1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 142 unsigned int len) 143 { 144 static bool __once __read_mostly; 145 146 if (!__once) { 147 struct net_device *dev; 148 149 __once = true; 150 151 rcu_read_lock(); 152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 153 if (!dev || len >= dev->mtu) 154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 155 dev ? dev->name : "Unknown driver"); 156 rcu_read_unlock(); 157 } 158 } 159 160 /* Adapt the MSS value used to make delayed ack decision to the 161 * real world. 162 */ 163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const unsigned int lss = icsk->icsk_ack.last_seg_size; 167 unsigned int len; 168 169 icsk->icsk_ack.last_seg_size = 0; 170 171 /* skb->len may jitter because of SACKs, even if peer 172 * sends good full-sized frames. 173 */ 174 len = skb_shinfo(skb)->gso_size ? : skb->len; 175 if (len >= icsk->icsk_ack.rcv_mss) { 176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 177 tcp_sk(sk)->advmss); 178 /* Account for possibly-removed options */ 179 if (unlikely(len > icsk->icsk_ack.rcv_mss + 180 MAX_TCP_OPTION_SPACE)) 181 tcp_gro_dev_warn(sk, skb, len); 182 } else { 183 /* Otherwise, we make more careful check taking into account, 184 * that SACKs block is variable. 185 * 186 * "len" is invariant segment length, including TCP header. 187 */ 188 len += skb->data - skb_transport_header(skb); 189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 190 /* If PSH is not set, packet should be 191 * full sized, provided peer TCP is not badly broken. 192 * This observation (if it is correct 8)) allows 193 * to handle super-low mtu links fairly. 194 */ 195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 197 /* Subtract also invariant (if peer is RFC compliant), 198 * tcp header plus fixed timestamp option length. 199 * Resulting "len" is MSS free of SACK jitter. 200 */ 201 len -= tcp_sk(sk)->tcp_header_len; 202 icsk->icsk_ack.last_seg_size = len; 203 if (len == lss) { 204 icsk->icsk_ack.rcv_mss = len; 205 return; 206 } 207 } 208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 211 } 212 } 213 214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 215 { 216 struct inet_connection_sock *icsk = inet_csk(sk); 217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 218 219 if (quickacks == 0) 220 quickacks = 2; 221 quickacks = min(quickacks, max_quickacks); 222 if (quickacks > icsk->icsk_ack.quick) 223 icsk->icsk_ack.quick = quickacks; 224 } 225 226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 230 tcp_incr_quickack(sk, max_quickacks); 231 inet_csk_exit_pingpong_mode(sk); 232 icsk->icsk_ack.ato = TCP_ATO_MIN; 233 } 234 EXPORT_SYMBOL(tcp_enter_quickack_mode); 235 236 /* Send ACKs quickly, if "quick" count is not exhausted 237 * and the session is not interactive. 238 */ 239 240 static bool tcp_in_quickack_mode(struct sock *sk) 241 { 242 const struct inet_connection_sock *icsk = inet_csk(sk); 243 const struct dst_entry *dst = __sk_dst_get(sk); 244 245 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 247 } 248 249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 250 { 251 if (tp->ecn_flags & TCP_ECN_OK) 252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 253 } 254 255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 256 { 257 if (tcp_hdr(skb)->cwr) { 258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 259 260 /* If the sender is telling us it has entered CWR, then its 261 * cwnd may be very low (even just 1 packet), so we should ACK 262 * immediately. 263 */ 264 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 265 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 266 } 267 } 268 269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 270 { 271 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 272 } 273 274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 275 { 276 struct tcp_sock *tp = tcp_sk(sk); 277 278 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 279 case INET_ECN_NOT_ECT: 280 /* Funny extension: if ECT is not set on a segment, 281 * and we already seen ECT on a previous segment, 282 * it is probably a retransmit. 283 */ 284 if (tp->ecn_flags & TCP_ECN_SEEN) 285 tcp_enter_quickack_mode(sk, 2); 286 break; 287 case INET_ECN_CE: 288 if (tcp_ca_needs_ecn(sk)) 289 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 290 291 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 292 /* Better not delay acks, sender can have a very low cwnd */ 293 tcp_enter_quickack_mode(sk, 2); 294 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 295 } 296 tp->ecn_flags |= TCP_ECN_SEEN; 297 break; 298 default: 299 if (tcp_ca_needs_ecn(sk)) 300 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 301 tp->ecn_flags |= TCP_ECN_SEEN; 302 break; 303 } 304 } 305 306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 307 { 308 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 309 __tcp_ecn_check_ce(sk, skb); 310 } 311 312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 313 { 314 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 315 tp->ecn_flags &= ~TCP_ECN_OK; 316 } 317 318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 319 { 320 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 321 tp->ecn_flags &= ~TCP_ECN_OK; 322 } 323 324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 325 { 326 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 327 return true; 328 return false; 329 } 330 331 /* Buffer size and advertised window tuning. 332 * 333 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 334 */ 335 336 static void tcp_sndbuf_expand(struct sock *sk) 337 { 338 const struct tcp_sock *tp = tcp_sk(sk); 339 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 340 int sndmem, per_mss; 341 u32 nr_segs; 342 343 /* Worst case is non GSO/TSO : each frame consumes one skb 344 * and skb->head is kmalloced using power of two area of memory 345 */ 346 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 347 MAX_TCP_HEADER + 348 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 349 350 per_mss = roundup_pow_of_two(per_mss) + 351 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 352 353 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 354 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 355 356 /* Fast Recovery (RFC 5681 3.2) : 357 * Cubic needs 1.7 factor, rounded to 2 to include 358 * extra cushion (application might react slowly to EPOLLOUT) 359 */ 360 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 361 sndmem *= nr_segs * per_mss; 362 363 if (sk->sk_sndbuf < sndmem) 364 WRITE_ONCE(sk->sk_sndbuf, 365 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 366 } 367 368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 369 * 370 * All tcp_full_space() is split to two parts: "network" buffer, allocated 371 * forward and advertised in receiver window (tp->rcv_wnd) and 372 * "application buffer", required to isolate scheduling/application 373 * latencies from network. 374 * window_clamp is maximal advertised window. It can be less than 375 * tcp_full_space(), in this case tcp_full_space() - window_clamp 376 * is reserved for "application" buffer. The less window_clamp is 377 * the smoother our behaviour from viewpoint of network, but the lower 378 * throughput and the higher sensitivity of the connection to losses. 8) 379 * 380 * rcv_ssthresh is more strict window_clamp used at "slow start" 381 * phase to predict further behaviour of this connection. 382 * It is used for two goals: 383 * - to enforce header prediction at sender, even when application 384 * requires some significant "application buffer". It is check #1. 385 * - to prevent pruning of receive queue because of misprediction 386 * of receiver window. Check #2. 387 * 388 * The scheme does not work when sender sends good segments opening 389 * window and then starts to feed us spaghetti. But it should work 390 * in common situations. Otherwise, we have to rely on queue collapsing. 391 */ 392 393 /* Slow part of check#2. */ 394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 395 { 396 struct tcp_sock *tp = tcp_sk(sk); 397 /* Optimize this! */ 398 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 399 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 400 401 while (tp->rcv_ssthresh <= window) { 402 if (truesize <= skb->len) 403 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 404 405 truesize >>= 1; 406 window >>= 1; 407 } 408 return 0; 409 } 410 411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 412 { 413 struct tcp_sock *tp = tcp_sk(sk); 414 int room; 415 416 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 417 418 /* Check #1 */ 419 if (room > 0 && !tcp_under_memory_pressure(sk)) { 420 int incr; 421 422 /* Check #2. Increase window, if skb with such overhead 423 * will fit to rcvbuf in future. 424 */ 425 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 426 incr = 2 * tp->advmss; 427 else 428 incr = __tcp_grow_window(sk, skb); 429 430 if (incr) { 431 incr = max_t(int, incr, 2 * skb->len); 432 tp->rcv_ssthresh += min(room, incr); 433 inet_csk(sk)->icsk_ack.quick |= 1; 434 } 435 } 436 } 437 438 /* 3. Try to fixup all. It is made immediately after connection enters 439 * established state. 440 */ 441 static void tcp_init_buffer_space(struct sock *sk) 442 { 443 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 444 struct tcp_sock *tp = tcp_sk(sk); 445 int maxwin; 446 447 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 448 tcp_sndbuf_expand(sk); 449 450 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 451 tcp_mstamp_refresh(tp); 452 tp->rcvq_space.time = tp->tcp_mstamp; 453 tp->rcvq_space.seq = tp->copied_seq; 454 455 maxwin = tcp_full_space(sk); 456 457 if (tp->window_clamp >= maxwin) { 458 tp->window_clamp = maxwin; 459 460 if (tcp_app_win && maxwin > 4 * tp->advmss) 461 tp->window_clamp = max(maxwin - 462 (maxwin >> tcp_app_win), 463 4 * tp->advmss); 464 } 465 466 /* Force reservation of one segment. */ 467 if (tcp_app_win && 468 tp->window_clamp > 2 * tp->advmss && 469 tp->window_clamp + tp->advmss > maxwin) 470 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 471 472 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 473 tp->snd_cwnd_stamp = tcp_jiffies32; 474 } 475 476 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 477 static void tcp_clamp_window(struct sock *sk) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 struct inet_connection_sock *icsk = inet_csk(sk); 481 struct net *net = sock_net(sk); 482 483 icsk->icsk_ack.quick = 0; 484 485 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 486 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 487 !tcp_under_memory_pressure(sk) && 488 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 489 WRITE_ONCE(sk->sk_rcvbuf, 490 min(atomic_read(&sk->sk_rmem_alloc), 491 net->ipv4.sysctl_tcp_rmem[2])); 492 } 493 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 494 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 495 } 496 497 /* Initialize RCV_MSS value. 498 * RCV_MSS is an our guess about MSS used by the peer. 499 * We haven't any direct information about the MSS. 500 * It's better to underestimate the RCV_MSS rather than overestimate. 501 * Overestimations make us ACKing less frequently than needed. 502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 503 */ 504 void tcp_initialize_rcv_mss(struct sock *sk) 505 { 506 const struct tcp_sock *tp = tcp_sk(sk); 507 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 508 509 hint = min(hint, tp->rcv_wnd / 2); 510 hint = min(hint, TCP_MSS_DEFAULT); 511 hint = max(hint, TCP_MIN_MSS); 512 513 inet_csk(sk)->icsk_ack.rcv_mss = hint; 514 } 515 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 516 517 /* Receiver "autotuning" code. 518 * 519 * The algorithm for RTT estimation w/o timestamps is based on 520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 521 * <http://public.lanl.gov/radiant/pubs.html#DRS> 522 * 523 * More detail on this code can be found at 524 * <http://staff.psc.edu/jheffner/>, 525 * though this reference is out of date. A new paper 526 * is pending. 527 */ 528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 529 { 530 u32 new_sample = tp->rcv_rtt_est.rtt_us; 531 long m = sample; 532 533 if (new_sample != 0) { 534 /* If we sample in larger samples in the non-timestamp 535 * case, we could grossly overestimate the RTT especially 536 * with chatty applications or bulk transfer apps which 537 * are stalled on filesystem I/O. 538 * 539 * Also, since we are only going for a minimum in the 540 * non-timestamp case, we do not smooth things out 541 * else with timestamps disabled convergence takes too 542 * long. 543 */ 544 if (!win_dep) { 545 m -= (new_sample >> 3); 546 new_sample += m; 547 } else { 548 m <<= 3; 549 if (m < new_sample) 550 new_sample = m; 551 } 552 } else { 553 /* No previous measure. */ 554 new_sample = m << 3; 555 } 556 557 tp->rcv_rtt_est.rtt_us = new_sample; 558 } 559 560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 561 { 562 u32 delta_us; 563 564 if (tp->rcv_rtt_est.time == 0) 565 goto new_measure; 566 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 567 return; 568 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 569 if (!delta_us) 570 delta_us = 1; 571 tcp_rcv_rtt_update(tp, delta_us, 1); 572 573 new_measure: 574 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 575 tp->rcv_rtt_est.time = tp->tcp_mstamp; 576 } 577 578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 579 const struct sk_buff *skb) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 583 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 584 return; 585 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 586 587 if (TCP_SKB_CB(skb)->end_seq - 588 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 589 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 590 u32 delta_us; 591 592 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 593 if (!delta) 594 delta = 1; 595 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 596 tcp_rcv_rtt_update(tp, delta_us, 0); 597 } 598 } 599 } 600 601 /* 602 * This function should be called every time data is copied to user space. 603 * It calculates the appropriate TCP receive buffer space. 604 */ 605 void tcp_rcv_space_adjust(struct sock *sk) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 u32 copied; 609 int time; 610 611 trace_tcp_rcv_space_adjust(sk); 612 613 tcp_mstamp_refresh(tp); 614 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 615 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 616 return; 617 618 /* Number of bytes copied to user in last RTT */ 619 copied = tp->copied_seq - tp->rcvq_space.seq; 620 if (copied <= tp->rcvq_space.space) 621 goto new_measure; 622 623 /* A bit of theory : 624 * copied = bytes received in previous RTT, our base window 625 * To cope with packet losses, we need a 2x factor 626 * To cope with slow start, and sender growing its cwin by 100 % 627 * every RTT, we need a 4x factor, because the ACK we are sending 628 * now is for the next RTT, not the current one : 629 * <prev RTT . ><current RTT .. ><next RTT .... > 630 */ 631 632 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 633 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int rcvmem, rcvbuf; 635 u64 rcvwin, grow; 636 637 /* minimal window to cope with packet losses, assuming 638 * steady state. Add some cushion because of small variations. 639 */ 640 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 641 642 /* Accommodate for sender rate increase (eg. slow start) */ 643 grow = rcvwin * (copied - tp->rcvq_space.space); 644 do_div(grow, tp->rcvq_space.space); 645 rcvwin += (grow << 1); 646 647 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 648 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 649 rcvmem += 128; 650 651 do_div(rcvwin, tp->advmss); 652 rcvbuf = min_t(u64, rcvwin * rcvmem, 653 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 654 if (rcvbuf > sk->sk_rcvbuf) { 655 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 656 657 /* Make the window clamp follow along. */ 658 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 659 } 660 } 661 tp->rcvq_space.space = copied; 662 663 new_measure: 664 tp->rcvq_space.seq = tp->copied_seq; 665 tp->rcvq_space.time = tp->tcp_mstamp; 666 } 667 668 /* There is something which you must keep in mind when you analyze the 669 * behavior of the tp->ato delayed ack timeout interval. When a 670 * connection starts up, we want to ack as quickly as possible. The 671 * problem is that "good" TCP's do slow start at the beginning of data 672 * transmission. The means that until we send the first few ACK's the 673 * sender will sit on his end and only queue most of his data, because 674 * he can only send snd_cwnd unacked packets at any given time. For 675 * each ACK we send, he increments snd_cwnd and transmits more of his 676 * queue. -DaveM 677 */ 678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 struct inet_connection_sock *icsk = inet_csk(sk); 682 u32 now; 683 684 inet_csk_schedule_ack(sk); 685 686 tcp_measure_rcv_mss(sk, skb); 687 688 tcp_rcv_rtt_measure(tp); 689 690 now = tcp_jiffies32; 691 692 if (!icsk->icsk_ack.ato) { 693 /* The _first_ data packet received, initialize 694 * delayed ACK engine. 695 */ 696 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 697 icsk->icsk_ack.ato = TCP_ATO_MIN; 698 } else { 699 int m = now - icsk->icsk_ack.lrcvtime; 700 701 if (m <= TCP_ATO_MIN / 2) { 702 /* The fastest case is the first. */ 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 704 } else if (m < icsk->icsk_ack.ato) { 705 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 706 if (icsk->icsk_ack.ato > icsk->icsk_rto) 707 icsk->icsk_ack.ato = icsk->icsk_rto; 708 } else if (m > icsk->icsk_rto) { 709 /* Too long gap. Apparently sender failed to 710 * restart window, so that we send ACKs quickly. 711 */ 712 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 713 sk_mem_reclaim(sk); 714 } 715 } 716 icsk->icsk_ack.lrcvtime = now; 717 718 tcp_ecn_check_ce(sk, skb); 719 720 if (skb->len >= 128) 721 tcp_grow_window(sk, skb); 722 } 723 724 /* Called to compute a smoothed rtt estimate. The data fed to this 725 * routine either comes from timestamps, or from segments that were 726 * known _not_ to have been retransmitted [see Karn/Partridge 727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 728 * piece by Van Jacobson. 729 * NOTE: the next three routines used to be one big routine. 730 * To save cycles in the RFC 1323 implementation it was better to break 731 * it up into three procedures. -- erics 732 */ 733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 long m = mrtt_us; /* RTT */ 737 u32 srtt = tp->srtt_us; 738 739 /* The following amusing code comes from Jacobson's 740 * article in SIGCOMM '88. Note that rtt and mdev 741 * are scaled versions of rtt and mean deviation. 742 * This is designed to be as fast as possible 743 * m stands for "measurement". 744 * 745 * On a 1990 paper the rto value is changed to: 746 * RTO = rtt + 4 * mdev 747 * 748 * Funny. This algorithm seems to be very broken. 749 * These formulae increase RTO, when it should be decreased, increase 750 * too slowly, when it should be increased quickly, decrease too quickly 751 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 752 * does not matter how to _calculate_ it. Seems, it was trap 753 * that VJ failed to avoid. 8) 754 */ 755 if (srtt != 0) { 756 m -= (srtt >> 3); /* m is now error in rtt est */ 757 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 758 if (m < 0) { 759 m = -m; /* m is now abs(error) */ 760 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 761 /* This is similar to one of Eifel findings. 762 * Eifel blocks mdev updates when rtt decreases. 763 * This solution is a bit different: we use finer gain 764 * for mdev in this case (alpha*beta). 765 * Like Eifel it also prevents growth of rto, 766 * but also it limits too fast rto decreases, 767 * happening in pure Eifel. 768 */ 769 if (m > 0) 770 m >>= 3; 771 } else { 772 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 773 } 774 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 775 if (tp->mdev_us > tp->mdev_max_us) { 776 tp->mdev_max_us = tp->mdev_us; 777 if (tp->mdev_max_us > tp->rttvar_us) 778 tp->rttvar_us = tp->mdev_max_us; 779 } 780 if (after(tp->snd_una, tp->rtt_seq)) { 781 if (tp->mdev_max_us < tp->rttvar_us) 782 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 783 tp->rtt_seq = tp->snd_nxt; 784 tp->mdev_max_us = tcp_rto_min_us(sk); 785 786 tcp_bpf_rtt(sk); 787 } 788 } else { 789 /* no previous measure. */ 790 srtt = m << 3; /* take the measured time to be rtt */ 791 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 792 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 793 tp->mdev_max_us = tp->rttvar_us; 794 tp->rtt_seq = tp->snd_nxt; 795 796 tcp_bpf_rtt(sk); 797 } 798 tp->srtt_us = max(1U, srtt); 799 } 800 801 static void tcp_update_pacing_rate(struct sock *sk) 802 { 803 const struct tcp_sock *tp = tcp_sk(sk); 804 u64 rate; 805 806 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 807 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 808 809 /* current rate is (cwnd * mss) / srtt 810 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 811 * In Congestion Avoidance phase, set it to 120 % the current rate. 812 * 813 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 814 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 815 * end of slow start and should slow down. 816 */ 817 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 819 else 820 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 821 822 rate *= max(tp->snd_cwnd, tp->packets_out); 823 824 if (likely(tp->srtt_us)) 825 do_div(rate, tp->srtt_us); 826 827 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 828 * without any lock. We want to make sure compiler wont store 829 * intermediate values in this location. 830 */ 831 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 832 sk->sk_max_pacing_rate)); 833 } 834 835 /* Calculate rto without backoff. This is the second half of Van Jacobson's 836 * routine referred to above. 837 */ 838 static void tcp_set_rto(struct sock *sk) 839 { 840 const struct tcp_sock *tp = tcp_sk(sk); 841 /* Old crap is replaced with new one. 8) 842 * 843 * More seriously: 844 * 1. If rtt variance happened to be less 50msec, it is hallucination. 845 * It cannot be less due to utterly erratic ACK generation made 846 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 847 * to do with delayed acks, because at cwnd>2 true delack timeout 848 * is invisible. Actually, Linux-2.4 also generates erratic 849 * ACKs in some circumstances. 850 */ 851 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 852 853 /* 2. Fixups made earlier cannot be right. 854 * If we do not estimate RTO correctly without them, 855 * all the algo is pure shit and should be replaced 856 * with correct one. It is exactly, which we pretend to do. 857 */ 858 859 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 860 * guarantees that rto is higher. 861 */ 862 tcp_bound_rto(sk); 863 } 864 865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 866 { 867 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 868 869 if (!cwnd) 870 cwnd = TCP_INIT_CWND; 871 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 872 } 873 874 /* Take a notice that peer is sending D-SACKs */ 875 static void tcp_dsack_seen(struct tcp_sock *tp) 876 { 877 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 878 tp->rack.dsack_seen = 1; 879 tp->dsack_dups++; 880 } 881 882 /* It's reordering when higher sequence was delivered (i.e. sacked) before 883 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 884 * distance is approximated in full-mss packet distance ("reordering"). 885 */ 886 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 887 const int ts) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 const u32 mss = tp->mss_cache; 891 u32 fack, metric; 892 893 fack = tcp_highest_sack_seq(tp); 894 if (!before(low_seq, fack)) 895 return; 896 897 metric = fack - low_seq; 898 if ((metric > tp->reordering * mss) && mss) { 899 #if FASTRETRANS_DEBUG > 1 900 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 901 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 902 tp->reordering, 903 0, 904 tp->sacked_out, 905 tp->undo_marker ? tp->undo_retrans : 0); 906 #endif 907 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 908 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 909 } 910 911 /* This exciting event is worth to be remembered. 8) */ 912 tp->reord_seen++; 913 NET_INC_STATS(sock_net(sk), 914 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 915 } 916 917 /* This must be called before lost_out is incremented */ 918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 919 { 920 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 921 (tp->retransmit_skb_hint && 922 before(TCP_SKB_CB(skb)->seq, 923 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 924 tp->retransmit_skb_hint = skb; 925 } 926 927 /* Sum the number of packets on the wire we have marked as lost. 928 * There are two cases we care about here: 929 * a) Packet hasn't been marked lost (nor retransmitted), 930 * and this is the first loss. 931 * b) Packet has been marked both lost and retransmitted, 932 * and this means we think it was lost again. 933 */ 934 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 935 { 936 __u8 sacked = TCP_SKB_CB(skb)->sacked; 937 938 if (!(sacked & TCPCB_LOST) || 939 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 940 tp->lost += tcp_skb_pcount(skb); 941 } 942 943 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 944 { 945 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 946 tcp_verify_retransmit_hint(tp, skb); 947 948 tp->lost_out += tcp_skb_pcount(skb); 949 tcp_sum_lost(tp, skb); 950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 951 } 952 } 953 954 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 955 { 956 tcp_verify_retransmit_hint(tp, skb); 957 958 tcp_sum_lost(tp, skb); 959 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 960 tp->lost_out += tcp_skb_pcount(skb); 961 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 962 } 963 } 964 965 /* This procedure tags the retransmission queue when SACKs arrive. 966 * 967 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 968 * Packets in queue with these bits set are counted in variables 969 * sacked_out, retrans_out and lost_out, correspondingly. 970 * 971 * Valid combinations are: 972 * Tag InFlight Description 973 * 0 1 - orig segment is in flight. 974 * S 0 - nothing flies, orig reached receiver. 975 * L 0 - nothing flies, orig lost by net. 976 * R 2 - both orig and retransmit are in flight. 977 * L|R 1 - orig is lost, retransmit is in flight. 978 * S|R 1 - orig reached receiver, retrans is still in flight. 979 * (L|S|R is logically valid, it could occur when L|R is sacked, 980 * but it is equivalent to plain S and code short-curcuits it to S. 981 * L|S is logically invalid, it would mean -1 packet in flight 8)) 982 * 983 * These 6 states form finite state machine, controlled by the following events: 984 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 985 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 986 * 3. Loss detection event of two flavors: 987 * A. Scoreboard estimator decided the packet is lost. 988 * A'. Reno "three dupacks" marks head of queue lost. 989 * B. SACK arrives sacking SND.NXT at the moment, when the 990 * segment was retransmitted. 991 * 4. D-SACK added new rule: D-SACK changes any tag to S. 992 * 993 * It is pleasant to note, that state diagram turns out to be commutative, 994 * so that we are allowed not to be bothered by order of our actions, 995 * when multiple events arrive simultaneously. (see the function below). 996 * 997 * Reordering detection. 998 * -------------------- 999 * Reordering metric is maximal distance, which a packet can be displaced 1000 * in packet stream. With SACKs we can estimate it: 1001 * 1002 * 1. SACK fills old hole and the corresponding segment was not 1003 * ever retransmitted -> reordering. Alas, we cannot use it 1004 * when segment was retransmitted. 1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1006 * for retransmitted and already SACKed segment -> reordering.. 1007 * Both of these heuristics are not used in Loss state, when we cannot 1008 * account for retransmits accurately. 1009 * 1010 * SACK block validation. 1011 * ---------------------- 1012 * 1013 * SACK block range validation checks that the received SACK block fits to 1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1015 * Note that SND.UNA is not included to the range though being valid because 1016 * it means that the receiver is rather inconsistent with itself reporting 1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1018 * perfectly valid, however, in light of RFC2018 which explicitly states 1019 * that "SACK block MUST reflect the newest segment. Even if the newest 1020 * segment is going to be discarded ...", not that it looks very clever 1021 * in case of head skb. Due to potentional receiver driven attacks, we 1022 * choose to avoid immediate execution of a walk in write queue due to 1023 * reneging and defer head skb's loss recovery to standard loss recovery 1024 * procedure that will eventually trigger (nothing forbids us doing this). 1025 * 1026 * Implements also blockage to start_seq wrap-around. Problem lies in the 1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1028 * there's no guarantee that it will be before snd_nxt (n). The problem 1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1030 * wrap (s_w): 1031 * 1032 * <- outs wnd -> <- wrapzone -> 1033 * u e n u_w e_w s n_w 1034 * | | | | | | | 1035 * |<------------+------+----- TCP seqno space --------------+---------->| 1036 * ...-- <2^31 ->| |<--------... 1037 * ...---- >2^31 ------>| |<--------... 1038 * 1039 * Current code wouldn't be vulnerable but it's better still to discard such 1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1043 * equal to the ideal case (infinite seqno space without wrap caused issues). 1044 * 1045 * With D-SACK the lower bound is extended to cover sequence space below 1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1047 * again, D-SACK block must not to go across snd_una (for the same reason as 1048 * for the normal SACK blocks, explained above). But there all simplicity 1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1050 * fully below undo_marker they do not affect behavior in anyway and can 1051 * therefore be safely ignored. In rare cases (which are more or less 1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1053 * fragmentation and packet reordering past skb's retransmission. To consider 1054 * them correctly, the acceptable range must be extended even more though 1055 * the exact amount is rather hard to quantify. However, tp->max_window can 1056 * be used as an exaggerated estimate. 1057 */ 1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1059 u32 start_seq, u32 end_seq) 1060 { 1061 /* Too far in future, or reversed (interpretation is ambiguous) */ 1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1063 return false; 1064 1065 /* Nasty start_seq wrap-around check (see comments above) */ 1066 if (!before(start_seq, tp->snd_nxt)) 1067 return false; 1068 1069 /* In outstanding window? ...This is valid exit for D-SACKs too. 1070 * start_seq == snd_una is non-sensical (see comments above) 1071 */ 1072 if (after(start_seq, tp->snd_una)) 1073 return true; 1074 1075 if (!is_dsack || !tp->undo_marker) 1076 return false; 1077 1078 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1079 if (after(end_seq, tp->snd_una)) 1080 return false; 1081 1082 if (!before(start_seq, tp->undo_marker)) 1083 return true; 1084 1085 /* Too old */ 1086 if (!after(end_seq, tp->undo_marker)) 1087 return false; 1088 1089 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1090 * start_seq < undo_marker and end_seq >= undo_marker. 1091 */ 1092 return !before(start_seq, end_seq - tp->max_window); 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 u32 reord; 1132 /* Timestamps for earliest and latest never-retransmitted segment 1133 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1134 * but congestion control should still get an accurate delay signal. 1135 */ 1136 u64 first_sackt; 1137 u64 last_sackt; 1138 struct rate_sample *rate; 1139 int flag; 1140 unsigned int mss_now; 1141 }; 1142 1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1144 * the incoming SACK may not exactly match but we can find smaller MSS 1145 * aligned portion of it that matches. Therefore we might need to fragment 1146 * which may fail and creates some hassle (caller must handle error case 1147 * returns). 1148 * 1149 * FIXME: this could be merged to shift decision code 1150 */ 1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1152 u32 start_seq, u32 end_seq) 1153 { 1154 int err; 1155 bool in_sack; 1156 unsigned int pkt_len; 1157 unsigned int mss; 1158 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1161 1162 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1164 mss = tcp_skb_mss(skb); 1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1166 1167 if (!in_sack) { 1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1169 if (pkt_len < mss) 1170 pkt_len = mss; 1171 } else { 1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 return -EINVAL; 1175 } 1176 1177 /* Round if necessary so that SACKs cover only full MSSes 1178 * and/or the remaining small portion (if present) 1179 */ 1180 if (pkt_len > mss) { 1181 unsigned int new_len = (pkt_len / mss) * mss; 1182 if (!in_sack && new_len < pkt_len) 1183 new_len += mss; 1184 pkt_len = new_len; 1185 } 1186 1187 if (pkt_len >= skb->len && !in_sack) 1188 return 0; 1189 1190 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1191 pkt_len, mss, GFP_ATOMIC); 1192 if (err < 0) 1193 return err; 1194 } 1195 1196 return in_sack; 1197 } 1198 1199 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1200 static u8 tcp_sacktag_one(struct sock *sk, 1201 struct tcp_sacktag_state *state, u8 sacked, 1202 u32 start_seq, u32 end_seq, 1203 int dup_sack, int pcount, 1204 u64 xmit_time) 1205 { 1206 struct tcp_sock *tp = tcp_sk(sk); 1207 1208 /* Account D-SACK for retransmitted packet. */ 1209 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1210 if (tp->undo_marker && tp->undo_retrans > 0 && 1211 after(end_seq, tp->undo_marker)) 1212 tp->undo_retrans--; 1213 if ((sacked & TCPCB_SACKED_ACKED) && 1214 before(start_seq, state->reord)) 1215 state->reord = start_seq; 1216 } 1217 1218 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1219 if (!after(end_seq, tp->snd_una)) 1220 return sacked; 1221 1222 if (!(sacked & TCPCB_SACKED_ACKED)) { 1223 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1224 1225 if (sacked & TCPCB_SACKED_RETRANS) { 1226 /* If the segment is not tagged as lost, 1227 * we do not clear RETRANS, believing 1228 * that retransmission is still in flight. 1229 */ 1230 if (sacked & TCPCB_LOST) { 1231 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1232 tp->lost_out -= pcount; 1233 tp->retrans_out -= pcount; 1234 } 1235 } else { 1236 if (!(sacked & TCPCB_RETRANS)) { 1237 /* New sack for not retransmitted frame, 1238 * which was in hole. It is reordering. 1239 */ 1240 if (before(start_seq, 1241 tcp_highest_sack_seq(tp)) && 1242 before(start_seq, state->reord)) 1243 state->reord = start_seq; 1244 1245 if (!after(end_seq, tp->high_seq)) 1246 state->flag |= FLAG_ORIG_SACK_ACKED; 1247 if (state->first_sackt == 0) 1248 state->first_sackt = xmit_time; 1249 state->last_sackt = xmit_time; 1250 } 1251 1252 if (sacked & TCPCB_LOST) { 1253 sacked &= ~TCPCB_LOST; 1254 tp->lost_out -= pcount; 1255 } 1256 } 1257 1258 sacked |= TCPCB_SACKED_ACKED; 1259 state->flag |= FLAG_DATA_SACKED; 1260 tp->sacked_out += pcount; 1261 tp->delivered += pcount; /* Out-of-order packets delivered */ 1262 1263 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1264 if (tp->lost_skb_hint && 1265 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1266 tp->lost_cnt_hint += pcount; 1267 } 1268 1269 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1270 * frames and clear it. undo_retrans is decreased above, L|R frames 1271 * are accounted above as well. 1272 */ 1273 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1274 sacked &= ~TCPCB_SACKED_RETRANS; 1275 tp->retrans_out -= pcount; 1276 } 1277 1278 return sacked; 1279 } 1280 1281 /* Shift newly-SACKed bytes from this skb to the immediately previous 1282 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1283 */ 1284 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1285 struct sk_buff *skb, 1286 struct tcp_sacktag_state *state, 1287 unsigned int pcount, int shifted, int mss, 1288 bool dup_sack) 1289 { 1290 struct tcp_sock *tp = tcp_sk(sk); 1291 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1292 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1293 1294 BUG_ON(!pcount); 1295 1296 /* Adjust counters and hints for the newly sacked sequence 1297 * range but discard the return value since prev is already 1298 * marked. We must tag the range first because the seq 1299 * advancement below implicitly advances 1300 * tcp_highest_sack_seq() when skb is highest_sack. 1301 */ 1302 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1303 start_seq, end_seq, dup_sack, pcount, 1304 tcp_skb_timestamp_us(skb)); 1305 tcp_rate_skb_delivered(sk, skb, state->rate); 1306 1307 if (skb == tp->lost_skb_hint) 1308 tp->lost_cnt_hint += pcount; 1309 1310 TCP_SKB_CB(prev)->end_seq += shifted; 1311 TCP_SKB_CB(skb)->seq += shifted; 1312 1313 tcp_skb_pcount_add(prev, pcount); 1314 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1315 tcp_skb_pcount_add(skb, -pcount); 1316 1317 /* When we're adding to gso_segs == 1, gso_size will be zero, 1318 * in theory this shouldn't be necessary but as long as DSACK 1319 * code can come after this skb later on it's better to keep 1320 * setting gso_size to something. 1321 */ 1322 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1323 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1324 1325 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1326 if (tcp_skb_pcount(skb) <= 1) 1327 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1328 1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1330 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1331 1332 if (skb->len > 0) { 1333 BUG_ON(!tcp_skb_pcount(skb)); 1334 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1335 return false; 1336 } 1337 1338 /* Whole SKB was eaten :-) */ 1339 1340 if (skb == tp->retransmit_skb_hint) 1341 tp->retransmit_skb_hint = prev; 1342 if (skb == tp->lost_skb_hint) { 1343 tp->lost_skb_hint = prev; 1344 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1345 } 1346 1347 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1348 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1350 TCP_SKB_CB(prev)->end_seq++; 1351 1352 if (skb == tcp_highest_sack(sk)) 1353 tcp_advance_highest_sack(sk, skb); 1354 1355 tcp_skb_collapse_tstamp(prev, skb); 1356 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1357 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1358 1359 tcp_rtx_queue_unlink_and_free(skb, sk); 1360 1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1362 1363 return true; 1364 } 1365 1366 /* I wish gso_size would have a bit more sane initialization than 1367 * something-or-zero which complicates things 1368 */ 1369 static int tcp_skb_seglen(const struct sk_buff *skb) 1370 { 1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1372 } 1373 1374 /* Shifting pages past head area doesn't work */ 1375 static int skb_can_shift(const struct sk_buff *skb) 1376 { 1377 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1378 } 1379 1380 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1381 int pcount, int shiftlen) 1382 { 1383 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1384 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1385 * to make sure not storing more than 65535 * 8 bytes per skb, 1386 * even if current MSS is bigger. 1387 */ 1388 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1389 return 0; 1390 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1391 return 0; 1392 return skb_shift(to, from, shiftlen); 1393 } 1394 1395 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1396 * skb. 1397 */ 1398 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1399 struct tcp_sacktag_state *state, 1400 u32 start_seq, u32 end_seq, 1401 bool dup_sack) 1402 { 1403 struct tcp_sock *tp = tcp_sk(sk); 1404 struct sk_buff *prev; 1405 int mss; 1406 int pcount = 0; 1407 int len; 1408 int in_sack; 1409 1410 /* Normally R but no L won't result in plain S */ 1411 if (!dup_sack && 1412 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1413 goto fallback; 1414 if (!skb_can_shift(skb)) 1415 goto fallback; 1416 /* This frame is about to be dropped (was ACKed). */ 1417 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1418 goto fallback; 1419 1420 /* Can only happen with delayed DSACK + discard craziness */ 1421 prev = skb_rb_prev(skb); 1422 if (!prev) 1423 goto fallback; 1424 1425 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1426 goto fallback; 1427 1428 if (!tcp_skb_can_collapse(prev, skb)) 1429 goto fallback; 1430 1431 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1432 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1433 1434 if (in_sack) { 1435 len = skb->len; 1436 pcount = tcp_skb_pcount(skb); 1437 mss = tcp_skb_seglen(skb); 1438 1439 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1440 * drop this restriction as unnecessary 1441 */ 1442 if (mss != tcp_skb_seglen(prev)) 1443 goto fallback; 1444 } else { 1445 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1446 goto noop; 1447 /* CHECKME: This is non-MSS split case only?, this will 1448 * cause skipped skbs due to advancing loop btw, original 1449 * has that feature too 1450 */ 1451 if (tcp_skb_pcount(skb) <= 1) 1452 goto noop; 1453 1454 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1455 if (!in_sack) { 1456 /* TODO: head merge to next could be attempted here 1457 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1458 * though it might not be worth of the additional hassle 1459 * 1460 * ...we can probably just fallback to what was done 1461 * previously. We could try merging non-SACKed ones 1462 * as well but it probably isn't going to buy off 1463 * because later SACKs might again split them, and 1464 * it would make skb timestamp tracking considerably 1465 * harder problem. 1466 */ 1467 goto fallback; 1468 } 1469 1470 len = end_seq - TCP_SKB_CB(skb)->seq; 1471 BUG_ON(len < 0); 1472 BUG_ON(len > skb->len); 1473 1474 /* MSS boundaries should be honoured or else pcount will 1475 * severely break even though it makes things bit trickier. 1476 * Optimize common case to avoid most of the divides 1477 */ 1478 mss = tcp_skb_mss(skb); 1479 1480 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1481 * drop this restriction as unnecessary 1482 */ 1483 if (mss != tcp_skb_seglen(prev)) 1484 goto fallback; 1485 1486 if (len == mss) { 1487 pcount = 1; 1488 } else if (len < mss) { 1489 goto noop; 1490 } else { 1491 pcount = len / mss; 1492 len = pcount * mss; 1493 } 1494 } 1495 1496 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1497 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1498 goto fallback; 1499 1500 if (!tcp_skb_shift(prev, skb, pcount, len)) 1501 goto fallback; 1502 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1503 goto out; 1504 1505 /* Hole filled allows collapsing with the next as well, this is very 1506 * useful when hole on every nth skb pattern happens 1507 */ 1508 skb = skb_rb_next(prev); 1509 if (!skb) 1510 goto out; 1511 1512 if (!skb_can_shift(skb) || 1513 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1514 (mss != tcp_skb_seglen(skb))) 1515 goto out; 1516 1517 len = skb->len; 1518 pcount = tcp_skb_pcount(skb); 1519 if (tcp_skb_shift(prev, skb, pcount, len)) 1520 tcp_shifted_skb(sk, prev, skb, state, pcount, 1521 len, mss, 0); 1522 1523 out: 1524 return prev; 1525 1526 noop: 1527 return skb; 1528 1529 fallback: 1530 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1531 return NULL; 1532 } 1533 1534 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1535 struct tcp_sack_block *next_dup, 1536 struct tcp_sacktag_state *state, 1537 u32 start_seq, u32 end_seq, 1538 bool dup_sack_in) 1539 { 1540 struct tcp_sock *tp = tcp_sk(sk); 1541 struct sk_buff *tmp; 1542 1543 skb_rbtree_walk_from(skb) { 1544 int in_sack = 0; 1545 bool dup_sack = dup_sack_in; 1546 1547 /* queue is in-order => we can short-circuit the walk early */ 1548 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1549 break; 1550 1551 if (next_dup && 1552 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1553 in_sack = tcp_match_skb_to_sack(sk, skb, 1554 next_dup->start_seq, 1555 next_dup->end_seq); 1556 if (in_sack > 0) 1557 dup_sack = true; 1558 } 1559 1560 /* skb reference here is a bit tricky to get right, since 1561 * shifting can eat and free both this skb and the next, 1562 * so not even _safe variant of the loop is enough. 1563 */ 1564 if (in_sack <= 0) { 1565 tmp = tcp_shift_skb_data(sk, skb, state, 1566 start_seq, end_seq, dup_sack); 1567 if (tmp) { 1568 if (tmp != skb) { 1569 skb = tmp; 1570 continue; 1571 } 1572 1573 in_sack = 0; 1574 } else { 1575 in_sack = tcp_match_skb_to_sack(sk, skb, 1576 start_seq, 1577 end_seq); 1578 } 1579 } 1580 1581 if (unlikely(in_sack < 0)) 1582 break; 1583 1584 if (in_sack) { 1585 TCP_SKB_CB(skb)->sacked = 1586 tcp_sacktag_one(sk, 1587 state, 1588 TCP_SKB_CB(skb)->sacked, 1589 TCP_SKB_CB(skb)->seq, 1590 TCP_SKB_CB(skb)->end_seq, 1591 dup_sack, 1592 tcp_skb_pcount(skb), 1593 tcp_skb_timestamp_us(skb)); 1594 tcp_rate_skb_delivered(sk, skb, state->rate); 1595 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1596 list_del_init(&skb->tcp_tsorted_anchor); 1597 1598 if (!before(TCP_SKB_CB(skb)->seq, 1599 tcp_highest_sack_seq(tp))) 1600 tcp_advance_highest_sack(sk, skb); 1601 } 1602 } 1603 return skb; 1604 } 1605 1606 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1607 { 1608 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1609 struct sk_buff *skb; 1610 1611 while (*p) { 1612 parent = *p; 1613 skb = rb_to_skb(parent); 1614 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1615 p = &parent->rb_left; 1616 continue; 1617 } 1618 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1619 p = &parent->rb_right; 1620 continue; 1621 } 1622 return skb; 1623 } 1624 return NULL; 1625 } 1626 1627 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1628 u32 skip_to_seq) 1629 { 1630 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1631 return skb; 1632 1633 return tcp_sacktag_bsearch(sk, skip_to_seq); 1634 } 1635 1636 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1637 struct sock *sk, 1638 struct tcp_sack_block *next_dup, 1639 struct tcp_sacktag_state *state, 1640 u32 skip_to_seq) 1641 { 1642 if (!next_dup) 1643 return skb; 1644 1645 if (before(next_dup->start_seq, skip_to_seq)) { 1646 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1647 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1648 next_dup->start_seq, next_dup->end_seq, 1649 1); 1650 } 1651 1652 return skb; 1653 } 1654 1655 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1656 { 1657 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1658 } 1659 1660 static int 1661 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1662 u32 prior_snd_una, struct tcp_sacktag_state *state) 1663 { 1664 struct tcp_sock *tp = tcp_sk(sk); 1665 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1666 TCP_SKB_CB(ack_skb)->sacked); 1667 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1668 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1669 struct tcp_sack_block *cache; 1670 struct sk_buff *skb; 1671 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1672 int used_sacks; 1673 bool found_dup_sack = false; 1674 int i, j; 1675 int first_sack_index; 1676 1677 state->flag = 0; 1678 state->reord = tp->snd_nxt; 1679 1680 if (!tp->sacked_out) 1681 tcp_highest_sack_reset(sk); 1682 1683 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1684 num_sacks, prior_snd_una); 1685 if (found_dup_sack) { 1686 state->flag |= FLAG_DSACKING_ACK; 1687 tp->delivered++; /* A spurious retransmission is delivered */ 1688 } 1689 1690 /* Eliminate too old ACKs, but take into 1691 * account more or less fresh ones, they can 1692 * contain valid SACK info. 1693 */ 1694 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1695 return 0; 1696 1697 if (!tp->packets_out) 1698 goto out; 1699 1700 used_sacks = 0; 1701 first_sack_index = 0; 1702 for (i = 0; i < num_sacks; i++) { 1703 bool dup_sack = !i && found_dup_sack; 1704 1705 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1706 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1707 1708 if (!tcp_is_sackblock_valid(tp, dup_sack, 1709 sp[used_sacks].start_seq, 1710 sp[used_sacks].end_seq)) { 1711 int mib_idx; 1712 1713 if (dup_sack) { 1714 if (!tp->undo_marker) 1715 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1716 else 1717 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1718 } else { 1719 /* Don't count olds caused by ACK reordering */ 1720 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1721 !after(sp[used_sacks].end_seq, tp->snd_una)) 1722 continue; 1723 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1724 } 1725 1726 NET_INC_STATS(sock_net(sk), mib_idx); 1727 if (i == 0) 1728 first_sack_index = -1; 1729 continue; 1730 } 1731 1732 /* Ignore very old stuff early */ 1733 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1734 if (i == 0) 1735 first_sack_index = -1; 1736 continue; 1737 } 1738 1739 used_sacks++; 1740 } 1741 1742 /* order SACK blocks to allow in order walk of the retrans queue */ 1743 for (i = used_sacks - 1; i > 0; i--) { 1744 for (j = 0; j < i; j++) { 1745 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1746 swap(sp[j], sp[j + 1]); 1747 1748 /* Track where the first SACK block goes to */ 1749 if (j == first_sack_index) 1750 first_sack_index = j + 1; 1751 } 1752 } 1753 } 1754 1755 state->mss_now = tcp_current_mss(sk); 1756 skb = NULL; 1757 i = 0; 1758 1759 if (!tp->sacked_out) { 1760 /* It's already past, so skip checking against it */ 1761 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1762 } else { 1763 cache = tp->recv_sack_cache; 1764 /* Skip empty blocks in at head of the cache */ 1765 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1766 !cache->end_seq) 1767 cache++; 1768 } 1769 1770 while (i < used_sacks) { 1771 u32 start_seq = sp[i].start_seq; 1772 u32 end_seq = sp[i].end_seq; 1773 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1774 struct tcp_sack_block *next_dup = NULL; 1775 1776 if (found_dup_sack && ((i + 1) == first_sack_index)) 1777 next_dup = &sp[i + 1]; 1778 1779 /* Skip too early cached blocks */ 1780 while (tcp_sack_cache_ok(tp, cache) && 1781 !before(start_seq, cache->end_seq)) 1782 cache++; 1783 1784 /* Can skip some work by looking recv_sack_cache? */ 1785 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1786 after(end_seq, cache->start_seq)) { 1787 1788 /* Head todo? */ 1789 if (before(start_seq, cache->start_seq)) { 1790 skb = tcp_sacktag_skip(skb, sk, start_seq); 1791 skb = tcp_sacktag_walk(skb, sk, next_dup, 1792 state, 1793 start_seq, 1794 cache->start_seq, 1795 dup_sack); 1796 } 1797 1798 /* Rest of the block already fully processed? */ 1799 if (!after(end_seq, cache->end_seq)) 1800 goto advance_sp; 1801 1802 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1803 state, 1804 cache->end_seq); 1805 1806 /* ...tail remains todo... */ 1807 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1808 /* ...but better entrypoint exists! */ 1809 skb = tcp_highest_sack(sk); 1810 if (!skb) 1811 break; 1812 cache++; 1813 goto walk; 1814 } 1815 1816 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1817 /* Check overlap against next cached too (past this one already) */ 1818 cache++; 1819 continue; 1820 } 1821 1822 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1823 skb = tcp_highest_sack(sk); 1824 if (!skb) 1825 break; 1826 } 1827 skb = tcp_sacktag_skip(skb, sk, start_seq); 1828 1829 walk: 1830 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1831 start_seq, end_seq, dup_sack); 1832 1833 advance_sp: 1834 i++; 1835 } 1836 1837 /* Clear the head of the cache sack blocks so we can skip it next time */ 1838 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1839 tp->recv_sack_cache[i].start_seq = 0; 1840 tp->recv_sack_cache[i].end_seq = 0; 1841 } 1842 for (j = 0; j < used_sacks; j++) 1843 tp->recv_sack_cache[i++] = sp[j]; 1844 1845 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1846 tcp_check_sack_reordering(sk, state->reord, 0); 1847 1848 tcp_verify_left_out(tp); 1849 out: 1850 1851 #if FASTRETRANS_DEBUG > 0 1852 WARN_ON((int)tp->sacked_out < 0); 1853 WARN_ON((int)tp->lost_out < 0); 1854 WARN_ON((int)tp->retrans_out < 0); 1855 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1856 #endif 1857 return state->flag; 1858 } 1859 1860 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1861 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1862 */ 1863 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1864 { 1865 u32 holes; 1866 1867 holes = max(tp->lost_out, 1U); 1868 holes = min(holes, tp->packets_out); 1869 1870 if ((tp->sacked_out + holes) > tp->packets_out) { 1871 tp->sacked_out = tp->packets_out - holes; 1872 return true; 1873 } 1874 return false; 1875 } 1876 1877 /* If we receive more dupacks than we expected counting segments 1878 * in assumption of absent reordering, interpret this as reordering. 1879 * The only another reason could be bug in receiver TCP. 1880 */ 1881 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1882 { 1883 struct tcp_sock *tp = tcp_sk(sk); 1884 1885 if (!tcp_limit_reno_sacked(tp)) 1886 return; 1887 1888 tp->reordering = min_t(u32, tp->packets_out + addend, 1889 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1890 tp->reord_seen++; 1891 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1892 } 1893 1894 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1895 1896 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1897 { 1898 if (num_dupack) { 1899 struct tcp_sock *tp = tcp_sk(sk); 1900 u32 prior_sacked = tp->sacked_out; 1901 s32 delivered; 1902 1903 tp->sacked_out += num_dupack; 1904 tcp_check_reno_reordering(sk, 0); 1905 delivered = tp->sacked_out - prior_sacked; 1906 if (delivered > 0) 1907 tp->delivered += delivered; 1908 tcp_verify_left_out(tp); 1909 } 1910 } 1911 1912 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1913 1914 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1915 { 1916 struct tcp_sock *tp = tcp_sk(sk); 1917 1918 if (acked > 0) { 1919 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1920 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1921 if (acked - 1 >= tp->sacked_out) 1922 tp->sacked_out = 0; 1923 else 1924 tp->sacked_out -= acked - 1; 1925 } 1926 tcp_check_reno_reordering(sk, acked); 1927 tcp_verify_left_out(tp); 1928 } 1929 1930 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1931 { 1932 tp->sacked_out = 0; 1933 } 1934 1935 void tcp_clear_retrans(struct tcp_sock *tp) 1936 { 1937 tp->retrans_out = 0; 1938 tp->lost_out = 0; 1939 tp->undo_marker = 0; 1940 tp->undo_retrans = -1; 1941 tp->sacked_out = 0; 1942 } 1943 1944 static inline void tcp_init_undo(struct tcp_sock *tp) 1945 { 1946 tp->undo_marker = tp->snd_una; 1947 /* Retransmission still in flight may cause DSACKs later. */ 1948 tp->undo_retrans = tp->retrans_out ? : -1; 1949 } 1950 1951 static bool tcp_is_rack(const struct sock *sk) 1952 { 1953 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1954 } 1955 1956 /* If we detect SACK reneging, forget all SACK information 1957 * and reset tags completely, otherwise preserve SACKs. If receiver 1958 * dropped its ofo queue, we will know this due to reneging detection. 1959 */ 1960 static void tcp_timeout_mark_lost(struct sock *sk) 1961 { 1962 struct tcp_sock *tp = tcp_sk(sk); 1963 struct sk_buff *skb, *head; 1964 bool is_reneg; /* is receiver reneging on SACKs? */ 1965 1966 head = tcp_rtx_queue_head(sk); 1967 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1968 if (is_reneg) { 1969 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1970 tp->sacked_out = 0; 1971 /* Mark SACK reneging until we recover from this loss event. */ 1972 tp->is_sack_reneg = 1; 1973 } else if (tcp_is_reno(tp)) { 1974 tcp_reset_reno_sack(tp); 1975 } 1976 1977 skb = head; 1978 skb_rbtree_walk_from(skb) { 1979 if (is_reneg) 1980 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1981 else if (tcp_is_rack(sk) && skb != head && 1982 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1983 continue; /* Don't mark recently sent ones lost yet */ 1984 tcp_mark_skb_lost(sk, skb); 1985 } 1986 tcp_verify_left_out(tp); 1987 tcp_clear_all_retrans_hints(tp); 1988 } 1989 1990 /* Enter Loss state. */ 1991 void tcp_enter_loss(struct sock *sk) 1992 { 1993 const struct inet_connection_sock *icsk = inet_csk(sk); 1994 struct tcp_sock *tp = tcp_sk(sk); 1995 struct net *net = sock_net(sk); 1996 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1997 1998 tcp_timeout_mark_lost(sk); 1999 2000 /* Reduce ssthresh if it has not yet been made inside this window. */ 2001 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2002 !after(tp->high_seq, tp->snd_una) || 2003 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2004 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2005 tp->prior_cwnd = tp->snd_cwnd; 2006 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2007 tcp_ca_event(sk, CA_EVENT_LOSS); 2008 tcp_init_undo(tp); 2009 } 2010 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2011 tp->snd_cwnd_cnt = 0; 2012 tp->snd_cwnd_stamp = tcp_jiffies32; 2013 2014 /* Timeout in disordered state after receiving substantial DUPACKs 2015 * suggests that the degree of reordering is over-estimated. 2016 */ 2017 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2018 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2019 tp->reordering = min_t(unsigned int, tp->reordering, 2020 net->ipv4.sysctl_tcp_reordering); 2021 tcp_set_ca_state(sk, TCP_CA_Loss); 2022 tp->high_seq = tp->snd_nxt; 2023 tcp_ecn_queue_cwr(tp); 2024 2025 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2026 * loss recovery is underway except recurring timeout(s) on 2027 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2028 */ 2029 tp->frto = net->ipv4.sysctl_tcp_frto && 2030 (new_recovery || icsk->icsk_retransmits) && 2031 !inet_csk(sk)->icsk_mtup.probe_size; 2032 } 2033 2034 /* If ACK arrived pointing to a remembered SACK, it means that our 2035 * remembered SACKs do not reflect real state of receiver i.e. 2036 * receiver _host_ is heavily congested (or buggy). 2037 * 2038 * To avoid big spurious retransmission bursts due to transient SACK 2039 * scoreboard oddities that look like reneging, we give the receiver a 2040 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2041 * restore sanity to the SACK scoreboard. If the apparent reneging 2042 * persists until this RTO then we'll clear the SACK scoreboard. 2043 */ 2044 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2045 { 2046 if (flag & FLAG_SACK_RENEGING) { 2047 struct tcp_sock *tp = tcp_sk(sk); 2048 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2049 msecs_to_jiffies(10)); 2050 2051 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2052 delay, TCP_RTO_MAX); 2053 return true; 2054 } 2055 return false; 2056 } 2057 2058 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2059 * counter when SACK is enabled (without SACK, sacked_out is used for 2060 * that purpose). 2061 * 2062 * With reordering, holes may still be in flight, so RFC3517 recovery 2063 * uses pure sacked_out (total number of SACKed segments) even though 2064 * it violates the RFC that uses duplicate ACKs, often these are equal 2065 * but when e.g. out-of-window ACKs or packet duplication occurs, 2066 * they differ. Since neither occurs due to loss, TCP should really 2067 * ignore them. 2068 */ 2069 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2070 { 2071 return tp->sacked_out + 1; 2072 } 2073 2074 /* Linux NewReno/SACK/ECN state machine. 2075 * -------------------------------------- 2076 * 2077 * "Open" Normal state, no dubious events, fast path. 2078 * "Disorder" In all the respects it is "Open", 2079 * but requires a bit more attention. It is entered when 2080 * we see some SACKs or dupacks. It is split of "Open" 2081 * mainly to move some processing from fast path to slow one. 2082 * "CWR" CWND was reduced due to some Congestion Notification event. 2083 * It can be ECN, ICMP source quench, local device congestion. 2084 * "Recovery" CWND was reduced, we are fast-retransmitting. 2085 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2086 * 2087 * tcp_fastretrans_alert() is entered: 2088 * - each incoming ACK, if state is not "Open" 2089 * - when arrived ACK is unusual, namely: 2090 * * SACK 2091 * * Duplicate ACK. 2092 * * ECN ECE. 2093 * 2094 * Counting packets in flight is pretty simple. 2095 * 2096 * in_flight = packets_out - left_out + retrans_out 2097 * 2098 * packets_out is SND.NXT-SND.UNA counted in packets. 2099 * 2100 * retrans_out is number of retransmitted segments. 2101 * 2102 * left_out is number of segments left network, but not ACKed yet. 2103 * 2104 * left_out = sacked_out + lost_out 2105 * 2106 * sacked_out: Packets, which arrived to receiver out of order 2107 * and hence not ACKed. With SACKs this number is simply 2108 * amount of SACKed data. Even without SACKs 2109 * it is easy to give pretty reliable estimate of this number, 2110 * counting duplicate ACKs. 2111 * 2112 * lost_out: Packets lost by network. TCP has no explicit 2113 * "loss notification" feedback from network (for now). 2114 * It means that this number can be only _guessed_. 2115 * Actually, it is the heuristics to predict lossage that 2116 * distinguishes different algorithms. 2117 * 2118 * F.e. after RTO, when all the queue is considered as lost, 2119 * lost_out = packets_out and in_flight = retrans_out. 2120 * 2121 * Essentially, we have now a few algorithms detecting 2122 * lost packets. 2123 * 2124 * If the receiver supports SACK: 2125 * 2126 * RFC6675/3517: It is the conventional algorithm. A packet is 2127 * considered lost if the number of higher sequence packets 2128 * SACKed is greater than or equal the DUPACK thoreshold 2129 * (reordering). This is implemented in tcp_mark_head_lost and 2130 * tcp_update_scoreboard. 2131 * 2132 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2133 * (2017-) that checks timing instead of counting DUPACKs. 2134 * Essentially a packet is considered lost if it's not S/ACKed 2135 * after RTT + reordering_window, where both metrics are 2136 * dynamically measured and adjusted. This is implemented in 2137 * tcp_rack_mark_lost. 2138 * 2139 * If the receiver does not support SACK: 2140 * 2141 * NewReno (RFC6582): in Recovery we assume that one segment 2142 * is lost (classic Reno). While we are in Recovery and 2143 * a partial ACK arrives, we assume that one more packet 2144 * is lost (NewReno). This heuristics are the same in NewReno 2145 * and SACK. 2146 * 2147 * Really tricky (and requiring careful tuning) part of algorithm 2148 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2149 * The first determines the moment _when_ we should reduce CWND and, 2150 * hence, slow down forward transmission. In fact, it determines the moment 2151 * when we decide that hole is caused by loss, rather than by a reorder. 2152 * 2153 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2154 * holes, caused by lost packets. 2155 * 2156 * And the most logically complicated part of algorithm is undo 2157 * heuristics. We detect false retransmits due to both too early 2158 * fast retransmit (reordering) and underestimated RTO, analyzing 2159 * timestamps and D-SACKs. When we detect that some segments were 2160 * retransmitted by mistake and CWND reduction was wrong, we undo 2161 * window reduction and abort recovery phase. This logic is hidden 2162 * inside several functions named tcp_try_undo_<something>. 2163 */ 2164 2165 /* This function decides, when we should leave Disordered state 2166 * and enter Recovery phase, reducing congestion window. 2167 * 2168 * Main question: may we further continue forward transmission 2169 * with the same cwnd? 2170 */ 2171 static bool tcp_time_to_recover(struct sock *sk, int flag) 2172 { 2173 struct tcp_sock *tp = tcp_sk(sk); 2174 2175 /* Trick#1: The loss is proven. */ 2176 if (tp->lost_out) 2177 return true; 2178 2179 /* Not-A-Trick#2 : Classic rule... */ 2180 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2181 return true; 2182 2183 return false; 2184 } 2185 2186 /* Detect loss in event "A" above by marking head of queue up as lost. 2187 * For RFC3517 SACK, a segment is considered lost if it 2188 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2189 * the maximum SACKed segments to pass before reaching this limit. 2190 */ 2191 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2192 { 2193 struct tcp_sock *tp = tcp_sk(sk); 2194 struct sk_buff *skb; 2195 int cnt; 2196 /* Use SACK to deduce losses of new sequences sent during recovery */ 2197 const u32 loss_high = tp->snd_nxt; 2198 2199 WARN_ON(packets > tp->packets_out); 2200 skb = tp->lost_skb_hint; 2201 if (skb) { 2202 /* Head already handled? */ 2203 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2204 return; 2205 cnt = tp->lost_cnt_hint; 2206 } else { 2207 skb = tcp_rtx_queue_head(sk); 2208 cnt = 0; 2209 } 2210 2211 skb_rbtree_walk_from(skb) { 2212 /* TODO: do this better */ 2213 /* this is not the most efficient way to do this... */ 2214 tp->lost_skb_hint = skb; 2215 tp->lost_cnt_hint = cnt; 2216 2217 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2218 break; 2219 2220 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2221 cnt += tcp_skb_pcount(skb); 2222 2223 if (cnt > packets) 2224 break; 2225 2226 tcp_skb_mark_lost(tp, skb); 2227 2228 if (mark_head) 2229 break; 2230 } 2231 tcp_verify_left_out(tp); 2232 } 2233 2234 /* Account newly detected lost packet(s) */ 2235 2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2237 { 2238 struct tcp_sock *tp = tcp_sk(sk); 2239 2240 if (tcp_is_sack(tp)) { 2241 int sacked_upto = tp->sacked_out - tp->reordering; 2242 if (sacked_upto >= 0) 2243 tcp_mark_head_lost(sk, sacked_upto, 0); 2244 else if (fast_rexmit) 2245 tcp_mark_head_lost(sk, 1, 1); 2246 } 2247 } 2248 2249 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2250 { 2251 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2252 before(tp->rx_opt.rcv_tsecr, when); 2253 } 2254 2255 /* skb is spurious retransmitted if the returned timestamp echo 2256 * reply is prior to the skb transmission time 2257 */ 2258 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2259 const struct sk_buff *skb) 2260 { 2261 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2262 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2263 } 2264 2265 /* Nothing was retransmitted or returned timestamp is less 2266 * than timestamp of the first retransmission. 2267 */ 2268 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2269 { 2270 return tp->retrans_stamp && 2271 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2272 } 2273 2274 /* Undo procedures. */ 2275 2276 /* We can clear retrans_stamp when there are no retransmissions in the 2277 * window. It would seem that it is trivially available for us in 2278 * tp->retrans_out, however, that kind of assumptions doesn't consider 2279 * what will happen if errors occur when sending retransmission for the 2280 * second time. ...It could the that such segment has only 2281 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2282 * the head skb is enough except for some reneging corner cases that 2283 * are not worth the effort. 2284 * 2285 * Main reason for all this complexity is the fact that connection dying 2286 * time now depends on the validity of the retrans_stamp, in particular, 2287 * that successive retransmissions of a segment must not advance 2288 * retrans_stamp under any conditions. 2289 */ 2290 static bool tcp_any_retrans_done(const struct sock *sk) 2291 { 2292 const struct tcp_sock *tp = tcp_sk(sk); 2293 struct sk_buff *skb; 2294 2295 if (tp->retrans_out) 2296 return true; 2297 2298 skb = tcp_rtx_queue_head(sk); 2299 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2300 return true; 2301 2302 return false; 2303 } 2304 2305 static void DBGUNDO(struct sock *sk, const char *msg) 2306 { 2307 #if FASTRETRANS_DEBUG > 1 2308 struct tcp_sock *tp = tcp_sk(sk); 2309 struct inet_sock *inet = inet_sk(sk); 2310 2311 if (sk->sk_family == AF_INET) { 2312 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2313 msg, 2314 &inet->inet_daddr, ntohs(inet->inet_dport), 2315 tp->snd_cwnd, tcp_left_out(tp), 2316 tp->snd_ssthresh, tp->prior_ssthresh, 2317 tp->packets_out); 2318 } 2319 #if IS_ENABLED(CONFIG_IPV6) 2320 else if (sk->sk_family == AF_INET6) { 2321 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2322 msg, 2323 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2324 tp->snd_cwnd, tcp_left_out(tp), 2325 tp->snd_ssthresh, tp->prior_ssthresh, 2326 tp->packets_out); 2327 } 2328 #endif 2329 #endif 2330 } 2331 2332 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2333 { 2334 struct tcp_sock *tp = tcp_sk(sk); 2335 2336 if (unmark_loss) { 2337 struct sk_buff *skb; 2338 2339 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2340 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2341 } 2342 tp->lost_out = 0; 2343 tcp_clear_all_retrans_hints(tp); 2344 } 2345 2346 if (tp->prior_ssthresh) { 2347 const struct inet_connection_sock *icsk = inet_csk(sk); 2348 2349 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2350 2351 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2352 tp->snd_ssthresh = tp->prior_ssthresh; 2353 tcp_ecn_withdraw_cwr(tp); 2354 } 2355 } 2356 tp->snd_cwnd_stamp = tcp_jiffies32; 2357 tp->undo_marker = 0; 2358 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2359 } 2360 2361 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2362 { 2363 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2364 } 2365 2366 /* People celebrate: "We love our President!" */ 2367 static bool tcp_try_undo_recovery(struct sock *sk) 2368 { 2369 struct tcp_sock *tp = tcp_sk(sk); 2370 2371 if (tcp_may_undo(tp)) { 2372 int mib_idx; 2373 2374 /* Happy end! We did not retransmit anything 2375 * or our original transmission succeeded. 2376 */ 2377 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2378 tcp_undo_cwnd_reduction(sk, false); 2379 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2380 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2381 else 2382 mib_idx = LINUX_MIB_TCPFULLUNDO; 2383 2384 NET_INC_STATS(sock_net(sk), mib_idx); 2385 } else if (tp->rack.reo_wnd_persist) { 2386 tp->rack.reo_wnd_persist--; 2387 } 2388 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2389 /* Hold old state until something *above* high_seq 2390 * is ACKed. For Reno it is MUST to prevent false 2391 * fast retransmits (RFC2582). SACK TCP is safe. */ 2392 if (!tcp_any_retrans_done(sk)) 2393 tp->retrans_stamp = 0; 2394 return true; 2395 } 2396 tcp_set_ca_state(sk, TCP_CA_Open); 2397 tp->is_sack_reneg = 0; 2398 return false; 2399 } 2400 2401 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2402 static bool tcp_try_undo_dsack(struct sock *sk) 2403 { 2404 struct tcp_sock *tp = tcp_sk(sk); 2405 2406 if (tp->undo_marker && !tp->undo_retrans) { 2407 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2408 tp->rack.reo_wnd_persist + 1); 2409 DBGUNDO(sk, "D-SACK"); 2410 tcp_undo_cwnd_reduction(sk, false); 2411 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2412 return true; 2413 } 2414 return false; 2415 } 2416 2417 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2418 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2419 { 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 2422 if (frto_undo || tcp_may_undo(tp)) { 2423 tcp_undo_cwnd_reduction(sk, true); 2424 2425 DBGUNDO(sk, "partial loss"); 2426 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2427 if (frto_undo) 2428 NET_INC_STATS(sock_net(sk), 2429 LINUX_MIB_TCPSPURIOUSRTOS); 2430 inet_csk(sk)->icsk_retransmits = 0; 2431 if (frto_undo || tcp_is_sack(tp)) { 2432 tcp_set_ca_state(sk, TCP_CA_Open); 2433 tp->is_sack_reneg = 0; 2434 } 2435 return true; 2436 } 2437 return false; 2438 } 2439 2440 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2441 * It computes the number of packets to send (sndcnt) based on packets newly 2442 * delivered: 2443 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2444 * cwnd reductions across a full RTT. 2445 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2446 * But when the retransmits are acked without further losses, PRR 2447 * slow starts cwnd up to ssthresh to speed up the recovery. 2448 */ 2449 static void tcp_init_cwnd_reduction(struct sock *sk) 2450 { 2451 struct tcp_sock *tp = tcp_sk(sk); 2452 2453 tp->high_seq = tp->snd_nxt; 2454 tp->tlp_high_seq = 0; 2455 tp->snd_cwnd_cnt = 0; 2456 tp->prior_cwnd = tp->snd_cwnd; 2457 tp->prr_delivered = 0; 2458 tp->prr_out = 0; 2459 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2460 tcp_ecn_queue_cwr(tp); 2461 } 2462 2463 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2464 { 2465 struct tcp_sock *tp = tcp_sk(sk); 2466 int sndcnt = 0; 2467 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2468 2469 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2470 return; 2471 2472 tp->prr_delivered += newly_acked_sacked; 2473 if (delta < 0) { 2474 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2475 tp->prior_cwnd - 1; 2476 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2477 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2478 FLAG_RETRANS_DATA_ACKED) { 2479 sndcnt = min_t(int, delta, 2480 max_t(int, tp->prr_delivered - tp->prr_out, 2481 newly_acked_sacked) + 1); 2482 } else { 2483 sndcnt = min(delta, newly_acked_sacked); 2484 } 2485 /* Force a fast retransmit upon entering fast recovery */ 2486 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2487 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2488 } 2489 2490 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 2494 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2495 return; 2496 2497 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2498 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2499 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2500 tp->snd_cwnd = tp->snd_ssthresh; 2501 tp->snd_cwnd_stamp = tcp_jiffies32; 2502 } 2503 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2504 } 2505 2506 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2507 void tcp_enter_cwr(struct sock *sk) 2508 { 2509 struct tcp_sock *tp = tcp_sk(sk); 2510 2511 tp->prior_ssthresh = 0; 2512 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2513 tp->undo_marker = 0; 2514 tcp_init_cwnd_reduction(sk); 2515 tcp_set_ca_state(sk, TCP_CA_CWR); 2516 } 2517 } 2518 EXPORT_SYMBOL(tcp_enter_cwr); 2519 2520 static void tcp_try_keep_open(struct sock *sk) 2521 { 2522 struct tcp_sock *tp = tcp_sk(sk); 2523 int state = TCP_CA_Open; 2524 2525 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2526 state = TCP_CA_Disorder; 2527 2528 if (inet_csk(sk)->icsk_ca_state != state) { 2529 tcp_set_ca_state(sk, state); 2530 tp->high_seq = tp->snd_nxt; 2531 } 2532 } 2533 2534 static void tcp_try_to_open(struct sock *sk, int flag) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 2538 tcp_verify_left_out(tp); 2539 2540 if (!tcp_any_retrans_done(sk)) 2541 tp->retrans_stamp = 0; 2542 2543 if (flag & FLAG_ECE) 2544 tcp_enter_cwr(sk); 2545 2546 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2547 tcp_try_keep_open(sk); 2548 } 2549 } 2550 2551 static void tcp_mtup_probe_failed(struct sock *sk) 2552 { 2553 struct inet_connection_sock *icsk = inet_csk(sk); 2554 2555 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2556 icsk->icsk_mtup.probe_size = 0; 2557 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2558 } 2559 2560 static void tcp_mtup_probe_success(struct sock *sk) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 struct inet_connection_sock *icsk = inet_csk(sk); 2564 2565 /* FIXME: breaks with very large cwnd */ 2566 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2567 tp->snd_cwnd = tp->snd_cwnd * 2568 tcp_mss_to_mtu(sk, tp->mss_cache) / 2569 icsk->icsk_mtup.probe_size; 2570 tp->snd_cwnd_cnt = 0; 2571 tp->snd_cwnd_stamp = tcp_jiffies32; 2572 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2573 2574 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2575 icsk->icsk_mtup.probe_size = 0; 2576 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2577 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2578 } 2579 2580 /* Do a simple retransmit without using the backoff mechanisms in 2581 * tcp_timer. This is used for path mtu discovery. 2582 * The socket is already locked here. 2583 */ 2584 void tcp_simple_retransmit(struct sock *sk) 2585 { 2586 const struct inet_connection_sock *icsk = inet_csk(sk); 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 struct sk_buff *skb; 2589 unsigned int mss = tcp_current_mss(sk); 2590 2591 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2592 if (tcp_skb_seglen(skb) > mss && 2593 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2594 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2595 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2596 tp->retrans_out -= tcp_skb_pcount(skb); 2597 } 2598 tcp_skb_mark_lost_uncond_verify(tp, skb); 2599 } 2600 } 2601 2602 tcp_clear_retrans_hints_partial(tp); 2603 2604 if (!tp->lost_out) 2605 return; 2606 2607 if (tcp_is_reno(tp)) 2608 tcp_limit_reno_sacked(tp); 2609 2610 tcp_verify_left_out(tp); 2611 2612 /* Don't muck with the congestion window here. 2613 * Reason is that we do not increase amount of _data_ 2614 * in network, but units changed and effective 2615 * cwnd/ssthresh really reduced now. 2616 */ 2617 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2618 tp->high_seq = tp->snd_nxt; 2619 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2620 tp->prior_ssthresh = 0; 2621 tp->undo_marker = 0; 2622 tcp_set_ca_state(sk, TCP_CA_Loss); 2623 } 2624 tcp_xmit_retransmit_queue(sk); 2625 } 2626 EXPORT_SYMBOL(tcp_simple_retransmit); 2627 2628 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2629 { 2630 struct tcp_sock *tp = tcp_sk(sk); 2631 int mib_idx; 2632 2633 if (tcp_is_reno(tp)) 2634 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2635 else 2636 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2637 2638 NET_INC_STATS(sock_net(sk), mib_idx); 2639 2640 tp->prior_ssthresh = 0; 2641 tcp_init_undo(tp); 2642 2643 if (!tcp_in_cwnd_reduction(sk)) { 2644 if (!ece_ack) 2645 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2646 tcp_init_cwnd_reduction(sk); 2647 } 2648 tcp_set_ca_state(sk, TCP_CA_Recovery); 2649 } 2650 2651 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2652 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2653 */ 2654 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2655 int *rexmit) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 bool recovered = !before(tp->snd_una, tp->high_seq); 2659 2660 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2661 tcp_try_undo_loss(sk, false)) 2662 return; 2663 2664 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2665 /* Step 3.b. A timeout is spurious if not all data are 2666 * lost, i.e., never-retransmitted data are (s)acked. 2667 */ 2668 if ((flag & FLAG_ORIG_SACK_ACKED) && 2669 tcp_try_undo_loss(sk, true)) 2670 return; 2671 2672 if (after(tp->snd_nxt, tp->high_seq)) { 2673 if (flag & FLAG_DATA_SACKED || num_dupack) 2674 tp->frto = 0; /* Step 3.a. loss was real */ 2675 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2676 tp->high_seq = tp->snd_nxt; 2677 /* Step 2.b. Try send new data (but deferred until cwnd 2678 * is updated in tcp_ack()). Otherwise fall back to 2679 * the conventional recovery. 2680 */ 2681 if (!tcp_write_queue_empty(sk) && 2682 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2683 *rexmit = REXMIT_NEW; 2684 return; 2685 } 2686 tp->frto = 0; 2687 } 2688 } 2689 2690 if (recovered) { 2691 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2692 tcp_try_undo_recovery(sk); 2693 return; 2694 } 2695 if (tcp_is_reno(tp)) { 2696 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2697 * delivered. Lower inflight to clock out (re)tranmissions. 2698 */ 2699 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2700 tcp_add_reno_sack(sk, num_dupack); 2701 else if (flag & FLAG_SND_UNA_ADVANCED) 2702 tcp_reset_reno_sack(tp); 2703 } 2704 *rexmit = REXMIT_LOST; 2705 } 2706 2707 /* Undo during fast recovery after partial ACK. */ 2708 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2709 { 2710 struct tcp_sock *tp = tcp_sk(sk); 2711 2712 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2713 /* Plain luck! Hole if filled with delayed 2714 * packet, rather than with a retransmit. Check reordering. 2715 */ 2716 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2717 2718 /* We are getting evidence that the reordering degree is higher 2719 * than we realized. If there are no retransmits out then we 2720 * can undo. Otherwise we clock out new packets but do not 2721 * mark more packets lost or retransmit more. 2722 */ 2723 if (tp->retrans_out) 2724 return true; 2725 2726 if (!tcp_any_retrans_done(sk)) 2727 tp->retrans_stamp = 0; 2728 2729 DBGUNDO(sk, "partial recovery"); 2730 tcp_undo_cwnd_reduction(sk, true); 2731 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2732 tcp_try_keep_open(sk); 2733 return true; 2734 } 2735 return false; 2736 } 2737 2738 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2739 { 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 2742 if (tcp_rtx_queue_empty(sk)) 2743 return; 2744 2745 if (unlikely(tcp_is_reno(tp))) { 2746 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2747 } else if (tcp_is_rack(sk)) { 2748 u32 prior_retrans = tp->retrans_out; 2749 2750 tcp_rack_mark_lost(sk); 2751 if (prior_retrans > tp->retrans_out) 2752 *ack_flag |= FLAG_LOST_RETRANS; 2753 } 2754 } 2755 2756 static bool tcp_force_fast_retransmit(struct sock *sk) 2757 { 2758 struct tcp_sock *tp = tcp_sk(sk); 2759 2760 return after(tcp_highest_sack_seq(tp), 2761 tp->snd_una + tp->reordering * tp->mss_cache); 2762 } 2763 2764 /* Process an event, which can update packets-in-flight not trivially. 2765 * Main goal of this function is to calculate new estimate for left_out, 2766 * taking into account both packets sitting in receiver's buffer and 2767 * packets lost by network. 2768 * 2769 * Besides that it updates the congestion state when packet loss or ECN 2770 * is detected. But it does not reduce the cwnd, it is done by the 2771 * congestion control later. 2772 * 2773 * It does _not_ decide what to send, it is made in function 2774 * tcp_xmit_retransmit_queue(). 2775 */ 2776 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2777 int num_dupack, int *ack_flag, int *rexmit) 2778 { 2779 struct inet_connection_sock *icsk = inet_csk(sk); 2780 struct tcp_sock *tp = tcp_sk(sk); 2781 int fast_rexmit = 0, flag = *ack_flag; 2782 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2783 tcp_force_fast_retransmit(sk)); 2784 2785 if (!tp->packets_out && tp->sacked_out) 2786 tp->sacked_out = 0; 2787 2788 /* Now state machine starts. 2789 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2790 if (flag & FLAG_ECE) 2791 tp->prior_ssthresh = 0; 2792 2793 /* B. In all the states check for reneging SACKs. */ 2794 if (tcp_check_sack_reneging(sk, flag)) 2795 return; 2796 2797 /* C. Check consistency of the current state. */ 2798 tcp_verify_left_out(tp); 2799 2800 /* D. Check state exit conditions. State can be terminated 2801 * when high_seq is ACKed. */ 2802 if (icsk->icsk_ca_state == TCP_CA_Open) { 2803 WARN_ON(tp->retrans_out != 0); 2804 tp->retrans_stamp = 0; 2805 } else if (!before(tp->snd_una, tp->high_seq)) { 2806 switch (icsk->icsk_ca_state) { 2807 case TCP_CA_CWR: 2808 /* CWR is to be held something *above* high_seq 2809 * is ACKed for CWR bit to reach receiver. */ 2810 if (tp->snd_una != tp->high_seq) { 2811 tcp_end_cwnd_reduction(sk); 2812 tcp_set_ca_state(sk, TCP_CA_Open); 2813 } 2814 break; 2815 2816 case TCP_CA_Recovery: 2817 if (tcp_is_reno(tp)) 2818 tcp_reset_reno_sack(tp); 2819 if (tcp_try_undo_recovery(sk)) 2820 return; 2821 tcp_end_cwnd_reduction(sk); 2822 break; 2823 } 2824 } 2825 2826 /* E. Process state. */ 2827 switch (icsk->icsk_ca_state) { 2828 case TCP_CA_Recovery: 2829 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2830 if (tcp_is_reno(tp)) 2831 tcp_add_reno_sack(sk, num_dupack); 2832 } else { 2833 if (tcp_try_undo_partial(sk, prior_snd_una)) 2834 return; 2835 /* Partial ACK arrived. Force fast retransmit. */ 2836 do_lost = tcp_force_fast_retransmit(sk); 2837 } 2838 if (tcp_try_undo_dsack(sk)) { 2839 tcp_try_keep_open(sk); 2840 return; 2841 } 2842 tcp_identify_packet_loss(sk, ack_flag); 2843 break; 2844 case TCP_CA_Loss: 2845 tcp_process_loss(sk, flag, num_dupack, rexmit); 2846 tcp_identify_packet_loss(sk, ack_flag); 2847 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2848 (*ack_flag & FLAG_LOST_RETRANS))) 2849 return; 2850 /* Change state if cwnd is undone or retransmits are lost */ 2851 fallthrough; 2852 default: 2853 if (tcp_is_reno(tp)) { 2854 if (flag & FLAG_SND_UNA_ADVANCED) 2855 tcp_reset_reno_sack(tp); 2856 tcp_add_reno_sack(sk, num_dupack); 2857 } 2858 2859 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2860 tcp_try_undo_dsack(sk); 2861 2862 tcp_identify_packet_loss(sk, ack_flag); 2863 if (!tcp_time_to_recover(sk, flag)) { 2864 tcp_try_to_open(sk, flag); 2865 return; 2866 } 2867 2868 /* MTU probe failure: don't reduce cwnd */ 2869 if (icsk->icsk_ca_state < TCP_CA_CWR && 2870 icsk->icsk_mtup.probe_size && 2871 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2872 tcp_mtup_probe_failed(sk); 2873 /* Restores the reduction we did in tcp_mtup_probe() */ 2874 tp->snd_cwnd++; 2875 tcp_simple_retransmit(sk); 2876 return; 2877 } 2878 2879 /* Otherwise enter Recovery state */ 2880 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2881 fast_rexmit = 1; 2882 } 2883 2884 if (!tcp_is_rack(sk) && do_lost) 2885 tcp_update_scoreboard(sk, fast_rexmit); 2886 *rexmit = REXMIT_LOST; 2887 } 2888 2889 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2890 { 2891 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2892 struct tcp_sock *tp = tcp_sk(sk); 2893 2894 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2895 /* If the remote keeps returning delayed ACKs, eventually 2896 * the min filter would pick it up and overestimate the 2897 * prop. delay when it expires. Skip suspected delayed ACKs. 2898 */ 2899 return; 2900 } 2901 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2902 rtt_us ? : jiffies_to_usecs(1)); 2903 } 2904 2905 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2906 long seq_rtt_us, long sack_rtt_us, 2907 long ca_rtt_us, struct rate_sample *rs) 2908 { 2909 const struct tcp_sock *tp = tcp_sk(sk); 2910 2911 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2912 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2913 * Karn's algorithm forbids taking RTT if some retransmitted data 2914 * is acked (RFC6298). 2915 */ 2916 if (seq_rtt_us < 0) 2917 seq_rtt_us = sack_rtt_us; 2918 2919 /* RTTM Rule: A TSecr value received in a segment is used to 2920 * update the averaged RTT measurement only if the segment 2921 * acknowledges some new data, i.e., only if it advances the 2922 * left edge of the send window. 2923 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2924 */ 2925 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2926 flag & FLAG_ACKED) { 2927 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2928 2929 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2930 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2931 ca_rtt_us = seq_rtt_us; 2932 } 2933 } 2934 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2935 if (seq_rtt_us < 0) 2936 return false; 2937 2938 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2939 * always taken together with ACK, SACK, or TS-opts. Any negative 2940 * values will be skipped with the seq_rtt_us < 0 check above. 2941 */ 2942 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2943 tcp_rtt_estimator(sk, seq_rtt_us); 2944 tcp_set_rto(sk); 2945 2946 /* RFC6298: only reset backoff on valid RTT measurement. */ 2947 inet_csk(sk)->icsk_backoff = 0; 2948 return true; 2949 } 2950 2951 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2952 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2953 { 2954 struct rate_sample rs; 2955 long rtt_us = -1L; 2956 2957 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2958 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2959 2960 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2961 } 2962 2963 2964 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2965 { 2966 const struct inet_connection_sock *icsk = inet_csk(sk); 2967 2968 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2969 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2970 } 2971 2972 /* Restart timer after forward progress on connection. 2973 * RFC2988 recommends to restart timer to now+rto. 2974 */ 2975 void tcp_rearm_rto(struct sock *sk) 2976 { 2977 const struct inet_connection_sock *icsk = inet_csk(sk); 2978 struct tcp_sock *tp = tcp_sk(sk); 2979 2980 /* If the retrans timer is currently being used by Fast Open 2981 * for SYN-ACK retrans purpose, stay put. 2982 */ 2983 if (rcu_access_pointer(tp->fastopen_rsk)) 2984 return; 2985 2986 if (!tp->packets_out) { 2987 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2988 } else { 2989 u32 rto = inet_csk(sk)->icsk_rto; 2990 /* Offset the time elapsed after installing regular RTO */ 2991 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2992 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2993 s64 delta_us = tcp_rto_delta_us(sk); 2994 /* delta_us may not be positive if the socket is locked 2995 * when the retrans timer fires and is rescheduled. 2996 */ 2997 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2998 } 2999 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3000 TCP_RTO_MAX); 3001 } 3002 } 3003 3004 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3005 static void tcp_set_xmit_timer(struct sock *sk) 3006 { 3007 if (!tcp_schedule_loss_probe(sk, true)) 3008 tcp_rearm_rto(sk); 3009 } 3010 3011 /* If we get here, the whole TSO packet has not been acked. */ 3012 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3013 { 3014 struct tcp_sock *tp = tcp_sk(sk); 3015 u32 packets_acked; 3016 3017 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3018 3019 packets_acked = tcp_skb_pcount(skb); 3020 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3021 return 0; 3022 packets_acked -= tcp_skb_pcount(skb); 3023 3024 if (packets_acked) { 3025 BUG_ON(tcp_skb_pcount(skb) == 0); 3026 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3027 } 3028 3029 return packets_acked; 3030 } 3031 3032 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3033 u32 prior_snd_una) 3034 { 3035 const struct skb_shared_info *shinfo; 3036 3037 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3038 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3039 return; 3040 3041 shinfo = skb_shinfo(skb); 3042 if (!before(shinfo->tskey, prior_snd_una) && 3043 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3044 tcp_skb_tsorted_save(skb) { 3045 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3046 } tcp_skb_tsorted_restore(skb); 3047 } 3048 } 3049 3050 /* Remove acknowledged frames from the retransmission queue. If our packet 3051 * is before the ack sequence we can discard it as it's confirmed to have 3052 * arrived at the other end. 3053 */ 3054 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3055 u32 prior_snd_una, 3056 struct tcp_sacktag_state *sack) 3057 { 3058 const struct inet_connection_sock *icsk = inet_csk(sk); 3059 u64 first_ackt, last_ackt; 3060 struct tcp_sock *tp = tcp_sk(sk); 3061 u32 prior_sacked = tp->sacked_out; 3062 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3063 struct sk_buff *skb, *next; 3064 bool fully_acked = true; 3065 long sack_rtt_us = -1L; 3066 long seq_rtt_us = -1L; 3067 long ca_rtt_us = -1L; 3068 u32 pkts_acked = 0; 3069 u32 last_in_flight = 0; 3070 bool rtt_update; 3071 int flag = 0; 3072 3073 first_ackt = 0; 3074 3075 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3076 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3077 const u32 start_seq = scb->seq; 3078 u8 sacked = scb->sacked; 3079 u32 acked_pcount; 3080 3081 tcp_ack_tstamp(sk, skb, prior_snd_una); 3082 3083 /* Determine how many packets and what bytes were acked, tso and else */ 3084 if (after(scb->end_seq, tp->snd_una)) { 3085 if (tcp_skb_pcount(skb) == 1 || 3086 !after(tp->snd_una, scb->seq)) 3087 break; 3088 3089 acked_pcount = tcp_tso_acked(sk, skb); 3090 if (!acked_pcount) 3091 break; 3092 fully_acked = false; 3093 } else { 3094 acked_pcount = tcp_skb_pcount(skb); 3095 } 3096 3097 if (unlikely(sacked & TCPCB_RETRANS)) { 3098 if (sacked & TCPCB_SACKED_RETRANS) 3099 tp->retrans_out -= acked_pcount; 3100 flag |= FLAG_RETRANS_DATA_ACKED; 3101 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3102 last_ackt = tcp_skb_timestamp_us(skb); 3103 WARN_ON_ONCE(last_ackt == 0); 3104 if (!first_ackt) 3105 first_ackt = last_ackt; 3106 3107 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3108 if (before(start_seq, reord)) 3109 reord = start_seq; 3110 if (!after(scb->end_seq, tp->high_seq)) 3111 flag |= FLAG_ORIG_SACK_ACKED; 3112 } 3113 3114 if (sacked & TCPCB_SACKED_ACKED) { 3115 tp->sacked_out -= acked_pcount; 3116 } else if (tcp_is_sack(tp)) { 3117 tp->delivered += acked_pcount; 3118 if (!tcp_skb_spurious_retrans(tp, skb)) 3119 tcp_rack_advance(tp, sacked, scb->end_seq, 3120 tcp_skb_timestamp_us(skb)); 3121 } 3122 if (sacked & TCPCB_LOST) 3123 tp->lost_out -= acked_pcount; 3124 3125 tp->packets_out -= acked_pcount; 3126 pkts_acked += acked_pcount; 3127 tcp_rate_skb_delivered(sk, skb, sack->rate); 3128 3129 /* Initial outgoing SYN's get put onto the write_queue 3130 * just like anything else we transmit. It is not 3131 * true data, and if we misinform our callers that 3132 * this ACK acks real data, we will erroneously exit 3133 * connection startup slow start one packet too 3134 * quickly. This is severely frowned upon behavior. 3135 */ 3136 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3137 flag |= FLAG_DATA_ACKED; 3138 } else { 3139 flag |= FLAG_SYN_ACKED; 3140 tp->retrans_stamp = 0; 3141 } 3142 3143 if (!fully_acked) 3144 break; 3145 3146 next = skb_rb_next(skb); 3147 if (unlikely(skb == tp->retransmit_skb_hint)) 3148 tp->retransmit_skb_hint = NULL; 3149 if (unlikely(skb == tp->lost_skb_hint)) 3150 tp->lost_skb_hint = NULL; 3151 tcp_highest_sack_replace(sk, skb, next); 3152 tcp_rtx_queue_unlink_and_free(skb, sk); 3153 } 3154 3155 if (!skb) 3156 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3157 3158 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3159 tp->snd_up = tp->snd_una; 3160 3161 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3162 flag |= FLAG_SACK_RENEGING; 3163 3164 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3165 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3166 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3167 3168 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3169 last_in_flight && !prior_sacked && fully_acked && 3170 sack->rate->prior_delivered + 1 == tp->delivered && 3171 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3172 /* Conservatively mark a delayed ACK. It's typically 3173 * from a lone runt packet over the round trip to 3174 * a receiver w/o out-of-order or CE events. 3175 */ 3176 flag |= FLAG_ACK_MAYBE_DELAYED; 3177 } 3178 } 3179 if (sack->first_sackt) { 3180 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3181 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3182 } 3183 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3184 ca_rtt_us, sack->rate); 3185 3186 if (flag & FLAG_ACKED) { 3187 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3188 if (unlikely(icsk->icsk_mtup.probe_size && 3189 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3190 tcp_mtup_probe_success(sk); 3191 } 3192 3193 if (tcp_is_reno(tp)) { 3194 tcp_remove_reno_sacks(sk, pkts_acked); 3195 3196 /* If any of the cumulatively ACKed segments was 3197 * retransmitted, non-SACK case cannot confirm that 3198 * progress was due to original transmission due to 3199 * lack of TCPCB_SACKED_ACKED bits even if some of 3200 * the packets may have been never retransmitted. 3201 */ 3202 if (flag & FLAG_RETRANS_DATA_ACKED) 3203 flag &= ~FLAG_ORIG_SACK_ACKED; 3204 } else { 3205 int delta; 3206 3207 /* Non-retransmitted hole got filled? That's reordering */ 3208 if (before(reord, prior_fack)) 3209 tcp_check_sack_reordering(sk, reord, 0); 3210 3211 delta = prior_sacked - tp->sacked_out; 3212 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3213 } 3214 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3215 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3216 tcp_skb_timestamp_us(skb))) { 3217 /* Do not re-arm RTO if the sack RTT is measured from data sent 3218 * after when the head was last (re)transmitted. Otherwise the 3219 * timeout may continue to extend in loss recovery. 3220 */ 3221 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3222 } 3223 3224 if (icsk->icsk_ca_ops->pkts_acked) { 3225 struct ack_sample sample = { .pkts_acked = pkts_acked, 3226 .rtt_us = sack->rate->rtt_us, 3227 .in_flight = last_in_flight }; 3228 3229 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3230 } 3231 3232 #if FASTRETRANS_DEBUG > 0 3233 WARN_ON((int)tp->sacked_out < 0); 3234 WARN_ON((int)tp->lost_out < 0); 3235 WARN_ON((int)tp->retrans_out < 0); 3236 if (!tp->packets_out && tcp_is_sack(tp)) { 3237 icsk = inet_csk(sk); 3238 if (tp->lost_out) { 3239 pr_debug("Leak l=%u %d\n", 3240 tp->lost_out, icsk->icsk_ca_state); 3241 tp->lost_out = 0; 3242 } 3243 if (tp->sacked_out) { 3244 pr_debug("Leak s=%u %d\n", 3245 tp->sacked_out, icsk->icsk_ca_state); 3246 tp->sacked_out = 0; 3247 } 3248 if (tp->retrans_out) { 3249 pr_debug("Leak r=%u %d\n", 3250 tp->retrans_out, icsk->icsk_ca_state); 3251 tp->retrans_out = 0; 3252 } 3253 } 3254 #endif 3255 return flag; 3256 } 3257 3258 static void tcp_ack_probe(struct sock *sk) 3259 { 3260 struct inet_connection_sock *icsk = inet_csk(sk); 3261 struct sk_buff *head = tcp_send_head(sk); 3262 const struct tcp_sock *tp = tcp_sk(sk); 3263 3264 /* Was it a usable window open? */ 3265 if (!head) 3266 return; 3267 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3268 icsk->icsk_backoff = 0; 3269 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3270 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3271 * This function is not for random using! 3272 */ 3273 } else { 3274 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3275 3276 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3277 when, TCP_RTO_MAX); 3278 } 3279 } 3280 3281 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3282 { 3283 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3284 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3285 } 3286 3287 /* Decide wheather to run the increase function of congestion control. */ 3288 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3289 { 3290 /* If reordering is high then always grow cwnd whenever data is 3291 * delivered regardless of its ordering. Otherwise stay conservative 3292 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3293 * new SACK or ECE mark may first advance cwnd here and later reduce 3294 * cwnd in tcp_fastretrans_alert() based on more states. 3295 */ 3296 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3297 return flag & FLAG_FORWARD_PROGRESS; 3298 3299 return flag & FLAG_DATA_ACKED; 3300 } 3301 3302 /* The "ultimate" congestion control function that aims to replace the rigid 3303 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3304 * It's called toward the end of processing an ACK with precise rate 3305 * information. All transmission or retransmission are delayed afterwards. 3306 */ 3307 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3308 int flag, const struct rate_sample *rs) 3309 { 3310 const struct inet_connection_sock *icsk = inet_csk(sk); 3311 3312 if (icsk->icsk_ca_ops->cong_control) { 3313 icsk->icsk_ca_ops->cong_control(sk, rs); 3314 return; 3315 } 3316 3317 if (tcp_in_cwnd_reduction(sk)) { 3318 /* Reduce cwnd if state mandates */ 3319 tcp_cwnd_reduction(sk, acked_sacked, flag); 3320 } else if (tcp_may_raise_cwnd(sk, flag)) { 3321 /* Advance cwnd if state allows */ 3322 tcp_cong_avoid(sk, ack, acked_sacked); 3323 } 3324 tcp_update_pacing_rate(sk); 3325 } 3326 3327 /* Check that window update is acceptable. 3328 * The function assumes that snd_una<=ack<=snd_next. 3329 */ 3330 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3331 const u32 ack, const u32 ack_seq, 3332 const u32 nwin) 3333 { 3334 return after(ack, tp->snd_una) || 3335 after(ack_seq, tp->snd_wl1) || 3336 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3337 } 3338 3339 /* If we update tp->snd_una, also update tp->bytes_acked */ 3340 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3341 { 3342 u32 delta = ack - tp->snd_una; 3343 3344 sock_owned_by_me((struct sock *)tp); 3345 tp->bytes_acked += delta; 3346 tp->snd_una = ack; 3347 } 3348 3349 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3350 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3351 { 3352 u32 delta = seq - tp->rcv_nxt; 3353 3354 sock_owned_by_me((struct sock *)tp); 3355 tp->bytes_received += delta; 3356 WRITE_ONCE(tp->rcv_nxt, seq); 3357 } 3358 3359 /* Update our send window. 3360 * 3361 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3362 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3363 */ 3364 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3365 u32 ack_seq) 3366 { 3367 struct tcp_sock *tp = tcp_sk(sk); 3368 int flag = 0; 3369 u32 nwin = ntohs(tcp_hdr(skb)->window); 3370 3371 if (likely(!tcp_hdr(skb)->syn)) 3372 nwin <<= tp->rx_opt.snd_wscale; 3373 3374 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3375 flag |= FLAG_WIN_UPDATE; 3376 tcp_update_wl(tp, ack_seq); 3377 3378 if (tp->snd_wnd != nwin) { 3379 tp->snd_wnd = nwin; 3380 3381 /* Note, it is the only place, where 3382 * fast path is recovered for sending TCP. 3383 */ 3384 tp->pred_flags = 0; 3385 tcp_fast_path_check(sk); 3386 3387 if (!tcp_write_queue_empty(sk)) 3388 tcp_slow_start_after_idle_check(sk); 3389 3390 if (nwin > tp->max_window) { 3391 tp->max_window = nwin; 3392 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3393 } 3394 } 3395 } 3396 3397 tcp_snd_una_update(tp, ack); 3398 3399 return flag; 3400 } 3401 3402 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3403 u32 *last_oow_ack_time) 3404 { 3405 if (*last_oow_ack_time) { 3406 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3407 3408 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3409 NET_INC_STATS(net, mib_idx); 3410 return true; /* rate-limited: don't send yet! */ 3411 } 3412 } 3413 3414 *last_oow_ack_time = tcp_jiffies32; 3415 3416 return false; /* not rate-limited: go ahead, send dupack now! */ 3417 } 3418 3419 /* Return true if we're currently rate-limiting out-of-window ACKs and 3420 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3421 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3422 * attacks that send repeated SYNs or ACKs for the same connection. To 3423 * do this, we do not send a duplicate SYNACK or ACK if the remote 3424 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3425 */ 3426 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3427 int mib_idx, u32 *last_oow_ack_time) 3428 { 3429 /* Data packets without SYNs are not likely part of an ACK loop. */ 3430 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3431 !tcp_hdr(skb)->syn) 3432 return false; 3433 3434 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3435 } 3436 3437 /* RFC 5961 7 [ACK Throttling] */ 3438 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3439 { 3440 /* unprotected vars, we dont care of overwrites */ 3441 static u32 challenge_timestamp; 3442 static unsigned int challenge_count; 3443 struct tcp_sock *tp = tcp_sk(sk); 3444 struct net *net = sock_net(sk); 3445 u32 count, now; 3446 3447 /* First check our per-socket dupack rate limit. */ 3448 if (__tcp_oow_rate_limited(net, 3449 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3450 &tp->last_oow_ack_time)) 3451 return; 3452 3453 /* Then check host-wide RFC 5961 rate limit. */ 3454 now = jiffies / HZ; 3455 if (now != challenge_timestamp) { 3456 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3457 u32 half = (ack_limit + 1) >> 1; 3458 3459 challenge_timestamp = now; 3460 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3461 } 3462 count = READ_ONCE(challenge_count); 3463 if (count > 0) { 3464 WRITE_ONCE(challenge_count, count - 1); 3465 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3466 tcp_send_ack(sk); 3467 } 3468 } 3469 3470 static void tcp_store_ts_recent(struct tcp_sock *tp) 3471 { 3472 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3473 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3474 } 3475 3476 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3477 { 3478 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3479 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3480 * extra check below makes sure this can only happen 3481 * for pure ACK frames. -DaveM 3482 * 3483 * Not only, also it occurs for expired timestamps. 3484 */ 3485 3486 if (tcp_paws_check(&tp->rx_opt, 0)) 3487 tcp_store_ts_recent(tp); 3488 } 3489 } 3490 3491 /* This routine deals with acks during a TLP episode. 3492 * We mark the end of a TLP episode on receiving TLP dupack or when 3493 * ack is after tlp_high_seq. 3494 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3495 */ 3496 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3497 { 3498 struct tcp_sock *tp = tcp_sk(sk); 3499 3500 if (before(ack, tp->tlp_high_seq)) 3501 return; 3502 3503 if (flag & FLAG_DSACKING_ACK) { 3504 /* This DSACK means original and TLP probe arrived; no loss */ 3505 tp->tlp_high_seq = 0; 3506 } else if (after(ack, tp->tlp_high_seq)) { 3507 /* ACK advances: there was a loss, so reduce cwnd. Reset 3508 * tlp_high_seq in tcp_init_cwnd_reduction() 3509 */ 3510 tcp_init_cwnd_reduction(sk); 3511 tcp_set_ca_state(sk, TCP_CA_CWR); 3512 tcp_end_cwnd_reduction(sk); 3513 tcp_try_keep_open(sk); 3514 NET_INC_STATS(sock_net(sk), 3515 LINUX_MIB_TCPLOSSPROBERECOVERY); 3516 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3517 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3518 /* Pure dupack: original and TLP probe arrived; no loss */ 3519 tp->tlp_high_seq = 0; 3520 } 3521 } 3522 3523 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3524 { 3525 const struct inet_connection_sock *icsk = inet_csk(sk); 3526 3527 if (icsk->icsk_ca_ops->in_ack_event) 3528 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3529 } 3530 3531 /* Congestion control has updated the cwnd already. So if we're in 3532 * loss recovery then now we do any new sends (for FRTO) or 3533 * retransmits (for CA_Loss or CA_recovery) that make sense. 3534 */ 3535 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3536 { 3537 struct tcp_sock *tp = tcp_sk(sk); 3538 3539 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3540 return; 3541 3542 if (unlikely(rexmit == REXMIT_NEW)) { 3543 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3544 TCP_NAGLE_OFF); 3545 if (after(tp->snd_nxt, tp->high_seq)) 3546 return; 3547 tp->frto = 0; 3548 } 3549 tcp_xmit_retransmit_queue(sk); 3550 } 3551 3552 /* Returns the number of packets newly acked or sacked by the current ACK */ 3553 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3554 { 3555 const struct net *net = sock_net(sk); 3556 struct tcp_sock *tp = tcp_sk(sk); 3557 u32 delivered; 3558 3559 delivered = tp->delivered - prior_delivered; 3560 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3561 if (flag & FLAG_ECE) { 3562 tp->delivered_ce += delivered; 3563 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3564 } 3565 return delivered; 3566 } 3567 3568 /* This routine deals with incoming acks, but not outgoing ones. */ 3569 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3570 { 3571 struct inet_connection_sock *icsk = inet_csk(sk); 3572 struct tcp_sock *tp = tcp_sk(sk); 3573 struct tcp_sacktag_state sack_state; 3574 struct rate_sample rs = { .prior_delivered = 0 }; 3575 u32 prior_snd_una = tp->snd_una; 3576 bool is_sack_reneg = tp->is_sack_reneg; 3577 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3578 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3579 int num_dupack = 0; 3580 int prior_packets = tp->packets_out; 3581 u32 delivered = tp->delivered; 3582 u32 lost = tp->lost; 3583 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3584 u32 prior_fack; 3585 3586 sack_state.first_sackt = 0; 3587 sack_state.rate = &rs; 3588 3589 /* We very likely will need to access rtx queue. */ 3590 prefetch(sk->tcp_rtx_queue.rb_node); 3591 3592 /* If the ack is older than previous acks 3593 * then we can probably ignore it. 3594 */ 3595 if (before(ack, prior_snd_una)) { 3596 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3597 if (before(ack, prior_snd_una - tp->max_window)) { 3598 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3599 tcp_send_challenge_ack(sk, skb); 3600 return -1; 3601 } 3602 goto old_ack; 3603 } 3604 3605 /* If the ack includes data we haven't sent yet, discard 3606 * this segment (RFC793 Section 3.9). 3607 */ 3608 if (after(ack, tp->snd_nxt)) 3609 return -1; 3610 3611 if (after(ack, prior_snd_una)) { 3612 flag |= FLAG_SND_UNA_ADVANCED; 3613 icsk->icsk_retransmits = 0; 3614 3615 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3616 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3617 if (icsk->icsk_clean_acked) 3618 icsk->icsk_clean_acked(sk, ack); 3619 #endif 3620 } 3621 3622 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3623 rs.prior_in_flight = tcp_packets_in_flight(tp); 3624 3625 /* ts_recent update must be made after we are sure that the packet 3626 * is in window. 3627 */ 3628 if (flag & FLAG_UPDATE_TS_RECENT) 3629 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3630 3631 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3632 FLAG_SND_UNA_ADVANCED) { 3633 /* Window is constant, pure forward advance. 3634 * No more checks are required. 3635 * Note, we use the fact that SND.UNA>=SND.WL2. 3636 */ 3637 tcp_update_wl(tp, ack_seq); 3638 tcp_snd_una_update(tp, ack); 3639 flag |= FLAG_WIN_UPDATE; 3640 3641 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3642 3643 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3644 } else { 3645 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3646 3647 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3648 flag |= FLAG_DATA; 3649 else 3650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3651 3652 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3653 3654 if (TCP_SKB_CB(skb)->sacked) 3655 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3656 &sack_state); 3657 3658 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3659 flag |= FLAG_ECE; 3660 ack_ev_flags |= CA_ACK_ECE; 3661 } 3662 3663 if (flag & FLAG_WIN_UPDATE) 3664 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3665 3666 tcp_in_ack_event(sk, ack_ev_flags); 3667 } 3668 3669 /* This is a deviation from RFC3168 since it states that: 3670 * "When the TCP data sender is ready to set the CWR bit after reducing 3671 * the congestion window, it SHOULD set the CWR bit only on the first 3672 * new data packet that it transmits." 3673 * We accept CWR on pure ACKs to be more robust 3674 * with widely-deployed TCP implementations that do this. 3675 */ 3676 tcp_ecn_accept_cwr(sk, skb); 3677 3678 /* We passed data and got it acked, remove any soft error 3679 * log. Something worked... 3680 */ 3681 sk->sk_err_soft = 0; 3682 icsk->icsk_probes_out = 0; 3683 tp->rcv_tstamp = tcp_jiffies32; 3684 if (!prior_packets) 3685 goto no_queue; 3686 3687 /* See if we can take anything off of the retransmit queue. */ 3688 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3689 3690 tcp_rack_update_reo_wnd(sk, &rs); 3691 3692 if (tp->tlp_high_seq) 3693 tcp_process_tlp_ack(sk, ack, flag); 3694 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3695 if (flag & FLAG_SET_XMIT_TIMER) 3696 tcp_set_xmit_timer(sk); 3697 3698 if (tcp_ack_is_dubious(sk, flag)) { 3699 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3700 num_dupack = 1; 3701 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3702 if (!(flag & FLAG_DATA)) 3703 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3704 } 3705 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3706 &rexmit); 3707 } 3708 3709 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3710 sk_dst_confirm(sk); 3711 3712 delivered = tcp_newly_delivered(sk, delivered, flag); 3713 lost = tp->lost - lost; /* freshly marked lost */ 3714 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3715 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3716 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3717 tcp_xmit_recovery(sk, rexmit); 3718 return 1; 3719 3720 no_queue: 3721 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3722 if (flag & FLAG_DSACKING_ACK) { 3723 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3724 &rexmit); 3725 tcp_newly_delivered(sk, delivered, flag); 3726 } 3727 /* If this ack opens up a zero window, clear backoff. It was 3728 * being used to time the probes, and is probably far higher than 3729 * it needs to be for normal retransmission. 3730 */ 3731 tcp_ack_probe(sk); 3732 3733 if (tp->tlp_high_seq) 3734 tcp_process_tlp_ack(sk, ack, flag); 3735 return 1; 3736 3737 old_ack: 3738 /* If data was SACKed, tag it and see if we should send more data. 3739 * If data was DSACKed, see if we can undo a cwnd reduction. 3740 */ 3741 if (TCP_SKB_CB(skb)->sacked) { 3742 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3743 &sack_state); 3744 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3745 &rexmit); 3746 tcp_newly_delivered(sk, delivered, flag); 3747 tcp_xmit_recovery(sk, rexmit); 3748 } 3749 3750 return 0; 3751 } 3752 3753 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3754 bool syn, struct tcp_fastopen_cookie *foc, 3755 bool exp_opt) 3756 { 3757 /* Valid only in SYN or SYN-ACK with an even length. */ 3758 if (!foc || !syn || len < 0 || (len & 1)) 3759 return; 3760 3761 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3762 len <= TCP_FASTOPEN_COOKIE_MAX) 3763 memcpy(foc->val, cookie, len); 3764 else if (len != 0) 3765 len = -1; 3766 foc->len = len; 3767 foc->exp = exp_opt; 3768 } 3769 3770 static void smc_parse_options(const struct tcphdr *th, 3771 struct tcp_options_received *opt_rx, 3772 const unsigned char *ptr, 3773 int opsize) 3774 { 3775 #if IS_ENABLED(CONFIG_SMC) 3776 if (static_branch_unlikely(&tcp_have_smc)) { 3777 if (th->syn && !(opsize & 1) && 3778 opsize >= TCPOLEN_EXP_SMC_BASE && 3779 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3780 opt_rx->smc_ok = 1; 3781 } 3782 #endif 3783 } 3784 3785 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3786 * value on success. 3787 */ 3788 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3789 { 3790 const unsigned char *ptr = (const unsigned char *)(th + 1); 3791 int length = (th->doff * 4) - sizeof(struct tcphdr); 3792 u16 mss = 0; 3793 3794 while (length > 0) { 3795 int opcode = *ptr++; 3796 int opsize; 3797 3798 switch (opcode) { 3799 case TCPOPT_EOL: 3800 return mss; 3801 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3802 length--; 3803 continue; 3804 default: 3805 if (length < 2) 3806 return mss; 3807 opsize = *ptr++; 3808 if (opsize < 2) /* "silly options" */ 3809 return mss; 3810 if (opsize > length) 3811 return mss; /* fail on partial options */ 3812 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3813 u16 in_mss = get_unaligned_be16(ptr); 3814 3815 if (in_mss) { 3816 if (user_mss && user_mss < in_mss) 3817 in_mss = user_mss; 3818 mss = in_mss; 3819 } 3820 } 3821 ptr += opsize - 2; 3822 length -= opsize; 3823 } 3824 } 3825 return mss; 3826 } 3827 3828 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3829 * But, this can also be called on packets in the established flow when 3830 * the fast version below fails. 3831 */ 3832 void tcp_parse_options(const struct net *net, 3833 const struct sk_buff *skb, 3834 struct tcp_options_received *opt_rx, int estab, 3835 struct tcp_fastopen_cookie *foc) 3836 { 3837 const unsigned char *ptr; 3838 const struct tcphdr *th = tcp_hdr(skb); 3839 int length = (th->doff * 4) - sizeof(struct tcphdr); 3840 3841 ptr = (const unsigned char *)(th + 1); 3842 opt_rx->saw_tstamp = 0; 3843 3844 while (length > 0) { 3845 int opcode = *ptr++; 3846 int opsize; 3847 3848 switch (opcode) { 3849 case TCPOPT_EOL: 3850 return; 3851 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3852 length--; 3853 continue; 3854 default: 3855 if (length < 2) 3856 return; 3857 opsize = *ptr++; 3858 if (opsize < 2) /* "silly options" */ 3859 return; 3860 if (opsize > length) 3861 return; /* don't parse partial options */ 3862 switch (opcode) { 3863 case TCPOPT_MSS: 3864 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3865 u16 in_mss = get_unaligned_be16(ptr); 3866 if (in_mss) { 3867 if (opt_rx->user_mss && 3868 opt_rx->user_mss < in_mss) 3869 in_mss = opt_rx->user_mss; 3870 opt_rx->mss_clamp = in_mss; 3871 } 3872 } 3873 break; 3874 case TCPOPT_WINDOW: 3875 if (opsize == TCPOLEN_WINDOW && th->syn && 3876 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3877 __u8 snd_wscale = *(__u8 *)ptr; 3878 opt_rx->wscale_ok = 1; 3879 if (snd_wscale > TCP_MAX_WSCALE) { 3880 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3881 __func__, 3882 snd_wscale, 3883 TCP_MAX_WSCALE); 3884 snd_wscale = TCP_MAX_WSCALE; 3885 } 3886 opt_rx->snd_wscale = snd_wscale; 3887 } 3888 break; 3889 case TCPOPT_TIMESTAMP: 3890 if ((opsize == TCPOLEN_TIMESTAMP) && 3891 ((estab && opt_rx->tstamp_ok) || 3892 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3893 opt_rx->saw_tstamp = 1; 3894 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3895 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3896 } 3897 break; 3898 case TCPOPT_SACK_PERM: 3899 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3900 !estab && net->ipv4.sysctl_tcp_sack) { 3901 opt_rx->sack_ok = TCP_SACK_SEEN; 3902 tcp_sack_reset(opt_rx); 3903 } 3904 break; 3905 3906 case TCPOPT_SACK: 3907 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3908 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3909 opt_rx->sack_ok) { 3910 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3911 } 3912 break; 3913 #ifdef CONFIG_TCP_MD5SIG 3914 case TCPOPT_MD5SIG: 3915 /* 3916 * The MD5 Hash has already been 3917 * checked (see tcp_v{4,6}_do_rcv()). 3918 */ 3919 break; 3920 #endif 3921 case TCPOPT_FASTOPEN: 3922 tcp_parse_fastopen_option( 3923 opsize - TCPOLEN_FASTOPEN_BASE, 3924 ptr, th->syn, foc, false); 3925 break; 3926 3927 case TCPOPT_EXP: 3928 /* Fast Open option shares code 254 using a 3929 * 16 bits magic number. 3930 */ 3931 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3932 get_unaligned_be16(ptr) == 3933 TCPOPT_FASTOPEN_MAGIC) 3934 tcp_parse_fastopen_option(opsize - 3935 TCPOLEN_EXP_FASTOPEN_BASE, 3936 ptr + 2, th->syn, foc, true); 3937 else 3938 smc_parse_options(th, opt_rx, ptr, 3939 opsize); 3940 break; 3941 3942 } 3943 ptr += opsize-2; 3944 length -= opsize; 3945 } 3946 } 3947 } 3948 EXPORT_SYMBOL(tcp_parse_options); 3949 3950 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3951 { 3952 const __be32 *ptr = (const __be32 *)(th + 1); 3953 3954 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3955 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3956 tp->rx_opt.saw_tstamp = 1; 3957 ++ptr; 3958 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3959 ++ptr; 3960 if (*ptr) 3961 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3962 else 3963 tp->rx_opt.rcv_tsecr = 0; 3964 return true; 3965 } 3966 return false; 3967 } 3968 3969 /* Fast parse options. This hopes to only see timestamps. 3970 * If it is wrong it falls back on tcp_parse_options(). 3971 */ 3972 static bool tcp_fast_parse_options(const struct net *net, 3973 const struct sk_buff *skb, 3974 const struct tcphdr *th, struct tcp_sock *tp) 3975 { 3976 /* In the spirit of fast parsing, compare doff directly to constant 3977 * values. Because equality is used, short doff can be ignored here. 3978 */ 3979 if (th->doff == (sizeof(*th) / 4)) { 3980 tp->rx_opt.saw_tstamp = 0; 3981 return false; 3982 } else if (tp->rx_opt.tstamp_ok && 3983 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3984 if (tcp_parse_aligned_timestamp(tp, th)) 3985 return true; 3986 } 3987 3988 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3989 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3990 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3991 3992 return true; 3993 } 3994 3995 #ifdef CONFIG_TCP_MD5SIG 3996 /* 3997 * Parse MD5 Signature option 3998 */ 3999 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4000 { 4001 int length = (th->doff << 2) - sizeof(*th); 4002 const u8 *ptr = (const u8 *)(th + 1); 4003 4004 /* If not enough data remaining, we can short cut */ 4005 while (length >= TCPOLEN_MD5SIG) { 4006 int opcode = *ptr++; 4007 int opsize; 4008 4009 switch (opcode) { 4010 case TCPOPT_EOL: 4011 return NULL; 4012 case TCPOPT_NOP: 4013 length--; 4014 continue; 4015 default: 4016 opsize = *ptr++; 4017 if (opsize < 2 || opsize > length) 4018 return NULL; 4019 if (opcode == TCPOPT_MD5SIG) 4020 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4021 } 4022 ptr += opsize - 2; 4023 length -= opsize; 4024 } 4025 return NULL; 4026 } 4027 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4028 #endif 4029 4030 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4031 * 4032 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4033 * it can pass through stack. So, the following predicate verifies that 4034 * this segment is not used for anything but congestion avoidance or 4035 * fast retransmit. Moreover, we even are able to eliminate most of such 4036 * second order effects, if we apply some small "replay" window (~RTO) 4037 * to timestamp space. 4038 * 4039 * All these measures still do not guarantee that we reject wrapped ACKs 4040 * on networks with high bandwidth, when sequence space is recycled fastly, 4041 * but it guarantees that such events will be very rare and do not affect 4042 * connection seriously. This doesn't look nice, but alas, PAWS is really 4043 * buggy extension. 4044 * 4045 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4046 * states that events when retransmit arrives after original data are rare. 4047 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4048 * the biggest problem on large power networks even with minor reordering. 4049 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4050 * up to bandwidth of 18Gigabit/sec. 8) ] 4051 */ 4052 4053 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4054 { 4055 const struct tcp_sock *tp = tcp_sk(sk); 4056 const struct tcphdr *th = tcp_hdr(skb); 4057 u32 seq = TCP_SKB_CB(skb)->seq; 4058 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4059 4060 return (/* 1. Pure ACK with correct sequence number. */ 4061 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4062 4063 /* 2. ... and duplicate ACK. */ 4064 ack == tp->snd_una && 4065 4066 /* 3. ... and does not update window. */ 4067 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4068 4069 /* 4. ... and sits in replay window. */ 4070 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4071 } 4072 4073 static inline bool tcp_paws_discard(const struct sock *sk, 4074 const struct sk_buff *skb) 4075 { 4076 const struct tcp_sock *tp = tcp_sk(sk); 4077 4078 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4079 !tcp_disordered_ack(sk, skb); 4080 } 4081 4082 /* Check segment sequence number for validity. 4083 * 4084 * Segment controls are considered valid, if the segment 4085 * fits to the window after truncation to the window. Acceptability 4086 * of data (and SYN, FIN, of course) is checked separately. 4087 * See tcp_data_queue(), for example. 4088 * 4089 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4090 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4091 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4092 * (borrowed from freebsd) 4093 */ 4094 4095 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4096 { 4097 return !before(end_seq, tp->rcv_wup) && 4098 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4099 } 4100 4101 /* When we get a reset we do this. */ 4102 void tcp_reset(struct sock *sk) 4103 { 4104 trace_tcp_receive_reset(sk); 4105 4106 /* We want the right error as BSD sees it (and indeed as we do). */ 4107 switch (sk->sk_state) { 4108 case TCP_SYN_SENT: 4109 sk->sk_err = ECONNREFUSED; 4110 break; 4111 case TCP_CLOSE_WAIT: 4112 sk->sk_err = EPIPE; 4113 break; 4114 case TCP_CLOSE: 4115 return; 4116 default: 4117 sk->sk_err = ECONNRESET; 4118 } 4119 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4120 smp_wmb(); 4121 4122 tcp_write_queue_purge(sk); 4123 tcp_done(sk); 4124 4125 if (!sock_flag(sk, SOCK_DEAD)) 4126 sk->sk_error_report(sk); 4127 } 4128 4129 /* 4130 * Process the FIN bit. This now behaves as it is supposed to work 4131 * and the FIN takes effect when it is validly part of sequence 4132 * space. Not before when we get holes. 4133 * 4134 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4135 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4136 * TIME-WAIT) 4137 * 4138 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4139 * close and we go into CLOSING (and later onto TIME-WAIT) 4140 * 4141 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4142 */ 4143 void tcp_fin(struct sock *sk) 4144 { 4145 struct tcp_sock *tp = tcp_sk(sk); 4146 4147 inet_csk_schedule_ack(sk); 4148 4149 sk->sk_shutdown |= RCV_SHUTDOWN; 4150 sock_set_flag(sk, SOCK_DONE); 4151 4152 switch (sk->sk_state) { 4153 case TCP_SYN_RECV: 4154 case TCP_ESTABLISHED: 4155 /* Move to CLOSE_WAIT */ 4156 tcp_set_state(sk, TCP_CLOSE_WAIT); 4157 inet_csk_enter_pingpong_mode(sk); 4158 break; 4159 4160 case TCP_CLOSE_WAIT: 4161 case TCP_CLOSING: 4162 /* Received a retransmission of the FIN, do 4163 * nothing. 4164 */ 4165 break; 4166 case TCP_LAST_ACK: 4167 /* RFC793: Remain in the LAST-ACK state. */ 4168 break; 4169 4170 case TCP_FIN_WAIT1: 4171 /* This case occurs when a simultaneous close 4172 * happens, we must ack the received FIN and 4173 * enter the CLOSING state. 4174 */ 4175 tcp_send_ack(sk); 4176 tcp_set_state(sk, TCP_CLOSING); 4177 break; 4178 case TCP_FIN_WAIT2: 4179 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4180 tcp_send_ack(sk); 4181 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4182 break; 4183 default: 4184 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4185 * cases we should never reach this piece of code. 4186 */ 4187 pr_err("%s: Impossible, sk->sk_state=%d\n", 4188 __func__, sk->sk_state); 4189 break; 4190 } 4191 4192 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4193 * Probably, we should reset in this case. For now drop them. 4194 */ 4195 skb_rbtree_purge(&tp->out_of_order_queue); 4196 if (tcp_is_sack(tp)) 4197 tcp_sack_reset(&tp->rx_opt); 4198 sk_mem_reclaim(sk); 4199 4200 if (!sock_flag(sk, SOCK_DEAD)) { 4201 sk->sk_state_change(sk); 4202 4203 /* Do not send POLL_HUP for half duplex close. */ 4204 if (sk->sk_shutdown == SHUTDOWN_MASK || 4205 sk->sk_state == TCP_CLOSE) 4206 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4207 else 4208 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4209 } 4210 } 4211 4212 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4213 u32 end_seq) 4214 { 4215 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4216 if (before(seq, sp->start_seq)) 4217 sp->start_seq = seq; 4218 if (after(end_seq, sp->end_seq)) 4219 sp->end_seq = end_seq; 4220 return true; 4221 } 4222 return false; 4223 } 4224 4225 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4226 { 4227 struct tcp_sock *tp = tcp_sk(sk); 4228 4229 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4230 int mib_idx; 4231 4232 if (before(seq, tp->rcv_nxt)) 4233 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4234 else 4235 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4236 4237 NET_INC_STATS(sock_net(sk), mib_idx); 4238 4239 tp->rx_opt.dsack = 1; 4240 tp->duplicate_sack[0].start_seq = seq; 4241 tp->duplicate_sack[0].end_seq = end_seq; 4242 } 4243 } 4244 4245 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4246 { 4247 struct tcp_sock *tp = tcp_sk(sk); 4248 4249 if (!tp->rx_opt.dsack) 4250 tcp_dsack_set(sk, seq, end_seq); 4251 else 4252 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4253 } 4254 4255 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4256 { 4257 /* When the ACK path fails or drops most ACKs, the sender would 4258 * timeout and spuriously retransmit the same segment repeatedly. 4259 * The receiver remembers and reflects via DSACKs. Leverage the 4260 * DSACK state and change the txhash to re-route speculatively. 4261 */ 4262 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4263 sk_rethink_txhash(sk); 4264 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4265 } 4266 } 4267 4268 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4269 { 4270 struct tcp_sock *tp = tcp_sk(sk); 4271 4272 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4273 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4274 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4275 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4276 4277 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4278 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4279 4280 tcp_rcv_spurious_retrans(sk, skb); 4281 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4282 end_seq = tp->rcv_nxt; 4283 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4284 } 4285 } 4286 4287 tcp_send_ack(sk); 4288 } 4289 4290 /* These routines update the SACK block as out-of-order packets arrive or 4291 * in-order packets close up the sequence space. 4292 */ 4293 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4294 { 4295 int this_sack; 4296 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4297 struct tcp_sack_block *swalk = sp + 1; 4298 4299 /* See if the recent change to the first SACK eats into 4300 * or hits the sequence space of other SACK blocks, if so coalesce. 4301 */ 4302 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4303 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4304 int i; 4305 4306 /* Zap SWALK, by moving every further SACK up by one slot. 4307 * Decrease num_sacks. 4308 */ 4309 tp->rx_opt.num_sacks--; 4310 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4311 sp[i] = sp[i + 1]; 4312 continue; 4313 } 4314 this_sack++, swalk++; 4315 } 4316 } 4317 4318 static void tcp_sack_compress_send_ack(struct sock *sk) 4319 { 4320 struct tcp_sock *tp = tcp_sk(sk); 4321 4322 if (!tp->compressed_ack) 4323 return; 4324 4325 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4326 __sock_put(sk); 4327 4328 /* Since we have to send one ack finally, 4329 * substract one from tp->compressed_ack to keep 4330 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4331 */ 4332 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4333 tp->compressed_ack - 1); 4334 4335 tp->compressed_ack = 0; 4336 tcp_send_ack(sk); 4337 } 4338 4339 /* Reasonable amount of sack blocks included in TCP SACK option 4340 * The max is 4, but this becomes 3 if TCP timestamps are there. 4341 * Given that SACK packets might be lost, be conservative and use 2. 4342 */ 4343 #define TCP_SACK_BLOCKS_EXPECTED 2 4344 4345 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4346 { 4347 struct tcp_sock *tp = tcp_sk(sk); 4348 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4349 int cur_sacks = tp->rx_opt.num_sacks; 4350 int this_sack; 4351 4352 if (!cur_sacks) 4353 goto new_sack; 4354 4355 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4356 if (tcp_sack_extend(sp, seq, end_seq)) { 4357 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4358 tcp_sack_compress_send_ack(sk); 4359 /* Rotate this_sack to the first one. */ 4360 for (; this_sack > 0; this_sack--, sp--) 4361 swap(*sp, *(sp - 1)); 4362 if (cur_sacks > 1) 4363 tcp_sack_maybe_coalesce(tp); 4364 return; 4365 } 4366 } 4367 4368 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4369 tcp_sack_compress_send_ack(sk); 4370 4371 /* Could not find an adjacent existing SACK, build a new one, 4372 * put it at the front, and shift everyone else down. We 4373 * always know there is at least one SACK present already here. 4374 * 4375 * If the sack array is full, forget about the last one. 4376 */ 4377 if (this_sack >= TCP_NUM_SACKS) { 4378 this_sack--; 4379 tp->rx_opt.num_sacks--; 4380 sp--; 4381 } 4382 for (; this_sack > 0; this_sack--, sp--) 4383 *sp = *(sp - 1); 4384 4385 new_sack: 4386 /* Build the new head SACK, and we're done. */ 4387 sp->start_seq = seq; 4388 sp->end_seq = end_seq; 4389 tp->rx_opt.num_sacks++; 4390 } 4391 4392 /* RCV.NXT advances, some SACKs should be eaten. */ 4393 4394 static void tcp_sack_remove(struct tcp_sock *tp) 4395 { 4396 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4397 int num_sacks = tp->rx_opt.num_sacks; 4398 int this_sack; 4399 4400 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4401 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4402 tp->rx_opt.num_sacks = 0; 4403 return; 4404 } 4405 4406 for (this_sack = 0; this_sack < num_sacks;) { 4407 /* Check if the start of the sack is covered by RCV.NXT. */ 4408 if (!before(tp->rcv_nxt, sp->start_seq)) { 4409 int i; 4410 4411 /* RCV.NXT must cover all the block! */ 4412 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4413 4414 /* Zap this SACK, by moving forward any other SACKS. */ 4415 for (i = this_sack+1; i < num_sacks; i++) 4416 tp->selective_acks[i-1] = tp->selective_acks[i]; 4417 num_sacks--; 4418 continue; 4419 } 4420 this_sack++; 4421 sp++; 4422 } 4423 tp->rx_opt.num_sacks = num_sacks; 4424 } 4425 4426 /** 4427 * tcp_try_coalesce - try to merge skb to prior one 4428 * @sk: socket 4429 * @dest: destination queue 4430 * @to: prior buffer 4431 * @from: buffer to add in queue 4432 * @fragstolen: pointer to boolean 4433 * 4434 * Before queueing skb @from after @to, try to merge them 4435 * to reduce overall memory use and queue lengths, if cost is small. 4436 * Packets in ofo or receive queues can stay a long time. 4437 * Better try to coalesce them right now to avoid future collapses. 4438 * Returns true if caller should free @from instead of queueing it 4439 */ 4440 static bool tcp_try_coalesce(struct sock *sk, 4441 struct sk_buff *to, 4442 struct sk_buff *from, 4443 bool *fragstolen) 4444 { 4445 int delta; 4446 4447 *fragstolen = false; 4448 4449 /* Its possible this segment overlaps with prior segment in queue */ 4450 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4451 return false; 4452 4453 if (!mptcp_skb_can_collapse(to, from)) 4454 return false; 4455 4456 #ifdef CONFIG_TLS_DEVICE 4457 if (from->decrypted != to->decrypted) 4458 return false; 4459 #endif 4460 4461 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4462 return false; 4463 4464 atomic_add(delta, &sk->sk_rmem_alloc); 4465 sk_mem_charge(sk, delta); 4466 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4467 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4468 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4469 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4470 4471 if (TCP_SKB_CB(from)->has_rxtstamp) { 4472 TCP_SKB_CB(to)->has_rxtstamp = true; 4473 to->tstamp = from->tstamp; 4474 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4475 } 4476 4477 return true; 4478 } 4479 4480 static bool tcp_ooo_try_coalesce(struct sock *sk, 4481 struct sk_buff *to, 4482 struct sk_buff *from, 4483 bool *fragstolen) 4484 { 4485 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4486 4487 /* In case tcp_drop() is called later, update to->gso_segs */ 4488 if (res) { 4489 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4490 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4491 4492 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4493 } 4494 return res; 4495 } 4496 4497 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4498 { 4499 sk_drops_add(sk, skb); 4500 __kfree_skb(skb); 4501 } 4502 4503 /* This one checks to see if we can put data from the 4504 * out_of_order queue into the receive_queue. 4505 */ 4506 static void tcp_ofo_queue(struct sock *sk) 4507 { 4508 struct tcp_sock *tp = tcp_sk(sk); 4509 __u32 dsack_high = tp->rcv_nxt; 4510 bool fin, fragstolen, eaten; 4511 struct sk_buff *skb, *tail; 4512 struct rb_node *p; 4513 4514 p = rb_first(&tp->out_of_order_queue); 4515 while (p) { 4516 skb = rb_to_skb(p); 4517 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4518 break; 4519 4520 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4521 __u32 dsack = dsack_high; 4522 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4523 dsack_high = TCP_SKB_CB(skb)->end_seq; 4524 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4525 } 4526 p = rb_next(p); 4527 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4528 4529 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4530 tcp_drop(sk, skb); 4531 continue; 4532 } 4533 4534 tail = skb_peek_tail(&sk->sk_receive_queue); 4535 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4536 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4537 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4538 if (!eaten) 4539 __skb_queue_tail(&sk->sk_receive_queue, skb); 4540 else 4541 kfree_skb_partial(skb, fragstolen); 4542 4543 if (unlikely(fin)) { 4544 tcp_fin(sk); 4545 /* tcp_fin() purges tp->out_of_order_queue, 4546 * so we must end this loop right now. 4547 */ 4548 break; 4549 } 4550 } 4551 } 4552 4553 static bool tcp_prune_ofo_queue(struct sock *sk); 4554 static int tcp_prune_queue(struct sock *sk); 4555 4556 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4557 unsigned int size) 4558 { 4559 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4560 !sk_rmem_schedule(sk, skb, size)) { 4561 4562 if (tcp_prune_queue(sk) < 0) 4563 return -1; 4564 4565 while (!sk_rmem_schedule(sk, skb, size)) { 4566 if (!tcp_prune_ofo_queue(sk)) 4567 return -1; 4568 } 4569 } 4570 return 0; 4571 } 4572 4573 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4574 { 4575 struct tcp_sock *tp = tcp_sk(sk); 4576 struct rb_node **p, *parent; 4577 struct sk_buff *skb1; 4578 u32 seq, end_seq; 4579 bool fragstolen; 4580 4581 tcp_ecn_check_ce(sk, skb); 4582 4583 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4585 tcp_drop(sk, skb); 4586 return; 4587 } 4588 4589 /* Disable header prediction. */ 4590 tp->pred_flags = 0; 4591 inet_csk_schedule_ack(sk); 4592 4593 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4594 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4595 seq = TCP_SKB_CB(skb)->seq; 4596 end_seq = TCP_SKB_CB(skb)->end_seq; 4597 4598 p = &tp->out_of_order_queue.rb_node; 4599 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4600 /* Initial out of order segment, build 1 SACK. */ 4601 if (tcp_is_sack(tp)) { 4602 tp->rx_opt.num_sacks = 1; 4603 tp->selective_acks[0].start_seq = seq; 4604 tp->selective_acks[0].end_seq = end_seq; 4605 } 4606 rb_link_node(&skb->rbnode, NULL, p); 4607 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4608 tp->ooo_last_skb = skb; 4609 goto end; 4610 } 4611 4612 /* In the typical case, we are adding an skb to the end of the list. 4613 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4614 */ 4615 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4616 skb, &fragstolen)) { 4617 coalesce_done: 4618 /* For non sack flows, do not grow window to force DUPACK 4619 * and trigger fast retransmit. 4620 */ 4621 if (tcp_is_sack(tp)) 4622 tcp_grow_window(sk, skb); 4623 kfree_skb_partial(skb, fragstolen); 4624 skb = NULL; 4625 goto add_sack; 4626 } 4627 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4628 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4629 parent = &tp->ooo_last_skb->rbnode; 4630 p = &parent->rb_right; 4631 goto insert; 4632 } 4633 4634 /* Find place to insert this segment. Handle overlaps on the way. */ 4635 parent = NULL; 4636 while (*p) { 4637 parent = *p; 4638 skb1 = rb_to_skb(parent); 4639 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4640 p = &parent->rb_left; 4641 continue; 4642 } 4643 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4644 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4645 /* All the bits are present. Drop. */ 4646 NET_INC_STATS(sock_net(sk), 4647 LINUX_MIB_TCPOFOMERGE); 4648 tcp_drop(sk, skb); 4649 skb = NULL; 4650 tcp_dsack_set(sk, seq, end_seq); 4651 goto add_sack; 4652 } 4653 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4654 /* Partial overlap. */ 4655 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4656 } else { 4657 /* skb's seq == skb1's seq and skb covers skb1. 4658 * Replace skb1 with skb. 4659 */ 4660 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4661 &tp->out_of_order_queue); 4662 tcp_dsack_extend(sk, 4663 TCP_SKB_CB(skb1)->seq, 4664 TCP_SKB_CB(skb1)->end_seq); 4665 NET_INC_STATS(sock_net(sk), 4666 LINUX_MIB_TCPOFOMERGE); 4667 tcp_drop(sk, skb1); 4668 goto merge_right; 4669 } 4670 } else if (tcp_ooo_try_coalesce(sk, skb1, 4671 skb, &fragstolen)) { 4672 goto coalesce_done; 4673 } 4674 p = &parent->rb_right; 4675 } 4676 insert: 4677 /* Insert segment into RB tree. */ 4678 rb_link_node(&skb->rbnode, parent, p); 4679 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4680 4681 merge_right: 4682 /* Remove other segments covered by skb. */ 4683 while ((skb1 = skb_rb_next(skb)) != NULL) { 4684 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4685 break; 4686 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4687 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4688 end_seq); 4689 break; 4690 } 4691 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4692 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4693 TCP_SKB_CB(skb1)->end_seq); 4694 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4695 tcp_drop(sk, skb1); 4696 } 4697 /* If there is no skb after us, we are the last_skb ! */ 4698 if (!skb1) 4699 tp->ooo_last_skb = skb; 4700 4701 add_sack: 4702 if (tcp_is_sack(tp)) 4703 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4704 end: 4705 if (skb) { 4706 /* For non sack flows, do not grow window to force DUPACK 4707 * and trigger fast retransmit. 4708 */ 4709 if (tcp_is_sack(tp)) 4710 tcp_grow_window(sk, skb); 4711 skb_condense(skb); 4712 skb_set_owner_r(skb, sk); 4713 } 4714 } 4715 4716 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4717 bool *fragstolen) 4718 { 4719 int eaten; 4720 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4721 4722 eaten = (tail && 4723 tcp_try_coalesce(sk, tail, 4724 skb, fragstolen)) ? 1 : 0; 4725 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4726 if (!eaten) { 4727 __skb_queue_tail(&sk->sk_receive_queue, skb); 4728 skb_set_owner_r(skb, sk); 4729 } 4730 return eaten; 4731 } 4732 4733 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4734 { 4735 struct sk_buff *skb; 4736 int err = -ENOMEM; 4737 int data_len = 0; 4738 bool fragstolen; 4739 4740 if (size == 0) 4741 return 0; 4742 4743 if (size > PAGE_SIZE) { 4744 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4745 4746 data_len = npages << PAGE_SHIFT; 4747 size = data_len + (size & ~PAGE_MASK); 4748 } 4749 skb = alloc_skb_with_frags(size - data_len, data_len, 4750 PAGE_ALLOC_COSTLY_ORDER, 4751 &err, sk->sk_allocation); 4752 if (!skb) 4753 goto err; 4754 4755 skb_put(skb, size - data_len); 4756 skb->data_len = data_len; 4757 skb->len = size; 4758 4759 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4760 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4761 goto err_free; 4762 } 4763 4764 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4765 if (err) 4766 goto err_free; 4767 4768 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4769 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4770 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4771 4772 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4773 WARN_ON_ONCE(fragstolen); /* should not happen */ 4774 __kfree_skb(skb); 4775 } 4776 return size; 4777 4778 err_free: 4779 kfree_skb(skb); 4780 err: 4781 return err; 4782 4783 } 4784 4785 void tcp_data_ready(struct sock *sk) 4786 { 4787 const struct tcp_sock *tp = tcp_sk(sk); 4788 int avail = tp->rcv_nxt - tp->copied_seq; 4789 4790 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4791 !sock_flag(sk, SOCK_DONE)) 4792 return; 4793 4794 sk->sk_data_ready(sk); 4795 } 4796 4797 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4798 { 4799 struct tcp_sock *tp = tcp_sk(sk); 4800 bool fragstolen; 4801 int eaten; 4802 4803 if (sk_is_mptcp(sk)) 4804 mptcp_incoming_options(sk, skb, &tp->rx_opt); 4805 4806 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4807 __kfree_skb(skb); 4808 return; 4809 } 4810 skb_dst_drop(skb); 4811 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4812 4813 tp->rx_opt.dsack = 0; 4814 4815 /* Queue data for delivery to the user. 4816 * Packets in sequence go to the receive queue. 4817 * Out of sequence packets to the out_of_order_queue. 4818 */ 4819 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4820 if (tcp_receive_window(tp) == 0) { 4821 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4822 goto out_of_window; 4823 } 4824 4825 /* Ok. In sequence. In window. */ 4826 queue_and_out: 4827 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4828 sk_forced_mem_schedule(sk, skb->truesize); 4829 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4830 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4831 goto drop; 4832 } 4833 4834 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4835 if (skb->len) 4836 tcp_event_data_recv(sk, skb); 4837 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4838 tcp_fin(sk); 4839 4840 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4841 tcp_ofo_queue(sk); 4842 4843 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4844 * gap in queue is filled. 4845 */ 4846 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4847 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4848 } 4849 4850 if (tp->rx_opt.num_sacks) 4851 tcp_sack_remove(tp); 4852 4853 tcp_fast_path_check(sk); 4854 4855 if (eaten > 0) 4856 kfree_skb_partial(skb, fragstolen); 4857 if (!sock_flag(sk, SOCK_DEAD)) 4858 tcp_data_ready(sk); 4859 return; 4860 } 4861 4862 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4863 tcp_rcv_spurious_retrans(sk, skb); 4864 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4865 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4866 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4867 4868 out_of_window: 4869 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4870 inet_csk_schedule_ack(sk); 4871 drop: 4872 tcp_drop(sk, skb); 4873 return; 4874 } 4875 4876 /* Out of window. F.e. zero window probe. */ 4877 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4878 goto out_of_window; 4879 4880 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4881 /* Partial packet, seq < rcv_next < end_seq */ 4882 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4883 4884 /* If window is closed, drop tail of packet. But after 4885 * remembering D-SACK for its head made in previous line. 4886 */ 4887 if (!tcp_receive_window(tp)) { 4888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4889 goto out_of_window; 4890 } 4891 goto queue_and_out; 4892 } 4893 4894 tcp_data_queue_ofo(sk, skb); 4895 } 4896 4897 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4898 { 4899 if (list) 4900 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4901 4902 return skb_rb_next(skb); 4903 } 4904 4905 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4906 struct sk_buff_head *list, 4907 struct rb_root *root) 4908 { 4909 struct sk_buff *next = tcp_skb_next(skb, list); 4910 4911 if (list) 4912 __skb_unlink(skb, list); 4913 else 4914 rb_erase(&skb->rbnode, root); 4915 4916 __kfree_skb(skb); 4917 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4918 4919 return next; 4920 } 4921 4922 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4923 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4924 { 4925 struct rb_node **p = &root->rb_node; 4926 struct rb_node *parent = NULL; 4927 struct sk_buff *skb1; 4928 4929 while (*p) { 4930 parent = *p; 4931 skb1 = rb_to_skb(parent); 4932 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4933 p = &parent->rb_left; 4934 else 4935 p = &parent->rb_right; 4936 } 4937 rb_link_node(&skb->rbnode, parent, p); 4938 rb_insert_color(&skb->rbnode, root); 4939 } 4940 4941 /* Collapse contiguous sequence of skbs head..tail with 4942 * sequence numbers start..end. 4943 * 4944 * If tail is NULL, this means until the end of the queue. 4945 * 4946 * Segments with FIN/SYN are not collapsed (only because this 4947 * simplifies code) 4948 */ 4949 static void 4950 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4951 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4952 { 4953 struct sk_buff *skb = head, *n; 4954 struct sk_buff_head tmp; 4955 bool end_of_skbs; 4956 4957 /* First, check that queue is collapsible and find 4958 * the point where collapsing can be useful. 4959 */ 4960 restart: 4961 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4962 n = tcp_skb_next(skb, list); 4963 4964 /* No new bits? It is possible on ofo queue. */ 4965 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4966 skb = tcp_collapse_one(sk, skb, list, root); 4967 if (!skb) 4968 break; 4969 goto restart; 4970 } 4971 4972 /* The first skb to collapse is: 4973 * - not SYN/FIN and 4974 * - bloated or contains data before "start" or 4975 * overlaps to the next one and mptcp allow collapsing. 4976 */ 4977 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4978 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4979 before(TCP_SKB_CB(skb)->seq, start))) { 4980 end_of_skbs = false; 4981 break; 4982 } 4983 4984 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 4985 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4986 end_of_skbs = false; 4987 break; 4988 } 4989 4990 /* Decided to skip this, advance start seq. */ 4991 start = TCP_SKB_CB(skb)->end_seq; 4992 } 4993 if (end_of_skbs || 4994 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4995 return; 4996 4997 __skb_queue_head_init(&tmp); 4998 4999 while (before(start, end)) { 5000 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5001 struct sk_buff *nskb; 5002 5003 nskb = alloc_skb(copy, GFP_ATOMIC); 5004 if (!nskb) 5005 break; 5006 5007 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5008 #ifdef CONFIG_TLS_DEVICE 5009 nskb->decrypted = skb->decrypted; 5010 #endif 5011 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5012 if (list) 5013 __skb_queue_before(list, skb, nskb); 5014 else 5015 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5016 skb_set_owner_r(nskb, sk); 5017 mptcp_skb_ext_move(nskb, skb); 5018 5019 /* Copy data, releasing collapsed skbs. */ 5020 while (copy > 0) { 5021 int offset = start - TCP_SKB_CB(skb)->seq; 5022 int size = TCP_SKB_CB(skb)->end_seq - start; 5023 5024 BUG_ON(offset < 0); 5025 if (size > 0) { 5026 size = min(copy, size); 5027 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5028 BUG(); 5029 TCP_SKB_CB(nskb)->end_seq += size; 5030 copy -= size; 5031 start += size; 5032 } 5033 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5034 skb = tcp_collapse_one(sk, skb, list, root); 5035 if (!skb || 5036 skb == tail || 5037 !mptcp_skb_can_collapse(nskb, skb) || 5038 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5039 goto end; 5040 #ifdef CONFIG_TLS_DEVICE 5041 if (skb->decrypted != nskb->decrypted) 5042 goto end; 5043 #endif 5044 } 5045 } 5046 } 5047 end: 5048 skb_queue_walk_safe(&tmp, skb, n) 5049 tcp_rbtree_insert(root, skb); 5050 } 5051 5052 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5053 * and tcp_collapse() them until all the queue is collapsed. 5054 */ 5055 static void tcp_collapse_ofo_queue(struct sock *sk) 5056 { 5057 struct tcp_sock *tp = tcp_sk(sk); 5058 u32 range_truesize, sum_tiny = 0; 5059 struct sk_buff *skb, *head; 5060 u32 start, end; 5061 5062 skb = skb_rb_first(&tp->out_of_order_queue); 5063 new_range: 5064 if (!skb) { 5065 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5066 return; 5067 } 5068 start = TCP_SKB_CB(skb)->seq; 5069 end = TCP_SKB_CB(skb)->end_seq; 5070 range_truesize = skb->truesize; 5071 5072 for (head = skb;;) { 5073 skb = skb_rb_next(skb); 5074 5075 /* Range is terminated when we see a gap or when 5076 * we are at the queue end. 5077 */ 5078 if (!skb || 5079 after(TCP_SKB_CB(skb)->seq, end) || 5080 before(TCP_SKB_CB(skb)->end_seq, start)) { 5081 /* Do not attempt collapsing tiny skbs */ 5082 if (range_truesize != head->truesize || 5083 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5084 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5085 head, skb, start, end); 5086 } else { 5087 sum_tiny += range_truesize; 5088 if (sum_tiny > sk->sk_rcvbuf >> 3) 5089 return; 5090 } 5091 goto new_range; 5092 } 5093 5094 range_truesize += skb->truesize; 5095 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5096 start = TCP_SKB_CB(skb)->seq; 5097 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5098 end = TCP_SKB_CB(skb)->end_seq; 5099 } 5100 } 5101 5102 /* 5103 * Clean the out-of-order queue to make room. 5104 * We drop high sequences packets to : 5105 * 1) Let a chance for holes to be filled. 5106 * 2) not add too big latencies if thousands of packets sit there. 5107 * (But if application shrinks SO_RCVBUF, we could still end up 5108 * freeing whole queue here) 5109 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5110 * 5111 * Return true if queue has shrunk. 5112 */ 5113 static bool tcp_prune_ofo_queue(struct sock *sk) 5114 { 5115 struct tcp_sock *tp = tcp_sk(sk); 5116 struct rb_node *node, *prev; 5117 int goal; 5118 5119 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5120 return false; 5121 5122 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5123 goal = sk->sk_rcvbuf >> 3; 5124 node = &tp->ooo_last_skb->rbnode; 5125 do { 5126 prev = rb_prev(node); 5127 rb_erase(node, &tp->out_of_order_queue); 5128 goal -= rb_to_skb(node)->truesize; 5129 tcp_drop(sk, rb_to_skb(node)); 5130 if (!prev || goal <= 0) { 5131 sk_mem_reclaim(sk); 5132 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5133 !tcp_under_memory_pressure(sk)) 5134 break; 5135 goal = sk->sk_rcvbuf >> 3; 5136 } 5137 node = prev; 5138 } while (node); 5139 tp->ooo_last_skb = rb_to_skb(prev); 5140 5141 /* Reset SACK state. A conforming SACK implementation will 5142 * do the same at a timeout based retransmit. When a connection 5143 * is in a sad state like this, we care only about integrity 5144 * of the connection not performance. 5145 */ 5146 if (tp->rx_opt.sack_ok) 5147 tcp_sack_reset(&tp->rx_opt); 5148 return true; 5149 } 5150 5151 /* Reduce allocated memory if we can, trying to get 5152 * the socket within its memory limits again. 5153 * 5154 * Return less than zero if we should start dropping frames 5155 * until the socket owning process reads some of the data 5156 * to stabilize the situation. 5157 */ 5158 static int tcp_prune_queue(struct sock *sk) 5159 { 5160 struct tcp_sock *tp = tcp_sk(sk); 5161 5162 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5163 5164 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5165 tcp_clamp_window(sk); 5166 else if (tcp_under_memory_pressure(sk)) 5167 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5168 5169 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5170 return 0; 5171 5172 tcp_collapse_ofo_queue(sk); 5173 if (!skb_queue_empty(&sk->sk_receive_queue)) 5174 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5175 skb_peek(&sk->sk_receive_queue), 5176 NULL, 5177 tp->copied_seq, tp->rcv_nxt); 5178 sk_mem_reclaim(sk); 5179 5180 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5181 return 0; 5182 5183 /* Collapsing did not help, destructive actions follow. 5184 * This must not ever occur. */ 5185 5186 tcp_prune_ofo_queue(sk); 5187 5188 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5189 return 0; 5190 5191 /* If we are really being abused, tell the caller to silently 5192 * drop receive data on the floor. It will get retransmitted 5193 * and hopefully then we'll have sufficient space. 5194 */ 5195 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5196 5197 /* Massive buffer overcommit. */ 5198 tp->pred_flags = 0; 5199 return -1; 5200 } 5201 5202 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5203 { 5204 const struct tcp_sock *tp = tcp_sk(sk); 5205 5206 /* If the user specified a specific send buffer setting, do 5207 * not modify it. 5208 */ 5209 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5210 return false; 5211 5212 /* If we are under global TCP memory pressure, do not expand. */ 5213 if (tcp_under_memory_pressure(sk)) 5214 return false; 5215 5216 /* If we are under soft global TCP memory pressure, do not expand. */ 5217 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5218 return false; 5219 5220 /* If we filled the congestion window, do not expand. */ 5221 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5222 return false; 5223 5224 return true; 5225 } 5226 5227 /* When incoming ACK allowed to free some skb from write_queue, 5228 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5229 * on the exit from tcp input handler. 5230 * 5231 * PROBLEM: sndbuf expansion does not work well with largesend. 5232 */ 5233 static void tcp_new_space(struct sock *sk) 5234 { 5235 struct tcp_sock *tp = tcp_sk(sk); 5236 5237 if (tcp_should_expand_sndbuf(sk)) { 5238 tcp_sndbuf_expand(sk); 5239 tp->snd_cwnd_stamp = tcp_jiffies32; 5240 } 5241 5242 sk->sk_write_space(sk); 5243 } 5244 5245 static void tcp_check_space(struct sock *sk) 5246 { 5247 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5248 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5249 /* pairs with tcp_poll() */ 5250 smp_mb(); 5251 if (sk->sk_socket && 5252 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5253 tcp_new_space(sk); 5254 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5255 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5256 } 5257 } 5258 } 5259 5260 static inline void tcp_data_snd_check(struct sock *sk) 5261 { 5262 tcp_push_pending_frames(sk); 5263 tcp_check_space(sk); 5264 } 5265 5266 /* 5267 * Check if sending an ack is needed. 5268 */ 5269 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5270 { 5271 struct tcp_sock *tp = tcp_sk(sk); 5272 unsigned long rtt, delay; 5273 5274 /* More than one full frame received... */ 5275 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5276 /* ... and right edge of window advances far enough. 5277 * (tcp_recvmsg() will send ACK otherwise). 5278 * If application uses SO_RCVLOWAT, we want send ack now if 5279 * we have not received enough bytes to satisfy the condition. 5280 */ 5281 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5282 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5283 /* We ACK each frame or... */ 5284 tcp_in_quickack_mode(sk) || 5285 /* Protocol state mandates a one-time immediate ACK */ 5286 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5287 send_now: 5288 tcp_send_ack(sk); 5289 return; 5290 } 5291 5292 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5293 tcp_send_delayed_ack(sk); 5294 return; 5295 } 5296 5297 if (!tcp_is_sack(tp) || 5298 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5299 goto send_now; 5300 5301 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5302 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5303 tp->dup_ack_counter = 0; 5304 } 5305 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5306 tp->dup_ack_counter++; 5307 goto send_now; 5308 } 5309 tp->compressed_ack++; 5310 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5311 return; 5312 5313 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5314 5315 rtt = tp->rcv_rtt_est.rtt_us; 5316 if (tp->srtt_us && tp->srtt_us < rtt) 5317 rtt = tp->srtt_us; 5318 5319 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5320 rtt * (NSEC_PER_USEC >> 3)/20); 5321 sock_hold(sk); 5322 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5323 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5324 HRTIMER_MODE_REL_PINNED_SOFT); 5325 } 5326 5327 static inline void tcp_ack_snd_check(struct sock *sk) 5328 { 5329 if (!inet_csk_ack_scheduled(sk)) { 5330 /* We sent a data segment already. */ 5331 return; 5332 } 5333 __tcp_ack_snd_check(sk, 1); 5334 } 5335 5336 /* 5337 * This routine is only called when we have urgent data 5338 * signaled. Its the 'slow' part of tcp_urg. It could be 5339 * moved inline now as tcp_urg is only called from one 5340 * place. We handle URGent data wrong. We have to - as 5341 * BSD still doesn't use the correction from RFC961. 5342 * For 1003.1g we should support a new option TCP_STDURG to permit 5343 * either form (or just set the sysctl tcp_stdurg). 5344 */ 5345 5346 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5347 { 5348 struct tcp_sock *tp = tcp_sk(sk); 5349 u32 ptr = ntohs(th->urg_ptr); 5350 5351 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5352 ptr--; 5353 ptr += ntohl(th->seq); 5354 5355 /* Ignore urgent data that we've already seen and read. */ 5356 if (after(tp->copied_seq, ptr)) 5357 return; 5358 5359 /* Do not replay urg ptr. 5360 * 5361 * NOTE: interesting situation not covered by specs. 5362 * Misbehaving sender may send urg ptr, pointing to segment, 5363 * which we already have in ofo queue. We are not able to fetch 5364 * such data and will stay in TCP_URG_NOTYET until will be eaten 5365 * by recvmsg(). Seems, we are not obliged to handle such wicked 5366 * situations. But it is worth to think about possibility of some 5367 * DoSes using some hypothetical application level deadlock. 5368 */ 5369 if (before(ptr, tp->rcv_nxt)) 5370 return; 5371 5372 /* Do we already have a newer (or duplicate) urgent pointer? */ 5373 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5374 return; 5375 5376 /* Tell the world about our new urgent pointer. */ 5377 sk_send_sigurg(sk); 5378 5379 /* We may be adding urgent data when the last byte read was 5380 * urgent. To do this requires some care. We cannot just ignore 5381 * tp->copied_seq since we would read the last urgent byte again 5382 * as data, nor can we alter copied_seq until this data arrives 5383 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5384 * 5385 * NOTE. Double Dutch. Rendering to plain English: author of comment 5386 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5387 * and expect that both A and B disappear from stream. This is _wrong_. 5388 * Though this happens in BSD with high probability, this is occasional. 5389 * Any application relying on this is buggy. Note also, that fix "works" 5390 * only in this artificial test. Insert some normal data between A and B and we will 5391 * decline of BSD again. Verdict: it is better to remove to trap 5392 * buggy users. 5393 */ 5394 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5395 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5396 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5397 tp->copied_seq++; 5398 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5399 __skb_unlink(skb, &sk->sk_receive_queue); 5400 __kfree_skb(skb); 5401 } 5402 } 5403 5404 tp->urg_data = TCP_URG_NOTYET; 5405 WRITE_ONCE(tp->urg_seq, ptr); 5406 5407 /* Disable header prediction. */ 5408 tp->pred_flags = 0; 5409 } 5410 5411 /* This is the 'fast' part of urgent handling. */ 5412 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5413 { 5414 struct tcp_sock *tp = tcp_sk(sk); 5415 5416 /* Check if we get a new urgent pointer - normally not. */ 5417 if (th->urg) 5418 tcp_check_urg(sk, th); 5419 5420 /* Do we wait for any urgent data? - normally not... */ 5421 if (tp->urg_data == TCP_URG_NOTYET) { 5422 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5423 th->syn; 5424 5425 /* Is the urgent pointer pointing into this packet? */ 5426 if (ptr < skb->len) { 5427 u8 tmp; 5428 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5429 BUG(); 5430 tp->urg_data = TCP_URG_VALID | tmp; 5431 if (!sock_flag(sk, SOCK_DEAD)) 5432 sk->sk_data_ready(sk); 5433 } 5434 } 5435 } 5436 5437 /* Accept RST for rcv_nxt - 1 after a FIN. 5438 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5439 * FIN is sent followed by a RST packet. The RST is sent with the same 5440 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5441 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5442 * ACKs on the closed socket. In addition middleboxes can drop either the 5443 * challenge ACK or a subsequent RST. 5444 */ 5445 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5446 { 5447 struct tcp_sock *tp = tcp_sk(sk); 5448 5449 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5450 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5451 TCPF_CLOSING)); 5452 } 5453 5454 /* Does PAWS and seqno based validation of an incoming segment, flags will 5455 * play significant role here. 5456 */ 5457 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5458 const struct tcphdr *th, int syn_inerr) 5459 { 5460 struct tcp_sock *tp = tcp_sk(sk); 5461 bool rst_seq_match = false; 5462 5463 /* RFC1323: H1. Apply PAWS check first. */ 5464 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5465 tp->rx_opt.saw_tstamp && 5466 tcp_paws_discard(sk, skb)) { 5467 if (!th->rst) { 5468 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5469 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5470 LINUX_MIB_TCPACKSKIPPEDPAWS, 5471 &tp->last_oow_ack_time)) 5472 tcp_send_dupack(sk, skb); 5473 goto discard; 5474 } 5475 /* Reset is accepted even if it did not pass PAWS. */ 5476 } 5477 5478 /* Step 1: check sequence number */ 5479 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5480 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5481 * (RST) segments are validated by checking their SEQ-fields." 5482 * And page 69: "If an incoming segment is not acceptable, 5483 * an acknowledgment should be sent in reply (unless the RST 5484 * bit is set, if so drop the segment and return)". 5485 */ 5486 if (!th->rst) { 5487 if (th->syn) 5488 goto syn_challenge; 5489 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5490 LINUX_MIB_TCPACKSKIPPEDSEQ, 5491 &tp->last_oow_ack_time)) 5492 tcp_send_dupack(sk, skb); 5493 } else if (tcp_reset_check(sk, skb)) { 5494 tcp_reset(sk); 5495 } 5496 goto discard; 5497 } 5498 5499 /* Step 2: check RST bit */ 5500 if (th->rst) { 5501 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5502 * FIN and SACK too if available): 5503 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5504 * the right-most SACK block, 5505 * then 5506 * RESET the connection 5507 * else 5508 * Send a challenge ACK 5509 */ 5510 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5511 tcp_reset_check(sk, skb)) { 5512 rst_seq_match = true; 5513 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5514 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5515 int max_sack = sp[0].end_seq; 5516 int this_sack; 5517 5518 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5519 ++this_sack) { 5520 max_sack = after(sp[this_sack].end_seq, 5521 max_sack) ? 5522 sp[this_sack].end_seq : max_sack; 5523 } 5524 5525 if (TCP_SKB_CB(skb)->seq == max_sack) 5526 rst_seq_match = true; 5527 } 5528 5529 if (rst_seq_match) 5530 tcp_reset(sk); 5531 else { 5532 /* Disable TFO if RST is out-of-order 5533 * and no data has been received 5534 * for current active TFO socket 5535 */ 5536 if (tp->syn_fastopen && !tp->data_segs_in && 5537 sk->sk_state == TCP_ESTABLISHED) 5538 tcp_fastopen_active_disable(sk); 5539 tcp_send_challenge_ack(sk, skb); 5540 } 5541 goto discard; 5542 } 5543 5544 /* step 3: check security and precedence [ignored] */ 5545 5546 /* step 4: Check for a SYN 5547 * RFC 5961 4.2 : Send a challenge ack 5548 */ 5549 if (th->syn) { 5550 syn_challenge: 5551 if (syn_inerr) 5552 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5553 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5554 tcp_send_challenge_ack(sk, skb); 5555 goto discard; 5556 } 5557 5558 return true; 5559 5560 discard: 5561 tcp_drop(sk, skb); 5562 return false; 5563 } 5564 5565 /* 5566 * TCP receive function for the ESTABLISHED state. 5567 * 5568 * It is split into a fast path and a slow path. The fast path is 5569 * disabled when: 5570 * - A zero window was announced from us - zero window probing 5571 * is only handled properly in the slow path. 5572 * - Out of order segments arrived. 5573 * - Urgent data is expected. 5574 * - There is no buffer space left 5575 * - Unexpected TCP flags/window values/header lengths are received 5576 * (detected by checking the TCP header against pred_flags) 5577 * - Data is sent in both directions. Fast path only supports pure senders 5578 * or pure receivers (this means either the sequence number or the ack 5579 * value must stay constant) 5580 * - Unexpected TCP option. 5581 * 5582 * When these conditions are not satisfied it drops into a standard 5583 * receive procedure patterned after RFC793 to handle all cases. 5584 * The first three cases are guaranteed by proper pred_flags setting, 5585 * the rest is checked inline. Fast processing is turned on in 5586 * tcp_data_queue when everything is OK. 5587 */ 5588 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5589 { 5590 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5591 struct tcp_sock *tp = tcp_sk(sk); 5592 unsigned int len = skb->len; 5593 5594 /* TCP congestion window tracking */ 5595 trace_tcp_probe(sk, skb); 5596 5597 tcp_mstamp_refresh(tp); 5598 if (unlikely(!sk->sk_rx_dst)) 5599 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5600 /* 5601 * Header prediction. 5602 * The code loosely follows the one in the famous 5603 * "30 instruction TCP receive" Van Jacobson mail. 5604 * 5605 * Van's trick is to deposit buffers into socket queue 5606 * on a device interrupt, to call tcp_recv function 5607 * on the receive process context and checksum and copy 5608 * the buffer to user space. smart... 5609 * 5610 * Our current scheme is not silly either but we take the 5611 * extra cost of the net_bh soft interrupt processing... 5612 * We do checksum and copy also but from device to kernel. 5613 */ 5614 5615 tp->rx_opt.saw_tstamp = 0; 5616 5617 /* pred_flags is 0xS?10 << 16 + snd_wnd 5618 * if header_prediction is to be made 5619 * 'S' will always be tp->tcp_header_len >> 2 5620 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5621 * turn it off (when there are holes in the receive 5622 * space for instance) 5623 * PSH flag is ignored. 5624 */ 5625 5626 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5627 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5628 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5629 int tcp_header_len = tp->tcp_header_len; 5630 5631 /* Timestamp header prediction: tcp_header_len 5632 * is automatically equal to th->doff*4 due to pred_flags 5633 * match. 5634 */ 5635 5636 /* Check timestamp */ 5637 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5638 /* No? Slow path! */ 5639 if (!tcp_parse_aligned_timestamp(tp, th)) 5640 goto slow_path; 5641 5642 /* If PAWS failed, check it more carefully in slow path */ 5643 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5644 goto slow_path; 5645 5646 /* DO NOT update ts_recent here, if checksum fails 5647 * and timestamp was corrupted part, it will result 5648 * in a hung connection since we will drop all 5649 * future packets due to the PAWS test. 5650 */ 5651 } 5652 5653 if (len <= tcp_header_len) { 5654 /* Bulk data transfer: sender */ 5655 if (len == tcp_header_len) { 5656 /* Predicted packet is in window by definition. 5657 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5658 * Hence, check seq<=rcv_wup reduces to: 5659 */ 5660 if (tcp_header_len == 5661 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5662 tp->rcv_nxt == tp->rcv_wup) 5663 tcp_store_ts_recent(tp); 5664 5665 /* We know that such packets are checksummed 5666 * on entry. 5667 */ 5668 tcp_ack(sk, skb, 0); 5669 __kfree_skb(skb); 5670 tcp_data_snd_check(sk); 5671 /* When receiving pure ack in fast path, update 5672 * last ts ecr directly instead of calling 5673 * tcp_rcv_rtt_measure_ts() 5674 */ 5675 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5676 return; 5677 } else { /* Header too small */ 5678 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5679 goto discard; 5680 } 5681 } else { 5682 int eaten = 0; 5683 bool fragstolen = false; 5684 5685 if (tcp_checksum_complete(skb)) 5686 goto csum_error; 5687 5688 if ((int)skb->truesize > sk->sk_forward_alloc) 5689 goto step5; 5690 5691 /* Predicted packet is in window by definition. 5692 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5693 * Hence, check seq<=rcv_wup reduces to: 5694 */ 5695 if (tcp_header_len == 5696 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5697 tp->rcv_nxt == tp->rcv_wup) 5698 tcp_store_ts_recent(tp); 5699 5700 tcp_rcv_rtt_measure_ts(sk, skb); 5701 5702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5703 5704 /* Bulk data transfer: receiver */ 5705 __skb_pull(skb, tcp_header_len); 5706 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5707 5708 tcp_event_data_recv(sk, skb); 5709 5710 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5711 /* Well, only one small jumplet in fast path... */ 5712 tcp_ack(sk, skb, FLAG_DATA); 5713 tcp_data_snd_check(sk); 5714 if (!inet_csk_ack_scheduled(sk)) 5715 goto no_ack; 5716 } 5717 5718 __tcp_ack_snd_check(sk, 0); 5719 no_ack: 5720 if (eaten) 5721 kfree_skb_partial(skb, fragstolen); 5722 tcp_data_ready(sk); 5723 return; 5724 } 5725 } 5726 5727 slow_path: 5728 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5729 goto csum_error; 5730 5731 if (!th->ack && !th->rst && !th->syn) 5732 goto discard; 5733 5734 /* 5735 * Standard slow path. 5736 */ 5737 5738 if (!tcp_validate_incoming(sk, skb, th, 1)) 5739 return; 5740 5741 step5: 5742 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5743 goto discard; 5744 5745 tcp_rcv_rtt_measure_ts(sk, skb); 5746 5747 /* Process urgent data. */ 5748 tcp_urg(sk, skb, th); 5749 5750 /* step 7: process the segment text */ 5751 tcp_data_queue(sk, skb); 5752 5753 tcp_data_snd_check(sk); 5754 tcp_ack_snd_check(sk); 5755 return; 5756 5757 csum_error: 5758 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5759 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5760 5761 discard: 5762 tcp_drop(sk, skb); 5763 } 5764 EXPORT_SYMBOL(tcp_rcv_established); 5765 5766 void tcp_init_transfer(struct sock *sk, int bpf_op) 5767 { 5768 struct inet_connection_sock *icsk = inet_csk(sk); 5769 struct tcp_sock *tp = tcp_sk(sk); 5770 5771 tcp_mtup_init(sk); 5772 icsk->icsk_af_ops->rebuild_header(sk); 5773 tcp_init_metrics(sk); 5774 5775 /* Initialize the congestion window to start the transfer. 5776 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5777 * retransmitted. In light of RFC6298 more aggressive 1sec 5778 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5779 * retransmission has occurred. 5780 */ 5781 if (tp->total_retrans > 1 && tp->undo_marker) 5782 tp->snd_cwnd = 1; 5783 else 5784 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5785 tp->snd_cwnd_stamp = tcp_jiffies32; 5786 5787 tcp_call_bpf(sk, bpf_op, 0, NULL); 5788 tcp_init_congestion_control(sk); 5789 tcp_init_buffer_space(sk); 5790 } 5791 5792 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5793 { 5794 struct tcp_sock *tp = tcp_sk(sk); 5795 struct inet_connection_sock *icsk = inet_csk(sk); 5796 5797 tcp_set_state(sk, TCP_ESTABLISHED); 5798 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5799 5800 if (skb) { 5801 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5802 security_inet_conn_established(sk, skb); 5803 sk_mark_napi_id(sk, skb); 5804 } 5805 5806 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5807 5808 /* Prevent spurious tcp_cwnd_restart() on first data 5809 * packet. 5810 */ 5811 tp->lsndtime = tcp_jiffies32; 5812 5813 if (sock_flag(sk, SOCK_KEEPOPEN)) 5814 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5815 5816 if (!tp->rx_opt.snd_wscale) 5817 __tcp_fast_path_on(tp, tp->snd_wnd); 5818 else 5819 tp->pred_flags = 0; 5820 } 5821 5822 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5823 struct tcp_fastopen_cookie *cookie) 5824 { 5825 struct tcp_sock *tp = tcp_sk(sk); 5826 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5827 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5828 bool syn_drop = false; 5829 5830 if (mss == tp->rx_opt.user_mss) { 5831 struct tcp_options_received opt; 5832 5833 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5834 tcp_clear_options(&opt); 5835 opt.user_mss = opt.mss_clamp = 0; 5836 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5837 mss = opt.mss_clamp; 5838 } 5839 5840 if (!tp->syn_fastopen) { 5841 /* Ignore an unsolicited cookie */ 5842 cookie->len = -1; 5843 } else if (tp->total_retrans) { 5844 /* SYN timed out and the SYN-ACK neither has a cookie nor 5845 * acknowledges data. Presumably the remote received only 5846 * the retransmitted (regular) SYNs: either the original 5847 * SYN-data or the corresponding SYN-ACK was dropped. 5848 */ 5849 syn_drop = (cookie->len < 0 && data); 5850 } else if (cookie->len < 0 && !tp->syn_data) { 5851 /* We requested a cookie but didn't get it. If we did not use 5852 * the (old) exp opt format then try so next time (try_exp=1). 5853 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5854 */ 5855 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5856 } 5857 5858 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5859 5860 if (data) { /* Retransmit unacked data in SYN */ 5861 if (tp->total_retrans) 5862 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5863 else 5864 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5865 skb_rbtree_walk_from(data) { 5866 if (__tcp_retransmit_skb(sk, data, 1)) 5867 break; 5868 } 5869 tcp_rearm_rto(sk); 5870 NET_INC_STATS(sock_net(sk), 5871 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5872 return true; 5873 } 5874 tp->syn_data_acked = tp->syn_data; 5875 if (tp->syn_data_acked) { 5876 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5877 /* SYN-data is counted as two separate packets in tcp_ack() */ 5878 if (tp->delivered > 1) 5879 --tp->delivered; 5880 } 5881 5882 tcp_fastopen_add_skb(sk, synack); 5883 5884 return false; 5885 } 5886 5887 static void smc_check_reset_syn(struct tcp_sock *tp) 5888 { 5889 #if IS_ENABLED(CONFIG_SMC) 5890 if (static_branch_unlikely(&tcp_have_smc)) { 5891 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5892 tp->syn_smc = 0; 5893 } 5894 #endif 5895 } 5896 5897 static void tcp_try_undo_spurious_syn(struct sock *sk) 5898 { 5899 struct tcp_sock *tp = tcp_sk(sk); 5900 u32 syn_stamp; 5901 5902 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5903 * spurious if the ACK's timestamp option echo value matches the 5904 * original SYN timestamp. 5905 */ 5906 syn_stamp = tp->retrans_stamp; 5907 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5908 syn_stamp == tp->rx_opt.rcv_tsecr) 5909 tp->undo_marker = 0; 5910 } 5911 5912 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5913 const struct tcphdr *th) 5914 { 5915 struct inet_connection_sock *icsk = inet_csk(sk); 5916 struct tcp_sock *tp = tcp_sk(sk); 5917 struct tcp_fastopen_cookie foc = { .len = -1 }; 5918 int saved_clamp = tp->rx_opt.mss_clamp; 5919 bool fastopen_fail; 5920 5921 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5922 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5923 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5924 5925 if (th->ack) { 5926 /* rfc793: 5927 * "If the state is SYN-SENT then 5928 * first check the ACK bit 5929 * If the ACK bit is set 5930 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5931 * a reset (unless the RST bit is set, if so drop 5932 * the segment and return)" 5933 */ 5934 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5935 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5936 /* Previous FIN/ACK or RST/ACK might be ignored. */ 5937 if (icsk->icsk_retransmits == 0) 5938 inet_csk_reset_xmit_timer(sk, 5939 ICSK_TIME_RETRANS, 5940 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 5941 goto reset_and_undo; 5942 } 5943 5944 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5945 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5946 tcp_time_stamp(tp))) { 5947 NET_INC_STATS(sock_net(sk), 5948 LINUX_MIB_PAWSACTIVEREJECTED); 5949 goto reset_and_undo; 5950 } 5951 5952 /* Now ACK is acceptable. 5953 * 5954 * "If the RST bit is set 5955 * If the ACK was acceptable then signal the user "error: 5956 * connection reset", drop the segment, enter CLOSED state, 5957 * delete TCB, and return." 5958 */ 5959 5960 if (th->rst) { 5961 tcp_reset(sk); 5962 goto discard; 5963 } 5964 5965 /* rfc793: 5966 * "fifth, if neither of the SYN or RST bits is set then 5967 * drop the segment and return." 5968 * 5969 * See note below! 5970 * --ANK(990513) 5971 */ 5972 if (!th->syn) 5973 goto discard_and_undo; 5974 5975 /* rfc793: 5976 * "If the SYN bit is on ... 5977 * are acceptable then ... 5978 * (our SYN has been ACKed), change the connection 5979 * state to ESTABLISHED..." 5980 */ 5981 5982 tcp_ecn_rcv_synack(tp, th); 5983 5984 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5985 tcp_try_undo_spurious_syn(sk); 5986 tcp_ack(sk, skb, FLAG_SLOWPATH); 5987 5988 /* Ok.. it's good. Set up sequence numbers and 5989 * move to established. 5990 */ 5991 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 5992 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5993 5994 /* RFC1323: The window in SYN & SYN/ACK segments is 5995 * never scaled. 5996 */ 5997 tp->snd_wnd = ntohs(th->window); 5998 5999 if (!tp->rx_opt.wscale_ok) { 6000 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6001 tp->window_clamp = min(tp->window_clamp, 65535U); 6002 } 6003 6004 if (tp->rx_opt.saw_tstamp) { 6005 tp->rx_opt.tstamp_ok = 1; 6006 tp->tcp_header_len = 6007 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6008 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6009 tcp_store_ts_recent(tp); 6010 } else { 6011 tp->tcp_header_len = sizeof(struct tcphdr); 6012 } 6013 6014 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6015 tcp_initialize_rcv_mss(sk); 6016 6017 /* Remember, tcp_poll() does not lock socket! 6018 * Change state from SYN-SENT only after copied_seq 6019 * is initialized. */ 6020 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6021 6022 smc_check_reset_syn(tp); 6023 6024 smp_mb(); 6025 6026 tcp_finish_connect(sk, skb); 6027 6028 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6029 tcp_rcv_fastopen_synack(sk, skb, &foc); 6030 6031 if (!sock_flag(sk, SOCK_DEAD)) { 6032 sk->sk_state_change(sk); 6033 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6034 } 6035 if (fastopen_fail) 6036 return -1; 6037 if (sk->sk_write_pending || 6038 icsk->icsk_accept_queue.rskq_defer_accept || 6039 inet_csk_in_pingpong_mode(sk)) { 6040 /* Save one ACK. Data will be ready after 6041 * several ticks, if write_pending is set. 6042 * 6043 * It may be deleted, but with this feature tcpdumps 6044 * look so _wonderfully_ clever, that I was not able 6045 * to stand against the temptation 8) --ANK 6046 */ 6047 inet_csk_schedule_ack(sk); 6048 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6049 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6050 TCP_DELACK_MAX, TCP_RTO_MAX); 6051 6052 discard: 6053 tcp_drop(sk, skb); 6054 return 0; 6055 } else { 6056 tcp_send_ack(sk); 6057 } 6058 return -1; 6059 } 6060 6061 /* No ACK in the segment */ 6062 6063 if (th->rst) { 6064 /* rfc793: 6065 * "If the RST bit is set 6066 * 6067 * Otherwise (no ACK) drop the segment and return." 6068 */ 6069 6070 goto discard_and_undo; 6071 } 6072 6073 /* PAWS check. */ 6074 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6075 tcp_paws_reject(&tp->rx_opt, 0)) 6076 goto discard_and_undo; 6077 6078 if (th->syn) { 6079 /* We see SYN without ACK. It is attempt of 6080 * simultaneous connect with crossed SYNs. 6081 * Particularly, it can be connect to self. 6082 */ 6083 tcp_set_state(sk, TCP_SYN_RECV); 6084 6085 if (tp->rx_opt.saw_tstamp) { 6086 tp->rx_opt.tstamp_ok = 1; 6087 tcp_store_ts_recent(tp); 6088 tp->tcp_header_len = 6089 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6090 } else { 6091 tp->tcp_header_len = sizeof(struct tcphdr); 6092 } 6093 6094 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6095 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6096 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6097 6098 /* RFC1323: The window in SYN & SYN/ACK segments is 6099 * never scaled. 6100 */ 6101 tp->snd_wnd = ntohs(th->window); 6102 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6103 tp->max_window = tp->snd_wnd; 6104 6105 tcp_ecn_rcv_syn(tp, th); 6106 6107 tcp_mtup_init(sk); 6108 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6109 tcp_initialize_rcv_mss(sk); 6110 6111 tcp_send_synack(sk); 6112 #if 0 6113 /* Note, we could accept data and URG from this segment. 6114 * There are no obstacles to make this (except that we must 6115 * either change tcp_recvmsg() to prevent it from returning data 6116 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6117 * 6118 * However, if we ignore data in ACKless segments sometimes, 6119 * we have no reasons to accept it sometimes. 6120 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6121 * is not flawless. So, discard packet for sanity. 6122 * Uncomment this return to process the data. 6123 */ 6124 return -1; 6125 #else 6126 goto discard; 6127 #endif 6128 } 6129 /* "fifth, if neither of the SYN or RST bits is set then 6130 * drop the segment and return." 6131 */ 6132 6133 discard_and_undo: 6134 tcp_clear_options(&tp->rx_opt); 6135 tp->rx_opt.mss_clamp = saved_clamp; 6136 goto discard; 6137 6138 reset_and_undo: 6139 tcp_clear_options(&tp->rx_opt); 6140 tp->rx_opt.mss_clamp = saved_clamp; 6141 return 1; 6142 } 6143 6144 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6145 { 6146 struct request_sock *req; 6147 6148 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6149 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6150 */ 6151 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6152 tcp_try_undo_loss(sk, false); 6153 6154 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6155 tcp_sk(sk)->retrans_stamp = 0; 6156 inet_csk(sk)->icsk_retransmits = 0; 6157 6158 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6159 * we no longer need req so release it. 6160 */ 6161 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6162 lockdep_sock_is_held(sk)); 6163 reqsk_fastopen_remove(sk, req, false); 6164 6165 /* Re-arm the timer because data may have been sent out. 6166 * This is similar to the regular data transmission case 6167 * when new data has just been ack'ed. 6168 * 6169 * (TFO) - we could try to be more aggressive and 6170 * retransmitting any data sooner based on when they 6171 * are sent out. 6172 */ 6173 tcp_rearm_rto(sk); 6174 } 6175 6176 /* 6177 * This function implements the receiving procedure of RFC 793 for 6178 * all states except ESTABLISHED and TIME_WAIT. 6179 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6180 * address independent. 6181 */ 6182 6183 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6184 { 6185 struct tcp_sock *tp = tcp_sk(sk); 6186 struct inet_connection_sock *icsk = inet_csk(sk); 6187 const struct tcphdr *th = tcp_hdr(skb); 6188 struct request_sock *req; 6189 int queued = 0; 6190 bool acceptable; 6191 6192 switch (sk->sk_state) { 6193 case TCP_CLOSE: 6194 goto discard; 6195 6196 case TCP_LISTEN: 6197 if (th->ack) 6198 return 1; 6199 6200 if (th->rst) 6201 goto discard; 6202 6203 if (th->syn) { 6204 if (th->fin) 6205 goto discard; 6206 /* It is possible that we process SYN packets from backlog, 6207 * so we need to make sure to disable BH and RCU right there. 6208 */ 6209 rcu_read_lock(); 6210 local_bh_disable(); 6211 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6212 local_bh_enable(); 6213 rcu_read_unlock(); 6214 6215 if (!acceptable) 6216 return 1; 6217 consume_skb(skb); 6218 return 0; 6219 } 6220 goto discard; 6221 6222 case TCP_SYN_SENT: 6223 tp->rx_opt.saw_tstamp = 0; 6224 tcp_mstamp_refresh(tp); 6225 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6226 if (queued >= 0) 6227 return queued; 6228 6229 /* Do step6 onward by hand. */ 6230 tcp_urg(sk, skb, th); 6231 __kfree_skb(skb); 6232 tcp_data_snd_check(sk); 6233 return 0; 6234 } 6235 6236 tcp_mstamp_refresh(tp); 6237 tp->rx_opt.saw_tstamp = 0; 6238 req = rcu_dereference_protected(tp->fastopen_rsk, 6239 lockdep_sock_is_held(sk)); 6240 if (req) { 6241 bool req_stolen; 6242 6243 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6244 sk->sk_state != TCP_FIN_WAIT1); 6245 6246 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6247 goto discard; 6248 } 6249 6250 if (!th->ack && !th->rst && !th->syn) 6251 goto discard; 6252 6253 if (!tcp_validate_incoming(sk, skb, th, 0)) 6254 return 0; 6255 6256 /* step 5: check the ACK field */ 6257 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6258 FLAG_UPDATE_TS_RECENT | 6259 FLAG_NO_CHALLENGE_ACK) > 0; 6260 6261 if (!acceptable) { 6262 if (sk->sk_state == TCP_SYN_RECV) 6263 return 1; /* send one RST */ 6264 tcp_send_challenge_ack(sk, skb); 6265 goto discard; 6266 } 6267 switch (sk->sk_state) { 6268 case TCP_SYN_RECV: 6269 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6270 if (!tp->srtt_us) 6271 tcp_synack_rtt_meas(sk, req); 6272 6273 if (req) { 6274 tcp_rcv_synrecv_state_fastopen(sk); 6275 } else { 6276 tcp_try_undo_spurious_syn(sk); 6277 tp->retrans_stamp = 0; 6278 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6279 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6280 } 6281 smp_mb(); 6282 tcp_set_state(sk, TCP_ESTABLISHED); 6283 sk->sk_state_change(sk); 6284 6285 /* Note, that this wakeup is only for marginal crossed SYN case. 6286 * Passively open sockets are not waked up, because 6287 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6288 */ 6289 if (sk->sk_socket) 6290 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6291 6292 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6293 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6294 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6295 6296 if (tp->rx_opt.tstamp_ok) 6297 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6298 6299 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6300 tcp_update_pacing_rate(sk); 6301 6302 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6303 tp->lsndtime = tcp_jiffies32; 6304 6305 tcp_initialize_rcv_mss(sk); 6306 tcp_fast_path_on(tp); 6307 break; 6308 6309 case TCP_FIN_WAIT1: { 6310 int tmo; 6311 6312 if (req) 6313 tcp_rcv_synrecv_state_fastopen(sk); 6314 6315 if (tp->snd_una != tp->write_seq) 6316 break; 6317 6318 tcp_set_state(sk, TCP_FIN_WAIT2); 6319 sk->sk_shutdown |= SEND_SHUTDOWN; 6320 6321 sk_dst_confirm(sk); 6322 6323 if (!sock_flag(sk, SOCK_DEAD)) { 6324 /* Wake up lingering close() */ 6325 sk->sk_state_change(sk); 6326 break; 6327 } 6328 6329 if (tp->linger2 < 0) { 6330 tcp_done(sk); 6331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6332 return 1; 6333 } 6334 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6335 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6336 /* Receive out of order FIN after close() */ 6337 if (tp->syn_fastopen && th->fin) 6338 tcp_fastopen_active_disable(sk); 6339 tcp_done(sk); 6340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6341 return 1; 6342 } 6343 6344 tmo = tcp_fin_time(sk); 6345 if (tmo > TCP_TIMEWAIT_LEN) { 6346 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6347 } else if (th->fin || sock_owned_by_user(sk)) { 6348 /* Bad case. We could lose such FIN otherwise. 6349 * It is not a big problem, but it looks confusing 6350 * and not so rare event. We still can lose it now, 6351 * if it spins in bh_lock_sock(), but it is really 6352 * marginal case. 6353 */ 6354 inet_csk_reset_keepalive_timer(sk, tmo); 6355 } else { 6356 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6357 goto discard; 6358 } 6359 break; 6360 } 6361 6362 case TCP_CLOSING: 6363 if (tp->snd_una == tp->write_seq) { 6364 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6365 goto discard; 6366 } 6367 break; 6368 6369 case TCP_LAST_ACK: 6370 if (tp->snd_una == tp->write_seq) { 6371 tcp_update_metrics(sk); 6372 tcp_done(sk); 6373 goto discard; 6374 } 6375 break; 6376 } 6377 6378 /* step 6: check the URG bit */ 6379 tcp_urg(sk, skb, th); 6380 6381 /* step 7: process the segment text */ 6382 switch (sk->sk_state) { 6383 case TCP_CLOSE_WAIT: 6384 case TCP_CLOSING: 6385 case TCP_LAST_ACK: 6386 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6387 if (sk_is_mptcp(sk)) 6388 mptcp_incoming_options(sk, skb, &tp->rx_opt); 6389 break; 6390 } 6391 fallthrough; 6392 case TCP_FIN_WAIT1: 6393 case TCP_FIN_WAIT2: 6394 /* RFC 793 says to queue data in these states, 6395 * RFC 1122 says we MUST send a reset. 6396 * BSD 4.4 also does reset. 6397 */ 6398 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6399 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6400 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6401 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6402 tcp_reset(sk); 6403 return 1; 6404 } 6405 } 6406 fallthrough; 6407 case TCP_ESTABLISHED: 6408 tcp_data_queue(sk, skb); 6409 queued = 1; 6410 break; 6411 } 6412 6413 /* tcp_data could move socket to TIME-WAIT */ 6414 if (sk->sk_state != TCP_CLOSE) { 6415 tcp_data_snd_check(sk); 6416 tcp_ack_snd_check(sk); 6417 } 6418 6419 if (!queued) { 6420 discard: 6421 tcp_drop(sk, skb); 6422 } 6423 return 0; 6424 } 6425 EXPORT_SYMBOL(tcp_rcv_state_process); 6426 6427 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6428 { 6429 struct inet_request_sock *ireq = inet_rsk(req); 6430 6431 if (family == AF_INET) 6432 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6433 &ireq->ir_rmt_addr, port); 6434 #if IS_ENABLED(CONFIG_IPV6) 6435 else if (family == AF_INET6) 6436 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6437 &ireq->ir_v6_rmt_addr, port); 6438 #endif 6439 } 6440 6441 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6442 * 6443 * If we receive a SYN packet with these bits set, it means a 6444 * network is playing bad games with TOS bits. In order to 6445 * avoid possible false congestion notifications, we disable 6446 * TCP ECN negotiation. 6447 * 6448 * Exception: tcp_ca wants ECN. This is required for DCTCP 6449 * congestion control: Linux DCTCP asserts ECT on all packets, 6450 * including SYN, which is most optimal solution; however, 6451 * others, such as FreeBSD do not. 6452 * 6453 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6454 * set, indicating the use of a future TCP extension (such as AccECN). See 6455 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6456 * extensions. 6457 */ 6458 static void tcp_ecn_create_request(struct request_sock *req, 6459 const struct sk_buff *skb, 6460 const struct sock *listen_sk, 6461 const struct dst_entry *dst) 6462 { 6463 const struct tcphdr *th = tcp_hdr(skb); 6464 const struct net *net = sock_net(listen_sk); 6465 bool th_ecn = th->ece && th->cwr; 6466 bool ect, ecn_ok; 6467 u32 ecn_ok_dst; 6468 6469 if (!th_ecn) 6470 return; 6471 6472 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6473 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6474 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6475 6476 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6477 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6478 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6479 inet_rsk(req)->ecn_ok = 1; 6480 } 6481 6482 static void tcp_openreq_init(struct request_sock *req, 6483 const struct tcp_options_received *rx_opt, 6484 struct sk_buff *skb, const struct sock *sk) 6485 { 6486 struct inet_request_sock *ireq = inet_rsk(req); 6487 6488 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6489 req->cookie_ts = 0; 6490 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6491 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6492 tcp_rsk(req)->snt_synack = 0; 6493 tcp_rsk(req)->last_oow_ack_time = 0; 6494 req->mss = rx_opt->mss_clamp; 6495 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6496 ireq->tstamp_ok = rx_opt->tstamp_ok; 6497 ireq->sack_ok = rx_opt->sack_ok; 6498 ireq->snd_wscale = rx_opt->snd_wscale; 6499 ireq->wscale_ok = rx_opt->wscale_ok; 6500 ireq->acked = 0; 6501 ireq->ecn_ok = 0; 6502 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6503 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6504 ireq->ir_mark = inet_request_mark(sk, skb); 6505 #if IS_ENABLED(CONFIG_SMC) 6506 ireq->smc_ok = rx_opt->smc_ok; 6507 #endif 6508 } 6509 6510 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6511 struct sock *sk_listener, 6512 bool attach_listener) 6513 { 6514 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6515 attach_listener); 6516 6517 if (req) { 6518 struct inet_request_sock *ireq = inet_rsk(req); 6519 6520 ireq->ireq_opt = NULL; 6521 #if IS_ENABLED(CONFIG_IPV6) 6522 ireq->pktopts = NULL; 6523 #endif 6524 atomic64_set(&ireq->ir_cookie, 0); 6525 ireq->ireq_state = TCP_NEW_SYN_RECV; 6526 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6527 ireq->ireq_family = sk_listener->sk_family; 6528 } 6529 6530 return req; 6531 } 6532 EXPORT_SYMBOL(inet_reqsk_alloc); 6533 6534 /* 6535 * Return true if a syncookie should be sent 6536 */ 6537 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6538 { 6539 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6540 const char *msg = "Dropping request"; 6541 bool want_cookie = false; 6542 struct net *net = sock_net(sk); 6543 6544 #ifdef CONFIG_SYN_COOKIES 6545 if (net->ipv4.sysctl_tcp_syncookies) { 6546 msg = "Sending cookies"; 6547 want_cookie = true; 6548 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6549 } else 6550 #endif 6551 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6552 6553 if (!queue->synflood_warned && 6554 net->ipv4.sysctl_tcp_syncookies != 2 && 6555 xchg(&queue->synflood_warned, 1) == 0) 6556 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6557 proto, sk->sk_num, msg); 6558 6559 return want_cookie; 6560 } 6561 6562 static void tcp_reqsk_record_syn(const struct sock *sk, 6563 struct request_sock *req, 6564 const struct sk_buff *skb) 6565 { 6566 if (tcp_sk(sk)->save_syn) { 6567 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6568 u32 *copy; 6569 6570 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6571 if (copy) { 6572 copy[0] = len; 6573 memcpy(©[1], skb_network_header(skb), len); 6574 req->saved_syn = copy; 6575 } 6576 } 6577 } 6578 6579 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6580 * used for SYN cookie generation. 6581 */ 6582 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6583 const struct tcp_request_sock_ops *af_ops, 6584 struct sock *sk, struct tcphdr *th) 6585 { 6586 struct tcp_sock *tp = tcp_sk(sk); 6587 u16 mss; 6588 6589 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6590 !inet_csk_reqsk_queue_is_full(sk)) 6591 return 0; 6592 6593 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6594 return 0; 6595 6596 if (sk_acceptq_is_full(sk)) { 6597 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6598 return 0; 6599 } 6600 6601 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6602 if (!mss) 6603 mss = af_ops->mss_clamp; 6604 6605 return mss; 6606 } 6607 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6608 6609 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6610 const struct tcp_request_sock_ops *af_ops, 6611 struct sock *sk, struct sk_buff *skb) 6612 { 6613 struct tcp_fastopen_cookie foc = { .len = -1 }; 6614 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6615 struct tcp_options_received tmp_opt; 6616 struct tcp_sock *tp = tcp_sk(sk); 6617 struct net *net = sock_net(sk); 6618 struct sock *fastopen_sk = NULL; 6619 struct request_sock *req; 6620 bool want_cookie = false; 6621 struct dst_entry *dst; 6622 struct flowi fl; 6623 6624 /* TW buckets are converted to open requests without 6625 * limitations, they conserve resources and peer is 6626 * evidently real one. 6627 */ 6628 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6629 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6630 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6631 if (!want_cookie) 6632 goto drop; 6633 } 6634 6635 if (sk_acceptq_is_full(sk)) { 6636 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6637 goto drop; 6638 } 6639 6640 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6641 if (!req) 6642 goto drop; 6643 6644 tcp_rsk(req)->af_specific = af_ops; 6645 tcp_rsk(req)->ts_off = 0; 6646 #if IS_ENABLED(CONFIG_MPTCP) 6647 tcp_rsk(req)->is_mptcp = 0; 6648 #endif 6649 6650 tcp_clear_options(&tmp_opt); 6651 tmp_opt.mss_clamp = af_ops->mss_clamp; 6652 tmp_opt.user_mss = tp->rx_opt.user_mss; 6653 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6654 want_cookie ? NULL : &foc); 6655 6656 if (want_cookie && !tmp_opt.saw_tstamp) 6657 tcp_clear_options(&tmp_opt); 6658 6659 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6660 tmp_opt.smc_ok = 0; 6661 6662 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6663 tcp_openreq_init(req, &tmp_opt, skb, sk); 6664 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6665 6666 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6667 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6668 6669 af_ops->init_req(req, sk, skb); 6670 6671 if (IS_ENABLED(CONFIG_MPTCP) && want_cookie) 6672 tcp_rsk(req)->is_mptcp = 0; 6673 6674 if (security_inet_conn_request(sk, skb, req)) 6675 goto drop_and_free; 6676 6677 if (tmp_opt.tstamp_ok) 6678 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6679 6680 dst = af_ops->route_req(sk, &fl, req); 6681 if (!dst) 6682 goto drop_and_free; 6683 6684 if (!want_cookie && !isn) { 6685 /* Kill the following clause, if you dislike this way. */ 6686 if (!net->ipv4.sysctl_tcp_syncookies && 6687 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6688 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6689 !tcp_peer_is_proven(req, dst)) { 6690 /* Without syncookies last quarter of 6691 * backlog is filled with destinations, 6692 * proven to be alive. 6693 * It means that we continue to communicate 6694 * to destinations, already remembered 6695 * to the moment of synflood. 6696 */ 6697 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6698 rsk_ops->family); 6699 goto drop_and_release; 6700 } 6701 6702 isn = af_ops->init_seq(skb); 6703 } 6704 6705 tcp_ecn_create_request(req, skb, sk, dst); 6706 6707 if (want_cookie) { 6708 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6709 req->cookie_ts = tmp_opt.tstamp_ok; 6710 if (!tmp_opt.tstamp_ok) 6711 inet_rsk(req)->ecn_ok = 0; 6712 } 6713 6714 tcp_rsk(req)->snt_isn = isn; 6715 tcp_rsk(req)->txhash = net_tx_rndhash(); 6716 tcp_openreq_init_rwin(req, sk, dst); 6717 sk_rx_queue_set(req_to_sk(req), skb); 6718 if (!want_cookie) { 6719 tcp_reqsk_record_syn(sk, req, skb); 6720 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6721 } 6722 if (fastopen_sk) { 6723 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6724 &foc, TCP_SYNACK_FASTOPEN); 6725 /* Add the child socket directly into the accept queue */ 6726 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6727 reqsk_fastopen_remove(fastopen_sk, req, false); 6728 bh_unlock_sock(fastopen_sk); 6729 sock_put(fastopen_sk); 6730 goto drop_and_free; 6731 } 6732 sk->sk_data_ready(sk); 6733 bh_unlock_sock(fastopen_sk); 6734 sock_put(fastopen_sk); 6735 } else { 6736 tcp_rsk(req)->tfo_listener = false; 6737 if (!want_cookie) 6738 inet_csk_reqsk_queue_hash_add(sk, req, 6739 tcp_timeout_init((struct sock *)req)); 6740 af_ops->send_synack(sk, dst, &fl, req, &foc, 6741 !want_cookie ? TCP_SYNACK_NORMAL : 6742 TCP_SYNACK_COOKIE); 6743 if (want_cookie) { 6744 reqsk_free(req); 6745 return 0; 6746 } 6747 } 6748 reqsk_put(req); 6749 return 0; 6750 6751 drop_and_release: 6752 dst_release(dst); 6753 drop_and_free: 6754 __reqsk_free(req); 6755 drop: 6756 tcp_listendrop(sk); 6757 return 0; 6758 } 6759 EXPORT_SYMBOL(tcp_conn_request); 6760