1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 if (!(tp->ecn_flags & TCP_ECN_OK)) 223 return; 224 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 /* fallinto */ 241 default: 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 } 244 } 245 246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 247 { 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 249 tp->ecn_flags &= ~TCP_ECN_OK; 250 } 251 252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 253 { 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 255 tp->ecn_flags &= ~TCP_ECN_OK; 256 } 257 258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 261 return true; 262 return false; 263 } 264 265 /* Buffer size and advertised window tuning. 266 * 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 268 */ 269 270 static void tcp_sndbuf_expand(struct sock *sk) 271 { 272 const struct tcp_sock *tp = tcp_sk(sk); 273 int sndmem, per_mss; 274 u32 nr_segs; 275 276 /* Worst case is non GSO/TSO : each frame consumes one skb 277 * and skb->head is kmalloced using power of two area of memory 278 */ 279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 280 MAX_TCP_HEADER + 281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 282 283 per_mss = roundup_pow_of_two(per_mss) + 284 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 285 286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 288 289 /* Fast Recovery (RFC 5681 3.2) : 290 * Cubic needs 1.7 factor, rounded to 2 to include 291 * extra cushion (application might react slowly to POLLOUT) 292 */ 293 sndmem = 2 * nr_segs * per_mss; 294 295 if (sk->sk_sndbuf < sndmem) 296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 297 } 298 299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 300 * 301 * All tcp_full_space() is split to two parts: "network" buffer, allocated 302 * forward and advertised in receiver window (tp->rcv_wnd) and 303 * "application buffer", required to isolate scheduling/application 304 * latencies from network. 305 * window_clamp is maximal advertised window. It can be less than 306 * tcp_full_space(), in this case tcp_full_space() - window_clamp 307 * is reserved for "application" buffer. The less window_clamp is 308 * the smoother our behaviour from viewpoint of network, but the lower 309 * throughput and the higher sensitivity of the connection to losses. 8) 310 * 311 * rcv_ssthresh is more strict window_clamp used at "slow start" 312 * phase to predict further behaviour of this connection. 313 * It is used for two goals: 314 * - to enforce header prediction at sender, even when application 315 * requires some significant "application buffer". It is check #1. 316 * - to prevent pruning of receive queue because of misprediction 317 * of receiver window. Check #2. 318 * 319 * The scheme does not work when sender sends good segments opening 320 * window and then starts to feed us spaghetti. But it should work 321 * in common situations. Otherwise, we have to rely on queue collapsing. 322 */ 323 324 /* Slow part of check#2. */ 325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 /* Optimize this! */ 329 int truesize = tcp_win_from_space(skb->truesize) >> 1; 330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 331 332 while (tp->rcv_ssthresh <= window) { 333 if (truesize <= skb->len) 334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 335 336 truesize >>= 1; 337 window >>= 1; 338 } 339 return 0; 340 } 341 342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 343 { 344 struct tcp_sock *tp = tcp_sk(sk); 345 346 /* Check #1 */ 347 if (tp->rcv_ssthresh < tp->window_clamp && 348 (int)tp->rcv_ssthresh < tcp_space(sk) && 349 !sk_under_memory_pressure(sk)) { 350 int incr; 351 352 /* Check #2. Increase window, if skb with such overhead 353 * will fit to rcvbuf in future. 354 */ 355 if (tcp_win_from_space(skb->truesize) <= skb->len) 356 incr = 2 * tp->advmss; 357 else 358 incr = __tcp_grow_window(sk, skb); 359 360 if (incr) { 361 incr = max_t(int, incr, 2 * skb->len); 362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 363 tp->window_clamp); 364 inet_csk(sk)->icsk_ack.quick |= 1; 365 } 366 } 367 } 368 369 /* 3. Tuning rcvbuf, when connection enters established state. */ 370 static void tcp_fixup_rcvbuf(struct sock *sk) 371 { 372 u32 mss = tcp_sk(sk)->advmss; 373 int rcvmem; 374 375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 376 tcp_default_init_rwnd(mss); 377 378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 379 * Allow enough cushion so that sender is not limited by our window 380 */ 381 if (sysctl_tcp_moderate_rcvbuf) 382 rcvmem <<= 2; 383 384 if (sk->sk_rcvbuf < rcvmem) 385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 386 } 387 388 /* 4. Try to fixup all. It is made immediately after connection enters 389 * established state. 390 */ 391 void tcp_init_buffer_space(struct sock *sk) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 int maxwin; 395 396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 397 tcp_fixup_rcvbuf(sk); 398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 399 tcp_sndbuf_expand(sk); 400 401 tp->rcvq_space.space = tp->rcv_wnd; 402 tp->rcvq_space.time = tcp_time_stamp; 403 tp->rcvq_space.seq = tp->copied_seq; 404 405 maxwin = tcp_full_space(sk); 406 407 if (tp->window_clamp >= maxwin) { 408 tp->window_clamp = maxwin; 409 410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 411 tp->window_clamp = max(maxwin - 412 (maxwin >> sysctl_tcp_app_win), 413 4 * tp->advmss); 414 } 415 416 /* Force reservation of one segment. */ 417 if (sysctl_tcp_app_win && 418 tp->window_clamp > 2 * tp->advmss && 419 tp->window_clamp + tp->advmss > maxwin) 420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 421 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 423 tp->snd_cwnd_stamp = tcp_time_stamp; 424 } 425 426 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 427 static void tcp_clamp_window(struct sock *sk) 428 { 429 struct tcp_sock *tp = tcp_sk(sk); 430 struct inet_connection_sock *icsk = inet_csk(sk); 431 432 icsk->icsk_ack.quick = 0; 433 434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 436 !sk_under_memory_pressure(sk) && 437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 439 sysctl_tcp_rmem[2]); 440 } 441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 443 } 444 445 /* Initialize RCV_MSS value. 446 * RCV_MSS is an our guess about MSS used by the peer. 447 * We haven't any direct information about the MSS. 448 * It's better to underestimate the RCV_MSS rather than overestimate. 449 * Overestimations make us ACKing less frequently than needed. 450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 451 */ 452 void tcp_initialize_rcv_mss(struct sock *sk) 453 { 454 const struct tcp_sock *tp = tcp_sk(sk); 455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 456 457 hint = min(hint, tp->rcv_wnd / 2); 458 hint = min(hint, TCP_MSS_DEFAULT); 459 hint = max(hint, TCP_MIN_MSS); 460 461 inet_csk(sk)->icsk_ack.rcv_mss = hint; 462 } 463 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 464 465 /* Receiver "autotuning" code. 466 * 467 * The algorithm for RTT estimation w/o timestamps is based on 468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 469 * <http://public.lanl.gov/radiant/pubs.html#DRS> 470 * 471 * More detail on this code can be found at 472 * <http://staff.psc.edu/jheffner/>, 473 * though this reference is out of date. A new paper 474 * is pending. 475 */ 476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 477 { 478 u32 new_sample = tp->rcv_rtt_est.rtt; 479 long m = sample; 480 481 if (m == 0) 482 m = 1; 483 484 if (new_sample != 0) { 485 /* If we sample in larger samples in the non-timestamp 486 * case, we could grossly overestimate the RTT especially 487 * with chatty applications or bulk transfer apps which 488 * are stalled on filesystem I/O. 489 * 490 * Also, since we are only going for a minimum in the 491 * non-timestamp case, we do not smooth things out 492 * else with timestamps disabled convergence takes too 493 * long. 494 */ 495 if (!win_dep) { 496 m -= (new_sample >> 3); 497 new_sample += m; 498 } else { 499 m <<= 3; 500 if (m < new_sample) 501 new_sample = m; 502 } 503 } else { 504 /* No previous measure. */ 505 new_sample = m << 3; 506 } 507 508 if (tp->rcv_rtt_est.rtt != new_sample) 509 tp->rcv_rtt_est.rtt = new_sample; 510 } 511 512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 513 { 514 if (tp->rcv_rtt_est.time == 0) 515 goto new_measure; 516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 517 return; 518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 519 520 new_measure: 521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 522 tp->rcv_rtt_est.time = tcp_time_stamp; 523 } 524 525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 526 const struct sk_buff *skb) 527 { 528 struct tcp_sock *tp = tcp_sk(sk); 529 if (tp->rx_opt.rcv_tsecr && 530 (TCP_SKB_CB(skb)->end_seq - 531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 533 } 534 535 /* 536 * This function should be called every time data is copied to user space. 537 * It calculates the appropriate TCP receive buffer space. 538 */ 539 void tcp_rcv_space_adjust(struct sock *sk) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 int time; 543 int copied; 544 545 time = tcp_time_stamp - tp->rcvq_space.time; 546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 547 return; 548 549 /* Number of bytes copied to user in last RTT */ 550 copied = tp->copied_seq - tp->rcvq_space.seq; 551 if (copied <= tp->rcvq_space.space) 552 goto new_measure; 553 554 /* A bit of theory : 555 * copied = bytes received in previous RTT, our base window 556 * To cope with packet losses, we need a 2x factor 557 * To cope with slow start, and sender growing its cwin by 100 % 558 * every RTT, we need a 4x factor, because the ACK we are sending 559 * now is for the next RTT, not the current one : 560 * <prev RTT . ><current RTT .. ><next RTT .... > 561 */ 562 563 if (sysctl_tcp_moderate_rcvbuf && 564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 565 int rcvwin, rcvmem, rcvbuf; 566 567 /* minimal window to cope with packet losses, assuming 568 * steady state. Add some cushion because of small variations. 569 */ 570 rcvwin = (copied << 1) + 16 * tp->advmss; 571 572 /* If rate increased by 25%, 573 * assume slow start, rcvwin = 3 * copied 574 * If rate increased by 50%, 575 * assume sender can use 2x growth, rcvwin = 4 * copied 576 */ 577 if (copied >= 578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 579 if (copied >= 580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 581 rcvwin <<= 1; 582 else 583 rcvwin += (rcvwin >> 1); 584 } 585 586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 587 while (tcp_win_from_space(rcvmem) < tp->advmss) 588 rcvmem += 128; 589 590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 591 if (rcvbuf > sk->sk_rcvbuf) { 592 sk->sk_rcvbuf = rcvbuf; 593 594 /* Make the window clamp follow along. */ 595 tp->window_clamp = rcvwin; 596 } 597 } 598 tp->rcvq_space.space = copied; 599 600 new_measure: 601 tp->rcvq_space.seq = tp->copied_seq; 602 tp->rcvq_space.time = tcp_time_stamp; 603 } 604 605 /* There is something which you must keep in mind when you analyze the 606 * behavior of the tp->ato delayed ack timeout interval. When a 607 * connection starts up, we want to ack as quickly as possible. The 608 * problem is that "good" TCP's do slow start at the beginning of data 609 * transmission. The means that until we send the first few ACK's the 610 * sender will sit on his end and only queue most of his data, because 611 * he can only send snd_cwnd unacked packets at any given time. For 612 * each ACK we send, he increments snd_cwnd and transmits more of his 613 * queue. -DaveM 614 */ 615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 616 { 617 struct tcp_sock *tp = tcp_sk(sk); 618 struct inet_connection_sock *icsk = inet_csk(sk); 619 u32 now; 620 621 inet_csk_schedule_ack(sk); 622 623 tcp_measure_rcv_mss(sk, skb); 624 625 tcp_rcv_rtt_measure(tp); 626 627 now = tcp_time_stamp; 628 629 if (!icsk->icsk_ack.ato) { 630 /* The _first_ data packet received, initialize 631 * delayed ACK engine. 632 */ 633 tcp_incr_quickack(sk); 634 icsk->icsk_ack.ato = TCP_ATO_MIN; 635 } else { 636 int m = now - icsk->icsk_ack.lrcvtime; 637 638 if (m <= TCP_ATO_MIN / 2) { 639 /* The fastest case is the first. */ 640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 641 } else if (m < icsk->icsk_ack.ato) { 642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 643 if (icsk->icsk_ack.ato > icsk->icsk_rto) 644 icsk->icsk_ack.ato = icsk->icsk_rto; 645 } else if (m > icsk->icsk_rto) { 646 /* Too long gap. Apparently sender failed to 647 * restart window, so that we send ACKs quickly. 648 */ 649 tcp_incr_quickack(sk); 650 sk_mem_reclaim(sk); 651 } 652 } 653 icsk->icsk_ack.lrcvtime = now; 654 655 TCP_ECN_check_ce(tp, skb); 656 657 if (skb->len >= 128) 658 tcp_grow_window(sk, skb); 659 } 660 661 /* Called to compute a smoothed rtt estimate. The data fed to this 662 * routine either comes from timestamps, or from segments that were 663 * known _not_ to have been retransmitted [see Karn/Partridge 664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 665 * piece by Van Jacobson. 666 * NOTE: the next three routines used to be one big routine. 667 * To save cycles in the RFC 1323 implementation it was better to break 668 * it up into three procedures. -- erics 669 */ 670 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 671 { 672 struct tcp_sock *tp = tcp_sk(sk); 673 long m = mrtt_us; /* RTT */ 674 u32 srtt = tp->srtt_us; 675 676 /* The following amusing code comes from Jacobson's 677 * article in SIGCOMM '88. Note that rtt and mdev 678 * are scaled versions of rtt and mean deviation. 679 * This is designed to be as fast as possible 680 * m stands for "measurement". 681 * 682 * On a 1990 paper the rto value is changed to: 683 * RTO = rtt + 4 * mdev 684 * 685 * Funny. This algorithm seems to be very broken. 686 * These formulae increase RTO, when it should be decreased, increase 687 * too slowly, when it should be increased quickly, decrease too quickly 688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 689 * does not matter how to _calculate_ it. Seems, it was trap 690 * that VJ failed to avoid. 8) 691 */ 692 if (srtt != 0) { 693 m -= (srtt >> 3); /* m is now error in rtt est */ 694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 695 if (m < 0) { 696 m = -m; /* m is now abs(error) */ 697 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 698 /* This is similar to one of Eifel findings. 699 * Eifel blocks mdev updates when rtt decreases. 700 * This solution is a bit different: we use finer gain 701 * for mdev in this case (alpha*beta). 702 * Like Eifel it also prevents growth of rto, 703 * but also it limits too fast rto decreases, 704 * happening in pure Eifel. 705 */ 706 if (m > 0) 707 m >>= 3; 708 } else { 709 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 710 } 711 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 712 if (tp->mdev_us > tp->mdev_max_us) { 713 tp->mdev_max_us = tp->mdev_us; 714 if (tp->mdev_max_us > tp->rttvar_us) 715 tp->rttvar_us = tp->mdev_max_us; 716 } 717 if (after(tp->snd_una, tp->rtt_seq)) { 718 if (tp->mdev_max_us < tp->rttvar_us) 719 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 720 tp->rtt_seq = tp->snd_nxt; 721 tp->mdev_max_us = tcp_rto_min_us(sk); 722 } 723 } else { 724 /* no previous measure. */ 725 srtt = m << 3; /* take the measured time to be rtt */ 726 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 727 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 728 tp->mdev_max_us = tp->rttvar_us; 729 tp->rtt_seq = tp->snd_nxt; 730 } 731 tp->srtt_us = max(1U, srtt); 732 } 733 734 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 735 * Note: TCP stack does not yet implement pacing. 736 * FQ packet scheduler can be used to implement cheap but effective 737 * TCP pacing, to smooth the burst on large writes when packets 738 * in flight is significantly lower than cwnd (or rwin) 739 */ 740 static void tcp_update_pacing_rate(struct sock *sk) 741 { 742 const struct tcp_sock *tp = tcp_sk(sk); 743 u64 rate; 744 745 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 746 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 747 748 rate *= max(tp->snd_cwnd, tp->packets_out); 749 750 if (likely(tp->srtt_us)) 751 do_div(rate, tp->srtt_us); 752 753 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 754 * without any lock. We want to make sure compiler wont store 755 * intermediate values in this location. 756 */ 757 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 758 sk->sk_max_pacing_rate); 759 } 760 761 /* Calculate rto without backoff. This is the second half of Van Jacobson's 762 * routine referred to above. 763 */ 764 static void tcp_set_rto(struct sock *sk) 765 { 766 const struct tcp_sock *tp = tcp_sk(sk); 767 /* Old crap is replaced with new one. 8) 768 * 769 * More seriously: 770 * 1. If rtt variance happened to be less 50msec, it is hallucination. 771 * It cannot be less due to utterly erratic ACK generation made 772 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 773 * to do with delayed acks, because at cwnd>2 true delack timeout 774 * is invisible. Actually, Linux-2.4 also generates erratic 775 * ACKs in some circumstances. 776 */ 777 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 778 779 /* 2. Fixups made earlier cannot be right. 780 * If we do not estimate RTO correctly without them, 781 * all the algo is pure shit and should be replaced 782 * with correct one. It is exactly, which we pretend to do. 783 */ 784 785 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 786 * guarantees that rto is higher. 787 */ 788 tcp_bound_rto(sk); 789 } 790 791 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 792 { 793 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 794 795 if (!cwnd) 796 cwnd = TCP_INIT_CWND; 797 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 798 } 799 800 /* 801 * Packet counting of FACK is based on in-order assumptions, therefore TCP 802 * disables it when reordering is detected 803 */ 804 void tcp_disable_fack(struct tcp_sock *tp) 805 { 806 /* RFC3517 uses different metric in lost marker => reset on change */ 807 if (tcp_is_fack(tp)) 808 tp->lost_skb_hint = NULL; 809 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 810 } 811 812 /* Take a notice that peer is sending D-SACKs */ 813 static void tcp_dsack_seen(struct tcp_sock *tp) 814 { 815 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 816 } 817 818 static void tcp_update_reordering(struct sock *sk, const int metric, 819 const int ts) 820 { 821 struct tcp_sock *tp = tcp_sk(sk); 822 if (metric > tp->reordering) { 823 int mib_idx; 824 825 tp->reordering = min(TCP_MAX_REORDERING, metric); 826 827 /* This exciting event is worth to be remembered. 8) */ 828 if (ts) 829 mib_idx = LINUX_MIB_TCPTSREORDER; 830 else if (tcp_is_reno(tp)) 831 mib_idx = LINUX_MIB_TCPRENOREORDER; 832 else if (tcp_is_fack(tp)) 833 mib_idx = LINUX_MIB_TCPFACKREORDER; 834 else 835 mib_idx = LINUX_MIB_TCPSACKREORDER; 836 837 NET_INC_STATS_BH(sock_net(sk), mib_idx); 838 #if FASTRETRANS_DEBUG > 1 839 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 840 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 841 tp->reordering, 842 tp->fackets_out, 843 tp->sacked_out, 844 tp->undo_marker ? tp->undo_retrans : 0); 845 #endif 846 tcp_disable_fack(tp); 847 } 848 849 if (metric > 0) 850 tcp_disable_early_retrans(tp); 851 } 852 853 /* This must be called before lost_out is incremented */ 854 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 855 { 856 if ((tp->retransmit_skb_hint == NULL) || 857 before(TCP_SKB_CB(skb)->seq, 858 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 859 tp->retransmit_skb_hint = skb; 860 861 if (!tp->lost_out || 862 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 863 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 864 } 865 866 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 867 { 868 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 869 tcp_verify_retransmit_hint(tp, skb); 870 871 tp->lost_out += tcp_skb_pcount(skb); 872 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 873 } 874 } 875 876 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 877 struct sk_buff *skb) 878 { 879 tcp_verify_retransmit_hint(tp, skb); 880 881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 882 tp->lost_out += tcp_skb_pcount(skb); 883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 884 } 885 } 886 887 /* This procedure tags the retransmission queue when SACKs arrive. 888 * 889 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 890 * Packets in queue with these bits set are counted in variables 891 * sacked_out, retrans_out and lost_out, correspondingly. 892 * 893 * Valid combinations are: 894 * Tag InFlight Description 895 * 0 1 - orig segment is in flight. 896 * S 0 - nothing flies, orig reached receiver. 897 * L 0 - nothing flies, orig lost by net. 898 * R 2 - both orig and retransmit are in flight. 899 * L|R 1 - orig is lost, retransmit is in flight. 900 * S|R 1 - orig reached receiver, retrans is still in flight. 901 * (L|S|R is logically valid, it could occur when L|R is sacked, 902 * but it is equivalent to plain S and code short-curcuits it to S. 903 * L|S is logically invalid, it would mean -1 packet in flight 8)) 904 * 905 * These 6 states form finite state machine, controlled by the following events: 906 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 907 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 908 * 3. Loss detection event of two flavors: 909 * A. Scoreboard estimator decided the packet is lost. 910 * A'. Reno "three dupacks" marks head of queue lost. 911 * A''. Its FACK modification, head until snd.fack is lost. 912 * B. SACK arrives sacking SND.NXT at the moment, when the 913 * segment was retransmitted. 914 * 4. D-SACK added new rule: D-SACK changes any tag to S. 915 * 916 * It is pleasant to note, that state diagram turns out to be commutative, 917 * so that we are allowed not to be bothered by order of our actions, 918 * when multiple events arrive simultaneously. (see the function below). 919 * 920 * Reordering detection. 921 * -------------------- 922 * Reordering metric is maximal distance, which a packet can be displaced 923 * in packet stream. With SACKs we can estimate it: 924 * 925 * 1. SACK fills old hole and the corresponding segment was not 926 * ever retransmitted -> reordering. Alas, we cannot use it 927 * when segment was retransmitted. 928 * 2. The last flaw is solved with D-SACK. D-SACK arrives 929 * for retransmitted and already SACKed segment -> reordering.. 930 * Both of these heuristics are not used in Loss state, when we cannot 931 * account for retransmits accurately. 932 * 933 * SACK block validation. 934 * ---------------------- 935 * 936 * SACK block range validation checks that the received SACK block fits to 937 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 938 * Note that SND.UNA is not included to the range though being valid because 939 * it means that the receiver is rather inconsistent with itself reporting 940 * SACK reneging when it should advance SND.UNA. Such SACK block this is 941 * perfectly valid, however, in light of RFC2018 which explicitly states 942 * that "SACK block MUST reflect the newest segment. Even if the newest 943 * segment is going to be discarded ...", not that it looks very clever 944 * in case of head skb. Due to potentional receiver driven attacks, we 945 * choose to avoid immediate execution of a walk in write queue due to 946 * reneging and defer head skb's loss recovery to standard loss recovery 947 * procedure that will eventually trigger (nothing forbids us doing this). 948 * 949 * Implements also blockage to start_seq wrap-around. Problem lies in the 950 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 951 * there's no guarantee that it will be before snd_nxt (n). The problem 952 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 953 * wrap (s_w): 954 * 955 * <- outs wnd -> <- wrapzone -> 956 * u e n u_w e_w s n_w 957 * | | | | | | | 958 * |<------------+------+----- TCP seqno space --------------+---------->| 959 * ...-- <2^31 ->| |<--------... 960 * ...---- >2^31 ------>| |<--------... 961 * 962 * Current code wouldn't be vulnerable but it's better still to discard such 963 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 964 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 965 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 966 * equal to the ideal case (infinite seqno space without wrap caused issues). 967 * 968 * With D-SACK the lower bound is extended to cover sequence space below 969 * SND.UNA down to undo_marker, which is the last point of interest. Yet 970 * again, D-SACK block must not to go across snd_una (for the same reason as 971 * for the normal SACK blocks, explained above). But there all simplicity 972 * ends, TCP might receive valid D-SACKs below that. As long as they reside 973 * fully below undo_marker they do not affect behavior in anyway and can 974 * therefore be safely ignored. In rare cases (which are more or less 975 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 976 * fragmentation and packet reordering past skb's retransmission. To consider 977 * them correctly, the acceptable range must be extended even more though 978 * the exact amount is rather hard to quantify. However, tp->max_window can 979 * be used as an exaggerated estimate. 980 */ 981 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 982 u32 start_seq, u32 end_seq) 983 { 984 /* Too far in future, or reversed (interpretation is ambiguous) */ 985 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 986 return false; 987 988 /* Nasty start_seq wrap-around check (see comments above) */ 989 if (!before(start_seq, tp->snd_nxt)) 990 return false; 991 992 /* In outstanding window? ...This is valid exit for D-SACKs too. 993 * start_seq == snd_una is non-sensical (see comments above) 994 */ 995 if (after(start_seq, tp->snd_una)) 996 return true; 997 998 if (!is_dsack || !tp->undo_marker) 999 return false; 1000 1001 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1002 if (after(end_seq, tp->snd_una)) 1003 return false; 1004 1005 if (!before(start_seq, tp->undo_marker)) 1006 return true; 1007 1008 /* Too old */ 1009 if (!after(end_seq, tp->undo_marker)) 1010 return false; 1011 1012 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1013 * start_seq < undo_marker and end_seq >= undo_marker. 1014 */ 1015 return !before(start_seq, end_seq - tp->max_window); 1016 } 1017 1018 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1019 * Event "B". Later note: FACK people cheated me again 8), we have to account 1020 * for reordering! Ugly, but should help. 1021 * 1022 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1023 * less than what is now known to be received by the other end (derived from 1024 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1025 * retransmitted skbs to avoid some costly processing per ACKs. 1026 */ 1027 static void tcp_mark_lost_retrans(struct sock *sk) 1028 { 1029 const struct inet_connection_sock *icsk = inet_csk(sk); 1030 struct tcp_sock *tp = tcp_sk(sk); 1031 struct sk_buff *skb; 1032 int cnt = 0; 1033 u32 new_low_seq = tp->snd_nxt; 1034 u32 received_upto = tcp_highest_sack_seq(tp); 1035 1036 if (!tcp_is_fack(tp) || !tp->retrans_out || 1037 !after(received_upto, tp->lost_retrans_low) || 1038 icsk->icsk_ca_state != TCP_CA_Recovery) 1039 return; 1040 1041 tcp_for_write_queue(skb, sk) { 1042 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1043 1044 if (skb == tcp_send_head(sk)) 1045 break; 1046 if (cnt == tp->retrans_out) 1047 break; 1048 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1049 continue; 1050 1051 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1052 continue; 1053 1054 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1055 * constraint here (see above) but figuring out that at 1056 * least tp->reordering SACK blocks reside between ack_seq 1057 * and received_upto is not easy task to do cheaply with 1058 * the available datastructures. 1059 * 1060 * Whether FACK should check here for tp->reordering segs 1061 * in-between one could argue for either way (it would be 1062 * rather simple to implement as we could count fack_count 1063 * during the walk and do tp->fackets_out - fack_count). 1064 */ 1065 if (after(received_upto, ack_seq)) { 1066 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1067 tp->retrans_out -= tcp_skb_pcount(skb); 1068 1069 tcp_skb_mark_lost_uncond_verify(tp, skb); 1070 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1071 } else { 1072 if (before(ack_seq, new_low_seq)) 1073 new_low_seq = ack_seq; 1074 cnt += tcp_skb_pcount(skb); 1075 } 1076 } 1077 1078 if (tp->retrans_out) 1079 tp->lost_retrans_low = new_low_seq; 1080 } 1081 1082 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1083 struct tcp_sack_block_wire *sp, int num_sacks, 1084 u32 prior_snd_una) 1085 { 1086 struct tcp_sock *tp = tcp_sk(sk); 1087 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1088 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1089 bool dup_sack = false; 1090 1091 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1092 dup_sack = true; 1093 tcp_dsack_seen(tp); 1094 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1095 } else if (num_sacks > 1) { 1096 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1097 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1098 1099 if (!after(end_seq_0, end_seq_1) && 1100 !before(start_seq_0, start_seq_1)) { 1101 dup_sack = true; 1102 tcp_dsack_seen(tp); 1103 NET_INC_STATS_BH(sock_net(sk), 1104 LINUX_MIB_TCPDSACKOFORECV); 1105 } 1106 } 1107 1108 /* D-SACK for already forgotten data... Do dumb counting. */ 1109 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1110 !after(end_seq_0, prior_snd_una) && 1111 after(end_seq_0, tp->undo_marker)) 1112 tp->undo_retrans--; 1113 1114 return dup_sack; 1115 } 1116 1117 struct tcp_sacktag_state { 1118 int reord; 1119 int fack_count; 1120 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1121 int flag; 1122 }; 1123 1124 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1125 * the incoming SACK may not exactly match but we can find smaller MSS 1126 * aligned portion of it that matches. Therefore we might need to fragment 1127 * which may fail and creates some hassle (caller must handle error case 1128 * returns). 1129 * 1130 * FIXME: this could be merged to shift decision code 1131 */ 1132 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1133 u32 start_seq, u32 end_seq) 1134 { 1135 int err; 1136 bool in_sack; 1137 unsigned int pkt_len; 1138 unsigned int mss; 1139 1140 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1141 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1142 1143 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1144 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1145 mss = tcp_skb_mss(skb); 1146 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1147 1148 if (!in_sack) { 1149 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1150 if (pkt_len < mss) 1151 pkt_len = mss; 1152 } else { 1153 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1154 if (pkt_len < mss) 1155 return -EINVAL; 1156 } 1157 1158 /* Round if necessary so that SACKs cover only full MSSes 1159 * and/or the remaining small portion (if present) 1160 */ 1161 if (pkt_len > mss) { 1162 unsigned int new_len = (pkt_len / mss) * mss; 1163 if (!in_sack && new_len < pkt_len) { 1164 new_len += mss; 1165 if (new_len > skb->len) 1166 return 0; 1167 } 1168 pkt_len = new_len; 1169 } 1170 err = tcp_fragment(sk, skb, pkt_len, mss); 1171 if (err < 0) 1172 return err; 1173 } 1174 1175 return in_sack; 1176 } 1177 1178 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1179 static u8 tcp_sacktag_one(struct sock *sk, 1180 struct tcp_sacktag_state *state, u8 sacked, 1181 u32 start_seq, u32 end_seq, 1182 int dup_sack, int pcount, 1183 const struct skb_mstamp *xmit_time) 1184 { 1185 struct tcp_sock *tp = tcp_sk(sk); 1186 int fack_count = state->fack_count; 1187 1188 /* Account D-SACK for retransmitted packet. */ 1189 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1190 if (tp->undo_marker && tp->undo_retrans && 1191 after(end_seq, tp->undo_marker)) 1192 tp->undo_retrans--; 1193 if (sacked & TCPCB_SACKED_ACKED) 1194 state->reord = min(fack_count, state->reord); 1195 } 1196 1197 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1198 if (!after(end_seq, tp->snd_una)) 1199 return sacked; 1200 1201 if (!(sacked & TCPCB_SACKED_ACKED)) { 1202 if (sacked & TCPCB_SACKED_RETRANS) { 1203 /* If the segment is not tagged as lost, 1204 * we do not clear RETRANS, believing 1205 * that retransmission is still in flight. 1206 */ 1207 if (sacked & TCPCB_LOST) { 1208 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1209 tp->lost_out -= pcount; 1210 tp->retrans_out -= pcount; 1211 } 1212 } else { 1213 if (!(sacked & TCPCB_RETRANS)) { 1214 /* New sack for not retransmitted frame, 1215 * which was in hole. It is reordering. 1216 */ 1217 if (before(start_seq, 1218 tcp_highest_sack_seq(tp))) 1219 state->reord = min(fack_count, 1220 state->reord); 1221 if (!after(end_seq, tp->high_seq)) 1222 state->flag |= FLAG_ORIG_SACK_ACKED; 1223 /* Pick the earliest sequence sacked for RTT */ 1224 if (state->rtt_us < 0) { 1225 struct skb_mstamp now; 1226 1227 skb_mstamp_get(&now); 1228 state->rtt_us = skb_mstamp_us_delta(&now, 1229 xmit_time); 1230 } 1231 } 1232 1233 if (sacked & TCPCB_LOST) { 1234 sacked &= ~TCPCB_LOST; 1235 tp->lost_out -= pcount; 1236 } 1237 } 1238 1239 sacked |= TCPCB_SACKED_ACKED; 1240 state->flag |= FLAG_DATA_SACKED; 1241 tp->sacked_out += pcount; 1242 1243 fack_count += pcount; 1244 1245 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1246 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1247 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1248 tp->lost_cnt_hint += pcount; 1249 1250 if (fack_count > tp->fackets_out) 1251 tp->fackets_out = fack_count; 1252 } 1253 1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1255 * frames and clear it. undo_retrans is decreased above, L|R frames 1256 * are accounted above as well. 1257 */ 1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1259 sacked &= ~TCPCB_SACKED_RETRANS; 1260 tp->retrans_out -= pcount; 1261 } 1262 1263 return sacked; 1264 } 1265 1266 /* Shift newly-SACKed bytes from this skb to the immediately previous 1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1268 */ 1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1270 struct tcp_sacktag_state *state, 1271 unsigned int pcount, int shifted, int mss, 1272 bool dup_sack) 1273 { 1274 struct tcp_sock *tp = tcp_sk(sk); 1275 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1278 1279 BUG_ON(!pcount); 1280 1281 /* Adjust counters and hints for the newly sacked sequence 1282 * range but discard the return value since prev is already 1283 * marked. We must tag the range first because the seq 1284 * advancement below implicitly advances 1285 * tcp_highest_sack_seq() when skb is highest_sack. 1286 */ 1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1288 start_seq, end_seq, dup_sack, pcount, 1289 &skb->skb_mstamp); 1290 1291 if (skb == tp->lost_skb_hint) 1292 tp->lost_cnt_hint += pcount; 1293 1294 TCP_SKB_CB(prev)->end_seq += shifted; 1295 TCP_SKB_CB(skb)->seq += shifted; 1296 1297 skb_shinfo(prev)->gso_segs += pcount; 1298 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1299 skb_shinfo(skb)->gso_segs -= pcount; 1300 1301 /* When we're adding to gso_segs == 1, gso_size will be zero, 1302 * in theory this shouldn't be necessary but as long as DSACK 1303 * code can come after this skb later on it's better to keep 1304 * setting gso_size to something. 1305 */ 1306 if (!skb_shinfo(prev)->gso_size) { 1307 skb_shinfo(prev)->gso_size = mss; 1308 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1309 } 1310 1311 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1312 if (skb_shinfo(skb)->gso_segs <= 1) { 1313 skb_shinfo(skb)->gso_size = 0; 1314 skb_shinfo(skb)->gso_type = 0; 1315 } 1316 1317 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1318 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1319 1320 if (skb->len > 0) { 1321 BUG_ON(!tcp_skb_pcount(skb)); 1322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1323 return false; 1324 } 1325 1326 /* Whole SKB was eaten :-) */ 1327 1328 if (skb == tp->retransmit_skb_hint) 1329 tp->retransmit_skb_hint = prev; 1330 if (skb == tp->lost_skb_hint) { 1331 tp->lost_skb_hint = prev; 1332 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1333 } 1334 1335 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1337 TCP_SKB_CB(prev)->end_seq++; 1338 1339 if (skb == tcp_highest_sack(sk)) 1340 tcp_advance_highest_sack(sk, skb); 1341 1342 tcp_unlink_write_queue(skb, sk); 1343 sk_wmem_free_skb(sk, skb); 1344 1345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1346 1347 return true; 1348 } 1349 1350 /* I wish gso_size would have a bit more sane initialization than 1351 * something-or-zero which complicates things 1352 */ 1353 static int tcp_skb_seglen(const struct sk_buff *skb) 1354 { 1355 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1356 } 1357 1358 /* Shifting pages past head area doesn't work */ 1359 static int skb_can_shift(const struct sk_buff *skb) 1360 { 1361 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1362 } 1363 1364 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1365 * skb. 1366 */ 1367 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1368 struct tcp_sacktag_state *state, 1369 u32 start_seq, u32 end_seq, 1370 bool dup_sack) 1371 { 1372 struct tcp_sock *tp = tcp_sk(sk); 1373 struct sk_buff *prev; 1374 int mss; 1375 int pcount = 0; 1376 int len; 1377 int in_sack; 1378 1379 if (!sk_can_gso(sk)) 1380 goto fallback; 1381 1382 /* Normally R but no L won't result in plain S */ 1383 if (!dup_sack && 1384 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1385 goto fallback; 1386 if (!skb_can_shift(skb)) 1387 goto fallback; 1388 /* This frame is about to be dropped (was ACKed). */ 1389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1390 goto fallback; 1391 1392 /* Can only happen with delayed DSACK + discard craziness */ 1393 if (unlikely(skb == tcp_write_queue_head(sk))) 1394 goto fallback; 1395 prev = tcp_write_queue_prev(sk, skb); 1396 1397 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1398 goto fallback; 1399 1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1402 1403 if (in_sack) { 1404 len = skb->len; 1405 pcount = tcp_skb_pcount(skb); 1406 mss = tcp_skb_seglen(skb); 1407 1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1409 * drop this restriction as unnecessary 1410 */ 1411 if (mss != tcp_skb_seglen(prev)) 1412 goto fallback; 1413 } else { 1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1415 goto noop; 1416 /* CHECKME: This is non-MSS split case only?, this will 1417 * cause skipped skbs due to advancing loop btw, original 1418 * has that feature too 1419 */ 1420 if (tcp_skb_pcount(skb) <= 1) 1421 goto noop; 1422 1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1424 if (!in_sack) { 1425 /* TODO: head merge to next could be attempted here 1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1427 * though it might not be worth of the additional hassle 1428 * 1429 * ...we can probably just fallback to what was done 1430 * previously. We could try merging non-SACKed ones 1431 * as well but it probably isn't going to buy off 1432 * because later SACKs might again split them, and 1433 * it would make skb timestamp tracking considerably 1434 * harder problem. 1435 */ 1436 goto fallback; 1437 } 1438 1439 len = end_seq - TCP_SKB_CB(skb)->seq; 1440 BUG_ON(len < 0); 1441 BUG_ON(len > skb->len); 1442 1443 /* MSS boundaries should be honoured or else pcount will 1444 * severely break even though it makes things bit trickier. 1445 * Optimize common case to avoid most of the divides 1446 */ 1447 mss = tcp_skb_mss(skb); 1448 1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1450 * drop this restriction as unnecessary 1451 */ 1452 if (mss != tcp_skb_seglen(prev)) 1453 goto fallback; 1454 1455 if (len == mss) { 1456 pcount = 1; 1457 } else if (len < mss) { 1458 goto noop; 1459 } else { 1460 pcount = len / mss; 1461 len = pcount * mss; 1462 } 1463 } 1464 1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1467 goto fallback; 1468 1469 if (!skb_shift(prev, skb, len)) 1470 goto fallback; 1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1472 goto out; 1473 1474 /* Hole filled allows collapsing with the next as well, this is very 1475 * useful when hole on every nth skb pattern happens 1476 */ 1477 if (prev == tcp_write_queue_tail(sk)) 1478 goto out; 1479 skb = tcp_write_queue_next(sk, prev); 1480 1481 if (!skb_can_shift(skb) || 1482 (skb == tcp_send_head(sk)) || 1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1484 (mss != tcp_skb_seglen(skb))) 1485 goto out; 1486 1487 len = skb->len; 1488 if (skb_shift(prev, skb, len)) { 1489 pcount += tcp_skb_pcount(skb); 1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1491 } 1492 1493 out: 1494 state->fack_count += pcount; 1495 return prev; 1496 1497 noop: 1498 return skb; 1499 1500 fallback: 1501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1502 return NULL; 1503 } 1504 1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1506 struct tcp_sack_block *next_dup, 1507 struct tcp_sacktag_state *state, 1508 u32 start_seq, u32 end_seq, 1509 bool dup_sack_in) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 struct sk_buff *tmp; 1513 1514 tcp_for_write_queue_from(skb, sk) { 1515 int in_sack = 0; 1516 bool dup_sack = dup_sack_in; 1517 1518 if (skb == tcp_send_head(sk)) 1519 break; 1520 1521 /* queue is in-order => we can short-circuit the walk early */ 1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1523 break; 1524 1525 if ((next_dup != NULL) && 1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1527 in_sack = tcp_match_skb_to_sack(sk, skb, 1528 next_dup->start_seq, 1529 next_dup->end_seq); 1530 if (in_sack > 0) 1531 dup_sack = true; 1532 } 1533 1534 /* skb reference here is a bit tricky to get right, since 1535 * shifting can eat and free both this skb and the next, 1536 * so not even _safe variant of the loop is enough. 1537 */ 1538 if (in_sack <= 0) { 1539 tmp = tcp_shift_skb_data(sk, skb, state, 1540 start_seq, end_seq, dup_sack); 1541 if (tmp != NULL) { 1542 if (tmp != skb) { 1543 skb = tmp; 1544 continue; 1545 } 1546 1547 in_sack = 0; 1548 } else { 1549 in_sack = tcp_match_skb_to_sack(sk, skb, 1550 start_seq, 1551 end_seq); 1552 } 1553 } 1554 1555 if (unlikely(in_sack < 0)) 1556 break; 1557 1558 if (in_sack) { 1559 TCP_SKB_CB(skb)->sacked = 1560 tcp_sacktag_one(sk, 1561 state, 1562 TCP_SKB_CB(skb)->sacked, 1563 TCP_SKB_CB(skb)->seq, 1564 TCP_SKB_CB(skb)->end_seq, 1565 dup_sack, 1566 tcp_skb_pcount(skb), 1567 &skb->skb_mstamp); 1568 1569 if (!before(TCP_SKB_CB(skb)->seq, 1570 tcp_highest_sack_seq(tp))) 1571 tcp_advance_highest_sack(sk, skb); 1572 } 1573 1574 state->fack_count += tcp_skb_pcount(skb); 1575 } 1576 return skb; 1577 } 1578 1579 /* Avoid all extra work that is being done by sacktag while walking in 1580 * a normal way 1581 */ 1582 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1583 struct tcp_sacktag_state *state, 1584 u32 skip_to_seq) 1585 { 1586 tcp_for_write_queue_from(skb, sk) { 1587 if (skb == tcp_send_head(sk)) 1588 break; 1589 1590 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1591 break; 1592 1593 state->fack_count += tcp_skb_pcount(skb); 1594 } 1595 return skb; 1596 } 1597 1598 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1599 struct sock *sk, 1600 struct tcp_sack_block *next_dup, 1601 struct tcp_sacktag_state *state, 1602 u32 skip_to_seq) 1603 { 1604 if (next_dup == NULL) 1605 return skb; 1606 1607 if (before(next_dup->start_seq, skip_to_seq)) { 1608 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1609 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1610 next_dup->start_seq, next_dup->end_seq, 1611 1); 1612 } 1613 1614 return skb; 1615 } 1616 1617 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1618 { 1619 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1620 } 1621 1622 static int 1623 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1624 u32 prior_snd_una, long *sack_rtt_us) 1625 { 1626 struct tcp_sock *tp = tcp_sk(sk); 1627 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1628 TCP_SKB_CB(ack_skb)->sacked); 1629 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1630 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1631 struct tcp_sack_block *cache; 1632 struct tcp_sacktag_state state; 1633 struct sk_buff *skb; 1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1635 int used_sacks; 1636 bool found_dup_sack = false; 1637 int i, j; 1638 int first_sack_index; 1639 1640 state.flag = 0; 1641 state.reord = tp->packets_out; 1642 state.rtt_us = -1L; 1643 1644 if (!tp->sacked_out) { 1645 if (WARN_ON(tp->fackets_out)) 1646 tp->fackets_out = 0; 1647 tcp_highest_sack_reset(sk); 1648 } 1649 1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1651 num_sacks, prior_snd_una); 1652 if (found_dup_sack) 1653 state.flag |= FLAG_DSACKING_ACK; 1654 1655 /* Eliminate too old ACKs, but take into 1656 * account more or less fresh ones, they can 1657 * contain valid SACK info. 1658 */ 1659 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1660 return 0; 1661 1662 if (!tp->packets_out) 1663 goto out; 1664 1665 used_sacks = 0; 1666 first_sack_index = 0; 1667 for (i = 0; i < num_sacks; i++) { 1668 bool dup_sack = !i && found_dup_sack; 1669 1670 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1671 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1672 1673 if (!tcp_is_sackblock_valid(tp, dup_sack, 1674 sp[used_sacks].start_seq, 1675 sp[used_sacks].end_seq)) { 1676 int mib_idx; 1677 1678 if (dup_sack) { 1679 if (!tp->undo_marker) 1680 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1681 else 1682 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1683 } else { 1684 /* Don't count olds caused by ACK reordering */ 1685 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1686 !after(sp[used_sacks].end_seq, tp->snd_una)) 1687 continue; 1688 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1689 } 1690 1691 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1692 if (i == 0) 1693 first_sack_index = -1; 1694 continue; 1695 } 1696 1697 /* Ignore very old stuff early */ 1698 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1699 continue; 1700 1701 used_sacks++; 1702 } 1703 1704 /* order SACK blocks to allow in order walk of the retrans queue */ 1705 for (i = used_sacks - 1; i > 0; i--) { 1706 for (j = 0; j < i; j++) { 1707 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1708 swap(sp[j], sp[j + 1]); 1709 1710 /* Track where the first SACK block goes to */ 1711 if (j == first_sack_index) 1712 first_sack_index = j + 1; 1713 } 1714 } 1715 } 1716 1717 skb = tcp_write_queue_head(sk); 1718 state.fack_count = 0; 1719 i = 0; 1720 1721 if (!tp->sacked_out) { 1722 /* It's already past, so skip checking against it */ 1723 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1724 } else { 1725 cache = tp->recv_sack_cache; 1726 /* Skip empty blocks in at head of the cache */ 1727 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1728 !cache->end_seq) 1729 cache++; 1730 } 1731 1732 while (i < used_sacks) { 1733 u32 start_seq = sp[i].start_seq; 1734 u32 end_seq = sp[i].end_seq; 1735 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1736 struct tcp_sack_block *next_dup = NULL; 1737 1738 if (found_dup_sack && ((i + 1) == first_sack_index)) 1739 next_dup = &sp[i + 1]; 1740 1741 /* Skip too early cached blocks */ 1742 while (tcp_sack_cache_ok(tp, cache) && 1743 !before(start_seq, cache->end_seq)) 1744 cache++; 1745 1746 /* Can skip some work by looking recv_sack_cache? */ 1747 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1748 after(end_seq, cache->start_seq)) { 1749 1750 /* Head todo? */ 1751 if (before(start_seq, cache->start_seq)) { 1752 skb = tcp_sacktag_skip(skb, sk, &state, 1753 start_seq); 1754 skb = tcp_sacktag_walk(skb, sk, next_dup, 1755 &state, 1756 start_seq, 1757 cache->start_seq, 1758 dup_sack); 1759 } 1760 1761 /* Rest of the block already fully processed? */ 1762 if (!after(end_seq, cache->end_seq)) 1763 goto advance_sp; 1764 1765 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1766 &state, 1767 cache->end_seq); 1768 1769 /* ...tail remains todo... */ 1770 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1771 /* ...but better entrypoint exists! */ 1772 skb = tcp_highest_sack(sk); 1773 if (skb == NULL) 1774 break; 1775 state.fack_count = tp->fackets_out; 1776 cache++; 1777 goto walk; 1778 } 1779 1780 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1781 /* Check overlap against next cached too (past this one already) */ 1782 cache++; 1783 continue; 1784 } 1785 1786 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1787 skb = tcp_highest_sack(sk); 1788 if (skb == NULL) 1789 break; 1790 state.fack_count = tp->fackets_out; 1791 } 1792 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1793 1794 walk: 1795 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1796 start_seq, end_seq, dup_sack); 1797 1798 advance_sp: 1799 i++; 1800 } 1801 1802 /* Clear the head of the cache sack blocks so we can skip it next time */ 1803 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1804 tp->recv_sack_cache[i].start_seq = 0; 1805 tp->recv_sack_cache[i].end_seq = 0; 1806 } 1807 for (j = 0; j < used_sacks; j++) 1808 tp->recv_sack_cache[i++] = sp[j]; 1809 1810 tcp_mark_lost_retrans(sk); 1811 1812 tcp_verify_left_out(tp); 1813 1814 if ((state.reord < tp->fackets_out) && 1815 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1816 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1817 1818 out: 1819 1820 #if FASTRETRANS_DEBUG > 0 1821 WARN_ON((int)tp->sacked_out < 0); 1822 WARN_ON((int)tp->lost_out < 0); 1823 WARN_ON((int)tp->retrans_out < 0); 1824 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1825 #endif 1826 *sack_rtt_us = state.rtt_us; 1827 return state.flag; 1828 } 1829 1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1832 */ 1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1834 { 1835 u32 holes; 1836 1837 holes = max(tp->lost_out, 1U); 1838 holes = min(holes, tp->packets_out); 1839 1840 if ((tp->sacked_out + holes) > tp->packets_out) { 1841 tp->sacked_out = tp->packets_out - holes; 1842 return true; 1843 } 1844 return false; 1845 } 1846 1847 /* If we receive more dupacks than we expected counting segments 1848 * in assumption of absent reordering, interpret this as reordering. 1849 * The only another reason could be bug in receiver TCP. 1850 */ 1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 if (tcp_limit_reno_sacked(tp)) 1855 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1856 } 1857 1858 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1859 1860 static void tcp_add_reno_sack(struct sock *sk) 1861 { 1862 struct tcp_sock *tp = tcp_sk(sk); 1863 tp->sacked_out++; 1864 tcp_check_reno_reordering(sk, 0); 1865 tcp_verify_left_out(tp); 1866 } 1867 1868 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1869 1870 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1871 { 1872 struct tcp_sock *tp = tcp_sk(sk); 1873 1874 if (acked > 0) { 1875 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1876 if (acked - 1 >= tp->sacked_out) 1877 tp->sacked_out = 0; 1878 else 1879 tp->sacked_out -= acked - 1; 1880 } 1881 tcp_check_reno_reordering(sk, acked); 1882 tcp_verify_left_out(tp); 1883 } 1884 1885 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1886 { 1887 tp->sacked_out = 0; 1888 } 1889 1890 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1891 { 1892 tp->retrans_out = 0; 1893 tp->lost_out = 0; 1894 1895 tp->undo_marker = 0; 1896 tp->undo_retrans = 0; 1897 } 1898 1899 void tcp_clear_retrans(struct tcp_sock *tp) 1900 { 1901 tcp_clear_retrans_partial(tp); 1902 1903 tp->fackets_out = 0; 1904 tp->sacked_out = 0; 1905 } 1906 1907 /* Enter Loss state. If "how" is not zero, forget all SACK information 1908 * and reset tags completely, otherwise preserve SACKs. If receiver 1909 * dropped its ofo queue, we will know this due to reneging detection. 1910 */ 1911 void tcp_enter_loss(struct sock *sk, int how) 1912 { 1913 const struct inet_connection_sock *icsk = inet_csk(sk); 1914 struct tcp_sock *tp = tcp_sk(sk); 1915 struct sk_buff *skb; 1916 bool new_recovery = false; 1917 1918 /* Reduce ssthresh if it has not yet been made inside this window. */ 1919 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1920 !after(tp->high_seq, tp->snd_una) || 1921 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1922 new_recovery = true; 1923 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1924 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1925 tcp_ca_event(sk, CA_EVENT_LOSS); 1926 } 1927 tp->snd_cwnd = 1; 1928 tp->snd_cwnd_cnt = 0; 1929 tp->snd_cwnd_stamp = tcp_time_stamp; 1930 1931 tcp_clear_retrans_partial(tp); 1932 1933 if (tcp_is_reno(tp)) 1934 tcp_reset_reno_sack(tp); 1935 1936 tp->undo_marker = tp->snd_una; 1937 if (how) { 1938 tp->sacked_out = 0; 1939 tp->fackets_out = 0; 1940 } 1941 tcp_clear_all_retrans_hints(tp); 1942 1943 tcp_for_write_queue(skb, sk) { 1944 if (skb == tcp_send_head(sk)) 1945 break; 1946 1947 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1948 tp->undo_marker = 0; 1949 1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1954 tp->lost_out += tcp_skb_pcount(skb); 1955 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1956 } 1957 } 1958 tcp_verify_left_out(tp); 1959 1960 /* Timeout in disordered state after receiving substantial DUPACKs 1961 * suggests that the degree of reordering is over-estimated. 1962 */ 1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1964 tp->sacked_out >= sysctl_tcp_reordering) 1965 tp->reordering = min_t(unsigned int, tp->reordering, 1966 sysctl_tcp_reordering); 1967 tcp_set_ca_state(sk, TCP_CA_Loss); 1968 tp->high_seq = tp->snd_nxt; 1969 TCP_ECN_queue_cwr(tp); 1970 1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1972 * loss recovery is underway except recurring timeout(s) on 1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1974 */ 1975 tp->frto = sysctl_tcp_frto && 1976 (new_recovery || icsk->icsk_retransmits) && 1977 !inet_csk(sk)->icsk_mtup.probe_size; 1978 } 1979 1980 /* If ACK arrived pointing to a remembered SACK, it means that our 1981 * remembered SACKs do not reflect real state of receiver i.e. 1982 * receiver _host_ is heavily congested (or buggy). 1983 * 1984 * Do processing similar to RTO timeout. 1985 */ 1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1987 { 1988 if (flag & FLAG_SACK_RENEGING) { 1989 struct inet_connection_sock *icsk = inet_csk(sk); 1990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1991 1992 tcp_enter_loss(sk, 1); 1993 icsk->icsk_retransmits++; 1994 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1996 icsk->icsk_rto, TCP_RTO_MAX); 1997 return true; 1998 } 1999 return false; 2000 } 2001 2002 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2003 { 2004 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2005 } 2006 2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2008 * counter when SACK is enabled (without SACK, sacked_out is used for 2009 * that purpose). 2010 * 2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2012 * segments up to the highest received SACK block so far and holes in 2013 * between them. 2014 * 2015 * With reordering, holes may still be in flight, so RFC3517 recovery 2016 * uses pure sacked_out (total number of SACKed segments) even though 2017 * it violates the RFC that uses duplicate ACKs, often these are equal 2018 * but when e.g. out-of-window ACKs or packet duplication occurs, 2019 * they differ. Since neither occurs due to loss, TCP should really 2020 * ignore them. 2021 */ 2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2023 { 2024 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2025 } 2026 2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2028 { 2029 struct tcp_sock *tp = tcp_sk(sk); 2030 unsigned long delay; 2031 2032 /* Delay early retransmit and entering fast recovery for 2033 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2034 * available, or RTO is scheduled to fire first. 2035 */ 2036 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2037 (flag & FLAG_ECE) || !tp->srtt_us) 2038 return false; 2039 2040 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2041 msecs_to_jiffies(2)); 2042 2043 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2044 return false; 2045 2046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2047 TCP_RTO_MAX); 2048 return true; 2049 } 2050 2051 /* Linux NewReno/SACK/FACK/ECN state machine. 2052 * -------------------------------------- 2053 * 2054 * "Open" Normal state, no dubious events, fast path. 2055 * "Disorder" In all the respects it is "Open", 2056 * but requires a bit more attention. It is entered when 2057 * we see some SACKs or dupacks. It is split of "Open" 2058 * mainly to move some processing from fast path to slow one. 2059 * "CWR" CWND was reduced due to some Congestion Notification event. 2060 * It can be ECN, ICMP source quench, local device congestion. 2061 * "Recovery" CWND was reduced, we are fast-retransmitting. 2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2063 * 2064 * tcp_fastretrans_alert() is entered: 2065 * - each incoming ACK, if state is not "Open" 2066 * - when arrived ACK is unusual, namely: 2067 * * SACK 2068 * * Duplicate ACK. 2069 * * ECN ECE. 2070 * 2071 * Counting packets in flight is pretty simple. 2072 * 2073 * in_flight = packets_out - left_out + retrans_out 2074 * 2075 * packets_out is SND.NXT-SND.UNA counted in packets. 2076 * 2077 * retrans_out is number of retransmitted segments. 2078 * 2079 * left_out is number of segments left network, but not ACKed yet. 2080 * 2081 * left_out = sacked_out + lost_out 2082 * 2083 * sacked_out: Packets, which arrived to receiver out of order 2084 * and hence not ACKed. With SACKs this number is simply 2085 * amount of SACKed data. Even without SACKs 2086 * it is easy to give pretty reliable estimate of this number, 2087 * counting duplicate ACKs. 2088 * 2089 * lost_out: Packets lost by network. TCP has no explicit 2090 * "loss notification" feedback from network (for now). 2091 * It means that this number can be only _guessed_. 2092 * Actually, it is the heuristics to predict lossage that 2093 * distinguishes different algorithms. 2094 * 2095 * F.e. after RTO, when all the queue is considered as lost, 2096 * lost_out = packets_out and in_flight = retrans_out. 2097 * 2098 * Essentially, we have now two algorithms counting 2099 * lost packets. 2100 * 2101 * FACK: It is the simplest heuristics. As soon as we decided 2102 * that something is lost, we decide that _all_ not SACKed 2103 * packets until the most forward SACK are lost. I.e. 2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2105 * It is absolutely correct estimate, if network does not reorder 2106 * packets. And it loses any connection to reality when reordering 2107 * takes place. We use FACK by default until reordering 2108 * is suspected on the path to this destination. 2109 * 2110 * NewReno: when Recovery is entered, we assume that one segment 2111 * is lost (classic Reno). While we are in Recovery and 2112 * a partial ACK arrives, we assume that one more packet 2113 * is lost (NewReno). This heuristics are the same in NewReno 2114 * and SACK. 2115 * 2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2117 * deflation etc. CWND is real congestion window, never inflated, changes 2118 * only according to classic VJ rules. 2119 * 2120 * Really tricky (and requiring careful tuning) part of algorithm 2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2122 * The first determines the moment _when_ we should reduce CWND and, 2123 * hence, slow down forward transmission. In fact, it determines the moment 2124 * when we decide that hole is caused by loss, rather than by a reorder. 2125 * 2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2127 * holes, caused by lost packets. 2128 * 2129 * And the most logically complicated part of algorithm is undo 2130 * heuristics. We detect false retransmits due to both too early 2131 * fast retransmit (reordering) and underestimated RTO, analyzing 2132 * timestamps and D-SACKs. When we detect that some segments were 2133 * retransmitted by mistake and CWND reduction was wrong, we undo 2134 * window reduction and abort recovery phase. This logic is hidden 2135 * inside several functions named tcp_try_undo_<something>. 2136 */ 2137 2138 /* This function decides, when we should leave Disordered state 2139 * and enter Recovery phase, reducing congestion window. 2140 * 2141 * Main question: may we further continue forward transmission 2142 * with the same cwnd? 2143 */ 2144 static bool tcp_time_to_recover(struct sock *sk, int flag) 2145 { 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 __u32 packets_out; 2148 2149 /* Trick#1: The loss is proven. */ 2150 if (tp->lost_out) 2151 return true; 2152 2153 /* Not-A-Trick#2 : Classic rule... */ 2154 if (tcp_dupack_heuristics(tp) > tp->reordering) 2155 return true; 2156 2157 /* Trick#4: It is still not OK... But will it be useful to delay 2158 * recovery more? 2159 */ 2160 packets_out = tp->packets_out; 2161 if (packets_out <= tp->reordering && 2162 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2163 !tcp_may_send_now(sk)) { 2164 /* We have nothing to send. This connection is limited 2165 * either by receiver window or by application. 2166 */ 2167 return true; 2168 } 2169 2170 /* If a thin stream is detected, retransmit after first 2171 * received dupack. Employ only if SACK is supported in order 2172 * to avoid possible corner-case series of spurious retransmissions 2173 * Use only if there are no unsent data. 2174 */ 2175 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2176 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2177 tcp_is_sack(tp) && !tcp_send_head(sk)) 2178 return true; 2179 2180 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2181 * retransmissions due to small network reorderings, we implement 2182 * Mitigation A.3 in the RFC and delay the retransmission for a short 2183 * interval if appropriate. 2184 */ 2185 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2186 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2187 !tcp_may_send_now(sk)) 2188 return !tcp_pause_early_retransmit(sk, flag); 2189 2190 return false; 2191 } 2192 2193 /* Detect loss in event "A" above by marking head of queue up as lost. 2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2197 * the maximum SACKed segments to pass before reaching this limit. 2198 */ 2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2200 { 2201 struct tcp_sock *tp = tcp_sk(sk); 2202 struct sk_buff *skb; 2203 int cnt, oldcnt; 2204 int err; 2205 unsigned int mss; 2206 /* Use SACK to deduce losses of new sequences sent during recovery */ 2207 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2208 2209 WARN_ON(packets > tp->packets_out); 2210 if (tp->lost_skb_hint) { 2211 skb = tp->lost_skb_hint; 2212 cnt = tp->lost_cnt_hint; 2213 /* Head already handled? */ 2214 if (mark_head && skb != tcp_write_queue_head(sk)) 2215 return; 2216 } else { 2217 skb = tcp_write_queue_head(sk); 2218 cnt = 0; 2219 } 2220 2221 tcp_for_write_queue_from(skb, sk) { 2222 if (skb == tcp_send_head(sk)) 2223 break; 2224 /* TODO: do this better */ 2225 /* this is not the most efficient way to do this... */ 2226 tp->lost_skb_hint = skb; 2227 tp->lost_cnt_hint = cnt; 2228 2229 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2230 break; 2231 2232 oldcnt = cnt; 2233 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2234 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2235 cnt += tcp_skb_pcount(skb); 2236 2237 if (cnt > packets) { 2238 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2239 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2240 (oldcnt >= packets)) 2241 break; 2242 2243 mss = skb_shinfo(skb)->gso_size; 2244 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2245 if (err < 0) 2246 break; 2247 cnt = packets; 2248 } 2249 2250 tcp_skb_mark_lost(tp, skb); 2251 2252 if (mark_head) 2253 break; 2254 } 2255 tcp_verify_left_out(tp); 2256 } 2257 2258 /* Account newly detected lost packet(s) */ 2259 2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2261 { 2262 struct tcp_sock *tp = tcp_sk(sk); 2263 2264 if (tcp_is_reno(tp)) { 2265 tcp_mark_head_lost(sk, 1, 1); 2266 } else if (tcp_is_fack(tp)) { 2267 int lost = tp->fackets_out - tp->reordering; 2268 if (lost <= 0) 2269 lost = 1; 2270 tcp_mark_head_lost(sk, lost, 0); 2271 } else { 2272 int sacked_upto = tp->sacked_out - tp->reordering; 2273 if (sacked_upto >= 0) 2274 tcp_mark_head_lost(sk, sacked_upto, 0); 2275 else if (fast_rexmit) 2276 tcp_mark_head_lost(sk, 1, 1); 2277 } 2278 } 2279 2280 /* CWND moderation, preventing bursts due to too big ACKs 2281 * in dubious situations. 2282 */ 2283 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2284 { 2285 tp->snd_cwnd = min(tp->snd_cwnd, 2286 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2287 tp->snd_cwnd_stamp = tcp_time_stamp; 2288 } 2289 2290 /* Nothing was retransmitted or returned timestamp is less 2291 * than timestamp of the first retransmission. 2292 */ 2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2294 { 2295 return !tp->retrans_stamp || 2296 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2297 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2298 } 2299 2300 /* Undo procedures. */ 2301 2302 #if FASTRETRANS_DEBUG > 1 2303 static void DBGUNDO(struct sock *sk, const char *msg) 2304 { 2305 struct tcp_sock *tp = tcp_sk(sk); 2306 struct inet_sock *inet = inet_sk(sk); 2307 2308 if (sk->sk_family == AF_INET) { 2309 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2310 msg, 2311 &inet->inet_daddr, ntohs(inet->inet_dport), 2312 tp->snd_cwnd, tcp_left_out(tp), 2313 tp->snd_ssthresh, tp->prior_ssthresh, 2314 tp->packets_out); 2315 } 2316 #if IS_ENABLED(CONFIG_IPV6) 2317 else if (sk->sk_family == AF_INET6) { 2318 struct ipv6_pinfo *np = inet6_sk(sk); 2319 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2320 msg, 2321 &np->daddr, ntohs(inet->inet_dport), 2322 tp->snd_cwnd, tcp_left_out(tp), 2323 tp->snd_ssthresh, tp->prior_ssthresh, 2324 tp->packets_out); 2325 } 2326 #endif 2327 } 2328 #else 2329 #define DBGUNDO(x...) do { } while (0) 2330 #endif 2331 2332 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2333 { 2334 struct tcp_sock *tp = tcp_sk(sk); 2335 2336 if (unmark_loss) { 2337 struct sk_buff *skb; 2338 2339 tcp_for_write_queue(skb, sk) { 2340 if (skb == tcp_send_head(sk)) 2341 break; 2342 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2343 } 2344 tp->lost_out = 0; 2345 tcp_clear_all_retrans_hints(tp); 2346 } 2347 2348 if (tp->prior_ssthresh) { 2349 const struct inet_connection_sock *icsk = inet_csk(sk); 2350 2351 if (icsk->icsk_ca_ops->undo_cwnd) 2352 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2353 else 2354 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2355 2356 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2357 tp->snd_ssthresh = tp->prior_ssthresh; 2358 TCP_ECN_withdraw_cwr(tp); 2359 } 2360 } else { 2361 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2362 } 2363 tp->snd_cwnd_stamp = tcp_time_stamp; 2364 tp->undo_marker = 0; 2365 } 2366 2367 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2368 { 2369 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2370 } 2371 2372 /* People celebrate: "We love our President!" */ 2373 static bool tcp_try_undo_recovery(struct sock *sk) 2374 { 2375 struct tcp_sock *tp = tcp_sk(sk); 2376 2377 if (tcp_may_undo(tp)) { 2378 int mib_idx; 2379 2380 /* Happy end! We did not retransmit anything 2381 * or our original transmission succeeded. 2382 */ 2383 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2384 tcp_undo_cwnd_reduction(sk, false); 2385 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2386 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2387 else 2388 mib_idx = LINUX_MIB_TCPFULLUNDO; 2389 2390 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2391 } 2392 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2393 /* Hold old state until something *above* high_seq 2394 * is ACKed. For Reno it is MUST to prevent false 2395 * fast retransmits (RFC2582). SACK TCP is safe. */ 2396 tcp_moderate_cwnd(tp); 2397 return true; 2398 } 2399 tcp_set_ca_state(sk, TCP_CA_Open); 2400 return false; 2401 } 2402 2403 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2404 static bool tcp_try_undo_dsack(struct sock *sk) 2405 { 2406 struct tcp_sock *tp = tcp_sk(sk); 2407 2408 if (tp->undo_marker && !tp->undo_retrans) { 2409 DBGUNDO(sk, "D-SACK"); 2410 tcp_undo_cwnd_reduction(sk, false); 2411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2412 return true; 2413 } 2414 return false; 2415 } 2416 2417 /* We can clear retrans_stamp when there are no retransmissions in the 2418 * window. It would seem that it is trivially available for us in 2419 * tp->retrans_out, however, that kind of assumptions doesn't consider 2420 * what will happen if errors occur when sending retransmission for the 2421 * second time. ...It could the that such segment has only 2422 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2423 * the head skb is enough except for some reneging corner cases that 2424 * are not worth the effort. 2425 * 2426 * Main reason for all this complexity is the fact that connection dying 2427 * time now depends on the validity of the retrans_stamp, in particular, 2428 * that successive retransmissions of a segment must not advance 2429 * retrans_stamp under any conditions. 2430 */ 2431 static bool tcp_any_retrans_done(const struct sock *sk) 2432 { 2433 const struct tcp_sock *tp = tcp_sk(sk); 2434 struct sk_buff *skb; 2435 2436 if (tp->retrans_out) 2437 return true; 2438 2439 skb = tcp_write_queue_head(sk); 2440 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2441 return true; 2442 2443 return false; 2444 } 2445 2446 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2448 { 2449 struct tcp_sock *tp = tcp_sk(sk); 2450 2451 if (frto_undo || tcp_may_undo(tp)) { 2452 tcp_undo_cwnd_reduction(sk, true); 2453 2454 DBGUNDO(sk, "partial loss"); 2455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2456 if (frto_undo) 2457 NET_INC_STATS_BH(sock_net(sk), 2458 LINUX_MIB_TCPSPURIOUSRTOS); 2459 inet_csk(sk)->icsk_retransmits = 0; 2460 if (frto_undo || tcp_is_sack(tp)) 2461 tcp_set_ca_state(sk, TCP_CA_Open); 2462 return true; 2463 } 2464 return false; 2465 } 2466 2467 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2468 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2469 * It computes the number of packets to send (sndcnt) based on packets newly 2470 * delivered: 2471 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2472 * cwnd reductions across a full RTT. 2473 * 2) If packets in flight is lower than ssthresh (such as due to excess 2474 * losses and/or application stalls), do not perform any further cwnd 2475 * reductions, but instead slow start up to ssthresh. 2476 */ 2477 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 2481 tp->high_seq = tp->snd_nxt; 2482 tp->tlp_high_seq = 0; 2483 tp->snd_cwnd_cnt = 0; 2484 tp->prior_cwnd = tp->snd_cwnd; 2485 tp->prr_delivered = 0; 2486 tp->prr_out = 0; 2487 if (set_ssthresh) 2488 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2489 TCP_ECN_queue_cwr(tp); 2490 } 2491 2492 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2493 int fast_rexmit) 2494 { 2495 struct tcp_sock *tp = tcp_sk(sk); 2496 int sndcnt = 0; 2497 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2498 int newly_acked_sacked = prior_unsacked - 2499 (tp->packets_out - tp->sacked_out); 2500 2501 tp->prr_delivered += newly_acked_sacked; 2502 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2503 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2504 tp->prior_cwnd - 1; 2505 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2506 } else { 2507 sndcnt = min_t(int, delta, 2508 max_t(int, tp->prr_delivered - tp->prr_out, 2509 newly_acked_sacked) + 1); 2510 } 2511 2512 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2514 } 2515 2516 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2521 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2522 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2523 tp->snd_cwnd = tp->snd_ssthresh; 2524 tp->snd_cwnd_stamp = tcp_time_stamp; 2525 } 2526 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2527 } 2528 2529 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2530 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2531 { 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 2534 tp->prior_ssthresh = 0; 2535 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2536 tp->undo_marker = 0; 2537 tcp_init_cwnd_reduction(sk, set_ssthresh); 2538 tcp_set_ca_state(sk, TCP_CA_CWR); 2539 } 2540 } 2541 2542 static void tcp_try_keep_open(struct sock *sk) 2543 { 2544 struct tcp_sock *tp = tcp_sk(sk); 2545 int state = TCP_CA_Open; 2546 2547 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2548 state = TCP_CA_Disorder; 2549 2550 if (inet_csk(sk)->icsk_ca_state != state) { 2551 tcp_set_ca_state(sk, state); 2552 tp->high_seq = tp->snd_nxt; 2553 } 2554 } 2555 2556 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 2560 tcp_verify_left_out(tp); 2561 2562 if (!tcp_any_retrans_done(sk)) 2563 tp->retrans_stamp = 0; 2564 2565 if (flag & FLAG_ECE) 2566 tcp_enter_cwr(sk, 1); 2567 2568 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2569 tcp_try_keep_open(sk); 2570 } else { 2571 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2572 } 2573 } 2574 2575 static void tcp_mtup_probe_failed(struct sock *sk) 2576 { 2577 struct inet_connection_sock *icsk = inet_csk(sk); 2578 2579 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2580 icsk->icsk_mtup.probe_size = 0; 2581 } 2582 2583 static void tcp_mtup_probe_success(struct sock *sk) 2584 { 2585 struct tcp_sock *tp = tcp_sk(sk); 2586 struct inet_connection_sock *icsk = inet_csk(sk); 2587 2588 /* FIXME: breaks with very large cwnd */ 2589 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2590 tp->snd_cwnd = tp->snd_cwnd * 2591 tcp_mss_to_mtu(sk, tp->mss_cache) / 2592 icsk->icsk_mtup.probe_size; 2593 tp->snd_cwnd_cnt = 0; 2594 tp->snd_cwnd_stamp = tcp_time_stamp; 2595 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2596 2597 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2598 icsk->icsk_mtup.probe_size = 0; 2599 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2600 } 2601 2602 /* Do a simple retransmit without using the backoff mechanisms in 2603 * tcp_timer. This is used for path mtu discovery. 2604 * The socket is already locked here. 2605 */ 2606 void tcp_simple_retransmit(struct sock *sk) 2607 { 2608 const struct inet_connection_sock *icsk = inet_csk(sk); 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 struct sk_buff *skb; 2611 unsigned int mss = tcp_current_mss(sk); 2612 u32 prior_lost = tp->lost_out; 2613 2614 tcp_for_write_queue(skb, sk) { 2615 if (skb == tcp_send_head(sk)) 2616 break; 2617 if (tcp_skb_seglen(skb) > mss && 2618 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2619 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2620 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2621 tp->retrans_out -= tcp_skb_pcount(skb); 2622 } 2623 tcp_skb_mark_lost_uncond_verify(tp, skb); 2624 } 2625 } 2626 2627 tcp_clear_retrans_hints_partial(tp); 2628 2629 if (prior_lost == tp->lost_out) 2630 return; 2631 2632 if (tcp_is_reno(tp)) 2633 tcp_limit_reno_sacked(tp); 2634 2635 tcp_verify_left_out(tp); 2636 2637 /* Don't muck with the congestion window here. 2638 * Reason is that we do not increase amount of _data_ 2639 * in network, but units changed and effective 2640 * cwnd/ssthresh really reduced now. 2641 */ 2642 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2643 tp->high_seq = tp->snd_nxt; 2644 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2645 tp->prior_ssthresh = 0; 2646 tp->undo_marker = 0; 2647 tcp_set_ca_state(sk, TCP_CA_Loss); 2648 } 2649 tcp_xmit_retransmit_queue(sk); 2650 } 2651 EXPORT_SYMBOL(tcp_simple_retransmit); 2652 2653 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2654 { 2655 struct tcp_sock *tp = tcp_sk(sk); 2656 int mib_idx; 2657 2658 if (tcp_is_reno(tp)) 2659 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2660 else 2661 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2662 2663 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2664 2665 tp->prior_ssthresh = 0; 2666 tp->undo_marker = tp->snd_una; 2667 tp->undo_retrans = tp->retrans_out; 2668 2669 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2670 if (!ece_ack) 2671 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2672 tcp_init_cwnd_reduction(sk, true); 2673 } 2674 tcp_set_ca_state(sk, TCP_CA_Recovery); 2675 } 2676 2677 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2678 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2679 */ 2680 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2681 { 2682 struct inet_connection_sock *icsk = inet_csk(sk); 2683 struct tcp_sock *tp = tcp_sk(sk); 2684 bool recovered = !before(tp->snd_una, tp->high_seq); 2685 2686 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2687 if (flag & FLAG_ORIG_SACK_ACKED) { 2688 /* Step 3.b. A timeout is spurious if not all data are 2689 * lost, i.e., never-retransmitted data are (s)acked. 2690 */ 2691 tcp_try_undo_loss(sk, true); 2692 return; 2693 } 2694 if (after(tp->snd_nxt, tp->high_seq) && 2695 (flag & FLAG_DATA_SACKED || is_dupack)) { 2696 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2697 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2698 tp->high_seq = tp->snd_nxt; 2699 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2700 TCP_NAGLE_OFF); 2701 if (after(tp->snd_nxt, tp->high_seq)) 2702 return; /* Step 2.b */ 2703 tp->frto = 0; 2704 } 2705 } 2706 2707 if (recovered) { 2708 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2709 icsk->icsk_retransmits = 0; 2710 tcp_try_undo_recovery(sk); 2711 return; 2712 } 2713 if (flag & FLAG_DATA_ACKED) 2714 icsk->icsk_retransmits = 0; 2715 if (tcp_is_reno(tp)) { 2716 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2717 * delivered. Lower inflight to clock out (re)tranmissions. 2718 */ 2719 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2720 tcp_add_reno_sack(sk); 2721 else if (flag & FLAG_SND_UNA_ADVANCED) 2722 tcp_reset_reno_sack(tp); 2723 } 2724 if (tcp_try_undo_loss(sk, false)) 2725 return; 2726 tcp_xmit_retransmit_queue(sk); 2727 } 2728 2729 /* Undo during fast recovery after partial ACK. */ 2730 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2731 const int prior_unsacked) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 2735 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2736 /* Plain luck! Hole if filled with delayed 2737 * packet, rather than with a retransmit. 2738 */ 2739 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2740 2741 /* We are getting evidence that the reordering degree is higher 2742 * than we realized. If there are no retransmits out then we 2743 * can undo. Otherwise we clock out new packets but do not 2744 * mark more packets lost or retransmit more. 2745 */ 2746 if (tp->retrans_out) { 2747 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2748 return true; 2749 } 2750 2751 if (!tcp_any_retrans_done(sk)) 2752 tp->retrans_stamp = 0; 2753 2754 DBGUNDO(sk, "partial recovery"); 2755 tcp_undo_cwnd_reduction(sk, true); 2756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2757 tcp_try_keep_open(sk); 2758 return true; 2759 } 2760 return false; 2761 } 2762 2763 /* Process an event, which can update packets-in-flight not trivially. 2764 * Main goal of this function is to calculate new estimate for left_out, 2765 * taking into account both packets sitting in receiver's buffer and 2766 * packets lost by network. 2767 * 2768 * Besides that it does CWND reduction, when packet loss is detected 2769 * and changes state of machine. 2770 * 2771 * It does _not_ decide what to send, it is made in function 2772 * tcp_xmit_retransmit_queue(). 2773 */ 2774 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2775 const int prior_unsacked, 2776 bool is_dupack, int flag) 2777 { 2778 struct inet_connection_sock *icsk = inet_csk(sk); 2779 struct tcp_sock *tp = tcp_sk(sk); 2780 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2781 (tcp_fackets_out(tp) > tp->reordering)); 2782 int fast_rexmit = 0; 2783 2784 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2785 tp->sacked_out = 0; 2786 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2787 tp->fackets_out = 0; 2788 2789 /* Now state machine starts. 2790 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2791 if (flag & FLAG_ECE) 2792 tp->prior_ssthresh = 0; 2793 2794 /* B. In all the states check for reneging SACKs. */ 2795 if (tcp_check_sack_reneging(sk, flag)) 2796 return; 2797 2798 /* C. Check consistency of the current state. */ 2799 tcp_verify_left_out(tp); 2800 2801 /* D. Check state exit conditions. State can be terminated 2802 * when high_seq is ACKed. */ 2803 if (icsk->icsk_ca_state == TCP_CA_Open) { 2804 WARN_ON(tp->retrans_out != 0); 2805 tp->retrans_stamp = 0; 2806 } else if (!before(tp->snd_una, tp->high_seq)) { 2807 switch (icsk->icsk_ca_state) { 2808 case TCP_CA_CWR: 2809 /* CWR is to be held something *above* high_seq 2810 * is ACKed for CWR bit to reach receiver. */ 2811 if (tp->snd_una != tp->high_seq) { 2812 tcp_end_cwnd_reduction(sk); 2813 tcp_set_ca_state(sk, TCP_CA_Open); 2814 } 2815 break; 2816 2817 case TCP_CA_Recovery: 2818 if (tcp_is_reno(tp)) 2819 tcp_reset_reno_sack(tp); 2820 if (tcp_try_undo_recovery(sk)) 2821 return; 2822 tcp_end_cwnd_reduction(sk); 2823 break; 2824 } 2825 } 2826 2827 /* E. Process state. */ 2828 switch (icsk->icsk_ca_state) { 2829 case TCP_CA_Recovery: 2830 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2831 if (tcp_is_reno(tp) && is_dupack) 2832 tcp_add_reno_sack(sk); 2833 } else { 2834 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2835 return; 2836 /* Partial ACK arrived. Force fast retransmit. */ 2837 do_lost = tcp_is_reno(tp) || 2838 tcp_fackets_out(tp) > tp->reordering; 2839 } 2840 if (tcp_try_undo_dsack(sk)) { 2841 tcp_try_keep_open(sk); 2842 return; 2843 } 2844 break; 2845 case TCP_CA_Loss: 2846 tcp_process_loss(sk, flag, is_dupack); 2847 if (icsk->icsk_ca_state != TCP_CA_Open) 2848 return; 2849 /* Fall through to processing in Open state. */ 2850 default: 2851 if (tcp_is_reno(tp)) { 2852 if (flag & FLAG_SND_UNA_ADVANCED) 2853 tcp_reset_reno_sack(tp); 2854 if (is_dupack) 2855 tcp_add_reno_sack(sk); 2856 } 2857 2858 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2859 tcp_try_undo_dsack(sk); 2860 2861 if (!tcp_time_to_recover(sk, flag)) { 2862 tcp_try_to_open(sk, flag, prior_unsacked); 2863 return; 2864 } 2865 2866 /* MTU probe failure: don't reduce cwnd */ 2867 if (icsk->icsk_ca_state < TCP_CA_CWR && 2868 icsk->icsk_mtup.probe_size && 2869 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2870 tcp_mtup_probe_failed(sk); 2871 /* Restores the reduction we did in tcp_mtup_probe() */ 2872 tp->snd_cwnd++; 2873 tcp_simple_retransmit(sk); 2874 return; 2875 } 2876 2877 /* Otherwise enter Recovery state */ 2878 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2879 fast_rexmit = 1; 2880 } 2881 2882 if (do_lost) 2883 tcp_update_scoreboard(sk, fast_rexmit); 2884 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2885 tcp_xmit_retransmit_queue(sk); 2886 } 2887 2888 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2889 long seq_rtt_us, long sack_rtt_us) 2890 { 2891 const struct tcp_sock *tp = tcp_sk(sk); 2892 2893 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2894 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2895 * Karn's algorithm forbids taking RTT if some retransmitted data 2896 * is acked (RFC6298). 2897 */ 2898 if (flag & FLAG_RETRANS_DATA_ACKED) 2899 seq_rtt_us = -1L; 2900 2901 if (seq_rtt_us < 0) 2902 seq_rtt_us = sack_rtt_us; 2903 2904 /* RTTM Rule: A TSecr value received in a segment is used to 2905 * update the averaged RTT measurement only if the segment 2906 * acknowledges some new data, i.e., only if it advances the 2907 * left edge of the send window. 2908 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2909 */ 2910 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2911 flag & FLAG_ACKED) 2912 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2913 2914 if (seq_rtt_us < 0) 2915 return false; 2916 2917 tcp_rtt_estimator(sk, seq_rtt_us); 2918 tcp_set_rto(sk); 2919 2920 /* RFC6298: only reset backoff on valid RTT measurement. */ 2921 inet_csk(sk)->icsk_backoff = 0; 2922 return true; 2923 } 2924 2925 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2926 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2927 { 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 long seq_rtt_us = -1L; 2930 2931 if (synack_stamp && !tp->total_retrans) 2932 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2933 2934 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2935 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2936 */ 2937 if (!tp->srtt_us) 2938 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2939 } 2940 2941 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight) 2942 { 2943 const struct inet_connection_sock *icsk = inet_csk(sk); 2944 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight); 2945 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2946 } 2947 2948 /* Restart timer after forward progress on connection. 2949 * RFC2988 recommends to restart timer to now+rto. 2950 */ 2951 void tcp_rearm_rto(struct sock *sk) 2952 { 2953 const struct inet_connection_sock *icsk = inet_csk(sk); 2954 struct tcp_sock *tp = tcp_sk(sk); 2955 2956 /* If the retrans timer is currently being used by Fast Open 2957 * for SYN-ACK retrans purpose, stay put. 2958 */ 2959 if (tp->fastopen_rsk) 2960 return; 2961 2962 if (!tp->packets_out) { 2963 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2964 } else { 2965 u32 rto = inet_csk(sk)->icsk_rto; 2966 /* Offset the time elapsed after installing regular RTO */ 2967 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2968 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2969 struct sk_buff *skb = tcp_write_queue_head(sk); 2970 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 2971 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2972 /* delta may not be positive if the socket is locked 2973 * when the retrans timer fires and is rescheduled. 2974 */ 2975 if (delta > 0) 2976 rto = delta; 2977 } 2978 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2979 TCP_RTO_MAX); 2980 } 2981 } 2982 2983 /* This function is called when the delayed ER timer fires. TCP enters 2984 * fast recovery and performs fast-retransmit. 2985 */ 2986 void tcp_resume_early_retransmit(struct sock *sk) 2987 { 2988 struct tcp_sock *tp = tcp_sk(sk); 2989 2990 tcp_rearm_rto(sk); 2991 2992 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 2993 if (!tp->do_early_retrans) 2994 return; 2995 2996 tcp_enter_recovery(sk, false); 2997 tcp_update_scoreboard(sk, 1); 2998 tcp_xmit_retransmit_queue(sk); 2999 } 3000 3001 /* If we get here, the whole TSO packet has not been acked. */ 3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 u32 packets_acked; 3006 3007 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3008 3009 packets_acked = tcp_skb_pcount(skb); 3010 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3011 return 0; 3012 packets_acked -= tcp_skb_pcount(skb); 3013 3014 if (packets_acked) { 3015 BUG_ON(tcp_skb_pcount(skb) == 0); 3016 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3017 } 3018 3019 return packets_acked; 3020 } 3021 3022 /* Remove acknowledged frames from the retransmission queue. If our packet 3023 * is before the ack sequence we can discard it as it's confirmed to have 3024 * arrived at the other end. 3025 */ 3026 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3027 u32 prior_snd_una, long sack_rtt_us) 3028 { 3029 const struct inet_connection_sock *icsk = inet_csk(sk); 3030 struct skb_mstamp first_ackt, last_ackt, now; 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 u32 prior_sacked = tp->sacked_out; 3033 u32 reord = tp->packets_out; 3034 bool fully_acked = true; 3035 long ca_seq_rtt_us = -1L; 3036 long seq_rtt_us = -1L; 3037 struct sk_buff *skb; 3038 u32 pkts_acked = 0; 3039 bool rtt_update; 3040 int flag = 0; 3041 3042 first_ackt.v64 = 0; 3043 3044 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3045 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3046 u8 sacked = scb->sacked; 3047 u32 acked_pcount; 3048 3049 /* Determine how many packets and what bytes were acked, tso and else */ 3050 if (after(scb->end_seq, tp->snd_una)) { 3051 if (tcp_skb_pcount(skb) == 1 || 3052 !after(tp->snd_una, scb->seq)) 3053 break; 3054 3055 acked_pcount = tcp_tso_acked(sk, skb); 3056 if (!acked_pcount) 3057 break; 3058 3059 fully_acked = false; 3060 } else { 3061 acked_pcount = tcp_skb_pcount(skb); 3062 } 3063 3064 if (sacked & TCPCB_RETRANS) { 3065 if (sacked & TCPCB_SACKED_RETRANS) 3066 tp->retrans_out -= acked_pcount; 3067 flag |= FLAG_RETRANS_DATA_ACKED; 3068 } else { 3069 last_ackt = skb->skb_mstamp; 3070 WARN_ON_ONCE(last_ackt.v64 == 0); 3071 if (!first_ackt.v64) 3072 first_ackt = last_ackt; 3073 3074 if (!(sacked & TCPCB_SACKED_ACKED)) 3075 reord = min(pkts_acked, reord); 3076 if (!after(scb->end_seq, tp->high_seq)) 3077 flag |= FLAG_ORIG_SACK_ACKED; 3078 } 3079 3080 if (sacked & TCPCB_SACKED_ACKED) 3081 tp->sacked_out -= acked_pcount; 3082 if (sacked & TCPCB_LOST) 3083 tp->lost_out -= acked_pcount; 3084 3085 tp->packets_out -= acked_pcount; 3086 pkts_acked += acked_pcount; 3087 3088 /* Initial outgoing SYN's get put onto the write_queue 3089 * just like anything else we transmit. It is not 3090 * true data, and if we misinform our callers that 3091 * this ACK acks real data, we will erroneously exit 3092 * connection startup slow start one packet too 3093 * quickly. This is severely frowned upon behavior. 3094 */ 3095 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3096 flag |= FLAG_DATA_ACKED; 3097 } else { 3098 flag |= FLAG_SYN_ACKED; 3099 tp->retrans_stamp = 0; 3100 } 3101 3102 if (!fully_acked) 3103 break; 3104 3105 tcp_unlink_write_queue(skb, sk); 3106 sk_wmem_free_skb(sk, skb); 3107 if (skb == tp->retransmit_skb_hint) 3108 tp->retransmit_skb_hint = NULL; 3109 if (skb == tp->lost_skb_hint) 3110 tp->lost_skb_hint = NULL; 3111 } 3112 3113 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3114 tp->snd_up = tp->snd_una; 3115 3116 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3117 flag |= FLAG_SACK_RENEGING; 3118 3119 skb_mstamp_get(&now); 3120 if (first_ackt.v64) { 3121 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3122 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3123 } 3124 3125 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3126 3127 if (flag & FLAG_ACKED) { 3128 const struct tcp_congestion_ops *ca_ops 3129 = inet_csk(sk)->icsk_ca_ops; 3130 3131 tcp_rearm_rto(sk); 3132 if (unlikely(icsk->icsk_mtup.probe_size && 3133 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3134 tcp_mtup_probe_success(sk); 3135 } 3136 3137 if (tcp_is_reno(tp)) { 3138 tcp_remove_reno_sacks(sk, pkts_acked); 3139 } else { 3140 int delta; 3141 3142 /* Non-retransmitted hole got filled? That's reordering */ 3143 if (reord < prior_fackets) 3144 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3145 3146 delta = tcp_is_fack(tp) ? pkts_acked : 3147 prior_sacked - tp->sacked_out; 3148 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3149 } 3150 3151 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3152 3153 if (ca_ops->pkts_acked) 3154 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us); 3155 3156 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3157 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3158 /* Do not re-arm RTO if the sack RTT is measured from data sent 3159 * after when the head was last (re)transmitted. Otherwise the 3160 * timeout may continue to extend in loss recovery. 3161 */ 3162 tcp_rearm_rto(sk); 3163 } 3164 3165 #if FASTRETRANS_DEBUG > 0 3166 WARN_ON((int)tp->sacked_out < 0); 3167 WARN_ON((int)tp->lost_out < 0); 3168 WARN_ON((int)tp->retrans_out < 0); 3169 if (!tp->packets_out && tcp_is_sack(tp)) { 3170 icsk = inet_csk(sk); 3171 if (tp->lost_out) { 3172 pr_debug("Leak l=%u %d\n", 3173 tp->lost_out, icsk->icsk_ca_state); 3174 tp->lost_out = 0; 3175 } 3176 if (tp->sacked_out) { 3177 pr_debug("Leak s=%u %d\n", 3178 tp->sacked_out, icsk->icsk_ca_state); 3179 tp->sacked_out = 0; 3180 } 3181 if (tp->retrans_out) { 3182 pr_debug("Leak r=%u %d\n", 3183 tp->retrans_out, icsk->icsk_ca_state); 3184 tp->retrans_out = 0; 3185 } 3186 } 3187 #endif 3188 return flag; 3189 } 3190 3191 static void tcp_ack_probe(struct sock *sk) 3192 { 3193 const struct tcp_sock *tp = tcp_sk(sk); 3194 struct inet_connection_sock *icsk = inet_csk(sk); 3195 3196 /* Was it a usable window open? */ 3197 3198 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3199 icsk->icsk_backoff = 0; 3200 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3201 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3202 * This function is not for random using! 3203 */ 3204 } else { 3205 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3206 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3207 TCP_RTO_MAX); 3208 } 3209 } 3210 3211 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3212 { 3213 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3214 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3215 } 3216 3217 /* Decide wheather to run the increase function of congestion control. */ 3218 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3219 { 3220 if (tcp_in_cwnd_reduction(sk)) 3221 return false; 3222 3223 /* If reordering is high then always grow cwnd whenever data is 3224 * delivered regardless of its ordering. Otherwise stay conservative 3225 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3226 * new SACK or ECE mark may first advance cwnd here and later reduce 3227 * cwnd in tcp_fastretrans_alert() based on more states. 3228 */ 3229 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3230 return flag & FLAG_FORWARD_PROGRESS; 3231 3232 return flag & FLAG_DATA_ACKED; 3233 } 3234 3235 /* Check that window update is acceptable. 3236 * The function assumes that snd_una<=ack<=snd_next. 3237 */ 3238 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3239 const u32 ack, const u32 ack_seq, 3240 const u32 nwin) 3241 { 3242 return after(ack, tp->snd_una) || 3243 after(ack_seq, tp->snd_wl1) || 3244 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3245 } 3246 3247 /* Update our send window. 3248 * 3249 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3250 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3251 */ 3252 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3253 u32 ack_seq) 3254 { 3255 struct tcp_sock *tp = tcp_sk(sk); 3256 int flag = 0; 3257 u32 nwin = ntohs(tcp_hdr(skb)->window); 3258 3259 if (likely(!tcp_hdr(skb)->syn)) 3260 nwin <<= tp->rx_opt.snd_wscale; 3261 3262 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3263 flag |= FLAG_WIN_UPDATE; 3264 tcp_update_wl(tp, ack_seq); 3265 3266 if (tp->snd_wnd != nwin) { 3267 tp->snd_wnd = nwin; 3268 3269 /* Note, it is the only place, where 3270 * fast path is recovered for sending TCP. 3271 */ 3272 tp->pred_flags = 0; 3273 tcp_fast_path_check(sk); 3274 3275 if (nwin > tp->max_window) { 3276 tp->max_window = nwin; 3277 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3278 } 3279 } 3280 } 3281 3282 tp->snd_una = ack; 3283 3284 return flag; 3285 } 3286 3287 /* RFC 5961 7 [ACK Throttling] */ 3288 static void tcp_send_challenge_ack(struct sock *sk) 3289 { 3290 /* unprotected vars, we dont care of overwrites */ 3291 static u32 challenge_timestamp; 3292 static unsigned int challenge_count; 3293 u32 now = jiffies / HZ; 3294 3295 if (now != challenge_timestamp) { 3296 challenge_timestamp = now; 3297 challenge_count = 0; 3298 } 3299 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3301 tcp_send_ack(sk); 3302 } 3303 } 3304 3305 static void tcp_store_ts_recent(struct tcp_sock *tp) 3306 { 3307 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3308 tp->rx_opt.ts_recent_stamp = get_seconds(); 3309 } 3310 3311 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3312 { 3313 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3314 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3315 * extra check below makes sure this can only happen 3316 * for pure ACK frames. -DaveM 3317 * 3318 * Not only, also it occurs for expired timestamps. 3319 */ 3320 3321 if (tcp_paws_check(&tp->rx_opt, 0)) 3322 tcp_store_ts_recent(tp); 3323 } 3324 } 3325 3326 /* This routine deals with acks during a TLP episode. 3327 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3328 */ 3329 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3330 { 3331 struct tcp_sock *tp = tcp_sk(sk); 3332 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3333 !(flag & (FLAG_SND_UNA_ADVANCED | 3334 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3335 3336 /* Mark the end of TLP episode on receiving TLP dupack or when 3337 * ack is after tlp_high_seq. 3338 */ 3339 if (is_tlp_dupack) { 3340 tp->tlp_high_seq = 0; 3341 return; 3342 } 3343 3344 if (after(ack, tp->tlp_high_seq)) { 3345 tp->tlp_high_seq = 0; 3346 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3347 if (!(flag & FLAG_DSACKING_ACK)) { 3348 tcp_init_cwnd_reduction(sk, true); 3349 tcp_set_ca_state(sk, TCP_CA_CWR); 3350 tcp_end_cwnd_reduction(sk); 3351 tcp_try_keep_open(sk); 3352 NET_INC_STATS_BH(sock_net(sk), 3353 LINUX_MIB_TCPLOSSPROBERECOVERY); 3354 } 3355 } 3356 } 3357 3358 /* This routine deals with incoming acks, but not outgoing ones. */ 3359 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3360 { 3361 struct inet_connection_sock *icsk = inet_csk(sk); 3362 struct tcp_sock *tp = tcp_sk(sk); 3363 u32 prior_snd_una = tp->snd_una; 3364 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3365 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3366 bool is_dupack = false; 3367 u32 prior_in_flight; 3368 u32 prior_fackets; 3369 int prior_packets = tp->packets_out; 3370 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3371 int acked = 0; /* Number of packets newly acked */ 3372 long sack_rtt_us = -1L; 3373 3374 /* If the ack is older than previous acks 3375 * then we can probably ignore it. 3376 */ 3377 if (before(ack, prior_snd_una)) { 3378 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3379 if (before(ack, prior_snd_una - tp->max_window)) { 3380 tcp_send_challenge_ack(sk); 3381 return -1; 3382 } 3383 goto old_ack; 3384 } 3385 3386 /* If the ack includes data we haven't sent yet, discard 3387 * this segment (RFC793 Section 3.9). 3388 */ 3389 if (after(ack, tp->snd_nxt)) 3390 goto invalid_ack; 3391 3392 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3393 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3394 tcp_rearm_rto(sk); 3395 3396 if (after(ack, prior_snd_una)) 3397 flag |= FLAG_SND_UNA_ADVANCED; 3398 3399 prior_fackets = tp->fackets_out; 3400 prior_in_flight = tcp_packets_in_flight(tp); 3401 3402 /* ts_recent update must be made after we are sure that the packet 3403 * is in window. 3404 */ 3405 if (flag & FLAG_UPDATE_TS_RECENT) 3406 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3407 3408 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3409 /* Window is constant, pure forward advance. 3410 * No more checks are required. 3411 * Note, we use the fact that SND.UNA>=SND.WL2. 3412 */ 3413 tcp_update_wl(tp, ack_seq); 3414 tp->snd_una = ack; 3415 flag |= FLAG_WIN_UPDATE; 3416 3417 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3418 3419 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3420 } else { 3421 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3422 flag |= FLAG_DATA; 3423 else 3424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3425 3426 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3427 3428 if (TCP_SKB_CB(skb)->sacked) 3429 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3430 &sack_rtt_us); 3431 3432 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3433 flag |= FLAG_ECE; 3434 3435 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3436 } 3437 3438 /* We passed data and got it acked, remove any soft error 3439 * log. Something worked... 3440 */ 3441 sk->sk_err_soft = 0; 3442 icsk->icsk_probes_out = 0; 3443 tp->rcv_tstamp = tcp_time_stamp; 3444 if (!prior_packets) 3445 goto no_queue; 3446 3447 /* See if we can take anything off of the retransmit queue. */ 3448 acked = tp->packets_out; 3449 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3450 sack_rtt_us); 3451 acked -= tp->packets_out; 3452 3453 /* Advance cwnd if state allows */ 3454 if (tcp_may_raise_cwnd(sk, flag)) 3455 tcp_cong_avoid(sk, ack, acked, prior_in_flight); 3456 3457 if (tcp_ack_is_dubious(sk, flag)) { 3458 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3459 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3460 is_dupack, flag); 3461 } 3462 if (tp->tlp_high_seq) 3463 tcp_process_tlp_ack(sk, ack, flag); 3464 3465 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3466 struct dst_entry *dst = __sk_dst_get(sk); 3467 if (dst) 3468 dst_confirm(dst); 3469 } 3470 3471 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3472 tcp_schedule_loss_probe(sk); 3473 tcp_update_pacing_rate(sk); 3474 return 1; 3475 3476 no_queue: 3477 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3478 if (flag & FLAG_DSACKING_ACK) 3479 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3480 is_dupack, flag); 3481 /* If this ack opens up a zero window, clear backoff. It was 3482 * being used to time the probes, and is probably far higher than 3483 * it needs to be for normal retransmission. 3484 */ 3485 if (tcp_send_head(sk)) 3486 tcp_ack_probe(sk); 3487 3488 if (tp->tlp_high_seq) 3489 tcp_process_tlp_ack(sk, ack, flag); 3490 return 1; 3491 3492 invalid_ack: 3493 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3494 return -1; 3495 3496 old_ack: 3497 /* If data was SACKed, tag it and see if we should send more data. 3498 * If data was DSACKed, see if we can undo a cwnd reduction. 3499 */ 3500 if (TCP_SKB_CB(skb)->sacked) { 3501 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3502 &sack_rtt_us); 3503 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3504 is_dupack, flag); 3505 } 3506 3507 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3508 return 0; 3509 } 3510 3511 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3512 * But, this can also be called on packets in the established flow when 3513 * the fast version below fails. 3514 */ 3515 void tcp_parse_options(const struct sk_buff *skb, 3516 struct tcp_options_received *opt_rx, int estab, 3517 struct tcp_fastopen_cookie *foc) 3518 { 3519 const unsigned char *ptr; 3520 const struct tcphdr *th = tcp_hdr(skb); 3521 int length = (th->doff * 4) - sizeof(struct tcphdr); 3522 3523 ptr = (const unsigned char *)(th + 1); 3524 opt_rx->saw_tstamp = 0; 3525 3526 while (length > 0) { 3527 int opcode = *ptr++; 3528 int opsize; 3529 3530 switch (opcode) { 3531 case TCPOPT_EOL: 3532 return; 3533 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3534 length--; 3535 continue; 3536 default: 3537 opsize = *ptr++; 3538 if (opsize < 2) /* "silly options" */ 3539 return; 3540 if (opsize > length) 3541 return; /* don't parse partial options */ 3542 switch (opcode) { 3543 case TCPOPT_MSS: 3544 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3545 u16 in_mss = get_unaligned_be16(ptr); 3546 if (in_mss) { 3547 if (opt_rx->user_mss && 3548 opt_rx->user_mss < in_mss) 3549 in_mss = opt_rx->user_mss; 3550 opt_rx->mss_clamp = in_mss; 3551 } 3552 } 3553 break; 3554 case TCPOPT_WINDOW: 3555 if (opsize == TCPOLEN_WINDOW && th->syn && 3556 !estab && sysctl_tcp_window_scaling) { 3557 __u8 snd_wscale = *(__u8 *)ptr; 3558 opt_rx->wscale_ok = 1; 3559 if (snd_wscale > 14) { 3560 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3561 __func__, 3562 snd_wscale); 3563 snd_wscale = 14; 3564 } 3565 opt_rx->snd_wscale = snd_wscale; 3566 } 3567 break; 3568 case TCPOPT_TIMESTAMP: 3569 if ((opsize == TCPOLEN_TIMESTAMP) && 3570 ((estab && opt_rx->tstamp_ok) || 3571 (!estab && sysctl_tcp_timestamps))) { 3572 opt_rx->saw_tstamp = 1; 3573 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3574 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3575 } 3576 break; 3577 case TCPOPT_SACK_PERM: 3578 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3579 !estab && sysctl_tcp_sack) { 3580 opt_rx->sack_ok = TCP_SACK_SEEN; 3581 tcp_sack_reset(opt_rx); 3582 } 3583 break; 3584 3585 case TCPOPT_SACK: 3586 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3587 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3588 opt_rx->sack_ok) { 3589 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3590 } 3591 break; 3592 #ifdef CONFIG_TCP_MD5SIG 3593 case TCPOPT_MD5SIG: 3594 /* 3595 * The MD5 Hash has already been 3596 * checked (see tcp_v{4,6}_do_rcv()). 3597 */ 3598 break; 3599 #endif 3600 case TCPOPT_EXP: 3601 /* Fast Open option shares code 254 using a 3602 * 16 bits magic number. It's valid only in 3603 * SYN or SYN-ACK with an even size. 3604 */ 3605 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3606 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3607 foc == NULL || !th->syn || (opsize & 1)) 3608 break; 3609 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3610 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3611 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3612 memcpy(foc->val, ptr + 2, foc->len); 3613 else if (foc->len != 0) 3614 foc->len = -1; 3615 break; 3616 3617 } 3618 ptr += opsize-2; 3619 length -= opsize; 3620 } 3621 } 3622 } 3623 EXPORT_SYMBOL(tcp_parse_options); 3624 3625 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3626 { 3627 const __be32 *ptr = (const __be32 *)(th + 1); 3628 3629 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3630 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3631 tp->rx_opt.saw_tstamp = 1; 3632 ++ptr; 3633 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3634 ++ptr; 3635 if (*ptr) 3636 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3637 else 3638 tp->rx_opt.rcv_tsecr = 0; 3639 return true; 3640 } 3641 return false; 3642 } 3643 3644 /* Fast parse options. This hopes to only see timestamps. 3645 * If it is wrong it falls back on tcp_parse_options(). 3646 */ 3647 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3648 const struct tcphdr *th, struct tcp_sock *tp) 3649 { 3650 /* In the spirit of fast parsing, compare doff directly to constant 3651 * values. Because equality is used, short doff can be ignored here. 3652 */ 3653 if (th->doff == (sizeof(*th) / 4)) { 3654 tp->rx_opt.saw_tstamp = 0; 3655 return false; 3656 } else if (tp->rx_opt.tstamp_ok && 3657 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3658 if (tcp_parse_aligned_timestamp(tp, th)) 3659 return true; 3660 } 3661 3662 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3663 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3664 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3665 3666 return true; 3667 } 3668 3669 #ifdef CONFIG_TCP_MD5SIG 3670 /* 3671 * Parse MD5 Signature option 3672 */ 3673 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3674 { 3675 int length = (th->doff << 2) - sizeof(*th); 3676 const u8 *ptr = (const u8 *)(th + 1); 3677 3678 /* If the TCP option is too short, we can short cut */ 3679 if (length < TCPOLEN_MD5SIG) 3680 return NULL; 3681 3682 while (length > 0) { 3683 int opcode = *ptr++; 3684 int opsize; 3685 3686 switch (opcode) { 3687 case TCPOPT_EOL: 3688 return NULL; 3689 case TCPOPT_NOP: 3690 length--; 3691 continue; 3692 default: 3693 opsize = *ptr++; 3694 if (opsize < 2 || opsize > length) 3695 return NULL; 3696 if (opcode == TCPOPT_MD5SIG) 3697 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3698 } 3699 ptr += opsize - 2; 3700 length -= opsize; 3701 } 3702 return NULL; 3703 } 3704 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3705 #endif 3706 3707 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3708 * 3709 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3710 * it can pass through stack. So, the following predicate verifies that 3711 * this segment is not used for anything but congestion avoidance or 3712 * fast retransmit. Moreover, we even are able to eliminate most of such 3713 * second order effects, if we apply some small "replay" window (~RTO) 3714 * to timestamp space. 3715 * 3716 * All these measures still do not guarantee that we reject wrapped ACKs 3717 * on networks with high bandwidth, when sequence space is recycled fastly, 3718 * but it guarantees that such events will be very rare and do not affect 3719 * connection seriously. This doesn't look nice, but alas, PAWS is really 3720 * buggy extension. 3721 * 3722 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3723 * states that events when retransmit arrives after original data are rare. 3724 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3725 * the biggest problem on large power networks even with minor reordering. 3726 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3727 * up to bandwidth of 18Gigabit/sec. 8) ] 3728 */ 3729 3730 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3731 { 3732 const struct tcp_sock *tp = tcp_sk(sk); 3733 const struct tcphdr *th = tcp_hdr(skb); 3734 u32 seq = TCP_SKB_CB(skb)->seq; 3735 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3736 3737 return (/* 1. Pure ACK with correct sequence number. */ 3738 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3739 3740 /* 2. ... and duplicate ACK. */ 3741 ack == tp->snd_una && 3742 3743 /* 3. ... and does not update window. */ 3744 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3745 3746 /* 4. ... and sits in replay window. */ 3747 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3748 } 3749 3750 static inline bool tcp_paws_discard(const struct sock *sk, 3751 const struct sk_buff *skb) 3752 { 3753 const struct tcp_sock *tp = tcp_sk(sk); 3754 3755 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3756 !tcp_disordered_ack(sk, skb); 3757 } 3758 3759 /* Check segment sequence number for validity. 3760 * 3761 * Segment controls are considered valid, if the segment 3762 * fits to the window after truncation to the window. Acceptability 3763 * of data (and SYN, FIN, of course) is checked separately. 3764 * See tcp_data_queue(), for example. 3765 * 3766 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3767 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3768 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3769 * (borrowed from freebsd) 3770 */ 3771 3772 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3773 { 3774 return !before(end_seq, tp->rcv_wup) && 3775 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3776 } 3777 3778 /* When we get a reset we do this. */ 3779 void tcp_reset(struct sock *sk) 3780 { 3781 /* We want the right error as BSD sees it (and indeed as we do). */ 3782 switch (sk->sk_state) { 3783 case TCP_SYN_SENT: 3784 sk->sk_err = ECONNREFUSED; 3785 break; 3786 case TCP_CLOSE_WAIT: 3787 sk->sk_err = EPIPE; 3788 break; 3789 case TCP_CLOSE: 3790 return; 3791 default: 3792 sk->sk_err = ECONNRESET; 3793 } 3794 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3795 smp_wmb(); 3796 3797 if (!sock_flag(sk, SOCK_DEAD)) 3798 sk->sk_error_report(sk); 3799 3800 tcp_done(sk); 3801 } 3802 3803 /* 3804 * Process the FIN bit. This now behaves as it is supposed to work 3805 * and the FIN takes effect when it is validly part of sequence 3806 * space. Not before when we get holes. 3807 * 3808 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3809 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3810 * TIME-WAIT) 3811 * 3812 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3813 * close and we go into CLOSING (and later onto TIME-WAIT) 3814 * 3815 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3816 */ 3817 static void tcp_fin(struct sock *sk) 3818 { 3819 struct tcp_sock *tp = tcp_sk(sk); 3820 const struct dst_entry *dst; 3821 3822 inet_csk_schedule_ack(sk); 3823 3824 sk->sk_shutdown |= RCV_SHUTDOWN; 3825 sock_set_flag(sk, SOCK_DONE); 3826 3827 switch (sk->sk_state) { 3828 case TCP_SYN_RECV: 3829 case TCP_ESTABLISHED: 3830 /* Move to CLOSE_WAIT */ 3831 tcp_set_state(sk, TCP_CLOSE_WAIT); 3832 dst = __sk_dst_get(sk); 3833 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3834 inet_csk(sk)->icsk_ack.pingpong = 1; 3835 break; 3836 3837 case TCP_CLOSE_WAIT: 3838 case TCP_CLOSING: 3839 /* Received a retransmission of the FIN, do 3840 * nothing. 3841 */ 3842 break; 3843 case TCP_LAST_ACK: 3844 /* RFC793: Remain in the LAST-ACK state. */ 3845 break; 3846 3847 case TCP_FIN_WAIT1: 3848 /* This case occurs when a simultaneous close 3849 * happens, we must ack the received FIN and 3850 * enter the CLOSING state. 3851 */ 3852 tcp_send_ack(sk); 3853 tcp_set_state(sk, TCP_CLOSING); 3854 break; 3855 case TCP_FIN_WAIT2: 3856 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3857 tcp_send_ack(sk); 3858 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3859 break; 3860 default: 3861 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3862 * cases we should never reach this piece of code. 3863 */ 3864 pr_err("%s: Impossible, sk->sk_state=%d\n", 3865 __func__, sk->sk_state); 3866 break; 3867 } 3868 3869 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3870 * Probably, we should reset in this case. For now drop them. 3871 */ 3872 __skb_queue_purge(&tp->out_of_order_queue); 3873 if (tcp_is_sack(tp)) 3874 tcp_sack_reset(&tp->rx_opt); 3875 sk_mem_reclaim(sk); 3876 3877 if (!sock_flag(sk, SOCK_DEAD)) { 3878 sk->sk_state_change(sk); 3879 3880 /* Do not send POLL_HUP for half duplex close. */ 3881 if (sk->sk_shutdown == SHUTDOWN_MASK || 3882 sk->sk_state == TCP_CLOSE) 3883 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3884 else 3885 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3886 } 3887 } 3888 3889 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3890 u32 end_seq) 3891 { 3892 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3893 if (before(seq, sp->start_seq)) 3894 sp->start_seq = seq; 3895 if (after(end_seq, sp->end_seq)) 3896 sp->end_seq = end_seq; 3897 return true; 3898 } 3899 return false; 3900 } 3901 3902 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3903 { 3904 struct tcp_sock *tp = tcp_sk(sk); 3905 3906 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3907 int mib_idx; 3908 3909 if (before(seq, tp->rcv_nxt)) 3910 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3911 else 3912 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3913 3914 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3915 3916 tp->rx_opt.dsack = 1; 3917 tp->duplicate_sack[0].start_seq = seq; 3918 tp->duplicate_sack[0].end_seq = end_seq; 3919 } 3920 } 3921 3922 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3923 { 3924 struct tcp_sock *tp = tcp_sk(sk); 3925 3926 if (!tp->rx_opt.dsack) 3927 tcp_dsack_set(sk, seq, end_seq); 3928 else 3929 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3930 } 3931 3932 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3933 { 3934 struct tcp_sock *tp = tcp_sk(sk); 3935 3936 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3937 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3938 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3939 tcp_enter_quickack_mode(sk); 3940 3941 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3942 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3943 3944 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3945 end_seq = tp->rcv_nxt; 3946 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3947 } 3948 } 3949 3950 tcp_send_ack(sk); 3951 } 3952 3953 /* These routines update the SACK block as out-of-order packets arrive or 3954 * in-order packets close up the sequence space. 3955 */ 3956 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3957 { 3958 int this_sack; 3959 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3960 struct tcp_sack_block *swalk = sp + 1; 3961 3962 /* See if the recent change to the first SACK eats into 3963 * or hits the sequence space of other SACK blocks, if so coalesce. 3964 */ 3965 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3966 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3967 int i; 3968 3969 /* Zap SWALK, by moving every further SACK up by one slot. 3970 * Decrease num_sacks. 3971 */ 3972 tp->rx_opt.num_sacks--; 3973 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3974 sp[i] = sp[i + 1]; 3975 continue; 3976 } 3977 this_sack++, swalk++; 3978 } 3979 } 3980 3981 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3982 { 3983 struct tcp_sock *tp = tcp_sk(sk); 3984 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3985 int cur_sacks = tp->rx_opt.num_sacks; 3986 int this_sack; 3987 3988 if (!cur_sacks) 3989 goto new_sack; 3990 3991 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3992 if (tcp_sack_extend(sp, seq, end_seq)) { 3993 /* Rotate this_sack to the first one. */ 3994 for (; this_sack > 0; this_sack--, sp--) 3995 swap(*sp, *(sp - 1)); 3996 if (cur_sacks > 1) 3997 tcp_sack_maybe_coalesce(tp); 3998 return; 3999 } 4000 } 4001 4002 /* Could not find an adjacent existing SACK, build a new one, 4003 * put it at the front, and shift everyone else down. We 4004 * always know there is at least one SACK present already here. 4005 * 4006 * If the sack array is full, forget about the last one. 4007 */ 4008 if (this_sack >= TCP_NUM_SACKS) { 4009 this_sack--; 4010 tp->rx_opt.num_sacks--; 4011 sp--; 4012 } 4013 for (; this_sack > 0; this_sack--, sp--) 4014 *sp = *(sp - 1); 4015 4016 new_sack: 4017 /* Build the new head SACK, and we're done. */ 4018 sp->start_seq = seq; 4019 sp->end_seq = end_seq; 4020 tp->rx_opt.num_sacks++; 4021 } 4022 4023 /* RCV.NXT advances, some SACKs should be eaten. */ 4024 4025 static void tcp_sack_remove(struct tcp_sock *tp) 4026 { 4027 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4028 int num_sacks = tp->rx_opt.num_sacks; 4029 int this_sack; 4030 4031 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4032 if (skb_queue_empty(&tp->out_of_order_queue)) { 4033 tp->rx_opt.num_sacks = 0; 4034 return; 4035 } 4036 4037 for (this_sack = 0; this_sack < num_sacks;) { 4038 /* Check if the start of the sack is covered by RCV.NXT. */ 4039 if (!before(tp->rcv_nxt, sp->start_seq)) { 4040 int i; 4041 4042 /* RCV.NXT must cover all the block! */ 4043 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4044 4045 /* Zap this SACK, by moving forward any other SACKS. */ 4046 for (i = this_sack+1; i < num_sacks; i++) 4047 tp->selective_acks[i-1] = tp->selective_acks[i]; 4048 num_sacks--; 4049 continue; 4050 } 4051 this_sack++; 4052 sp++; 4053 } 4054 tp->rx_opt.num_sacks = num_sacks; 4055 } 4056 4057 /* This one checks to see if we can put data from the 4058 * out_of_order queue into the receive_queue. 4059 */ 4060 static void tcp_ofo_queue(struct sock *sk) 4061 { 4062 struct tcp_sock *tp = tcp_sk(sk); 4063 __u32 dsack_high = tp->rcv_nxt; 4064 struct sk_buff *skb; 4065 4066 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4067 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4068 break; 4069 4070 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4071 __u32 dsack = dsack_high; 4072 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4073 dsack_high = TCP_SKB_CB(skb)->end_seq; 4074 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4075 } 4076 4077 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4078 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4079 __skb_unlink(skb, &tp->out_of_order_queue); 4080 __kfree_skb(skb); 4081 continue; 4082 } 4083 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4084 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4085 TCP_SKB_CB(skb)->end_seq); 4086 4087 __skb_unlink(skb, &tp->out_of_order_queue); 4088 __skb_queue_tail(&sk->sk_receive_queue, skb); 4089 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4090 if (tcp_hdr(skb)->fin) 4091 tcp_fin(sk); 4092 } 4093 } 4094 4095 static bool tcp_prune_ofo_queue(struct sock *sk); 4096 static int tcp_prune_queue(struct sock *sk); 4097 4098 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4099 unsigned int size) 4100 { 4101 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4102 !sk_rmem_schedule(sk, skb, size)) { 4103 4104 if (tcp_prune_queue(sk) < 0) 4105 return -1; 4106 4107 if (!sk_rmem_schedule(sk, skb, size)) { 4108 if (!tcp_prune_ofo_queue(sk)) 4109 return -1; 4110 4111 if (!sk_rmem_schedule(sk, skb, size)) 4112 return -1; 4113 } 4114 } 4115 return 0; 4116 } 4117 4118 /** 4119 * tcp_try_coalesce - try to merge skb to prior one 4120 * @sk: socket 4121 * @to: prior buffer 4122 * @from: buffer to add in queue 4123 * @fragstolen: pointer to boolean 4124 * 4125 * Before queueing skb @from after @to, try to merge them 4126 * to reduce overall memory use and queue lengths, if cost is small. 4127 * Packets in ofo or receive queues can stay a long time. 4128 * Better try to coalesce them right now to avoid future collapses. 4129 * Returns true if caller should free @from instead of queueing it 4130 */ 4131 static bool tcp_try_coalesce(struct sock *sk, 4132 struct sk_buff *to, 4133 struct sk_buff *from, 4134 bool *fragstolen) 4135 { 4136 int delta; 4137 4138 *fragstolen = false; 4139 4140 if (tcp_hdr(from)->fin) 4141 return false; 4142 4143 /* Its possible this segment overlaps with prior segment in queue */ 4144 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4145 return false; 4146 4147 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4148 return false; 4149 4150 atomic_add(delta, &sk->sk_rmem_alloc); 4151 sk_mem_charge(sk, delta); 4152 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4153 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4154 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4155 return true; 4156 } 4157 4158 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4159 { 4160 struct tcp_sock *tp = tcp_sk(sk); 4161 struct sk_buff *skb1; 4162 u32 seq, end_seq; 4163 4164 TCP_ECN_check_ce(tp, skb); 4165 4166 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4168 __kfree_skb(skb); 4169 return; 4170 } 4171 4172 /* Disable header prediction. */ 4173 tp->pred_flags = 0; 4174 inet_csk_schedule_ack(sk); 4175 4176 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4177 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4178 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4179 4180 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4181 if (!skb1) { 4182 /* Initial out of order segment, build 1 SACK. */ 4183 if (tcp_is_sack(tp)) { 4184 tp->rx_opt.num_sacks = 1; 4185 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4186 tp->selective_acks[0].end_seq = 4187 TCP_SKB_CB(skb)->end_seq; 4188 } 4189 __skb_queue_head(&tp->out_of_order_queue, skb); 4190 goto end; 4191 } 4192 4193 seq = TCP_SKB_CB(skb)->seq; 4194 end_seq = TCP_SKB_CB(skb)->end_seq; 4195 4196 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4197 bool fragstolen; 4198 4199 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4200 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4201 } else { 4202 tcp_grow_window(sk, skb); 4203 kfree_skb_partial(skb, fragstolen); 4204 skb = NULL; 4205 } 4206 4207 if (!tp->rx_opt.num_sacks || 4208 tp->selective_acks[0].end_seq != seq) 4209 goto add_sack; 4210 4211 /* Common case: data arrive in order after hole. */ 4212 tp->selective_acks[0].end_seq = end_seq; 4213 goto end; 4214 } 4215 4216 /* Find place to insert this segment. */ 4217 while (1) { 4218 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4219 break; 4220 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4221 skb1 = NULL; 4222 break; 4223 } 4224 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4225 } 4226 4227 /* Do skb overlap to previous one? */ 4228 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4229 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4230 /* All the bits are present. Drop. */ 4231 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4232 __kfree_skb(skb); 4233 skb = NULL; 4234 tcp_dsack_set(sk, seq, end_seq); 4235 goto add_sack; 4236 } 4237 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4238 /* Partial overlap. */ 4239 tcp_dsack_set(sk, seq, 4240 TCP_SKB_CB(skb1)->end_seq); 4241 } else { 4242 if (skb_queue_is_first(&tp->out_of_order_queue, 4243 skb1)) 4244 skb1 = NULL; 4245 else 4246 skb1 = skb_queue_prev( 4247 &tp->out_of_order_queue, 4248 skb1); 4249 } 4250 } 4251 if (!skb1) 4252 __skb_queue_head(&tp->out_of_order_queue, skb); 4253 else 4254 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4255 4256 /* And clean segments covered by new one as whole. */ 4257 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4258 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4259 4260 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4261 break; 4262 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4263 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4264 end_seq); 4265 break; 4266 } 4267 __skb_unlink(skb1, &tp->out_of_order_queue); 4268 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4269 TCP_SKB_CB(skb1)->end_seq); 4270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4271 __kfree_skb(skb1); 4272 } 4273 4274 add_sack: 4275 if (tcp_is_sack(tp)) 4276 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4277 end: 4278 if (skb) { 4279 tcp_grow_window(sk, skb); 4280 skb_set_owner_r(skb, sk); 4281 } 4282 } 4283 4284 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4285 bool *fragstolen) 4286 { 4287 int eaten; 4288 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4289 4290 __skb_pull(skb, hdrlen); 4291 eaten = (tail && 4292 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4293 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4294 if (!eaten) { 4295 __skb_queue_tail(&sk->sk_receive_queue, skb); 4296 skb_set_owner_r(skb, sk); 4297 } 4298 return eaten; 4299 } 4300 4301 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4302 { 4303 struct sk_buff *skb = NULL; 4304 struct tcphdr *th; 4305 bool fragstolen; 4306 4307 if (size == 0) 4308 return 0; 4309 4310 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4311 if (!skb) 4312 goto err; 4313 4314 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4315 goto err_free; 4316 4317 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4318 skb_reset_transport_header(skb); 4319 memset(th, 0, sizeof(*th)); 4320 4321 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4322 goto err_free; 4323 4324 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4325 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4326 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4327 4328 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4329 WARN_ON_ONCE(fragstolen); /* should not happen */ 4330 __kfree_skb(skb); 4331 } 4332 return size; 4333 4334 err_free: 4335 kfree_skb(skb); 4336 err: 4337 return -ENOMEM; 4338 } 4339 4340 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4341 { 4342 const struct tcphdr *th = tcp_hdr(skb); 4343 struct tcp_sock *tp = tcp_sk(sk); 4344 int eaten = -1; 4345 bool fragstolen = false; 4346 4347 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4348 goto drop; 4349 4350 skb_dst_drop(skb); 4351 __skb_pull(skb, th->doff * 4); 4352 4353 TCP_ECN_accept_cwr(tp, skb); 4354 4355 tp->rx_opt.dsack = 0; 4356 4357 /* Queue data for delivery to the user. 4358 * Packets in sequence go to the receive queue. 4359 * Out of sequence packets to the out_of_order_queue. 4360 */ 4361 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4362 if (tcp_receive_window(tp) == 0) 4363 goto out_of_window; 4364 4365 /* Ok. In sequence. In window. */ 4366 if (tp->ucopy.task == current && 4367 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4368 sock_owned_by_user(sk) && !tp->urg_data) { 4369 int chunk = min_t(unsigned int, skb->len, 4370 tp->ucopy.len); 4371 4372 __set_current_state(TASK_RUNNING); 4373 4374 local_bh_enable(); 4375 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4376 tp->ucopy.len -= chunk; 4377 tp->copied_seq += chunk; 4378 eaten = (chunk == skb->len); 4379 tcp_rcv_space_adjust(sk); 4380 } 4381 local_bh_disable(); 4382 } 4383 4384 if (eaten <= 0) { 4385 queue_and_out: 4386 if (eaten < 0 && 4387 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4388 goto drop; 4389 4390 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4391 } 4392 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4393 if (skb->len) 4394 tcp_event_data_recv(sk, skb); 4395 if (th->fin) 4396 tcp_fin(sk); 4397 4398 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4399 tcp_ofo_queue(sk); 4400 4401 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4402 * gap in queue is filled. 4403 */ 4404 if (skb_queue_empty(&tp->out_of_order_queue)) 4405 inet_csk(sk)->icsk_ack.pingpong = 0; 4406 } 4407 4408 if (tp->rx_opt.num_sacks) 4409 tcp_sack_remove(tp); 4410 4411 tcp_fast_path_check(sk); 4412 4413 if (eaten > 0) 4414 kfree_skb_partial(skb, fragstolen); 4415 if (!sock_flag(sk, SOCK_DEAD)) 4416 sk->sk_data_ready(sk); 4417 return; 4418 } 4419 4420 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4421 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4423 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4424 4425 out_of_window: 4426 tcp_enter_quickack_mode(sk); 4427 inet_csk_schedule_ack(sk); 4428 drop: 4429 __kfree_skb(skb); 4430 return; 4431 } 4432 4433 /* Out of window. F.e. zero window probe. */ 4434 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4435 goto out_of_window; 4436 4437 tcp_enter_quickack_mode(sk); 4438 4439 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4440 /* Partial packet, seq < rcv_next < end_seq */ 4441 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4442 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4443 TCP_SKB_CB(skb)->end_seq); 4444 4445 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4446 4447 /* If window is closed, drop tail of packet. But after 4448 * remembering D-SACK for its head made in previous line. 4449 */ 4450 if (!tcp_receive_window(tp)) 4451 goto out_of_window; 4452 goto queue_and_out; 4453 } 4454 4455 tcp_data_queue_ofo(sk, skb); 4456 } 4457 4458 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4459 struct sk_buff_head *list) 4460 { 4461 struct sk_buff *next = NULL; 4462 4463 if (!skb_queue_is_last(list, skb)) 4464 next = skb_queue_next(list, skb); 4465 4466 __skb_unlink(skb, list); 4467 __kfree_skb(skb); 4468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4469 4470 return next; 4471 } 4472 4473 /* Collapse contiguous sequence of skbs head..tail with 4474 * sequence numbers start..end. 4475 * 4476 * If tail is NULL, this means until the end of the list. 4477 * 4478 * Segments with FIN/SYN are not collapsed (only because this 4479 * simplifies code) 4480 */ 4481 static void 4482 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4483 struct sk_buff *head, struct sk_buff *tail, 4484 u32 start, u32 end) 4485 { 4486 struct sk_buff *skb, *n; 4487 bool end_of_skbs; 4488 4489 /* First, check that queue is collapsible and find 4490 * the point where collapsing can be useful. */ 4491 skb = head; 4492 restart: 4493 end_of_skbs = true; 4494 skb_queue_walk_from_safe(list, skb, n) { 4495 if (skb == tail) 4496 break; 4497 /* No new bits? It is possible on ofo queue. */ 4498 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4499 skb = tcp_collapse_one(sk, skb, list); 4500 if (!skb) 4501 break; 4502 goto restart; 4503 } 4504 4505 /* The first skb to collapse is: 4506 * - not SYN/FIN and 4507 * - bloated or contains data before "start" or 4508 * overlaps to the next one. 4509 */ 4510 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4511 (tcp_win_from_space(skb->truesize) > skb->len || 4512 before(TCP_SKB_CB(skb)->seq, start))) { 4513 end_of_skbs = false; 4514 break; 4515 } 4516 4517 if (!skb_queue_is_last(list, skb)) { 4518 struct sk_buff *next = skb_queue_next(list, skb); 4519 if (next != tail && 4520 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4521 end_of_skbs = false; 4522 break; 4523 } 4524 } 4525 4526 /* Decided to skip this, advance start seq. */ 4527 start = TCP_SKB_CB(skb)->end_seq; 4528 } 4529 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4530 return; 4531 4532 while (before(start, end)) { 4533 struct sk_buff *nskb; 4534 unsigned int header = skb_headroom(skb); 4535 int copy = SKB_MAX_ORDER(header, 0); 4536 4537 /* Too big header? This can happen with IPv6. */ 4538 if (copy < 0) 4539 return; 4540 if (end - start < copy) 4541 copy = end - start; 4542 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4543 if (!nskb) 4544 return; 4545 4546 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4547 skb_set_network_header(nskb, (skb_network_header(skb) - 4548 skb->head)); 4549 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4550 skb->head)); 4551 skb_reserve(nskb, header); 4552 memcpy(nskb->head, skb->head, header); 4553 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4554 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4555 __skb_queue_before(list, skb, nskb); 4556 skb_set_owner_r(nskb, sk); 4557 4558 /* Copy data, releasing collapsed skbs. */ 4559 while (copy > 0) { 4560 int offset = start - TCP_SKB_CB(skb)->seq; 4561 int size = TCP_SKB_CB(skb)->end_seq - start; 4562 4563 BUG_ON(offset < 0); 4564 if (size > 0) { 4565 size = min(copy, size); 4566 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4567 BUG(); 4568 TCP_SKB_CB(nskb)->end_seq += size; 4569 copy -= size; 4570 start += size; 4571 } 4572 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4573 skb = tcp_collapse_one(sk, skb, list); 4574 if (!skb || 4575 skb == tail || 4576 tcp_hdr(skb)->syn || 4577 tcp_hdr(skb)->fin) 4578 return; 4579 } 4580 } 4581 } 4582 } 4583 4584 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4585 * and tcp_collapse() them until all the queue is collapsed. 4586 */ 4587 static void tcp_collapse_ofo_queue(struct sock *sk) 4588 { 4589 struct tcp_sock *tp = tcp_sk(sk); 4590 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4591 struct sk_buff *head; 4592 u32 start, end; 4593 4594 if (skb == NULL) 4595 return; 4596 4597 start = TCP_SKB_CB(skb)->seq; 4598 end = TCP_SKB_CB(skb)->end_seq; 4599 head = skb; 4600 4601 for (;;) { 4602 struct sk_buff *next = NULL; 4603 4604 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4605 next = skb_queue_next(&tp->out_of_order_queue, skb); 4606 skb = next; 4607 4608 /* Segment is terminated when we see gap or when 4609 * we are at the end of all the queue. */ 4610 if (!skb || 4611 after(TCP_SKB_CB(skb)->seq, end) || 4612 before(TCP_SKB_CB(skb)->end_seq, start)) { 4613 tcp_collapse(sk, &tp->out_of_order_queue, 4614 head, skb, start, end); 4615 head = skb; 4616 if (!skb) 4617 break; 4618 /* Start new segment */ 4619 start = TCP_SKB_CB(skb)->seq; 4620 end = TCP_SKB_CB(skb)->end_seq; 4621 } else { 4622 if (before(TCP_SKB_CB(skb)->seq, start)) 4623 start = TCP_SKB_CB(skb)->seq; 4624 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4625 end = TCP_SKB_CB(skb)->end_seq; 4626 } 4627 } 4628 } 4629 4630 /* 4631 * Purge the out-of-order queue. 4632 * Return true if queue was pruned. 4633 */ 4634 static bool tcp_prune_ofo_queue(struct sock *sk) 4635 { 4636 struct tcp_sock *tp = tcp_sk(sk); 4637 bool res = false; 4638 4639 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4640 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4641 __skb_queue_purge(&tp->out_of_order_queue); 4642 4643 /* Reset SACK state. A conforming SACK implementation will 4644 * do the same at a timeout based retransmit. When a connection 4645 * is in a sad state like this, we care only about integrity 4646 * of the connection not performance. 4647 */ 4648 if (tp->rx_opt.sack_ok) 4649 tcp_sack_reset(&tp->rx_opt); 4650 sk_mem_reclaim(sk); 4651 res = true; 4652 } 4653 return res; 4654 } 4655 4656 /* Reduce allocated memory if we can, trying to get 4657 * the socket within its memory limits again. 4658 * 4659 * Return less than zero if we should start dropping frames 4660 * until the socket owning process reads some of the data 4661 * to stabilize the situation. 4662 */ 4663 static int tcp_prune_queue(struct sock *sk) 4664 { 4665 struct tcp_sock *tp = tcp_sk(sk); 4666 4667 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4668 4669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4670 4671 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4672 tcp_clamp_window(sk); 4673 else if (sk_under_memory_pressure(sk)) 4674 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4675 4676 tcp_collapse_ofo_queue(sk); 4677 if (!skb_queue_empty(&sk->sk_receive_queue)) 4678 tcp_collapse(sk, &sk->sk_receive_queue, 4679 skb_peek(&sk->sk_receive_queue), 4680 NULL, 4681 tp->copied_seq, tp->rcv_nxt); 4682 sk_mem_reclaim(sk); 4683 4684 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4685 return 0; 4686 4687 /* Collapsing did not help, destructive actions follow. 4688 * This must not ever occur. */ 4689 4690 tcp_prune_ofo_queue(sk); 4691 4692 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4693 return 0; 4694 4695 /* If we are really being abused, tell the caller to silently 4696 * drop receive data on the floor. It will get retransmitted 4697 * and hopefully then we'll have sufficient space. 4698 */ 4699 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4700 4701 /* Massive buffer overcommit. */ 4702 tp->pred_flags = 0; 4703 return -1; 4704 } 4705 4706 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4707 * As additional protections, we do not touch cwnd in retransmission phases, 4708 * and if application hit its sndbuf limit recently. 4709 */ 4710 void tcp_cwnd_application_limited(struct sock *sk) 4711 { 4712 struct tcp_sock *tp = tcp_sk(sk); 4713 4714 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4715 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4716 /* Limited by application or receiver window. */ 4717 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4718 u32 win_used = max(tp->snd_cwnd_used, init_win); 4719 if (win_used < tp->snd_cwnd) { 4720 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4721 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4722 } 4723 tp->snd_cwnd_used = 0; 4724 } 4725 tp->snd_cwnd_stamp = tcp_time_stamp; 4726 } 4727 4728 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4729 { 4730 const struct tcp_sock *tp = tcp_sk(sk); 4731 4732 /* If the user specified a specific send buffer setting, do 4733 * not modify it. 4734 */ 4735 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4736 return false; 4737 4738 /* If we are under global TCP memory pressure, do not expand. */ 4739 if (sk_under_memory_pressure(sk)) 4740 return false; 4741 4742 /* If we are under soft global TCP memory pressure, do not expand. */ 4743 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4744 return false; 4745 4746 /* If we filled the congestion window, do not expand. */ 4747 if (tp->packets_out >= tp->snd_cwnd) 4748 return false; 4749 4750 return true; 4751 } 4752 4753 /* When incoming ACK allowed to free some skb from write_queue, 4754 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4755 * on the exit from tcp input handler. 4756 * 4757 * PROBLEM: sndbuf expansion does not work well with largesend. 4758 */ 4759 static void tcp_new_space(struct sock *sk) 4760 { 4761 struct tcp_sock *tp = tcp_sk(sk); 4762 4763 if (tcp_should_expand_sndbuf(sk)) { 4764 tcp_sndbuf_expand(sk); 4765 tp->snd_cwnd_stamp = tcp_time_stamp; 4766 } 4767 4768 sk->sk_write_space(sk); 4769 } 4770 4771 static void tcp_check_space(struct sock *sk) 4772 { 4773 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4774 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4775 if (sk->sk_socket && 4776 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4777 tcp_new_space(sk); 4778 } 4779 } 4780 4781 static inline void tcp_data_snd_check(struct sock *sk) 4782 { 4783 tcp_push_pending_frames(sk); 4784 tcp_check_space(sk); 4785 } 4786 4787 /* 4788 * Check if sending an ack is needed. 4789 */ 4790 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4791 { 4792 struct tcp_sock *tp = tcp_sk(sk); 4793 4794 /* More than one full frame received... */ 4795 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4796 /* ... and right edge of window advances far enough. 4797 * (tcp_recvmsg() will send ACK otherwise). Or... 4798 */ 4799 __tcp_select_window(sk) >= tp->rcv_wnd) || 4800 /* We ACK each frame or... */ 4801 tcp_in_quickack_mode(sk) || 4802 /* We have out of order data. */ 4803 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4804 /* Then ack it now */ 4805 tcp_send_ack(sk); 4806 } else { 4807 /* Else, send delayed ack. */ 4808 tcp_send_delayed_ack(sk); 4809 } 4810 } 4811 4812 static inline void tcp_ack_snd_check(struct sock *sk) 4813 { 4814 if (!inet_csk_ack_scheduled(sk)) { 4815 /* We sent a data segment already. */ 4816 return; 4817 } 4818 __tcp_ack_snd_check(sk, 1); 4819 } 4820 4821 /* 4822 * This routine is only called when we have urgent data 4823 * signaled. Its the 'slow' part of tcp_urg. It could be 4824 * moved inline now as tcp_urg is only called from one 4825 * place. We handle URGent data wrong. We have to - as 4826 * BSD still doesn't use the correction from RFC961. 4827 * For 1003.1g we should support a new option TCP_STDURG to permit 4828 * either form (or just set the sysctl tcp_stdurg). 4829 */ 4830 4831 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4832 { 4833 struct tcp_sock *tp = tcp_sk(sk); 4834 u32 ptr = ntohs(th->urg_ptr); 4835 4836 if (ptr && !sysctl_tcp_stdurg) 4837 ptr--; 4838 ptr += ntohl(th->seq); 4839 4840 /* Ignore urgent data that we've already seen and read. */ 4841 if (after(tp->copied_seq, ptr)) 4842 return; 4843 4844 /* Do not replay urg ptr. 4845 * 4846 * NOTE: interesting situation not covered by specs. 4847 * Misbehaving sender may send urg ptr, pointing to segment, 4848 * which we already have in ofo queue. We are not able to fetch 4849 * such data and will stay in TCP_URG_NOTYET until will be eaten 4850 * by recvmsg(). Seems, we are not obliged to handle such wicked 4851 * situations. But it is worth to think about possibility of some 4852 * DoSes using some hypothetical application level deadlock. 4853 */ 4854 if (before(ptr, tp->rcv_nxt)) 4855 return; 4856 4857 /* Do we already have a newer (or duplicate) urgent pointer? */ 4858 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4859 return; 4860 4861 /* Tell the world about our new urgent pointer. */ 4862 sk_send_sigurg(sk); 4863 4864 /* We may be adding urgent data when the last byte read was 4865 * urgent. To do this requires some care. We cannot just ignore 4866 * tp->copied_seq since we would read the last urgent byte again 4867 * as data, nor can we alter copied_seq until this data arrives 4868 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4869 * 4870 * NOTE. Double Dutch. Rendering to plain English: author of comment 4871 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4872 * and expect that both A and B disappear from stream. This is _wrong_. 4873 * Though this happens in BSD with high probability, this is occasional. 4874 * Any application relying on this is buggy. Note also, that fix "works" 4875 * only in this artificial test. Insert some normal data between A and B and we will 4876 * decline of BSD again. Verdict: it is better to remove to trap 4877 * buggy users. 4878 */ 4879 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4880 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4881 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4882 tp->copied_seq++; 4883 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4884 __skb_unlink(skb, &sk->sk_receive_queue); 4885 __kfree_skb(skb); 4886 } 4887 } 4888 4889 tp->urg_data = TCP_URG_NOTYET; 4890 tp->urg_seq = ptr; 4891 4892 /* Disable header prediction. */ 4893 tp->pred_flags = 0; 4894 } 4895 4896 /* This is the 'fast' part of urgent handling. */ 4897 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4898 { 4899 struct tcp_sock *tp = tcp_sk(sk); 4900 4901 /* Check if we get a new urgent pointer - normally not. */ 4902 if (th->urg) 4903 tcp_check_urg(sk, th); 4904 4905 /* Do we wait for any urgent data? - normally not... */ 4906 if (tp->urg_data == TCP_URG_NOTYET) { 4907 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4908 th->syn; 4909 4910 /* Is the urgent pointer pointing into this packet? */ 4911 if (ptr < skb->len) { 4912 u8 tmp; 4913 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4914 BUG(); 4915 tp->urg_data = TCP_URG_VALID | tmp; 4916 if (!sock_flag(sk, SOCK_DEAD)) 4917 sk->sk_data_ready(sk); 4918 } 4919 } 4920 } 4921 4922 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4923 { 4924 struct tcp_sock *tp = tcp_sk(sk); 4925 int chunk = skb->len - hlen; 4926 int err; 4927 4928 local_bh_enable(); 4929 if (skb_csum_unnecessary(skb)) 4930 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4931 else 4932 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4933 tp->ucopy.iov); 4934 4935 if (!err) { 4936 tp->ucopy.len -= chunk; 4937 tp->copied_seq += chunk; 4938 tcp_rcv_space_adjust(sk); 4939 } 4940 4941 local_bh_disable(); 4942 return err; 4943 } 4944 4945 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4946 struct sk_buff *skb) 4947 { 4948 __sum16 result; 4949 4950 if (sock_owned_by_user(sk)) { 4951 local_bh_enable(); 4952 result = __tcp_checksum_complete(skb); 4953 local_bh_disable(); 4954 } else { 4955 result = __tcp_checksum_complete(skb); 4956 } 4957 return result; 4958 } 4959 4960 static inline bool tcp_checksum_complete_user(struct sock *sk, 4961 struct sk_buff *skb) 4962 { 4963 return !skb_csum_unnecessary(skb) && 4964 __tcp_checksum_complete_user(sk, skb); 4965 } 4966 4967 #ifdef CONFIG_NET_DMA 4968 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4969 int hlen) 4970 { 4971 struct tcp_sock *tp = tcp_sk(sk); 4972 int chunk = skb->len - hlen; 4973 int dma_cookie; 4974 bool copied_early = false; 4975 4976 if (tp->ucopy.wakeup) 4977 return false; 4978 4979 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4980 tp->ucopy.dma_chan = net_dma_find_channel(); 4981 4982 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4983 4984 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4985 skb, hlen, 4986 tp->ucopy.iov, chunk, 4987 tp->ucopy.pinned_list); 4988 4989 if (dma_cookie < 0) 4990 goto out; 4991 4992 tp->ucopy.dma_cookie = dma_cookie; 4993 copied_early = true; 4994 4995 tp->ucopy.len -= chunk; 4996 tp->copied_seq += chunk; 4997 tcp_rcv_space_adjust(sk); 4998 4999 if ((tp->ucopy.len == 0) || 5000 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5001 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5002 tp->ucopy.wakeup = 1; 5003 sk->sk_data_ready(sk); 5004 } 5005 } else if (chunk > 0) { 5006 tp->ucopy.wakeup = 1; 5007 sk->sk_data_ready(sk); 5008 } 5009 out: 5010 return copied_early; 5011 } 5012 #endif /* CONFIG_NET_DMA */ 5013 5014 /* Does PAWS and seqno based validation of an incoming segment, flags will 5015 * play significant role here. 5016 */ 5017 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5018 const struct tcphdr *th, int syn_inerr) 5019 { 5020 struct tcp_sock *tp = tcp_sk(sk); 5021 5022 /* RFC1323: H1. Apply PAWS check first. */ 5023 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5024 tcp_paws_discard(sk, skb)) { 5025 if (!th->rst) { 5026 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5027 tcp_send_dupack(sk, skb); 5028 goto discard; 5029 } 5030 /* Reset is accepted even if it did not pass PAWS. */ 5031 } 5032 5033 /* Step 1: check sequence number */ 5034 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5035 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5036 * (RST) segments are validated by checking their SEQ-fields." 5037 * And page 69: "If an incoming segment is not acceptable, 5038 * an acknowledgment should be sent in reply (unless the RST 5039 * bit is set, if so drop the segment and return)". 5040 */ 5041 if (!th->rst) { 5042 if (th->syn) 5043 goto syn_challenge; 5044 tcp_send_dupack(sk, skb); 5045 } 5046 goto discard; 5047 } 5048 5049 /* Step 2: check RST bit */ 5050 if (th->rst) { 5051 /* RFC 5961 3.2 : 5052 * If sequence number exactly matches RCV.NXT, then 5053 * RESET the connection 5054 * else 5055 * Send a challenge ACK 5056 */ 5057 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5058 tcp_reset(sk); 5059 else 5060 tcp_send_challenge_ack(sk); 5061 goto discard; 5062 } 5063 5064 /* step 3: check security and precedence [ignored] */ 5065 5066 /* step 4: Check for a SYN 5067 * RFC 5691 4.2 : Send a challenge ack 5068 */ 5069 if (th->syn) { 5070 syn_challenge: 5071 if (syn_inerr) 5072 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5073 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5074 tcp_send_challenge_ack(sk); 5075 goto discard; 5076 } 5077 5078 return true; 5079 5080 discard: 5081 __kfree_skb(skb); 5082 return false; 5083 } 5084 5085 /* 5086 * TCP receive function for the ESTABLISHED state. 5087 * 5088 * It is split into a fast path and a slow path. The fast path is 5089 * disabled when: 5090 * - A zero window was announced from us - zero window probing 5091 * is only handled properly in the slow path. 5092 * - Out of order segments arrived. 5093 * - Urgent data is expected. 5094 * - There is no buffer space left 5095 * - Unexpected TCP flags/window values/header lengths are received 5096 * (detected by checking the TCP header against pred_flags) 5097 * - Data is sent in both directions. Fast path only supports pure senders 5098 * or pure receivers (this means either the sequence number or the ack 5099 * value must stay constant) 5100 * - Unexpected TCP option. 5101 * 5102 * When these conditions are not satisfied it drops into a standard 5103 * receive procedure patterned after RFC793 to handle all cases. 5104 * The first three cases are guaranteed by proper pred_flags setting, 5105 * the rest is checked inline. Fast processing is turned on in 5106 * tcp_data_queue when everything is OK. 5107 */ 5108 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5109 const struct tcphdr *th, unsigned int len) 5110 { 5111 struct tcp_sock *tp = tcp_sk(sk); 5112 5113 if (unlikely(sk->sk_rx_dst == NULL)) 5114 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5115 /* 5116 * Header prediction. 5117 * The code loosely follows the one in the famous 5118 * "30 instruction TCP receive" Van Jacobson mail. 5119 * 5120 * Van's trick is to deposit buffers into socket queue 5121 * on a device interrupt, to call tcp_recv function 5122 * on the receive process context and checksum and copy 5123 * the buffer to user space. smart... 5124 * 5125 * Our current scheme is not silly either but we take the 5126 * extra cost of the net_bh soft interrupt processing... 5127 * We do checksum and copy also but from device to kernel. 5128 */ 5129 5130 tp->rx_opt.saw_tstamp = 0; 5131 5132 /* pred_flags is 0xS?10 << 16 + snd_wnd 5133 * if header_prediction is to be made 5134 * 'S' will always be tp->tcp_header_len >> 2 5135 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5136 * turn it off (when there are holes in the receive 5137 * space for instance) 5138 * PSH flag is ignored. 5139 */ 5140 5141 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5142 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5143 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5144 int tcp_header_len = tp->tcp_header_len; 5145 5146 /* Timestamp header prediction: tcp_header_len 5147 * is automatically equal to th->doff*4 due to pred_flags 5148 * match. 5149 */ 5150 5151 /* Check timestamp */ 5152 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5153 /* No? Slow path! */ 5154 if (!tcp_parse_aligned_timestamp(tp, th)) 5155 goto slow_path; 5156 5157 /* If PAWS failed, check it more carefully in slow path */ 5158 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5159 goto slow_path; 5160 5161 /* DO NOT update ts_recent here, if checksum fails 5162 * and timestamp was corrupted part, it will result 5163 * in a hung connection since we will drop all 5164 * future packets due to the PAWS test. 5165 */ 5166 } 5167 5168 if (len <= tcp_header_len) { 5169 /* Bulk data transfer: sender */ 5170 if (len == tcp_header_len) { 5171 /* Predicted packet is in window by definition. 5172 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5173 * Hence, check seq<=rcv_wup reduces to: 5174 */ 5175 if (tcp_header_len == 5176 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5177 tp->rcv_nxt == tp->rcv_wup) 5178 tcp_store_ts_recent(tp); 5179 5180 /* We know that such packets are checksummed 5181 * on entry. 5182 */ 5183 tcp_ack(sk, skb, 0); 5184 __kfree_skb(skb); 5185 tcp_data_snd_check(sk); 5186 return; 5187 } else { /* Header too small */ 5188 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5189 goto discard; 5190 } 5191 } else { 5192 int eaten = 0; 5193 int copied_early = 0; 5194 bool fragstolen = false; 5195 5196 if (tp->copied_seq == tp->rcv_nxt && 5197 len - tcp_header_len <= tp->ucopy.len) { 5198 #ifdef CONFIG_NET_DMA 5199 if (tp->ucopy.task == current && 5200 sock_owned_by_user(sk) && 5201 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5202 copied_early = 1; 5203 eaten = 1; 5204 } 5205 #endif 5206 if (tp->ucopy.task == current && 5207 sock_owned_by_user(sk) && !copied_early) { 5208 __set_current_state(TASK_RUNNING); 5209 5210 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5211 eaten = 1; 5212 } 5213 if (eaten) { 5214 /* Predicted packet is in window by definition. 5215 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5216 * Hence, check seq<=rcv_wup reduces to: 5217 */ 5218 if (tcp_header_len == 5219 (sizeof(struct tcphdr) + 5220 TCPOLEN_TSTAMP_ALIGNED) && 5221 tp->rcv_nxt == tp->rcv_wup) 5222 tcp_store_ts_recent(tp); 5223 5224 tcp_rcv_rtt_measure_ts(sk, skb); 5225 5226 __skb_pull(skb, tcp_header_len); 5227 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5229 } 5230 if (copied_early) 5231 tcp_cleanup_rbuf(sk, skb->len); 5232 } 5233 if (!eaten) { 5234 if (tcp_checksum_complete_user(sk, skb)) 5235 goto csum_error; 5236 5237 if ((int)skb->truesize > sk->sk_forward_alloc) 5238 goto step5; 5239 5240 /* Predicted packet is in window by definition. 5241 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5242 * Hence, check seq<=rcv_wup reduces to: 5243 */ 5244 if (tcp_header_len == 5245 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5246 tp->rcv_nxt == tp->rcv_wup) 5247 tcp_store_ts_recent(tp); 5248 5249 tcp_rcv_rtt_measure_ts(sk, skb); 5250 5251 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5252 5253 /* Bulk data transfer: receiver */ 5254 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5255 &fragstolen); 5256 } 5257 5258 tcp_event_data_recv(sk, skb); 5259 5260 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5261 /* Well, only one small jumplet in fast path... */ 5262 tcp_ack(sk, skb, FLAG_DATA); 5263 tcp_data_snd_check(sk); 5264 if (!inet_csk_ack_scheduled(sk)) 5265 goto no_ack; 5266 } 5267 5268 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5269 __tcp_ack_snd_check(sk, 0); 5270 no_ack: 5271 #ifdef CONFIG_NET_DMA 5272 if (copied_early) 5273 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5274 else 5275 #endif 5276 if (eaten) 5277 kfree_skb_partial(skb, fragstolen); 5278 sk->sk_data_ready(sk); 5279 return; 5280 } 5281 } 5282 5283 slow_path: 5284 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5285 goto csum_error; 5286 5287 if (!th->ack && !th->rst) 5288 goto discard; 5289 5290 /* 5291 * Standard slow path. 5292 */ 5293 5294 if (!tcp_validate_incoming(sk, skb, th, 1)) 5295 return; 5296 5297 step5: 5298 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5299 goto discard; 5300 5301 tcp_rcv_rtt_measure_ts(sk, skb); 5302 5303 /* Process urgent data. */ 5304 tcp_urg(sk, skb, th); 5305 5306 /* step 7: process the segment text */ 5307 tcp_data_queue(sk, skb); 5308 5309 tcp_data_snd_check(sk); 5310 tcp_ack_snd_check(sk); 5311 return; 5312 5313 csum_error: 5314 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5316 5317 discard: 5318 __kfree_skb(skb); 5319 } 5320 EXPORT_SYMBOL(tcp_rcv_established); 5321 5322 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5323 { 5324 struct tcp_sock *tp = tcp_sk(sk); 5325 struct inet_connection_sock *icsk = inet_csk(sk); 5326 5327 tcp_set_state(sk, TCP_ESTABLISHED); 5328 5329 if (skb != NULL) { 5330 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5331 security_inet_conn_established(sk, skb); 5332 } 5333 5334 /* Make sure socket is routed, for correct metrics. */ 5335 icsk->icsk_af_ops->rebuild_header(sk); 5336 5337 tcp_init_metrics(sk); 5338 5339 tcp_init_congestion_control(sk); 5340 5341 /* Prevent spurious tcp_cwnd_restart() on first data 5342 * packet. 5343 */ 5344 tp->lsndtime = tcp_time_stamp; 5345 5346 tcp_init_buffer_space(sk); 5347 5348 if (sock_flag(sk, SOCK_KEEPOPEN)) 5349 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5350 5351 if (!tp->rx_opt.snd_wscale) 5352 __tcp_fast_path_on(tp, tp->snd_wnd); 5353 else 5354 tp->pred_flags = 0; 5355 5356 if (!sock_flag(sk, SOCK_DEAD)) { 5357 sk->sk_state_change(sk); 5358 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5359 } 5360 } 5361 5362 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5363 struct tcp_fastopen_cookie *cookie) 5364 { 5365 struct tcp_sock *tp = tcp_sk(sk); 5366 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5367 u16 mss = tp->rx_opt.mss_clamp; 5368 bool syn_drop; 5369 5370 if (mss == tp->rx_opt.user_mss) { 5371 struct tcp_options_received opt; 5372 5373 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5374 tcp_clear_options(&opt); 5375 opt.user_mss = opt.mss_clamp = 0; 5376 tcp_parse_options(synack, &opt, 0, NULL); 5377 mss = opt.mss_clamp; 5378 } 5379 5380 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5381 cookie->len = -1; 5382 5383 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5384 * the remote receives only the retransmitted (regular) SYNs: either 5385 * the original SYN-data or the corresponding SYN-ACK is lost. 5386 */ 5387 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5388 5389 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5390 5391 if (data) { /* Retransmit unacked data in SYN */ 5392 tcp_for_write_queue_from(data, sk) { 5393 if (data == tcp_send_head(sk) || 5394 __tcp_retransmit_skb(sk, data)) 5395 break; 5396 } 5397 tcp_rearm_rto(sk); 5398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5399 return true; 5400 } 5401 tp->syn_data_acked = tp->syn_data; 5402 if (tp->syn_data_acked) 5403 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5404 return false; 5405 } 5406 5407 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5408 const struct tcphdr *th, unsigned int len) 5409 { 5410 struct inet_connection_sock *icsk = inet_csk(sk); 5411 struct tcp_sock *tp = tcp_sk(sk); 5412 struct tcp_fastopen_cookie foc = { .len = -1 }; 5413 int saved_clamp = tp->rx_opt.mss_clamp; 5414 5415 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5416 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5417 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5418 5419 if (th->ack) { 5420 /* rfc793: 5421 * "If the state is SYN-SENT then 5422 * first check the ACK bit 5423 * If the ACK bit is set 5424 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5425 * a reset (unless the RST bit is set, if so drop 5426 * the segment and return)" 5427 */ 5428 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5429 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5430 goto reset_and_undo; 5431 5432 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5433 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5434 tcp_time_stamp)) { 5435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5436 goto reset_and_undo; 5437 } 5438 5439 /* Now ACK is acceptable. 5440 * 5441 * "If the RST bit is set 5442 * If the ACK was acceptable then signal the user "error: 5443 * connection reset", drop the segment, enter CLOSED state, 5444 * delete TCB, and return." 5445 */ 5446 5447 if (th->rst) { 5448 tcp_reset(sk); 5449 goto discard; 5450 } 5451 5452 /* rfc793: 5453 * "fifth, if neither of the SYN or RST bits is set then 5454 * drop the segment and return." 5455 * 5456 * See note below! 5457 * --ANK(990513) 5458 */ 5459 if (!th->syn) 5460 goto discard_and_undo; 5461 5462 /* rfc793: 5463 * "If the SYN bit is on ... 5464 * are acceptable then ... 5465 * (our SYN has been ACKed), change the connection 5466 * state to ESTABLISHED..." 5467 */ 5468 5469 TCP_ECN_rcv_synack(tp, th); 5470 5471 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5472 tcp_ack(sk, skb, FLAG_SLOWPATH); 5473 5474 /* Ok.. it's good. Set up sequence numbers and 5475 * move to established. 5476 */ 5477 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5478 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5479 5480 /* RFC1323: The window in SYN & SYN/ACK segments is 5481 * never scaled. 5482 */ 5483 tp->snd_wnd = ntohs(th->window); 5484 5485 if (!tp->rx_opt.wscale_ok) { 5486 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5487 tp->window_clamp = min(tp->window_clamp, 65535U); 5488 } 5489 5490 if (tp->rx_opt.saw_tstamp) { 5491 tp->rx_opt.tstamp_ok = 1; 5492 tp->tcp_header_len = 5493 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5494 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5495 tcp_store_ts_recent(tp); 5496 } else { 5497 tp->tcp_header_len = sizeof(struct tcphdr); 5498 } 5499 5500 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5501 tcp_enable_fack(tp); 5502 5503 tcp_mtup_init(sk); 5504 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5505 tcp_initialize_rcv_mss(sk); 5506 5507 /* Remember, tcp_poll() does not lock socket! 5508 * Change state from SYN-SENT only after copied_seq 5509 * is initialized. */ 5510 tp->copied_seq = tp->rcv_nxt; 5511 5512 smp_mb(); 5513 5514 tcp_finish_connect(sk, skb); 5515 5516 if ((tp->syn_fastopen || tp->syn_data) && 5517 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5518 return -1; 5519 5520 if (sk->sk_write_pending || 5521 icsk->icsk_accept_queue.rskq_defer_accept || 5522 icsk->icsk_ack.pingpong) { 5523 /* Save one ACK. Data will be ready after 5524 * several ticks, if write_pending is set. 5525 * 5526 * It may be deleted, but with this feature tcpdumps 5527 * look so _wonderfully_ clever, that I was not able 5528 * to stand against the temptation 8) --ANK 5529 */ 5530 inet_csk_schedule_ack(sk); 5531 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5532 tcp_enter_quickack_mode(sk); 5533 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5534 TCP_DELACK_MAX, TCP_RTO_MAX); 5535 5536 discard: 5537 __kfree_skb(skb); 5538 return 0; 5539 } else { 5540 tcp_send_ack(sk); 5541 } 5542 return -1; 5543 } 5544 5545 /* No ACK in the segment */ 5546 5547 if (th->rst) { 5548 /* rfc793: 5549 * "If the RST bit is set 5550 * 5551 * Otherwise (no ACK) drop the segment and return." 5552 */ 5553 5554 goto discard_and_undo; 5555 } 5556 5557 /* PAWS check. */ 5558 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5559 tcp_paws_reject(&tp->rx_opt, 0)) 5560 goto discard_and_undo; 5561 5562 if (th->syn) { 5563 /* We see SYN without ACK. It is attempt of 5564 * simultaneous connect with crossed SYNs. 5565 * Particularly, it can be connect to self. 5566 */ 5567 tcp_set_state(sk, TCP_SYN_RECV); 5568 5569 if (tp->rx_opt.saw_tstamp) { 5570 tp->rx_opt.tstamp_ok = 1; 5571 tcp_store_ts_recent(tp); 5572 tp->tcp_header_len = 5573 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5574 } else { 5575 tp->tcp_header_len = sizeof(struct tcphdr); 5576 } 5577 5578 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5579 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5580 5581 /* RFC1323: The window in SYN & SYN/ACK segments is 5582 * never scaled. 5583 */ 5584 tp->snd_wnd = ntohs(th->window); 5585 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5586 tp->max_window = tp->snd_wnd; 5587 5588 TCP_ECN_rcv_syn(tp, th); 5589 5590 tcp_mtup_init(sk); 5591 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5592 tcp_initialize_rcv_mss(sk); 5593 5594 tcp_send_synack(sk); 5595 #if 0 5596 /* Note, we could accept data and URG from this segment. 5597 * There are no obstacles to make this (except that we must 5598 * either change tcp_recvmsg() to prevent it from returning data 5599 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5600 * 5601 * However, if we ignore data in ACKless segments sometimes, 5602 * we have no reasons to accept it sometimes. 5603 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5604 * is not flawless. So, discard packet for sanity. 5605 * Uncomment this return to process the data. 5606 */ 5607 return -1; 5608 #else 5609 goto discard; 5610 #endif 5611 } 5612 /* "fifth, if neither of the SYN or RST bits is set then 5613 * drop the segment and return." 5614 */ 5615 5616 discard_and_undo: 5617 tcp_clear_options(&tp->rx_opt); 5618 tp->rx_opt.mss_clamp = saved_clamp; 5619 goto discard; 5620 5621 reset_and_undo: 5622 tcp_clear_options(&tp->rx_opt); 5623 tp->rx_opt.mss_clamp = saved_clamp; 5624 return 1; 5625 } 5626 5627 /* 5628 * This function implements the receiving procedure of RFC 793 for 5629 * all states except ESTABLISHED and TIME_WAIT. 5630 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5631 * address independent. 5632 */ 5633 5634 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5635 const struct tcphdr *th, unsigned int len) 5636 { 5637 struct tcp_sock *tp = tcp_sk(sk); 5638 struct inet_connection_sock *icsk = inet_csk(sk); 5639 struct request_sock *req; 5640 int queued = 0; 5641 bool acceptable; 5642 u32 synack_stamp; 5643 5644 tp->rx_opt.saw_tstamp = 0; 5645 5646 switch (sk->sk_state) { 5647 case TCP_CLOSE: 5648 goto discard; 5649 5650 case TCP_LISTEN: 5651 if (th->ack) 5652 return 1; 5653 5654 if (th->rst) 5655 goto discard; 5656 5657 if (th->syn) { 5658 if (th->fin) 5659 goto discard; 5660 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5661 return 1; 5662 5663 /* Now we have several options: In theory there is 5664 * nothing else in the frame. KA9Q has an option to 5665 * send data with the syn, BSD accepts data with the 5666 * syn up to the [to be] advertised window and 5667 * Solaris 2.1 gives you a protocol error. For now 5668 * we just ignore it, that fits the spec precisely 5669 * and avoids incompatibilities. It would be nice in 5670 * future to drop through and process the data. 5671 * 5672 * Now that TTCP is starting to be used we ought to 5673 * queue this data. 5674 * But, this leaves one open to an easy denial of 5675 * service attack, and SYN cookies can't defend 5676 * against this problem. So, we drop the data 5677 * in the interest of security over speed unless 5678 * it's still in use. 5679 */ 5680 kfree_skb(skb); 5681 return 0; 5682 } 5683 goto discard; 5684 5685 case TCP_SYN_SENT: 5686 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5687 if (queued >= 0) 5688 return queued; 5689 5690 /* Do step6 onward by hand. */ 5691 tcp_urg(sk, skb, th); 5692 __kfree_skb(skb); 5693 tcp_data_snd_check(sk); 5694 return 0; 5695 } 5696 5697 req = tp->fastopen_rsk; 5698 if (req != NULL) { 5699 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5700 sk->sk_state != TCP_FIN_WAIT1); 5701 5702 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5703 goto discard; 5704 } 5705 5706 if (!th->ack && !th->rst) 5707 goto discard; 5708 5709 if (!tcp_validate_incoming(sk, skb, th, 0)) 5710 return 0; 5711 5712 /* step 5: check the ACK field */ 5713 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5714 FLAG_UPDATE_TS_RECENT) > 0; 5715 5716 switch (sk->sk_state) { 5717 case TCP_SYN_RECV: 5718 if (!acceptable) 5719 return 1; 5720 5721 /* Once we leave TCP_SYN_RECV, we no longer need req 5722 * so release it. 5723 */ 5724 if (req) { 5725 synack_stamp = tcp_rsk(req)->snt_synack; 5726 tp->total_retrans = req->num_retrans; 5727 reqsk_fastopen_remove(sk, req, false); 5728 } else { 5729 synack_stamp = tp->lsndtime; 5730 /* Make sure socket is routed, for correct metrics. */ 5731 icsk->icsk_af_ops->rebuild_header(sk); 5732 tcp_init_congestion_control(sk); 5733 5734 tcp_mtup_init(sk); 5735 tp->copied_seq = tp->rcv_nxt; 5736 tcp_init_buffer_space(sk); 5737 } 5738 smp_mb(); 5739 tcp_set_state(sk, TCP_ESTABLISHED); 5740 sk->sk_state_change(sk); 5741 5742 /* Note, that this wakeup is only for marginal crossed SYN case. 5743 * Passively open sockets are not waked up, because 5744 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5745 */ 5746 if (sk->sk_socket) 5747 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5748 5749 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5750 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5751 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5752 tcp_synack_rtt_meas(sk, synack_stamp); 5753 5754 if (tp->rx_opt.tstamp_ok) 5755 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5756 5757 if (req) { 5758 /* Re-arm the timer because data may have been sent out. 5759 * This is similar to the regular data transmission case 5760 * when new data has just been ack'ed. 5761 * 5762 * (TFO) - we could try to be more aggressive and 5763 * retransmitting any data sooner based on when they 5764 * are sent out. 5765 */ 5766 tcp_rearm_rto(sk); 5767 } else 5768 tcp_init_metrics(sk); 5769 5770 tcp_update_pacing_rate(sk); 5771 5772 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5773 tp->lsndtime = tcp_time_stamp; 5774 5775 tcp_initialize_rcv_mss(sk); 5776 tcp_fast_path_on(tp); 5777 break; 5778 5779 case TCP_FIN_WAIT1: { 5780 struct dst_entry *dst; 5781 int tmo; 5782 5783 /* If we enter the TCP_FIN_WAIT1 state and we are a 5784 * Fast Open socket and this is the first acceptable 5785 * ACK we have received, this would have acknowledged 5786 * our SYNACK so stop the SYNACK timer. 5787 */ 5788 if (req != NULL) { 5789 /* Return RST if ack_seq is invalid. 5790 * Note that RFC793 only says to generate a 5791 * DUPACK for it but for TCP Fast Open it seems 5792 * better to treat this case like TCP_SYN_RECV 5793 * above. 5794 */ 5795 if (!acceptable) 5796 return 1; 5797 /* We no longer need the request sock. */ 5798 reqsk_fastopen_remove(sk, req, false); 5799 tcp_rearm_rto(sk); 5800 } 5801 if (tp->snd_una != tp->write_seq) 5802 break; 5803 5804 tcp_set_state(sk, TCP_FIN_WAIT2); 5805 sk->sk_shutdown |= SEND_SHUTDOWN; 5806 5807 dst = __sk_dst_get(sk); 5808 if (dst) 5809 dst_confirm(dst); 5810 5811 if (!sock_flag(sk, SOCK_DEAD)) { 5812 /* Wake up lingering close() */ 5813 sk->sk_state_change(sk); 5814 break; 5815 } 5816 5817 if (tp->linger2 < 0 || 5818 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5819 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5820 tcp_done(sk); 5821 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5822 return 1; 5823 } 5824 5825 tmo = tcp_fin_time(sk); 5826 if (tmo > TCP_TIMEWAIT_LEN) { 5827 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5828 } else if (th->fin || sock_owned_by_user(sk)) { 5829 /* Bad case. We could lose such FIN otherwise. 5830 * It is not a big problem, but it looks confusing 5831 * and not so rare event. We still can lose it now, 5832 * if it spins in bh_lock_sock(), but it is really 5833 * marginal case. 5834 */ 5835 inet_csk_reset_keepalive_timer(sk, tmo); 5836 } else { 5837 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5838 goto discard; 5839 } 5840 break; 5841 } 5842 5843 case TCP_CLOSING: 5844 if (tp->snd_una == tp->write_seq) { 5845 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5846 goto discard; 5847 } 5848 break; 5849 5850 case TCP_LAST_ACK: 5851 if (tp->snd_una == tp->write_seq) { 5852 tcp_update_metrics(sk); 5853 tcp_done(sk); 5854 goto discard; 5855 } 5856 break; 5857 } 5858 5859 /* step 6: check the URG bit */ 5860 tcp_urg(sk, skb, th); 5861 5862 /* step 7: process the segment text */ 5863 switch (sk->sk_state) { 5864 case TCP_CLOSE_WAIT: 5865 case TCP_CLOSING: 5866 case TCP_LAST_ACK: 5867 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5868 break; 5869 case TCP_FIN_WAIT1: 5870 case TCP_FIN_WAIT2: 5871 /* RFC 793 says to queue data in these states, 5872 * RFC 1122 says we MUST send a reset. 5873 * BSD 4.4 also does reset. 5874 */ 5875 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5876 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5877 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5878 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5879 tcp_reset(sk); 5880 return 1; 5881 } 5882 } 5883 /* Fall through */ 5884 case TCP_ESTABLISHED: 5885 tcp_data_queue(sk, skb); 5886 queued = 1; 5887 break; 5888 } 5889 5890 /* tcp_data could move socket to TIME-WAIT */ 5891 if (sk->sk_state != TCP_CLOSE) { 5892 tcp_data_snd_check(sk); 5893 tcp_ack_snd_check(sk); 5894 } 5895 5896 if (!queued) { 5897 discard: 5898 __kfree_skb(skb); 5899 } 5900 return 0; 5901 } 5902 EXPORT_SYMBOL(tcp_rcv_state_process); 5903