xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 22246614)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92 
93 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94 int sysctl_tcp_abc __read_mostly;
95 
96 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
97 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
98 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
99 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
100 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
101 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
102 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
103 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
104 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
110 
111 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116 
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 {
125 	struct inet_connection_sock *icsk = inet_csk(sk);
126 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 	unsigned int len;
128 
129 	icsk->icsk_ack.last_seg_size = 0;
130 
131 	/* skb->len may jitter because of SACKs, even if peer
132 	 * sends good full-sized frames.
133 	 */
134 	len = skb_shinfo(skb)->gso_size ? : skb->len;
135 	if (len >= icsk->icsk_ack.rcv_mss) {
136 		icsk->icsk_ack.rcv_mss = len;
137 	} else {
138 		/* Otherwise, we make more careful check taking into account,
139 		 * that SACKs block is variable.
140 		 *
141 		 * "len" is invariant segment length, including TCP header.
142 		 */
143 		len += skb->data - skb_transport_header(skb);
144 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 		    /* If PSH is not set, packet should be
146 		     * full sized, provided peer TCP is not badly broken.
147 		     * This observation (if it is correct 8)) allows
148 		     * to handle super-low mtu links fairly.
149 		     */
150 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 			/* Subtract also invariant (if peer is RFC compliant),
153 			 * tcp header plus fixed timestamp option length.
154 			 * Resulting "len" is MSS free of SACK jitter.
155 			 */
156 			len -= tcp_sk(sk)->tcp_header_len;
157 			icsk->icsk_ack.last_seg_size = len;
158 			if (len == lss) {
159 				icsk->icsk_ack.rcv_mss = len;
160 				return;
161 			}
162 		}
163 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 	}
167 }
168 
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 	struct inet_connection_sock *icsk = inet_csk(sk);
172 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173 
174 	if (quickacks == 0)
175 		quickacks = 2;
176 	if (quickacks > icsk->icsk_ack.quick)
177 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179 
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	tcp_incr_quickack(sk);
184 	icsk->icsk_ack.pingpong = 0;
185 	icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187 
188 /* Send ACKs quickly, if "quick" count is not exhausted
189  * and the session is not interactive.
190  */
191 
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 	const struct inet_connection_sock *icsk = inet_csk(sk);
195 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197 
198 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 {
200 	if (tp->ecn_flags & TCP_ECN_OK)
201 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 }
203 
204 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 {
206 	if (tcp_hdr(skb)->cwr)
207 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 }
209 
210 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 {
212 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 {
217 	if (tp->ecn_flags & TCP_ECN_OK) {
218 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220 		/* Funny extension: if ECT is not set on a segment,
221 		 * it is surely retransmit. It is not in ECN RFC,
222 		 * but Linux follows this rule. */
223 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224 			tcp_enter_quickack_mode((struct sock *)tp);
225 	}
226 }
227 
228 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 {
230 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
231 		tp->ecn_flags &= ~TCP_ECN_OK;
232 }
233 
234 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 {
236 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
237 		tp->ecn_flags &= ~TCP_ECN_OK;
238 }
239 
240 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 {
242 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
243 		return 1;
244 	return 0;
245 }
246 
247 /* Buffer size and advertised window tuning.
248  *
249  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250  */
251 
252 static void tcp_fixup_sndbuf(struct sock *sk)
253 {
254 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255 		     sizeof(struct sk_buff);
256 
257 	if (sk->sk_sndbuf < 3 * sndmem)
258 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 }
260 
261 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262  *
263  * All tcp_full_space() is split to two parts: "network" buffer, allocated
264  * forward and advertised in receiver window (tp->rcv_wnd) and
265  * "application buffer", required to isolate scheduling/application
266  * latencies from network.
267  * window_clamp is maximal advertised window. It can be less than
268  * tcp_full_space(), in this case tcp_full_space() - window_clamp
269  * is reserved for "application" buffer. The less window_clamp is
270  * the smoother our behaviour from viewpoint of network, but the lower
271  * throughput and the higher sensitivity of the connection to losses. 8)
272  *
273  * rcv_ssthresh is more strict window_clamp used at "slow start"
274  * phase to predict further behaviour of this connection.
275  * It is used for two goals:
276  * - to enforce header prediction at sender, even when application
277  *   requires some significant "application buffer". It is check #1.
278  * - to prevent pruning of receive queue because of misprediction
279  *   of receiver window. Check #2.
280  *
281  * The scheme does not work when sender sends good segments opening
282  * window and then starts to feed us spaghetti. But it should work
283  * in common situations. Otherwise, we have to rely on queue collapsing.
284  */
285 
286 /* Slow part of check#2. */
287 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 {
289 	struct tcp_sock *tp = tcp_sk(sk);
290 	/* Optimize this! */
291 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
292 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293 
294 	while (tp->rcv_ssthresh <= window) {
295 		if (truesize <= skb->len)
296 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297 
298 		truesize >>= 1;
299 		window >>= 1;
300 	}
301 	return 0;
302 }
303 
304 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 {
306 	struct tcp_sock *tp = tcp_sk(sk);
307 
308 	/* Check #1 */
309 	if (tp->rcv_ssthresh < tp->window_clamp &&
310 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
311 	    !tcp_memory_pressure) {
312 		int incr;
313 
314 		/* Check #2. Increase window, if skb with such overhead
315 		 * will fit to rcvbuf in future.
316 		 */
317 		if (tcp_win_from_space(skb->truesize) <= skb->len)
318 			incr = 2 * tp->advmss;
319 		else
320 			incr = __tcp_grow_window(sk, skb);
321 
322 		if (incr) {
323 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
324 					       tp->window_clamp);
325 			inet_csk(sk)->icsk_ack.quick |= 1;
326 		}
327 	}
328 }
329 
330 /* 3. Tuning rcvbuf, when connection enters established state. */
331 
332 static void tcp_fixup_rcvbuf(struct sock *sk)
333 {
334 	struct tcp_sock *tp = tcp_sk(sk);
335 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336 
337 	/* Try to select rcvbuf so that 4 mss-sized segments
338 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
339 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 	 */
341 	while (tcp_win_from_space(rcvmem) < tp->advmss)
342 		rcvmem += 128;
343 	if (sk->sk_rcvbuf < 4 * rcvmem)
344 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 }
346 
347 /* 4. Try to fixup all. It is made immediately after connection enters
348  *    established state.
349  */
350 static void tcp_init_buffer_space(struct sock *sk)
351 {
352 	struct tcp_sock *tp = tcp_sk(sk);
353 	int maxwin;
354 
355 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356 		tcp_fixup_rcvbuf(sk);
357 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358 		tcp_fixup_sndbuf(sk);
359 
360 	tp->rcvq_space.space = tp->rcv_wnd;
361 
362 	maxwin = tcp_full_space(sk);
363 
364 	if (tp->window_clamp >= maxwin) {
365 		tp->window_clamp = maxwin;
366 
367 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368 			tp->window_clamp = max(maxwin -
369 					       (maxwin >> sysctl_tcp_app_win),
370 					       4 * tp->advmss);
371 	}
372 
373 	/* Force reservation of one segment. */
374 	if (sysctl_tcp_app_win &&
375 	    tp->window_clamp > 2 * tp->advmss &&
376 	    tp->window_clamp + tp->advmss > maxwin)
377 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378 
379 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380 	tp->snd_cwnd_stamp = tcp_time_stamp;
381 }
382 
383 /* 5. Recalculate window clamp after socket hit its memory bounds. */
384 static void tcp_clamp_window(struct sock *sk)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 	struct inet_connection_sock *icsk = inet_csk(sk);
388 
389 	icsk->icsk_ack.quick = 0;
390 
391 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393 	    !tcp_memory_pressure &&
394 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396 				    sysctl_tcp_rmem[2]);
397 	}
398 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
399 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 }
401 
402 /* Initialize RCV_MSS value.
403  * RCV_MSS is an our guess about MSS used by the peer.
404  * We haven't any direct information about the MSS.
405  * It's better to underestimate the RCV_MSS rather than overestimate.
406  * Overestimations make us ACKing less frequently than needed.
407  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408  */
409 void tcp_initialize_rcv_mss(struct sock *sk)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413 
414 	hint = min(hint, tp->rcv_wnd / 2);
415 	hint = min(hint, TCP_MIN_RCVMSS);
416 	hint = max(hint, TCP_MIN_MSS);
417 
418 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 }
420 
421 /* Receiver "autotuning" code.
422  *
423  * The algorithm for RTT estimation w/o timestamps is based on
424  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
425  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426  *
427  * More detail on this code can be found at
428  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
429  * though this reference is out of date.  A new paper
430  * is pending.
431  */
432 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 {
434 	u32 new_sample = tp->rcv_rtt_est.rtt;
435 	long m = sample;
436 
437 	if (m == 0)
438 		m = 1;
439 
440 	if (new_sample != 0) {
441 		/* If we sample in larger samples in the non-timestamp
442 		 * case, we could grossly overestimate the RTT especially
443 		 * with chatty applications or bulk transfer apps which
444 		 * are stalled on filesystem I/O.
445 		 *
446 		 * Also, since we are only going for a minimum in the
447 		 * non-timestamp case, we do not smooth things out
448 		 * else with timestamps disabled convergence takes too
449 		 * long.
450 		 */
451 		if (!win_dep) {
452 			m -= (new_sample >> 3);
453 			new_sample += m;
454 		} else if (m < new_sample)
455 			new_sample = m << 3;
456 	} else {
457 		/* No previous measure. */
458 		new_sample = m << 3;
459 	}
460 
461 	if (tp->rcv_rtt_est.rtt != new_sample)
462 		tp->rcv_rtt_est.rtt = new_sample;
463 }
464 
465 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 {
467 	if (tp->rcv_rtt_est.time == 0)
468 		goto new_measure;
469 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
470 		return;
471 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472 
473 new_measure:
474 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
475 	tp->rcv_rtt_est.time = tcp_time_stamp;
476 }
477 
478 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
479 					  const struct sk_buff *skb)
480 {
481 	struct tcp_sock *tp = tcp_sk(sk);
482 	if (tp->rx_opt.rcv_tsecr &&
483 	    (TCP_SKB_CB(skb)->end_seq -
484 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
485 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
486 }
487 
488 /*
489  * This function should be called every time data is copied to user space.
490  * It calculates the appropriate TCP receive buffer space.
491  */
492 void tcp_rcv_space_adjust(struct sock *sk)
493 {
494 	struct tcp_sock *tp = tcp_sk(sk);
495 	int time;
496 	int space;
497 
498 	if (tp->rcvq_space.time == 0)
499 		goto new_measure;
500 
501 	time = tcp_time_stamp - tp->rcvq_space.time;
502 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
503 		return;
504 
505 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506 
507 	space = max(tp->rcvq_space.space, space);
508 
509 	if (tp->rcvq_space.space != space) {
510 		int rcvmem;
511 
512 		tp->rcvq_space.space = space;
513 
514 		if (sysctl_tcp_moderate_rcvbuf &&
515 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
516 			int new_clamp = space;
517 
518 			/* Receive space grows, normalize in order to
519 			 * take into account packet headers and sk_buff
520 			 * structure overhead.
521 			 */
522 			space /= tp->advmss;
523 			if (!space)
524 				space = 1;
525 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
526 				  16 + sizeof(struct sk_buff));
527 			while (tcp_win_from_space(rcvmem) < tp->advmss)
528 				rcvmem += 128;
529 			space *= rcvmem;
530 			space = min(space, sysctl_tcp_rmem[2]);
531 			if (space > sk->sk_rcvbuf) {
532 				sk->sk_rcvbuf = space;
533 
534 				/* Make the window clamp follow along.  */
535 				tp->window_clamp = new_clamp;
536 			}
537 		}
538 	}
539 
540 new_measure:
541 	tp->rcvq_space.seq = tp->copied_seq;
542 	tp->rcvq_space.time = tcp_time_stamp;
543 }
544 
545 /* There is something which you must keep in mind when you analyze the
546  * behavior of the tp->ato delayed ack timeout interval.  When a
547  * connection starts up, we want to ack as quickly as possible.  The
548  * problem is that "good" TCP's do slow start at the beginning of data
549  * transmission.  The means that until we send the first few ACK's the
550  * sender will sit on his end and only queue most of his data, because
551  * he can only send snd_cwnd unacked packets at any given time.  For
552  * each ACK we send, he increments snd_cwnd and transmits more of his
553  * queue.  -DaveM
554  */
555 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 {
557 	struct tcp_sock *tp = tcp_sk(sk);
558 	struct inet_connection_sock *icsk = inet_csk(sk);
559 	u32 now;
560 
561 	inet_csk_schedule_ack(sk);
562 
563 	tcp_measure_rcv_mss(sk, skb);
564 
565 	tcp_rcv_rtt_measure(tp);
566 
567 	now = tcp_time_stamp;
568 
569 	if (!icsk->icsk_ack.ato) {
570 		/* The _first_ data packet received, initialize
571 		 * delayed ACK engine.
572 		 */
573 		tcp_incr_quickack(sk);
574 		icsk->icsk_ack.ato = TCP_ATO_MIN;
575 	} else {
576 		int m = now - icsk->icsk_ack.lrcvtime;
577 
578 		if (m <= TCP_ATO_MIN / 2) {
579 			/* The fastest case is the first. */
580 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
581 		} else if (m < icsk->icsk_ack.ato) {
582 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
583 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
584 				icsk->icsk_ack.ato = icsk->icsk_rto;
585 		} else if (m > icsk->icsk_rto) {
586 			/* Too long gap. Apparently sender failed to
587 			 * restart window, so that we send ACKs quickly.
588 			 */
589 			tcp_incr_quickack(sk);
590 			sk_mem_reclaim(sk);
591 		}
592 	}
593 	icsk->icsk_ack.lrcvtime = now;
594 
595 	TCP_ECN_check_ce(tp, skb);
596 
597 	if (skb->len >= 128)
598 		tcp_grow_window(sk, skb);
599 }
600 
601 static u32 tcp_rto_min(struct sock *sk)
602 {
603 	struct dst_entry *dst = __sk_dst_get(sk);
604 	u32 rto_min = TCP_RTO_MIN;
605 
606 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
607 		rto_min = dst_metric(dst, RTAX_RTO_MIN);
608 	return rto_min;
609 }
610 
611 /* Called to compute a smoothed rtt estimate. The data fed to this
612  * routine either comes from timestamps, or from segments that were
613  * known _not_ to have been retransmitted [see Karn/Partridge
614  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615  * piece by Van Jacobson.
616  * NOTE: the next three routines used to be one big routine.
617  * To save cycles in the RFC 1323 implementation it was better to break
618  * it up into three procedures. -- erics
619  */
620 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 {
622 	struct tcp_sock *tp = tcp_sk(sk);
623 	long m = mrtt; /* RTT */
624 
625 	/*	The following amusing code comes from Jacobson's
626 	 *	article in SIGCOMM '88.  Note that rtt and mdev
627 	 *	are scaled versions of rtt and mean deviation.
628 	 *	This is designed to be as fast as possible
629 	 *	m stands for "measurement".
630 	 *
631 	 *	On a 1990 paper the rto value is changed to:
632 	 *	RTO = rtt + 4 * mdev
633 	 *
634 	 * Funny. This algorithm seems to be very broken.
635 	 * These formulae increase RTO, when it should be decreased, increase
636 	 * too slowly, when it should be increased quickly, decrease too quickly
637 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638 	 * does not matter how to _calculate_ it. Seems, it was trap
639 	 * that VJ failed to avoid. 8)
640 	 */
641 	if (m == 0)
642 		m = 1;
643 	if (tp->srtt != 0) {
644 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
645 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
646 		if (m < 0) {
647 			m = -m;		/* m is now abs(error) */
648 			m -= (tp->mdev >> 2);   /* similar update on mdev */
649 			/* This is similar to one of Eifel findings.
650 			 * Eifel blocks mdev updates when rtt decreases.
651 			 * This solution is a bit different: we use finer gain
652 			 * for mdev in this case (alpha*beta).
653 			 * Like Eifel it also prevents growth of rto,
654 			 * but also it limits too fast rto decreases,
655 			 * happening in pure Eifel.
656 			 */
657 			if (m > 0)
658 				m >>= 3;
659 		} else {
660 			m -= (tp->mdev >> 2);   /* similar update on mdev */
661 		}
662 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
663 		if (tp->mdev > tp->mdev_max) {
664 			tp->mdev_max = tp->mdev;
665 			if (tp->mdev_max > tp->rttvar)
666 				tp->rttvar = tp->mdev_max;
667 		}
668 		if (after(tp->snd_una, tp->rtt_seq)) {
669 			if (tp->mdev_max < tp->rttvar)
670 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
671 			tp->rtt_seq = tp->snd_nxt;
672 			tp->mdev_max = tcp_rto_min(sk);
673 		}
674 	} else {
675 		/* no previous measure. */
676 		tp->srtt = m << 3;	/* take the measured time to be rtt */
677 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
678 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
679 		tp->rtt_seq = tp->snd_nxt;
680 	}
681 }
682 
683 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
684  * routine referred to above.
685  */
686 static inline void tcp_set_rto(struct sock *sk)
687 {
688 	const struct tcp_sock *tp = tcp_sk(sk);
689 	/* Old crap is replaced with new one. 8)
690 	 *
691 	 * More seriously:
692 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
693 	 *    It cannot be less due to utterly erratic ACK generation made
694 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
696 	 *    is invisible. Actually, Linux-2.4 also generates erratic
697 	 *    ACKs in some circumstances.
698 	 */
699 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
700 
701 	/* 2. Fixups made earlier cannot be right.
702 	 *    If we do not estimate RTO correctly without them,
703 	 *    all the algo is pure shit and should be replaced
704 	 *    with correct one. It is exactly, which we pretend to do.
705 	 */
706 }
707 
708 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
709  * guarantees that rto is higher.
710  */
711 static inline void tcp_bound_rto(struct sock *sk)
712 {
713 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
714 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 }
716 
717 /* Save metrics learned by this TCP session.
718    This function is called only, when TCP finishes successfully
719    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720  */
721 void tcp_update_metrics(struct sock *sk)
722 {
723 	struct tcp_sock *tp = tcp_sk(sk);
724 	struct dst_entry *dst = __sk_dst_get(sk);
725 
726 	if (sysctl_tcp_nometrics_save)
727 		return;
728 
729 	dst_confirm(dst);
730 
731 	if (dst && (dst->flags & DST_HOST)) {
732 		const struct inet_connection_sock *icsk = inet_csk(sk);
733 		int m;
734 
735 		if (icsk->icsk_backoff || !tp->srtt) {
736 			/* This session failed to estimate rtt. Why?
737 			 * Probably, no packets returned in time.
738 			 * Reset our results.
739 			 */
740 			if (!(dst_metric_locked(dst, RTAX_RTT)))
741 				dst->metrics[RTAX_RTT - 1] = 0;
742 			return;
743 		}
744 
745 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
746 
747 		/* If newly calculated rtt larger than stored one,
748 		 * store new one. Otherwise, use EWMA. Remember,
749 		 * rtt overestimation is always better than underestimation.
750 		 */
751 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 			if (m <= 0)
753 				dst->metrics[RTAX_RTT - 1] = tp->srtt;
754 			else
755 				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
756 		}
757 
758 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 			if (m < 0)
760 				m = -m;
761 
762 			/* Scale deviation to rttvar fixed point */
763 			m >>= 1;
764 			if (m < tp->mdev)
765 				m = tp->mdev;
766 
767 			if (m >= dst_metric(dst, RTAX_RTTVAR))
768 				dst->metrics[RTAX_RTTVAR - 1] = m;
769 			else
770 				dst->metrics[RTAX_RTTVAR-1] -=
771 					(dst_metric(dst, RTAX_RTTVAR) - m)>>2;
772 		}
773 
774 		if (tp->snd_ssthresh >= 0xFFFF) {
775 			/* Slow start still did not finish. */
776 			if (dst_metric(dst, RTAX_SSTHRESH) &&
777 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 			if (!dst_metric_locked(dst, RTAX_CWND) &&
781 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 			   icsk->icsk_ca_state == TCP_CA_Open) {
785 			/* Cong. avoidance phase, cwnd is reliable. */
786 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 				dst->metrics[RTAX_SSTHRESH-1] =
788 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 			if (!dst_metric_locked(dst, RTAX_CWND))
790 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791 		} else {
792 			/* Else slow start did not finish, cwnd is non-sense,
793 			   ssthresh may be also invalid.
794 			 */
795 			if (!dst_metric_locked(dst, RTAX_CWND))
796 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 			if (dst_metric(dst, RTAX_SSTHRESH) &&
798 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 		}
802 
803 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805 			    tp->reordering != sysctl_tcp_reordering)
806 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 		}
808 	}
809 }
810 
811 /* Numbers are taken from RFC3390.
812  *
813  * John Heffner states:
814  *
815  *	The RFC specifies a window of no more than 4380 bytes
816  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817  *	is a bit misleading because they use a clamp at 4380 bytes
818  *	rather than use a multiplier in the relevant range.
819  */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823 
824 	if (!cwnd) {
825 		if (tp->mss_cache > 1460)
826 			cwnd = 2;
827 		else
828 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829 	}
830 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832 
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836 	struct tcp_sock *tp = tcp_sk(sk);
837 	const struct inet_connection_sock *icsk = inet_csk(sk);
838 
839 	tp->prior_ssthresh = 0;
840 	tp->bytes_acked = 0;
841 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 		tp->undo_marker = 0;
843 		if (set_ssthresh)
844 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845 		tp->snd_cwnd = min(tp->snd_cwnd,
846 				   tcp_packets_in_flight(tp) + 1U);
847 		tp->snd_cwnd_cnt = 0;
848 		tp->high_seq = tp->snd_nxt;
849 		tp->snd_cwnd_stamp = tcp_time_stamp;
850 		TCP_ECN_queue_cwr(tp);
851 
852 		tcp_set_ca_state(sk, TCP_CA_CWR);
853 	}
854 }
855 
856 /*
857  * Packet counting of FACK is based on in-order assumptions, therefore TCP
858  * disables it when reordering is detected
859  */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862 	/* RFC3517 uses different metric in lost marker => reset on change */
863 	if (tcp_is_fack(tp))
864 		tp->lost_skb_hint = NULL;
865 	tp->rx_opt.sack_ok &= ~2;
866 }
867 
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 	tp->rx_opt.sack_ok |= 4;
872 }
873 
874 /* Initialize metrics on socket. */
875 
876 static void tcp_init_metrics(struct sock *sk)
877 {
878 	struct tcp_sock *tp = tcp_sk(sk);
879 	struct dst_entry *dst = __sk_dst_get(sk);
880 
881 	if (dst == NULL)
882 		goto reset;
883 
884 	dst_confirm(dst);
885 
886 	if (dst_metric_locked(dst, RTAX_CWND))
887 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 	if (dst_metric(dst, RTAX_SSTHRESH)) {
889 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 	}
893 	if (dst_metric(dst, RTAX_REORDERING) &&
894 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 		tcp_disable_fack(tp);
896 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 	}
898 
899 	if (dst_metric(dst, RTAX_RTT) == 0)
900 		goto reset;
901 
902 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 		goto reset;
904 
905 	/* Initial rtt is determined from SYN,SYN-ACK.
906 	 * The segment is small and rtt may appear much
907 	 * less than real one. Use per-dst memory
908 	 * to make it more realistic.
909 	 *
910 	 * A bit of theory. RTT is time passed after "normal" sized packet
911 	 * is sent until it is ACKed. In normal circumstances sending small
912 	 * packets force peer to delay ACKs and calculation is correct too.
913 	 * The algorithm is adaptive and, provided we follow specs, it
914 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 	 * tricks sort of "quick acks" for time long enough to decrease RTT
916 	 * to low value, and then abruptly stops to do it and starts to delay
917 	 * ACKs, wait for troubles.
918 	 */
919 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920 		tp->srtt = dst_metric(dst, RTAX_RTT);
921 		tp->rtt_seq = tp->snd_nxt;
922 	}
923 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926 	}
927 	tcp_set_rto(sk);
928 	tcp_bound_rto(sk);
929 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930 		goto reset;
931 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 	tp->snd_cwnd_stamp = tcp_time_stamp;
933 	return;
934 
935 reset:
936 	/* Play conservative. If timestamps are not
937 	 * supported, TCP will fail to recalculate correct
938 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 	 */
940 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941 		tp->srtt = 0;
942 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944 	}
945 }
946 
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948 				  const int ts)
949 {
950 	struct tcp_sock *tp = tcp_sk(sk);
951 	if (metric > tp->reordering) {
952 		tp->reordering = min(TCP_MAX_REORDERING, metric);
953 
954 		/* This exciting event is worth to be remembered. 8) */
955 		if (ts)
956 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
957 		else if (tcp_is_reno(tp))
958 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
959 		else if (tcp_is_fack(tp))
960 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961 		else
962 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963 #if FASTRETRANS_DEBUG > 1
964 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
965 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
966 		       tp->reordering,
967 		       tp->fackets_out,
968 		       tp->sacked_out,
969 		       tp->undo_marker ? tp->undo_retrans : 0);
970 #endif
971 		tcp_disable_fack(tp);
972 	}
973 }
974 
975 /* This procedure tags the retransmission queue when SACKs arrive.
976  *
977  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978  * Packets in queue with these bits set are counted in variables
979  * sacked_out, retrans_out and lost_out, correspondingly.
980  *
981  * Valid combinations are:
982  * Tag  InFlight	Description
983  * 0	1		- orig segment is in flight.
984  * S	0		- nothing flies, orig reached receiver.
985  * L	0		- nothing flies, orig lost by net.
986  * R	2		- both orig and retransmit are in flight.
987  * L|R	1		- orig is lost, retransmit is in flight.
988  * S|R  1		- orig reached receiver, retrans is still in flight.
989  * (L|S|R is logically valid, it could occur when L|R is sacked,
990  *  but it is equivalent to plain S and code short-curcuits it to S.
991  *  L|S is logically invalid, it would mean -1 packet in flight 8))
992  *
993  * These 6 states form finite state machine, controlled by the following events:
994  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996  * 3. Loss detection event of one of three flavors:
997  *	A. Scoreboard estimator decided the packet is lost.
998  *	   A'. Reno "three dupacks" marks head of queue lost.
999  *	   A''. Its FACK modfication, head until snd.fack is lost.
1000  *	B. SACK arrives sacking data transmitted after never retransmitted
1001  *	   hole was sent out.
1002  *	C. SACK arrives sacking SND.NXT at the moment, when the
1003  *	   segment was retransmitted.
1004  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005  *
1006  * It is pleasant to note, that state diagram turns out to be commutative,
1007  * so that we are allowed not to be bothered by order of our actions,
1008  * when multiple events arrive simultaneously. (see the function below).
1009  *
1010  * Reordering detection.
1011  * --------------------
1012  * Reordering metric is maximal distance, which a packet can be displaced
1013  * in packet stream. With SACKs we can estimate it:
1014  *
1015  * 1. SACK fills old hole and the corresponding segment was not
1016  *    ever retransmitted -> reordering. Alas, we cannot use it
1017  *    when segment was retransmitted.
1018  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019  *    for retransmitted and already SACKed segment -> reordering..
1020  * Both of these heuristics are not used in Loss state, when we cannot
1021  * account for retransmits accurately.
1022  *
1023  * SACK block validation.
1024  * ----------------------
1025  *
1026  * SACK block range validation checks that the received SACK block fits to
1027  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028  * Note that SND.UNA is not included to the range though being valid because
1029  * it means that the receiver is rather inconsistent with itself reporting
1030  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031  * perfectly valid, however, in light of RFC2018 which explicitly states
1032  * that "SACK block MUST reflect the newest segment.  Even if the newest
1033  * segment is going to be discarded ...", not that it looks very clever
1034  * in case of head skb. Due to potentional receiver driven attacks, we
1035  * choose to avoid immediate execution of a walk in write queue due to
1036  * reneging and defer head skb's loss recovery to standard loss recovery
1037  * procedure that will eventually trigger (nothing forbids us doing this).
1038  *
1039  * Implements also blockage to start_seq wrap-around. Problem lies in the
1040  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041  * there's no guarantee that it will be before snd_nxt (n). The problem
1042  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043  * wrap (s_w):
1044  *
1045  *         <- outs wnd ->                          <- wrapzone ->
1046  *         u     e      n                         u_w   e_w  s n_w
1047  *         |     |      |                          |     |   |  |
1048  * |<------------+------+----- TCP seqno space --------------+---------->|
1049  * ...-- <2^31 ->|                                           |<--------...
1050  * ...---- >2^31 ------>|                                    |<--------...
1051  *
1052  * Current code wouldn't be vulnerable but it's better still to discard such
1053  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056  * equal to the ideal case (infinite seqno space without wrap caused issues).
1057  *
1058  * With D-SACK the lower bound is extended to cover sequence space below
1059  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060  * again, D-SACK block must not to go across snd_una (for the same reason as
1061  * for the normal SACK blocks, explained above). But there all simplicity
1062  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063  * fully below undo_marker they do not affect behavior in anyway and can
1064  * therefore be safely ignored. In rare cases (which are more or less
1065  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066  * fragmentation and packet reordering past skb's retransmission. To consider
1067  * them correctly, the acceptable range must be extended even more though
1068  * the exact amount is rather hard to quantify. However, tp->max_window can
1069  * be used as an exaggerated estimate.
1070  */
1071 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1072 				  u32 start_seq, u32 end_seq)
1073 {
1074 	/* Too far in future, or reversed (interpretation is ambiguous) */
1075 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076 		return 0;
1077 
1078 	/* Nasty start_seq wrap-around check (see comments above) */
1079 	if (!before(start_seq, tp->snd_nxt))
1080 		return 0;
1081 
1082 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1083 	 * start_seq == snd_una is non-sensical (see comments above)
1084 	 */
1085 	if (after(start_seq, tp->snd_una))
1086 		return 1;
1087 
1088 	if (!is_dsack || !tp->undo_marker)
1089 		return 0;
1090 
1091 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1092 	if (!after(end_seq, tp->snd_una))
1093 		return 0;
1094 
1095 	if (!before(start_seq, tp->undo_marker))
1096 		return 1;
1097 
1098 	/* Too old */
1099 	if (!after(end_seq, tp->undo_marker))
1100 		return 0;
1101 
1102 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1103 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1104 	 */
1105 	return !before(start_seq, end_seq - tp->max_window);
1106 }
1107 
1108 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1109  * Event "C". Later note: FACK people cheated me again 8), we have to account
1110  * for reordering! Ugly, but should help.
1111  *
1112  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1113  * less than what is now known to be received by the other end (derived from
1114  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1115  * retransmitted skbs to avoid some costly processing per ACKs.
1116  */
1117 static void tcp_mark_lost_retrans(struct sock *sk)
1118 {
1119 	const struct inet_connection_sock *icsk = inet_csk(sk);
1120 	struct tcp_sock *tp = tcp_sk(sk);
1121 	struct sk_buff *skb;
1122 	int cnt = 0;
1123 	u32 new_low_seq = tp->snd_nxt;
1124 	u32 received_upto = tcp_highest_sack_seq(tp);
1125 
1126 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1127 	    !after(received_upto, tp->lost_retrans_low) ||
1128 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1129 		return;
1130 
1131 	tcp_for_write_queue(skb, sk) {
1132 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1133 
1134 		if (skb == tcp_send_head(sk))
1135 			break;
1136 		if (cnt == tp->retrans_out)
1137 			break;
1138 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139 			continue;
1140 
1141 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1142 			continue;
1143 
1144 		if (after(received_upto, ack_seq) &&
1145 		    (tcp_is_fack(tp) ||
1146 		     !before(received_upto,
1147 			     ack_seq + tp->reordering * tp->mss_cache))) {
1148 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1149 			tp->retrans_out -= tcp_skb_pcount(skb);
1150 
1151 			/* clear lost hint */
1152 			tp->retransmit_skb_hint = NULL;
1153 
1154 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1155 				tp->lost_out += tcp_skb_pcount(skb);
1156 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1157 			}
1158 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1159 		} else {
1160 			if (before(ack_seq, new_low_seq))
1161 				new_low_seq = ack_seq;
1162 			cnt += tcp_skb_pcount(skb);
1163 		}
1164 	}
1165 
1166 	if (tp->retrans_out)
1167 		tp->lost_retrans_low = new_low_seq;
1168 }
1169 
1170 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1171 			   struct tcp_sack_block_wire *sp, int num_sacks,
1172 			   u32 prior_snd_una)
1173 {
1174 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1175 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1176 	int dup_sack = 0;
1177 
1178 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1179 		dup_sack = 1;
1180 		tcp_dsack_seen(tp);
1181 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1182 	} else if (num_sacks > 1) {
1183 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1184 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1185 
1186 		if (!after(end_seq_0, end_seq_1) &&
1187 		    !before(start_seq_0, start_seq_1)) {
1188 			dup_sack = 1;
1189 			tcp_dsack_seen(tp);
1190 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1191 		}
1192 	}
1193 
1194 	/* D-SACK for already forgotten data... Do dumb counting. */
1195 	if (dup_sack &&
1196 	    !after(end_seq_0, prior_snd_una) &&
1197 	    after(end_seq_0, tp->undo_marker))
1198 		tp->undo_retrans--;
1199 
1200 	return dup_sack;
1201 }
1202 
1203 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1204  * the incoming SACK may not exactly match but we can find smaller MSS
1205  * aligned portion of it that matches. Therefore we might need to fragment
1206  * which may fail and creates some hassle (caller must handle error case
1207  * returns).
1208  */
1209 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1210 				 u32 start_seq, u32 end_seq)
1211 {
1212 	int in_sack, err;
1213 	unsigned int pkt_len;
1214 
1215 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1216 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1217 
1218 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1219 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1220 
1221 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1222 
1223 		if (!in_sack)
1224 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1225 		else
1226 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1227 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1228 		if (err < 0)
1229 			return err;
1230 	}
1231 
1232 	return in_sack;
1233 }
1234 
1235 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1236 			   int *reord, int dup_sack, int fack_count)
1237 {
1238 	struct tcp_sock *tp = tcp_sk(sk);
1239 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1240 	int flag = 0;
1241 
1242 	/* Account D-SACK for retransmitted packet. */
1243 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1244 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1245 			tp->undo_retrans--;
1246 		if (sacked & TCPCB_SACKED_ACKED)
1247 			*reord = min(fack_count, *reord);
1248 	}
1249 
1250 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1251 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1252 		return flag;
1253 
1254 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1255 		if (sacked & TCPCB_SACKED_RETRANS) {
1256 			/* If the segment is not tagged as lost,
1257 			 * we do not clear RETRANS, believing
1258 			 * that retransmission is still in flight.
1259 			 */
1260 			if (sacked & TCPCB_LOST) {
1261 				TCP_SKB_CB(skb)->sacked &=
1262 					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1263 				tp->lost_out -= tcp_skb_pcount(skb);
1264 				tp->retrans_out -= tcp_skb_pcount(skb);
1265 
1266 				/* clear lost hint */
1267 				tp->retransmit_skb_hint = NULL;
1268 			}
1269 		} else {
1270 			if (!(sacked & TCPCB_RETRANS)) {
1271 				/* New sack for not retransmitted frame,
1272 				 * which was in hole. It is reordering.
1273 				 */
1274 				if (before(TCP_SKB_CB(skb)->seq,
1275 					   tcp_highest_sack_seq(tp)))
1276 					*reord = min(fack_count, *reord);
1277 
1278 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1279 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1280 					flag |= FLAG_ONLY_ORIG_SACKED;
1281 			}
1282 
1283 			if (sacked & TCPCB_LOST) {
1284 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1285 				tp->lost_out -= tcp_skb_pcount(skb);
1286 
1287 				/* clear lost hint */
1288 				tp->retransmit_skb_hint = NULL;
1289 			}
1290 		}
1291 
1292 		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1293 		flag |= FLAG_DATA_SACKED;
1294 		tp->sacked_out += tcp_skb_pcount(skb);
1295 
1296 		fack_count += tcp_skb_pcount(skb);
1297 
1298 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1299 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1300 		    before(TCP_SKB_CB(skb)->seq,
1301 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1302 			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1303 
1304 		if (fack_count > tp->fackets_out)
1305 			tp->fackets_out = fack_count;
1306 
1307 		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1308 			tcp_advance_highest_sack(sk, skb);
1309 	}
1310 
1311 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1312 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1313 	 * are accounted above as well.
1314 	 */
1315 	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1316 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1317 		tp->retrans_out -= tcp_skb_pcount(skb);
1318 		tp->retransmit_skb_hint = NULL;
1319 	}
1320 
1321 	return flag;
1322 }
1323 
1324 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1325 					struct tcp_sack_block *next_dup,
1326 					u32 start_seq, u32 end_seq,
1327 					int dup_sack_in, int *fack_count,
1328 					int *reord, int *flag)
1329 {
1330 	tcp_for_write_queue_from(skb, sk) {
1331 		int in_sack = 0;
1332 		int dup_sack = dup_sack_in;
1333 
1334 		if (skb == tcp_send_head(sk))
1335 			break;
1336 
1337 		/* queue is in-order => we can short-circuit the walk early */
1338 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1339 			break;
1340 
1341 		if ((next_dup != NULL) &&
1342 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1343 			in_sack = tcp_match_skb_to_sack(sk, skb,
1344 							next_dup->start_seq,
1345 							next_dup->end_seq);
1346 			if (in_sack > 0)
1347 				dup_sack = 1;
1348 		}
1349 
1350 		if (in_sack <= 0)
1351 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1352 							end_seq);
1353 		if (unlikely(in_sack < 0))
1354 			break;
1355 
1356 		if (in_sack)
1357 			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1358 						 *fack_count);
1359 
1360 		*fack_count += tcp_skb_pcount(skb);
1361 	}
1362 	return skb;
1363 }
1364 
1365 /* Avoid all extra work that is being done by sacktag while walking in
1366  * a normal way
1367  */
1368 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1369 					u32 skip_to_seq, int *fack_count)
1370 {
1371 	tcp_for_write_queue_from(skb, sk) {
1372 		if (skb == tcp_send_head(sk))
1373 			break;
1374 
1375 		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1376 			break;
1377 
1378 		*fack_count += tcp_skb_pcount(skb);
1379 	}
1380 	return skb;
1381 }
1382 
1383 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1384 						struct sock *sk,
1385 						struct tcp_sack_block *next_dup,
1386 						u32 skip_to_seq,
1387 						int *fack_count, int *reord,
1388 						int *flag)
1389 {
1390 	if (next_dup == NULL)
1391 		return skb;
1392 
1393 	if (before(next_dup->start_seq, skip_to_seq)) {
1394 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1395 		tcp_sacktag_walk(skb, sk, NULL,
1396 				 next_dup->start_seq, next_dup->end_seq,
1397 				 1, fack_count, reord, flag);
1398 	}
1399 
1400 	return skb;
1401 }
1402 
1403 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1404 {
1405 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1406 }
1407 
1408 static int
1409 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1410 			u32 prior_snd_una)
1411 {
1412 	const struct inet_connection_sock *icsk = inet_csk(sk);
1413 	struct tcp_sock *tp = tcp_sk(sk);
1414 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1415 			      TCP_SKB_CB(ack_skb)->sacked);
1416 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417 	struct tcp_sack_block sp[4];
1418 	struct tcp_sack_block *cache;
1419 	struct sk_buff *skb;
1420 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1421 	int used_sacks;
1422 	int reord = tp->packets_out;
1423 	int flag = 0;
1424 	int found_dup_sack = 0;
1425 	int fack_count;
1426 	int i, j;
1427 	int first_sack_index;
1428 
1429 	if (!tp->sacked_out) {
1430 		if (WARN_ON(tp->fackets_out))
1431 			tp->fackets_out = 0;
1432 		tcp_highest_sack_reset(sk);
1433 	}
1434 
1435 	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436 					 num_sacks, prior_snd_una);
1437 	if (found_dup_sack)
1438 		flag |= FLAG_DSACKING_ACK;
1439 
1440 	/* Eliminate too old ACKs, but take into
1441 	 * account more or less fresh ones, they can
1442 	 * contain valid SACK info.
1443 	 */
1444 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445 		return 0;
1446 
1447 	if (!tp->packets_out)
1448 		goto out;
1449 
1450 	used_sacks = 0;
1451 	first_sack_index = 0;
1452 	for (i = 0; i < num_sacks; i++) {
1453 		int dup_sack = !i && found_dup_sack;
1454 
1455 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1456 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1457 
1458 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1459 					    sp[used_sacks].start_seq,
1460 					    sp[used_sacks].end_seq)) {
1461 			if (dup_sack) {
1462 				if (!tp->undo_marker)
1463 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464 				else
1465 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466 			} else {
1467 				/* Don't count olds caused by ACK reordering */
1468 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1470 					continue;
1471 				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472 			}
1473 			if (i == 0)
1474 				first_sack_index = -1;
1475 			continue;
1476 		}
1477 
1478 		/* Ignore very old stuff early */
1479 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480 			continue;
1481 
1482 		used_sacks++;
1483 	}
1484 
1485 	/* order SACK blocks to allow in order walk of the retrans queue */
1486 	for (i = used_sacks - 1; i > 0; i--) {
1487 		for (j = 0; j < i; j++) {
1488 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1489 				struct tcp_sack_block tmp;
1490 
1491 				tmp = sp[j];
1492 				sp[j] = sp[j + 1];
1493 				sp[j + 1] = tmp;
1494 
1495 				/* Track where the first SACK block goes to */
1496 				if (j == first_sack_index)
1497 					first_sack_index = j + 1;
1498 			}
1499 		}
1500 	}
1501 
1502 	skb = tcp_write_queue_head(sk);
1503 	fack_count = 0;
1504 	i = 0;
1505 
1506 	if (!tp->sacked_out) {
1507 		/* It's already past, so skip checking against it */
1508 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509 	} else {
1510 		cache = tp->recv_sack_cache;
1511 		/* Skip empty blocks in at head of the cache */
1512 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513 		       !cache->end_seq)
1514 			cache++;
1515 	}
1516 
1517 	while (i < used_sacks) {
1518 		u32 start_seq = sp[i].start_seq;
1519 		u32 end_seq = sp[i].end_seq;
1520 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1521 		struct tcp_sack_block *next_dup = NULL;
1522 
1523 		if (found_dup_sack && ((i + 1) == first_sack_index))
1524 			next_dup = &sp[i + 1];
1525 
1526 		/* Event "B" in the comment above. */
1527 		if (after(end_seq, tp->high_seq))
1528 			flag |= FLAG_DATA_LOST;
1529 
1530 		/* Skip too early cached blocks */
1531 		while (tcp_sack_cache_ok(tp, cache) &&
1532 		       !before(start_seq, cache->end_seq))
1533 			cache++;
1534 
1535 		/* Can skip some work by looking recv_sack_cache? */
1536 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537 		    after(end_seq, cache->start_seq)) {
1538 
1539 			/* Head todo? */
1540 			if (before(start_seq, cache->start_seq)) {
1541 				skb = tcp_sacktag_skip(skb, sk, start_seq,
1542 						       &fack_count);
1543 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1544 						       start_seq,
1545 						       cache->start_seq,
1546 						       dup_sack, &fack_count,
1547 						       &reord, &flag);
1548 			}
1549 
1550 			/* Rest of the block already fully processed? */
1551 			if (!after(end_seq, cache->end_seq))
1552 				goto advance_sp;
1553 
1554 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1555 						       cache->end_seq,
1556 						       &fack_count, &reord,
1557 						       &flag);
1558 
1559 			/* ...tail remains todo... */
1560 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1561 				/* ...but better entrypoint exists! */
1562 				skb = tcp_highest_sack(sk);
1563 				if (skb == NULL)
1564 					break;
1565 				fack_count = tp->fackets_out;
1566 				cache++;
1567 				goto walk;
1568 			}
1569 
1570 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1571 					       &fack_count);
1572 			/* Check overlap against next cached too (past this one already) */
1573 			cache++;
1574 			continue;
1575 		}
1576 
1577 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1578 			skb = tcp_highest_sack(sk);
1579 			if (skb == NULL)
1580 				break;
1581 			fack_count = tp->fackets_out;
1582 		}
1583 		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1584 
1585 walk:
1586 		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1587 				       dup_sack, &fack_count, &reord, &flag);
1588 
1589 advance_sp:
1590 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1591 		 * due to in-order walk
1592 		 */
1593 		if (after(end_seq, tp->frto_highmark))
1594 			flag &= ~FLAG_ONLY_ORIG_SACKED;
1595 
1596 		i++;
1597 	}
1598 
1599 	/* Clear the head of the cache sack blocks so we can skip it next time */
1600 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1601 		tp->recv_sack_cache[i].start_seq = 0;
1602 		tp->recv_sack_cache[i].end_seq = 0;
1603 	}
1604 	for (j = 0; j < used_sacks; j++)
1605 		tp->recv_sack_cache[i++] = sp[j];
1606 
1607 	tcp_mark_lost_retrans(sk);
1608 
1609 	tcp_verify_left_out(tp);
1610 
1611 	if ((reord < tp->fackets_out) &&
1612 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1613 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1614 		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1615 
1616 out:
1617 
1618 #if FASTRETRANS_DEBUG > 0
1619 	BUG_TRAP((int)tp->sacked_out >= 0);
1620 	BUG_TRAP((int)tp->lost_out >= 0);
1621 	BUG_TRAP((int)tp->retrans_out >= 0);
1622 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1623 #endif
1624 	return flag;
1625 }
1626 
1627 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1628  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1629  */
1630 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1631 {
1632 	u32 holes;
1633 
1634 	holes = max(tp->lost_out, 1U);
1635 	holes = min(holes, tp->packets_out);
1636 
1637 	if ((tp->sacked_out + holes) > tp->packets_out) {
1638 		tp->sacked_out = tp->packets_out - holes;
1639 		return 1;
1640 	}
1641 	return 0;
1642 }
1643 
1644 /* If we receive more dupacks than we expected counting segments
1645  * in assumption of absent reordering, interpret this as reordering.
1646  * The only another reason could be bug in receiver TCP.
1647  */
1648 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1649 {
1650 	struct tcp_sock *tp = tcp_sk(sk);
1651 	if (tcp_limit_reno_sacked(tp))
1652 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1653 }
1654 
1655 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1656 
1657 static void tcp_add_reno_sack(struct sock *sk)
1658 {
1659 	struct tcp_sock *tp = tcp_sk(sk);
1660 	tp->sacked_out++;
1661 	tcp_check_reno_reordering(sk, 0);
1662 	tcp_verify_left_out(tp);
1663 }
1664 
1665 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1666 
1667 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1668 {
1669 	struct tcp_sock *tp = tcp_sk(sk);
1670 
1671 	if (acked > 0) {
1672 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1673 		if (acked - 1 >= tp->sacked_out)
1674 			tp->sacked_out = 0;
1675 		else
1676 			tp->sacked_out -= acked - 1;
1677 	}
1678 	tcp_check_reno_reordering(sk, acked);
1679 	tcp_verify_left_out(tp);
1680 }
1681 
1682 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1683 {
1684 	tp->sacked_out = 0;
1685 }
1686 
1687 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1688 {
1689 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1690 }
1691 
1692 /* F-RTO can only be used if TCP has never retransmitted anything other than
1693  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1694  */
1695 int tcp_use_frto(struct sock *sk)
1696 {
1697 	const struct tcp_sock *tp = tcp_sk(sk);
1698 	const struct inet_connection_sock *icsk = inet_csk(sk);
1699 	struct sk_buff *skb;
1700 
1701 	if (!sysctl_tcp_frto)
1702 		return 0;
1703 
1704 	/* MTU probe and F-RTO won't really play nicely along currently */
1705 	if (icsk->icsk_mtup.probe_size)
1706 		return 0;
1707 
1708 	if (tcp_is_sackfrto(tp))
1709 		return 1;
1710 
1711 	/* Avoid expensive walking of rexmit queue if possible */
1712 	if (tp->retrans_out > 1)
1713 		return 0;
1714 
1715 	skb = tcp_write_queue_head(sk);
1716 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1717 	tcp_for_write_queue_from(skb, sk) {
1718 		if (skb == tcp_send_head(sk))
1719 			break;
1720 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1721 			return 0;
1722 		/* Short-circuit when first non-SACKed skb has been checked */
1723 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1724 			break;
1725 	}
1726 	return 1;
1727 }
1728 
1729 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1730  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1731  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1732  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1733  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1734  * bits are handled if the Loss state is really to be entered (in
1735  * tcp_enter_frto_loss).
1736  *
1737  * Do like tcp_enter_loss() would; when RTO expires the second time it
1738  * does:
1739  *  "Reduce ssthresh if it has not yet been made inside this window."
1740  */
1741 void tcp_enter_frto(struct sock *sk)
1742 {
1743 	const struct inet_connection_sock *icsk = inet_csk(sk);
1744 	struct tcp_sock *tp = tcp_sk(sk);
1745 	struct sk_buff *skb;
1746 
1747 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1748 	    tp->snd_una == tp->high_seq ||
1749 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1750 	     !icsk->icsk_retransmits)) {
1751 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1752 		/* Our state is too optimistic in ssthresh() call because cwnd
1753 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1754 		 * recovery has not yet completed. Pattern would be this: RTO,
1755 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1756 		 * up here twice).
1757 		 * RFC4138 should be more specific on what to do, even though
1758 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1759 		 * due to back-off and complexity of triggering events ...
1760 		 */
1761 		if (tp->frto_counter) {
1762 			u32 stored_cwnd;
1763 			stored_cwnd = tp->snd_cwnd;
1764 			tp->snd_cwnd = 2;
1765 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766 			tp->snd_cwnd = stored_cwnd;
1767 		} else {
1768 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1769 		}
1770 		/* ... in theory, cong.control module could do "any tricks" in
1771 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1772 		 * counter would have to be faked before the call occurs. We
1773 		 * consider that too expensive, unlikely and hacky, so modules
1774 		 * using these in ssthresh() must deal these incompatibility
1775 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1776 		 */
1777 		tcp_ca_event(sk, CA_EVENT_FRTO);
1778 	}
1779 
1780 	tp->undo_marker = tp->snd_una;
1781 	tp->undo_retrans = 0;
1782 
1783 	skb = tcp_write_queue_head(sk);
1784 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1785 		tp->undo_marker = 0;
1786 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1787 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1788 		tp->retrans_out -= tcp_skb_pcount(skb);
1789 	}
1790 	tcp_verify_left_out(tp);
1791 
1792 	/* Too bad if TCP was application limited */
1793 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1794 
1795 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1796 	 * The last condition is necessary at least in tp->frto_counter case.
1797 	 */
1798 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1799 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1800 	    after(tp->high_seq, tp->snd_una)) {
1801 		tp->frto_highmark = tp->high_seq;
1802 	} else {
1803 		tp->frto_highmark = tp->snd_nxt;
1804 	}
1805 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1806 	tp->high_seq = tp->snd_nxt;
1807 	tp->frto_counter = 1;
1808 }
1809 
1810 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1811  * which indicates that we should follow the traditional RTO recovery,
1812  * i.e. mark everything lost and do go-back-N retransmission.
1813  */
1814 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1815 {
1816 	struct tcp_sock *tp = tcp_sk(sk);
1817 	struct sk_buff *skb;
1818 
1819 	tp->lost_out = 0;
1820 	tp->retrans_out = 0;
1821 	if (tcp_is_reno(tp))
1822 		tcp_reset_reno_sack(tp);
1823 
1824 	tcp_for_write_queue(skb, sk) {
1825 		if (skb == tcp_send_head(sk))
1826 			break;
1827 
1828 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1829 		/*
1830 		 * Count the retransmission made on RTO correctly (only when
1831 		 * waiting for the first ACK and did not get it)...
1832 		 */
1833 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1834 			/* For some reason this R-bit might get cleared? */
1835 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1836 				tp->retrans_out += tcp_skb_pcount(skb);
1837 			/* ...enter this if branch just for the first segment */
1838 			flag |= FLAG_DATA_ACKED;
1839 		} else {
1840 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1841 				tp->undo_marker = 0;
1842 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1843 		}
1844 
1845 		/* Marking forward transmissions that were made after RTO lost
1846 		 * can cause unnecessary retransmissions in some scenarios,
1847 		 * SACK blocks will mitigate that in some but not in all cases.
1848 		 * We used to not mark them but it was causing break-ups with
1849 		 * receivers that do only in-order receival.
1850 		 *
1851 		 * TODO: we could detect presence of such receiver and select
1852 		 * different behavior per flow.
1853 		 */
1854 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1855 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1856 			tp->lost_out += tcp_skb_pcount(skb);
1857 		}
1858 	}
1859 	tcp_verify_left_out(tp);
1860 
1861 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1862 	tp->snd_cwnd_cnt = 0;
1863 	tp->snd_cwnd_stamp = tcp_time_stamp;
1864 	tp->frto_counter = 0;
1865 	tp->bytes_acked = 0;
1866 
1867 	tp->reordering = min_t(unsigned int, tp->reordering,
1868 			       sysctl_tcp_reordering);
1869 	tcp_set_ca_state(sk, TCP_CA_Loss);
1870 	tp->high_seq = tp->snd_nxt;
1871 	TCP_ECN_queue_cwr(tp);
1872 
1873 	tcp_clear_retrans_hints_partial(tp);
1874 }
1875 
1876 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1877 {
1878 	tp->retrans_out = 0;
1879 	tp->lost_out = 0;
1880 
1881 	tp->undo_marker = 0;
1882 	tp->undo_retrans = 0;
1883 }
1884 
1885 void tcp_clear_retrans(struct tcp_sock *tp)
1886 {
1887 	tcp_clear_retrans_partial(tp);
1888 
1889 	tp->fackets_out = 0;
1890 	tp->sacked_out = 0;
1891 }
1892 
1893 /* Enter Loss state. If "how" is not zero, forget all SACK information
1894  * and reset tags completely, otherwise preserve SACKs. If receiver
1895  * dropped its ofo queue, we will know this due to reneging detection.
1896  */
1897 void tcp_enter_loss(struct sock *sk, int how)
1898 {
1899 	const struct inet_connection_sock *icsk = inet_csk(sk);
1900 	struct tcp_sock *tp = tcp_sk(sk);
1901 	struct sk_buff *skb;
1902 
1903 	/* Reduce ssthresh if it has not yet been made inside this window. */
1904 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1905 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1906 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1907 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1908 		tcp_ca_event(sk, CA_EVENT_LOSS);
1909 	}
1910 	tp->snd_cwnd	   = 1;
1911 	tp->snd_cwnd_cnt   = 0;
1912 	tp->snd_cwnd_stamp = tcp_time_stamp;
1913 
1914 	tp->bytes_acked = 0;
1915 	tcp_clear_retrans_partial(tp);
1916 
1917 	if (tcp_is_reno(tp))
1918 		tcp_reset_reno_sack(tp);
1919 
1920 	if (!how) {
1921 		/* Push undo marker, if it was plain RTO and nothing
1922 		 * was retransmitted. */
1923 		tp->undo_marker = tp->snd_una;
1924 		tcp_clear_retrans_hints_partial(tp);
1925 	} else {
1926 		tp->sacked_out = 0;
1927 		tp->fackets_out = 0;
1928 		tcp_clear_all_retrans_hints(tp);
1929 	}
1930 
1931 	tcp_for_write_queue(skb, sk) {
1932 		if (skb == tcp_send_head(sk))
1933 			break;
1934 
1935 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1936 			tp->undo_marker = 0;
1937 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1938 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1939 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1940 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1941 			tp->lost_out += tcp_skb_pcount(skb);
1942 		}
1943 	}
1944 	tcp_verify_left_out(tp);
1945 
1946 	tp->reordering = min_t(unsigned int, tp->reordering,
1947 			       sysctl_tcp_reordering);
1948 	tcp_set_ca_state(sk, TCP_CA_Loss);
1949 	tp->high_seq = tp->snd_nxt;
1950 	TCP_ECN_queue_cwr(tp);
1951 	/* Abort F-RTO algorithm if one is in progress */
1952 	tp->frto_counter = 0;
1953 }
1954 
1955 /* If ACK arrived pointing to a remembered SACK, it means that our
1956  * remembered SACKs do not reflect real state of receiver i.e.
1957  * receiver _host_ is heavily congested (or buggy).
1958  *
1959  * Do processing similar to RTO timeout.
1960  */
1961 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1962 {
1963 	if (flag & FLAG_SACK_RENEGING) {
1964 		struct inet_connection_sock *icsk = inet_csk(sk);
1965 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1966 
1967 		tcp_enter_loss(sk, 1);
1968 		icsk->icsk_retransmits++;
1969 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1970 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1971 					  icsk->icsk_rto, TCP_RTO_MAX);
1972 		return 1;
1973 	}
1974 	return 0;
1975 }
1976 
1977 static inline int tcp_fackets_out(struct tcp_sock *tp)
1978 {
1979 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1980 }
1981 
1982 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1983  * counter when SACK is enabled (without SACK, sacked_out is used for
1984  * that purpose).
1985  *
1986  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1987  * segments up to the highest received SACK block so far and holes in
1988  * between them.
1989  *
1990  * With reordering, holes may still be in flight, so RFC3517 recovery
1991  * uses pure sacked_out (total number of SACKed segments) even though
1992  * it violates the RFC that uses duplicate ACKs, often these are equal
1993  * but when e.g. out-of-window ACKs or packet duplication occurs,
1994  * they differ. Since neither occurs due to loss, TCP should really
1995  * ignore them.
1996  */
1997 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1998 {
1999 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2000 }
2001 
2002 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2003 {
2004 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2005 }
2006 
2007 static inline int tcp_head_timedout(struct sock *sk)
2008 {
2009 	struct tcp_sock *tp = tcp_sk(sk);
2010 
2011 	return tp->packets_out &&
2012 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2013 }
2014 
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016  * --------------------------------------
2017  *
2018  * "Open"	Normal state, no dubious events, fast path.
2019  * "Disorder"   In all the respects it is "Open",
2020  *		but requires a bit more attention. It is entered when
2021  *		we see some SACKs or dupacks. It is split of "Open"
2022  *		mainly to move some processing from fast path to slow one.
2023  * "CWR"	CWND was reduced due to some Congestion Notification event.
2024  *		It can be ECN, ICMP source quench, local device congestion.
2025  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2026  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2027  *
2028  * tcp_fastretrans_alert() is entered:
2029  * - each incoming ACK, if state is not "Open"
2030  * - when arrived ACK is unusual, namely:
2031  *	* SACK
2032  *	* Duplicate ACK.
2033  *	* ECN ECE.
2034  *
2035  * Counting packets in flight is pretty simple.
2036  *
2037  *	in_flight = packets_out - left_out + retrans_out
2038  *
2039  *	packets_out is SND.NXT-SND.UNA counted in packets.
2040  *
2041  *	retrans_out is number of retransmitted segments.
2042  *
2043  *	left_out is number of segments left network, but not ACKed yet.
2044  *
2045  *		left_out = sacked_out + lost_out
2046  *
2047  *     sacked_out: Packets, which arrived to receiver out of order
2048  *		   and hence not ACKed. With SACKs this number is simply
2049  *		   amount of SACKed data. Even without SACKs
2050  *		   it is easy to give pretty reliable estimate of this number,
2051  *		   counting duplicate ACKs.
2052  *
2053  *       lost_out: Packets lost by network. TCP has no explicit
2054  *		   "loss notification" feedback from network (for now).
2055  *		   It means that this number can be only _guessed_.
2056  *		   Actually, it is the heuristics to predict lossage that
2057  *		   distinguishes different algorithms.
2058  *
2059  *	F.e. after RTO, when all the queue is considered as lost,
2060  *	lost_out = packets_out and in_flight = retrans_out.
2061  *
2062  *		Essentially, we have now two algorithms counting
2063  *		lost packets.
2064  *
2065  *		FACK: It is the simplest heuristics. As soon as we decided
2066  *		that something is lost, we decide that _all_ not SACKed
2067  *		packets until the most forward SACK are lost. I.e.
2068  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069  *		It is absolutely correct estimate, if network does not reorder
2070  *		packets. And it loses any connection to reality when reordering
2071  *		takes place. We use FACK by default until reordering
2072  *		is suspected on the path to this destination.
2073  *
2074  *		NewReno: when Recovery is entered, we assume that one segment
2075  *		is lost (classic Reno). While we are in Recovery and
2076  *		a partial ACK arrives, we assume that one more packet
2077  *		is lost (NewReno). This heuristics are the same in NewReno
2078  *		and SACK.
2079  *
2080  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2081  *  deflation etc. CWND is real congestion window, never inflated, changes
2082  *  only according to classic VJ rules.
2083  *
2084  * Really tricky (and requiring careful tuning) part of algorithm
2085  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086  * The first determines the moment _when_ we should reduce CWND and,
2087  * hence, slow down forward transmission. In fact, it determines the moment
2088  * when we decide that hole is caused by loss, rather than by a reorder.
2089  *
2090  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091  * holes, caused by lost packets.
2092  *
2093  * And the most logically complicated part of algorithm is undo
2094  * heuristics. We detect false retransmits due to both too early
2095  * fast retransmit (reordering) and underestimated RTO, analyzing
2096  * timestamps and D-SACKs. When we detect that some segments were
2097  * retransmitted by mistake and CWND reduction was wrong, we undo
2098  * window reduction and abort recovery phase. This logic is hidden
2099  * inside several functions named tcp_try_undo_<something>.
2100  */
2101 
2102 /* This function decides, when we should leave Disordered state
2103  * and enter Recovery phase, reducing congestion window.
2104  *
2105  * Main question: may we further continue forward transmission
2106  * with the same cwnd?
2107  */
2108 static int tcp_time_to_recover(struct sock *sk)
2109 {
2110 	struct tcp_sock *tp = tcp_sk(sk);
2111 	__u32 packets_out;
2112 
2113 	/* Do not perform any recovery during F-RTO algorithm */
2114 	if (tp->frto_counter)
2115 		return 0;
2116 
2117 	/* Trick#1: The loss is proven. */
2118 	if (tp->lost_out)
2119 		return 1;
2120 
2121 	/* Not-A-Trick#2 : Classic rule... */
2122 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2123 		return 1;
2124 
2125 	/* Trick#3 : when we use RFC2988 timer restart, fast
2126 	 * retransmit can be triggered by timeout of queue head.
2127 	 */
2128 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2129 		return 1;
2130 
2131 	/* Trick#4: It is still not OK... But will it be useful to delay
2132 	 * recovery more?
2133 	 */
2134 	packets_out = tp->packets_out;
2135 	if (packets_out <= tp->reordering &&
2136 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2137 	    !tcp_may_send_now(sk)) {
2138 		/* We have nothing to send. This connection is limited
2139 		 * either by receiver window or by application.
2140 		 */
2141 		return 1;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 /* RFC: This is from the original, I doubt that this is necessary at all:
2148  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2149  * retransmitted past LOST markings in the first place? I'm not fully sure
2150  * about undo and end of connection cases, which can cause R without L?
2151  */
2152 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2153 {
2154 	if ((tp->retransmit_skb_hint != NULL) &&
2155 	    before(TCP_SKB_CB(skb)->seq,
2156 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2157 		tp->retransmit_skb_hint = NULL;
2158 }
2159 
2160 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2161  * is against sacked "cnt", otherwise it's against facked "cnt"
2162  */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets)
2164 {
2165 	struct tcp_sock *tp = tcp_sk(sk);
2166 	struct sk_buff *skb;
2167 	int cnt, oldcnt;
2168 	int err;
2169 	unsigned int mss;
2170 
2171 	BUG_TRAP(packets <= tp->packets_out);
2172 	if (tp->lost_skb_hint) {
2173 		skb = tp->lost_skb_hint;
2174 		cnt = tp->lost_cnt_hint;
2175 	} else {
2176 		skb = tcp_write_queue_head(sk);
2177 		cnt = 0;
2178 	}
2179 
2180 	tcp_for_write_queue_from(skb, sk) {
2181 		if (skb == tcp_send_head(sk))
2182 			break;
2183 		/* TODO: do this better */
2184 		/* this is not the most efficient way to do this... */
2185 		tp->lost_skb_hint = skb;
2186 		tp->lost_cnt_hint = cnt;
2187 
2188 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2189 			break;
2190 
2191 		oldcnt = cnt;
2192 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2193 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2194 			cnt += tcp_skb_pcount(skb);
2195 
2196 		if (cnt > packets) {
2197 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2198 				break;
2199 
2200 			mss = skb_shinfo(skb)->gso_size;
2201 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2202 			if (err < 0)
2203 				break;
2204 			cnt = packets;
2205 		}
2206 
2207 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2208 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2209 			tp->lost_out += tcp_skb_pcount(skb);
2210 			tcp_verify_retransmit_hint(tp, skb);
2211 		}
2212 	}
2213 	tcp_verify_left_out(tp);
2214 }
2215 
2216 /* Account newly detected lost packet(s) */
2217 
2218 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2219 {
2220 	struct tcp_sock *tp = tcp_sk(sk);
2221 
2222 	if (tcp_is_reno(tp)) {
2223 		tcp_mark_head_lost(sk, 1);
2224 	} else if (tcp_is_fack(tp)) {
2225 		int lost = tp->fackets_out - tp->reordering;
2226 		if (lost <= 0)
2227 			lost = 1;
2228 		tcp_mark_head_lost(sk, lost);
2229 	} else {
2230 		int sacked_upto = tp->sacked_out - tp->reordering;
2231 		if (sacked_upto < fast_rexmit)
2232 			sacked_upto = fast_rexmit;
2233 		tcp_mark_head_lost(sk, sacked_upto);
2234 	}
2235 
2236 	/* New heuristics: it is possible only after we switched
2237 	 * to restart timer each time when something is ACKed.
2238 	 * Hence, we can detect timed out packets during fast
2239 	 * retransmit without falling to slow start.
2240 	 */
2241 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2242 		struct sk_buff *skb;
2243 
2244 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2245 			: tcp_write_queue_head(sk);
2246 
2247 		tcp_for_write_queue_from(skb, sk) {
2248 			if (skb == tcp_send_head(sk))
2249 				break;
2250 			if (!tcp_skb_timedout(sk, skb))
2251 				break;
2252 
2253 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2254 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255 				tp->lost_out += tcp_skb_pcount(skb);
2256 				tcp_verify_retransmit_hint(tp, skb);
2257 			}
2258 		}
2259 
2260 		tp->scoreboard_skb_hint = skb;
2261 
2262 		tcp_verify_left_out(tp);
2263 	}
2264 }
2265 
2266 /* CWND moderation, preventing bursts due to too big ACKs
2267  * in dubious situations.
2268  */
2269 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2270 {
2271 	tp->snd_cwnd = min(tp->snd_cwnd,
2272 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2273 	tp->snd_cwnd_stamp = tcp_time_stamp;
2274 }
2275 
2276 /* Lower bound on congestion window is slow start threshold
2277  * unless congestion avoidance choice decides to overide it.
2278  */
2279 static inline u32 tcp_cwnd_min(const struct sock *sk)
2280 {
2281 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2282 
2283 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2284 }
2285 
2286 /* Decrease cwnd each second ack. */
2287 static void tcp_cwnd_down(struct sock *sk, int flag)
2288 {
2289 	struct tcp_sock *tp = tcp_sk(sk);
2290 	int decr = tp->snd_cwnd_cnt + 1;
2291 
2292 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2293 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2294 		tp->snd_cwnd_cnt = decr & 1;
2295 		decr >>= 1;
2296 
2297 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2298 			tp->snd_cwnd -= decr;
2299 
2300 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2301 		tp->snd_cwnd_stamp = tcp_time_stamp;
2302 	}
2303 }
2304 
2305 /* Nothing was retransmitted or returned timestamp is less
2306  * than timestamp of the first retransmission.
2307  */
2308 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2309 {
2310 	return !tp->retrans_stamp ||
2311 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2312 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2313 }
2314 
2315 /* Undo procedures. */
2316 
2317 #if FASTRETRANS_DEBUG > 1
2318 static void DBGUNDO(struct sock *sk, const char *msg)
2319 {
2320 	struct tcp_sock *tp = tcp_sk(sk);
2321 	struct inet_sock *inet = inet_sk(sk);
2322 
2323 	if (sk->sk_family == AF_INET) {
2324 		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325 		       msg,
2326 		       NIPQUAD(inet->daddr), ntohs(inet->dport),
2327 		       tp->snd_cwnd, tcp_left_out(tp),
2328 		       tp->snd_ssthresh, tp->prior_ssthresh,
2329 		       tp->packets_out);
2330 	}
2331 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2332 	else if (sk->sk_family == AF_INET6) {
2333 		struct ipv6_pinfo *np = inet6_sk(sk);
2334 		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2335 		       msg,
2336 		       NIP6(np->daddr), ntohs(inet->dport),
2337 		       tp->snd_cwnd, tcp_left_out(tp),
2338 		       tp->snd_ssthresh, tp->prior_ssthresh,
2339 		       tp->packets_out);
2340 	}
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346 
2347 static void tcp_undo_cwr(struct sock *sk, const int undo)
2348 {
2349 	struct tcp_sock *tp = tcp_sk(sk);
2350 
2351 	if (tp->prior_ssthresh) {
2352 		const struct inet_connection_sock *icsk = inet_csk(sk);
2353 
2354 		if (icsk->icsk_ca_ops->undo_cwnd)
2355 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356 		else
2357 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2358 
2359 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2360 			tp->snd_ssthresh = tp->prior_ssthresh;
2361 			TCP_ECN_withdraw_cwr(tp);
2362 		}
2363 	} else {
2364 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2365 	}
2366 	tcp_moderate_cwnd(tp);
2367 	tp->snd_cwnd_stamp = tcp_time_stamp;
2368 
2369 	/* There is something screwy going on with the retrans hints after
2370 	   an undo */
2371 	tcp_clear_all_retrans_hints(tp);
2372 }
2373 
2374 static inline int tcp_may_undo(struct tcp_sock *tp)
2375 {
2376 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377 }
2378 
2379 /* People celebrate: "We love our President!" */
2380 static int tcp_try_undo_recovery(struct sock *sk)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 
2384 	if (tcp_may_undo(tp)) {
2385 		/* Happy end! We did not retransmit anything
2386 		 * or our original transmission succeeded.
2387 		 */
2388 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389 		tcp_undo_cwr(sk, 1);
2390 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2392 		else
2393 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2394 		tp->undo_marker = 0;
2395 	}
2396 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2397 		/* Hold old state until something *above* high_seq
2398 		 * is ACKed. For Reno it is MUST to prevent false
2399 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2400 		tcp_moderate_cwnd(tp);
2401 		return 1;
2402 	}
2403 	tcp_set_ca_state(sk, TCP_CA_Open);
2404 	return 0;
2405 }
2406 
2407 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2408 static void tcp_try_undo_dsack(struct sock *sk)
2409 {
2410 	struct tcp_sock *tp = tcp_sk(sk);
2411 
2412 	if (tp->undo_marker && !tp->undo_retrans) {
2413 		DBGUNDO(sk, "D-SACK");
2414 		tcp_undo_cwr(sk, 1);
2415 		tp->undo_marker = 0;
2416 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2417 	}
2418 }
2419 
2420 /* Undo during fast recovery after partial ACK. */
2421 
2422 static int tcp_try_undo_partial(struct sock *sk, int acked)
2423 {
2424 	struct tcp_sock *tp = tcp_sk(sk);
2425 	/* Partial ACK arrived. Force Hoe's retransmit. */
2426 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2427 
2428 	if (tcp_may_undo(tp)) {
2429 		/* Plain luck! Hole if filled with delayed
2430 		 * packet, rather than with a retransmit.
2431 		 */
2432 		if (tp->retrans_out == 0)
2433 			tp->retrans_stamp = 0;
2434 
2435 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2436 
2437 		DBGUNDO(sk, "Hoe");
2438 		tcp_undo_cwr(sk, 0);
2439 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2440 
2441 		/* So... Do not make Hoe's retransmit yet.
2442 		 * If the first packet was delayed, the rest
2443 		 * ones are most probably delayed as well.
2444 		 */
2445 		failed = 0;
2446 	}
2447 	return failed;
2448 }
2449 
2450 /* Undo during loss recovery after partial ACK. */
2451 static int tcp_try_undo_loss(struct sock *sk)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 
2455 	if (tcp_may_undo(tp)) {
2456 		struct sk_buff *skb;
2457 		tcp_for_write_queue(skb, sk) {
2458 			if (skb == tcp_send_head(sk))
2459 				break;
2460 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2461 		}
2462 
2463 		tcp_clear_all_retrans_hints(tp);
2464 
2465 		DBGUNDO(sk, "partial loss");
2466 		tp->lost_out = 0;
2467 		tcp_undo_cwr(sk, 1);
2468 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2469 		inet_csk(sk)->icsk_retransmits = 0;
2470 		tp->undo_marker = 0;
2471 		if (tcp_is_sack(tp))
2472 			tcp_set_ca_state(sk, TCP_CA_Open);
2473 		return 1;
2474 	}
2475 	return 0;
2476 }
2477 
2478 static inline void tcp_complete_cwr(struct sock *sk)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2482 	tp->snd_cwnd_stamp = tcp_time_stamp;
2483 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2484 }
2485 
2486 static void tcp_try_to_open(struct sock *sk, int flag)
2487 {
2488 	struct tcp_sock *tp = tcp_sk(sk);
2489 
2490 	tcp_verify_left_out(tp);
2491 
2492 	if (!tp->frto_counter && tp->retrans_out == 0)
2493 		tp->retrans_stamp = 0;
2494 
2495 	if (flag & FLAG_ECE)
2496 		tcp_enter_cwr(sk, 1);
2497 
2498 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2499 		int state = TCP_CA_Open;
2500 
2501 		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2502 			state = TCP_CA_Disorder;
2503 
2504 		if (inet_csk(sk)->icsk_ca_state != state) {
2505 			tcp_set_ca_state(sk, state);
2506 			tp->high_seq = tp->snd_nxt;
2507 		}
2508 		tcp_moderate_cwnd(tp);
2509 	} else {
2510 		tcp_cwnd_down(sk, flag);
2511 	}
2512 }
2513 
2514 static void tcp_mtup_probe_failed(struct sock *sk)
2515 {
2516 	struct inet_connection_sock *icsk = inet_csk(sk);
2517 
2518 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2519 	icsk->icsk_mtup.probe_size = 0;
2520 }
2521 
2522 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 	struct inet_connection_sock *icsk = inet_csk(sk);
2526 
2527 	/* FIXME: breaks with very large cwnd */
2528 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2529 	tp->snd_cwnd = tp->snd_cwnd *
2530 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2531 		       icsk->icsk_mtup.probe_size;
2532 	tp->snd_cwnd_cnt = 0;
2533 	tp->snd_cwnd_stamp = tcp_time_stamp;
2534 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2535 
2536 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2537 	icsk->icsk_mtup.probe_size = 0;
2538 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2539 }
2540 
2541 /* Process an event, which can update packets-in-flight not trivially.
2542  * Main goal of this function is to calculate new estimate for left_out,
2543  * taking into account both packets sitting in receiver's buffer and
2544  * packets lost by network.
2545  *
2546  * Besides that it does CWND reduction, when packet loss is detected
2547  * and changes state of machine.
2548  *
2549  * It does _not_ decide what to send, it is made in function
2550  * tcp_xmit_retransmit_queue().
2551  */
2552 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2553 {
2554 	struct inet_connection_sock *icsk = inet_csk(sk);
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2557 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2558 				    (tcp_fackets_out(tp) > tp->reordering));
2559 	int fast_rexmit = 0;
2560 
2561 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2562 		tp->sacked_out = 0;
2563 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2564 		tp->fackets_out = 0;
2565 
2566 	/* Now state machine starts.
2567 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2568 	if (flag & FLAG_ECE)
2569 		tp->prior_ssthresh = 0;
2570 
2571 	/* B. In all the states check for reneging SACKs. */
2572 	if (tcp_check_sack_reneging(sk, flag))
2573 		return;
2574 
2575 	/* C. Process data loss notification, provided it is valid. */
2576 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2577 	    before(tp->snd_una, tp->high_seq) &&
2578 	    icsk->icsk_ca_state != TCP_CA_Open &&
2579 	    tp->fackets_out > tp->reordering) {
2580 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2581 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2582 	}
2583 
2584 	/* D. Check consistency of the current state. */
2585 	tcp_verify_left_out(tp);
2586 
2587 	/* E. Check state exit conditions. State can be terminated
2588 	 *    when high_seq is ACKed. */
2589 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2590 		BUG_TRAP(tp->retrans_out == 0);
2591 		tp->retrans_stamp = 0;
2592 	} else if (!before(tp->snd_una, tp->high_seq)) {
2593 		switch (icsk->icsk_ca_state) {
2594 		case TCP_CA_Loss:
2595 			icsk->icsk_retransmits = 0;
2596 			if (tcp_try_undo_recovery(sk))
2597 				return;
2598 			break;
2599 
2600 		case TCP_CA_CWR:
2601 			/* CWR is to be held something *above* high_seq
2602 			 * is ACKed for CWR bit to reach receiver. */
2603 			if (tp->snd_una != tp->high_seq) {
2604 				tcp_complete_cwr(sk);
2605 				tcp_set_ca_state(sk, TCP_CA_Open);
2606 			}
2607 			break;
2608 
2609 		case TCP_CA_Disorder:
2610 			tcp_try_undo_dsack(sk);
2611 			if (!tp->undo_marker ||
2612 			    /* For SACK case do not Open to allow to undo
2613 			     * catching for all duplicate ACKs. */
2614 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2615 				tp->undo_marker = 0;
2616 				tcp_set_ca_state(sk, TCP_CA_Open);
2617 			}
2618 			break;
2619 
2620 		case TCP_CA_Recovery:
2621 			if (tcp_is_reno(tp))
2622 				tcp_reset_reno_sack(tp);
2623 			if (tcp_try_undo_recovery(sk))
2624 				return;
2625 			tcp_complete_cwr(sk);
2626 			break;
2627 		}
2628 	}
2629 
2630 	/* F. Process state. */
2631 	switch (icsk->icsk_ca_state) {
2632 	case TCP_CA_Recovery:
2633 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2634 			if (tcp_is_reno(tp) && is_dupack)
2635 				tcp_add_reno_sack(sk);
2636 		} else
2637 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2638 		break;
2639 	case TCP_CA_Loss:
2640 		if (flag & FLAG_DATA_ACKED)
2641 			icsk->icsk_retransmits = 0;
2642 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2643 			tcp_reset_reno_sack(tp);
2644 		if (!tcp_try_undo_loss(sk)) {
2645 			tcp_moderate_cwnd(tp);
2646 			tcp_xmit_retransmit_queue(sk);
2647 			return;
2648 		}
2649 		if (icsk->icsk_ca_state != TCP_CA_Open)
2650 			return;
2651 		/* Loss is undone; fall through to processing in Open state. */
2652 	default:
2653 		if (tcp_is_reno(tp)) {
2654 			if (flag & FLAG_SND_UNA_ADVANCED)
2655 				tcp_reset_reno_sack(tp);
2656 			if (is_dupack)
2657 				tcp_add_reno_sack(sk);
2658 		}
2659 
2660 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2661 			tcp_try_undo_dsack(sk);
2662 
2663 		if (!tcp_time_to_recover(sk)) {
2664 			tcp_try_to_open(sk, flag);
2665 			return;
2666 		}
2667 
2668 		/* MTU probe failure: don't reduce cwnd */
2669 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2670 		    icsk->icsk_mtup.probe_size &&
2671 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2672 			tcp_mtup_probe_failed(sk);
2673 			/* Restores the reduction we did in tcp_mtup_probe() */
2674 			tp->snd_cwnd++;
2675 			tcp_simple_retransmit(sk);
2676 			return;
2677 		}
2678 
2679 		/* Otherwise enter Recovery state */
2680 
2681 		if (tcp_is_reno(tp))
2682 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2683 		else
2684 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2685 
2686 		tp->high_seq = tp->snd_nxt;
2687 		tp->prior_ssthresh = 0;
2688 		tp->undo_marker = tp->snd_una;
2689 		tp->undo_retrans = tp->retrans_out;
2690 
2691 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2692 			if (!(flag & FLAG_ECE))
2693 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2694 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2695 			TCP_ECN_queue_cwr(tp);
2696 		}
2697 
2698 		tp->bytes_acked = 0;
2699 		tp->snd_cwnd_cnt = 0;
2700 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2701 		fast_rexmit = 1;
2702 	}
2703 
2704 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2705 		tcp_update_scoreboard(sk, fast_rexmit);
2706 	tcp_cwnd_down(sk, flag);
2707 	tcp_xmit_retransmit_queue(sk);
2708 }
2709 
2710 /* Read draft-ietf-tcplw-high-performance before mucking
2711  * with this code. (Supersedes RFC1323)
2712  */
2713 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2714 {
2715 	/* RTTM Rule: A TSecr value received in a segment is used to
2716 	 * update the averaged RTT measurement only if the segment
2717 	 * acknowledges some new data, i.e., only if it advances the
2718 	 * left edge of the send window.
2719 	 *
2720 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2721 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2722 	 *
2723 	 * Changed: reset backoff as soon as we see the first valid sample.
2724 	 * If we do not, we get strongly overestimated rto. With timestamps
2725 	 * samples are accepted even from very old segments: f.e., when rtt=1
2726 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2727 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2728 	 * in window is lost... Voila.	 			--ANK (010210)
2729 	 */
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2732 	tcp_rtt_estimator(sk, seq_rtt);
2733 	tcp_set_rto(sk);
2734 	inet_csk(sk)->icsk_backoff = 0;
2735 	tcp_bound_rto(sk);
2736 }
2737 
2738 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2739 {
2740 	/* We don't have a timestamp. Can only use
2741 	 * packets that are not retransmitted to determine
2742 	 * rtt estimates. Also, we must not reset the
2743 	 * backoff for rto until we get a non-retransmitted
2744 	 * packet. This allows us to deal with a situation
2745 	 * where the network delay has increased suddenly.
2746 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2747 	 */
2748 
2749 	if (flag & FLAG_RETRANS_DATA_ACKED)
2750 		return;
2751 
2752 	tcp_rtt_estimator(sk, seq_rtt);
2753 	tcp_set_rto(sk);
2754 	inet_csk(sk)->icsk_backoff = 0;
2755 	tcp_bound_rto(sk);
2756 }
2757 
2758 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2759 				      const s32 seq_rtt)
2760 {
2761 	const struct tcp_sock *tp = tcp_sk(sk);
2762 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2763 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2764 		tcp_ack_saw_tstamp(sk, flag);
2765 	else if (seq_rtt >= 0)
2766 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2767 }
2768 
2769 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2770 {
2771 	const struct inet_connection_sock *icsk = inet_csk(sk);
2772 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2773 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2774 }
2775 
2776 /* Restart timer after forward progress on connection.
2777  * RFC2988 recommends to restart timer to now+rto.
2778  */
2779 static void tcp_rearm_rto(struct sock *sk)
2780 {
2781 	struct tcp_sock *tp = tcp_sk(sk);
2782 
2783 	if (!tp->packets_out) {
2784 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2785 	} else {
2786 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2787 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2788 	}
2789 }
2790 
2791 /* If we get here, the whole TSO packet has not been acked. */
2792 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2793 {
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 	u32 packets_acked;
2796 
2797 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2798 
2799 	packets_acked = tcp_skb_pcount(skb);
2800 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2801 		return 0;
2802 	packets_acked -= tcp_skb_pcount(skb);
2803 
2804 	if (packets_acked) {
2805 		BUG_ON(tcp_skb_pcount(skb) == 0);
2806 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2807 	}
2808 
2809 	return packets_acked;
2810 }
2811 
2812 /* Remove acknowledged frames from the retransmission queue. If our packet
2813  * is before the ack sequence we can discard it as it's confirmed to have
2814  * arrived at the other end.
2815  */
2816 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2817 {
2818 	struct tcp_sock *tp = tcp_sk(sk);
2819 	const struct inet_connection_sock *icsk = inet_csk(sk);
2820 	struct sk_buff *skb;
2821 	u32 now = tcp_time_stamp;
2822 	int fully_acked = 1;
2823 	int flag = 0;
2824 	u32 pkts_acked = 0;
2825 	u32 reord = tp->packets_out;
2826 	s32 seq_rtt = -1;
2827 	s32 ca_seq_rtt = -1;
2828 	ktime_t last_ackt = net_invalid_timestamp();
2829 
2830 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2831 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2832 		u32 end_seq;
2833 		u32 acked_pcount;
2834 		u8 sacked = scb->sacked;
2835 
2836 		/* Determine how many packets and what bytes were acked, tso and else */
2837 		if (after(scb->end_seq, tp->snd_una)) {
2838 			if (tcp_skb_pcount(skb) == 1 ||
2839 			    !after(tp->snd_una, scb->seq))
2840 				break;
2841 
2842 			acked_pcount = tcp_tso_acked(sk, skb);
2843 			if (!acked_pcount)
2844 				break;
2845 
2846 			fully_acked = 0;
2847 			end_seq = tp->snd_una;
2848 		} else {
2849 			acked_pcount = tcp_skb_pcount(skb);
2850 			end_seq = scb->end_seq;
2851 		}
2852 
2853 		/* MTU probing checks */
2854 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2855 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2856 			tcp_mtup_probe_success(sk, skb);
2857 		}
2858 
2859 		if (sacked & TCPCB_RETRANS) {
2860 			if (sacked & TCPCB_SACKED_RETRANS)
2861 				tp->retrans_out -= acked_pcount;
2862 			flag |= FLAG_RETRANS_DATA_ACKED;
2863 			ca_seq_rtt = -1;
2864 			seq_rtt = -1;
2865 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2866 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2867 		} else {
2868 			ca_seq_rtt = now - scb->when;
2869 			last_ackt = skb->tstamp;
2870 			if (seq_rtt < 0) {
2871 				seq_rtt = ca_seq_rtt;
2872 			}
2873 			if (!(sacked & TCPCB_SACKED_ACKED))
2874 				reord = min(pkts_acked, reord);
2875 		}
2876 
2877 		if (sacked & TCPCB_SACKED_ACKED)
2878 			tp->sacked_out -= acked_pcount;
2879 		if (sacked & TCPCB_LOST)
2880 			tp->lost_out -= acked_pcount;
2881 
2882 		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2883 			tp->urg_mode = 0;
2884 
2885 		tp->packets_out -= acked_pcount;
2886 		pkts_acked += acked_pcount;
2887 
2888 		/* Initial outgoing SYN's get put onto the write_queue
2889 		 * just like anything else we transmit.  It is not
2890 		 * true data, and if we misinform our callers that
2891 		 * this ACK acks real data, we will erroneously exit
2892 		 * connection startup slow start one packet too
2893 		 * quickly.  This is severely frowned upon behavior.
2894 		 */
2895 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2896 			flag |= FLAG_DATA_ACKED;
2897 		} else {
2898 			flag |= FLAG_SYN_ACKED;
2899 			tp->retrans_stamp = 0;
2900 		}
2901 
2902 		if (!fully_acked)
2903 			break;
2904 
2905 		tcp_unlink_write_queue(skb, sk);
2906 		sk_wmem_free_skb(sk, skb);
2907 		tcp_clear_all_retrans_hints(tp);
2908 	}
2909 
2910 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2911 		flag |= FLAG_SACK_RENEGING;
2912 
2913 	if (flag & FLAG_ACKED) {
2914 		const struct tcp_congestion_ops *ca_ops
2915 			= inet_csk(sk)->icsk_ca_ops;
2916 
2917 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2918 		tcp_rearm_rto(sk);
2919 
2920 		if (tcp_is_reno(tp)) {
2921 			tcp_remove_reno_sacks(sk, pkts_acked);
2922 		} else {
2923 			/* Non-retransmitted hole got filled? That's reordering */
2924 			if (reord < prior_fackets)
2925 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2926 		}
2927 
2928 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2929 
2930 		if (ca_ops->pkts_acked) {
2931 			s32 rtt_us = -1;
2932 
2933 			/* Is the ACK triggering packet unambiguous? */
2934 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2935 				/* High resolution needed and available? */
2936 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2937 				    !ktime_equal(last_ackt,
2938 						 net_invalid_timestamp()))
2939 					rtt_us = ktime_us_delta(ktime_get_real(),
2940 								last_ackt);
2941 				else if (ca_seq_rtt > 0)
2942 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2943 			}
2944 
2945 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2946 		}
2947 	}
2948 
2949 #if FASTRETRANS_DEBUG > 0
2950 	BUG_TRAP((int)tp->sacked_out >= 0);
2951 	BUG_TRAP((int)tp->lost_out >= 0);
2952 	BUG_TRAP((int)tp->retrans_out >= 0);
2953 	if (!tp->packets_out && tcp_is_sack(tp)) {
2954 		icsk = inet_csk(sk);
2955 		if (tp->lost_out) {
2956 			printk(KERN_DEBUG "Leak l=%u %d\n",
2957 			       tp->lost_out, icsk->icsk_ca_state);
2958 			tp->lost_out = 0;
2959 		}
2960 		if (tp->sacked_out) {
2961 			printk(KERN_DEBUG "Leak s=%u %d\n",
2962 			       tp->sacked_out, icsk->icsk_ca_state);
2963 			tp->sacked_out = 0;
2964 		}
2965 		if (tp->retrans_out) {
2966 			printk(KERN_DEBUG "Leak r=%u %d\n",
2967 			       tp->retrans_out, icsk->icsk_ca_state);
2968 			tp->retrans_out = 0;
2969 		}
2970 	}
2971 #endif
2972 	return flag;
2973 }
2974 
2975 static void tcp_ack_probe(struct sock *sk)
2976 {
2977 	const struct tcp_sock *tp = tcp_sk(sk);
2978 	struct inet_connection_sock *icsk = inet_csk(sk);
2979 
2980 	/* Was it a usable window open? */
2981 
2982 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2983 		icsk->icsk_backoff = 0;
2984 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2985 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2986 		 * This function is not for random using!
2987 		 */
2988 	} else {
2989 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2990 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2991 					  TCP_RTO_MAX);
2992 	}
2993 }
2994 
2995 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2996 {
2997 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2998 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2999 }
3000 
3001 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3002 {
3003 	const struct tcp_sock *tp = tcp_sk(sk);
3004 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3005 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3006 }
3007 
3008 /* Check that window update is acceptable.
3009  * The function assumes that snd_una<=ack<=snd_next.
3010  */
3011 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3012 					const u32 ack, const u32 ack_seq,
3013 					const u32 nwin)
3014 {
3015 	return (after(ack, tp->snd_una) ||
3016 		after(ack_seq, tp->snd_wl1) ||
3017 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3018 }
3019 
3020 /* Update our send window.
3021  *
3022  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3023  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3024  */
3025 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3026 				 u32 ack_seq)
3027 {
3028 	struct tcp_sock *tp = tcp_sk(sk);
3029 	int flag = 0;
3030 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3031 
3032 	if (likely(!tcp_hdr(skb)->syn))
3033 		nwin <<= tp->rx_opt.snd_wscale;
3034 
3035 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3036 		flag |= FLAG_WIN_UPDATE;
3037 		tcp_update_wl(tp, ack, ack_seq);
3038 
3039 		if (tp->snd_wnd != nwin) {
3040 			tp->snd_wnd = nwin;
3041 
3042 			/* Note, it is the only place, where
3043 			 * fast path is recovered for sending TCP.
3044 			 */
3045 			tp->pred_flags = 0;
3046 			tcp_fast_path_check(sk);
3047 
3048 			if (nwin > tp->max_window) {
3049 				tp->max_window = nwin;
3050 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3051 			}
3052 		}
3053 	}
3054 
3055 	tp->snd_una = ack;
3056 
3057 	return flag;
3058 }
3059 
3060 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3061  * continue in congestion avoidance.
3062  */
3063 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3064 {
3065 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3066 	tp->snd_cwnd_cnt = 0;
3067 	tp->bytes_acked = 0;
3068 	TCP_ECN_queue_cwr(tp);
3069 	tcp_moderate_cwnd(tp);
3070 }
3071 
3072 /* A conservative spurious RTO response algorithm: reduce cwnd using
3073  * rate halving and continue in congestion avoidance.
3074  */
3075 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3076 {
3077 	tcp_enter_cwr(sk, 0);
3078 }
3079 
3080 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3081 {
3082 	if (flag & FLAG_ECE)
3083 		tcp_ratehalving_spur_to_response(sk);
3084 	else
3085 		tcp_undo_cwr(sk, 1);
3086 }
3087 
3088 /* F-RTO spurious RTO detection algorithm (RFC4138)
3089  *
3090  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3091  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3092  * window (but not to or beyond highest sequence sent before RTO):
3093  *   On First ACK,  send two new segments out.
3094  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3095  *                  algorithm is not part of the F-RTO detection algorithm
3096  *                  given in RFC4138 but can be selected separately).
3097  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3098  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3099  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3100  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3101  *
3102  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3103  * original window even after we transmit two new data segments.
3104  *
3105  * SACK version:
3106  *   on first step, wait until first cumulative ACK arrives, then move to
3107  *   the second step. In second step, the next ACK decides.
3108  *
3109  * F-RTO is implemented (mainly) in four functions:
3110  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3111  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3112  *     called when tcp_use_frto() showed green light
3113  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3114  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3115  *     to prove that the RTO is indeed spurious. It transfers the control
3116  *     from F-RTO to the conventional RTO recovery
3117  */
3118 static int tcp_process_frto(struct sock *sk, int flag)
3119 {
3120 	struct tcp_sock *tp = tcp_sk(sk);
3121 
3122 	tcp_verify_left_out(tp);
3123 
3124 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3125 	if (flag & FLAG_DATA_ACKED)
3126 		inet_csk(sk)->icsk_retransmits = 0;
3127 
3128 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3129 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3130 		tp->undo_marker = 0;
3131 
3132 	if (!before(tp->snd_una, tp->frto_highmark)) {
3133 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3134 		return 1;
3135 	}
3136 
3137 	if (!tcp_is_sackfrto(tp)) {
3138 		/* RFC4138 shortcoming in step 2; should also have case c):
3139 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3140 		 * data, winupdate
3141 		 */
3142 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3143 			return 1;
3144 
3145 		if (!(flag & FLAG_DATA_ACKED)) {
3146 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3147 					    flag);
3148 			return 1;
3149 		}
3150 	} else {
3151 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3152 			/* Prevent sending of new data. */
3153 			tp->snd_cwnd = min(tp->snd_cwnd,
3154 					   tcp_packets_in_flight(tp));
3155 			return 1;
3156 		}
3157 
3158 		if ((tp->frto_counter >= 2) &&
3159 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3160 		     ((flag & FLAG_DATA_SACKED) &&
3161 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3162 			/* RFC4138 shortcoming (see comment above) */
3163 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3164 			    (flag & FLAG_NOT_DUP))
3165 				return 1;
3166 
3167 			tcp_enter_frto_loss(sk, 3, flag);
3168 			return 1;
3169 		}
3170 	}
3171 
3172 	if (tp->frto_counter == 1) {
3173 		/* tcp_may_send_now needs to see updated state */
3174 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3175 		tp->frto_counter = 2;
3176 
3177 		if (!tcp_may_send_now(sk))
3178 			tcp_enter_frto_loss(sk, 2, flag);
3179 
3180 		return 1;
3181 	} else {
3182 		switch (sysctl_tcp_frto_response) {
3183 		case 2:
3184 			tcp_undo_spur_to_response(sk, flag);
3185 			break;
3186 		case 1:
3187 			tcp_conservative_spur_to_response(tp);
3188 			break;
3189 		default:
3190 			tcp_ratehalving_spur_to_response(sk);
3191 			break;
3192 		}
3193 		tp->frto_counter = 0;
3194 		tp->undo_marker = 0;
3195 		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3196 	}
3197 	return 0;
3198 }
3199 
3200 /* This routine deals with incoming acks, but not outgoing ones. */
3201 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3202 {
3203 	struct inet_connection_sock *icsk = inet_csk(sk);
3204 	struct tcp_sock *tp = tcp_sk(sk);
3205 	u32 prior_snd_una = tp->snd_una;
3206 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3207 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3208 	u32 prior_in_flight;
3209 	u32 prior_fackets;
3210 	int prior_packets;
3211 	int frto_cwnd = 0;
3212 
3213 	/* If the ack is newer than sent or older than previous acks
3214 	 * then we can probably ignore it.
3215 	 */
3216 	if (after(ack, tp->snd_nxt))
3217 		goto uninteresting_ack;
3218 
3219 	if (before(ack, prior_snd_una))
3220 		goto old_ack;
3221 
3222 	if (after(ack, prior_snd_una))
3223 		flag |= FLAG_SND_UNA_ADVANCED;
3224 
3225 	if (sysctl_tcp_abc) {
3226 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3227 			tp->bytes_acked += ack - prior_snd_una;
3228 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3229 			/* we assume just one segment left network */
3230 			tp->bytes_acked += min(ack - prior_snd_una,
3231 					       tp->mss_cache);
3232 	}
3233 
3234 	prior_fackets = tp->fackets_out;
3235 	prior_in_flight = tcp_packets_in_flight(tp);
3236 
3237 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3238 		/* Window is constant, pure forward advance.
3239 		 * No more checks are required.
3240 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3241 		 */
3242 		tcp_update_wl(tp, ack, ack_seq);
3243 		tp->snd_una = ack;
3244 		flag |= FLAG_WIN_UPDATE;
3245 
3246 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3247 
3248 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3249 	} else {
3250 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3251 			flag |= FLAG_DATA;
3252 		else
3253 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3254 
3255 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3256 
3257 		if (TCP_SKB_CB(skb)->sacked)
3258 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3259 
3260 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3261 			flag |= FLAG_ECE;
3262 
3263 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3264 	}
3265 
3266 	/* We passed data and got it acked, remove any soft error
3267 	 * log. Something worked...
3268 	 */
3269 	sk->sk_err_soft = 0;
3270 	tp->rcv_tstamp = tcp_time_stamp;
3271 	prior_packets = tp->packets_out;
3272 	if (!prior_packets)
3273 		goto no_queue;
3274 
3275 	/* See if we can take anything off of the retransmit queue. */
3276 	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3277 
3278 	if (tp->frto_counter)
3279 		frto_cwnd = tcp_process_frto(sk, flag);
3280 	/* Guarantee sacktag reordering detection against wrap-arounds */
3281 	if (before(tp->frto_highmark, tp->snd_una))
3282 		tp->frto_highmark = 0;
3283 
3284 	if (tcp_ack_is_dubious(sk, flag)) {
3285 		/* Advance CWND, if state allows this. */
3286 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3287 		    tcp_may_raise_cwnd(sk, flag))
3288 			tcp_cong_avoid(sk, ack, prior_in_flight);
3289 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3290 				      flag);
3291 	} else {
3292 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3293 			tcp_cong_avoid(sk, ack, prior_in_flight);
3294 	}
3295 
3296 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3297 		dst_confirm(sk->sk_dst_cache);
3298 
3299 	return 1;
3300 
3301 no_queue:
3302 	icsk->icsk_probes_out = 0;
3303 
3304 	/* If this ack opens up a zero window, clear backoff.  It was
3305 	 * being used to time the probes, and is probably far higher than
3306 	 * it needs to be for normal retransmission.
3307 	 */
3308 	if (tcp_send_head(sk))
3309 		tcp_ack_probe(sk);
3310 	return 1;
3311 
3312 old_ack:
3313 	if (TCP_SKB_CB(skb)->sacked)
3314 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3315 
3316 uninteresting_ack:
3317 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3318 	return 0;
3319 }
3320 
3321 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3322  * But, this can also be called on packets in the established flow when
3323  * the fast version below fails.
3324  */
3325 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3326 		       int estab)
3327 {
3328 	unsigned char *ptr;
3329 	struct tcphdr *th = tcp_hdr(skb);
3330 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3331 
3332 	ptr = (unsigned char *)(th + 1);
3333 	opt_rx->saw_tstamp = 0;
3334 
3335 	while (length > 0) {
3336 		int opcode = *ptr++;
3337 		int opsize;
3338 
3339 		switch (opcode) {
3340 		case TCPOPT_EOL:
3341 			return;
3342 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3343 			length--;
3344 			continue;
3345 		default:
3346 			opsize = *ptr++;
3347 			if (opsize < 2) /* "silly options" */
3348 				return;
3349 			if (opsize > length)
3350 				return;	/* don't parse partial options */
3351 			switch (opcode) {
3352 			case TCPOPT_MSS:
3353 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3354 					u16 in_mss = get_unaligned_be16(ptr);
3355 					if (in_mss) {
3356 						if (opt_rx->user_mss &&
3357 						    opt_rx->user_mss < in_mss)
3358 							in_mss = opt_rx->user_mss;
3359 						opt_rx->mss_clamp = in_mss;
3360 					}
3361 				}
3362 				break;
3363 			case TCPOPT_WINDOW:
3364 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3365 				    !estab && sysctl_tcp_window_scaling) {
3366 					__u8 snd_wscale = *(__u8 *)ptr;
3367 					opt_rx->wscale_ok = 1;
3368 					if (snd_wscale > 14) {
3369 						if (net_ratelimit())
3370 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3371 							       "scaling value %d >14 received.\n",
3372 							       snd_wscale);
3373 						snd_wscale = 14;
3374 					}
3375 					opt_rx->snd_wscale = snd_wscale;
3376 				}
3377 				break;
3378 			case TCPOPT_TIMESTAMP:
3379 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3380 				    ((estab && opt_rx->tstamp_ok) ||
3381 				     (!estab && sysctl_tcp_timestamps))) {
3382 					opt_rx->saw_tstamp = 1;
3383 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3384 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3385 				}
3386 				break;
3387 			case TCPOPT_SACK_PERM:
3388 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3389 				    !estab && sysctl_tcp_sack) {
3390 					opt_rx->sack_ok = 1;
3391 					tcp_sack_reset(opt_rx);
3392 				}
3393 				break;
3394 
3395 			case TCPOPT_SACK:
3396 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3397 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3398 				   opt_rx->sack_ok) {
3399 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3400 				}
3401 				break;
3402 #ifdef CONFIG_TCP_MD5SIG
3403 			case TCPOPT_MD5SIG:
3404 				/*
3405 				 * The MD5 Hash has already been
3406 				 * checked (see tcp_v{4,6}_do_rcv()).
3407 				 */
3408 				break;
3409 #endif
3410 			}
3411 
3412 			ptr += opsize-2;
3413 			length -= opsize;
3414 		}
3415 	}
3416 }
3417 
3418 /* Fast parse options. This hopes to only see timestamps.
3419  * If it is wrong it falls back on tcp_parse_options().
3420  */
3421 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3422 				  struct tcp_sock *tp)
3423 {
3424 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3425 		tp->rx_opt.saw_tstamp = 0;
3426 		return 0;
3427 	} else if (tp->rx_opt.tstamp_ok &&
3428 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3429 		__be32 *ptr = (__be32 *)(th + 1);
3430 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3431 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3432 			tp->rx_opt.saw_tstamp = 1;
3433 			++ptr;
3434 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3435 			++ptr;
3436 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3437 			return 1;
3438 		}
3439 	}
3440 	tcp_parse_options(skb, &tp->rx_opt, 1);
3441 	return 1;
3442 }
3443 
3444 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3445 {
3446 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3447 	tp->rx_opt.ts_recent_stamp = get_seconds();
3448 }
3449 
3450 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3451 {
3452 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3453 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3454 		 * extra check below makes sure this can only happen
3455 		 * for pure ACK frames.  -DaveM
3456 		 *
3457 		 * Not only, also it occurs for expired timestamps.
3458 		 */
3459 
3460 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3461 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3462 			tcp_store_ts_recent(tp);
3463 	}
3464 }
3465 
3466 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3467  *
3468  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3469  * it can pass through stack. So, the following predicate verifies that
3470  * this segment is not used for anything but congestion avoidance or
3471  * fast retransmit. Moreover, we even are able to eliminate most of such
3472  * second order effects, if we apply some small "replay" window (~RTO)
3473  * to timestamp space.
3474  *
3475  * All these measures still do not guarantee that we reject wrapped ACKs
3476  * on networks with high bandwidth, when sequence space is recycled fastly,
3477  * but it guarantees that such events will be very rare and do not affect
3478  * connection seriously. This doesn't look nice, but alas, PAWS is really
3479  * buggy extension.
3480  *
3481  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3482  * states that events when retransmit arrives after original data are rare.
3483  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3484  * the biggest problem on large power networks even with minor reordering.
3485  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3486  * up to bandwidth of 18Gigabit/sec. 8) ]
3487  */
3488 
3489 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3490 {
3491 	struct tcp_sock *tp = tcp_sk(sk);
3492 	struct tcphdr *th = tcp_hdr(skb);
3493 	u32 seq = TCP_SKB_CB(skb)->seq;
3494 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3495 
3496 	return (/* 1. Pure ACK with correct sequence number. */
3497 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3498 
3499 		/* 2. ... and duplicate ACK. */
3500 		ack == tp->snd_una &&
3501 
3502 		/* 3. ... and does not update window. */
3503 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3504 
3505 		/* 4. ... and sits in replay window. */
3506 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3507 }
3508 
3509 static inline int tcp_paws_discard(const struct sock *sk,
3510 				   const struct sk_buff *skb)
3511 {
3512 	const struct tcp_sock *tp = tcp_sk(sk);
3513 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3514 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3515 		!tcp_disordered_ack(sk, skb));
3516 }
3517 
3518 /* Check segment sequence number for validity.
3519  *
3520  * Segment controls are considered valid, if the segment
3521  * fits to the window after truncation to the window. Acceptability
3522  * of data (and SYN, FIN, of course) is checked separately.
3523  * See tcp_data_queue(), for example.
3524  *
3525  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3526  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3527  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3528  * (borrowed from freebsd)
3529  */
3530 
3531 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3532 {
3533 	return	!before(end_seq, tp->rcv_wup) &&
3534 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3535 }
3536 
3537 /* When we get a reset we do this. */
3538 static void tcp_reset(struct sock *sk)
3539 {
3540 	/* We want the right error as BSD sees it (and indeed as we do). */
3541 	switch (sk->sk_state) {
3542 	case TCP_SYN_SENT:
3543 		sk->sk_err = ECONNREFUSED;
3544 		break;
3545 	case TCP_CLOSE_WAIT:
3546 		sk->sk_err = EPIPE;
3547 		break;
3548 	case TCP_CLOSE:
3549 		return;
3550 	default:
3551 		sk->sk_err = ECONNRESET;
3552 	}
3553 
3554 	if (!sock_flag(sk, SOCK_DEAD))
3555 		sk->sk_error_report(sk);
3556 
3557 	tcp_done(sk);
3558 }
3559 
3560 /*
3561  * 	Process the FIN bit. This now behaves as it is supposed to work
3562  *	and the FIN takes effect when it is validly part of sequence
3563  *	space. Not before when we get holes.
3564  *
3565  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3566  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3567  *	TIME-WAIT)
3568  *
3569  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3570  *	close and we go into CLOSING (and later onto TIME-WAIT)
3571  *
3572  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3573  */
3574 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3575 {
3576 	struct tcp_sock *tp = tcp_sk(sk);
3577 
3578 	inet_csk_schedule_ack(sk);
3579 
3580 	sk->sk_shutdown |= RCV_SHUTDOWN;
3581 	sock_set_flag(sk, SOCK_DONE);
3582 
3583 	switch (sk->sk_state) {
3584 	case TCP_SYN_RECV:
3585 	case TCP_ESTABLISHED:
3586 		/* Move to CLOSE_WAIT */
3587 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3588 		inet_csk(sk)->icsk_ack.pingpong = 1;
3589 		break;
3590 
3591 	case TCP_CLOSE_WAIT:
3592 	case TCP_CLOSING:
3593 		/* Received a retransmission of the FIN, do
3594 		 * nothing.
3595 		 */
3596 		break;
3597 	case TCP_LAST_ACK:
3598 		/* RFC793: Remain in the LAST-ACK state. */
3599 		break;
3600 
3601 	case TCP_FIN_WAIT1:
3602 		/* This case occurs when a simultaneous close
3603 		 * happens, we must ack the received FIN and
3604 		 * enter the CLOSING state.
3605 		 */
3606 		tcp_send_ack(sk);
3607 		tcp_set_state(sk, TCP_CLOSING);
3608 		break;
3609 	case TCP_FIN_WAIT2:
3610 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3611 		tcp_send_ack(sk);
3612 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3613 		break;
3614 	default:
3615 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3616 		 * cases we should never reach this piece of code.
3617 		 */
3618 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3619 		       __func__, sk->sk_state);
3620 		break;
3621 	}
3622 
3623 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3624 	 * Probably, we should reset in this case. For now drop them.
3625 	 */
3626 	__skb_queue_purge(&tp->out_of_order_queue);
3627 	if (tcp_is_sack(tp))
3628 		tcp_sack_reset(&tp->rx_opt);
3629 	sk_mem_reclaim(sk);
3630 
3631 	if (!sock_flag(sk, SOCK_DEAD)) {
3632 		sk->sk_state_change(sk);
3633 
3634 		/* Do not send POLL_HUP for half duplex close. */
3635 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3636 		    sk->sk_state == TCP_CLOSE)
3637 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3638 		else
3639 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3640 	}
3641 }
3642 
3643 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3644 				  u32 end_seq)
3645 {
3646 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3647 		if (before(seq, sp->start_seq))
3648 			sp->start_seq = seq;
3649 		if (after(end_seq, sp->end_seq))
3650 			sp->end_seq = end_seq;
3651 		return 1;
3652 	}
3653 	return 0;
3654 }
3655 
3656 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3657 {
3658 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3659 		if (before(seq, tp->rcv_nxt))
3660 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3661 		else
3662 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3663 
3664 		tp->rx_opt.dsack = 1;
3665 		tp->duplicate_sack[0].start_seq = seq;
3666 		tp->duplicate_sack[0].end_seq = end_seq;
3667 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3668 					   4 - tp->rx_opt.tstamp_ok);
3669 	}
3670 }
3671 
3672 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3673 {
3674 	if (!tp->rx_opt.dsack)
3675 		tcp_dsack_set(tp, seq, end_seq);
3676 	else
3677 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3678 }
3679 
3680 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3681 {
3682 	struct tcp_sock *tp = tcp_sk(sk);
3683 
3684 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3685 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3686 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3687 		tcp_enter_quickack_mode(sk);
3688 
3689 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3690 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3691 
3692 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3693 				end_seq = tp->rcv_nxt;
3694 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3695 		}
3696 	}
3697 
3698 	tcp_send_ack(sk);
3699 }
3700 
3701 /* These routines update the SACK block as out-of-order packets arrive or
3702  * in-order packets close up the sequence space.
3703  */
3704 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3705 {
3706 	int this_sack;
3707 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3708 	struct tcp_sack_block *swalk = sp + 1;
3709 
3710 	/* See if the recent change to the first SACK eats into
3711 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3712 	 */
3713 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3714 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3715 			int i;
3716 
3717 			/* Zap SWALK, by moving every further SACK up by one slot.
3718 			 * Decrease num_sacks.
3719 			 */
3720 			tp->rx_opt.num_sacks--;
3721 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3722 						   tp->rx_opt.dsack,
3723 						   4 - tp->rx_opt.tstamp_ok);
3724 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3725 				sp[i] = sp[i + 1];
3726 			continue;
3727 		}
3728 		this_sack++, swalk++;
3729 	}
3730 }
3731 
3732 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3733 				 struct tcp_sack_block *sack2)
3734 {
3735 	__u32 tmp;
3736 
3737 	tmp = sack1->start_seq;
3738 	sack1->start_seq = sack2->start_seq;
3739 	sack2->start_seq = tmp;
3740 
3741 	tmp = sack1->end_seq;
3742 	sack1->end_seq = sack2->end_seq;
3743 	sack2->end_seq = tmp;
3744 }
3745 
3746 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3747 {
3748 	struct tcp_sock *tp = tcp_sk(sk);
3749 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3750 	int cur_sacks = tp->rx_opt.num_sacks;
3751 	int this_sack;
3752 
3753 	if (!cur_sacks)
3754 		goto new_sack;
3755 
3756 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3757 		if (tcp_sack_extend(sp, seq, end_seq)) {
3758 			/* Rotate this_sack to the first one. */
3759 			for (; this_sack > 0; this_sack--, sp--)
3760 				tcp_sack_swap(sp, sp - 1);
3761 			if (cur_sacks > 1)
3762 				tcp_sack_maybe_coalesce(tp);
3763 			return;
3764 		}
3765 	}
3766 
3767 	/* Could not find an adjacent existing SACK, build a new one,
3768 	 * put it at the front, and shift everyone else down.  We
3769 	 * always know there is at least one SACK present already here.
3770 	 *
3771 	 * If the sack array is full, forget about the last one.
3772 	 */
3773 	if (this_sack >= 4) {
3774 		this_sack--;
3775 		tp->rx_opt.num_sacks--;
3776 		sp--;
3777 	}
3778 	for (; this_sack > 0; this_sack--, sp--)
3779 		*sp = *(sp - 1);
3780 
3781 new_sack:
3782 	/* Build the new head SACK, and we're done. */
3783 	sp->start_seq = seq;
3784 	sp->end_seq = end_seq;
3785 	tp->rx_opt.num_sacks++;
3786 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3787 				   4 - tp->rx_opt.tstamp_ok);
3788 }
3789 
3790 /* RCV.NXT advances, some SACKs should be eaten. */
3791 
3792 static void tcp_sack_remove(struct tcp_sock *tp)
3793 {
3794 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3795 	int num_sacks = tp->rx_opt.num_sacks;
3796 	int this_sack;
3797 
3798 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3799 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3800 		tp->rx_opt.num_sacks = 0;
3801 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3802 		return;
3803 	}
3804 
3805 	for (this_sack = 0; this_sack < num_sacks;) {
3806 		/* Check if the start of the sack is covered by RCV.NXT. */
3807 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3808 			int i;
3809 
3810 			/* RCV.NXT must cover all the block! */
3811 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3812 
3813 			/* Zap this SACK, by moving forward any other SACKS. */
3814 			for (i=this_sack+1; i < num_sacks; i++)
3815 				tp->selective_acks[i-1] = tp->selective_acks[i];
3816 			num_sacks--;
3817 			continue;
3818 		}
3819 		this_sack++;
3820 		sp++;
3821 	}
3822 	if (num_sacks != tp->rx_opt.num_sacks) {
3823 		tp->rx_opt.num_sacks = num_sacks;
3824 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3825 					   tp->rx_opt.dsack,
3826 					   4 - tp->rx_opt.tstamp_ok);
3827 	}
3828 }
3829 
3830 /* This one checks to see if we can put data from the
3831  * out_of_order queue into the receive_queue.
3832  */
3833 static void tcp_ofo_queue(struct sock *sk)
3834 {
3835 	struct tcp_sock *tp = tcp_sk(sk);
3836 	__u32 dsack_high = tp->rcv_nxt;
3837 	struct sk_buff *skb;
3838 
3839 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3840 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3841 			break;
3842 
3843 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3844 			__u32 dsack = dsack_high;
3845 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3846 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3847 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3848 		}
3849 
3850 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3851 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3852 			__skb_unlink(skb, &tp->out_of_order_queue);
3853 			__kfree_skb(skb);
3854 			continue;
3855 		}
3856 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3857 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3858 			   TCP_SKB_CB(skb)->end_seq);
3859 
3860 		__skb_unlink(skb, &tp->out_of_order_queue);
3861 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3862 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3863 		if (tcp_hdr(skb)->fin)
3864 			tcp_fin(skb, sk, tcp_hdr(skb));
3865 	}
3866 }
3867 
3868 static int tcp_prune_ofo_queue(struct sock *sk);
3869 static int tcp_prune_queue(struct sock *sk);
3870 
3871 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3872 {
3873 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3874 	    !sk_rmem_schedule(sk, size)) {
3875 
3876 		if (tcp_prune_queue(sk) < 0)
3877 			return -1;
3878 
3879 		if (!sk_rmem_schedule(sk, size)) {
3880 			if (!tcp_prune_ofo_queue(sk))
3881 				return -1;
3882 
3883 			if (!sk_rmem_schedule(sk, size))
3884 				return -1;
3885 		}
3886 	}
3887 	return 0;
3888 }
3889 
3890 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3891 {
3892 	struct tcphdr *th = tcp_hdr(skb);
3893 	struct tcp_sock *tp = tcp_sk(sk);
3894 	int eaten = -1;
3895 
3896 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3897 		goto drop;
3898 
3899 	__skb_pull(skb, th->doff * 4);
3900 
3901 	TCP_ECN_accept_cwr(tp, skb);
3902 
3903 	if (tp->rx_opt.dsack) {
3904 		tp->rx_opt.dsack = 0;
3905 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3906 					     4 - tp->rx_opt.tstamp_ok);
3907 	}
3908 
3909 	/*  Queue data for delivery to the user.
3910 	 *  Packets in sequence go to the receive queue.
3911 	 *  Out of sequence packets to the out_of_order_queue.
3912 	 */
3913 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3914 		if (tcp_receive_window(tp) == 0)
3915 			goto out_of_window;
3916 
3917 		/* Ok. In sequence. In window. */
3918 		if (tp->ucopy.task == current &&
3919 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3920 		    sock_owned_by_user(sk) && !tp->urg_data) {
3921 			int chunk = min_t(unsigned int, skb->len,
3922 					  tp->ucopy.len);
3923 
3924 			__set_current_state(TASK_RUNNING);
3925 
3926 			local_bh_enable();
3927 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3928 				tp->ucopy.len -= chunk;
3929 				tp->copied_seq += chunk;
3930 				eaten = (chunk == skb->len && !th->fin);
3931 				tcp_rcv_space_adjust(sk);
3932 			}
3933 			local_bh_disable();
3934 		}
3935 
3936 		if (eaten <= 0) {
3937 queue_and_out:
3938 			if (eaten < 0 &&
3939 			    tcp_try_rmem_schedule(sk, skb->truesize))
3940 				goto drop;
3941 
3942 			skb_set_owner_r(skb, sk);
3943 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3944 		}
3945 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3946 		if (skb->len)
3947 			tcp_event_data_recv(sk, skb);
3948 		if (th->fin)
3949 			tcp_fin(skb, sk, th);
3950 
3951 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3952 			tcp_ofo_queue(sk);
3953 
3954 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3955 			 * gap in queue is filled.
3956 			 */
3957 			if (skb_queue_empty(&tp->out_of_order_queue))
3958 				inet_csk(sk)->icsk_ack.pingpong = 0;
3959 		}
3960 
3961 		if (tp->rx_opt.num_sacks)
3962 			tcp_sack_remove(tp);
3963 
3964 		tcp_fast_path_check(sk);
3965 
3966 		if (eaten > 0)
3967 			__kfree_skb(skb);
3968 		else if (!sock_flag(sk, SOCK_DEAD))
3969 			sk->sk_data_ready(sk, 0);
3970 		return;
3971 	}
3972 
3973 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3974 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3975 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3976 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3977 
3978 out_of_window:
3979 		tcp_enter_quickack_mode(sk);
3980 		inet_csk_schedule_ack(sk);
3981 drop:
3982 		__kfree_skb(skb);
3983 		return;
3984 	}
3985 
3986 	/* Out of window. F.e. zero window probe. */
3987 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3988 		goto out_of_window;
3989 
3990 	tcp_enter_quickack_mode(sk);
3991 
3992 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3993 		/* Partial packet, seq < rcv_next < end_seq */
3994 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3995 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3996 			   TCP_SKB_CB(skb)->end_seq);
3997 
3998 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3999 
4000 		/* If window is closed, drop tail of packet. But after
4001 		 * remembering D-SACK for its head made in previous line.
4002 		 */
4003 		if (!tcp_receive_window(tp))
4004 			goto out_of_window;
4005 		goto queue_and_out;
4006 	}
4007 
4008 	TCP_ECN_check_ce(tp, skb);
4009 
4010 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4011 		goto drop;
4012 
4013 	/* Disable header prediction. */
4014 	tp->pred_flags = 0;
4015 	inet_csk_schedule_ack(sk);
4016 
4017 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4018 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4019 
4020 	skb_set_owner_r(skb, sk);
4021 
4022 	if (!skb_peek(&tp->out_of_order_queue)) {
4023 		/* Initial out of order segment, build 1 SACK. */
4024 		if (tcp_is_sack(tp)) {
4025 			tp->rx_opt.num_sacks = 1;
4026 			tp->rx_opt.dsack     = 0;
4027 			tp->rx_opt.eff_sacks = 1;
4028 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4029 			tp->selective_acks[0].end_seq =
4030 						TCP_SKB_CB(skb)->end_seq;
4031 		}
4032 		__skb_queue_head(&tp->out_of_order_queue, skb);
4033 	} else {
4034 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4035 		u32 seq = TCP_SKB_CB(skb)->seq;
4036 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4037 
4038 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4039 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4040 
4041 			if (!tp->rx_opt.num_sacks ||
4042 			    tp->selective_acks[0].end_seq != seq)
4043 				goto add_sack;
4044 
4045 			/* Common case: data arrive in order after hole. */
4046 			tp->selective_acks[0].end_seq = end_seq;
4047 			return;
4048 		}
4049 
4050 		/* Find place to insert this segment. */
4051 		do {
4052 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4053 				break;
4054 		} while ((skb1 = skb1->prev) !=
4055 			 (struct sk_buff *)&tp->out_of_order_queue);
4056 
4057 		/* Do skb overlap to previous one? */
4058 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4059 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4060 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4061 				/* All the bits are present. Drop. */
4062 				__kfree_skb(skb);
4063 				tcp_dsack_set(tp, seq, end_seq);
4064 				goto add_sack;
4065 			}
4066 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4067 				/* Partial overlap. */
4068 				tcp_dsack_set(tp, seq,
4069 					      TCP_SKB_CB(skb1)->end_seq);
4070 			} else {
4071 				skb1 = skb1->prev;
4072 			}
4073 		}
4074 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4075 
4076 		/* And clean segments covered by new one as whole. */
4077 		while ((skb1 = skb->next) !=
4078 		       (struct sk_buff *)&tp->out_of_order_queue &&
4079 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4080 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4081 				tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4082 						 end_seq);
4083 				break;
4084 			}
4085 			__skb_unlink(skb1, &tp->out_of_order_queue);
4086 			tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4087 					 TCP_SKB_CB(skb1)->end_seq);
4088 			__kfree_skb(skb1);
4089 		}
4090 
4091 add_sack:
4092 		if (tcp_is_sack(tp))
4093 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4094 	}
4095 }
4096 
4097 /* Collapse contiguous sequence of skbs head..tail with
4098  * sequence numbers start..end.
4099  * Segments with FIN/SYN are not collapsed (only because this
4100  * simplifies code)
4101  */
4102 static void
4103 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4104 	     struct sk_buff *head, struct sk_buff *tail,
4105 	     u32 start, u32 end)
4106 {
4107 	struct sk_buff *skb;
4108 
4109 	/* First, check that queue is collapsible and find
4110 	 * the point where collapsing can be useful. */
4111 	for (skb = head; skb != tail;) {
4112 		/* No new bits? It is possible on ofo queue. */
4113 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4114 			struct sk_buff *next = skb->next;
4115 			__skb_unlink(skb, list);
4116 			__kfree_skb(skb);
4117 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4118 			skb = next;
4119 			continue;
4120 		}
4121 
4122 		/* The first skb to collapse is:
4123 		 * - not SYN/FIN and
4124 		 * - bloated or contains data before "start" or
4125 		 *   overlaps to the next one.
4126 		 */
4127 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4128 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4129 		     before(TCP_SKB_CB(skb)->seq, start) ||
4130 		     (skb->next != tail &&
4131 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4132 			break;
4133 
4134 		/* Decided to skip this, advance start seq. */
4135 		start = TCP_SKB_CB(skb)->end_seq;
4136 		skb = skb->next;
4137 	}
4138 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4139 		return;
4140 
4141 	while (before(start, end)) {
4142 		struct sk_buff *nskb;
4143 		unsigned int header = skb_headroom(skb);
4144 		int copy = SKB_MAX_ORDER(header, 0);
4145 
4146 		/* Too big header? This can happen with IPv6. */
4147 		if (copy < 0)
4148 			return;
4149 		if (end - start < copy)
4150 			copy = end - start;
4151 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4152 		if (!nskb)
4153 			return;
4154 
4155 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4156 		skb_set_network_header(nskb, (skb_network_header(skb) -
4157 					      skb->head));
4158 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4159 						skb->head));
4160 		skb_reserve(nskb, header);
4161 		memcpy(nskb->head, skb->head, header);
4162 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4163 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4164 		__skb_insert(nskb, skb->prev, skb, list);
4165 		skb_set_owner_r(nskb, sk);
4166 
4167 		/* Copy data, releasing collapsed skbs. */
4168 		while (copy > 0) {
4169 			int offset = start - TCP_SKB_CB(skb)->seq;
4170 			int size = TCP_SKB_CB(skb)->end_seq - start;
4171 
4172 			BUG_ON(offset < 0);
4173 			if (size > 0) {
4174 				size = min(copy, size);
4175 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4176 					BUG();
4177 				TCP_SKB_CB(nskb)->end_seq += size;
4178 				copy -= size;
4179 				start += size;
4180 			}
4181 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4182 				struct sk_buff *next = skb->next;
4183 				__skb_unlink(skb, list);
4184 				__kfree_skb(skb);
4185 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4186 				skb = next;
4187 				if (skb == tail ||
4188 				    tcp_hdr(skb)->syn ||
4189 				    tcp_hdr(skb)->fin)
4190 					return;
4191 			}
4192 		}
4193 	}
4194 }
4195 
4196 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4197  * and tcp_collapse() them until all the queue is collapsed.
4198  */
4199 static void tcp_collapse_ofo_queue(struct sock *sk)
4200 {
4201 	struct tcp_sock *tp = tcp_sk(sk);
4202 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4203 	struct sk_buff *head;
4204 	u32 start, end;
4205 
4206 	if (skb == NULL)
4207 		return;
4208 
4209 	start = TCP_SKB_CB(skb)->seq;
4210 	end = TCP_SKB_CB(skb)->end_seq;
4211 	head = skb;
4212 
4213 	for (;;) {
4214 		skb = skb->next;
4215 
4216 		/* Segment is terminated when we see gap or when
4217 		 * we are at the end of all the queue. */
4218 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4219 		    after(TCP_SKB_CB(skb)->seq, end) ||
4220 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4221 			tcp_collapse(sk, &tp->out_of_order_queue,
4222 				     head, skb, start, end);
4223 			head = skb;
4224 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4225 				break;
4226 			/* Start new segment */
4227 			start = TCP_SKB_CB(skb)->seq;
4228 			end = TCP_SKB_CB(skb)->end_seq;
4229 		} else {
4230 			if (before(TCP_SKB_CB(skb)->seq, start))
4231 				start = TCP_SKB_CB(skb)->seq;
4232 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4233 				end = TCP_SKB_CB(skb)->end_seq;
4234 		}
4235 	}
4236 }
4237 
4238 /*
4239  * Purge the out-of-order queue.
4240  * Return true if queue was pruned.
4241  */
4242 static int tcp_prune_ofo_queue(struct sock *sk)
4243 {
4244 	struct tcp_sock *tp = tcp_sk(sk);
4245 	int res = 0;
4246 
4247 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4248 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4249 		__skb_queue_purge(&tp->out_of_order_queue);
4250 
4251 		/* Reset SACK state.  A conforming SACK implementation will
4252 		 * do the same at a timeout based retransmit.  When a connection
4253 		 * is in a sad state like this, we care only about integrity
4254 		 * of the connection not performance.
4255 		 */
4256 		if (tp->rx_opt.sack_ok)
4257 			tcp_sack_reset(&tp->rx_opt);
4258 		sk_mem_reclaim(sk);
4259 		res = 1;
4260 	}
4261 	return res;
4262 }
4263 
4264 /* Reduce allocated memory if we can, trying to get
4265  * the socket within its memory limits again.
4266  *
4267  * Return less than zero if we should start dropping frames
4268  * until the socket owning process reads some of the data
4269  * to stabilize the situation.
4270  */
4271 static int tcp_prune_queue(struct sock *sk)
4272 {
4273 	struct tcp_sock *tp = tcp_sk(sk);
4274 
4275 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4276 
4277 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4278 
4279 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4280 		tcp_clamp_window(sk);
4281 	else if (tcp_memory_pressure)
4282 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4283 
4284 	tcp_collapse_ofo_queue(sk);
4285 	tcp_collapse(sk, &sk->sk_receive_queue,
4286 		     sk->sk_receive_queue.next,
4287 		     (struct sk_buff *)&sk->sk_receive_queue,
4288 		     tp->copied_seq, tp->rcv_nxt);
4289 	sk_mem_reclaim(sk);
4290 
4291 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4292 		return 0;
4293 
4294 	/* Collapsing did not help, destructive actions follow.
4295 	 * This must not ever occur. */
4296 
4297 	tcp_prune_ofo_queue(sk);
4298 
4299 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4300 		return 0;
4301 
4302 	/* If we are really being abused, tell the caller to silently
4303 	 * drop receive data on the floor.  It will get retransmitted
4304 	 * and hopefully then we'll have sufficient space.
4305 	 */
4306 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4307 
4308 	/* Massive buffer overcommit. */
4309 	tp->pred_flags = 0;
4310 	return -1;
4311 }
4312 
4313 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4314  * As additional protections, we do not touch cwnd in retransmission phases,
4315  * and if application hit its sndbuf limit recently.
4316  */
4317 void tcp_cwnd_application_limited(struct sock *sk)
4318 {
4319 	struct tcp_sock *tp = tcp_sk(sk);
4320 
4321 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4322 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4323 		/* Limited by application or receiver window. */
4324 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4325 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4326 		if (win_used < tp->snd_cwnd) {
4327 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4328 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4329 		}
4330 		tp->snd_cwnd_used = 0;
4331 	}
4332 	tp->snd_cwnd_stamp = tcp_time_stamp;
4333 }
4334 
4335 static int tcp_should_expand_sndbuf(struct sock *sk)
4336 {
4337 	struct tcp_sock *tp = tcp_sk(sk);
4338 
4339 	/* If the user specified a specific send buffer setting, do
4340 	 * not modify it.
4341 	 */
4342 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4343 		return 0;
4344 
4345 	/* If we are under global TCP memory pressure, do not expand.  */
4346 	if (tcp_memory_pressure)
4347 		return 0;
4348 
4349 	/* If we are under soft global TCP memory pressure, do not expand.  */
4350 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4351 		return 0;
4352 
4353 	/* If we filled the congestion window, do not expand.  */
4354 	if (tp->packets_out >= tp->snd_cwnd)
4355 		return 0;
4356 
4357 	return 1;
4358 }
4359 
4360 /* When incoming ACK allowed to free some skb from write_queue,
4361  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4362  * on the exit from tcp input handler.
4363  *
4364  * PROBLEM: sndbuf expansion does not work well with largesend.
4365  */
4366 static void tcp_new_space(struct sock *sk)
4367 {
4368 	struct tcp_sock *tp = tcp_sk(sk);
4369 
4370 	if (tcp_should_expand_sndbuf(sk)) {
4371 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4372 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4373 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4374 				     tp->reordering + 1);
4375 		sndmem *= 2 * demanded;
4376 		if (sndmem > sk->sk_sndbuf)
4377 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4378 		tp->snd_cwnd_stamp = tcp_time_stamp;
4379 	}
4380 
4381 	sk->sk_write_space(sk);
4382 }
4383 
4384 static void tcp_check_space(struct sock *sk)
4385 {
4386 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4387 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4388 		if (sk->sk_socket &&
4389 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4390 			tcp_new_space(sk);
4391 	}
4392 }
4393 
4394 static inline void tcp_data_snd_check(struct sock *sk)
4395 {
4396 	tcp_push_pending_frames(sk);
4397 	tcp_check_space(sk);
4398 }
4399 
4400 /*
4401  * Check if sending an ack is needed.
4402  */
4403 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4404 {
4405 	struct tcp_sock *tp = tcp_sk(sk);
4406 
4407 	    /* More than one full frame received... */
4408 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4409 	     /* ... and right edge of window advances far enough.
4410 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4411 	      */
4412 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4413 	    /* We ACK each frame or... */
4414 	    tcp_in_quickack_mode(sk) ||
4415 	    /* We have out of order data. */
4416 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4417 		/* Then ack it now */
4418 		tcp_send_ack(sk);
4419 	} else {
4420 		/* Else, send delayed ack. */
4421 		tcp_send_delayed_ack(sk);
4422 	}
4423 }
4424 
4425 static inline void tcp_ack_snd_check(struct sock *sk)
4426 {
4427 	if (!inet_csk_ack_scheduled(sk)) {
4428 		/* We sent a data segment already. */
4429 		return;
4430 	}
4431 	__tcp_ack_snd_check(sk, 1);
4432 }
4433 
4434 /*
4435  *	This routine is only called when we have urgent data
4436  *	signaled. Its the 'slow' part of tcp_urg. It could be
4437  *	moved inline now as tcp_urg is only called from one
4438  *	place. We handle URGent data wrong. We have to - as
4439  *	BSD still doesn't use the correction from RFC961.
4440  *	For 1003.1g we should support a new option TCP_STDURG to permit
4441  *	either form (or just set the sysctl tcp_stdurg).
4442  */
4443 
4444 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4445 {
4446 	struct tcp_sock *tp = tcp_sk(sk);
4447 	u32 ptr = ntohs(th->urg_ptr);
4448 
4449 	if (ptr && !sysctl_tcp_stdurg)
4450 		ptr--;
4451 	ptr += ntohl(th->seq);
4452 
4453 	/* Ignore urgent data that we've already seen and read. */
4454 	if (after(tp->copied_seq, ptr))
4455 		return;
4456 
4457 	/* Do not replay urg ptr.
4458 	 *
4459 	 * NOTE: interesting situation not covered by specs.
4460 	 * Misbehaving sender may send urg ptr, pointing to segment,
4461 	 * which we already have in ofo queue. We are not able to fetch
4462 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4463 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4464 	 * situations. But it is worth to think about possibility of some
4465 	 * DoSes using some hypothetical application level deadlock.
4466 	 */
4467 	if (before(ptr, tp->rcv_nxt))
4468 		return;
4469 
4470 	/* Do we already have a newer (or duplicate) urgent pointer? */
4471 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4472 		return;
4473 
4474 	/* Tell the world about our new urgent pointer. */
4475 	sk_send_sigurg(sk);
4476 
4477 	/* We may be adding urgent data when the last byte read was
4478 	 * urgent. To do this requires some care. We cannot just ignore
4479 	 * tp->copied_seq since we would read the last urgent byte again
4480 	 * as data, nor can we alter copied_seq until this data arrives
4481 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4482 	 *
4483 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4484 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4485 	 * and expect that both A and B disappear from stream. This is _wrong_.
4486 	 * Though this happens in BSD with high probability, this is occasional.
4487 	 * Any application relying on this is buggy. Note also, that fix "works"
4488 	 * only in this artificial test. Insert some normal data between A and B and we will
4489 	 * decline of BSD again. Verdict: it is better to remove to trap
4490 	 * buggy users.
4491 	 */
4492 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4493 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4494 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4495 		tp->copied_seq++;
4496 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4497 			__skb_unlink(skb, &sk->sk_receive_queue);
4498 			__kfree_skb(skb);
4499 		}
4500 	}
4501 
4502 	tp->urg_data = TCP_URG_NOTYET;
4503 	tp->urg_seq = ptr;
4504 
4505 	/* Disable header prediction. */
4506 	tp->pred_flags = 0;
4507 }
4508 
4509 /* This is the 'fast' part of urgent handling. */
4510 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4511 {
4512 	struct tcp_sock *tp = tcp_sk(sk);
4513 
4514 	/* Check if we get a new urgent pointer - normally not. */
4515 	if (th->urg)
4516 		tcp_check_urg(sk, th);
4517 
4518 	/* Do we wait for any urgent data? - normally not... */
4519 	if (tp->urg_data == TCP_URG_NOTYET) {
4520 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4521 			  th->syn;
4522 
4523 		/* Is the urgent pointer pointing into this packet? */
4524 		if (ptr < skb->len) {
4525 			u8 tmp;
4526 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4527 				BUG();
4528 			tp->urg_data = TCP_URG_VALID | tmp;
4529 			if (!sock_flag(sk, SOCK_DEAD))
4530 				sk->sk_data_ready(sk, 0);
4531 		}
4532 	}
4533 }
4534 
4535 static int tcp_defer_accept_check(struct sock *sk)
4536 {
4537 	struct tcp_sock *tp = tcp_sk(sk);
4538 
4539 	if (tp->defer_tcp_accept.request) {
4540 		int queued_data =  tp->rcv_nxt - tp->copied_seq;
4541 		int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4542 			tcp_hdr((struct sk_buff *)
4543 				sk->sk_receive_queue.prev)->fin : 0;
4544 
4545 		if (queued_data && hasfin)
4546 			queued_data--;
4547 
4548 		if (queued_data &&
4549 		    tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4550 			if (sock_flag(sk, SOCK_KEEPOPEN)) {
4551 				inet_csk_reset_keepalive_timer(sk,
4552 							       keepalive_time_when(tp));
4553 			} else {
4554 				inet_csk_delete_keepalive_timer(sk);
4555 			}
4556 
4557 			inet_csk_reqsk_queue_add(
4558 				tp->defer_tcp_accept.listen_sk,
4559 				tp->defer_tcp_accept.request,
4560 				sk);
4561 
4562 			tp->defer_tcp_accept.listen_sk->sk_data_ready(
4563 				tp->defer_tcp_accept.listen_sk, 0);
4564 
4565 			sock_put(tp->defer_tcp_accept.listen_sk);
4566 			sock_put(sk);
4567 			tp->defer_tcp_accept.listen_sk = NULL;
4568 			tp->defer_tcp_accept.request = NULL;
4569 		} else if (hasfin ||
4570 			   tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4571 			tcp_reset(sk);
4572 			return -1;
4573 		}
4574 	}
4575 	return 0;
4576 }
4577 
4578 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4579 {
4580 	struct tcp_sock *tp = tcp_sk(sk);
4581 	int chunk = skb->len - hlen;
4582 	int err;
4583 
4584 	local_bh_enable();
4585 	if (skb_csum_unnecessary(skb))
4586 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4587 	else
4588 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4589 						       tp->ucopy.iov);
4590 
4591 	if (!err) {
4592 		tp->ucopy.len -= chunk;
4593 		tp->copied_seq += chunk;
4594 		tcp_rcv_space_adjust(sk);
4595 	}
4596 
4597 	local_bh_disable();
4598 	return err;
4599 }
4600 
4601 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4602 					    struct sk_buff *skb)
4603 {
4604 	__sum16 result;
4605 
4606 	if (sock_owned_by_user(sk)) {
4607 		local_bh_enable();
4608 		result = __tcp_checksum_complete(skb);
4609 		local_bh_disable();
4610 	} else {
4611 		result = __tcp_checksum_complete(skb);
4612 	}
4613 	return result;
4614 }
4615 
4616 static inline int tcp_checksum_complete_user(struct sock *sk,
4617 					     struct sk_buff *skb)
4618 {
4619 	return !skb_csum_unnecessary(skb) &&
4620 	       __tcp_checksum_complete_user(sk, skb);
4621 }
4622 
4623 #ifdef CONFIG_NET_DMA
4624 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4625 				  int hlen)
4626 {
4627 	struct tcp_sock *tp = tcp_sk(sk);
4628 	int chunk = skb->len - hlen;
4629 	int dma_cookie;
4630 	int copied_early = 0;
4631 
4632 	if (tp->ucopy.wakeup)
4633 		return 0;
4634 
4635 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4636 		tp->ucopy.dma_chan = get_softnet_dma();
4637 
4638 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4639 
4640 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4641 							 skb, hlen,
4642 							 tp->ucopy.iov, chunk,
4643 							 tp->ucopy.pinned_list);
4644 
4645 		if (dma_cookie < 0)
4646 			goto out;
4647 
4648 		tp->ucopy.dma_cookie = dma_cookie;
4649 		copied_early = 1;
4650 
4651 		tp->ucopy.len -= chunk;
4652 		tp->copied_seq += chunk;
4653 		tcp_rcv_space_adjust(sk);
4654 
4655 		if ((tp->ucopy.len == 0) ||
4656 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4657 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4658 			tp->ucopy.wakeup = 1;
4659 			sk->sk_data_ready(sk, 0);
4660 		}
4661 	} else if (chunk > 0) {
4662 		tp->ucopy.wakeup = 1;
4663 		sk->sk_data_ready(sk, 0);
4664 	}
4665 out:
4666 	return copied_early;
4667 }
4668 #endif /* CONFIG_NET_DMA */
4669 
4670 /*
4671  *	TCP receive function for the ESTABLISHED state.
4672  *
4673  *	It is split into a fast path and a slow path. The fast path is
4674  * 	disabled when:
4675  *	- A zero window was announced from us - zero window probing
4676  *        is only handled properly in the slow path.
4677  *	- Out of order segments arrived.
4678  *	- Urgent data is expected.
4679  *	- There is no buffer space left
4680  *	- Unexpected TCP flags/window values/header lengths are received
4681  *	  (detected by checking the TCP header against pred_flags)
4682  *	- Data is sent in both directions. Fast path only supports pure senders
4683  *	  or pure receivers (this means either the sequence number or the ack
4684  *	  value must stay constant)
4685  *	- Unexpected TCP option.
4686  *
4687  *	When these conditions are not satisfied it drops into a standard
4688  *	receive procedure patterned after RFC793 to handle all cases.
4689  *	The first three cases are guaranteed by proper pred_flags setting,
4690  *	the rest is checked inline. Fast processing is turned on in
4691  *	tcp_data_queue when everything is OK.
4692  */
4693 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4694 			struct tcphdr *th, unsigned len)
4695 {
4696 	struct tcp_sock *tp = tcp_sk(sk);
4697 
4698 	/*
4699 	 *	Header prediction.
4700 	 *	The code loosely follows the one in the famous
4701 	 *	"30 instruction TCP receive" Van Jacobson mail.
4702 	 *
4703 	 *	Van's trick is to deposit buffers into socket queue
4704 	 *	on a device interrupt, to call tcp_recv function
4705 	 *	on the receive process context and checksum and copy
4706 	 *	the buffer to user space. smart...
4707 	 *
4708 	 *	Our current scheme is not silly either but we take the
4709 	 *	extra cost of the net_bh soft interrupt processing...
4710 	 *	We do checksum and copy also but from device to kernel.
4711 	 */
4712 
4713 	tp->rx_opt.saw_tstamp = 0;
4714 
4715 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4716 	 *	if header_prediction is to be made
4717 	 *	'S' will always be tp->tcp_header_len >> 2
4718 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4719 	 *  turn it off	(when there are holes in the receive
4720 	 *	 space for instance)
4721 	 *	PSH flag is ignored.
4722 	 */
4723 
4724 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4725 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4726 		int tcp_header_len = tp->tcp_header_len;
4727 
4728 		/* Timestamp header prediction: tcp_header_len
4729 		 * is automatically equal to th->doff*4 due to pred_flags
4730 		 * match.
4731 		 */
4732 
4733 		/* Check timestamp */
4734 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4735 			__be32 *ptr = (__be32 *)(th + 1);
4736 
4737 			/* No? Slow path! */
4738 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4739 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4740 				goto slow_path;
4741 
4742 			tp->rx_opt.saw_tstamp = 1;
4743 			++ptr;
4744 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4745 			++ptr;
4746 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4747 
4748 			/* If PAWS failed, check it more carefully in slow path */
4749 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4750 				goto slow_path;
4751 
4752 			/* DO NOT update ts_recent here, if checksum fails
4753 			 * and timestamp was corrupted part, it will result
4754 			 * in a hung connection since we will drop all
4755 			 * future packets due to the PAWS test.
4756 			 */
4757 		}
4758 
4759 		if (len <= tcp_header_len) {
4760 			/* Bulk data transfer: sender */
4761 			if (len == tcp_header_len) {
4762 				/* Predicted packet is in window by definition.
4763 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4764 				 * Hence, check seq<=rcv_wup reduces to:
4765 				 */
4766 				if (tcp_header_len ==
4767 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4768 				    tp->rcv_nxt == tp->rcv_wup)
4769 					tcp_store_ts_recent(tp);
4770 
4771 				/* We know that such packets are checksummed
4772 				 * on entry.
4773 				 */
4774 				tcp_ack(sk, skb, 0);
4775 				__kfree_skb(skb);
4776 				tcp_data_snd_check(sk);
4777 				return 0;
4778 			} else { /* Header too small */
4779 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4780 				goto discard;
4781 			}
4782 		} else {
4783 			int eaten = 0;
4784 			int copied_early = 0;
4785 
4786 			if (tp->copied_seq == tp->rcv_nxt &&
4787 			    len - tcp_header_len <= tp->ucopy.len) {
4788 #ifdef CONFIG_NET_DMA
4789 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4790 					copied_early = 1;
4791 					eaten = 1;
4792 				}
4793 #endif
4794 				if (tp->ucopy.task == current &&
4795 				    sock_owned_by_user(sk) && !copied_early) {
4796 					__set_current_state(TASK_RUNNING);
4797 
4798 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4799 						eaten = 1;
4800 				}
4801 				if (eaten) {
4802 					/* Predicted packet is in window by definition.
4803 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4804 					 * Hence, check seq<=rcv_wup reduces to:
4805 					 */
4806 					if (tcp_header_len ==
4807 					    (sizeof(struct tcphdr) +
4808 					     TCPOLEN_TSTAMP_ALIGNED) &&
4809 					    tp->rcv_nxt == tp->rcv_wup)
4810 						tcp_store_ts_recent(tp);
4811 
4812 					tcp_rcv_rtt_measure_ts(sk, skb);
4813 
4814 					__skb_pull(skb, tcp_header_len);
4815 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4816 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4817 				}
4818 				if (copied_early)
4819 					tcp_cleanup_rbuf(sk, skb->len);
4820 			}
4821 			if (!eaten) {
4822 				if (tcp_checksum_complete_user(sk, skb))
4823 					goto csum_error;
4824 
4825 				/* Predicted packet is in window by definition.
4826 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4827 				 * Hence, check seq<=rcv_wup reduces to:
4828 				 */
4829 				if (tcp_header_len ==
4830 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4831 				    tp->rcv_nxt == tp->rcv_wup)
4832 					tcp_store_ts_recent(tp);
4833 
4834 				tcp_rcv_rtt_measure_ts(sk, skb);
4835 
4836 				if ((int)skb->truesize > sk->sk_forward_alloc)
4837 					goto step5;
4838 
4839 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4840 
4841 				/* Bulk data transfer: receiver */
4842 				__skb_pull(skb, tcp_header_len);
4843 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4844 				skb_set_owner_r(skb, sk);
4845 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4846 			}
4847 
4848 			tcp_event_data_recv(sk, skb);
4849 
4850 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4851 				/* Well, only one small jumplet in fast path... */
4852 				tcp_ack(sk, skb, FLAG_DATA);
4853 				tcp_data_snd_check(sk);
4854 				if (!inet_csk_ack_scheduled(sk))
4855 					goto no_ack;
4856 			}
4857 
4858 			__tcp_ack_snd_check(sk, 0);
4859 no_ack:
4860 #ifdef CONFIG_NET_DMA
4861 			if (copied_early)
4862 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4863 			else
4864 #endif
4865 			if (eaten)
4866 				__kfree_skb(skb);
4867 			else
4868 				sk->sk_data_ready(sk, 0);
4869 			return 0;
4870 		}
4871 	}
4872 
4873 slow_path:
4874 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4875 		goto csum_error;
4876 
4877 	/*
4878 	 * RFC1323: H1. Apply PAWS check first.
4879 	 */
4880 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4881 	    tcp_paws_discard(sk, skb)) {
4882 		if (!th->rst) {
4883 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4884 			tcp_send_dupack(sk, skb);
4885 			goto discard;
4886 		}
4887 		/* Resets are accepted even if PAWS failed.
4888 
4889 		   ts_recent update must be made after we are sure
4890 		   that the packet is in window.
4891 		 */
4892 	}
4893 
4894 	/*
4895 	 *	Standard slow path.
4896 	 */
4897 
4898 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4899 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4900 		 * (RST) segments are validated by checking their SEQ-fields."
4901 		 * And page 69: "If an incoming segment is not acceptable,
4902 		 * an acknowledgment should be sent in reply (unless the RST bit
4903 		 * is set, if so drop the segment and return)".
4904 		 */
4905 		if (!th->rst)
4906 			tcp_send_dupack(sk, skb);
4907 		goto discard;
4908 	}
4909 
4910 	if (th->rst) {
4911 		tcp_reset(sk);
4912 		goto discard;
4913 	}
4914 
4915 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4916 
4917 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4918 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4919 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4920 		tcp_reset(sk);
4921 		return 1;
4922 	}
4923 
4924 step5:
4925 	if (th->ack)
4926 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4927 
4928 	tcp_rcv_rtt_measure_ts(sk, skb);
4929 
4930 	/* Process urgent data. */
4931 	tcp_urg(sk, skb, th);
4932 
4933 	/* step 7: process the segment text */
4934 	tcp_data_queue(sk, skb);
4935 
4936 	tcp_data_snd_check(sk);
4937 	tcp_ack_snd_check(sk);
4938 
4939 	tcp_defer_accept_check(sk);
4940 	return 0;
4941 
4942 csum_error:
4943 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4944 
4945 discard:
4946 	__kfree_skb(skb);
4947 	return 0;
4948 }
4949 
4950 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4951 					 struct tcphdr *th, unsigned len)
4952 {
4953 	struct tcp_sock *tp = tcp_sk(sk);
4954 	struct inet_connection_sock *icsk = inet_csk(sk);
4955 	int saved_clamp = tp->rx_opt.mss_clamp;
4956 
4957 	tcp_parse_options(skb, &tp->rx_opt, 0);
4958 
4959 	if (th->ack) {
4960 		/* rfc793:
4961 		 * "If the state is SYN-SENT then
4962 		 *    first check the ACK bit
4963 		 *      If the ACK bit is set
4964 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4965 		 *        a reset (unless the RST bit is set, if so drop
4966 		 *        the segment and return)"
4967 		 *
4968 		 *  We do not send data with SYN, so that RFC-correct
4969 		 *  test reduces to:
4970 		 */
4971 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4972 			goto reset_and_undo;
4973 
4974 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4975 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4976 			     tcp_time_stamp)) {
4977 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4978 			goto reset_and_undo;
4979 		}
4980 
4981 		/* Now ACK is acceptable.
4982 		 *
4983 		 * "If the RST bit is set
4984 		 *    If the ACK was acceptable then signal the user "error:
4985 		 *    connection reset", drop the segment, enter CLOSED state,
4986 		 *    delete TCB, and return."
4987 		 */
4988 
4989 		if (th->rst) {
4990 			tcp_reset(sk);
4991 			goto discard;
4992 		}
4993 
4994 		/* rfc793:
4995 		 *   "fifth, if neither of the SYN or RST bits is set then
4996 		 *    drop the segment and return."
4997 		 *
4998 		 *    See note below!
4999 		 *                                        --ANK(990513)
5000 		 */
5001 		if (!th->syn)
5002 			goto discard_and_undo;
5003 
5004 		/* rfc793:
5005 		 *   "If the SYN bit is on ...
5006 		 *    are acceptable then ...
5007 		 *    (our SYN has been ACKed), change the connection
5008 		 *    state to ESTABLISHED..."
5009 		 */
5010 
5011 		TCP_ECN_rcv_synack(tp, th);
5012 
5013 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5014 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5015 
5016 		/* Ok.. it's good. Set up sequence numbers and
5017 		 * move to established.
5018 		 */
5019 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5020 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5021 
5022 		/* RFC1323: The window in SYN & SYN/ACK segments is
5023 		 * never scaled.
5024 		 */
5025 		tp->snd_wnd = ntohs(th->window);
5026 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5027 
5028 		if (!tp->rx_opt.wscale_ok) {
5029 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5030 			tp->window_clamp = min(tp->window_clamp, 65535U);
5031 		}
5032 
5033 		if (tp->rx_opt.saw_tstamp) {
5034 			tp->rx_opt.tstamp_ok	   = 1;
5035 			tp->tcp_header_len =
5036 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5037 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5038 			tcp_store_ts_recent(tp);
5039 		} else {
5040 			tp->tcp_header_len = sizeof(struct tcphdr);
5041 		}
5042 
5043 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5044 			tcp_enable_fack(tp);
5045 
5046 		tcp_mtup_init(sk);
5047 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5048 		tcp_initialize_rcv_mss(sk);
5049 
5050 		/* Remember, tcp_poll() does not lock socket!
5051 		 * Change state from SYN-SENT only after copied_seq
5052 		 * is initialized. */
5053 		tp->copied_seq = tp->rcv_nxt;
5054 		smp_mb();
5055 		tcp_set_state(sk, TCP_ESTABLISHED);
5056 
5057 		security_inet_conn_established(sk, skb);
5058 
5059 		/* Make sure socket is routed, for correct metrics.  */
5060 		icsk->icsk_af_ops->rebuild_header(sk);
5061 
5062 		tcp_init_metrics(sk);
5063 
5064 		tcp_init_congestion_control(sk);
5065 
5066 		/* Prevent spurious tcp_cwnd_restart() on first data
5067 		 * packet.
5068 		 */
5069 		tp->lsndtime = tcp_time_stamp;
5070 
5071 		tcp_init_buffer_space(sk);
5072 
5073 		if (sock_flag(sk, SOCK_KEEPOPEN))
5074 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5075 
5076 		if (!tp->rx_opt.snd_wscale)
5077 			__tcp_fast_path_on(tp, tp->snd_wnd);
5078 		else
5079 			tp->pred_flags = 0;
5080 
5081 		if (!sock_flag(sk, SOCK_DEAD)) {
5082 			sk->sk_state_change(sk);
5083 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5084 		}
5085 
5086 		if (sk->sk_write_pending ||
5087 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5088 		    icsk->icsk_ack.pingpong) {
5089 			/* Save one ACK. Data will be ready after
5090 			 * several ticks, if write_pending is set.
5091 			 *
5092 			 * It may be deleted, but with this feature tcpdumps
5093 			 * look so _wonderfully_ clever, that I was not able
5094 			 * to stand against the temptation 8)     --ANK
5095 			 */
5096 			inet_csk_schedule_ack(sk);
5097 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5098 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5099 			tcp_incr_quickack(sk);
5100 			tcp_enter_quickack_mode(sk);
5101 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5102 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5103 
5104 discard:
5105 			__kfree_skb(skb);
5106 			return 0;
5107 		} else {
5108 			tcp_send_ack(sk);
5109 		}
5110 		return -1;
5111 	}
5112 
5113 	/* No ACK in the segment */
5114 
5115 	if (th->rst) {
5116 		/* rfc793:
5117 		 * "If the RST bit is set
5118 		 *
5119 		 *      Otherwise (no ACK) drop the segment and return."
5120 		 */
5121 
5122 		goto discard_and_undo;
5123 	}
5124 
5125 	/* PAWS check. */
5126 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5127 	    tcp_paws_check(&tp->rx_opt, 0))
5128 		goto discard_and_undo;
5129 
5130 	if (th->syn) {
5131 		/* We see SYN without ACK. It is attempt of
5132 		 * simultaneous connect with crossed SYNs.
5133 		 * Particularly, it can be connect to self.
5134 		 */
5135 		tcp_set_state(sk, TCP_SYN_RECV);
5136 
5137 		if (tp->rx_opt.saw_tstamp) {
5138 			tp->rx_opt.tstamp_ok = 1;
5139 			tcp_store_ts_recent(tp);
5140 			tp->tcp_header_len =
5141 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5142 		} else {
5143 			tp->tcp_header_len = sizeof(struct tcphdr);
5144 		}
5145 
5146 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5147 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5148 
5149 		/* RFC1323: The window in SYN & SYN/ACK segments is
5150 		 * never scaled.
5151 		 */
5152 		tp->snd_wnd    = ntohs(th->window);
5153 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5154 		tp->max_window = tp->snd_wnd;
5155 
5156 		TCP_ECN_rcv_syn(tp, th);
5157 
5158 		tcp_mtup_init(sk);
5159 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5160 		tcp_initialize_rcv_mss(sk);
5161 
5162 		tcp_send_synack(sk);
5163 #if 0
5164 		/* Note, we could accept data and URG from this segment.
5165 		 * There are no obstacles to make this.
5166 		 *
5167 		 * However, if we ignore data in ACKless segments sometimes,
5168 		 * we have no reasons to accept it sometimes.
5169 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5170 		 * is not flawless. So, discard packet for sanity.
5171 		 * Uncomment this return to process the data.
5172 		 */
5173 		return -1;
5174 #else
5175 		goto discard;
5176 #endif
5177 	}
5178 	/* "fifth, if neither of the SYN or RST bits is set then
5179 	 * drop the segment and return."
5180 	 */
5181 
5182 discard_and_undo:
5183 	tcp_clear_options(&tp->rx_opt);
5184 	tp->rx_opt.mss_clamp = saved_clamp;
5185 	goto discard;
5186 
5187 reset_and_undo:
5188 	tcp_clear_options(&tp->rx_opt);
5189 	tp->rx_opt.mss_clamp = saved_clamp;
5190 	return 1;
5191 }
5192 
5193 /*
5194  *	This function implements the receiving procedure of RFC 793 for
5195  *	all states except ESTABLISHED and TIME_WAIT.
5196  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5197  *	address independent.
5198  */
5199 
5200 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5201 			  struct tcphdr *th, unsigned len)
5202 {
5203 	struct tcp_sock *tp = tcp_sk(sk);
5204 	struct inet_connection_sock *icsk = inet_csk(sk);
5205 	int queued = 0;
5206 
5207 	tp->rx_opt.saw_tstamp = 0;
5208 
5209 	switch (sk->sk_state) {
5210 	case TCP_CLOSE:
5211 		goto discard;
5212 
5213 	case TCP_LISTEN:
5214 		if (th->ack)
5215 			return 1;
5216 
5217 		if (th->rst)
5218 			goto discard;
5219 
5220 		if (th->syn) {
5221 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5222 				return 1;
5223 
5224 			/* Now we have several options: In theory there is
5225 			 * nothing else in the frame. KA9Q has an option to
5226 			 * send data with the syn, BSD accepts data with the
5227 			 * syn up to the [to be] advertised window and
5228 			 * Solaris 2.1 gives you a protocol error. For now
5229 			 * we just ignore it, that fits the spec precisely
5230 			 * and avoids incompatibilities. It would be nice in
5231 			 * future to drop through and process the data.
5232 			 *
5233 			 * Now that TTCP is starting to be used we ought to
5234 			 * queue this data.
5235 			 * But, this leaves one open to an easy denial of
5236 			 * service attack, and SYN cookies can't defend
5237 			 * against this problem. So, we drop the data
5238 			 * in the interest of security over speed unless
5239 			 * it's still in use.
5240 			 */
5241 			kfree_skb(skb);
5242 			return 0;
5243 		}
5244 		goto discard;
5245 
5246 	case TCP_SYN_SENT:
5247 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5248 		if (queued >= 0)
5249 			return queued;
5250 
5251 		/* Do step6 onward by hand. */
5252 		tcp_urg(sk, skb, th);
5253 		__kfree_skb(skb);
5254 		tcp_data_snd_check(sk);
5255 		return 0;
5256 	}
5257 
5258 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5259 	    tcp_paws_discard(sk, skb)) {
5260 		if (!th->rst) {
5261 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5262 			tcp_send_dupack(sk, skb);
5263 			goto discard;
5264 		}
5265 		/* Reset is accepted even if it did not pass PAWS. */
5266 	}
5267 
5268 	/* step 1: check sequence number */
5269 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5270 		if (!th->rst)
5271 			tcp_send_dupack(sk, skb);
5272 		goto discard;
5273 	}
5274 
5275 	/* step 2: check RST bit */
5276 	if (th->rst) {
5277 		tcp_reset(sk);
5278 		goto discard;
5279 	}
5280 
5281 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5282 
5283 	/* step 3: check security and precedence [ignored] */
5284 
5285 	/*	step 4:
5286 	 *
5287 	 *	Check for a SYN in window.
5288 	 */
5289 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5290 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5291 		tcp_reset(sk);
5292 		return 1;
5293 	}
5294 
5295 	/* step 5: check the ACK field */
5296 	if (th->ack) {
5297 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5298 
5299 		switch (sk->sk_state) {
5300 		case TCP_SYN_RECV:
5301 			if (acceptable) {
5302 				tp->copied_seq = tp->rcv_nxt;
5303 				smp_mb();
5304 				tcp_set_state(sk, TCP_ESTABLISHED);
5305 				sk->sk_state_change(sk);
5306 
5307 				/* Note, that this wakeup is only for marginal
5308 				 * crossed SYN case. Passively open sockets
5309 				 * are not waked up, because sk->sk_sleep ==
5310 				 * NULL and sk->sk_socket == NULL.
5311 				 */
5312 				if (sk->sk_socket)
5313 					sk_wake_async(sk,
5314 						      SOCK_WAKE_IO, POLL_OUT);
5315 
5316 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5317 				tp->snd_wnd = ntohs(th->window) <<
5318 					      tp->rx_opt.snd_wscale;
5319 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5320 					    TCP_SKB_CB(skb)->seq);
5321 
5322 				/* tcp_ack considers this ACK as duplicate
5323 				 * and does not calculate rtt.
5324 				 * Fix it at least with timestamps.
5325 				 */
5326 				if (tp->rx_opt.saw_tstamp &&
5327 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5328 					tcp_ack_saw_tstamp(sk, 0);
5329 
5330 				if (tp->rx_opt.tstamp_ok)
5331 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5332 
5333 				/* Make sure socket is routed, for
5334 				 * correct metrics.
5335 				 */
5336 				icsk->icsk_af_ops->rebuild_header(sk);
5337 
5338 				tcp_init_metrics(sk);
5339 
5340 				tcp_init_congestion_control(sk);
5341 
5342 				/* Prevent spurious tcp_cwnd_restart() on
5343 				 * first data packet.
5344 				 */
5345 				tp->lsndtime = tcp_time_stamp;
5346 
5347 				tcp_mtup_init(sk);
5348 				tcp_initialize_rcv_mss(sk);
5349 				tcp_init_buffer_space(sk);
5350 				tcp_fast_path_on(tp);
5351 			} else {
5352 				return 1;
5353 			}
5354 			break;
5355 
5356 		case TCP_FIN_WAIT1:
5357 			if (tp->snd_una == tp->write_seq) {
5358 				tcp_set_state(sk, TCP_FIN_WAIT2);
5359 				sk->sk_shutdown |= SEND_SHUTDOWN;
5360 				dst_confirm(sk->sk_dst_cache);
5361 
5362 				if (!sock_flag(sk, SOCK_DEAD))
5363 					/* Wake up lingering close() */
5364 					sk->sk_state_change(sk);
5365 				else {
5366 					int tmo;
5367 
5368 					if (tp->linger2 < 0 ||
5369 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5370 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5371 						tcp_done(sk);
5372 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5373 						return 1;
5374 					}
5375 
5376 					tmo = tcp_fin_time(sk);
5377 					if (tmo > TCP_TIMEWAIT_LEN) {
5378 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5379 					} else if (th->fin || sock_owned_by_user(sk)) {
5380 						/* Bad case. We could lose such FIN otherwise.
5381 						 * It is not a big problem, but it looks confusing
5382 						 * and not so rare event. We still can lose it now,
5383 						 * if it spins in bh_lock_sock(), but it is really
5384 						 * marginal case.
5385 						 */
5386 						inet_csk_reset_keepalive_timer(sk, tmo);
5387 					} else {
5388 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5389 						goto discard;
5390 					}
5391 				}
5392 			}
5393 			break;
5394 
5395 		case TCP_CLOSING:
5396 			if (tp->snd_una == tp->write_seq) {
5397 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5398 				goto discard;
5399 			}
5400 			break;
5401 
5402 		case TCP_LAST_ACK:
5403 			if (tp->snd_una == tp->write_seq) {
5404 				tcp_update_metrics(sk);
5405 				tcp_done(sk);
5406 				goto discard;
5407 			}
5408 			break;
5409 		}
5410 	} else
5411 		goto discard;
5412 
5413 	/* step 6: check the URG bit */
5414 	tcp_urg(sk, skb, th);
5415 
5416 	/* step 7: process the segment text */
5417 	switch (sk->sk_state) {
5418 	case TCP_CLOSE_WAIT:
5419 	case TCP_CLOSING:
5420 	case TCP_LAST_ACK:
5421 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5422 			break;
5423 	case TCP_FIN_WAIT1:
5424 	case TCP_FIN_WAIT2:
5425 		/* RFC 793 says to queue data in these states,
5426 		 * RFC 1122 says we MUST send a reset.
5427 		 * BSD 4.4 also does reset.
5428 		 */
5429 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5430 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5431 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5432 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5433 				tcp_reset(sk);
5434 				return 1;
5435 			}
5436 		}
5437 		/* Fall through */
5438 	case TCP_ESTABLISHED:
5439 		tcp_data_queue(sk, skb);
5440 		queued = 1;
5441 		break;
5442 	}
5443 
5444 	/* tcp_data could move socket to TIME-WAIT */
5445 	if (sk->sk_state != TCP_CLOSE) {
5446 		tcp_data_snd_check(sk);
5447 		tcp_ack_snd_check(sk);
5448 	}
5449 
5450 	if (!queued) {
5451 discard:
5452 		__kfree_skb(skb);
5453 	}
5454 	return 0;
5455 }
5456 
5457 EXPORT_SYMBOL(sysctl_tcp_ecn);
5458 EXPORT_SYMBOL(sysctl_tcp_reordering);
5459 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5460 EXPORT_SYMBOL(tcp_parse_options);
5461 EXPORT_SYMBOL(tcp_rcv_established);
5462 EXPORT_SYMBOL(tcp_rcv_state_process);
5463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5464