1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 if (!(tp->ecn_flags & TCP_ECN_OK)) 223 return; 224 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 /* fallinto */ 241 default: 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 } 244 } 245 246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 247 { 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 249 tp->ecn_flags &= ~TCP_ECN_OK; 250 } 251 252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 253 { 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 255 tp->ecn_flags &= ~TCP_ECN_OK; 256 } 257 258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 261 return true; 262 return false; 263 } 264 265 /* Buffer size and advertised window tuning. 266 * 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 268 */ 269 270 static void tcp_fixup_sndbuf(struct sock *sk) 271 { 272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 273 274 sndmem *= TCP_INIT_CWND; 275 if (sk->sk_sndbuf < sndmem) 276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 277 } 278 279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 280 * 281 * All tcp_full_space() is split to two parts: "network" buffer, allocated 282 * forward and advertised in receiver window (tp->rcv_wnd) and 283 * "application buffer", required to isolate scheduling/application 284 * latencies from network. 285 * window_clamp is maximal advertised window. It can be less than 286 * tcp_full_space(), in this case tcp_full_space() - window_clamp 287 * is reserved for "application" buffer. The less window_clamp is 288 * the smoother our behaviour from viewpoint of network, but the lower 289 * throughput and the higher sensitivity of the connection to losses. 8) 290 * 291 * rcv_ssthresh is more strict window_clamp used at "slow start" 292 * phase to predict further behaviour of this connection. 293 * It is used for two goals: 294 * - to enforce header prediction at sender, even when application 295 * requires some significant "application buffer". It is check #1. 296 * - to prevent pruning of receive queue because of misprediction 297 * of receiver window. Check #2. 298 * 299 * The scheme does not work when sender sends good segments opening 300 * window and then starts to feed us spaghetti. But it should work 301 * in common situations. Otherwise, we have to rely on queue collapsing. 302 */ 303 304 /* Slow part of check#2. */ 305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 306 { 307 struct tcp_sock *tp = tcp_sk(sk); 308 /* Optimize this! */ 309 int truesize = tcp_win_from_space(skb->truesize) >> 1; 310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 311 312 while (tp->rcv_ssthresh <= window) { 313 if (truesize <= skb->len) 314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 315 316 truesize >>= 1; 317 window >>= 1; 318 } 319 return 0; 320 } 321 322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 326 /* Check #1 */ 327 if (tp->rcv_ssthresh < tp->window_clamp && 328 (int)tp->rcv_ssthresh < tcp_space(sk) && 329 !sk_under_memory_pressure(sk)) { 330 int incr; 331 332 /* Check #2. Increase window, if skb with such overhead 333 * will fit to rcvbuf in future. 334 */ 335 if (tcp_win_from_space(skb->truesize) <= skb->len) 336 incr = 2 * tp->advmss; 337 else 338 incr = __tcp_grow_window(sk, skb); 339 340 if (incr) { 341 incr = max_t(int, incr, 2 * skb->len); 342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 343 tp->window_clamp); 344 inet_csk(sk)->icsk_ack.quick |= 1; 345 } 346 } 347 } 348 349 /* 3. Tuning rcvbuf, when connection enters established state. */ 350 351 static void tcp_fixup_rcvbuf(struct sock *sk) 352 { 353 u32 mss = tcp_sk(sk)->advmss; 354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 355 int rcvmem; 356 357 /* Limit to 10 segments if mss <= 1460, 358 * or 14600/mss segments, with a minimum of two segments. 359 */ 360 if (mss > 1460) 361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 362 363 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 364 while (tcp_win_from_space(rcvmem) < mss) 365 rcvmem += 128; 366 367 rcvmem *= icwnd; 368 369 if (sk->sk_rcvbuf < rcvmem) 370 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 371 } 372 373 /* 4. Try to fixup all. It is made immediately after connection enters 374 * established state. 375 */ 376 void tcp_init_buffer_space(struct sock *sk) 377 { 378 struct tcp_sock *tp = tcp_sk(sk); 379 int maxwin; 380 381 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 382 tcp_fixup_rcvbuf(sk); 383 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 384 tcp_fixup_sndbuf(sk); 385 386 tp->rcvq_space.space = tp->rcv_wnd; 387 388 maxwin = tcp_full_space(sk); 389 390 if (tp->window_clamp >= maxwin) { 391 tp->window_clamp = maxwin; 392 393 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 394 tp->window_clamp = max(maxwin - 395 (maxwin >> sysctl_tcp_app_win), 396 4 * tp->advmss); 397 } 398 399 /* Force reservation of one segment. */ 400 if (sysctl_tcp_app_win && 401 tp->window_clamp > 2 * tp->advmss && 402 tp->window_clamp + tp->advmss > maxwin) 403 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 404 405 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 406 tp->snd_cwnd_stamp = tcp_time_stamp; 407 } 408 409 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 410 static void tcp_clamp_window(struct sock *sk) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 struct inet_connection_sock *icsk = inet_csk(sk); 414 415 icsk->icsk_ack.quick = 0; 416 417 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 418 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 419 !sk_under_memory_pressure(sk) && 420 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 421 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 422 sysctl_tcp_rmem[2]); 423 } 424 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 425 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 426 } 427 428 /* Initialize RCV_MSS value. 429 * RCV_MSS is an our guess about MSS used by the peer. 430 * We haven't any direct information about the MSS. 431 * It's better to underestimate the RCV_MSS rather than overestimate. 432 * Overestimations make us ACKing less frequently than needed. 433 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 434 */ 435 void tcp_initialize_rcv_mss(struct sock *sk) 436 { 437 const struct tcp_sock *tp = tcp_sk(sk); 438 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 439 440 hint = min(hint, tp->rcv_wnd / 2); 441 hint = min(hint, TCP_MSS_DEFAULT); 442 hint = max(hint, TCP_MIN_MSS); 443 444 inet_csk(sk)->icsk_ack.rcv_mss = hint; 445 } 446 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 447 448 /* Receiver "autotuning" code. 449 * 450 * The algorithm for RTT estimation w/o timestamps is based on 451 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 452 * <http://public.lanl.gov/radiant/pubs.html#DRS> 453 * 454 * More detail on this code can be found at 455 * <http://staff.psc.edu/jheffner/>, 456 * though this reference is out of date. A new paper 457 * is pending. 458 */ 459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 460 { 461 u32 new_sample = tp->rcv_rtt_est.rtt; 462 long m = sample; 463 464 if (m == 0) 465 m = 1; 466 467 if (new_sample != 0) { 468 /* If we sample in larger samples in the non-timestamp 469 * case, we could grossly overestimate the RTT especially 470 * with chatty applications or bulk transfer apps which 471 * are stalled on filesystem I/O. 472 * 473 * Also, since we are only going for a minimum in the 474 * non-timestamp case, we do not smooth things out 475 * else with timestamps disabled convergence takes too 476 * long. 477 */ 478 if (!win_dep) { 479 m -= (new_sample >> 3); 480 new_sample += m; 481 } else { 482 m <<= 3; 483 if (m < new_sample) 484 new_sample = m; 485 } 486 } else { 487 /* No previous measure. */ 488 new_sample = m << 3; 489 } 490 491 if (tp->rcv_rtt_est.rtt != new_sample) 492 tp->rcv_rtt_est.rtt = new_sample; 493 } 494 495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 496 { 497 if (tp->rcv_rtt_est.time == 0) 498 goto new_measure; 499 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 500 return; 501 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 502 503 new_measure: 504 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 505 tp->rcv_rtt_est.time = tcp_time_stamp; 506 } 507 508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 509 const struct sk_buff *skb) 510 { 511 struct tcp_sock *tp = tcp_sk(sk); 512 if (tp->rx_opt.rcv_tsecr && 513 (TCP_SKB_CB(skb)->end_seq - 514 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 515 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 516 } 517 518 /* 519 * This function should be called every time data is copied to user space. 520 * It calculates the appropriate TCP receive buffer space. 521 */ 522 void tcp_rcv_space_adjust(struct sock *sk) 523 { 524 struct tcp_sock *tp = tcp_sk(sk); 525 int time; 526 int space; 527 528 if (tp->rcvq_space.time == 0) 529 goto new_measure; 530 531 time = tcp_time_stamp - tp->rcvq_space.time; 532 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 533 return; 534 535 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 536 537 space = max(tp->rcvq_space.space, space); 538 539 if (tp->rcvq_space.space != space) { 540 int rcvmem; 541 542 tp->rcvq_space.space = space; 543 544 if (sysctl_tcp_moderate_rcvbuf && 545 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 546 int new_clamp = space; 547 548 /* Receive space grows, normalize in order to 549 * take into account packet headers and sk_buff 550 * structure overhead. 551 */ 552 space /= tp->advmss; 553 if (!space) 554 space = 1; 555 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 556 while (tcp_win_from_space(rcvmem) < tp->advmss) 557 rcvmem += 128; 558 space *= rcvmem; 559 space = min(space, sysctl_tcp_rmem[2]); 560 if (space > sk->sk_rcvbuf) { 561 sk->sk_rcvbuf = space; 562 563 /* Make the window clamp follow along. */ 564 tp->window_clamp = new_clamp; 565 } 566 } 567 } 568 569 new_measure: 570 tp->rcvq_space.seq = tp->copied_seq; 571 tp->rcvq_space.time = tcp_time_stamp; 572 } 573 574 /* There is something which you must keep in mind when you analyze the 575 * behavior of the tp->ato delayed ack timeout interval. When a 576 * connection starts up, we want to ack as quickly as possible. The 577 * problem is that "good" TCP's do slow start at the beginning of data 578 * transmission. The means that until we send the first few ACK's the 579 * sender will sit on his end and only queue most of his data, because 580 * he can only send snd_cwnd unacked packets at any given time. For 581 * each ACK we send, he increments snd_cwnd and transmits more of his 582 * queue. -DaveM 583 */ 584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 585 { 586 struct tcp_sock *tp = tcp_sk(sk); 587 struct inet_connection_sock *icsk = inet_csk(sk); 588 u32 now; 589 590 inet_csk_schedule_ack(sk); 591 592 tcp_measure_rcv_mss(sk, skb); 593 594 tcp_rcv_rtt_measure(tp); 595 596 now = tcp_time_stamp; 597 598 if (!icsk->icsk_ack.ato) { 599 /* The _first_ data packet received, initialize 600 * delayed ACK engine. 601 */ 602 tcp_incr_quickack(sk); 603 icsk->icsk_ack.ato = TCP_ATO_MIN; 604 } else { 605 int m = now - icsk->icsk_ack.lrcvtime; 606 607 if (m <= TCP_ATO_MIN / 2) { 608 /* The fastest case is the first. */ 609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 610 } else if (m < icsk->icsk_ack.ato) { 611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 612 if (icsk->icsk_ack.ato > icsk->icsk_rto) 613 icsk->icsk_ack.ato = icsk->icsk_rto; 614 } else if (m > icsk->icsk_rto) { 615 /* Too long gap. Apparently sender failed to 616 * restart window, so that we send ACKs quickly. 617 */ 618 tcp_incr_quickack(sk); 619 sk_mem_reclaim(sk); 620 } 621 } 622 icsk->icsk_ack.lrcvtime = now; 623 624 TCP_ECN_check_ce(tp, skb); 625 626 if (skb->len >= 128) 627 tcp_grow_window(sk, skb); 628 } 629 630 /* Called to compute a smoothed rtt estimate. The data fed to this 631 * routine either comes from timestamps, or from segments that were 632 * known _not_ to have been retransmitted [see Karn/Partridge 633 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 634 * piece by Van Jacobson. 635 * NOTE: the next three routines used to be one big routine. 636 * To save cycles in the RFC 1323 implementation it was better to break 637 * it up into three procedures. -- erics 638 */ 639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 640 { 641 struct tcp_sock *tp = tcp_sk(sk); 642 long m = mrtt; /* RTT */ 643 644 /* The following amusing code comes from Jacobson's 645 * article in SIGCOMM '88. Note that rtt and mdev 646 * are scaled versions of rtt and mean deviation. 647 * This is designed to be as fast as possible 648 * m stands for "measurement". 649 * 650 * On a 1990 paper the rto value is changed to: 651 * RTO = rtt + 4 * mdev 652 * 653 * Funny. This algorithm seems to be very broken. 654 * These formulae increase RTO, when it should be decreased, increase 655 * too slowly, when it should be increased quickly, decrease too quickly 656 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 657 * does not matter how to _calculate_ it. Seems, it was trap 658 * that VJ failed to avoid. 8) 659 */ 660 if (m == 0) 661 m = 1; 662 if (tp->srtt != 0) { 663 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 664 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 665 if (m < 0) { 666 m = -m; /* m is now abs(error) */ 667 m -= (tp->mdev >> 2); /* similar update on mdev */ 668 /* This is similar to one of Eifel findings. 669 * Eifel blocks mdev updates when rtt decreases. 670 * This solution is a bit different: we use finer gain 671 * for mdev in this case (alpha*beta). 672 * Like Eifel it also prevents growth of rto, 673 * but also it limits too fast rto decreases, 674 * happening in pure Eifel. 675 */ 676 if (m > 0) 677 m >>= 3; 678 } else { 679 m -= (tp->mdev >> 2); /* similar update on mdev */ 680 } 681 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 682 if (tp->mdev > tp->mdev_max) { 683 tp->mdev_max = tp->mdev; 684 if (tp->mdev_max > tp->rttvar) 685 tp->rttvar = tp->mdev_max; 686 } 687 if (after(tp->snd_una, tp->rtt_seq)) { 688 if (tp->mdev_max < tp->rttvar) 689 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 690 tp->rtt_seq = tp->snd_nxt; 691 tp->mdev_max = tcp_rto_min(sk); 692 } 693 } else { 694 /* no previous measure. */ 695 tp->srtt = m << 3; /* take the measured time to be rtt */ 696 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 697 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 698 tp->rtt_seq = tp->snd_nxt; 699 } 700 } 701 702 /* Calculate rto without backoff. This is the second half of Van Jacobson's 703 * routine referred to above. 704 */ 705 void tcp_set_rto(struct sock *sk) 706 { 707 const struct tcp_sock *tp = tcp_sk(sk); 708 /* Old crap is replaced with new one. 8) 709 * 710 * More seriously: 711 * 1. If rtt variance happened to be less 50msec, it is hallucination. 712 * It cannot be less due to utterly erratic ACK generation made 713 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 714 * to do with delayed acks, because at cwnd>2 true delack timeout 715 * is invisible. Actually, Linux-2.4 also generates erratic 716 * ACKs in some circumstances. 717 */ 718 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 719 720 /* 2. Fixups made earlier cannot be right. 721 * If we do not estimate RTO correctly without them, 722 * all the algo is pure shit and should be replaced 723 * with correct one. It is exactly, which we pretend to do. 724 */ 725 726 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 727 * guarantees that rto is higher. 728 */ 729 tcp_bound_rto(sk); 730 } 731 732 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 733 { 734 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 735 736 if (!cwnd) 737 cwnd = TCP_INIT_CWND; 738 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 739 } 740 741 /* 742 * Packet counting of FACK is based on in-order assumptions, therefore TCP 743 * disables it when reordering is detected 744 */ 745 void tcp_disable_fack(struct tcp_sock *tp) 746 { 747 /* RFC3517 uses different metric in lost marker => reset on change */ 748 if (tcp_is_fack(tp)) 749 tp->lost_skb_hint = NULL; 750 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 751 } 752 753 /* Take a notice that peer is sending D-SACKs */ 754 static void tcp_dsack_seen(struct tcp_sock *tp) 755 { 756 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 757 } 758 759 static void tcp_update_reordering(struct sock *sk, const int metric, 760 const int ts) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 if (metric > tp->reordering) { 764 int mib_idx; 765 766 tp->reordering = min(TCP_MAX_REORDERING, metric); 767 768 /* This exciting event is worth to be remembered. 8) */ 769 if (ts) 770 mib_idx = LINUX_MIB_TCPTSREORDER; 771 else if (tcp_is_reno(tp)) 772 mib_idx = LINUX_MIB_TCPRENOREORDER; 773 else if (tcp_is_fack(tp)) 774 mib_idx = LINUX_MIB_TCPFACKREORDER; 775 else 776 mib_idx = LINUX_MIB_TCPSACKREORDER; 777 778 NET_INC_STATS_BH(sock_net(sk), mib_idx); 779 #if FASTRETRANS_DEBUG > 1 780 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 781 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 782 tp->reordering, 783 tp->fackets_out, 784 tp->sacked_out, 785 tp->undo_marker ? tp->undo_retrans : 0); 786 #endif 787 tcp_disable_fack(tp); 788 } 789 790 if (metric > 0) 791 tcp_disable_early_retrans(tp); 792 } 793 794 /* This must be called before lost_out is incremented */ 795 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 796 { 797 if ((tp->retransmit_skb_hint == NULL) || 798 before(TCP_SKB_CB(skb)->seq, 799 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 800 tp->retransmit_skb_hint = skb; 801 802 if (!tp->lost_out || 803 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 804 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 805 } 806 807 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 808 { 809 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 810 tcp_verify_retransmit_hint(tp, skb); 811 812 tp->lost_out += tcp_skb_pcount(skb); 813 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 814 } 815 } 816 817 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 818 struct sk_buff *skb) 819 { 820 tcp_verify_retransmit_hint(tp, skb); 821 822 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 823 tp->lost_out += tcp_skb_pcount(skb); 824 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 825 } 826 } 827 828 /* This procedure tags the retransmission queue when SACKs arrive. 829 * 830 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 831 * Packets in queue with these bits set are counted in variables 832 * sacked_out, retrans_out and lost_out, correspondingly. 833 * 834 * Valid combinations are: 835 * Tag InFlight Description 836 * 0 1 - orig segment is in flight. 837 * S 0 - nothing flies, orig reached receiver. 838 * L 0 - nothing flies, orig lost by net. 839 * R 2 - both orig and retransmit are in flight. 840 * L|R 1 - orig is lost, retransmit is in flight. 841 * S|R 1 - orig reached receiver, retrans is still in flight. 842 * (L|S|R is logically valid, it could occur when L|R is sacked, 843 * but it is equivalent to plain S and code short-curcuits it to S. 844 * L|S is logically invalid, it would mean -1 packet in flight 8)) 845 * 846 * These 6 states form finite state machine, controlled by the following events: 847 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 848 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 849 * 3. Loss detection event of two flavors: 850 * A. Scoreboard estimator decided the packet is lost. 851 * A'. Reno "three dupacks" marks head of queue lost. 852 * A''. Its FACK modification, head until snd.fack is lost. 853 * B. SACK arrives sacking SND.NXT at the moment, when the 854 * segment was retransmitted. 855 * 4. D-SACK added new rule: D-SACK changes any tag to S. 856 * 857 * It is pleasant to note, that state diagram turns out to be commutative, 858 * so that we are allowed not to be bothered by order of our actions, 859 * when multiple events arrive simultaneously. (see the function below). 860 * 861 * Reordering detection. 862 * -------------------- 863 * Reordering metric is maximal distance, which a packet can be displaced 864 * in packet stream. With SACKs we can estimate it: 865 * 866 * 1. SACK fills old hole and the corresponding segment was not 867 * ever retransmitted -> reordering. Alas, we cannot use it 868 * when segment was retransmitted. 869 * 2. The last flaw is solved with D-SACK. D-SACK arrives 870 * for retransmitted and already SACKed segment -> reordering.. 871 * Both of these heuristics are not used in Loss state, when we cannot 872 * account for retransmits accurately. 873 * 874 * SACK block validation. 875 * ---------------------- 876 * 877 * SACK block range validation checks that the received SACK block fits to 878 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 879 * Note that SND.UNA is not included to the range though being valid because 880 * it means that the receiver is rather inconsistent with itself reporting 881 * SACK reneging when it should advance SND.UNA. Such SACK block this is 882 * perfectly valid, however, in light of RFC2018 which explicitly states 883 * that "SACK block MUST reflect the newest segment. Even if the newest 884 * segment is going to be discarded ...", not that it looks very clever 885 * in case of head skb. Due to potentional receiver driven attacks, we 886 * choose to avoid immediate execution of a walk in write queue due to 887 * reneging and defer head skb's loss recovery to standard loss recovery 888 * procedure that will eventually trigger (nothing forbids us doing this). 889 * 890 * Implements also blockage to start_seq wrap-around. Problem lies in the 891 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 892 * there's no guarantee that it will be before snd_nxt (n). The problem 893 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 894 * wrap (s_w): 895 * 896 * <- outs wnd -> <- wrapzone -> 897 * u e n u_w e_w s n_w 898 * | | | | | | | 899 * |<------------+------+----- TCP seqno space --------------+---------->| 900 * ...-- <2^31 ->| |<--------... 901 * ...---- >2^31 ------>| |<--------... 902 * 903 * Current code wouldn't be vulnerable but it's better still to discard such 904 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 905 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 906 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 907 * equal to the ideal case (infinite seqno space without wrap caused issues). 908 * 909 * With D-SACK the lower bound is extended to cover sequence space below 910 * SND.UNA down to undo_marker, which is the last point of interest. Yet 911 * again, D-SACK block must not to go across snd_una (for the same reason as 912 * for the normal SACK blocks, explained above). But there all simplicity 913 * ends, TCP might receive valid D-SACKs below that. As long as they reside 914 * fully below undo_marker they do not affect behavior in anyway and can 915 * therefore be safely ignored. In rare cases (which are more or less 916 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 917 * fragmentation and packet reordering past skb's retransmission. To consider 918 * them correctly, the acceptable range must be extended even more though 919 * the exact amount is rather hard to quantify. However, tp->max_window can 920 * be used as an exaggerated estimate. 921 */ 922 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 923 u32 start_seq, u32 end_seq) 924 { 925 /* Too far in future, or reversed (interpretation is ambiguous) */ 926 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 927 return false; 928 929 /* Nasty start_seq wrap-around check (see comments above) */ 930 if (!before(start_seq, tp->snd_nxt)) 931 return false; 932 933 /* In outstanding window? ...This is valid exit for D-SACKs too. 934 * start_seq == snd_una is non-sensical (see comments above) 935 */ 936 if (after(start_seq, tp->snd_una)) 937 return true; 938 939 if (!is_dsack || !tp->undo_marker) 940 return false; 941 942 /* ...Then it's D-SACK, and must reside below snd_una completely */ 943 if (after(end_seq, tp->snd_una)) 944 return false; 945 946 if (!before(start_seq, tp->undo_marker)) 947 return true; 948 949 /* Too old */ 950 if (!after(end_seq, tp->undo_marker)) 951 return false; 952 953 /* Undo_marker boundary crossing (overestimates a lot). Known already: 954 * start_seq < undo_marker and end_seq >= undo_marker. 955 */ 956 return !before(start_seq, end_seq - tp->max_window); 957 } 958 959 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 960 * Event "B". Later note: FACK people cheated me again 8), we have to account 961 * for reordering! Ugly, but should help. 962 * 963 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 964 * less than what is now known to be received by the other end (derived from 965 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 966 * retransmitted skbs to avoid some costly processing per ACKs. 967 */ 968 static void tcp_mark_lost_retrans(struct sock *sk) 969 { 970 const struct inet_connection_sock *icsk = inet_csk(sk); 971 struct tcp_sock *tp = tcp_sk(sk); 972 struct sk_buff *skb; 973 int cnt = 0; 974 u32 new_low_seq = tp->snd_nxt; 975 u32 received_upto = tcp_highest_sack_seq(tp); 976 977 if (!tcp_is_fack(tp) || !tp->retrans_out || 978 !after(received_upto, tp->lost_retrans_low) || 979 icsk->icsk_ca_state != TCP_CA_Recovery) 980 return; 981 982 tcp_for_write_queue(skb, sk) { 983 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 984 985 if (skb == tcp_send_head(sk)) 986 break; 987 if (cnt == tp->retrans_out) 988 break; 989 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 990 continue; 991 992 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 993 continue; 994 995 /* TODO: We would like to get rid of tcp_is_fack(tp) only 996 * constraint here (see above) but figuring out that at 997 * least tp->reordering SACK blocks reside between ack_seq 998 * and received_upto is not easy task to do cheaply with 999 * the available datastructures. 1000 * 1001 * Whether FACK should check here for tp->reordering segs 1002 * in-between one could argue for either way (it would be 1003 * rather simple to implement as we could count fack_count 1004 * during the walk and do tp->fackets_out - fack_count). 1005 */ 1006 if (after(received_upto, ack_seq)) { 1007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1008 tp->retrans_out -= tcp_skb_pcount(skb); 1009 1010 tcp_skb_mark_lost_uncond_verify(tp, skb); 1011 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1012 } else { 1013 if (before(ack_seq, new_low_seq)) 1014 new_low_seq = ack_seq; 1015 cnt += tcp_skb_pcount(skb); 1016 } 1017 } 1018 1019 if (tp->retrans_out) 1020 tp->lost_retrans_low = new_low_seq; 1021 } 1022 1023 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1024 struct tcp_sack_block_wire *sp, int num_sacks, 1025 u32 prior_snd_una) 1026 { 1027 struct tcp_sock *tp = tcp_sk(sk); 1028 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1029 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1030 bool dup_sack = false; 1031 1032 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1033 dup_sack = true; 1034 tcp_dsack_seen(tp); 1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1036 } else if (num_sacks > 1) { 1037 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1038 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1039 1040 if (!after(end_seq_0, end_seq_1) && 1041 !before(start_seq_0, start_seq_1)) { 1042 dup_sack = true; 1043 tcp_dsack_seen(tp); 1044 NET_INC_STATS_BH(sock_net(sk), 1045 LINUX_MIB_TCPDSACKOFORECV); 1046 } 1047 } 1048 1049 /* D-SACK for already forgotten data... Do dumb counting. */ 1050 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1051 !after(end_seq_0, prior_snd_una) && 1052 after(end_seq_0, tp->undo_marker)) 1053 tp->undo_retrans--; 1054 1055 return dup_sack; 1056 } 1057 1058 struct tcp_sacktag_state { 1059 int reord; 1060 int fack_count; 1061 int flag; 1062 }; 1063 1064 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1065 * the incoming SACK may not exactly match but we can find smaller MSS 1066 * aligned portion of it that matches. Therefore we might need to fragment 1067 * which may fail and creates some hassle (caller must handle error case 1068 * returns). 1069 * 1070 * FIXME: this could be merged to shift decision code 1071 */ 1072 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1073 u32 start_seq, u32 end_seq) 1074 { 1075 int err; 1076 bool in_sack; 1077 unsigned int pkt_len; 1078 unsigned int mss; 1079 1080 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1081 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1082 1083 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1084 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1085 mss = tcp_skb_mss(skb); 1086 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1087 1088 if (!in_sack) { 1089 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1090 if (pkt_len < mss) 1091 pkt_len = mss; 1092 } else { 1093 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1094 if (pkt_len < mss) 1095 return -EINVAL; 1096 } 1097 1098 /* Round if necessary so that SACKs cover only full MSSes 1099 * and/or the remaining small portion (if present) 1100 */ 1101 if (pkt_len > mss) { 1102 unsigned int new_len = (pkt_len / mss) * mss; 1103 if (!in_sack && new_len < pkt_len) { 1104 new_len += mss; 1105 if (new_len > skb->len) 1106 return 0; 1107 } 1108 pkt_len = new_len; 1109 } 1110 err = tcp_fragment(sk, skb, pkt_len, mss); 1111 if (err < 0) 1112 return err; 1113 } 1114 1115 return in_sack; 1116 } 1117 1118 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1119 static u8 tcp_sacktag_one(struct sock *sk, 1120 struct tcp_sacktag_state *state, u8 sacked, 1121 u32 start_seq, u32 end_seq, 1122 bool dup_sack, int pcount) 1123 { 1124 struct tcp_sock *tp = tcp_sk(sk); 1125 int fack_count = state->fack_count; 1126 1127 /* Account D-SACK for retransmitted packet. */ 1128 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1129 if (tp->undo_marker && tp->undo_retrans && 1130 after(end_seq, tp->undo_marker)) 1131 tp->undo_retrans--; 1132 if (sacked & TCPCB_SACKED_ACKED) 1133 state->reord = min(fack_count, state->reord); 1134 } 1135 1136 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1137 if (!after(end_seq, tp->snd_una)) 1138 return sacked; 1139 1140 if (!(sacked & TCPCB_SACKED_ACKED)) { 1141 if (sacked & TCPCB_SACKED_RETRANS) { 1142 /* If the segment is not tagged as lost, 1143 * we do not clear RETRANS, believing 1144 * that retransmission is still in flight. 1145 */ 1146 if (sacked & TCPCB_LOST) { 1147 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1148 tp->lost_out -= pcount; 1149 tp->retrans_out -= pcount; 1150 } 1151 } else { 1152 if (!(sacked & TCPCB_RETRANS)) { 1153 /* New sack for not retransmitted frame, 1154 * which was in hole. It is reordering. 1155 */ 1156 if (before(start_seq, 1157 tcp_highest_sack_seq(tp))) 1158 state->reord = min(fack_count, 1159 state->reord); 1160 if (!after(end_seq, tp->high_seq)) 1161 state->flag |= FLAG_ORIG_SACK_ACKED; 1162 } 1163 1164 if (sacked & TCPCB_LOST) { 1165 sacked &= ~TCPCB_LOST; 1166 tp->lost_out -= pcount; 1167 } 1168 } 1169 1170 sacked |= TCPCB_SACKED_ACKED; 1171 state->flag |= FLAG_DATA_SACKED; 1172 tp->sacked_out += pcount; 1173 1174 fack_count += pcount; 1175 1176 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1177 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1178 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1179 tp->lost_cnt_hint += pcount; 1180 1181 if (fack_count > tp->fackets_out) 1182 tp->fackets_out = fack_count; 1183 } 1184 1185 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1186 * frames and clear it. undo_retrans is decreased above, L|R frames 1187 * are accounted above as well. 1188 */ 1189 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1190 sacked &= ~TCPCB_SACKED_RETRANS; 1191 tp->retrans_out -= pcount; 1192 } 1193 1194 return sacked; 1195 } 1196 1197 /* Shift newly-SACKed bytes from this skb to the immediately previous 1198 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1199 */ 1200 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1201 struct tcp_sacktag_state *state, 1202 unsigned int pcount, int shifted, int mss, 1203 bool dup_sack) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1207 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1208 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1209 1210 BUG_ON(!pcount); 1211 1212 /* Adjust counters and hints for the newly sacked sequence 1213 * range but discard the return value since prev is already 1214 * marked. We must tag the range first because the seq 1215 * advancement below implicitly advances 1216 * tcp_highest_sack_seq() when skb is highest_sack. 1217 */ 1218 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1219 start_seq, end_seq, dup_sack, pcount); 1220 1221 if (skb == tp->lost_skb_hint) 1222 tp->lost_cnt_hint += pcount; 1223 1224 TCP_SKB_CB(prev)->end_seq += shifted; 1225 TCP_SKB_CB(skb)->seq += shifted; 1226 1227 skb_shinfo(prev)->gso_segs += pcount; 1228 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1229 skb_shinfo(skb)->gso_segs -= pcount; 1230 1231 /* When we're adding to gso_segs == 1, gso_size will be zero, 1232 * in theory this shouldn't be necessary but as long as DSACK 1233 * code can come after this skb later on it's better to keep 1234 * setting gso_size to something. 1235 */ 1236 if (!skb_shinfo(prev)->gso_size) { 1237 skb_shinfo(prev)->gso_size = mss; 1238 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1239 } 1240 1241 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1242 if (skb_shinfo(skb)->gso_segs <= 1) { 1243 skb_shinfo(skb)->gso_size = 0; 1244 skb_shinfo(skb)->gso_type = 0; 1245 } 1246 1247 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1248 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1249 1250 if (skb->len > 0) { 1251 BUG_ON(!tcp_skb_pcount(skb)); 1252 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1253 return false; 1254 } 1255 1256 /* Whole SKB was eaten :-) */ 1257 1258 if (skb == tp->retransmit_skb_hint) 1259 tp->retransmit_skb_hint = prev; 1260 if (skb == tp->scoreboard_skb_hint) 1261 tp->scoreboard_skb_hint = prev; 1262 if (skb == tp->lost_skb_hint) { 1263 tp->lost_skb_hint = prev; 1264 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1265 } 1266 1267 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1268 if (skb == tcp_highest_sack(sk)) 1269 tcp_advance_highest_sack(sk, skb); 1270 1271 tcp_unlink_write_queue(skb, sk); 1272 sk_wmem_free_skb(sk, skb); 1273 1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1275 1276 return true; 1277 } 1278 1279 /* I wish gso_size would have a bit more sane initialization than 1280 * something-or-zero which complicates things 1281 */ 1282 static int tcp_skb_seglen(const struct sk_buff *skb) 1283 { 1284 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1285 } 1286 1287 /* Shifting pages past head area doesn't work */ 1288 static int skb_can_shift(const struct sk_buff *skb) 1289 { 1290 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1291 } 1292 1293 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1294 * skb. 1295 */ 1296 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1297 struct tcp_sacktag_state *state, 1298 u32 start_seq, u32 end_seq, 1299 bool dup_sack) 1300 { 1301 struct tcp_sock *tp = tcp_sk(sk); 1302 struct sk_buff *prev; 1303 int mss; 1304 int pcount = 0; 1305 int len; 1306 int in_sack; 1307 1308 if (!sk_can_gso(sk)) 1309 goto fallback; 1310 1311 /* Normally R but no L won't result in plain S */ 1312 if (!dup_sack && 1313 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1314 goto fallback; 1315 if (!skb_can_shift(skb)) 1316 goto fallback; 1317 /* This frame is about to be dropped (was ACKed). */ 1318 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1319 goto fallback; 1320 1321 /* Can only happen with delayed DSACK + discard craziness */ 1322 if (unlikely(skb == tcp_write_queue_head(sk))) 1323 goto fallback; 1324 prev = tcp_write_queue_prev(sk, skb); 1325 1326 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1327 goto fallback; 1328 1329 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1330 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1331 1332 if (in_sack) { 1333 len = skb->len; 1334 pcount = tcp_skb_pcount(skb); 1335 mss = tcp_skb_seglen(skb); 1336 1337 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1338 * drop this restriction as unnecessary 1339 */ 1340 if (mss != tcp_skb_seglen(prev)) 1341 goto fallback; 1342 } else { 1343 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1344 goto noop; 1345 /* CHECKME: This is non-MSS split case only?, this will 1346 * cause skipped skbs due to advancing loop btw, original 1347 * has that feature too 1348 */ 1349 if (tcp_skb_pcount(skb) <= 1) 1350 goto noop; 1351 1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1353 if (!in_sack) { 1354 /* TODO: head merge to next could be attempted here 1355 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1356 * though it might not be worth of the additional hassle 1357 * 1358 * ...we can probably just fallback to what was done 1359 * previously. We could try merging non-SACKed ones 1360 * as well but it probably isn't going to buy off 1361 * because later SACKs might again split them, and 1362 * it would make skb timestamp tracking considerably 1363 * harder problem. 1364 */ 1365 goto fallback; 1366 } 1367 1368 len = end_seq - TCP_SKB_CB(skb)->seq; 1369 BUG_ON(len < 0); 1370 BUG_ON(len > skb->len); 1371 1372 /* MSS boundaries should be honoured or else pcount will 1373 * severely break even though it makes things bit trickier. 1374 * Optimize common case to avoid most of the divides 1375 */ 1376 mss = tcp_skb_mss(skb); 1377 1378 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1379 * drop this restriction as unnecessary 1380 */ 1381 if (mss != tcp_skb_seglen(prev)) 1382 goto fallback; 1383 1384 if (len == mss) { 1385 pcount = 1; 1386 } else if (len < mss) { 1387 goto noop; 1388 } else { 1389 pcount = len / mss; 1390 len = pcount * mss; 1391 } 1392 } 1393 1394 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1395 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1396 goto fallback; 1397 1398 if (!skb_shift(prev, skb, len)) 1399 goto fallback; 1400 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1401 goto out; 1402 1403 /* Hole filled allows collapsing with the next as well, this is very 1404 * useful when hole on every nth skb pattern happens 1405 */ 1406 if (prev == tcp_write_queue_tail(sk)) 1407 goto out; 1408 skb = tcp_write_queue_next(sk, prev); 1409 1410 if (!skb_can_shift(skb) || 1411 (skb == tcp_send_head(sk)) || 1412 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1413 (mss != tcp_skb_seglen(skb))) 1414 goto out; 1415 1416 len = skb->len; 1417 if (skb_shift(prev, skb, len)) { 1418 pcount += tcp_skb_pcount(skb); 1419 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1420 } 1421 1422 out: 1423 state->fack_count += pcount; 1424 return prev; 1425 1426 noop: 1427 return skb; 1428 1429 fallback: 1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1431 return NULL; 1432 } 1433 1434 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1435 struct tcp_sack_block *next_dup, 1436 struct tcp_sacktag_state *state, 1437 u32 start_seq, u32 end_seq, 1438 bool dup_sack_in) 1439 { 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 struct sk_buff *tmp; 1442 1443 tcp_for_write_queue_from(skb, sk) { 1444 int in_sack = 0; 1445 bool dup_sack = dup_sack_in; 1446 1447 if (skb == tcp_send_head(sk)) 1448 break; 1449 1450 /* queue is in-order => we can short-circuit the walk early */ 1451 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1452 break; 1453 1454 if ((next_dup != NULL) && 1455 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1456 in_sack = tcp_match_skb_to_sack(sk, skb, 1457 next_dup->start_seq, 1458 next_dup->end_seq); 1459 if (in_sack > 0) 1460 dup_sack = true; 1461 } 1462 1463 /* skb reference here is a bit tricky to get right, since 1464 * shifting can eat and free both this skb and the next, 1465 * so not even _safe variant of the loop is enough. 1466 */ 1467 if (in_sack <= 0) { 1468 tmp = tcp_shift_skb_data(sk, skb, state, 1469 start_seq, end_seq, dup_sack); 1470 if (tmp != NULL) { 1471 if (tmp != skb) { 1472 skb = tmp; 1473 continue; 1474 } 1475 1476 in_sack = 0; 1477 } else { 1478 in_sack = tcp_match_skb_to_sack(sk, skb, 1479 start_seq, 1480 end_seq); 1481 } 1482 } 1483 1484 if (unlikely(in_sack < 0)) 1485 break; 1486 1487 if (in_sack) { 1488 TCP_SKB_CB(skb)->sacked = 1489 tcp_sacktag_one(sk, 1490 state, 1491 TCP_SKB_CB(skb)->sacked, 1492 TCP_SKB_CB(skb)->seq, 1493 TCP_SKB_CB(skb)->end_seq, 1494 dup_sack, 1495 tcp_skb_pcount(skb)); 1496 1497 if (!before(TCP_SKB_CB(skb)->seq, 1498 tcp_highest_sack_seq(tp))) 1499 tcp_advance_highest_sack(sk, skb); 1500 } 1501 1502 state->fack_count += tcp_skb_pcount(skb); 1503 } 1504 return skb; 1505 } 1506 1507 /* Avoid all extra work that is being done by sacktag while walking in 1508 * a normal way 1509 */ 1510 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1511 struct tcp_sacktag_state *state, 1512 u32 skip_to_seq) 1513 { 1514 tcp_for_write_queue_from(skb, sk) { 1515 if (skb == tcp_send_head(sk)) 1516 break; 1517 1518 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1519 break; 1520 1521 state->fack_count += tcp_skb_pcount(skb); 1522 } 1523 return skb; 1524 } 1525 1526 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1527 struct sock *sk, 1528 struct tcp_sack_block *next_dup, 1529 struct tcp_sacktag_state *state, 1530 u32 skip_to_seq) 1531 { 1532 if (next_dup == NULL) 1533 return skb; 1534 1535 if (before(next_dup->start_seq, skip_to_seq)) { 1536 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1537 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1538 next_dup->start_seq, next_dup->end_seq, 1539 1); 1540 } 1541 1542 return skb; 1543 } 1544 1545 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1546 { 1547 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1548 } 1549 1550 static int 1551 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1552 u32 prior_snd_una) 1553 { 1554 struct tcp_sock *tp = tcp_sk(sk); 1555 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1556 TCP_SKB_CB(ack_skb)->sacked); 1557 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1558 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1559 struct tcp_sack_block *cache; 1560 struct tcp_sacktag_state state; 1561 struct sk_buff *skb; 1562 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1563 int used_sacks; 1564 bool found_dup_sack = false; 1565 int i, j; 1566 int first_sack_index; 1567 1568 state.flag = 0; 1569 state.reord = tp->packets_out; 1570 1571 if (!tp->sacked_out) { 1572 if (WARN_ON(tp->fackets_out)) 1573 tp->fackets_out = 0; 1574 tcp_highest_sack_reset(sk); 1575 } 1576 1577 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1578 num_sacks, prior_snd_una); 1579 if (found_dup_sack) 1580 state.flag |= FLAG_DSACKING_ACK; 1581 1582 /* Eliminate too old ACKs, but take into 1583 * account more or less fresh ones, they can 1584 * contain valid SACK info. 1585 */ 1586 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1587 return 0; 1588 1589 if (!tp->packets_out) 1590 goto out; 1591 1592 used_sacks = 0; 1593 first_sack_index = 0; 1594 for (i = 0; i < num_sacks; i++) { 1595 bool dup_sack = !i && found_dup_sack; 1596 1597 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1598 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1599 1600 if (!tcp_is_sackblock_valid(tp, dup_sack, 1601 sp[used_sacks].start_seq, 1602 sp[used_sacks].end_seq)) { 1603 int mib_idx; 1604 1605 if (dup_sack) { 1606 if (!tp->undo_marker) 1607 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1608 else 1609 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1610 } else { 1611 /* Don't count olds caused by ACK reordering */ 1612 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1613 !after(sp[used_sacks].end_seq, tp->snd_una)) 1614 continue; 1615 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1616 } 1617 1618 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1619 if (i == 0) 1620 first_sack_index = -1; 1621 continue; 1622 } 1623 1624 /* Ignore very old stuff early */ 1625 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1626 continue; 1627 1628 used_sacks++; 1629 } 1630 1631 /* order SACK blocks to allow in order walk of the retrans queue */ 1632 for (i = used_sacks - 1; i > 0; i--) { 1633 for (j = 0; j < i; j++) { 1634 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1635 swap(sp[j], sp[j + 1]); 1636 1637 /* Track where the first SACK block goes to */ 1638 if (j == first_sack_index) 1639 first_sack_index = j + 1; 1640 } 1641 } 1642 } 1643 1644 skb = tcp_write_queue_head(sk); 1645 state.fack_count = 0; 1646 i = 0; 1647 1648 if (!tp->sacked_out) { 1649 /* It's already past, so skip checking against it */ 1650 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1651 } else { 1652 cache = tp->recv_sack_cache; 1653 /* Skip empty blocks in at head of the cache */ 1654 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1655 !cache->end_seq) 1656 cache++; 1657 } 1658 1659 while (i < used_sacks) { 1660 u32 start_seq = sp[i].start_seq; 1661 u32 end_seq = sp[i].end_seq; 1662 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1663 struct tcp_sack_block *next_dup = NULL; 1664 1665 if (found_dup_sack && ((i + 1) == first_sack_index)) 1666 next_dup = &sp[i + 1]; 1667 1668 /* Skip too early cached blocks */ 1669 while (tcp_sack_cache_ok(tp, cache) && 1670 !before(start_seq, cache->end_seq)) 1671 cache++; 1672 1673 /* Can skip some work by looking recv_sack_cache? */ 1674 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1675 after(end_seq, cache->start_seq)) { 1676 1677 /* Head todo? */ 1678 if (before(start_seq, cache->start_seq)) { 1679 skb = tcp_sacktag_skip(skb, sk, &state, 1680 start_seq); 1681 skb = tcp_sacktag_walk(skb, sk, next_dup, 1682 &state, 1683 start_seq, 1684 cache->start_seq, 1685 dup_sack); 1686 } 1687 1688 /* Rest of the block already fully processed? */ 1689 if (!after(end_seq, cache->end_seq)) 1690 goto advance_sp; 1691 1692 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1693 &state, 1694 cache->end_seq); 1695 1696 /* ...tail remains todo... */ 1697 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1698 /* ...but better entrypoint exists! */ 1699 skb = tcp_highest_sack(sk); 1700 if (skb == NULL) 1701 break; 1702 state.fack_count = tp->fackets_out; 1703 cache++; 1704 goto walk; 1705 } 1706 1707 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1708 /* Check overlap against next cached too (past this one already) */ 1709 cache++; 1710 continue; 1711 } 1712 1713 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1714 skb = tcp_highest_sack(sk); 1715 if (skb == NULL) 1716 break; 1717 state.fack_count = tp->fackets_out; 1718 } 1719 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1720 1721 walk: 1722 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1723 start_seq, end_seq, dup_sack); 1724 1725 advance_sp: 1726 i++; 1727 } 1728 1729 /* Clear the head of the cache sack blocks so we can skip it next time */ 1730 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1731 tp->recv_sack_cache[i].start_seq = 0; 1732 tp->recv_sack_cache[i].end_seq = 0; 1733 } 1734 for (j = 0; j < used_sacks; j++) 1735 tp->recv_sack_cache[i++] = sp[j]; 1736 1737 tcp_mark_lost_retrans(sk); 1738 1739 tcp_verify_left_out(tp); 1740 1741 if ((state.reord < tp->fackets_out) && 1742 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1743 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1744 1745 out: 1746 1747 #if FASTRETRANS_DEBUG > 0 1748 WARN_ON((int)tp->sacked_out < 0); 1749 WARN_ON((int)tp->lost_out < 0); 1750 WARN_ON((int)tp->retrans_out < 0); 1751 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1752 #endif 1753 return state.flag; 1754 } 1755 1756 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1757 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1758 */ 1759 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1760 { 1761 u32 holes; 1762 1763 holes = max(tp->lost_out, 1U); 1764 holes = min(holes, tp->packets_out); 1765 1766 if ((tp->sacked_out + holes) > tp->packets_out) { 1767 tp->sacked_out = tp->packets_out - holes; 1768 return true; 1769 } 1770 return false; 1771 } 1772 1773 /* If we receive more dupacks than we expected counting segments 1774 * in assumption of absent reordering, interpret this as reordering. 1775 * The only another reason could be bug in receiver TCP. 1776 */ 1777 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1778 { 1779 struct tcp_sock *tp = tcp_sk(sk); 1780 if (tcp_limit_reno_sacked(tp)) 1781 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1782 } 1783 1784 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1785 1786 static void tcp_add_reno_sack(struct sock *sk) 1787 { 1788 struct tcp_sock *tp = tcp_sk(sk); 1789 tp->sacked_out++; 1790 tcp_check_reno_reordering(sk, 0); 1791 tcp_verify_left_out(tp); 1792 } 1793 1794 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1795 1796 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1797 { 1798 struct tcp_sock *tp = tcp_sk(sk); 1799 1800 if (acked > 0) { 1801 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1802 if (acked - 1 >= tp->sacked_out) 1803 tp->sacked_out = 0; 1804 else 1805 tp->sacked_out -= acked - 1; 1806 } 1807 tcp_check_reno_reordering(sk, acked); 1808 tcp_verify_left_out(tp); 1809 } 1810 1811 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1812 { 1813 tp->sacked_out = 0; 1814 } 1815 1816 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1817 { 1818 tp->retrans_out = 0; 1819 tp->lost_out = 0; 1820 1821 tp->undo_marker = 0; 1822 tp->undo_retrans = 0; 1823 } 1824 1825 void tcp_clear_retrans(struct tcp_sock *tp) 1826 { 1827 tcp_clear_retrans_partial(tp); 1828 1829 tp->fackets_out = 0; 1830 tp->sacked_out = 0; 1831 } 1832 1833 /* Enter Loss state. If "how" is not zero, forget all SACK information 1834 * and reset tags completely, otherwise preserve SACKs. If receiver 1835 * dropped its ofo queue, we will know this due to reneging detection. 1836 */ 1837 void tcp_enter_loss(struct sock *sk, int how) 1838 { 1839 const struct inet_connection_sock *icsk = inet_csk(sk); 1840 struct tcp_sock *tp = tcp_sk(sk); 1841 struct sk_buff *skb; 1842 bool new_recovery = false; 1843 1844 /* Reduce ssthresh if it has not yet been made inside this window. */ 1845 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1846 !after(tp->high_seq, tp->snd_una) || 1847 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1848 new_recovery = true; 1849 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1850 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1851 tcp_ca_event(sk, CA_EVENT_LOSS); 1852 } 1853 tp->snd_cwnd = 1; 1854 tp->snd_cwnd_cnt = 0; 1855 tp->snd_cwnd_stamp = tcp_time_stamp; 1856 1857 tcp_clear_retrans_partial(tp); 1858 1859 if (tcp_is_reno(tp)) 1860 tcp_reset_reno_sack(tp); 1861 1862 tp->undo_marker = tp->snd_una; 1863 if (how) { 1864 tp->sacked_out = 0; 1865 tp->fackets_out = 0; 1866 } 1867 tcp_clear_all_retrans_hints(tp); 1868 1869 tcp_for_write_queue(skb, sk) { 1870 if (skb == tcp_send_head(sk)) 1871 break; 1872 1873 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1874 tp->undo_marker = 0; 1875 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1876 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1877 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1878 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1879 tp->lost_out += tcp_skb_pcount(skb); 1880 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1881 } 1882 } 1883 tcp_verify_left_out(tp); 1884 1885 tp->reordering = min_t(unsigned int, tp->reordering, 1886 sysctl_tcp_reordering); 1887 tcp_set_ca_state(sk, TCP_CA_Loss); 1888 tp->high_seq = tp->snd_nxt; 1889 TCP_ECN_queue_cwr(tp); 1890 1891 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1892 * loss recovery is underway except recurring timeout(s) on 1893 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1894 */ 1895 tp->frto = sysctl_tcp_frto && 1896 (new_recovery || icsk->icsk_retransmits) && 1897 !inet_csk(sk)->icsk_mtup.probe_size; 1898 } 1899 1900 /* If ACK arrived pointing to a remembered SACK, it means that our 1901 * remembered SACKs do not reflect real state of receiver i.e. 1902 * receiver _host_ is heavily congested (or buggy). 1903 * 1904 * Do processing similar to RTO timeout. 1905 */ 1906 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1907 { 1908 if (flag & FLAG_SACK_RENEGING) { 1909 struct inet_connection_sock *icsk = inet_csk(sk); 1910 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1911 1912 tcp_enter_loss(sk, 1); 1913 icsk->icsk_retransmits++; 1914 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1915 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1916 icsk->icsk_rto, TCP_RTO_MAX); 1917 return true; 1918 } 1919 return false; 1920 } 1921 1922 static inline int tcp_fackets_out(const struct tcp_sock *tp) 1923 { 1924 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1925 } 1926 1927 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1928 * counter when SACK is enabled (without SACK, sacked_out is used for 1929 * that purpose). 1930 * 1931 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1932 * segments up to the highest received SACK block so far and holes in 1933 * between them. 1934 * 1935 * With reordering, holes may still be in flight, so RFC3517 recovery 1936 * uses pure sacked_out (total number of SACKed segments) even though 1937 * it violates the RFC that uses duplicate ACKs, often these are equal 1938 * but when e.g. out-of-window ACKs or packet duplication occurs, 1939 * they differ. Since neither occurs due to loss, TCP should really 1940 * ignore them. 1941 */ 1942 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 1943 { 1944 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 1945 } 1946 1947 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 1948 { 1949 struct tcp_sock *tp = tcp_sk(sk); 1950 unsigned long delay; 1951 1952 /* Delay early retransmit and entering fast recovery for 1953 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 1954 * available, or RTO is scheduled to fire first. 1955 */ 1956 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 1957 (flag & FLAG_ECE) || !tp->srtt) 1958 return false; 1959 1960 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 1961 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 1962 return false; 1963 1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 1965 TCP_RTO_MAX); 1966 return true; 1967 } 1968 1969 static inline int tcp_skb_timedout(const struct sock *sk, 1970 const struct sk_buff *skb) 1971 { 1972 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 1973 } 1974 1975 static inline int tcp_head_timedout(const struct sock *sk) 1976 { 1977 const struct tcp_sock *tp = tcp_sk(sk); 1978 1979 return tp->packets_out && 1980 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 1981 } 1982 1983 /* Linux NewReno/SACK/FACK/ECN state machine. 1984 * -------------------------------------- 1985 * 1986 * "Open" Normal state, no dubious events, fast path. 1987 * "Disorder" In all the respects it is "Open", 1988 * but requires a bit more attention. It is entered when 1989 * we see some SACKs or dupacks. It is split of "Open" 1990 * mainly to move some processing from fast path to slow one. 1991 * "CWR" CWND was reduced due to some Congestion Notification event. 1992 * It can be ECN, ICMP source quench, local device congestion. 1993 * "Recovery" CWND was reduced, we are fast-retransmitting. 1994 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1995 * 1996 * tcp_fastretrans_alert() is entered: 1997 * - each incoming ACK, if state is not "Open" 1998 * - when arrived ACK is unusual, namely: 1999 * * SACK 2000 * * Duplicate ACK. 2001 * * ECN ECE. 2002 * 2003 * Counting packets in flight is pretty simple. 2004 * 2005 * in_flight = packets_out - left_out + retrans_out 2006 * 2007 * packets_out is SND.NXT-SND.UNA counted in packets. 2008 * 2009 * retrans_out is number of retransmitted segments. 2010 * 2011 * left_out is number of segments left network, but not ACKed yet. 2012 * 2013 * left_out = sacked_out + lost_out 2014 * 2015 * sacked_out: Packets, which arrived to receiver out of order 2016 * and hence not ACKed. With SACKs this number is simply 2017 * amount of SACKed data. Even without SACKs 2018 * it is easy to give pretty reliable estimate of this number, 2019 * counting duplicate ACKs. 2020 * 2021 * lost_out: Packets lost by network. TCP has no explicit 2022 * "loss notification" feedback from network (for now). 2023 * It means that this number can be only _guessed_. 2024 * Actually, it is the heuristics to predict lossage that 2025 * distinguishes different algorithms. 2026 * 2027 * F.e. after RTO, when all the queue is considered as lost, 2028 * lost_out = packets_out and in_flight = retrans_out. 2029 * 2030 * Essentially, we have now two algorithms counting 2031 * lost packets. 2032 * 2033 * FACK: It is the simplest heuristics. As soon as we decided 2034 * that something is lost, we decide that _all_ not SACKed 2035 * packets until the most forward SACK are lost. I.e. 2036 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2037 * It is absolutely correct estimate, if network does not reorder 2038 * packets. And it loses any connection to reality when reordering 2039 * takes place. We use FACK by default until reordering 2040 * is suspected on the path to this destination. 2041 * 2042 * NewReno: when Recovery is entered, we assume that one segment 2043 * is lost (classic Reno). While we are in Recovery and 2044 * a partial ACK arrives, we assume that one more packet 2045 * is lost (NewReno). This heuristics are the same in NewReno 2046 * and SACK. 2047 * 2048 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2049 * deflation etc. CWND is real congestion window, never inflated, changes 2050 * only according to classic VJ rules. 2051 * 2052 * Really tricky (and requiring careful tuning) part of algorithm 2053 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2054 * The first determines the moment _when_ we should reduce CWND and, 2055 * hence, slow down forward transmission. In fact, it determines the moment 2056 * when we decide that hole is caused by loss, rather than by a reorder. 2057 * 2058 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2059 * holes, caused by lost packets. 2060 * 2061 * And the most logically complicated part of algorithm is undo 2062 * heuristics. We detect false retransmits due to both too early 2063 * fast retransmit (reordering) and underestimated RTO, analyzing 2064 * timestamps and D-SACKs. When we detect that some segments were 2065 * retransmitted by mistake and CWND reduction was wrong, we undo 2066 * window reduction and abort recovery phase. This logic is hidden 2067 * inside several functions named tcp_try_undo_<something>. 2068 */ 2069 2070 /* This function decides, when we should leave Disordered state 2071 * and enter Recovery phase, reducing congestion window. 2072 * 2073 * Main question: may we further continue forward transmission 2074 * with the same cwnd? 2075 */ 2076 static bool tcp_time_to_recover(struct sock *sk, int flag) 2077 { 2078 struct tcp_sock *tp = tcp_sk(sk); 2079 __u32 packets_out; 2080 2081 /* Trick#1: The loss is proven. */ 2082 if (tp->lost_out) 2083 return true; 2084 2085 /* Not-A-Trick#2 : Classic rule... */ 2086 if (tcp_dupack_heuristics(tp) > tp->reordering) 2087 return true; 2088 2089 /* Trick#3 : when we use RFC2988 timer restart, fast 2090 * retransmit can be triggered by timeout of queue head. 2091 */ 2092 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2093 return true; 2094 2095 /* Trick#4: It is still not OK... But will it be useful to delay 2096 * recovery more? 2097 */ 2098 packets_out = tp->packets_out; 2099 if (packets_out <= tp->reordering && 2100 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2101 !tcp_may_send_now(sk)) { 2102 /* We have nothing to send. This connection is limited 2103 * either by receiver window or by application. 2104 */ 2105 return true; 2106 } 2107 2108 /* If a thin stream is detected, retransmit after first 2109 * received dupack. Employ only if SACK is supported in order 2110 * to avoid possible corner-case series of spurious retransmissions 2111 * Use only if there are no unsent data. 2112 */ 2113 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2114 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2115 tcp_is_sack(tp) && !tcp_send_head(sk)) 2116 return true; 2117 2118 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2119 * retransmissions due to small network reorderings, we implement 2120 * Mitigation A.3 in the RFC and delay the retransmission for a short 2121 * interval if appropriate. 2122 */ 2123 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2124 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2125 !tcp_may_send_now(sk)) 2126 return !tcp_pause_early_retransmit(sk, flag); 2127 2128 return false; 2129 } 2130 2131 /* New heuristics: it is possible only after we switched to restart timer 2132 * each time when something is ACKed. Hence, we can detect timed out packets 2133 * during fast retransmit without falling to slow start. 2134 * 2135 * Usefulness of this as is very questionable, since we should know which of 2136 * the segments is the next to timeout which is relatively expensive to find 2137 * in general case unless we add some data structure just for that. The 2138 * current approach certainly won't find the right one too often and when it 2139 * finally does find _something_ it usually marks large part of the window 2140 * right away (because a retransmission with a larger timestamp blocks the 2141 * loop from advancing). -ij 2142 */ 2143 static void tcp_timeout_skbs(struct sock *sk) 2144 { 2145 struct tcp_sock *tp = tcp_sk(sk); 2146 struct sk_buff *skb; 2147 2148 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2149 return; 2150 2151 skb = tp->scoreboard_skb_hint; 2152 if (tp->scoreboard_skb_hint == NULL) 2153 skb = tcp_write_queue_head(sk); 2154 2155 tcp_for_write_queue_from(skb, sk) { 2156 if (skb == tcp_send_head(sk)) 2157 break; 2158 if (!tcp_skb_timedout(sk, skb)) 2159 break; 2160 2161 tcp_skb_mark_lost(tp, skb); 2162 } 2163 2164 tp->scoreboard_skb_hint = skb; 2165 2166 tcp_verify_left_out(tp); 2167 } 2168 2169 /* Detect loss in event "A" above by marking head of queue up as lost. 2170 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2171 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2172 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2173 * the maximum SACKed segments to pass before reaching this limit. 2174 */ 2175 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2176 { 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 struct sk_buff *skb; 2179 int cnt, oldcnt; 2180 int err; 2181 unsigned int mss; 2182 /* Use SACK to deduce losses of new sequences sent during recovery */ 2183 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2184 2185 WARN_ON(packets > tp->packets_out); 2186 if (tp->lost_skb_hint) { 2187 skb = tp->lost_skb_hint; 2188 cnt = tp->lost_cnt_hint; 2189 /* Head already handled? */ 2190 if (mark_head && skb != tcp_write_queue_head(sk)) 2191 return; 2192 } else { 2193 skb = tcp_write_queue_head(sk); 2194 cnt = 0; 2195 } 2196 2197 tcp_for_write_queue_from(skb, sk) { 2198 if (skb == tcp_send_head(sk)) 2199 break; 2200 /* TODO: do this better */ 2201 /* this is not the most efficient way to do this... */ 2202 tp->lost_skb_hint = skb; 2203 tp->lost_cnt_hint = cnt; 2204 2205 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2206 break; 2207 2208 oldcnt = cnt; 2209 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2210 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2211 cnt += tcp_skb_pcount(skb); 2212 2213 if (cnt > packets) { 2214 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2215 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2216 (oldcnt >= packets)) 2217 break; 2218 2219 mss = skb_shinfo(skb)->gso_size; 2220 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2221 if (err < 0) 2222 break; 2223 cnt = packets; 2224 } 2225 2226 tcp_skb_mark_lost(tp, skb); 2227 2228 if (mark_head) 2229 break; 2230 } 2231 tcp_verify_left_out(tp); 2232 } 2233 2234 /* Account newly detected lost packet(s) */ 2235 2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2237 { 2238 struct tcp_sock *tp = tcp_sk(sk); 2239 2240 if (tcp_is_reno(tp)) { 2241 tcp_mark_head_lost(sk, 1, 1); 2242 } else if (tcp_is_fack(tp)) { 2243 int lost = tp->fackets_out - tp->reordering; 2244 if (lost <= 0) 2245 lost = 1; 2246 tcp_mark_head_lost(sk, lost, 0); 2247 } else { 2248 int sacked_upto = tp->sacked_out - tp->reordering; 2249 if (sacked_upto >= 0) 2250 tcp_mark_head_lost(sk, sacked_upto, 0); 2251 else if (fast_rexmit) 2252 tcp_mark_head_lost(sk, 1, 1); 2253 } 2254 2255 tcp_timeout_skbs(sk); 2256 } 2257 2258 /* CWND moderation, preventing bursts due to too big ACKs 2259 * in dubious situations. 2260 */ 2261 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2262 { 2263 tp->snd_cwnd = min(tp->snd_cwnd, 2264 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2265 tp->snd_cwnd_stamp = tcp_time_stamp; 2266 } 2267 2268 /* Nothing was retransmitted or returned timestamp is less 2269 * than timestamp of the first retransmission. 2270 */ 2271 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2272 { 2273 return !tp->retrans_stamp || 2274 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2275 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2276 } 2277 2278 /* Undo procedures. */ 2279 2280 #if FASTRETRANS_DEBUG > 1 2281 static void DBGUNDO(struct sock *sk, const char *msg) 2282 { 2283 struct tcp_sock *tp = tcp_sk(sk); 2284 struct inet_sock *inet = inet_sk(sk); 2285 2286 if (sk->sk_family == AF_INET) { 2287 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2288 msg, 2289 &inet->inet_daddr, ntohs(inet->inet_dport), 2290 tp->snd_cwnd, tcp_left_out(tp), 2291 tp->snd_ssthresh, tp->prior_ssthresh, 2292 tp->packets_out); 2293 } 2294 #if IS_ENABLED(CONFIG_IPV6) 2295 else if (sk->sk_family == AF_INET6) { 2296 struct ipv6_pinfo *np = inet6_sk(sk); 2297 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2298 msg, 2299 &np->daddr, ntohs(inet->inet_dport), 2300 tp->snd_cwnd, tcp_left_out(tp), 2301 tp->snd_ssthresh, tp->prior_ssthresh, 2302 tp->packets_out); 2303 } 2304 #endif 2305 } 2306 #else 2307 #define DBGUNDO(x...) do { } while (0) 2308 #endif 2309 2310 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 2314 if (tp->prior_ssthresh) { 2315 const struct inet_connection_sock *icsk = inet_csk(sk); 2316 2317 if (icsk->icsk_ca_ops->undo_cwnd) 2318 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2319 else 2320 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2321 2322 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2323 tp->snd_ssthresh = tp->prior_ssthresh; 2324 TCP_ECN_withdraw_cwr(tp); 2325 } 2326 } else { 2327 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2328 } 2329 tp->snd_cwnd_stamp = tcp_time_stamp; 2330 } 2331 2332 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2333 { 2334 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2335 } 2336 2337 /* People celebrate: "We love our President!" */ 2338 static bool tcp_try_undo_recovery(struct sock *sk) 2339 { 2340 struct tcp_sock *tp = tcp_sk(sk); 2341 2342 if (tcp_may_undo(tp)) { 2343 int mib_idx; 2344 2345 /* Happy end! We did not retransmit anything 2346 * or our original transmission succeeded. 2347 */ 2348 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2349 tcp_undo_cwr(sk, true); 2350 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2351 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2352 else 2353 mib_idx = LINUX_MIB_TCPFULLUNDO; 2354 2355 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2356 tp->undo_marker = 0; 2357 } 2358 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2359 /* Hold old state until something *above* high_seq 2360 * is ACKed. For Reno it is MUST to prevent false 2361 * fast retransmits (RFC2582). SACK TCP is safe. */ 2362 tcp_moderate_cwnd(tp); 2363 return true; 2364 } 2365 tcp_set_ca_state(sk, TCP_CA_Open); 2366 return false; 2367 } 2368 2369 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2370 static void tcp_try_undo_dsack(struct sock *sk) 2371 { 2372 struct tcp_sock *tp = tcp_sk(sk); 2373 2374 if (tp->undo_marker && !tp->undo_retrans) { 2375 DBGUNDO(sk, "D-SACK"); 2376 tcp_undo_cwr(sk, true); 2377 tp->undo_marker = 0; 2378 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2379 } 2380 } 2381 2382 /* We can clear retrans_stamp when there are no retransmissions in the 2383 * window. It would seem that it is trivially available for us in 2384 * tp->retrans_out, however, that kind of assumptions doesn't consider 2385 * what will happen if errors occur when sending retransmission for the 2386 * second time. ...It could the that such segment has only 2387 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2388 * the head skb is enough except for some reneging corner cases that 2389 * are not worth the effort. 2390 * 2391 * Main reason for all this complexity is the fact that connection dying 2392 * time now depends on the validity of the retrans_stamp, in particular, 2393 * that successive retransmissions of a segment must not advance 2394 * retrans_stamp under any conditions. 2395 */ 2396 static bool tcp_any_retrans_done(const struct sock *sk) 2397 { 2398 const struct tcp_sock *tp = tcp_sk(sk); 2399 struct sk_buff *skb; 2400 2401 if (tp->retrans_out) 2402 return true; 2403 2404 skb = tcp_write_queue_head(sk); 2405 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2406 return true; 2407 2408 return false; 2409 } 2410 2411 /* Undo during fast recovery after partial ACK. */ 2412 2413 static int tcp_try_undo_partial(struct sock *sk, int acked) 2414 { 2415 struct tcp_sock *tp = tcp_sk(sk); 2416 /* Partial ACK arrived. Force Hoe's retransmit. */ 2417 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2418 2419 if (tcp_may_undo(tp)) { 2420 /* Plain luck! Hole if filled with delayed 2421 * packet, rather than with a retransmit. 2422 */ 2423 if (!tcp_any_retrans_done(sk)) 2424 tp->retrans_stamp = 0; 2425 2426 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2427 2428 DBGUNDO(sk, "Hoe"); 2429 tcp_undo_cwr(sk, false); 2430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2431 2432 /* So... Do not make Hoe's retransmit yet. 2433 * If the first packet was delayed, the rest 2434 * ones are most probably delayed as well. 2435 */ 2436 failed = 0; 2437 } 2438 return failed; 2439 } 2440 2441 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2442 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 2446 if (frto_undo || tcp_may_undo(tp)) { 2447 struct sk_buff *skb; 2448 tcp_for_write_queue(skb, sk) { 2449 if (skb == tcp_send_head(sk)) 2450 break; 2451 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2452 } 2453 2454 tcp_clear_all_retrans_hints(tp); 2455 2456 DBGUNDO(sk, "partial loss"); 2457 tp->lost_out = 0; 2458 tcp_undo_cwr(sk, true); 2459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2460 if (frto_undo) 2461 NET_INC_STATS_BH(sock_net(sk), 2462 LINUX_MIB_TCPSPURIOUSRTOS); 2463 inet_csk(sk)->icsk_retransmits = 0; 2464 tp->undo_marker = 0; 2465 if (frto_undo || tcp_is_sack(tp)) 2466 tcp_set_ca_state(sk, TCP_CA_Open); 2467 return true; 2468 } 2469 return false; 2470 } 2471 2472 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2473 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2474 * It computes the number of packets to send (sndcnt) based on packets newly 2475 * delivered: 2476 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2477 * cwnd reductions across a full RTT. 2478 * 2) If packets in flight is lower than ssthresh (such as due to excess 2479 * losses and/or application stalls), do not perform any further cwnd 2480 * reductions, but instead slow start up to ssthresh. 2481 */ 2482 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2483 { 2484 struct tcp_sock *tp = tcp_sk(sk); 2485 2486 tp->high_seq = tp->snd_nxt; 2487 tp->tlp_high_seq = 0; 2488 tp->snd_cwnd_cnt = 0; 2489 tp->prior_cwnd = tp->snd_cwnd; 2490 tp->prr_delivered = 0; 2491 tp->prr_out = 0; 2492 if (set_ssthresh) 2493 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2494 TCP_ECN_queue_cwr(tp); 2495 } 2496 2497 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2498 int fast_rexmit) 2499 { 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 int sndcnt = 0; 2502 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2503 2504 tp->prr_delivered += newly_acked_sacked; 2505 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2506 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2507 tp->prior_cwnd - 1; 2508 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2509 } else { 2510 sndcnt = min_t(int, delta, 2511 max_t(int, tp->prr_delivered - tp->prr_out, 2512 newly_acked_sacked) + 1); 2513 } 2514 2515 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2516 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2517 } 2518 2519 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2520 { 2521 struct tcp_sock *tp = tcp_sk(sk); 2522 2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2524 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2525 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2526 tp->snd_cwnd = tp->snd_ssthresh; 2527 tp->snd_cwnd_stamp = tcp_time_stamp; 2528 } 2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2530 } 2531 2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2533 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 tp->prior_ssthresh = 0; 2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2539 tp->undo_marker = 0; 2540 tcp_init_cwnd_reduction(sk, set_ssthresh); 2541 tcp_set_ca_state(sk, TCP_CA_CWR); 2542 } 2543 } 2544 2545 static void tcp_try_keep_open(struct sock *sk) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 int state = TCP_CA_Open; 2549 2550 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2551 state = TCP_CA_Disorder; 2552 2553 if (inet_csk(sk)->icsk_ca_state != state) { 2554 tcp_set_ca_state(sk, state); 2555 tp->high_seq = tp->snd_nxt; 2556 } 2557 } 2558 2559 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 2563 tcp_verify_left_out(tp); 2564 2565 if (!tcp_any_retrans_done(sk)) 2566 tp->retrans_stamp = 0; 2567 2568 if (flag & FLAG_ECE) 2569 tcp_enter_cwr(sk, 1); 2570 2571 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2572 tcp_try_keep_open(sk); 2573 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2574 tcp_moderate_cwnd(tp); 2575 } else { 2576 tcp_cwnd_reduction(sk, newly_acked_sacked, 0); 2577 } 2578 } 2579 2580 static void tcp_mtup_probe_failed(struct sock *sk) 2581 { 2582 struct inet_connection_sock *icsk = inet_csk(sk); 2583 2584 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2585 icsk->icsk_mtup.probe_size = 0; 2586 } 2587 2588 static void tcp_mtup_probe_success(struct sock *sk) 2589 { 2590 struct tcp_sock *tp = tcp_sk(sk); 2591 struct inet_connection_sock *icsk = inet_csk(sk); 2592 2593 /* FIXME: breaks with very large cwnd */ 2594 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2595 tp->snd_cwnd = tp->snd_cwnd * 2596 tcp_mss_to_mtu(sk, tp->mss_cache) / 2597 icsk->icsk_mtup.probe_size; 2598 tp->snd_cwnd_cnt = 0; 2599 tp->snd_cwnd_stamp = tcp_time_stamp; 2600 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2601 2602 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2603 icsk->icsk_mtup.probe_size = 0; 2604 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2605 } 2606 2607 /* Do a simple retransmit without using the backoff mechanisms in 2608 * tcp_timer. This is used for path mtu discovery. 2609 * The socket is already locked here. 2610 */ 2611 void tcp_simple_retransmit(struct sock *sk) 2612 { 2613 const struct inet_connection_sock *icsk = inet_csk(sk); 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 struct sk_buff *skb; 2616 unsigned int mss = tcp_current_mss(sk); 2617 u32 prior_lost = tp->lost_out; 2618 2619 tcp_for_write_queue(skb, sk) { 2620 if (skb == tcp_send_head(sk)) 2621 break; 2622 if (tcp_skb_seglen(skb) > mss && 2623 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2624 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2625 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2626 tp->retrans_out -= tcp_skb_pcount(skb); 2627 } 2628 tcp_skb_mark_lost_uncond_verify(tp, skb); 2629 } 2630 } 2631 2632 tcp_clear_retrans_hints_partial(tp); 2633 2634 if (prior_lost == tp->lost_out) 2635 return; 2636 2637 if (tcp_is_reno(tp)) 2638 tcp_limit_reno_sacked(tp); 2639 2640 tcp_verify_left_out(tp); 2641 2642 /* Don't muck with the congestion window here. 2643 * Reason is that we do not increase amount of _data_ 2644 * in network, but units changed and effective 2645 * cwnd/ssthresh really reduced now. 2646 */ 2647 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2648 tp->high_seq = tp->snd_nxt; 2649 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2650 tp->prior_ssthresh = 0; 2651 tp->undo_marker = 0; 2652 tcp_set_ca_state(sk, TCP_CA_Loss); 2653 } 2654 tcp_xmit_retransmit_queue(sk); 2655 } 2656 EXPORT_SYMBOL(tcp_simple_retransmit); 2657 2658 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2659 { 2660 struct tcp_sock *tp = tcp_sk(sk); 2661 int mib_idx; 2662 2663 if (tcp_is_reno(tp)) 2664 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2665 else 2666 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2667 2668 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2669 2670 tp->prior_ssthresh = 0; 2671 tp->undo_marker = tp->snd_una; 2672 tp->undo_retrans = tp->retrans_out; 2673 2674 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2675 if (!ece_ack) 2676 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2677 tcp_init_cwnd_reduction(sk, true); 2678 } 2679 tcp_set_ca_state(sk, TCP_CA_Recovery); 2680 } 2681 2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2683 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2684 */ 2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2686 { 2687 struct inet_connection_sock *icsk = inet_csk(sk); 2688 struct tcp_sock *tp = tcp_sk(sk); 2689 bool recovered = !before(tp->snd_una, tp->high_seq); 2690 2691 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2692 if (flag & FLAG_ORIG_SACK_ACKED) { 2693 /* Step 3.b. A timeout is spurious if not all data are 2694 * lost, i.e., never-retransmitted data are (s)acked. 2695 */ 2696 tcp_try_undo_loss(sk, true); 2697 return; 2698 } 2699 if (after(tp->snd_nxt, tp->high_seq) && 2700 (flag & FLAG_DATA_SACKED || is_dupack)) { 2701 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2702 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2703 tp->high_seq = tp->snd_nxt; 2704 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2705 TCP_NAGLE_OFF); 2706 if (after(tp->snd_nxt, tp->high_seq)) 2707 return; /* Step 2.b */ 2708 tp->frto = 0; 2709 } 2710 } 2711 2712 if (recovered) { 2713 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2714 icsk->icsk_retransmits = 0; 2715 tcp_try_undo_recovery(sk); 2716 return; 2717 } 2718 if (flag & FLAG_DATA_ACKED) 2719 icsk->icsk_retransmits = 0; 2720 if (tcp_is_reno(tp)) { 2721 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2722 * delivered. Lower inflight to clock out (re)tranmissions. 2723 */ 2724 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2725 tcp_add_reno_sack(sk); 2726 else if (flag & FLAG_SND_UNA_ADVANCED) 2727 tcp_reset_reno_sack(tp); 2728 } 2729 if (tcp_try_undo_loss(sk, false)) 2730 return; 2731 tcp_xmit_retransmit_queue(sk); 2732 } 2733 2734 /* Process an event, which can update packets-in-flight not trivially. 2735 * Main goal of this function is to calculate new estimate for left_out, 2736 * taking into account both packets sitting in receiver's buffer and 2737 * packets lost by network. 2738 * 2739 * Besides that it does CWND reduction, when packet loss is detected 2740 * and changes state of machine. 2741 * 2742 * It does _not_ decide what to send, it is made in function 2743 * tcp_xmit_retransmit_queue(). 2744 */ 2745 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 2746 int prior_sacked, int prior_packets, 2747 bool is_dupack, int flag) 2748 { 2749 struct inet_connection_sock *icsk = inet_csk(sk); 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2752 (tcp_fackets_out(tp) > tp->reordering)); 2753 int newly_acked_sacked = 0; 2754 int fast_rexmit = 0; 2755 2756 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2757 tp->sacked_out = 0; 2758 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2759 tp->fackets_out = 0; 2760 2761 /* Now state machine starts. 2762 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2763 if (flag & FLAG_ECE) 2764 tp->prior_ssthresh = 0; 2765 2766 /* B. In all the states check for reneging SACKs. */ 2767 if (tcp_check_sack_reneging(sk, flag)) 2768 return; 2769 2770 /* C. Check consistency of the current state. */ 2771 tcp_verify_left_out(tp); 2772 2773 /* D. Check state exit conditions. State can be terminated 2774 * when high_seq is ACKed. */ 2775 if (icsk->icsk_ca_state == TCP_CA_Open) { 2776 WARN_ON(tp->retrans_out != 0); 2777 tp->retrans_stamp = 0; 2778 } else if (!before(tp->snd_una, tp->high_seq)) { 2779 switch (icsk->icsk_ca_state) { 2780 case TCP_CA_CWR: 2781 /* CWR is to be held something *above* high_seq 2782 * is ACKed for CWR bit to reach receiver. */ 2783 if (tp->snd_una != tp->high_seq) { 2784 tcp_end_cwnd_reduction(sk); 2785 tcp_set_ca_state(sk, TCP_CA_Open); 2786 } 2787 break; 2788 2789 case TCP_CA_Recovery: 2790 if (tcp_is_reno(tp)) 2791 tcp_reset_reno_sack(tp); 2792 if (tcp_try_undo_recovery(sk)) 2793 return; 2794 tcp_end_cwnd_reduction(sk); 2795 break; 2796 } 2797 } 2798 2799 /* E. Process state. */ 2800 switch (icsk->icsk_ca_state) { 2801 case TCP_CA_Recovery: 2802 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2803 if (tcp_is_reno(tp) && is_dupack) 2804 tcp_add_reno_sack(sk); 2805 } else 2806 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2807 newly_acked_sacked = prior_packets - tp->packets_out + 2808 tp->sacked_out - prior_sacked; 2809 break; 2810 case TCP_CA_Loss: 2811 tcp_process_loss(sk, flag, is_dupack); 2812 if (icsk->icsk_ca_state != TCP_CA_Open) 2813 return; 2814 /* Fall through to processing in Open state. */ 2815 default: 2816 if (tcp_is_reno(tp)) { 2817 if (flag & FLAG_SND_UNA_ADVANCED) 2818 tcp_reset_reno_sack(tp); 2819 if (is_dupack) 2820 tcp_add_reno_sack(sk); 2821 } 2822 newly_acked_sacked = prior_packets - tp->packets_out + 2823 tp->sacked_out - prior_sacked; 2824 2825 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2826 tcp_try_undo_dsack(sk); 2827 2828 if (!tcp_time_to_recover(sk, flag)) { 2829 tcp_try_to_open(sk, flag, newly_acked_sacked); 2830 return; 2831 } 2832 2833 /* MTU probe failure: don't reduce cwnd */ 2834 if (icsk->icsk_ca_state < TCP_CA_CWR && 2835 icsk->icsk_mtup.probe_size && 2836 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2837 tcp_mtup_probe_failed(sk); 2838 /* Restores the reduction we did in tcp_mtup_probe() */ 2839 tp->snd_cwnd++; 2840 tcp_simple_retransmit(sk); 2841 return; 2842 } 2843 2844 /* Otherwise enter Recovery state */ 2845 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2846 fast_rexmit = 1; 2847 } 2848 2849 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 2850 tcp_update_scoreboard(sk, fast_rexmit); 2851 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit); 2852 tcp_xmit_retransmit_queue(sk); 2853 } 2854 2855 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 2856 { 2857 tcp_rtt_estimator(sk, seq_rtt); 2858 tcp_set_rto(sk); 2859 inet_csk(sk)->icsk_backoff = 0; 2860 } 2861 EXPORT_SYMBOL(tcp_valid_rtt_meas); 2862 2863 /* Read draft-ietf-tcplw-high-performance before mucking 2864 * with this code. (Supersedes RFC1323) 2865 */ 2866 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2867 { 2868 /* RTTM Rule: A TSecr value received in a segment is used to 2869 * update the averaged RTT measurement only if the segment 2870 * acknowledges some new data, i.e., only if it advances the 2871 * left edge of the send window. 2872 * 2873 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2874 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2875 * 2876 * Changed: reset backoff as soon as we see the first valid sample. 2877 * If we do not, we get strongly overestimated rto. With timestamps 2878 * samples are accepted even from very old segments: f.e., when rtt=1 2879 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2880 * answer arrives rto becomes 120 seconds! If at least one of segments 2881 * in window is lost... Voila. --ANK (010210) 2882 */ 2883 struct tcp_sock *tp = tcp_sk(sk); 2884 2885 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2886 } 2887 2888 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2889 { 2890 /* We don't have a timestamp. Can only use 2891 * packets that are not retransmitted to determine 2892 * rtt estimates. Also, we must not reset the 2893 * backoff for rto until we get a non-retransmitted 2894 * packet. This allows us to deal with a situation 2895 * where the network delay has increased suddenly. 2896 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2897 */ 2898 2899 if (flag & FLAG_RETRANS_DATA_ACKED) 2900 return; 2901 2902 tcp_valid_rtt_meas(sk, seq_rtt); 2903 } 2904 2905 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2906 const s32 seq_rtt) 2907 { 2908 const struct tcp_sock *tp = tcp_sk(sk); 2909 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2910 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2911 tcp_ack_saw_tstamp(sk, flag); 2912 else if (seq_rtt >= 0) 2913 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2914 } 2915 2916 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 2917 { 2918 const struct inet_connection_sock *icsk = inet_csk(sk); 2919 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 2920 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2921 } 2922 2923 /* Restart timer after forward progress on connection. 2924 * RFC2988 recommends to restart timer to now+rto. 2925 */ 2926 void tcp_rearm_rto(struct sock *sk) 2927 { 2928 const struct inet_connection_sock *icsk = inet_csk(sk); 2929 struct tcp_sock *tp = tcp_sk(sk); 2930 2931 /* If the retrans timer is currently being used by Fast Open 2932 * for SYN-ACK retrans purpose, stay put. 2933 */ 2934 if (tp->fastopen_rsk) 2935 return; 2936 2937 if (!tp->packets_out) { 2938 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2939 } else { 2940 u32 rto = inet_csk(sk)->icsk_rto; 2941 /* Offset the time elapsed after installing regular RTO */ 2942 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2943 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2944 struct sk_buff *skb = tcp_write_queue_head(sk); 2945 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 2946 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2947 /* delta may not be positive if the socket is locked 2948 * when the retrans timer fires and is rescheduled. 2949 */ 2950 if (delta > 0) 2951 rto = delta; 2952 } 2953 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2954 TCP_RTO_MAX); 2955 } 2956 } 2957 2958 /* This function is called when the delayed ER timer fires. TCP enters 2959 * fast recovery and performs fast-retransmit. 2960 */ 2961 void tcp_resume_early_retransmit(struct sock *sk) 2962 { 2963 struct tcp_sock *tp = tcp_sk(sk); 2964 2965 tcp_rearm_rto(sk); 2966 2967 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 2968 if (!tp->do_early_retrans) 2969 return; 2970 2971 tcp_enter_recovery(sk, false); 2972 tcp_update_scoreboard(sk, 1); 2973 tcp_xmit_retransmit_queue(sk); 2974 } 2975 2976 /* If we get here, the whole TSO packet has not been acked. */ 2977 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2978 { 2979 struct tcp_sock *tp = tcp_sk(sk); 2980 u32 packets_acked; 2981 2982 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2983 2984 packets_acked = tcp_skb_pcount(skb); 2985 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2986 return 0; 2987 packets_acked -= tcp_skb_pcount(skb); 2988 2989 if (packets_acked) { 2990 BUG_ON(tcp_skb_pcount(skb) == 0); 2991 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2992 } 2993 2994 return packets_acked; 2995 } 2996 2997 /* Remove acknowledged frames from the retransmission queue. If our packet 2998 * is before the ack sequence we can discard it as it's confirmed to have 2999 * arrived at the other end. 3000 */ 3001 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3002 u32 prior_snd_una) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 const struct inet_connection_sock *icsk = inet_csk(sk); 3006 struct sk_buff *skb; 3007 u32 now = tcp_time_stamp; 3008 int fully_acked = true; 3009 int flag = 0; 3010 u32 pkts_acked = 0; 3011 u32 reord = tp->packets_out; 3012 u32 prior_sacked = tp->sacked_out; 3013 s32 seq_rtt = -1; 3014 s32 ca_seq_rtt = -1; 3015 ktime_t last_ackt = net_invalid_timestamp(); 3016 3017 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3018 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3019 u32 acked_pcount; 3020 u8 sacked = scb->sacked; 3021 3022 /* Determine how many packets and what bytes were acked, tso and else */ 3023 if (after(scb->end_seq, tp->snd_una)) { 3024 if (tcp_skb_pcount(skb) == 1 || 3025 !after(tp->snd_una, scb->seq)) 3026 break; 3027 3028 acked_pcount = tcp_tso_acked(sk, skb); 3029 if (!acked_pcount) 3030 break; 3031 3032 fully_acked = false; 3033 } else { 3034 acked_pcount = tcp_skb_pcount(skb); 3035 } 3036 3037 if (sacked & TCPCB_RETRANS) { 3038 if (sacked & TCPCB_SACKED_RETRANS) 3039 tp->retrans_out -= acked_pcount; 3040 flag |= FLAG_RETRANS_DATA_ACKED; 3041 ca_seq_rtt = -1; 3042 seq_rtt = -1; 3043 } else { 3044 ca_seq_rtt = now - scb->when; 3045 last_ackt = skb->tstamp; 3046 if (seq_rtt < 0) { 3047 seq_rtt = ca_seq_rtt; 3048 } 3049 if (!(sacked & TCPCB_SACKED_ACKED)) 3050 reord = min(pkts_acked, reord); 3051 if (!after(scb->end_seq, tp->high_seq)) 3052 flag |= FLAG_ORIG_SACK_ACKED; 3053 } 3054 3055 if (sacked & TCPCB_SACKED_ACKED) 3056 tp->sacked_out -= acked_pcount; 3057 if (sacked & TCPCB_LOST) 3058 tp->lost_out -= acked_pcount; 3059 3060 tp->packets_out -= acked_pcount; 3061 pkts_acked += acked_pcount; 3062 3063 /* Initial outgoing SYN's get put onto the write_queue 3064 * just like anything else we transmit. It is not 3065 * true data, and if we misinform our callers that 3066 * this ACK acks real data, we will erroneously exit 3067 * connection startup slow start one packet too 3068 * quickly. This is severely frowned upon behavior. 3069 */ 3070 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3071 flag |= FLAG_DATA_ACKED; 3072 } else { 3073 flag |= FLAG_SYN_ACKED; 3074 tp->retrans_stamp = 0; 3075 } 3076 3077 if (!fully_acked) 3078 break; 3079 3080 tcp_unlink_write_queue(skb, sk); 3081 sk_wmem_free_skb(sk, skb); 3082 tp->scoreboard_skb_hint = NULL; 3083 if (skb == tp->retransmit_skb_hint) 3084 tp->retransmit_skb_hint = NULL; 3085 if (skb == tp->lost_skb_hint) 3086 tp->lost_skb_hint = NULL; 3087 } 3088 3089 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3090 tp->snd_up = tp->snd_una; 3091 3092 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3093 flag |= FLAG_SACK_RENEGING; 3094 3095 if (flag & FLAG_ACKED) { 3096 const struct tcp_congestion_ops *ca_ops 3097 = inet_csk(sk)->icsk_ca_ops; 3098 3099 if (unlikely(icsk->icsk_mtup.probe_size && 3100 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3101 tcp_mtup_probe_success(sk); 3102 } 3103 3104 tcp_ack_update_rtt(sk, flag, seq_rtt); 3105 tcp_rearm_rto(sk); 3106 3107 if (tcp_is_reno(tp)) { 3108 tcp_remove_reno_sacks(sk, pkts_acked); 3109 } else { 3110 int delta; 3111 3112 /* Non-retransmitted hole got filled? That's reordering */ 3113 if (reord < prior_fackets) 3114 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3115 3116 delta = tcp_is_fack(tp) ? pkts_acked : 3117 prior_sacked - tp->sacked_out; 3118 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3119 } 3120 3121 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3122 3123 if (ca_ops->pkts_acked) { 3124 s32 rtt_us = -1; 3125 3126 /* Is the ACK triggering packet unambiguous? */ 3127 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3128 /* High resolution needed and available? */ 3129 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3130 !ktime_equal(last_ackt, 3131 net_invalid_timestamp())) 3132 rtt_us = ktime_us_delta(ktime_get_real(), 3133 last_ackt); 3134 else if (ca_seq_rtt >= 0) 3135 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3136 } 3137 3138 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3139 } 3140 } 3141 3142 #if FASTRETRANS_DEBUG > 0 3143 WARN_ON((int)tp->sacked_out < 0); 3144 WARN_ON((int)tp->lost_out < 0); 3145 WARN_ON((int)tp->retrans_out < 0); 3146 if (!tp->packets_out && tcp_is_sack(tp)) { 3147 icsk = inet_csk(sk); 3148 if (tp->lost_out) { 3149 pr_debug("Leak l=%u %d\n", 3150 tp->lost_out, icsk->icsk_ca_state); 3151 tp->lost_out = 0; 3152 } 3153 if (tp->sacked_out) { 3154 pr_debug("Leak s=%u %d\n", 3155 tp->sacked_out, icsk->icsk_ca_state); 3156 tp->sacked_out = 0; 3157 } 3158 if (tp->retrans_out) { 3159 pr_debug("Leak r=%u %d\n", 3160 tp->retrans_out, icsk->icsk_ca_state); 3161 tp->retrans_out = 0; 3162 } 3163 } 3164 #endif 3165 return flag; 3166 } 3167 3168 static void tcp_ack_probe(struct sock *sk) 3169 { 3170 const struct tcp_sock *tp = tcp_sk(sk); 3171 struct inet_connection_sock *icsk = inet_csk(sk); 3172 3173 /* Was it a usable window open? */ 3174 3175 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3176 icsk->icsk_backoff = 0; 3177 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3178 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3179 * This function is not for random using! 3180 */ 3181 } else { 3182 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3183 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3184 TCP_RTO_MAX); 3185 } 3186 } 3187 3188 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3189 { 3190 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3191 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3192 } 3193 3194 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3195 { 3196 const struct tcp_sock *tp = tcp_sk(sk); 3197 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3198 !tcp_in_cwnd_reduction(sk); 3199 } 3200 3201 /* Check that window update is acceptable. 3202 * The function assumes that snd_una<=ack<=snd_next. 3203 */ 3204 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3205 const u32 ack, const u32 ack_seq, 3206 const u32 nwin) 3207 { 3208 return after(ack, tp->snd_una) || 3209 after(ack_seq, tp->snd_wl1) || 3210 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3211 } 3212 3213 /* Update our send window. 3214 * 3215 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3216 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3217 */ 3218 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3219 u32 ack_seq) 3220 { 3221 struct tcp_sock *tp = tcp_sk(sk); 3222 int flag = 0; 3223 u32 nwin = ntohs(tcp_hdr(skb)->window); 3224 3225 if (likely(!tcp_hdr(skb)->syn)) 3226 nwin <<= tp->rx_opt.snd_wscale; 3227 3228 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3229 flag |= FLAG_WIN_UPDATE; 3230 tcp_update_wl(tp, ack_seq); 3231 3232 if (tp->snd_wnd != nwin) { 3233 tp->snd_wnd = nwin; 3234 3235 /* Note, it is the only place, where 3236 * fast path is recovered for sending TCP. 3237 */ 3238 tp->pred_flags = 0; 3239 tcp_fast_path_check(sk); 3240 3241 if (nwin > tp->max_window) { 3242 tp->max_window = nwin; 3243 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3244 } 3245 } 3246 } 3247 3248 tp->snd_una = ack; 3249 3250 return flag; 3251 } 3252 3253 /* RFC 5961 7 [ACK Throttling] */ 3254 static void tcp_send_challenge_ack(struct sock *sk) 3255 { 3256 /* unprotected vars, we dont care of overwrites */ 3257 static u32 challenge_timestamp; 3258 static unsigned int challenge_count; 3259 u32 now = jiffies / HZ; 3260 3261 if (now != challenge_timestamp) { 3262 challenge_timestamp = now; 3263 challenge_count = 0; 3264 } 3265 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3266 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3267 tcp_send_ack(sk); 3268 } 3269 } 3270 3271 static void tcp_store_ts_recent(struct tcp_sock *tp) 3272 { 3273 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3274 tp->rx_opt.ts_recent_stamp = get_seconds(); 3275 } 3276 3277 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3278 { 3279 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3280 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3281 * extra check below makes sure this can only happen 3282 * for pure ACK frames. -DaveM 3283 * 3284 * Not only, also it occurs for expired timestamps. 3285 */ 3286 3287 if (tcp_paws_check(&tp->rx_opt, 0)) 3288 tcp_store_ts_recent(tp); 3289 } 3290 } 3291 3292 /* This routine deals with acks during a TLP episode. 3293 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3294 */ 3295 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3296 { 3297 struct tcp_sock *tp = tcp_sk(sk); 3298 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3299 !(flag & (FLAG_SND_UNA_ADVANCED | 3300 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3301 3302 /* Mark the end of TLP episode on receiving TLP dupack or when 3303 * ack is after tlp_high_seq. 3304 */ 3305 if (is_tlp_dupack) { 3306 tp->tlp_high_seq = 0; 3307 return; 3308 } 3309 3310 if (after(ack, tp->tlp_high_seq)) { 3311 tp->tlp_high_seq = 0; 3312 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3313 if (!(flag & FLAG_DSACKING_ACK)) { 3314 tcp_init_cwnd_reduction(sk, true); 3315 tcp_set_ca_state(sk, TCP_CA_CWR); 3316 tcp_end_cwnd_reduction(sk); 3317 tcp_set_ca_state(sk, TCP_CA_Open); 3318 NET_INC_STATS_BH(sock_net(sk), 3319 LINUX_MIB_TCPLOSSPROBERECOVERY); 3320 } 3321 } 3322 } 3323 3324 /* This routine deals with incoming acks, but not outgoing ones. */ 3325 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3326 { 3327 struct inet_connection_sock *icsk = inet_csk(sk); 3328 struct tcp_sock *tp = tcp_sk(sk); 3329 u32 prior_snd_una = tp->snd_una; 3330 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3331 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3332 bool is_dupack = false; 3333 u32 prior_in_flight; 3334 u32 prior_fackets; 3335 int prior_packets = tp->packets_out; 3336 int prior_sacked = tp->sacked_out; 3337 int pkts_acked = 0; 3338 int previous_packets_out = 0; 3339 3340 /* If the ack is older than previous acks 3341 * then we can probably ignore it. 3342 */ 3343 if (before(ack, prior_snd_una)) { 3344 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3345 if (before(ack, prior_snd_una - tp->max_window)) { 3346 tcp_send_challenge_ack(sk); 3347 return -1; 3348 } 3349 goto old_ack; 3350 } 3351 3352 /* If the ack includes data we haven't sent yet, discard 3353 * this segment (RFC793 Section 3.9). 3354 */ 3355 if (after(ack, tp->snd_nxt)) 3356 goto invalid_ack; 3357 3358 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3359 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3360 tcp_rearm_rto(sk); 3361 3362 if (after(ack, prior_snd_una)) 3363 flag |= FLAG_SND_UNA_ADVANCED; 3364 3365 prior_fackets = tp->fackets_out; 3366 prior_in_flight = tcp_packets_in_flight(tp); 3367 3368 /* ts_recent update must be made after we are sure that the packet 3369 * is in window. 3370 */ 3371 if (flag & FLAG_UPDATE_TS_RECENT) 3372 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3373 3374 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3375 /* Window is constant, pure forward advance. 3376 * No more checks are required. 3377 * Note, we use the fact that SND.UNA>=SND.WL2. 3378 */ 3379 tcp_update_wl(tp, ack_seq); 3380 tp->snd_una = ack; 3381 flag |= FLAG_WIN_UPDATE; 3382 3383 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3384 3385 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3386 } else { 3387 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3388 flag |= FLAG_DATA; 3389 else 3390 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3391 3392 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3393 3394 if (TCP_SKB_CB(skb)->sacked) 3395 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3396 3397 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3398 flag |= FLAG_ECE; 3399 3400 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3401 } 3402 3403 /* We passed data and got it acked, remove any soft error 3404 * log. Something worked... 3405 */ 3406 sk->sk_err_soft = 0; 3407 icsk->icsk_probes_out = 0; 3408 tp->rcv_tstamp = tcp_time_stamp; 3409 if (!prior_packets) 3410 goto no_queue; 3411 3412 /* See if we can take anything off of the retransmit queue. */ 3413 previous_packets_out = tp->packets_out; 3414 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3415 3416 pkts_acked = previous_packets_out - tp->packets_out; 3417 3418 if (tcp_ack_is_dubious(sk, flag)) { 3419 /* Advance CWND, if state allows this. */ 3420 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 3421 tcp_cong_avoid(sk, ack, prior_in_flight); 3422 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3423 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3424 prior_packets, is_dupack, flag); 3425 } else { 3426 if (flag & FLAG_DATA_ACKED) 3427 tcp_cong_avoid(sk, ack, prior_in_flight); 3428 } 3429 3430 if (tp->tlp_high_seq) 3431 tcp_process_tlp_ack(sk, ack, flag); 3432 3433 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3434 struct dst_entry *dst = __sk_dst_get(sk); 3435 if (dst) 3436 dst_confirm(dst); 3437 } 3438 3439 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3440 tcp_schedule_loss_probe(sk); 3441 return 1; 3442 3443 no_queue: 3444 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3445 if (flag & FLAG_DSACKING_ACK) 3446 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3447 prior_packets, is_dupack, flag); 3448 /* If this ack opens up a zero window, clear backoff. It was 3449 * being used to time the probes, and is probably far higher than 3450 * it needs to be for normal retransmission. 3451 */ 3452 if (tcp_send_head(sk)) 3453 tcp_ack_probe(sk); 3454 3455 if (tp->tlp_high_seq) 3456 tcp_process_tlp_ack(sk, ack, flag); 3457 return 1; 3458 3459 invalid_ack: 3460 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3461 return -1; 3462 3463 old_ack: 3464 /* If data was SACKed, tag it and see if we should send more data. 3465 * If data was DSACKed, see if we can undo a cwnd reduction. 3466 */ 3467 if (TCP_SKB_CB(skb)->sacked) { 3468 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3469 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3470 prior_packets, is_dupack, flag); 3471 } 3472 3473 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3474 return 0; 3475 } 3476 3477 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3478 * But, this can also be called on packets in the established flow when 3479 * the fast version below fails. 3480 */ 3481 void tcp_parse_options(const struct sk_buff *skb, 3482 struct tcp_options_received *opt_rx, int estab, 3483 struct tcp_fastopen_cookie *foc) 3484 { 3485 const unsigned char *ptr; 3486 const struct tcphdr *th = tcp_hdr(skb); 3487 int length = (th->doff * 4) - sizeof(struct tcphdr); 3488 3489 ptr = (const unsigned char *)(th + 1); 3490 opt_rx->saw_tstamp = 0; 3491 3492 while (length > 0) { 3493 int opcode = *ptr++; 3494 int opsize; 3495 3496 switch (opcode) { 3497 case TCPOPT_EOL: 3498 return; 3499 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3500 length--; 3501 continue; 3502 default: 3503 opsize = *ptr++; 3504 if (opsize < 2) /* "silly options" */ 3505 return; 3506 if (opsize > length) 3507 return; /* don't parse partial options */ 3508 switch (opcode) { 3509 case TCPOPT_MSS: 3510 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3511 u16 in_mss = get_unaligned_be16(ptr); 3512 if (in_mss) { 3513 if (opt_rx->user_mss && 3514 opt_rx->user_mss < in_mss) 3515 in_mss = opt_rx->user_mss; 3516 opt_rx->mss_clamp = in_mss; 3517 } 3518 } 3519 break; 3520 case TCPOPT_WINDOW: 3521 if (opsize == TCPOLEN_WINDOW && th->syn && 3522 !estab && sysctl_tcp_window_scaling) { 3523 __u8 snd_wscale = *(__u8 *)ptr; 3524 opt_rx->wscale_ok = 1; 3525 if (snd_wscale > 14) { 3526 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3527 __func__, 3528 snd_wscale); 3529 snd_wscale = 14; 3530 } 3531 opt_rx->snd_wscale = snd_wscale; 3532 } 3533 break; 3534 case TCPOPT_TIMESTAMP: 3535 if ((opsize == TCPOLEN_TIMESTAMP) && 3536 ((estab && opt_rx->tstamp_ok) || 3537 (!estab && sysctl_tcp_timestamps))) { 3538 opt_rx->saw_tstamp = 1; 3539 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3540 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3541 } 3542 break; 3543 case TCPOPT_SACK_PERM: 3544 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3545 !estab && sysctl_tcp_sack) { 3546 opt_rx->sack_ok = TCP_SACK_SEEN; 3547 tcp_sack_reset(opt_rx); 3548 } 3549 break; 3550 3551 case TCPOPT_SACK: 3552 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3553 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3554 opt_rx->sack_ok) { 3555 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3556 } 3557 break; 3558 #ifdef CONFIG_TCP_MD5SIG 3559 case TCPOPT_MD5SIG: 3560 /* 3561 * The MD5 Hash has already been 3562 * checked (see tcp_v{4,6}_do_rcv()). 3563 */ 3564 break; 3565 #endif 3566 case TCPOPT_EXP: 3567 /* Fast Open option shares code 254 using a 3568 * 16 bits magic number. It's valid only in 3569 * SYN or SYN-ACK with an even size. 3570 */ 3571 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3572 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3573 foc == NULL || !th->syn || (opsize & 1)) 3574 break; 3575 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3576 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3577 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3578 memcpy(foc->val, ptr + 2, foc->len); 3579 else if (foc->len != 0) 3580 foc->len = -1; 3581 break; 3582 3583 } 3584 ptr += opsize-2; 3585 length -= opsize; 3586 } 3587 } 3588 } 3589 EXPORT_SYMBOL(tcp_parse_options); 3590 3591 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3592 { 3593 const __be32 *ptr = (const __be32 *)(th + 1); 3594 3595 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3596 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3597 tp->rx_opt.saw_tstamp = 1; 3598 ++ptr; 3599 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3600 ++ptr; 3601 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3602 return true; 3603 } 3604 return false; 3605 } 3606 3607 /* Fast parse options. This hopes to only see timestamps. 3608 * If it is wrong it falls back on tcp_parse_options(). 3609 */ 3610 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3611 const struct tcphdr *th, struct tcp_sock *tp) 3612 { 3613 /* In the spirit of fast parsing, compare doff directly to constant 3614 * values. Because equality is used, short doff can be ignored here. 3615 */ 3616 if (th->doff == (sizeof(*th) / 4)) { 3617 tp->rx_opt.saw_tstamp = 0; 3618 return false; 3619 } else if (tp->rx_opt.tstamp_ok && 3620 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3621 if (tcp_parse_aligned_timestamp(tp, th)) 3622 return true; 3623 } 3624 3625 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3626 if (tp->rx_opt.saw_tstamp) 3627 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3628 3629 return true; 3630 } 3631 3632 #ifdef CONFIG_TCP_MD5SIG 3633 /* 3634 * Parse MD5 Signature option 3635 */ 3636 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3637 { 3638 int length = (th->doff << 2) - sizeof(*th); 3639 const u8 *ptr = (const u8 *)(th + 1); 3640 3641 /* If the TCP option is too short, we can short cut */ 3642 if (length < TCPOLEN_MD5SIG) 3643 return NULL; 3644 3645 while (length > 0) { 3646 int opcode = *ptr++; 3647 int opsize; 3648 3649 switch(opcode) { 3650 case TCPOPT_EOL: 3651 return NULL; 3652 case TCPOPT_NOP: 3653 length--; 3654 continue; 3655 default: 3656 opsize = *ptr++; 3657 if (opsize < 2 || opsize > length) 3658 return NULL; 3659 if (opcode == TCPOPT_MD5SIG) 3660 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3661 } 3662 ptr += opsize - 2; 3663 length -= opsize; 3664 } 3665 return NULL; 3666 } 3667 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3668 #endif 3669 3670 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3671 * 3672 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3673 * it can pass through stack. So, the following predicate verifies that 3674 * this segment is not used for anything but congestion avoidance or 3675 * fast retransmit. Moreover, we even are able to eliminate most of such 3676 * second order effects, if we apply some small "replay" window (~RTO) 3677 * to timestamp space. 3678 * 3679 * All these measures still do not guarantee that we reject wrapped ACKs 3680 * on networks with high bandwidth, when sequence space is recycled fastly, 3681 * but it guarantees that such events will be very rare and do not affect 3682 * connection seriously. This doesn't look nice, but alas, PAWS is really 3683 * buggy extension. 3684 * 3685 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3686 * states that events when retransmit arrives after original data are rare. 3687 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3688 * the biggest problem on large power networks even with minor reordering. 3689 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3690 * up to bandwidth of 18Gigabit/sec. 8) ] 3691 */ 3692 3693 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3694 { 3695 const struct tcp_sock *tp = tcp_sk(sk); 3696 const struct tcphdr *th = tcp_hdr(skb); 3697 u32 seq = TCP_SKB_CB(skb)->seq; 3698 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3699 3700 return (/* 1. Pure ACK with correct sequence number. */ 3701 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3702 3703 /* 2. ... and duplicate ACK. */ 3704 ack == tp->snd_una && 3705 3706 /* 3. ... and does not update window. */ 3707 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3708 3709 /* 4. ... and sits in replay window. */ 3710 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3711 } 3712 3713 static inline bool tcp_paws_discard(const struct sock *sk, 3714 const struct sk_buff *skb) 3715 { 3716 const struct tcp_sock *tp = tcp_sk(sk); 3717 3718 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3719 !tcp_disordered_ack(sk, skb); 3720 } 3721 3722 /* Check segment sequence number for validity. 3723 * 3724 * Segment controls are considered valid, if the segment 3725 * fits to the window after truncation to the window. Acceptability 3726 * of data (and SYN, FIN, of course) is checked separately. 3727 * See tcp_data_queue(), for example. 3728 * 3729 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3730 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3731 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3732 * (borrowed from freebsd) 3733 */ 3734 3735 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3736 { 3737 return !before(end_seq, tp->rcv_wup) && 3738 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3739 } 3740 3741 /* When we get a reset we do this. */ 3742 void tcp_reset(struct sock *sk) 3743 { 3744 /* We want the right error as BSD sees it (and indeed as we do). */ 3745 switch (sk->sk_state) { 3746 case TCP_SYN_SENT: 3747 sk->sk_err = ECONNREFUSED; 3748 break; 3749 case TCP_CLOSE_WAIT: 3750 sk->sk_err = EPIPE; 3751 break; 3752 case TCP_CLOSE: 3753 return; 3754 default: 3755 sk->sk_err = ECONNRESET; 3756 } 3757 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3758 smp_wmb(); 3759 3760 if (!sock_flag(sk, SOCK_DEAD)) 3761 sk->sk_error_report(sk); 3762 3763 tcp_done(sk); 3764 } 3765 3766 /* 3767 * Process the FIN bit. This now behaves as it is supposed to work 3768 * and the FIN takes effect when it is validly part of sequence 3769 * space. Not before when we get holes. 3770 * 3771 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3772 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3773 * TIME-WAIT) 3774 * 3775 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3776 * close and we go into CLOSING (and later onto TIME-WAIT) 3777 * 3778 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3779 */ 3780 static void tcp_fin(struct sock *sk) 3781 { 3782 struct tcp_sock *tp = tcp_sk(sk); 3783 3784 inet_csk_schedule_ack(sk); 3785 3786 sk->sk_shutdown |= RCV_SHUTDOWN; 3787 sock_set_flag(sk, SOCK_DONE); 3788 3789 switch (sk->sk_state) { 3790 case TCP_SYN_RECV: 3791 case TCP_ESTABLISHED: 3792 /* Move to CLOSE_WAIT */ 3793 tcp_set_state(sk, TCP_CLOSE_WAIT); 3794 inet_csk(sk)->icsk_ack.pingpong = 1; 3795 break; 3796 3797 case TCP_CLOSE_WAIT: 3798 case TCP_CLOSING: 3799 /* Received a retransmission of the FIN, do 3800 * nothing. 3801 */ 3802 break; 3803 case TCP_LAST_ACK: 3804 /* RFC793: Remain in the LAST-ACK state. */ 3805 break; 3806 3807 case TCP_FIN_WAIT1: 3808 /* This case occurs when a simultaneous close 3809 * happens, we must ack the received FIN and 3810 * enter the CLOSING state. 3811 */ 3812 tcp_send_ack(sk); 3813 tcp_set_state(sk, TCP_CLOSING); 3814 break; 3815 case TCP_FIN_WAIT2: 3816 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3817 tcp_send_ack(sk); 3818 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3819 break; 3820 default: 3821 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3822 * cases we should never reach this piece of code. 3823 */ 3824 pr_err("%s: Impossible, sk->sk_state=%d\n", 3825 __func__, sk->sk_state); 3826 break; 3827 } 3828 3829 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3830 * Probably, we should reset in this case. For now drop them. 3831 */ 3832 __skb_queue_purge(&tp->out_of_order_queue); 3833 if (tcp_is_sack(tp)) 3834 tcp_sack_reset(&tp->rx_opt); 3835 sk_mem_reclaim(sk); 3836 3837 if (!sock_flag(sk, SOCK_DEAD)) { 3838 sk->sk_state_change(sk); 3839 3840 /* Do not send POLL_HUP for half duplex close. */ 3841 if (sk->sk_shutdown == SHUTDOWN_MASK || 3842 sk->sk_state == TCP_CLOSE) 3843 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3844 else 3845 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3846 } 3847 } 3848 3849 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3850 u32 end_seq) 3851 { 3852 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3853 if (before(seq, sp->start_seq)) 3854 sp->start_seq = seq; 3855 if (after(end_seq, sp->end_seq)) 3856 sp->end_seq = end_seq; 3857 return true; 3858 } 3859 return false; 3860 } 3861 3862 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3863 { 3864 struct tcp_sock *tp = tcp_sk(sk); 3865 3866 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3867 int mib_idx; 3868 3869 if (before(seq, tp->rcv_nxt)) 3870 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3871 else 3872 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3873 3874 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3875 3876 tp->rx_opt.dsack = 1; 3877 tp->duplicate_sack[0].start_seq = seq; 3878 tp->duplicate_sack[0].end_seq = end_seq; 3879 } 3880 } 3881 3882 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3883 { 3884 struct tcp_sock *tp = tcp_sk(sk); 3885 3886 if (!tp->rx_opt.dsack) 3887 tcp_dsack_set(sk, seq, end_seq); 3888 else 3889 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3890 } 3891 3892 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3893 { 3894 struct tcp_sock *tp = tcp_sk(sk); 3895 3896 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3897 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3898 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3899 tcp_enter_quickack_mode(sk); 3900 3901 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3902 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3903 3904 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3905 end_seq = tp->rcv_nxt; 3906 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3907 } 3908 } 3909 3910 tcp_send_ack(sk); 3911 } 3912 3913 /* These routines update the SACK block as out-of-order packets arrive or 3914 * in-order packets close up the sequence space. 3915 */ 3916 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3917 { 3918 int this_sack; 3919 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3920 struct tcp_sack_block *swalk = sp + 1; 3921 3922 /* See if the recent change to the first SACK eats into 3923 * or hits the sequence space of other SACK blocks, if so coalesce. 3924 */ 3925 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3926 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3927 int i; 3928 3929 /* Zap SWALK, by moving every further SACK up by one slot. 3930 * Decrease num_sacks. 3931 */ 3932 tp->rx_opt.num_sacks--; 3933 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3934 sp[i] = sp[i + 1]; 3935 continue; 3936 } 3937 this_sack++, swalk++; 3938 } 3939 } 3940 3941 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3942 { 3943 struct tcp_sock *tp = tcp_sk(sk); 3944 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3945 int cur_sacks = tp->rx_opt.num_sacks; 3946 int this_sack; 3947 3948 if (!cur_sacks) 3949 goto new_sack; 3950 3951 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3952 if (tcp_sack_extend(sp, seq, end_seq)) { 3953 /* Rotate this_sack to the first one. */ 3954 for (; this_sack > 0; this_sack--, sp--) 3955 swap(*sp, *(sp - 1)); 3956 if (cur_sacks > 1) 3957 tcp_sack_maybe_coalesce(tp); 3958 return; 3959 } 3960 } 3961 3962 /* Could not find an adjacent existing SACK, build a new one, 3963 * put it at the front, and shift everyone else down. We 3964 * always know there is at least one SACK present already here. 3965 * 3966 * If the sack array is full, forget about the last one. 3967 */ 3968 if (this_sack >= TCP_NUM_SACKS) { 3969 this_sack--; 3970 tp->rx_opt.num_sacks--; 3971 sp--; 3972 } 3973 for (; this_sack > 0; this_sack--, sp--) 3974 *sp = *(sp - 1); 3975 3976 new_sack: 3977 /* Build the new head SACK, and we're done. */ 3978 sp->start_seq = seq; 3979 sp->end_seq = end_seq; 3980 tp->rx_opt.num_sacks++; 3981 } 3982 3983 /* RCV.NXT advances, some SACKs should be eaten. */ 3984 3985 static void tcp_sack_remove(struct tcp_sock *tp) 3986 { 3987 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3988 int num_sacks = tp->rx_opt.num_sacks; 3989 int this_sack; 3990 3991 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3992 if (skb_queue_empty(&tp->out_of_order_queue)) { 3993 tp->rx_opt.num_sacks = 0; 3994 return; 3995 } 3996 3997 for (this_sack = 0; this_sack < num_sacks;) { 3998 /* Check if the start of the sack is covered by RCV.NXT. */ 3999 if (!before(tp->rcv_nxt, sp->start_seq)) { 4000 int i; 4001 4002 /* RCV.NXT must cover all the block! */ 4003 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4004 4005 /* Zap this SACK, by moving forward any other SACKS. */ 4006 for (i=this_sack+1; i < num_sacks; i++) 4007 tp->selective_acks[i-1] = tp->selective_acks[i]; 4008 num_sacks--; 4009 continue; 4010 } 4011 this_sack++; 4012 sp++; 4013 } 4014 tp->rx_opt.num_sacks = num_sacks; 4015 } 4016 4017 /* This one checks to see if we can put data from the 4018 * out_of_order queue into the receive_queue. 4019 */ 4020 static void tcp_ofo_queue(struct sock *sk) 4021 { 4022 struct tcp_sock *tp = tcp_sk(sk); 4023 __u32 dsack_high = tp->rcv_nxt; 4024 struct sk_buff *skb; 4025 4026 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4027 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4028 break; 4029 4030 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4031 __u32 dsack = dsack_high; 4032 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4033 dsack_high = TCP_SKB_CB(skb)->end_seq; 4034 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4035 } 4036 4037 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4038 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4039 __skb_unlink(skb, &tp->out_of_order_queue); 4040 __kfree_skb(skb); 4041 continue; 4042 } 4043 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4044 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4045 TCP_SKB_CB(skb)->end_seq); 4046 4047 __skb_unlink(skb, &tp->out_of_order_queue); 4048 __skb_queue_tail(&sk->sk_receive_queue, skb); 4049 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4050 if (tcp_hdr(skb)->fin) 4051 tcp_fin(sk); 4052 } 4053 } 4054 4055 static bool tcp_prune_ofo_queue(struct sock *sk); 4056 static int tcp_prune_queue(struct sock *sk); 4057 4058 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4059 unsigned int size) 4060 { 4061 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4062 !sk_rmem_schedule(sk, skb, size)) { 4063 4064 if (tcp_prune_queue(sk) < 0) 4065 return -1; 4066 4067 if (!sk_rmem_schedule(sk, skb, size)) { 4068 if (!tcp_prune_ofo_queue(sk)) 4069 return -1; 4070 4071 if (!sk_rmem_schedule(sk, skb, size)) 4072 return -1; 4073 } 4074 } 4075 return 0; 4076 } 4077 4078 /** 4079 * tcp_try_coalesce - try to merge skb to prior one 4080 * @sk: socket 4081 * @to: prior buffer 4082 * @from: buffer to add in queue 4083 * @fragstolen: pointer to boolean 4084 * 4085 * Before queueing skb @from after @to, try to merge them 4086 * to reduce overall memory use and queue lengths, if cost is small. 4087 * Packets in ofo or receive queues can stay a long time. 4088 * Better try to coalesce them right now to avoid future collapses. 4089 * Returns true if caller should free @from instead of queueing it 4090 */ 4091 static bool tcp_try_coalesce(struct sock *sk, 4092 struct sk_buff *to, 4093 struct sk_buff *from, 4094 bool *fragstolen) 4095 { 4096 int delta; 4097 4098 *fragstolen = false; 4099 4100 if (tcp_hdr(from)->fin) 4101 return false; 4102 4103 /* Its possible this segment overlaps with prior segment in queue */ 4104 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4105 return false; 4106 4107 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4108 return false; 4109 4110 atomic_add(delta, &sk->sk_rmem_alloc); 4111 sk_mem_charge(sk, delta); 4112 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4113 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4114 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4115 return true; 4116 } 4117 4118 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4119 { 4120 struct tcp_sock *tp = tcp_sk(sk); 4121 struct sk_buff *skb1; 4122 u32 seq, end_seq; 4123 4124 TCP_ECN_check_ce(tp, skb); 4125 4126 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4127 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4128 __kfree_skb(skb); 4129 return; 4130 } 4131 4132 /* Disable header prediction. */ 4133 tp->pred_flags = 0; 4134 inet_csk_schedule_ack(sk); 4135 4136 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4137 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4138 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4139 4140 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4141 if (!skb1) { 4142 /* Initial out of order segment, build 1 SACK. */ 4143 if (tcp_is_sack(tp)) { 4144 tp->rx_opt.num_sacks = 1; 4145 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4146 tp->selective_acks[0].end_seq = 4147 TCP_SKB_CB(skb)->end_seq; 4148 } 4149 __skb_queue_head(&tp->out_of_order_queue, skb); 4150 goto end; 4151 } 4152 4153 seq = TCP_SKB_CB(skb)->seq; 4154 end_seq = TCP_SKB_CB(skb)->end_seq; 4155 4156 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4157 bool fragstolen; 4158 4159 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4160 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4161 } else { 4162 kfree_skb_partial(skb, fragstolen); 4163 skb = NULL; 4164 } 4165 4166 if (!tp->rx_opt.num_sacks || 4167 tp->selective_acks[0].end_seq != seq) 4168 goto add_sack; 4169 4170 /* Common case: data arrive in order after hole. */ 4171 tp->selective_acks[0].end_seq = end_seq; 4172 goto end; 4173 } 4174 4175 /* Find place to insert this segment. */ 4176 while (1) { 4177 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4178 break; 4179 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4180 skb1 = NULL; 4181 break; 4182 } 4183 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4184 } 4185 4186 /* Do skb overlap to previous one? */ 4187 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4188 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4189 /* All the bits are present. Drop. */ 4190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4191 __kfree_skb(skb); 4192 skb = NULL; 4193 tcp_dsack_set(sk, seq, end_seq); 4194 goto add_sack; 4195 } 4196 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4197 /* Partial overlap. */ 4198 tcp_dsack_set(sk, seq, 4199 TCP_SKB_CB(skb1)->end_seq); 4200 } else { 4201 if (skb_queue_is_first(&tp->out_of_order_queue, 4202 skb1)) 4203 skb1 = NULL; 4204 else 4205 skb1 = skb_queue_prev( 4206 &tp->out_of_order_queue, 4207 skb1); 4208 } 4209 } 4210 if (!skb1) 4211 __skb_queue_head(&tp->out_of_order_queue, skb); 4212 else 4213 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4214 4215 /* And clean segments covered by new one as whole. */ 4216 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4217 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4218 4219 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4220 break; 4221 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4222 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4223 end_seq); 4224 break; 4225 } 4226 __skb_unlink(skb1, &tp->out_of_order_queue); 4227 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4228 TCP_SKB_CB(skb1)->end_seq); 4229 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4230 __kfree_skb(skb1); 4231 } 4232 4233 add_sack: 4234 if (tcp_is_sack(tp)) 4235 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4236 end: 4237 if (skb) 4238 skb_set_owner_r(skb, sk); 4239 } 4240 4241 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4242 bool *fragstolen) 4243 { 4244 int eaten; 4245 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4246 4247 __skb_pull(skb, hdrlen); 4248 eaten = (tail && 4249 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4250 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4251 if (!eaten) { 4252 __skb_queue_tail(&sk->sk_receive_queue, skb); 4253 skb_set_owner_r(skb, sk); 4254 } 4255 return eaten; 4256 } 4257 4258 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4259 { 4260 struct sk_buff *skb = NULL; 4261 struct tcphdr *th; 4262 bool fragstolen; 4263 4264 if (size == 0) 4265 return 0; 4266 4267 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4268 if (!skb) 4269 goto err; 4270 4271 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4272 goto err_free; 4273 4274 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4275 skb_reset_transport_header(skb); 4276 memset(th, 0, sizeof(*th)); 4277 4278 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4279 goto err_free; 4280 4281 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4282 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4283 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4284 4285 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4286 WARN_ON_ONCE(fragstolen); /* should not happen */ 4287 __kfree_skb(skb); 4288 } 4289 return size; 4290 4291 err_free: 4292 kfree_skb(skb); 4293 err: 4294 return -ENOMEM; 4295 } 4296 4297 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4298 { 4299 const struct tcphdr *th = tcp_hdr(skb); 4300 struct tcp_sock *tp = tcp_sk(sk); 4301 int eaten = -1; 4302 bool fragstolen = false; 4303 4304 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4305 goto drop; 4306 4307 skb_dst_drop(skb); 4308 __skb_pull(skb, th->doff * 4); 4309 4310 TCP_ECN_accept_cwr(tp, skb); 4311 4312 tp->rx_opt.dsack = 0; 4313 4314 /* Queue data for delivery to the user. 4315 * Packets in sequence go to the receive queue. 4316 * Out of sequence packets to the out_of_order_queue. 4317 */ 4318 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4319 if (tcp_receive_window(tp) == 0) 4320 goto out_of_window; 4321 4322 /* Ok. In sequence. In window. */ 4323 if (tp->ucopy.task == current && 4324 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4325 sock_owned_by_user(sk) && !tp->urg_data) { 4326 int chunk = min_t(unsigned int, skb->len, 4327 tp->ucopy.len); 4328 4329 __set_current_state(TASK_RUNNING); 4330 4331 local_bh_enable(); 4332 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4333 tp->ucopy.len -= chunk; 4334 tp->copied_seq += chunk; 4335 eaten = (chunk == skb->len); 4336 tcp_rcv_space_adjust(sk); 4337 } 4338 local_bh_disable(); 4339 } 4340 4341 if (eaten <= 0) { 4342 queue_and_out: 4343 if (eaten < 0 && 4344 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4345 goto drop; 4346 4347 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4348 } 4349 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4350 if (skb->len) 4351 tcp_event_data_recv(sk, skb); 4352 if (th->fin) 4353 tcp_fin(sk); 4354 4355 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4356 tcp_ofo_queue(sk); 4357 4358 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4359 * gap in queue is filled. 4360 */ 4361 if (skb_queue_empty(&tp->out_of_order_queue)) 4362 inet_csk(sk)->icsk_ack.pingpong = 0; 4363 } 4364 4365 if (tp->rx_opt.num_sacks) 4366 tcp_sack_remove(tp); 4367 4368 tcp_fast_path_check(sk); 4369 4370 if (eaten > 0) 4371 kfree_skb_partial(skb, fragstolen); 4372 if (!sock_flag(sk, SOCK_DEAD)) 4373 sk->sk_data_ready(sk, 0); 4374 return; 4375 } 4376 4377 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4378 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4379 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4380 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4381 4382 out_of_window: 4383 tcp_enter_quickack_mode(sk); 4384 inet_csk_schedule_ack(sk); 4385 drop: 4386 __kfree_skb(skb); 4387 return; 4388 } 4389 4390 /* Out of window. F.e. zero window probe. */ 4391 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4392 goto out_of_window; 4393 4394 tcp_enter_quickack_mode(sk); 4395 4396 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4397 /* Partial packet, seq < rcv_next < end_seq */ 4398 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4399 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4400 TCP_SKB_CB(skb)->end_seq); 4401 4402 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4403 4404 /* If window is closed, drop tail of packet. But after 4405 * remembering D-SACK for its head made in previous line. 4406 */ 4407 if (!tcp_receive_window(tp)) 4408 goto out_of_window; 4409 goto queue_and_out; 4410 } 4411 4412 tcp_data_queue_ofo(sk, skb); 4413 } 4414 4415 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4416 struct sk_buff_head *list) 4417 { 4418 struct sk_buff *next = NULL; 4419 4420 if (!skb_queue_is_last(list, skb)) 4421 next = skb_queue_next(list, skb); 4422 4423 __skb_unlink(skb, list); 4424 __kfree_skb(skb); 4425 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4426 4427 return next; 4428 } 4429 4430 /* Collapse contiguous sequence of skbs head..tail with 4431 * sequence numbers start..end. 4432 * 4433 * If tail is NULL, this means until the end of the list. 4434 * 4435 * Segments with FIN/SYN are not collapsed (only because this 4436 * simplifies code) 4437 */ 4438 static void 4439 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4440 struct sk_buff *head, struct sk_buff *tail, 4441 u32 start, u32 end) 4442 { 4443 struct sk_buff *skb, *n; 4444 bool end_of_skbs; 4445 4446 /* First, check that queue is collapsible and find 4447 * the point where collapsing can be useful. */ 4448 skb = head; 4449 restart: 4450 end_of_skbs = true; 4451 skb_queue_walk_from_safe(list, skb, n) { 4452 if (skb == tail) 4453 break; 4454 /* No new bits? It is possible on ofo queue. */ 4455 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4456 skb = tcp_collapse_one(sk, skb, list); 4457 if (!skb) 4458 break; 4459 goto restart; 4460 } 4461 4462 /* The first skb to collapse is: 4463 * - not SYN/FIN and 4464 * - bloated or contains data before "start" or 4465 * overlaps to the next one. 4466 */ 4467 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4468 (tcp_win_from_space(skb->truesize) > skb->len || 4469 before(TCP_SKB_CB(skb)->seq, start))) { 4470 end_of_skbs = false; 4471 break; 4472 } 4473 4474 if (!skb_queue_is_last(list, skb)) { 4475 struct sk_buff *next = skb_queue_next(list, skb); 4476 if (next != tail && 4477 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4478 end_of_skbs = false; 4479 break; 4480 } 4481 } 4482 4483 /* Decided to skip this, advance start seq. */ 4484 start = TCP_SKB_CB(skb)->end_seq; 4485 } 4486 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4487 return; 4488 4489 while (before(start, end)) { 4490 struct sk_buff *nskb; 4491 unsigned int header = skb_headroom(skb); 4492 int copy = SKB_MAX_ORDER(header, 0); 4493 4494 /* Too big header? This can happen with IPv6. */ 4495 if (copy < 0) 4496 return; 4497 if (end - start < copy) 4498 copy = end - start; 4499 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4500 if (!nskb) 4501 return; 4502 4503 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4504 skb_set_network_header(nskb, (skb_network_header(skb) - 4505 skb->head)); 4506 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4507 skb->head)); 4508 skb_reserve(nskb, header); 4509 memcpy(nskb->head, skb->head, header); 4510 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4511 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4512 __skb_queue_before(list, skb, nskb); 4513 skb_set_owner_r(nskb, sk); 4514 4515 /* Copy data, releasing collapsed skbs. */ 4516 while (copy > 0) { 4517 int offset = start - TCP_SKB_CB(skb)->seq; 4518 int size = TCP_SKB_CB(skb)->end_seq - start; 4519 4520 BUG_ON(offset < 0); 4521 if (size > 0) { 4522 size = min(copy, size); 4523 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4524 BUG(); 4525 TCP_SKB_CB(nskb)->end_seq += size; 4526 copy -= size; 4527 start += size; 4528 } 4529 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4530 skb = tcp_collapse_one(sk, skb, list); 4531 if (!skb || 4532 skb == tail || 4533 tcp_hdr(skb)->syn || 4534 tcp_hdr(skb)->fin) 4535 return; 4536 } 4537 } 4538 } 4539 } 4540 4541 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4542 * and tcp_collapse() them until all the queue is collapsed. 4543 */ 4544 static void tcp_collapse_ofo_queue(struct sock *sk) 4545 { 4546 struct tcp_sock *tp = tcp_sk(sk); 4547 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4548 struct sk_buff *head; 4549 u32 start, end; 4550 4551 if (skb == NULL) 4552 return; 4553 4554 start = TCP_SKB_CB(skb)->seq; 4555 end = TCP_SKB_CB(skb)->end_seq; 4556 head = skb; 4557 4558 for (;;) { 4559 struct sk_buff *next = NULL; 4560 4561 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4562 next = skb_queue_next(&tp->out_of_order_queue, skb); 4563 skb = next; 4564 4565 /* Segment is terminated when we see gap or when 4566 * we are at the end of all the queue. */ 4567 if (!skb || 4568 after(TCP_SKB_CB(skb)->seq, end) || 4569 before(TCP_SKB_CB(skb)->end_seq, start)) { 4570 tcp_collapse(sk, &tp->out_of_order_queue, 4571 head, skb, start, end); 4572 head = skb; 4573 if (!skb) 4574 break; 4575 /* Start new segment */ 4576 start = TCP_SKB_CB(skb)->seq; 4577 end = TCP_SKB_CB(skb)->end_seq; 4578 } else { 4579 if (before(TCP_SKB_CB(skb)->seq, start)) 4580 start = TCP_SKB_CB(skb)->seq; 4581 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4582 end = TCP_SKB_CB(skb)->end_seq; 4583 } 4584 } 4585 } 4586 4587 /* 4588 * Purge the out-of-order queue. 4589 * Return true if queue was pruned. 4590 */ 4591 static bool tcp_prune_ofo_queue(struct sock *sk) 4592 { 4593 struct tcp_sock *tp = tcp_sk(sk); 4594 bool res = false; 4595 4596 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4598 __skb_queue_purge(&tp->out_of_order_queue); 4599 4600 /* Reset SACK state. A conforming SACK implementation will 4601 * do the same at a timeout based retransmit. When a connection 4602 * is in a sad state like this, we care only about integrity 4603 * of the connection not performance. 4604 */ 4605 if (tp->rx_opt.sack_ok) 4606 tcp_sack_reset(&tp->rx_opt); 4607 sk_mem_reclaim(sk); 4608 res = true; 4609 } 4610 return res; 4611 } 4612 4613 /* Reduce allocated memory if we can, trying to get 4614 * the socket within its memory limits again. 4615 * 4616 * Return less than zero if we should start dropping frames 4617 * until the socket owning process reads some of the data 4618 * to stabilize the situation. 4619 */ 4620 static int tcp_prune_queue(struct sock *sk) 4621 { 4622 struct tcp_sock *tp = tcp_sk(sk); 4623 4624 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4625 4626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4627 4628 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4629 tcp_clamp_window(sk); 4630 else if (sk_under_memory_pressure(sk)) 4631 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4632 4633 tcp_collapse_ofo_queue(sk); 4634 if (!skb_queue_empty(&sk->sk_receive_queue)) 4635 tcp_collapse(sk, &sk->sk_receive_queue, 4636 skb_peek(&sk->sk_receive_queue), 4637 NULL, 4638 tp->copied_seq, tp->rcv_nxt); 4639 sk_mem_reclaim(sk); 4640 4641 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4642 return 0; 4643 4644 /* Collapsing did not help, destructive actions follow. 4645 * This must not ever occur. */ 4646 4647 tcp_prune_ofo_queue(sk); 4648 4649 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4650 return 0; 4651 4652 /* If we are really being abused, tell the caller to silently 4653 * drop receive data on the floor. It will get retransmitted 4654 * and hopefully then we'll have sufficient space. 4655 */ 4656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4657 4658 /* Massive buffer overcommit. */ 4659 tp->pred_flags = 0; 4660 return -1; 4661 } 4662 4663 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4664 * As additional protections, we do not touch cwnd in retransmission phases, 4665 * and if application hit its sndbuf limit recently. 4666 */ 4667 void tcp_cwnd_application_limited(struct sock *sk) 4668 { 4669 struct tcp_sock *tp = tcp_sk(sk); 4670 4671 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4672 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4673 /* Limited by application or receiver window. */ 4674 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4675 u32 win_used = max(tp->snd_cwnd_used, init_win); 4676 if (win_used < tp->snd_cwnd) { 4677 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4678 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4679 } 4680 tp->snd_cwnd_used = 0; 4681 } 4682 tp->snd_cwnd_stamp = tcp_time_stamp; 4683 } 4684 4685 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4686 { 4687 const struct tcp_sock *tp = tcp_sk(sk); 4688 4689 /* If the user specified a specific send buffer setting, do 4690 * not modify it. 4691 */ 4692 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4693 return false; 4694 4695 /* If we are under global TCP memory pressure, do not expand. */ 4696 if (sk_under_memory_pressure(sk)) 4697 return false; 4698 4699 /* If we are under soft global TCP memory pressure, do not expand. */ 4700 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4701 return false; 4702 4703 /* If we filled the congestion window, do not expand. */ 4704 if (tp->packets_out >= tp->snd_cwnd) 4705 return false; 4706 4707 return true; 4708 } 4709 4710 /* When incoming ACK allowed to free some skb from write_queue, 4711 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4712 * on the exit from tcp input handler. 4713 * 4714 * PROBLEM: sndbuf expansion does not work well with largesend. 4715 */ 4716 static void tcp_new_space(struct sock *sk) 4717 { 4718 struct tcp_sock *tp = tcp_sk(sk); 4719 4720 if (tcp_should_expand_sndbuf(sk)) { 4721 int sndmem = SKB_TRUESIZE(max_t(u32, 4722 tp->rx_opt.mss_clamp, 4723 tp->mss_cache) + 4724 MAX_TCP_HEADER); 4725 int demanded = max_t(unsigned int, tp->snd_cwnd, 4726 tp->reordering + 1); 4727 sndmem *= 2 * demanded; 4728 if (sndmem > sk->sk_sndbuf) 4729 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4730 tp->snd_cwnd_stamp = tcp_time_stamp; 4731 } 4732 4733 sk->sk_write_space(sk); 4734 } 4735 4736 static void tcp_check_space(struct sock *sk) 4737 { 4738 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4739 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4740 if (sk->sk_socket && 4741 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4742 tcp_new_space(sk); 4743 } 4744 } 4745 4746 static inline void tcp_data_snd_check(struct sock *sk) 4747 { 4748 tcp_push_pending_frames(sk); 4749 tcp_check_space(sk); 4750 } 4751 4752 /* 4753 * Check if sending an ack is needed. 4754 */ 4755 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4756 { 4757 struct tcp_sock *tp = tcp_sk(sk); 4758 4759 /* More than one full frame received... */ 4760 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4761 /* ... and right edge of window advances far enough. 4762 * (tcp_recvmsg() will send ACK otherwise). Or... 4763 */ 4764 __tcp_select_window(sk) >= tp->rcv_wnd) || 4765 /* We ACK each frame or... */ 4766 tcp_in_quickack_mode(sk) || 4767 /* We have out of order data. */ 4768 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4769 /* Then ack it now */ 4770 tcp_send_ack(sk); 4771 } else { 4772 /* Else, send delayed ack. */ 4773 tcp_send_delayed_ack(sk); 4774 } 4775 } 4776 4777 static inline void tcp_ack_snd_check(struct sock *sk) 4778 { 4779 if (!inet_csk_ack_scheduled(sk)) { 4780 /* We sent a data segment already. */ 4781 return; 4782 } 4783 __tcp_ack_snd_check(sk, 1); 4784 } 4785 4786 /* 4787 * This routine is only called when we have urgent data 4788 * signaled. Its the 'slow' part of tcp_urg. It could be 4789 * moved inline now as tcp_urg is only called from one 4790 * place. We handle URGent data wrong. We have to - as 4791 * BSD still doesn't use the correction from RFC961. 4792 * For 1003.1g we should support a new option TCP_STDURG to permit 4793 * either form (or just set the sysctl tcp_stdurg). 4794 */ 4795 4796 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4797 { 4798 struct tcp_sock *tp = tcp_sk(sk); 4799 u32 ptr = ntohs(th->urg_ptr); 4800 4801 if (ptr && !sysctl_tcp_stdurg) 4802 ptr--; 4803 ptr += ntohl(th->seq); 4804 4805 /* Ignore urgent data that we've already seen and read. */ 4806 if (after(tp->copied_seq, ptr)) 4807 return; 4808 4809 /* Do not replay urg ptr. 4810 * 4811 * NOTE: interesting situation not covered by specs. 4812 * Misbehaving sender may send urg ptr, pointing to segment, 4813 * which we already have in ofo queue. We are not able to fetch 4814 * such data and will stay in TCP_URG_NOTYET until will be eaten 4815 * by recvmsg(). Seems, we are not obliged to handle such wicked 4816 * situations. But it is worth to think about possibility of some 4817 * DoSes using some hypothetical application level deadlock. 4818 */ 4819 if (before(ptr, tp->rcv_nxt)) 4820 return; 4821 4822 /* Do we already have a newer (or duplicate) urgent pointer? */ 4823 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4824 return; 4825 4826 /* Tell the world about our new urgent pointer. */ 4827 sk_send_sigurg(sk); 4828 4829 /* We may be adding urgent data when the last byte read was 4830 * urgent. To do this requires some care. We cannot just ignore 4831 * tp->copied_seq since we would read the last urgent byte again 4832 * as data, nor can we alter copied_seq until this data arrives 4833 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4834 * 4835 * NOTE. Double Dutch. Rendering to plain English: author of comment 4836 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4837 * and expect that both A and B disappear from stream. This is _wrong_. 4838 * Though this happens in BSD with high probability, this is occasional. 4839 * Any application relying on this is buggy. Note also, that fix "works" 4840 * only in this artificial test. Insert some normal data between A and B and we will 4841 * decline of BSD again. Verdict: it is better to remove to trap 4842 * buggy users. 4843 */ 4844 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4845 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4846 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4847 tp->copied_seq++; 4848 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4849 __skb_unlink(skb, &sk->sk_receive_queue); 4850 __kfree_skb(skb); 4851 } 4852 } 4853 4854 tp->urg_data = TCP_URG_NOTYET; 4855 tp->urg_seq = ptr; 4856 4857 /* Disable header prediction. */ 4858 tp->pred_flags = 0; 4859 } 4860 4861 /* This is the 'fast' part of urgent handling. */ 4862 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4863 { 4864 struct tcp_sock *tp = tcp_sk(sk); 4865 4866 /* Check if we get a new urgent pointer - normally not. */ 4867 if (th->urg) 4868 tcp_check_urg(sk, th); 4869 4870 /* Do we wait for any urgent data? - normally not... */ 4871 if (tp->urg_data == TCP_URG_NOTYET) { 4872 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4873 th->syn; 4874 4875 /* Is the urgent pointer pointing into this packet? */ 4876 if (ptr < skb->len) { 4877 u8 tmp; 4878 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4879 BUG(); 4880 tp->urg_data = TCP_URG_VALID | tmp; 4881 if (!sock_flag(sk, SOCK_DEAD)) 4882 sk->sk_data_ready(sk, 0); 4883 } 4884 } 4885 } 4886 4887 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4888 { 4889 struct tcp_sock *tp = tcp_sk(sk); 4890 int chunk = skb->len - hlen; 4891 int err; 4892 4893 local_bh_enable(); 4894 if (skb_csum_unnecessary(skb)) 4895 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4896 else 4897 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4898 tp->ucopy.iov); 4899 4900 if (!err) { 4901 tp->ucopy.len -= chunk; 4902 tp->copied_seq += chunk; 4903 tcp_rcv_space_adjust(sk); 4904 } 4905 4906 local_bh_disable(); 4907 return err; 4908 } 4909 4910 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4911 struct sk_buff *skb) 4912 { 4913 __sum16 result; 4914 4915 if (sock_owned_by_user(sk)) { 4916 local_bh_enable(); 4917 result = __tcp_checksum_complete(skb); 4918 local_bh_disable(); 4919 } else { 4920 result = __tcp_checksum_complete(skb); 4921 } 4922 return result; 4923 } 4924 4925 static inline bool tcp_checksum_complete_user(struct sock *sk, 4926 struct sk_buff *skb) 4927 { 4928 return !skb_csum_unnecessary(skb) && 4929 __tcp_checksum_complete_user(sk, skb); 4930 } 4931 4932 #ifdef CONFIG_NET_DMA 4933 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4934 int hlen) 4935 { 4936 struct tcp_sock *tp = tcp_sk(sk); 4937 int chunk = skb->len - hlen; 4938 int dma_cookie; 4939 bool copied_early = false; 4940 4941 if (tp->ucopy.wakeup) 4942 return false; 4943 4944 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4945 tp->ucopy.dma_chan = net_dma_find_channel(); 4946 4947 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4948 4949 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4950 skb, hlen, 4951 tp->ucopy.iov, chunk, 4952 tp->ucopy.pinned_list); 4953 4954 if (dma_cookie < 0) 4955 goto out; 4956 4957 tp->ucopy.dma_cookie = dma_cookie; 4958 copied_early = true; 4959 4960 tp->ucopy.len -= chunk; 4961 tp->copied_seq += chunk; 4962 tcp_rcv_space_adjust(sk); 4963 4964 if ((tp->ucopy.len == 0) || 4965 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4966 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4967 tp->ucopy.wakeup = 1; 4968 sk->sk_data_ready(sk, 0); 4969 } 4970 } else if (chunk > 0) { 4971 tp->ucopy.wakeup = 1; 4972 sk->sk_data_ready(sk, 0); 4973 } 4974 out: 4975 return copied_early; 4976 } 4977 #endif /* CONFIG_NET_DMA */ 4978 4979 /* Does PAWS and seqno based validation of an incoming segment, flags will 4980 * play significant role here. 4981 */ 4982 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4983 const struct tcphdr *th, int syn_inerr) 4984 { 4985 struct tcp_sock *tp = tcp_sk(sk); 4986 4987 /* RFC1323: H1. Apply PAWS check first. */ 4988 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4989 tcp_paws_discard(sk, skb)) { 4990 if (!th->rst) { 4991 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4992 tcp_send_dupack(sk, skb); 4993 goto discard; 4994 } 4995 /* Reset is accepted even if it did not pass PAWS. */ 4996 } 4997 4998 /* Step 1: check sequence number */ 4999 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5000 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5001 * (RST) segments are validated by checking their SEQ-fields." 5002 * And page 69: "If an incoming segment is not acceptable, 5003 * an acknowledgment should be sent in reply (unless the RST 5004 * bit is set, if so drop the segment and return)". 5005 */ 5006 if (!th->rst) { 5007 if (th->syn) 5008 goto syn_challenge; 5009 tcp_send_dupack(sk, skb); 5010 } 5011 goto discard; 5012 } 5013 5014 /* Step 2: check RST bit */ 5015 if (th->rst) { 5016 /* RFC 5961 3.2 : 5017 * If sequence number exactly matches RCV.NXT, then 5018 * RESET the connection 5019 * else 5020 * Send a challenge ACK 5021 */ 5022 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5023 tcp_reset(sk); 5024 else 5025 tcp_send_challenge_ack(sk); 5026 goto discard; 5027 } 5028 5029 /* step 3: check security and precedence [ignored] */ 5030 5031 /* step 4: Check for a SYN 5032 * RFC 5691 4.2 : Send a challenge ack 5033 */ 5034 if (th->syn) { 5035 syn_challenge: 5036 if (syn_inerr) 5037 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5038 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5039 tcp_send_challenge_ack(sk); 5040 goto discard; 5041 } 5042 5043 return true; 5044 5045 discard: 5046 __kfree_skb(skb); 5047 return false; 5048 } 5049 5050 /* 5051 * TCP receive function for the ESTABLISHED state. 5052 * 5053 * It is split into a fast path and a slow path. The fast path is 5054 * disabled when: 5055 * - A zero window was announced from us - zero window probing 5056 * is only handled properly in the slow path. 5057 * - Out of order segments arrived. 5058 * - Urgent data is expected. 5059 * - There is no buffer space left 5060 * - Unexpected TCP flags/window values/header lengths are received 5061 * (detected by checking the TCP header against pred_flags) 5062 * - Data is sent in both directions. Fast path only supports pure senders 5063 * or pure receivers (this means either the sequence number or the ack 5064 * value must stay constant) 5065 * - Unexpected TCP option. 5066 * 5067 * When these conditions are not satisfied it drops into a standard 5068 * receive procedure patterned after RFC793 to handle all cases. 5069 * The first three cases are guaranteed by proper pred_flags setting, 5070 * the rest is checked inline. Fast processing is turned on in 5071 * tcp_data_queue when everything is OK. 5072 */ 5073 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5074 const struct tcphdr *th, unsigned int len) 5075 { 5076 struct tcp_sock *tp = tcp_sk(sk); 5077 5078 if (unlikely(sk->sk_rx_dst == NULL)) 5079 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5080 /* 5081 * Header prediction. 5082 * The code loosely follows the one in the famous 5083 * "30 instruction TCP receive" Van Jacobson mail. 5084 * 5085 * Van's trick is to deposit buffers into socket queue 5086 * on a device interrupt, to call tcp_recv function 5087 * on the receive process context and checksum and copy 5088 * the buffer to user space. smart... 5089 * 5090 * Our current scheme is not silly either but we take the 5091 * extra cost of the net_bh soft interrupt processing... 5092 * We do checksum and copy also but from device to kernel. 5093 */ 5094 5095 tp->rx_opt.saw_tstamp = 0; 5096 5097 /* pred_flags is 0xS?10 << 16 + snd_wnd 5098 * if header_prediction is to be made 5099 * 'S' will always be tp->tcp_header_len >> 2 5100 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5101 * turn it off (when there are holes in the receive 5102 * space for instance) 5103 * PSH flag is ignored. 5104 */ 5105 5106 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5107 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5108 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5109 int tcp_header_len = tp->tcp_header_len; 5110 5111 /* Timestamp header prediction: tcp_header_len 5112 * is automatically equal to th->doff*4 due to pred_flags 5113 * match. 5114 */ 5115 5116 /* Check timestamp */ 5117 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5118 /* No? Slow path! */ 5119 if (!tcp_parse_aligned_timestamp(tp, th)) 5120 goto slow_path; 5121 5122 /* If PAWS failed, check it more carefully in slow path */ 5123 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5124 goto slow_path; 5125 5126 /* DO NOT update ts_recent here, if checksum fails 5127 * and timestamp was corrupted part, it will result 5128 * in a hung connection since we will drop all 5129 * future packets due to the PAWS test. 5130 */ 5131 } 5132 5133 if (len <= tcp_header_len) { 5134 /* Bulk data transfer: sender */ 5135 if (len == tcp_header_len) { 5136 /* Predicted packet is in window by definition. 5137 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5138 * Hence, check seq<=rcv_wup reduces to: 5139 */ 5140 if (tcp_header_len == 5141 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5142 tp->rcv_nxt == tp->rcv_wup) 5143 tcp_store_ts_recent(tp); 5144 5145 /* We know that such packets are checksummed 5146 * on entry. 5147 */ 5148 tcp_ack(sk, skb, 0); 5149 __kfree_skb(skb); 5150 tcp_data_snd_check(sk); 5151 return 0; 5152 } else { /* Header too small */ 5153 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5154 goto discard; 5155 } 5156 } else { 5157 int eaten = 0; 5158 int copied_early = 0; 5159 bool fragstolen = false; 5160 5161 if (tp->copied_seq == tp->rcv_nxt && 5162 len - tcp_header_len <= tp->ucopy.len) { 5163 #ifdef CONFIG_NET_DMA 5164 if (tp->ucopy.task == current && 5165 sock_owned_by_user(sk) && 5166 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5167 copied_early = 1; 5168 eaten = 1; 5169 } 5170 #endif 5171 if (tp->ucopy.task == current && 5172 sock_owned_by_user(sk) && !copied_early) { 5173 __set_current_state(TASK_RUNNING); 5174 5175 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5176 eaten = 1; 5177 } 5178 if (eaten) { 5179 /* Predicted packet is in window by definition. 5180 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5181 * Hence, check seq<=rcv_wup reduces to: 5182 */ 5183 if (tcp_header_len == 5184 (sizeof(struct tcphdr) + 5185 TCPOLEN_TSTAMP_ALIGNED) && 5186 tp->rcv_nxt == tp->rcv_wup) 5187 tcp_store_ts_recent(tp); 5188 5189 tcp_rcv_rtt_measure_ts(sk, skb); 5190 5191 __skb_pull(skb, tcp_header_len); 5192 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5194 } 5195 if (copied_early) 5196 tcp_cleanup_rbuf(sk, skb->len); 5197 } 5198 if (!eaten) { 5199 if (tcp_checksum_complete_user(sk, skb)) 5200 goto csum_error; 5201 5202 if ((int)skb->truesize > sk->sk_forward_alloc) 5203 goto step5; 5204 5205 /* Predicted packet is in window by definition. 5206 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5207 * Hence, check seq<=rcv_wup reduces to: 5208 */ 5209 if (tcp_header_len == 5210 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5211 tp->rcv_nxt == tp->rcv_wup) 5212 tcp_store_ts_recent(tp); 5213 5214 tcp_rcv_rtt_measure_ts(sk, skb); 5215 5216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5217 5218 /* Bulk data transfer: receiver */ 5219 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5220 &fragstolen); 5221 } 5222 5223 tcp_event_data_recv(sk, skb); 5224 5225 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5226 /* Well, only one small jumplet in fast path... */ 5227 tcp_ack(sk, skb, FLAG_DATA); 5228 tcp_data_snd_check(sk); 5229 if (!inet_csk_ack_scheduled(sk)) 5230 goto no_ack; 5231 } 5232 5233 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5234 __tcp_ack_snd_check(sk, 0); 5235 no_ack: 5236 #ifdef CONFIG_NET_DMA 5237 if (copied_early) 5238 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5239 else 5240 #endif 5241 if (eaten) 5242 kfree_skb_partial(skb, fragstolen); 5243 sk->sk_data_ready(sk, 0); 5244 return 0; 5245 } 5246 } 5247 5248 slow_path: 5249 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5250 goto csum_error; 5251 5252 if (!th->ack && !th->rst) 5253 goto discard; 5254 5255 /* 5256 * Standard slow path. 5257 */ 5258 5259 if (!tcp_validate_incoming(sk, skb, th, 1)) 5260 return 0; 5261 5262 step5: 5263 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5264 goto discard; 5265 5266 tcp_rcv_rtt_measure_ts(sk, skb); 5267 5268 /* Process urgent data. */ 5269 tcp_urg(sk, skb, th); 5270 5271 /* step 7: process the segment text */ 5272 tcp_data_queue(sk, skb); 5273 5274 tcp_data_snd_check(sk); 5275 tcp_ack_snd_check(sk); 5276 return 0; 5277 5278 csum_error: 5279 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5280 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5281 5282 discard: 5283 __kfree_skb(skb); 5284 return 0; 5285 } 5286 EXPORT_SYMBOL(tcp_rcv_established); 5287 5288 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5289 { 5290 struct tcp_sock *tp = tcp_sk(sk); 5291 struct inet_connection_sock *icsk = inet_csk(sk); 5292 5293 tcp_set_state(sk, TCP_ESTABLISHED); 5294 5295 if (skb != NULL) { 5296 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5297 security_inet_conn_established(sk, skb); 5298 } 5299 5300 /* Make sure socket is routed, for correct metrics. */ 5301 icsk->icsk_af_ops->rebuild_header(sk); 5302 5303 tcp_init_metrics(sk); 5304 5305 tcp_init_congestion_control(sk); 5306 5307 /* Prevent spurious tcp_cwnd_restart() on first data 5308 * packet. 5309 */ 5310 tp->lsndtime = tcp_time_stamp; 5311 5312 tcp_init_buffer_space(sk); 5313 5314 if (sock_flag(sk, SOCK_KEEPOPEN)) 5315 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5316 5317 if (!tp->rx_opt.snd_wscale) 5318 __tcp_fast_path_on(tp, tp->snd_wnd); 5319 else 5320 tp->pred_flags = 0; 5321 5322 if (!sock_flag(sk, SOCK_DEAD)) { 5323 sk->sk_state_change(sk); 5324 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5325 } 5326 } 5327 5328 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5329 struct tcp_fastopen_cookie *cookie) 5330 { 5331 struct tcp_sock *tp = tcp_sk(sk); 5332 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5333 u16 mss = tp->rx_opt.mss_clamp; 5334 bool syn_drop; 5335 5336 if (mss == tp->rx_opt.user_mss) { 5337 struct tcp_options_received opt; 5338 5339 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5340 tcp_clear_options(&opt); 5341 opt.user_mss = opt.mss_clamp = 0; 5342 tcp_parse_options(synack, &opt, 0, NULL); 5343 mss = opt.mss_clamp; 5344 } 5345 5346 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5347 cookie->len = -1; 5348 5349 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5350 * the remote receives only the retransmitted (regular) SYNs: either 5351 * the original SYN-data or the corresponding SYN-ACK is lost. 5352 */ 5353 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5354 5355 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5356 5357 if (data) { /* Retransmit unacked data in SYN */ 5358 tcp_for_write_queue_from(data, sk) { 5359 if (data == tcp_send_head(sk) || 5360 __tcp_retransmit_skb(sk, data)) 5361 break; 5362 } 5363 tcp_rearm_rto(sk); 5364 return true; 5365 } 5366 tp->syn_data_acked = tp->syn_data; 5367 return false; 5368 } 5369 5370 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5371 const struct tcphdr *th, unsigned int len) 5372 { 5373 struct inet_connection_sock *icsk = inet_csk(sk); 5374 struct tcp_sock *tp = tcp_sk(sk); 5375 struct tcp_fastopen_cookie foc = { .len = -1 }; 5376 int saved_clamp = tp->rx_opt.mss_clamp; 5377 5378 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5379 if (tp->rx_opt.saw_tstamp) 5380 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5381 5382 if (th->ack) { 5383 /* rfc793: 5384 * "If the state is SYN-SENT then 5385 * first check the ACK bit 5386 * If the ACK bit is set 5387 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5388 * a reset (unless the RST bit is set, if so drop 5389 * the segment and return)" 5390 */ 5391 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5392 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5393 goto reset_and_undo; 5394 5395 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5396 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5397 tcp_time_stamp)) { 5398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5399 goto reset_and_undo; 5400 } 5401 5402 /* Now ACK is acceptable. 5403 * 5404 * "If the RST bit is set 5405 * If the ACK was acceptable then signal the user "error: 5406 * connection reset", drop the segment, enter CLOSED state, 5407 * delete TCB, and return." 5408 */ 5409 5410 if (th->rst) { 5411 tcp_reset(sk); 5412 goto discard; 5413 } 5414 5415 /* rfc793: 5416 * "fifth, if neither of the SYN or RST bits is set then 5417 * drop the segment and return." 5418 * 5419 * See note below! 5420 * --ANK(990513) 5421 */ 5422 if (!th->syn) 5423 goto discard_and_undo; 5424 5425 /* rfc793: 5426 * "If the SYN bit is on ... 5427 * are acceptable then ... 5428 * (our SYN has been ACKed), change the connection 5429 * state to ESTABLISHED..." 5430 */ 5431 5432 TCP_ECN_rcv_synack(tp, th); 5433 5434 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5435 tcp_ack(sk, skb, FLAG_SLOWPATH); 5436 5437 /* Ok.. it's good. Set up sequence numbers and 5438 * move to established. 5439 */ 5440 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5441 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5442 5443 /* RFC1323: The window in SYN & SYN/ACK segments is 5444 * never scaled. 5445 */ 5446 tp->snd_wnd = ntohs(th->window); 5447 5448 if (!tp->rx_opt.wscale_ok) { 5449 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5450 tp->window_clamp = min(tp->window_clamp, 65535U); 5451 } 5452 5453 if (tp->rx_opt.saw_tstamp) { 5454 tp->rx_opt.tstamp_ok = 1; 5455 tp->tcp_header_len = 5456 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5457 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5458 tcp_store_ts_recent(tp); 5459 } else { 5460 tp->tcp_header_len = sizeof(struct tcphdr); 5461 } 5462 5463 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5464 tcp_enable_fack(tp); 5465 5466 tcp_mtup_init(sk); 5467 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5468 tcp_initialize_rcv_mss(sk); 5469 5470 /* Remember, tcp_poll() does not lock socket! 5471 * Change state from SYN-SENT only after copied_seq 5472 * is initialized. */ 5473 tp->copied_seq = tp->rcv_nxt; 5474 5475 smp_mb(); 5476 5477 tcp_finish_connect(sk, skb); 5478 5479 if ((tp->syn_fastopen || tp->syn_data) && 5480 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5481 return -1; 5482 5483 if (sk->sk_write_pending || 5484 icsk->icsk_accept_queue.rskq_defer_accept || 5485 icsk->icsk_ack.pingpong) { 5486 /* Save one ACK. Data will be ready after 5487 * several ticks, if write_pending is set. 5488 * 5489 * It may be deleted, but with this feature tcpdumps 5490 * look so _wonderfully_ clever, that I was not able 5491 * to stand against the temptation 8) --ANK 5492 */ 5493 inet_csk_schedule_ack(sk); 5494 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5495 tcp_enter_quickack_mode(sk); 5496 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5497 TCP_DELACK_MAX, TCP_RTO_MAX); 5498 5499 discard: 5500 __kfree_skb(skb); 5501 return 0; 5502 } else { 5503 tcp_send_ack(sk); 5504 } 5505 return -1; 5506 } 5507 5508 /* No ACK in the segment */ 5509 5510 if (th->rst) { 5511 /* rfc793: 5512 * "If the RST bit is set 5513 * 5514 * Otherwise (no ACK) drop the segment and return." 5515 */ 5516 5517 goto discard_and_undo; 5518 } 5519 5520 /* PAWS check. */ 5521 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5522 tcp_paws_reject(&tp->rx_opt, 0)) 5523 goto discard_and_undo; 5524 5525 if (th->syn) { 5526 /* We see SYN without ACK. It is attempt of 5527 * simultaneous connect with crossed SYNs. 5528 * Particularly, it can be connect to self. 5529 */ 5530 tcp_set_state(sk, TCP_SYN_RECV); 5531 5532 if (tp->rx_opt.saw_tstamp) { 5533 tp->rx_opt.tstamp_ok = 1; 5534 tcp_store_ts_recent(tp); 5535 tp->tcp_header_len = 5536 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5537 } else { 5538 tp->tcp_header_len = sizeof(struct tcphdr); 5539 } 5540 5541 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5542 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5543 5544 /* RFC1323: The window in SYN & SYN/ACK segments is 5545 * never scaled. 5546 */ 5547 tp->snd_wnd = ntohs(th->window); 5548 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5549 tp->max_window = tp->snd_wnd; 5550 5551 TCP_ECN_rcv_syn(tp, th); 5552 5553 tcp_mtup_init(sk); 5554 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5555 tcp_initialize_rcv_mss(sk); 5556 5557 tcp_send_synack(sk); 5558 #if 0 5559 /* Note, we could accept data and URG from this segment. 5560 * There are no obstacles to make this (except that we must 5561 * either change tcp_recvmsg() to prevent it from returning data 5562 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5563 * 5564 * However, if we ignore data in ACKless segments sometimes, 5565 * we have no reasons to accept it sometimes. 5566 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5567 * is not flawless. So, discard packet for sanity. 5568 * Uncomment this return to process the data. 5569 */ 5570 return -1; 5571 #else 5572 goto discard; 5573 #endif 5574 } 5575 /* "fifth, if neither of the SYN or RST bits is set then 5576 * drop the segment and return." 5577 */ 5578 5579 discard_and_undo: 5580 tcp_clear_options(&tp->rx_opt); 5581 tp->rx_opt.mss_clamp = saved_clamp; 5582 goto discard; 5583 5584 reset_and_undo: 5585 tcp_clear_options(&tp->rx_opt); 5586 tp->rx_opt.mss_clamp = saved_clamp; 5587 return 1; 5588 } 5589 5590 /* 5591 * This function implements the receiving procedure of RFC 793 for 5592 * all states except ESTABLISHED and TIME_WAIT. 5593 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5594 * address independent. 5595 */ 5596 5597 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5598 const struct tcphdr *th, unsigned int len) 5599 { 5600 struct tcp_sock *tp = tcp_sk(sk); 5601 struct inet_connection_sock *icsk = inet_csk(sk); 5602 struct request_sock *req; 5603 int queued = 0; 5604 5605 tp->rx_opt.saw_tstamp = 0; 5606 5607 switch (sk->sk_state) { 5608 case TCP_CLOSE: 5609 goto discard; 5610 5611 case TCP_LISTEN: 5612 if (th->ack) 5613 return 1; 5614 5615 if (th->rst) 5616 goto discard; 5617 5618 if (th->syn) { 5619 if (th->fin) 5620 goto discard; 5621 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5622 return 1; 5623 5624 /* Now we have several options: In theory there is 5625 * nothing else in the frame. KA9Q has an option to 5626 * send data with the syn, BSD accepts data with the 5627 * syn up to the [to be] advertised window and 5628 * Solaris 2.1 gives you a protocol error. For now 5629 * we just ignore it, that fits the spec precisely 5630 * and avoids incompatibilities. It would be nice in 5631 * future to drop through and process the data. 5632 * 5633 * Now that TTCP is starting to be used we ought to 5634 * queue this data. 5635 * But, this leaves one open to an easy denial of 5636 * service attack, and SYN cookies can't defend 5637 * against this problem. So, we drop the data 5638 * in the interest of security over speed unless 5639 * it's still in use. 5640 */ 5641 kfree_skb(skb); 5642 return 0; 5643 } 5644 goto discard; 5645 5646 case TCP_SYN_SENT: 5647 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5648 if (queued >= 0) 5649 return queued; 5650 5651 /* Do step6 onward by hand. */ 5652 tcp_urg(sk, skb, th); 5653 __kfree_skb(skb); 5654 tcp_data_snd_check(sk); 5655 return 0; 5656 } 5657 5658 req = tp->fastopen_rsk; 5659 if (req != NULL) { 5660 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5661 sk->sk_state != TCP_FIN_WAIT1); 5662 5663 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5664 goto discard; 5665 } 5666 5667 if (!th->ack && !th->rst) 5668 goto discard; 5669 5670 if (!tcp_validate_incoming(sk, skb, th, 0)) 5671 return 0; 5672 5673 /* step 5: check the ACK field */ 5674 if (true) { 5675 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5676 FLAG_UPDATE_TS_RECENT) > 0; 5677 5678 switch (sk->sk_state) { 5679 case TCP_SYN_RECV: 5680 if (acceptable) { 5681 /* Once we leave TCP_SYN_RECV, we no longer 5682 * need req so release it. 5683 */ 5684 if (req) { 5685 tcp_synack_rtt_meas(sk, req); 5686 tp->total_retrans = req->num_retrans; 5687 5688 reqsk_fastopen_remove(sk, req, false); 5689 } else { 5690 /* Make sure socket is routed, for 5691 * correct metrics. 5692 */ 5693 icsk->icsk_af_ops->rebuild_header(sk); 5694 tcp_init_congestion_control(sk); 5695 5696 tcp_mtup_init(sk); 5697 tcp_init_buffer_space(sk); 5698 tp->copied_seq = tp->rcv_nxt; 5699 } 5700 smp_mb(); 5701 tcp_set_state(sk, TCP_ESTABLISHED); 5702 sk->sk_state_change(sk); 5703 5704 /* Note, that this wakeup is only for marginal 5705 * crossed SYN case. Passively open sockets 5706 * are not waked up, because sk->sk_sleep == 5707 * NULL and sk->sk_socket == NULL. 5708 */ 5709 if (sk->sk_socket) 5710 sk_wake_async(sk, 5711 SOCK_WAKE_IO, POLL_OUT); 5712 5713 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5714 tp->snd_wnd = ntohs(th->window) << 5715 tp->rx_opt.snd_wscale; 5716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5717 5718 if (tp->rx_opt.tstamp_ok) 5719 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5720 5721 if (req) { 5722 /* Re-arm the timer because data may 5723 * have been sent out. This is similar 5724 * to the regular data transmission case 5725 * when new data has just been ack'ed. 5726 * 5727 * (TFO) - we could try to be more 5728 * aggressive and retranmitting any data 5729 * sooner based on when they were sent 5730 * out. 5731 */ 5732 tcp_rearm_rto(sk); 5733 } else 5734 tcp_init_metrics(sk); 5735 5736 /* Prevent spurious tcp_cwnd_restart() on 5737 * first data packet. 5738 */ 5739 tp->lsndtime = tcp_time_stamp; 5740 5741 tcp_initialize_rcv_mss(sk); 5742 tcp_fast_path_on(tp); 5743 } else { 5744 return 1; 5745 } 5746 break; 5747 5748 case TCP_FIN_WAIT1: 5749 /* If we enter the TCP_FIN_WAIT1 state and we are a 5750 * Fast Open socket and this is the first acceptable 5751 * ACK we have received, this would have acknowledged 5752 * our SYNACK so stop the SYNACK timer. 5753 */ 5754 if (req != NULL) { 5755 /* Return RST if ack_seq is invalid. 5756 * Note that RFC793 only says to generate a 5757 * DUPACK for it but for TCP Fast Open it seems 5758 * better to treat this case like TCP_SYN_RECV 5759 * above. 5760 */ 5761 if (!acceptable) 5762 return 1; 5763 /* We no longer need the request sock. */ 5764 reqsk_fastopen_remove(sk, req, false); 5765 tcp_rearm_rto(sk); 5766 } 5767 if (tp->snd_una == tp->write_seq) { 5768 struct dst_entry *dst; 5769 5770 tcp_set_state(sk, TCP_FIN_WAIT2); 5771 sk->sk_shutdown |= SEND_SHUTDOWN; 5772 5773 dst = __sk_dst_get(sk); 5774 if (dst) 5775 dst_confirm(dst); 5776 5777 if (!sock_flag(sk, SOCK_DEAD)) 5778 /* Wake up lingering close() */ 5779 sk->sk_state_change(sk); 5780 else { 5781 int tmo; 5782 5783 if (tp->linger2 < 0 || 5784 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5785 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5786 tcp_done(sk); 5787 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5788 return 1; 5789 } 5790 5791 tmo = tcp_fin_time(sk); 5792 if (tmo > TCP_TIMEWAIT_LEN) { 5793 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5794 } else if (th->fin || sock_owned_by_user(sk)) { 5795 /* Bad case. We could lose such FIN otherwise. 5796 * It is not a big problem, but it looks confusing 5797 * and not so rare event. We still can lose it now, 5798 * if it spins in bh_lock_sock(), but it is really 5799 * marginal case. 5800 */ 5801 inet_csk_reset_keepalive_timer(sk, tmo); 5802 } else { 5803 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5804 goto discard; 5805 } 5806 } 5807 } 5808 break; 5809 5810 case TCP_CLOSING: 5811 if (tp->snd_una == tp->write_seq) { 5812 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5813 goto discard; 5814 } 5815 break; 5816 5817 case TCP_LAST_ACK: 5818 if (tp->snd_una == tp->write_seq) { 5819 tcp_update_metrics(sk); 5820 tcp_done(sk); 5821 goto discard; 5822 } 5823 break; 5824 } 5825 } 5826 5827 /* step 6: check the URG bit */ 5828 tcp_urg(sk, skb, th); 5829 5830 /* step 7: process the segment text */ 5831 switch (sk->sk_state) { 5832 case TCP_CLOSE_WAIT: 5833 case TCP_CLOSING: 5834 case TCP_LAST_ACK: 5835 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5836 break; 5837 case TCP_FIN_WAIT1: 5838 case TCP_FIN_WAIT2: 5839 /* RFC 793 says to queue data in these states, 5840 * RFC 1122 says we MUST send a reset. 5841 * BSD 4.4 also does reset. 5842 */ 5843 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5844 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5845 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5846 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5847 tcp_reset(sk); 5848 return 1; 5849 } 5850 } 5851 /* Fall through */ 5852 case TCP_ESTABLISHED: 5853 tcp_data_queue(sk, skb); 5854 queued = 1; 5855 break; 5856 } 5857 5858 /* tcp_data could move socket to TIME-WAIT */ 5859 if (sk->sk_state != TCP_CLOSE) { 5860 tcp_data_snd_check(sk); 5861 tcp_ack_snd_check(sk); 5862 } 5863 5864 if (!queued) { 5865 discard: 5866 __kfree_skb(skb); 5867 } 5868 return 0; 5869 } 5870 EXPORT_SYMBOL(tcp_rcv_state_process); 5871