1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 if (!(tp->ecn_flags & TCP_ECN_OK)) 223 return; 224 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 /* fallinto */ 241 default: 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 } 244 } 245 246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 247 { 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 249 tp->ecn_flags &= ~TCP_ECN_OK; 250 } 251 252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 253 { 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 255 tp->ecn_flags &= ~TCP_ECN_OK; 256 } 257 258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 261 return true; 262 return false; 263 } 264 265 /* Buffer size and advertised window tuning. 266 * 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 268 */ 269 270 static void tcp_fixup_sndbuf(struct sock *sk) 271 { 272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 273 274 sndmem *= TCP_INIT_CWND; 275 if (sk->sk_sndbuf < sndmem) 276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 277 } 278 279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 280 * 281 * All tcp_full_space() is split to two parts: "network" buffer, allocated 282 * forward and advertised in receiver window (tp->rcv_wnd) and 283 * "application buffer", required to isolate scheduling/application 284 * latencies from network. 285 * window_clamp is maximal advertised window. It can be less than 286 * tcp_full_space(), in this case tcp_full_space() - window_clamp 287 * is reserved for "application" buffer. The less window_clamp is 288 * the smoother our behaviour from viewpoint of network, but the lower 289 * throughput and the higher sensitivity of the connection to losses. 8) 290 * 291 * rcv_ssthresh is more strict window_clamp used at "slow start" 292 * phase to predict further behaviour of this connection. 293 * It is used for two goals: 294 * - to enforce header prediction at sender, even when application 295 * requires some significant "application buffer". It is check #1. 296 * - to prevent pruning of receive queue because of misprediction 297 * of receiver window. Check #2. 298 * 299 * The scheme does not work when sender sends good segments opening 300 * window and then starts to feed us spaghetti. But it should work 301 * in common situations. Otherwise, we have to rely on queue collapsing. 302 */ 303 304 /* Slow part of check#2. */ 305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 306 { 307 struct tcp_sock *tp = tcp_sk(sk); 308 /* Optimize this! */ 309 int truesize = tcp_win_from_space(skb->truesize) >> 1; 310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 311 312 while (tp->rcv_ssthresh <= window) { 313 if (truesize <= skb->len) 314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 315 316 truesize >>= 1; 317 window >>= 1; 318 } 319 return 0; 320 } 321 322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 326 /* Check #1 */ 327 if (tp->rcv_ssthresh < tp->window_clamp && 328 (int)tp->rcv_ssthresh < tcp_space(sk) && 329 !sk_under_memory_pressure(sk)) { 330 int incr; 331 332 /* Check #2. Increase window, if skb with such overhead 333 * will fit to rcvbuf in future. 334 */ 335 if (tcp_win_from_space(skb->truesize) <= skb->len) 336 incr = 2 * tp->advmss; 337 else 338 incr = __tcp_grow_window(sk, skb); 339 340 if (incr) { 341 incr = max_t(int, incr, 2 * skb->len); 342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 343 tp->window_clamp); 344 inet_csk(sk)->icsk_ack.quick |= 1; 345 } 346 } 347 } 348 349 /* 3. Tuning rcvbuf, when connection enters established state. */ 350 static void tcp_fixup_rcvbuf(struct sock *sk) 351 { 352 u32 mss = tcp_sk(sk)->advmss; 353 int rcvmem; 354 355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 356 tcp_default_init_rwnd(mss); 357 358 if (sk->sk_rcvbuf < rcvmem) 359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 360 } 361 362 /* 4. Try to fixup all. It is made immediately after connection enters 363 * established state. 364 */ 365 void tcp_init_buffer_space(struct sock *sk) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 int maxwin; 369 370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 371 tcp_fixup_rcvbuf(sk); 372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 373 tcp_fixup_sndbuf(sk); 374 375 tp->rcvq_space.space = tp->rcv_wnd; 376 377 maxwin = tcp_full_space(sk); 378 379 if (tp->window_clamp >= maxwin) { 380 tp->window_clamp = maxwin; 381 382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 383 tp->window_clamp = max(maxwin - 384 (maxwin >> sysctl_tcp_app_win), 385 4 * tp->advmss); 386 } 387 388 /* Force reservation of one segment. */ 389 if (sysctl_tcp_app_win && 390 tp->window_clamp > 2 * tp->advmss && 391 tp->window_clamp + tp->advmss > maxwin) 392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 393 394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 395 tp->snd_cwnd_stamp = tcp_time_stamp; 396 } 397 398 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 399 static void tcp_clamp_window(struct sock *sk) 400 { 401 struct tcp_sock *tp = tcp_sk(sk); 402 struct inet_connection_sock *icsk = inet_csk(sk); 403 404 icsk->icsk_ack.quick = 0; 405 406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 408 !sk_under_memory_pressure(sk) && 409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 411 sysctl_tcp_rmem[2]); 412 } 413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 415 } 416 417 /* Initialize RCV_MSS value. 418 * RCV_MSS is an our guess about MSS used by the peer. 419 * We haven't any direct information about the MSS. 420 * It's better to underestimate the RCV_MSS rather than overestimate. 421 * Overestimations make us ACKing less frequently than needed. 422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 423 */ 424 void tcp_initialize_rcv_mss(struct sock *sk) 425 { 426 const struct tcp_sock *tp = tcp_sk(sk); 427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 428 429 hint = min(hint, tp->rcv_wnd / 2); 430 hint = min(hint, TCP_MSS_DEFAULT); 431 hint = max(hint, TCP_MIN_MSS); 432 433 inet_csk(sk)->icsk_ack.rcv_mss = hint; 434 } 435 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 436 437 /* Receiver "autotuning" code. 438 * 439 * The algorithm for RTT estimation w/o timestamps is based on 440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 441 * <http://public.lanl.gov/radiant/pubs.html#DRS> 442 * 443 * More detail on this code can be found at 444 * <http://staff.psc.edu/jheffner/>, 445 * though this reference is out of date. A new paper 446 * is pending. 447 */ 448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 449 { 450 u32 new_sample = tp->rcv_rtt_est.rtt; 451 long m = sample; 452 453 if (m == 0) 454 m = 1; 455 456 if (new_sample != 0) { 457 /* If we sample in larger samples in the non-timestamp 458 * case, we could grossly overestimate the RTT especially 459 * with chatty applications or bulk transfer apps which 460 * are stalled on filesystem I/O. 461 * 462 * Also, since we are only going for a minimum in the 463 * non-timestamp case, we do not smooth things out 464 * else with timestamps disabled convergence takes too 465 * long. 466 */ 467 if (!win_dep) { 468 m -= (new_sample >> 3); 469 new_sample += m; 470 } else { 471 m <<= 3; 472 if (m < new_sample) 473 new_sample = m; 474 } 475 } else { 476 /* No previous measure. */ 477 new_sample = m << 3; 478 } 479 480 if (tp->rcv_rtt_est.rtt != new_sample) 481 tp->rcv_rtt_est.rtt = new_sample; 482 } 483 484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 485 { 486 if (tp->rcv_rtt_est.time == 0) 487 goto new_measure; 488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 489 return; 490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 491 492 new_measure: 493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 494 tp->rcv_rtt_est.time = tcp_time_stamp; 495 } 496 497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 498 const struct sk_buff *skb) 499 { 500 struct tcp_sock *tp = tcp_sk(sk); 501 if (tp->rx_opt.rcv_tsecr && 502 (TCP_SKB_CB(skb)->end_seq - 503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 505 } 506 507 /* 508 * This function should be called every time data is copied to user space. 509 * It calculates the appropriate TCP receive buffer space. 510 */ 511 void tcp_rcv_space_adjust(struct sock *sk) 512 { 513 struct tcp_sock *tp = tcp_sk(sk); 514 int time; 515 int space; 516 517 if (tp->rcvq_space.time == 0) 518 goto new_measure; 519 520 time = tcp_time_stamp - tp->rcvq_space.time; 521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 522 return; 523 524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 525 526 space = max(tp->rcvq_space.space, space); 527 528 if (tp->rcvq_space.space != space) { 529 int rcvmem; 530 531 tp->rcvq_space.space = space; 532 533 if (sysctl_tcp_moderate_rcvbuf && 534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 535 int new_clamp = space; 536 537 /* Receive space grows, normalize in order to 538 * take into account packet headers and sk_buff 539 * structure overhead. 540 */ 541 space /= tp->advmss; 542 if (!space) 543 space = 1; 544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 545 while (tcp_win_from_space(rcvmem) < tp->advmss) 546 rcvmem += 128; 547 space *= rcvmem; 548 space = min(space, sysctl_tcp_rmem[2]); 549 if (space > sk->sk_rcvbuf) { 550 sk->sk_rcvbuf = space; 551 552 /* Make the window clamp follow along. */ 553 tp->window_clamp = new_clamp; 554 } 555 } 556 } 557 558 new_measure: 559 tp->rcvq_space.seq = tp->copied_seq; 560 tp->rcvq_space.time = tcp_time_stamp; 561 } 562 563 /* There is something which you must keep in mind when you analyze the 564 * behavior of the tp->ato delayed ack timeout interval. When a 565 * connection starts up, we want to ack as quickly as possible. The 566 * problem is that "good" TCP's do slow start at the beginning of data 567 * transmission. The means that until we send the first few ACK's the 568 * sender will sit on his end and only queue most of his data, because 569 * he can only send snd_cwnd unacked packets at any given time. For 570 * each ACK we send, he increments snd_cwnd and transmits more of his 571 * queue. -DaveM 572 */ 573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 574 { 575 struct tcp_sock *tp = tcp_sk(sk); 576 struct inet_connection_sock *icsk = inet_csk(sk); 577 u32 now; 578 579 inet_csk_schedule_ack(sk); 580 581 tcp_measure_rcv_mss(sk, skb); 582 583 tcp_rcv_rtt_measure(tp); 584 585 now = tcp_time_stamp; 586 587 if (!icsk->icsk_ack.ato) { 588 /* The _first_ data packet received, initialize 589 * delayed ACK engine. 590 */ 591 tcp_incr_quickack(sk); 592 icsk->icsk_ack.ato = TCP_ATO_MIN; 593 } else { 594 int m = now - icsk->icsk_ack.lrcvtime; 595 596 if (m <= TCP_ATO_MIN / 2) { 597 /* The fastest case is the first. */ 598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 599 } else if (m < icsk->icsk_ack.ato) { 600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 601 if (icsk->icsk_ack.ato > icsk->icsk_rto) 602 icsk->icsk_ack.ato = icsk->icsk_rto; 603 } else if (m > icsk->icsk_rto) { 604 /* Too long gap. Apparently sender failed to 605 * restart window, so that we send ACKs quickly. 606 */ 607 tcp_incr_quickack(sk); 608 sk_mem_reclaim(sk); 609 } 610 } 611 icsk->icsk_ack.lrcvtime = now; 612 613 TCP_ECN_check_ce(tp, skb); 614 615 if (skb->len >= 128) 616 tcp_grow_window(sk, skb); 617 } 618 619 /* Called to compute a smoothed rtt estimate. The data fed to this 620 * routine either comes from timestamps, or from segments that were 621 * known _not_ to have been retransmitted [see Karn/Partridge 622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 623 * piece by Van Jacobson. 624 * NOTE: the next three routines used to be one big routine. 625 * To save cycles in the RFC 1323 implementation it was better to break 626 * it up into three procedures. -- erics 627 */ 628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 long m = mrtt; /* RTT */ 632 633 /* The following amusing code comes from Jacobson's 634 * article in SIGCOMM '88. Note that rtt and mdev 635 * are scaled versions of rtt and mean deviation. 636 * This is designed to be as fast as possible 637 * m stands for "measurement". 638 * 639 * On a 1990 paper the rto value is changed to: 640 * RTO = rtt + 4 * mdev 641 * 642 * Funny. This algorithm seems to be very broken. 643 * These formulae increase RTO, when it should be decreased, increase 644 * too slowly, when it should be increased quickly, decrease too quickly 645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 646 * does not matter how to _calculate_ it. Seems, it was trap 647 * that VJ failed to avoid. 8) 648 */ 649 if (m == 0) 650 m = 1; 651 if (tp->srtt != 0) { 652 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 654 if (m < 0) { 655 m = -m; /* m is now abs(error) */ 656 m -= (tp->mdev >> 2); /* similar update on mdev */ 657 /* This is similar to one of Eifel findings. 658 * Eifel blocks mdev updates when rtt decreases. 659 * This solution is a bit different: we use finer gain 660 * for mdev in this case (alpha*beta). 661 * Like Eifel it also prevents growth of rto, 662 * but also it limits too fast rto decreases, 663 * happening in pure Eifel. 664 */ 665 if (m > 0) 666 m >>= 3; 667 } else { 668 m -= (tp->mdev >> 2); /* similar update on mdev */ 669 } 670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 671 if (tp->mdev > tp->mdev_max) { 672 tp->mdev_max = tp->mdev; 673 if (tp->mdev_max > tp->rttvar) 674 tp->rttvar = tp->mdev_max; 675 } 676 if (after(tp->snd_una, tp->rtt_seq)) { 677 if (tp->mdev_max < tp->rttvar) 678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 679 tp->rtt_seq = tp->snd_nxt; 680 tp->mdev_max = tcp_rto_min(sk); 681 } 682 } else { 683 /* no previous measure. */ 684 tp->srtt = m << 3; /* take the measured time to be rtt */ 685 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 687 tp->rtt_seq = tp->snd_nxt; 688 } 689 } 690 691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 692 * Note: TCP stack does not yet implement pacing. 693 * FQ packet scheduler can be used to implement cheap but effective 694 * TCP pacing, to smooth the burst on large writes when packets 695 * in flight is significantly lower than cwnd (or rwin) 696 */ 697 static void tcp_update_pacing_rate(struct sock *sk) 698 { 699 const struct tcp_sock *tp = tcp_sk(sk); 700 u64 rate; 701 702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 703 rate = (u64)tp->mss_cache * 2 * (HZ << 3); 704 705 rate *= max(tp->snd_cwnd, tp->packets_out); 706 707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3), 708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms) 709 * We probably need usec resolution in the future. 710 * Note: This also takes care of possible srtt=0 case, 711 * when tcp_rtt_estimator() was not yet called. 712 */ 713 if (tp->srtt > 8 + 2) 714 do_div(rate, tp->srtt); 715 716 sk->sk_pacing_rate = min_t(u64, rate, ~0U); 717 } 718 719 /* Calculate rto without backoff. This is the second half of Van Jacobson's 720 * routine referred to above. 721 */ 722 void tcp_set_rto(struct sock *sk) 723 { 724 const struct tcp_sock *tp = tcp_sk(sk); 725 /* Old crap is replaced with new one. 8) 726 * 727 * More seriously: 728 * 1. If rtt variance happened to be less 50msec, it is hallucination. 729 * It cannot be less due to utterly erratic ACK generation made 730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 731 * to do with delayed acks, because at cwnd>2 true delack timeout 732 * is invisible. Actually, Linux-2.4 also generates erratic 733 * ACKs in some circumstances. 734 */ 735 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 736 737 /* 2. Fixups made earlier cannot be right. 738 * If we do not estimate RTO correctly without them, 739 * all the algo is pure shit and should be replaced 740 * with correct one. It is exactly, which we pretend to do. 741 */ 742 743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 744 * guarantees that rto is higher. 745 */ 746 tcp_bound_rto(sk); 747 } 748 749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 750 { 751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 752 753 if (!cwnd) 754 cwnd = TCP_INIT_CWND; 755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 756 } 757 758 /* 759 * Packet counting of FACK is based on in-order assumptions, therefore TCP 760 * disables it when reordering is detected 761 */ 762 void tcp_disable_fack(struct tcp_sock *tp) 763 { 764 /* RFC3517 uses different metric in lost marker => reset on change */ 765 if (tcp_is_fack(tp)) 766 tp->lost_skb_hint = NULL; 767 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 768 } 769 770 /* Take a notice that peer is sending D-SACKs */ 771 static void tcp_dsack_seen(struct tcp_sock *tp) 772 { 773 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 774 } 775 776 static void tcp_update_reordering(struct sock *sk, const int metric, 777 const int ts) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 if (metric > tp->reordering) { 781 int mib_idx; 782 783 tp->reordering = min(TCP_MAX_REORDERING, metric); 784 785 /* This exciting event is worth to be remembered. 8) */ 786 if (ts) 787 mib_idx = LINUX_MIB_TCPTSREORDER; 788 else if (tcp_is_reno(tp)) 789 mib_idx = LINUX_MIB_TCPRENOREORDER; 790 else if (tcp_is_fack(tp)) 791 mib_idx = LINUX_MIB_TCPFACKREORDER; 792 else 793 mib_idx = LINUX_MIB_TCPSACKREORDER; 794 795 NET_INC_STATS_BH(sock_net(sk), mib_idx); 796 #if FASTRETRANS_DEBUG > 1 797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 798 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 799 tp->reordering, 800 tp->fackets_out, 801 tp->sacked_out, 802 tp->undo_marker ? tp->undo_retrans : 0); 803 #endif 804 tcp_disable_fack(tp); 805 } 806 807 if (metric > 0) 808 tcp_disable_early_retrans(tp); 809 } 810 811 /* This must be called before lost_out is incremented */ 812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 813 { 814 if ((tp->retransmit_skb_hint == NULL) || 815 before(TCP_SKB_CB(skb)->seq, 816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 817 tp->retransmit_skb_hint = skb; 818 819 if (!tp->lost_out || 820 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 821 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 822 } 823 824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 825 { 826 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 827 tcp_verify_retransmit_hint(tp, skb); 828 829 tp->lost_out += tcp_skb_pcount(skb); 830 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 831 } 832 } 833 834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 835 struct sk_buff *skb) 836 { 837 tcp_verify_retransmit_hint(tp, skb); 838 839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 840 tp->lost_out += tcp_skb_pcount(skb); 841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 842 } 843 } 844 845 /* This procedure tags the retransmission queue when SACKs arrive. 846 * 847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 848 * Packets in queue with these bits set are counted in variables 849 * sacked_out, retrans_out and lost_out, correspondingly. 850 * 851 * Valid combinations are: 852 * Tag InFlight Description 853 * 0 1 - orig segment is in flight. 854 * S 0 - nothing flies, orig reached receiver. 855 * L 0 - nothing flies, orig lost by net. 856 * R 2 - both orig and retransmit are in flight. 857 * L|R 1 - orig is lost, retransmit is in flight. 858 * S|R 1 - orig reached receiver, retrans is still in flight. 859 * (L|S|R is logically valid, it could occur when L|R is sacked, 860 * but it is equivalent to plain S and code short-curcuits it to S. 861 * L|S is logically invalid, it would mean -1 packet in flight 8)) 862 * 863 * These 6 states form finite state machine, controlled by the following events: 864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 866 * 3. Loss detection event of two flavors: 867 * A. Scoreboard estimator decided the packet is lost. 868 * A'. Reno "three dupacks" marks head of queue lost. 869 * A''. Its FACK modification, head until snd.fack is lost. 870 * B. SACK arrives sacking SND.NXT at the moment, when the 871 * segment was retransmitted. 872 * 4. D-SACK added new rule: D-SACK changes any tag to S. 873 * 874 * It is pleasant to note, that state diagram turns out to be commutative, 875 * so that we are allowed not to be bothered by order of our actions, 876 * when multiple events arrive simultaneously. (see the function below). 877 * 878 * Reordering detection. 879 * -------------------- 880 * Reordering metric is maximal distance, which a packet can be displaced 881 * in packet stream. With SACKs we can estimate it: 882 * 883 * 1. SACK fills old hole and the corresponding segment was not 884 * ever retransmitted -> reordering. Alas, we cannot use it 885 * when segment was retransmitted. 886 * 2. The last flaw is solved with D-SACK. D-SACK arrives 887 * for retransmitted and already SACKed segment -> reordering.. 888 * Both of these heuristics are not used in Loss state, when we cannot 889 * account for retransmits accurately. 890 * 891 * SACK block validation. 892 * ---------------------- 893 * 894 * SACK block range validation checks that the received SACK block fits to 895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 896 * Note that SND.UNA is not included to the range though being valid because 897 * it means that the receiver is rather inconsistent with itself reporting 898 * SACK reneging when it should advance SND.UNA. Such SACK block this is 899 * perfectly valid, however, in light of RFC2018 which explicitly states 900 * that "SACK block MUST reflect the newest segment. Even if the newest 901 * segment is going to be discarded ...", not that it looks very clever 902 * in case of head skb. Due to potentional receiver driven attacks, we 903 * choose to avoid immediate execution of a walk in write queue due to 904 * reneging and defer head skb's loss recovery to standard loss recovery 905 * procedure that will eventually trigger (nothing forbids us doing this). 906 * 907 * Implements also blockage to start_seq wrap-around. Problem lies in the 908 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 909 * there's no guarantee that it will be before snd_nxt (n). The problem 910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 911 * wrap (s_w): 912 * 913 * <- outs wnd -> <- wrapzone -> 914 * u e n u_w e_w s n_w 915 * | | | | | | | 916 * |<------------+------+----- TCP seqno space --------------+---------->| 917 * ...-- <2^31 ->| |<--------... 918 * ...---- >2^31 ------>| |<--------... 919 * 920 * Current code wouldn't be vulnerable but it's better still to discard such 921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 924 * equal to the ideal case (infinite seqno space without wrap caused issues). 925 * 926 * With D-SACK the lower bound is extended to cover sequence space below 927 * SND.UNA down to undo_marker, which is the last point of interest. Yet 928 * again, D-SACK block must not to go across snd_una (for the same reason as 929 * for the normal SACK blocks, explained above). But there all simplicity 930 * ends, TCP might receive valid D-SACKs below that. As long as they reside 931 * fully below undo_marker they do not affect behavior in anyway and can 932 * therefore be safely ignored. In rare cases (which are more or less 933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 934 * fragmentation and packet reordering past skb's retransmission. To consider 935 * them correctly, the acceptable range must be extended even more though 936 * the exact amount is rather hard to quantify. However, tp->max_window can 937 * be used as an exaggerated estimate. 938 */ 939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 940 u32 start_seq, u32 end_seq) 941 { 942 /* Too far in future, or reversed (interpretation is ambiguous) */ 943 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 944 return false; 945 946 /* Nasty start_seq wrap-around check (see comments above) */ 947 if (!before(start_seq, tp->snd_nxt)) 948 return false; 949 950 /* In outstanding window? ...This is valid exit for D-SACKs too. 951 * start_seq == snd_una is non-sensical (see comments above) 952 */ 953 if (after(start_seq, tp->snd_una)) 954 return true; 955 956 if (!is_dsack || !tp->undo_marker) 957 return false; 958 959 /* ...Then it's D-SACK, and must reside below snd_una completely */ 960 if (after(end_seq, tp->snd_una)) 961 return false; 962 963 if (!before(start_seq, tp->undo_marker)) 964 return true; 965 966 /* Too old */ 967 if (!after(end_seq, tp->undo_marker)) 968 return false; 969 970 /* Undo_marker boundary crossing (overestimates a lot). Known already: 971 * start_seq < undo_marker and end_seq >= undo_marker. 972 */ 973 return !before(start_seq, end_seq - tp->max_window); 974 } 975 976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 977 * Event "B". Later note: FACK people cheated me again 8), we have to account 978 * for reordering! Ugly, but should help. 979 * 980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 981 * less than what is now known to be received by the other end (derived from 982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 983 * retransmitted skbs to avoid some costly processing per ACKs. 984 */ 985 static void tcp_mark_lost_retrans(struct sock *sk) 986 { 987 const struct inet_connection_sock *icsk = inet_csk(sk); 988 struct tcp_sock *tp = tcp_sk(sk); 989 struct sk_buff *skb; 990 int cnt = 0; 991 u32 new_low_seq = tp->snd_nxt; 992 u32 received_upto = tcp_highest_sack_seq(tp); 993 994 if (!tcp_is_fack(tp) || !tp->retrans_out || 995 !after(received_upto, tp->lost_retrans_low) || 996 icsk->icsk_ca_state != TCP_CA_Recovery) 997 return; 998 999 tcp_for_write_queue(skb, sk) { 1000 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1001 1002 if (skb == tcp_send_head(sk)) 1003 break; 1004 if (cnt == tp->retrans_out) 1005 break; 1006 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1007 continue; 1008 1009 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1010 continue; 1011 1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1013 * constraint here (see above) but figuring out that at 1014 * least tp->reordering SACK blocks reside between ack_seq 1015 * and received_upto is not easy task to do cheaply with 1016 * the available datastructures. 1017 * 1018 * Whether FACK should check here for tp->reordering segs 1019 * in-between one could argue for either way (it would be 1020 * rather simple to implement as we could count fack_count 1021 * during the walk and do tp->fackets_out - fack_count). 1022 */ 1023 if (after(received_upto, ack_seq)) { 1024 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1025 tp->retrans_out -= tcp_skb_pcount(skb); 1026 1027 tcp_skb_mark_lost_uncond_verify(tp, skb); 1028 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1029 } else { 1030 if (before(ack_seq, new_low_seq)) 1031 new_low_seq = ack_seq; 1032 cnt += tcp_skb_pcount(skb); 1033 } 1034 } 1035 1036 if (tp->retrans_out) 1037 tp->lost_retrans_low = new_low_seq; 1038 } 1039 1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1041 struct tcp_sack_block_wire *sp, int num_sacks, 1042 u32 prior_snd_una) 1043 { 1044 struct tcp_sock *tp = tcp_sk(sk); 1045 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1046 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1047 bool dup_sack = false; 1048 1049 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1050 dup_sack = true; 1051 tcp_dsack_seen(tp); 1052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1053 } else if (num_sacks > 1) { 1054 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1055 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1056 1057 if (!after(end_seq_0, end_seq_1) && 1058 !before(start_seq_0, start_seq_1)) { 1059 dup_sack = true; 1060 tcp_dsack_seen(tp); 1061 NET_INC_STATS_BH(sock_net(sk), 1062 LINUX_MIB_TCPDSACKOFORECV); 1063 } 1064 } 1065 1066 /* D-SACK for already forgotten data... Do dumb counting. */ 1067 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1068 !after(end_seq_0, prior_snd_una) && 1069 after(end_seq_0, tp->undo_marker)) 1070 tp->undo_retrans--; 1071 1072 return dup_sack; 1073 } 1074 1075 struct tcp_sacktag_state { 1076 int reord; 1077 int fack_count; 1078 int flag; 1079 s32 rtt; /* RTT measured by SACKing never-retransmitted data */ 1080 }; 1081 1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1083 * the incoming SACK may not exactly match but we can find smaller MSS 1084 * aligned portion of it that matches. Therefore we might need to fragment 1085 * which may fail and creates some hassle (caller must handle error case 1086 * returns). 1087 * 1088 * FIXME: this could be merged to shift decision code 1089 */ 1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1091 u32 start_seq, u32 end_seq) 1092 { 1093 int err; 1094 bool in_sack; 1095 unsigned int pkt_len; 1096 unsigned int mss; 1097 1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1100 1101 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1102 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1103 mss = tcp_skb_mss(skb); 1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1105 1106 if (!in_sack) { 1107 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1108 if (pkt_len < mss) 1109 pkt_len = mss; 1110 } else { 1111 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1112 if (pkt_len < mss) 1113 return -EINVAL; 1114 } 1115 1116 /* Round if necessary so that SACKs cover only full MSSes 1117 * and/or the remaining small portion (if present) 1118 */ 1119 if (pkt_len > mss) { 1120 unsigned int new_len = (pkt_len / mss) * mss; 1121 if (!in_sack && new_len < pkt_len) { 1122 new_len += mss; 1123 if (new_len > skb->len) 1124 return 0; 1125 } 1126 pkt_len = new_len; 1127 } 1128 err = tcp_fragment(sk, skb, pkt_len, mss); 1129 if (err < 0) 1130 return err; 1131 } 1132 1133 return in_sack; 1134 } 1135 1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1137 static u8 tcp_sacktag_one(struct sock *sk, 1138 struct tcp_sacktag_state *state, u8 sacked, 1139 u32 start_seq, u32 end_seq, 1140 int dup_sack, int pcount, u32 xmit_time) 1141 { 1142 struct tcp_sock *tp = tcp_sk(sk); 1143 int fack_count = state->fack_count; 1144 1145 /* Account D-SACK for retransmitted packet. */ 1146 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1147 if (tp->undo_marker && tp->undo_retrans && 1148 after(end_seq, tp->undo_marker)) 1149 tp->undo_retrans--; 1150 if (sacked & TCPCB_SACKED_ACKED) 1151 state->reord = min(fack_count, state->reord); 1152 } 1153 1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1155 if (!after(end_seq, tp->snd_una)) 1156 return sacked; 1157 1158 if (!(sacked & TCPCB_SACKED_ACKED)) { 1159 if (sacked & TCPCB_SACKED_RETRANS) { 1160 /* If the segment is not tagged as lost, 1161 * we do not clear RETRANS, believing 1162 * that retransmission is still in flight. 1163 */ 1164 if (sacked & TCPCB_LOST) { 1165 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1166 tp->lost_out -= pcount; 1167 tp->retrans_out -= pcount; 1168 } 1169 } else { 1170 if (!(sacked & TCPCB_RETRANS)) { 1171 /* New sack for not retransmitted frame, 1172 * which was in hole. It is reordering. 1173 */ 1174 if (before(start_seq, 1175 tcp_highest_sack_seq(tp))) 1176 state->reord = min(fack_count, 1177 state->reord); 1178 if (!after(end_seq, tp->high_seq)) 1179 state->flag |= FLAG_ORIG_SACK_ACKED; 1180 /* Pick the earliest sequence sacked for RTT */ 1181 if (state->rtt < 0) 1182 state->rtt = tcp_time_stamp - xmit_time; 1183 } 1184 1185 if (sacked & TCPCB_LOST) { 1186 sacked &= ~TCPCB_LOST; 1187 tp->lost_out -= pcount; 1188 } 1189 } 1190 1191 sacked |= TCPCB_SACKED_ACKED; 1192 state->flag |= FLAG_DATA_SACKED; 1193 tp->sacked_out += pcount; 1194 1195 fack_count += pcount; 1196 1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1198 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1199 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1200 tp->lost_cnt_hint += pcount; 1201 1202 if (fack_count > tp->fackets_out) 1203 tp->fackets_out = fack_count; 1204 } 1205 1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1207 * frames and clear it. undo_retrans is decreased above, L|R frames 1208 * are accounted above as well. 1209 */ 1210 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1211 sacked &= ~TCPCB_SACKED_RETRANS; 1212 tp->retrans_out -= pcount; 1213 } 1214 1215 return sacked; 1216 } 1217 1218 /* Shift newly-SACKed bytes from this skb to the immediately previous 1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1220 */ 1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1222 struct tcp_sacktag_state *state, 1223 unsigned int pcount, int shifted, int mss, 1224 bool dup_sack) 1225 { 1226 struct tcp_sock *tp = tcp_sk(sk); 1227 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1228 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1229 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1230 1231 BUG_ON(!pcount); 1232 1233 /* Adjust counters and hints for the newly sacked sequence 1234 * range but discard the return value since prev is already 1235 * marked. We must tag the range first because the seq 1236 * advancement below implicitly advances 1237 * tcp_highest_sack_seq() when skb is highest_sack. 1238 */ 1239 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1240 start_seq, end_seq, dup_sack, pcount, 1241 TCP_SKB_CB(skb)->when); 1242 1243 if (skb == tp->lost_skb_hint) 1244 tp->lost_cnt_hint += pcount; 1245 1246 TCP_SKB_CB(prev)->end_seq += shifted; 1247 TCP_SKB_CB(skb)->seq += shifted; 1248 1249 skb_shinfo(prev)->gso_segs += pcount; 1250 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1251 skb_shinfo(skb)->gso_segs -= pcount; 1252 1253 /* When we're adding to gso_segs == 1, gso_size will be zero, 1254 * in theory this shouldn't be necessary but as long as DSACK 1255 * code can come after this skb later on it's better to keep 1256 * setting gso_size to something. 1257 */ 1258 if (!skb_shinfo(prev)->gso_size) { 1259 skb_shinfo(prev)->gso_size = mss; 1260 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1261 } 1262 1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1264 if (skb_shinfo(skb)->gso_segs <= 1) { 1265 skb_shinfo(skb)->gso_size = 0; 1266 skb_shinfo(skb)->gso_type = 0; 1267 } 1268 1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1270 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1271 1272 if (skb->len > 0) { 1273 BUG_ON(!tcp_skb_pcount(skb)); 1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1275 return false; 1276 } 1277 1278 /* Whole SKB was eaten :-) */ 1279 1280 if (skb == tp->retransmit_skb_hint) 1281 tp->retransmit_skb_hint = prev; 1282 if (skb == tp->lost_skb_hint) { 1283 tp->lost_skb_hint = prev; 1284 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1285 } 1286 1287 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1288 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1289 TCP_SKB_CB(prev)->end_seq++; 1290 1291 if (skb == tcp_highest_sack(sk)) 1292 tcp_advance_highest_sack(sk, skb); 1293 1294 tcp_unlink_write_queue(skb, sk); 1295 sk_wmem_free_skb(sk, skb); 1296 1297 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1298 1299 return true; 1300 } 1301 1302 /* I wish gso_size would have a bit more sane initialization than 1303 * something-or-zero which complicates things 1304 */ 1305 static int tcp_skb_seglen(const struct sk_buff *skb) 1306 { 1307 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1308 } 1309 1310 /* Shifting pages past head area doesn't work */ 1311 static int skb_can_shift(const struct sk_buff *skb) 1312 { 1313 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1314 } 1315 1316 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1317 * skb. 1318 */ 1319 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1320 struct tcp_sacktag_state *state, 1321 u32 start_seq, u32 end_seq, 1322 bool dup_sack) 1323 { 1324 struct tcp_sock *tp = tcp_sk(sk); 1325 struct sk_buff *prev; 1326 int mss; 1327 int pcount = 0; 1328 int len; 1329 int in_sack; 1330 1331 if (!sk_can_gso(sk)) 1332 goto fallback; 1333 1334 /* Normally R but no L won't result in plain S */ 1335 if (!dup_sack && 1336 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1337 goto fallback; 1338 if (!skb_can_shift(skb)) 1339 goto fallback; 1340 /* This frame is about to be dropped (was ACKed). */ 1341 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1342 goto fallback; 1343 1344 /* Can only happen with delayed DSACK + discard craziness */ 1345 if (unlikely(skb == tcp_write_queue_head(sk))) 1346 goto fallback; 1347 prev = tcp_write_queue_prev(sk, skb); 1348 1349 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1350 goto fallback; 1351 1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1353 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1354 1355 if (in_sack) { 1356 len = skb->len; 1357 pcount = tcp_skb_pcount(skb); 1358 mss = tcp_skb_seglen(skb); 1359 1360 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1361 * drop this restriction as unnecessary 1362 */ 1363 if (mss != tcp_skb_seglen(prev)) 1364 goto fallback; 1365 } else { 1366 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1367 goto noop; 1368 /* CHECKME: This is non-MSS split case only?, this will 1369 * cause skipped skbs due to advancing loop btw, original 1370 * has that feature too 1371 */ 1372 if (tcp_skb_pcount(skb) <= 1) 1373 goto noop; 1374 1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1376 if (!in_sack) { 1377 /* TODO: head merge to next could be attempted here 1378 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1379 * though it might not be worth of the additional hassle 1380 * 1381 * ...we can probably just fallback to what was done 1382 * previously. We could try merging non-SACKed ones 1383 * as well but it probably isn't going to buy off 1384 * because later SACKs might again split them, and 1385 * it would make skb timestamp tracking considerably 1386 * harder problem. 1387 */ 1388 goto fallback; 1389 } 1390 1391 len = end_seq - TCP_SKB_CB(skb)->seq; 1392 BUG_ON(len < 0); 1393 BUG_ON(len > skb->len); 1394 1395 /* MSS boundaries should be honoured or else pcount will 1396 * severely break even though it makes things bit trickier. 1397 * Optimize common case to avoid most of the divides 1398 */ 1399 mss = tcp_skb_mss(skb); 1400 1401 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1402 * drop this restriction as unnecessary 1403 */ 1404 if (mss != tcp_skb_seglen(prev)) 1405 goto fallback; 1406 1407 if (len == mss) { 1408 pcount = 1; 1409 } else if (len < mss) { 1410 goto noop; 1411 } else { 1412 pcount = len / mss; 1413 len = pcount * mss; 1414 } 1415 } 1416 1417 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1418 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1419 goto fallback; 1420 1421 if (!skb_shift(prev, skb, len)) 1422 goto fallback; 1423 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1424 goto out; 1425 1426 /* Hole filled allows collapsing with the next as well, this is very 1427 * useful when hole on every nth skb pattern happens 1428 */ 1429 if (prev == tcp_write_queue_tail(sk)) 1430 goto out; 1431 skb = tcp_write_queue_next(sk, prev); 1432 1433 if (!skb_can_shift(skb) || 1434 (skb == tcp_send_head(sk)) || 1435 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1436 (mss != tcp_skb_seglen(skb))) 1437 goto out; 1438 1439 len = skb->len; 1440 if (skb_shift(prev, skb, len)) { 1441 pcount += tcp_skb_pcount(skb); 1442 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1443 } 1444 1445 out: 1446 state->fack_count += pcount; 1447 return prev; 1448 1449 noop: 1450 return skb; 1451 1452 fallback: 1453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1454 return NULL; 1455 } 1456 1457 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1458 struct tcp_sack_block *next_dup, 1459 struct tcp_sacktag_state *state, 1460 u32 start_seq, u32 end_seq, 1461 bool dup_sack_in) 1462 { 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 struct sk_buff *tmp; 1465 1466 tcp_for_write_queue_from(skb, sk) { 1467 int in_sack = 0; 1468 bool dup_sack = dup_sack_in; 1469 1470 if (skb == tcp_send_head(sk)) 1471 break; 1472 1473 /* queue is in-order => we can short-circuit the walk early */ 1474 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1475 break; 1476 1477 if ((next_dup != NULL) && 1478 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1479 in_sack = tcp_match_skb_to_sack(sk, skb, 1480 next_dup->start_seq, 1481 next_dup->end_seq); 1482 if (in_sack > 0) 1483 dup_sack = true; 1484 } 1485 1486 /* skb reference here is a bit tricky to get right, since 1487 * shifting can eat and free both this skb and the next, 1488 * so not even _safe variant of the loop is enough. 1489 */ 1490 if (in_sack <= 0) { 1491 tmp = tcp_shift_skb_data(sk, skb, state, 1492 start_seq, end_seq, dup_sack); 1493 if (tmp != NULL) { 1494 if (tmp != skb) { 1495 skb = tmp; 1496 continue; 1497 } 1498 1499 in_sack = 0; 1500 } else { 1501 in_sack = tcp_match_skb_to_sack(sk, skb, 1502 start_seq, 1503 end_seq); 1504 } 1505 } 1506 1507 if (unlikely(in_sack < 0)) 1508 break; 1509 1510 if (in_sack) { 1511 TCP_SKB_CB(skb)->sacked = 1512 tcp_sacktag_one(sk, 1513 state, 1514 TCP_SKB_CB(skb)->sacked, 1515 TCP_SKB_CB(skb)->seq, 1516 TCP_SKB_CB(skb)->end_seq, 1517 dup_sack, 1518 tcp_skb_pcount(skb), 1519 TCP_SKB_CB(skb)->when); 1520 1521 if (!before(TCP_SKB_CB(skb)->seq, 1522 tcp_highest_sack_seq(tp))) 1523 tcp_advance_highest_sack(sk, skb); 1524 } 1525 1526 state->fack_count += tcp_skb_pcount(skb); 1527 } 1528 return skb; 1529 } 1530 1531 /* Avoid all extra work that is being done by sacktag while walking in 1532 * a normal way 1533 */ 1534 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1535 struct tcp_sacktag_state *state, 1536 u32 skip_to_seq) 1537 { 1538 tcp_for_write_queue_from(skb, sk) { 1539 if (skb == tcp_send_head(sk)) 1540 break; 1541 1542 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1543 break; 1544 1545 state->fack_count += tcp_skb_pcount(skb); 1546 } 1547 return skb; 1548 } 1549 1550 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1551 struct sock *sk, 1552 struct tcp_sack_block *next_dup, 1553 struct tcp_sacktag_state *state, 1554 u32 skip_to_seq) 1555 { 1556 if (next_dup == NULL) 1557 return skb; 1558 1559 if (before(next_dup->start_seq, skip_to_seq)) { 1560 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1561 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1562 next_dup->start_seq, next_dup->end_seq, 1563 1); 1564 } 1565 1566 return skb; 1567 } 1568 1569 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1570 { 1571 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1572 } 1573 1574 static int 1575 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1576 u32 prior_snd_una, s32 *sack_rtt) 1577 { 1578 struct tcp_sock *tp = tcp_sk(sk); 1579 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1580 TCP_SKB_CB(ack_skb)->sacked); 1581 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1582 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1583 struct tcp_sack_block *cache; 1584 struct tcp_sacktag_state state; 1585 struct sk_buff *skb; 1586 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1587 int used_sacks; 1588 bool found_dup_sack = false; 1589 int i, j; 1590 int first_sack_index; 1591 1592 state.flag = 0; 1593 state.reord = tp->packets_out; 1594 state.rtt = -1; 1595 1596 if (!tp->sacked_out) { 1597 if (WARN_ON(tp->fackets_out)) 1598 tp->fackets_out = 0; 1599 tcp_highest_sack_reset(sk); 1600 } 1601 1602 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1603 num_sacks, prior_snd_una); 1604 if (found_dup_sack) 1605 state.flag |= FLAG_DSACKING_ACK; 1606 1607 /* Eliminate too old ACKs, but take into 1608 * account more or less fresh ones, they can 1609 * contain valid SACK info. 1610 */ 1611 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1612 return 0; 1613 1614 if (!tp->packets_out) 1615 goto out; 1616 1617 used_sacks = 0; 1618 first_sack_index = 0; 1619 for (i = 0; i < num_sacks; i++) { 1620 bool dup_sack = !i && found_dup_sack; 1621 1622 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1623 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1624 1625 if (!tcp_is_sackblock_valid(tp, dup_sack, 1626 sp[used_sacks].start_seq, 1627 sp[used_sacks].end_seq)) { 1628 int mib_idx; 1629 1630 if (dup_sack) { 1631 if (!tp->undo_marker) 1632 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1633 else 1634 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1635 } else { 1636 /* Don't count olds caused by ACK reordering */ 1637 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1638 !after(sp[used_sacks].end_seq, tp->snd_una)) 1639 continue; 1640 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1641 } 1642 1643 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1644 if (i == 0) 1645 first_sack_index = -1; 1646 continue; 1647 } 1648 1649 /* Ignore very old stuff early */ 1650 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1651 continue; 1652 1653 used_sacks++; 1654 } 1655 1656 /* order SACK blocks to allow in order walk of the retrans queue */ 1657 for (i = used_sacks - 1; i > 0; i--) { 1658 for (j = 0; j < i; j++) { 1659 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1660 swap(sp[j], sp[j + 1]); 1661 1662 /* Track where the first SACK block goes to */ 1663 if (j == first_sack_index) 1664 first_sack_index = j + 1; 1665 } 1666 } 1667 } 1668 1669 skb = tcp_write_queue_head(sk); 1670 state.fack_count = 0; 1671 i = 0; 1672 1673 if (!tp->sacked_out) { 1674 /* It's already past, so skip checking against it */ 1675 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1676 } else { 1677 cache = tp->recv_sack_cache; 1678 /* Skip empty blocks in at head of the cache */ 1679 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1680 !cache->end_seq) 1681 cache++; 1682 } 1683 1684 while (i < used_sacks) { 1685 u32 start_seq = sp[i].start_seq; 1686 u32 end_seq = sp[i].end_seq; 1687 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1688 struct tcp_sack_block *next_dup = NULL; 1689 1690 if (found_dup_sack && ((i + 1) == first_sack_index)) 1691 next_dup = &sp[i + 1]; 1692 1693 /* Skip too early cached blocks */ 1694 while (tcp_sack_cache_ok(tp, cache) && 1695 !before(start_seq, cache->end_seq)) 1696 cache++; 1697 1698 /* Can skip some work by looking recv_sack_cache? */ 1699 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1700 after(end_seq, cache->start_seq)) { 1701 1702 /* Head todo? */ 1703 if (before(start_seq, cache->start_seq)) { 1704 skb = tcp_sacktag_skip(skb, sk, &state, 1705 start_seq); 1706 skb = tcp_sacktag_walk(skb, sk, next_dup, 1707 &state, 1708 start_seq, 1709 cache->start_seq, 1710 dup_sack); 1711 } 1712 1713 /* Rest of the block already fully processed? */ 1714 if (!after(end_seq, cache->end_seq)) 1715 goto advance_sp; 1716 1717 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1718 &state, 1719 cache->end_seq); 1720 1721 /* ...tail remains todo... */ 1722 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1723 /* ...but better entrypoint exists! */ 1724 skb = tcp_highest_sack(sk); 1725 if (skb == NULL) 1726 break; 1727 state.fack_count = tp->fackets_out; 1728 cache++; 1729 goto walk; 1730 } 1731 1732 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1733 /* Check overlap against next cached too (past this one already) */ 1734 cache++; 1735 continue; 1736 } 1737 1738 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1739 skb = tcp_highest_sack(sk); 1740 if (skb == NULL) 1741 break; 1742 state.fack_count = tp->fackets_out; 1743 } 1744 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1745 1746 walk: 1747 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1748 start_seq, end_seq, dup_sack); 1749 1750 advance_sp: 1751 i++; 1752 } 1753 1754 /* Clear the head of the cache sack blocks so we can skip it next time */ 1755 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1756 tp->recv_sack_cache[i].start_seq = 0; 1757 tp->recv_sack_cache[i].end_seq = 0; 1758 } 1759 for (j = 0; j < used_sacks; j++) 1760 tp->recv_sack_cache[i++] = sp[j]; 1761 1762 tcp_mark_lost_retrans(sk); 1763 1764 tcp_verify_left_out(tp); 1765 1766 if ((state.reord < tp->fackets_out) && 1767 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1768 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1769 1770 out: 1771 1772 #if FASTRETRANS_DEBUG > 0 1773 WARN_ON((int)tp->sacked_out < 0); 1774 WARN_ON((int)tp->lost_out < 0); 1775 WARN_ON((int)tp->retrans_out < 0); 1776 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1777 #endif 1778 *sack_rtt = state.rtt; 1779 return state.flag; 1780 } 1781 1782 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1783 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1784 */ 1785 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1786 { 1787 u32 holes; 1788 1789 holes = max(tp->lost_out, 1U); 1790 holes = min(holes, tp->packets_out); 1791 1792 if ((tp->sacked_out + holes) > tp->packets_out) { 1793 tp->sacked_out = tp->packets_out - holes; 1794 return true; 1795 } 1796 return false; 1797 } 1798 1799 /* If we receive more dupacks than we expected counting segments 1800 * in assumption of absent reordering, interpret this as reordering. 1801 * The only another reason could be bug in receiver TCP. 1802 */ 1803 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1804 { 1805 struct tcp_sock *tp = tcp_sk(sk); 1806 if (tcp_limit_reno_sacked(tp)) 1807 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1808 } 1809 1810 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1811 1812 static void tcp_add_reno_sack(struct sock *sk) 1813 { 1814 struct tcp_sock *tp = tcp_sk(sk); 1815 tp->sacked_out++; 1816 tcp_check_reno_reordering(sk, 0); 1817 tcp_verify_left_out(tp); 1818 } 1819 1820 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1821 1822 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1823 { 1824 struct tcp_sock *tp = tcp_sk(sk); 1825 1826 if (acked > 0) { 1827 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1828 if (acked - 1 >= tp->sacked_out) 1829 tp->sacked_out = 0; 1830 else 1831 tp->sacked_out -= acked - 1; 1832 } 1833 tcp_check_reno_reordering(sk, acked); 1834 tcp_verify_left_out(tp); 1835 } 1836 1837 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1838 { 1839 tp->sacked_out = 0; 1840 } 1841 1842 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1843 { 1844 tp->retrans_out = 0; 1845 tp->lost_out = 0; 1846 1847 tp->undo_marker = 0; 1848 tp->undo_retrans = 0; 1849 } 1850 1851 void tcp_clear_retrans(struct tcp_sock *tp) 1852 { 1853 tcp_clear_retrans_partial(tp); 1854 1855 tp->fackets_out = 0; 1856 tp->sacked_out = 0; 1857 } 1858 1859 /* Enter Loss state. If "how" is not zero, forget all SACK information 1860 * and reset tags completely, otherwise preserve SACKs. If receiver 1861 * dropped its ofo queue, we will know this due to reneging detection. 1862 */ 1863 void tcp_enter_loss(struct sock *sk, int how) 1864 { 1865 const struct inet_connection_sock *icsk = inet_csk(sk); 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 struct sk_buff *skb; 1868 bool new_recovery = false; 1869 1870 /* Reduce ssthresh if it has not yet been made inside this window. */ 1871 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1872 !after(tp->high_seq, tp->snd_una) || 1873 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1874 new_recovery = true; 1875 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1876 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1877 tcp_ca_event(sk, CA_EVENT_LOSS); 1878 } 1879 tp->snd_cwnd = 1; 1880 tp->snd_cwnd_cnt = 0; 1881 tp->snd_cwnd_stamp = tcp_time_stamp; 1882 1883 tcp_clear_retrans_partial(tp); 1884 1885 if (tcp_is_reno(tp)) 1886 tcp_reset_reno_sack(tp); 1887 1888 tp->undo_marker = tp->snd_una; 1889 if (how) { 1890 tp->sacked_out = 0; 1891 tp->fackets_out = 0; 1892 } 1893 tcp_clear_all_retrans_hints(tp); 1894 1895 tcp_for_write_queue(skb, sk) { 1896 if (skb == tcp_send_head(sk)) 1897 break; 1898 1899 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1900 tp->undo_marker = 0; 1901 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1902 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1903 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1904 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1905 tp->lost_out += tcp_skb_pcount(skb); 1906 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1907 } 1908 } 1909 tcp_verify_left_out(tp); 1910 1911 /* Timeout in disordered state after receiving substantial DUPACKs 1912 * suggests that the degree of reordering is over-estimated. 1913 */ 1914 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1915 tp->sacked_out >= sysctl_tcp_reordering) 1916 tp->reordering = min_t(unsigned int, tp->reordering, 1917 sysctl_tcp_reordering); 1918 tcp_set_ca_state(sk, TCP_CA_Loss); 1919 tp->high_seq = tp->snd_nxt; 1920 TCP_ECN_queue_cwr(tp); 1921 1922 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1923 * loss recovery is underway except recurring timeout(s) on 1924 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1925 */ 1926 tp->frto = sysctl_tcp_frto && 1927 (new_recovery || icsk->icsk_retransmits) && 1928 !inet_csk(sk)->icsk_mtup.probe_size; 1929 } 1930 1931 /* If ACK arrived pointing to a remembered SACK, it means that our 1932 * remembered SACKs do not reflect real state of receiver i.e. 1933 * receiver _host_ is heavily congested (or buggy). 1934 * 1935 * Do processing similar to RTO timeout. 1936 */ 1937 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1938 { 1939 if (flag & FLAG_SACK_RENEGING) { 1940 struct inet_connection_sock *icsk = inet_csk(sk); 1941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1942 1943 tcp_enter_loss(sk, 1); 1944 icsk->icsk_retransmits++; 1945 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1946 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1947 icsk->icsk_rto, TCP_RTO_MAX); 1948 return true; 1949 } 1950 return false; 1951 } 1952 1953 static inline int tcp_fackets_out(const struct tcp_sock *tp) 1954 { 1955 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1956 } 1957 1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1959 * counter when SACK is enabled (without SACK, sacked_out is used for 1960 * that purpose). 1961 * 1962 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1963 * segments up to the highest received SACK block so far and holes in 1964 * between them. 1965 * 1966 * With reordering, holes may still be in flight, so RFC3517 recovery 1967 * uses pure sacked_out (total number of SACKed segments) even though 1968 * it violates the RFC that uses duplicate ACKs, often these are equal 1969 * but when e.g. out-of-window ACKs or packet duplication occurs, 1970 * they differ. Since neither occurs due to loss, TCP should really 1971 * ignore them. 1972 */ 1973 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 1974 { 1975 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 1976 } 1977 1978 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 1979 { 1980 struct tcp_sock *tp = tcp_sk(sk); 1981 unsigned long delay; 1982 1983 /* Delay early retransmit and entering fast recovery for 1984 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 1985 * available, or RTO is scheduled to fire first. 1986 */ 1987 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 1988 (flag & FLAG_ECE) || !tp->srtt) 1989 return false; 1990 1991 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 1992 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 1993 return false; 1994 1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 1996 TCP_RTO_MAX); 1997 return true; 1998 } 1999 2000 /* Linux NewReno/SACK/FACK/ECN state machine. 2001 * -------------------------------------- 2002 * 2003 * "Open" Normal state, no dubious events, fast path. 2004 * "Disorder" In all the respects it is "Open", 2005 * but requires a bit more attention. It is entered when 2006 * we see some SACKs or dupacks. It is split of "Open" 2007 * mainly to move some processing from fast path to slow one. 2008 * "CWR" CWND was reduced due to some Congestion Notification event. 2009 * It can be ECN, ICMP source quench, local device congestion. 2010 * "Recovery" CWND was reduced, we are fast-retransmitting. 2011 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2012 * 2013 * tcp_fastretrans_alert() is entered: 2014 * - each incoming ACK, if state is not "Open" 2015 * - when arrived ACK is unusual, namely: 2016 * * SACK 2017 * * Duplicate ACK. 2018 * * ECN ECE. 2019 * 2020 * Counting packets in flight is pretty simple. 2021 * 2022 * in_flight = packets_out - left_out + retrans_out 2023 * 2024 * packets_out is SND.NXT-SND.UNA counted in packets. 2025 * 2026 * retrans_out is number of retransmitted segments. 2027 * 2028 * left_out is number of segments left network, but not ACKed yet. 2029 * 2030 * left_out = sacked_out + lost_out 2031 * 2032 * sacked_out: Packets, which arrived to receiver out of order 2033 * and hence not ACKed. With SACKs this number is simply 2034 * amount of SACKed data. Even without SACKs 2035 * it is easy to give pretty reliable estimate of this number, 2036 * counting duplicate ACKs. 2037 * 2038 * lost_out: Packets lost by network. TCP has no explicit 2039 * "loss notification" feedback from network (for now). 2040 * It means that this number can be only _guessed_. 2041 * Actually, it is the heuristics to predict lossage that 2042 * distinguishes different algorithms. 2043 * 2044 * F.e. after RTO, when all the queue is considered as lost, 2045 * lost_out = packets_out and in_flight = retrans_out. 2046 * 2047 * Essentially, we have now two algorithms counting 2048 * lost packets. 2049 * 2050 * FACK: It is the simplest heuristics. As soon as we decided 2051 * that something is lost, we decide that _all_ not SACKed 2052 * packets until the most forward SACK are lost. I.e. 2053 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2054 * It is absolutely correct estimate, if network does not reorder 2055 * packets. And it loses any connection to reality when reordering 2056 * takes place. We use FACK by default until reordering 2057 * is suspected on the path to this destination. 2058 * 2059 * NewReno: when Recovery is entered, we assume that one segment 2060 * is lost (classic Reno). While we are in Recovery and 2061 * a partial ACK arrives, we assume that one more packet 2062 * is lost (NewReno). This heuristics are the same in NewReno 2063 * and SACK. 2064 * 2065 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2066 * deflation etc. CWND is real congestion window, never inflated, changes 2067 * only according to classic VJ rules. 2068 * 2069 * Really tricky (and requiring careful tuning) part of algorithm 2070 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2071 * The first determines the moment _when_ we should reduce CWND and, 2072 * hence, slow down forward transmission. In fact, it determines the moment 2073 * when we decide that hole is caused by loss, rather than by a reorder. 2074 * 2075 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2076 * holes, caused by lost packets. 2077 * 2078 * And the most logically complicated part of algorithm is undo 2079 * heuristics. We detect false retransmits due to both too early 2080 * fast retransmit (reordering) and underestimated RTO, analyzing 2081 * timestamps and D-SACKs. When we detect that some segments were 2082 * retransmitted by mistake and CWND reduction was wrong, we undo 2083 * window reduction and abort recovery phase. This logic is hidden 2084 * inside several functions named tcp_try_undo_<something>. 2085 */ 2086 2087 /* This function decides, when we should leave Disordered state 2088 * and enter Recovery phase, reducing congestion window. 2089 * 2090 * Main question: may we further continue forward transmission 2091 * with the same cwnd? 2092 */ 2093 static bool tcp_time_to_recover(struct sock *sk, int flag) 2094 { 2095 struct tcp_sock *tp = tcp_sk(sk); 2096 __u32 packets_out; 2097 2098 /* Trick#1: The loss is proven. */ 2099 if (tp->lost_out) 2100 return true; 2101 2102 /* Not-A-Trick#2 : Classic rule... */ 2103 if (tcp_dupack_heuristics(tp) > tp->reordering) 2104 return true; 2105 2106 /* Trick#4: It is still not OK... But will it be useful to delay 2107 * recovery more? 2108 */ 2109 packets_out = tp->packets_out; 2110 if (packets_out <= tp->reordering && 2111 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2112 !tcp_may_send_now(sk)) { 2113 /* We have nothing to send. This connection is limited 2114 * either by receiver window or by application. 2115 */ 2116 return true; 2117 } 2118 2119 /* If a thin stream is detected, retransmit after first 2120 * received dupack. Employ only if SACK is supported in order 2121 * to avoid possible corner-case series of spurious retransmissions 2122 * Use only if there are no unsent data. 2123 */ 2124 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2125 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2126 tcp_is_sack(tp) && !tcp_send_head(sk)) 2127 return true; 2128 2129 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2130 * retransmissions due to small network reorderings, we implement 2131 * Mitigation A.3 in the RFC and delay the retransmission for a short 2132 * interval if appropriate. 2133 */ 2134 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2135 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2136 !tcp_may_send_now(sk)) 2137 return !tcp_pause_early_retransmit(sk, flag); 2138 2139 return false; 2140 } 2141 2142 /* Detect loss in event "A" above by marking head of queue up as lost. 2143 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2144 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2145 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2146 * the maximum SACKed segments to pass before reaching this limit. 2147 */ 2148 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2149 { 2150 struct tcp_sock *tp = tcp_sk(sk); 2151 struct sk_buff *skb; 2152 int cnt, oldcnt; 2153 int err; 2154 unsigned int mss; 2155 /* Use SACK to deduce losses of new sequences sent during recovery */ 2156 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2157 2158 WARN_ON(packets > tp->packets_out); 2159 if (tp->lost_skb_hint) { 2160 skb = tp->lost_skb_hint; 2161 cnt = tp->lost_cnt_hint; 2162 /* Head already handled? */ 2163 if (mark_head && skb != tcp_write_queue_head(sk)) 2164 return; 2165 } else { 2166 skb = tcp_write_queue_head(sk); 2167 cnt = 0; 2168 } 2169 2170 tcp_for_write_queue_from(skb, sk) { 2171 if (skb == tcp_send_head(sk)) 2172 break; 2173 /* TODO: do this better */ 2174 /* this is not the most efficient way to do this... */ 2175 tp->lost_skb_hint = skb; 2176 tp->lost_cnt_hint = cnt; 2177 2178 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2179 break; 2180 2181 oldcnt = cnt; 2182 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2183 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2184 cnt += tcp_skb_pcount(skb); 2185 2186 if (cnt > packets) { 2187 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2188 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2189 (oldcnt >= packets)) 2190 break; 2191 2192 mss = skb_shinfo(skb)->gso_size; 2193 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2194 if (err < 0) 2195 break; 2196 cnt = packets; 2197 } 2198 2199 tcp_skb_mark_lost(tp, skb); 2200 2201 if (mark_head) 2202 break; 2203 } 2204 tcp_verify_left_out(tp); 2205 } 2206 2207 /* Account newly detected lost packet(s) */ 2208 2209 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2210 { 2211 struct tcp_sock *tp = tcp_sk(sk); 2212 2213 if (tcp_is_reno(tp)) { 2214 tcp_mark_head_lost(sk, 1, 1); 2215 } else if (tcp_is_fack(tp)) { 2216 int lost = tp->fackets_out - tp->reordering; 2217 if (lost <= 0) 2218 lost = 1; 2219 tcp_mark_head_lost(sk, lost, 0); 2220 } else { 2221 int sacked_upto = tp->sacked_out - tp->reordering; 2222 if (sacked_upto >= 0) 2223 tcp_mark_head_lost(sk, sacked_upto, 0); 2224 else if (fast_rexmit) 2225 tcp_mark_head_lost(sk, 1, 1); 2226 } 2227 } 2228 2229 /* CWND moderation, preventing bursts due to too big ACKs 2230 * in dubious situations. 2231 */ 2232 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2233 { 2234 tp->snd_cwnd = min(tp->snd_cwnd, 2235 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2236 tp->snd_cwnd_stamp = tcp_time_stamp; 2237 } 2238 2239 /* Nothing was retransmitted or returned timestamp is less 2240 * than timestamp of the first retransmission. 2241 */ 2242 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2243 { 2244 return !tp->retrans_stamp || 2245 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2246 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2247 } 2248 2249 /* Undo procedures. */ 2250 2251 #if FASTRETRANS_DEBUG > 1 2252 static void DBGUNDO(struct sock *sk, const char *msg) 2253 { 2254 struct tcp_sock *tp = tcp_sk(sk); 2255 struct inet_sock *inet = inet_sk(sk); 2256 2257 if (sk->sk_family == AF_INET) { 2258 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2259 msg, 2260 &inet->inet_daddr, ntohs(inet->inet_dport), 2261 tp->snd_cwnd, tcp_left_out(tp), 2262 tp->snd_ssthresh, tp->prior_ssthresh, 2263 tp->packets_out); 2264 } 2265 #if IS_ENABLED(CONFIG_IPV6) 2266 else if (sk->sk_family == AF_INET6) { 2267 struct ipv6_pinfo *np = inet6_sk(sk); 2268 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2269 msg, 2270 &np->daddr, ntohs(inet->inet_dport), 2271 tp->snd_cwnd, tcp_left_out(tp), 2272 tp->snd_ssthresh, tp->prior_ssthresh, 2273 tp->packets_out); 2274 } 2275 #endif 2276 } 2277 #else 2278 #define DBGUNDO(x...) do { } while (0) 2279 #endif 2280 2281 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2282 { 2283 struct tcp_sock *tp = tcp_sk(sk); 2284 2285 if (unmark_loss) { 2286 struct sk_buff *skb; 2287 2288 tcp_for_write_queue(skb, sk) { 2289 if (skb == tcp_send_head(sk)) 2290 break; 2291 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2292 } 2293 tp->lost_out = 0; 2294 tcp_clear_all_retrans_hints(tp); 2295 } 2296 2297 if (tp->prior_ssthresh) { 2298 const struct inet_connection_sock *icsk = inet_csk(sk); 2299 2300 if (icsk->icsk_ca_ops->undo_cwnd) 2301 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2302 else 2303 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2304 2305 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2306 tp->snd_ssthresh = tp->prior_ssthresh; 2307 TCP_ECN_withdraw_cwr(tp); 2308 } 2309 } else { 2310 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2311 } 2312 tp->snd_cwnd_stamp = tcp_time_stamp; 2313 tp->undo_marker = 0; 2314 } 2315 2316 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2317 { 2318 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2319 } 2320 2321 /* People celebrate: "We love our President!" */ 2322 static bool tcp_try_undo_recovery(struct sock *sk) 2323 { 2324 struct tcp_sock *tp = tcp_sk(sk); 2325 2326 if (tcp_may_undo(tp)) { 2327 int mib_idx; 2328 2329 /* Happy end! We did not retransmit anything 2330 * or our original transmission succeeded. 2331 */ 2332 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2333 tcp_undo_cwnd_reduction(sk, false); 2334 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2335 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2336 else 2337 mib_idx = LINUX_MIB_TCPFULLUNDO; 2338 2339 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2340 } 2341 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2342 /* Hold old state until something *above* high_seq 2343 * is ACKed. For Reno it is MUST to prevent false 2344 * fast retransmits (RFC2582). SACK TCP is safe. */ 2345 tcp_moderate_cwnd(tp); 2346 return true; 2347 } 2348 tcp_set_ca_state(sk, TCP_CA_Open); 2349 return false; 2350 } 2351 2352 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2353 static bool tcp_try_undo_dsack(struct sock *sk) 2354 { 2355 struct tcp_sock *tp = tcp_sk(sk); 2356 2357 if (tp->undo_marker && !tp->undo_retrans) { 2358 DBGUNDO(sk, "D-SACK"); 2359 tcp_undo_cwnd_reduction(sk, false); 2360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2361 return true; 2362 } 2363 return false; 2364 } 2365 2366 /* We can clear retrans_stamp when there are no retransmissions in the 2367 * window. It would seem that it is trivially available for us in 2368 * tp->retrans_out, however, that kind of assumptions doesn't consider 2369 * what will happen if errors occur when sending retransmission for the 2370 * second time. ...It could the that such segment has only 2371 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2372 * the head skb is enough except for some reneging corner cases that 2373 * are not worth the effort. 2374 * 2375 * Main reason for all this complexity is the fact that connection dying 2376 * time now depends on the validity of the retrans_stamp, in particular, 2377 * that successive retransmissions of a segment must not advance 2378 * retrans_stamp under any conditions. 2379 */ 2380 static bool tcp_any_retrans_done(const struct sock *sk) 2381 { 2382 const struct tcp_sock *tp = tcp_sk(sk); 2383 struct sk_buff *skb; 2384 2385 if (tp->retrans_out) 2386 return true; 2387 2388 skb = tcp_write_queue_head(sk); 2389 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2390 return true; 2391 2392 return false; 2393 } 2394 2395 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2396 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 2400 if (frto_undo || tcp_may_undo(tp)) { 2401 tcp_undo_cwnd_reduction(sk, true); 2402 2403 DBGUNDO(sk, "partial loss"); 2404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2405 if (frto_undo) 2406 NET_INC_STATS_BH(sock_net(sk), 2407 LINUX_MIB_TCPSPURIOUSRTOS); 2408 inet_csk(sk)->icsk_retransmits = 0; 2409 if (frto_undo || tcp_is_sack(tp)) 2410 tcp_set_ca_state(sk, TCP_CA_Open); 2411 return true; 2412 } 2413 return false; 2414 } 2415 2416 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2417 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2418 * It computes the number of packets to send (sndcnt) based on packets newly 2419 * delivered: 2420 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2421 * cwnd reductions across a full RTT. 2422 * 2) If packets in flight is lower than ssthresh (such as due to excess 2423 * losses and/or application stalls), do not perform any further cwnd 2424 * reductions, but instead slow start up to ssthresh. 2425 */ 2426 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2427 { 2428 struct tcp_sock *tp = tcp_sk(sk); 2429 2430 tp->high_seq = tp->snd_nxt; 2431 tp->tlp_high_seq = 0; 2432 tp->snd_cwnd_cnt = 0; 2433 tp->prior_cwnd = tp->snd_cwnd; 2434 tp->prr_delivered = 0; 2435 tp->prr_out = 0; 2436 if (set_ssthresh) 2437 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2438 TCP_ECN_queue_cwr(tp); 2439 } 2440 2441 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2442 int fast_rexmit) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 int sndcnt = 0; 2446 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2447 int newly_acked_sacked = prior_unsacked - 2448 (tp->packets_out - tp->sacked_out); 2449 2450 tp->prr_delivered += newly_acked_sacked; 2451 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2452 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2453 tp->prior_cwnd - 1; 2454 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2455 } else { 2456 sndcnt = min_t(int, delta, 2457 max_t(int, tp->prr_delivered - tp->prr_out, 2458 newly_acked_sacked) + 1); 2459 } 2460 2461 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2462 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2463 } 2464 2465 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2470 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2471 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2472 tp->snd_cwnd = tp->snd_ssthresh; 2473 tp->snd_cwnd_stamp = tcp_time_stamp; 2474 } 2475 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2476 } 2477 2478 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2479 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2480 { 2481 struct tcp_sock *tp = tcp_sk(sk); 2482 2483 tp->prior_ssthresh = 0; 2484 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2485 tp->undo_marker = 0; 2486 tcp_init_cwnd_reduction(sk, set_ssthresh); 2487 tcp_set_ca_state(sk, TCP_CA_CWR); 2488 } 2489 } 2490 2491 static void tcp_try_keep_open(struct sock *sk) 2492 { 2493 struct tcp_sock *tp = tcp_sk(sk); 2494 int state = TCP_CA_Open; 2495 2496 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2497 state = TCP_CA_Disorder; 2498 2499 if (inet_csk(sk)->icsk_ca_state != state) { 2500 tcp_set_ca_state(sk, state); 2501 tp->high_seq = tp->snd_nxt; 2502 } 2503 } 2504 2505 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 2509 tcp_verify_left_out(tp); 2510 2511 if (!tcp_any_retrans_done(sk)) 2512 tp->retrans_stamp = 0; 2513 2514 if (flag & FLAG_ECE) 2515 tcp_enter_cwr(sk, 1); 2516 2517 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2518 tcp_try_keep_open(sk); 2519 } else { 2520 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2521 } 2522 } 2523 2524 static void tcp_mtup_probe_failed(struct sock *sk) 2525 { 2526 struct inet_connection_sock *icsk = inet_csk(sk); 2527 2528 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2529 icsk->icsk_mtup.probe_size = 0; 2530 } 2531 2532 static void tcp_mtup_probe_success(struct sock *sk) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 struct inet_connection_sock *icsk = inet_csk(sk); 2536 2537 /* FIXME: breaks with very large cwnd */ 2538 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2539 tp->snd_cwnd = tp->snd_cwnd * 2540 tcp_mss_to_mtu(sk, tp->mss_cache) / 2541 icsk->icsk_mtup.probe_size; 2542 tp->snd_cwnd_cnt = 0; 2543 tp->snd_cwnd_stamp = tcp_time_stamp; 2544 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2545 2546 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2547 icsk->icsk_mtup.probe_size = 0; 2548 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2549 } 2550 2551 /* Do a simple retransmit without using the backoff mechanisms in 2552 * tcp_timer. This is used for path mtu discovery. 2553 * The socket is already locked here. 2554 */ 2555 void tcp_simple_retransmit(struct sock *sk) 2556 { 2557 const struct inet_connection_sock *icsk = inet_csk(sk); 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 struct sk_buff *skb; 2560 unsigned int mss = tcp_current_mss(sk); 2561 u32 prior_lost = tp->lost_out; 2562 2563 tcp_for_write_queue(skb, sk) { 2564 if (skb == tcp_send_head(sk)) 2565 break; 2566 if (tcp_skb_seglen(skb) > mss && 2567 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2568 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2570 tp->retrans_out -= tcp_skb_pcount(skb); 2571 } 2572 tcp_skb_mark_lost_uncond_verify(tp, skb); 2573 } 2574 } 2575 2576 tcp_clear_retrans_hints_partial(tp); 2577 2578 if (prior_lost == tp->lost_out) 2579 return; 2580 2581 if (tcp_is_reno(tp)) 2582 tcp_limit_reno_sacked(tp); 2583 2584 tcp_verify_left_out(tp); 2585 2586 /* Don't muck with the congestion window here. 2587 * Reason is that we do not increase amount of _data_ 2588 * in network, but units changed and effective 2589 * cwnd/ssthresh really reduced now. 2590 */ 2591 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2592 tp->high_seq = tp->snd_nxt; 2593 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2594 tp->prior_ssthresh = 0; 2595 tp->undo_marker = 0; 2596 tcp_set_ca_state(sk, TCP_CA_Loss); 2597 } 2598 tcp_xmit_retransmit_queue(sk); 2599 } 2600 EXPORT_SYMBOL(tcp_simple_retransmit); 2601 2602 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 int mib_idx; 2606 2607 if (tcp_is_reno(tp)) 2608 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2609 else 2610 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2611 2612 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2613 2614 tp->prior_ssthresh = 0; 2615 tp->undo_marker = tp->snd_una; 2616 tp->undo_retrans = tp->retrans_out; 2617 2618 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2619 if (!ece_ack) 2620 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2621 tcp_init_cwnd_reduction(sk, true); 2622 } 2623 tcp_set_ca_state(sk, TCP_CA_Recovery); 2624 } 2625 2626 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2627 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2628 */ 2629 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2630 { 2631 struct inet_connection_sock *icsk = inet_csk(sk); 2632 struct tcp_sock *tp = tcp_sk(sk); 2633 bool recovered = !before(tp->snd_una, tp->high_seq); 2634 2635 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2636 if (flag & FLAG_ORIG_SACK_ACKED) { 2637 /* Step 3.b. A timeout is spurious if not all data are 2638 * lost, i.e., never-retransmitted data are (s)acked. 2639 */ 2640 tcp_try_undo_loss(sk, true); 2641 return; 2642 } 2643 if (after(tp->snd_nxt, tp->high_seq) && 2644 (flag & FLAG_DATA_SACKED || is_dupack)) { 2645 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2647 tp->high_seq = tp->snd_nxt; 2648 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2649 TCP_NAGLE_OFF); 2650 if (after(tp->snd_nxt, tp->high_seq)) 2651 return; /* Step 2.b */ 2652 tp->frto = 0; 2653 } 2654 } 2655 2656 if (recovered) { 2657 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2658 icsk->icsk_retransmits = 0; 2659 tcp_try_undo_recovery(sk); 2660 return; 2661 } 2662 if (flag & FLAG_DATA_ACKED) 2663 icsk->icsk_retransmits = 0; 2664 if (tcp_is_reno(tp)) { 2665 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2666 * delivered. Lower inflight to clock out (re)tranmissions. 2667 */ 2668 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2669 tcp_add_reno_sack(sk); 2670 else if (flag & FLAG_SND_UNA_ADVANCED) 2671 tcp_reset_reno_sack(tp); 2672 } 2673 if (tcp_try_undo_loss(sk, false)) 2674 return; 2675 tcp_xmit_retransmit_queue(sk); 2676 } 2677 2678 /* Undo during fast recovery after partial ACK. */ 2679 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2680 const int prior_unsacked) 2681 { 2682 struct tcp_sock *tp = tcp_sk(sk); 2683 2684 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2685 /* Plain luck! Hole if filled with delayed 2686 * packet, rather than with a retransmit. 2687 */ 2688 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2689 2690 /* We are getting evidence that the reordering degree is higher 2691 * than we realized. If there are no retransmits out then we 2692 * can undo. Otherwise we clock out new packets but do not 2693 * mark more packets lost or retransmit more. 2694 */ 2695 if (tp->retrans_out) { 2696 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2697 return true; 2698 } 2699 2700 if (!tcp_any_retrans_done(sk)) 2701 tp->retrans_stamp = 0; 2702 2703 DBGUNDO(sk, "partial recovery"); 2704 tcp_undo_cwnd_reduction(sk, true); 2705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2706 tcp_try_keep_open(sk); 2707 return true; 2708 } 2709 return false; 2710 } 2711 2712 /* Process an event, which can update packets-in-flight not trivially. 2713 * Main goal of this function is to calculate new estimate for left_out, 2714 * taking into account both packets sitting in receiver's buffer and 2715 * packets lost by network. 2716 * 2717 * Besides that it does CWND reduction, when packet loss is detected 2718 * and changes state of machine. 2719 * 2720 * It does _not_ decide what to send, it is made in function 2721 * tcp_xmit_retransmit_queue(). 2722 */ 2723 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2724 const int prior_unsacked, 2725 bool is_dupack, int flag) 2726 { 2727 struct inet_connection_sock *icsk = inet_csk(sk); 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2730 (tcp_fackets_out(tp) > tp->reordering)); 2731 int fast_rexmit = 0; 2732 2733 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2734 tp->sacked_out = 0; 2735 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2736 tp->fackets_out = 0; 2737 2738 /* Now state machine starts. 2739 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2740 if (flag & FLAG_ECE) 2741 tp->prior_ssthresh = 0; 2742 2743 /* B. In all the states check for reneging SACKs. */ 2744 if (tcp_check_sack_reneging(sk, flag)) 2745 return; 2746 2747 /* C. Check consistency of the current state. */ 2748 tcp_verify_left_out(tp); 2749 2750 /* D. Check state exit conditions. State can be terminated 2751 * when high_seq is ACKed. */ 2752 if (icsk->icsk_ca_state == TCP_CA_Open) { 2753 WARN_ON(tp->retrans_out != 0); 2754 tp->retrans_stamp = 0; 2755 } else if (!before(tp->snd_una, tp->high_seq)) { 2756 switch (icsk->icsk_ca_state) { 2757 case TCP_CA_CWR: 2758 /* CWR is to be held something *above* high_seq 2759 * is ACKed for CWR bit to reach receiver. */ 2760 if (tp->snd_una != tp->high_seq) { 2761 tcp_end_cwnd_reduction(sk); 2762 tcp_set_ca_state(sk, TCP_CA_Open); 2763 } 2764 break; 2765 2766 case TCP_CA_Recovery: 2767 if (tcp_is_reno(tp)) 2768 tcp_reset_reno_sack(tp); 2769 if (tcp_try_undo_recovery(sk)) 2770 return; 2771 tcp_end_cwnd_reduction(sk); 2772 break; 2773 } 2774 } 2775 2776 /* E. Process state. */ 2777 switch (icsk->icsk_ca_state) { 2778 case TCP_CA_Recovery: 2779 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2780 if (tcp_is_reno(tp) && is_dupack) 2781 tcp_add_reno_sack(sk); 2782 } else { 2783 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2784 return; 2785 /* Partial ACK arrived. Force fast retransmit. */ 2786 do_lost = tcp_is_reno(tp) || 2787 tcp_fackets_out(tp) > tp->reordering; 2788 } 2789 if (tcp_try_undo_dsack(sk)) { 2790 tcp_try_keep_open(sk); 2791 return; 2792 } 2793 break; 2794 case TCP_CA_Loss: 2795 tcp_process_loss(sk, flag, is_dupack); 2796 if (icsk->icsk_ca_state != TCP_CA_Open) 2797 return; 2798 /* Fall through to processing in Open state. */ 2799 default: 2800 if (tcp_is_reno(tp)) { 2801 if (flag & FLAG_SND_UNA_ADVANCED) 2802 tcp_reset_reno_sack(tp); 2803 if (is_dupack) 2804 tcp_add_reno_sack(sk); 2805 } 2806 2807 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2808 tcp_try_undo_dsack(sk); 2809 2810 if (!tcp_time_to_recover(sk, flag)) { 2811 tcp_try_to_open(sk, flag, prior_unsacked); 2812 return; 2813 } 2814 2815 /* MTU probe failure: don't reduce cwnd */ 2816 if (icsk->icsk_ca_state < TCP_CA_CWR && 2817 icsk->icsk_mtup.probe_size && 2818 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2819 tcp_mtup_probe_failed(sk); 2820 /* Restores the reduction we did in tcp_mtup_probe() */ 2821 tp->snd_cwnd++; 2822 tcp_simple_retransmit(sk); 2823 return; 2824 } 2825 2826 /* Otherwise enter Recovery state */ 2827 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2828 fast_rexmit = 1; 2829 } 2830 2831 if (do_lost) 2832 tcp_update_scoreboard(sk, fast_rexmit); 2833 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2834 tcp_xmit_retransmit_queue(sk); 2835 } 2836 2837 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2838 s32 seq_rtt, s32 sack_rtt) 2839 { 2840 const struct tcp_sock *tp = tcp_sk(sk); 2841 2842 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2843 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2844 * Karn's algorithm forbids taking RTT if some retransmitted data 2845 * is acked (RFC6298). 2846 */ 2847 if (flag & FLAG_RETRANS_DATA_ACKED) 2848 seq_rtt = -1; 2849 2850 if (seq_rtt < 0) 2851 seq_rtt = sack_rtt; 2852 2853 /* RTTM Rule: A TSecr value received in a segment is used to 2854 * update the averaged RTT measurement only if the segment 2855 * acknowledges some new data, i.e., only if it advances the 2856 * left edge of the send window. 2857 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2858 */ 2859 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2860 flag & FLAG_ACKED) 2861 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2862 2863 if (seq_rtt < 0) 2864 return false; 2865 2866 tcp_rtt_estimator(sk, seq_rtt); 2867 tcp_set_rto(sk); 2868 2869 /* RFC6298: only reset backoff on valid RTT measurement. */ 2870 inet_csk(sk)->icsk_backoff = 0; 2871 return true; 2872 } 2873 2874 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2875 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2876 { 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 s32 seq_rtt = -1; 2879 2880 if (synack_stamp && !tp->total_retrans) 2881 seq_rtt = tcp_time_stamp - synack_stamp; 2882 2883 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2884 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2885 */ 2886 if (!tp->srtt) 2887 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1); 2888 } 2889 2890 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 2891 { 2892 const struct inet_connection_sock *icsk = inet_csk(sk); 2893 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 2894 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2895 } 2896 2897 /* Restart timer after forward progress on connection. 2898 * RFC2988 recommends to restart timer to now+rto. 2899 */ 2900 void tcp_rearm_rto(struct sock *sk) 2901 { 2902 const struct inet_connection_sock *icsk = inet_csk(sk); 2903 struct tcp_sock *tp = tcp_sk(sk); 2904 2905 /* If the retrans timer is currently being used by Fast Open 2906 * for SYN-ACK retrans purpose, stay put. 2907 */ 2908 if (tp->fastopen_rsk) 2909 return; 2910 2911 if (!tp->packets_out) { 2912 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2913 } else { 2914 u32 rto = inet_csk(sk)->icsk_rto; 2915 /* Offset the time elapsed after installing regular RTO */ 2916 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2917 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2918 struct sk_buff *skb = tcp_write_queue_head(sk); 2919 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 2920 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2921 /* delta may not be positive if the socket is locked 2922 * when the retrans timer fires and is rescheduled. 2923 */ 2924 if (delta > 0) 2925 rto = delta; 2926 } 2927 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2928 TCP_RTO_MAX); 2929 } 2930 } 2931 2932 /* This function is called when the delayed ER timer fires. TCP enters 2933 * fast recovery and performs fast-retransmit. 2934 */ 2935 void tcp_resume_early_retransmit(struct sock *sk) 2936 { 2937 struct tcp_sock *tp = tcp_sk(sk); 2938 2939 tcp_rearm_rto(sk); 2940 2941 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 2942 if (!tp->do_early_retrans) 2943 return; 2944 2945 tcp_enter_recovery(sk, false); 2946 tcp_update_scoreboard(sk, 1); 2947 tcp_xmit_retransmit_queue(sk); 2948 } 2949 2950 /* If we get here, the whole TSO packet has not been acked. */ 2951 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2952 { 2953 struct tcp_sock *tp = tcp_sk(sk); 2954 u32 packets_acked; 2955 2956 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2957 2958 packets_acked = tcp_skb_pcount(skb); 2959 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2960 return 0; 2961 packets_acked -= tcp_skb_pcount(skb); 2962 2963 if (packets_acked) { 2964 BUG_ON(tcp_skb_pcount(skb) == 0); 2965 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2966 } 2967 2968 return packets_acked; 2969 } 2970 2971 /* Remove acknowledged frames from the retransmission queue. If our packet 2972 * is before the ack sequence we can discard it as it's confirmed to have 2973 * arrived at the other end. 2974 */ 2975 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 2976 u32 prior_snd_una, s32 sack_rtt) 2977 { 2978 struct tcp_sock *tp = tcp_sk(sk); 2979 const struct inet_connection_sock *icsk = inet_csk(sk); 2980 struct sk_buff *skb; 2981 u32 now = tcp_time_stamp; 2982 int fully_acked = true; 2983 int flag = 0; 2984 u32 pkts_acked = 0; 2985 u32 reord = tp->packets_out; 2986 u32 prior_sacked = tp->sacked_out; 2987 s32 seq_rtt = -1; 2988 s32 ca_seq_rtt = -1; 2989 ktime_t last_ackt = net_invalid_timestamp(); 2990 bool rtt_update; 2991 2992 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 2993 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2994 u32 acked_pcount; 2995 u8 sacked = scb->sacked; 2996 2997 /* Determine how many packets and what bytes were acked, tso and else */ 2998 if (after(scb->end_seq, tp->snd_una)) { 2999 if (tcp_skb_pcount(skb) == 1 || 3000 !after(tp->snd_una, scb->seq)) 3001 break; 3002 3003 acked_pcount = tcp_tso_acked(sk, skb); 3004 if (!acked_pcount) 3005 break; 3006 3007 fully_acked = false; 3008 } else { 3009 acked_pcount = tcp_skb_pcount(skb); 3010 } 3011 3012 if (sacked & TCPCB_RETRANS) { 3013 if (sacked & TCPCB_SACKED_RETRANS) 3014 tp->retrans_out -= acked_pcount; 3015 flag |= FLAG_RETRANS_DATA_ACKED; 3016 } else { 3017 ca_seq_rtt = now - scb->when; 3018 last_ackt = skb->tstamp; 3019 if (seq_rtt < 0) { 3020 seq_rtt = ca_seq_rtt; 3021 } 3022 if (!(sacked & TCPCB_SACKED_ACKED)) 3023 reord = min(pkts_acked, reord); 3024 if (!after(scb->end_seq, tp->high_seq)) 3025 flag |= FLAG_ORIG_SACK_ACKED; 3026 } 3027 3028 if (sacked & TCPCB_SACKED_ACKED) 3029 tp->sacked_out -= acked_pcount; 3030 if (sacked & TCPCB_LOST) 3031 tp->lost_out -= acked_pcount; 3032 3033 tp->packets_out -= acked_pcount; 3034 pkts_acked += acked_pcount; 3035 3036 /* Initial outgoing SYN's get put onto the write_queue 3037 * just like anything else we transmit. It is not 3038 * true data, and if we misinform our callers that 3039 * this ACK acks real data, we will erroneously exit 3040 * connection startup slow start one packet too 3041 * quickly. This is severely frowned upon behavior. 3042 */ 3043 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3044 flag |= FLAG_DATA_ACKED; 3045 } else { 3046 flag |= FLAG_SYN_ACKED; 3047 tp->retrans_stamp = 0; 3048 } 3049 3050 if (!fully_acked) 3051 break; 3052 3053 tcp_unlink_write_queue(skb, sk); 3054 sk_wmem_free_skb(sk, skb); 3055 if (skb == tp->retransmit_skb_hint) 3056 tp->retransmit_skb_hint = NULL; 3057 if (skb == tp->lost_skb_hint) 3058 tp->lost_skb_hint = NULL; 3059 } 3060 3061 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3062 tp->snd_up = tp->snd_una; 3063 3064 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3065 flag |= FLAG_SACK_RENEGING; 3066 3067 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt); 3068 3069 if (flag & FLAG_ACKED) { 3070 const struct tcp_congestion_ops *ca_ops 3071 = inet_csk(sk)->icsk_ca_ops; 3072 3073 tcp_rearm_rto(sk); 3074 if (unlikely(icsk->icsk_mtup.probe_size && 3075 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3076 tcp_mtup_probe_success(sk); 3077 } 3078 3079 if (tcp_is_reno(tp)) { 3080 tcp_remove_reno_sacks(sk, pkts_acked); 3081 } else { 3082 int delta; 3083 3084 /* Non-retransmitted hole got filled? That's reordering */ 3085 if (reord < prior_fackets) 3086 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3087 3088 delta = tcp_is_fack(tp) ? pkts_acked : 3089 prior_sacked - tp->sacked_out; 3090 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3091 } 3092 3093 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3094 3095 if (ca_ops->pkts_acked) { 3096 s32 rtt_us = -1; 3097 3098 /* Is the ACK triggering packet unambiguous? */ 3099 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3100 /* High resolution needed and available? */ 3101 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3102 !ktime_equal(last_ackt, 3103 net_invalid_timestamp())) 3104 rtt_us = ktime_us_delta(ktime_get_real(), 3105 last_ackt); 3106 else if (ca_seq_rtt >= 0) 3107 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3108 } 3109 3110 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3111 } 3112 } else if (skb && rtt_update && sack_rtt >= 0 && 3113 sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) { 3114 /* Do not re-arm RTO if the sack RTT is measured from data sent 3115 * after when the head was last (re)transmitted. Otherwise the 3116 * timeout may continue to extend in loss recovery. 3117 */ 3118 tcp_rearm_rto(sk); 3119 } 3120 3121 #if FASTRETRANS_DEBUG > 0 3122 WARN_ON((int)tp->sacked_out < 0); 3123 WARN_ON((int)tp->lost_out < 0); 3124 WARN_ON((int)tp->retrans_out < 0); 3125 if (!tp->packets_out && tcp_is_sack(tp)) { 3126 icsk = inet_csk(sk); 3127 if (tp->lost_out) { 3128 pr_debug("Leak l=%u %d\n", 3129 tp->lost_out, icsk->icsk_ca_state); 3130 tp->lost_out = 0; 3131 } 3132 if (tp->sacked_out) { 3133 pr_debug("Leak s=%u %d\n", 3134 tp->sacked_out, icsk->icsk_ca_state); 3135 tp->sacked_out = 0; 3136 } 3137 if (tp->retrans_out) { 3138 pr_debug("Leak r=%u %d\n", 3139 tp->retrans_out, icsk->icsk_ca_state); 3140 tp->retrans_out = 0; 3141 } 3142 } 3143 #endif 3144 return flag; 3145 } 3146 3147 static void tcp_ack_probe(struct sock *sk) 3148 { 3149 const struct tcp_sock *tp = tcp_sk(sk); 3150 struct inet_connection_sock *icsk = inet_csk(sk); 3151 3152 /* Was it a usable window open? */ 3153 3154 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3155 icsk->icsk_backoff = 0; 3156 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3157 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3158 * This function is not for random using! 3159 */ 3160 } else { 3161 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3162 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3163 TCP_RTO_MAX); 3164 } 3165 } 3166 3167 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3168 { 3169 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3170 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3171 } 3172 3173 /* Decide wheather to run the increase function of congestion control. */ 3174 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3175 { 3176 if (tcp_in_cwnd_reduction(sk)) 3177 return false; 3178 3179 /* If reordering is high then always grow cwnd whenever data is 3180 * delivered regardless of its ordering. Otherwise stay conservative 3181 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3182 * new SACK or ECE mark may first advance cwnd here and later reduce 3183 * cwnd in tcp_fastretrans_alert() based on more states. 3184 */ 3185 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3186 return flag & FLAG_FORWARD_PROGRESS; 3187 3188 return flag & FLAG_DATA_ACKED; 3189 } 3190 3191 /* Check that window update is acceptable. 3192 * The function assumes that snd_una<=ack<=snd_next. 3193 */ 3194 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3195 const u32 ack, const u32 ack_seq, 3196 const u32 nwin) 3197 { 3198 return after(ack, tp->snd_una) || 3199 after(ack_seq, tp->snd_wl1) || 3200 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3201 } 3202 3203 /* Update our send window. 3204 * 3205 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3206 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3207 */ 3208 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3209 u32 ack_seq) 3210 { 3211 struct tcp_sock *tp = tcp_sk(sk); 3212 int flag = 0; 3213 u32 nwin = ntohs(tcp_hdr(skb)->window); 3214 3215 if (likely(!tcp_hdr(skb)->syn)) 3216 nwin <<= tp->rx_opt.snd_wscale; 3217 3218 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3219 flag |= FLAG_WIN_UPDATE; 3220 tcp_update_wl(tp, ack_seq); 3221 3222 if (tp->snd_wnd != nwin) { 3223 tp->snd_wnd = nwin; 3224 3225 /* Note, it is the only place, where 3226 * fast path is recovered for sending TCP. 3227 */ 3228 tp->pred_flags = 0; 3229 tcp_fast_path_check(sk); 3230 3231 if (nwin > tp->max_window) { 3232 tp->max_window = nwin; 3233 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3234 } 3235 } 3236 } 3237 3238 tp->snd_una = ack; 3239 3240 return flag; 3241 } 3242 3243 /* RFC 5961 7 [ACK Throttling] */ 3244 static void tcp_send_challenge_ack(struct sock *sk) 3245 { 3246 /* unprotected vars, we dont care of overwrites */ 3247 static u32 challenge_timestamp; 3248 static unsigned int challenge_count; 3249 u32 now = jiffies / HZ; 3250 3251 if (now != challenge_timestamp) { 3252 challenge_timestamp = now; 3253 challenge_count = 0; 3254 } 3255 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3257 tcp_send_ack(sk); 3258 } 3259 } 3260 3261 static void tcp_store_ts_recent(struct tcp_sock *tp) 3262 { 3263 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3264 tp->rx_opt.ts_recent_stamp = get_seconds(); 3265 } 3266 3267 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3268 { 3269 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3270 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3271 * extra check below makes sure this can only happen 3272 * for pure ACK frames. -DaveM 3273 * 3274 * Not only, also it occurs for expired timestamps. 3275 */ 3276 3277 if (tcp_paws_check(&tp->rx_opt, 0)) 3278 tcp_store_ts_recent(tp); 3279 } 3280 } 3281 3282 /* This routine deals with acks during a TLP episode. 3283 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3284 */ 3285 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3286 { 3287 struct tcp_sock *tp = tcp_sk(sk); 3288 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3289 !(flag & (FLAG_SND_UNA_ADVANCED | 3290 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3291 3292 /* Mark the end of TLP episode on receiving TLP dupack or when 3293 * ack is after tlp_high_seq. 3294 */ 3295 if (is_tlp_dupack) { 3296 tp->tlp_high_seq = 0; 3297 return; 3298 } 3299 3300 if (after(ack, tp->tlp_high_seq)) { 3301 tp->tlp_high_seq = 0; 3302 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3303 if (!(flag & FLAG_DSACKING_ACK)) { 3304 tcp_init_cwnd_reduction(sk, true); 3305 tcp_set_ca_state(sk, TCP_CA_CWR); 3306 tcp_end_cwnd_reduction(sk); 3307 tcp_try_keep_open(sk); 3308 NET_INC_STATS_BH(sock_net(sk), 3309 LINUX_MIB_TCPLOSSPROBERECOVERY); 3310 } 3311 } 3312 } 3313 3314 /* This routine deals with incoming acks, but not outgoing ones. */ 3315 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3316 { 3317 struct inet_connection_sock *icsk = inet_csk(sk); 3318 struct tcp_sock *tp = tcp_sk(sk); 3319 u32 prior_snd_una = tp->snd_una; 3320 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3321 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3322 bool is_dupack = false; 3323 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt; 3324 u32 prior_fackets; 3325 int prior_packets = tp->packets_out; 3326 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3327 int acked = 0; /* Number of packets newly acked */ 3328 s32 sack_rtt = -1; 3329 3330 /* If the ack is older than previous acks 3331 * then we can probably ignore it. 3332 */ 3333 if (before(ack, prior_snd_una)) { 3334 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3335 if (before(ack, prior_snd_una - tp->max_window)) { 3336 tcp_send_challenge_ack(sk); 3337 return -1; 3338 } 3339 goto old_ack; 3340 } 3341 3342 /* If the ack includes data we haven't sent yet, discard 3343 * this segment (RFC793 Section 3.9). 3344 */ 3345 if (after(ack, tp->snd_nxt)) 3346 goto invalid_ack; 3347 3348 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3349 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3350 tcp_rearm_rto(sk); 3351 3352 if (after(ack, prior_snd_una)) 3353 flag |= FLAG_SND_UNA_ADVANCED; 3354 3355 prior_fackets = tp->fackets_out; 3356 prior_in_flight = tcp_packets_in_flight(tp); 3357 3358 /* ts_recent update must be made after we are sure that the packet 3359 * is in window. 3360 */ 3361 if (flag & FLAG_UPDATE_TS_RECENT) 3362 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3363 3364 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3365 /* Window is constant, pure forward advance. 3366 * No more checks are required. 3367 * Note, we use the fact that SND.UNA>=SND.WL2. 3368 */ 3369 tcp_update_wl(tp, ack_seq); 3370 tp->snd_una = ack; 3371 flag |= FLAG_WIN_UPDATE; 3372 3373 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3374 3375 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3376 } else { 3377 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3378 flag |= FLAG_DATA; 3379 else 3380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3381 3382 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3383 3384 if (TCP_SKB_CB(skb)->sacked) 3385 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3386 &sack_rtt); 3387 3388 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3389 flag |= FLAG_ECE; 3390 3391 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3392 } 3393 3394 /* We passed data and got it acked, remove any soft error 3395 * log. Something worked... 3396 */ 3397 sk->sk_err_soft = 0; 3398 icsk->icsk_probes_out = 0; 3399 tp->rcv_tstamp = tcp_time_stamp; 3400 if (!prior_packets) 3401 goto no_queue; 3402 3403 /* See if we can take anything off of the retransmit queue. */ 3404 acked = tp->packets_out; 3405 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt); 3406 acked -= tp->packets_out; 3407 3408 /* Advance cwnd if state allows */ 3409 if (tcp_may_raise_cwnd(sk, flag)) 3410 tcp_cong_avoid(sk, ack, prior_in_flight); 3411 3412 if (tcp_ack_is_dubious(sk, flag)) { 3413 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3414 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3415 is_dupack, flag); 3416 } 3417 if (tp->tlp_high_seq) 3418 tcp_process_tlp_ack(sk, ack, flag); 3419 3420 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3421 struct dst_entry *dst = __sk_dst_get(sk); 3422 if (dst) 3423 dst_confirm(dst); 3424 } 3425 3426 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3427 tcp_schedule_loss_probe(sk); 3428 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd) 3429 tcp_update_pacing_rate(sk); 3430 return 1; 3431 3432 no_queue: 3433 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3434 if (flag & FLAG_DSACKING_ACK) 3435 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3436 is_dupack, flag); 3437 /* If this ack opens up a zero window, clear backoff. It was 3438 * being used to time the probes, and is probably far higher than 3439 * it needs to be for normal retransmission. 3440 */ 3441 if (tcp_send_head(sk)) 3442 tcp_ack_probe(sk); 3443 3444 if (tp->tlp_high_seq) 3445 tcp_process_tlp_ack(sk, ack, flag); 3446 return 1; 3447 3448 invalid_ack: 3449 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3450 return -1; 3451 3452 old_ack: 3453 /* If data was SACKed, tag it and see if we should send more data. 3454 * If data was DSACKed, see if we can undo a cwnd reduction. 3455 */ 3456 if (TCP_SKB_CB(skb)->sacked) { 3457 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3458 &sack_rtt); 3459 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3460 is_dupack, flag); 3461 } 3462 3463 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3464 return 0; 3465 } 3466 3467 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3468 * But, this can also be called on packets in the established flow when 3469 * the fast version below fails. 3470 */ 3471 void tcp_parse_options(const struct sk_buff *skb, 3472 struct tcp_options_received *opt_rx, int estab, 3473 struct tcp_fastopen_cookie *foc) 3474 { 3475 const unsigned char *ptr; 3476 const struct tcphdr *th = tcp_hdr(skb); 3477 int length = (th->doff * 4) - sizeof(struct tcphdr); 3478 3479 ptr = (const unsigned char *)(th + 1); 3480 opt_rx->saw_tstamp = 0; 3481 3482 while (length > 0) { 3483 int opcode = *ptr++; 3484 int opsize; 3485 3486 switch (opcode) { 3487 case TCPOPT_EOL: 3488 return; 3489 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3490 length--; 3491 continue; 3492 default: 3493 opsize = *ptr++; 3494 if (opsize < 2) /* "silly options" */ 3495 return; 3496 if (opsize > length) 3497 return; /* don't parse partial options */ 3498 switch (opcode) { 3499 case TCPOPT_MSS: 3500 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3501 u16 in_mss = get_unaligned_be16(ptr); 3502 if (in_mss) { 3503 if (opt_rx->user_mss && 3504 opt_rx->user_mss < in_mss) 3505 in_mss = opt_rx->user_mss; 3506 opt_rx->mss_clamp = in_mss; 3507 } 3508 } 3509 break; 3510 case TCPOPT_WINDOW: 3511 if (opsize == TCPOLEN_WINDOW && th->syn && 3512 !estab && sysctl_tcp_window_scaling) { 3513 __u8 snd_wscale = *(__u8 *)ptr; 3514 opt_rx->wscale_ok = 1; 3515 if (snd_wscale > 14) { 3516 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3517 __func__, 3518 snd_wscale); 3519 snd_wscale = 14; 3520 } 3521 opt_rx->snd_wscale = snd_wscale; 3522 } 3523 break; 3524 case TCPOPT_TIMESTAMP: 3525 if ((opsize == TCPOLEN_TIMESTAMP) && 3526 ((estab && opt_rx->tstamp_ok) || 3527 (!estab && sysctl_tcp_timestamps))) { 3528 opt_rx->saw_tstamp = 1; 3529 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3530 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3531 } 3532 break; 3533 case TCPOPT_SACK_PERM: 3534 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3535 !estab && sysctl_tcp_sack) { 3536 opt_rx->sack_ok = TCP_SACK_SEEN; 3537 tcp_sack_reset(opt_rx); 3538 } 3539 break; 3540 3541 case TCPOPT_SACK: 3542 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3543 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3544 opt_rx->sack_ok) { 3545 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3546 } 3547 break; 3548 #ifdef CONFIG_TCP_MD5SIG 3549 case TCPOPT_MD5SIG: 3550 /* 3551 * The MD5 Hash has already been 3552 * checked (see tcp_v{4,6}_do_rcv()). 3553 */ 3554 break; 3555 #endif 3556 case TCPOPT_EXP: 3557 /* Fast Open option shares code 254 using a 3558 * 16 bits magic number. It's valid only in 3559 * SYN or SYN-ACK with an even size. 3560 */ 3561 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3562 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3563 foc == NULL || !th->syn || (opsize & 1)) 3564 break; 3565 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3566 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3567 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3568 memcpy(foc->val, ptr + 2, foc->len); 3569 else if (foc->len != 0) 3570 foc->len = -1; 3571 break; 3572 3573 } 3574 ptr += opsize-2; 3575 length -= opsize; 3576 } 3577 } 3578 } 3579 EXPORT_SYMBOL(tcp_parse_options); 3580 3581 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3582 { 3583 const __be32 *ptr = (const __be32 *)(th + 1); 3584 3585 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3586 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3587 tp->rx_opt.saw_tstamp = 1; 3588 ++ptr; 3589 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3590 ++ptr; 3591 if (*ptr) 3592 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3593 else 3594 tp->rx_opt.rcv_tsecr = 0; 3595 return true; 3596 } 3597 return false; 3598 } 3599 3600 /* Fast parse options. This hopes to only see timestamps. 3601 * If it is wrong it falls back on tcp_parse_options(). 3602 */ 3603 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3604 const struct tcphdr *th, struct tcp_sock *tp) 3605 { 3606 /* In the spirit of fast parsing, compare doff directly to constant 3607 * values. Because equality is used, short doff can be ignored here. 3608 */ 3609 if (th->doff == (sizeof(*th) / 4)) { 3610 tp->rx_opt.saw_tstamp = 0; 3611 return false; 3612 } else if (tp->rx_opt.tstamp_ok && 3613 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3614 if (tcp_parse_aligned_timestamp(tp, th)) 3615 return true; 3616 } 3617 3618 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3619 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3620 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3621 3622 return true; 3623 } 3624 3625 #ifdef CONFIG_TCP_MD5SIG 3626 /* 3627 * Parse MD5 Signature option 3628 */ 3629 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3630 { 3631 int length = (th->doff << 2) - sizeof(*th); 3632 const u8 *ptr = (const u8 *)(th + 1); 3633 3634 /* If the TCP option is too short, we can short cut */ 3635 if (length < TCPOLEN_MD5SIG) 3636 return NULL; 3637 3638 while (length > 0) { 3639 int opcode = *ptr++; 3640 int opsize; 3641 3642 switch(opcode) { 3643 case TCPOPT_EOL: 3644 return NULL; 3645 case TCPOPT_NOP: 3646 length--; 3647 continue; 3648 default: 3649 opsize = *ptr++; 3650 if (opsize < 2 || opsize > length) 3651 return NULL; 3652 if (opcode == TCPOPT_MD5SIG) 3653 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3654 } 3655 ptr += opsize - 2; 3656 length -= opsize; 3657 } 3658 return NULL; 3659 } 3660 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3661 #endif 3662 3663 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3664 * 3665 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3666 * it can pass through stack. So, the following predicate verifies that 3667 * this segment is not used for anything but congestion avoidance or 3668 * fast retransmit. Moreover, we even are able to eliminate most of such 3669 * second order effects, if we apply some small "replay" window (~RTO) 3670 * to timestamp space. 3671 * 3672 * All these measures still do not guarantee that we reject wrapped ACKs 3673 * on networks with high bandwidth, when sequence space is recycled fastly, 3674 * but it guarantees that such events will be very rare and do not affect 3675 * connection seriously. This doesn't look nice, but alas, PAWS is really 3676 * buggy extension. 3677 * 3678 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3679 * states that events when retransmit arrives after original data are rare. 3680 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3681 * the biggest problem on large power networks even with minor reordering. 3682 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3683 * up to bandwidth of 18Gigabit/sec. 8) ] 3684 */ 3685 3686 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3687 { 3688 const struct tcp_sock *tp = tcp_sk(sk); 3689 const struct tcphdr *th = tcp_hdr(skb); 3690 u32 seq = TCP_SKB_CB(skb)->seq; 3691 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3692 3693 return (/* 1. Pure ACK with correct sequence number. */ 3694 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3695 3696 /* 2. ... and duplicate ACK. */ 3697 ack == tp->snd_una && 3698 3699 /* 3. ... and does not update window. */ 3700 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3701 3702 /* 4. ... and sits in replay window. */ 3703 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3704 } 3705 3706 static inline bool tcp_paws_discard(const struct sock *sk, 3707 const struct sk_buff *skb) 3708 { 3709 const struct tcp_sock *tp = tcp_sk(sk); 3710 3711 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3712 !tcp_disordered_ack(sk, skb); 3713 } 3714 3715 /* Check segment sequence number for validity. 3716 * 3717 * Segment controls are considered valid, if the segment 3718 * fits to the window after truncation to the window. Acceptability 3719 * of data (and SYN, FIN, of course) is checked separately. 3720 * See tcp_data_queue(), for example. 3721 * 3722 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3723 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3724 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3725 * (borrowed from freebsd) 3726 */ 3727 3728 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3729 { 3730 return !before(end_seq, tp->rcv_wup) && 3731 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3732 } 3733 3734 /* When we get a reset we do this. */ 3735 void tcp_reset(struct sock *sk) 3736 { 3737 /* We want the right error as BSD sees it (and indeed as we do). */ 3738 switch (sk->sk_state) { 3739 case TCP_SYN_SENT: 3740 sk->sk_err = ECONNREFUSED; 3741 break; 3742 case TCP_CLOSE_WAIT: 3743 sk->sk_err = EPIPE; 3744 break; 3745 case TCP_CLOSE: 3746 return; 3747 default: 3748 sk->sk_err = ECONNRESET; 3749 } 3750 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3751 smp_wmb(); 3752 3753 if (!sock_flag(sk, SOCK_DEAD)) 3754 sk->sk_error_report(sk); 3755 3756 tcp_done(sk); 3757 } 3758 3759 /* 3760 * Process the FIN bit. This now behaves as it is supposed to work 3761 * and the FIN takes effect when it is validly part of sequence 3762 * space. Not before when we get holes. 3763 * 3764 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3765 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3766 * TIME-WAIT) 3767 * 3768 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3769 * close and we go into CLOSING (and later onto TIME-WAIT) 3770 * 3771 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3772 */ 3773 static void tcp_fin(struct sock *sk) 3774 { 3775 struct tcp_sock *tp = tcp_sk(sk); 3776 const struct dst_entry *dst; 3777 3778 inet_csk_schedule_ack(sk); 3779 3780 sk->sk_shutdown |= RCV_SHUTDOWN; 3781 sock_set_flag(sk, SOCK_DONE); 3782 3783 switch (sk->sk_state) { 3784 case TCP_SYN_RECV: 3785 case TCP_ESTABLISHED: 3786 /* Move to CLOSE_WAIT */ 3787 tcp_set_state(sk, TCP_CLOSE_WAIT); 3788 dst = __sk_dst_get(sk); 3789 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3790 inet_csk(sk)->icsk_ack.pingpong = 1; 3791 break; 3792 3793 case TCP_CLOSE_WAIT: 3794 case TCP_CLOSING: 3795 /* Received a retransmission of the FIN, do 3796 * nothing. 3797 */ 3798 break; 3799 case TCP_LAST_ACK: 3800 /* RFC793: Remain in the LAST-ACK state. */ 3801 break; 3802 3803 case TCP_FIN_WAIT1: 3804 /* This case occurs when a simultaneous close 3805 * happens, we must ack the received FIN and 3806 * enter the CLOSING state. 3807 */ 3808 tcp_send_ack(sk); 3809 tcp_set_state(sk, TCP_CLOSING); 3810 break; 3811 case TCP_FIN_WAIT2: 3812 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3813 tcp_send_ack(sk); 3814 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3815 break; 3816 default: 3817 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3818 * cases we should never reach this piece of code. 3819 */ 3820 pr_err("%s: Impossible, sk->sk_state=%d\n", 3821 __func__, sk->sk_state); 3822 break; 3823 } 3824 3825 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3826 * Probably, we should reset in this case. For now drop them. 3827 */ 3828 __skb_queue_purge(&tp->out_of_order_queue); 3829 if (tcp_is_sack(tp)) 3830 tcp_sack_reset(&tp->rx_opt); 3831 sk_mem_reclaim(sk); 3832 3833 if (!sock_flag(sk, SOCK_DEAD)) { 3834 sk->sk_state_change(sk); 3835 3836 /* Do not send POLL_HUP for half duplex close. */ 3837 if (sk->sk_shutdown == SHUTDOWN_MASK || 3838 sk->sk_state == TCP_CLOSE) 3839 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3840 else 3841 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3842 } 3843 } 3844 3845 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3846 u32 end_seq) 3847 { 3848 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3849 if (before(seq, sp->start_seq)) 3850 sp->start_seq = seq; 3851 if (after(end_seq, sp->end_seq)) 3852 sp->end_seq = end_seq; 3853 return true; 3854 } 3855 return false; 3856 } 3857 3858 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3859 { 3860 struct tcp_sock *tp = tcp_sk(sk); 3861 3862 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3863 int mib_idx; 3864 3865 if (before(seq, tp->rcv_nxt)) 3866 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3867 else 3868 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3869 3870 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3871 3872 tp->rx_opt.dsack = 1; 3873 tp->duplicate_sack[0].start_seq = seq; 3874 tp->duplicate_sack[0].end_seq = end_seq; 3875 } 3876 } 3877 3878 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3879 { 3880 struct tcp_sock *tp = tcp_sk(sk); 3881 3882 if (!tp->rx_opt.dsack) 3883 tcp_dsack_set(sk, seq, end_seq); 3884 else 3885 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3886 } 3887 3888 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3889 { 3890 struct tcp_sock *tp = tcp_sk(sk); 3891 3892 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3893 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3894 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3895 tcp_enter_quickack_mode(sk); 3896 3897 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3898 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3899 3900 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3901 end_seq = tp->rcv_nxt; 3902 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3903 } 3904 } 3905 3906 tcp_send_ack(sk); 3907 } 3908 3909 /* These routines update the SACK block as out-of-order packets arrive or 3910 * in-order packets close up the sequence space. 3911 */ 3912 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3913 { 3914 int this_sack; 3915 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3916 struct tcp_sack_block *swalk = sp + 1; 3917 3918 /* See if the recent change to the first SACK eats into 3919 * or hits the sequence space of other SACK blocks, if so coalesce. 3920 */ 3921 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3922 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3923 int i; 3924 3925 /* Zap SWALK, by moving every further SACK up by one slot. 3926 * Decrease num_sacks. 3927 */ 3928 tp->rx_opt.num_sacks--; 3929 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3930 sp[i] = sp[i + 1]; 3931 continue; 3932 } 3933 this_sack++, swalk++; 3934 } 3935 } 3936 3937 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3938 { 3939 struct tcp_sock *tp = tcp_sk(sk); 3940 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3941 int cur_sacks = tp->rx_opt.num_sacks; 3942 int this_sack; 3943 3944 if (!cur_sacks) 3945 goto new_sack; 3946 3947 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3948 if (tcp_sack_extend(sp, seq, end_seq)) { 3949 /* Rotate this_sack to the first one. */ 3950 for (; this_sack > 0; this_sack--, sp--) 3951 swap(*sp, *(sp - 1)); 3952 if (cur_sacks > 1) 3953 tcp_sack_maybe_coalesce(tp); 3954 return; 3955 } 3956 } 3957 3958 /* Could not find an adjacent existing SACK, build a new one, 3959 * put it at the front, and shift everyone else down. We 3960 * always know there is at least one SACK present already here. 3961 * 3962 * If the sack array is full, forget about the last one. 3963 */ 3964 if (this_sack >= TCP_NUM_SACKS) { 3965 this_sack--; 3966 tp->rx_opt.num_sacks--; 3967 sp--; 3968 } 3969 for (; this_sack > 0; this_sack--, sp--) 3970 *sp = *(sp - 1); 3971 3972 new_sack: 3973 /* Build the new head SACK, and we're done. */ 3974 sp->start_seq = seq; 3975 sp->end_seq = end_seq; 3976 tp->rx_opt.num_sacks++; 3977 } 3978 3979 /* RCV.NXT advances, some SACKs should be eaten. */ 3980 3981 static void tcp_sack_remove(struct tcp_sock *tp) 3982 { 3983 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3984 int num_sacks = tp->rx_opt.num_sacks; 3985 int this_sack; 3986 3987 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3988 if (skb_queue_empty(&tp->out_of_order_queue)) { 3989 tp->rx_opt.num_sacks = 0; 3990 return; 3991 } 3992 3993 for (this_sack = 0; this_sack < num_sacks;) { 3994 /* Check if the start of the sack is covered by RCV.NXT. */ 3995 if (!before(tp->rcv_nxt, sp->start_seq)) { 3996 int i; 3997 3998 /* RCV.NXT must cover all the block! */ 3999 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4000 4001 /* Zap this SACK, by moving forward any other SACKS. */ 4002 for (i=this_sack+1; i < num_sacks; i++) 4003 tp->selective_acks[i-1] = tp->selective_acks[i]; 4004 num_sacks--; 4005 continue; 4006 } 4007 this_sack++; 4008 sp++; 4009 } 4010 tp->rx_opt.num_sacks = num_sacks; 4011 } 4012 4013 /* This one checks to see if we can put data from the 4014 * out_of_order queue into the receive_queue. 4015 */ 4016 static void tcp_ofo_queue(struct sock *sk) 4017 { 4018 struct tcp_sock *tp = tcp_sk(sk); 4019 __u32 dsack_high = tp->rcv_nxt; 4020 struct sk_buff *skb; 4021 4022 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4023 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4024 break; 4025 4026 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4027 __u32 dsack = dsack_high; 4028 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4029 dsack_high = TCP_SKB_CB(skb)->end_seq; 4030 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4031 } 4032 4033 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4034 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4035 __skb_unlink(skb, &tp->out_of_order_queue); 4036 __kfree_skb(skb); 4037 continue; 4038 } 4039 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4040 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4041 TCP_SKB_CB(skb)->end_seq); 4042 4043 __skb_unlink(skb, &tp->out_of_order_queue); 4044 __skb_queue_tail(&sk->sk_receive_queue, skb); 4045 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4046 if (tcp_hdr(skb)->fin) 4047 tcp_fin(sk); 4048 } 4049 } 4050 4051 static bool tcp_prune_ofo_queue(struct sock *sk); 4052 static int tcp_prune_queue(struct sock *sk); 4053 4054 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4055 unsigned int size) 4056 { 4057 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4058 !sk_rmem_schedule(sk, skb, size)) { 4059 4060 if (tcp_prune_queue(sk) < 0) 4061 return -1; 4062 4063 if (!sk_rmem_schedule(sk, skb, size)) { 4064 if (!tcp_prune_ofo_queue(sk)) 4065 return -1; 4066 4067 if (!sk_rmem_schedule(sk, skb, size)) 4068 return -1; 4069 } 4070 } 4071 return 0; 4072 } 4073 4074 /** 4075 * tcp_try_coalesce - try to merge skb to prior one 4076 * @sk: socket 4077 * @to: prior buffer 4078 * @from: buffer to add in queue 4079 * @fragstolen: pointer to boolean 4080 * 4081 * Before queueing skb @from after @to, try to merge them 4082 * to reduce overall memory use and queue lengths, if cost is small. 4083 * Packets in ofo or receive queues can stay a long time. 4084 * Better try to coalesce them right now to avoid future collapses. 4085 * Returns true if caller should free @from instead of queueing it 4086 */ 4087 static bool tcp_try_coalesce(struct sock *sk, 4088 struct sk_buff *to, 4089 struct sk_buff *from, 4090 bool *fragstolen) 4091 { 4092 int delta; 4093 4094 *fragstolen = false; 4095 4096 if (tcp_hdr(from)->fin) 4097 return false; 4098 4099 /* Its possible this segment overlaps with prior segment in queue */ 4100 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4101 return false; 4102 4103 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4104 return false; 4105 4106 atomic_add(delta, &sk->sk_rmem_alloc); 4107 sk_mem_charge(sk, delta); 4108 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4109 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4110 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4111 return true; 4112 } 4113 4114 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4115 { 4116 struct tcp_sock *tp = tcp_sk(sk); 4117 struct sk_buff *skb1; 4118 u32 seq, end_seq; 4119 4120 TCP_ECN_check_ce(tp, skb); 4121 4122 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4123 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4124 __kfree_skb(skb); 4125 return; 4126 } 4127 4128 /* Disable header prediction. */ 4129 tp->pred_flags = 0; 4130 inet_csk_schedule_ack(sk); 4131 4132 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4133 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4134 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4135 4136 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4137 if (!skb1) { 4138 /* Initial out of order segment, build 1 SACK. */ 4139 if (tcp_is_sack(tp)) { 4140 tp->rx_opt.num_sacks = 1; 4141 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4142 tp->selective_acks[0].end_seq = 4143 TCP_SKB_CB(skb)->end_seq; 4144 } 4145 __skb_queue_head(&tp->out_of_order_queue, skb); 4146 goto end; 4147 } 4148 4149 seq = TCP_SKB_CB(skb)->seq; 4150 end_seq = TCP_SKB_CB(skb)->end_seq; 4151 4152 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4153 bool fragstolen; 4154 4155 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4156 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4157 } else { 4158 tcp_grow_window(sk, skb); 4159 kfree_skb_partial(skb, fragstolen); 4160 skb = NULL; 4161 } 4162 4163 if (!tp->rx_opt.num_sacks || 4164 tp->selective_acks[0].end_seq != seq) 4165 goto add_sack; 4166 4167 /* Common case: data arrive in order after hole. */ 4168 tp->selective_acks[0].end_seq = end_seq; 4169 goto end; 4170 } 4171 4172 /* Find place to insert this segment. */ 4173 while (1) { 4174 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4175 break; 4176 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4177 skb1 = NULL; 4178 break; 4179 } 4180 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4181 } 4182 4183 /* Do skb overlap to previous one? */ 4184 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4185 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4186 /* All the bits are present. Drop. */ 4187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4188 __kfree_skb(skb); 4189 skb = NULL; 4190 tcp_dsack_set(sk, seq, end_seq); 4191 goto add_sack; 4192 } 4193 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4194 /* Partial overlap. */ 4195 tcp_dsack_set(sk, seq, 4196 TCP_SKB_CB(skb1)->end_seq); 4197 } else { 4198 if (skb_queue_is_first(&tp->out_of_order_queue, 4199 skb1)) 4200 skb1 = NULL; 4201 else 4202 skb1 = skb_queue_prev( 4203 &tp->out_of_order_queue, 4204 skb1); 4205 } 4206 } 4207 if (!skb1) 4208 __skb_queue_head(&tp->out_of_order_queue, skb); 4209 else 4210 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4211 4212 /* And clean segments covered by new one as whole. */ 4213 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4214 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4215 4216 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4217 break; 4218 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4219 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4220 end_seq); 4221 break; 4222 } 4223 __skb_unlink(skb1, &tp->out_of_order_queue); 4224 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4225 TCP_SKB_CB(skb1)->end_seq); 4226 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4227 __kfree_skb(skb1); 4228 } 4229 4230 add_sack: 4231 if (tcp_is_sack(tp)) 4232 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4233 end: 4234 if (skb) { 4235 tcp_grow_window(sk, skb); 4236 skb_set_owner_r(skb, sk); 4237 } 4238 } 4239 4240 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4241 bool *fragstolen) 4242 { 4243 int eaten; 4244 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4245 4246 __skb_pull(skb, hdrlen); 4247 eaten = (tail && 4248 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4249 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4250 if (!eaten) { 4251 __skb_queue_tail(&sk->sk_receive_queue, skb); 4252 skb_set_owner_r(skb, sk); 4253 } 4254 return eaten; 4255 } 4256 4257 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4258 { 4259 struct sk_buff *skb = NULL; 4260 struct tcphdr *th; 4261 bool fragstolen; 4262 4263 if (size == 0) 4264 return 0; 4265 4266 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4267 if (!skb) 4268 goto err; 4269 4270 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4271 goto err_free; 4272 4273 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4274 skb_reset_transport_header(skb); 4275 memset(th, 0, sizeof(*th)); 4276 4277 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4278 goto err_free; 4279 4280 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4281 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4282 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4283 4284 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4285 WARN_ON_ONCE(fragstolen); /* should not happen */ 4286 __kfree_skb(skb); 4287 } 4288 return size; 4289 4290 err_free: 4291 kfree_skb(skb); 4292 err: 4293 return -ENOMEM; 4294 } 4295 4296 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4297 { 4298 const struct tcphdr *th = tcp_hdr(skb); 4299 struct tcp_sock *tp = tcp_sk(sk); 4300 int eaten = -1; 4301 bool fragstolen = false; 4302 4303 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4304 goto drop; 4305 4306 skb_dst_drop(skb); 4307 __skb_pull(skb, th->doff * 4); 4308 4309 TCP_ECN_accept_cwr(tp, skb); 4310 4311 tp->rx_opt.dsack = 0; 4312 4313 /* Queue data for delivery to the user. 4314 * Packets in sequence go to the receive queue. 4315 * Out of sequence packets to the out_of_order_queue. 4316 */ 4317 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4318 if (tcp_receive_window(tp) == 0) 4319 goto out_of_window; 4320 4321 /* Ok. In sequence. In window. */ 4322 if (tp->ucopy.task == current && 4323 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4324 sock_owned_by_user(sk) && !tp->urg_data) { 4325 int chunk = min_t(unsigned int, skb->len, 4326 tp->ucopy.len); 4327 4328 __set_current_state(TASK_RUNNING); 4329 4330 local_bh_enable(); 4331 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4332 tp->ucopy.len -= chunk; 4333 tp->copied_seq += chunk; 4334 eaten = (chunk == skb->len); 4335 tcp_rcv_space_adjust(sk); 4336 } 4337 local_bh_disable(); 4338 } 4339 4340 if (eaten <= 0) { 4341 queue_and_out: 4342 if (eaten < 0 && 4343 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4344 goto drop; 4345 4346 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4347 } 4348 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4349 if (skb->len) 4350 tcp_event_data_recv(sk, skb); 4351 if (th->fin) 4352 tcp_fin(sk); 4353 4354 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4355 tcp_ofo_queue(sk); 4356 4357 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4358 * gap in queue is filled. 4359 */ 4360 if (skb_queue_empty(&tp->out_of_order_queue)) 4361 inet_csk(sk)->icsk_ack.pingpong = 0; 4362 } 4363 4364 if (tp->rx_opt.num_sacks) 4365 tcp_sack_remove(tp); 4366 4367 tcp_fast_path_check(sk); 4368 4369 if (eaten > 0) 4370 kfree_skb_partial(skb, fragstolen); 4371 if (!sock_flag(sk, SOCK_DEAD)) 4372 sk->sk_data_ready(sk, 0); 4373 return; 4374 } 4375 4376 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4377 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4378 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4379 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4380 4381 out_of_window: 4382 tcp_enter_quickack_mode(sk); 4383 inet_csk_schedule_ack(sk); 4384 drop: 4385 __kfree_skb(skb); 4386 return; 4387 } 4388 4389 /* Out of window. F.e. zero window probe. */ 4390 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4391 goto out_of_window; 4392 4393 tcp_enter_quickack_mode(sk); 4394 4395 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4396 /* Partial packet, seq < rcv_next < end_seq */ 4397 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4398 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4399 TCP_SKB_CB(skb)->end_seq); 4400 4401 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4402 4403 /* If window is closed, drop tail of packet. But after 4404 * remembering D-SACK for its head made in previous line. 4405 */ 4406 if (!tcp_receive_window(tp)) 4407 goto out_of_window; 4408 goto queue_and_out; 4409 } 4410 4411 tcp_data_queue_ofo(sk, skb); 4412 } 4413 4414 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4415 struct sk_buff_head *list) 4416 { 4417 struct sk_buff *next = NULL; 4418 4419 if (!skb_queue_is_last(list, skb)) 4420 next = skb_queue_next(list, skb); 4421 4422 __skb_unlink(skb, list); 4423 __kfree_skb(skb); 4424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4425 4426 return next; 4427 } 4428 4429 /* Collapse contiguous sequence of skbs head..tail with 4430 * sequence numbers start..end. 4431 * 4432 * If tail is NULL, this means until the end of the list. 4433 * 4434 * Segments with FIN/SYN are not collapsed (only because this 4435 * simplifies code) 4436 */ 4437 static void 4438 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4439 struct sk_buff *head, struct sk_buff *tail, 4440 u32 start, u32 end) 4441 { 4442 struct sk_buff *skb, *n; 4443 bool end_of_skbs; 4444 4445 /* First, check that queue is collapsible and find 4446 * the point where collapsing can be useful. */ 4447 skb = head; 4448 restart: 4449 end_of_skbs = true; 4450 skb_queue_walk_from_safe(list, skb, n) { 4451 if (skb == tail) 4452 break; 4453 /* No new bits? It is possible on ofo queue. */ 4454 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4455 skb = tcp_collapse_one(sk, skb, list); 4456 if (!skb) 4457 break; 4458 goto restart; 4459 } 4460 4461 /* The first skb to collapse is: 4462 * - not SYN/FIN and 4463 * - bloated or contains data before "start" or 4464 * overlaps to the next one. 4465 */ 4466 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4467 (tcp_win_from_space(skb->truesize) > skb->len || 4468 before(TCP_SKB_CB(skb)->seq, start))) { 4469 end_of_skbs = false; 4470 break; 4471 } 4472 4473 if (!skb_queue_is_last(list, skb)) { 4474 struct sk_buff *next = skb_queue_next(list, skb); 4475 if (next != tail && 4476 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4477 end_of_skbs = false; 4478 break; 4479 } 4480 } 4481 4482 /* Decided to skip this, advance start seq. */ 4483 start = TCP_SKB_CB(skb)->end_seq; 4484 } 4485 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4486 return; 4487 4488 while (before(start, end)) { 4489 struct sk_buff *nskb; 4490 unsigned int header = skb_headroom(skb); 4491 int copy = SKB_MAX_ORDER(header, 0); 4492 4493 /* Too big header? This can happen with IPv6. */ 4494 if (copy < 0) 4495 return; 4496 if (end - start < copy) 4497 copy = end - start; 4498 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4499 if (!nskb) 4500 return; 4501 4502 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4503 skb_set_network_header(nskb, (skb_network_header(skb) - 4504 skb->head)); 4505 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4506 skb->head)); 4507 skb_reserve(nskb, header); 4508 memcpy(nskb->head, skb->head, header); 4509 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4510 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4511 __skb_queue_before(list, skb, nskb); 4512 skb_set_owner_r(nskb, sk); 4513 4514 /* Copy data, releasing collapsed skbs. */ 4515 while (copy > 0) { 4516 int offset = start - TCP_SKB_CB(skb)->seq; 4517 int size = TCP_SKB_CB(skb)->end_seq - start; 4518 4519 BUG_ON(offset < 0); 4520 if (size > 0) { 4521 size = min(copy, size); 4522 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4523 BUG(); 4524 TCP_SKB_CB(nskb)->end_seq += size; 4525 copy -= size; 4526 start += size; 4527 } 4528 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4529 skb = tcp_collapse_one(sk, skb, list); 4530 if (!skb || 4531 skb == tail || 4532 tcp_hdr(skb)->syn || 4533 tcp_hdr(skb)->fin) 4534 return; 4535 } 4536 } 4537 } 4538 } 4539 4540 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4541 * and tcp_collapse() them until all the queue is collapsed. 4542 */ 4543 static void tcp_collapse_ofo_queue(struct sock *sk) 4544 { 4545 struct tcp_sock *tp = tcp_sk(sk); 4546 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4547 struct sk_buff *head; 4548 u32 start, end; 4549 4550 if (skb == NULL) 4551 return; 4552 4553 start = TCP_SKB_CB(skb)->seq; 4554 end = TCP_SKB_CB(skb)->end_seq; 4555 head = skb; 4556 4557 for (;;) { 4558 struct sk_buff *next = NULL; 4559 4560 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4561 next = skb_queue_next(&tp->out_of_order_queue, skb); 4562 skb = next; 4563 4564 /* Segment is terminated when we see gap or when 4565 * we are at the end of all the queue. */ 4566 if (!skb || 4567 after(TCP_SKB_CB(skb)->seq, end) || 4568 before(TCP_SKB_CB(skb)->end_seq, start)) { 4569 tcp_collapse(sk, &tp->out_of_order_queue, 4570 head, skb, start, end); 4571 head = skb; 4572 if (!skb) 4573 break; 4574 /* Start new segment */ 4575 start = TCP_SKB_CB(skb)->seq; 4576 end = TCP_SKB_CB(skb)->end_seq; 4577 } else { 4578 if (before(TCP_SKB_CB(skb)->seq, start)) 4579 start = TCP_SKB_CB(skb)->seq; 4580 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4581 end = TCP_SKB_CB(skb)->end_seq; 4582 } 4583 } 4584 } 4585 4586 /* 4587 * Purge the out-of-order queue. 4588 * Return true if queue was pruned. 4589 */ 4590 static bool tcp_prune_ofo_queue(struct sock *sk) 4591 { 4592 struct tcp_sock *tp = tcp_sk(sk); 4593 bool res = false; 4594 4595 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4597 __skb_queue_purge(&tp->out_of_order_queue); 4598 4599 /* Reset SACK state. A conforming SACK implementation will 4600 * do the same at a timeout based retransmit. When a connection 4601 * is in a sad state like this, we care only about integrity 4602 * of the connection not performance. 4603 */ 4604 if (tp->rx_opt.sack_ok) 4605 tcp_sack_reset(&tp->rx_opt); 4606 sk_mem_reclaim(sk); 4607 res = true; 4608 } 4609 return res; 4610 } 4611 4612 /* Reduce allocated memory if we can, trying to get 4613 * the socket within its memory limits again. 4614 * 4615 * Return less than zero if we should start dropping frames 4616 * until the socket owning process reads some of the data 4617 * to stabilize the situation. 4618 */ 4619 static int tcp_prune_queue(struct sock *sk) 4620 { 4621 struct tcp_sock *tp = tcp_sk(sk); 4622 4623 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4624 4625 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4626 4627 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4628 tcp_clamp_window(sk); 4629 else if (sk_under_memory_pressure(sk)) 4630 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4631 4632 tcp_collapse_ofo_queue(sk); 4633 if (!skb_queue_empty(&sk->sk_receive_queue)) 4634 tcp_collapse(sk, &sk->sk_receive_queue, 4635 skb_peek(&sk->sk_receive_queue), 4636 NULL, 4637 tp->copied_seq, tp->rcv_nxt); 4638 sk_mem_reclaim(sk); 4639 4640 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4641 return 0; 4642 4643 /* Collapsing did not help, destructive actions follow. 4644 * This must not ever occur. */ 4645 4646 tcp_prune_ofo_queue(sk); 4647 4648 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4649 return 0; 4650 4651 /* If we are really being abused, tell the caller to silently 4652 * drop receive data on the floor. It will get retransmitted 4653 * and hopefully then we'll have sufficient space. 4654 */ 4655 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4656 4657 /* Massive buffer overcommit. */ 4658 tp->pred_flags = 0; 4659 return -1; 4660 } 4661 4662 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4663 * As additional protections, we do not touch cwnd in retransmission phases, 4664 * and if application hit its sndbuf limit recently. 4665 */ 4666 void tcp_cwnd_application_limited(struct sock *sk) 4667 { 4668 struct tcp_sock *tp = tcp_sk(sk); 4669 4670 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4671 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4672 /* Limited by application or receiver window. */ 4673 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4674 u32 win_used = max(tp->snd_cwnd_used, init_win); 4675 if (win_used < tp->snd_cwnd) { 4676 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4677 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4678 } 4679 tp->snd_cwnd_used = 0; 4680 } 4681 tp->snd_cwnd_stamp = tcp_time_stamp; 4682 } 4683 4684 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4685 { 4686 const struct tcp_sock *tp = tcp_sk(sk); 4687 4688 /* If the user specified a specific send buffer setting, do 4689 * not modify it. 4690 */ 4691 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4692 return false; 4693 4694 /* If we are under global TCP memory pressure, do not expand. */ 4695 if (sk_under_memory_pressure(sk)) 4696 return false; 4697 4698 /* If we are under soft global TCP memory pressure, do not expand. */ 4699 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4700 return false; 4701 4702 /* If we filled the congestion window, do not expand. */ 4703 if (tp->packets_out >= tp->snd_cwnd) 4704 return false; 4705 4706 return true; 4707 } 4708 4709 /* When incoming ACK allowed to free some skb from write_queue, 4710 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4711 * on the exit from tcp input handler. 4712 * 4713 * PROBLEM: sndbuf expansion does not work well with largesend. 4714 */ 4715 static void tcp_new_space(struct sock *sk) 4716 { 4717 struct tcp_sock *tp = tcp_sk(sk); 4718 4719 if (tcp_should_expand_sndbuf(sk)) { 4720 int sndmem = SKB_TRUESIZE(max_t(u32, 4721 tp->rx_opt.mss_clamp, 4722 tp->mss_cache) + 4723 MAX_TCP_HEADER); 4724 int demanded = max_t(unsigned int, tp->snd_cwnd, 4725 tp->reordering + 1); 4726 sndmem *= 2 * demanded; 4727 if (sndmem > sk->sk_sndbuf) 4728 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4729 tp->snd_cwnd_stamp = tcp_time_stamp; 4730 } 4731 4732 sk->sk_write_space(sk); 4733 } 4734 4735 static void tcp_check_space(struct sock *sk) 4736 { 4737 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4738 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4739 if (sk->sk_socket && 4740 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4741 tcp_new_space(sk); 4742 } 4743 } 4744 4745 static inline void tcp_data_snd_check(struct sock *sk) 4746 { 4747 tcp_push_pending_frames(sk); 4748 tcp_check_space(sk); 4749 } 4750 4751 /* 4752 * Check if sending an ack is needed. 4753 */ 4754 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4755 { 4756 struct tcp_sock *tp = tcp_sk(sk); 4757 4758 /* More than one full frame received... */ 4759 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4760 /* ... and right edge of window advances far enough. 4761 * (tcp_recvmsg() will send ACK otherwise). Or... 4762 */ 4763 __tcp_select_window(sk) >= tp->rcv_wnd) || 4764 /* We ACK each frame or... */ 4765 tcp_in_quickack_mode(sk) || 4766 /* We have out of order data. */ 4767 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4768 /* Then ack it now */ 4769 tcp_send_ack(sk); 4770 } else { 4771 /* Else, send delayed ack. */ 4772 tcp_send_delayed_ack(sk); 4773 } 4774 } 4775 4776 static inline void tcp_ack_snd_check(struct sock *sk) 4777 { 4778 if (!inet_csk_ack_scheduled(sk)) { 4779 /* We sent a data segment already. */ 4780 return; 4781 } 4782 __tcp_ack_snd_check(sk, 1); 4783 } 4784 4785 /* 4786 * This routine is only called when we have urgent data 4787 * signaled. Its the 'slow' part of tcp_urg. It could be 4788 * moved inline now as tcp_urg is only called from one 4789 * place. We handle URGent data wrong. We have to - as 4790 * BSD still doesn't use the correction from RFC961. 4791 * For 1003.1g we should support a new option TCP_STDURG to permit 4792 * either form (or just set the sysctl tcp_stdurg). 4793 */ 4794 4795 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4796 { 4797 struct tcp_sock *tp = tcp_sk(sk); 4798 u32 ptr = ntohs(th->urg_ptr); 4799 4800 if (ptr && !sysctl_tcp_stdurg) 4801 ptr--; 4802 ptr += ntohl(th->seq); 4803 4804 /* Ignore urgent data that we've already seen and read. */ 4805 if (after(tp->copied_seq, ptr)) 4806 return; 4807 4808 /* Do not replay urg ptr. 4809 * 4810 * NOTE: interesting situation not covered by specs. 4811 * Misbehaving sender may send urg ptr, pointing to segment, 4812 * which we already have in ofo queue. We are not able to fetch 4813 * such data and will stay in TCP_URG_NOTYET until will be eaten 4814 * by recvmsg(). Seems, we are not obliged to handle such wicked 4815 * situations. But it is worth to think about possibility of some 4816 * DoSes using some hypothetical application level deadlock. 4817 */ 4818 if (before(ptr, tp->rcv_nxt)) 4819 return; 4820 4821 /* Do we already have a newer (or duplicate) urgent pointer? */ 4822 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4823 return; 4824 4825 /* Tell the world about our new urgent pointer. */ 4826 sk_send_sigurg(sk); 4827 4828 /* We may be adding urgent data when the last byte read was 4829 * urgent. To do this requires some care. We cannot just ignore 4830 * tp->copied_seq since we would read the last urgent byte again 4831 * as data, nor can we alter copied_seq until this data arrives 4832 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4833 * 4834 * NOTE. Double Dutch. Rendering to plain English: author of comment 4835 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4836 * and expect that both A and B disappear from stream. This is _wrong_. 4837 * Though this happens in BSD with high probability, this is occasional. 4838 * Any application relying on this is buggy. Note also, that fix "works" 4839 * only in this artificial test. Insert some normal data between A and B and we will 4840 * decline of BSD again. Verdict: it is better to remove to trap 4841 * buggy users. 4842 */ 4843 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4844 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4845 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4846 tp->copied_seq++; 4847 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4848 __skb_unlink(skb, &sk->sk_receive_queue); 4849 __kfree_skb(skb); 4850 } 4851 } 4852 4853 tp->urg_data = TCP_URG_NOTYET; 4854 tp->urg_seq = ptr; 4855 4856 /* Disable header prediction. */ 4857 tp->pred_flags = 0; 4858 } 4859 4860 /* This is the 'fast' part of urgent handling. */ 4861 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4862 { 4863 struct tcp_sock *tp = tcp_sk(sk); 4864 4865 /* Check if we get a new urgent pointer - normally not. */ 4866 if (th->urg) 4867 tcp_check_urg(sk, th); 4868 4869 /* Do we wait for any urgent data? - normally not... */ 4870 if (tp->urg_data == TCP_URG_NOTYET) { 4871 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4872 th->syn; 4873 4874 /* Is the urgent pointer pointing into this packet? */ 4875 if (ptr < skb->len) { 4876 u8 tmp; 4877 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4878 BUG(); 4879 tp->urg_data = TCP_URG_VALID | tmp; 4880 if (!sock_flag(sk, SOCK_DEAD)) 4881 sk->sk_data_ready(sk, 0); 4882 } 4883 } 4884 } 4885 4886 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4887 { 4888 struct tcp_sock *tp = tcp_sk(sk); 4889 int chunk = skb->len - hlen; 4890 int err; 4891 4892 local_bh_enable(); 4893 if (skb_csum_unnecessary(skb)) 4894 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4895 else 4896 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4897 tp->ucopy.iov); 4898 4899 if (!err) { 4900 tp->ucopy.len -= chunk; 4901 tp->copied_seq += chunk; 4902 tcp_rcv_space_adjust(sk); 4903 } 4904 4905 local_bh_disable(); 4906 return err; 4907 } 4908 4909 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4910 struct sk_buff *skb) 4911 { 4912 __sum16 result; 4913 4914 if (sock_owned_by_user(sk)) { 4915 local_bh_enable(); 4916 result = __tcp_checksum_complete(skb); 4917 local_bh_disable(); 4918 } else { 4919 result = __tcp_checksum_complete(skb); 4920 } 4921 return result; 4922 } 4923 4924 static inline bool tcp_checksum_complete_user(struct sock *sk, 4925 struct sk_buff *skb) 4926 { 4927 return !skb_csum_unnecessary(skb) && 4928 __tcp_checksum_complete_user(sk, skb); 4929 } 4930 4931 #ifdef CONFIG_NET_DMA 4932 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4933 int hlen) 4934 { 4935 struct tcp_sock *tp = tcp_sk(sk); 4936 int chunk = skb->len - hlen; 4937 int dma_cookie; 4938 bool copied_early = false; 4939 4940 if (tp->ucopy.wakeup) 4941 return false; 4942 4943 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4944 tp->ucopy.dma_chan = net_dma_find_channel(); 4945 4946 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4947 4948 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4949 skb, hlen, 4950 tp->ucopy.iov, chunk, 4951 tp->ucopy.pinned_list); 4952 4953 if (dma_cookie < 0) 4954 goto out; 4955 4956 tp->ucopy.dma_cookie = dma_cookie; 4957 copied_early = true; 4958 4959 tp->ucopy.len -= chunk; 4960 tp->copied_seq += chunk; 4961 tcp_rcv_space_adjust(sk); 4962 4963 if ((tp->ucopy.len == 0) || 4964 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4965 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4966 tp->ucopy.wakeup = 1; 4967 sk->sk_data_ready(sk, 0); 4968 } 4969 } else if (chunk > 0) { 4970 tp->ucopy.wakeup = 1; 4971 sk->sk_data_ready(sk, 0); 4972 } 4973 out: 4974 return copied_early; 4975 } 4976 #endif /* CONFIG_NET_DMA */ 4977 4978 /* Does PAWS and seqno based validation of an incoming segment, flags will 4979 * play significant role here. 4980 */ 4981 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4982 const struct tcphdr *th, int syn_inerr) 4983 { 4984 struct tcp_sock *tp = tcp_sk(sk); 4985 4986 /* RFC1323: H1. Apply PAWS check first. */ 4987 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4988 tcp_paws_discard(sk, skb)) { 4989 if (!th->rst) { 4990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4991 tcp_send_dupack(sk, skb); 4992 goto discard; 4993 } 4994 /* Reset is accepted even if it did not pass PAWS. */ 4995 } 4996 4997 /* Step 1: check sequence number */ 4998 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4999 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5000 * (RST) segments are validated by checking their SEQ-fields." 5001 * And page 69: "If an incoming segment is not acceptable, 5002 * an acknowledgment should be sent in reply (unless the RST 5003 * bit is set, if so drop the segment and return)". 5004 */ 5005 if (!th->rst) { 5006 if (th->syn) 5007 goto syn_challenge; 5008 tcp_send_dupack(sk, skb); 5009 } 5010 goto discard; 5011 } 5012 5013 /* Step 2: check RST bit */ 5014 if (th->rst) { 5015 /* RFC 5961 3.2 : 5016 * If sequence number exactly matches RCV.NXT, then 5017 * RESET the connection 5018 * else 5019 * Send a challenge ACK 5020 */ 5021 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5022 tcp_reset(sk); 5023 else 5024 tcp_send_challenge_ack(sk); 5025 goto discard; 5026 } 5027 5028 /* step 3: check security and precedence [ignored] */ 5029 5030 /* step 4: Check for a SYN 5031 * RFC 5691 4.2 : Send a challenge ack 5032 */ 5033 if (th->syn) { 5034 syn_challenge: 5035 if (syn_inerr) 5036 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5038 tcp_send_challenge_ack(sk); 5039 goto discard; 5040 } 5041 5042 return true; 5043 5044 discard: 5045 __kfree_skb(skb); 5046 return false; 5047 } 5048 5049 /* 5050 * TCP receive function for the ESTABLISHED state. 5051 * 5052 * It is split into a fast path and a slow path. The fast path is 5053 * disabled when: 5054 * - A zero window was announced from us - zero window probing 5055 * is only handled properly in the slow path. 5056 * - Out of order segments arrived. 5057 * - Urgent data is expected. 5058 * - There is no buffer space left 5059 * - Unexpected TCP flags/window values/header lengths are received 5060 * (detected by checking the TCP header against pred_flags) 5061 * - Data is sent in both directions. Fast path only supports pure senders 5062 * or pure receivers (this means either the sequence number or the ack 5063 * value must stay constant) 5064 * - Unexpected TCP option. 5065 * 5066 * When these conditions are not satisfied it drops into a standard 5067 * receive procedure patterned after RFC793 to handle all cases. 5068 * The first three cases are guaranteed by proper pred_flags setting, 5069 * the rest is checked inline. Fast processing is turned on in 5070 * tcp_data_queue when everything is OK. 5071 */ 5072 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5073 const struct tcphdr *th, unsigned int len) 5074 { 5075 struct tcp_sock *tp = tcp_sk(sk); 5076 5077 if (unlikely(sk->sk_rx_dst == NULL)) 5078 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5079 /* 5080 * Header prediction. 5081 * The code loosely follows the one in the famous 5082 * "30 instruction TCP receive" Van Jacobson mail. 5083 * 5084 * Van's trick is to deposit buffers into socket queue 5085 * on a device interrupt, to call tcp_recv function 5086 * on the receive process context and checksum and copy 5087 * the buffer to user space. smart... 5088 * 5089 * Our current scheme is not silly either but we take the 5090 * extra cost of the net_bh soft interrupt processing... 5091 * We do checksum and copy also but from device to kernel. 5092 */ 5093 5094 tp->rx_opt.saw_tstamp = 0; 5095 5096 /* pred_flags is 0xS?10 << 16 + snd_wnd 5097 * if header_prediction is to be made 5098 * 'S' will always be tp->tcp_header_len >> 2 5099 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5100 * turn it off (when there are holes in the receive 5101 * space for instance) 5102 * PSH flag is ignored. 5103 */ 5104 5105 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5106 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5107 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5108 int tcp_header_len = tp->tcp_header_len; 5109 5110 /* Timestamp header prediction: tcp_header_len 5111 * is automatically equal to th->doff*4 due to pred_flags 5112 * match. 5113 */ 5114 5115 /* Check timestamp */ 5116 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5117 /* No? Slow path! */ 5118 if (!tcp_parse_aligned_timestamp(tp, th)) 5119 goto slow_path; 5120 5121 /* If PAWS failed, check it more carefully in slow path */ 5122 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5123 goto slow_path; 5124 5125 /* DO NOT update ts_recent here, if checksum fails 5126 * and timestamp was corrupted part, it will result 5127 * in a hung connection since we will drop all 5128 * future packets due to the PAWS test. 5129 */ 5130 } 5131 5132 if (len <= tcp_header_len) { 5133 /* Bulk data transfer: sender */ 5134 if (len == tcp_header_len) { 5135 /* Predicted packet is in window by definition. 5136 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5137 * Hence, check seq<=rcv_wup reduces to: 5138 */ 5139 if (tcp_header_len == 5140 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5141 tp->rcv_nxt == tp->rcv_wup) 5142 tcp_store_ts_recent(tp); 5143 5144 /* We know that such packets are checksummed 5145 * on entry. 5146 */ 5147 tcp_ack(sk, skb, 0); 5148 __kfree_skb(skb); 5149 tcp_data_snd_check(sk); 5150 return; 5151 } else { /* Header too small */ 5152 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5153 goto discard; 5154 } 5155 } else { 5156 int eaten = 0; 5157 int copied_early = 0; 5158 bool fragstolen = false; 5159 5160 if (tp->copied_seq == tp->rcv_nxt && 5161 len - tcp_header_len <= tp->ucopy.len) { 5162 #ifdef CONFIG_NET_DMA 5163 if (tp->ucopy.task == current && 5164 sock_owned_by_user(sk) && 5165 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5166 copied_early = 1; 5167 eaten = 1; 5168 } 5169 #endif 5170 if (tp->ucopy.task == current && 5171 sock_owned_by_user(sk) && !copied_early) { 5172 __set_current_state(TASK_RUNNING); 5173 5174 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5175 eaten = 1; 5176 } 5177 if (eaten) { 5178 /* Predicted packet is in window by definition. 5179 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5180 * Hence, check seq<=rcv_wup reduces to: 5181 */ 5182 if (tcp_header_len == 5183 (sizeof(struct tcphdr) + 5184 TCPOLEN_TSTAMP_ALIGNED) && 5185 tp->rcv_nxt == tp->rcv_wup) 5186 tcp_store_ts_recent(tp); 5187 5188 tcp_rcv_rtt_measure_ts(sk, skb); 5189 5190 __skb_pull(skb, tcp_header_len); 5191 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5193 } 5194 if (copied_early) 5195 tcp_cleanup_rbuf(sk, skb->len); 5196 } 5197 if (!eaten) { 5198 if (tcp_checksum_complete_user(sk, skb)) 5199 goto csum_error; 5200 5201 if ((int)skb->truesize > sk->sk_forward_alloc) 5202 goto step5; 5203 5204 /* Predicted packet is in window by definition. 5205 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5206 * Hence, check seq<=rcv_wup reduces to: 5207 */ 5208 if (tcp_header_len == 5209 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5210 tp->rcv_nxt == tp->rcv_wup) 5211 tcp_store_ts_recent(tp); 5212 5213 tcp_rcv_rtt_measure_ts(sk, skb); 5214 5215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5216 5217 /* Bulk data transfer: receiver */ 5218 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5219 &fragstolen); 5220 } 5221 5222 tcp_event_data_recv(sk, skb); 5223 5224 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5225 /* Well, only one small jumplet in fast path... */ 5226 tcp_ack(sk, skb, FLAG_DATA); 5227 tcp_data_snd_check(sk); 5228 if (!inet_csk_ack_scheduled(sk)) 5229 goto no_ack; 5230 } 5231 5232 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5233 __tcp_ack_snd_check(sk, 0); 5234 no_ack: 5235 #ifdef CONFIG_NET_DMA 5236 if (copied_early) 5237 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5238 else 5239 #endif 5240 if (eaten) 5241 kfree_skb_partial(skb, fragstolen); 5242 sk->sk_data_ready(sk, 0); 5243 return; 5244 } 5245 } 5246 5247 slow_path: 5248 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5249 goto csum_error; 5250 5251 if (!th->ack && !th->rst) 5252 goto discard; 5253 5254 /* 5255 * Standard slow path. 5256 */ 5257 5258 if (!tcp_validate_incoming(sk, skb, th, 1)) 5259 return; 5260 5261 step5: 5262 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5263 goto discard; 5264 5265 tcp_rcv_rtt_measure_ts(sk, skb); 5266 5267 /* Process urgent data. */ 5268 tcp_urg(sk, skb, th); 5269 5270 /* step 7: process the segment text */ 5271 tcp_data_queue(sk, skb); 5272 5273 tcp_data_snd_check(sk); 5274 tcp_ack_snd_check(sk); 5275 return; 5276 5277 csum_error: 5278 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5279 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5280 5281 discard: 5282 __kfree_skb(skb); 5283 } 5284 EXPORT_SYMBOL(tcp_rcv_established); 5285 5286 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5287 { 5288 struct tcp_sock *tp = tcp_sk(sk); 5289 struct inet_connection_sock *icsk = inet_csk(sk); 5290 5291 tcp_set_state(sk, TCP_ESTABLISHED); 5292 5293 if (skb != NULL) { 5294 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5295 security_inet_conn_established(sk, skb); 5296 } 5297 5298 /* Make sure socket is routed, for correct metrics. */ 5299 icsk->icsk_af_ops->rebuild_header(sk); 5300 5301 tcp_init_metrics(sk); 5302 5303 tcp_init_congestion_control(sk); 5304 5305 /* Prevent spurious tcp_cwnd_restart() on first data 5306 * packet. 5307 */ 5308 tp->lsndtime = tcp_time_stamp; 5309 5310 tcp_init_buffer_space(sk); 5311 5312 if (sock_flag(sk, SOCK_KEEPOPEN)) 5313 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5314 5315 if (!tp->rx_opt.snd_wscale) 5316 __tcp_fast_path_on(tp, tp->snd_wnd); 5317 else 5318 tp->pred_flags = 0; 5319 5320 if (!sock_flag(sk, SOCK_DEAD)) { 5321 sk->sk_state_change(sk); 5322 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5323 } 5324 } 5325 5326 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5327 struct tcp_fastopen_cookie *cookie) 5328 { 5329 struct tcp_sock *tp = tcp_sk(sk); 5330 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5331 u16 mss = tp->rx_opt.mss_clamp; 5332 bool syn_drop; 5333 5334 if (mss == tp->rx_opt.user_mss) { 5335 struct tcp_options_received opt; 5336 5337 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5338 tcp_clear_options(&opt); 5339 opt.user_mss = opt.mss_clamp = 0; 5340 tcp_parse_options(synack, &opt, 0, NULL); 5341 mss = opt.mss_clamp; 5342 } 5343 5344 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5345 cookie->len = -1; 5346 5347 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5348 * the remote receives only the retransmitted (regular) SYNs: either 5349 * the original SYN-data or the corresponding SYN-ACK is lost. 5350 */ 5351 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5352 5353 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5354 5355 if (data) { /* Retransmit unacked data in SYN */ 5356 tcp_for_write_queue_from(data, sk) { 5357 if (data == tcp_send_head(sk) || 5358 __tcp_retransmit_skb(sk, data)) 5359 break; 5360 } 5361 tcp_rearm_rto(sk); 5362 return true; 5363 } 5364 tp->syn_data_acked = tp->syn_data; 5365 return false; 5366 } 5367 5368 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5369 const struct tcphdr *th, unsigned int len) 5370 { 5371 struct inet_connection_sock *icsk = inet_csk(sk); 5372 struct tcp_sock *tp = tcp_sk(sk); 5373 struct tcp_fastopen_cookie foc = { .len = -1 }; 5374 int saved_clamp = tp->rx_opt.mss_clamp; 5375 5376 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5377 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5378 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5379 5380 if (th->ack) { 5381 /* rfc793: 5382 * "If the state is SYN-SENT then 5383 * first check the ACK bit 5384 * If the ACK bit is set 5385 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5386 * a reset (unless the RST bit is set, if so drop 5387 * the segment and return)" 5388 */ 5389 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5390 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5391 goto reset_and_undo; 5392 5393 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5394 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5395 tcp_time_stamp)) { 5396 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5397 goto reset_and_undo; 5398 } 5399 5400 /* Now ACK is acceptable. 5401 * 5402 * "If the RST bit is set 5403 * If the ACK was acceptable then signal the user "error: 5404 * connection reset", drop the segment, enter CLOSED state, 5405 * delete TCB, and return." 5406 */ 5407 5408 if (th->rst) { 5409 tcp_reset(sk); 5410 goto discard; 5411 } 5412 5413 /* rfc793: 5414 * "fifth, if neither of the SYN or RST bits is set then 5415 * drop the segment and return." 5416 * 5417 * See note below! 5418 * --ANK(990513) 5419 */ 5420 if (!th->syn) 5421 goto discard_and_undo; 5422 5423 /* rfc793: 5424 * "If the SYN bit is on ... 5425 * are acceptable then ... 5426 * (our SYN has been ACKed), change the connection 5427 * state to ESTABLISHED..." 5428 */ 5429 5430 TCP_ECN_rcv_synack(tp, th); 5431 5432 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5433 tcp_ack(sk, skb, FLAG_SLOWPATH); 5434 5435 /* Ok.. it's good. Set up sequence numbers and 5436 * move to established. 5437 */ 5438 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5439 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5440 5441 /* RFC1323: The window in SYN & SYN/ACK segments is 5442 * never scaled. 5443 */ 5444 tp->snd_wnd = ntohs(th->window); 5445 5446 if (!tp->rx_opt.wscale_ok) { 5447 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5448 tp->window_clamp = min(tp->window_clamp, 65535U); 5449 } 5450 5451 if (tp->rx_opt.saw_tstamp) { 5452 tp->rx_opt.tstamp_ok = 1; 5453 tp->tcp_header_len = 5454 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5455 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5456 tcp_store_ts_recent(tp); 5457 } else { 5458 tp->tcp_header_len = sizeof(struct tcphdr); 5459 } 5460 5461 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5462 tcp_enable_fack(tp); 5463 5464 tcp_mtup_init(sk); 5465 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5466 tcp_initialize_rcv_mss(sk); 5467 5468 /* Remember, tcp_poll() does not lock socket! 5469 * Change state from SYN-SENT only after copied_seq 5470 * is initialized. */ 5471 tp->copied_seq = tp->rcv_nxt; 5472 5473 smp_mb(); 5474 5475 tcp_finish_connect(sk, skb); 5476 5477 if ((tp->syn_fastopen || tp->syn_data) && 5478 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5479 return -1; 5480 5481 if (sk->sk_write_pending || 5482 icsk->icsk_accept_queue.rskq_defer_accept || 5483 icsk->icsk_ack.pingpong) { 5484 /* Save one ACK. Data will be ready after 5485 * several ticks, if write_pending is set. 5486 * 5487 * It may be deleted, but with this feature tcpdumps 5488 * look so _wonderfully_ clever, that I was not able 5489 * to stand against the temptation 8) --ANK 5490 */ 5491 inet_csk_schedule_ack(sk); 5492 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5493 tcp_enter_quickack_mode(sk); 5494 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5495 TCP_DELACK_MAX, TCP_RTO_MAX); 5496 5497 discard: 5498 __kfree_skb(skb); 5499 return 0; 5500 } else { 5501 tcp_send_ack(sk); 5502 } 5503 return -1; 5504 } 5505 5506 /* No ACK in the segment */ 5507 5508 if (th->rst) { 5509 /* rfc793: 5510 * "If the RST bit is set 5511 * 5512 * Otherwise (no ACK) drop the segment and return." 5513 */ 5514 5515 goto discard_and_undo; 5516 } 5517 5518 /* PAWS check. */ 5519 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5520 tcp_paws_reject(&tp->rx_opt, 0)) 5521 goto discard_and_undo; 5522 5523 if (th->syn) { 5524 /* We see SYN without ACK. It is attempt of 5525 * simultaneous connect with crossed SYNs. 5526 * Particularly, it can be connect to self. 5527 */ 5528 tcp_set_state(sk, TCP_SYN_RECV); 5529 5530 if (tp->rx_opt.saw_tstamp) { 5531 tp->rx_opt.tstamp_ok = 1; 5532 tcp_store_ts_recent(tp); 5533 tp->tcp_header_len = 5534 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5535 } else { 5536 tp->tcp_header_len = sizeof(struct tcphdr); 5537 } 5538 5539 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5540 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5541 5542 /* RFC1323: The window in SYN & SYN/ACK segments is 5543 * never scaled. 5544 */ 5545 tp->snd_wnd = ntohs(th->window); 5546 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5547 tp->max_window = tp->snd_wnd; 5548 5549 TCP_ECN_rcv_syn(tp, th); 5550 5551 tcp_mtup_init(sk); 5552 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5553 tcp_initialize_rcv_mss(sk); 5554 5555 tcp_send_synack(sk); 5556 #if 0 5557 /* Note, we could accept data and URG from this segment. 5558 * There are no obstacles to make this (except that we must 5559 * either change tcp_recvmsg() to prevent it from returning data 5560 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5561 * 5562 * However, if we ignore data in ACKless segments sometimes, 5563 * we have no reasons to accept it sometimes. 5564 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5565 * is not flawless. So, discard packet for sanity. 5566 * Uncomment this return to process the data. 5567 */ 5568 return -1; 5569 #else 5570 goto discard; 5571 #endif 5572 } 5573 /* "fifth, if neither of the SYN or RST bits is set then 5574 * drop the segment and return." 5575 */ 5576 5577 discard_and_undo: 5578 tcp_clear_options(&tp->rx_opt); 5579 tp->rx_opt.mss_clamp = saved_clamp; 5580 goto discard; 5581 5582 reset_and_undo: 5583 tcp_clear_options(&tp->rx_opt); 5584 tp->rx_opt.mss_clamp = saved_clamp; 5585 return 1; 5586 } 5587 5588 /* 5589 * This function implements the receiving procedure of RFC 793 for 5590 * all states except ESTABLISHED and TIME_WAIT. 5591 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5592 * address independent. 5593 */ 5594 5595 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5596 const struct tcphdr *th, unsigned int len) 5597 { 5598 struct tcp_sock *tp = tcp_sk(sk); 5599 struct inet_connection_sock *icsk = inet_csk(sk); 5600 struct request_sock *req; 5601 int queued = 0; 5602 bool acceptable; 5603 u32 synack_stamp; 5604 5605 tp->rx_opt.saw_tstamp = 0; 5606 5607 switch (sk->sk_state) { 5608 case TCP_CLOSE: 5609 goto discard; 5610 5611 case TCP_LISTEN: 5612 if (th->ack) 5613 return 1; 5614 5615 if (th->rst) 5616 goto discard; 5617 5618 if (th->syn) { 5619 if (th->fin) 5620 goto discard; 5621 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5622 return 1; 5623 5624 /* Now we have several options: In theory there is 5625 * nothing else in the frame. KA9Q has an option to 5626 * send data with the syn, BSD accepts data with the 5627 * syn up to the [to be] advertised window and 5628 * Solaris 2.1 gives you a protocol error. For now 5629 * we just ignore it, that fits the spec precisely 5630 * and avoids incompatibilities. It would be nice in 5631 * future to drop through and process the data. 5632 * 5633 * Now that TTCP is starting to be used we ought to 5634 * queue this data. 5635 * But, this leaves one open to an easy denial of 5636 * service attack, and SYN cookies can't defend 5637 * against this problem. So, we drop the data 5638 * in the interest of security over speed unless 5639 * it's still in use. 5640 */ 5641 kfree_skb(skb); 5642 return 0; 5643 } 5644 goto discard; 5645 5646 case TCP_SYN_SENT: 5647 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5648 if (queued >= 0) 5649 return queued; 5650 5651 /* Do step6 onward by hand. */ 5652 tcp_urg(sk, skb, th); 5653 __kfree_skb(skb); 5654 tcp_data_snd_check(sk); 5655 return 0; 5656 } 5657 5658 req = tp->fastopen_rsk; 5659 if (req != NULL) { 5660 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5661 sk->sk_state != TCP_FIN_WAIT1); 5662 5663 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5664 goto discard; 5665 } 5666 5667 if (!th->ack && !th->rst) 5668 goto discard; 5669 5670 if (!tcp_validate_incoming(sk, skb, th, 0)) 5671 return 0; 5672 5673 /* step 5: check the ACK field */ 5674 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5675 FLAG_UPDATE_TS_RECENT) > 0; 5676 5677 switch (sk->sk_state) { 5678 case TCP_SYN_RECV: 5679 if (!acceptable) 5680 return 1; 5681 5682 /* Once we leave TCP_SYN_RECV, we no longer need req 5683 * so release it. 5684 */ 5685 if (req) { 5686 synack_stamp = tcp_rsk(req)->snt_synack; 5687 tp->total_retrans = req->num_retrans; 5688 reqsk_fastopen_remove(sk, req, false); 5689 } else { 5690 synack_stamp = tp->lsndtime; 5691 /* Make sure socket is routed, for correct metrics. */ 5692 icsk->icsk_af_ops->rebuild_header(sk); 5693 tcp_init_congestion_control(sk); 5694 5695 tcp_mtup_init(sk); 5696 tcp_init_buffer_space(sk); 5697 tp->copied_seq = tp->rcv_nxt; 5698 } 5699 smp_mb(); 5700 tcp_set_state(sk, TCP_ESTABLISHED); 5701 sk->sk_state_change(sk); 5702 5703 /* Note, that this wakeup is only for marginal crossed SYN case. 5704 * Passively open sockets are not waked up, because 5705 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5706 */ 5707 if (sk->sk_socket) 5708 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5709 5710 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5711 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5713 tcp_synack_rtt_meas(sk, synack_stamp); 5714 5715 if (tp->rx_opt.tstamp_ok) 5716 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5717 5718 if (req) { 5719 /* Re-arm the timer because data may have been sent out. 5720 * This is similar to the regular data transmission case 5721 * when new data has just been ack'ed. 5722 * 5723 * (TFO) - we could try to be more aggressive and 5724 * retransmitting any data sooner based on when they 5725 * are sent out. 5726 */ 5727 tcp_rearm_rto(sk); 5728 } else 5729 tcp_init_metrics(sk); 5730 5731 tcp_update_pacing_rate(sk); 5732 5733 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5734 tp->lsndtime = tcp_time_stamp; 5735 5736 tcp_initialize_rcv_mss(sk); 5737 tcp_fast_path_on(tp); 5738 break; 5739 5740 case TCP_FIN_WAIT1: { 5741 struct dst_entry *dst; 5742 int tmo; 5743 5744 /* If we enter the TCP_FIN_WAIT1 state and we are a 5745 * Fast Open socket and this is the first acceptable 5746 * ACK we have received, this would have acknowledged 5747 * our SYNACK so stop the SYNACK timer. 5748 */ 5749 if (req != NULL) { 5750 /* Return RST if ack_seq is invalid. 5751 * Note that RFC793 only says to generate a 5752 * DUPACK for it but for TCP Fast Open it seems 5753 * better to treat this case like TCP_SYN_RECV 5754 * above. 5755 */ 5756 if (!acceptable) 5757 return 1; 5758 /* We no longer need the request sock. */ 5759 reqsk_fastopen_remove(sk, req, false); 5760 tcp_rearm_rto(sk); 5761 } 5762 if (tp->snd_una != tp->write_seq) 5763 break; 5764 5765 tcp_set_state(sk, TCP_FIN_WAIT2); 5766 sk->sk_shutdown |= SEND_SHUTDOWN; 5767 5768 dst = __sk_dst_get(sk); 5769 if (dst) 5770 dst_confirm(dst); 5771 5772 if (!sock_flag(sk, SOCK_DEAD)) { 5773 /* Wake up lingering close() */ 5774 sk->sk_state_change(sk); 5775 break; 5776 } 5777 5778 if (tp->linger2 < 0 || 5779 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5780 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5781 tcp_done(sk); 5782 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5783 return 1; 5784 } 5785 5786 tmo = tcp_fin_time(sk); 5787 if (tmo > TCP_TIMEWAIT_LEN) { 5788 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5789 } else if (th->fin || sock_owned_by_user(sk)) { 5790 /* Bad case. We could lose such FIN otherwise. 5791 * It is not a big problem, but it looks confusing 5792 * and not so rare event. We still can lose it now, 5793 * if it spins in bh_lock_sock(), but it is really 5794 * marginal case. 5795 */ 5796 inet_csk_reset_keepalive_timer(sk, tmo); 5797 } else { 5798 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5799 goto discard; 5800 } 5801 break; 5802 } 5803 5804 case TCP_CLOSING: 5805 if (tp->snd_una == tp->write_seq) { 5806 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5807 goto discard; 5808 } 5809 break; 5810 5811 case TCP_LAST_ACK: 5812 if (tp->snd_una == tp->write_seq) { 5813 tcp_update_metrics(sk); 5814 tcp_done(sk); 5815 goto discard; 5816 } 5817 break; 5818 } 5819 5820 /* step 6: check the URG bit */ 5821 tcp_urg(sk, skb, th); 5822 5823 /* step 7: process the segment text */ 5824 switch (sk->sk_state) { 5825 case TCP_CLOSE_WAIT: 5826 case TCP_CLOSING: 5827 case TCP_LAST_ACK: 5828 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5829 break; 5830 case TCP_FIN_WAIT1: 5831 case TCP_FIN_WAIT2: 5832 /* RFC 793 says to queue data in these states, 5833 * RFC 1122 says we MUST send a reset. 5834 * BSD 4.4 also does reset. 5835 */ 5836 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5837 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5838 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5839 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5840 tcp_reset(sk); 5841 return 1; 5842 } 5843 } 5844 /* Fall through */ 5845 case TCP_ESTABLISHED: 5846 tcp_data_queue(sk, skb); 5847 queued = 1; 5848 break; 5849 } 5850 5851 /* tcp_data could move socket to TIME-WAIT */ 5852 if (sk->sk_state != TCP_CLOSE) { 5853 tcp_data_snd_check(sk); 5854 tcp_ack_snd_check(sk); 5855 } 5856 5857 if (!queued) { 5858 discard: 5859 __kfree_skb(skb); 5860 } 5861 return 0; 5862 } 5863 EXPORT_SYMBOL(tcp_rcv_state_process); 5864