1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 /* If the skb has a len of exactly 1*MSS and has the PSH bit 257 * set then it is likely the end of an application write. So 258 * more data may not be arriving soon, and yet the data sender 259 * may be waiting for an ACK if cwnd-bound or using TX zero 260 * copy. So we set ICSK_ACK_PUSHED here so that 261 * tcp_cleanup_rbuf() will send an ACK immediately if the app 262 * reads all of the data and is not ping-pong. If len > MSS 263 * then this logic does not matter (and does not hurt) because 264 * tcp_cleanup_rbuf() will always ACK immediately if the app 265 * reads data and there is more than an MSS of unACKed data. 266 */ 267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 269 } else { 270 /* Otherwise, we make more careful check taking into account, 271 * that SACKs block is variable. 272 * 273 * "len" is invariant segment length, including TCP header. 274 */ 275 len += skb->data - skb_transport_header(skb); 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 277 /* If PSH is not set, packet should be 278 * full sized, provided peer TCP is not badly broken. 279 * This observation (if it is correct 8)) allows 280 * to handle super-low mtu links fairly. 281 */ 282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 284 /* Subtract also invariant (if peer is RFC compliant), 285 * tcp header plus fixed timestamp option length. 286 * Resulting "len" is MSS free of SACK jitter. 287 */ 288 len -= tcp_sk(sk)->tcp_header_len; 289 icsk->icsk_ack.last_seg_size = len; 290 if (len == lss) { 291 icsk->icsk_ack.rcv_mss = len; 292 return; 293 } 294 } 295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 298 } 299 } 300 301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 302 { 303 struct inet_connection_sock *icsk = inet_csk(sk); 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 305 306 if (quickacks == 0) 307 quickacks = 2; 308 quickacks = min(quickacks, max_quickacks); 309 if (quickacks > icsk->icsk_ack.quick) 310 icsk->icsk_ack.quick = quickacks; 311 } 312 313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 314 { 315 struct inet_connection_sock *icsk = inet_csk(sk); 316 317 tcp_incr_quickack(sk, max_quickacks); 318 inet_csk_exit_pingpong_mode(sk); 319 icsk->icsk_ack.ato = TCP_ATO_MIN; 320 } 321 322 /* Send ACKs quickly, if "quick" count is not exhausted 323 * and the session is not interactive. 324 */ 325 326 static bool tcp_in_quickack_mode(struct sock *sk) 327 { 328 const struct inet_connection_sock *icsk = inet_csk(sk); 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 333 } 334 335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 336 { 337 if (tp->ecn_flags & TCP_ECN_OK) 338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 339 } 340 341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 342 { 343 if (tcp_hdr(skb)->cwr) { 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 345 346 /* If the sender is telling us it has entered CWR, then its 347 * cwnd may be very low (even just 1 packet), so we should ACK 348 * immediately. 349 */ 350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 352 } 353 } 354 355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 356 { 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 358 } 359 360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 361 { 362 struct tcp_sock *tp = tcp_sk(sk); 363 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 365 case INET_ECN_NOT_ECT: 366 /* Funny extension: if ECT is not set on a segment, 367 * and we already seen ECT on a previous segment, 368 * it is probably a retransmit. 369 */ 370 if (tp->ecn_flags & TCP_ECN_SEEN) 371 tcp_enter_quickack_mode(sk, 2); 372 break; 373 case INET_ECN_CE: 374 if (tcp_ca_needs_ecn(sk)) 375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 376 377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 378 /* Better not delay acks, sender can have a very low cwnd */ 379 tcp_enter_quickack_mode(sk, 2); 380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 381 } 382 tp->ecn_flags |= TCP_ECN_SEEN; 383 break; 384 default: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 } 390 } 391 392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 393 { 394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 395 __tcp_ecn_check_ce(sk, skb); 396 } 397 398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 407 tp->ecn_flags &= ~TCP_ECN_OK; 408 } 409 410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 411 { 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 413 return true; 414 return false; 415 } 416 417 /* Buffer size and advertised window tuning. 418 * 419 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 420 */ 421 422 static void tcp_sndbuf_expand(struct sock *sk) 423 { 424 const struct tcp_sock *tp = tcp_sk(sk); 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 426 int sndmem, per_mss; 427 u32 nr_segs; 428 429 /* Worst case is non GSO/TSO : each frame consumes one skb 430 * and skb->head is kmalloced using power of two area of memory 431 */ 432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 433 MAX_TCP_HEADER + 434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 436 per_mss = roundup_pow_of_two(per_mss) + 437 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 438 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 441 442 /* Fast Recovery (RFC 5681 3.2) : 443 * Cubic needs 1.7 factor, rounded to 2 to include 444 * extra cushion (application might react slowly to EPOLLOUT) 445 */ 446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 447 sndmem *= nr_segs * per_mss; 448 449 if (sk->sk_sndbuf < sndmem) 450 WRITE_ONCE(sk->sk_sndbuf, 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 452 } 453 454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 455 * 456 * All tcp_full_space() is split to two parts: "network" buffer, allocated 457 * forward and advertised in receiver window (tp->rcv_wnd) and 458 * "application buffer", required to isolate scheduling/application 459 * latencies from network. 460 * window_clamp is maximal advertised window. It can be less than 461 * tcp_full_space(), in this case tcp_full_space() - window_clamp 462 * is reserved for "application" buffer. The less window_clamp is 463 * the smoother our behaviour from viewpoint of network, but the lower 464 * throughput and the higher sensitivity of the connection to losses. 8) 465 * 466 * rcv_ssthresh is more strict window_clamp used at "slow start" 467 * phase to predict further behaviour of this connection. 468 * It is used for two goals: 469 * - to enforce header prediction at sender, even when application 470 * requires some significant "application buffer". It is check #1. 471 * - to prevent pruning of receive queue because of misprediction 472 * of receiver window. Check #2. 473 * 474 * The scheme does not work when sender sends good segments opening 475 * window and then starts to feed us spaghetti. But it should work 476 * in common situations. Otherwise, we have to rely on queue collapsing. 477 */ 478 479 /* Slow part of check#2. */ 480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 481 unsigned int skbtruesize) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 /* Optimize this! */ 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 487 488 while (tp->rcv_ssthresh <= window) { 489 if (truesize <= skb->len) 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 491 492 truesize >>= 1; 493 window >>= 1; 494 } 495 return 0; 496 } 497 498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 499 * can play nice with us, as sk_buff and skb->head might be either 500 * freed or shared with up to MAX_SKB_FRAGS segments. 501 * Only give a boost to drivers using page frag(s) to hold the frame(s), 502 * and if no payload was pulled in skb->head before reaching us. 503 */ 504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 505 { 506 u32 truesize = skb->truesize; 507 508 if (adjust && !skb_headlen(skb)) { 509 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 510 /* paranoid check, some drivers might be buggy */ 511 if (unlikely((int)truesize < (int)skb->len)) 512 truesize = skb->truesize; 513 } 514 return truesize; 515 } 516 517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 518 bool adjust) 519 { 520 struct tcp_sock *tp = tcp_sk(sk); 521 int room; 522 523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 524 525 if (room <= 0) 526 return; 527 528 /* Check #1 */ 529 if (!tcp_under_memory_pressure(sk)) { 530 unsigned int truesize = truesize_adjust(adjust, skb); 531 int incr; 532 533 /* Check #2. Increase window, if skb with such overhead 534 * will fit to rcvbuf in future. 535 */ 536 if (tcp_win_from_space(sk, truesize) <= skb->len) 537 incr = 2 * tp->advmss; 538 else 539 incr = __tcp_grow_window(sk, skb, truesize); 540 541 if (incr) { 542 incr = max_t(int, incr, 2 * skb->len); 543 tp->rcv_ssthresh += min(room, incr); 544 inet_csk(sk)->icsk_ack.quick |= 1; 545 } 546 } else { 547 /* Under pressure: 548 * Adjust rcv_ssthresh according to reserved mem 549 */ 550 tcp_adjust_rcv_ssthresh(sk); 551 } 552 } 553 554 /* 3. Try to fixup all. It is made immediately after connection enters 555 * established state. 556 */ 557 static void tcp_init_buffer_space(struct sock *sk) 558 { 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 560 struct tcp_sock *tp = tcp_sk(sk); 561 int maxwin; 562 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 564 tcp_sndbuf_expand(sk); 565 566 tcp_mstamp_refresh(tp); 567 tp->rcvq_space.time = tp->tcp_mstamp; 568 tp->rcvq_space.seq = tp->copied_seq; 569 570 maxwin = tcp_full_space(sk); 571 572 if (tp->window_clamp >= maxwin) { 573 tp->window_clamp = maxwin; 574 575 if (tcp_app_win && maxwin > 4 * tp->advmss) 576 tp->window_clamp = max(maxwin - 577 (maxwin >> tcp_app_win), 578 4 * tp->advmss); 579 } 580 581 /* Force reservation of one segment. */ 582 if (tcp_app_win && 583 tp->window_clamp > 2 * tp->advmss && 584 tp->window_clamp + tp->advmss > maxwin) 585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 697 const struct sk_buff *skb) 698 { 699 struct tcp_sock *tp = tcp_sk(sk); 700 701 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 702 return; 703 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 704 705 if (TCP_SKB_CB(skb)->end_seq - 706 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 707 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 708 u32 delta_us; 709 710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 711 if (!delta) 712 delta = 1; 713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 714 tcp_rcv_rtt_update(tp, delta_us, 0); 715 } 716 } 717 } 718 719 /* 720 * This function should be called every time data is copied to user space. 721 * It calculates the appropriate TCP receive buffer space. 722 */ 723 void tcp_rcv_space_adjust(struct sock *sk) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 u32 copied; 727 int time; 728 729 trace_tcp_rcv_space_adjust(sk); 730 731 tcp_mstamp_refresh(tp); 732 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 733 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 734 return; 735 736 /* Number of bytes copied to user in last RTT */ 737 copied = tp->copied_seq - tp->rcvq_space.seq; 738 if (copied <= tp->rcvq_space.space) 739 goto new_measure; 740 741 /* A bit of theory : 742 * copied = bytes received in previous RTT, our base window 743 * To cope with packet losses, we need a 2x factor 744 * To cope with slow start, and sender growing its cwin by 100 % 745 * every RTT, we need a 4x factor, because the ACK we are sending 746 * now is for the next RTT, not the current one : 747 * <prev RTT . ><current RTT .. ><next RTT .... > 748 */ 749 750 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 751 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 752 u64 rcvwin, grow; 753 int rcvbuf; 754 755 /* minimal window to cope with packet losses, assuming 756 * steady state. Add some cushion because of small variations. 757 */ 758 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 759 760 /* Accommodate for sender rate increase (eg. slow start) */ 761 grow = rcvwin * (copied - tp->rcvq_space.space); 762 do_div(grow, tp->rcvq_space.space); 763 rcvwin += (grow << 1); 764 765 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 766 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 767 if (rcvbuf > sk->sk_rcvbuf) { 768 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 769 770 /* Make the window clamp follow along. */ 771 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 772 } 773 } 774 tp->rcvq_space.space = copied; 775 776 new_measure: 777 tp->rcvq_space.seq = tp->copied_seq; 778 tp->rcvq_space.time = tp->tcp_mstamp; 779 } 780 781 /* There is something which you must keep in mind when you analyze the 782 * behavior of the tp->ato delayed ack timeout interval. When a 783 * connection starts up, we want to ack as quickly as possible. The 784 * problem is that "good" TCP's do slow start at the beginning of data 785 * transmission. The means that until we send the first few ACK's the 786 * sender will sit on his end and only queue most of his data, because 787 * he can only send snd_cwnd unacked packets at any given time. For 788 * each ACK we send, he increments snd_cwnd and transmits more of his 789 * queue. -DaveM 790 */ 791 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 792 { 793 struct tcp_sock *tp = tcp_sk(sk); 794 struct inet_connection_sock *icsk = inet_csk(sk); 795 u32 now; 796 797 inet_csk_schedule_ack(sk); 798 799 tcp_measure_rcv_mss(sk, skb); 800 801 tcp_rcv_rtt_measure(tp); 802 803 now = tcp_jiffies32; 804 805 if (!icsk->icsk_ack.ato) { 806 /* The _first_ data packet received, initialize 807 * delayed ACK engine. 808 */ 809 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 810 icsk->icsk_ack.ato = TCP_ATO_MIN; 811 } else { 812 int m = now - icsk->icsk_ack.lrcvtime; 813 814 if (m <= TCP_ATO_MIN / 2) { 815 /* The fastest case is the first. */ 816 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 817 } else if (m < icsk->icsk_ack.ato) { 818 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 819 if (icsk->icsk_ack.ato > icsk->icsk_rto) 820 icsk->icsk_ack.ato = icsk->icsk_rto; 821 } else if (m > icsk->icsk_rto) { 822 /* Too long gap. Apparently sender failed to 823 * restart window, so that we send ACKs quickly. 824 */ 825 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 826 } 827 } 828 icsk->icsk_ack.lrcvtime = now; 829 830 tcp_ecn_check_ce(sk, skb); 831 832 if (skb->len >= 128) 833 tcp_grow_window(sk, skb, true); 834 } 835 836 /* Called to compute a smoothed rtt estimate. The data fed to this 837 * routine either comes from timestamps, or from segments that were 838 * known _not_ to have been retransmitted [see Karn/Partridge 839 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 840 * piece by Van Jacobson. 841 * NOTE: the next three routines used to be one big routine. 842 * To save cycles in the RFC 1323 implementation it was better to break 843 * it up into three procedures. -- erics 844 */ 845 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 846 { 847 struct tcp_sock *tp = tcp_sk(sk); 848 long m = mrtt_us; /* RTT */ 849 u32 srtt = tp->srtt_us; 850 851 /* The following amusing code comes from Jacobson's 852 * article in SIGCOMM '88. Note that rtt and mdev 853 * are scaled versions of rtt and mean deviation. 854 * This is designed to be as fast as possible 855 * m stands for "measurement". 856 * 857 * On a 1990 paper the rto value is changed to: 858 * RTO = rtt + 4 * mdev 859 * 860 * Funny. This algorithm seems to be very broken. 861 * These formulae increase RTO, when it should be decreased, increase 862 * too slowly, when it should be increased quickly, decrease too quickly 863 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 864 * does not matter how to _calculate_ it. Seems, it was trap 865 * that VJ failed to avoid. 8) 866 */ 867 if (srtt != 0) { 868 m -= (srtt >> 3); /* m is now error in rtt est */ 869 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 870 if (m < 0) { 871 m = -m; /* m is now abs(error) */ 872 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 873 /* This is similar to one of Eifel findings. 874 * Eifel blocks mdev updates when rtt decreases. 875 * This solution is a bit different: we use finer gain 876 * for mdev in this case (alpha*beta). 877 * Like Eifel it also prevents growth of rto, 878 * but also it limits too fast rto decreases, 879 * happening in pure Eifel. 880 */ 881 if (m > 0) 882 m >>= 3; 883 } else { 884 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 885 } 886 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 887 if (tp->mdev_us > tp->mdev_max_us) { 888 tp->mdev_max_us = tp->mdev_us; 889 if (tp->mdev_max_us > tp->rttvar_us) 890 tp->rttvar_us = tp->mdev_max_us; 891 } 892 if (after(tp->snd_una, tp->rtt_seq)) { 893 if (tp->mdev_max_us < tp->rttvar_us) 894 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 895 tp->rtt_seq = tp->snd_nxt; 896 tp->mdev_max_us = tcp_rto_min_us(sk); 897 898 tcp_bpf_rtt(sk); 899 } 900 } else { 901 /* no previous measure. */ 902 srtt = m << 3; /* take the measured time to be rtt */ 903 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 904 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 905 tp->mdev_max_us = tp->rttvar_us; 906 tp->rtt_seq = tp->snd_nxt; 907 908 tcp_bpf_rtt(sk); 909 } 910 tp->srtt_us = max(1U, srtt); 911 } 912 913 static void tcp_update_pacing_rate(struct sock *sk) 914 { 915 const struct tcp_sock *tp = tcp_sk(sk); 916 u64 rate; 917 918 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 919 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 920 921 /* current rate is (cwnd * mss) / srtt 922 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 923 * In Congestion Avoidance phase, set it to 120 % the current rate. 924 * 925 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 926 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 927 * end of slow start and should slow down. 928 */ 929 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 930 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 931 else 932 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 933 934 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 935 936 if (likely(tp->srtt_us)) 937 do_div(rate, tp->srtt_us); 938 939 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 940 * without any lock. We want to make sure compiler wont store 941 * intermediate values in this location. 942 */ 943 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 944 sk->sk_max_pacing_rate)); 945 } 946 947 /* Calculate rto without backoff. This is the second half of Van Jacobson's 948 * routine referred to above. 949 */ 950 static void tcp_set_rto(struct sock *sk) 951 { 952 const struct tcp_sock *tp = tcp_sk(sk); 953 /* Old crap is replaced with new one. 8) 954 * 955 * More seriously: 956 * 1. If rtt variance happened to be less 50msec, it is hallucination. 957 * It cannot be less due to utterly erratic ACK generation made 958 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 959 * to do with delayed acks, because at cwnd>2 true delack timeout 960 * is invisible. Actually, Linux-2.4 also generates erratic 961 * ACKs in some circumstances. 962 */ 963 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 964 965 /* 2. Fixups made earlier cannot be right. 966 * If we do not estimate RTO correctly without them, 967 * all the algo is pure shit and should be replaced 968 * with correct one. It is exactly, which we pretend to do. 969 */ 970 971 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 972 * guarantees that rto is higher. 973 */ 974 tcp_bound_rto(sk); 975 } 976 977 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 978 { 979 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 980 981 if (!cwnd) 982 cwnd = TCP_INIT_CWND; 983 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 984 } 985 986 struct tcp_sacktag_state { 987 /* Timestamps for earliest and latest never-retransmitted segment 988 * that was SACKed. RTO needs the earliest RTT to stay conservative, 989 * but congestion control should still get an accurate delay signal. 990 */ 991 u64 first_sackt; 992 u64 last_sackt; 993 u32 reord; 994 u32 sack_delivered; 995 int flag; 996 unsigned int mss_now; 997 struct rate_sample *rate; 998 }; 999 1000 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1001 * and spurious retransmission information if this DSACK is unlikely caused by 1002 * sender's action: 1003 * - DSACKed sequence range is larger than maximum receiver's window. 1004 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1005 */ 1006 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1007 u32 end_seq, struct tcp_sacktag_state *state) 1008 { 1009 u32 seq_len, dup_segs = 1; 1010 1011 if (!before(start_seq, end_seq)) 1012 return 0; 1013 1014 seq_len = end_seq - start_seq; 1015 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1016 if (seq_len > tp->max_window) 1017 return 0; 1018 if (seq_len > tp->mss_cache) 1019 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1020 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1021 state->flag |= FLAG_DSACK_TLP; 1022 1023 tp->dsack_dups += dup_segs; 1024 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1025 if (tp->dsack_dups > tp->total_retrans) 1026 return 0; 1027 1028 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1029 /* We increase the RACK ordering window in rounds where we receive 1030 * DSACKs that may have been due to reordering causing RACK to trigger 1031 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1032 * without having seen reordering, or that match TLP probes (TLP 1033 * is timer-driven, not triggered by RACK). 1034 */ 1035 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1036 tp->rack.dsack_seen = 1; 1037 1038 state->flag |= FLAG_DSACKING_ACK; 1039 /* A spurious retransmission is delivered */ 1040 state->sack_delivered += dup_segs; 1041 1042 return dup_segs; 1043 } 1044 1045 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1046 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1047 * distance is approximated in full-mss packet distance ("reordering"). 1048 */ 1049 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1050 const int ts) 1051 { 1052 struct tcp_sock *tp = tcp_sk(sk); 1053 const u32 mss = tp->mss_cache; 1054 u32 fack, metric; 1055 1056 fack = tcp_highest_sack_seq(tp); 1057 if (!before(low_seq, fack)) 1058 return; 1059 1060 metric = fack - low_seq; 1061 if ((metric > tp->reordering * mss) && mss) { 1062 #if FASTRETRANS_DEBUG > 1 1063 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1064 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1065 tp->reordering, 1066 0, 1067 tp->sacked_out, 1068 tp->undo_marker ? tp->undo_retrans : 0); 1069 #endif 1070 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1071 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1072 } 1073 1074 /* This exciting event is worth to be remembered. 8) */ 1075 tp->reord_seen++; 1076 NET_INC_STATS(sock_net(sk), 1077 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1078 } 1079 1080 /* This must be called before lost_out or retrans_out are updated 1081 * on a new loss, because we want to know if all skbs previously 1082 * known to be lost have already been retransmitted, indicating 1083 * that this newly lost skb is our next skb to retransmit. 1084 */ 1085 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1086 { 1087 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1088 (tp->retransmit_skb_hint && 1089 before(TCP_SKB_CB(skb)->seq, 1090 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1091 tp->retransmit_skb_hint = skb; 1092 } 1093 1094 /* Sum the number of packets on the wire we have marked as lost, and 1095 * notify the congestion control module that the given skb was marked lost. 1096 */ 1097 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1098 { 1099 tp->lost += tcp_skb_pcount(skb); 1100 } 1101 1102 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1103 { 1104 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1105 struct tcp_sock *tp = tcp_sk(sk); 1106 1107 if (sacked & TCPCB_SACKED_ACKED) 1108 return; 1109 1110 tcp_verify_retransmit_hint(tp, skb); 1111 if (sacked & TCPCB_LOST) { 1112 if (sacked & TCPCB_SACKED_RETRANS) { 1113 /* Account for retransmits that are lost again */ 1114 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1115 tp->retrans_out -= tcp_skb_pcount(skb); 1116 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1117 tcp_skb_pcount(skb)); 1118 tcp_notify_skb_loss_event(tp, skb); 1119 } 1120 } else { 1121 tp->lost_out += tcp_skb_pcount(skb); 1122 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1123 tcp_notify_skb_loss_event(tp, skb); 1124 } 1125 } 1126 1127 /* Updates the delivered and delivered_ce counts */ 1128 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1129 bool ece_ack) 1130 { 1131 tp->delivered += delivered; 1132 if (ece_ack) 1133 tp->delivered_ce += delivered; 1134 } 1135 1136 /* This procedure tags the retransmission queue when SACKs arrive. 1137 * 1138 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1139 * Packets in queue with these bits set are counted in variables 1140 * sacked_out, retrans_out and lost_out, correspondingly. 1141 * 1142 * Valid combinations are: 1143 * Tag InFlight Description 1144 * 0 1 - orig segment is in flight. 1145 * S 0 - nothing flies, orig reached receiver. 1146 * L 0 - nothing flies, orig lost by net. 1147 * R 2 - both orig and retransmit are in flight. 1148 * L|R 1 - orig is lost, retransmit is in flight. 1149 * S|R 1 - orig reached receiver, retrans is still in flight. 1150 * (L|S|R is logically valid, it could occur when L|R is sacked, 1151 * but it is equivalent to plain S and code short-curcuits it to S. 1152 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1153 * 1154 * These 6 states form finite state machine, controlled by the following events: 1155 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1156 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1157 * 3. Loss detection event of two flavors: 1158 * A. Scoreboard estimator decided the packet is lost. 1159 * A'. Reno "three dupacks" marks head of queue lost. 1160 * B. SACK arrives sacking SND.NXT at the moment, when the 1161 * segment was retransmitted. 1162 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1163 * 1164 * It is pleasant to note, that state diagram turns out to be commutative, 1165 * so that we are allowed not to be bothered by order of our actions, 1166 * when multiple events arrive simultaneously. (see the function below). 1167 * 1168 * Reordering detection. 1169 * -------------------- 1170 * Reordering metric is maximal distance, which a packet can be displaced 1171 * in packet stream. With SACKs we can estimate it: 1172 * 1173 * 1. SACK fills old hole and the corresponding segment was not 1174 * ever retransmitted -> reordering. Alas, we cannot use it 1175 * when segment was retransmitted. 1176 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1177 * for retransmitted and already SACKed segment -> reordering.. 1178 * Both of these heuristics are not used in Loss state, when we cannot 1179 * account for retransmits accurately. 1180 * 1181 * SACK block validation. 1182 * ---------------------- 1183 * 1184 * SACK block range validation checks that the received SACK block fits to 1185 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1186 * Note that SND.UNA is not included to the range though being valid because 1187 * it means that the receiver is rather inconsistent with itself reporting 1188 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1189 * perfectly valid, however, in light of RFC2018 which explicitly states 1190 * that "SACK block MUST reflect the newest segment. Even if the newest 1191 * segment is going to be discarded ...", not that it looks very clever 1192 * in case of head skb. Due to potentional receiver driven attacks, we 1193 * choose to avoid immediate execution of a walk in write queue due to 1194 * reneging and defer head skb's loss recovery to standard loss recovery 1195 * procedure that will eventually trigger (nothing forbids us doing this). 1196 * 1197 * Implements also blockage to start_seq wrap-around. Problem lies in the 1198 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1199 * there's no guarantee that it will be before snd_nxt (n). The problem 1200 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1201 * wrap (s_w): 1202 * 1203 * <- outs wnd -> <- wrapzone -> 1204 * u e n u_w e_w s n_w 1205 * | | | | | | | 1206 * |<------------+------+----- TCP seqno space --------------+---------->| 1207 * ...-- <2^31 ->| |<--------... 1208 * ...---- >2^31 ------>| |<--------... 1209 * 1210 * Current code wouldn't be vulnerable but it's better still to discard such 1211 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1212 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1213 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1214 * equal to the ideal case (infinite seqno space without wrap caused issues). 1215 * 1216 * With D-SACK the lower bound is extended to cover sequence space below 1217 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1218 * again, D-SACK block must not to go across snd_una (for the same reason as 1219 * for the normal SACK blocks, explained above). But there all simplicity 1220 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1221 * fully below undo_marker they do not affect behavior in anyway and can 1222 * therefore be safely ignored. In rare cases (which are more or less 1223 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1224 * fragmentation and packet reordering past skb's retransmission. To consider 1225 * them correctly, the acceptable range must be extended even more though 1226 * the exact amount is rather hard to quantify. However, tp->max_window can 1227 * be used as an exaggerated estimate. 1228 */ 1229 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1230 u32 start_seq, u32 end_seq) 1231 { 1232 /* Too far in future, or reversed (interpretation is ambiguous) */ 1233 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1234 return false; 1235 1236 /* Nasty start_seq wrap-around check (see comments above) */ 1237 if (!before(start_seq, tp->snd_nxt)) 1238 return false; 1239 1240 /* In outstanding window? ...This is valid exit for D-SACKs too. 1241 * start_seq == snd_una is non-sensical (see comments above) 1242 */ 1243 if (after(start_seq, tp->snd_una)) 1244 return true; 1245 1246 if (!is_dsack || !tp->undo_marker) 1247 return false; 1248 1249 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1250 if (after(end_seq, tp->snd_una)) 1251 return false; 1252 1253 if (!before(start_seq, tp->undo_marker)) 1254 return true; 1255 1256 /* Too old */ 1257 if (!after(end_seq, tp->undo_marker)) 1258 return false; 1259 1260 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1261 * start_seq < undo_marker and end_seq >= undo_marker. 1262 */ 1263 return !before(start_seq, end_seq - tp->max_window); 1264 } 1265 1266 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1267 struct tcp_sack_block_wire *sp, int num_sacks, 1268 u32 prior_snd_una, struct tcp_sacktag_state *state) 1269 { 1270 struct tcp_sock *tp = tcp_sk(sk); 1271 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1272 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1273 u32 dup_segs; 1274 1275 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1277 } else if (num_sacks > 1) { 1278 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1279 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1280 1281 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1282 return false; 1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1284 } else { 1285 return false; 1286 } 1287 1288 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1289 if (!dup_segs) { /* Skip dubious DSACK */ 1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1291 return false; 1292 } 1293 1294 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1295 1296 /* D-SACK for already forgotten data... Do dumb counting. */ 1297 if (tp->undo_marker && tp->undo_retrans > 0 && 1298 !after(end_seq_0, prior_snd_una) && 1299 after(end_seq_0, tp->undo_marker)) 1300 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1301 1302 return true; 1303 } 1304 1305 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1306 * the incoming SACK may not exactly match but we can find smaller MSS 1307 * aligned portion of it that matches. Therefore we might need to fragment 1308 * which may fail and creates some hassle (caller must handle error case 1309 * returns). 1310 * 1311 * FIXME: this could be merged to shift decision code 1312 */ 1313 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1314 u32 start_seq, u32 end_seq) 1315 { 1316 int err; 1317 bool in_sack; 1318 unsigned int pkt_len; 1319 unsigned int mss; 1320 1321 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1322 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1323 1324 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1325 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1326 mss = tcp_skb_mss(skb); 1327 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1328 1329 if (!in_sack) { 1330 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1331 if (pkt_len < mss) 1332 pkt_len = mss; 1333 } else { 1334 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1335 if (pkt_len < mss) 1336 return -EINVAL; 1337 } 1338 1339 /* Round if necessary so that SACKs cover only full MSSes 1340 * and/or the remaining small portion (if present) 1341 */ 1342 if (pkt_len > mss) { 1343 unsigned int new_len = (pkt_len / mss) * mss; 1344 if (!in_sack && new_len < pkt_len) 1345 new_len += mss; 1346 pkt_len = new_len; 1347 } 1348 1349 if (pkt_len >= skb->len && !in_sack) 1350 return 0; 1351 1352 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1353 pkt_len, mss, GFP_ATOMIC); 1354 if (err < 0) 1355 return err; 1356 } 1357 1358 return in_sack; 1359 } 1360 1361 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1362 static u8 tcp_sacktag_one(struct sock *sk, 1363 struct tcp_sacktag_state *state, u8 sacked, 1364 u32 start_seq, u32 end_seq, 1365 int dup_sack, int pcount, 1366 u64 xmit_time) 1367 { 1368 struct tcp_sock *tp = tcp_sk(sk); 1369 1370 /* Account D-SACK for retransmitted packet. */ 1371 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1372 if (tp->undo_marker && tp->undo_retrans > 0 && 1373 after(end_seq, tp->undo_marker)) 1374 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1375 if ((sacked & TCPCB_SACKED_ACKED) && 1376 before(start_seq, state->reord)) 1377 state->reord = start_seq; 1378 } 1379 1380 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1381 if (!after(end_seq, tp->snd_una)) 1382 return sacked; 1383 1384 if (!(sacked & TCPCB_SACKED_ACKED)) { 1385 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1386 1387 if (sacked & TCPCB_SACKED_RETRANS) { 1388 /* If the segment is not tagged as lost, 1389 * we do not clear RETRANS, believing 1390 * that retransmission is still in flight. 1391 */ 1392 if (sacked & TCPCB_LOST) { 1393 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1394 tp->lost_out -= pcount; 1395 tp->retrans_out -= pcount; 1396 } 1397 } else { 1398 if (!(sacked & TCPCB_RETRANS)) { 1399 /* New sack for not retransmitted frame, 1400 * which was in hole. It is reordering. 1401 */ 1402 if (before(start_seq, 1403 tcp_highest_sack_seq(tp)) && 1404 before(start_seq, state->reord)) 1405 state->reord = start_seq; 1406 1407 if (!after(end_seq, tp->high_seq)) 1408 state->flag |= FLAG_ORIG_SACK_ACKED; 1409 if (state->first_sackt == 0) 1410 state->first_sackt = xmit_time; 1411 state->last_sackt = xmit_time; 1412 } 1413 1414 if (sacked & TCPCB_LOST) { 1415 sacked &= ~TCPCB_LOST; 1416 tp->lost_out -= pcount; 1417 } 1418 } 1419 1420 sacked |= TCPCB_SACKED_ACKED; 1421 state->flag |= FLAG_DATA_SACKED; 1422 tp->sacked_out += pcount; 1423 /* Out-of-order packets delivered */ 1424 state->sack_delivered += pcount; 1425 1426 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1427 if (tp->lost_skb_hint && 1428 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1429 tp->lost_cnt_hint += pcount; 1430 } 1431 1432 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1433 * frames and clear it. undo_retrans is decreased above, L|R frames 1434 * are accounted above as well. 1435 */ 1436 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1437 sacked &= ~TCPCB_SACKED_RETRANS; 1438 tp->retrans_out -= pcount; 1439 } 1440 1441 return sacked; 1442 } 1443 1444 /* Shift newly-SACKed bytes from this skb to the immediately previous 1445 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1446 */ 1447 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1448 struct sk_buff *skb, 1449 struct tcp_sacktag_state *state, 1450 unsigned int pcount, int shifted, int mss, 1451 bool dup_sack) 1452 { 1453 struct tcp_sock *tp = tcp_sk(sk); 1454 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1455 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1456 1457 BUG_ON(!pcount); 1458 1459 /* Adjust counters and hints for the newly sacked sequence 1460 * range but discard the return value since prev is already 1461 * marked. We must tag the range first because the seq 1462 * advancement below implicitly advances 1463 * tcp_highest_sack_seq() when skb is highest_sack. 1464 */ 1465 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1466 start_seq, end_seq, dup_sack, pcount, 1467 tcp_skb_timestamp_us(skb)); 1468 tcp_rate_skb_delivered(sk, skb, state->rate); 1469 1470 if (skb == tp->lost_skb_hint) 1471 tp->lost_cnt_hint += pcount; 1472 1473 TCP_SKB_CB(prev)->end_seq += shifted; 1474 TCP_SKB_CB(skb)->seq += shifted; 1475 1476 tcp_skb_pcount_add(prev, pcount); 1477 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1478 tcp_skb_pcount_add(skb, -pcount); 1479 1480 /* When we're adding to gso_segs == 1, gso_size will be zero, 1481 * in theory this shouldn't be necessary but as long as DSACK 1482 * code can come after this skb later on it's better to keep 1483 * setting gso_size to something. 1484 */ 1485 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1486 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1487 1488 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1489 if (tcp_skb_pcount(skb) <= 1) 1490 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1491 1492 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1493 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1494 1495 if (skb->len > 0) { 1496 BUG_ON(!tcp_skb_pcount(skb)); 1497 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1498 return false; 1499 } 1500 1501 /* Whole SKB was eaten :-) */ 1502 1503 if (skb == tp->retransmit_skb_hint) 1504 tp->retransmit_skb_hint = prev; 1505 if (skb == tp->lost_skb_hint) { 1506 tp->lost_skb_hint = prev; 1507 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1508 } 1509 1510 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1511 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1512 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1513 TCP_SKB_CB(prev)->end_seq++; 1514 1515 if (skb == tcp_highest_sack(sk)) 1516 tcp_advance_highest_sack(sk, skb); 1517 1518 tcp_skb_collapse_tstamp(prev, skb); 1519 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1520 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1521 1522 tcp_rtx_queue_unlink_and_free(skb, sk); 1523 1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1525 1526 return true; 1527 } 1528 1529 /* I wish gso_size would have a bit more sane initialization than 1530 * something-or-zero which complicates things 1531 */ 1532 static int tcp_skb_seglen(const struct sk_buff *skb) 1533 { 1534 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1535 } 1536 1537 /* Shifting pages past head area doesn't work */ 1538 static int skb_can_shift(const struct sk_buff *skb) 1539 { 1540 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1541 } 1542 1543 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1544 int pcount, int shiftlen) 1545 { 1546 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1547 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1548 * to make sure not storing more than 65535 * 8 bytes per skb, 1549 * even if current MSS is bigger. 1550 */ 1551 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1552 return 0; 1553 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1554 return 0; 1555 return skb_shift(to, from, shiftlen); 1556 } 1557 1558 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1559 * skb. 1560 */ 1561 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1562 struct tcp_sacktag_state *state, 1563 u32 start_seq, u32 end_seq, 1564 bool dup_sack) 1565 { 1566 struct tcp_sock *tp = tcp_sk(sk); 1567 struct sk_buff *prev; 1568 int mss; 1569 int pcount = 0; 1570 int len; 1571 int in_sack; 1572 1573 /* Normally R but no L won't result in plain S */ 1574 if (!dup_sack && 1575 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1576 goto fallback; 1577 if (!skb_can_shift(skb)) 1578 goto fallback; 1579 /* This frame is about to be dropped (was ACKed). */ 1580 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1581 goto fallback; 1582 1583 /* Can only happen with delayed DSACK + discard craziness */ 1584 prev = skb_rb_prev(skb); 1585 if (!prev) 1586 goto fallback; 1587 1588 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1589 goto fallback; 1590 1591 if (!tcp_skb_can_collapse(prev, skb)) 1592 goto fallback; 1593 1594 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1595 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1596 1597 if (in_sack) { 1598 len = skb->len; 1599 pcount = tcp_skb_pcount(skb); 1600 mss = tcp_skb_seglen(skb); 1601 1602 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1603 * drop this restriction as unnecessary 1604 */ 1605 if (mss != tcp_skb_seglen(prev)) 1606 goto fallback; 1607 } else { 1608 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1609 goto noop; 1610 /* CHECKME: This is non-MSS split case only?, this will 1611 * cause skipped skbs due to advancing loop btw, original 1612 * has that feature too 1613 */ 1614 if (tcp_skb_pcount(skb) <= 1) 1615 goto noop; 1616 1617 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1618 if (!in_sack) { 1619 /* TODO: head merge to next could be attempted here 1620 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1621 * though it might not be worth of the additional hassle 1622 * 1623 * ...we can probably just fallback to what was done 1624 * previously. We could try merging non-SACKed ones 1625 * as well but it probably isn't going to buy off 1626 * because later SACKs might again split them, and 1627 * it would make skb timestamp tracking considerably 1628 * harder problem. 1629 */ 1630 goto fallback; 1631 } 1632 1633 len = end_seq - TCP_SKB_CB(skb)->seq; 1634 BUG_ON(len < 0); 1635 BUG_ON(len > skb->len); 1636 1637 /* MSS boundaries should be honoured or else pcount will 1638 * severely break even though it makes things bit trickier. 1639 * Optimize common case to avoid most of the divides 1640 */ 1641 mss = tcp_skb_mss(skb); 1642 1643 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1644 * drop this restriction as unnecessary 1645 */ 1646 if (mss != tcp_skb_seglen(prev)) 1647 goto fallback; 1648 1649 if (len == mss) { 1650 pcount = 1; 1651 } else if (len < mss) { 1652 goto noop; 1653 } else { 1654 pcount = len / mss; 1655 len = pcount * mss; 1656 } 1657 } 1658 1659 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1660 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1661 goto fallback; 1662 1663 if (!tcp_skb_shift(prev, skb, pcount, len)) 1664 goto fallback; 1665 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1666 goto out; 1667 1668 /* Hole filled allows collapsing with the next as well, this is very 1669 * useful when hole on every nth skb pattern happens 1670 */ 1671 skb = skb_rb_next(prev); 1672 if (!skb) 1673 goto out; 1674 1675 if (!skb_can_shift(skb) || 1676 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1677 (mss != tcp_skb_seglen(skb))) 1678 goto out; 1679 1680 if (!tcp_skb_can_collapse(prev, skb)) 1681 goto out; 1682 len = skb->len; 1683 pcount = tcp_skb_pcount(skb); 1684 if (tcp_skb_shift(prev, skb, pcount, len)) 1685 tcp_shifted_skb(sk, prev, skb, state, pcount, 1686 len, mss, 0); 1687 1688 out: 1689 return prev; 1690 1691 noop: 1692 return skb; 1693 1694 fallback: 1695 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1696 return NULL; 1697 } 1698 1699 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1700 struct tcp_sack_block *next_dup, 1701 struct tcp_sacktag_state *state, 1702 u32 start_seq, u32 end_seq, 1703 bool dup_sack_in) 1704 { 1705 struct tcp_sock *tp = tcp_sk(sk); 1706 struct sk_buff *tmp; 1707 1708 skb_rbtree_walk_from(skb) { 1709 int in_sack = 0; 1710 bool dup_sack = dup_sack_in; 1711 1712 /* queue is in-order => we can short-circuit the walk early */ 1713 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1714 break; 1715 1716 if (next_dup && 1717 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1718 in_sack = tcp_match_skb_to_sack(sk, skb, 1719 next_dup->start_seq, 1720 next_dup->end_seq); 1721 if (in_sack > 0) 1722 dup_sack = true; 1723 } 1724 1725 /* skb reference here is a bit tricky to get right, since 1726 * shifting can eat and free both this skb and the next, 1727 * so not even _safe variant of the loop is enough. 1728 */ 1729 if (in_sack <= 0) { 1730 tmp = tcp_shift_skb_data(sk, skb, state, 1731 start_seq, end_seq, dup_sack); 1732 if (tmp) { 1733 if (tmp != skb) { 1734 skb = tmp; 1735 continue; 1736 } 1737 1738 in_sack = 0; 1739 } else { 1740 in_sack = tcp_match_skb_to_sack(sk, skb, 1741 start_seq, 1742 end_seq); 1743 } 1744 } 1745 1746 if (unlikely(in_sack < 0)) 1747 break; 1748 1749 if (in_sack) { 1750 TCP_SKB_CB(skb)->sacked = 1751 tcp_sacktag_one(sk, 1752 state, 1753 TCP_SKB_CB(skb)->sacked, 1754 TCP_SKB_CB(skb)->seq, 1755 TCP_SKB_CB(skb)->end_seq, 1756 dup_sack, 1757 tcp_skb_pcount(skb), 1758 tcp_skb_timestamp_us(skb)); 1759 tcp_rate_skb_delivered(sk, skb, state->rate); 1760 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1761 list_del_init(&skb->tcp_tsorted_anchor); 1762 1763 if (!before(TCP_SKB_CB(skb)->seq, 1764 tcp_highest_sack_seq(tp))) 1765 tcp_advance_highest_sack(sk, skb); 1766 } 1767 } 1768 return skb; 1769 } 1770 1771 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1772 { 1773 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1774 struct sk_buff *skb; 1775 1776 while (*p) { 1777 parent = *p; 1778 skb = rb_to_skb(parent); 1779 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1780 p = &parent->rb_left; 1781 continue; 1782 } 1783 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1784 p = &parent->rb_right; 1785 continue; 1786 } 1787 return skb; 1788 } 1789 return NULL; 1790 } 1791 1792 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1793 u32 skip_to_seq) 1794 { 1795 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1796 return skb; 1797 1798 return tcp_sacktag_bsearch(sk, skip_to_seq); 1799 } 1800 1801 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1802 struct sock *sk, 1803 struct tcp_sack_block *next_dup, 1804 struct tcp_sacktag_state *state, 1805 u32 skip_to_seq) 1806 { 1807 if (!next_dup) 1808 return skb; 1809 1810 if (before(next_dup->start_seq, skip_to_seq)) { 1811 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1812 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1813 next_dup->start_seq, next_dup->end_seq, 1814 1); 1815 } 1816 1817 return skb; 1818 } 1819 1820 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1821 { 1822 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1823 } 1824 1825 static int 1826 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1827 u32 prior_snd_una, struct tcp_sacktag_state *state) 1828 { 1829 struct tcp_sock *tp = tcp_sk(sk); 1830 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1831 TCP_SKB_CB(ack_skb)->sacked); 1832 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1833 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1834 struct tcp_sack_block *cache; 1835 struct sk_buff *skb; 1836 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1837 int used_sacks; 1838 bool found_dup_sack = false; 1839 int i, j; 1840 int first_sack_index; 1841 1842 state->flag = 0; 1843 state->reord = tp->snd_nxt; 1844 1845 if (!tp->sacked_out) 1846 tcp_highest_sack_reset(sk); 1847 1848 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1849 num_sacks, prior_snd_una, state); 1850 1851 /* Eliminate too old ACKs, but take into 1852 * account more or less fresh ones, they can 1853 * contain valid SACK info. 1854 */ 1855 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1856 return 0; 1857 1858 if (!tp->packets_out) 1859 goto out; 1860 1861 used_sacks = 0; 1862 first_sack_index = 0; 1863 for (i = 0; i < num_sacks; i++) { 1864 bool dup_sack = !i && found_dup_sack; 1865 1866 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1867 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1868 1869 if (!tcp_is_sackblock_valid(tp, dup_sack, 1870 sp[used_sacks].start_seq, 1871 sp[used_sacks].end_seq)) { 1872 int mib_idx; 1873 1874 if (dup_sack) { 1875 if (!tp->undo_marker) 1876 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1877 else 1878 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1879 } else { 1880 /* Don't count olds caused by ACK reordering */ 1881 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1882 !after(sp[used_sacks].end_seq, tp->snd_una)) 1883 continue; 1884 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1885 } 1886 1887 NET_INC_STATS(sock_net(sk), mib_idx); 1888 if (i == 0) 1889 first_sack_index = -1; 1890 continue; 1891 } 1892 1893 /* Ignore very old stuff early */ 1894 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1895 if (i == 0) 1896 first_sack_index = -1; 1897 continue; 1898 } 1899 1900 used_sacks++; 1901 } 1902 1903 /* order SACK blocks to allow in order walk of the retrans queue */ 1904 for (i = used_sacks - 1; i > 0; i--) { 1905 for (j = 0; j < i; j++) { 1906 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1907 swap(sp[j], sp[j + 1]); 1908 1909 /* Track where the first SACK block goes to */ 1910 if (j == first_sack_index) 1911 first_sack_index = j + 1; 1912 } 1913 } 1914 } 1915 1916 state->mss_now = tcp_current_mss(sk); 1917 skb = NULL; 1918 i = 0; 1919 1920 if (!tp->sacked_out) { 1921 /* It's already past, so skip checking against it */ 1922 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1923 } else { 1924 cache = tp->recv_sack_cache; 1925 /* Skip empty blocks in at head of the cache */ 1926 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1927 !cache->end_seq) 1928 cache++; 1929 } 1930 1931 while (i < used_sacks) { 1932 u32 start_seq = sp[i].start_seq; 1933 u32 end_seq = sp[i].end_seq; 1934 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1935 struct tcp_sack_block *next_dup = NULL; 1936 1937 if (found_dup_sack && ((i + 1) == first_sack_index)) 1938 next_dup = &sp[i + 1]; 1939 1940 /* Skip too early cached blocks */ 1941 while (tcp_sack_cache_ok(tp, cache) && 1942 !before(start_seq, cache->end_seq)) 1943 cache++; 1944 1945 /* Can skip some work by looking recv_sack_cache? */ 1946 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1947 after(end_seq, cache->start_seq)) { 1948 1949 /* Head todo? */ 1950 if (before(start_seq, cache->start_seq)) { 1951 skb = tcp_sacktag_skip(skb, sk, start_seq); 1952 skb = tcp_sacktag_walk(skb, sk, next_dup, 1953 state, 1954 start_seq, 1955 cache->start_seq, 1956 dup_sack); 1957 } 1958 1959 /* Rest of the block already fully processed? */ 1960 if (!after(end_seq, cache->end_seq)) 1961 goto advance_sp; 1962 1963 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1964 state, 1965 cache->end_seq); 1966 1967 /* ...tail remains todo... */ 1968 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1969 /* ...but better entrypoint exists! */ 1970 skb = tcp_highest_sack(sk); 1971 if (!skb) 1972 break; 1973 cache++; 1974 goto walk; 1975 } 1976 1977 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1978 /* Check overlap against next cached too (past this one already) */ 1979 cache++; 1980 continue; 1981 } 1982 1983 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1984 skb = tcp_highest_sack(sk); 1985 if (!skb) 1986 break; 1987 } 1988 skb = tcp_sacktag_skip(skb, sk, start_seq); 1989 1990 walk: 1991 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1992 start_seq, end_seq, dup_sack); 1993 1994 advance_sp: 1995 i++; 1996 } 1997 1998 /* Clear the head of the cache sack blocks so we can skip it next time */ 1999 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2000 tp->recv_sack_cache[i].start_seq = 0; 2001 tp->recv_sack_cache[i].end_seq = 0; 2002 } 2003 for (j = 0; j < used_sacks; j++) 2004 tp->recv_sack_cache[i++] = sp[j]; 2005 2006 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2007 tcp_check_sack_reordering(sk, state->reord, 0); 2008 2009 tcp_verify_left_out(tp); 2010 out: 2011 2012 #if FASTRETRANS_DEBUG > 0 2013 WARN_ON((int)tp->sacked_out < 0); 2014 WARN_ON((int)tp->lost_out < 0); 2015 WARN_ON((int)tp->retrans_out < 0); 2016 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2017 #endif 2018 return state->flag; 2019 } 2020 2021 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2022 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2023 */ 2024 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2025 { 2026 u32 holes; 2027 2028 holes = max(tp->lost_out, 1U); 2029 holes = min(holes, tp->packets_out); 2030 2031 if ((tp->sacked_out + holes) > tp->packets_out) { 2032 tp->sacked_out = tp->packets_out - holes; 2033 return true; 2034 } 2035 return false; 2036 } 2037 2038 /* If we receive more dupacks than we expected counting segments 2039 * in assumption of absent reordering, interpret this as reordering. 2040 * The only another reason could be bug in receiver TCP. 2041 */ 2042 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2043 { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 2046 if (!tcp_limit_reno_sacked(tp)) 2047 return; 2048 2049 tp->reordering = min_t(u32, tp->packets_out + addend, 2050 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2051 tp->reord_seen++; 2052 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2053 } 2054 2055 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2056 2057 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2058 { 2059 if (num_dupack) { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 u32 prior_sacked = tp->sacked_out; 2062 s32 delivered; 2063 2064 tp->sacked_out += num_dupack; 2065 tcp_check_reno_reordering(sk, 0); 2066 delivered = tp->sacked_out - prior_sacked; 2067 if (delivered > 0) 2068 tcp_count_delivered(tp, delivered, ece_ack); 2069 tcp_verify_left_out(tp); 2070 } 2071 } 2072 2073 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2074 2075 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2076 { 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 2079 if (acked > 0) { 2080 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2081 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2082 ece_ack); 2083 if (acked - 1 >= tp->sacked_out) 2084 tp->sacked_out = 0; 2085 else 2086 tp->sacked_out -= acked - 1; 2087 } 2088 tcp_check_reno_reordering(sk, acked); 2089 tcp_verify_left_out(tp); 2090 } 2091 2092 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2093 { 2094 tp->sacked_out = 0; 2095 } 2096 2097 void tcp_clear_retrans(struct tcp_sock *tp) 2098 { 2099 tp->retrans_out = 0; 2100 tp->lost_out = 0; 2101 tp->undo_marker = 0; 2102 tp->undo_retrans = -1; 2103 tp->sacked_out = 0; 2104 } 2105 2106 static inline void tcp_init_undo(struct tcp_sock *tp) 2107 { 2108 tp->undo_marker = tp->snd_una; 2109 /* Retransmission still in flight may cause DSACKs later. */ 2110 tp->undo_retrans = tp->retrans_out ? : -1; 2111 } 2112 2113 static bool tcp_is_rack(const struct sock *sk) 2114 { 2115 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2116 TCP_RACK_LOSS_DETECTION; 2117 } 2118 2119 /* If we detect SACK reneging, forget all SACK information 2120 * and reset tags completely, otherwise preserve SACKs. If receiver 2121 * dropped its ofo queue, we will know this due to reneging detection. 2122 */ 2123 static void tcp_timeout_mark_lost(struct sock *sk) 2124 { 2125 struct tcp_sock *tp = tcp_sk(sk); 2126 struct sk_buff *skb, *head; 2127 bool is_reneg; /* is receiver reneging on SACKs? */ 2128 2129 head = tcp_rtx_queue_head(sk); 2130 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2131 if (is_reneg) { 2132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2133 tp->sacked_out = 0; 2134 /* Mark SACK reneging until we recover from this loss event. */ 2135 tp->is_sack_reneg = 1; 2136 } else if (tcp_is_reno(tp)) { 2137 tcp_reset_reno_sack(tp); 2138 } 2139 2140 skb = head; 2141 skb_rbtree_walk_from(skb) { 2142 if (is_reneg) 2143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2144 else if (tcp_is_rack(sk) && skb != head && 2145 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2146 continue; /* Don't mark recently sent ones lost yet */ 2147 tcp_mark_skb_lost(sk, skb); 2148 } 2149 tcp_verify_left_out(tp); 2150 tcp_clear_all_retrans_hints(tp); 2151 } 2152 2153 /* Enter Loss state. */ 2154 void tcp_enter_loss(struct sock *sk) 2155 { 2156 const struct inet_connection_sock *icsk = inet_csk(sk); 2157 struct tcp_sock *tp = tcp_sk(sk); 2158 struct net *net = sock_net(sk); 2159 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2160 u8 reordering; 2161 2162 tcp_timeout_mark_lost(sk); 2163 2164 /* Reduce ssthresh if it has not yet been made inside this window. */ 2165 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2166 !after(tp->high_seq, tp->snd_una) || 2167 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2168 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2169 tp->prior_cwnd = tcp_snd_cwnd(tp); 2170 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2171 tcp_ca_event(sk, CA_EVENT_LOSS); 2172 tcp_init_undo(tp); 2173 } 2174 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2175 tp->snd_cwnd_cnt = 0; 2176 tp->snd_cwnd_stamp = tcp_jiffies32; 2177 2178 /* Timeout in disordered state after receiving substantial DUPACKs 2179 * suggests that the degree of reordering is over-estimated. 2180 */ 2181 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2182 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2183 tp->sacked_out >= reordering) 2184 tp->reordering = min_t(unsigned int, tp->reordering, 2185 reordering); 2186 2187 tcp_set_ca_state(sk, TCP_CA_Loss); 2188 tp->high_seq = tp->snd_nxt; 2189 tcp_ecn_queue_cwr(tp); 2190 2191 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2192 * loss recovery is underway except recurring timeout(s) on 2193 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2194 */ 2195 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2196 (new_recovery || icsk->icsk_retransmits) && 2197 !inet_csk(sk)->icsk_mtup.probe_size; 2198 } 2199 2200 /* If ACK arrived pointing to a remembered SACK, it means that our 2201 * remembered SACKs do not reflect real state of receiver i.e. 2202 * receiver _host_ is heavily congested (or buggy). 2203 * 2204 * To avoid big spurious retransmission bursts due to transient SACK 2205 * scoreboard oddities that look like reneging, we give the receiver a 2206 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2207 * restore sanity to the SACK scoreboard. If the apparent reneging 2208 * persists until this RTO then we'll clear the SACK scoreboard. 2209 */ 2210 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2211 { 2212 if (*ack_flag & FLAG_SACK_RENEGING && 2213 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2216 msecs_to_jiffies(10)); 2217 2218 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2219 delay, TCP_RTO_MAX); 2220 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2221 return true; 2222 } 2223 return false; 2224 } 2225 2226 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2227 * counter when SACK is enabled (without SACK, sacked_out is used for 2228 * that purpose). 2229 * 2230 * With reordering, holes may still be in flight, so RFC3517 recovery 2231 * uses pure sacked_out (total number of SACKed segments) even though 2232 * it violates the RFC that uses duplicate ACKs, often these are equal 2233 * but when e.g. out-of-window ACKs or packet duplication occurs, 2234 * they differ. Since neither occurs due to loss, TCP should really 2235 * ignore them. 2236 */ 2237 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2238 { 2239 return tp->sacked_out + 1; 2240 } 2241 2242 /* Linux NewReno/SACK/ECN state machine. 2243 * -------------------------------------- 2244 * 2245 * "Open" Normal state, no dubious events, fast path. 2246 * "Disorder" In all the respects it is "Open", 2247 * but requires a bit more attention. It is entered when 2248 * we see some SACKs or dupacks. It is split of "Open" 2249 * mainly to move some processing from fast path to slow one. 2250 * "CWR" CWND was reduced due to some Congestion Notification event. 2251 * It can be ECN, ICMP source quench, local device congestion. 2252 * "Recovery" CWND was reduced, we are fast-retransmitting. 2253 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2254 * 2255 * tcp_fastretrans_alert() is entered: 2256 * - each incoming ACK, if state is not "Open" 2257 * - when arrived ACK is unusual, namely: 2258 * * SACK 2259 * * Duplicate ACK. 2260 * * ECN ECE. 2261 * 2262 * Counting packets in flight is pretty simple. 2263 * 2264 * in_flight = packets_out - left_out + retrans_out 2265 * 2266 * packets_out is SND.NXT-SND.UNA counted in packets. 2267 * 2268 * retrans_out is number of retransmitted segments. 2269 * 2270 * left_out is number of segments left network, but not ACKed yet. 2271 * 2272 * left_out = sacked_out + lost_out 2273 * 2274 * sacked_out: Packets, which arrived to receiver out of order 2275 * and hence not ACKed. With SACKs this number is simply 2276 * amount of SACKed data. Even without SACKs 2277 * it is easy to give pretty reliable estimate of this number, 2278 * counting duplicate ACKs. 2279 * 2280 * lost_out: Packets lost by network. TCP has no explicit 2281 * "loss notification" feedback from network (for now). 2282 * It means that this number can be only _guessed_. 2283 * Actually, it is the heuristics to predict lossage that 2284 * distinguishes different algorithms. 2285 * 2286 * F.e. after RTO, when all the queue is considered as lost, 2287 * lost_out = packets_out and in_flight = retrans_out. 2288 * 2289 * Essentially, we have now a few algorithms detecting 2290 * lost packets. 2291 * 2292 * If the receiver supports SACK: 2293 * 2294 * RFC6675/3517: It is the conventional algorithm. A packet is 2295 * considered lost if the number of higher sequence packets 2296 * SACKed is greater than or equal the DUPACK thoreshold 2297 * (reordering). This is implemented in tcp_mark_head_lost and 2298 * tcp_update_scoreboard. 2299 * 2300 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2301 * (2017-) that checks timing instead of counting DUPACKs. 2302 * Essentially a packet is considered lost if it's not S/ACKed 2303 * after RTT + reordering_window, where both metrics are 2304 * dynamically measured and adjusted. This is implemented in 2305 * tcp_rack_mark_lost. 2306 * 2307 * If the receiver does not support SACK: 2308 * 2309 * NewReno (RFC6582): in Recovery we assume that one segment 2310 * is lost (classic Reno). While we are in Recovery and 2311 * a partial ACK arrives, we assume that one more packet 2312 * is lost (NewReno). This heuristics are the same in NewReno 2313 * and SACK. 2314 * 2315 * Really tricky (and requiring careful tuning) part of algorithm 2316 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2317 * The first determines the moment _when_ we should reduce CWND and, 2318 * hence, slow down forward transmission. In fact, it determines the moment 2319 * when we decide that hole is caused by loss, rather than by a reorder. 2320 * 2321 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2322 * holes, caused by lost packets. 2323 * 2324 * And the most logically complicated part of algorithm is undo 2325 * heuristics. We detect false retransmits due to both too early 2326 * fast retransmit (reordering) and underestimated RTO, analyzing 2327 * timestamps and D-SACKs. When we detect that some segments were 2328 * retransmitted by mistake and CWND reduction was wrong, we undo 2329 * window reduction and abort recovery phase. This logic is hidden 2330 * inside several functions named tcp_try_undo_<something>. 2331 */ 2332 2333 /* This function decides, when we should leave Disordered state 2334 * and enter Recovery phase, reducing congestion window. 2335 * 2336 * Main question: may we further continue forward transmission 2337 * with the same cwnd? 2338 */ 2339 static bool tcp_time_to_recover(struct sock *sk, int flag) 2340 { 2341 struct tcp_sock *tp = tcp_sk(sk); 2342 2343 /* Trick#1: The loss is proven. */ 2344 if (tp->lost_out) 2345 return true; 2346 2347 /* Not-A-Trick#2 : Classic rule... */ 2348 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2349 return true; 2350 2351 return false; 2352 } 2353 2354 /* Detect loss in event "A" above by marking head of queue up as lost. 2355 * For RFC3517 SACK, a segment is considered lost if it 2356 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2357 * the maximum SACKed segments to pass before reaching this limit. 2358 */ 2359 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 struct sk_buff *skb; 2363 int cnt; 2364 /* Use SACK to deduce losses of new sequences sent during recovery */ 2365 const u32 loss_high = tp->snd_nxt; 2366 2367 WARN_ON(packets > tp->packets_out); 2368 skb = tp->lost_skb_hint; 2369 if (skb) { 2370 /* Head already handled? */ 2371 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2372 return; 2373 cnt = tp->lost_cnt_hint; 2374 } else { 2375 skb = tcp_rtx_queue_head(sk); 2376 cnt = 0; 2377 } 2378 2379 skb_rbtree_walk_from(skb) { 2380 /* TODO: do this better */ 2381 /* this is not the most efficient way to do this... */ 2382 tp->lost_skb_hint = skb; 2383 tp->lost_cnt_hint = cnt; 2384 2385 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2386 break; 2387 2388 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2389 cnt += tcp_skb_pcount(skb); 2390 2391 if (cnt > packets) 2392 break; 2393 2394 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2395 tcp_mark_skb_lost(sk, skb); 2396 2397 if (mark_head) 2398 break; 2399 } 2400 tcp_verify_left_out(tp); 2401 } 2402 2403 /* Account newly detected lost packet(s) */ 2404 2405 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2406 { 2407 struct tcp_sock *tp = tcp_sk(sk); 2408 2409 if (tcp_is_sack(tp)) { 2410 int sacked_upto = tp->sacked_out - tp->reordering; 2411 if (sacked_upto >= 0) 2412 tcp_mark_head_lost(sk, sacked_upto, 0); 2413 else if (fast_rexmit) 2414 tcp_mark_head_lost(sk, 1, 1); 2415 } 2416 } 2417 2418 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2419 { 2420 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2421 before(tp->rx_opt.rcv_tsecr, when); 2422 } 2423 2424 /* skb is spurious retransmitted if the returned timestamp echo 2425 * reply is prior to the skb transmission time 2426 */ 2427 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2428 const struct sk_buff *skb) 2429 { 2430 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2431 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2432 } 2433 2434 /* Nothing was retransmitted or returned timestamp is less 2435 * than timestamp of the first retransmission. 2436 */ 2437 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2438 { 2439 return tp->retrans_stamp && 2440 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2441 } 2442 2443 /* Undo procedures. */ 2444 2445 /* We can clear retrans_stamp when there are no retransmissions in the 2446 * window. It would seem that it is trivially available for us in 2447 * tp->retrans_out, however, that kind of assumptions doesn't consider 2448 * what will happen if errors occur when sending retransmission for the 2449 * second time. ...It could the that such segment has only 2450 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2451 * the head skb is enough except for some reneging corner cases that 2452 * are not worth the effort. 2453 * 2454 * Main reason for all this complexity is the fact that connection dying 2455 * time now depends on the validity of the retrans_stamp, in particular, 2456 * that successive retransmissions of a segment must not advance 2457 * retrans_stamp under any conditions. 2458 */ 2459 static bool tcp_any_retrans_done(const struct sock *sk) 2460 { 2461 const struct tcp_sock *tp = tcp_sk(sk); 2462 struct sk_buff *skb; 2463 2464 if (tp->retrans_out) 2465 return true; 2466 2467 skb = tcp_rtx_queue_head(sk); 2468 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2469 return true; 2470 2471 return false; 2472 } 2473 2474 static void DBGUNDO(struct sock *sk, const char *msg) 2475 { 2476 #if FASTRETRANS_DEBUG > 1 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 struct inet_sock *inet = inet_sk(sk); 2479 2480 if (sk->sk_family == AF_INET) { 2481 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2482 msg, 2483 &inet->inet_daddr, ntohs(inet->inet_dport), 2484 tcp_snd_cwnd(tp), tcp_left_out(tp), 2485 tp->snd_ssthresh, tp->prior_ssthresh, 2486 tp->packets_out); 2487 } 2488 #if IS_ENABLED(CONFIG_IPV6) 2489 else if (sk->sk_family == AF_INET6) { 2490 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2491 msg, 2492 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2493 tcp_snd_cwnd(tp), tcp_left_out(tp), 2494 tp->snd_ssthresh, tp->prior_ssthresh, 2495 tp->packets_out); 2496 } 2497 #endif 2498 #endif 2499 } 2500 2501 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 2505 if (unmark_loss) { 2506 struct sk_buff *skb; 2507 2508 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2509 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2510 } 2511 tp->lost_out = 0; 2512 tcp_clear_all_retrans_hints(tp); 2513 } 2514 2515 if (tp->prior_ssthresh) { 2516 const struct inet_connection_sock *icsk = inet_csk(sk); 2517 2518 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2519 2520 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2521 tp->snd_ssthresh = tp->prior_ssthresh; 2522 tcp_ecn_withdraw_cwr(tp); 2523 } 2524 } 2525 tp->snd_cwnd_stamp = tcp_jiffies32; 2526 tp->undo_marker = 0; 2527 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2528 } 2529 2530 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2531 { 2532 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2533 } 2534 2535 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 2539 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2540 /* Hold old state until something *above* high_seq 2541 * is ACKed. For Reno it is MUST to prevent false 2542 * fast retransmits (RFC2582). SACK TCP is safe. */ 2543 if (!tcp_any_retrans_done(sk)) 2544 tp->retrans_stamp = 0; 2545 return true; 2546 } 2547 return false; 2548 } 2549 2550 /* People celebrate: "We love our President!" */ 2551 static bool tcp_try_undo_recovery(struct sock *sk) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 2555 if (tcp_may_undo(tp)) { 2556 int mib_idx; 2557 2558 /* Happy end! We did not retransmit anything 2559 * or our original transmission succeeded. 2560 */ 2561 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2562 tcp_undo_cwnd_reduction(sk, false); 2563 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2564 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2565 else 2566 mib_idx = LINUX_MIB_TCPFULLUNDO; 2567 2568 NET_INC_STATS(sock_net(sk), mib_idx); 2569 } else if (tp->rack.reo_wnd_persist) { 2570 tp->rack.reo_wnd_persist--; 2571 } 2572 if (tcp_is_non_sack_preventing_reopen(sk)) 2573 return true; 2574 tcp_set_ca_state(sk, TCP_CA_Open); 2575 tp->is_sack_reneg = 0; 2576 return false; 2577 } 2578 2579 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2580 static bool tcp_try_undo_dsack(struct sock *sk) 2581 { 2582 struct tcp_sock *tp = tcp_sk(sk); 2583 2584 if (tp->undo_marker && !tp->undo_retrans) { 2585 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2586 tp->rack.reo_wnd_persist + 1); 2587 DBGUNDO(sk, "D-SACK"); 2588 tcp_undo_cwnd_reduction(sk, false); 2589 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2590 return true; 2591 } 2592 return false; 2593 } 2594 2595 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2596 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2597 { 2598 struct tcp_sock *tp = tcp_sk(sk); 2599 2600 if (frto_undo || tcp_may_undo(tp)) { 2601 tcp_undo_cwnd_reduction(sk, true); 2602 2603 DBGUNDO(sk, "partial loss"); 2604 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2605 if (frto_undo) 2606 NET_INC_STATS(sock_net(sk), 2607 LINUX_MIB_TCPSPURIOUSRTOS); 2608 inet_csk(sk)->icsk_retransmits = 0; 2609 if (tcp_is_non_sack_preventing_reopen(sk)) 2610 return true; 2611 if (frto_undo || tcp_is_sack(tp)) { 2612 tcp_set_ca_state(sk, TCP_CA_Open); 2613 tp->is_sack_reneg = 0; 2614 } 2615 return true; 2616 } 2617 return false; 2618 } 2619 2620 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2621 * It computes the number of packets to send (sndcnt) based on packets newly 2622 * delivered: 2623 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2624 * cwnd reductions across a full RTT. 2625 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2626 * But when SND_UNA is acked without further losses, 2627 * slow starts cwnd up to ssthresh to speed up the recovery. 2628 */ 2629 static void tcp_init_cwnd_reduction(struct sock *sk) 2630 { 2631 struct tcp_sock *tp = tcp_sk(sk); 2632 2633 tp->high_seq = tp->snd_nxt; 2634 tp->tlp_high_seq = 0; 2635 tp->snd_cwnd_cnt = 0; 2636 tp->prior_cwnd = tcp_snd_cwnd(tp); 2637 tp->prr_delivered = 0; 2638 tp->prr_out = 0; 2639 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2640 tcp_ecn_queue_cwr(tp); 2641 } 2642 2643 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2644 { 2645 struct tcp_sock *tp = tcp_sk(sk); 2646 int sndcnt = 0; 2647 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2648 2649 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2650 return; 2651 2652 tp->prr_delivered += newly_acked_sacked; 2653 if (delta < 0) { 2654 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2655 tp->prior_cwnd - 1; 2656 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2657 } else { 2658 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2659 newly_acked_sacked); 2660 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2661 sndcnt++; 2662 sndcnt = min(delta, sndcnt); 2663 } 2664 /* Force a fast retransmit upon entering fast recovery */ 2665 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2666 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2667 } 2668 2669 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2670 { 2671 struct tcp_sock *tp = tcp_sk(sk); 2672 2673 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2674 return; 2675 2676 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2677 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2678 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2679 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2680 tp->snd_cwnd_stamp = tcp_jiffies32; 2681 } 2682 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2683 } 2684 2685 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2686 void tcp_enter_cwr(struct sock *sk) 2687 { 2688 struct tcp_sock *tp = tcp_sk(sk); 2689 2690 tp->prior_ssthresh = 0; 2691 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2692 tp->undo_marker = 0; 2693 tcp_init_cwnd_reduction(sk); 2694 tcp_set_ca_state(sk, TCP_CA_CWR); 2695 } 2696 } 2697 EXPORT_SYMBOL(tcp_enter_cwr); 2698 2699 static void tcp_try_keep_open(struct sock *sk) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 int state = TCP_CA_Open; 2703 2704 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2705 state = TCP_CA_Disorder; 2706 2707 if (inet_csk(sk)->icsk_ca_state != state) { 2708 tcp_set_ca_state(sk, state); 2709 tp->high_seq = tp->snd_nxt; 2710 } 2711 } 2712 2713 static void tcp_try_to_open(struct sock *sk, int flag) 2714 { 2715 struct tcp_sock *tp = tcp_sk(sk); 2716 2717 tcp_verify_left_out(tp); 2718 2719 if (!tcp_any_retrans_done(sk)) 2720 tp->retrans_stamp = 0; 2721 2722 if (flag & FLAG_ECE) 2723 tcp_enter_cwr(sk); 2724 2725 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2726 tcp_try_keep_open(sk); 2727 } 2728 } 2729 2730 static void tcp_mtup_probe_failed(struct sock *sk) 2731 { 2732 struct inet_connection_sock *icsk = inet_csk(sk); 2733 2734 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2735 icsk->icsk_mtup.probe_size = 0; 2736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2737 } 2738 2739 static void tcp_mtup_probe_success(struct sock *sk) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 struct inet_connection_sock *icsk = inet_csk(sk); 2743 u64 val; 2744 2745 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2746 2747 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2748 do_div(val, icsk->icsk_mtup.probe_size); 2749 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2750 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2751 2752 tp->snd_cwnd_cnt = 0; 2753 tp->snd_cwnd_stamp = tcp_jiffies32; 2754 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2755 2756 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2757 icsk->icsk_mtup.probe_size = 0; 2758 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2760 } 2761 2762 /* Sometimes we deduce that packets have been dropped due to reasons other than 2763 * congestion, like path MTU reductions or failed client TFO attempts. In these 2764 * cases we call this function to retransmit as many packets as cwnd allows, 2765 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2766 * non-zero value (and may do so in a later calling context due to TSQ), we 2767 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2768 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2769 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2770 * prematurely). 2771 */ 2772 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2773 { 2774 const struct inet_connection_sock *icsk = inet_csk(sk); 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 2777 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2778 tp->high_seq = tp->snd_nxt; 2779 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2780 tp->prior_ssthresh = 0; 2781 tp->undo_marker = 0; 2782 tcp_set_ca_state(sk, TCP_CA_Loss); 2783 } 2784 tcp_xmit_retransmit_queue(sk); 2785 } 2786 2787 /* Do a simple retransmit without using the backoff mechanisms in 2788 * tcp_timer. This is used for path mtu discovery. 2789 * The socket is already locked here. 2790 */ 2791 void tcp_simple_retransmit(struct sock *sk) 2792 { 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 struct sk_buff *skb; 2795 int mss; 2796 2797 /* A fastopen SYN request is stored as two separate packets within 2798 * the retransmit queue, this is done by tcp_send_syn_data(). 2799 * As a result simply checking the MSS of the frames in the queue 2800 * will not work for the SYN packet. 2801 * 2802 * Us being here is an indication of a path MTU issue so we can 2803 * assume that the fastopen SYN was lost and just mark all the 2804 * frames in the retransmit queue as lost. We will use an MSS of 2805 * -1 to mark all frames as lost, otherwise compute the current MSS. 2806 */ 2807 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2808 mss = -1; 2809 else 2810 mss = tcp_current_mss(sk); 2811 2812 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2813 if (tcp_skb_seglen(skb) > mss) 2814 tcp_mark_skb_lost(sk, skb); 2815 } 2816 2817 tcp_clear_retrans_hints_partial(tp); 2818 2819 if (!tp->lost_out) 2820 return; 2821 2822 if (tcp_is_reno(tp)) 2823 tcp_limit_reno_sacked(tp); 2824 2825 tcp_verify_left_out(tp); 2826 2827 /* Don't muck with the congestion window here. 2828 * Reason is that we do not increase amount of _data_ 2829 * in network, but units changed and effective 2830 * cwnd/ssthresh really reduced now. 2831 */ 2832 tcp_non_congestion_loss_retransmit(sk); 2833 } 2834 EXPORT_SYMBOL(tcp_simple_retransmit); 2835 2836 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2837 { 2838 struct tcp_sock *tp = tcp_sk(sk); 2839 int mib_idx; 2840 2841 if (tcp_is_reno(tp)) 2842 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2843 else 2844 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2845 2846 NET_INC_STATS(sock_net(sk), mib_idx); 2847 2848 tp->prior_ssthresh = 0; 2849 tcp_init_undo(tp); 2850 2851 if (!tcp_in_cwnd_reduction(sk)) { 2852 if (!ece_ack) 2853 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2854 tcp_init_cwnd_reduction(sk); 2855 } 2856 tcp_set_ca_state(sk, TCP_CA_Recovery); 2857 } 2858 2859 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2860 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2861 */ 2862 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2863 int *rexmit) 2864 { 2865 struct tcp_sock *tp = tcp_sk(sk); 2866 bool recovered = !before(tp->snd_una, tp->high_seq); 2867 2868 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2869 tcp_try_undo_loss(sk, false)) 2870 return; 2871 2872 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2873 /* Step 3.b. A timeout is spurious if not all data are 2874 * lost, i.e., never-retransmitted data are (s)acked. 2875 */ 2876 if ((flag & FLAG_ORIG_SACK_ACKED) && 2877 tcp_try_undo_loss(sk, true)) 2878 return; 2879 2880 if (after(tp->snd_nxt, tp->high_seq)) { 2881 if (flag & FLAG_DATA_SACKED || num_dupack) 2882 tp->frto = 0; /* Step 3.a. loss was real */ 2883 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2884 tp->high_seq = tp->snd_nxt; 2885 /* Step 2.b. Try send new data (but deferred until cwnd 2886 * is updated in tcp_ack()). Otherwise fall back to 2887 * the conventional recovery. 2888 */ 2889 if (!tcp_write_queue_empty(sk) && 2890 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2891 *rexmit = REXMIT_NEW; 2892 return; 2893 } 2894 tp->frto = 0; 2895 } 2896 } 2897 2898 if (recovered) { 2899 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2900 tcp_try_undo_recovery(sk); 2901 return; 2902 } 2903 if (tcp_is_reno(tp)) { 2904 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2905 * delivered. Lower inflight to clock out (re)transmissions. 2906 */ 2907 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2908 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2909 else if (flag & FLAG_SND_UNA_ADVANCED) 2910 tcp_reset_reno_sack(tp); 2911 } 2912 *rexmit = REXMIT_LOST; 2913 } 2914 2915 static bool tcp_force_fast_retransmit(struct sock *sk) 2916 { 2917 struct tcp_sock *tp = tcp_sk(sk); 2918 2919 return after(tcp_highest_sack_seq(tp), 2920 tp->snd_una + tp->reordering * tp->mss_cache); 2921 } 2922 2923 /* Undo during fast recovery after partial ACK. */ 2924 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2925 bool *do_lost) 2926 { 2927 struct tcp_sock *tp = tcp_sk(sk); 2928 2929 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2930 /* Plain luck! Hole if filled with delayed 2931 * packet, rather than with a retransmit. Check reordering. 2932 */ 2933 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2934 2935 /* We are getting evidence that the reordering degree is higher 2936 * than we realized. If there are no retransmits out then we 2937 * can undo. Otherwise we clock out new packets but do not 2938 * mark more packets lost or retransmit more. 2939 */ 2940 if (tp->retrans_out) 2941 return true; 2942 2943 if (!tcp_any_retrans_done(sk)) 2944 tp->retrans_stamp = 0; 2945 2946 DBGUNDO(sk, "partial recovery"); 2947 tcp_undo_cwnd_reduction(sk, true); 2948 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2949 tcp_try_keep_open(sk); 2950 } else { 2951 /* Partial ACK arrived. Force fast retransmit. */ 2952 *do_lost = tcp_force_fast_retransmit(sk); 2953 } 2954 return false; 2955 } 2956 2957 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2958 { 2959 struct tcp_sock *tp = tcp_sk(sk); 2960 2961 if (tcp_rtx_queue_empty(sk)) 2962 return; 2963 2964 if (unlikely(tcp_is_reno(tp))) { 2965 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2966 } else if (tcp_is_rack(sk)) { 2967 u32 prior_retrans = tp->retrans_out; 2968 2969 if (tcp_rack_mark_lost(sk)) 2970 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2971 if (prior_retrans > tp->retrans_out) 2972 *ack_flag |= FLAG_LOST_RETRANS; 2973 } 2974 } 2975 2976 /* Process an event, which can update packets-in-flight not trivially. 2977 * Main goal of this function is to calculate new estimate for left_out, 2978 * taking into account both packets sitting in receiver's buffer and 2979 * packets lost by network. 2980 * 2981 * Besides that it updates the congestion state when packet loss or ECN 2982 * is detected. But it does not reduce the cwnd, it is done by the 2983 * congestion control later. 2984 * 2985 * It does _not_ decide what to send, it is made in function 2986 * tcp_xmit_retransmit_queue(). 2987 */ 2988 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2989 int num_dupack, int *ack_flag, int *rexmit) 2990 { 2991 struct inet_connection_sock *icsk = inet_csk(sk); 2992 struct tcp_sock *tp = tcp_sk(sk); 2993 int fast_rexmit = 0, flag = *ack_flag; 2994 bool ece_ack = flag & FLAG_ECE; 2995 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2996 tcp_force_fast_retransmit(sk)); 2997 2998 if (!tp->packets_out && tp->sacked_out) 2999 tp->sacked_out = 0; 3000 3001 /* Now state machine starts. 3002 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3003 if (ece_ack) 3004 tp->prior_ssthresh = 0; 3005 3006 /* B. In all the states check for reneging SACKs. */ 3007 if (tcp_check_sack_reneging(sk, ack_flag)) 3008 return; 3009 3010 /* C. Check consistency of the current state. */ 3011 tcp_verify_left_out(tp); 3012 3013 /* D. Check state exit conditions. State can be terminated 3014 * when high_seq is ACKed. */ 3015 if (icsk->icsk_ca_state == TCP_CA_Open) { 3016 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3017 tp->retrans_stamp = 0; 3018 } else if (!before(tp->snd_una, tp->high_seq)) { 3019 switch (icsk->icsk_ca_state) { 3020 case TCP_CA_CWR: 3021 /* CWR is to be held something *above* high_seq 3022 * is ACKed for CWR bit to reach receiver. */ 3023 if (tp->snd_una != tp->high_seq) { 3024 tcp_end_cwnd_reduction(sk); 3025 tcp_set_ca_state(sk, TCP_CA_Open); 3026 } 3027 break; 3028 3029 case TCP_CA_Recovery: 3030 if (tcp_is_reno(tp)) 3031 tcp_reset_reno_sack(tp); 3032 if (tcp_try_undo_recovery(sk)) 3033 return; 3034 tcp_end_cwnd_reduction(sk); 3035 break; 3036 } 3037 } 3038 3039 /* E. Process state. */ 3040 switch (icsk->icsk_ca_state) { 3041 case TCP_CA_Recovery: 3042 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3043 if (tcp_is_reno(tp)) 3044 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3045 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3046 return; 3047 3048 if (tcp_try_undo_dsack(sk)) 3049 tcp_try_to_open(sk, flag); 3050 3051 tcp_identify_packet_loss(sk, ack_flag); 3052 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3053 if (!tcp_time_to_recover(sk, flag)) 3054 return; 3055 /* Undo reverts the recovery state. If loss is evident, 3056 * starts a new recovery (e.g. reordering then loss); 3057 */ 3058 tcp_enter_recovery(sk, ece_ack); 3059 } 3060 break; 3061 case TCP_CA_Loss: 3062 tcp_process_loss(sk, flag, num_dupack, rexmit); 3063 tcp_identify_packet_loss(sk, ack_flag); 3064 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3065 (*ack_flag & FLAG_LOST_RETRANS))) 3066 return; 3067 /* Change state if cwnd is undone or retransmits are lost */ 3068 fallthrough; 3069 default: 3070 if (tcp_is_reno(tp)) { 3071 if (flag & FLAG_SND_UNA_ADVANCED) 3072 tcp_reset_reno_sack(tp); 3073 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3074 } 3075 3076 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3077 tcp_try_undo_dsack(sk); 3078 3079 tcp_identify_packet_loss(sk, ack_flag); 3080 if (!tcp_time_to_recover(sk, flag)) { 3081 tcp_try_to_open(sk, flag); 3082 return; 3083 } 3084 3085 /* MTU probe failure: don't reduce cwnd */ 3086 if (icsk->icsk_ca_state < TCP_CA_CWR && 3087 icsk->icsk_mtup.probe_size && 3088 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3089 tcp_mtup_probe_failed(sk); 3090 /* Restores the reduction we did in tcp_mtup_probe() */ 3091 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3092 tcp_simple_retransmit(sk); 3093 return; 3094 } 3095 3096 /* Otherwise enter Recovery state */ 3097 tcp_enter_recovery(sk, ece_ack); 3098 fast_rexmit = 1; 3099 } 3100 3101 if (!tcp_is_rack(sk) && do_lost) 3102 tcp_update_scoreboard(sk, fast_rexmit); 3103 *rexmit = REXMIT_LOST; 3104 } 3105 3106 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3107 { 3108 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 3111 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3112 /* If the remote keeps returning delayed ACKs, eventually 3113 * the min filter would pick it up and overestimate the 3114 * prop. delay when it expires. Skip suspected delayed ACKs. 3115 */ 3116 return; 3117 } 3118 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3119 rtt_us ? : jiffies_to_usecs(1)); 3120 } 3121 3122 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3123 long seq_rtt_us, long sack_rtt_us, 3124 long ca_rtt_us, struct rate_sample *rs) 3125 { 3126 const struct tcp_sock *tp = tcp_sk(sk); 3127 3128 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3129 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3130 * Karn's algorithm forbids taking RTT if some retransmitted data 3131 * is acked (RFC6298). 3132 */ 3133 if (seq_rtt_us < 0) 3134 seq_rtt_us = sack_rtt_us; 3135 3136 /* RTTM Rule: A TSecr value received in a segment is used to 3137 * update the averaged RTT measurement only if the segment 3138 * acknowledges some new data, i.e., only if it advances the 3139 * left edge of the send window. 3140 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3141 */ 3142 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3143 flag & FLAG_ACKED) { 3144 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3145 3146 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3147 if (!delta) 3148 delta = 1; 3149 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3150 ca_rtt_us = seq_rtt_us; 3151 } 3152 } 3153 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3154 if (seq_rtt_us < 0) 3155 return false; 3156 3157 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3158 * always taken together with ACK, SACK, or TS-opts. Any negative 3159 * values will be skipped with the seq_rtt_us < 0 check above. 3160 */ 3161 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3162 tcp_rtt_estimator(sk, seq_rtt_us); 3163 tcp_set_rto(sk); 3164 3165 /* RFC6298: only reset backoff on valid RTT measurement. */ 3166 inet_csk(sk)->icsk_backoff = 0; 3167 return true; 3168 } 3169 3170 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3171 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3172 { 3173 struct rate_sample rs; 3174 long rtt_us = -1L; 3175 3176 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3177 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3178 3179 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3180 } 3181 3182 3183 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3184 { 3185 const struct inet_connection_sock *icsk = inet_csk(sk); 3186 3187 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3188 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3189 } 3190 3191 /* Restart timer after forward progress on connection. 3192 * RFC2988 recommends to restart timer to now+rto. 3193 */ 3194 void tcp_rearm_rto(struct sock *sk) 3195 { 3196 const struct inet_connection_sock *icsk = inet_csk(sk); 3197 struct tcp_sock *tp = tcp_sk(sk); 3198 3199 /* If the retrans timer is currently being used by Fast Open 3200 * for SYN-ACK retrans purpose, stay put. 3201 */ 3202 if (rcu_access_pointer(tp->fastopen_rsk)) 3203 return; 3204 3205 if (!tp->packets_out) { 3206 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3207 } else { 3208 u32 rto = inet_csk(sk)->icsk_rto; 3209 /* Offset the time elapsed after installing regular RTO */ 3210 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3211 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3212 s64 delta_us = tcp_rto_delta_us(sk); 3213 /* delta_us may not be positive if the socket is locked 3214 * when the retrans timer fires and is rescheduled. 3215 */ 3216 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3217 } 3218 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3219 TCP_RTO_MAX); 3220 } 3221 } 3222 3223 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3224 static void tcp_set_xmit_timer(struct sock *sk) 3225 { 3226 if (!tcp_schedule_loss_probe(sk, true)) 3227 tcp_rearm_rto(sk); 3228 } 3229 3230 /* If we get here, the whole TSO packet has not been acked. */ 3231 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3232 { 3233 struct tcp_sock *tp = tcp_sk(sk); 3234 u32 packets_acked; 3235 3236 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3237 3238 packets_acked = tcp_skb_pcount(skb); 3239 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3240 return 0; 3241 packets_acked -= tcp_skb_pcount(skb); 3242 3243 if (packets_acked) { 3244 BUG_ON(tcp_skb_pcount(skb) == 0); 3245 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3246 } 3247 3248 return packets_acked; 3249 } 3250 3251 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3252 const struct sk_buff *ack_skb, u32 prior_snd_una) 3253 { 3254 const struct skb_shared_info *shinfo; 3255 3256 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3257 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3258 return; 3259 3260 shinfo = skb_shinfo(skb); 3261 if (!before(shinfo->tskey, prior_snd_una) && 3262 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3263 tcp_skb_tsorted_save(skb) { 3264 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3265 } tcp_skb_tsorted_restore(skb); 3266 } 3267 } 3268 3269 /* Remove acknowledged frames from the retransmission queue. If our packet 3270 * is before the ack sequence we can discard it as it's confirmed to have 3271 * arrived at the other end. 3272 */ 3273 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3274 u32 prior_fack, u32 prior_snd_una, 3275 struct tcp_sacktag_state *sack, bool ece_ack) 3276 { 3277 const struct inet_connection_sock *icsk = inet_csk(sk); 3278 u64 first_ackt, last_ackt; 3279 struct tcp_sock *tp = tcp_sk(sk); 3280 u32 prior_sacked = tp->sacked_out; 3281 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3282 struct sk_buff *skb, *next; 3283 bool fully_acked = true; 3284 long sack_rtt_us = -1L; 3285 long seq_rtt_us = -1L; 3286 long ca_rtt_us = -1L; 3287 u32 pkts_acked = 0; 3288 bool rtt_update; 3289 int flag = 0; 3290 3291 first_ackt = 0; 3292 3293 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3294 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3295 const u32 start_seq = scb->seq; 3296 u8 sacked = scb->sacked; 3297 u32 acked_pcount; 3298 3299 /* Determine how many packets and what bytes were acked, tso and else */ 3300 if (after(scb->end_seq, tp->snd_una)) { 3301 if (tcp_skb_pcount(skb) == 1 || 3302 !after(tp->snd_una, scb->seq)) 3303 break; 3304 3305 acked_pcount = tcp_tso_acked(sk, skb); 3306 if (!acked_pcount) 3307 break; 3308 fully_acked = false; 3309 } else { 3310 acked_pcount = tcp_skb_pcount(skb); 3311 } 3312 3313 if (unlikely(sacked & TCPCB_RETRANS)) { 3314 if (sacked & TCPCB_SACKED_RETRANS) 3315 tp->retrans_out -= acked_pcount; 3316 flag |= FLAG_RETRANS_DATA_ACKED; 3317 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3318 last_ackt = tcp_skb_timestamp_us(skb); 3319 WARN_ON_ONCE(last_ackt == 0); 3320 if (!first_ackt) 3321 first_ackt = last_ackt; 3322 3323 if (before(start_seq, reord)) 3324 reord = start_seq; 3325 if (!after(scb->end_seq, tp->high_seq)) 3326 flag |= FLAG_ORIG_SACK_ACKED; 3327 } 3328 3329 if (sacked & TCPCB_SACKED_ACKED) { 3330 tp->sacked_out -= acked_pcount; 3331 } else if (tcp_is_sack(tp)) { 3332 tcp_count_delivered(tp, acked_pcount, ece_ack); 3333 if (!tcp_skb_spurious_retrans(tp, skb)) 3334 tcp_rack_advance(tp, sacked, scb->end_seq, 3335 tcp_skb_timestamp_us(skb)); 3336 } 3337 if (sacked & TCPCB_LOST) 3338 tp->lost_out -= acked_pcount; 3339 3340 tp->packets_out -= acked_pcount; 3341 pkts_acked += acked_pcount; 3342 tcp_rate_skb_delivered(sk, skb, sack->rate); 3343 3344 /* Initial outgoing SYN's get put onto the write_queue 3345 * just like anything else we transmit. It is not 3346 * true data, and if we misinform our callers that 3347 * this ACK acks real data, we will erroneously exit 3348 * connection startup slow start one packet too 3349 * quickly. This is severely frowned upon behavior. 3350 */ 3351 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3352 flag |= FLAG_DATA_ACKED; 3353 } else { 3354 flag |= FLAG_SYN_ACKED; 3355 tp->retrans_stamp = 0; 3356 } 3357 3358 if (!fully_acked) 3359 break; 3360 3361 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3362 3363 next = skb_rb_next(skb); 3364 if (unlikely(skb == tp->retransmit_skb_hint)) 3365 tp->retransmit_skb_hint = NULL; 3366 if (unlikely(skb == tp->lost_skb_hint)) 3367 tp->lost_skb_hint = NULL; 3368 tcp_highest_sack_replace(sk, skb, next); 3369 tcp_rtx_queue_unlink_and_free(skb, sk); 3370 } 3371 3372 if (!skb) 3373 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3374 3375 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3376 tp->snd_up = tp->snd_una; 3377 3378 if (skb) { 3379 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3380 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3381 flag |= FLAG_SACK_RENEGING; 3382 } 3383 3384 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3385 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3386 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3387 3388 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3389 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3390 sack->rate->prior_delivered + 1 == tp->delivered && 3391 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3392 /* Conservatively mark a delayed ACK. It's typically 3393 * from a lone runt packet over the round trip to 3394 * a receiver w/o out-of-order or CE events. 3395 */ 3396 flag |= FLAG_ACK_MAYBE_DELAYED; 3397 } 3398 } 3399 if (sack->first_sackt) { 3400 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3401 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3402 } 3403 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3404 ca_rtt_us, sack->rate); 3405 3406 if (flag & FLAG_ACKED) { 3407 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3408 if (unlikely(icsk->icsk_mtup.probe_size && 3409 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3410 tcp_mtup_probe_success(sk); 3411 } 3412 3413 if (tcp_is_reno(tp)) { 3414 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3415 3416 /* If any of the cumulatively ACKed segments was 3417 * retransmitted, non-SACK case cannot confirm that 3418 * progress was due to original transmission due to 3419 * lack of TCPCB_SACKED_ACKED bits even if some of 3420 * the packets may have been never retransmitted. 3421 */ 3422 if (flag & FLAG_RETRANS_DATA_ACKED) 3423 flag &= ~FLAG_ORIG_SACK_ACKED; 3424 } else { 3425 int delta; 3426 3427 /* Non-retransmitted hole got filled? That's reordering */ 3428 if (before(reord, prior_fack)) 3429 tcp_check_sack_reordering(sk, reord, 0); 3430 3431 delta = prior_sacked - tp->sacked_out; 3432 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3433 } 3434 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3435 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3436 tcp_skb_timestamp_us(skb))) { 3437 /* Do not re-arm RTO if the sack RTT is measured from data sent 3438 * after when the head was last (re)transmitted. Otherwise the 3439 * timeout may continue to extend in loss recovery. 3440 */ 3441 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3442 } 3443 3444 if (icsk->icsk_ca_ops->pkts_acked) { 3445 struct ack_sample sample = { .pkts_acked = pkts_acked, 3446 .rtt_us = sack->rate->rtt_us }; 3447 3448 sample.in_flight = tp->mss_cache * 3449 (tp->delivered - sack->rate->prior_delivered); 3450 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3451 } 3452 3453 #if FASTRETRANS_DEBUG > 0 3454 WARN_ON((int)tp->sacked_out < 0); 3455 WARN_ON((int)tp->lost_out < 0); 3456 WARN_ON((int)tp->retrans_out < 0); 3457 if (!tp->packets_out && tcp_is_sack(tp)) { 3458 icsk = inet_csk(sk); 3459 if (tp->lost_out) { 3460 pr_debug("Leak l=%u %d\n", 3461 tp->lost_out, icsk->icsk_ca_state); 3462 tp->lost_out = 0; 3463 } 3464 if (tp->sacked_out) { 3465 pr_debug("Leak s=%u %d\n", 3466 tp->sacked_out, icsk->icsk_ca_state); 3467 tp->sacked_out = 0; 3468 } 3469 if (tp->retrans_out) { 3470 pr_debug("Leak r=%u %d\n", 3471 tp->retrans_out, icsk->icsk_ca_state); 3472 tp->retrans_out = 0; 3473 } 3474 } 3475 #endif 3476 return flag; 3477 } 3478 3479 static void tcp_ack_probe(struct sock *sk) 3480 { 3481 struct inet_connection_sock *icsk = inet_csk(sk); 3482 struct sk_buff *head = tcp_send_head(sk); 3483 const struct tcp_sock *tp = tcp_sk(sk); 3484 3485 /* Was it a usable window open? */ 3486 if (!head) 3487 return; 3488 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3489 icsk->icsk_backoff = 0; 3490 icsk->icsk_probes_tstamp = 0; 3491 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3492 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3493 * This function is not for random using! 3494 */ 3495 } else { 3496 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3497 3498 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3499 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3500 } 3501 } 3502 3503 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3504 { 3505 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3506 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3507 } 3508 3509 /* Decide wheather to run the increase function of congestion control. */ 3510 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3511 { 3512 /* If reordering is high then always grow cwnd whenever data is 3513 * delivered regardless of its ordering. Otherwise stay conservative 3514 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3515 * new SACK or ECE mark may first advance cwnd here and later reduce 3516 * cwnd in tcp_fastretrans_alert() based on more states. 3517 */ 3518 if (tcp_sk(sk)->reordering > 3519 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3520 return flag & FLAG_FORWARD_PROGRESS; 3521 3522 return flag & FLAG_DATA_ACKED; 3523 } 3524 3525 /* The "ultimate" congestion control function that aims to replace the rigid 3526 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3527 * It's called toward the end of processing an ACK with precise rate 3528 * information. All transmission or retransmission are delayed afterwards. 3529 */ 3530 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3531 int flag, const struct rate_sample *rs) 3532 { 3533 const struct inet_connection_sock *icsk = inet_csk(sk); 3534 3535 if (icsk->icsk_ca_ops->cong_control) { 3536 icsk->icsk_ca_ops->cong_control(sk, rs); 3537 return; 3538 } 3539 3540 if (tcp_in_cwnd_reduction(sk)) { 3541 /* Reduce cwnd if state mandates */ 3542 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3543 } else if (tcp_may_raise_cwnd(sk, flag)) { 3544 /* Advance cwnd if state allows */ 3545 tcp_cong_avoid(sk, ack, acked_sacked); 3546 } 3547 tcp_update_pacing_rate(sk); 3548 } 3549 3550 /* Check that window update is acceptable. 3551 * The function assumes that snd_una<=ack<=snd_next. 3552 */ 3553 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3554 const u32 ack, const u32 ack_seq, 3555 const u32 nwin) 3556 { 3557 return after(ack, tp->snd_una) || 3558 after(ack_seq, tp->snd_wl1) || 3559 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3560 } 3561 3562 /* If we update tp->snd_una, also update tp->bytes_acked */ 3563 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3564 { 3565 u32 delta = ack - tp->snd_una; 3566 3567 sock_owned_by_me((struct sock *)tp); 3568 tp->bytes_acked += delta; 3569 tp->snd_una = ack; 3570 } 3571 3572 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3573 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3574 { 3575 u32 delta = seq - tp->rcv_nxt; 3576 3577 sock_owned_by_me((struct sock *)tp); 3578 tp->bytes_received += delta; 3579 WRITE_ONCE(tp->rcv_nxt, seq); 3580 } 3581 3582 /* Update our send window. 3583 * 3584 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3585 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3586 */ 3587 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3588 u32 ack_seq) 3589 { 3590 struct tcp_sock *tp = tcp_sk(sk); 3591 int flag = 0; 3592 u32 nwin = ntohs(tcp_hdr(skb)->window); 3593 3594 if (likely(!tcp_hdr(skb)->syn)) 3595 nwin <<= tp->rx_opt.snd_wscale; 3596 3597 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3598 flag |= FLAG_WIN_UPDATE; 3599 tcp_update_wl(tp, ack_seq); 3600 3601 if (tp->snd_wnd != nwin) { 3602 tp->snd_wnd = nwin; 3603 3604 /* Note, it is the only place, where 3605 * fast path is recovered for sending TCP. 3606 */ 3607 tp->pred_flags = 0; 3608 tcp_fast_path_check(sk); 3609 3610 if (!tcp_write_queue_empty(sk)) 3611 tcp_slow_start_after_idle_check(sk); 3612 3613 if (nwin > tp->max_window) { 3614 tp->max_window = nwin; 3615 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3616 } 3617 } 3618 } 3619 3620 tcp_snd_una_update(tp, ack); 3621 3622 return flag; 3623 } 3624 3625 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3626 u32 *last_oow_ack_time) 3627 { 3628 /* Paired with the WRITE_ONCE() in this function. */ 3629 u32 val = READ_ONCE(*last_oow_ack_time); 3630 3631 if (val) { 3632 s32 elapsed = (s32)(tcp_jiffies32 - val); 3633 3634 if (0 <= elapsed && 3635 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3636 NET_INC_STATS(net, mib_idx); 3637 return true; /* rate-limited: don't send yet! */ 3638 } 3639 } 3640 3641 /* Paired with the prior READ_ONCE() and with itself, 3642 * as we might be lockless. 3643 */ 3644 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3645 3646 return false; /* not rate-limited: go ahead, send dupack now! */ 3647 } 3648 3649 /* Return true if we're currently rate-limiting out-of-window ACKs and 3650 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3651 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3652 * attacks that send repeated SYNs or ACKs for the same connection. To 3653 * do this, we do not send a duplicate SYNACK or ACK if the remote 3654 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3655 */ 3656 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3657 int mib_idx, u32 *last_oow_ack_time) 3658 { 3659 /* Data packets without SYNs are not likely part of an ACK loop. */ 3660 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3661 !tcp_hdr(skb)->syn) 3662 return false; 3663 3664 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3665 } 3666 3667 /* RFC 5961 7 [ACK Throttling] */ 3668 static void tcp_send_challenge_ack(struct sock *sk) 3669 { 3670 struct tcp_sock *tp = tcp_sk(sk); 3671 struct net *net = sock_net(sk); 3672 u32 count, now, ack_limit; 3673 3674 /* First check our per-socket dupack rate limit. */ 3675 if (__tcp_oow_rate_limited(net, 3676 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3677 &tp->last_oow_ack_time)) 3678 return; 3679 3680 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3681 if (ack_limit == INT_MAX) 3682 goto send_ack; 3683 3684 /* Then check host-wide RFC 5961 rate limit. */ 3685 now = jiffies / HZ; 3686 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3687 u32 half = (ack_limit + 1) >> 1; 3688 3689 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3690 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3691 get_random_u32_inclusive(half, ack_limit + half - 1)); 3692 } 3693 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3694 if (count > 0) { 3695 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3696 send_ack: 3697 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3698 tcp_send_ack(sk); 3699 } 3700 } 3701 3702 static void tcp_store_ts_recent(struct tcp_sock *tp) 3703 { 3704 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3705 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3706 } 3707 3708 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3709 { 3710 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3711 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3712 * extra check below makes sure this can only happen 3713 * for pure ACK frames. -DaveM 3714 * 3715 * Not only, also it occurs for expired timestamps. 3716 */ 3717 3718 if (tcp_paws_check(&tp->rx_opt, 0)) 3719 tcp_store_ts_recent(tp); 3720 } 3721 } 3722 3723 /* This routine deals with acks during a TLP episode and ends an episode by 3724 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3725 */ 3726 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3727 { 3728 struct tcp_sock *tp = tcp_sk(sk); 3729 3730 if (before(ack, tp->tlp_high_seq)) 3731 return; 3732 3733 if (!tp->tlp_retrans) { 3734 /* TLP of new data has been acknowledged */ 3735 tp->tlp_high_seq = 0; 3736 } else if (flag & FLAG_DSACK_TLP) { 3737 /* This DSACK means original and TLP probe arrived; no loss */ 3738 tp->tlp_high_seq = 0; 3739 } else if (after(ack, tp->tlp_high_seq)) { 3740 /* ACK advances: there was a loss, so reduce cwnd. Reset 3741 * tlp_high_seq in tcp_init_cwnd_reduction() 3742 */ 3743 tcp_init_cwnd_reduction(sk); 3744 tcp_set_ca_state(sk, TCP_CA_CWR); 3745 tcp_end_cwnd_reduction(sk); 3746 tcp_try_keep_open(sk); 3747 NET_INC_STATS(sock_net(sk), 3748 LINUX_MIB_TCPLOSSPROBERECOVERY); 3749 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3750 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3751 /* Pure dupack: original and TLP probe arrived; no loss */ 3752 tp->tlp_high_seq = 0; 3753 } 3754 } 3755 3756 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3757 { 3758 const struct inet_connection_sock *icsk = inet_csk(sk); 3759 3760 if (icsk->icsk_ca_ops->in_ack_event) 3761 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3762 } 3763 3764 /* Congestion control has updated the cwnd already. So if we're in 3765 * loss recovery then now we do any new sends (for FRTO) or 3766 * retransmits (for CA_Loss or CA_recovery) that make sense. 3767 */ 3768 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3769 { 3770 struct tcp_sock *tp = tcp_sk(sk); 3771 3772 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3773 return; 3774 3775 if (unlikely(rexmit == REXMIT_NEW)) { 3776 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3777 TCP_NAGLE_OFF); 3778 if (after(tp->snd_nxt, tp->high_seq)) 3779 return; 3780 tp->frto = 0; 3781 } 3782 tcp_xmit_retransmit_queue(sk); 3783 } 3784 3785 /* Returns the number of packets newly acked or sacked by the current ACK */ 3786 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3787 { 3788 const struct net *net = sock_net(sk); 3789 struct tcp_sock *tp = tcp_sk(sk); 3790 u32 delivered; 3791 3792 delivered = tp->delivered - prior_delivered; 3793 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3794 if (flag & FLAG_ECE) 3795 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3796 3797 return delivered; 3798 } 3799 3800 /* This routine deals with incoming acks, but not outgoing ones. */ 3801 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3802 { 3803 struct inet_connection_sock *icsk = inet_csk(sk); 3804 struct tcp_sock *tp = tcp_sk(sk); 3805 struct tcp_sacktag_state sack_state; 3806 struct rate_sample rs = { .prior_delivered = 0 }; 3807 u32 prior_snd_una = tp->snd_una; 3808 bool is_sack_reneg = tp->is_sack_reneg; 3809 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3810 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3811 int num_dupack = 0; 3812 int prior_packets = tp->packets_out; 3813 u32 delivered = tp->delivered; 3814 u32 lost = tp->lost; 3815 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3816 u32 prior_fack; 3817 3818 sack_state.first_sackt = 0; 3819 sack_state.rate = &rs; 3820 sack_state.sack_delivered = 0; 3821 3822 /* We very likely will need to access rtx queue. */ 3823 prefetch(sk->tcp_rtx_queue.rb_node); 3824 3825 /* If the ack is older than previous acks 3826 * then we can probably ignore it. 3827 */ 3828 if (before(ack, prior_snd_una)) { 3829 u32 max_window; 3830 3831 /* do not accept ACK for bytes we never sent. */ 3832 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3833 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3834 if (before(ack, prior_snd_una - max_window)) { 3835 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3836 tcp_send_challenge_ack(sk); 3837 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3838 } 3839 goto old_ack; 3840 } 3841 3842 /* If the ack includes data we haven't sent yet, discard 3843 * this segment (RFC793 Section 3.9). 3844 */ 3845 if (after(ack, tp->snd_nxt)) 3846 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3847 3848 if (after(ack, prior_snd_una)) { 3849 flag |= FLAG_SND_UNA_ADVANCED; 3850 icsk->icsk_retransmits = 0; 3851 3852 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3853 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3854 if (icsk->icsk_clean_acked) 3855 icsk->icsk_clean_acked(sk, ack); 3856 #endif 3857 } 3858 3859 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3860 rs.prior_in_flight = tcp_packets_in_flight(tp); 3861 3862 /* ts_recent update must be made after we are sure that the packet 3863 * is in window. 3864 */ 3865 if (flag & FLAG_UPDATE_TS_RECENT) 3866 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3867 3868 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3869 FLAG_SND_UNA_ADVANCED) { 3870 /* Window is constant, pure forward advance. 3871 * No more checks are required. 3872 * Note, we use the fact that SND.UNA>=SND.WL2. 3873 */ 3874 tcp_update_wl(tp, ack_seq); 3875 tcp_snd_una_update(tp, ack); 3876 flag |= FLAG_WIN_UPDATE; 3877 3878 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3879 3880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3881 } else { 3882 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3883 3884 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3885 flag |= FLAG_DATA; 3886 else 3887 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3888 3889 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3890 3891 if (TCP_SKB_CB(skb)->sacked) 3892 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3893 &sack_state); 3894 3895 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3896 flag |= FLAG_ECE; 3897 ack_ev_flags |= CA_ACK_ECE; 3898 } 3899 3900 if (sack_state.sack_delivered) 3901 tcp_count_delivered(tp, sack_state.sack_delivered, 3902 flag & FLAG_ECE); 3903 3904 if (flag & FLAG_WIN_UPDATE) 3905 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3906 3907 tcp_in_ack_event(sk, ack_ev_flags); 3908 } 3909 3910 /* This is a deviation from RFC3168 since it states that: 3911 * "When the TCP data sender is ready to set the CWR bit after reducing 3912 * the congestion window, it SHOULD set the CWR bit only on the first 3913 * new data packet that it transmits." 3914 * We accept CWR on pure ACKs to be more robust 3915 * with widely-deployed TCP implementations that do this. 3916 */ 3917 tcp_ecn_accept_cwr(sk, skb); 3918 3919 /* We passed data and got it acked, remove any soft error 3920 * log. Something worked... 3921 */ 3922 WRITE_ONCE(sk->sk_err_soft, 0); 3923 icsk->icsk_probes_out = 0; 3924 tp->rcv_tstamp = tcp_jiffies32; 3925 if (!prior_packets) 3926 goto no_queue; 3927 3928 /* See if we can take anything off of the retransmit queue. */ 3929 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3930 &sack_state, flag & FLAG_ECE); 3931 3932 tcp_rack_update_reo_wnd(sk, &rs); 3933 3934 if (tp->tlp_high_seq) 3935 tcp_process_tlp_ack(sk, ack, flag); 3936 3937 if (tcp_ack_is_dubious(sk, flag)) { 3938 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3939 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3940 num_dupack = 1; 3941 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3942 if (!(flag & FLAG_DATA)) 3943 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3944 } 3945 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3946 &rexmit); 3947 } 3948 3949 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3950 if (flag & FLAG_SET_XMIT_TIMER) 3951 tcp_set_xmit_timer(sk); 3952 3953 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3954 sk_dst_confirm(sk); 3955 3956 delivered = tcp_newly_delivered(sk, delivered, flag); 3957 lost = tp->lost - lost; /* freshly marked lost */ 3958 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3959 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3960 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3961 tcp_xmit_recovery(sk, rexmit); 3962 return 1; 3963 3964 no_queue: 3965 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3966 if (flag & FLAG_DSACKING_ACK) { 3967 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3968 &rexmit); 3969 tcp_newly_delivered(sk, delivered, flag); 3970 } 3971 /* If this ack opens up a zero window, clear backoff. It was 3972 * being used to time the probes, and is probably far higher than 3973 * it needs to be for normal retransmission. 3974 */ 3975 tcp_ack_probe(sk); 3976 3977 if (tp->tlp_high_seq) 3978 tcp_process_tlp_ack(sk, ack, flag); 3979 return 1; 3980 3981 old_ack: 3982 /* If data was SACKed, tag it and see if we should send more data. 3983 * If data was DSACKed, see if we can undo a cwnd reduction. 3984 */ 3985 if (TCP_SKB_CB(skb)->sacked) { 3986 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3987 &sack_state); 3988 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3989 &rexmit); 3990 tcp_newly_delivered(sk, delivered, flag); 3991 tcp_xmit_recovery(sk, rexmit); 3992 } 3993 3994 return 0; 3995 } 3996 3997 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3998 bool syn, struct tcp_fastopen_cookie *foc, 3999 bool exp_opt) 4000 { 4001 /* Valid only in SYN or SYN-ACK with an even length. */ 4002 if (!foc || !syn || len < 0 || (len & 1)) 4003 return; 4004 4005 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4006 len <= TCP_FASTOPEN_COOKIE_MAX) 4007 memcpy(foc->val, cookie, len); 4008 else if (len != 0) 4009 len = -1; 4010 foc->len = len; 4011 foc->exp = exp_opt; 4012 } 4013 4014 static bool smc_parse_options(const struct tcphdr *th, 4015 struct tcp_options_received *opt_rx, 4016 const unsigned char *ptr, 4017 int opsize) 4018 { 4019 #if IS_ENABLED(CONFIG_SMC) 4020 if (static_branch_unlikely(&tcp_have_smc)) { 4021 if (th->syn && !(opsize & 1) && 4022 opsize >= TCPOLEN_EXP_SMC_BASE && 4023 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4024 opt_rx->smc_ok = 1; 4025 return true; 4026 } 4027 } 4028 #endif 4029 return false; 4030 } 4031 4032 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4033 * value on success. 4034 */ 4035 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4036 { 4037 const unsigned char *ptr = (const unsigned char *)(th + 1); 4038 int length = (th->doff * 4) - sizeof(struct tcphdr); 4039 u16 mss = 0; 4040 4041 while (length > 0) { 4042 int opcode = *ptr++; 4043 int opsize; 4044 4045 switch (opcode) { 4046 case TCPOPT_EOL: 4047 return mss; 4048 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4049 length--; 4050 continue; 4051 default: 4052 if (length < 2) 4053 return mss; 4054 opsize = *ptr++; 4055 if (opsize < 2) /* "silly options" */ 4056 return mss; 4057 if (opsize > length) 4058 return mss; /* fail on partial options */ 4059 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4060 u16 in_mss = get_unaligned_be16(ptr); 4061 4062 if (in_mss) { 4063 if (user_mss && user_mss < in_mss) 4064 in_mss = user_mss; 4065 mss = in_mss; 4066 } 4067 } 4068 ptr += opsize - 2; 4069 length -= opsize; 4070 } 4071 } 4072 return mss; 4073 } 4074 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4075 4076 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4077 * But, this can also be called on packets in the established flow when 4078 * the fast version below fails. 4079 */ 4080 void tcp_parse_options(const struct net *net, 4081 const struct sk_buff *skb, 4082 struct tcp_options_received *opt_rx, int estab, 4083 struct tcp_fastopen_cookie *foc) 4084 { 4085 const unsigned char *ptr; 4086 const struct tcphdr *th = tcp_hdr(skb); 4087 int length = (th->doff * 4) - sizeof(struct tcphdr); 4088 4089 ptr = (const unsigned char *)(th + 1); 4090 opt_rx->saw_tstamp = 0; 4091 opt_rx->saw_unknown = 0; 4092 4093 while (length > 0) { 4094 int opcode = *ptr++; 4095 int opsize; 4096 4097 switch (opcode) { 4098 case TCPOPT_EOL: 4099 return; 4100 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4101 length--; 4102 continue; 4103 default: 4104 if (length < 2) 4105 return; 4106 opsize = *ptr++; 4107 if (opsize < 2) /* "silly options" */ 4108 return; 4109 if (opsize > length) 4110 return; /* don't parse partial options */ 4111 switch (opcode) { 4112 case TCPOPT_MSS: 4113 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4114 u16 in_mss = get_unaligned_be16(ptr); 4115 if (in_mss) { 4116 if (opt_rx->user_mss && 4117 opt_rx->user_mss < in_mss) 4118 in_mss = opt_rx->user_mss; 4119 opt_rx->mss_clamp = in_mss; 4120 } 4121 } 4122 break; 4123 case TCPOPT_WINDOW: 4124 if (opsize == TCPOLEN_WINDOW && th->syn && 4125 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4126 __u8 snd_wscale = *(__u8 *)ptr; 4127 opt_rx->wscale_ok = 1; 4128 if (snd_wscale > TCP_MAX_WSCALE) { 4129 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4130 __func__, 4131 snd_wscale, 4132 TCP_MAX_WSCALE); 4133 snd_wscale = TCP_MAX_WSCALE; 4134 } 4135 opt_rx->snd_wscale = snd_wscale; 4136 } 4137 break; 4138 case TCPOPT_TIMESTAMP: 4139 if ((opsize == TCPOLEN_TIMESTAMP) && 4140 ((estab && opt_rx->tstamp_ok) || 4141 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4142 opt_rx->saw_tstamp = 1; 4143 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4144 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4145 } 4146 break; 4147 case TCPOPT_SACK_PERM: 4148 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4149 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4150 opt_rx->sack_ok = TCP_SACK_SEEN; 4151 tcp_sack_reset(opt_rx); 4152 } 4153 break; 4154 4155 case TCPOPT_SACK: 4156 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4157 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4158 opt_rx->sack_ok) { 4159 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4160 } 4161 break; 4162 #ifdef CONFIG_TCP_MD5SIG 4163 case TCPOPT_MD5SIG: 4164 /* The MD5 Hash has already been 4165 * checked (see tcp_v{4,6}_rcv()). 4166 */ 4167 break; 4168 #endif 4169 case TCPOPT_FASTOPEN: 4170 tcp_parse_fastopen_option( 4171 opsize - TCPOLEN_FASTOPEN_BASE, 4172 ptr, th->syn, foc, false); 4173 break; 4174 4175 case TCPOPT_EXP: 4176 /* Fast Open option shares code 254 using a 4177 * 16 bits magic number. 4178 */ 4179 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4180 get_unaligned_be16(ptr) == 4181 TCPOPT_FASTOPEN_MAGIC) { 4182 tcp_parse_fastopen_option(opsize - 4183 TCPOLEN_EXP_FASTOPEN_BASE, 4184 ptr + 2, th->syn, foc, true); 4185 break; 4186 } 4187 4188 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4189 break; 4190 4191 opt_rx->saw_unknown = 1; 4192 break; 4193 4194 default: 4195 opt_rx->saw_unknown = 1; 4196 } 4197 ptr += opsize-2; 4198 length -= opsize; 4199 } 4200 } 4201 } 4202 EXPORT_SYMBOL(tcp_parse_options); 4203 4204 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4205 { 4206 const __be32 *ptr = (const __be32 *)(th + 1); 4207 4208 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4209 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4210 tp->rx_opt.saw_tstamp = 1; 4211 ++ptr; 4212 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4213 ++ptr; 4214 if (*ptr) 4215 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4216 else 4217 tp->rx_opt.rcv_tsecr = 0; 4218 return true; 4219 } 4220 return false; 4221 } 4222 4223 /* Fast parse options. This hopes to only see timestamps. 4224 * If it is wrong it falls back on tcp_parse_options(). 4225 */ 4226 static bool tcp_fast_parse_options(const struct net *net, 4227 const struct sk_buff *skb, 4228 const struct tcphdr *th, struct tcp_sock *tp) 4229 { 4230 /* In the spirit of fast parsing, compare doff directly to constant 4231 * values. Because equality is used, short doff can be ignored here. 4232 */ 4233 if (th->doff == (sizeof(*th) / 4)) { 4234 tp->rx_opt.saw_tstamp = 0; 4235 return false; 4236 } else if (tp->rx_opt.tstamp_ok && 4237 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4238 if (tcp_parse_aligned_timestamp(tp, th)) 4239 return true; 4240 } 4241 4242 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4243 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4244 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4245 4246 return true; 4247 } 4248 4249 #ifdef CONFIG_TCP_MD5SIG 4250 /* 4251 * Parse MD5 Signature option 4252 */ 4253 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4254 { 4255 int length = (th->doff << 2) - sizeof(*th); 4256 const u8 *ptr = (const u8 *)(th + 1); 4257 4258 /* If not enough data remaining, we can short cut */ 4259 while (length >= TCPOLEN_MD5SIG) { 4260 int opcode = *ptr++; 4261 int opsize; 4262 4263 switch (opcode) { 4264 case TCPOPT_EOL: 4265 return NULL; 4266 case TCPOPT_NOP: 4267 length--; 4268 continue; 4269 default: 4270 opsize = *ptr++; 4271 if (opsize < 2 || opsize > length) 4272 return NULL; 4273 if (opcode == TCPOPT_MD5SIG) 4274 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4275 } 4276 ptr += opsize - 2; 4277 length -= opsize; 4278 } 4279 return NULL; 4280 } 4281 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4282 #endif 4283 4284 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4285 * 4286 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4287 * it can pass through stack. So, the following predicate verifies that 4288 * this segment is not used for anything but congestion avoidance or 4289 * fast retransmit. Moreover, we even are able to eliminate most of such 4290 * second order effects, if we apply some small "replay" window (~RTO) 4291 * to timestamp space. 4292 * 4293 * All these measures still do not guarantee that we reject wrapped ACKs 4294 * on networks with high bandwidth, when sequence space is recycled fastly, 4295 * but it guarantees that such events will be very rare and do not affect 4296 * connection seriously. This doesn't look nice, but alas, PAWS is really 4297 * buggy extension. 4298 * 4299 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4300 * states that events when retransmit arrives after original data are rare. 4301 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4302 * the biggest problem on large power networks even with minor reordering. 4303 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4304 * up to bandwidth of 18Gigabit/sec. 8) ] 4305 */ 4306 4307 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4308 { 4309 const struct tcp_sock *tp = tcp_sk(sk); 4310 const struct tcphdr *th = tcp_hdr(skb); 4311 u32 seq = TCP_SKB_CB(skb)->seq; 4312 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4313 4314 return (/* 1. Pure ACK with correct sequence number. */ 4315 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4316 4317 /* 2. ... and duplicate ACK. */ 4318 ack == tp->snd_una && 4319 4320 /* 3. ... and does not update window. */ 4321 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4322 4323 /* 4. ... and sits in replay window. */ 4324 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4325 } 4326 4327 static inline bool tcp_paws_discard(const struct sock *sk, 4328 const struct sk_buff *skb) 4329 { 4330 const struct tcp_sock *tp = tcp_sk(sk); 4331 4332 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4333 !tcp_disordered_ack(sk, skb); 4334 } 4335 4336 /* Check segment sequence number for validity. 4337 * 4338 * Segment controls are considered valid, if the segment 4339 * fits to the window after truncation to the window. Acceptability 4340 * of data (and SYN, FIN, of course) is checked separately. 4341 * See tcp_data_queue(), for example. 4342 * 4343 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4344 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4345 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4346 * (borrowed from freebsd) 4347 */ 4348 4349 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4350 u32 seq, u32 end_seq) 4351 { 4352 if (before(end_seq, tp->rcv_wup)) 4353 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4354 4355 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4356 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4357 4358 return SKB_NOT_DROPPED_YET; 4359 } 4360 4361 /* When we get a reset we do this. */ 4362 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4363 { 4364 trace_tcp_receive_reset(sk); 4365 4366 /* mptcp can't tell us to ignore reset pkts, 4367 * so just ignore the return value of mptcp_incoming_options(). 4368 */ 4369 if (sk_is_mptcp(sk)) 4370 mptcp_incoming_options(sk, skb); 4371 4372 /* We want the right error as BSD sees it (and indeed as we do). */ 4373 switch (sk->sk_state) { 4374 case TCP_SYN_SENT: 4375 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4376 break; 4377 case TCP_CLOSE_WAIT: 4378 WRITE_ONCE(sk->sk_err, EPIPE); 4379 break; 4380 case TCP_CLOSE: 4381 return; 4382 default: 4383 WRITE_ONCE(sk->sk_err, ECONNRESET); 4384 } 4385 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4386 smp_wmb(); 4387 4388 tcp_write_queue_purge(sk); 4389 tcp_done(sk); 4390 4391 if (!sock_flag(sk, SOCK_DEAD)) 4392 sk_error_report(sk); 4393 } 4394 4395 /* 4396 * Process the FIN bit. This now behaves as it is supposed to work 4397 * and the FIN takes effect when it is validly part of sequence 4398 * space. Not before when we get holes. 4399 * 4400 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4401 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4402 * TIME-WAIT) 4403 * 4404 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4405 * close and we go into CLOSING (and later onto TIME-WAIT) 4406 * 4407 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4408 */ 4409 void tcp_fin(struct sock *sk) 4410 { 4411 struct tcp_sock *tp = tcp_sk(sk); 4412 4413 inet_csk_schedule_ack(sk); 4414 4415 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4416 sock_set_flag(sk, SOCK_DONE); 4417 4418 switch (sk->sk_state) { 4419 case TCP_SYN_RECV: 4420 case TCP_ESTABLISHED: 4421 /* Move to CLOSE_WAIT */ 4422 tcp_set_state(sk, TCP_CLOSE_WAIT); 4423 inet_csk_enter_pingpong_mode(sk); 4424 break; 4425 4426 case TCP_CLOSE_WAIT: 4427 case TCP_CLOSING: 4428 /* Received a retransmission of the FIN, do 4429 * nothing. 4430 */ 4431 break; 4432 case TCP_LAST_ACK: 4433 /* RFC793: Remain in the LAST-ACK state. */ 4434 break; 4435 4436 case TCP_FIN_WAIT1: 4437 /* This case occurs when a simultaneous close 4438 * happens, we must ack the received FIN and 4439 * enter the CLOSING state. 4440 */ 4441 tcp_send_ack(sk); 4442 tcp_set_state(sk, TCP_CLOSING); 4443 break; 4444 case TCP_FIN_WAIT2: 4445 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4446 tcp_send_ack(sk); 4447 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4448 break; 4449 default: 4450 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4451 * cases we should never reach this piece of code. 4452 */ 4453 pr_err("%s: Impossible, sk->sk_state=%d\n", 4454 __func__, sk->sk_state); 4455 break; 4456 } 4457 4458 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4459 * Probably, we should reset in this case. For now drop them. 4460 */ 4461 skb_rbtree_purge(&tp->out_of_order_queue); 4462 if (tcp_is_sack(tp)) 4463 tcp_sack_reset(&tp->rx_opt); 4464 4465 if (!sock_flag(sk, SOCK_DEAD)) { 4466 sk->sk_state_change(sk); 4467 4468 /* Do not send POLL_HUP for half duplex close. */ 4469 if (sk->sk_shutdown == SHUTDOWN_MASK || 4470 sk->sk_state == TCP_CLOSE) 4471 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4472 else 4473 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4474 } 4475 } 4476 4477 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4478 u32 end_seq) 4479 { 4480 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4481 if (before(seq, sp->start_seq)) 4482 sp->start_seq = seq; 4483 if (after(end_seq, sp->end_seq)) 4484 sp->end_seq = end_seq; 4485 return true; 4486 } 4487 return false; 4488 } 4489 4490 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4491 { 4492 struct tcp_sock *tp = tcp_sk(sk); 4493 4494 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4495 int mib_idx; 4496 4497 if (before(seq, tp->rcv_nxt)) 4498 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4499 else 4500 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4501 4502 NET_INC_STATS(sock_net(sk), mib_idx); 4503 4504 tp->rx_opt.dsack = 1; 4505 tp->duplicate_sack[0].start_seq = seq; 4506 tp->duplicate_sack[0].end_seq = end_seq; 4507 } 4508 } 4509 4510 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4511 { 4512 struct tcp_sock *tp = tcp_sk(sk); 4513 4514 if (!tp->rx_opt.dsack) 4515 tcp_dsack_set(sk, seq, end_seq); 4516 else 4517 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4518 } 4519 4520 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4521 { 4522 /* When the ACK path fails or drops most ACKs, the sender would 4523 * timeout and spuriously retransmit the same segment repeatedly. 4524 * The receiver remembers and reflects via DSACKs. Leverage the 4525 * DSACK state and change the txhash to re-route speculatively. 4526 */ 4527 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4528 sk_rethink_txhash(sk)) 4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4530 } 4531 4532 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4533 { 4534 struct tcp_sock *tp = tcp_sk(sk); 4535 4536 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4537 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4538 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4539 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4540 4541 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4542 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4543 4544 tcp_rcv_spurious_retrans(sk, skb); 4545 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4546 end_seq = tp->rcv_nxt; 4547 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4548 } 4549 } 4550 4551 tcp_send_ack(sk); 4552 } 4553 4554 /* These routines update the SACK block as out-of-order packets arrive or 4555 * in-order packets close up the sequence space. 4556 */ 4557 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4558 { 4559 int this_sack; 4560 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4561 struct tcp_sack_block *swalk = sp + 1; 4562 4563 /* See if the recent change to the first SACK eats into 4564 * or hits the sequence space of other SACK blocks, if so coalesce. 4565 */ 4566 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4567 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4568 int i; 4569 4570 /* Zap SWALK, by moving every further SACK up by one slot. 4571 * Decrease num_sacks. 4572 */ 4573 tp->rx_opt.num_sacks--; 4574 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4575 sp[i] = sp[i + 1]; 4576 continue; 4577 } 4578 this_sack++; 4579 swalk++; 4580 } 4581 } 4582 4583 void tcp_sack_compress_send_ack(struct sock *sk) 4584 { 4585 struct tcp_sock *tp = tcp_sk(sk); 4586 4587 if (!tp->compressed_ack) 4588 return; 4589 4590 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4591 __sock_put(sk); 4592 4593 /* Since we have to send one ack finally, 4594 * substract one from tp->compressed_ack to keep 4595 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4596 */ 4597 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4598 tp->compressed_ack - 1); 4599 4600 tp->compressed_ack = 0; 4601 tcp_send_ack(sk); 4602 } 4603 4604 /* Reasonable amount of sack blocks included in TCP SACK option 4605 * The max is 4, but this becomes 3 if TCP timestamps are there. 4606 * Given that SACK packets might be lost, be conservative and use 2. 4607 */ 4608 #define TCP_SACK_BLOCKS_EXPECTED 2 4609 4610 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4611 { 4612 struct tcp_sock *tp = tcp_sk(sk); 4613 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4614 int cur_sacks = tp->rx_opt.num_sacks; 4615 int this_sack; 4616 4617 if (!cur_sacks) 4618 goto new_sack; 4619 4620 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4621 if (tcp_sack_extend(sp, seq, end_seq)) { 4622 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4623 tcp_sack_compress_send_ack(sk); 4624 /* Rotate this_sack to the first one. */ 4625 for (; this_sack > 0; this_sack--, sp--) 4626 swap(*sp, *(sp - 1)); 4627 if (cur_sacks > 1) 4628 tcp_sack_maybe_coalesce(tp); 4629 return; 4630 } 4631 } 4632 4633 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4634 tcp_sack_compress_send_ack(sk); 4635 4636 /* Could not find an adjacent existing SACK, build a new one, 4637 * put it at the front, and shift everyone else down. We 4638 * always know there is at least one SACK present already here. 4639 * 4640 * If the sack array is full, forget about the last one. 4641 */ 4642 if (this_sack >= TCP_NUM_SACKS) { 4643 this_sack--; 4644 tp->rx_opt.num_sacks--; 4645 sp--; 4646 } 4647 for (; this_sack > 0; this_sack--, sp--) 4648 *sp = *(sp - 1); 4649 4650 new_sack: 4651 /* Build the new head SACK, and we're done. */ 4652 sp->start_seq = seq; 4653 sp->end_seq = end_seq; 4654 tp->rx_opt.num_sacks++; 4655 } 4656 4657 /* RCV.NXT advances, some SACKs should be eaten. */ 4658 4659 static void tcp_sack_remove(struct tcp_sock *tp) 4660 { 4661 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4662 int num_sacks = tp->rx_opt.num_sacks; 4663 int this_sack; 4664 4665 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4666 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4667 tp->rx_opt.num_sacks = 0; 4668 return; 4669 } 4670 4671 for (this_sack = 0; this_sack < num_sacks;) { 4672 /* Check if the start of the sack is covered by RCV.NXT. */ 4673 if (!before(tp->rcv_nxt, sp->start_seq)) { 4674 int i; 4675 4676 /* RCV.NXT must cover all the block! */ 4677 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4678 4679 /* Zap this SACK, by moving forward any other SACKS. */ 4680 for (i = this_sack+1; i < num_sacks; i++) 4681 tp->selective_acks[i-1] = tp->selective_acks[i]; 4682 num_sacks--; 4683 continue; 4684 } 4685 this_sack++; 4686 sp++; 4687 } 4688 tp->rx_opt.num_sacks = num_sacks; 4689 } 4690 4691 /** 4692 * tcp_try_coalesce - try to merge skb to prior one 4693 * @sk: socket 4694 * @to: prior buffer 4695 * @from: buffer to add in queue 4696 * @fragstolen: pointer to boolean 4697 * 4698 * Before queueing skb @from after @to, try to merge them 4699 * to reduce overall memory use and queue lengths, if cost is small. 4700 * Packets in ofo or receive queues can stay a long time. 4701 * Better try to coalesce them right now to avoid future collapses. 4702 * Returns true if caller should free @from instead of queueing it 4703 */ 4704 static bool tcp_try_coalesce(struct sock *sk, 4705 struct sk_buff *to, 4706 struct sk_buff *from, 4707 bool *fragstolen) 4708 { 4709 int delta; 4710 4711 *fragstolen = false; 4712 4713 /* Its possible this segment overlaps with prior segment in queue */ 4714 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4715 return false; 4716 4717 if (!mptcp_skb_can_collapse(to, from)) 4718 return false; 4719 4720 #ifdef CONFIG_TLS_DEVICE 4721 if (from->decrypted != to->decrypted) 4722 return false; 4723 #endif 4724 4725 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4726 return false; 4727 4728 atomic_add(delta, &sk->sk_rmem_alloc); 4729 sk_mem_charge(sk, delta); 4730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4731 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4732 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4733 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4734 4735 if (TCP_SKB_CB(from)->has_rxtstamp) { 4736 TCP_SKB_CB(to)->has_rxtstamp = true; 4737 to->tstamp = from->tstamp; 4738 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4739 } 4740 4741 return true; 4742 } 4743 4744 static bool tcp_ooo_try_coalesce(struct sock *sk, 4745 struct sk_buff *to, 4746 struct sk_buff *from, 4747 bool *fragstolen) 4748 { 4749 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4750 4751 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4752 if (res) { 4753 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4754 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4755 4756 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4757 } 4758 return res; 4759 } 4760 4761 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4762 enum skb_drop_reason reason) 4763 { 4764 sk_drops_add(sk, skb); 4765 kfree_skb_reason(skb, reason); 4766 } 4767 4768 /* This one checks to see if we can put data from the 4769 * out_of_order queue into the receive_queue. 4770 */ 4771 static void tcp_ofo_queue(struct sock *sk) 4772 { 4773 struct tcp_sock *tp = tcp_sk(sk); 4774 __u32 dsack_high = tp->rcv_nxt; 4775 bool fin, fragstolen, eaten; 4776 struct sk_buff *skb, *tail; 4777 struct rb_node *p; 4778 4779 p = rb_first(&tp->out_of_order_queue); 4780 while (p) { 4781 skb = rb_to_skb(p); 4782 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4783 break; 4784 4785 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4786 __u32 dsack = dsack_high; 4787 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4788 dsack_high = TCP_SKB_CB(skb)->end_seq; 4789 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4790 } 4791 p = rb_next(p); 4792 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4793 4794 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4795 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4796 continue; 4797 } 4798 4799 tail = skb_peek_tail(&sk->sk_receive_queue); 4800 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4801 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4802 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4803 if (!eaten) 4804 __skb_queue_tail(&sk->sk_receive_queue, skb); 4805 else 4806 kfree_skb_partial(skb, fragstolen); 4807 4808 if (unlikely(fin)) { 4809 tcp_fin(sk); 4810 /* tcp_fin() purges tp->out_of_order_queue, 4811 * so we must end this loop right now. 4812 */ 4813 break; 4814 } 4815 } 4816 } 4817 4818 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4819 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4820 4821 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4822 unsigned int size) 4823 { 4824 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4825 !sk_rmem_schedule(sk, skb, size)) { 4826 4827 if (tcp_prune_queue(sk, skb) < 0) 4828 return -1; 4829 4830 while (!sk_rmem_schedule(sk, skb, size)) { 4831 if (!tcp_prune_ofo_queue(sk, skb)) 4832 return -1; 4833 } 4834 } 4835 return 0; 4836 } 4837 4838 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4839 { 4840 struct tcp_sock *tp = tcp_sk(sk); 4841 struct rb_node **p, *parent; 4842 struct sk_buff *skb1; 4843 u32 seq, end_seq; 4844 bool fragstolen; 4845 4846 tcp_ecn_check_ce(sk, skb); 4847 4848 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4850 sk->sk_data_ready(sk); 4851 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4852 return; 4853 } 4854 4855 /* Disable header prediction. */ 4856 tp->pred_flags = 0; 4857 inet_csk_schedule_ack(sk); 4858 4859 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4860 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4861 seq = TCP_SKB_CB(skb)->seq; 4862 end_seq = TCP_SKB_CB(skb)->end_seq; 4863 4864 p = &tp->out_of_order_queue.rb_node; 4865 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4866 /* Initial out of order segment, build 1 SACK. */ 4867 if (tcp_is_sack(tp)) { 4868 tp->rx_opt.num_sacks = 1; 4869 tp->selective_acks[0].start_seq = seq; 4870 tp->selective_acks[0].end_seq = end_seq; 4871 } 4872 rb_link_node(&skb->rbnode, NULL, p); 4873 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4874 tp->ooo_last_skb = skb; 4875 goto end; 4876 } 4877 4878 /* In the typical case, we are adding an skb to the end of the list. 4879 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4880 */ 4881 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4882 skb, &fragstolen)) { 4883 coalesce_done: 4884 /* For non sack flows, do not grow window to force DUPACK 4885 * and trigger fast retransmit. 4886 */ 4887 if (tcp_is_sack(tp)) 4888 tcp_grow_window(sk, skb, true); 4889 kfree_skb_partial(skb, fragstolen); 4890 skb = NULL; 4891 goto add_sack; 4892 } 4893 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4894 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4895 parent = &tp->ooo_last_skb->rbnode; 4896 p = &parent->rb_right; 4897 goto insert; 4898 } 4899 4900 /* Find place to insert this segment. Handle overlaps on the way. */ 4901 parent = NULL; 4902 while (*p) { 4903 parent = *p; 4904 skb1 = rb_to_skb(parent); 4905 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4906 p = &parent->rb_left; 4907 continue; 4908 } 4909 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4910 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4911 /* All the bits are present. Drop. */ 4912 NET_INC_STATS(sock_net(sk), 4913 LINUX_MIB_TCPOFOMERGE); 4914 tcp_drop_reason(sk, skb, 4915 SKB_DROP_REASON_TCP_OFOMERGE); 4916 skb = NULL; 4917 tcp_dsack_set(sk, seq, end_seq); 4918 goto add_sack; 4919 } 4920 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4921 /* Partial overlap. */ 4922 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4923 } else { 4924 /* skb's seq == skb1's seq and skb covers skb1. 4925 * Replace skb1 with skb. 4926 */ 4927 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4928 &tp->out_of_order_queue); 4929 tcp_dsack_extend(sk, 4930 TCP_SKB_CB(skb1)->seq, 4931 TCP_SKB_CB(skb1)->end_seq); 4932 NET_INC_STATS(sock_net(sk), 4933 LINUX_MIB_TCPOFOMERGE); 4934 tcp_drop_reason(sk, skb1, 4935 SKB_DROP_REASON_TCP_OFOMERGE); 4936 goto merge_right; 4937 } 4938 } else if (tcp_ooo_try_coalesce(sk, skb1, 4939 skb, &fragstolen)) { 4940 goto coalesce_done; 4941 } 4942 p = &parent->rb_right; 4943 } 4944 insert: 4945 /* Insert segment into RB tree. */ 4946 rb_link_node(&skb->rbnode, parent, p); 4947 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4948 4949 merge_right: 4950 /* Remove other segments covered by skb. */ 4951 while ((skb1 = skb_rb_next(skb)) != NULL) { 4952 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4953 break; 4954 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4955 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4956 end_seq); 4957 break; 4958 } 4959 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4960 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4961 TCP_SKB_CB(skb1)->end_seq); 4962 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4963 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4964 } 4965 /* If there is no skb after us, we are the last_skb ! */ 4966 if (!skb1) 4967 tp->ooo_last_skb = skb; 4968 4969 add_sack: 4970 if (tcp_is_sack(tp)) 4971 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4972 end: 4973 if (skb) { 4974 /* For non sack flows, do not grow window to force DUPACK 4975 * and trigger fast retransmit. 4976 */ 4977 if (tcp_is_sack(tp)) 4978 tcp_grow_window(sk, skb, false); 4979 skb_condense(skb); 4980 skb_set_owner_r(skb, sk); 4981 } 4982 } 4983 4984 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4985 bool *fragstolen) 4986 { 4987 int eaten; 4988 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4989 4990 eaten = (tail && 4991 tcp_try_coalesce(sk, tail, 4992 skb, fragstolen)) ? 1 : 0; 4993 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4994 if (!eaten) { 4995 __skb_queue_tail(&sk->sk_receive_queue, skb); 4996 skb_set_owner_r(skb, sk); 4997 } 4998 return eaten; 4999 } 5000 5001 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5002 { 5003 struct sk_buff *skb; 5004 int err = -ENOMEM; 5005 int data_len = 0; 5006 bool fragstolen; 5007 5008 if (size == 0) 5009 return 0; 5010 5011 if (size > PAGE_SIZE) { 5012 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5013 5014 data_len = npages << PAGE_SHIFT; 5015 size = data_len + (size & ~PAGE_MASK); 5016 } 5017 skb = alloc_skb_with_frags(size - data_len, data_len, 5018 PAGE_ALLOC_COSTLY_ORDER, 5019 &err, sk->sk_allocation); 5020 if (!skb) 5021 goto err; 5022 5023 skb_put(skb, size - data_len); 5024 skb->data_len = data_len; 5025 skb->len = size; 5026 5027 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5028 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5029 goto err_free; 5030 } 5031 5032 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5033 if (err) 5034 goto err_free; 5035 5036 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5037 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5038 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5039 5040 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5041 WARN_ON_ONCE(fragstolen); /* should not happen */ 5042 __kfree_skb(skb); 5043 } 5044 return size; 5045 5046 err_free: 5047 kfree_skb(skb); 5048 err: 5049 return err; 5050 5051 } 5052 5053 void tcp_data_ready(struct sock *sk) 5054 { 5055 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5056 sk->sk_data_ready(sk); 5057 } 5058 5059 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5060 { 5061 struct tcp_sock *tp = tcp_sk(sk); 5062 enum skb_drop_reason reason; 5063 bool fragstolen; 5064 int eaten; 5065 5066 /* If a subflow has been reset, the packet should not continue 5067 * to be processed, drop the packet. 5068 */ 5069 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5070 __kfree_skb(skb); 5071 return; 5072 } 5073 5074 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5075 __kfree_skb(skb); 5076 return; 5077 } 5078 skb_dst_drop(skb); 5079 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5080 5081 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5082 tp->rx_opt.dsack = 0; 5083 5084 /* Queue data for delivery to the user. 5085 * Packets in sequence go to the receive queue. 5086 * Out of sequence packets to the out_of_order_queue. 5087 */ 5088 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5089 if (tcp_receive_window(tp) == 0) { 5090 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5091 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5092 goto out_of_window; 5093 } 5094 5095 /* Ok. In sequence. In window. */ 5096 queue_and_out: 5097 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5098 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5099 inet_csk(sk)->icsk_ack.pending |= 5100 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5101 inet_csk_schedule_ack(sk); 5102 sk->sk_data_ready(sk); 5103 5104 if (skb_queue_len(&sk->sk_receive_queue)) { 5105 reason = SKB_DROP_REASON_PROTO_MEM; 5106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5107 goto drop; 5108 } 5109 sk_forced_mem_schedule(sk, skb->truesize); 5110 } 5111 5112 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5113 if (skb->len) 5114 tcp_event_data_recv(sk, skb); 5115 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5116 tcp_fin(sk); 5117 5118 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5119 tcp_ofo_queue(sk); 5120 5121 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5122 * gap in queue is filled. 5123 */ 5124 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5125 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5126 } 5127 5128 if (tp->rx_opt.num_sacks) 5129 tcp_sack_remove(tp); 5130 5131 tcp_fast_path_check(sk); 5132 5133 if (eaten > 0) 5134 kfree_skb_partial(skb, fragstolen); 5135 if (!sock_flag(sk, SOCK_DEAD)) 5136 tcp_data_ready(sk); 5137 return; 5138 } 5139 5140 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5141 tcp_rcv_spurious_retrans(sk, skb); 5142 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5143 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5144 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5145 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5146 5147 out_of_window: 5148 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5149 inet_csk_schedule_ack(sk); 5150 drop: 5151 tcp_drop_reason(sk, skb, reason); 5152 return; 5153 } 5154 5155 /* Out of window. F.e. zero window probe. */ 5156 if (!before(TCP_SKB_CB(skb)->seq, 5157 tp->rcv_nxt + tcp_receive_window(tp))) { 5158 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5159 goto out_of_window; 5160 } 5161 5162 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5163 /* Partial packet, seq < rcv_next < end_seq */ 5164 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5165 5166 /* If window is closed, drop tail of packet. But after 5167 * remembering D-SACK for its head made in previous line. 5168 */ 5169 if (!tcp_receive_window(tp)) { 5170 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5171 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5172 goto out_of_window; 5173 } 5174 goto queue_and_out; 5175 } 5176 5177 tcp_data_queue_ofo(sk, skb); 5178 } 5179 5180 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5181 { 5182 if (list) 5183 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5184 5185 return skb_rb_next(skb); 5186 } 5187 5188 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5189 struct sk_buff_head *list, 5190 struct rb_root *root) 5191 { 5192 struct sk_buff *next = tcp_skb_next(skb, list); 5193 5194 if (list) 5195 __skb_unlink(skb, list); 5196 else 5197 rb_erase(&skb->rbnode, root); 5198 5199 __kfree_skb(skb); 5200 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5201 5202 return next; 5203 } 5204 5205 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5206 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5207 { 5208 struct rb_node **p = &root->rb_node; 5209 struct rb_node *parent = NULL; 5210 struct sk_buff *skb1; 5211 5212 while (*p) { 5213 parent = *p; 5214 skb1 = rb_to_skb(parent); 5215 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5216 p = &parent->rb_left; 5217 else 5218 p = &parent->rb_right; 5219 } 5220 rb_link_node(&skb->rbnode, parent, p); 5221 rb_insert_color(&skb->rbnode, root); 5222 } 5223 5224 /* Collapse contiguous sequence of skbs head..tail with 5225 * sequence numbers start..end. 5226 * 5227 * If tail is NULL, this means until the end of the queue. 5228 * 5229 * Segments with FIN/SYN are not collapsed (only because this 5230 * simplifies code) 5231 */ 5232 static void 5233 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5234 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5235 { 5236 struct sk_buff *skb = head, *n; 5237 struct sk_buff_head tmp; 5238 bool end_of_skbs; 5239 5240 /* First, check that queue is collapsible and find 5241 * the point where collapsing can be useful. 5242 */ 5243 restart: 5244 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5245 n = tcp_skb_next(skb, list); 5246 5247 /* No new bits? It is possible on ofo queue. */ 5248 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5249 skb = tcp_collapse_one(sk, skb, list, root); 5250 if (!skb) 5251 break; 5252 goto restart; 5253 } 5254 5255 /* The first skb to collapse is: 5256 * - not SYN/FIN and 5257 * - bloated or contains data before "start" or 5258 * overlaps to the next one and mptcp allow collapsing. 5259 */ 5260 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5261 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5262 before(TCP_SKB_CB(skb)->seq, start))) { 5263 end_of_skbs = false; 5264 break; 5265 } 5266 5267 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5268 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5269 end_of_skbs = false; 5270 break; 5271 } 5272 5273 /* Decided to skip this, advance start seq. */ 5274 start = TCP_SKB_CB(skb)->end_seq; 5275 } 5276 if (end_of_skbs || 5277 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5278 return; 5279 5280 __skb_queue_head_init(&tmp); 5281 5282 while (before(start, end)) { 5283 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5284 struct sk_buff *nskb; 5285 5286 nskb = alloc_skb(copy, GFP_ATOMIC); 5287 if (!nskb) 5288 break; 5289 5290 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5291 #ifdef CONFIG_TLS_DEVICE 5292 nskb->decrypted = skb->decrypted; 5293 #endif 5294 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5295 if (list) 5296 __skb_queue_before(list, skb, nskb); 5297 else 5298 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5299 skb_set_owner_r(nskb, sk); 5300 mptcp_skb_ext_move(nskb, skb); 5301 5302 /* Copy data, releasing collapsed skbs. */ 5303 while (copy > 0) { 5304 int offset = start - TCP_SKB_CB(skb)->seq; 5305 int size = TCP_SKB_CB(skb)->end_seq - start; 5306 5307 BUG_ON(offset < 0); 5308 if (size > 0) { 5309 size = min(copy, size); 5310 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5311 BUG(); 5312 TCP_SKB_CB(nskb)->end_seq += size; 5313 copy -= size; 5314 start += size; 5315 } 5316 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5317 skb = tcp_collapse_one(sk, skb, list, root); 5318 if (!skb || 5319 skb == tail || 5320 !mptcp_skb_can_collapse(nskb, skb) || 5321 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5322 goto end; 5323 #ifdef CONFIG_TLS_DEVICE 5324 if (skb->decrypted != nskb->decrypted) 5325 goto end; 5326 #endif 5327 } 5328 } 5329 } 5330 end: 5331 skb_queue_walk_safe(&tmp, skb, n) 5332 tcp_rbtree_insert(root, skb); 5333 } 5334 5335 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5336 * and tcp_collapse() them until all the queue is collapsed. 5337 */ 5338 static void tcp_collapse_ofo_queue(struct sock *sk) 5339 { 5340 struct tcp_sock *tp = tcp_sk(sk); 5341 u32 range_truesize, sum_tiny = 0; 5342 struct sk_buff *skb, *head; 5343 u32 start, end; 5344 5345 skb = skb_rb_first(&tp->out_of_order_queue); 5346 new_range: 5347 if (!skb) { 5348 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5349 return; 5350 } 5351 start = TCP_SKB_CB(skb)->seq; 5352 end = TCP_SKB_CB(skb)->end_seq; 5353 range_truesize = skb->truesize; 5354 5355 for (head = skb;;) { 5356 skb = skb_rb_next(skb); 5357 5358 /* Range is terminated when we see a gap or when 5359 * we are at the queue end. 5360 */ 5361 if (!skb || 5362 after(TCP_SKB_CB(skb)->seq, end) || 5363 before(TCP_SKB_CB(skb)->end_seq, start)) { 5364 /* Do not attempt collapsing tiny skbs */ 5365 if (range_truesize != head->truesize || 5366 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5367 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5368 head, skb, start, end); 5369 } else { 5370 sum_tiny += range_truesize; 5371 if (sum_tiny > sk->sk_rcvbuf >> 3) 5372 return; 5373 } 5374 goto new_range; 5375 } 5376 5377 range_truesize += skb->truesize; 5378 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5379 start = TCP_SKB_CB(skb)->seq; 5380 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5381 end = TCP_SKB_CB(skb)->end_seq; 5382 } 5383 } 5384 5385 /* 5386 * Clean the out-of-order queue to make room. 5387 * We drop high sequences packets to : 5388 * 1) Let a chance for holes to be filled. 5389 * This means we do not drop packets from ooo queue if their sequence 5390 * is before incoming packet sequence. 5391 * 2) not add too big latencies if thousands of packets sit there. 5392 * (But if application shrinks SO_RCVBUF, we could still end up 5393 * freeing whole queue here) 5394 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5395 * 5396 * Return true if queue has shrunk. 5397 */ 5398 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5399 { 5400 struct tcp_sock *tp = tcp_sk(sk); 5401 struct rb_node *node, *prev; 5402 bool pruned = false; 5403 int goal; 5404 5405 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5406 return false; 5407 5408 goal = sk->sk_rcvbuf >> 3; 5409 node = &tp->ooo_last_skb->rbnode; 5410 5411 do { 5412 struct sk_buff *skb = rb_to_skb(node); 5413 5414 /* If incoming skb would land last in ofo queue, stop pruning. */ 5415 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5416 break; 5417 pruned = true; 5418 prev = rb_prev(node); 5419 rb_erase(node, &tp->out_of_order_queue); 5420 goal -= skb->truesize; 5421 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5422 tp->ooo_last_skb = rb_to_skb(prev); 5423 if (!prev || goal <= 0) { 5424 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5425 !tcp_under_memory_pressure(sk)) 5426 break; 5427 goal = sk->sk_rcvbuf >> 3; 5428 } 5429 node = prev; 5430 } while (node); 5431 5432 if (pruned) { 5433 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5434 /* Reset SACK state. A conforming SACK implementation will 5435 * do the same at a timeout based retransmit. When a connection 5436 * is in a sad state like this, we care only about integrity 5437 * of the connection not performance. 5438 */ 5439 if (tp->rx_opt.sack_ok) 5440 tcp_sack_reset(&tp->rx_opt); 5441 } 5442 return pruned; 5443 } 5444 5445 /* Reduce allocated memory if we can, trying to get 5446 * the socket within its memory limits again. 5447 * 5448 * Return less than zero if we should start dropping frames 5449 * until the socket owning process reads some of the data 5450 * to stabilize the situation. 5451 */ 5452 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5453 { 5454 struct tcp_sock *tp = tcp_sk(sk); 5455 5456 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5457 5458 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5459 tcp_clamp_window(sk); 5460 else if (tcp_under_memory_pressure(sk)) 5461 tcp_adjust_rcv_ssthresh(sk); 5462 5463 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5464 return 0; 5465 5466 tcp_collapse_ofo_queue(sk); 5467 if (!skb_queue_empty(&sk->sk_receive_queue)) 5468 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5469 skb_peek(&sk->sk_receive_queue), 5470 NULL, 5471 tp->copied_seq, tp->rcv_nxt); 5472 5473 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5474 return 0; 5475 5476 /* Collapsing did not help, destructive actions follow. 5477 * This must not ever occur. */ 5478 5479 tcp_prune_ofo_queue(sk, in_skb); 5480 5481 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5482 return 0; 5483 5484 /* If we are really being abused, tell the caller to silently 5485 * drop receive data on the floor. It will get retransmitted 5486 * and hopefully then we'll have sufficient space. 5487 */ 5488 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5489 5490 /* Massive buffer overcommit. */ 5491 tp->pred_flags = 0; 5492 return -1; 5493 } 5494 5495 static bool tcp_should_expand_sndbuf(struct sock *sk) 5496 { 5497 const struct tcp_sock *tp = tcp_sk(sk); 5498 5499 /* If the user specified a specific send buffer setting, do 5500 * not modify it. 5501 */ 5502 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5503 return false; 5504 5505 /* If we are under global TCP memory pressure, do not expand. */ 5506 if (tcp_under_memory_pressure(sk)) { 5507 int unused_mem = sk_unused_reserved_mem(sk); 5508 5509 /* Adjust sndbuf according to reserved mem. But make sure 5510 * it never goes below SOCK_MIN_SNDBUF. 5511 * See sk_stream_moderate_sndbuf() for more details. 5512 */ 5513 if (unused_mem > SOCK_MIN_SNDBUF) 5514 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5515 5516 return false; 5517 } 5518 5519 /* If we are under soft global TCP memory pressure, do not expand. */ 5520 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5521 return false; 5522 5523 /* If we filled the congestion window, do not expand. */ 5524 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5525 return false; 5526 5527 return true; 5528 } 5529 5530 static void tcp_new_space(struct sock *sk) 5531 { 5532 struct tcp_sock *tp = tcp_sk(sk); 5533 5534 if (tcp_should_expand_sndbuf(sk)) { 5535 tcp_sndbuf_expand(sk); 5536 tp->snd_cwnd_stamp = tcp_jiffies32; 5537 } 5538 5539 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5540 } 5541 5542 /* Caller made space either from: 5543 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5544 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5545 * 5546 * We might be able to generate EPOLLOUT to the application if: 5547 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5548 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5549 * small enough that tcp_stream_memory_free() decides it 5550 * is time to generate EPOLLOUT. 5551 */ 5552 void tcp_check_space(struct sock *sk) 5553 { 5554 /* pairs with tcp_poll() */ 5555 smp_mb(); 5556 if (sk->sk_socket && 5557 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5558 tcp_new_space(sk); 5559 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5560 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5561 } 5562 } 5563 5564 static inline void tcp_data_snd_check(struct sock *sk) 5565 { 5566 tcp_push_pending_frames(sk); 5567 tcp_check_space(sk); 5568 } 5569 5570 /* 5571 * Check if sending an ack is needed. 5572 */ 5573 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5574 { 5575 struct tcp_sock *tp = tcp_sk(sk); 5576 unsigned long rtt, delay; 5577 5578 /* More than one full frame received... */ 5579 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5580 /* ... and right edge of window advances far enough. 5581 * (tcp_recvmsg() will send ACK otherwise). 5582 * If application uses SO_RCVLOWAT, we want send ack now if 5583 * we have not received enough bytes to satisfy the condition. 5584 */ 5585 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5586 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5587 /* We ACK each frame or... */ 5588 tcp_in_quickack_mode(sk) || 5589 /* Protocol state mandates a one-time immediate ACK */ 5590 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5591 send_now: 5592 tcp_send_ack(sk); 5593 return; 5594 } 5595 5596 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5597 tcp_send_delayed_ack(sk); 5598 return; 5599 } 5600 5601 if (!tcp_is_sack(tp) || 5602 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5603 goto send_now; 5604 5605 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5606 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5607 tp->dup_ack_counter = 0; 5608 } 5609 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5610 tp->dup_ack_counter++; 5611 goto send_now; 5612 } 5613 tp->compressed_ack++; 5614 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5615 return; 5616 5617 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5618 5619 rtt = tp->rcv_rtt_est.rtt_us; 5620 if (tp->srtt_us && tp->srtt_us < rtt) 5621 rtt = tp->srtt_us; 5622 5623 delay = min_t(unsigned long, 5624 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5625 rtt * (NSEC_PER_USEC >> 3)/20); 5626 sock_hold(sk); 5627 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5628 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5629 HRTIMER_MODE_REL_PINNED_SOFT); 5630 } 5631 5632 static inline void tcp_ack_snd_check(struct sock *sk) 5633 { 5634 if (!inet_csk_ack_scheduled(sk)) { 5635 /* We sent a data segment already. */ 5636 return; 5637 } 5638 __tcp_ack_snd_check(sk, 1); 5639 } 5640 5641 /* 5642 * This routine is only called when we have urgent data 5643 * signaled. Its the 'slow' part of tcp_urg. It could be 5644 * moved inline now as tcp_urg is only called from one 5645 * place. We handle URGent data wrong. We have to - as 5646 * BSD still doesn't use the correction from RFC961. 5647 * For 1003.1g we should support a new option TCP_STDURG to permit 5648 * either form (or just set the sysctl tcp_stdurg). 5649 */ 5650 5651 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5652 { 5653 struct tcp_sock *tp = tcp_sk(sk); 5654 u32 ptr = ntohs(th->urg_ptr); 5655 5656 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5657 ptr--; 5658 ptr += ntohl(th->seq); 5659 5660 /* Ignore urgent data that we've already seen and read. */ 5661 if (after(tp->copied_seq, ptr)) 5662 return; 5663 5664 /* Do not replay urg ptr. 5665 * 5666 * NOTE: interesting situation not covered by specs. 5667 * Misbehaving sender may send urg ptr, pointing to segment, 5668 * which we already have in ofo queue. We are not able to fetch 5669 * such data and will stay in TCP_URG_NOTYET until will be eaten 5670 * by recvmsg(). Seems, we are not obliged to handle such wicked 5671 * situations. But it is worth to think about possibility of some 5672 * DoSes using some hypothetical application level deadlock. 5673 */ 5674 if (before(ptr, tp->rcv_nxt)) 5675 return; 5676 5677 /* Do we already have a newer (or duplicate) urgent pointer? */ 5678 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5679 return; 5680 5681 /* Tell the world about our new urgent pointer. */ 5682 sk_send_sigurg(sk); 5683 5684 /* We may be adding urgent data when the last byte read was 5685 * urgent. To do this requires some care. We cannot just ignore 5686 * tp->copied_seq since we would read the last urgent byte again 5687 * as data, nor can we alter copied_seq until this data arrives 5688 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5689 * 5690 * NOTE. Double Dutch. Rendering to plain English: author of comment 5691 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5692 * and expect that both A and B disappear from stream. This is _wrong_. 5693 * Though this happens in BSD with high probability, this is occasional. 5694 * Any application relying on this is buggy. Note also, that fix "works" 5695 * only in this artificial test. Insert some normal data between A and B and we will 5696 * decline of BSD again. Verdict: it is better to remove to trap 5697 * buggy users. 5698 */ 5699 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5700 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5701 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5702 tp->copied_seq++; 5703 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5704 __skb_unlink(skb, &sk->sk_receive_queue); 5705 __kfree_skb(skb); 5706 } 5707 } 5708 5709 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5710 WRITE_ONCE(tp->urg_seq, ptr); 5711 5712 /* Disable header prediction. */ 5713 tp->pred_flags = 0; 5714 } 5715 5716 /* This is the 'fast' part of urgent handling. */ 5717 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5718 { 5719 struct tcp_sock *tp = tcp_sk(sk); 5720 5721 /* Check if we get a new urgent pointer - normally not. */ 5722 if (unlikely(th->urg)) 5723 tcp_check_urg(sk, th); 5724 5725 /* Do we wait for any urgent data? - normally not... */ 5726 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5727 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5728 th->syn; 5729 5730 /* Is the urgent pointer pointing into this packet? */ 5731 if (ptr < skb->len) { 5732 u8 tmp; 5733 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5734 BUG(); 5735 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5736 if (!sock_flag(sk, SOCK_DEAD)) 5737 sk->sk_data_ready(sk); 5738 } 5739 } 5740 } 5741 5742 /* Accept RST for rcv_nxt - 1 after a FIN. 5743 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5744 * FIN is sent followed by a RST packet. The RST is sent with the same 5745 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5746 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5747 * ACKs on the closed socket. In addition middleboxes can drop either the 5748 * challenge ACK or a subsequent RST. 5749 */ 5750 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5751 { 5752 const struct tcp_sock *tp = tcp_sk(sk); 5753 5754 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5755 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5756 TCPF_CLOSING)); 5757 } 5758 5759 /* Does PAWS and seqno based validation of an incoming segment, flags will 5760 * play significant role here. 5761 */ 5762 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5763 const struct tcphdr *th, int syn_inerr) 5764 { 5765 struct tcp_sock *tp = tcp_sk(sk); 5766 SKB_DR(reason); 5767 5768 /* RFC1323: H1. Apply PAWS check first. */ 5769 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5770 tp->rx_opt.saw_tstamp && 5771 tcp_paws_discard(sk, skb)) { 5772 if (!th->rst) { 5773 if (unlikely(th->syn)) 5774 goto syn_challenge; 5775 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5776 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5777 LINUX_MIB_TCPACKSKIPPEDPAWS, 5778 &tp->last_oow_ack_time)) 5779 tcp_send_dupack(sk, skb); 5780 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5781 goto discard; 5782 } 5783 /* Reset is accepted even if it did not pass PAWS. */ 5784 } 5785 5786 /* Step 1: check sequence number */ 5787 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5788 if (reason) { 5789 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5790 * (RST) segments are validated by checking their SEQ-fields." 5791 * And page 69: "If an incoming segment is not acceptable, 5792 * an acknowledgment should be sent in reply (unless the RST 5793 * bit is set, if so drop the segment and return)". 5794 */ 5795 if (!th->rst) { 5796 if (th->syn) 5797 goto syn_challenge; 5798 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5799 LINUX_MIB_TCPACKSKIPPEDSEQ, 5800 &tp->last_oow_ack_time)) 5801 tcp_send_dupack(sk, skb); 5802 } else if (tcp_reset_check(sk, skb)) { 5803 goto reset; 5804 } 5805 goto discard; 5806 } 5807 5808 /* Step 2: check RST bit */ 5809 if (th->rst) { 5810 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5811 * FIN and SACK too if available): 5812 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5813 * the right-most SACK block, 5814 * then 5815 * RESET the connection 5816 * else 5817 * Send a challenge ACK 5818 */ 5819 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5820 tcp_reset_check(sk, skb)) 5821 goto reset; 5822 5823 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5824 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5825 int max_sack = sp[0].end_seq; 5826 int this_sack; 5827 5828 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5829 ++this_sack) { 5830 max_sack = after(sp[this_sack].end_seq, 5831 max_sack) ? 5832 sp[this_sack].end_seq : max_sack; 5833 } 5834 5835 if (TCP_SKB_CB(skb)->seq == max_sack) 5836 goto reset; 5837 } 5838 5839 /* Disable TFO if RST is out-of-order 5840 * and no data has been received 5841 * for current active TFO socket 5842 */ 5843 if (tp->syn_fastopen && !tp->data_segs_in && 5844 sk->sk_state == TCP_ESTABLISHED) 5845 tcp_fastopen_active_disable(sk); 5846 tcp_send_challenge_ack(sk); 5847 SKB_DR_SET(reason, TCP_RESET); 5848 goto discard; 5849 } 5850 5851 /* step 3: check security and precedence [ignored] */ 5852 5853 /* step 4: Check for a SYN 5854 * RFC 5961 4.2 : Send a challenge ack 5855 */ 5856 if (th->syn) { 5857 syn_challenge: 5858 if (syn_inerr) 5859 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5860 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5861 tcp_send_challenge_ack(sk); 5862 SKB_DR_SET(reason, TCP_INVALID_SYN); 5863 goto discard; 5864 } 5865 5866 bpf_skops_parse_hdr(sk, skb); 5867 5868 return true; 5869 5870 discard: 5871 tcp_drop_reason(sk, skb, reason); 5872 return false; 5873 5874 reset: 5875 tcp_reset(sk, skb); 5876 __kfree_skb(skb); 5877 return false; 5878 } 5879 5880 /* 5881 * TCP receive function for the ESTABLISHED state. 5882 * 5883 * It is split into a fast path and a slow path. The fast path is 5884 * disabled when: 5885 * - A zero window was announced from us - zero window probing 5886 * is only handled properly in the slow path. 5887 * - Out of order segments arrived. 5888 * - Urgent data is expected. 5889 * - There is no buffer space left 5890 * - Unexpected TCP flags/window values/header lengths are received 5891 * (detected by checking the TCP header against pred_flags) 5892 * - Data is sent in both directions. Fast path only supports pure senders 5893 * or pure receivers (this means either the sequence number or the ack 5894 * value must stay constant) 5895 * - Unexpected TCP option. 5896 * 5897 * When these conditions are not satisfied it drops into a standard 5898 * receive procedure patterned after RFC793 to handle all cases. 5899 * The first three cases are guaranteed by proper pred_flags setting, 5900 * the rest is checked inline. Fast processing is turned on in 5901 * tcp_data_queue when everything is OK. 5902 */ 5903 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5904 { 5905 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5906 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5907 struct tcp_sock *tp = tcp_sk(sk); 5908 unsigned int len = skb->len; 5909 5910 /* TCP congestion window tracking */ 5911 trace_tcp_probe(sk, skb); 5912 5913 tcp_mstamp_refresh(tp); 5914 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5915 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5916 /* 5917 * Header prediction. 5918 * The code loosely follows the one in the famous 5919 * "30 instruction TCP receive" Van Jacobson mail. 5920 * 5921 * Van's trick is to deposit buffers into socket queue 5922 * on a device interrupt, to call tcp_recv function 5923 * on the receive process context and checksum and copy 5924 * the buffer to user space. smart... 5925 * 5926 * Our current scheme is not silly either but we take the 5927 * extra cost of the net_bh soft interrupt processing... 5928 * We do checksum and copy also but from device to kernel. 5929 */ 5930 5931 tp->rx_opt.saw_tstamp = 0; 5932 5933 /* pred_flags is 0xS?10 << 16 + snd_wnd 5934 * if header_prediction is to be made 5935 * 'S' will always be tp->tcp_header_len >> 2 5936 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5937 * turn it off (when there are holes in the receive 5938 * space for instance) 5939 * PSH flag is ignored. 5940 */ 5941 5942 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5943 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5944 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5945 int tcp_header_len = tp->tcp_header_len; 5946 5947 /* Timestamp header prediction: tcp_header_len 5948 * is automatically equal to th->doff*4 due to pred_flags 5949 * match. 5950 */ 5951 5952 /* Check timestamp */ 5953 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5954 /* No? Slow path! */ 5955 if (!tcp_parse_aligned_timestamp(tp, th)) 5956 goto slow_path; 5957 5958 /* If PAWS failed, check it more carefully in slow path */ 5959 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5960 goto slow_path; 5961 5962 /* DO NOT update ts_recent here, if checksum fails 5963 * and timestamp was corrupted part, it will result 5964 * in a hung connection since we will drop all 5965 * future packets due to the PAWS test. 5966 */ 5967 } 5968 5969 if (len <= tcp_header_len) { 5970 /* Bulk data transfer: sender */ 5971 if (len == tcp_header_len) { 5972 /* Predicted packet is in window by definition. 5973 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5974 * Hence, check seq<=rcv_wup reduces to: 5975 */ 5976 if (tcp_header_len == 5977 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5978 tp->rcv_nxt == tp->rcv_wup) 5979 tcp_store_ts_recent(tp); 5980 5981 /* We know that such packets are checksummed 5982 * on entry. 5983 */ 5984 tcp_ack(sk, skb, 0); 5985 __kfree_skb(skb); 5986 tcp_data_snd_check(sk); 5987 /* When receiving pure ack in fast path, update 5988 * last ts ecr directly instead of calling 5989 * tcp_rcv_rtt_measure_ts() 5990 */ 5991 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5992 return; 5993 } else { /* Header too small */ 5994 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5995 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5996 goto discard; 5997 } 5998 } else { 5999 int eaten = 0; 6000 bool fragstolen = false; 6001 6002 if (tcp_checksum_complete(skb)) 6003 goto csum_error; 6004 6005 if ((int)skb->truesize > sk->sk_forward_alloc) 6006 goto step5; 6007 6008 /* Predicted packet is in window by definition. 6009 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6010 * Hence, check seq<=rcv_wup reduces to: 6011 */ 6012 if (tcp_header_len == 6013 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6014 tp->rcv_nxt == tp->rcv_wup) 6015 tcp_store_ts_recent(tp); 6016 6017 tcp_rcv_rtt_measure_ts(sk, skb); 6018 6019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6020 6021 /* Bulk data transfer: receiver */ 6022 skb_dst_drop(skb); 6023 __skb_pull(skb, tcp_header_len); 6024 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6025 6026 tcp_event_data_recv(sk, skb); 6027 6028 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6029 /* Well, only one small jumplet in fast path... */ 6030 tcp_ack(sk, skb, FLAG_DATA); 6031 tcp_data_snd_check(sk); 6032 if (!inet_csk_ack_scheduled(sk)) 6033 goto no_ack; 6034 } else { 6035 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6036 } 6037 6038 __tcp_ack_snd_check(sk, 0); 6039 no_ack: 6040 if (eaten) 6041 kfree_skb_partial(skb, fragstolen); 6042 tcp_data_ready(sk); 6043 return; 6044 } 6045 } 6046 6047 slow_path: 6048 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6049 goto csum_error; 6050 6051 if (!th->ack && !th->rst && !th->syn) { 6052 reason = SKB_DROP_REASON_TCP_FLAGS; 6053 goto discard; 6054 } 6055 6056 /* 6057 * Standard slow path. 6058 */ 6059 6060 if (!tcp_validate_incoming(sk, skb, th, 1)) 6061 return; 6062 6063 step5: 6064 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6065 if ((int)reason < 0) { 6066 reason = -reason; 6067 goto discard; 6068 } 6069 tcp_rcv_rtt_measure_ts(sk, skb); 6070 6071 /* Process urgent data. */ 6072 tcp_urg(sk, skb, th); 6073 6074 /* step 7: process the segment text */ 6075 tcp_data_queue(sk, skb); 6076 6077 tcp_data_snd_check(sk); 6078 tcp_ack_snd_check(sk); 6079 return; 6080 6081 csum_error: 6082 reason = SKB_DROP_REASON_TCP_CSUM; 6083 trace_tcp_bad_csum(skb); 6084 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6085 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6086 6087 discard: 6088 tcp_drop_reason(sk, skb, reason); 6089 } 6090 EXPORT_SYMBOL(tcp_rcv_established); 6091 6092 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6093 { 6094 struct inet_connection_sock *icsk = inet_csk(sk); 6095 struct tcp_sock *tp = tcp_sk(sk); 6096 6097 tcp_mtup_init(sk); 6098 icsk->icsk_af_ops->rebuild_header(sk); 6099 tcp_init_metrics(sk); 6100 6101 /* Initialize the congestion window to start the transfer. 6102 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6103 * retransmitted. In light of RFC6298 more aggressive 1sec 6104 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6105 * retransmission has occurred. 6106 */ 6107 if (tp->total_retrans > 1 && tp->undo_marker) 6108 tcp_snd_cwnd_set(tp, 1); 6109 else 6110 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6111 tp->snd_cwnd_stamp = tcp_jiffies32; 6112 6113 bpf_skops_established(sk, bpf_op, skb); 6114 /* Initialize congestion control unless BPF initialized it already: */ 6115 if (!icsk->icsk_ca_initialized) 6116 tcp_init_congestion_control(sk); 6117 tcp_init_buffer_space(sk); 6118 } 6119 6120 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6121 { 6122 struct tcp_sock *tp = tcp_sk(sk); 6123 struct inet_connection_sock *icsk = inet_csk(sk); 6124 6125 tcp_set_state(sk, TCP_ESTABLISHED); 6126 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6127 6128 if (skb) { 6129 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6130 security_inet_conn_established(sk, skb); 6131 sk_mark_napi_id(sk, skb); 6132 } 6133 6134 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6135 6136 /* Prevent spurious tcp_cwnd_restart() on first data 6137 * packet. 6138 */ 6139 tp->lsndtime = tcp_jiffies32; 6140 6141 if (sock_flag(sk, SOCK_KEEPOPEN)) 6142 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6143 6144 if (!tp->rx_opt.snd_wscale) 6145 __tcp_fast_path_on(tp, tp->snd_wnd); 6146 else 6147 tp->pred_flags = 0; 6148 } 6149 6150 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6151 struct tcp_fastopen_cookie *cookie) 6152 { 6153 struct tcp_sock *tp = tcp_sk(sk); 6154 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6155 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6156 bool syn_drop = false; 6157 6158 if (mss == tp->rx_opt.user_mss) { 6159 struct tcp_options_received opt; 6160 6161 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6162 tcp_clear_options(&opt); 6163 opt.user_mss = opt.mss_clamp = 0; 6164 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6165 mss = opt.mss_clamp; 6166 } 6167 6168 if (!tp->syn_fastopen) { 6169 /* Ignore an unsolicited cookie */ 6170 cookie->len = -1; 6171 } else if (tp->total_retrans) { 6172 /* SYN timed out and the SYN-ACK neither has a cookie nor 6173 * acknowledges data. Presumably the remote received only 6174 * the retransmitted (regular) SYNs: either the original 6175 * SYN-data or the corresponding SYN-ACK was dropped. 6176 */ 6177 syn_drop = (cookie->len < 0 && data); 6178 } else if (cookie->len < 0 && !tp->syn_data) { 6179 /* We requested a cookie but didn't get it. If we did not use 6180 * the (old) exp opt format then try so next time (try_exp=1). 6181 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6182 */ 6183 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6184 } 6185 6186 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6187 6188 if (data) { /* Retransmit unacked data in SYN */ 6189 if (tp->total_retrans) 6190 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6191 else 6192 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6193 skb_rbtree_walk_from(data) 6194 tcp_mark_skb_lost(sk, data); 6195 tcp_non_congestion_loss_retransmit(sk); 6196 NET_INC_STATS(sock_net(sk), 6197 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6198 return true; 6199 } 6200 tp->syn_data_acked = tp->syn_data; 6201 if (tp->syn_data_acked) { 6202 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6203 /* SYN-data is counted as two separate packets in tcp_ack() */ 6204 if (tp->delivered > 1) 6205 --tp->delivered; 6206 } 6207 6208 tcp_fastopen_add_skb(sk, synack); 6209 6210 return false; 6211 } 6212 6213 static void smc_check_reset_syn(struct tcp_sock *tp) 6214 { 6215 #if IS_ENABLED(CONFIG_SMC) 6216 if (static_branch_unlikely(&tcp_have_smc)) { 6217 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6218 tp->syn_smc = 0; 6219 } 6220 #endif 6221 } 6222 6223 static void tcp_try_undo_spurious_syn(struct sock *sk) 6224 { 6225 struct tcp_sock *tp = tcp_sk(sk); 6226 u32 syn_stamp; 6227 6228 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6229 * spurious if the ACK's timestamp option echo value matches the 6230 * original SYN timestamp. 6231 */ 6232 syn_stamp = tp->retrans_stamp; 6233 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6234 syn_stamp == tp->rx_opt.rcv_tsecr) 6235 tp->undo_marker = 0; 6236 } 6237 6238 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6239 const struct tcphdr *th) 6240 { 6241 struct inet_connection_sock *icsk = inet_csk(sk); 6242 struct tcp_sock *tp = tcp_sk(sk); 6243 struct tcp_fastopen_cookie foc = { .len = -1 }; 6244 int saved_clamp = tp->rx_opt.mss_clamp; 6245 bool fastopen_fail; 6246 SKB_DR(reason); 6247 6248 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6249 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6250 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6251 6252 if (th->ack) { 6253 /* rfc793: 6254 * "If the state is SYN-SENT then 6255 * first check the ACK bit 6256 * If the ACK bit is set 6257 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6258 * a reset (unless the RST bit is set, if so drop 6259 * the segment and return)" 6260 */ 6261 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6262 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6263 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6264 if (icsk->icsk_retransmits == 0) 6265 inet_csk_reset_xmit_timer(sk, 6266 ICSK_TIME_RETRANS, 6267 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6268 goto reset_and_undo; 6269 } 6270 6271 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6272 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6273 tcp_time_stamp(tp))) { 6274 NET_INC_STATS(sock_net(sk), 6275 LINUX_MIB_PAWSACTIVEREJECTED); 6276 goto reset_and_undo; 6277 } 6278 6279 /* Now ACK is acceptable. 6280 * 6281 * "If the RST bit is set 6282 * If the ACK was acceptable then signal the user "error: 6283 * connection reset", drop the segment, enter CLOSED state, 6284 * delete TCB, and return." 6285 */ 6286 6287 if (th->rst) { 6288 tcp_reset(sk, skb); 6289 consume: 6290 __kfree_skb(skb); 6291 return 0; 6292 } 6293 6294 /* rfc793: 6295 * "fifth, if neither of the SYN or RST bits is set then 6296 * drop the segment and return." 6297 * 6298 * See note below! 6299 * --ANK(990513) 6300 */ 6301 if (!th->syn) { 6302 SKB_DR_SET(reason, TCP_FLAGS); 6303 goto discard_and_undo; 6304 } 6305 /* rfc793: 6306 * "If the SYN bit is on ... 6307 * are acceptable then ... 6308 * (our SYN has been ACKed), change the connection 6309 * state to ESTABLISHED..." 6310 */ 6311 6312 tcp_ecn_rcv_synack(tp, th); 6313 6314 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6315 tcp_try_undo_spurious_syn(sk); 6316 tcp_ack(sk, skb, FLAG_SLOWPATH); 6317 6318 /* Ok.. it's good. Set up sequence numbers and 6319 * move to established. 6320 */ 6321 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6322 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6323 6324 /* RFC1323: The window in SYN & SYN/ACK segments is 6325 * never scaled. 6326 */ 6327 tp->snd_wnd = ntohs(th->window); 6328 6329 if (!tp->rx_opt.wscale_ok) { 6330 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6331 tp->window_clamp = min(tp->window_clamp, 65535U); 6332 } 6333 6334 if (tp->rx_opt.saw_tstamp) { 6335 tp->rx_opt.tstamp_ok = 1; 6336 tp->tcp_header_len = 6337 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6338 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6339 tcp_store_ts_recent(tp); 6340 } else { 6341 tp->tcp_header_len = sizeof(struct tcphdr); 6342 } 6343 6344 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6345 tcp_initialize_rcv_mss(sk); 6346 6347 /* Remember, tcp_poll() does not lock socket! 6348 * Change state from SYN-SENT only after copied_seq 6349 * is initialized. */ 6350 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6351 6352 smc_check_reset_syn(tp); 6353 6354 smp_mb(); 6355 6356 tcp_finish_connect(sk, skb); 6357 6358 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6359 tcp_rcv_fastopen_synack(sk, skb, &foc); 6360 6361 if (!sock_flag(sk, SOCK_DEAD)) { 6362 sk->sk_state_change(sk); 6363 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6364 } 6365 if (fastopen_fail) 6366 return -1; 6367 if (sk->sk_write_pending || 6368 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6369 inet_csk_in_pingpong_mode(sk)) { 6370 /* Save one ACK. Data will be ready after 6371 * several ticks, if write_pending is set. 6372 * 6373 * It may be deleted, but with this feature tcpdumps 6374 * look so _wonderfully_ clever, that I was not able 6375 * to stand against the temptation 8) --ANK 6376 */ 6377 inet_csk_schedule_ack(sk); 6378 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6379 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6380 TCP_DELACK_MAX, TCP_RTO_MAX); 6381 goto consume; 6382 } 6383 tcp_send_ack(sk); 6384 return -1; 6385 } 6386 6387 /* No ACK in the segment */ 6388 6389 if (th->rst) { 6390 /* rfc793: 6391 * "If the RST bit is set 6392 * 6393 * Otherwise (no ACK) drop the segment and return." 6394 */ 6395 SKB_DR_SET(reason, TCP_RESET); 6396 goto discard_and_undo; 6397 } 6398 6399 /* PAWS check. */ 6400 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6401 tcp_paws_reject(&tp->rx_opt, 0)) { 6402 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6403 goto discard_and_undo; 6404 } 6405 if (th->syn) { 6406 /* We see SYN without ACK. It is attempt of 6407 * simultaneous connect with crossed SYNs. 6408 * Particularly, it can be connect to self. 6409 */ 6410 tcp_set_state(sk, TCP_SYN_RECV); 6411 6412 if (tp->rx_opt.saw_tstamp) { 6413 tp->rx_opt.tstamp_ok = 1; 6414 tcp_store_ts_recent(tp); 6415 tp->tcp_header_len = 6416 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6417 } else { 6418 tp->tcp_header_len = sizeof(struct tcphdr); 6419 } 6420 6421 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6422 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6423 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6424 6425 /* RFC1323: The window in SYN & SYN/ACK segments is 6426 * never scaled. 6427 */ 6428 tp->snd_wnd = ntohs(th->window); 6429 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6430 tp->max_window = tp->snd_wnd; 6431 6432 tcp_ecn_rcv_syn(tp, th); 6433 6434 tcp_mtup_init(sk); 6435 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6436 tcp_initialize_rcv_mss(sk); 6437 6438 tcp_send_synack(sk); 6439 #if 0 6440 /* Note, we could accept data and URG from this segment. 6441 * There are no obstacles to make this (except that we must 6442 * either change tcp_recvmsg() to prevent it from returning data 6443 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6444 * 6445 * However, if we ignore data in ACKless segments sometimes, 6446 * we have no reasons to accept it sometimes. 6447 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6448 * is not flawless. So, discard packet for sanity. 6449 * Uncomment this return to process the data. 6450 */ 6451 return -1; 6452 #else 6453 goto consume; 6454 #endif 6455 } 6456 /* "fifth, if neither of the SYN or RST bits is set then 6457 * drop the segment and return." 6458 */ 6459 6460 discard_and_undo: 6461 tcp_clear_options(&tp->rx_opt); 6462 tp->rx_opt.mss_clamp = saved_clamp; 6463 tcp_drop_reason(sk, skb, reason); 6464 return 0; 6465 6466 reset_and_undo: 6467 tcp_clear_options(&tp->rx_opt); 6468 tp->rx_opt.mss_clamp = saved_clamp; 6469 return 1; 6470 } 6471 6472 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6473 { 6474 struct tcp_sock *tp = tcp_sk(sk); 6475 struct request_sock *req; 6476 6477 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6478 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6479 */ 6480 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6481 tcp_try_undo_recovery(sk); 6482 6483 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6484 tp->retrans_stamp = 0; 6485 inet_csk(sk)->icsk_retransmits = 0; 6486 6487 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6488 * we no longer need req so release it. 6489 */ 6490 req = rcu_dereference_protected(tp->fastopen_rsk, 6491 lockdep_sock_is_held(sk)); 6492 reqsk_fastopen_remove(sk, req, false); 6493 6494 /* Re-arm the timer because data may have been sent out. 6495 * This is similar to the regular data transmission case 6496 * when new data has just been ack'ed. 6497 * 6498 * (TFO) - we could try to be more aggressive and 6499 * retransmitting any data sooner based on when they 6500 * are sent out. 6501 */ 6502 tcp_rearm_rto(sk); 6503 } 6504 6505 /* 6506 * This function implements the receiving procedure of RFC 793 for 6507 * all states except ESTABLISHED and TIME_WAIT. 6508 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6509 * address independent. 6510 */ 6511 6512 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6513 { 6514 struct tcp_sock *tp = tcp_sk(sk); 6515 struct inet_connection_sock *icsk = inet_csk(sk); 6516 const struct tcphdr *th = tcp_hdr(skb); 6517 struct request_sock *req; 6518 int queued = 0; 6519 bool acceptable; 6520 SKB_DR(reason); 6521 6522 switch (sk->sk_state) { 6523 case TCP_CLOSE: 6524 SKB_DR_SET(reason, TCP_CLOSE); 6525 goto discard; 6526 6527 case TCP_LISTEN: 6528 if (th->ack) 6529 return 1; 6530 6531 if (th->rst) { 6532 SKB_DR_SET(reason, TCP_RESET); 6533 goto discard; 6534 } 6535 if (th->syn) { 6536 if (th->fin) { 6537 SKB_DR_SET(reason, TCP_FLAGS); 6538 goto discard; 6539 } 6540 /* It is possible that we process SYN packets from backlog, 6541 * so we need to make sure to disable BH and RCU right there. 6542 */ 6543 rcu_read_lock(); 6544 local_bh_disable(); 6545 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6546 local_bh_enable(); 6547 rcu_read_unlock(); 6548 6549 if (!acceptable) 6550 return 1; 6551 consume_skb(skb); 6552 return 0; 6553 } 6554 SKB_DR_SET(reason, TCP_FLAGS); 6555 goto discard; 6556 6557 case TCP_SYN_SENT: 6558 tp->rx_opt.saw_tstamp = 0; 6559 tcp_mstamp_refresh(tp); 6560 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6561 if (queued >= 0) 6562 return queued; 6563 6564 /* Do step6 onward by hand. */ 6565 tcp_urg(sk, skb, th); 6566 __kfree_skb(skb); 6567 tcp_data_snd_check(sk); 6568 return 0; 6569 } 6570 6571 tcp_mstamp_refresh(tp); 6572 tp->rx_opt.saw_tstamp = 0; 6573 req = rcu_dereference_protected(tp->fastopen_rsk, 6574 lockdep_sock_is_held(sk)); 6575 if (req) { 6576 bool req_stolen; 6577 6578 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6579 sk->sk_state != TCP_FIN_WAIT1); 6580 6581 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6582 SKB_DR_SET(reason, TCP_FASTOPEN); 6583 goto discard; 6584 } 6585 } 6586 6587 if (!th->ack && !th->rst && !th->syn) { 6588 SKB_DR_SET(reason, TCP_FLAGS); 6589 goto discard; 6590 } 6591 if (!tcp_validate_incoming(sk, skb, th, 0)) 6592 return 0; 6593 6594 /* step 5: check the ACK field */ 6595 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6596 FLAG_UPDATE_TS_RECENT | 6597 FLAG_NO_CHALLENGE_ACK) > 0; 6598 6599 if (!acceptable) { 6600 if (sk->sk_state == TCP_SYN_RECV) 6601 return 1; /* send one RST */ 6602 tcp_send_challenge_ack(sk); 6603 SKB_DR_SET(reason, TCP_OLD_ACK); 6604 goto discard; 6605 } 6606 switch (sk->sk_state) { 6607 case TCP_SYN_RECV: 6608 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6609 if (!tp->srtt_us) 6610 tcp_synack_rtt_meas(sk, req); 6611 6612 if (req) { 6613 tcp_rcv_synrecv_state_fastopen(sk); 6614 } else { 6615 tcp_try_undo_spurious_syn(sk); 6616 tp->retrans_stamp = 0; 6617 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6618 skb); 6619 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6620 } 6621 smp_mb(); 6622 tcp_set_state(sk, TCP_ESTABLISHED); 6623 sk->sk_state_change(sk); 6624 6625 /* Note, that this wakeup is only for marginal crossed SYN case. 6626 * Passively open sockets are not waked up, because 6627 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6628 */ 6629 if (sk->sk_socket) 6630 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6631 6632 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6633 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6634 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6635 6636 if (tp->rx_opt.tstamp_ok) 6637 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6638 6639 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6640 tcp_update_pacing_rate(sk); 6641 6642 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6643 tp->lsndtime = tcp_jiffies32; 6644 6645 tcp_initialize_rcv_mss(sk); 6646 tcp_fast_path_on(tp); 6647 if (sk->sk_shutdown & SEND_SHUTDOWN) 6648 tcp_shutdown(sk, SEND_SHUTDOWN); 6649 break; 6650 6651 case TCP_FIN_WAIT1: { 6652 int tmo; 6653 6654 if (req) 6655 tcp_rcv_synrecv_state_fastopen(sk); 6656 6657 if (tp->snd_una != tp->write_seq) 6658 break; 6659 6660 tcp_set_state(sk, TCP_FIN_WAIT2); 6661 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6662 6663 sk_dst_confirm(sk); 6664 6665 if (!sock_flag(sk, SOCK_DEAD)) { 6666 /* Wake up lingering close() */ 6667 sk->sk_state_change(sk); 6668 break; 6669 } 6670 6671 if (READ_ONCE(tp->linger2) < 0) { 6672 tcp_done(sk); 6673 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6674 return 1; 6675 } 6676 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6677 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6678 /* Receive out of order FIN after close() */ 6679 if (tp->syn_fastopen && th->fin) 6680 tcp_fastopen_active_disable(sk); 6681 tcp_done(sk); 6682 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6683 return 1; 6684 } 6685 6686 tmo = tcp_fin_time(sk); 6687 if (tmo > TCP_TIMEWAIT_LEN) { 6688 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6689 } else if (th->fin || sock_owned_by_user(sk)) { 6690 /* Bad case. We could lose such FIN otherwise. 6691 * It is not a big problem, but it looks confusing 6692 * and not so rare event. We still can lose it now, 6693 * if it spins in bh_lock_sock(), but it is really 6694 * marginal case. 6695 */ 6696 inet_csk_reset_keepalive_timer(sk, tmo); 6697 } else { 6698 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6699 goto consume; 6700 } 6701 break; 6702 } 6703 6704 case TCP_CLOSING: 6705 if (tp->snd_una == tp->write_seq) { 6706 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6707 goto consume; 6708 } 6709 break; 6710 6711 case TCP_LAST_ACK: 6712 if (tp->snd_una == tp->write_seq) { 6713 tcp_update_metrics(sk); 6714 tcp_done(sk); 6715 goto consume; 6716 } 6717 break; 6718 } 6719 6720 /* step 6: check the URG bit */ 6721 tcp_urg(sk, skb, th); 6722 6723 /* step 7: process the segment text */ 6724 switch (sk->sk_state) { 6725 case TCP_CLOSE_WAIT: 6726 case TCP_CLOSING: 6727 case TCP_LAST_ACK: 6728 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6729 /* If a subflow has been reset, the packet should not 6730 * continue to be processed, drop the packet. 6731 */ 6732 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6733 goto discard; 6734 break; 6735 } 6736 fallthrough; 6737 case TCP_FIN_WAIT1: 6738 case TCP_FIN_WAIT2: 6739 /* RFC 793 says to queue data in these states, 6740 * RFC 1122 says we MUST send a reset. 6741 * BSD 4.4 also does reset. 6742 */ 6743 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6744 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6745 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6747 tcp_reset(sk, skb); 6748 return 1; 6749 } 6750 } 6751 fallthrough; 6752 case TCP_ESTABLISHED: 6753 tcp_data_queue(sk, skb); 6754 queued = 1; 6755 break; 6756 } 6757 6758 /* tcp_data could move socket to TIME-WAIT */ 6759 if (sk->sk_state != TCP_CLOSE) { 6760 tcp_data_snd_check(sk); 6761 tcp_ack_snd_check(sk); 6762 } 6763 6764 if (!queued) { 6765 discard: 6766 tcp_drop_reason(sk, skb, reason); 6767 } 6768 return 0; 6769 6770 consume: 6771 __kfree_skb(skb); 6772 return 0; 6773 } 6774 EXPORT_SYMBOL(tcp_rcv_state_process); 6775 6776 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6777 { 6778 struct inet_request_sock *ireq = inet_rsk(req); 6779 6780 if (family == AF_INET) 6781 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6782 &ireq->ir_rmt_addr, port); 6783 #if IS_ENABLED(CONFIG_IPV6) 6784 else if (family == AF_INET6) 6785 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6786 &ireq->ir_v6_rmt_addr, port); 6787 #endif 6788 } 6789 6790 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6791 * 6792 * If we receive a SYN packet with these bits set, it means a 6793 * network is playing bad games with TOS bits. In order to 6794 * avoid possible false congestion notifications, we disable 6795 * TCP ECN negotiation. 6796 * 6797 * Exception: tcp_ca wants ECN. This is required for DCTCP 6798 * congestion control: Linux DCTCP asserts ECT on all packets, 6799 * including SYN, which is most optimal solution; however, 6800 * others, such as FreeBSD do not. 6801 * 6802 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6803 * set, indicating the use of a future TCP extension (such as AccECN). See 6804 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6805 * extensions. 6806 */ 6807 static void tcp_ecn_create_request(struct request_sock *req, 6808 const struct sk_buff *skb, 6809 const struct sock *listen_sk, 6810 const struct dst_entry *dst) 6811 { 6812 const struct tcphdr *th = tcp_hdr(skb); 6813 const struct net *net = sock_net(listen_sk); 6814 bool th_ecn = th->ece && th->cwr; 6815 bool ect, ecn_ok; 6816 u32 ecn_ok_dst; 6817 6818 if (!th_ecn) 6819 return; 6820 6821 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6822 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6823 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6824 6825 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6826 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6827 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6828 inet_rsk(req)->ecn_ok = 1; 6829 } 6830 6831 static void tcp_openreq_init(struct request_sock *req, 6832 const struct tcp_options_received *rx_opt, 6833 struct sk_buff *skb, const struct sock *sk) 6834 { 6835 struct inet_request_sock *ireq = inet_rsk(req); 6836 6837 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6838 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6839 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6840 tcp_rsk(req)->snt_synack = 0; 6841 tcp_rsk(req)->last_oow_ack_time = 0; 6842 req->mss = rx_opt->mss_clamp; 6843 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6844 ireq->tstamp_ok = rx_opt->tstamp_ok; 6845 ireq->sack_ok = rx_opt->sack_ok; 6846 ireq->snd_wscale = rx_opt->snd_wscale; 6847 ireq->wscale_ok = rx_opt->wscale_ok; 6848 ireq->acked = 0; 6849 ireq->ecn_ok = 0; 6850 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6851 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6852 ireq->ir_mark = inet_request_mark(sk, skb); 6853 #if IS_ENABLED(CONFIG_SMC) 6854 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6855 tcp_sk(sk)->smc_hs_congested(sk)); 6856 #endif 6857 } 6858 6859 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6860 struct sock *sk_listener, 6861 bool attach_listener) 6862 { 6863 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6864 attach_listener); 6865 6866 if (req) { 6867 struct inet_request_sock *ireq = inet_rsk(req); 6868 6869 ireq->ireq_opt = NULL; 6870 #if IS_ENABLED(CONFIG_IPV6) 6871 ireq->pktopts = NULL; 6872 #endif 6873 atomic64_set(&ireq->ir_cookie, 0); 6874 ireq->ireq_state = TCP_NEW_SYN_RECV; 6875 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6876 ireq->ireq_family = sk_listener->sk_family; 6877 req->timeout = TCP_TIMEOUT_INIT; 6878 } 6879 6880 return req; 6881 } 6882 EXPORT_SYMBOL(inet_reqsk_alloc); 6883 6884 /* 6885 * Return true if a syncookie should be sent 6886 */ 6887 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6888 { 6889 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6890 const char *msg = "Dropping request"; 6891 struct net *net = sock_net(sk); 6892 bool want_cookie = false; 6893 u8 syncookies; 6894 6895 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6896 6897 #ifdef CONFIG_SYN_COOKIES 6898 if (syncookies) { 6899 msg = "Sending cookies"; 6900 want_cookie = true; 6901 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6902 } else 6903 #endif 6904 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6905 6906 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6907 xchg(&queue->synflood_warned, 1) == 0) { 6908 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6909 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6910 proto, inet6_rcv_saddr(sk), 6911 sk->sk_num, msg); 6912 } else { 6913 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6914 proto, &sk->sk_rcv_saddr, 6915 sk->sk_num, msg); 6916 } 6917 } 6918 6919 return want_cookie; 6920 } 6921 6922 static void tcp_reqsk_record_syn(const struct sock *sk, 6923 struct request_sock *req, 6924 const struct sk_buff *skb) 6925 { 6926 if (tcp_sk(sk)->save_syn) { 6927 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6928 struct saved_syn *saved_syn; 6929 u32 mac_hdrlen; 6930 void *base; 6931 6932 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6933 base = skb_mac_header(skb); 6934 mac_hdrlen = skb_mac_header_len(skb); 6935 len += mac_hdrlen; 6936 } else { 6937 base = skb_network_header(skb); 6938 mac_hdrlen = 0; 6939 } 6940 6941 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6942 GFP_ATOMIC); 6943 if (saved_syn) { 6944 saved_syn->mac_hdrlen = mac_hdrlen; 6945 saved_syn->network_hdrlen = skb_network_header_len(skb); 6946 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6947 memcpy(saved_syn->data, base, len); 6948 req->saved_syn = saved_syn; 6949 } 6950 } 6951 } 6952 6953 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6954 * used for SYN cookie generation. 6955 */ 6956 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6957 const struct tcp_request_sock_ops *af_ops, 6958 struct sock *sk, struct tcphdr *th) 6959 { 6960 struct tcp_sock *tp = tcp_sk(sk); 6961 u16 mss; 6962 6963 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6964 !inet_csk_reqsk_queue_is_full(sk)) 6965 return 0; 6966 6967 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6968 return 0; 6969 6970 if (sk_acceptq_is_full(sk)) { 6971 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6972 return 0; 6973 } 6974 6975 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6976 if (!mss) 6977 mss = af_ops->mss_clamp; 6978 6979 return mss; 6980 } 6981 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6982 6983 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6984 const struct tcp_request_sock_ops *af_ops, 6985 struct sock *sk, struct sk_buff *skb) 6986 { 6987 struct tcp_fastopen_cookie foc = { .len = -1 }; 6988 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6989 struct tcp_options_received tmp_opt; 6990 struct tcp_sock *tp = tcp_sk(sk); 6991 struct net *net = sock_net(sk); 6992 struct sock *fastopen_sk = NULL; 6993 struct request_sock *req; 6994 bool want_cookie = false; 6995 struct dst_entry *dst; 6996 struct flowi fl; 6997 u8 syncookies; 6998 6999 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7000 7001 /* TW buckets are converted to open requests without 7002 * limitations, they conserve resources and peer is 7003 * evidently real one. 7004 */ 7005 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7006 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7007 if (!want_cookie) 7008 goto drop; 7009 } 7010 7011 if (sk_acceptq_is_full(sk)) { 7012 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7013 goto drop; 7014 } 7015 7016 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7017 if (!req) 7018 goto drop; 7019 7020 req->syncookie = want_cookie; 7021 tcp_rsk(req)->af_specific = af_ops; 7022 tcp_rsk(req)->ts_off = 0; 7023 #if IS_ENABLED(CONFIG_MPTCP) 7024 tcp_rsk(req)->is_mptcp = 0; 7025 #endif 7026 7027 tcp_clear_options(&tmp_opt); 7028 tmp_opt.mss_clamp = af_ops->mss_clamp; 7029 tmp_opt.user_mss = tp->rx_opt.user_mss; 7030 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7031 want_cookie ? NULL : &foc); 7032 7033 if (want_cookie && !tmp_opt.saw_tstamp) 7034 tcp_clear_options(&tmp_opt); 7035 7036 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7037 tmp_opt.smc_ok = 0; 7038 7039 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7040 tcp_openreq_init(req, &tmp_opt, skb, sk); 7041 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7042 7043 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7044 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7045 7046 dst = af_ops->route_req(sk, skb, &fl, req); 7047 if (!dst) 7048 goto drop_and_free; 7049 7050 if (tmp_opt.tstamp_ok) 7051 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7052 7053 if (!want_cookie && !isn) { 7054 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7055 7056 /* Kill the following clause, if you dislike this way. */ 7057 if (!syncookies && 7058 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7059 (max_syn_backlog >> 2)) && 7060 !tcp_peer_is_proven(req, dst)) { 7061 /* Without syncookies last quarter of 7062 * backlog is filled with destinations, 7063 * proven to be alive. 7064 * It means that we continue to communicate 7065 * to destinations, already remembered 7066 * to the moment of synflood. 7067 */ 7068 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7069 rsk_ops->family); 7070 goto drop_and_release; 7071 } 7072 7073 isn = af_ops->init_seq(skb); 7074 } 7075 7076 tcp_ecn_create_request(req, skb, sk, dst); 7077 7078 if (want_cookie) { 7079 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7080 if (!tmp_opt.tstamp_ok) 7081 inet_rsk(req)->ecn_ok = 0; 7082 } 7083 7084 tcp_rsk(req)->snt_isn = isn; 7085 tcp_rsk(req)->txhash = net_tx_rndhash(); 7086 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7087 tcp_openreq_init_rwin(req, sk, dst); 7088 sk_rx_queue_set(req_to_sk(req), skb); 7089 if (!want_cookie) { 7090 tcp_reqsk_record_syn(sk, req, skb); 7091 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7092 } 7093 if (fastopen_sk) { 7094 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7095 &foc, TCP_SYNACK_FASTOPEN, skb); 7096 /* Add the child socket directly into the accept queue */ 7097 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7098 reqsk_fastopen_remove(fastopen_sk, req, false); 7099 bh_unlock_sock(fastopen_sk); 7100 sock_put(fastopen_sk); 7101 goto drop_and_free; 7102 } 7103 sk->sk_data_ready(sk); 7104 bh_unlock_sock(fastopen_sk); 7105 sock_put(fastopen_sk); 7106 } else { 7107 tcp_rsk(req)->tfo_listener = false; 7108 if (!want_cookie) { 7109 req->timeout = tcp_timeout_init((struct sock *)req); 7110 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7111 req->timeout))) { 7112 reqsk_free(req); 7113 return 0; 7114 } 7115 7116 } 7117 af_ops->send_synack(sk, dst, &fl, req, &foc, 7118 !want_cookie ? TCP_SYNACK_NORMAL : 7119 TCP_SYNACK_COOKIE, 7120 skb); 7121 if (want_cookie) { 7122 reqsk_free(req); 7123 return 0; 7124 } 7125 } 7126 reqsk_put(req); 7127 return 0; 7128 7129 drop_and_release: 7130 dst_release(dst); 7131 drop_and_free: 7132 __reqsk_free(req); 7133 drop: 7134 tcp_listendrop(sk); 7135 return 0; 7136 } 7137 EXPORT_SYMBOL(tcp_conn_request); 7138