xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 1491eaf9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 #define REXMIT_NONE	0 /* no loss recovery to do */
128 #define REXMIT_LOST	1 /* retransmit packets marked lost */
129 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = len;
148 	} else {
149 		/* Otherwise, we make more careful check taking into account,
150 		 * that SACKs block is variable.
151 		 *
152 		 * "len" is invariant segment length, including TCP header.
153 		 */
154 		len += skb->data - skb_transport_header(skb);
155 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 		    /* If PSH is not set, packet should be
157 		     * full sized, provided peer TCP is not badly broken.
158 		     * This observation (if it is correct 8)) allows
159 		     * to handle super-low mtu links fairly.
160 		     */
161 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 			/* Subtract also invariant (if peer is RFC compliant),
164 			 * tcp header plus fixed timestamp option length.
165 			 * Resulting "len" is MSS free of SACK jitter.
166 			 */
167 			len -= tcp_sk(sk)->tcp_header_len;
168 			icsk->icsk_ack.last_seg_size = len;
169 			if (len == lss) {
170 				icsk->icsk_ack.rcv_mss = len;
171 				return;
172 			}
173 		}
174 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 	}
178 }
179 
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 
185 	if (quickacks == 0)
186 		quickacks = 2;
187 	if (quickacks > icsk->icsk_ack.quick)
188 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190 
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 	struct inet_connection_sock *icsk = inet_csk(sk);
194 	tcp_incr_quickack(sk);
195 	icsk->icsk_ack.pingpong = 0;
196 	icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198 
199 /* Send ACKs quickly, if "quick" count is not exhausted
200  * and the session is not interactive.
201  */
202 
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 	const struct inet_connection_sock *icsk = inet_csk(sk);
206 	const struct dst_entry *dst = __sk_dst_get(sk);
207 
208 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211 
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 	if (tp->ecn_flags & TCP_ECN_OK)
215 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217 
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 	if (tcp_hdr(skb)->cwr)
221 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223 
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 	case INET_ECN_NOT_ECT:
233 		/* Funny extension: if ECT is not set on a segment,
234 		 * and we already seen ECT on a previous segment,
235 		 * it is probably a retransmit.
236 		 */
237 		if (tp->ecn_flags & TCP_ECN_SEEN)
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 		break;
240 	case INET_ECN_CE:
241 		if (tcp_ca_needs_ecn((struct sock *)tp))
242 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243 
244 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 			/* Better not delay acks, sender can have a very low cwnd */
246 			tcp_enter_quickack_mode((struct sock *)tp);
247 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 		}
249 		tp->ecn_flags |= TCP_ECN_SEEN;
250 		break;
251 	default:
252 		if (tcp_ca_needs_ecn((struct sock *)tp))
253 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	}
257 }
258 
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 	if (tp->ecn_flags & TCP_ECN_OK)
262 		__tcp_ecn_check_ce(tp, skb);
263 }
264 
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 		return true;
281 	return false;
282 }
283 
284 /* Buffer size and advertised window tuning.
285  *
286  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287  */
288 
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 	const struct tcp_sock *tp = tcp_sk(sk);
292 	int sndmem, per_mss;
293 	u32 nr_segs;
294 
295 	/* Worst case is non GSO/TSO : each frame consumes one skb
296 	 * and skb->head is kmalloced using power of two area of memory
297 	 */
298 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 		  MAX_TCP_HEADER +
300 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301 
302 	per_mss = roundup_pow_of_two(per_mss) +
303 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
304 
305 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307 
308 	/* Fast Recovery (RFC 5681 3.2) :
309 	 * Cubic needs 1.7 factor, rounded to 2 to include
310 	 * extra cushion (application might react slowly to POLLOUT)
311 	 */
312 	sndmem = 2 * nr_segs * per_mss;
313 
314 	if (sk->sk_sndbuf < sndmem)
315 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317 
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319  *
320  * All tcp_full_space() is split to two parts: "network" buffer, allocated
321  * forward and advertised in receiver window (tp->rcv_wnd) and
322  * "application buffer", required to isolate scheduling/application
323  * latencies from network.
324  * window_clamp is maximal advertised window. It can be less than
325  * tcp_full_space(), in this case tcp_full_space() - window_clamp
326  * is reserved for "application" buffer. The less window_clamp is
327  * the smoother our behaviour from viewpoint of network, but the lower
328  * throughput and the higher sensitivity of the connection to losses. 8)
329  *
330  * rcv_ssthresh is more strict window_clamp used at "slow start"
331  * phase to predict further behaviour of this connection.
332  * It is used for two goals:
333  * - to enforce header prediction at sender, even when application
334  *   requires some significant "application buffer". It is check #1.
335  * - to prevent pruning of receive queue because of misprediction
336  *   of receiver window. Check #2.
337  *
338  * The scheme does not work when sender sends good segments opening
339  * window and then starts to feed us spaghetti. But it should work
340  * in common situations. Otherwise, we have to rely on queue collapsing.
341  */
342 
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 	/* Optimize this! */
348 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350 
351 	while (tp->rcv_ssthresh <= window) {
352 		if (truesize <= skb->len)
353 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354 
355 		truesize >>= 1;
356 		window >>= 1;
357 	}
358 	return 0;
359 }
360 
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 
365 	/* Check #1 */
366 	if (tp->rcv_ssthresh < tp->window_clamp &&
367 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 	    !tcp_under_memory_pressure(sk)) {
369 		int incr;
370 
371 		/* Check #2. Increase window, if skb with such overhead
372 		 * will fit to rcvbuf in future.
373 		 */
374 		if (tcp_win_from_space(skb->truesize) <= skb->len)
375 			incr = 2 * tp->advmss;
376 		else
377 			incr = __tcp_grow_window(sk, skb);
378 
379 		if (incr) {
380 			incr = max_t(int, incr, 2 * skb->len);
381 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 					       tp->window_clamp);
383 			inet_csk(sk)->icsk_ack.quick |= 1;
384 		}
385 	}
386 }
387 
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 	u32 mss = tcp_sk(sk)->advmss;
392 	int rcvmem;
393 
394 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 		 tcp_default_init_rwnd(mss);
396 
397 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 	 * Allow enough cushion so that sender is not limited by our window
399 	 */
400 	if (sysctl_tcp_moderate_rcvbuf)
401 		rcvmem <<= 2;
402 
403 	if (sk->sk_rcvbuf < rcvmem)
404 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406 
407 /* 4. Try to fixup all. It is made immediately after connection enters
408  *    established state.
409  */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	int maxwin;
414 
415 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 		tcp_fixup_rcvbuf(sk);
417 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 		tcp_sndbuf_expand(sk);
419 
420 	tp->rcvq_space.space = tp->rcv_wnd;
421 	tp->rcvq_space.time = tcp_time_stamp;
422 	tp->rcvq_space.seq = tp->copied_seq;
423 
424 	maxwin = tcp_full_space(sk);
425 
426 	if (tp->window_clamp >= maxwin) {
427 		tp->window_clamp = maxwin;
428 
429 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 			tp->window_clamp = max(maxwin -
431 					       (maxwin >> sysctl_tcp_app_win),
432 					       4 * tp->advmss);
433 	}
434 
435 	/* Force reservation of one segment. */
436 	if (sysctl_tcp_app_win &&
437 	    tp->window_clamp > 2 * tp->advmss &&
438 	    tp->window_clamp + tp->advmss > maxwin)
439 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440 
441 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 	tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444 
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 	struct tcp_sock *tp = tcp_sk(sk);
449 	struct inet_connection_sock *icsk = inet_csk(sk);
450 
451 	icsk->icsk_ack.quick = 0;
452 
453 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 	    !tcp_under_memory_pressure(sk) &&
456 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 				    sysctl_tcp_rmem[2]);
459 	}
460 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463 
464 /* Initialize RCV_MSS value.
465  * RCV_MSS is an our guess about MSS used by the peer.
466  * We haven't any direct information about the MSS.
467  * It's better to underestimate the RCV_MSS rather than overestimate.
468  * Overestimations make us ACKing less frequently than needed.
469  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470  */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 	const struct tcp_sock *tp = tcp_sk(sk);
474 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475 
476 	hint = min(hint, tp->rcv_wnd / 2);
477 	hint = min(hint, TCP_MSS_DEFAULT);
478 	hint = max(hint, TCP_MIN_MSS);
479 
480 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483 
484 /* Receiver "autotuning" code.
485  *
486  * The algorithm for RTT estimation w/o timestamps is based on
487  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488  * <http://public.lanl.gov/radiant/pubs.html#DRS>
489  *
490  * More detail on this code can be found at
491  * <http://staff.psc.edu/jheffner/>,
492  * though this reference is out of date.  A new paper
493  * is pending.
494  */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 	u32 new_sample = tp->rcv_rtt_est.rtt;
498 	long m = sample;
499 
500 	if (m == 0)
501 		m = 1;
502 
503 	if (new_sample != 0) {
504 		/* If we sample in larger samples in the non-timestamp
505 		 * case, we could grossly overestimate the RTT especially
506 		 * with chatty applications or bulk transfer apps which
507 		 * are stalled on filesystem I/O.
508 		 *
509 		 * Also, since we are only going for a minimum in the
510 		 * non-timestamp case, we do not smooth things out
511 		 * else with timestamps disabled convergence takes too
512 		 * long.
513 		 */
514 		if (!win_dep) {
515 			m -= (new_sample >> 3);
516 			new_sample += m;
517 		} else {
518 			m <<= 3;
519 			if (m < new_sample)
520 				new_sample = m;
521 		}
522 	} else {
523 		/* No previous measure. */
524 		new_sample = m << 3;
525 	}
526 
527 	if (tp->rcv_rtt_est.rtt != new_sample)
528 		tp->rcv_rtt_est.rtt = new_sample;
529 }
530 
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 	if (tp->rcv_rtt_est.time == 0)
534 		goto new_measure;
535 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 		return;
537 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538 
539 new_measure:
540 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 	tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543 
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 					  const struct sk_buff *skb)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	if (tp->rx_opt.rcv_tsecr &&
549 	    (TCP_SKB_CB(skb)->end_seq -
550 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553 
554 /*
555  * This function should be called every time data is copied to user space.
556  * It calculates the appropriate TCP receive buffer space.
557  */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int time;
562 	int copied;
563 
564 	time = tcp_time_stamp - tp->rcvq_space.time;
565 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 		return;
567 
568 	/* Number of bytes copied to user in last RTT */
569 	copied = tp->copied_seq - tp->rcvq_space.seq;
570 	if (copied <= tp->rcvq_space.space)
571 		goto new_measure;
572 
573 	/* A bit of theory :
574 	 * copied = bytes received in previous RTT, our base window
575 	 * To cope with packet losses, we need a 2x factor
576 	 * To cope with slow start, and sender growing its cwin by 100 %
577 	 * every RTT, we need a 4x factor, because the ACK we are sending
578 	 * now is for the next RTT, not the current one :
579 	 * <prev RTT . ><current RTT .. ><next RTT .... >
580 	 */
581 
582 	if (sysctl_tcp_moderate_rcvbuf &&
583 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 		int rcvwin, rcvmem, rcvbuf;
585 
586 		/* minimal window to cope with packet losses, assuming
587 		 * steady state. Add some cushion because of small variations.
588 		 */
589 		rcvwin = (copied << 1) + 16 * tp->advmss;
590 
591 		/* If rate increased by 25%,
592 		 *	assume slow start, rcvwin = 3 * copied
593 		 * If rate increased by 50%,
594 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
595 		 */
596 		if (copied >=
597 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 			if (copied >=
599 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 				rcvwin <<= 1;
601 			else
602 				rcvwin += (rcvwin >> 1);
603 		}
604 
605 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 		while (tcp_win_from_space(rcvmem) < tp->advmss)
607 			rcvmem += 128;
608 
609 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 		if (rcvbuf > sk->sk_rcvbuf) {
611 			sk->sk_rcvbuf = rcvbuf;
612 
613 			/* Make the window clamp follow along.  */
614 			tp->window_clamp = rcvwin;
615 		}
616 	}
617 	tp->rcvq_space.space = copied;
618 
619 new_measure:
620 	tp->rcvq_space.seq = tp->copied_seq;
621 	tp->rcvq_space.time = tcp_time_stamp;
622 }
623 
624 /* There is something which you must keep in mind when you analyze the
625  * behavior of the tp->ato delayed ack timeout interval.  When a
626  * connection starts up, we want to ack as quickly as possible.  The
627  * problem is that "good" TCP's do slow start at the beginning of data
628  * transmission.  The means that until we send the first few ACK's the
629  * sender will sit on his end and only queue most of his data, because
630  * he can only send snd_cwnd unacked packets at any given time.  For
631  * each ACK we send, he increments snd_cwnd and transmits more of his
632  * queue.  -DaveM
633  */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	struct inet_connection_sock *icsk = inet_csk(sk);
638 	u32 now;
639 
640 	inet_csk_schedule_ack(sk);
641 
642 	tcp_measure_rcv_mss(sk, skb);
643 
644 	tcp_rcv_rtt_measure(tp);
645 
646 	now = tcp_time_stamp;
647 
648 	if (!icsk->icsk_ack.ato) {
649 		/* The _first_ data packet received, initialize
650 		 * delayed ACK engine.
651 		 */
652 		tcp_incr_quickack(sk);
653 		icsk->icsk_ack.ato = TCP_ATO_MIN;
654 	} else {
655 		int m = now - icsk->icsk_ack.lrcvtime;
656 
657 		if (m <= TCP_ATO_MIN / 2) {
658 			/* The fastest case is the first. */
659 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 		} else if (m < icsk->icsk_ack.ato) {
661 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 				icsk->icsk_ack.ato = icsk->icsk_rto;
664 		} else if (m > icsk->icsk_rto) {
665 			/* Too long gap. Apparently sender failed to
666 			 * restart window, so that we send ACKs quickly.
667 			 */
668 			tcp_incr_quickack(sk);
669 			sk_mem_reclaim(sk);
670 		}
671 	}
672 	icsk->icsk_ack.lrcvtime = now;
673 
674 	tcp_ecn_check_ce(tp, skb);
675 
676 	if (skb->len >= 128)
677 		tcp_grow_window(sk, skb);
678 }
679 
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681  * routine either comes from timestamps, or from segments that were
682  * known _not_ to have been retransmitted [see Karn/Partridge
683  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684  * piece by Van Jacobson.
685  * NOTE: the next three routines used to be one big routine.
686  * To save cycles in the RFC 1323 implementation it was better to break
687  * it up into three procedures. -- erics
688  */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 	struct tcp_sock *tp = tcp_sk(sk);
692 	long m = mrtt_us; /* RTT */
693 	u32 srtt = tp->srtt_us;
694 
695 	/*	The following amusing code comes from Jacobson's
696 	 *	article in SIGCOMM '88.  Note that rtt and mdev
697 	 *	are scaled versions of rtt and mean deviation.
698 	 *	This is designed to be as fast as possible
699 	 *	m stands for "measurement".
700 	 *
701 	 *	On a 1990 paper the rto value is changed to:
702 	 *	RTO = rtt + 4 * mdev
703 	 *
704 	 * Funny. This algorithm seems to be very broken.
705 	 * These formulae increase RTO, when it should be decreased, increase
706 	 * too slowly, when it should be increased quickly, decrease too quickly
707 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 	 * does not matter how to _calculate_ it. Seems, it was trap
709 	 * that VJ failed to avoid. 8)
710 	 */
711 	if (srtt != 0) {
712 		m -= (srtt >> 3);	/* m is now error in rtt est */
713 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
714 		if (m < 0) {
715 			m = -m;		/* m is now abs(error) */
716 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
717 			/* This is similar to one of Eifel findings.
718 			 * Eifel blocks mdev updates when rtt decreases.
719 			 * This solution is a bit different: we use finer gain
720 			 * for mdev in this case (alpha*beta).
721 			 * Like Eifel it also prevents growth of rto,
722 			 * but also it limits too fast rto decreases,
723 			 * happening in pure Eifel.
724 			 */
725 			if (m > 0)
726 				m >>= 3;
727 		} else {
728 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
729 		}
730 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
731 		if (tp->mdev_us > tp->mdev_max_us) {
732 			tp->mdev_max_us = tp->mdev_us;
733 			if (tp->mdev_max_us > tp->rttvar_us)
734 				tp->rttvar_us = tp->mdev_max_us;
735 		}
736 		if (after(tp->snd_una, tp->rtt_seq)) {
737 			if (tp->mdev_max_us < tp->rttvar_us)
738 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 			tp->rtt_seq = tp->snd_nxt;
740 			tp->mdev_max_us = tcp_rto_min_us(sk);
741 		}
742 	} else {
743 		/* no previous measure. */
744 		srtt = m << 3;		/* take the measured time to be rtt */
745 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
746 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 		tp->mdev_max_us = tp->rttvar_us;
748 		tp->rtt_seq = tp->snd_nxt;
749 	}
750 	tp->srtt_us = max(1U, srtt);
751 }
752 
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754  * Note: TCP stack does not yet implement pacing.
755  * FQ packet scheduler can be used to implement cheap but effective
756  * TCP pacing, to smooth the burst on large writes when packets
757  * in flight is significantly lower than cwnd (or rwin)
758  */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761 
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 	const struct tcp_sock *tp = tcp_sk(sk);
765 	u64 rate;
766 
767 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769 
770 	/* current rate is (cwnd * mss) / srtt
771 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 	 *
774 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 	 *	 end of slow start and should slow down.
777 	 */
778 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 		rate *= sysctl_tcp_pacing_ss_ratio;
780 	else
781 		rate *= sysctl_tcp_pacing_ca_ratio;
782 
783 	rate *= max(tp->snd_cwnd, tp->packets_out);
784 
785 	if (likely(tp->srtt_us))
786 		do_div(rate, tp->srtt_us);
787 
788 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 	 * without any lock. We want to make sure compiler wont store
790 	 * intermediate values in this location.
791 	 */
792 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 						sk->sk_max_pacing_rate);
794 }
795 
796 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
797  * routine referred to above.
798  */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	/* Old crap is replaced with new one. 8)
803 	 *
804 	 * More seriously:
805 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 	 *    It cannot be less due to utterly erratic ACK generation made
807 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
809 	 *    is invisible. Actually, Linux-2.4 also generates erratic
810 	 *    ACKs in some circumstances.
811 	 */
812 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813 
814 	/* 2. Fixups made earlier cannot be right.
815 	 *    If we do not estimate RTO correctly without them,
816 	 *    all the algo is pure shit and should be replaced
817 	 *    with correct one. It is exactly, which we pretend to do.
818 	 */
819 
820 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 	 * guarantees that rto is higher.
822 	 */
823 	tcp_bound_rto(sk);
824 }
825 
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 
830 	if (!cwnd)
831 		cwnd = TCP_INIT_CWND;
832 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834 
835 /*
836  * Packet counting of FACK is based on in-order assumptions, therefore TCP
837  * disables it when reordering is detected
838  */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 	/* RFC3517 uses different metric in lost marker => reset on change */
842 	if (tcp_is_fack(tp))
843 		tp->lost_skb_hint = NULL;
844 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846 
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852 
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 				  const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	if (metric > tp->reordering) {
858 		int mib_idx;
859 
860 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			mib_idx = LINUX_MIB_TCPTSREORDER;
865 		else if (tcp_is_reno(tp))
866 			mib_idx = LINUX_MIB_TCPRENOREORDER;
867 		else if (tcp_is_fack(tp))
868 			mib_idx = LINUX_MIB_TCPFACKREORDER;
869 		else
870 			mib_idx = LINUX_MIB_TCPSACKREORDER;
871 
872 		NET_INC_STATS(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 			 tp->reordering,
877 			 tp->fackets_out,
878 			 tp->sacked_out,
879 			 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 		tcp_disable_fack(tp);
882 	}
883 
884 	if (metric > 0)
885 		tcp_disable_early_retrans(tp);
886 	tp->rack.reord = 1;
887 }
888 
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 	if (!tp->retransmit_skb_hint ||
893 	    before(TCP_SKB_CB(skb)->seq,
894 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 		tp->retransmit_skb_hint = skb;
896 
897 	if (!tp->lost_out ||
898 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901 
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 		tcp_verify_retransmit_hint(tp, skb);
906 
907 		tp->lost_out += tcp_skb_pcount(skb);
908 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 	}
910 }
911 
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 	tcp_verify_retransmit_hint(tp, skb);
915 
916 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 		tp->lost_out += tcp_skb_pcount(skb);
918 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 	}
920 }
921 
922 /* This procedure tags the retransmission queue when SACKs arrive.
923  *
924  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925  * Packets in queue with these bits set are counted in variables
926  * sacked_out, retrans_out and lost_out, correspondingly.
927  *
928  * Valid combinations are:
929  * Tag  InFlight	Description
930  * 0	1		- orig segment is in flight.
931  * S	0		- nothing flies, orig reached receiver.
932  * L	0		- nothing flies, orig lost by net.
933  * R	2		- both orig and retransmit are in flight.
934  * L|R	1		- orig is lost, retransmit is in flight.
935  * S|R  1		- orig reached receiver, retrans is still in flight.
936  * (L|S|R is logically valid, it could occur when L|R is sacked,
937  *  but it is equivalent to plain S and code short-curcuits it to S.
938  *  L|S is logically invalid, it would mean -1 packet in flight 8))
939  *
940  * These 6 states form finite state machine, controlled by the following events:
941  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943  * 3. Loss detection event of two flavors:
944  *	A. Scoreboard estimator decided the packet is lost.
945  *	   A'. Reno "three dupacks" marks head of queue lost.
946  *	   A''. Its FACK modification, head until snd.fack is lost.
947  *	B. SACK arrives sacking SND.NXT at the moment, when the
948  *	   segment was retransmitted.
949  * 4. D-SACK added new rule: D-SACK changes any tag to S.
950  *
951  * It is pleasant to note, that state diagram turns out to be commutative,
952  * so that we are allowed not to be bothered by order of our actions,
953  * when multiple events arrive simultaneously. (see the function below).
954  *
955  * Reordering detection.
956  * --------------------
957  * Reordering metric is maximal distance, which a packet can be displaced
958  * in packet stream. With SACKs we can estimate it:
959  *
960  * 1. SACK fills old hole and the corresponding segment was not
961  *    ever retransmitted -> reordering. Alas, we cannot use it
962  *    when segment was retransmitted.
963  * 2. The last flaw is solved with D-SACK. D-SACK arrives
964  *    for retransmitted and already SACKed segment -> reordering..
965  * Both of these heuristics are not used in Loss state, when we cannot
966  * account for retransmits accurately.
967  *
968  * SACK block validation.
969  * ----------------------
970  *
971  * SACK block range validation checks that the received SACK block fits to
972  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973  * Note that SND.UNA is not included to the range though being valid because
974  * it means that the receiver is rather inconsistent with itself reporting
975  * SACK reneging when it should advance SND.UNA. Such SACK block this is
976  * perfectly valid, however, in light of RFC2018 which explicitly states
977  * that "SACK block MUST reflect the newest segment.  Even if the newest
978  * segment is going to be discarded ...", not that it looks very clever
979  * in case of head skb. Due to potentional receiver driven attacks, we
980  * choose to avoid immediate execution of a walk in write queue due to
981  * reneging and defer head skb's loss recovery to standard loss recovery
982  * procedure that will eventually trigger (nothing forbids us doing this).
983  *
984  * Implements also blockage to start_seq wrap-around. Problem lies in the
985  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986  * there's no guarantee that it will be before snd_nxt (n). The problem
987  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988  * wrap (s_w):
989  *
990  *         <- outs wnd ->                          <- wrapzone ->
991  *         u     e      n                         u_w   e_w  s n_w
992  *         |     |      |                          |     |   |  |
993  * |<------------+------+----- TCP seqno space --------------+---------->|
994  * ...-- <2^31 ->|                                           |<--------...
995  * ...---- >2^31 ------>|                                    |<--------...
996  *
997  * Current code wouldn't be vulnerable but it's better still to discard such
998  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001  * equal to the ideal case (infinite seqno space without wrap caused issues).
1002  *
1003  * With D-SACK the lower bound is extended to cover sequence space below
1004  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005  * again, D-SACK block must not to go across snd_una (for the same reason as
1006  * for the normal SACK blocks, explained above). But there all simplicity
1007  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008  * fully below undo_marker they do not affect behavior in anyway and can
1009  * therefore be safely ignored. In rare cases (which are more or less
1010  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011  * fragmentation and packet reordering past skb's retransmission. To consider
1012  * them correctly, the acceptable range must be extended even more though
1013  * the exact amount is rather hard to quantify. However, tp->max_window can
1014  * be used as an exaggerated estimate.
1015  */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 				   u32 start_seq, u32 end_seq)
1018 {
1019 	/* Too far in future, or reversed (interpretation is ambiguous) */
1020 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 		return false;
1022 
1023 	/* Nasty start_seq wrap-around check (see comments above) */
1024 	if (!before(start_seq, tp->snd_nxt))
1025 		return false;
1026 
1027 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028 	 * start_seq == snd_una is non-sensical (see comments above)
1029 	 */
1030 	if (after(start_seq, tp->snd_una))
1031 		return true;
1032 
1033 	if (!is_dsack || !tp->undo_marker)
1034 		return false;
1035 
1036 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037 	if (after(end_seq, tp->snd_una))
1038 		return false;
1039 
1040 	if (!before(start_seq, tp->undo_marker))
1041 		return true;
1042 
1043 	/* Too old */
1044 	if (!after(end_seq, tp->undo_marker))
1045 		return false;
1046 
1047 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049 	 */
1050 	return !before(start_seq, end_seq - tp->max_window);
1051 }
1052 
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 			    struct tcp_sack_block_wire *sp, int num_sacks,
1055 			    u32 prior_snd_una)
1056 {
1057 	struct tcp_sock *tp = tcp_sk(sk);
1058 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 	bool dup_sack = false;
1061 
1062 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 		dup_sack = true;
1064 		tcp_dsack_seen(tp);
1065 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 	} else if (num_sacks > 1) {
1067 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069 
1070 		if (!after(end_seq_0, end_seq_1) &&
1071 		    !before(start_seq_0, start_seq_1)) {
1072 			dup_sack = true;
1073 			tcp_dsack_seen(tp);
1074 			NET_INC_STATS(sock_net(sk),
1075 					LINUX_MIB_TCPDSACKOFORECV);
1076 		}
1077 	}
1078 
1079 	/* D-SACK for already forgotten data... Do dumb counting. */
1080 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 	    !after(end_seq_0, prior_snd_una) &&
1082 	    after(end_seq_0, tp->undo_marker))
1083 		tp->undo_retrans--;
1084 
1085 	return dup_sack;
1086 }
1087 
1088 struct tcp_sacktag_state {
1089 	int	reord;
1090 	int	fack_count;
1091 	/* Timestamps for earliest and latest never-retransmitted segment
1092 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 	 * but congestion control should still get an accurate delay signal.
1094 	 */
1095 	struct skb_mstamp first_sackt;
1096 	struct skb_mstamp last_sackt;
1097 	int	flag;
1098 };
1099 
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101  * the incoming SACK may not exactly match but we can find smaller MSS
1102  * aligned portion of it that matches. Therefore we might need to fragment
1103  * which may fail and creates some hassle (caller must handle error case
1104  * returns).
1105  *
1106  * FIXME: this could be merged to shift decision code
1107  */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	int err;
1112 	bool in_sack;
1113 	unsigned int pkt_len;
1114 	unsigned int mss;
1115 
1116 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118 
1119 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 		mss = tcp_skb_mss(skb);
1122 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123 
1124 		if (!in_sack) {
1125 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 			if (pkt_len < mss)
1127 				pkt_len = mss;
1128 		} else {
1129 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 			if (pkt_len < mss)
1131 				return -EINVAL;
1132 		}
1133 
1134 		/* Round if necessary so that SACKs cover only full MSSes
1135 		 * and/or the remaining small portion (if present)
1136 		 */
1137 		if (pkt_len > mss) {
1138 			unsigned int new_len = (pkt_len / mss) * mss;
1139 			if (!in_sack && new_len < pkt_len) {
1140 				new_len += mss;
1141 				if (new_len >= skb->len)
1142 					return 0;
1143 			}
1144 			pkt_len = new_len;
1145 		}
1146 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 		if (err < 0)
1148 			return err;
1149 	}
1150 
1151 	return in_sack;
1152 }
1153 
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 			  struct tcp_sacktag_state *state, u8 sacked,
1157 			  u32 start_seq, u32 end_seq,
1158 			  int dup_sack, int pcount,
1159 			  const struct skb_mstamp *xmit_time)
1160 {
1161 	struct tcp_sock *tp = tcp_sk(sk);
1162 	int fack_count = state->fack_count;
1163 
1164 	/* Account D-SACK for retransmitted packet. */
1165 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 		    after(end_seq, tp->undo_marker))
1168 			tp->undo_retrans--;
1169 		if (sacked & TCPCB_SACKED_ACKED)
1170 			state->reord = min(fack_count, state->reord);
1171 	}
1172 
1173 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 	if (!after(end_seq, tp->snd_una))
1175 		return sacked;
1176 
1177 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 		tcp_rack_advance(tp, xmit_time, sacked);
1179 
1180 		if (sacked & TCPCB_SACKED_RETRANS) {
1181 			/* If the segment is not tagged as lost,
1182 			 * we do not clear RETRANS, believing
1183 			 * that retransmission is still in flight.
1184 			 */
1185 			if (sacked & TCPCB_LOST) {
1186 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 				tp->lost_out -= pcount;
1188 				tp->retrans_out -= pcount;
1189 			}
1190 		} else {
1191 			if (!(sacked & TCPCB_RETRANS)) {
1192 				/* New sack for not retransmitted frame,
1193 				 * which was in hole. It is reordering.
1194 				 */
1195 				if (before(start_seq,
1196 					   tcp_highest_sack_seq(tp)))
1197 					state->reord = min(fack_count,
1198 							   state->reord);
1199 				if (!after(end_seq, tp->high_seq))
1200 					state->flag |= FLAG_ORIG_SACK_ACKED;
1201 				if (state->first_sackt.v64 == 0)
1202 					state->first_sackt = *xmit_time;
1203 				state->last_sackt = *xmit_time;
1204 			}
1205 
1206 			if (sacked & TCPCB_LOST) {
1207 				sacked &= ~TCPCB_LOST;
1208 				tp->lost_out -= pcount;
1209 			}
1210 		}
1211 
1212 		sacked |= TCPCB_SACKED_ACKED;
1213 		state->flag |= FLAG_DATA_SACKED;
1214 		tp->sacked_out += pcount;
1215 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216 
1217 		fack_count += pcount;
1218 
1219 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 			tp->lost_cnt_hint += pcount;
1223 
1224 		if (fack_count > tp->fackets_out)
1225 			tp->fackets_out = fack_count;
1226 	}
1227 
1228 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 	 * are accounted above as well.
1231 	 */
1232 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 		sacked &= ~TCPCB_SACKED_RETRANS;
1234 		tp->retrans_out -= pcount;
1235 	}
1236 
1237 	return sacked;
1238 }
1239 
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242  */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 			    struct tcp_sacktag_state *state,
1245 			    unsigned int pcount, int shifted, int mss,
1246 			    bool dup_sack)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252 
1253 	BUG_ON(!pcount);
1254 
1255 	/* Adjust counters and hints for the newly sacked sequence
1256 	 * range but discard the return value since prev is already
1257 	 * marked. We must tag the range first because the seq
1258 	 * advancement below implicitly advances
1259 	 * tcp_highest_sack_seq() when skb is highest_sack.
1260 	 */
1261 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 			start_seq, end_seq, dup_sack, pcount,
1263 			&skb->skb_mstamp);
1264 
1265 	if (skb == tp->lost_skb_hint)
1266 		tp->lost_cnt_hint += pcount;
1267 
1268 	TCP_SKB_CB(prev)->end_seq += shifted;
1269 	TCP_SKB_CB(skb)->seq += shifted;
1270 
1271 	tcp_skb_pcount_add(prev, pcount);
1272 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 	tcp_skb_pcount_add(skb, -pcount);
1274 
1275 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276 	 * in theory this shouldn't be necessary but as long as DSACK
1277 	 * code can come after this skb later on it's better to keep
1278 	 * setting gso_size to something.
1279 	 */
1280 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282 
1283 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 	if (tcp_skb_pcount(skb) <= 1)
1285 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286 
1287 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289 
1290 	if (skb->len > 0) {
1291 		BUG_ON(!tcp_skb_pcount(skb));
1292 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 		return false;
1294 	}
1295 
1296 	/* Whole SKB was eaten :-) */
1297 
1298 	if (skb == tp->retransmit_skb_hint)
1299 		tp->retransmit_skb_hint = prev;
1300 	if (skb == tp->lost_skb_hint) {
1301 		tp->lost_skb_hint = prev;
1302 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 	}
1304 
1305 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1307 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1308 		TCP_SKB_CB(prev)->end_seq++;
1309 
1310 	if (skb == tcp_highest_sack(sk))
1311 		tcp_advance_highest_sack(sk, skb);
1312 
1313 	tcp_skb_collapse_tstamp(prev, skb);
1314 	tcp_unlink_write_queue(skb, sk);
1315 	sk_wmem_free_skb(sk, skb);
1316 
1317 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1318 
1319 	return true;
1320 }
1321 
1322 /* I wish gso_size would have a bit more sane initialization than
1323  * something-or-zero which complicates things
1324  */
1325 static int tcp_skb_seglen(const struct sk_buff *skb)
1326 {
1327 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1328 }
1329 
1330 /* Shifting pages past head area doesn't work */
1331 static int skb_can_shift(const struct sk_buff *skb)
1332 {
1333 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1334 }
1335 
1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1337  * skb.
1338  */
1339 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1340 					  struct tcp_sacktag_state *state,
1341 					  u32 start_seq, u32 end_seq,
1342 					  bool dup_sack)
1343 {
1344 	struct tcp_sock *tp = tcp_sk(sk);
1345 	struct sk_buff *prev;
1346 	int mss;
1347 	int pcount = 0;
1348 	int len;
1349 	int in_sack;
1350 
1351 	if (!sk_can_gso(sk))
1352 		goto fallback;
1353 
1354 	/* Normally R but no L won't result in plain S */
1355 	if (!dup_sack &&
1356 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1357 		goto fallback;
1358 	if (!skb_can_shift(skb))
1359 		goto fallback;
1360 	/* This frame is about to be dropped (was ACKed). */
1361 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1362 		goto fallback;
1363 
1364 	/* Can only happen with delayed DSACK + discard craziness */
1365 	if (unlikely(skb == tcp_write_queue_head(sk)))
1366 		goto fallback;
1367 	prev = tcp_write_queue_prev(sk, skb);
1368 
1369 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1370 		goto fallback;
1371 
1372 	if (!tcp_skb_can_collapse_to(prev))
1373 		goto fallback;
1374 
1375 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1376 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1377 
1378 	if (in_sack) {
1379 		len = skb->len;
1380 		pcount = tcp_skb_pcount(skb);
1381 		mss = tcp_skb_seglen(skb);
1382 
1383 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 		 * drop this restriction as unnecessary
1385 		 */
1386 		if (mss != tcp_skb_seglen(prev))
1387 			goto fallback;
1388 	} else {
1389 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1390 			goto noop;
1391 		/* CHECKME: This is non-MSS split case only?, this will
1392 		 * cause skipped skbs due to advancing loop btw, original
1393 		 * has that feature too
1394 		 */
1395 		if (tcp_skb_pcount(skb) <= 1)
1396 			goto noop;
1397 
1398 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1399 		if (!in_sack) {
1400 			/* TODO: head merge to next could be attempted here
1401 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1402 			 * though it might not be worth of the additional hassle
1403 			 *
1404 			 * ...we can probably just fallback to what was done
1405 			 * previously. We could try merging non-SACKed ones
1406 			 * as well but it probably isn't going to buy off
1407 			 * because later SACKs might again split them, and
1408 			 * it would make skb timestamp tracking considerably
1409 			 * harder problem.
1410 			 */
1411 			goto fallback;
1412 		}
1413 
1414 		len = end_seq - TCP_SKB_CB(skb)->seq;
1415 		BUG_ON(len < 0);
1416 		BUG_ON(len > skb->len);
1417 
1418 		/* MSS boundaries should be honoured or else pcount will
1419 		 * severely break even though it makes things bit trickier.
1420 		 * Optimize common case to avoid most of the divides
1421 		 */
1422 		mss = tcp_skb_mss(skb);
1423 
1424 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 		 * drop this restriction as unnecessary
1426 		 */
1427 		if (mss != tcp_skb_seglen(prev))
1428 			goto fallback;
1429 
1430 		if (len == mss) {
1431 			pcount = 1;
1432 		} else if (len < mss) {
1433 			goto noop;
1434 		} else {
1435 			pcount = len / mss;
1436 			len = pcount * mss;
1437 		}
1438 	}
1439 
1440 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1441 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1442 		goto fallback;
1443 
1444 	if (!skb_shift(prev, skb, len))
1445 		goto fallback;
1446 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1447 		goto out;
1448 
1449 	/* Hole filled allows collapsing with the next as well, this is very
1450 	 * useful when hole on every nth skb pattern happens
1451 	 */
1452 	if (prev == tcp_write_queue_tail(sk))
1453 		goto out;
1454 	skb = tcp_write_queue_next(sk, prev);
1455 
1456 	if (!skb_can_shift(skb) ||
1457 	    (skb == tcp_send_head(sk)) ||
1458 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1459 	    (mss != tcp_skb_seglen(skb)))
1460 		goto out;
1461 
1462 	len = skb->len;
1463 	if (skb_shift(prev, skb, len)) {
1464 		pcount += tcp_skb_pcount(skb);
1465 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1466 	}
1467 
1468 out:
1469 	state->fack_count += pcount;
1470 	return prev;
1471 
1472 noop:
1473 	return skb;
1474 
1475 fallback:
1476 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1477 	return NULL;
1478 }
1479 
1480 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1481 					struct tcp_sack_block *next_dup,
1482 					struct tcp_sacktag_state *state,
1483 					u32 start_seq, u32 end_seq,
1484 					bool dup_sack_in)
1485 {
1486 	struct tcp_sock *tp = tcp_sk(sk);
1487 	struct sk_buff *tmp;
1488 
1489 	tcp_for_write_queue_from(skb, sk) {
1490 		int in_sack = 0;
1491 		bool dup_sack = dup_sack_in;
1492 
1493 		if (skb == tcp_send_head(sk))
1494 			break;
1495 
1496 		/* queue is in-order => we can short-circuit the walk early */
1497 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1498 			break;
1499 
1500 		if (next_dup  &&
1501 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1502 			in_sack = tcp_match_skb_to_sack(sk, skb,
1503 							next_dup->start_seq,
1504 							next_dup->end_seq);
1505 			if (in_sack > 0)
1506 				dup_sack = true;
1507 		}
1508 
1509 		/* skb reference here is a bit tricky to get right, since
1510 		 * shifting can eat and free both this skb and the next,
1511 		 * so not even _safe variant of the loop is enough.
1512 		 */
1513 		if (in_sack <= 0) {
1514 			tmp = tcp_shift_skb_data(sk, skb, state,
1515 						 start_seq, end_seq, dup_sack);
1516 			if (tmp) {
1517 				if (tmp != skb) {
1518 					skb = tmp;
1519 					continue;
1520 				}
1521 
1522 				in_sack = 0;
1523 			} else {
1524 				in_sack = tcp_match_skb_to_sack(sk, skb,
1525 								start_seq,
1526 								end_seq);
1527 			}
1528 		}
1529 
1530 		if (unlikely(in_sack < 0))
1531 			break;
1532 
1533 		if (in_sack) {
1534 			TCP_SKB_CB(skb)->sacked =
1535 				tcp_sacktag_one(sk,
1536 						state,
1537 						TCP_SKB_CB(skb)->sacked,
1538 						TCP_SKB_CB(skb)->seq,
1539 						TCP_SKB_CB(skb)->end_seq,
1540 						dup_sack,
1541 						tcp_skb_pcount(skb),
1542 						&skb->skb_mstamp);
1543 
1544 			if (!before(TCP_SKB_CB(skb)->seq,
1545 				    tcp_highest_sack_seq(tp)))
1546 				tcp_advance_highest_sack(sk, skb);
1547 		}
1548 
1549 		state->fack_count += tcp_skb_pcount(skb);
1550 	}
1551 	return skb;
1552 }
1553 
1554 /* Avoid all extra work that is being done by sacktag while walking in
1555  * a normal way
1556  */
1557 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1558 					struct tcp_sacktag_state *state,
1559 					u32 skip_to_seq)
1560 {
1561 	tcp_for_write_queue_from(skb, sk) {
1562 		if (skb == tcp_send_head(sk))
1563 			break;
1564 
1565 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1566 			break;
1567 
1568 		state->fack_count += tcp_skb_pcount(skb);
1569 	}
1570 	return skb;
1571 }
1572 
1573 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1574 						struct sock *sk,
1575 						struct tcp_sack_block *next_dup,
1576 						struct tcp_sacktag_state *state,
1577 						u32 skip_to_seq)
1578 {
1579 	if (!next_dup)
1580 		return skb;
1581 
1582 	if (before(next_dup->start_seq, skip_to_seq)) {
1583 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1584 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1585 				       next_dup->start_seq, next_dup->end_seq,
1586 				       1);
1587 	}
1588 
1589 	return skb;
1590 }
1591 
1592 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1593 {
1594 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1595 }
1596 
1597 static int
1598 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1599 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1600 {
1601 	struct tcp_sock *tp = tcp_sk(sk);
1602 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1603 				    TCP_SKB_CB(ack_skb)->sacked);
1604 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1605 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1606 	struct tcp_sack_block *cache;
1607 	struct sk_buff *skb;
1608 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1609 	int used_sacks;
1610 	bool found_dup_sack = false;
1611 	int i, j;
1612 	int first_sack_index;
1613 
1614 	state->flag = 0;
1615 	state->reord = tp->packets_out;
1616 
1617 	if (!tp->sacked_out) {
1618 		if (WARN_ON(tp->fackets_out))
1619 			tp->fackets_out = 0;
1620 		tcp_highest_sack_reset(sk);
1621 	}
1622 
1623 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1624 					 num_sacks, prior_snd_una);
1625 	if (found_dup_sack)
1626 		state->flag |= FLAG_DSACKING_ACK;
1627 
1628 	/* Eliminate too old ACKs, but take into
1629 	 * account more or less fresh ones, they can
1630 	 * contain valid SACK info.
1631 	 */
1632 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1633 		return 0;
1634 
1635 	if (!tp->packets_out)
1636 		goto out;
1637 
1638 	used_sacks = 0;
1639 	first_sack_index = 0;
1640 	for (i = 0; i < num_sacks; i++) {
1641 		bool dup_sack = !i && found_dup_sack;
1642 
1643 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1644 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1645 
1646 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1647 					    sp[used_sacks].start_seq,
1648 					    sp[used_sacks].end_seq)) {
1649 			int mib_idx;
1650 
1651 			if (dup_sack) {
1652 				if (!tp->undo_marker)
1653 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1654 				else
1655 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1656 			} else {
1657 				/* Don't count olds caused by ACK reordering */
1658 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1659 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1660 					continue;
1661 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1662 			}
1663 
1664 			NET_INC_STATS(sock_net(sk), mib_idx);
1665 			if (i == 0)
1666 				first_sack_index = -1;
1667 			continue;
1668 		}
1669 
1670 		/* Ignore very old stuff early */
1671 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1672 			continue;
1673 
1674 		used_sacks++;
1675 	}
1676 
1677 	/* order SACK blocks to allow in order walk of the retrans queue */
1678 	for (i = used_sacks - 1; i > 0; i--) {
1679 		for (j = 0; j < i; j++) {
1680 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1681 				swap(sp[j], sp[j + 1]);
1682 
1683 				/* Track where the first SACK block goes to */
1684 				if (j == first_sack_index)
1685 					first_sack_index = j + 1;
1686 			}
1687 		}
1688 	}
1689 
1690 	skb = tcp_write_queue_head(sk);
1691 	state->fack_count = 0;
1692 	i = 0;
1693 
1694 	if (!tp->sacked_out) {
1695 		/* It's already past, so skip checking against it */
1696 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1697 	} else {
1698 		cache = tp->recv_sack_cache;
1699 		/* Skip empty blocks in at head of the cache */
1700 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1701 		       !cache->end_seq)
1702 			cache++;
1703 	}
1704 
1705 	while (i < used_sacks) {
1706 		u32 start_seq = sp[i].start_seq;
1707 		u32 end_seq = sp[i].end_seq;
1708 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1709 		struct tcp_sack_block *next_dup = NULL;
1710 
1711 		if (found_dup_sack && ((i + 1) == first_sack_index))
1712 			next_dup = &sp[i + 1];
1713 
1714 		/* Skip too early cached blocks */
1715 		while (tcp_sack_cache_ok(tp, cache) &&
1716 		       !before(start_seq, cache->end_seq))
1717 			cache++;
1718 
1719 		/* Can skip some work by looking recv_sack_cache? */
1720 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1721 		    after(end_seq, cache->start_seq)) {
1722 
1723 			/* Head todo? */
1724 			if (before(start_seq, cache->start_seq)) {
1725 				skb = tcp_sacktag_skip(skb, sk, state,
1726 						       start_seq);
1727 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1728 						       state,
1729 						       start_seq,
1730 						       cache->start_seq,
1731 						       dup_sack);
1732 			}
1733 
1734 			/* Rest of the block already fully processed? */
1735 			if (!after(end_seq, cache->end_seq))
1736 				goto advance_sp;
1737 
1738 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1739 						       state,
1740 						       cache->end_seq);
1741 
1742 			/* ...tail remains todo... */
1743 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1744 				/* ...but better entrypoint exists! */
1745 				skb = tcp_highest_sack(sk);
1746 				if (!skb)
1747 					break;
1748 				state->fack_count = tp->fackets_out;
1749 				cache++;
1750 				goto walk;
1751 			}
1752 
1753 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1754 			/* Check overlap against next cached too (past this one already) */
1755 			cache++;
1756 			continue;
1757 		}
1758 
1759 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1760 			skb = tcp_highest_sack(sk);
1761 			if (!skb)
1762 				break;
1763 			state->fack_count = tp->fackets_out;
1764 		}
1765 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1766 
1767 walk:
1768 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1769 				       start_seq, end_seq, dup_sack);
1770 
1771 advance_sp:
1772 		i++;
1773 	}
1774 
1775 	/* Clear the head of the cache sack blocks so we can skip it next time */
1776 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1777 		tp->recv_sack_cache[i].start_seq = 0;
1778 		tp->recv_sack_cache[i].end_seq = 0;
1779 	}
1780 	for (j = 0; j < used_sacks; j++)
1781 		tp->recv_sack_cache[i++] = sp[j];
1782 
1783 	if ((state->reord < tp->fackets_out) &&
1784 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1785 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1786 
1787 	tcp_verify_left_out(tp);
1788 out:
1789 
1790 #if FASTRETRANS_DEBUG > 0
1791 	WARN_ON((int)tp->sacked_out < 0);
1792 	WARN_ON((int)tp->lost_out < 0);
1793 	WARN_ON((int)tp->retrans_out < 0);
1794 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1795 #endif
1796 	return state->flag;
1797 }
1798 
1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1800  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1801  */
1802 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1803 {
1804 	u32 holes;
1805 
1806 	holes = max(tp->lost_out, 1U);
1807 	holes = min(holes, tp->packets_out);
1808 
1809 	if ((tp->sacked_out + holes) > tp->packets_out) {
1810 		tp->sacked_out = tp->packets_out - holes;
1811 		return true;
1812 	}
1813 	return false;
1814 }
1815 
1816 /* If we receive more dupacks than we expected counting segments
1817  * in assumption of absent reordering, interpret this as reordering.
1818  * The only another reason could be bug in receiver TCP.
1819  */
1820 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1821 {
1822 	struct tcp_sock *tp = tcp_sk(sk);
1823 	if (tcp_limit_reno_sacked(tp))
1824 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1825 }
1826 
1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1828 
1829 static void tcp_add_reno_sack(struct sock *sk)
1830 {
1831 	struct tcp_sock *tp = tcp_sk(sk);
1832 	u32 prior_sacked = tp->sacked_out;
1833 
1834 	tp->sacked_out++;
1835 	tcp_check_reno_reordering(sk, 0);
1836 	if (tp->sacked_out > prior_sacked)
1837 		tp->delivered++; /* Some out-of-order packet is delivered */
1838 	tcp_verify_left_out(tp);
1839 }
1840 
1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1842 
1843 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1844 {
1845 	struct tcp_sock *tp = tcp_sk(sk);
1846 
1847 	if (acked > 0) {
1848 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1849 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1850 		if (acked - 1 >= tp->sacked_out)
1851 			tp->sacked_out = 0;
1852 		else
1853 			tp->sacked_out -= acked - 1;
1854 	}
1855 	tcp_check_reno_reordering(sk, acked);
1856 	tcp_verify_left_out(tp);
1857 }
1858 
1859 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1860 {
1861 	tp->sacked_out = 0;
1862 }
1863 
1864 void tcp_clear_retrans(struct tcp_sock *tp)
1865 {
1866 	tp->retrans_out = 0;
1867 	tp->lost_out = 0;
1868 	tp->undo_marker = 0;
1869 	tp->undo_retrans = -1;
1870 	tp->fackets_out = 0;
1871 	tp->sacked_out = 0;
1872 }
1873 
1874 static inline void tcp_init_undo(struct tcp_sock *tp)
1875 {
1876 	tp->undo_marker = tp->snd_una;
1877 	/* Retransmission still in flight may cause DSACKs later. */
1878 	tp->undo_retrans = tp->retrans_out ? : -1;
1879 }
1880 
1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1882  * and reset tags completely, otherwise preserve SACKs. If receiver
1883  * dropped its ofo queue, we will know this due to reneging detection.
1884  */
1885 void tcp_enter_loss(struct sock *sk)
1886 {
1887 	const struct inet_connection_sock *icsk = inet_csk(sk);
1888 	struct tcp_sock *tp = tcp_sk(sk);
1889 	struct net *net = sock_net(sk);
1890 	struct sk_buff *skb;
1891 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1892 	bool is_reneg;			/* is receiver reneging on SACKs? */
1893 
1894 	/* Reduce ssthresh if it has not yet been made inside this window. */
1895 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1896 	    !after(tp->high_seq, tp->snd_una) ||
1897 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1898 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1899 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1900 		tcp_ca_event(sk, CA_EVENT_LOSS);
1901 		tcp_init_undo(tp);
1902 	}
1903 	tp->snd_cwnd	   = 1;
1904 	tp->snd_cwnd_cnt   = 0;
1905 	tp->snd_cwnd_stamp = tcp_time_stamp;
1906 
1907 	tp->retrans_out = 0;
1908 	tp->lost_out = 0;
1909 
1910 	if (tcp_is_reno(tp))
1911 		tcp_reset_reno_sack(tp);
1912 
1913 	skb = tcp_write_queue_head(sk);
1914 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1915 	if (is_reneg) {
1916 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1917 		tp->sacked_out = 0;
1918 		tp->fackets_out = 0;
1919 	}
1920 	tcp_clear_all_retrans_hints(tp);
1921 
1922 	tcp_for_write_queue(skb, sk) {
1923 		if (skb == tcp_send_head(sk))
1924 			break;
1925 
1926 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1928 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930 			tp->lost_out += tcp_skb_pcount(skb);
1931 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1932 		}
1933 	}
1934 	tcp_verify_left_out(tp);
1935 
1936 	/* Timeout in disordered state after receiving substantial DUPACKs
1937 	 * suggests that the degree of reordering is over-estimated.
1938 	 */
1939 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1940 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1941 		tp->reordering = min_t(unsigned int, tp->reordering,
1942 				       net->ipv4.sysctl_tcp_reordering);
1943 	tcp_set_ca_state(sk, TCP_CA_Loss);
1944 	tp->high_seq = tp->snd_nxt;
1945 	tcp_ecn_queue_cwr(tp);
1946 
1947 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1948 	 * loss recovery is underway except recurring timeout(s) on
1949 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1950 	 */
1951 	tp->frto = sysctl_tcp_frto &&
1952 		   (new_recovery || icsk->icsk_retransmits) &&
1953 		   !inet_csk(sk)->icsk_mtup.probe_size;
1954 }
1955 
1956 /* If ACK arrived pointing to a remembered SACK, it means that our
1957  * remembered SACKs do not reflect real state of receiver i.e.
1958  * receiver _host_ is heavily congested (or buggy).
1959  *
1960  * To avoid big spurious retransmission bursts due to transient SACK
1961  * scoreboard oddities that look like reneging, we give the receiver a
1962  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1963  * restore sanity to the SACK scoreboard. If the apparent reneging
1964  * persists until this RTO then we'll clear the SACK scoreboard.
1965  */
1966 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1967 {
1968 	if (flag & FLAG_SACK_RENEGING) {
1969 		struct tcp_sock *tp = tcp_sk(sk);
1970 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1971 					  msecs_to_jiffies(10));
1972 
1973 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1974 					  delay, TCP_RTO_MAX);
1975 		return true;
1976 	}
1977 	return false;
1978 }
1979 
1980 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1981 {
1982 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1983 }
1984 
1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1986  * counter when SACK is enabled (without SACK, sacked_out is used for
1987  * that purpose).
1988  *
1989  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1990  * segments up to the highest received SACK block so far and holes in
1991  * between them.
1992  *
1993  * With reordering, holes may still be in flight, so RFC3517 recovery
1994  * uses pure sacked_out (total number of SACKed segments) even though
1995  * it violates the RFC that uses duplicate ACKs, often these are equal
1996  * but when e.g. out-of-window ACKs or packet duplication occurs,
1997  * they differ. Since neither occurs due to loss, TCP should really
1998  * ignore them.
1999  */
2000 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2001 {
2002 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2003 }
2004 
2005 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2006 {
2007 	struct tcp_sock *tp = tcp_sk(sk);
2008 	unsigned long delay;
2009 
2010 	/* Delay early retransmit and entering fast recovery for
2011 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2012 	 * available, or RTO is scheduled to fire first.
2013 	 */
2014 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2015 	    (flag & FLAG_ECE) || !tp->srtt_us)
2016 		return false;
2017 
2018 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2019 		    msecs_to_jiffies(2));
2020 
2021 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2022 		return false;
2023 
2024 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2025 				  TCP_RTO_MAX);
2026 	return true;
2027 }
2028 
2029 /* Linux NewReno/SACK/FACK/ECN state machine.
2030  * --------------------------------------
2031  *
2032  * "Open"	Normal state, no dubious events, fast path.
2033  * "Disorder"   In all the respects it is "Open",
2034  *		but requires a bit more attention. It is entered when
2035  *		we see some SACKs or dupacks. It is split of "Open"
2036  *		mainly to move some processing from fast path to slow one.
2037  * "CWR"	CWND was reduced due to some Congestion Notification event.
2038  *		It can be ECN, ICMP source quench, local device congestion.
2039  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2040  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2041  *
2042  * tcp_fastretrans_alert() is entered:
2043  * - each incoming ACK, if state is not "Open"
2044  * - when arrived ACK is unusual, namely:
2045  *	* SACK
2046  *	* Duplicate ACK.
2047  *	* ECN ECE.
2048  *
2049  * Counting packets in flight is pretty simple.
2050  *
2051  *	in_flight = packets_out - left_out + retrans_out
2052  *
2053  *	packets_out is SND.NXT-SND.UNA counted in packets.
2054  *
2055  *	retrans_out is number of retransmitted segments.
2056  *
2057  *	left_out is number of segments left network, but not ACKed yet.
2058  *
2059  *		left_out = sacked_out + lost_out
2060  *
2061  *     sacked_out: Packets, which arrived to receiver out of order
2062  *		   and hence not ACKed. With SACKs this number is simply
2063  *		   amount of SACKed data. Even without SACKs
2064  *		   it is easy to give pretty reliable estimate of this number,
2065  *		   counting duplicate ACKs.
2066  *
2067  *       lost_out: Packets lost by network. TCP has no explicit
2068  *		   "loss notification" feedback from network (for now).
2069  *		   It means that this number can be only _guessed_.
2070  *		   Actually, it is the heuristics to predict lossage that
2071  *		   distinguishes different algorithms.
2072  *
2073  *	F.e. after RTO, when all the queue is considered as lost,
2074  *	lost_out = packets_out and in_flight = retrans_out.
2075  *
2076  *		Essentially, we have now two algorithms counting
2077  *		lost packets.
2078  *
2079  *		FACK: It is the simplest heuristics. As soon as we decided
2080  *		that something is lost, we decide that _all_ not SACKed
2081  *		packets until the most forward SACK are lost. I.e.
2082  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2083  *		It is absolutely correct estimate, if network does not reorder
2084  *		packets. And it loses any connection to reality when reordering
2085  *		takes place. We use FACK by default until reordering
2086  *		is suspected on the path to this destination.
2087  *
2088  *		NewReno: when Recovery is entered, we assume that one segment
2089  *		is lost (classic Reno). While we are in Recovery and
2090  *		a partial ACK arrives, we assume that one more packet
2091  *		is lost (NewReno). This heuristics are the same in NewReno
2092  *		and SACK.
2093  *
2094  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2095  *  deflation etc. CWND is real congestion window, never inflated, changes
2096  *  only according to classic VJ rules.
2097  *
2098  * Really tricky (and requiring careful tuning) part of algorithm
2099  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100  * The first determines the moment _when_ we should reduce CWND and,
2101  * hence, slow down forward transmission. In fact, it determines the moment
2102  * when we decide that hole is caused by loss, rather than by a reorder.
2103  *
2104  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105  * holes, caused by lost packets.
2106  *
2107  * And the most logically complicated part of algorithm is undo
2108  * heuristics. We detect false retransmits due to both too early
2109  * fast retransmit (reordering) and underestimated RTO, analyzing
2110  * timestamps and D-SACKs. When we detect that some segments were
2111  * retransmitted by mistake and CWND reduction was wrong, we undo
2112  * window reduction and abort recovery phase. This logic is hidden
2113  * inside several functions named tcp_try_undo_<something>.
2114  */
2115 
2116 /* This function decides, when we should leave Disordered state
2117  * and enter Recovery phase, reducing congestion window.
2118  *
2119  * Main question: may we further continue forward transmission
2120  * with the same cwnd?
2121  */
2122 static bool tcp_time_to_recover(struct sock *sk, int flag)
2123 {
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 	__u32 packets_out;
2126 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2127 
2128 	/* Trick#1: The loss is proven. */
2129 	if (tp->lost_out)
2130 		return true;
2131 
2132 	/* Not-A-Trick#2 : Classic rule... */
2133 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2134 		return true;
2135 
2136 	/* Trick#4: It is still not OK... But will it be useful to delay
2137 	 * recovery more?
2138 	 */
2139 	packets_out = tp->packets_out;
2140 	if (packets_out <= tp->reordering &&
2141 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2142 	    !tcp_may_send_now(sk)) {
2143 		/* We have nothing to send. This connection is limited
2144 		 * either by receiver window or by application.
2145 		 */
2146 		return true;
2147 	}
2148 
2149 	/* If a thin stream is detected, retransmit after first
2150 	 * received dupack. Employ only if SACK is supported in order
2151 	 * to avoid possible corner-case series of spurious retransmissions
2152 	 * Use only if there are no unsent data.
2153 	 */
2154 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2155 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2156 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2157 		return true;
2158 
2159 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2160 	 * retransmissions due to small network reorderings, we implement
2161 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2162 	 * interval if appropriate.
2163 	 */
2164 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2165 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2166 	    !tcp_may_send_now(sk))
2167 		return !tcp_pause_early_retransmit(sk, flag);
2168 
2169 	return false;
2170 }
2171 
2172 /* Detect loss in event "A" above by marking head of queue up as lost.
2173  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2174  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2175  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2176  * the maximum SACKed segments to pass before reaching this limit.
2177  */
2178 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2179 {
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 	struct sk_buff *skb;
2182 	int cnt, oldcnt, lost;
2183 	unsigned int mss;
2184 	/* Use SACK to deduce losses of new sequences sent during recovery */
2185 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2186 
2187 	WARN_ON(packets > tp->packets_out);
2188 	if (tp->lost_skb_hint) {
2189 		skb = tp->lost_skb_hint;
2190 		cnt = tp->lost_cnt_hint;
2191 		/* Head already handled? */
2192 		if (mark_head && skb != tcp_write_queue_head(sk))
2193 			return;
2194 	} else {
2195 		skb = tcp_write_queue_head(sk);
2196 		cnt = 0;
2197 	}
2198 
2199 	tcp_for_write_queue_from(skb, sk) {
2200 		if (skb == tcp_send_head(sk))
2201 			break;
2202 		/* TODO: do this better */
2203 		/* this is not the most efficient way to do this... */
2204 		tp->lost_skb_hint = skb;
2205 		tp->lost_cnt_hint = cnt;
2206 
2207 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208 			break;
2209 
2210 		oldcnt = cnt;
2211 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2212 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 			cnt += tcp_skb_pcount(skb);
2214 
2215 		if (cnt > packets) {
2216 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2217 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 			    (oldcnt >= packets))
2219 				break;
2220 
2221 			mss = tcp_skb_mss(skb);
2222 			/* If needed, chop off the prefix to mark as lost. */
2223 			lost = (packets - oldcnt) * mss;
2224 			if (lost < skb->len &&
2225 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2226 				break;
2227 			cnt = packets;
2228 		}
2229 
2230 		tcp_skb_mark_lost(tp, skb);
2231 
2232 		if (mark_head)
2233 			break;
2234 	}
2235 	tcp_verify_left_out(tp);
2236 }
2237 
2238 /* Account newly detected lost packet(s) */
2239 
2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241 {
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 
2244 	if (tcp_is_reno(tp)) {
2245 		tcp_mark_head_lost(sk, 1, 1);
2246 	} else if (tcp_is_fack(tp)) {
2247 		int lost = tp->fackets_out - tp->reordering;
2248 		if (lost <= 0)
2249 			lost = 1;
2250 		tcp_mark_head_lost(sk, lost, 0);
2251 	} else {
2252 		int sacked_upto = tp->sacked_out - tp->reordering;
2253 		if (sacked_upto >= 0)
2254 			tcp_mark_head_lost(sk, sacked_upto, 0);
2255 		else if (fast_rexmit)
2256 			tcp_mark_head_lost(sk, 1, 1);
2257 	}
2258 }
2259 
2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261 {
2262 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263 	       before(tp->rx_opt.rcv_tsecr, when);
2264 }
2265 
2266 /* skb is spurious retransmitted if the returned timestamp echo
2267  * reply is prior to the skb transmission time
2268  */
2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270 				     const struct sk_buff *skb)
2271 {
2272 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274 }
2275 
2276 /* Nothing was retransmitted or returned timestamp is less
2277  * than timestamp of the first retransmission.
2278  */
2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280 {
2281 	return !tp->retrans_stamp ||
2282 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283 }
2284 
2285 /* Undo procedures. */
2286 
2287 /* We can clear retrans_stamp when there are no retransmissions in the
2288  * window. It would seem that it is trivially available for us in
2289  * tp->retrans_out, however, that kind of assumptions doesn't consider
2290  * what will happen if errors occur when sending retransmission for the
2291  * second time. ...It could the that such segment has only
2292  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293  * the head skb is enough except for some reneging corner cases that
2294  * are not worth the effort.
2295  *
2296  * Main reason for all this complexity is the fact that connection dying
2297  * time now depends on the validity of the retrans_stamp, in particular,
2298  * that successive retransmissions of a segment must not advance
2299  * retrans_stamp under any conditions.
2300  */
2301 static bool tcp_any_retrans_done(const struct sock *sk)
2302 {
2303 	const struct tcp_sock *tp = tcp_sk(sk);
2304 	struct sk_buff *skb;
2305 
2306 	if (tp->retrans_out)
2307 		return true;
2308 
2309 	skb = tcp_write_queue_head(sk);
2310 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311 		return true;
2312 
2313 	return false;
2314 }
2315 
2316 #if FASTRETRANS_DEBUG > 1
2317 static void DBGUNDO(struct sock *sk, const char *msg)
2318 {
2319 	struct tcp_sock *tp = tcp_sk(sk);
2320 	struct inet_sock *inet = inet_sk(sk);
2321 
2322 	if (sk->sk_family == AF_INET) {
2323 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324 			 msg,
2325 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2326 			 tp->snd_cwnd, tcp_left_out(tp),
2327 			 tp->snd_ssthresh, tp->prior_ssthresh,
2328 			 tp->packets_out);
2329 	}
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 	else if (sk->sk_family == AF_INET6) {
2332 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2333 			 msg,
2334 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2335 			 tp->snd_cwnd, tcp_left_out(tp),
2336 			 tp->snd_ssthresh, tp->prior_ssthresh,
2337 			 tp->packets_out);
2338 	}
2339 #endif
2340 }
2341 #else
2342 #define DBGUNDO(x...) do { } while (0)
2343 #endif
2344 
2345 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2346 {
2347 	struct tcp_sock *tp = tcp_sk(sk);
2348 
2349 	if (unmark_loss) {
2350 		struct sk_buff *skb;
2351 
2352 		tcp_for_write_queue(skb, sk) {
2353 			if (skb == tcp_send_head(sk))
2354 				break;
2355 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2356 		}
2357 		tp->lost_out = 0;
2358 		tcp_clear_all_retrans_hints(tp);
2359 	}
2360 
2361 	if (tp->prior_ssthresh) {
2362 		const struct inet_connection_sock *icsk = inet_csk(sk);
2363 
2364 		if (icsk->icsk_ca_ops->undo_cwnd)
2365 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2366 		else
2367 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2368 
2369 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2370 			tp->snd_ssthresh = tp->prior_ssthresh;
2371 			tcp_ecn_withdraw_cwr(tp);
2372 		}
2373 	}
2374 	tp->snd_cwnd_stamp = tcp_time_stamp;
2375 	tp->undo_marker = 0;
2376 }
2377 
2378 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2379 {
2380 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2381 }
2382 
2383 /* People celebrate: "We love our President!" */
2384 static bool tcp_try_undo_recovery(struct sock *sk)
2385 {
2386 	struct tcp_sock *tp = tcp_sk(sk);
2387 
2388 	if (tcp_may_undo(tp)) {
2389 		int mib_idx;
2390 
2391 		/* Happy end! We did not retransmit anything
2392 		 * or our original transmission succeeded.
2393 		 */
2394 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2395 		tcp_undo_cwnd_reduction(sk, false);
2396 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2397 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2398 		else
2399 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2400 
2401 		NET_INC_STATS(sock_net(sk), mib_idx);
2402 	}
2403 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2404 		/* Hold old state until something *above* high_seq
2405 		 * is ACKed. For Reno it is MUST to prevent false
2406 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2407 		if (!tcp_any_retrans_done(sk))
2408 			tp->retrans_stamp = 0;
2409 		return true;
2410 	}
2411 	tcp_set_ca_state(sk, TCP_CA_Open);
2412 	return false;
2413 }
2414 
2415 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2416 static bool tcp_try_undo_dsack(struct sock *sk)
2417 {
2418 	struct tcp_sock *tp = tcp_sk(sk);
2419 
2420 	if (tp->undo_marker && !tp->undo_retrans) {
2421 		DBGUNDO(sk, "D-SACK");
2422 		tcp_undo_cwnd_reduction(sk, false);
2423 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2424 		return true;
2425 	}
2426 	return false;
2427 }
2428 
2429 /* Undo during loss recovery after partial ACK or using F-RTO. */
2430 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2431 {
2432 	struct tcp_sock *tp = tcp_sk(sk);
2433 
2434 	if (frto_undo || tcp_may_undo(tp)) {
2435 		tcp_undo_cwnd_reduction(sk, true);
2436 
2437 		DBGUNDO(sk, "partial loss");
2438 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2439 		if (frto_undo)
2440 			NET_INC_STATS(sock_net(sk),
2441 					LINUX_MIB_TCPSPURIOUSRTOS);
2442 		inet_csk(sk)->icsk_retransmits = 0;
2443 		if (frto_undo || tcp_is_sack(tp))
2444 			tcp_set_ca_state(sk, TCP_CA_Open);
2445 		return true;
2446 	}
2447 	return false;
2448 }
2449 
2450 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2451  * It computes the number of packets to send (sndcnt) based on packets newly
2452  * delivered:
2453  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2454  *	cwnd reductions across a full RTT.
2455  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2456  *      But when the retransmits are acked without further losses, PRR
2457  *      slow starts cwnd up to ssthresh to speed up the recovery.
2458  */
2459 static void tcp_init_cwnd_reduction(struct sock *sk)
2460 {
2461 	struct tcp_sock *tp = tcp_sk(sk);
2462 
2463 	tp->high_seq = tp->snd_nxt;
2464 	tp->tlp_high_seq = 0;
2465 	tp->snd_cwnd_cnt = 0;
2466 	tp->prior_cwnd = tp->snd_cwnd;
2467 	tp->prr_delivered = 0;
2468 	tp->prr_out = 0;
2469 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2470 	tcp_ecn_queue_cwr(tp);
2471 }
2472 
2473 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2474 			       int flag)
2475 {
2476 	struct tcp_sock *tp = tcp_sk(sk);
2477 	int sndcnt = 0;
2478 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2479 
2480 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481 		return;
2482 
2483 	tp->prr_delivered += newly_acked_sacked;
2484 	if (delta < 0) {
2485 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2486 			       tp->prior_cwnd - 1;
2487 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2488 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2489 		   !(flag & FLAG_LOST_RETRANS)) {
2490 		sndcnt = min_t(int, delta,
2491 			       max_t(int, tp->prr_delivered - tp->prr_out,
2492 				     newly_acked_sacked) + 1);
2493 	} else {
2494 		sndcnt = min(delta, newly_acked_sacked);
2495 	}
2496 	/* Force a fast retransmit upon entering fast recovery */
2497 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2498 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499 }
2500 
2501 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 
2505 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2506 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2507 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2508 		tp->snd_cwnd = tp->snd_ssthresh;
2509 		tp->snd_cwnd_stamp = tcp_time_stamp;
2510 	}
2511 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2512 }
2513 
2514 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2515 void tcp_enter_cwr(struct sock *sk)
2516 {
2517 	struct tcp_sock *tp = tcp_sk(sk);
2518 
2519 	tp->prior_ssthresh = 0;
2520 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2521 		tp->undo_marker = 0;
2522 		tcp_init_cwnd_reduction(sk);
2523 		tcp_set_ca_state(sk, TCP_CA_CWR);
2524 	}
2525 }
2526 EXPORT_SYMBOL(tcp_enter_cwr);
2527 
2528 static void tcp_try_keep_open(struct sock *sk)
2529 {
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 	int state = TCP_CA_Open;
2532 
2533 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2534 		state = TCP_CA_Disorder;
2535 
2536 	if (inet_csk(sk)->icsk_ca_state != state) {
2537 		tcp_set_ca_state(sk, state);
2538 		tp->high_seq = tp->snd_nxt;
2539 	}
2540 }
2541 
2542 static void tcp_try_to_open(struct sock *sk, int flag)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 
2546 	tcp_verify_left_out(tp);
2547 
2548 	if (!tcp_any_retrans_done(sk))
2549 		tp->retrans_stamp = 0;
2550 
2551 	if (flag & FLAG_ECE)
2552 		tcp_enter_cwr(sk);
2553 
2554 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2555 		tcp_try_keep_open(sk);
2556 	}
2557 }
2558 
2559 static void tcp_mtup_probe_failed(struct sock *sk)
2560 {
2561 	struct inet_connection_sock *icsk = inet_csk(sk);
2562 
2563 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2564 	icsk->icsk_mtup.probe_size = 0;
2565 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2566 }
2567 
2568 static void tcp_mtup_probe_success(struct sock *sk)
2569 {
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 	struct inet_connection_sock *icsk = inet_csk(sk);
2572 
2573 	/* FIXME: breaks with very large cwnd */
2574 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2575 	tp->snd_cwnd = tp->snd_cwnd *
2576 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2577 		       icsk->icsk_mtup.probe_size;
2578 	tp->snd_cwnd_cnt = 0;
2579 	tp->snd_cwnd_stamp = tcp_time_stamp;
2580 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2581 
2582 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2583 	icsk->icsk_mtup.probe_size = 0;
2584 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2585 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2586 }
2587 
2588 /* Do a simple retransmit without using the backoff mechanisms in
2589  * tcp_timer. This is used for path mtu discovery.
2590  * The socket is already locked here.
2591  */
2592 void tcp_simple_retransmit(struct sock *sk)
2593 {
2594 	const struct inet_connection_sock *icsk = inet_csk(sk);
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 	struct sk_buff *skb;
2597 	unsigned int mss = tcp_current_mss(sk);
2598 	u32 prior_lost = tp->lost_out;
2599 
2600 	tcp_for_write_queue(skb, sk) {
2601 		if (skb == tcp_send_head(sk))
2602 			break;
2603 		if (tcp_skb_seglen(skb) > mss &&
2604 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607 				tp->retrans_out -= tcp_skb_pcount(skb);
2608 			}
2609 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2610 		}
2611 	}
2612 
2613 	tcp_clear_retrans_hints_partial(tp);
2614 
2615 	if (prior_lost == tp->lost_out)
2616 		return;
2617 
2618 	if (tcp_is_reno(tp))
2619 		tcp_limit_reno_sacked(tp);
2620 
2621 	tcp_verify_left_out(tp);
2622 
2623 	/* Don't muck with the congestion window here.
2624 	 * Reason is that we do not increase amount of _data_
2625 	 * in network, but units changed and effective
2626 	 * cwnd/ssthresh really reduced now.
2627 	 */
2628 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629 		tp->high_seq = tp->snd_nxt;
2630 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631 		tp->prior_ssthresh = 0;
2632 		tp->undo_marker = 0;
2633 		tcp_set_ca_state(sk, TCP_CA_Loss);
2634 	}
2635 	tcp_xmit_retransmit_queue(sk);
2636 }
2637 EXPORT_SYMBOL(tcp_simple_retransmit);
2638 
2639 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640 {
2641 	struct tcp_sock *tp = tcp_sk(sk);
2642 	int mib_idx;
2643 
2644 	if (tcp_is_reno(tp))
2645 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646 	else
2647 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648 
2649 	NET_INC_STATS(sock_net(sk), mib_idx);
2650 
2651 	tp->prior_ssthresh = 0;
2652 	tcp_init_undo(tp);
2653 
2654 	if (!tcp_in_cwnd_reduction(sk)) {
2655 		if (!ece_ack)
2656 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657 		tcp_init_cwnd_reduction(sk);
2658 	}
2659 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2660 }
2661 
2662 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664  */
2665 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2666 			     int *rexmit)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 	bool recovered = !before(tp->snd_una, tp->high_seq);
2670 
2671 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2672 	    tcp_try_undo_loss(sk, false))
2673 		return;
2674 
2675 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2676 		/* Step 3.b. A timeout is spurious if not all data are
2677 		 * lost, i.e., never-retransmitted data are (s)acked.
2678 		 */
2679 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2680 		    tcp_try_undo_loss(sk, true))
2681 			return;
2682 
2683 		if (after(tp->snd_nxt, tp->high_seq)) {
2684 			if (flag & FLAG_DATA_SACKED || is_dupack)
2685 				tp->frto = 0; /* Step 3.a. loss was real */
2686 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2687 			tp->high_seq = tp->snd_nxt;
2688 			/* Step 2.b. Try send new data (but deferred until cwnd
2689 			 * is updated in tcp_ack()). Otherwise fall back to
2690 			 * the conventional recovery.
2691 			 */
2692 			if (tcp_send_head(sk) &&
2693 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2694 				*rexmit = REXMIT_NEW;
2695 				return;
2696 			}
2697 			tp->frto = 0;
2698 		}
2699 	}
2700 
2701 	if (recovered) {
2702 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2703 		tcp_try_undo_recovery(sk);
2704 		return;
2705 	}
2706 	if (tcp_is_reno(tp)) {
2707 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2708 		 * delivered. Lower inflight to clock out (re)tranmissions.
2709 		 */
2710 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2711 			tcp_add_reno_sack(sk);
2712 		else if (flag & FLAG_SND_UNA_ADVANCED)
2713 			tcp_reset_reno_sack(tp);
2714 	}
2715 	*rexmit = REXMIT_LOST;
2716 }
2717 
2718 /* Undo during fast recovery after partial ACK. */
2719 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 
2723 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2724 		/* Plain luck! Hole if filled with delayed
2725 		 * packet, rather than with a retransmit.
2726 		 */
2727 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2728 
2729 		/* We are getting evidence that the reordering degree is higher
2730 		 * than we realized. If there are no retransmits out then we
2731 		 * can undo. Otherwise we clock out new packets but do not
2732 		 * mark more packets lost or retransmit more.
2733 		 */
2734 		if (tp->retrans_out)
2735 			return true;
2736 
2737 		if (!tcp_any_retrans_done(sk))
2738 			tp->retrans_stamp = 0;
2739 
2740 		DBGUNDO(sk, "partial recovery");
2741 		tcp_undo_cwnd_reduction(sk, true);
2742 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2743 		tcp_try_keep_open(sk);
2744 		return true;
2745 	}
2746 	return false;
2747 }
2748 
2749 /* Process an event, which can update packets-in-flight not trivially.
2750  * Main goal of this function is to calculate new estimate for left_out,
2751  * taking into account both packets sitting in receiver's buffer and
2752  * packets lost by network.
2753  *
2754  * Besides that it updates the congestion state when packet loss or ECN
2755  * is detected. But it does not reduce the cwnd, it is done by the
2756  * congestion control later.
2757  *
2758  * It does _not_ decide what to send, it is made in function
2759  * tcp_xmit_retransmit_queue().
2760  */
2761 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2762 				  bool is_dupack, int *ack_flag, int *rexmit)
2763 {
2764 	struct inet_connection_sock *icsk = inet_csk(sk);
2765 	struct tcp_sock *tp = tcp_sk(sk);
2766 	int fast_rexmit = 0, flag = *ack_flag;
2767 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2768 				    (tcp_fackets_out(tp) > tp->reordering));
2769 
2770 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2771 		tp->sacked_out = 0;
2772 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2773 		tp->fackets_out = 0;
2774 
2775 	/* Now state machine starts.
2776 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2777 	if (flag & FLAG_ECE)
2778 		tp->prior_ssthresh = 0;
2779 
2780 	/* B. In all the states check for reneging SACKs. */
2781 	if (tcp_check_sack_reneging(sk, flag))
2782 		return;
2783 
2784 	/* C. Check consistency of the current state. */
2785 	tcp_verify_left_out(tp);
2786 
2787 	/* D. Check state exit conditions. State can be terminated
2788 	 *    when high_seq is ACKed. */
2789 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2790 		WARN_ON(tp->retrans_out != 0);
2791 		tp->retrans_stamp = 0;
2792 	} else if (!before(tp->snd_una, tp->high_seq)) {
2793 		switch (icsk->icsk_ca_state) {
2794 		case TCP_CA_CWR:
2795 			/* CWR is to be held something *above* high_seq
2796 			 * is ACKed for CWR bit to reach receiver. */
2797 			if (tp->snd_una != tp->high_seq) {
2798 				tcp_end_cwnd_reduction(sk);
2799 				tcp_set_ca_state(sk, TCP_CA_Open);
2800 			}
2801 			break;
2802 
2803 		case TCP_CA_Recovery:
2804 			if (tcp_is_reno(tp))
2805 				tcp_reset_reno_sack(tp);
2806 			if (tcp_try_undo_recovery(sk))
2807 				return;
2808 			tcp_end_cwnd_reduction(sk);
2809 			break;
2810 		}
2811 	}
2812 
2813 	/* Use RACK to detect loss */
2814 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2815 	    tcp_rack_mark_lost(sk)) {
2816 		flag |= FLAG_LOST_RETRANS;
2817 		*ack_flag |= FLAG_LOST_RETRANS;
2818 	}
2819 
2820 	/* E. Process state. */
2821 	switch (icsk->icsk_ca_state) {
2822 	case TCP_CA_Recovery:
2823 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2824 			if (tcp_is_reno(tp) && is_dupack)
2825 				tcp_add_reno_sack(sk);
2826 		} else {
2827 			if (tcp_try_undo_partial(sk, acked))
2828 				return;
2829 			/* Partial ACK arrived. Force fast retransmit. */
2830 			do_lost = tcp_is_reno(tp) ||
2831 				  tcp_fackets_out(tp) > tp->reordering;
2832 		}
2833 		if (tcp_try_undo_dsack(sk)) {
2834 			tcp_try_keep_open(sk);
2835 			return;
2836 		}
2837 		break;
2838 	case TCP_CA_Loss:
2839 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2840 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2841 		    !(flag & FLAG_LOST_RETRANS))
2842 			return;
2843 		/* Change state if cwnd is undone or retransmits are lost */
2844 	default:
2845 		if (tcp_is_reno(tp)) {
2846 			if (flag & FLAG_SND_UNA_ADVANCED)
2847 				tcp_reset_reno_sack(tp);
2848 			if (is_dupack)
2849 				tcp_add_reno_sack(sk);
2850 		}
2851 
2852 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2853 			tcp_try_undo_dsack(sk);
2854 
2855 		if (!tcp_time_to_recover(sk, flag)) {
2856 			tcp_try_to_open(sk, flag);
2857 			return;
2858 		}
2859 
2860 		/* MTU probe failure: don't reduce cwnd */
2861 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2862 		    icsk->icsk_mtup.probe_size &&
2863 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2864 			tcp_mtup_probe_failed(sk);
2865 			/* Restores the reduction we did in tcp_mtup_probe() */
2866 			tp->snd_cwnd++;
2867 			tcp_simple_retransmit(sk);
2868 			return;
2869 		}
2870 
2871 		/* Otherwise enter Recovery state */
2872 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2873 		fast_rexmit = 1;
2874 	}
2875 
2876 	if (do_lost)
2877 		tcp_update_scoreboard(sk, fast_rexmit);
2878 	*rexmit = REXMIT_LOST;
2879 }
2880 
2881 /* Kathleen Nichols' algorithm for tracking the minimum value of
2882  * a data stream over some fixed time interval. (E.g., the minimum
2883  * RTT over the past five minutes.) It uses constant space and constant
2884  * time per update yet almost always delivers the same minimum as an
2885  * implementation that has to keep all the data in the window.
2886  *
2887  * The algorithm keeps track of the best, 2nd best & 3rd best min
2888  * values, maintaining an invariant that the measurement time of the
2889  * n'th best >= n-1'th best. It also makes sure that the three values
2890  * are widely separated in the time window since that bounds the worse
2891  * case error when that data is monotonically increasing over the window.
2892  *
2893  * Upon getting a new min, we can forget everything earlier because it
2894  * has no value - the new min is <= everything else in the window by
2895  * definition and it's the most recent. So we restart fresh on every new min
2896  * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2897  * best.
2898  */
2899 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2900 {
2901 	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2902 	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2903 	struct rtt_meas rttm = {
2904 		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2905 		.ts = now,
2906 	};
2907 	u32 elapsed;
2908 
2909 	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2910 	if (unlikely(rttm.rtt <= m[0].rtt))
2911 		m[0] = m[1] = m[2] = rttm;
2912 	else if (rttm.rtt <= m[1].rtt)
2913 		m[1] = m[2] = rttm;
2914 	else if (rttm.rtt <= m[2].rtt)
2915 		m[2] = rttm;
2916 
2917 	elapsed = now - m[0].ts;
2918 	if (unlikely(elapsed > wlen)) {
2919 		/* Passed entire window without a new min so make 2nd choice
2920 		 * the new min & 3rd choice the new 2nd. So forth and so on.
2921 		 */
2922 		m[0] = m[1];
2923 		m[1] = m[2];
2924 		m[2] = rttm;
2925 		if (now - m[0].ts > wlen) {
2926 			m[0] = m[1];
2927 			m[1] = rttm;
2928 			if (now - m[0].ts > wlen)
2929 				m[0] = rttm;
2930 		}
2931 	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2932 		/* Passed a quarter of the window without a new min so
2933 		 * take 2nd choice from the 2nd quarter of the window.
2934 		 */
2935 		m[2] = m[1] = rttm;
2936 	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2937 		/* Passed half the window without a new min so take the 3rd
2938 		 * choice from the last half of the window.
2939 		 */
2940 		m[2] = rttm;
2941 	}
2942 }
2943 
2944 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2945 				      long seq_rtt_us, long sack_rtt_us,
2946 				      long ca_rtt_us)
2947 {
2948 	const struct tcp_sock *tp = tcp_sk(sk);
2949 
2950 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2951 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2952 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2953 	 * is acked (RFC6298).
2954 	 */
2955 	if (seq_rtt_us < 0)
2956 		seq_rtt_us = sack_rtt_us;
2957 
2958 	/* RTTM Rule: A TSecr value received in a segment is used to
2959 	 * update the averaged RTT measurement only if the segment
2960 	 * acknowledges some new data, i.e., only if it advances the
2961 	 * left edge of the send window.
2962 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2963 	 */
2964 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2965 	    flag & FLAG_ACKED)
2966 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2967 							  tp->rx_opt.rcv_tsecr);
2968 	if (seq_rtt_us < 0)
2969 		return false;
2970 
2971 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2972 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2973 	 * values will be skipped with the seq_rtt_us < 0 check above.
2974 	 */
2975 	tcp_update_rtt_min(sk, ca_rtt_us);
2976 	tcp_rtt_estimator(sk, seq_rtt_us);
2977 	tcp_set_rto(sk);
2978 
2979 	/* RFC6298: only reset backoff on valid RTT measurement. */
2980 	inet_csk(sk)->icsk_backoff = 0;
2981 	return true;
2982 }
2983 
2984 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2985 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2986 {
2987 	long rtt_us = -1L;
2988 
2989 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2990 		struct skb_mstamp now;
2991 
2992 		skb_mstamp_get(&now);
2993 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2994 	}
2995 
2996 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2997 }
2998 
2999 
3000 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3001 {
3002 	const struct inet_connection_sock *icsk = inet_csk(sk);
3003 
3004 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3005 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3006 }
3007 
3008 /* Restart timer after forward progress on connection.
3009  * RFC2988 recommends to restart timer to now+rto.
3010  */
3011 void tcp_rearm_rto(struct sock *sk)
3012 {
3013 	const struct inet_connection_sock *icsk = inet_csk(sk);
3014 	struct tcp_sock *tp = tcp_sk(sk);
3015 
3016 	/* If the retrans timer is currently being used by Fast Open
3017 	 * for SYN-ACK retrans purpose, stay put.
3018 	 */
3019 	if (tp->fastopen_rsk)
3020 		return;
3021 
3022 	if (!tp->packets_out) {
3023 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3024 	} else {
3025 		u32 rto = inet_csk(sk)->icsk_rto;
3026 		/* Offset the time elapsed after installing regular RTO */
3027 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3028 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3029 			struct sk_buff *skb = tcp_write_queue_head(sk);
3030 			const u32 rto_time_stamp =
3031 				tcp_skb_timestamp(skb) + rto;
3032 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3033 			/* delta may not be positive if the socket is locked
3034 			 * when the retrans timer fires and is rescheduled.
3035 			 */
3036 			if (delta > 0)
3037 				rto = delta;
3038 		}
3039 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3040 					  TCP_RTO_MAX);
3041 	}
3042 }
3043 
3044 /* This function is called when the delayed ER timer fires. TCP enters
3045  * fast recovery and performs fast-retransmit.
3046  */
3047 void tcp_resume_early_retransmit(struct sock *sk)
3048 {
3049 	struct tcp_sock *tp = tcp_sk(sk);
3050 
3051 	tcp_rearm_rto(sk);
3052 
3053 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3054 	if (!tp->do_early_retrans)
3055 		return;
3056 
3057 	tcp_enter_recovery(sk, false);
3058 	tcp_update_scoreboard(sk, 1);
3059 	tcp_xmit_retransmit_queue(sk);
3060 }
3061 
3062 /* If we get here, the whole TSO packet has not been acked. */
3063 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3064 {
3065 	struct tcp_sock *tp = tcp_sk(sk);
3066 	u32 packets_acked;
3067 
3068 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3069 
3070 	packets_acked = tcp_skb_pcount(skb);
3071 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3072 		return 0;
3073 	packets_acked -= tcp_skb_pcount(skb);
3074 
3075 	if (packets_acked) {
3076 		BUG_ON(tcp_skb_pcount(skb) == 0);
3077 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3078 	}
3079 
3080 	return packets_acked;
3081 }
3082 
3083 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3084 			   u32 prior_snd_una)
3085 {
3086 	const struct skb_shared_info *shinfo;
3087 
3088 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3089 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3090 		return;
3091 
3092 	shinfo = skb_shinfo(skb);
3093 	if (!before(shinfo->tskey, prior_snd_una) &&
3094 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3095 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3096 }
3097 
3098 /* Remove acknowledged frames from the retransmission queue. If our packet
3099  * is before the ack sequence we can discard it as it's confirmed to have
3100  * arrived at the other end.
3101  */
3102 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3103 			       u32 prior_snd_una, int *acked,
3104 			       struct tcp_sacktag_state *sack)
3105 {
3106 	const struct inet_connection_sock *icsk = inet_csk(sk);
3107 	struct skb_mstamp first_ackt, last_ackt, now;
3108 	struct tcp_sock *tp = tcp_sk(sk);
3109 	u32 prior_sacked = tp->sacked_out;
3110 	u32 reord = tp->packets_out;
3111 	bool fully_acked = true;
3112 	long sack_rtt_us = -1L;
3113 	long seq_rtt_us = -1L;
3114 	long ca_rtt_us = -1L;
3115 	struct sk_buff *skb;
3116 	u32 pkts_acked = 0;
3117 	u32 last_in_flight = 0;
3118 	bool rtt_update;
3119 	int flag = 0;
3120 
3121 	first_ackt.v64 = 0;
3122 
3123 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3124 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3125 		u8 sacked = scb->sacked;
3126 		u32 acked_pcount;
3127 
3128 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3129 
3130 		/* Determine how many packets and what bytes were acked, tso and else */
3131 		if (after(scb->end_seq, tp->snd_una)) {
3132 			if (tcp_skb_pcount(skb) == 1 ||
3133 			    !after(tp->snd_una, scb->seq))
3134 				break;
3135 
3136 			acked_pcount = tcp_tso_acked(sk, skb);
3137 			if (!acked_pcount)
3138 				break;
3139 
3140 			fully_acked = false;
3141 		} else {
3142 			/* Speedup tcp_unlink_write_queue() and next loop */
3143 			prefetchw(skb->next);
3144 			acked_pcount = tcp_skb_pcount(skb);
3145 		}
3146 
3147 		if (unlikely(sacked & TCPCB_RETRANS)) {
3148 			if (sacked & TCPCB_SACKED_RETRANS)
3149 				tp->retrans_out -= acked_pcount;
3150 			flag |= FLAG_RETRANS_DATA_ACKED;
3151 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3152 			last_ackt = skb->skb_mstamp;
3153 			WARN_ON_ONCE(last_ackt.v64 == 0);
3154 			if (!first_ackt.v64)
3155 				first_ackt = last_ackt;
3156 
3157 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3158 			reord = min(pkts_acked, reord);
3159 			if (!after(scb->end_seq, tp->high_seq))
3160 				flag |= FLAG_ORIG_SACK_ACKED;
3161 		}
3162 
3163 		if (sacked & TCPCB_SACKED_ACKED) {
3164 			tp->sacked_out -= acked_pcount;
3165 		} else if (tcp_is_sack(tp)) {
3166 			tp->delivered += acked_pcount;
3167 			if (!tcp_skb_spurious_retrans(tp, skb))
3168 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3169 		}
3170 		if (sacked & TCPCB_LOST)
3171 			tp->lost_out -= acked_pcount;
3172 
3173 		tp->packets_out -= acked_pcount;
3174 		pkts_acked += acked_pcount;
3175 
3176 		/* Initial outgoing SYN's get put onto the write_queue
3177 		 * just like anything else we transmit.  It is not
3178 		 * true data, and if we misinform our callers that
3179 		 * this ACK acks real data, we will erroneously exit
3180 		 * connection startup slow start one packet too
3181 		 * quickly.  This is severely frowned upon behavior.
3182 		 */
3183 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3184 			flag |= FLAG_DATA_ACKED;
3185 		} else {
3186 			flag |= FLAG_SYN_ACKED;
3187 			tp->retrans_stamp = 0;
3188 		}
3189 
3190 		if (!fully_acked)
3191 			break;
3192 
3193 		tcp_unlink_write_queue(skb, sk);
3194 		sk_wmem_free_skb(sk, skb);
3195 		if (unlikely(skb == tp->retransmit_skb_hint))
3196 			tp->retransmit_skb_hint = NULL;
3197 		if (unlikely(skb == tp->lost_skb_hint))
3198 			tp->lost_skb_hint = NULL;
3199 	}
3200 
3201 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3202 		tp->snd_up = tp->snd_una;
3203 
3204 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3205 		flag |= FLAG_SACK_RENEGING;
3206 
3207 	skb_mstamp_get(&now);
3208 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3209 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3210 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3211 	}
3212 	if (sack->first_sackt.v64) {
3213 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3214 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3215 	}
3216 
3217 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3218 					ca_rtt_us);
3219 
3220 	if (flag & FLAG_ACKED) {
3221 		tcp_rearm_rto(sk);
3222 		if (unlikely(icsk->icsk_mtup.probe_size &&
3223 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3224 			tcp_mtup_probe_success(sk);
3225 		}
3226 
3227 		if (tcp_is_reno(tp)) {
3228 			tcp_remove_reno_sacks(sk, pkts_acked);
3229 		} else {
3230 			int delta;
3231 
3232 			/* Non-retransmitted hole got filled? That's reordering */
3233 			if (reord < prior_fackets)
3234 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3235 
3236 			delta = tcp_is_fack(tp) ? pkts_acked :
3237 						  prior_sacked - tp->sacked_out;
3238 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3239 		}
3240 
3241 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3242 
3243 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3244 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3245 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3246 		 * after when the head was last (re)transmitted. Otherwise the
3247 		 * timeout may continue to extend in loss recovery.
3248 		 */
3249 		tcp_rearm_rto(sk);
3250 	}
3251 
3252 	if (icsk->icsk_ca_ops->pkts_acked) {
3253 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3254 					     .rtt_us = ca_rtt_us,
3255 					     .in_flight = last_in_flight };
3256 
3257 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3258 	}
3259 
3260 #if FASTRETRANS_DEBUG > 0
3261 	WARN_ON((int)tp->sacked_out < 0);
3262 	WARN_ON((int)tp->lost_out < 0);
3263 	WARN_ON((int)tp->retrans_out < 0);
3264 	if (!tp->packets_out && tcp_is_sack(tp)) {
3265 		icsk = inet_csk(sk);
3266 		if (tp->lost_out) {
3267 			pr_debug("Leak l=%u %d\n",
3268 				 tp->lost_out, icsk->icsk_ca_state);
3269 			tp->lost_out = 0;
3270 		}
3271 		if (tp->sacked_out) {
3272 			pr_debug("Leak s=%u %d\n",
3273 				 tp->sacked_out, icsk->icsk_ca_state);
3274 			tp->sacked_out = 0;
3275 		}
3276 		if (tp->retrans_out) {
3277 			pr_debug("Leak r=%u %d\n",
3278 				 tp->retrans_out, icsk->icsk_ca_state);
3279 			tp->retrans_out = 0;
3280 		}
3281 	}
3282 #endif
3283 	*acked = pkts_acked;
3284 	return flag;
3285 }
3286 
3287 static void tcp_ack_probe(struct sock *sk)
3288 {
3289 	const struct tcp_sock *tp = tcp_sk(sk);
3290 	struct inet_connection_sock *icsk = inet_csk(sk);
3291 
3292 	/* Was it a usable window open? */
3293 
3294 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3295 		icsk->icsk_backoff = 0;
3296 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3297 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3298 		 * This function is not for random using!
3299 		 */
3300 	} else {
3301 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3302 
3303 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3304 					  when, TCP_RTO_MAX);
3305 	}
3306 }
3307 
3308 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3309 {
3310 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3311 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3312 }
3313 
3314 /* Decide wheather to run the increase function of congestion control. */
3315 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3316 {
3317 	/* If reordering is high then always grow cwnd whenever data is
3318 	 * delivered regardless of its ordering. Otherwise stay conservative
3319 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3320 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3321 	 * cwnd in tcp_fastretrans_alert() based on more states.
3322 	 */
3323 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3324 		return flag & FLAG_FORWARD_PROGRESS;
3325 
3326 	return flag & FLAG_DATA_ACKED;
3327 }
3328 
3329 /* The "ultimate" congestion control function that aims to replace the rigid
3330  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3331  * It's called toward the end of processing an ACK with precise rate
3332  * information. All transmission or retransmission are delayed afterwards.
3333  */
3334 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3335 			     int flag)
3336 {
3337 	if (tcp_in_cwnd_reduction(sk)) {
3338 		/* Reduce cwnd if state mandates */
3339 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3340 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3341 		/* Advance cwnd if state allows */
3342 		tcp_cong_avoid(sk, ack, acked_sacked);
3343 	}
3344 	tcp_update_pacing_rate(sk);
3345 }
3346 
3347 /* Check that window update is acceptable.
3348  * The function assumes that snd_una<=ack<=snd_next.
3349  */
3350 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3351 					const u32 ack, const u32 ack_seq,
3352 					const u32 nwin)
3353 {
3354 	return	after(ack, tp->snd_una) ||
3355 		after(ack_seq, tp->snd_wl1) ||
3356 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3357 }
3358 
3359 /* If we update tp->snd_una, also update tp->bytes_acked */
3360 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3361 {
3362 	u32 delta = ack - tp->snd_una;
3363 
3364 	sock_owned_by_me((struct sock *)tp);
3365 	u64_stats_update_begin_raw(&tp->syncp);
3366 	tp->bytes_acked += delta;
3367 	u64_stats_update_end_raw(&tp->syncp);
3368 	tp->snd_una = ack;
3369 }
3370 
3371 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3372 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3373 {
3374 	u32 delta = seq - tp->rcv_nxt;
3375 
3376 	sock_owned_by_me((struct sock *)tp);
3377 	u64_stats_update_begin_raw(&tp->syncp);
3378 	tp->bytes_received += delta;
3379 	u64_stats_update_end_raw(&tp->syncp);
3380 	tp->rcv_nxt = seq;
3381 }
3382 
3383 /* Update our send window.
3384  *
3385  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387  */
3388 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389 				 u32 ack_seq)
3390 {
3391 	struct tcp_sock *tp = tcp_sk(sk);
3392 	int flag = 0;
3393 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3394 
3395 	if (likely(!tcp_hdr(skb)->syn))
3396 		nwin <<= tp->rx_opt.snd_wscale;
3397 
3398 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399 		flag |= FLAG_WIN_UPDATE;
3400 		tcp_update_wl(tp, ack_seq);
3401 
3402 		if (tp->snd_wnd != nwin) {
3403 			tp->snd_wnd = nwin;
3404 
3405 			/* Note, it is the only place, where
3406 			 * fast path is recovered for sending TCP.
3407 			 */
3408 			tp->pred_flags = 0;
3409 			tcp_fast_path_check(sk);
3410 
3411 			if (tcp_send_head(sk))
3412 				tcp_slow_start_after_idle_check(sk);
3413 
3414 			if (nwin > tp->max_window) {
3415 				tp->max_window = nwin;
3416 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417 			}
3418 		}
3419 	}
3420 
3421 	tcp_snd_una_update(tp, ack);
3422 
3423 	return flag;
3424 }
3425 
3426 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3427 				   u32 *last_oow_ack_time)
3428 {
3429 	if (*last_oow_ack_time) {
3430 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3431 
3432 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3433 			NET_INC_STATS(net, mib_idx);
3434 			return true;	/* rate-limited: don't send yet! */
3435 		}
3436 	}
3437 
3438 	*last_oow_ack_time = tcp_time_stamp;
3439 
3440 	return false;	/* not rate-limited: go ahead, send dupack now! */
3441 }
3442 
3443 /* Return true if we're currently rate-limiting out-of-window ACKs and
3444  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3445  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3446  * attacks that send repeated SYNs or ACKs for the same connection. To
3447  * do this, we do not send a duplicate SYNACK or ACK if the remote
3448  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3449  */
3450 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3451 			  int mib_idx, u32 *last_oow_ack_time)
3452 {
3453 	/* Data packets without SYNs are not likely part of an ACK loop. */
3454 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3455 	    !tcp_hdr(skb)->syn)
3456 		return false;
3457 
3458 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3459 }
3460 
3461 /* RFC 5961 7 [ACK Throttling] */
3462 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3463 {
3464 	/* unprotected vars, we dont care of overwrites */
3465 	static u32 challenge_timestamp;
3466 	static unsigned int challenge_count;
3467 	struct tcp_sock *tp = tcp_sk(sk);
3468 	u32 count, now;
3469 
3470 	/* First check our per-socket dupack rate limit. */
3471 	if (__tcp_oow_rate_limited(sock_net(sk),
3472 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3473 				   &tp->last_oow_ack_time))
3474 		return;
3475 
3476 	/* Then check host-wide RFC 5961 rate limit. */
3477 	now = jiffies / HZ;
3478 	if (now != challenge_timestamp) {
3479 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3480 
3481 		challenge_timestamp = now;
3482 		WRITE_ONCE(challenge_count, half +
3483 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3484 	}
3485 	count = READ_ONCE(challenge_count);
3486 	if (count > 0) {
3487 		WRITE_ONCE(challenge_count, count - 1);
3488 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3489 		tcp_send_ack(sk);
3490 	}
3491 }
3492 
3493 static void tcp_store_ts_recent(struct tcp_sock *tp)
3494 {
3495 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3496 	tp->rx_opt.ts_recent_stamp = get_seconds();
3497 }
3498 
3499 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3500 {
3501 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3502 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3503 		 * extra check below makes sure this can only happen
3504 		 * for pure ACK frames.  -DaveM
3505 		 *
3506 		 * Not only, also it occurs for expired timestamps.
3507 		 */
3508 
3509 		if (tcp_paws_check(&tp->rx_opt, 0))
3510 			tcp_store_ts_recent(tp);
3511 	}
3512 }
3513 
3514 /* This routine deals with acks during a TLP episode.
3515  * We mark the end of a TLP episode on receiving TLP dupack or when
3516  * ack is after tlp_high_seq.
3517  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3518  */
3519 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3520 {
3521 	struct tcp_sock *tp = tcp_sk(sk);
3522 
3523 	if (before(ack, tp->tlp_high_seq))
3524 		return;
3525 
3526 	if (flag & FLAG_DSACKING_ACK) {
3527 		/* This DSACK means original and TLP probe arrived; no loss */
3528 		tp->tlp_high_seq = 0;
3529 	} else if (after(ack, tp->tlp_high_seq)) {
3530 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3531 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3532 		 */
3533 		tcp_init_cwnd_reduction(sk);
3534 		tcp_set_ca_state(sk, TCP_CA_CWR);
3535 		tcp_end_cwnd_reduction(sk);
3536 		tcp_try_keep_open(sk);
3537 		NET_INC_STATS(sock_net(sk),
3538 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3539 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3540 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3541 		/* Pure dupack: original and TLP probe arrived; no loss */
3542 		tp->tlp_high_seq = 0;
3543 	}
3544 }
3545 
3546 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3547 {
3548 	const struct inet_connection_sock *icsk = inet_csk(sk);
3549 
3550 	if (icsk->icsk_ca_ops->in_ack_event)
3551 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3552 }
3553 
3554 /* Congestion control has updated the cwnd already. So if we're in
3555  * loss recovery then now we do any new sends (for FRTO) or
3556  * retransmits (for CA_Loss or CA_recovery) that make sense.
3557  */
3558 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3559 {
3560 	struct tcp_sock *tp = tcp_sk(sk);
3561 
3562 	if (rexmit == REXMIT_NONE)
3563 		return;
3564 
3565 	if (unlikely(rexmit == 2)) {
3566 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3567 					  TCP_NAGLE_OFF);
3568 		if (after(tp->snd_nxt, tp->high_seq))
3569 			return;
3570 		tp->frto = 0;
3571 	}
3572 	tcp_xmit_retransmit_queue(sk);
3573 }
3574 
3575 /* This routine deals with incoming acks, but not outgoing ones. */
3576 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3577 {
3578 	struct inet_connection_sock *icsk = inet_csk(sk);
3579 	struct tcp_sock *tp = tcp_sk(sk);
3580 	struct tcp_sacktag_state sack_state;
3581 	u32 prior_snd_una = tp->snd_una;
3582 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3583 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3584 	bool is_dupack = false;
3585 	u32 prior_fackets;
3586 	int prior_packets = tp->packets_out;
3587 	u32 prior_delivered = tp->delivered;
3588 	int acked = 0; /* Number of packets newly acked */
3589 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3590 
3591 	sack_state.first_sackt.v64 = 0;
3592 
3593 	/* We very likely will need to access write queue head. */
3594 	prefetchw(sk->sk_write_queue.next);
3595 
3596 	/* If the ack is older than previous acks
3597 	 * then we can probably ignore it.
3598 	 */
3599 	if (before(ack, prior_snd_una)) {
3600 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3601 		if (before(ack, prior_snd_una - tp->max_window)) {
3602 			tcp_send_challenge_ack(sk, skb);
3603 			return -1;
3604 		}
3605 		goto old_ack;
3606 	}
3607 
3608 	/* If the ack includes data we haven't sent yet, discard
3609 	 * this segment (RFC793 Section 3.9).
3610 	 */
3611 	if (after(ack, tp->snd_nxt))
3612 		goto invalid_ack;
3613 
3614 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3615 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3616 		tcp_rearm_rto(sk);
3617 
3618 	if (after(ack, prior_snd_una)) {
3619 		flag |= FLAG_SND_UNA_ADVANCED;
3620 		icsk->icsk_retransmits = 0;
3621 	}
3622 
3623 	prior_fackets = tp->fackets_out;
3624 
3625 	/* ts_recent update must be made after we are sure that the packet
3626 	 * is in window.
3627 	 */
3628 	if (flag & FLAG_UPDATE_TS_RECENT)
3629 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3630 
3631 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3632 		/* Window is constant, pure forward advance.
3633 		 * No more checks are required.
3634 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3635 		 */
3636 		tcp_update_wl(tp, ack_seq);
3637 		tcp_snd_una_update(tp, ack);
3638 		flag |= FLAG_WIN_UPDATE;
3639 
3640 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3641 
3642 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3643 	} else {
3644 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3645 
3646 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3647 			flag |= FLAG_DATA;
3648 		else
3649 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3650 
3651 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3652 
3653 		if (TCP_SKB_CB(skb)->sacked)
3654 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3655 							&sack_state);
3656 
3657 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3658 			flag |= FLAG_ECE;
3659 			ack_ev_flags |= CA_ACK_ECE;
3660 		}
3661 
3662 		if (flag & FLAG_WIN_UPDATE)
3663 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3664 
3665 		tcp_in_ack_event(sk, ack_ev_flags);
3666 	}
3667 
3668 	/* We passed data and got it acked, remove any soft error
3669 	 * log. Something worked...
3670 	 */
3671 	sk->sk_err_soft = 0;
3672 	icsk->icsk_probes_out = 0;
3673 	tp->rcv_tstamp = tcp_time_stamp;
3674 	if (!prior_packets)
3675 		goto no_queue;
3676 
3677 	/* See if we can take anything off of the retransmit queue. */
3678 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3679 				    &sack_state);
3680 
3681 	if (tcp_ack_is_dubious(sk, flag)) {
3682 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3683 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3684 	}
3685 	if (tp->tlp_high_seq)
3686 		tcp_process_tlp_ack(sk, ack, flag);
3687 
3688 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3689 		struct dst_entry *dst = __sk_dst_get(sk);
3690 		if (dst)
3691 			dst_confirm(dst);
3692 	}
3693 
3694 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3695 		tcp_schedule_loss_probe(sk);
3696 	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3697 	tcp_xmit_recovery(sk, rexmit);
3698 	return 1;
3699 
3700 no_queue:
3701 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3702 	if (flag & FLAG_DSACKING_ACK)
3703 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3704 	/* If this ack opens up a zero window, clear backoff.  It was
3705 	 * being used to time the probes, and is probably far higher than
3706 	 * it needs to be for normal retransmission.
3707 	 */
3708 	if (tcp_send_head(sk))
3709 		tcp_ack_probe(sk);
3710 
3711 	if (tp->tlp_high_seq)
3712 		tcp_process_tlp_ack(sk, ack, flag);
3713 	return 1;
3714 
3715 invalid_ack:
3716 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3717 	return -1;
3718 
3719 old_ack:
3720 	/* If data was SACKed, tag it and see if we should send more data.
3721 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3722 	 */
3723 	if (TCP_SKB_CB(skb)->sacked) {
3724 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3725 						&sack_state);
3726 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3727 		tcp_xmit_recovery(sk, rexmit);
3728 	}
3729 
3730 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3731 	return 0;
3732 }
3733 
3734 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3735 				      bool syn, struct tcp_fastopen_cookie *foc,
3736 				      bool exp_opt)
3737 {
3738 	/* Valid only in SYN or SYN-ACK with an even length.  */
3739 	if (!foc || !syn || len < 0 || (len & 1))
3740 		return;
3741 
3742 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3743 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3744 		memcpy(foc->val, cookie, len);
3745 	else if (len != 0)
3746 		len = -1;
3747 	foc->len = len;
3748 	foc->exp = exp_opt;
3749 }
3750 
3751 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3752  * But, this can also be called on packets in the established flow when
3753  * the fast version below fails.
3754  */
3755 void tcp_parse_options(const struct sk_buff *skb,
3756 		       struct tcp_options_received *opt_rx, int estab,
3757 		       struct tcp_fastopen_cookie *foc)
3758 {
3759 	const unsigned char *ptr;
3760 	const struct tcphdr *th = tcp_hdr(skb);
3761 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3762 
3763 	ptr = (const unsigned char *)(th + 1);
3764 	opt_rx->saw_tstamp = 0;
3765 
3766 	while (length > 0) {
3767 		int opcode = *ptr++;
3768 		int opsize;
3769 
3770 		switch (opcode) {
3771 		case TCPOPT_EOL:
3772 			return;
3773 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3774 			length--;
3775 			continue;
3776 		default:
3777 			opsize = *ptr++;
3778 			if (opsize < 2) /* "silly options" */
3779 				return;
3780 			if (opsize > length)
3781 				return;	/* don't parse partial options */
3782 			switch (opcode) {
3783 			case TCPOPT_MSS:
3784 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3785 					u16 in_mss = get_unaligned_be16(ptr);
3786 					if (in_mss) {
3787 						if (opt_rx->user_mss &&
3788 						    opt_rx->user_mss < in_mss)
3789 							in_mss = opt_rx->user_mss;
3790 						opt_rx->mss_clamp = in_mss;
3791 					}
3792 				}
3793 				break;
3794 			case TCPOPT_WINDOW:
3795 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3796 				    !estab && sysctl_tcp_window_scaling) {
3797 					__u8 snd_wscale = *(__u8 *)ptr;
3798 					opt_rx->wscale_ok = 1;
3799 					if (snd_wscale > 14) {
3800 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3801 								     __func__,
3802 								     snd_wscale);
3803 						snd_wscale = 14;
3804 					}
3805 					opt_rx->snd_wscale = snd_wscale;
3806 				}
3807 				break;
3808 			case TCPOPT_TIMESTAMP:
3809 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3810 				    ((estab && opt_rx->tstamp_ok) ||
3811 				     (!estab && sysctl_tcp_timestamps))) {
3812 					opt_rx->saw_tstamp = 1;
3813 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3814 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3815 				}
3816 				break;
3817 			case TCPOPT_SACK_PERM:
3818 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3819 				    !estab && sysctl_tcp_sack) {
3820 					opt_rx->sack_ok = TCP_SACK_SEEN;
3821 					tcp_sack_reset(opt_rx);
3822 				}
3823 				break;
3824 
3825 			case TCPOPT_SACK:
3826 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3827 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3828 				   opt_rx->sack_ok) {
3829 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3830 				}
3831 				break;
3832 #ifdef CONFIG_TCP_MD5SIG
3833 			case TCPOPT_MD5SIG:
3834 				/*
3835 				 * The MD5 Hash has already been
3836 				 * checked (see tcp_v{4,6}_do_rcv()).
3837 				 */
3838 				break;
3839 #endif
3840 			case TCPOPT_FASTOPEN:
3841 				tcp_parse_fastopen_option(
3842 					opsize - TCPOLEN_FASTOPEN_BASE,
3843 					ptr, th->syn, foc, false);
3844 				break;
3845 
3846 			case TCPOPT_EXP:
3847 				/* Fast Open option shares code 254 using a
3848 				 * 16 bits magic number.
3849 				 */
3850 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3851 				    get_unaligned_be16(ptr) ==
3852 				    TCPOPT_FASTOPEN_MAGIC)
3853 					tcp_parse_fastopen_option(opsize -
3854 						TCPOLEN_EXP_FASTOPEN_BASE,
3855 						ptr + 2, th->syn, foc, true);
3856 				break;
3857 
3858 			}
3859 			ptr += opsize-2;
3860 			length -= opsize;
3861 		}
3862 	}
3863 }
3864 EXPORT_SYMBOL(tcp_parse_options);
3865 
3866 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3867 {
3868 	const __be32 *ptr = (const __be32 *)(th + 1);
3869 
3870 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3871 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3872 		tp->rx_opt.saw_tstamp = 1;
3873 		++ptr;
3874 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3875 		++ptr;
3876 		if (*ptr)
3877 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3878 		else
3879 			tp->rx_opt.rcv_tsecr = 0;
3880 		return true;
3881 	}
3882 	return false;
3883 }
3884 
3885 /* Fast parse options. This hopes to only see timestamps.
3886  * If it is wrong it falls back on tcp_parse_options().
3887  */
3888 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3889 				   const struct tcphdr *th, struct tcp_sock *tp)
3890 {
3891 	/* In the spirit of fast parsing, compare doff directly to constant
3892 	 * values.  Because equality is used, short doff can be ignored here.
3893 	 */
3894 	if (th->doff == (sizeof(*th) / 4)) {
3895 		tp->rx_opt.saw_tstamp = 0;
3896 		return false;
3897 	} else if (tp->rx_opt.tstamp_ok &&
3898 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3899 		if (tcp_parse_aligned_timestamp(tp, th))
3900 			return true;
3901 	}
3902 
3903 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3904 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3905 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3906 
3907 	return true;
3908 }
3909 
3910 #ifdef CONFIG_TCP_MD5SIG
3911 /*
3912  * Parse MD5 Signature option
3913  */
3914 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3915 {
3916 	int length = (th->doff << 2) - sizeof(*th);
3917 	const u8 *ptr = (const u8 *)(th + 1);
3918 
3919 	/* If the TCP option is too short, we can short cut */
3920 	if (length < TCPOLEN_MD5SIG)
3921 		return NULL;
3922 
3923 	while (length > 0) {
3924 		int opcode = *ptr++;
3925 		int opsize;
3926 
3927 		switch (opcode) {
3928 		case TCPOPT_EOL:
3929 			return NULL;
3930 		case TCPOPT_NOP:
3931 			length--;
3932 			continue;
3933 		default:
3934 			opsize = *ptr++;
3935 			if (opsize < 2 || opsize > length)
3936 				return NULL;
3937 			if (opcode == TCPOPT_MD5SIG)
3938 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3939 		}
3940 		ptr += opsize - 2;
3941 		length -= opsize;
3942 	}
3943 	return NULL;
3944 }
3945 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3946 #endif
3947 
3948 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3949  *
3950  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3951  * it can pass through stack. So, the following predicate verifies that
3952  * this segment is not used for anything but congestion avoidance or
3953  * fast retransmit. Moreover, we even are able to eliminate most of such
3954  * second order effects, if we apply some small "replay" window (~RTO)
3955  * to timestamp space.
3956  *
3957  * All these measures still do not guarantee that we reject wrapped ACKs
3958  * on networks with high bandwidth, when sequence space is recycled fastly,
3959  * but it guarantees that such events will be very rare and do not affect
3960  * connection seriously. This doesn't look nice, but alas, PAWS is really
3961  * buggy extension.
3962  *
3963  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3964  * states that events when retransmit arrives after original data are rare.
3965  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3966  * the biggest problem on large power networks even with minor reordering.
3967  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3968  * up to bandwidth of 18Gigabit/sec. 8) ]
3969  */
3970 
3971 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3972 {
3973 	const struct tcp_sock *tp = tcp_sk(sk);
3974 	const struct tcphdr *th = tcp_hdr(skb);
3975 	u32 seq = TCP_SKB_CB(skb)->seq;
3976 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3977 
3978 	return (/* 1. Pure ACK with correct sequence number. */
3979 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3980 
3981 		/* 2. ... and duplicate ACK. */
3982 		ack == tp->snd_una &&
3983 
3984 		/* 3. ... and does not update window. */
3985 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3986 
3987 		/* 4. ... and sits in replay window. */
3988 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3989 }
3990 
3991 static inline bool tcp_paws_discard(const struct sock *sk,
3992 				   const struct sk_buff *skb)
3993 {
3994 	const struct tcp_sock *tp = tcp_sk(sk);
3995 
3996 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3997 	       !tcp_disordered_ack(sk, skb);
3998 }
3999 
4000 /* Check segment sequence number for validity.
4001  *
4002  * Segment controls are considered valid, if the segment
4003  * fits to the window after truncation to the window. Acceptability
4004  * of data (and SYN, FIN, of course) is checked separately.
4005  * See tcp_data_queue(), for example.
4006  *
4007  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4008  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4009  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4010  * (borrowed from freebsd)
4011  */
4012 
4013 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4014 {
4015 	return	!before(end_seq, tp->rcv_wup) &&
4016 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4017 }
4018 
4019 /* When we get a reset we do this. */
4020 void tcp_reset(struct sock *sk)
4021 {
4022 	/* We want the right error as BSD sees it (and indeed as we do). */
4023 	switch (sk->sk_state) {
4024 	case TCP_SYN_SENT:
4025 		sk->sk_err = ECONNREFUSED;
4026 		break;
4027 	case TCP_CLOSE_WAIT:
4028 		sk->sk_err = EPIPE;
4029 		break;
4030 	case TCP_CLOSE:
4031 		return;
4032 	default:
4033 		sk->sk_err = ECONNRESET;
4034 	}
4035 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4036 	smp_wmb();
4037 
4038 	if (!sock_flag(sk, SOCK_DEAD))
4039 		sk->sk_error_report(sk);
4040 
4041 	tcp_done(sk);
4042 }
4043 
4044 /*
4045  * 	Process the FIN bit. This now behaves as it is supposed to work
4046  *	and the FIN takes effect when it is validly part of sequence
4047  *	space. Not before when we get holes.
4048  *
4049  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4050  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4051  *	TIME-WAIT)
4052  *
4053  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4054  *	close and we go into CLOSING (and later onto TIME-WAIT)
4055  *
4056  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4057  */
4058 void tcp_fin(struct sock *sk)
4059 {
4060 	struct tcp_sock *tp = tcp_sk(sk);
4061 
4062 	inet_csk_schedule_ack(sk);
4063 
4064 	sk->sk_shutdown |= RCV_SHUTDOWN;
4065 	sock_set_flag(sk, SOCK_DONE);
4066 
4067 	switch (sk->sk_state) {
4068 	case TCP_SYN_RECV:
4069 	case TCP_ESTABLISHED:
4070 		/* Move to CLOSE_WAIT */
4071 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4072 		inet_csk(sk)->icsk_ack.pingpong = 1;
4073 		break;
4074 
4075 	case TCP_CLOSE_WAIT:
4076 	case TCP_CLOSING:
4077 		/* Received a retransmission of the FIN, do
4078 		 * nothing.
4079 		 */
4080 		break;
4081 	case TCP_LAST_ACK:
4082 		/* RFC793: Remain in the LAST-ACK state. */
4083 		break;
4084 
4085 	case TCP_FIN_WAIT1:
4086 		/* This case occurs when a simultaneous close
4087 		 * happens, we must ack the received FIN and
4088 		 * enter the CLOSING state.
4089 		 */
4090 		tcp_send_ack(sk);
4091 		tcp_set_state(sk, TCP_CLOSING);
4092 		break;
4093 	case TCP_FIN_WAIT2:
4094 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4095 		tcp_send_ack(sk);
4096 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4097 		break;
4098 	default:
4099 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4100 		 * cases we should never reach this piece of code.
4101 		 */
4102 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4103 		       __func__, sk->sk_state);
4104 		break;
4105 	}
4106 
4107 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4108 	 * Probably, we should reset in this case. For now drop them.
4109 	 */
4110 	__skb_queue_purge(&tp->out_of_order_queue);
4111 	if (tcp_is_sack(tp))
4112 		tcp_sack_reset(&tp->rx_opt);
4113 	sk_mem_reclaim(sk);
4114 
4115 	if (!sock_flag(sk, SOCK_DEAD)) {
4116 		sk->sk_state_change(sk);
4117 
4118 		/* Do not send POLL_HUP for half duplex close. */
4119 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4120 		    sk->sk_state == TCP_CLOSE)
4121 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4122 		else
4123 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4124 	}
4125 }
4126 
4127 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4128 				  u32 end_seq)
4129 {
4130 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4131 		if (before(seq, sp->start_seq))
4132 			sp->start_seq = seq;
4133 		if (after(end_seq, sp->end_seq))
4134 			sp->end_seq = end_seq;
4135 		return true;
4136 	}
4137 	return false;
4138 }
4139 
4140 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4141 {
4142 	struct tcp_sock *tp = tcp_sk(sk);
4143 
4144 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4145 		int mib_idx;
4146 
4147 		if (before(seq, tp->rcv_nxt))
4148 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4149 		else
4150 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4151 
4152 		NET_INC_STATS(sock_net(sk), mib_idx);
4153 
4154 		tp->rx_opt.dsack = 1;
4155 		tp->duplicate_sack[0].start_seq = seq;
4156 		tp->duplicate_sack[0].end_seq = end_seq;
4157 	}
4158 }
4159 
4160 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4161 {
4162 	struct tcp_sock *tp = tcp_sk(sk);
4163 
4164 	if (!tp->rx_opt.dsack)
4165 		tcp_dsack_set(sk, seq, end_seq);
4166 	else
4167 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4168 }
4169 
4170 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4171 {
4172 	struct tcp_sock *tp = tcp_sk(sk);
4173 
4174 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4175 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4176 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4177 		tcp_enter_quickack_mode(sk);
4178 
4179 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4180 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4181 
4182 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4183 				end_seq = tp->rcv_nxt;
4184 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4185 		}
4186 	}
4187 
4188 	tcp_send_ack(sk);
4189 }
4190 
4191 /* These routines update the SACK block as out-of-order packets arrive or
4192  * in-order packets close up the sequence space.
4193  */
4194 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4195 {
4196 	int this_sack;
4197 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4198 	struct tcp_sack_block *swalk = sp + 1;
4199 
4200 	/* See if the recent change to the first SACK eats into
4201 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4202 	 */
4203 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4204 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4205 			int i;
4206 
4207 			/* Zap SWALK, by moving every further SACK up by one slot.
4208 			 * Decrease num_sacks.
4209 			 */
4210 			tp->rx_opt.num_sacks--;
4211 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4212 				sp[i] = sp[i + 1];
4213 			continue;
4214 		}
4215 		this_sack++, swalk++;
4216 	}
4217 }
4218 
4219 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4220 {
4221 	struct tcp_sock *tp = tcp_sk(sk);
4222 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4223 	int cur_sacks = tp->rx_opt.num_sacks;
4224 	int this_sack;
4225 
4226 	if (!cur_sacks)
4227 		goto new_sack;
4228 
4229 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4230 		if (tcp_sack_extend(sp, seq, end_seq)) {
4231 			/* Rotate this_sack to the first one. */
4232 			for (; this_sack > 0; this_sack--, sp--)
4233 				swap(*sp, *(sp - 1));
4234 			if (cur_sacks > 1)
4235 				tcp_sack_maybe_coalesce(tp);
4236 			return;
4237 		}
4238 	}
4239 
4240 	/* Could not find an adjacent existing SACK, build a new one,
4241 	 * put it at the front, and shift everyone else down.  We
4242 	 * always know there is at least one SACK present already here.
4243 	 *
4244 	 * If the sack array is full, forget about the last one.
4245 	 */
4246 	if (this_sack >= TCP_NUM_SACKS) {
4247 		this_sack--;
4248 		tp->rx_opt.num_sacks--;
4249 		sp--;
4250 	}
4251 	for (; this_sack > 0; this_sack--, sp--)
4252 		*sp = *(sp - 1);
4253 
4254 new_sack:
4255 	/* Build the new head SACK, and we're done. */
4256 	sp->start_seq = seq;
4257 	sp->end_seq = end_seq;
4258 	tp->rx_opt.num_sacks++;
4259 }
4260 
4261 /* RCV.NXT advances, some SACKs should be eaten. */
4262 
4263 static void tcp_sack_remove(struct tcp_sock *tp)
4264 {
4265 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4266 	int num_sacks = tp->rx_opt.num_sacks;
4267 	int this_sack;
4268 
4269 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4270 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4271 		tp->rx_opt.num_sacks = 0;
4272 		return;
4273 	}
4274 
4275 	for (this_sack = 0; this_sack < num_sacks;) {
4276 		/* Check if the start of the sack is covered by RCV.NXT. */
4277 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4278 			int i;
4279 
4280 			/* RCV.NXT must cover all the block! */
4281 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4282 
4283 			/* Zap this SACK, by moving forward any other SACKS. */
4284 			for (i = this_sack+1; i < num_sacks; i++)
4285 				tp->selective_acks[i-1] = tp->selective_acks[i];
4286 			num_sacks--;
4287 			continue;
4288 		}
4289 		this_sack++;
4290 		sp++;
4291 	}
4292 	tp->rx_opt.num_sacks = num_sacks;
4293 }
4294 
4295 /**
4296  * tcp_try_coalesce - try to merge skb to prior one
4297  * @sk: socket
4298  * @to: prior buffer
4299  * @from: buffer to add in queue
4300  * @fragstolen: pointer to boolean
4301  *
4302  * Before queueing skb @from after @to, try to merge them
4303  * to reduce overall memory use and queue lengths, if cost is small.
4304  * Packets in ofo or receive queues can stay a long time.
4305  * Better try to coalesce them right now to avoid future collapses.
4306  * Returns true if caller should free @from instead of queueing it
4307  */
4308 static bool tcp_try_coalesce(struct sock *sk,
4309 			     struct sk_buff *to,
4310 			     struct sk_buff *from,
4311 			     bool *fragstolen)
4312 {
4313 	int delta;
4314 
4315 	*fragstolen = false;
4316 
4317 	/* Its possible this segment overlaps with prior segment in queue */
4318 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4319 		return false;
4320 
4321 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4322 		return false;
4323 
4324 	atomic_add(delta, &sk->sk_rmem_alloc);
4325 	sk_mem_charge(sk, delta);
4326 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4327 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4328 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4329 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4330 	return true;
4331 }
4332 
4333 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4334 {
4335 	sk_drops_add(sk, skb);
4336 	__kfree_skb(skb);
4337 }
4338 
4339 /* This one checks to see if we can put data from the
4340  * out_of_order queue into the receive_queue.
4341  */
4342 static void tcp_ofo_queue(struct sock *sk)
4343 {
4344 	struct tcp_sock *tp = tcp_sk(sk);
4345 	__u32 dsack_high = tp->rcv_nxt;
4346 	struct sk_buff *skb, *tail;
4347 	bool fragstolen, eaten;
4348 
4349 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4350 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4351 			break;
4352 
4353 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4354 			__u32 dsack = dsack_high;
4355 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4356 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4357 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4358 		}
4359 
4360 		__skb_unlink(skb, &tp->out_of_order_queue);
4361 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4362 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 			tcp_drop(sk, skb);
4364 			continue;
4365 		}
4366 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 			   TCP_SKB_CB(skb)->end_seq);
4369 
4370 		tail = skb_peek_tail(&sk->sk_receive_queue);
4371 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4372 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 		if (!eaten)
4374 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4375 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4376 			tcp_fin(sk);
4377 		if (eaten)
4378 			kfree_skb_partial(skb, fragstolen);
4379 	}
4380 }
4381 
4382 static bool tcp_prune_ofo_queue(struct sock *sk);
4383 static int tcp_prune_queue(struct sock *sk);
4384 
4385 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4386 				 unsigned int size)
4387 {
4388 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4389 	    !sk_rmem_schedule(sk, skb, size)) {
4390 
4391 		if (tcp_prune_queue(sk) < 0)
4392 			return -1;
4393 
4394 		if (!sk_rmem_schedule(sk, skb, size)) {
4395 			if (!tcp_prune_ofo_queue(sk))
4396 				return -1;
4397 
4398 			if (!sk_rmem_schedule(sk, skb, size))
4399 				return -1;
4400 		}
4401 	}
4402 	return 0;
4403 }
4404 
4405 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4406 {
4407 	struct tcp_sock *tp = tcp_sk(sk);
4408 	struct sk_buff *skb1;
4409 	u32 seq, end_seq;
4410 
4411 	tcp_ecn_check_ce(tp, skb);
4412 
4413 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4414 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4415 		tcp_drop(sk, skb);
4416 		return;
4417 	}
4418 
4419 	/* Disable header prediction. */
4420 	tp->pred_flags = 0;
4421 	inet_csk_schedule_ack(sk);
4422 
4423 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4424 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4425 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4426 
4427 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4428 	if (!skb1) {
4429 		/* Initial out of order segment, build 1 SACK. */
4430 		if (tcp_is_sack(tp)) {
4431 			tp->rx_opt.num_sacks = 1;
4432 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4433 			tp->selective_acks[0].end_seq =
4434 						TCP_SKB_CB(skb)->end_seq;
4435 		}
4436 		__skb_queue_head(&tp->out_of_order_queue, skb);
4437 		goto end;
4438 	}
4439 
4440 	seq = TCP_SKB_CB(skb)->seq;
4441 	end_seq = TCP_SKB_CB(skb)->end_seq;
4442 
4443 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4444 		bool fragstolen;
4445 
4446 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4447 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4448 		} else {
4449 			tcp_grow_window(sk, skb);
4450 			kfree_skb_partial(skb, fragstolen);
4451 			skb = NULL;
4452 		}
4453 
4454 		if (!tp->rx_opt.num_sacks ||
4455 		    tp->selective_acks[0].end_seq != seq)
4456 			goto add_sack;
4457 
4458 		/* Common case: data arrive in order after hole. */
4459 		tp->selective_acks[0].end_seq = end_seq;
4460 		goto end;
4461 	}
4462 
4463 	/* Find place to insert this segment. */
4464 	while (1) {
4465 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4466 			break;
4467 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4468 			skb1 = NULL;
4469 			break;
4470 		}
4471 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4472 	}
4473 
4474 	/* Do skb overlap to previous one? */
4475 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 			/* All the bits are present. Drop. */
4478 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4479 			tcp_drop(sk, skb);
4480 			skb = NULL;
4481 			tcp_dsack_set(sk, seq, end_seq);
4482 			goto add_sack;
4483 		}
4484 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4485 			/* Partial overlap. */
4486 			tcp_dsack_set(sk, seq,
4487 				      TCP_SKB_CB(skb1)->end_seq);
4488 		} else {
4489 			if (skb_queue_is_first(&tp->out_of_order_queue,
4490 					       skb1))
4491 				skb1 = NULL;
4492 			else
4493 				skb1 = skb_queue_prev(
4494 					&tp->out_of_order_queue,
4495 					skb1);
4496 		}
4497 	}
4498 	if (!skb1)
4499 		__skb_queue_head(&tp->out_of_order_queue, skb);
4500 	else
4501 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4502 
4503 	/* And clean segments covered by new one as whole. */
4504 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4505 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4506 
4507 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4508 			break;
4509 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4510 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4511 					 end_seq);
4512 			break;
4513 		}
4514 		__skb_unlink(skb1, &tp->out_of_order_queue);
4515 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4516 				 TCP_SKB_CB(skb1)->end_seq);
4517 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4518 		tcp_drop(sk, skb1);
4519 	}
4520 
4521 add_sack:
4522 	if (tcp_is_sack(tp))
4523 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4524 end:
4525 	if (skb) {
4526 		tcp_grow_window(sk, skb);
4527 		skb_set_owner_r(skb, sk);
4528 	}
4529 }
4530 
4531 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4532 		  bool *fragstolen)
4533 {
4534 	int eaten;
4535 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4536 
4537 	__skb_pull(skb, hdrlen);
4538 	eaten = (tail &&
4539 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4540 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4541 	if (!eaten) {
4542 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4543 		skb_set_owner_r(skb, sk);
4544 	}
4545 	return eaten;
4546 }
4547 
4548 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4549 {
4550 	struct sk_buff *skb;
4551 	int err = -ENOMEM;
4552 	int data_len = 0;
4553 	bool fragstolen;
4554 
4555 	if (size == 0)
4556 		return 0;
4557 
4558 	if (size > PAGE_SIZE) {
4559 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4560 
4561 		data_len = npages << PAGE_SHIFT;
4562 		size = data_len + (size & ~PAGE_MASK);
4563 	}
4564 	skb = alloc_skb_with_frags(size - data_len, data_len,
4565 				   PAGE_ALLOC_COSTLY_ORDER,
4566 				   &err, sk->sk_allocation);
4567 	if (!skb)
4568 		goto err;
4569 
4570 	skb_put(skb, size - data_len);
4571 	skb->data_len = data_len;
4572 	skb->len = size;
4573 
4574 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4575 		goto err_free;
4576 
4577 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4578 	if (err)
4579 		goto err_free;
4580 
4581 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4582 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4583 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4584 
4585 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4586 		WARN_ON_ONCE(fragstolen); /* should not happen */
4587 		__kfree_skb(skb);
4588 	}
4589 	return size;
4590 
4591 err_free:
4592 	kfree_skb(skb);
4593 err:
4594 	return err;
4595 
4596 }
4597 
4598 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4599 {
4600 	struct tcp_sock *tp = tcp_sk(sk);
4601 	bool fragstolen = false;
4602 	int eaten = -1;
4603 
4604 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4605 		__kfree_skb(skb);
4606 		return;
4607 	}
4608 	skb_dst_drop(skb);
4609 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4610 
4611 	tcp_ecn_accept_cwr(tp, skb);
4612 
4613 	tp->rx_opt.dsack = 0;
4614 
4615 	/*  Queue data for delivery to the user.
4616 	 *  Packets in sequence go to the receive queue.
4617 	 *  Out of sequence packets to the out_of_order_queue.
4618 	 */
4619 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4620 		if (tcp_receive_window(tp) == 0)
4621 			goto out_of_window;
4622 
4623 		/* Ok. In sequence. In window. */
4624 		if (tp->ucopy.task == current &&
4625 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4626 		    sock_owned_by_user(sk) && !tp->urg_data) {
4627 			int chunk = min_t(unsigned int, skb->len,
4628 					  tp->ucopy.len);
4629 
4630 			__set_current_state(TASK_RUNNING);
4631 
4632 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4633 				tp->ucopy.len -= chunk;
4634 				tp->copied_seq += chunk;
4635 				eaten = (chunk == skb->len);
4636 				tcp_rcv_space_adjust(sk);
4637 			}
4638 		}
4639 
4640 		if (eaten <= 0) {
4641 queue_and_out:
4642 			if (eaten < 0) {
4643 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4644 					sk_forced_mem_schedule(sk, skb->truesize);
4645 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4646 					goto drop;
4647 			}
4648 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4649 		}
4650 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4651 		if (skb->len)
4652 			tcp_event_data_recv(sk, skb);
4653 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4654 			tcp_fin(sk);
4655 
4656 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4657 			tcp_ofo_queue(sk);
4658 
4659 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4660 			 * gap in queue is filled.
4661 			 */
4662 			if (skb_queue_empty(&tp->out_of_order_queue))
4663 				inet_csk(sk)->icsk_ack.pingpong = 0;
4664 		}
4665 
4666 		if (tp->rx_opt.num_sacks)
4667 			tcp_sack_remove(tp);
4668 
4669 		tcp_fast_path_check(sk);
4670 
4671 		if (eaten > 0)
4672 			kfree_skb_partial(skb, fragstolen);
4673 		if (!sock_flag(sk, SOCK_DEAD))
4674 			sk->sk_data_ready(sk);
4675 		return;
4676 	}
4677 
4678 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4679 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4680 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4681 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4682 
4683 out_of_window:
4684 		tcp_enter_quickack_mode(sk);
4685 		inet_csk_schedule_ack(sk);
4686 drop:
4687 		tcp_drop(sk, skb);
4688 		return;
4689 	}
4690 
4691 	/* Out of window. F.e. zero window probe. */
4692 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4693 		goto out_of_window;
4694 
4695 	tcp_enter_quickack_mode(sk);
4696 
4697 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4698 		/* Partial packet, seq < rcv_next < end_seq */
4699 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4700 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4701 			   TCP_SKB_CB(skb)->end_seq);
4702 
4703 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4704 
4705 		/* If window is closed, drop tail of packet. But after
4706 		 * remembering D-SACK for its head made in previous line.
4707 		 */
4708 		if (!tcp_receive_window(tp))
4709 			goto out_of_window;
4710 		goto queue_and_out;
4711 	}
4712 
4713 	tcp_data_queue_ofo(sk, skb);
4714 }
4715 
4716 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4717 					struct sk_buff_head *list)
4718 {
4719 	struct sk_buff *next = NULL;
4720 
4721 	if (!skb_queue_is_last(list, skb))
4722 		next = skb_queue_next(list, skb);
4723 
4724 	__skb_unlink(skb, list);
4725 	__kfree_skb(skb);
4726 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4727 
4728 	return next;
4729 }
4730 
4731 /* Collapse contiguous sequence of skbs head..tail with
4732  * sequence numbers start..end.
4733  *
4734  * If tail is NULL, this means until the end of the list.
4735  *
4736  * Segments with FIN/SYN are not collapsed (only because this
4737  * simplifies code)
4738  */
4739 static void
4740 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4741 	     struct sk_buff *head, struct sk_buff *tail,
4742 	     u32 start, u32 end)
4743 {
4744 	struct sk_buff *skb, *n;
4745 	bool end_of_skbs;
4746 
4747 	/* First, check that queue is collapsible and find
4748 	 * the point where collapsing can be useful. */
4749 	skb = head;
4750 restart:
4751 	end_of_skbs = true;
4752 	skb_queue_walk_from_safe(list, skb, n) {
4753 		if (skb == tail)
4754 			break;
4755 		/* No new bits? It is possible on ofo queue. */
4756 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4757 			skb = tcp_collapse_one(sk, skb, list);
4758 			if (!skb)
4759 				break;
4760 			goto restart;
4761 		}
4762 
4763 		/* The first skb to collapse is:
4764 		 * - not SYN/FIN and
4765 		 * - bloated or contains data before "start" or
4766 		 *   overlaps to the next one.
4767 		 */
4768 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4769 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4770 		     before(TCP_SKB_CB(skb)->seq, start))) {
4771 			end_of_skbs = false;
4772 			break;
4773 		}
4774 
4775 		if (!skb_queue_is_last(list, skb)) {
4776 			struct sk_buff *next = skb_queue_next(list, skb);
4777 			if (next != tail &&
4778 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4779 				end_of_skbs = false;
4780 				break;
4781 			}
4782 		}
4783 
4784 		/* Decided to skip this, advance start seq. */
4785 		start = TCP_SKB_CB(skb)->end_seq;
4786 	}
4787 	if (end_of_skbs ||
4788 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4789 		return;
4790 
4791 	while (before(start, end)) {
4792 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4793 		struct sk_buff *nskb;
4794 
4795 		nskb = alloc_skb(copy, GFP_ATOMIC);
4796 		if (!nskb)
4797 			return;
4798 
4799 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4800 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4801 		__skb_queue_before(list, skb, nskb);
4802 		skb_set_owner_r(nskb, sk);
4803 
4804 		/* Copy data, releasing collapsed skbs. */
4805 		while (copy > 0) {
4806 			int offset = start - TCP_SKB_CB(skb)->seq;
4807 			int size = TCP_SKB_CB(skb)->end_seq - start;
4808 
4809 			BUG_ON(offset < 0);
4810 			if (size > 0) {
4811 				size = min(copy, size);
4812 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4813 					BUG();
4814 				TCP_SKB_CB(nskb)->end_seq += size;
4815 				copy -= size;
4816 				start += size;
4817 			}
4818 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4819 				skb = tcp_collapse_one(sk, skb, list);
4820 				if (!skb ||
4821 				    skb == tail ||
4822 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4823 					return;
4824 			}
4825 		}
4826 	}
4827 }
4828 
4829 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4830  * and tcp_collapse() them until all the queue is collapsed.
4831  */
4832 static void tcp_collapse_ofo_queue(struct sock *sk)
4833 {
4834 	struct tcp_sock *tp = tcp_sk(sk);
4835 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4836 	struct sk_buff *head;
4837 	u32 start, end;
4838 
4839 	if (!skb)
4840 		return;
4841 
4842 	start = TCP_SKB_CB(skb)->seq;
4843 	end = TCP_SKB_CB(skb)->end_seq;
4844 	head = skb;
4845 
4846 	for (;;) {
4847 		struct sk_buff *next = NULL;
4848 
4849 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4850 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4851 		skb = next;
4852 
4853 		/* Segment is terminated when we see gap or when
4854 		 * we are at the end of all the queue. */
4855 		if (!skb ||
4856 		    after(TCP_SKB_CB(skb)->seq, end) ||
4857 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4858 			tcp_collapse(sk, &tp->out_of_order_queue,
4859 				     head, skb, start, end);
4860 			head = skb;
4861 			if (!skb)
4862 				break;
4863 			/* Start new segment */
4864 			start = TCP_SKB_CB(skb)->seq;
4865 			end = TCP_SKB_CB(skb)->end_seq;
4866 		} else {
4867 			if (before(TCP_SKB_CB(skb)->seq, start))
4868 				start = TCP_SKB_CB(skb)->seq;
4869 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4870 				end = TCP_SKB_CB(skb)->end_seq;
4871 		}
4872 	}
4873 }
4874 
4875 /*
4876  * Purge the out-of-order queue.
4877  * Return true if queue was pruned.
4878  */
4879 static bool tcp_prune_ofo_queue(struct sock *sk)
4880 {
4881 	struct tcp_sock *tp = tcp_sk(sk);
4882 	bool res = false;
4883 
4884 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4885 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4886 		__skb_queue_purge(&tp->out_of_order_queue);
4887 
4888 		/* Reset SACK state.  A conforming SACK implementation will
4889 		 * do the same at a timeout based retransmit.  When a connection
4890 		 * is in a sad state like this, we care only about integrity
4891 		 * of the connection not performance.
4892 		 */
4893 		if (tp->rx_opt.sack_ok)
4894 			tcp_sack_reset(&tp->rx_opt);
4895 		sk_mem_reclaim(sk);
4896 		res = true;
4897 	}
4898 	return res;
4899 }
4900 
4901 /* Reduce allocated memory if we can, trying to get
4902  * the socket within its memory limits again.
4903  *
4904  * Return less than zero if we should start dropping frames
4905  * until the socket owning process reads some of the data
4906  * to stabilize the situation.
4907  */
4908 static int tcp_prune_queue(struct sock *sk)
4909 {
4910 	struct tcp_sock *tp = tcp_sk(sk);
4911 
4912 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4913 
4914 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4915 
4916 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4917 		tcp_clamp_window(sk);
4918 	else if (tcp_under_memory_pressure(sk))
4919 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4920 
4921 	tcp_collapse_ofo_queue(sk);
4922 	if (!skb_queue_empty(&sk->sk_receive_queue))
4923 		tcp_collapse(sk, &sk->sk_receive_queue,
4924 			     skb_peek(&sk->sk_receive_queue),
4925 			     NULL,
4926 			     tp->copied_seq, tp->rcv_nxt);
4927 	sk_mem_reclaim(sk);
4928 
4929 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4930 		return 0;
4931 
4932 	/* Collapsing did not help, destructive actions follow.
4933 	 * This must not ever occur. */
4934 
4935 	tcp_prune_ofo_queue(sk);
4936 
4937 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4938 		return 0;
4939 
4940 	/* If we are really being abused, tell the caller to silently
4941 	 * drop receive data on the floor.  It will get retransmitted
4942 	 * and hopefully then we'll have sufficient space.
4943 	 */
4944 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4945 
4946 	/* Massive buffer overcommit. */
4947 	tp->pred_flags = 0;
4948 	return -1;
4949 }
4950 
4951 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4952 {
4953 	const struct tcp_sock *tp = tcp_sk(sk);
4954 
4955 	/* If the user specified a specific send buffer setting, do
4956 	 * not modify it.
4957 	 */
4958 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4959 		return false;
4960 
4961 	/* If we are under global TCP memory pressure, do not expand.  */
4962 	if (tcp_under_memory_pressure(sk))
4963 		return false;
4964 
4965 	/* If we are under soft global TCP memory pressure, do not expand.  */
4966 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4967 		return false;
4968 
4969 	/* If we filled the congestion window, do not expand.  */
4970 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4971 		return false;
4972 
4973 	return true;
4974 }
4975 
4976 /* When incoming ACK allowed to free some skb from write_queue,
4977  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4978  * on the exit from tcp input handler.
4979  *
4980  * PROBLEM: sndbuf expansion does not work well with largesend.
4981  */
4982 static void tcp_new_space(struct sock *sk)
4983 {
4984 	struct tcp_sock *tp = tcp_sk(sk);
4985 
4986 	if (tcp_should_expand_sndbuf(sk)) {
4987 		tcp_sndbuf_expand(sk);
4988 		tp->snd_cwnd_stamp = tcp_time_stamp;
4989 	}
4990 
4991 	sk->sk_write_space(sk);
4992 }
4993 
4994 static void tcp_check_space(struct sock *sk)
4995 {
4996 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4997 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4998 		/* pairs with tcp_poll() */
4999 		smp_mb__after_atomic();
5000 		if (sk->sk_socket &&
5001 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5002 			tcp_new_space(sk);
5003 	}
5004 }
5005 
5006 static inline void tcp_data_snd_check(struct sock *sk)
5007 {
5008 	tcp_push_pending_frames(sk);
5009 	tcp_check_space(sk);
5010 }
5011 
5012 /*
5013  * Check if sending an ack is needed.
5014  */
5015 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5016 {
5017 	struct tcp_sock *tp = tcp_sk(sk);
5018 
5019 	    /* More than one full frame received... */
5020 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5021 	     /* ... and right edge of window advances far enough.
5022 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5023 	      */
5024 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5025 	    /* We ACK each frame or... */
5026 	    tcp_in_quickack_mode(sk) ||
5027 	    /* We have out of order data. */
5028 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5029 		/* Then ack it now */
5030 		tcp_send_ack(sk);
5031 	} else {
5032 		/* Else, send delayed ack. */
5033 		tcp_send_delayed_ack(sk);
5034 	}
5035 }
5036 
5037 static inline void tcp_ack_snd_check(struct sock *sk)
5038 {
5039 	if (!inet_csk_ack_scheduled(sk)) {
5040 		/* We sent a data segment already. */
5041 		return;
5042 	}
5043 	__tcp_ack_snd_check(sk, 1);
5044 }
5045 
5046 /*
5047  *	This routine is only called when we have urgent data
5048  *	signaled. Its the 'slow' part of tcp_urg. It could be
5049  *	moved inline now as tcp_urg is only called from one
5050  *	place. We handle URGent data wrong. We have to - as
5051  *	BSD still doesn't use the correction from RFC961.
5052  *	For 1003.1g we should support a new option TCP_STDURG to permit
5053  *	either form (or just set the sysctl tcp_stdurg).
5054  */
5055 
5056 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5057 {
5058 	struct tcp_sock *tp = tcp_sk(sk);
5059 	u32 ptr = ntohs(th->urg_ptr);
5060 
5061 	if (ptr && !sysctl_tcp_stdurg)
5062 		ptr--;
5063 	ptr += ntohl(th->seq);
5064 
5065 	/* Ignore urgent data that we've already seen and read. */
5066 	if (after(tp->copied_seq, ptr))
5067 		return;
5068 
5069 	/* Do not replay urg ptr.
5070 	 *
5071 	 * NOTE: interesting situation not covered by specs.
5072 	 * Misbehaving sender may send urg ptr, pointing to segment,
5073 	 * which we already have in ofo queue. We are not able to fetch
5074 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5075 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5076 	 * situations. But it is worth to think about possibility of some
5077 	 * DoSes using some hypothetical application level deadlock.
5078 	 */
5079 	if (before(ptr, tp->rcv_nxt))
5080 		return;
5081 
5082 	/* Do we already have a newer (or duplicate) urgent pointer? */
5083 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5084 		return;
5085 
5086 	/* Tell the world about our new urgent pointer. */
5087 	sk_send_sigurg(sk);
5088 
5089 	/* We may be adding urgent data when the last byte read was
5090 	 * urgent. To do this requires some care. We cannot just ignore
5091 	 * tp->copied_seq since we would read the last urgent byte again
5092 	 * as data, nor can we alter copied_seq until this data arrives
5093 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5094 	 *
5095 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5096 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5097 	 * and expect that both A and B disappear from stream. This is _wrong_.
5098 	 * Though this happens in BSD with high probability, this is occasional.
5099 	 * Any application relying on this is buggy. Note also, that fix "works"
5100 	 * only in this artificial test. Insert some normal data between A and B and we will
5101 	 * decline of BSD again. Verdict: it is better to remove to trap
5102 	 * buggy users.
5103 	 */
5104 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5105 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5106 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5107 		tp->copied_seq++;
5108 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5109 			__skb_unlink(skb, &sk->sk_receive_queue);
5110 			__kfree_skb(skb);
5111 		}
5112 	}
5113 
5114 	tp->urg_data = TCP_URG_NOTYET;
5115 	tp->urg_seq = ptr;
5116 
5117 	/* Disable header prediction. */
5118 	tp->pred_flags = 0;
5119 }
5120 
5121 /* This is the 'fast' part of urgent handling. */
5122 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5123 {
5124 	struct tcp_sock *tp = tcp_sk(sk);
5125 
5126 	/* Check if we get a new urgent pointer - normally not. */
5127 	if (th->urg)
5128 		tcp_check_urg(sk, th);
5129 
5130 	/* Do we wait for any urgent data? - normally not... */
5131 	if (tp->urg_data == TCP_URG_NOTYET) {
5132 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5133 			  th->syn;
5134 
5135 		/* Is the urgent pointer pointing into this packet? */
5136 		if (ptr < skb->len) {
5137 			u8 tmp;
5138 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5139 				BUG();
5140 			tp->urg_data = TCP_URG_VALID | tmp;
5141 			if (!sock_flag(sk, SOCK_DEAD))
5142 				sk->sk_data_ready(sk);
5143 		}
5144 	}
5145 }
5146 
5147 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5148 {
5149 	struct tcp_sock *tp = tcp_sk(sk);
5150 	int chunk = skb->len - hlen;
5151 	int err;
5152 
5153 	if (skb_csum_unnecessary(skb))
5154 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5155 	else
5156 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5157 
5158 	if (!err) {
5159 		tp->ucopy.len -= chunk;
5160 		tp->copied_seq += chunk;
5161 		tcp_rcv_space_adjust(sk);
5162 	}
5163 
5164 	return err;
5165 }
5166 
5167 /* Does PAWS and seqno based validation of an incoming segment, flags will
5168  * play significant role here.
5169  */
5170 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5171 				  const struct tcphdr *th, int syn_inerr)
5172 {
5173 	struct tcp_sock *tp = tcp_sk(sk);
5174 	bool rst_seq_match = false;
5175 
5176 	/* RFC1323: H1. Apply PAWS check first. */
5177 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5178 	    tcp_paws_discard(sk, skb)) {
5179 		if (!th->rst) {
5180 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5181 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5182 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5183 						  &tp->last_oow_ack_time))
5184 				tcp_send_dupack(sk, skb);
5185 			goto discard;
5186 		}
5187 		/* Reset is accepted even if it did not pass PAWS. */
5188 	}
5189 
5190 	/* Step 1: check sequence number */
5191 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5192 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5193 		 * (RST) segments are validated by checking their SEQ-fields."
5194 		 * And page 69: "If an incoming segment is not acceptable,
5195 		 * an acknowledgment should be sent in reply (unless the RST
5196 		 * bit is set, if so drop the segment and return)".
5197 		 */
5198 		if (!th->rst) {
5199 			if (th->syn)
5200 				goto syn_challenge;
5201 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5202 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5203 						  &tp->last_oow_ack_time))
5204 				tcp_send_dupack(sk, skb);
5205 		}
5206 		goto discard;
5207 	}
5208 
5209 	/* Step 2: check RST bit */
5210 	if (th->rst) {
5211 		/* RFC 5961 3.2 (extend to match against SACK too if available):
5212 		 * If seq num matches RCV.NXT or the right-most SACK block,
5213 		 * then
5214 		 *     RESET the connection
5215 		 * else
5216 		 *     Send a challenge ACK
5217 		 */
5218 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5219 			rst_seq_match = true;
5220 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5221 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5222 			int max_sack = sp[0].end_seq;
5223 			int this_sack;
5224 
5225 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5226 			     ++this_sack) {
5227 				max_sack = after(sp[this_sack].end_seq,
5228 						 max_sack) ?
5229 					sp[this_sack].end_seq : max_sack;
5230 			}
5231 
5232 			if (TCP_SKB_CB(skb)->seq == max_sack)
5233 				rst_seq_match = true;
5234 		}
5235 
5236 		if (rst_seq_match)
5237 			tcp_reset(sk);
5238 		else
5239 			tcp_send_challenge_ack(sk, skb);
5240 		goto discard;
5241 	}
5242 
5243 	/* step 3: check security and precedence [ignored] */
5244 
5245 	/* step 4: Check for a SYN
5246 	 * RFC 5961 4.2 : Send a challenge ack
5247 	 */
5248 	if (th->syn) {
5249 syn_challenge:
5250 		if (syn_inerr)
5251 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5252 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5253 		tcp_send_challenge_ack(sk, skb);
5254 		goto discard;
5255 	}
5256 
5257 	return true;
5258 
5259 discard:
5260 	tcp_drop(sk, skb);
5261 	return false;
5262 }
5263 
5264 /*
5265  *	TCP receive function for the ESTABLISHED state.
5266  *
5267  *	It is split into a fast path and a slow path. The fast path is
5268  * 	disabled when:
5269  *	- A zero window was announced from us - zero window probing
5270  *        is only handled properly in the slow path.
5271  *	- Out of order segments arrived.
5272  *	- Urgent data is expected.
5273  *	- There is no buffer space left
5274  *	- Unexpected TCP flags/window values/header lengths are received
5275  *	  (detected by checking the TCP header against pred_flags)
5276  *	- Data is sent in both directions. Fast path only supports pure senders
5277  *	  or pure receivers (this means either the sequence number or the ack
5278  *	  value must stay constant)
5279  *	- Unexpected TCP option.
5280  *
5281  *	When these conditions are not satisfied it drops into a standard
5282  *	receive procedure patterned after RFC793 to handle all cases.
5283  *	The first three cases are guaranteed by proper pred_flags setting,
5284  *	the rest is checked inline. Fast processing is turned on in
5285  *	tcp_data_queue when everything is OK.
5286  */
5287 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5288 			 const struct tcphdr *th, unsigned int len)
5289 {
5290 	struct tcp_sock *tp = tcp_sk(sk);
5291 
5292 	if (unlikely(!sk->sk_rx_dst))
5293 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5294 	/*
5295 	 *	Header prediction.
5296 	 *	The code loosely follows the one in the famous
5297 	 *	"30 instruction TCP receive" Van Jacobson mail.
5298 	 *
5299 	 *	Van's trick is to deposit buffers into socket queue
5300 	 *	on a device interrupt, to call tcp_recv function
5301 	 *	on the receive process context and checksum and copy
5302 	 *	the buffer to user space. smart...
5303 	 *
5304 	 *	Our current scheme is not silly either but we take the
5305 	 *	extra cost of the net_bh soft interrupt processing...
5306 	 *	We do checksum and copy also but from device to kernel.
5307 	 */
5308 
5309 	tp->rx_opt.saw_tstamp = 0;
5310 
5311 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5312 	 *	if header_prediction is to be made
5313 	 *	'S' will always be tp->tcp_header_len >> 2
5314 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5315 	 *  turn it off	(when there are holes in the receive
5316 	 *	 space for instance)
5317 	 *	PSH flag is ignored.
5318 	 */
5319 
5320 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5321 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5322 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5323 		int tcp_header_len = tp->tcp_header_len;
5324 
5325 		/* Timestamp header prediction: tcp_header_len
5326 		 * is automatically equal to th->doff*4 due to pred_flags
5327 		 * match.
5328 		 */
5329 
5330 		/* Check timestamp */
5331 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5332 			/* No? Slow path! */
5333 			if (!tcp_parse_aligned_timestamp(tp, th))
5334 				goto slow_path;
5335 
5336 			/* If PAWS failed, check it more carefully in slow path */
5337 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5338 				goto slow_path;
5339 
5340 			/* DO NOT update ts_recent here, if checksum fails
5341 			 * and timestamp was corrupted part, it will result
5342 			 * in a hung connection since we will drop all
5343 			 * future packets due to the PAWS test.
5344 			 */
5345 		}
5346 
5347 		if (len <= tcp_header_len) {
5348 			/* Bulk data transfer: sender */
5349 			if (len == tcp_header_len) {
5350 				/* Predicted packet is in window by definition.
5351 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5352 				 * Hence, check seq<=rcv_wup reduces to:
5353 				 */
5354 				if (tcp_header_len ==
5355 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5356 				    tp->rcv_nxt == tp->rcv_wup)
5357 					tcp_store_ts_recent(tp);
5358 
5359 				/* We know that such packets are checksummed
5360 				 * on entry.
5361 				 */
5362 				tcp_ack(sk, skb, 0);
5363 				__kfree_skb(skb);
5364 				tcp_data_snd_check(sk);
5365 				return;
5366 			} else { /* Header too small */
5367 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5368 				goto discard;
5369 			}
5370 		} else {
5371 			int eaten = 0;
5372 			bool fragstolen = false;
5373 
5374 			if (tp->ucopy.task == current &&
5375 			    tp->copied_seq == tp->rcv_nxt &&
5376 			    len - tcp_header_len <= tp->ucopy.len &&
5377 			    sock_owned_by_user(sk)) {
5378 				__set_current_state(TASK_RUNNING);
5379 
5380 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5381 					/* Predicted packet is in window by definition.
5382 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5383 					 * Hence, check seq<=rcv_wup reduces to:
5384 					 */
5385 					if (tcp_header_len ==
5386 					    (sizeof(struct tcphdr) +
5387 					     TCPOLEN_TSTAMP_ALIGNED) &&
5388 					    tp->rcv_nxt == tp->rcv_wup)
5389 						tcp_store_ts_recent(tp);
5390 
5391 					tcp_rcv_rtt_measure_ts(sk, skb);
5392 
5393 					__skb_pull(skb, tcp_header_len);
5394 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5395 					NET_INC_STATS(sock_net(sk),
5396 							LINUX_MIB_TCPHPHITSTOUSER);
5397 					eaten = 1;
5398 				}
5399 			}
5400 			if (!eaten) {
5401 				if (tcp_checksum_complete(skb))
5402 					goto csum_error;
5403 
5404 				if ((int)skb->truesize > sk->sk_forward_alloc)
5405 					goto step5;
5406 
5407 				/* Predicted packet is in window by definition.
5408 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5409 				 * Hence, check seq<=rcv_wup reduces to:
5410 				 */
5411 				if (tcp_header_len ==
5412 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5413 				    tp->rcv_nxt == tp->rcv_wup)
5414 					tcp_store_ts_recent(tp);
5415 
5416 				tcp_rcv_rtt_measure_ts(sk, skb);
5417 
5418 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5419 
5420 				/* Bulk data transfer: receiver */
5421 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5422 						      &fragstolen);
5423 			}
5424 
5425 			tcp_event_data_recv(sk, skb);
5426 
5427 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5428 				/* Well, only one small jumplet in fast path... */
5429 				tcp_ack(sk, skb, FLAG_DATA);
5430 				tcp_data_snd_check(sk);
5431 				if (!inet_csk_ack_scheduled(sk))
5432 					goto no_ack;
5433 			}
5434 
5435 			__tcp_ack_snd_check(sk, 0);
5436 no_ack:
5437 			if (eaten)
5438 				kfree_skb_partial(skb, fragstolen);
5439 			sk->sk_data_ready(sk);
5440 			return;
5441 		}
5442 	}
5443 
5444 slow_path:
5445 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5446 		goto csum_error;
5447 
5448 	if (!th->ack && !th->rst && !th->syn)
5449 		goto discard;
5450 
5451 	/*
5452 	 *	Standard slow path.
5453 	 */
5454 
5455 	if (!tcp_validate_incoming(sk, skb, th, 1))
5456 		return;
5457 
5458 step5:
5459 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5460 		goto discard;
5461 
5462 	tcp_rcv_rtt_measure_ts(sk, skb);
5463 
5464 	/* Process urgent data. */
5465 	tcp_urg(sk, skb, th);
5466 
5467 	/* step 7: process the segment text */
5468 	tcp_data_queue(sk, skb);
5469 
5470 	tcp_data_snd_check(sk);
5471 	tcp_ack_snd_check(sk);
5472 	return;
5473 
5474 csum_error:
5475 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5476 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5477 
5478 discard:
5479 	tcp_drop(sk, skb);
5480 }
5481 EXPORT_SYMBOL(tcp_rcv_established);
5482 
5483 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5484 {
5485 	struct tcp_sock *tp = tcp_sk(sk);
5486 	struct inet_connection_sock *icsk = inet_csk(sk);
5487 
5488 	tcp_set_state(sk, TCP_ESTABLISHED);
5489 
5490 	if (skb) {
5491 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5492 		security_inet_conn_established(sk, skb);
5493 	}
5494 
5495 	/* Make sure socket is routed, for correct metrics.  */
5496 	icsk->icsk_af_ops->rebuild_header(sk);
5497 
5498 	tcp_init_metrics(sk);
5499 
5500 	tcp_init_congestion_control(sk);
5501 
5502 	/* Prevent spurious tcp_cwnd_restart() on first data
5503 	 * packet.
5504 	 */
5505 	tp->lsndtime = tcp_time_stamp;
5506 
5507 	tcp_init_buffer_space(sk);
5508 
5509 	if (sock_flag(sk, SOCK_KEEPOPEN))
5510 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5511 
5512 	if (!tp->rx_opt.snd_wscale)
5513 		__tcp_fast_path_on(tp, tp->snd_wnd);
5514 	else
5515 		tp->pred_flags = 0;
5516 
5517 	if (!sock_flag(sk, SOCK_DEAD)) {
5518 		sk->sk_state_change(sk);
5519 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5520 	}
5521 }
5522 
5523 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5524 				    struct tcp_fastopen_cookie *cookie)
5525 {
5526 	struct tcp_sock *tp = tcp_sk(sk);
5527 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5528 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5529 	bool syn_drop = false;
5530 
5531 	if (mss == tp->rx_opt.user_mss) {
5532 		struct tcp_options_received opt;
5533 
5534 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5535 		tcp_clear_options(&opt);
5536 		opt.user_mss = opt.mss_clamp = 0;
5537 		tcp_parse_options(synack, &opt, 0, NULL);
5538 		mss = opt.mss_clamp;
5539 	}
5540 
5541 	if (!tp->syn_fastopen) {
5542 		/* Ignore an unsolicited cookie */
5543 		cookie->len = -1;
5544 	} else if (tp->total_retrans) {
5545 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5546 		 * acknowledges data. Presumably the remote received only
5547 		 * the retransmitted (regular) SYNs: either the original
5548 		 * SYN-data or the corresponding SYN-ACK was dropped.
5549 		 */
5550 		syn_drop = (cookie->len < 0 && data);
5551 	} else if (cookie->len < 0 && !tp->syn_data) {
5552 		/* We requested a cookie but didn't get it. If we did not use
5553 		 * the (old) exp opt format then try so next time (try_exp=1).
5554 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5555 		 */
5556 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5557 	}
5558 
5559 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5560 
5561 	if (data) { /* Retransmit unacked data in SYN */
5562 		tcp_for_write_queue_from(data, sk) {
5563 			if (data == tcp_send_head(sk) ||
5564 			    __tcp_retransmit_skb(sk, data, 1))
5565 				break;
5566 		}
5567 		tcp_rearm_rto(sk);
5568 		NET_INC_STATS(sock_net(sk),
5569 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5570 		return true;
5571 	}
5572 	tp->syn_data_acked = tp->syn_data;
5573 	if (tp->syn_data_acked)
5574 		NET_INC_STATS(sock_net(sk),
5575 				LINUX_MIB_TCPFASTOPENACTIVE);
5576 
5577 	tcp_fastopen_add_skb(sk, synack);
5578 
5579 	return false;
5580 }
5581 
5582 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5583 					 const struct tcphdr *th)
5584 {
5585 	struct inet_connection_sock *icsk = inet_csk(sk);
5586 	struct tcp_sock *tp = tcp_sk(sk);
5587 	struct tcp_fastopen_cookie foc = { .len = -1 };
5588 	int saved_clamp = tp->rx_opt.mss_clamp;
5589 
5590 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5591 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5592 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5593 
5594 	if (th->ack) {
5595 		/* rfc793:
5596 		 * "If the state is SYN-SENT then
5597 		 *    first check the ACK bit
5598 		 *      If the ACK bit is set
5599 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5600 		 *        a reset (unless the RST bit is set, if so drop
5601 		 *        the segment and return)"
5602 		 */
5603 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5604 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5605 			goto reset_and_undo;
5606 
5607 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5608 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5609 			     tcp_time_stamp)) {
5610 			NET_INC_STATS(sock_net(sk),
5611 					LINUX_MIB_PAWSACTIVEREJECTED);
5612 			goto reset_and_undo;
5613 		}
5614 
5615 		/* Now ACK is acceptable.
5616 		 *
5617 		 * "If the RST bit is set
5618 		 *    If the ACK was acceptable then signal the user "error:
5619 		 *    connection reset", drop the segment, enter CLOSED state,
5620 		 *    delete TCB, and return."
5621 		 */
5622 
5623 		if (th->rst) {
5624 			tcp_reset(sk);
5625 			goto discard;
5626 		}
5627 
5628 		/* rfc793:
5629 		 *   "fifth, if neither of the SYN or RST bits is set then
5630 		 *    drop the segment and return."
5631 		 *
5632 		 *    See note below!
5633 		 *                                        --ANK(990513)
5634 		 */
5635 		if (!th->syn)
5636 			goto discard_and_undo;
5637 
5638 		/* rfc793:
5639 		 *   "If the SYN bit is on ...
5640 		 *    are acceptable then ...
5641 		 *    (our SYN has been ACKed), change the connection
5642 		 *    state to ESTABLISHED..."
5643 		 */
5644 
5645 		tcp_ecn_rcv_synack(tp, th);
5646 
5647 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5648 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5649 
5650 		/* Ok.. it's good. Set up sequence numbers and
5651 		 * move to established.
5652 		 */
5653 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5654 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5655 
5656 		/* RFC1323: The window in SYN & SYN/ACK segments is
5657 		 * never scaled.
5658 		 */
5659 		tp->snd_wnd = ntohs(th->window);
5660 
5661 		if (!tp->rx_opt.wscale_ok) {
5662 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5663 			tp->window_clamp = min(tp->window_clamp, 65535U);
5664 		}
5665 
5666 		if (tp->rx_opt.saw_tstamp) {
5667 			tp->rx_opt.tstamp_ok	   = 1;
5668 			tp->tcp_header_len =
5669 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5670 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5671 			tcp_store_ts_recent(tp);
5672 		} else {
5673 			tp->tcp_header_len = sizeof(struct tcphdr);
5674 		}
5675 
5676 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5677 			tcp_enable_fack(tp);
5678 
5679 		tcp_mtup_init(sk);
5680 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5681 		tcp_initialize_rcv_mss(sk);
5682 
5683 		/* Remember, tcp_poll() does not lock socket!
5684 		 * Change state from SYN-SENT only after copied_seq
5685 		 * is initialized. */
5686 		tp->copied_seq = tp->rcv_nxt;
5687 
5688 		smp_mb();
5689 
5690 		tcp_finish_connect(sk, skb);
5691 
5692 		if ((tp->syn_fastopen || tp->syn_data) &&
5693 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5694 			return -1;
5695 
5696 		if (sk->sk_write_pending ||
5697 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5698 		    icsk->icsk_ack.pingpong) {
5699 			/* Save one ACK. Data will be ready after
5700 			 * several ticks, if write_pending is set.
5701 			 *
5702 			 * It may be deleted, but with this feature tcpdumps
5703 			 * look so _wonderfully_ clever, that I was not able
5704 			 * to stand against the temptation 8)     --ANK
5705 			 */
5706 			inet_csk_schedule_ack(sk);
5707 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5708 			tcp_enter_quickack_mode(sk);
5709 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5710 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5711 
5712 discard:
5713 			tcp_drop(sk, skb);
5714 			return 0;
5715 		} else {
5716 			tcp_send_ack(sk);
5717 		}
5718 		return -1;
5719 	}
5720 
5721 	/* No ACK in the segment */
5722 
5723 	if (th->rst) {
5724 		/* rfc793:
5725 		 * "If the RST bit is set
5726 		 *
5727 		 *      Otherwise (no ACK) drop the segment and return."
5728 		 */
5729 
5730 		goto discard_and_undo;
5731 	}
5732 
5733 	/* PAWS check. */
5734 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5735 	    tcp_paws_reject(&tp->rx_opt, 0))
5736 		goto discard_and_undo;
5737 
5738 	if (th->syn) {
5739 		/* We see SYN without ACK. It is attempt of
5740 		 * simultaneous connect with crossed SYNs.
5741 		 * Particularly, it can be connect to self.
5742 		 */
5743 		tcp_set_state(sk, TCP_SYN_RECV);
5744 
5745 		if (tp->rx_opt.saw_tstamp) {
5746 			tp->rx_opt.tstamp_ok = 1;
5747 			tcp_store_ts_recent(tp);
5748 			tp->tcp_header_len =
5749 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5750 		} else {
5751 			tp->tcp_header_len = sizeof(struct tcphdr);
5752 		}
5753 
5754 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5755 		tp->copied_seq = tp->rcv_nxt;
5756 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5757 
5758 		/* RFC1323: The window in SYN & SYN/ACK segments is
5759 		 * never scaled.
5760 		 */
5761 		tp->snd_wnd    = ntohs(th->window);
5762 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5763 		tp->max_window = tp->snd_wnd;
5764 
5765 		tcp_ecn_rcv_syn(tp, th);
5766 
5767 		tcp_mtup_init(sk);
5768 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5769 		tcp_initialize_rcv_mss(sk);
5770 
5771 		tcp_send_synack(sk);
5772 #if 0
5773 		/* Note, we could accept data and URG from this segment.
5774 		 * There are no obstacles to make this (except that we must
5775 		 * either change tcp_recvmsg() to prevent it from returning data
5776 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5777 		 *
5778 		 * However, if we ignore data in ACKless segments sometimes,
5779 		 * we have no reasons to accept it sometimes.
5780 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5781 		 * is not flawless. So, discard packet for sanity.
5782 		 * Uncomment this return to process the data.
5783 		 */
5784 		return -1;
5785 #else
5786 		goto discard;
5787 #endif
5788 	}
5789 	/* "fifth, if neither of the SYN or RST bits is set then
5790 	 * drop the segment and return."
5791 	 */
5792 
5793 discard_and_undo:
5794 	tcp_clear_options(&tp->rx_opt);
5795 	tp->rx_opt.mss_clamp = saved_clamp;
5796 	goto discard;
5797 
5798 reset_and_undo:
5799 	tcp_clear_options(&tp->rx_opt);
5800 	tp->rx_opt.mss_clamp = saved_clamp;
5801 	return 1;
5802 }
5803 
5804 /*
5805  *	This function implements the receiving procedure of RFC 793 for
5806  *	all states except ESTABLISHED and TIME_WAIT.
5807  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5808  *	address independent.
5809  */
5810 
5811 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5812 {
5813 	struct tcp_sock *tp = tcp_sk(sk);
5814 	struct inet_connection_sock *icsk = inet_csk(sk);
5815 	const struct tcphdr *th = tcp_hdr(skb);
5816 	struct request_sock *req;
5817 	int queued = 0;
5818 	bool acceptable;
5819 
5820 	switch (sk->sk_state) {
5821 	case TCP_CLOSE:
5822 		goto discard;
5823 
5824 	case TCP_LISTEN:
5825 		if (th->ack)
5826 			return 1;
5827 
5828 		if (th->rst)
5829 			goto discard;
5830 
5831 		if (th->syn) {
5832 			if (th->fin)
5833 				goto discard;
5834 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5835 				return 1;
5836 
5837 			consume_skb(skb);
5838 			return 0;
5839 		}
5840 		goto discard;
5841 
5842 	case TCP_SYN_SENT:
5843 		tp->rx_opt.saw_tstamp = 0;
5844 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5845 		if (queued >= 0)
5846 			return queued;
5847 
5848 		/* Do step6 onward by hand. */
5849 		tcp_urg(sk, skb, th);
5850 		__kfree_skb(skb);
5851 		tcp_data_snd_check(sk);
5852 		return 0;
5853 	}
5854 
5855 	tp->rx_opt.saw_tstamp = 0;
5856 	req = tp->fastopen_rsk;
5857 	if (req) {
5858 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5859 		    sk->sk_state != TCP_FIN_WAIT1);
5860 
5861 		if (!tcp_check_req(sk, skb, req, true))
5862 			goto discard;
5863 	}
5864 
5865 	if (!th->ack && !th->rst && !th->syn)
5866 		goto discard;
5867 
5868 	if (!tcp_validate_incoming(sk, skb, th, 0))
5869 		return 0;
5870 
5871 	/* step 5: check the ACK field */
5872 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5873 				      FLAG_UPDATE_TS_RECENT) > 0;
5874 
5875 	switch (sk->sk_state) {
5876 	case TCP_SYN_RECV:
5877 		if (!acceptable)
5878 			return 1;
5879 
5880 		if (!tp->srtt_us)
5881 			tcp_synack_rtt_meas(sk, req);
5882 
5883 		/* Once we leave TCP_SYN_RECV, we no longer need req
5884 		 * so release it.
5885 		 */
5886 		if (req) {
5887 			inet_csk(sk)->icsk_retransmits = 0;
5888 			reqsk_fastopen_remove(sk, req, false);
5889 		} else {
5890 			/* Make sure socket is routed, for correct metrics. */
5891 			icsk->icsk_af_ops->rebuild_header(sk);
5892 			tcp_init_congestion_control(sk);
5893 
5894 			tcp_mtup_init(sk);
5895 			tp->copied_seq = tp->rcv_nxt;
5896 			tcp_init_buffer_space(sk);
5897 		}
5898 		smp_mb();
5899 		tcp_set_state(sk, TCP_ESTABLISHED);
5900 		sk->sk_state_change(sk);
5901 
5902 		/* Note, that this wakeup is only for marginal crossed SYN case.
5903 		 * Passively open sockets are not waked up, because
5904 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5905 		 */
5906 		if (sk->sk_socket)
5907 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5908 
5909 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5910 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5911 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5912 
5913 		if (tp->rx_opt.tstamp_ok)
5914 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5915 
5916 		if (req) {
5917 			/* Re-arm the timer because data may have been sent out.
5918 			 * This is similar to the regular data transmission case
5919 			 * when new data has just been ack'ed.
5920 			 *
5921 			 * (TFO) - we could try to be more aggressive and
5922 			 * retransmitting any data sooner based on when they
5923 			 * are sent out.
5924 			 */
5925 			tcp_rearm_rto(sk);
5926 		} else
5927 			tcp_init_metrics(sk);
5928 
5929 		tcp_update_pacing_rate(sk);
5930 
5931 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5932 		tp->lsndtime = tcp_time_stamp;
5933 
5934 		tcp_initialize_rcv_mss(sk);
5935 		tcp_fast_path_on(tp);
5936 		break;
5937 
5938 	case TCP_FIN_WAIT1: {
5939 		struct dst_entry *dst;
5940 		int tmo;
5941 
5942 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5943 		 * Fast Open socket and this is the first acceptable
5944 		 * ACK we have received, this would have acknowledged
5945 		 * our SYNACK so stop the SYNACK timer.
5946 		 */
5947 		if (req) {
5948 			/* Return RST if ack_seq is invalid.
5949 			 * Note that RFC793 only says to generate a
5950 			 * DUPACK for it but for TCP Fast Open it seems
5951 			 * better to treat this case like TCP_SYN_RECV
5952 			 * above.
5953 			 */
5954 			if (!acceptable)
5955 				return 1;
5956 			/* We no longer need the request sock. */
5957 			reqsk_fastopen_remove(sk, req, false);
5958 			tcp_rearm_rto(sk);
5959 		}
5960 		if (tp->snd_una != tp->write_seq)
5961 			break;
5962 
5963 		tcp_set_state(sk, TCP_FIN_WAIT2);
5964 		sk->sk_shutdown |= SEND_SHUTDOWN;
5965 
5966 		dst = __sk_dst_get(sk);
5967 		if (dst)
5968 			dst_confirm(dst);
5969 
5970 		if (!sock_flag(sk, SOCK_DEAD)) {
5971 			/* Wake up lingering close() */
5972 			sk->sk_state_change(sk);
5973 			break;
5974 		}
5975 
5976 		if (tp->linger2 < 0 ||
5977 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5978 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5979 			tcp_done(sk);
5980 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5981 			return 1;
5982 		}
5983 
5984 		tmo = tcp_fin_time(sk);
5985 		if (tmo > TCP_TIMEWAIT_LEN) {
5986 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5987 		} else if (th->fin || sock_owned_by_user(sk)) {
5988 			/* Bad case. We could lose such FIN otherwise.
5989 			 * It is not a big problem, but it looks confusing
5990 			 * and not so rare event. We still can lose it now,
5991 			 * if it spins in bh_lock_sock(), but it is really
5992 			 * marginal case.
5993 			 */
5994 			inet_csk_reset_keepalive_timer(sk, tmo);
5995 		} else {
5996 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5997 			goto discard;
5998 		}
5999 		break;
6000 	}
6001 
6002 	case TCP_CLOSING:
6003 		if (tp->snd_una == tp->write_seq) {
6004 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6005 			goto discard;
6006 		}
6007 		break;
6008 
6009 	case TCP_LAST_ACK:
6010 		if (tp->snd_una == tp->write_seq) {
6011 			tcp_update_metrics(sk);
6012 			tcp_done(sk);
6013 			goto discard;
6014 		}
6015 		break;
6016 	}
6017 
6018 	/* step 6: check the URG bit */
6019 	tcp_urg(sk, skb, th);
6020 
6021 	/* step 7: process the segment text */
6022 	switch (sk->sk_state) {
6023 	case TCP_CLOSE_WAIT:
6024 	case TCP_CLOSING:
6025 	case TCP_LAST_ACK:
6026 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6027 			break;
6028 	case TCP_FIN_WAIT1:
6029 	case TCP_FIN_WAIT2:
6030 		/* RFC 793 says to queue data in these states,
6031 		 * RFC 1122 says we MUST send a reset.
6032 		 * BSD 4.4 also does reset.
6033 		 */
6034 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6035 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6036 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6037 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6038 				tcp_reset(sk);
6039 				return 1;
6040 			}
6041 		}
6042 		/* Fall through */
6043 	case TCP_ESTABLISHED:
6044 		tcp_data_queue(sk, skb);
6045 		queued = 1;
6046 		break;
6047 	}
6048 
6049 	/* tcp_data could move socket to TIME-WAIT */
6050 	if (sk->sk_state != TCP_CLOSE) {
6051 		tcp_data_snd_check(sk);
6052 		tcp_ack_snd_check(sk);
6053 	}
6054 
6055 	if (!queued) {
6056 discard:
6057 		tcp_drop(sk, skb);
6058 	}
6059 	return 0;
6060 }
6061 EXPORT_SYMBOL(tcp_rcv_state_process);
6062 
6063 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6064 {
6065 	struct inet_request_sock *ireq = inet_rsk(req);
6066 
6067 	if (family == AF_INET)
6068 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6069 				    &ireq->ir_rmt_addr, port);
6070 #if IS_ENABLED(CONFIG_IPV6)
6071 	else if (family == AF_INET6)
6072 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6073 				    &ireq->ir_v6_rmt_addr, port);
6074 #endif
6075 }
6076 
6077 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6078  *
6079  * If we receive a SYN packet with these bits set, it means a
6080  * network is playing bad games with TOS bits. In order to
6081  * avoid possible false congestion notifications, we disable
6082  * TCP ECN negotiation.
6083  *
6084  * Exception: tcp_ca wants ECN. This is required for DCTCP
6085  * congestion control: Linux DCTCP asserts ECT on all packets,
6086  * including SYN, which is most optimal solution; however,
6087  * others, such as FreeBSD do not.
6088  */
6089 static void tcp_ecn_create_request(struct request_sock *req,
6090 				   const struct sk_buff *skb,
6091 				   const struct sock *listen_sk,
6092 				   const struct dst_entry *dst)
6093 {
6094 	const struct tcphdr *th = tcp_hdr(skb);
6095 	const struct net *net = sock_net(listen_sk);
6096 	bool th_ecn = th->ece && th->cwr;
6097 	bool ect, ecn_ok;
6098 	u32 ecn_ok_dst;
6099 
6100 	if (!th_ecn)
6101 		return;
6102 
6103 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6104 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6105 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6106 
6107 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6108 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6109 		inet_rsk(req)->ecn_ok = 1;
6110 }
6111 
6112 static void tcp_openreq_init(struct request_sock *req,
6113 			     const struct tcp_options_received *rx_opt,
6114 			     struct sk_buff *skb, const struct sock *sk)
6115 {
6116 	struct inet_request_sock *ireq = inet_rsk(req);
6117 
6118 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6119 	req->cookie_ts = 0;
6120 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6121 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6122 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6123 	tcp_rsk(req)->last_oow_ack_time = 0;
6124 	req->mss = rx_opt->mss_clamp;
6125 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6126 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6127 	ireq->sack_ok = rx_opt->sack_ok;
6128 	ireq->snd_wscale = rx_opt->snd_wscale;
6129 	ireq->wscale_ok = rx_opt->wscale_ok;
6130 	ireq->acked = 0;
6131 	ireq->ecn_ok = 0;
6132 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6133 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6134 	ireq->ir_mark = inet_request_mark(sk, skb);
6135 }
6136 
6137 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138 				      struct sock *sk_listener,
6139 				      bool attach_listener)
6140 {
6141 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142 					       attach_listener);
6143 
6144 	if (req) {
6145 		struct inet_request_sock *ireq = inet_rsk(req);
6146 
6147 		kmemcheck_annotate_bitfield(ireq, flags);
6148 		ireq->opt = NULL;
6149 #if IS_ENABLED(CONFIG_IPV6)
6150 		ireq->pktopts = NULL;
6151 #endif
6152 		atomic64_set(&ireq->ir_cookie, 0);
6153 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6154 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6155 		ireq->ireq_family = sk_listener->sk_family;
6156 	}
6157 
6158 	return req;
6159 }
6160 EXPORT_SYMBOL(inet_reqsk_alloc);
6161 
6162 /*
6163  * Return true if a syncookie should be sent
6164  */
6165 static bool tcp_syn_flood_action(const struct sock *sk,
6166 				 const struct sk_buff *skb,
6167 				 const char *proto)
6168 {
6169 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6170 	const char *msg = "Dropping request";
6171 	bool want_cookie = false;
6172 	struct net *net = sock_net(sk);
6173 
6174 #ifdef CONFIG_SYN_COOKIES
6175 	if (net->ipv4.sysctl_tcp_syncookies) {
6176 		msg = "Sending cookies";
6177 		want_cookie = true;
6178 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6179 	} else
6180 #endif
6181 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6182 
6183 	if (!queue->synflood_warned &&
6184 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6185 	    xchg(&queue->synflood_warned, 1) == 0)
6186 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6187 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6188 
6189 	return want_cookie;
6190 }
6191 
6192 static void tcp_reqsk_record_syn(const struct sock *sk,
6193 				 struct request_sock *req,
6194 				 const struct sk_buff *skb)
6195 {
6196 	if (tcp_sk(sk)->save_syn) {
6197 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6198 		u32 *copy;
6199 
6200 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6201 		if (copy) {
6202 			copy[0] = len;
6203 			memcpy(&copy[1], skb_network_header(skb), len);
6204 			req->saved_syn = copy;
6205 		}
6206 	}
6207 }
6208 
6209 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6210 		     const struct tcp_request_sock_ops *af_ops,
6211 		     struct sock *sk, struct sk_buff *skb)
6212 {
6213 	struct tcp_fastopen_cookie foc = { .len = -1 };
6214 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6215 	struct tcp_options_received tmp_opt;
6216 	struct tcp_sock *tp = tcp_sk(sk);
6217 	struct net *net = sock_net(sk);
6218 	struct sock *fastopen_sk = NULL;
6219 	struct dst_entry *dst = NULL;
6220 	struct request_sock *req;
6221 	bool want_cookie = false;
6222 	struct flowi fl;
6223 
6224 	/* TW buckets are converted to open requests without
6225 	 * limitations, they conserve resources and peer is
6226 	 * evidently real one.
6227 	 */
6228 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6229 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6230 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6231 		if (!want_cookie)
6232 			goto drop;
6233 	}
6234 
6235 
6236 	/* Accept backlog is full. If we have already queued enough
6237 	 * of warm entries in syn queue, drop request. It is better than
6238 	 * clogging syn queue with openreqs with exponentially increasing
6239 	 * timeout.
6240 	 */
6241 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6242 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6243 		goto drop;
6244 	}
6245 
6246 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6247 	if (!req)
6248 		goto drop;
6249 
6250 	tcp_rsk(req)->af_specific = af_ops;
6251 
6252 	tcp_clear_options(&tmp_opt);
6253 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6254 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6255 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6256 
6257 	if (want_cookie && !tmp_opt.saw_tstamp)
6258 		tcp_clear_options(&tmp_opt);
6259 
6260 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6261 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6262 
6263 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6264 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6265 
6266 	af_ops->init_req(req, sk, skb);
6267 
6268 	if (security_inet_conn_request(sk, skb, req))
6269 		goto drop_and_free;
6270 
6271 	if (!want_cookie && !isn) {
6272 		/* VJ's idea. We save last timestamp seen
6273 		 * from the destination in peer table, when entering
6274 		 * state TIME-WAIT, and check against it before
6275 		 * accepting new connection request.
6276 		 *
6277 		 * If "isn" is not zero, this request hit alive
6278 		 * timewait bucket, so that all the necessary checks
6279 		 * are made in the function processing timewait state.
6280 		 */
6281 		if (tcp_death_row.sysctl_tw_recycle) {
6282 			bool strict;
6283 
6284 			dst = af_ops->route_req(sk, &fl, req, &strict);
6285 
6286 			if (dst && strict &&
6287 			    !tcp_peer_is_proven(req, dst, true,
6288 						tmp_opt.saw_tstamp)) {
6289 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6290 				goto drop_and_release;
6291 			}
6292 		}
6293 		/* Kill the following clause, if you dislike this way. */
6294 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6295 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6296 			  (sysctl_max_syn_backlog >> 2)) &&
6297 			 !tcp_peer_is_proven(req, dst, false,
6298 					     tmp_opt.saw_tstamp)) {
6299 			/* Without syncookies last quarter of
6300 			 * backlog is filled with destinations,
6301 			 * proven to be alive.
6302 			 * It means that we continue to communicate
6303 			 * to destinations, already remembered
6304 			 * to the moment of synflood.
6305 			 */
6306 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6307 				    rsk_ops->family);
6308 			goto drop_and_release;
6309 		}
6310 
6311 		isn = af_ops->init_seq(skb);
6312 	}
6313 	if (!dst) {
6314 		dst = af_ops->route_req(sk, &fl, req, NULL);
6315 		if (!dst)
6316 			goto drop_and_free;
6317 	}
6318 
6319 	tcp_ecn_create_request(req, skb, sk, dst);
6320 
6321 	if (want_cookie) {
6322 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6323 		req->cookie_ts = tmp_opt.tstamp_ok;
6324 		if (!tmp_opt.tstamp_ok)
6325 			inet_rsk(req)->ecn_ok = 0;
6326 	}
6327 
6328 	tcp_rsk(req)->snt_isn = isn;
6329 	tcp_rsk(req)->txhash = net_tx_rndhash();
6330 	tcp_openreq_init_rwin(req, sk, dst);
6331 	if (!want_cookie) {
6332 		tcp_reqsk_record_syn(sk, req, skb);
6333 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6334 	}
6335 	if (fastopen_sk) {
6336 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6337 				    &foc, TCP_SYNACK_FASTOPEN);
6338 		/* Add the child socket directly into the accept queue */
6339 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6340 		sk->sk_data_ready(sk);
6341 		bh_unlock_sock(fastopen_sk);
6342 		sock_put(fastopen_sk);
6343 	} else {
6344 		tcp_rsk(req)->tfo_listener = false;
6345 		if (!want_cookie)
6346 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6347 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6348 				    !want_cookie ? TCP_SYNACK_NORMAL :
6349 						   TCP_SYNACK_COOKIE);
6350 		if (want_cookie) {
6351 			reqsk_free(req);
6352 			return 0;
6353 		}
6354 	}
6355 	reqsk_put(req);
6356 	return 0;
6357 
6358 drop_and_release:
6359 	dst_release(dst);
6360 drop_and_free:
6361 	reqsk_free(req);
6362 drop:
6363 	tcp_listendrop(sk);
6364 	return 0;
6365 }
6366 EXPORT_SYMBOL(tcp_conn_request);
6367