6230 u32 *copy; 6231 6232 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6233 if (copy) { 6234 copy[0] = len; 6235 memcpy(©[1], skb_network_header(skb), len); 6236 req->saved_syn = copy; 6237 } 6238 } 6239 } 6240 6241 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6242 const struct tcp_request_sock_ops *af_ops, 6243 struct sock *sk, struct sk_buff *skb) 6244 { 6245 struct tcp_fastopen_cookie foc = { .len = -1 }; 6246 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6247 struct tcp_options_received tmp_opt; 6248 struct tcp_sock *tp = tcp_sk(sk); 6249 struct net *net = sock_net(sk); 6250 struct sock *fastopen_sk = NULL; 6251 struct request_sock *req; 6252 bool want_cookie = false; 6253 struct dst_entry *dst; 6254 struct flowi fl; 6255 6256 /* TW buckets are converted to open requests without 6257 * limitations, they conserve resources and peer is 6258 * evidently real one. 6259 */ 6260 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6261 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6262 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6263 if (!want_cookie) 6264 goto drop; 6265 } 6266 6267 if (sk_acceptq_is_full(sk)) { 6268 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6269 goto drop; 6270 } 6271 6272 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6273 if (!req) 6274 goto drop; 6275 6276 tcp_rsk(req)->af_specific = af_ops; 6277 tcp_rsk(req)->ts_off = 0; 6278 6279 tcp_clear_options(&tmp_opt); 6280 tmp_opt.mss_clamp = af_ops->mss_clamp; 6281 tmp_opt.user_mss = tp->rx_opt.user_mss; 6282 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6283 want_cookie ? NULL : &foc); 6284 6285 if (want_cookie && !tmp_opt.saw_tstamp) 6286 tcp_clear_options(&tmp_opt); 6287 6288 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6289 tcp_openreq_init(req, &tmp_opt, skb, sk); 6290 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6291 6292 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6293 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6294 6295 af_ops->init_req(req, sk, skb); 6296 6297 if (security_inet_conn_request(sk, skb, req)) 6298 goto drop_and_free; 6299 6300 if (tmp_opt.tstamp_ok) 6301 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6302 6303 dst = af_ops->route_req(sk, &fl, req); 6304 if (!dst) 6305 goto drop_and_free; 6306 6307 if (!want_cookie && !isn) { 6308 /* Kill the following clause, if you dislike this way. */ 6309 if (!net->ipv4.sysctl_tcp_syncookies && 6310 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6311 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6312 !tcp_peer_is_proven(req, dst)) { 6313 /* Without syncookies last quarter of 6314 * backlog is filled with destinations, 6315 * proven to be alive. 6316 * It means that we continue to communicate 6317 * to destinations, already remembered 6318 * to the moment of synflood. 6319 */ 6320 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6321 rsk_ops->family); 6322 goto drop_and_release; 6323 } 6324 6325 isn = af_ops->init_seq(skb); 6326 } 6327 6328 tcp_ecn_create_request(req, skb, sk, dst); 6329 6330 if (want_cookie) { 6331 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6332 req->cookie_ts = tmp_opt.tstamp_ok; 6333 if (!tmp_opt.tstamp_ok) 6334 inet_rsk(req)->ecn_ok = 0; 6335 } 6336 6337 tcp_rsk(req)->snt_isn = isn; 6338 tcp_rsk(req)->txhash = net_tx_rndhash(); 6339 tcp_openreq_init_rwin(req, sk, dst); 6340 if (!want_cookie) { 6341 tcp_reqsk_record_syn(sk, req, skb); 6342 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc); 6343 } 6344 if (fastopen_sk) { 6345 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6346 &foc, TCP_SYNACK_FASTOPEN); 6347 /* Add the child socket directly into the accept queue */ 6348 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6349 sk->sk_data_ready(sk); 6350 bh_unlock_sock(fastopen_sk); 6351 sock_put(fastopen_sk); 6352 } else { 6353 tcp_rsk(req)->tfo_listener = false; 6354 if (!want_cookie) 6355 inet_csk_reqsk_queue_hash_add(sk, req, 6356 tcp_timeout_init((struct sock *)req)); 6357 af_ops->send_synack(sk, dst, &fl, req, &foc, 6358 !want_cookie ? TCP_SYNACK_NORMAL : 6359 TCP_SYNACK_COOKIE); 6360 if (want_cookie) { 6361 reqsk_free(req); 6362 return 0; 6363 } 6364 } 6365 reqsk_put(req); 6366 return 0; 6367 6368 drop_and_release: 6369 dst_release(dst); 6370 drop_and_free: 6371 reqsk_free(req); 6372 drop: 6373 tcp_listendrop(sk); 6374 return 0; 6375 } 6376 EXPORT_SYMBOL(tcp_conn_request); 6377