1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 /* If the skb has a len of exactly 1*MSS and has the PSH bit 257 * set then it is likely the end of an application write. So 258 * more data may not be arriving soon, and yet the data sender 259 * may be waiting for an ACK if cwnd-bound or using TX zero 260 * copy. So we set ICSK_ACK_PUSHED here so that 261 * tcp_cleanup_rbuf() will send an ACK immediately if the app 262 * reads all of the data and is not ping-pong. If len > MSS 263 * then this logic does not matter (and does not hurt) because 264 * tcp_cleanup_rbuf() will always ACK immediately if the app 265 * reads data and there is more than an MSS of unACKed data. 266 */ 267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 269 } else { 270 /* Otherwise, we make more careful check taking into account, 271 * that SACKs block is variable. 272 * 273 * "len" is invariant segment length, including TCP header. 274 */ 275 len += skb->data - skb_transport_header(skb); 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 277 /* If PSH is not set, packet should be 278 * full sized, provided peer TCP is not badly broken. 279 * This observation (if it is correct 8)) allows 280 * to handle super-low mtu links fairly. 281 */ 282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 284 /* Subtract also invariant (if peer is RFC compliant), 285 * tcp header plus fixed timestamp option length. 286 * Resulting "len" is MSS free of SACK jitter. 287 */ 288 len -= tcp_sk(sk)->tcp_header_len; 289 icsk->icsk_ack.last_seg_size = len; 290 if (len == lss) { 291 icsk->icsk_ack.rcv_mss = len; 292 return; 293 } 294 } 295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 298 } 299 } 300 301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 302 { 303 struct inet_connection_sock *icsk = inet_csk(sk); 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 305 306 if (quickacks == 0) 307 quickacks = 2; 308 quickacks = min(quickacks, max_quickacks); 309 if (quickacks > icsk->icsk_ack.quick) 310 icsk->icsk_ack.quick = quickacks; 311 } 312 313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 314 { 315 struct inet_connection_sock *icsk = inet_csk(sk); 316 317 tcp_incr_quickack(sk, max_quickacks); 318 inet_csk_exit_pingpong_mode(sk); 319 icsk->icsk_ack.ato = TCP_ATO_MIN; 320 } 321 322 /* Send ACKs quickly, if "quick" count is not exhausted 323 * and the session is not interactive. 324 */ 325 326 static bool tcp_in_quickack_mode(struct sock *sk) 327 { 328 const struct inet_connection_sock *icsk = inet_csk(sk); 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 333 } 334 335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 336 { 337 if (tp->ecn_flags & TCP_ECN_OK) 338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 339 } 340 341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 342 { 343 if (tcp_hdr(skb)->cwr) { 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 345 346 /* If the sender is telling us it has entered CWR, then its 347 * cwnd may be very low (even just 1 packet), so we should ACK 348 * immediately. 349 */ 350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 352 } 353 } 354 355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 356 { 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 358 } 359 360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 361 { 362 struct tcp_sock *tp = tcp_sk(sk); 363 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 365 case INET_ECN_NOT_ECT: 366 /* Funny extension: if ECT is not set on a segment, 367 * and we already seen ECT on a previous segment, 368 * it is probably a retransmit. 369 */ 370 if (tp->ecn_flags & TCP_ECN_SEEN) 371 tcp_enter_quickack_mode(sk, 2); 372 break; 373 case INET_ECN_CE: 374 if (tcp_ca_needs_ecn(sk)) 375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 376 377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 378 /* Better not delay acks, sender can have a very low cwnd */ 379 tcp_enter_quickack_mode(sk, 2); 380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 381 } 382 tp->ecn_flags |= TCP_ECN_SEEN; 383 break; 384 default: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 } 390 } 391 392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 393 { 394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 395 __tcp_ecn_check_ce(sk, skb); 396 } 397 398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 407 tp->ecn_flags &= ~TCP_ECN_OK; 408 } 409 410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 411 { 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 413 return true; 414 return false; 415 } 416 417 /* Buffer size and advertised window tuning. 418 * 419 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 420 */ 421 422 static void tcp_sndbuf_expand(struct sock *sk) 423 { 424 const struct tcp_sock *tp = tcp_sk(sk); 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 426 int sndmem, per_mss; 427 u32 nr_segs; 428 429 /* Worst case is non GSO/TSO : each frame consumes one skb 430 * and skb->head is kmalloced using power of two area of memory 431 */ 432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 433 MAX_TCP_HEADER + 434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 436 per_mss = roundup_pow_of_two(per_mss) + 437 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 438 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 441 442 /* Fast Recovery (RFC 5681 3.2) : 443 * Cubic needs 1.7 factor, rounded to 2 to include 444 * extra cushion (application might react slowly to EPOLLOUT) 445 */ 446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 447 sndmem *= nr_segs * per_mss; 448 449 if (sk->sk_sndbuf < sndmem) 450 WRITE_ONCE(sk->sk_sndbuf, 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 452 } 453 454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 455 * 456 * All tcp_full_space() is split to two parts: "network" buffer, allocated 457 * forward and advertised in receiver window (tp->rcv_wnd) and 458 * "application buffer", required to isolate scheduling/application 459 * latencies from network. 460 * window_clamp is maximal advertised window. It can be less than 461 * tcp_full_space(), in this case tcp_full_space() - window_clamp 462 * is reserved for "application" buffer. The less window_clamp is 463 * the smoother our behaviour from viewpoint of network, but the lower 464 * throughput and the higher sensitivity of the connection to losses. 8) 465 * 466 * rcv_ssthresh is more strict window_clamp used at "slow start" 467 * phase to predict further behaviour of this connection. 468 * It is used for two goals: 469 * - to enforce header prediction at sender, even when application 470 * requires some significant "application buffer". It is check #1. 471 * - to prevent pruning of receive queue because of misprediction 472 * of receiver window. Check #2. 473 * 474 * The scheme does not work when sender sends good segments opening 475 * window and then starts to feed us spaghetti. But it should work 476 * in common situations. Otherwise, we have to rely on queue collapsing. 477 */ 478 479 /* Slow part of check#2. */ 480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 481 unsigned int skbtruesize) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 /* Optimize this! */ 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 487 488 while (tp->rcv_ssthresh <= window) { 489 if (truesize <= skb->len) 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 491 492 truesize >>= 1; 493 window >>= 1; 494 } 495 return 0; 496 } 497 498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 499 * can play nice with us, as sk_buff and skb->head might be either 500 * freed or shared with up to MAX_SKB_FRAGS segments. 501 * Only give a boost to drivers using page frag(s) to hold the frame(s), 502 * and if no payload was pulled in skb->head before reaching us. 503 */ 504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 505 { 506 u32 truesize = skb->truesize; 507 508 if (adjust && !skb_headlen(skb)) { 509 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 510 /* paranoid check, some drivers might be buggy */ 511 if (unlikely((int)truesize < (int)skb->len)) 512 truesize = skb->truesize; 513 } 514 return truesize; 515 } 516 517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 518 bool adjust) 519 { 520 struct tcp_sock *tp = tcp_sk(sk); 521 int room; 522 523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 524 525 if (room <= 0) 526 return; 527 528 /* Check #1 */ 529 if (!tcp_under_memory_pressure(sk)) { 530 unsigned int truesize = truesize_adjust(adjust, skb); 531 int incr; 532 533 /* Check #2. Increase window, if skb with such overhead 534 * will fit to rcvbuf in future. 535 */ 536 if (tcp_win_from_space(sk, truesize) <= skb->len) 537 incr = 2 * tp->advmss; 538 else 539 incr = __tcp_grow_window(sk, skb, truesize); 540 541 if (incr) { 542 incr = max_t(int, incr, 2 * skb->len); 543 tp->rcv_ssthresh += min(room, incr); 544 inet_csk(sk)->icsk_ack.quick |= 1; 545 } 546 } else { 547 /* Under pressure: 548 * Adjust rcv_ssthresh according to reserved mem 549 */ 550 tcp_adjust_rcv_ssthresh(sk); 551 } 552 } 553 554 /* 3. Try to fixup all. It is made immediately after connection enters 555 * established state. 556 */ 557 static void tcp_init_buffer_space(struct sock *sk) 558 { 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 560 struct tcp_sock *tp = tcp_sk(sk); 561 int maxwin; 562 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 564 tcp_sndbuf_expand(sk); 565 566 tcp_mstamp_refresh(tp); 567 tp->rcvq_space.time = tp->tcp_mstamp; 568 tp->rcvq_space.seq = tp->copied_seq; 569 570 maxwin = tcp_full_space(sk); 571 572 if (tp->window_clamp >= maxwin) { 573 tp->window_clamp = maxwin; 574 575 if (tcp_app_win && maxwin > 4 * tp->advmss) 576 tp->window_clamp = max(maxwin - 577 (maxwin >> tcp_app_win), 578 4 * tp->advmss); 579 } 580 581 /* Force reservation of one segment. */ 582 if (tcp_app_win && 583 tp->window_clamp > 2 * tp->advmss && 584 tp->window_clamp + tp->advmss > maxwin) 585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 697 const struct sk_buff *skb) 698 { 699 struct tcp_sock *tp = tcp_sk(sk); 700 701 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 702 return; 703 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 704 705 if (TCP_SKB_CB(skb)->end_seq - 706 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 707 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 708 u32 delta_us; 709 710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 711 if (!delta) 712 delta = 1; 713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 714 tcp_rcv_rtt_update(tp, delta_us, 0); 715 } 716 } 717 } 718 719 /* 720 * This function should be called every time data is copied to user space. 721 * It calculates the appropriate TCP receive buffer space. 722 */ 723 void tcp_rcv_space_adjust(struct sock *sk) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 u32 copied; 727 int time; 728 729 trace_tcp_rcv_space_adjust(sk); 730 731 tcp_mstamp_refresh(tp); 732 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 733 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 734 return; 735 736 /* Number of bytes copied to user in last RTT */ 737 copied = tp->copied_seq - tp->rcvq_space.seq; 738 if (copied <= tp->rcvq_space.space) 739 goto new_measure; 740 741 /* A bit of theory : 742 * copied = bytes received in previous RTT, our base window 743 * To cope with packet losses, we need a 2x factor 744 * To cope with slow start, and sender growing its cwin by 100 % 745 * every RTT, we need a 4x factor, because the ACK we are sending 746 * now is for the next RTT, not the current one : 747 * <prev RTT . ><current RTT .. ><next RTT .... > 748 */ 749 750 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 751 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 752 u64 rcvwin, grow; 753 int rcvbuf; 754 755 /* minimal window to cope with packet losses, assuming 756 * steady state. Add some cushion because of small variations. 757 */ 758 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 759 760 /* Accommodate for sender rate increase (eg. slow start) */ 761 grow = rcvwin * (copied - tp->rcvq_space.space); 762 do_div(grow, tp->rcvq_space.space); 763 rcvwin += (grow << 1); 764 765 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 766 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 767 if (rcvbuf > sk->sk_rcvbuf) { 768 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 769 770 /* Make the window clamp follow along. */ 771 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 772 } 773 } 774 tp->rcvq_space.space = copied; 775 776 new_measure: 777 tp->rcvq_space.seq = tp->copied_seq; 778 tp->rcvq_space.time = tp->tcp_mstamp; 779 } 780 781 /* There is something which you must keep in mind when you analyze the 782 * behavior of the tp->ato delayed ack timeout interval. When a 783 * connection starts up, we want to ack as quickly as possible. The 784 * problem is that "good" TCP's do slow start at the beginning of data 785 * transmission. The means that until we send the first few ACK's the 786 * sender will sit on his end and only queue most of his data, because 787 * he can only send snd_cwnd unacked packets at any given time. For 788 * each ACK we send, he increments snd_cwnd and transmits more of his 789 * queue. -DaveM 790 */ 791 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 792 { 793 struct tcp_sock *tp = tcp_sk(sk); 794 struct inet_connection_sock *icsk = inet_csk(sk); 795 u32 now; 796 797 inet_csk_schedule_ack(sk); 798 799 tcp_measure_rcv_mss(sk, skb); 800 801 tcp_rcv_rtt_measure(tp); 802 803 now = tcp_jiffies32; 804 805 if (!icsk->icsk_ack.ato) { 806 /* The _first_ data packet received, initialize 807 * delayed ACK engine. 808 */ 809 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 810 icsk->icsk_ack.ato = TCP_ATO_MIN; 811 } else { 812 int m = now - icsk->icsk_ack.lrcvtime; 813 814 if (m <= TCP_ATO_MIN / 2) { 815 /* The fastest case is the first. */ 816 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 817 } else if (m < icsk->icsk_ack.ato) { 818 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 819 if (icsk->icsk_ack.ato > icsk->icsk_rto) 820 icsk->icsk_ack.ato = icsk->icsk_rto; 821 } else if (m > icsk->icsk_rto) { 822 /* Too long gap. Apparently sender failed to 823 * restart window, so that we send ACKs quickly. 824 */ 825 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 826 } 827 } 828 icsk->icsk_ack.lrcvtime = now; 829 830 tcp_ecn_check_ce(sk, skb); 831 832 if (skb->len >= 128) 833 tcp_grow_window(sk, skb, true); 834 } 835 836 /* Called to compute a smoothed rtt estimate. The data fed to this 837 * routine either comes from timestamps, or from segments that were 838 * known _not_ to have been retransmitted [see Karn/Partridge 839 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 840 * piece by Van Jacobson. 841 * NOTE: the next three routines used to be one big routine. 842 * To save cycles in the RFC 1323 implementation it was better to break 843 * it up into three procedures. -- erics 844 */ 845 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 846 { 847 struct tcp_sock *tp = tcp_sk(sk); 848 long m = mrtt_us; /* RTT */ 849 u32 srtt = tp->srtt_us; 850 851 /* The following amusing code comes from Jacobson's 852 * article in SIGCOMM '88. Note that rtt and mdev 853 * are scaled versions of rtt and mean deviation. 854 * This is designed to be as fast as possible 855 * m stands for "measurement". 856 * 857 * On a 1990 paper the rto value is changed to: 858 * RTO = rtt + 4 * mdev 859 * 860 * Funny. This algorithm seems to be very broken. 861 * These formulae increase RTO, when it should be decreased, increase 862 * too slowly, when it should be increased quickly, decrease too quickly 863 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 864 * does not matter how to _calculate_ it. Seems, it was trap 865 * that VJ failed to avoid. 8) 866 */ 867 if (srtt != 0) { 868 m -= (srtt >> 3); /* m is now error in rtt est */ 869 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 870 if (m < 0) { 871 m = -m; /* m is now abs(error) */ 872 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 873 /* This is similar to one of Eifel findings. 874 * Eifel blocks mdev updates when rtt decreases. 875 * This solution is a bit different: we use finer gain 876 * for mdev in this case (alpha*beta). 877 * Like Eifel it also prevents growth of rto, 878 * but also it limits too fast rto decreases, 879 * happening in pure Eifel. 880 */ 881 if (m > 0) 882 m >>= 3; 883 } else { 884 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 885 } 886 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 887 if (tp->mdev_us > tp->mdev_max_us) { 888 tp->mdev_max_us = tp->mdev_us; 889 if (tp->mdev_max_us > tp->rttvar_us) 890 tp->rttvar_us = tp->mdev_max_us; 891 } 892 if (after(tp->snd_una, tp->rtt_seq)) { 893 if (tp->mdev_max_us < tp->rttvar_us) 894 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 895 tp->rtt_seq = tp->snd_nxt; 896 tp->mdev_max_us = tcp_rto_min_us(sk); 897 898 tcp_bpf_rtt(sk); 899 } 900 } else { 901 /* no previous measure. */ 902 srtt = m << 3; /* take the measured time to be rtt */ 903 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 904 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 905 tp->mdev_max_us = tp->rttvar_us; 906 tp->rtt_seq = tp->snd_nxt; 907 908 tcp_bpf_rtt(sk); 909 } 910 tp->srtt_us = max(1U, srtt); 911 } 912 913 static void tcp_update_pacing_rate(struct sock *sk) 914 { 915 const struct tcp_sock *tp = tcp_sk(sk); 916 u64 rate; 917 918 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 919 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 920 921 /* current rate is (cwnd * mss) / srtt 922 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 923 * In Congestion Avoidance phase, set it to 120 % the current rate. 924 * 925 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 926 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 927 * end of slow start and should slow down. 928 */ 929 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 930 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 931 else 932 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 933 934 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 935 936 if (likely(tp->srtt_us)) 937 do_div(rate, tp->srtt_us); 938 939 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 940 * without any lock. We want to make sure compiler wont store 941 * intermediate values in this location. 942 */ 943 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 944 sk->sk_max_pacing_rate)); 945 } 946 947 /* Calculate rto without backoff. This is the second half of Van Jacobson's 948 * routine referred to above. 949 */ 950 static void tcp_set_rto(struct sock *sk) 951 { 952 const struct tcp_sock *tp = tcp_sk(sk); 953 /* Old crap is replaced with new one. 8) 954 * 955 * More seriously: 956 * 1. If rtt variance happened to be less 50msec, it is hallucination. 957 * It cannot be less due to utterly erratic ACK generation made 958 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 959 * to do with delayed acks, because at cwnd>2 true delack timeout 960 * is invisible. Actually, Linux-2.4 also generates erratic 961 * ACKs in some circumstances. 962 */ 963 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 964 965 /* 2. Fixups made earlier cannot be right. 966 * If we do not estimate RTO correctly without them, 967 * all the algo is pure shit and should be replaced 968 * with correct one. It is exactly, which we pretend to do. 969 */ 970 971 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 972 * guarantees that rto is higher. 973 */ 974 tcp_bound_rto(sk); 975 } 976 977 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 978 { 979 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 980 981 if (!cwnd) 982 cwnd = TCP_INIT_CWND; 983 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 984 } 985 986 struct tcp_sacktag_state { 987 /* Timestamps for earliest and latest never-retransmitted segment 988 * that was SACKed. RTO needs the earliest RTT to stay conservative, 989 * but congestion control should still get an accurate delay signal. 990 */ 991 u64 first_sackt; 992 u64 last_sackt; 993 u32 reord; 994 u32 sack_delivered; 995 int flag; 996 unsigned int mss_now; 997 struct rate_sample *rate; 998 }; 999 1000 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1001 * and spurious retransmission information if this DSACK is unlikely caused by 1002 * sender's action: 1003 * - DSACKed sequence range is larger than maximum receiver's window. 1004 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1005 */ 1006 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1007 u32 end_seq, struct tcp_sacktag_state *state) 1008 { 1009 u32 seq_len, dup_segs = 1; 1010 1011 if (!before(start_seq, end_seq)) 1012 return 0; 1013 1014 seq_len = end_seq - start_seq; 1015 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1016 if (seq_len > tp->max_window) 1017 return 0; 1018 if (seq_len > tp->mss_cache) 1019 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1020 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1021 state->flag |= FLAG_DSACK_TLP; 1022 1023 tp->dsack_dups += dup_segs; 1024 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1025 if (tp->dsack_dups > tp->total_retrans) 1026 return 0; 1027 1028 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1029 /* We increase the RACK ordering window in rounds where we receive 1030 * DSACKs that may have been due to reordering causing RACK to trigger 1031 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1032 * without having seen reordering, or that match TLP probes (TLP 1033 * is timer-driven, not triggered by RACK). 1034 */ 1035 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1036 tp->rack.dsack_seen = 1; 1037 1038 state->flag |= FLAG_DSACKING_ACK; 1039 /* A spurious retransmission is delivered */ 1040 state->sack_delivered += dup_segs; 1041 1042 return dup_segs; 1043 } 1044 1045 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1046 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1047 * distance is approximated in full-mss packet distance ("reordering"). 1048 */ 1049 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1050 const int ts) 1051 { 1052 struct tcp_sock *tp = tcp_sk(sk); 1053 const u32 mss = tp->mss_cache; 1054 u32 fack, metric; 1055 1056 fack = tcp_highest_sack_seq(tp); 1057 if (!before(low_seq, fack)) 1058 return; 1059 1060 metric = fack - low_seq; 1061 if ((metric > tp->reordering * mss) && mss) { 1062 #if FASTRETRANS_DEBUG > 1 1063 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1064 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1065 tp->reordering, 1066 0, 1067 tp->sacked_out, 1068 tp->undo_marker ? tp->undo_retrans : 0); 1069 #endif 1070 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1071 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1072 } 1073 1074 /* This exciting event is worth to be remembered. 8) */ 1075 tp->reord_seen++; 1076 NET_INC_STATS(sock_net(sk), 1077 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1078 } 1079 1080 /* This must be called before lost_out or retrans_out are updated 1081 * on a new loss, because we want to know if all skbs previously 1082 * known to be lost have already been retransmitted, indicating 1083 * that this newly lost skb is our next skb to retransmit. 1084 */ 1085 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1086 { 1087 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1088 (tp->retransmit_skb_hint && 1089 before(TCP_SKB_CB(skb)->seq, 1090 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1091 tp->retransmit_skb_hint = skb; 1092 } 1093 1094 /* Sum the number of packets on the wire we have marked as lost, and 1095 * notify the congestion control module that the given skb was marked lost. 1096 */ 1097 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1098 { 1099 tp->lost += tcp_skb_pcount(skb); 1100 } 1101 1102 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1103 { 1104 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1105 struct tcp_sock *tp = tcp_sk(sk); 1106 1107 if (sacked & TCPCB_SACKED_ACKED) 1108 return; 1109 1110 tcp_verify_retransmit_hint(tp, skb); 1111 if (sacked & TCPCB_LOST) { 1112 if (sacked & TCPCB_SACKED_RETRANS) { 1113 /* Account for retransmits that are lost again */ 1114 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1115 tp->retrans_out -= tcp_skb_pcount(skb); 1116 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1117 tcp_skb_pcount(skb)); 1118 tcp_notify_skb_loss_event(tp, skb); 1119 } 1120 } else { 1121 tp->lost_out += tcp_skb_pcount(skb); 1122 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1123 tcp_notify_skb_loss_event(tp, skb); 1124 } 1125 } 1126 1127 /* Updates the delivered and delivered_ce counts */ 1128 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1129 bool ece_ack) 1130 { 1131 tp->delivered += delivered; 1132 if (ece_ack) 1133 tp->delivered_ce += delivered; 1134 } 1135 1136 /* This procedure tags the retransmission queue when SACKs arrive. 1137 * 1138 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1139 * Packets in queue with these bits set are counted in variables 1140 * sacked_out, retrans_out and lost_out, correspondingly. 1141 * 1142 * Valid combinations are: 1143 * Tag InFlight Description 1144 * 0 1 - orig segment is in flight. 1145 * S 0 - nothing flies, orig reached receiver. 1146 * L 0 - nothing flies, orig lost by net. 1147 * R 2 - both orig and retransmit are in flight. 1148 * L|R 1 - orig is lost, retransmit is in flight. 1149 * S|R 1 - orig reached receiver, retrans is still in flight. 1150 * (L|S|R is logically valid, it could occur when L|R is sacked, 1151 * but it is equivalent to plain S and code short-curcuits it to S. 1152 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1153 * 1154 * These 6 states form finite state machine, controlled by the following events: 1155 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1156 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1157 * 3. Loss detection event of two flavors: 1158 * A. Scoreboard estimator decided the packet is lost. 1159 * A'. Reno "three dupacks" marks head of queue lost. 1160 * B. SACK arrives sacking SND.NXT at the moment, when the 1161 * segment was retransmitted. 1162 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1163 * 1164 * It is pleasant to note, that state diagram turns out to be commutative, 1165 * so that we are allowed not to be bothered by order of our actions, 1166 * when multiple events arrive simultaneously. (see the function below). 1167 * 1168 * Reordering detection. 1169 * -------------------- 1170 * Reordering metric is maximal distance, which a packet can be displaced 1171 * in packet stream. With SACKs we can estimate it: 1172 * 1173 * 1. SACK fills old hole and the corresponding segment was not 1174 * ever retransmitted -> reordering. Alas, we cannot use it 1175 * when segment was retransmitted. 1176 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1177 * for retransmitted and already SACKed segment -> reordering.. 1178 * Both of these heuristics are not used in Loss state, when we cannot 1179 * account for retransmits accurately. 1180 * 1181 * SACK block validation. 1182 * ---------------------- 1183 * 1184 * SACK block range validation checks that the received SACK block fits to 1185 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1186 * Note that SND.UNA is not included to the range though being valid because 1187 * it means that the receiver is rather inconsistent with itself reporting 1188 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1189 * perfectly valid, however, in light of RFC2018 which explicitly states 1190 * that "SACK block MUST reflect the newest segment. Even if the newest 1191 * segment is going to be discarded ...", not that it looks very clever 1192 * in case of head skb. Due to potentional receiver driven attacks, we 1193 * choose to avoid immediate execution of a walk in write queue due to 1194 * reneging and defer head skb's loss recovery to standard loss recovery 1195 * procedure that will eventually trigger (nothing forbids us doing this). 1196 * 1197 * Implements also blockage to start_seq wrap-around. Problem lies in the 1198 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1199 * there's no guarantee that it will be before snd_nxt (n). The problem 1200 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1201 * wrap (s_w): 1202 * 1203 * <- outs wnd -> <- wrapzone -> 1204 * u e n u_w e_w s n_w 1205 * | | | | | | | 1206 * |<------------+------+----- TCP seqno space --------------+---------->| 1207 * ...-- <2^31 ->| |<--------... 1208 * ...---- >2^31 ------>| |<--------... 1209 * 1210 * Current code wouldn't be vulnerable but it's better still to discard such 1211 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1212 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1213 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1214 * equal to the ideal case (infinite seqno space without wrap caused issues). 1215 * 1216 * With D-SACK the lower bound is extended to cover sequence space below 1217 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1218 * again, D-SACK block must not to go across snd_una (for the same reason as 1219 * for the normal SACK blocks, explained above). But there all simplicity 1220 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1221 * fully below undo_marker they do not affect behavior in anyway and can 1222 * therefore be safely ignored. In rare cases (which are more or less 1223 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1224 * fragmentation and packet reordering past skb's retransmission. To consider 1225 * them correctly, the acceptable range must be extended even more though 1226 * the exact amount is rather hard to quantify. However, tp->max_window can 1227 * be used as an exaggerated estimate. 1228 */ 1229 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1230 u32 start_seq, u32 end_seq) 1231 { 1232 /* Too far in future, or reversed (interpretation is ambiguous) */ 1233 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1234 return false; 1235 1236 /* Nasty start_seq wrap-around check (see comments above) */ 1237 if (!before(start_seq, tp->snd_nxt)) 1238 return false; 1239 1240 /* In outstanding window? ...This is valid exit for D-SACKs too. 1241 * start_seq == snd_una is non-sensical (see comments above) 1242 */ 1243 if (after(start_seq, tp->snd_una)) 1244 return true; 1245 1246 if (!is_dsack || !tp->undo_marker) 1247 return false; 1248 1249 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1250 if (after(end_seq, tp->snd_una)) 1251 return false; 1252 1253 if (!before(start_seq, tp->undo_marker)) 1254 return true; 1255 1256 /* Too old */ 1257 if (!after(end_seq, tp->undo_marker)) 1258 return false; 1259 1260 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1261 * start_seq < undo_marker and end_seq >= undo_marker. 1262 */ 1263 return !before(start_seq, end_seq - tp->max_window); 1264 } 1265 1266 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1267 struct tcp_sack_block_wire *sp, int num_sacks, 1268 u32 prior_snd_una, struct tcp_sacktag_state *state) 1269 { 1270 struct tcp_sock *tp = tcp_sk(sk); 1271 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1272 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1273 u32 dup_segs; 1274 1275 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1277 } else if (num_sacks > 1) { 1278 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1279 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1280 1281 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1282 return false; 1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1284 } else { 1285 return false; 1286 } 1287 1288 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1289 if (!dup_segs) { /* Skip dubious DSACK */ 1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1291 return false; 1292 } 1293 1294 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1295 1296 /* D-SACK for already forgotten data... Do dumb counting. */ 1297 if (tp->undo_marker && tp->undo_retrans > 0 && 1298 !after(end_seq_0, prior_snd_una) && 1299 after(end_seq_0, tp->undo_marker)) 1300 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1301 1302 return true; 1303 } 1304 1305 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1306 * the incoming SACK may not exactly match but we can find smaller MSS 1307 * aligned portion of it that matches. Therefore we might need to fragment 1308 * which may fail and creates some hassle (caller must handle error case 1309 * returns). 1310 * 1311 * FIXME: this could be merged to shift decision code 1312 */ 1313 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1314 u32 start_seq, u32 end_seq) 1315 { 1316 int err; 1317 bool in_sack; 1318 unsigned int pkt_len; 1319 unsigned int mss; 1320 1321 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1322 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1323 1324 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1325 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1326 mss = tcp_skb_mss(skb); 1327 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1328 1329 if (!in_sack) { 1330 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1331 if (pkt_len < mss) 1332 pkt_len = mss; 1333 } else { 1334 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1335 if (pkt_len < mss) 1336 return -EINVAL; 1337 } 1338 1339 /* Round if necessary so that SACKs cover only full MSSes 1340 * and/or the remaining small portion (if present) 1341 */ 1342 if (pkt_len > mss) { 1343 unsigned int new_len = (pkt_len / mss) * mss; 1344 if (!in_sack && new_len < pkt_len) 1345 new_len += mss; 1346 pkt_len = new_len; 1347 } 1348 1349 if (pkt_len >= skb->len && !in_sack) 1350 return 0; 1351 1352 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1353 pkt_len, mss, GFP_ATOMIC); 1354 if (err < 0) 1355 return err; 1356 } 1357 1358 return in_sack; 1359 } 1360 1361 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1362 static u8 tcp_sacktag_one(struct sock *sk, 1363 struct tcp_sacktag_state *state, u8 sacked, 1364 u32 start_seq, u32 end_seq, 1365 int dup_sack, int pcount, 1366 u64 xmit_time) 1367 { 1368 struct tcp_sock *tp = tcp_sk(sk); 1369 1370 /* Account D-SACK for retransmitted packet. */ 1371 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1372 if (tp->undo_marker && tp->undo_retrans > 0 && 1373 after(end_seq, tp->undo_marker)) 1374 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1375 if ((sacked & TCPCB_SACKED_ACKED) && 1376 before(start_seq, state->reord)) 1377 state->reord = start_seq; 1378 } 1379 1380 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1381 if (!after(end_seq, tp->snd_una)) 1382 return sacked; 1383 1384 if (!(sacked & TCPCB_SACKED_ACKED)) { 1385 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1386 1387 if (sacked & TCPCB_SACKED_RETRANS) { 1388 /* If the segment is not tagged as lost, 1389 * we do not clear RETRANS, believing 1390 * that retransmission is still in flight. 1391 */ 1392 if (sacked & TCPCB_LOST) { 1393 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1394 tp->lost_out -= pcount; 1395 tp->retrans_out -= pcount; 1396 } 1397 } else { 1398 if (!(sacked & TCPCB_RETRANS)) { 1399 /* New sack for not retransmitted frame, 1400 * which was in hole. It is reordering. 1401 */ 1402 if (before(start_seq, 1403 tcp_highest_sack_seq(tp)) && 1404 before(start_seq, state->reord)) 1405 state->reord = start_seq; 1406 1407 if (!after(end_seq, tp->high_seq)) 1408 state->flag |= FLAG_ORIG_SACK_ACKED; 1409 if (state->first_sackt == 0) 1410 state->first_sackt = xmit_time; 1411 state->last_sackt = xmit_time; 1412 } 1413 1414 if (sacked & TCPCB_LOST) { 1415 sacked &= ~TCPCB_LOST; 1416 tp->lost_out -= pcount; 1417 } 1418 } 1419 1420 sacked |= TCPCB_SACKED_ACKED; 1421 state->flag |= FLAG_DATA_SACKED; 1422 tp->sacked_out += pcount; 1423 /* Out-of-order packets delivered */ 1424 state->sack_delivered += pcount; 1425 1426 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1427 if (tp->lost_skb_hint && 1428 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1429 tp->lost_cnt_hint += pcount; 1430 } 1431 1432 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1433 * frames and clear it. undo_retrans is decreased above, L|R frames 1434 * are accounted above as well. 1435 */ 1436 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1437 sacked &= ~TCPCB_SACKED_RETRANS; 1438 tp->retrans_out -= pcount; 1439 } 1440 1441 return sacked; 1442 } 1443 1444 /* Shift newly-SACKed bytes from this skb to the immediately previous 1445 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1446 */ 1447 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1448 struct sk_buff *skb, 1449 struct tcp_sacktag_state *state, 1450 unsigned int pcount, int shifted, int mss, 1451 bool dup_sack) 1452 { 1453 struct tcp_sock *tp = tcp_sk(sk); 1454 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1455 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1456 1457 BUG_ON(!pcount); 1458 1459 /* Adjust counters and hints for the newly sacked sequence 1460 * range but discard the return value since prev is already 1461 * marked. We must tag the range first because the seq 1462 * advancement below implicitly advances 1463 * tcp_highest_sack_seq() when skb is highest_sack. 1464 */ 1465 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1466 start_seq, end_seq, dup_sack, pcount, 1467 tcp_skb_timestamp_us(skb)); 1468 tcp_rate_skb_delivered(sk, skb, state->rate); 1469 1470 if (skb == tp->lost_skb_hint) 1471 tp->lost_cnt_hint += pcount; 1472 1473 TCP_SKB_CB(prev)->end_seq += shifted; 1474 TCP_SKB_CB(skb)->seq += shifted; 1475 1476 tcp_skb_pcount_add(prev, pcount); 1477 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1478 tcp_skb_pcount_add(skb, -pcount); 1479 1480 /* When we're adding to gso_segs == 1, gso_size will be zero, 1481 * in theory this shouldn't be necessary but as long as DSACK 1482 * code can come after this skb later on it's better to keep 1483 * setting gso_size to something. 1484 */ 1485 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1486 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1487 1488 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1489 if (tcp_skb_pcount(skb) <= 1) 1490 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1491 1492 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1493 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1494 1495 if (skb->len > 0) { 1496 BUG_ON(!tcp_skb_pcount(skb)); 1497 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1498 return false; 1499 } 1500 1501 /* Whole SKB was eaten :-) */ 1502 1503 if (skb == tp->retransmit_skb_hint) 1504 tp->retransmit_skb_hint = prev; 1505 if (skb == tp->lost_skb_hint) { 1506 tp->lost_skb_hint = prev; 1507 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1508 } 1509 1510 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1511 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1512 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1513 TCP_SKB_CB(prev)->end_seq++; 1514 1515 if (skb == tcp_highest_sack(sk)) 1516 tcp_advance_highest_sack(sk, skb); 1517 1518 tcp_skb_collapse_tstamp(prev, skb); 1519 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1520 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1521 1522 tcp_rtx_queue_unlink_and_free(skb, sk); 1523 1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1525 1526 return true; 1527 } 1528 1529 /* I wish gso_size would have a bit more sane initialization than 1530 * something-or-zero which complicates things 1531 */ 1532 static int tcp_skb_seglen(const struct sk_buff *skb) 1533 { 1534 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1535 } 1536 1537 /* Shifting pages past head area doesn't work */ 1538 static int skb_can_shift(const struct sk_buff *skb) 1539 { 1540 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1541 } 1542 1543 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1544 int pcount, int shiftlen) 1545 { 1546 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1547 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1548 * to make sure not storing more than 65535 * 8 bytes per skb, 1549 * even if current MSS is bigger. 1550 */ 1551 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1552 return 0; 1553 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1554 return 0; 1555 return skb_shift(to, from, shiftlen); 1556 } 1557 1558 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1559 * skb. 1560 */ 1561 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1562 struct tcp_sacktag_state *state, 1563 u32 start_seq, u32 end_seq, 1564 bool dup_sack) 1565 { 1566 struct tcp_sock *tp = tcp_sk(sk); 1567 struct sk_buff *prev; 1568 int mss; 1569 int pcount = 0; 1570 int len; 1571 int in_sack; 1572 1573 /* Normally R but no L won't result in plain S */ 1574 if (!dup_sack && 1575 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1576 goto fallback; 1577 if (!skb_can_shift(skb)) 1578 goto fallback; 1579 /* This frame is about to be dropped (was ACKed). */ 1580 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1581 goto fallback; 1582 1583 /* Can only happen with delayed DSACK + discard craziness */ 1584 prev = skb_rb_prev(skb); 1585 if (!prev) 1586 goto fallback; 1587 1588 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1589 goto fallback; 1590 1591 if (!tcp_skb_can_collapse(prev, skb)) 1592 goto fallback; 1593 1594 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1595 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1596 1597 if (in_sack) { 1598 len = skb->len; 1599 pcount = tcp_skb_pcount(skb); 1600 mss = tcp_skb_seglen(skb); 1601 1602 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1603 * drop this restriction as unnecessary 1604 */ 1605 if (mss != tcp_skb_seglen(prev)) 1606 goto fallback; 1607 } else { 1608 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1609 goto noop; 1610 /* CHECKME: This is non-MSS split case only?, this will 1611 * cause skipped skbs due to advancing loop btw, original 1612 * has that feature too 1613 */ 1614 if (tcp_skb_pcount(skb) <= 1) 1615 goto noop; 1616 1617 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1618 if (!in_sack) { 1619 /* TODO: head merge to next could be attempted here 1620 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1621 * though it might not be worth of the additional hassle 1622 * 1623 * ...we can probably just fallback to what was done 1624 * previously. We could try merging non-SACKed ones 1625 * as well but it probably isn't going to buy off 1626 * because later SACKs might again split them, and 1627 * it would make skb timestamp tracking considerably 1628 * harder problem. 1629 */ 1630 goto fallback; 1631 } 1632 1633 len = end_seq - TCP_SKB_CB(skb)->seq; 1634 BUG_ON(len < 0); 1635 BUG_ON(len > skb->len); 1636 1637 /* MSS boundaries should be honoured or else pcount will 1638 * severely break even though it makes things bit trickier. 1639 * Optimize common case to avoid most of the divides 1640 */ 1641 mss = tcp_skb_mss(skb); 1642 1643 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1644 * drop this restriction as unnecessary 1645 */ 1646 if (mss != tcp_skb_seglen(prev)) 1647 goto fallback; 1648 1649 if (len == mss) { 1650 pcount = 1; 1651 } else if (len < mss) { 1652 goto noop; 1653 } else { 1654 pcount = len / mss; 1655 len = pcount * mss; 1656 } 1657 } 1658 1659 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1660 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1661 goto fallback; 1662 1663 if (!tcp_skb_shift(prev, skb, pcount, len)) 1664 goto fallback; 1665 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1666 goto out; 1667 1668 /* Hole filled allows collapsing with the next as well, this is very 1669 * useful when hole on every nth skb pattern happens 1670 */ 1671 skb = skb_rb_next(prev); 1672 if (!skb) 1673 goto out; 1674 1675 if (!skb_can_shift(skb) || 1676 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1677 (mss != tcp_skb_seglen(skb))) 1678 goto out; 1679 1680 if (!tcp_skb_can_collapse(prev, skb)) 1681 goto out; 1682 len = skb->len; 1683 pcount = tcp_skb_pcount(skb); 1684 if (tcp_skb_shift(prev, skb, pcount, len)) 1685 tcp_shifted_skb(sk, prev, skb, state, pcount, 1686 len, mss, 0); 1687 1688 out: 1689 return prev; 1690 1691 noop: 1692 return skb; 1693 1694 fallback: 1695 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1696 return NULL; 1697 } 1698 1699 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1700 struct tcp_sack_block *next_dup, 1701 struct tcp_sacktag_state *state, 1702 u32 start_seq, u32 end_seq, 1703 bool dup_sack_in) 1704 { 1705 struct tcp_sock *tp = tcp_sk(sk); 1706 struct sk_buff *tmp; 1707 1708 skb_rbtree_walk_from(skb) { 1709 int in_sack = 0; 1710 bool dup_sack = dup_sack_in; 1711 1712 /* queue is in-order => we can short-circuit the walk early */ 1713 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1714 break; 1715 1716 if (next_dup && 1717 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1718 in_sack = tcp_match_skb_to_sack(sk, skb, 1719 next_dup->start_seq, 1720 next_dup->end_seq); 1721 if (in_sack > 0) 1722 dup_sack = true; 1723 } 1724 1725 /* skb reference here is a bit tricky to get right, since 1726 * shifting can eat and free both this skb and the next, 1727 * so not even _safe variant of the loop is enough. 1728 */ 1729 if (in_sack <= 0) { 1730 tmp = tcp_shift_skb_data(sk, skb, state, 1731 start_seq, end_seq, dup_sack); 1732 if (tmp) { 1733 if (tmp != skb) { 1734 skb = tmp; 1735 continue; 1736 } 1737 1738 in_sack = 0; 1739 } else { 1740 in_sack = tcp_match_skb_to_sack(sk, skb, 1741 start_seq, 1742 end_seq); 1743 } 1744 } 1745 1746 if (unlikely(in_sack < 0)) 1747 break; 1748 1749 if (in_sack) { 1750 TCP_SKB_CB(skb)->sacked = 1751 tcp_sacktag_one(sk, 1752 state, 1753 TCP_SKB_CB(skb)->sacked, 1754 TCP_SKB_CB(skb)->seq, 1755 TCP_SKB_CB(skb)->end_seq, 1756 dup_sack, 1757 tcp_skb_pcount(skb), 1758 tcp_skb_timestamp_us(skb)); 1759 tcp_rate_skb_delivered(sk, skb, state->rate); 1760 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1761 list_del_init(&skb->tcp_tsorted_anchor); 1762 1763 if (!before(TCP_SKB_CB(skb)->seq, 1764 tcp_highest_sack_seq(tp))) 1765 tcp_advance_highest_sack(sk, skb); 1766 } 1767 } 1768 return skb; 1769 } 1770 1771 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1772 { 1773 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1774 struct sk_buff *skb; 1775 1776 while (*p) { 1777 parent = *p; 1778 skb = rb_to_skb(parent); 1779 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1780 p = &parent->rb_left; 1781 continue; 1782 } 1783 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1784 p = &parent->rb_right; 1785 continue; 1786 } 1787 return skb; 1788 } 1789 return NULL; 1790 } 1791 1792 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1793 u32 skip_to_seq) 1794 { 1795 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1796 return skb; 1797 1798 return tcp_sacktag_bsearch(sk, skip_to_seq); 1799 } 1800 1801 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1802 struct sock *sk, 1803 struct tcp_sack_block *next_dup, 1804 struct tcp_sacktag_state *state, 1805 u32 skip_to_seq) 1806 { 1807 if (!next_dup) 1808 return skb; 1809 1810 if (before(next_dup->start_seq, skip_to_seq)) { 1811 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1812 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1813 next_dup->start_seq, next_dup->end_seq, 1814 1); 1815 } 1816 1817 return skb; 1818 } 1819 1820 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1821 { 1822 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1823 } 1824 1825 static int 1826 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1827 u32 prior_snd_una, struct tcp_sacktag_state *state) 1828 { 1829 struct tcp_sock *tp = tcp_sk(sk); 1830 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1831 TCP_SKB_CB(ack_skb)->sacked); 1832 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1833 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1834 struct tcp_sack_block *cache; 1835 struct sk_buff *skb; 1836 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1837 int used_sacks; 1838 bool found_dup_sack = false; 1839 int i, j; 1840 int first_sack_index; 1841 1842 state->flag = 0; 1843 state->reord = tp->snd_nxt; 1844 1845 if (!tp->sacked_out) 1846 tcp_highest_sack_reset(sk); 1847 1848 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1849 num_sacks, prior_snd_una, state); 1850 1851 /* Eliminate too old ACKs, but take into 1852 * account more or less fresh ones, they can 1853 * contain valid SACK info. 1854 */ 1855 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1856 return 0; 1857 1858 if (!tp->packets_out) 1859 goto out; 1860 1861 used_sacks = 0; 1862 first_sack_index = 0; 1863 for (i = 0; i < num_sacks; i++) { 1864 bool dup_sack = !i && found_dup_sack; 1865 1866 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1867 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1868 1869 if (!tcp_is_sackblock_valid(tp, dup_sack, 1870 sp[used_sacks].start_seq, 1871 sp[used_sacks].end_seq)) { 1872 int mib_idx; 1873 1874 if (dup_sack) { 1875 if (!tp->undo_marker) 1876 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1877 else 1878 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1879 } else { 1880 /* Don't count olds caused by ACK reordering */ 1881 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1882 !after(sp[used_sacks].end_seq, tp->snd_una)) 1883 continue; 1884 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1885 } 1886 1887 NET_INC_STATS(sock_net(sk), mib_idx); 1888 if (i == 0) 1889 first_sack_index = -1; 1890 continue; 1891 } 1892 1893 /* Ignore very old stuff early */ 1894 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1895 if (i == 0) 1896 first_sack_index = -1; 1897 continue; 1898 } 1899 1900 used_sacks++; 1901 } 1902 1903 /* order SACK blocks to allow in order walk of the retrans queue */ 1904 for (i = used_sacks - 1; i > 0; i--) { 1905 for (j = 0; j < i; j++) { 1906 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1907 swap(sp[j], sp[j + 1]); 1908 1909 /* Track where the first SACK block goes to */ 1910 if (j == first_sack_index) 1911 first_sack_index = j + 1; 1912 } 1913 } 1914 } 1915 1916 state->mss_now = tcp_current_mss(sk); 1917 skb = NULL; 1918 i = 0; 1919 1920 if (!tp->sacked_out) { 1921 /* It's already past, so skip checking against it */ 1922 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1923 } else { 1924 cache = tp->recv_sack_cache; 1925 /* Skip empty blocks in at head of the cache */ 1926 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1927 !cache->end_seq) 1928 cache++; 1929 } 1930 1931 while (i < used_sacks) { 1932 u32 start_seq = sp[i].start_seq; 1933 u32 end_seq = sp[i].end_seq; 1934 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1935 struct tcp_sack_block *next_dup = NULL; 1936 1937 if (found_dup_sack && ((i + 1) == first_sack_index)) 1938 next_dup = &sp[i + 1]; 1939 1940 /* Skip too early cached blocks */ 1941 while (tcp_sack_cache_ok(tp, cache) && 1942 !before(start_seq, cache->end_seq)) 1943 cache++; 1944 1945 /* Can skip some work by looking recv_sack_cache? */ 1946 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1947 after(end_seq, cache->start_seq)) { 1948 1949 /* Head todo? */ 1950 if (before(start_seq, cache->start_seq)) { 1951 skb = tcp_sacktag_skip(skb, sk, start_seq); 1952 skb = tcp_sacktag_walk(skb, sk, next_dup, 1953 state, 1954 start_seq, 1955 cache->start_seq, 1956 dup_sack); 1957 } 1958 1959 /* Rest of the block already fully processed? */ 1960 if (!after(end_seq, cache->end_seq)) 1961 goto advance_sp; 1962 1963 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1964 state, 1965 cache->end_seq); 1966 1967 /* ...tail remains todo... */ 1968 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1969 /* ...but better entrypoint exists! */ 1970 skb = tcp_highest_sack(sk); 1971 if (!skb) 1972 break; 1973 cache++; 1974 goto walk; 1975 } 1976 1977 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1978 /* Check overlap against next cached too (past this one already) */ 1979 cache++; 1980 continue; 1981 } 1982 1983 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1984 skb = tcp_highest_sack(sk); 1985 if (!skb) 1986 break; 1987 } 1988 skb = tcp_sacktag_skip(skb, sk, start_seq); 1989 1990 walk: 1991 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1992 start_seq, end_seq, dup_sack); 1993 1994 advance_sp: 1995 i++; 1996 } 1997 1998 /* Clear the head of the cache sack blocks so we can skip it next time */ 1999 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2000 tp->recv_sack_cache[i].start_seq = 0; 2001 tp->recv_sack_cache[i].end_seq = 0; 2002 } 2003 for (j = 0; j < used_sacks; j++) 2004 tp->recv_sack_cache[i++] = sp[j]; 2005 2006 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2007 tcp_check_sack_reordering(sk, state->reord, 0); 2008 2009 tcp_verify_left_out(tp); 2010 out: 2011 2012 #if FASTRETRANS_DEBUG > 0 2013 WARN_ON((int)tp->sacked_out < 0); 2014 WARN_ON((int)tp->lost_out < 0); 2015 WARN_ON((int)tp->retrans_out < 0); 2016 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2017 #endif 2018 return state->flag; 2019 } 2020 2021 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2022 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2023 */ 2024 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2025 { 2026 u32 holes; 2027 2028 holes = max(tp->lost_out, 1U); 2029 holes = min(holes, tp->packets_out); 2030 2031 if ((tp->sacked_out + holes) > tp->packets_out) { 2032 tp->sacked_out = tp->packets_out - holes; 2033 return true; 2034 } 2035 return false; 2036 } 2037 2038 /* If we receive more dupacks than we expected counting segments 2039 * in assumption of absent reordering, interpret this as reordering. 2040 * The only another reason could be bug in receiver TCP. 2041 */ 2042 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2043 { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 2046 if (!tcp_limit_reno_sacked(tp)) 2047 return; 2048 2049 tp->reordering = min_t(u32, tp->packets_out + addend, 2050 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2051 tp->reord_seen++; 2052 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2053 } 2054 2055 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2056 2057 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2058 { 2059 if (num_dupack) { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 u32 prior_sacked = tp->sacked_out; 2062 s32 delivered; 2063 2064 tp->sacked_out += num_dupack; 2065 tcp_check_reno_reordering(sk, 0); 2066 delivered = tp->sacked_out - prior_sacked; 2067 if (delivered > 0) 2068 tcp_count_delivered(tp, delivered, ece_ack); 2069 tcp_verify_left_out(tp); 2070 } 2071 } 2072 2073 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2074 2075 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2076 { 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 2079 if (acked > 0) { 2080 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2081 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2082 ece_ack); 2083 if (acked - 1 >= tp->sacked_out) 2084 tp->sacked_out = 0; 2085 else 2086 tp->sacked_out -= acked - 1; 2087 } 2088 tcp_check_reno_reordering(sk, acked); 2089 tcp_verify_left_out(tp); 2090 } 2091 2092 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2093 { 2094 tp->sacked_out = 0; 2095 } 2096 2097 void tcp_clear_retrans(struct tcp_sock *tp) 2098 { 2099 tp->retrans_out = 0; 2100 tp->lost_out = 0; 2101 tp->undo_marker = 0; 2102 tp->undo_retrans = -1; 2103 tp->sacked_out = 0; 2104 } 2105 2106 static inline void tcp_init_undo(struct tcp_sock *tp) 2107 { 2108 tp->undo_marker = tp->snd_una; 2109 /* Retransmission still in flight may cause DSACKs later. */ 2110 tp->undo_retrans = tp->retrans_out ? : -1; 2111 } 2112 2113 static bool tcp_is_rack(const struct sock *sk) 2114 { 2115 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2116 TCP_RACK_LOSS_DETECTION; 2117 } 2118 2119 /* If we detect SACK reneging, forget all SACK information 2120 * and reset tags completely, otherwise preserve SACKs. If receiver 2121 * dropped its ofo queue, we will know this due to reneging detection. 2122 */ 2123 static void tcp_timeout_mark_lost(struct sock *sk) 2124 { 2125 struct tcp_sock *tp = tcp_sk(sk); 2126 struct sk_buff *skb, *head; 2127 bool is_reneg; /* is receiver reneging on SACKs? */ 2128 2129 head = tcp_rtx_queue_head(sk); 2130 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2131 if (is_reneg) { 2132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2133 tp->sacked_out = 0; 2134 /* Mark SACK reneging until we recover from this loss event. */ 2135 tp->is_sack_reneg = 1; 2136 } else if (tcp_is_reno(tp)) { 2137 tcp_reset_reno_sack(tp); 2138 } 2139 2140 skb = head; 2141 skb_rbtree_walk_from(skb) { 2142 if (is_reneg) 2143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2144 else if (tcp_is_rack(sk) && skb != head && 2145 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2146 continue; /* Don't mark recently sent ones lost yet */ 2147 tcp_mark_skb_lost(sk, skb); 2148 } 2149 tcp_verify_left_out(tp); 2150 tcp_clear_all_retrans_hints(tp); 2151 } 2152 2153 /* Enter Loss state. */ 2154 void tcp_enter_loss(struct sock *sk) 2155 { 2156 const struct inet_connection_sock *icsk = inet_csk(sk); 2157 struct tcp_sock *tp = tcp_sk(sk); 2158 struct net *net = sock_net(sk); 2159 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2160 u8 reordering; 2161 2162 tcp_timeout_mark_lost(sk); 2163 2164 /* Reduce ssthresh if it has not yet been made inside this window. */ 2165 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2166 !after(tp->high_seq, tp->snd_una) || 2167 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2168 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2169 tp->prior_cwnd = tcp_snd_cwnd(tp); 2170 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2171 tcp_ca_event(sk, CA_EVENT_LOSS); 2172 tcp_init_undo(tp); 2173 } 2174 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2175 tp->snd_cwnd_cnt = 0; 2176 tp->snd_cwnd_stamp = tcp_jiffies32; 2177 2178 /* Timeout in disordered state after receiving substantial DUPACKs 2179 * suggests that the degree of reordering is over-estimated. 2180 */ 2181 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2182 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2183 tp->sacked_out >= reordering) 2184 tp->reordering = min_t(unsigned int, tp->reordering, 2185 reordering); 2186 2187 tcp_set_ca_state(sk, TCP_CA_Loss); 2188 tp->high_seq = tp->snd_nxt; 2189 tcp_ecn_queue_cwr(tp); 2190 2191 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2192 * loss recovery is underway except recurring timeout(s) on 2193 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2194 */ 2195 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2196 (new_recovery || icsk->icsk_retransmits) && 2197 !inet_csk(sk)->icsk_mtup.probe_size; 2198 } 2199 2200 /* If ACK arrived pointing to a remembered SACK, it means that our 2201 * remembered SACKs do not reflect real state of receiver i.e. 2202 * receiver _host_ is heavily congested (or buggy). 2203 * 2204 * To avoid big spurious retransmission bursts due to transient SACK 2205 * scoreboard oddities that look like reneging, we give the receiver a 2206 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2207 * restore sanity to the SACK scoreboard. If the apparent reneging 2208 * persists until this RTO then we'll clear the SACK scoreboard. 2209 */ 2210 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2211 { 2212 if (flag & FLAG_SACK_RENEGING && 2213 flag & FLAG_SND_UNA_ADVANCED) { 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2216 msecs_to_jiffies(10)); 2217 2218 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2219 delay, TCP_RTO_MAX); 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2226 * counter when SACK is enabled (without SACK, sacked_out is used for 2227 * that purpose). 2228 * 2229 * With reordering, holes may still be in flight, so RFC3517 recovery 2230 * uses pure sacked_out (total number of SACKed segments) even though 2231 * it violates the RFC that uses duplicate ACKs, often these are equal 2232 * but when e.g. out-of-window ACKs or packet duplication occurs, 2233 * they differ. Since neither occurs due to loss, TCP should really 2234 * ignore them. 2235 */ 2236 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2237 { 2238 return tp->sacked_out + 1; 2239 } 2240 2241 /* Linux NewReno/SACK/ECN state machine. 2242 * -------------------------------------- 2243 * 2244 * "Open" Normal state, no dubious events, fast path. 2245 * "Disorder" In all the respects it is "Open", 2246 * but requires a bit more attention. It is entered when 2247 * we see some SACKs or dupacks. It is split of "Open" 2248 * mainly to move some processing from fast path to slow one. 2249 * "CWR" CWND was reduced due to some Congestion Notification event. 2250 * It can be ECN, ICMP source quench, local device congestion. 2251 * "Recovery" CWND was reduced, we are fast-retransmitting. 2252 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2253 * 2254 * tcp_fastretrans_alert() is entered: 2255 * - each incoming ACK, if state is not "Open" 2256 * - when arrived ACK is unusual, namely: 2257 * * SACK 2258 * * Duplicate ACK. 2259 * * ECN ECE. 2260 * 2261 * Counting packets in flight is pretty simple. 2262 * 2263 * in_flight = packets_out - left_out + retrans_out 2264 * 2265 * packets_out is SND.NXT-SND.UNA counted in packets. 2266 * 2267 * retrans_out is number of retransmitted segments. 2268 * 2269 * left_out is number of segments left network, but not ACKed yet. 2270 * 2271 * left_out = sacked_out + lost_out 2272 * 2273 * sacked_out: Packets, which arrived to receiver out of order 2274 * and hence not ACKed. With SACKs this number is simply 2275 * amount of SACKed data. Even without SACKs 2276 * it is easy to give pretty reliable estimate of this number, 2277 * counting duplicate ACKs. 2278 * 2279 * lost_out: Packets lost by network. TCP has no explicit 2280 * "loss notification" feedback from network (for now). 2281 * It means that this number can be only _guessed_. 2282 * Actually, it is the heuristics to predict lossage that 2283 * distinguishes different algorithms. 2284 * 2285 * F.e. after RTO, when all the queue is considered as lost, 2286 * lost_out = packets_out and in_flight = retrans_out. 2287 * 2288 * Essentially, we have now a few algorithms detecting 2289 * lost packets. 2290 * 2291 * If the receiver supports SACK: 2292 * 2293 * RFC6675/3517: It is the conventional algorithm. A packet is 2294 * considered lost if the number of higher sequence packets 2295 * SACKed is greater than or equal the DUPACK thoreshold 2296 * (reordering). This is implemented in tcp_mark_head_lost and 2297 * tcp_update_scoreboard. 2298 * 2299 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2300 * (2017-) that checks timing instead of counting DUPACKs. 2301 * Essentially a packet is considered lost if it's not S/ACKed 2302 * after RTT + reordering_window, where both metrics are 2303 * dynamically measured and adjusted. This is implemented in 2304 * tcp_rack_mark_lost. 2305 * 2306 * If the receiver does not support SACK: 2307 * 2308 * NewReno (RFC6582): in Recovery we assume that one segment 2309 * is lost (classic Reno). While we are in Recovery and 2310 * a partial ACK arrives, we assume that one more packet 2311 * is lost (NewReno). This heuristics are the same in NewReno 2312 * and SACK. 2313 * 2314 * Really tricky (and requiring careful tuning) part of algorithm 2315 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2316 * The first determines the moment _when_ we should reduce CWND and, 2317 * hence, slow down forward transmission. In fact, it determines the moment 2318 * when we decide that hole is caused by loss, rather than by a reorder. 2319 * 2320 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2321 * holes, caused by lost packets. 2322 * 2323 * And the most logically complicated part of algorithm is undo 2324 * heuristics. We detect false retransmits due to both too early 2325 * fast retransmit (reordering) and underestimated RTO, analyzing 2326 * timestamps and D-SACKs. When we detect that some segments were 2327 * retransmitted by mistake and CWND reduction was wrong, we undo 2328 * window reduction and abort recovery phase. This logic is hidden 2329 * inside several functions named tcp_try_undo_<something>. 2330 */ 2331 2332 /* This function decides, when we should leave Disordered state 2333 * and enter Recovery phase, reducing congestion window. 2334 * 2335 * Main question: may we further continue forward transmission 2336 * with the same cwnd? 2337 */ 2338 static bool tcp_time_to_recover(struct sock *sk, int flag) 2339 { 2340 struct tcp_sock *tp = tcp_sk(sk); 2341 2342 /* Trick#1: The loss is proven. */ 2343 if (tp->lost_out) 2344 return true; 2345 2346 /* Not-A-Trick#2 : Classic rule... */ 2347 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2348 return true; 2349 2350 return false; 2351 } 2352 2353 /* Detect loss in event "A" above by marking head of queue up as lost. 2354 * For RFC3517 SACK, a segment is considered lost if it 2355 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2356 * the maximum SACKed segments to pass before reaching this limit. 2357 */ 2358 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2359 { 2360 struct tcp_sock *tp = tcp_sk(sk); 2361 struct sk_buff *skb; 2362 int cnt; 2363 /* Use SACK to deduce losses of new sequences sent during recovery */ 2364 const u32 loss_high = tp->snd_nxt; 2365 2366 WARN_ON(packets > tp->packets_out); 2367 skb = tp->lost_skb_hint; 2368 if (skb) { 2369 /* Head already handled? */ 2370 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2371 return; 2372 cnt = tp->lost_cnt_hint; 2373 } else { 2374 skb = tcp_rtx_queue_head(sk); 2375 cnt = 0; 2376 } 2377 2378 skb_rbtree_walk_from(skb) { 2379 /* TODO: do this better */ 2380 /* this is not the most efficient way to do this... */ 2381 tp->lost_skb_hint = skb; 2382 tp->lost_cnt_hint = cnt; 2383 2384 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2385 break; 2386 2387 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2388 cnt += tcp_skb_pcount(skb); 2389 2390 if (cnt > packets) 2391 break; 2392 2393 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2394 tcp_mark_skb_lost(sk, skb); 2395 2396 if (mark_head) 2397 break; 2398 } 2399 tcp_verify_left_out(tp); 2400 } 2401 2402 /* Account newly detected lost packet(s) */ 2403 2404 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2405 { 2406 struct tcp_sock *tp = tcp_sk(sk); 2407 2408 if (tcp_is_sack(tp)) { 2409 int sacked_upto = tp->sacked_out - tp->reordering; 2410 if (sacked_upto >= 0) 2411 tcp_mark_head_lost(sk, sacked_upto, 0); 2412 else if (fast_rexmit) 2413 tcp_mark_head_lost(sk, 1, 1); 2414 } 2415 } 2416 2417 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2418 { 2419 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2420 before(tp->rx_opt.rcv_tsecr, when); 2421 } 2422 2423 /* skb is spurious retransmitted if the returned timestamp echo 2424 * reply is prior to the skb transmission time 2425 */ 2426 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2427 const struct sk_buff *skb) 2428 { 2429 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2430 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2431 } 2432 2433 /* Nothing was retransmitted or returned timestamp is less 2434 * than timestamp of the first retransmission. 2435 */ 2436 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2437 { 2438 return tp->retrans_stamp && 2439 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2440 } 2441 2442 /* Undo procedures. */ 2443 2444 /* We can clear retrans_stamp when there are no retransmissions in the 2445 * window. It would seem that it is trivially available for us in 2446 * tp->retrans_out, however, that kind of assumptions doesn't consider 2447 * what will happen if errors occur when sending retransmission for the 2448 * second time. ...It could the that such segment has only 2449 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2450 * the head skb is enough except for some reneging corner cases that 2451 * are not worth the effort. 2452 * 2453 * Main reason for all this complexity is the fact that connection dying 2454 * time now depends on the validity of the retrans_stamp, in particular, 2455 * that successive retransmissions of a segment must not advance 2456 * retrans_stamp under any conditions. 2457 */ 2458 static bool tcp_any_retrans_done(const struct sock *sk) 2459 { 2460 const struct tcp_sock *tp = tcp_sk(sk); 2461 struct sk_buff *skb; 2462 2463 if (tp->retrans_out) 2464 return true; 2465 2466 skb = tcp_rtx_queue_head(sk); 2467 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2468 return true; 2469 2470 return false; 2471 } 2472 2473 static void DBGUNDO(struct sock *sk, const char *msg) 2474 { 2475 #if FASTRETRANS_DEBUG > 1 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 struct inet_sock *inet = inet_sk(sk); 2478 2479 if (sk->sk_family == AF_INET) { 2480 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2481 msg, 2482 &inet->inet_daddr, ntohs(inet->inet_dport), 2483 tcp_snd_cwnd(tp), tcp_left_out(tp), 2484 tp->snd_ssthresh, tp->prior_ssthresh, 2485 tp->packets_out); 2486 } 2487 #if IS_ENABLED(CONFIG_IPV6) 2488 else if (sk->sk_family == AF_INET6) { 2489 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2490 msg, 2491 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2492 tcp_snd_cwnd(tp), tcp_left_out(tp), 2493 tp->snd_ssthresh, tp->prior_ssthresh, 2494 tp->packets_out); 2495 } 2496 #endif 2497 #endif 2498 } 2499 2500 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2501 { 2502 struct tcp_sock *tp = tcp_sk(sk); 2503 2504 if (unmark_loss) { 2505 struct sk_buff *skb; 2506 2507 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2508 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2509 } 2510 tp->lost_out = 0; 2511 tcp_clear_all_retrans_hints(tp); 2512 } 2513 2514 if (tp->prior_ssthresh) { 2515 const struct inet_connection_sock *icsk = inet_csk(sk); 2516 2517 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2518 2519 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2520 tp->snd_ssthresh = tp->prior_ssthresh; 2521 tcp_ecn_withdraw_cwr(tp); 2522 } 2523 } 2524 tp->snd_cwnd_stamp = tcp_jiffies32; 2525 tp->undo_marker = 0; 2526 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2527 } 2528 2529 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2530 { 2531 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2532 } 2533 2534 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 2538 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2539 /* Hold old state until something *above* high_seq 2540 * is ACKed. For Reno it is MUST to prevent false 2541 * fast retransmits (RFC2582). SACK TCP is safe. */ 2542 if (!tcp_any_retrans_done(sk)) 2543 tp->retrans_stamp = 0; 2544 return true; 2545 } 2546 return false; 2547 } 2548 2549 /* People celebrate: "We love our President!" */ 2550 static bool tcp_try_undo_recovery(struct sock *sk) 2551 { 2552 struct tcp_sock *tp = tcp_sk(sk); 2553 2554 if (tcp_may_undo(tp)) { 2555 int mib_idx; 2556 2557 /* Happy end! We did not retransmit anything 2558 * or our original transmission succeeded. 2559 */ 2560 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2561 tcp_undo_cwnd_reduction(sk, false); 2562 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2563 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2564 else 2565 mib_idx = LINUX_MIB_TCPFULLUNDO; 2566 2567 NET_INC_STATS(sock_net(sk), mib_idx); 2568 } else if (tp->rack.reo_wnd_persist) { 2569 tp->rack.reo_wnd_persist--; 2570 } 2571 if (tcp_is_non_sack_preventing_reopen(sk)) 2572 return true; 2573 tcp_set_ca_state(sk, TCP_CA_Open); 2574 tp->is_sack_reneg = 0; 2575 return false; 2576 } 2577 2578 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2579 static bool tcp_try_undo_dsack(struct sock *sk) 2580 { 2581 struct tcp_sock *tp = tcp_sk(sk); 2582 2583 if (tp->undo_marker && !tp->undo_retrans) { 2584 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2585 tp->rack.reo_wnd_persist + 1); 2586 DBGUNDO(sk, "D-SACK"); 2587 tcp_undo_cwnd_reduction(sk, false); 2588 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2589 return true; 2590 } 2591 return false; 2592 } 2593 2594 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2595 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 2599 if (frto_undo || tcp_may_undo(tp)) { 2600 tcp_undo_cwnd_reduction(sk, true); 2601 2602 DBGUNDO(sk, "partial loss"); 2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2604 if (frto_undo) 2605 NET_INC_STATS(sock_net(sk), 2606 LINUX_MIB_TCPSPURIOUSRTOS); 2607 inet_csk(sk)->icsk_retransmits = 0; 2608 if (tcp_is_non_sack_preventing_reopen(sk)) 2609 return true; 2610 if (frto_undo || tcp_is_sack(tp)) { 2611 tcp_set_ca_state(sk, TCP_CA_Open); 2612 tp->is_sack_reneg = 0; 2613 } 2614 return true; 2615 } 2616 return false; 2617 } 2618 2619 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2620 * It computes the number of packets to send (sndcnt) based on packets newly 2621 * delivered: 2622 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2623 * cwnd reductions across a full RTT. 2624 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2625 * But when SND_UNA is acked without further losses, 2626 * slow starts cwnd up to ssthresh to speed up the recovery. 2627 */ 2628 static void tcp_init_cwnd_reduction(struct sock *sk) 2629 { 2630 struct tcp_sock *tp = tcp_sk(sk); 2631 2632 tp->high_seq = tp->snd_nxt; 2633 tp->tlp_high_seq = 0; 2634 tp->snd_cwnd_cnt = 0; 2635 tp->prior_cwnd = tcp_snd_cwnd(tp); 2636 tp->prr_delivered = 0; 2637 tp->prr_out = 0; 2638 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2639 tcp_ecn_queue_cwr(tp); 2640 } 2641 2642 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2643 { 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 int sndcnt = 0; 2646 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2647 2648 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2649 return; 2650 2651 tp->prr_delivered += newly_acked_sacked; 2652 if (delta < 0) { 2653 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2654 tp->prior_cwnd - 1; 2655 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2656 } else { 2657 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2658 newly_acked_sacked); 2659 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2660 sndcnt++; 2661 sndcnt = min(delta, sndcnt); 2662 } 2663 /* Force a fast retransmit upon entering fast recovery */ 2664 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2665 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2666 } 2667 2668 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 2672 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2673 return; 2674 2675 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2676 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2677 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2678 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2679 tp->snd_cwnd_stamp = tcp_jiffies32; 2680 } 2681 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2682 } 2683 2684 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2685 void tcp_enter_cwr(struct sock *sk) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 2689 tp->prior_ssthresh = 0; 2690 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2691 tp->undo_marker = 0; 2692 tcp_init_cwnd_reduction(sk); 2693 tcp_set_ca_state(sk, TCP_CA_CWR); 2694 } 2695 } 2696 EXPORT_SYMBOL(tcp_enter_cwr); 2697 2698 static void tcp_try_keep_open(struct sock *sk) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 int state = TCP_CA_Open; 2702 2703 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2704 state = TCP_CA_Disorder; 2705 2706 if (inet_csk(sk)->icsk_ca_state != state) { 2707 tcp_set_ca_state(sk, state); 2708 tp->high_seq = tp->snd_nxt; 2709 } 2710 } 2711 2712 static void tcp_try_to_open(struct sock *sk, int flag) 2713 { 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 2716 tcp_verify_left_out(tp); 2717 2718 if (!tcp_any_retrans_done(sk)) 2719 tp->retrans_stamp = 0; 2720 2721 if (flag & FLAG_ECE) 2722 tcp_enter_cwr(sk); 2723 2724 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2725 tcp_try_keep_open(sk); 2726 } 2727 } 2728 2729 static void tcp_mtup_probe_failed(struct sock *sk) 2730 { 2731 struct inet_connection_sock *icsk = inet_csk(sk); 2732 2733 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2734 icsk->icsk_mtup.probe_size = 0; 2735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2736 } 2737 2738 static void tcp_mtup_probe_success(struct sock *sk) 2739 { 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 struct inet_connection_sock *icsk = inet_csk(sk); 2742 u64 val; 2743 2744 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2745 2746 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2747 do_div(val, icsk->icsk_mtup.probe_size); 2748 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2749 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2750 2751 tp->snd_cwnd_cnt = 0; 2752 tp->snd_cwnd_stamp = tcp_jiffies32; 2753 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2754 2755 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2756 icsk->icsk_mtup.probe_size = 0; 2757 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2758 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2759 } 2760 2761 /* Do a simple retransmit without using the backoff mechanisms in 2762 * tcp_timer. This is used for path mtu discovery. 2763 * The socket is already locked here. 2764 */ 2765 void tcp_simple_retransmit(struct sock *sk) 2766 { 2767 const struct inet_connection_sock *icsk = inet_csk(sk); 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 struct sk_buff *skb; 2770 int mss; 2771 2772 /* A fastopen SYN request is stored as two separate packets within 2773 * the retransmit queue, this is done by tcp_send_syn_data(). 2774 * As a result simply checking the MSS of the frames in the queue 2775 * will not work for the SYN packet. 2776 * 2777 * Us being here is an indication of a path MTU issue so we can 2778 * assume that the fastopen SYN was lost and just mark all the 2779 * frames in the retransmit queue as lost. We will use an MSS of 2780 * -1 to mark all frames as lost, otherwise compute the current MSS. 2781 */ 2782 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2783 mss = -1; 2784 else 2785 mss = tcp_current_mss(sk); 2786 2787 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2788 if (tcp_skb_seglen(skb) > mss) 2789 tcp_mark_skb_lost(sk, skb); 2790 } 2791 2792 tcp_clear_retrans_hints_partial(tp); 2793 2794 if (!tp->lost_out) 2795 return; 2796 2797 if (tcp_is_reno(tp)) 2798 tcp_limit_reno_sacked(tp); 2799 2800 tcp_verify_left_out(tp); 2801 2802 /* Don't muck with the congestion window here. 2803 * Reason is that we do not increase amount of _data_ 2804 * in network, but units changed and effective 2805 * cwnd/ssthresh really reduced now. 2806 */ 2807 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2808 tp->high_seq = tp->snd_nxt; 2809 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2810 tp->prior_ssthresh = 0; 2811 tp->undo_marker = 0; 2812 tcp_set_ca_state(sk, TCP_CA_Loss); 2813 } 2814 tcp_xmit_retransmit_queue(sk); 2815 } 2816 EXPORT_SYMBOL(tcp_simple_retransmit); 2817 2818 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2819 { 2820 struct tcp_sock *tp = tcp_sk(sk); 2821 int mib_idx; 2822 2823 if (tcp_is_reno(tp)) 2824 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2825 else 2826 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2827 2828 NET_INC_STATS(sock_net(sk), mib_idx); 2829 2830 tp->prior_ssthresh = 0; 2831 tcp_init_undo(tp); 2832 2833 if (!tcp_in_cwnd_reduction(sk)) { 2834 if (!ece_ack) 2835 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2836 tcp_init_cwnd_reduction(sk); 2837 } 2838 tcp_set_ca_state(sk, TCP_CA_Recovery); 2839 } 2840 2841 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2842 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2843 */ 2844 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2845 int *rexmit) 2846 { 2847 struct tcp_sock *tp = tcp_sk(sk); 2848 bool recovered = !before(tp->snd_una, tp->high_seq); 2849 2850 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2851 tcp_try_undo_loss(sk, false)) 2852 return; 2853 2854 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2855 /* Step 3.b. A timeout is spurious if not all data are 2856 * lost, i.e., never-retransmitted data are (s)acked. 2857 */ 2858 if ((flag & FLAG_ORIG_SACK_ACKED) && 2859 tcp_try_undo_loss(sk, true)) 2860 return; 2861 2862 if (after(tp->snd_nxt, tp->high_seq)) { 2863 if (flag & FLAG_DATA_SACKED || num_dupack) 2864 tp->frto = 0; /* Step 3.a. loss was real */ 2865 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2866 tp->high_seq = tp->snd_nxt; 2867 /* Step 2.b. Try send new data (but deferred until cwnd 2868 * is updated in tcp_ack()). Otherwise fall back to 2869 * the conventional recovery. 2870 */ 2871 if (!tcp_write_queue_empty(sk) && 2872 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2873 *rexmit = REXMIT_NEW; 2874 return; 2875 } 2876 tp->frto = 0; 2877 } 2878 } 2879 2880 if (recovered) { 2881 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2882 tcp_try_undo_recovery(sk); 2883 return; 2884 } 2885 if (tcp_is_reno(tp)) { 2886 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2887 * delivered. Lower inflight to clock out (re)transmissions. 2888 */ 2889 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2890 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2891 else if (flag & FLAG_SND_UNA_ADVANCED) 2892 tcp_reset_reno_sack(tp); 2893 } 2894 *rexmit = REXMIT_LOST; 2895 } 2896 2897 static bool tcp_force_fast_retransmit(struct sock *sk) 2898 { 2899 struct tcp_sock *tp = tcp_sk(sk); 2900 2901 return after(tcp_highest_sack_seq(tp), 2902 tp->snd_una + tp->reordering * tp->mss_cache); 2903 } 2904 2905 /* Undo during fast recovery after partial ACK. */ 2906 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2907 bool *do_lost) 2908 { 2909 struct tcp_sock *tp = tcp_sk(sk); 2910 2911 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2912 /* Plain luck! Hole if filled with delayed 2913 * packet, rather than with a retransmit. Check reordering. 2914 */ 2915 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2916 2917 /* We are getting evidence that the reordering degree is higher 2918 * than we realized. If there are no retransmits out then we 2919 * can undo. Otherwise we clock out new packets but do not 2920 * mark more packets lost or retransmit more. 2921 */ 2922 if (tp->retrans_out) 2923 return true; 2924 2925 if (!tcp_any_retrans_done(sk)) 2926 tp->retrans_stamp = 0; 2927 2928 DBGUNDO(sk, "partial recovery"); 2929 tcp_undo_cwnd_reduction(sk, true); 2930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2931 tcp_try_keep_open(sk); 2932 } else { 2933 /* Partial ACK arrived. Force fast retransmit. */ 2934 *do_lost = tcp_force_fast_retransmit(sk); 2935 } 2936 return false; 2937 } 2938 2939 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2940 { 2941 struct tcp_sock *tp = tcp_sk(sk); 2942 2943 if (tcp_rtx_queue_empty(sk)) 2944 return; 2945 2946 if (unlikely(tcp_is_reno(tp))) { 2947 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2948 } else if (tcp_is_rack(sk)) { 2949 u32 prior_retrans = tp->retrans_out; 2950 2951 if (tcp_rack_mark_lost(sk)) 2952 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2953 if (prior_retrans > tp->retrans_out) 2954 *ack_flag |= FLAG_LOST_RETRANS; 2955 } 2956 } 2957 2958 /* Process an event, which can update packets-in-flight not trivially. 2959 * Main goal of this function is to calculate new estimate for left_out, 2960 * taking into account both packets sitting in receiver's buffer and 2961 * packets lost by network. 2962 * 2963 * Besides that it updates the congestion state when packet loss or ECN 2964 * is detected. But it does not reduce the cwnd, it is done by the 2965 * congestion control later. 2966 * 2967 * It does _not_ decide what to send, it is made in function 2968 * tcp_xmit_retransmit_queue(). 2969 */ 2970 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2971 int num_dupack, int *ack_flag, int *rexmit) 2972 { 2973 struct inet_connection_sock *icsk = inet_csk(sk); 2974 struct tcp_sock *tp = tcp_sk(sk); 2975 int fast_rexmit = 0, flag = *ack_flag; 2976 bool ece_ack = flag & FLAG_ECE; 2977 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2978 tcp_force_fast_retransmit(sk)); 2979 2980 if (!tp->packets_out && tp->sacked_out) 2981 tp->sacked_out = 0; 2982 2983 /* Now state machine starts. 2984 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2985 if (ece_ack) 2986 tp->prior_ssthresh = 0; 2987 2988 /* B. In all the states check for reneging SACKs. */ 2989 if (tcp_check_sack_reneging(sk, flag)) 2990 return; 2991 2992 /* C. Check consistency of the current state. */ 2993 tcp_verify_left_out(tp); 2994 2995 /* D. Check state exit conditions. State can be terminated 2996 * when high_seq is ACKed. */ 2997 if (icsk->icsk_ca_state == TCP_CA_Open) { 2998 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2999 tp->retrans_stamp = 0; 3000 } else if (!before(tp->snd_una, tp->high_seq)) { 3001 switch (icsk->icsk_ca_state) { 3002 case TCP_CA_CWR: 3003 /* CWR is to be held something *above* high_seq 3004 * is ACKed for CWR bit to reach receiver. */ 3005 if (tp->snd_una != tp->high_seq) { 3006 tcp_end_cwnd_reduction(sk); 3007 tcp_set_ca_state(sk, TCP_CA_Open); 3008 } 3009 break; 3010 3011 case TCP_CA_Recovery: 3012 if (tcp_is_reno(tp)) 3013 tcp_reset_reno_sack(tp); 3014 if (tcp_try_undo_recovery(sk)) 3015 return; 3016 tcp_end_cwnd_reduction(sk); 3017 break; 3018 } 3019 } 3020 3021 /* E. Process state. */ 3022 switch (icsk->icsk_ca_state) { 3023 case TCP_CA_Recovery: 3024 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3025 if (tcp_is_reno(tp)) 3026 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3027 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3028 return; 3029 3030 if (tcp_try_undo_dsack(sk)) 3031 tcp_try_keep_open(sk); 3032 3033 tcp_identify_packet_loss(sk, ack_flag); 3034 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3035 if (!tcp_time_to_recover(sk, flag)) 3036 return; 3037 /* Undo reverts the recovery state. If loss is evident, 3038 * starts a new recovery (e.g. reordering then loss); 3039 */ 3040 tcp_enter_recovery(sk, ece_ack); 3041 } 3042 break; 3043 case TCP_CA_Loss: 3044 tcp_process_loss(sk, flag, num_dupack, rexmit); 3045 tcp_identify_packet_loss(sk, ack_flag); 3046 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3047 (*ack_flag & FLAG_LOST_RETRANS))) 3048 return; 3049 /* Change state if cwnd is undone or retransmits are lost */ 3050 fallthrough; 3051 default: 3052 if (tcp_is_reno(tp)) { 3053 if (flag & FLAG_SND_UNA_ADVANCED) 3054 tcp_reset_reno_sack(tp); 3055 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3056 } 3057 3058 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3059 tcp_try_undo_dsack(sk); 3060 3061 tcp_identify_packet_loss(sk, ack_flag); 3062 if (!tcp_time_to_recover(sk, flag)) { 3063 tcp_try_to_open(sk, flag); 3064 return; 3065 } 3066 3067 /* MTU probe failure: don't reduce cwnd */ 3068 if (icsk->icsk_ca_state < TCP_CA_CWR && 3069 icsk->icsk_mtup.probe_size && 3070 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3071 tcp_mtup_probe_failed(sk); 3072 /* Restores the reduction we did in tcp_mtup_probe() */ 3073 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3074 tcp_simple_retransmit(sk); 3075 return; 3076 } 3077 3078 /* Otherwise enter Recovery state */ 3079 tcp_enter_recovery(sk, ece_ack); 3080 fast_rexmit = 1; 3081 } 3082 3083 if (!tcp_is_rack(sk) && do_lost) 3084 tcp_update_scoreboard(sk, fast_rexmit); 3085 *rexmit = REXMIT_LOST; 3086 } 3087 3088 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3089 { 3090 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3091 struct tcp_sock *tp = tcp_sk(sk); 3092 3093 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3094 /* If the remote keeps returning delayed ACKs, eventually 3095 * the min filter would pick it up and overestimate the 3096 * prop. delay when it expires. Skip suspected delayed ACKs. 3097 */ 3098 return; 3099 } 3100 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3101 rtt_us ? : jiffies_to_usecs(1)); 3102 } 3103 3104 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3105 long seq_rtt_us, long sack_rtt_us, 3106 long ca_rtt_us, struct rate_sample *rs) 3107 { 3108 const struct tcp_sock *tp = tcp_sk(sk); 3109 3110 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3111 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3112 * Karn's algorithm forbids taking RTT if some retransmitted data 3113 * is acked (RFC6298). 3114 */ 3115 if (seq_rtt_us < 0) 3116 seq_rtt_us = sack_rtt_us; 3117 3118 /* RTTM Rule: A TSecr value received in a segment is used to 3119 * update the averaged RTT measurement only if the segment 3120 * acknowledges some new data, i.e., only if it advances the 3121 * left edge of the send window. 3122 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3123 */ 3124 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3125 flag & FLAG_ACKED) { 3126 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3127 3128 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3129 if (!delta) 3130 delta = 1; 3131 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3132 ca_rtt_us = seq_rtt_us; 3133 } 3134 } 3135 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3136 if (seq_rtt_us < 0) 3137 return false; 3138 3139 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3140 * always taken together with ACK, SACK, or TS-opts. Any negative 3141 * values will be skipped with the seq_rtt_us < 0 check above. 3142 */ 3143 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3144 tcp_rtt_estimator(sk, seq_rtt_us); 3145 tcp_set_rto(sk); 3146 3147 /* RFC6298: only reset backoff on valid RTT measurement. */ 3148 inet_csk(sk)->icsk_backoff = 0; 3149 return true; 3150 } 3151 3152 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3153 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3154 { 3155 struct rate_sample rs; 3156 long rtt_us = -1L; 3157 3158 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3159 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3160 3161 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3162 } 3163 3164 3165 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3166 { 3167 const struct inet_connection_sock *icsk = inet_csk(sk); 3168 3169 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3170 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3171 } 3172 3173 /* Restart timer after forward progress on connection. 3174 * RFC2988 recommends to restart timer to now+rto. 3175 */ 3176 void tcp_rearm_rto(struct sock *sk) 3177 { 3178 const struct inet_connection_sock *icsk = inet_csk(sk); 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 3181 /* If the retrans timer is currently being used by Fast Open 3182 * for SYN-ACK retrans purpose, stay put. 3183 */ 3184 if (rcu_access_pointer(tp->fastopen_rsk)) 3185 return; 3186 3187 if (!tp->packets_out) { 3188 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3189 } else { 3190 u32 rto = inet_csk(sk)->icsk_rto; 3191 /* Offset the time elapsed after installing regular RTO */ 3192 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3193 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3194 s64 delta_us = tcp_rto_delta_us(sk); 3195 /* delta_us may not be positive if the socket is locked 3196 * when the retrans timer fires and is rescheduled. 3197 */ 3198 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3199 } 3200 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3201 TCP_RTO_MAX); 3202 } 3203 } 3204 3205 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3206 static void tcp_set_xmit_timer(struct sock *sk) 3207 { 3208 if (!tcp_schedule_loss_probe(sk, true)) 3209 tcp_rearm_rto(sk); 3210 } 3211 3212 /* If we get here, the whole TSO packet has not been acked. */ 3213 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3214 { 3215 struct tcp_sock *tp = tcp_sk(sk); 3216 u32 packets_acked; 3217 3218 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3219 3220 packets_acked = tcp_skb_pcount(skb); 3221 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3222 return 0; 3223 packets_acked -= tcp_skb_pcount(skb); 3224 3225 if (packets_acked) { 3226 BUG_ON(tcp_skb_pcount(skb) == 0); 3227 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3228 } 3229 3230 return packets_acked; 3231 } 3232 3233 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3234 const struct sk_buff *ack_skb, u32 prior_snd_una) 3235 { 3236 const struct skb_shared_info *shinfo; 3237 3238 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3239 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3240 return; 3241 3242 shinfo = skb_shinfo(skb); 3243 if (!before(shinfo->tskey, prior_snd_una) && 3244 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3245 tcp_skb_tsorted_save(skb) { 3246 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3247 } tcp_skb_tsorted_restore(skb); 3248 } 3249 } 3250 3251 /* Remove acknowledged frames from the retransmission queue. If our packet 3252 * is before the ack sequence we can discard it as it's confirmed to have 3253 * arrived at the other end. 3254 */ 3255 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3256 u32 prior_fack, u32 prior_snd_una, 3257 struct tcp_sacktag_state *sack, bool ece_ack) 3258 { 3259 const struct inet_connection_sock *icsk = inet_csk(sk); 3260 u64 first_ackt, last_ackt; 3261 struct tcp_sock *tp = tcp_sk(sk); 3262 u32 prior_sacked = tp->sacked_out; 3263 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3264 struct sk_buff *skb, *next; 3265 bool fully_acked = true; 3266 long sack_rtt_us = -1L; 3267 long seq_rtt_us = -1L; 3268 long ca_rtt_us = -1L; 3269 u32 pkts_acked = 0; 3270 bool rtt_update; 3271 int flag = 0; 3272 3273 first_ackt = 0; 3274 3275 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3276 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3277 const u32 start_seq = scb->seq; 3278 u8 sacked = scb->sacked; 3279 u32 acked_pcount; 3280 3281 /* Determine how many packets and what bytes were acked, tso and else */ 3282 if (after(scb->end_seq, tp->snd_una)) { 3283 if (tcp_skb_pcount(skb) == 1 || 3284 !after(tp->snd_una, scb->seq)) 3285 break; 3286 3287 acked_pcount = tcp_tso_acked(sk, skb); 3288 if (!acked_pcount) 3289 break; 3290 fully_acked = false; 3291 } else { 3292 acked_pcount = tcp_skb_pcount(skb); 3293 } 3294 3295 if (unlikely(sacked & TCPCB_RETRANS)) { 3296 if (sacked & TCPCB_SACKED_RETRANS) 3297 tp->retrans_out -= acked_pcount; 3298 flag |= FLAG_RETRANS_DATA_ACKED; 3299 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3300 last_ackt = tcp_skb_timestamp_us(skb); 3301 WARN_ON_ONCE(last_ackt == 0); 3302 if (!first_ackt) 3303 first_ackt = last_ackt; 3304 3305 if (before(start_seq, reord)) 3306 reord = start_seq; 3307 if (!after(scb->end_seq, tp->high_seq)) 3308 flag |= FLAG_ORIG_SACK_ACKED; 3309 } 3310 3311 if (sacked & TCPCB_SACKED_ACKED) { 3312 tp->sacked_out -= acked_pcount; 3313 } else if (tcp_is_sack(tp)) { 3314 tcp_count_delivered(tp, acked_pcount, ece_ack); 3315 if (!tcp_skb_spurious_retrans(tp, skb)) 3316 tcp_rack_advance(tp, sacked, scb->end_seq, 3317 tcp_skb_timestamp_us(skb)); 3318 } 3319 if (sacked & TCPCB_LOST) 3320 tp->lost_out -= acked_pcount; 3321 3322 tp->packets_out -= acked_pcount; 3323 pkts_acked += acked_pcount; 3324 tcp_rate_skb_delivered(sk, skb, sack->rate); 3325 3326 /* Initial outgoing SYN's get put onto the write_queue 3327 * just like anything else we transmit. It is not 3328 * true data, and if we misinform our callers that 3329 * this ACK acks real data, we will erroneously exit 3330 * connection startup slow start one packet too 3331 * quickly. This is severely frowned upon behavior. 3332 */ 3333 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3334 flag |= FLAG_DATA_ACKED; 3335 } else { 3336 flag |= FLAG_SYN_ACKED; 3337 tp->retrans_stamp = 0; 3338 } 3339 3340 if (!fully_acked) 3341 break; 3342 3343 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3344 3345 next = skb_rb_next(skb); 3346 if (unlikely(skb == tp->retransmit_skb_hint)) 3347 tp->retransmit_skb_hint = NULL; 3348 if (unlikely(skb == tp->lost_skb_hint)) 3349 tp->lost_skb_hint = NULL; 3350 tcp_highest_sack_replace(sk, skb, next); 3351 tcp_rtx_queue_unlink_and_free(skb, sk); 3352 } 3353 3354 if (!skb) 3355 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3356 3357 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3358 tp->snd_up = tp->snd_una; 3359 3360 if (skb) { 3361 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3362 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3363 flag |= FLAG_SACK_RENEGING; 3364 } 3365 3366 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3367 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3368 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3369 3370 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3371 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3372 sack->rate->prior_delivered + 1 == tp->delivered && 3373 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3374 /* Conservatively mark a delayed ACK. It's typically 3375 * from a lone runt packet over the round trip to 3376 * a receiver w/o out-of-order or CE events. 3377 */ 3378 flag |= FLAG_ACK_MAYBE_DELAYED; 3379 } 3380 } 3381 if (sack->first_sackt) { 3382 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3383 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3384 } 3385 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3386 ca_rtt_us, sack->rate); 3387 3388 if (flag & FLAG_ACKED) { 3389 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3390 if (unlikely(icsk->icsk_mtup.probe_size && 3391 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3392 tcp_mtup_probe_success(sk); 3393 } 3394 3395 if (tcp_is_reno(tp)) { 3396 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3397 3398 /* If any of the cumulatively ACKed segments was 3399 * retransmitted, non-SACK case cannot confirm that 3400 * progress was due to original transmission due to 3401 * lack of TCPCB_SACKED_ACKED bits even if some of 3402 * the packets may have been never retransmitted. 3403 */ 3404 if (flag & FLAG_RETRANS_DATA_ACKED) 3405 flag &= ~FLAG_ORIG_SACK_ACKED; 3406 } else { 3407 int delta; 3408 3409 /* Non-retransmitted hole got filled? That's reordering */ 3410 if (before(reord, prior_fack)) 3411 tcp_check_sack_reordering(sk, reord, 0); 3412 3413 delta = prior_sacked - tp->sacked_out; 3414 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3415 } 3416 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3417 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3418 tcp_skb_timestamp_us(skb))) { 3419 /* Do not re-arm RTO if the sack RTT is measured from data sent 3420 * after when the head was last (re)transmitted. Otherwise the 3421 * timeout may continue to extend in loss recovery. 3422 */ 3423 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3424 } 3425 3426 if (icsk->icsk_ca_ops->pkts_acked) { 3427 struct ack_sample sample = { .pkts_acked = pkts_acked, 3428 .rtt_us = sack->rate->rtt_us }; 3429 3430 sample.in_flight = tp->mss_cache * 3431 (tp->delivered - sack->rate->prior_delivered); 3432 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3433 } 3434 3435 #if FASTRETRANS_DEBUG > 0 3436 WARN_ON((int)tp->sacked_out < 0); 3437 WARN_ON((int)tp->lost_out < 0); 3438 WARN_ON((int)tp->retrans_out < 0); 3439 if (!tp->packets_out && tcp_is_sack(tp)) { 3440 icsk = inet_csk(sk); 3441 if (tp->lost_out) { 3442 pr_debug("Leak l=%u %d\n", 3443 tp->lost_out, icsk->icsk_ca_state); 3444 tp->lost_out = 0; 3445 } 3446 if (tp->sacked_out) { 3447 pr_debug("Leak s=%u %d\n", 3448 tp->sacked_out, icsk->icsk_ca_state); 3449 tp->sacked_out = 0; 3450 } 3451 if (tp->retrans_out) { 3452 pr_debug("Leak r=%u %d\n", 3453 tp->retrans_out, icsk->icsk_ca_state); 3454 tp->retrans_out = 0; 3455 } 3456 } 3457 #endif 3458 return flag; 3459 } 3460 3461 static void tcp_ack_probe(struct sock *sk) 3462 { 3463 struct inet_connection_sock *icsk = inet_csk(sk); 3464 struct sk_buff *head = tcp_send_head(sk); 3465 const struct tcp_sock *tp = tcp_sk(sk); 3466 3467 /* Was it a usable window open? */ 3468 if (!head) 3469 return; 3470 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3471 icsk->icsk_backoff = 0; 3472 icsk->icsk_probes_tstamp = 0; 3473 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3474 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3475 * This function is not for random using! 3476 */ 3477 } else { 3478 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3479 3480 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3481 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3482 } 3483 } 3484 3485 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3486 { 3487 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3488 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3489 } 3490 3491 /* Decide wheather to run the increase function of congestion control. */ 3492 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3493 { 3494 /* If reordering is high then always grow cwnd whenever data is 3495 * delivered regardless of its ordering. Otherwise stay conservative 3496 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3497 * new SACK or ECE mark may first advance cwnd here and later reduce 3498 * cwnd in tcp_fastretrans_alert() based on more states. 3499 */ 3500 if (tcp_sk(sk)->reordering > 3501 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3502 return flag & FLAG_FORWARD_PROGRESS; 3503 3504 return flag & FLAG_DATA_ACKED; 3505 } 3506 3507 /* The "ultimate" congestion control function that aims to replace the rigid 3508 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3509 * It's called toward the end of processing an ACK with precise rate 3510 * information. All transmission or retransmission are delayed afterwards. 3511 */ 3512 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3513 int flag, const struct rate_sample *rs) 3514 { 3515 const struct inet_connection_sock *icsk = inet_csk(sk); 3516 3517 if (icsk->icsk_ca_ops->cong_control) { 3518 icsk->icsk_ca_ops->cong_control(sk, rs); 3519 return; 3520 } 3521 3522 if (tcp_in_cwnd_reduction(sk)) { 3523 /* Reduce cwnd if state mandates */ 3524 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3525 } else if (tcp_may_raise_cwnd(sk, flag)) { 3526 /* Advance cwnd if state allows */ 3527 tcp_cong_avoid(sk, ack, acked_sacked); 3528 } 3529 tcp_update_pacing_rate(sk); 3530 } 3531 3532 /* Check that window update is acceptable. 3533 * The function assumes that snd_una<=ack<=snd_next. 3534 */ 3535 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3536 const u32 ack, const u32 ack_seq, 3537 const u32 nwin) 3538 { 3539 return after(ack, tp->snd_una) || 3540 after(ack_seq, tp->snd_wl1) || 3541 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3542 } 3543 3544 /* If we update tp->snd_una, also update tp->bytes_acked */ 3545 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3546 { 3547 u32 delta = ack - tp->snd_una; 3548 3549 sock_owned_by_me((struct sock *)tp); 3550 tp->bytes_acked += delta; 3551 tp->snd_una = ack; 3552 } 3553 3554 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3555 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3556 { 3557 u32 delta = seq - tp->rcv_nxt; 3558 3559 sock_owned_by_me((struct sock *)tp); 3560 tp->bytes_received += delta; 3561 WRITE_ONCE(tp->rcv_nxt, seq); 3562 } 3563 3564 /* Update our send window. 3565 * 3566 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3567 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3568 */ 3569 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3570 u32 ack_seq) 3571 { 3572 struct tcp_sock *tp = tcp_sk(sk); 3573 int flag = 0; 3574 u32 nwin = ntohs(tcp_hdr(skb)->window); 3575 3576 if (likely(!tcp_hdr(skb)->syn)) 3577 nwin <<= tp->rx_opt.snd_wscale; 3578 3579 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3580 flag |= FLAG_WIN_UPDATE; 3581 tcp_update_wl(tp, ack_seq); 3582 3583 if (tp->snd_wnd != nwin) { 3584 tp->snd_wnd = nwin; 3585 3586 /* Note, it is the only place, where 3587 * fast path is recovered for sending TCP. 3588 */ 3589 tp->pred_flags = 0; 3590 tcp_fast_path_check(sk); 3591 3592 if (!tcp_write_queue_empty(sk)) 3593 tcp_slow_start_after_idle_check(sk); 3594 3595 if (nwin > tp->max_window) { 3596 tp->max_window = nwin; 3597 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3598 } 3599 } 3600 } 3601 3602 tcp_snd_una_update(tp, ack); 3603 3604 return flag; 3605 } 3606 3607 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3608 u32 *last_oow_ack_time) 3609 { 3610 /* Paired with the WRITE_ONCE() in this function. */ 3611 u32 val = READ_ONCE(*last_oow_ack_time); 3612 3613 if (val) { 3614 s32 elapsed = (s32)(tcp_jiffies32 - val); 3615 3616 if (0 <= elapsed && 3617 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3618 NET_INC_STATS(net, mib_idx); 3619 return true; /* rate-limited: don't send yet! */ 3620 } 3621 } 3622 3623 /* Paired with the prior READ_ONCE() and with itself, 3624 * as we might be lockless. 3625 */ 3626 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3627 3628 return false; /* not rate-limited: go ahead, send dupack now! */ 3629 } 3630 3631 /* Return true if we're currently rate-limiting out-of-window ACKs and 3632 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3633 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3634 * attacks that send repeated SYNs or ACKs for the same connection. To 3635 * do this, we do not send a duplicate SYNACK or ACK if the remote 3636 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3637 */ 3638 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3639 int mib_idx, u32 *last_oow_ack_time) 3640 { 3641 /* Data packets without SYNs are not likely part of an ACK loop. */ 3642 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3643 !tcp_hdr(skb)->syn) 3644 return false; 3645 3646 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3647 } 3648 3649 /* RFC 5961 7 [ACK Throttling] */ 3650 static void tcp_send_challenge_ack(struct sock *sk) 3651 { 3652 struct tcp_sock *tp = tcp_sk(sk); 3653 struct net *net = sock_net(sk); 3654 u32 count, now, ack_limit; 3655 3656 /* First check our per-socket dupack rate limit. */ 3657 if (__tcp_oow_rate_limited(net, 3658 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3659 &tp->last_oow_ack_time)) 3660 return; 3661 3662 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3663 if (ack_limit == INT_MAX) 3664 goto send_ack; 3665 3666 /* Then check host-wide RFC 5961 rate limit. */ 3667 now = jiffies / HZ; 3668 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3669 u32 half = (ack_limit + 1) >> 1; 3670 3671 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3672 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3673 get_random_u32_inclusive(half, ack_limit + half - 1)); 3674 } 3675 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3676 if (count > 0) { 3677 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3678 send_ack: 3679 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3680 tcp_send_ack(sk); 3681 } 3682 } 3683 3684 static void tcp_store_ts_recent(struct tcp_sock *tp) 3685 { 3686 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3687 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3688 } 3689 3690 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3691 { 3692 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3693 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3694 * extra check below makes sure this can only happen 3695 * for pure ACK frames. -DaveM 3696 * 3697 * Not only, also it occurs for expired timestamps. 3698 */ 3699 3700 if (tcp_paws_check(&tp->rx_opt, 0)) 3701 tcp_store_ts_recent(tp); 3702 } 3703 } 3704 3705 /* This routine deals with acks during a TLP episode and ends an episode by 3706 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3707 */ 3708 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3709 { 3710 struct tcp_sock *tp = tcp_sk(sk); 3711 3712 if (before(ack, tp->tlp_high_seq)) 3713 return; 3714 3715 if (!tp->tlp_retrans) { 3716 /* TLP of new data has been acknowledged */ 3717 tp->tlp_high_seq = 0; 3718 } else if (flag & FLAG_DSACK_TLP) { 3719 /* This DSACK means original and TLP probe arrived; no loss */ 3720 tp->tlp_high_seq = 0; 3721 } else if (after(ack, tp->tlp_high_seq)) { 3722 /* ACK advances: there was a loss, so reduce cwnd. Reset 3723 * tlp_high_seq in tcp_init_cwnd_reduction() 3724 */ 3725 tcp_init_cwnd_reduction(sk); 3726 tcp_set_ca_state(sk, TCP_CA_CWR); 3727 tcp_end_cwnd_reduction(sk); 3728 tcp_try_keep_open(sk); 3729 NET_INC_STATS(sock_net(sk), 3730 LINUX_MIB_TCPLOSSPROBERECOVERY); 3731 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3732 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3733 /* Pure dupack: original and TLP probe arrived; no loss */ 3734 tp->tlp_high_seq = 0; 3735 } 3736 } 3737 3738 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3739 { 3740 const struct inet_connection_sock *icsk = inet_csk(sk); 3741 3742 if (icsk->icsk_ca_ops->in_ack_event) 3743 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3744 } 3745 3746 /* Congestion control has updated the cwnd already. So if we're in 3747 * loss recovery then now we do any new sends (for FRTO) or 3748 * retransmits (for CA_Loss or CA_recovery) that make sense. 3749 */ 3750 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3751 { 3752 struct tcp_sock *tp = tcp_sk(sk); 3753 3754 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3755 return; 3756 3757 if (unlikely(rexmit == REXMIT_NEW)) { 3758 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3759 TCP_NAGLE_OFF); 3760 if (after(tp->snd_nxt, tp->high_seq)) 3761 return; 3762 tp->frto = 0; 3763 } 3764 tcp_xmit_retransmit_queue(sk); 3765 } 3766 3767 /* Returns the number of packets newly acked or sacked by the current ACK */ 3768 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3769 { 3770 const struct net *net = sock_net(sk); 3771 struct tcp_sock *tp = tcp_sk(sk); 3772 u32 delivered; 3773 3774 delivered = tp->delivered - prior_delivered; 3775 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3776 if (flag & FLAG_ECE) 3777 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3778 3779 return delivered; 3780 } 3781 3782 /* This routine deals with incoming acks, but not outgoing ones. */ 3783 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3784 { 3785 struct inet_connection_sock *icsk = inet_csk(sk); 3786 struct tcp_sock *tp = tcp_sk(sk); 3787 struct tcp_sacktag_state sack_state; 3788 struct rate_sample rs = { .prior_delivered = 0 }; 3789 u32 prior_snd_una = tp->snd_una; 3790 bool is_sack_reneg = tp->is_sack_reneg; 3791 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3792 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3793 int num_dupack = 0; 3794 int prior_packets = tp->packets_out; 3795 u32 delivered = tp->delivered; 3796 u32 lost = tp->lost; 3797 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3798 u32 prior_fack; 3799 3800 sack_state.first_sackt = 0; 3801 sack_state.rate = &rs; 3802 sack_state.sack_delivered = 0; 3803 3804 /* We very likely will need to access rtx queue. */ 3805 prefetch(sk->tcp_rtx_queue.rb_node); 3806 3807 /* If the ack is older than previous acks 3808 * then we can probably ignore it. 3809 */ 3810 if (before(ack, prior_snd_una)) { 3811 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3812 if (before(ack, prior_snd_una - tp->max_window)) { 3813 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3814 tcp_send_challenge_ack(sk); 3815 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3816 } 3817 goto old_ack; 3818 } 3819 3820 /* If the ack includes data we haven't sent yet, discard 3821 * this segment (RFC793 Section 3.9). 3822 */ 3823 if (after(ack, tp->snd_nxt)) 3824 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3825 3826 if (after(ack, prior_snd_una)) { 3827 flag |= FLAG_SND_UNA_ADVANCED; 3828 icsk->icsk_retransmits = 0; 3829 3830 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3831 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3832 if (icsk->icsk_clean_acked) 3833 icsk->icsk_clean_acked(sk, ack); 3834 #endif 3835 } 3836 3837 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3838 rs.prior_in_flight = tcp_packets_in_flight(tp); 3839 3840 /* ts_recent update must be made after we are sure that the packet 3841 * is in window. 3842 */ 3843 if (flag & FLAG_UPDATE_TS_RECENT) 3844 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3845 3846 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3847 FLAG_SND_UNA_ADVANCED) { 3848 /* Window is constant, pure forward advance. 3849 * No more checks are required. 3850 * Note, we use the fact that SND.UNA>=SND.WL2. 3851 */ 3852 tcp_update_wl(tp, ack_seq); 3853 tcp_snd_una_update(tp, ack); 3854 flag |= FLAG_WIN_UPDATE; 3855 3856 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3857 3858 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3859 } else { 3860 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3861 3862 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3863 flag |= FLAG_DATA; 3864 else 3865 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3866 3867 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3868 3869 if (TCP_SKB_CB(skb)->sacked) 3870 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3871 &sack_state); 3872 3873 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3874 flag |= FLAG_ECE; 3875 ack_ev_flags |= CA_ACK_ECE; 3876 } 3877 3878 if (sack_state.sack_delivered) 3879 tcp_count_delivered(tp, sack_state.sack_delivered, 3880 flag & FLAG_ECE); 3881 3882 if (flag & FLAG_WIN_UPDATE) 3883 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3884 3885 tcp_in_ack_event(sk, ack_ev_flags); 3886 } 3887 3888 /* This is a deviation from RFC3168 since it states that: 3889 * "When the TCP data sender is ready to set the CWR bit after reducing 3890 * the congestion window, it SHOULD set the CWR bit only on the first 3891 * new data packet that it transmits." 3892 * We accept CWR on pure ACKs to be more robust 3893 * with widely-deployed TCP implementations that do this. 3894 */ 3895 tcp_ecn_accept_cwr(sk, skb); 3896 3897 /* We passed data and got it acked, remove any soft error 3898 * log. Something worked... 3899 */ 3900 WRITE_ONCE(sk->sk_err_soft, 0); 3901 icsk->icsk_probes_out = 0; 3902 tp->rcv_tstamp = tcp_jiffies32; 3903 if (!prior_packets) 3904 goto no_queue; 3905 3906 /* See if we can take anything off of the retransmit queue. */ 3907 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3908 &sack_state, flag & FLAG_ECE); 3909 3910 tcp_rack_update_reo_wnd(sk, &rs); 3911 3912 if (tp->tlp_high_seq) 3913 tcp_process_tlp_ack(sk, ack, flag); 3914 3915 if (tcp_ack_is_dubious(sk, flag)) { 3916 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3917 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3918 num_dupack = 1; 3919 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3920 if (!(flag & FLAG_DATA)) 3921 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3922 } 3923 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3924 &rexmit); 3925 } 3926 3927 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3928 if (flag & FLAG_SET_XMIT_TIMER) 3929 tcp_set_xmit_timer(sk); 3930 3931 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3932 sk_dst_confirm(sk); 3933 3934 delivered = tcp_newly_delivered(sk, delivered, flag); 3935 lost = tp->lost - lost; /* freshly marked lost */ 3936 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3937 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3938 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3939 tcp_xmit_recovery(sk, rexmit); 3940 return 1; 3941 3942 no_queue: 3943 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3944 if (flag & FLAG_DSACKING_ACK) { 3945 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3946 &rexmit); 3947 tcp_newly_delivered(sk, delivered, flag); 3948 } 3949 /* If this ack opens up a zero window, clear backoff. It was 3950 * being used to time the probes, and is probably far higher than 3951 * it needs to be for normal retransmission. 3952 */ 3953 tcp_ack_probe(sk); 3954 3955 if (tp->tlp_high_seq) 3956 tcp_process_tlp_ack(sk, ack, flag); 3957 return 1; 3958 3959 old_ack: 3960 /* If data was SACKed, tag it and see if we should send more data. 3961 * If data was DSACKed, see if we can undo a cwnd reduction. 3962 */ 3963 if (TCP_SKB_CB(skb)->sacked) { 3964 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3965 &sack_state); 3966 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3967 &rexmit); 3968 tcp_newly_delivered(sk, delivered, flag); 3969 tcp_xmit_recovery(sk, rexmit); 3970 } 3971 3972 return 0; 3973 } 3974 3975 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3976 bool syn, struct tcp_fastopen_cookie *foc, 3977 bool exp_opt) 3978 { 3979 /* Valid only in SYN or SYN-ACK with an even length. */ 3980 if (!foc || !syn || len < 0 || (len & 1)) 3981 return; 3982 3983 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3984 len <= TCP_FASTOPEN_COOKIE_MAX) 3985 memcpy(foc->val, cookie, len); 3986 else if (len != 0) 3987 len = -1; 3988 foc->len = len; 3989 foc->exp = exp_opt; 3990 } 3991 3992 static bool smc_parse_options(const struct tcphdr *th, 3993 struct tcp_options_received *opt_rx, 3994 const unsigned char *ptr, 3995 int opsize) 3996 { 3997 #if IS_ENABLED(CONFIG_SMC) 3998 if (static_branch_unlikely(&tcp_have_smc)) { 3999 if (th->syn && !(opsize & 1) && 4000 opsize >= TCPOLEN_EXP_SMC_BASE && 4001 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4002 opt_rx->smc_ok = 1; 4003 return true; 4004 } 4005 } 4006 #endif 4007 return false; 4008 } 4009 4010 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4011 * value on success. 4012 */ 4013 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4014 { 4015 const unsigned char *ptr = (const unsigned char *)(th + 1); 4016 int length = (th->doff * 4) - sizeof(struct tcphdr); 4017 u16 mss = 0; 4018 4019 while (length > 0) { 4020 int opcode = *ptr++; 4021 int opsize; 4022 4023 switch (opcode) { 4024 case TCPOPT_EOL: 4025 return mss; 4026 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4027 length--; 4028 continue; 4029 default: 4030 if (length < 2) 4031 return mss; 4032 opsize = *ptr++; 4033 if (opsize < 2) /* "silly options" */ 4034 return mss; 4035 if (opsize > length) 4036 return mss; /* fail on partial options */ 4037 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4038 u16 in_mss = get_unaligned_be16(ptr); 4039 4040 if (in_mss) { 4041 if (user_mss && user_mss < in_mss) 4042 in_mss = user_mss; 4043 mss = in_mss; 4044 } 4045 } 4046 ptr += opsize - 2; 4047 length -= opsize; 4048 } 4049 } 4050 return mss; 4051 } 4052 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4053 4054 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4055 * But, this can also be called on packets in the established flow when 4056 * the fast version below fails. 4057 */ 4058 void tcp_parse_options(const struct net *net, 4059 const struct sk_buff *skb, 4060 struct tcp_options_received *opt_rx, int estab, 4061 struct tcp_fastopen_cookie *foc) 4062 { 4063 const unsigned char *ptr; 4064 const struct tcphdr *th = tcp_hdr(skb); 4065 int length = (th->doff * 4) - sizeof(struct tcphdr); 4066 4067 ptr = (const unsigned char *)(th + 1); 4068 opt_rx->saw_tstamp = 0; 4069 opt_rx->saw_unknown = 0; 4070 4071 while (length > 0) { 4072 int opcode = *ptr++; 4073 int opsize; 4074 4075 switch (opcode) { 4076 case TCPOPT_EOL: 4077 return; 4078 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4079 length--; 4080 continue; 4081 default: 4082 if (length < 2) 4083 return; 4084 opsize = *ptr++; 4085 if (opsize < 2) /* "silly options" */ 4086 return; 4087 if (opsize > length) 4088 return; /* don't parse partial options */ 4089 switch (opcode) { 4090 case TCPOPT_MSS: 4091 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4092 u16 in_mss = get_unaligned_be16(ptr); 4093 if (in_mss) { 4094 if (opt_rx->user_mss && 4095 opt_rx->user_mss < in_mss) 4096 in_mss = opt_rx->user_mss; 4097 opt_rx->mss_clamp = in_mss; 4098 } 4099 } 4100 break; 4101 case TCPOPT_WINDOW: 4102 if (opsize == TCPOLEN_WINDOW && th->syn && 4103 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4104 __u8 snd_wscale = *(__u8 *)ptr; 4105 opt_rx->wscale_ok = 1; 4106 if (snd_wscale > TCP_MAX_WSCALE) { 4107 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4108 __func__, 4109 snd_wscale, 4110 TCP_MAX_WSCALE); 4111 snd_wscale = TCP_MAX_WSCALE; 4112 } 4113 opt_rx->snd_wscale = snd_wscale; 4114 } 4115 break; 4116 case TCPOPT_TIMESTAMP: 4117 if ((opsize == TCPOLEN_TIMESTAMP) && 4118 ((estab && opt_rx->tstamp_ok) || 4119 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4120 opt_rx->saw_tstamp = 1; 4121 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4122 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4123 } 4124 break; 4125 case TCPOPT_SACK_PERM: 4126 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4127 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4128 opt_rx->sack_ok = TCP_SACK_SEEN; 4129 tcp_sack_reset(opt_rx); 4130 } 4131 break; 4132 4133 case TCPOPT_SACK: 4134 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4135 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4136 opt_rx->sack_ok) { 4137 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4138 } 4139 break; 4140 #ifdef CONFIG_TCP_MD5SIG 4141 case TCPOPT_MD5SIG: 4142 /* The MD5 Hash has already been 4143 * checked (see tcp_v{4,6}_rcv()). 4144 */ 4145 break; 4146 #endif 4147 case TCPOPT_FASTOPEN: 4148 tcp_parse_fastopen_option( 4149 opsize - TCPOLEN_FASTOPEN_BASE, 4150 ptr, th->syn, foc, false); 4151 break; 4152 4153 case TCPOPT_EXP: 4154 /* Fast Open option shares code 254 using a 4155 * 16 bits magic number. 4156 */ 4157 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4158 get_unaligned_be16(ptr) == 4159 TCPOPT_FASTOPEN_MAGIC) { 4160 tcp_parse_fastopen_option(opsize - 4161 TCPOLEN_EXP_FASTOPEN_BASE, 4162 ptr + 2, th->syn, foc, true); 4163 break; 4164 } 4165 4166 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4167 break; 4168 4169 opt_rx->saw_unknown = 1; 4170 break; 4171 4172 default: 4173 opt_rx->saw_unknown = 1; 4174 } 4175 ptr += opsize-2; 4176 length -= opsize; 4177 } 4178 } 4179 } 4180 EXPORT_SYMBOL(tcp_parse_options); 4181 4182 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4183 { 4184 const __be32 *ptr = (const __be32 *)(th + 1); 4185 4186 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4187 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4188 tp->rx_opt.saw_tstamp = 1; 4189 ++ptr; 4190 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4191 ++ptr; 4192 if (*ptr) 4193 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4194 else 4195 tp->rx_opt.rcv_tsecr = 0; 4196 return true; 4197 } 4198 return false; 4199 } 4200 4201 /* Fast parse options. This hopes to only see timestamps. 4202 * If it is wrong it falls back on tcp_parse_options(). 4203 */ 4204 static bool tcp_fast_parse_options(const struct net *net, 4205 const struct sk_buff *skb, 4206 const struct tcphdr *th, struct tcp_sock *tp) 4207 { 4208 /* In the spirit of fast parsing, compare doff directly to constant 4209 * values. Because equality is used, short doff can be ignored here. 4210 */ 4211 if (th->doff == (sizeof(*th) / 4)) { 4212 tp->rx_opt.saw_tstamp = 0; 4213 return false; 4214 } else if (tp->rx_opt.tstamp_ok && 4215 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4216 if (tcp_parse_aligned_timestamp(tp, th)) 4217 return true; 4218 } 4219 4220 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4221 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4222 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4223 4224 return true; 4225 } 4226 4227 #ifdef CONFIG_TCP_MD5SIG 4228 /* 4229 * Parse MD5 Signature option 4230 */ 4231 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4232 { 4233 int length = (th->doff << 2) - sizeof(*th); 4234 const u8 *ptr = (const u8 *)(th + 1); 4235 4236 /* If not enough data remaining, we can short cut */ 4237 while (length >= TCPOLEN_MD5SIG) { 4238 int opcode = *ptr++; 4239 int opsize; 4240 4241 switch (opcode) { 4242 case TCPOPT_EOL: 4243 return NULL; 4244 case TCPOPT_NOP: 4245 length--; 4246 continue; 4247 default: 4248 opsize = *ptr++; 4249 if (opsize < 2 || opsize > length) 4250 return NULL; 4251 if (opcode == TCPOPT_MD5SIG) 4252 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4253 } 4254 ptr += opsize - 2; 4255 length -= opsize; 4256 } 4257 return NULL; 4258 } 4259 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4260 #endif 4261 4262 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4263 * 4264 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4265 * it can pass through stack. So, the following predicate verifies that 4266 * this segment is not used for anything but congestion avoidance or 4267 * fast retransmit. Moreover, we even are able to eliminate most of such 4268 * second order effects, if we apply some small "replay" window (~RTO) 4269 * to timestamp space. 4270 * 4271 * All these measures still do not guarantee that we reject wrapped ACKs 4272 * on networks with high bandwidth, when sequence space is recycled fastly, 4273 * but it guarantees that such events will be very rare and do not affect 4274 * connection seriously. This doesn't look nice, but alas, PAWS is really 4275 * buggy extension. 4276 * 4277 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4278 * states that events when retransmit arrives after original data are rare. 4279 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4280 * the biggest problem on large power networks even with minor reordering. 4281 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4282 * up to bandwidth of 18Gigabit/sec. 8) ] 4283 */ 4284 4285 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4286 { 4287 const struct tcp_sock *tp = tcp_sk(sk); 4288 const struct tcphdr *th = tcp_hdr(skb); 4289 u32 seq = TCP_SKB_CB(skb)->seq; 4290 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4291 4292 return (/* 1. Pure ACK with correct sequence number. */ 4293 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4294 4295 /* 2. ... and duplicate ACK. */ 4296 ack == tp->snd_una && 4297 4298 /* 3. ... and does not update window. */ 4299 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4300 4301 /* 4. ... and sits in replay window. */ 4302 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4303 } 4304 4305 static inline bool tcp_paws_discard(const struct sock *sk, 4306 const struct sk_buff *skb) 4307 { 4308 const struct tcp_sock *tp = tcp_sk(sk); 4309 4310 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4311 !tcp_disordered_ack(sk, skb); 4312 } 4313 4314 /* Check segment sequence number for validity. 4315 * 4316 * Segment controls are considered valid, if the segment 4317 * fits to the window after truncation to the window. Acceptability 4318 * of data (and SYN, FIN, of course) is checked separately. 4319 * See tcp_data_queue(), for example. 4320 * 4321 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4322 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4323 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4324 * (borrowed from freebsd) 4325 */ 4326 4327 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4328 u32 seq, u32 end_seq) 4329 { 4330 if (before(end_seq, tp->rcv_wup)) 4331 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4332 4333 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4334 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4335 4336 return SKB_NOT_DROPPED_YET; 4337 } 4338 4339 /* When we get a reset we do this. */ 4340 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4341 { 4342 trace_tcp_receive_reset(sk); 4343 4344 /* mptcp can't tell us to ignore reset pkts, 4345 * so just ignore the return value of mptcp_incoming_options(). 4346 */ 4347 if (sk_is_mptcp(sk)) 4348 mptcp_incoming_options(sk, skb); 4349 4350 /* We want the right error as BSD sees it (and indeed as we do). */ 4351 switch (sk->sk_state) { 4352 case TCP_SYN_SENT: 4353 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4354 break; 4355 case TCP_CLOSE_WAIT: 4356 WRITE_ONCE(sk->sk_err, EPIPE); 4357 break; 4358 case TCP_CLOSE: 4359 return; 4360 default: 4361 WRITE_ONCE(sk->sk_err, ECONNRESET); 4362 } 4363 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4364 smp_wmb(); 4365 4366 tcp_write_queue_purge(sk); 4367 tcp_done(sk); 4368 4369 if (!sock_flag(sk, SOCK_DEAD)) 4370 sk_error_report(sk); 4371 } 4372 4373 /* 4374 * Process the FIN bit. This now behaves as it is supposed to work 4375 * and the FIN takes effect when it is validly part of sequence 4376 * space. Not before when we get holes. 4377 * 4378 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4379 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4380 * TIME-WAIT) 4381 * 4382 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4383 * close and we go into CLOSING (and later onto TIME-WAIT) 4384 * 4385 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4386 */ 4387 void tcp_fin(struct sock *sk) 4388 { 4389 struct tcp_sock *tp = tcp_sk(sk); 4390 4391 inet_csk_schedule_ack(sk); 4392 4393 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4394 sock_set_flag(sk, SOCK_DONE); 4395 4396 switch (sk->sk_state) { 4397 case TCP_SYN_RECV: 4398 case TCP_ESTABLISHED: 4399 /* Move to CLOSE_WAIT */ 4400 tcp_set_state(sk, TCP_CLOSE_WAIT); 4401 inet_csk_enter_pingpong_mode(sk); 4402 break; 4403 4404 case TCP_CLOSE_WAIT: 4405 case TCP_CLOSING: 4406 /* Received a retransmission of the FIN, do 4407 * nothing. 4408 */ 4409 break; 4410 case TCP_LAST_ACK: 4411 /* RFC793: Remain in the LAST-ACK state. */ 4412 break; 4413 4414 case TCP_FIN_WAIT1: 4415 /* This case occurs when a simultaneous close 4416 * happens, we must ack the received FIN and 4417 * enter the CLOSING state. 4418 */ 4419 tcp_send_ack(sk); 4420 tcp_set_state(sk, TCP_CLOSING); 4421 break; 4422 case TCP_FIN_WAIT2: 4423 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4424 tcp_send_ack(sk); 4425 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4426 break; 4427 default: 4428 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4429 * cases we should never reach this piece of code. 4430 */ 4431 pr_err("%s: Impossible, sk->sk_state=%d\n", 4432 __func__, sk->sk_state); 4433 break; 4434 } 4435 4436 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4437 * Probably, we should reset in this case. For now drop them. 4438 */ 4439 skb_rbtree_purge(&tp->out_of_order_queue); 4440 if (tcp_is_sack(tp)) 4441 tcp_sack_reset(&tp->rx_opt); 4442 4443 if (!sock_flag(sk, SOCK_DEAD)) { 4444 sk->sk_state_change(sk); 4445 4446 /* Do not send POLL_HUP for half duplex close. */ 4447 if (sk->sk_shutdown == SHUTDOWN_MASK || 4448 sk->sk_state == TCP_CLOSE) 4449 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4450 else 4451 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4452 } 4453 } 4454 4455 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4456 u32 end_seq) 4457 { 4458 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4459 if (before(seq, sp->start_seq)) 4460 sp->start_seq = seq; 4461 if (after(end_seq, sp->end_seq)) 4462 sp->end_seq = end_seq; 4463 return true; 4464 } 4465 return false; 4466 } 4467 4468 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4469 { 4470 struct tcp_sock *tp = tcp_sk(sk); 4471 4472 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4473 int mib_idx; 4474 4475 if (before(seq, tp->rcv_nxt)) 4476 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4477 else 4478 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4479 4480 NET_INC_STATS(sock_net(sk), mib_idx); 4481 4482 tp->rx_opt.dsack = 1; 4483 tp->duplicate_sack[0].start_seq = seq; 4484 tp->duplicate_sack[0].end_seq = end_seq; 4485 } 4486 } 4487 4488 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4489 { 4490 struct tcp_sock *tp = tcp_sk(sk); 4491 4492 if (!tp->rx_opt.dsack) 4493 tcp_dsack_set(sk, seq, end_seq); 4494 else 4495 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4496 } 4497 4498 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4499 { 4500 /* When the ACK path fails or drops most ACKs, the sender would 4501 * timeout and spuriously retransmit the same segment repeatedly. 4502 * The receiver remembers and reflects via DSACKs. Leverage the 4503 * DSACK state and change the txhash to re-route speculatively. 4504 */ 4505 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4506 sk_rethink_txhash(sk)) 4507 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4508 } 4509 4510 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4511 { 4512 struct tcp_sock *tp = tcp_sk(sk); 4513 4514 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4515 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4516 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4517 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4518 4519 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4520 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4521 4522 tcp_rcv_spurious_retrans(sk, skb); 4523 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4524 end_seq = tp->rcv_nxt; 4525 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4526 } 4527 } 4528 4529 tcp_send_ack(sk); 4530 } 4531 4532 /* These routines update the SACK block as out-of-order packets arrive or 4533 * in-order packets close up the sequence space. 4534 */ 4535 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4536 { 4537 int this_sack; 4538 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4539 struct tcp_sack_block *swalk = sp + 1; 4540 4541 /* See if the recent change to the first SACK eats into 4542 * or hits the sequence space of other SACK blocks, if so coalesce. 4543 */ 4544 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4545 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4546 int i; 4547 4548 /* Zap SWALK, by moving every further SACK up by one slot. 4549 * Decrease num_sacks. 4550 */ 4551 tp->rx_opt.num_sacks--; 4552 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4553 sp[i] = sp[i + 1]; 4554 continue; 4555 } 4556 this_sack++; 4557 swalk++; 4558 } 4559 } 4560 4561 void tcp_sack_compress_send_ack(struct sock *sk) 4562 { 4563 struct tcp_sock *tp = tcp_sk(sk); 4564 4565 if (!tp->compressed_ack) 4566 return; 4567 4568 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4569 __sock_put(sk); 4570 4571 /* Since we have to send one ack finally, 4572 * substract one from tp->compressed_ack to keep 4573 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4574 */ 4575 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4576 tp->compressed_ack - 1); 4577 4578 tp->compressed_ack = 0; 4579 tcp_send_ack(sk); 4580 } 4581 4582 /* Reasonable amount of sack blocks included in TCP SACK option 4583 * The max is 4, but this becomes 3 if TCP timestamps are there. 4584 * Given that SACK packets might be lost, be conservative and use 2. 4585 */ 4586 #define TCP_SACK_BLOCKS_EXPECTED 2 4587 4588 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4589 { 4590 struct tcp_sock *tp = tcp_sk(sk); 4591 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4592 int cur_sacks = tp->rx_opt.num_sacks; 4593 int this_sack; 4594 4595 if (!cur_sacks) 4596 goto new_sack; 4597 4598 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4599 if (tcp_sack_extend(sp, seq, end_seq)) { 4600 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4601 tcp_sack_compress_send_ack(sk); 4602 /* Rotate this_sack to the first one. */ 4603 for (; this_sack > 0; this_sack--, sp--) 4604 swap(*sp, *(sp - 1)); 4605 if (cur_sacks > 1) 4606 tcp_sack_maybe_coalesce(tp); 4607 return; 4608 } 4609 } 4610 4611 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4612 tcp_sack_compress_send_ack(sk); 4613 4614 /* Could not find an adjacent existing SACK, build a new one, 4615 * put it at the front, and shift everyone else down. We 4616 * always know there is at least one SACK present already here. 4617 * 4618 * If the sack array is full, forget about the last one. 4619 */ 4620 if (this_sack >= TCP_NUM_SACKS) { 4621 this_sack--; 4622 tp->rx_opt.num_sacks--; 4623 sp--; 4624 } 4625 for (; this_sack > 0; this_sack--, sp--) 4626 *sp = *(sp - 1); 4627 4628 new_sack: 4629 /* Build the new head SACK, and we're done. */ 4630 sp->start_seq = seq; 4631 sp->end_seq = end_seq; 4632 tp->rx_opt.num_sacks++; 4633 } 4634 4635 /* RCV.NXT advances, some SACKs should be eaten. */ 4636 4637 static void tcp_sack_remove(struct tcp_sock *tp) 4638 { 4639 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4640 int num_sacks = tp->rx_opt.num_sacks; 4641 int this_sack; 4642 4643 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4644 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4645 tp->rx_opt.num_sacks = 0; 4646 return; 4647 } 4648 4649 for (this_sack = 0; this_sack < num_sacks;) { 4650 /* Check if the start of the sack is covered by RCV.NXT. */ 4651 if (!before(tp->rcv_nxt, sp->start_seq)) { 4652 int i; 4653 4654 /* RCV.NXT must cover all the block! */ 4655 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4656 4657 /* Zap this SACK, by moving forward any other SACKS. */ 4658 for (i = this_sack+1; i < num_sacks; i++) 4659 tp->selective_acks[i-1] = tp->selective_acks[i]; 4660 num_sacks--; 4661 continue; 4662 } 4663 this_sack++; 4664 sp++; 4665 } 4666 tp->rx_opt.num_sacks = num_sacks; 4667 } 4668 4669 /** 4670 * tcp_try_coalesce - try to merge skb to prior one 4671 * @sk: socket 4672 * @to: prior buffer 4673 * @from: buffer to add in queue 4674 * @fragstolen: pointer to boolean 4675 * 4676 * Before queueing skb @from after @to, try to merge them 4677 * to reduce overall memory use and queue lengths, if cost is small. 4678 * Packets in ofo or receive queues can stay a long time. 4679 * Better try to coalesce them right now to avoid future collapses. 4680 * Returns true if caller should free @from instead of queueing it 4681 */ 4682 static bool tcp_try_coalesce(struct sock *sk, 4683 struct sk_buff *to, 4684 struct sk_buff *from, 4685 bool *fragstolen) 4686 { 4687 int delta; 4688 4689 *fragstolen = false; 4690 4691 /* Its possible this segment overlaps with prior segment in queue */ 4692 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4693 return false; 4694 4695 if (!mptcp_skb_can_collapse(to, from)) 4696 return false; 4697 4698 #ifdef CONFIG_TLS_DEVICE 4699 if (from->decrypted != to->decrypted) 4700 return false; 4701 #endif 4702 4703 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4704 return false; 4705 4706 atomic_add(delta, &sk->sk_rmem_alloc); 4707 sk_mem_charge(sk, delta); 4708 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4709 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4710 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4711 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4712 4713 if (TCP_SKB_CB(from)->has_rxtstamp) { 4714 TCP_SKB_CB(to)->has_rxtstamp = true; 4715 to->tstamp = from->tstamp; 4716 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4717 } 4718 4719 return true; 4720 } 4721 4722 static bool tcp_ooo_try_coalesce(struct sock *sk, 4723 struct sk_buff *to, 4724 struct sk_buff *from, 4725 bool *fragstolen) 4726 { 4727 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4728 4729 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4730 if (res) { 4731 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4732 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4733 4734 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4735 } 4736 return res; 4737 } 4738 4739 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4740 enum skb_drop_reason reason) 4741 { 4742 sk_drops_add(sk, skb); 4743 kfree_skb_reason(skb, reason); 4744 } 4745 4746 /* This one checks to see if we can put data from the 4747 * out_of_order queue into the receive_queue. 4748 */ 4749 static void tcp_ofo_queue(struct sock *sk) 4750 { 4751 struct tcp_sock *tp = tcp_sk(sk); 4752 __u32 dsack_high = tp->rcv_nxt; 4753 bool fin, fragstolen, eaten; 4754 struct sk_buff *skb, *tail; 4755 struct rb_node *p; 4756 4757 p = rb_first(&tp->out_of_order_queue); 4758 while (p) { 4759 skb = rb_to_skb(p); 4760 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4761 break; 4762 4763 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4764 __u32 dsack = dsack_high; 4765 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4766 dsack_high = TCP_SKB_CB(skb)->end_seq; 4767 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4768 } 4769 p = rb_next(p); 4770 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4771 4772 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4773 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4774 continue; 4775 } 4776 4777 tail = skb_peek_tail(&sk->sk_receive_queue); 4778 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4779 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4780 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4781 if (!eaten) 4782 __skb_queue_tail(&sk->sk_receive_queue, skb); 4783 else 4784 kfree_skb_partial(skb, fragstolen); 4785 4786 if (unlikely(fin)) { 4787 tcp_fin(sk); 4788 /* tcp_fin() purges tp->out_of_order_queue, 4789 * so we must end this loop right now. 4790 */ 4791 break; 4792 } 4793 } 4794 } 4795 4796 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4797 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4798 4799 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4800 unsigned int size) 4801 { 4802 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4803 !sk_rmem_schedule(sk, skb, size)) { 4804 4805 if (tcp_prune_queue(sk, skb) < 0) 4806 return -1; 4807 4808 while (!sk_rmem_schedule(sk, skb, size)) { 4809 if (!tcp_prune_ofo_queue(sk, skb)) 4810 return -1; 4811 } 4812 } 4813 return 0; 4814 } 4815 4816 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4817 { 4818 struct tcp_sock *tp = tcp_sk(sk); 4819 struct rb_node **p, *parent; 4820 struct sk_buff *skb1; 4821 u32 seq, end_seq; 4822 bool fragstolen; 4823 4824 tcp_ecn_check_ce(sk, skb); 4825 4826 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4827 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4828 sk->sk_data_ready(sk); 4829 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4830 return; 4831 } 4832 4833 /* Disable header prediction. */ 4834 tp->pred_flags = 0; 4835 inet_csk_schedule_ack(sk); 4836 4837 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4839 seq = TCP_SKB_CB(skb)->seq; 4840 end_seq = TCP_SKB_CB(skb)->end_seq; 4841 4842 p = &tp->out_of_order_queue.rb_node; 4843 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4844 /* Initial out of order segment, build 1 SACK. */ 4845 if (tcp_is_sack(tp)) { 4846 tp->rx_opt.num_sacks = 1; 4847 tp->selective_acks[0].start_seq = seq; 4848 tp->selective_acks[0].end_seq = end_seq; 4849 } 4850 rb_link_node(&skb->rbnode, NULL, p); 4851 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4852 tp->ooo_last_skb = skb; 4853 goto end; 4854 } 4855 4856 /* In the typical case, we are adding an skb to the end of the list. 4857 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4858 */ 4859 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4860 skb, &fragstolen)) { 4861 coalesce_done: 4862 /* For non sack flows, do not grow window to force DUPACK 4863 * and trigger fast retransmit. 4864 */ 4865 if (tcp_is_sack(tp)) 4866 tcp_grow_window(sk, skb, true); 4867 kfree_skb_partial(skb, fragstolen); 4868 skb = NULL; 4869 goto add_sack; 4870 } 4871 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4872 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4873 parent = &tp->ooo_last_skb->rbnode; 4874 p = &parent->rb_right; 4875 goto insert; 4876 } 4877 4878 /* Find place to insert this segment. Handle overlaps on the way. */ 4879 parent = NULL; 4880 while (*p) { 4881 parent = *p; 4882 skb1 = rb_to_skb(parent); 4883 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4884 p = &parent->rb_left; 4885 continue; 4886 } 4887 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4888 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4889 /* All the bits are present. Drop. */ 4890 NET_INC_STATS(sock_net(sk), 4891 LINUX_MIB_TCPOFOMERGE); 4892 tcp_drop_reason(sk, skb, 4893 SKB_DROP_REASON_TCP_OFOMERGE); 4894 skb = NULL; 4895 tcp_dsack_set(sk, seq, end_seq); 4896 goto add_sack; 4897 } 4898 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4899 /* Partial overlap. */ 4900 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4901 } else { 4902 /* skb's seq == skb1's seq and skb covers skb1. 4903 * Replace skb1 with skb. 4904 */ 4905 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4906 &tp->out_of_order_queue); 4907 tcp_dsack_extend(sk, 4908 TCP_SKB_CB(skb1)->seq, 4909 TCP_SKB_CB(skb1)->end_seq); 4910 NET_INC_STATS(sock_net(sk), 4911 LINUX_MIB_TCPOFOMERGE); 4912 tcp_drop_reason(sk, skb1, 4913 SKB_DROP_REASON_TCP_OFOMERGE); 4914 goto merge_right; 4915 } 4916 } else if (tcp_ooo_try_coalesce(sk, skb1, 4917 skb, &fragstolen)) { 4918 goto coalesce_done; 4919 } 4920 p = &parent->rb_right; 4921 } 4922 insert: 4923 /* Insert segment into RB tree. */ 4924 rb_link_node(&skb->rbnode, parent, p); 4925 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4926 4927 merge_right: 4928 /* Remove other segments covered by skb. */ 4929 while ((skb1 = skb_rb_next(skb)) != NULL) { 4930 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4931 break; 4932 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4933 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4934 end_seq); 4935 break; 4936 } 4937 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4938 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4939 TCP_SKB_CB(skb1)->end_seq); 4940 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4941 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4942 } 4943 /* If there is no skb after us, we are the last_skb ! */ 4944 if (!skb1) 4945 tp->ooo_last_skb = skb; 4946 4947 add_sack: 4948 if (tcp_is_sack(tp)) 4949 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4950 end: 4951 if (skb) { 4952 /* For non sack flows, do not grow window to force DUPACK 4953 * and trigger fast retransmit. 4954 */ 4955 if (tcp_is_sack(tp)) 4956 tcp_grow_window(sk, skb, false); 4957 skb_condense(skb); 4958 skb_set_owner_r(skb, sk); 4959 } 4960 } 4961 4962 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4963 bool *fragstolen) 4964 { 4965 int eaten; 4966 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4967 4968 eaten = (tail && 4969 tcp_try_coalesce(sk, tail, 4970 skb, fragstolen)) ? 1 : 0; 4971 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4972 if (!eaten) { 4973 __skb_queue_tail(&sk->sk_receive_queue, skb); 4974 skb_set_owner_r(skb, sk); 4975 } 4976 return eaten; 4977 } 4978 4979 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4980 { 4981 struct sk_buff *skb; 4982 int err = -ENOMEM; 4983 int data_len = 0; 4984 bool fragstolen; 4985 4986 if (size == 0) 4987 return 0; 4988 4989 if (size > PAGE_SIZE) { 4990 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4991 4992 data_len = npages << PAGE_SHIFT; 4993 size = data_len + (size & ~PAGE_MASK); 4994 } 4995 skb = alloc_skb_with_frags(size - data_len, data_len, 4996 PAGE_ALLOC_COSTLY_ORDER, 4997 &err, sk->sk_allocation); 4998 if (!skb) 4999 goto err; 5000 5001 skb_put(skb, size - data_len); 5002 skb->data_len = data_len; 5003 skb->len = size; 5004 5005 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5006 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5007 goto err_free; 5008 } 5009 5010 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5011 if (err) 5012 goto err_free; 5013 5014 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5015 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5016 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5017 5018 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5019 WARN_ON_ONCE(fragstolen); /* should not happen */ 5020 __kfree_skb(skb); 5021 } 5022 return size; 5023 5024 err_free: 5025 kfree_skb(skb); 5026 err: 5027 return err; 5028 5029 } 5030 5031 void tcp_data_ready(struct sock *sk) 5032 { 5033 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5034 sk->sk_data_ready(sk); 5035 } 5036 5037 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5038 { 5039 struct tcp_sock *tp = tcp_sk(sk); 5040 enum skb_drop_reason reason; 5041 bool fragstolen; 5042 int eaten; 5043 5044 /* If a subflow has been reset, the packet should not continue 5045 * to be processed, drop the packet. 5046 */ 5047 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5048 __kfree_skb(skb); 5049 return; 5050 } 5051 5052 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5053 __kfree_skb(skb); 5054 return; 5055 } 5056 skb_dst_drop(skb); 5057 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5058 5059 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5060 tp->rx_opt.dsack = 0; 5061 5062 /* Queue data for delivery to the user. 5063 * Packets in sequence go to the receive queue. 5064 * Out of sequence packets to the out_of_order_queue. 5065 */ 5066 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5067 if (tcp_receive_window(tp) == 0) { 5068 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5070 goto out_of_window; 5071 } 5072 5073 /* Ok. In sequence. In window. */ 5074 queue_and_out: 5075 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5076 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5077 inet_csk(sk)->icsk_ack.pending |= 5078 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5079 inet_csk_schedule_ack(sk); 5080 sk->sk_data_ready(sk); 5081 5082 if (skb_queue_len(&sk->sk_receive_queue)) { 5083 reason = SKB_DROP_REASON_PROTO_MEM; 5084 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5085 goto drop; 5086 } 5087 sk_forced_mem_schedule(sk, skb->truesize); 5088 } 5089 5090 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5091 if (skb->len) 5092 tcp_event_data_recv(sk, skb); 5093 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5094 tcp_fin(sk); 5095 5096 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5097 tcp_ofo_queue(sk); 5098 5099 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5100 * gap in queue is filled. 5101 */ 5102 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5103 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5104 } 5105 5106 if (tp->rx_opt.num_sacks) 5107 tcp_sack_remove(tp); 5108 5109 tcp_fast_path_check(sk); 5110 5111 if (eaten > 0) 5112 kfree_skb_partial(skb, fragstolen); 5113 if (!sock_flag(sk, SOCK_DEAD)) 5114 tcp_data_ready(sk); 5115 return; 5116 } 5117 5118 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5119 tcp_rcv_spurious_retrans(sk, skb); 5120 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5121 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5122 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5123 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5124 5125 out_of_window: 5126 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5127 inet_csk_schedule_ack(sk); 5128 drop: 5129 tcp_drop_reason(sk, skb, reason); 5130 return; 5131 } 5132 5133 /* Out of window. F.e. zero window probe. */ 5134 if (!before(TCP_SKB_CB(skb)->seq, 5135 tp->rcv_nxt + tcp_receive_window(tp))) { 5136 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5137 goto out_of_window; 5138 } 5139 5140 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5141 /* Partial packet, seq < rcv_next < end_seq */ 5142 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5143 5144 /* If window is closed, drop tail of packet. But after 5145 * remembering D-SACK for its head made in previous line. 5146 */ 5147 if (!tcp_receive_window(tp)) { 5148 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5149 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5150 goto out_of_window; 5151 } 5152 goto queue_and_out; 5153 } 5154 5155 tcp_data_queue_ofo(sk, skb); 5156 } 5157 5158 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5159 { 5160 if (list) 5161 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5162 5163 return skb_rb_next(skb); 5164 } 5165 5166 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5167 struct sk_buff_head *list, 5168 struct rb_root *root) 5169 { 5170 struct sk_buff *next = tcp_skb_next(skb, list); 5171 5172 if (list) 5173 __skb_unlink(skb, list); 5174 else 5175 rb_erase(&skb->rbnode, root); 5176 5177 __kfree_skb(skb); 5178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5179 5180 return next; 5181 } 5182 5183 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5184 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5185 { 5186 struct rb_node **p = &root->rb_node; 5187 struct rb_node *parent = NULL; 5188 struct sk_buff *skb1; 5189 5190 while (*p) { 5191 parent = *p; 5192 skb1 = rb_to_skb(parent); 5193 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5194 p = &parent->rb_left; 5195 else 5196 p = &parent->rb_right; 5197 } 5198 rb_link_node(&skb->rbnode, parent, p); 5199 rb_insert_color(&skb->rbnode, root); 5200 } 5201 5202 /* Collapse contiguous sequence of skbs head..tail with 5203 * sequence numbers start..end. 5204 * 5205 * If tail is NULL, this means until the end of the queue. 5206 * 5207 * Segments with FIN/SYN are not collapsed (only because this 5208 * simplifies code) 5209 */ 5210 static void 5211 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5212 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5213 { 5214 struct sk_buff *skb = head, *n; 5215 struct sk_buff_head tmp; 5216 bool end_of_skbs; 5217 5218 /* First, check that queue is collapsible and find 5219 * the point where collapsing can be useful. 5220 */ 5221 restart: 5222 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5223 n = tcp_skb_next(skb, list); 5224 5225 /* No new bits? It is possible on ofo queue. */ 5226 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5227 skb = tcp_collapse_one(sk, skb, list, root); 5228 if (!skb) 5229 break; 5230 goto restart; 5231 } 5232 5233 /* The first skb to collapse is: 5234 * - not SYN/FIN and 5235 * - bloated or contains data before "start" or 5236 * overlaps to the next one and mptcp allow collapsing. 5237 */ 5238 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5239 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5240 before(TCP_SKB_CB(skb)->seq, start))) { 5241 end_of_skbs = false; 5242 break; 5243 } 5244 5245 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5246 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5247 end_of_skbs = false; 5248 break; 5249 } 5250 5251 /* Decided to skip this, advance start seq. */ 5252 start = TCP_SKB_CB(skb)->end_seq; 5253 } 5254 if (end_of_skbs || 5255 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5256 return; 5257 5258 __skb_queue_head_init(&tmp); 5259 5260 while (before(start, end)) { 5261 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5262 struct sk_buff *nskb; 5263 5264 nskb = alloc_skb(copy, GFP_ATOMIC); 5265 if (!nskb) 5266 break; 5267 5268 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5269 #ifdef CONFIG_TLS_DEVICE 5270 nskb->decrypted = skb->decrypted; 5271 #endif 5272 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5273 if (list) 5274 __skb_queue_before(list, skb, nskb); 5275 else 5276 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5277 skb_set_owner_r(nskb, sk); 5278 mptcp_skb_ext_move(nskb, skb); 5279 5280 /* Copy data, releasing collapsed skbs. */ 5281 while (copy > 0) { 5282 int offset = start - TCP_SKB_CB(skb)->seq; 5283 int size = TCP_SKB_CB(skb)->end_seq - start; 5284 5285 BUG_ON(offset < 0); 5286 if (size > 0) { 5287 size = min(copy, size); 5288 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5289 BUG(); 5290 TCP_SKB_CB(nskb)->end_seq += size; 5291 copy -= size; 5292 start += size; 5293 } 5294 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5295 skb = tcp_collapse_one(sk, skb, list, root); 5296 if (!skb || 5297 skb == tail || 5298 !mptcp_skb_can_collapse(nskb, skb) || 5299 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5300 goto end; 5301 #ifdef CONFIG_TLS_DEVICE 5302 if (skb->decrypted != nskb->decrypted) 5303 goto end; 5304 #endif 5305 } 5306 } 5307 } 5308 end: 5309 skb_queue_walk_safe(&tmp, skb, n) 5310 tcp_rbtree_insert(root, skb); 5311 } 5312 5313 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5314 * and tcp_collapse() them until all the queue is collapsed. 5315 */ 5316 static void tcp_collapse_ofo_queue(struct sock *sk) 5317 { 5318 struct tcp_sock *tp = tcp_sk(sk); 5319 u32 range_truesize, sum_tiny = 0; 5320 struct sk_buff *skb, *head; 5321 u32 start, end; 5322 5323 skb = skb_rb_first(&tp->out_of_order_queue); 5324 new_range: 5325 if (!skb) { 5326 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5327 return; 5328 } 5329 start = TCP_SKB_CB(skb)->seq; 5330 end = TCP_SKB_CB(skb)->end_seq; 5331 range_truesize = skb->truesize; 5332 5333 for (head = skb;;) { 5334 skb = skb_rb_next(skb); 5335 5336 /* Range is terminated when we see a gap or when 5337 * we are at the queue end. 5338 */ 5339 if (!skb || 5340 after(TCP_SKB_CB(skb)->seq, end) || 5341 before(TCP_SKB_CB(skb)->end_seq, start)) { 5342 /* Do not attempt collapsing tiny skbs */ 5343 if (range_truesize != head->truesize || 5344 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5345 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5346 head, skb, start, end); 5347 } else { 5348 sum_tiny += range_truesize; 5349 if (sum_tiny > sk->sk_rcvbuf >> 3) 5350 return; 5351 } 5352 goto new_range; 5353 } 5354 5355 range_truesize += skb->truesize; 5356 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5357 start = TCP_SKB_CB(skb)->seq; 5358 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5359 end = TCP_SKB_CB(skb)->end_seq; 5360 } 5361 } 5362 5363 /* 5364 * Clean the out-of-order queue to make room. 5365 * We drop high sequences packets to : 5366 * 1) Let a chance for holes to be filled. 5367 * This means we do not drop packets from ooo queue if their sequence 5368 * is before incoming packet sequence. 5369 * 2) not add too big latencies if thousands of packets sit there. 5370 * (But if application shrinks SO_RCVBUF, we could still end up 5371 * freeing whole queue here) 5372 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5373 * 5374 * Return true if queue has shrunk. 5375 */ 5376 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5377 { 5378 struct tcp_sock *tp = tcp_sk(sk); 5379 struct rb_node *node, *prev; 5380 bool pruned = false; 5381 int goal; 5382 5383 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5384 return false; 5385 5386 goal = sk->sk_rcvbuf >> 3; 5387 node = &tp->ooo_last_skb->rbnode; 5388 5389 do { 5390 struct sk_buff *skb = rb_to_skb(node); 5391 5392 /* If incoming skb would land last in ofo queue, stop pruning. */ 5393 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5394 break; 5395 pruned = true; 5396 prev = rb_prev(node); 5397 rb_erase(node, &tp->out_of_order_queue); 5398 goal -= skb->truesize; 5399 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5400 tp->ooo_last_skb = rb_to_skb(prev); 5401 if (!prev || goal <= 0) { 5402 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5403 !tcp_under_memory_pressure(sk)) 5404 break; 5405 goal = sk->sk_rcvbuf >> 3; 5406 } 5407 node = prev; 5408 } while (node); 5409 5410 if (pruned) { 5411 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5412 /* Reset SACK state. A conforming SACK implementation will 5413 * do the same at a timeout based retransmit. When a connection 5414 * is in a sad state like this, we care only about integrity 5415 * of the connection not performance. 5416 */ 5417 if (tp->rx_opt.sack_ok) 5418 tcp_sack_reset(&tp->rx_opt); 5419 } 5420 return pruned; 5421 } 5422 5423 /* Reduce allocated memory if we can, trying to get 5424 * the socket within its memory limits again. 5425 * 5426 * Return less than zero if we should start dropping frames 5427 * until the socket owning process reads some of the data 5428 * to stabilize the situation. 5429 */ 5430 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5431 { 5432 struct tcp_sock *tp = tcp_sk(sk); 5433 5434 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5435 5436 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5437 tcp_clamp_window(sk); 5438 else if (tcp_under_memory_pressure(sk)) 5439 tcp_adjust_rcv_ssthresh(sk); 5440 5441 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5442 return 0; 5443 5444 tcp_collapse_ofo_queue(sk); 5445 if (!skb_queue_empty(&sk->sk_receive_queue)) 5446 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5447 skb_peek(&sk->sk_receive_queue), 5448 NULL, 5449 tp->copied_seq, tp->rcv_nxt); 5450 5451 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5452 return 0; 5453 5454 /* Collapsing did not help, destructive actions follow. 5455 * This must not ever occur. */ 5456 5457 tcp_prune_ofo_queue(sk, in_skb); 5458 5459 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5460 return 0; 5461 5462 /* If we are really being abused, tell the caller to silently 5463 * drop receive data on the floor. It will get retransmitted 5464 * and hopefully then we'll have sufficient space. 5465 */ 5466 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5467 5468 /* Massive buffer overcommit. */ 5469 tp->pred_flags = 0; 5470 return -1; 5471 } 5472 5473 static bool tcp_should_expand_sndbuf(struct sock *sk) 5474 { 5475 const struct tcp_sock *tp = tcp_sk(sk); 5476 5477 /* If the user specified a specific send buffer setting, do 5478 * not modify it. 5479 */ 5480 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5481 return false; 5482 5483 /* If we are under global TCP memory pressure, do not expand. */ 5484 if (tcp_under_memory_pressure(sk)) { 5485 int unused_mem = sk_unused_reserved_mem(sk); 5486 5487 /* Adjust sndbuf according to reserved mem. But make sure 5488 * it never goes below SOCK_MIN_SNDBUF. 5489 * See sk_stream_moderate_sndbuf() for more details. 5490 */ 5491 if (unused_mem > SOCK_MIN_SNDBUF) 5492 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5493 5494 return false; 5495 } 5496 5497 /* If we are under soft global TCP memory pressure, do not expand. */ 5498 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5499 return false; 5500 5501 /* If we filled the congestion window, do not expand. */ 5502 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5503 return false; 5504 5505 return true; 5506 } 5507 5508 static void tcp_new_space(struct sock *sk) 5509 { 5510 struct tcp_sock *tp = tcp_sk(sk); 5511 5512 if (tcp_should_expand_sndbuf(sk)) { 5513 tcp_sndbuf_expand(sk); 5514 tp->snd_cwnd_stamp = tcp_jiffies32; 5515 } 5516 5517 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5518 } 5519 5520 /* Caller made space either from: 5521 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5522 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5523 * 5524 * We might be able to generate EPOLLOUT to the application if: 5525 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5526 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5527 * small enough that tcp_stream_memory_free() decides it 5528 * is time to generate EPOLLOUT. 5529 */ 5530 void tcp_check_space(struct sock *sk) 5531 { 5532 /* pairs with tcp_poll() */ 5533 smp_mb(); 5534 if (sk->sk_socket && 5535 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5536 tcp_new_space(sk); 5537 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5538 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5539 } 5540 } 5541 5542 static inline void tcp_data_snd_check(struct sock *sk) 5543 { 5544 tcp_push_pending_frames(sk); 5545 tcp_check_space(sk); 5546 } 5547 5548 /* 5549 * Check if sending an ack is needed. 5550 */ 5551 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5552 { 5553 struct tcp_sock *tp = tcp_sk(sk); 5554 unsigned long rtt, delay; 5555 5556 /* More than one full frame received... */ 5557 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5558 /* ... and right edge of window advances far enough. 5559 * (tcp_recvmsg() will send ACK otherwise). 5560 * If application uses SO_RCVLOWAT, we want send ack now if 5561 * we have not received enough bytes to satisfy the condition. 5562 */ 5563 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5564 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5565 /* We ACK each frame or... */ 5566 tcp_in_quickack_mode(sk) || 5567 /* Protocol state mandates a one-time immediate ACK */ 5568 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5569 send_now: 5570 tcp_send_ack(sk); 5571 return; 5572 } 5573 5574 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5575 tcp_send_delayed_ack(sk); 5576 return; 5577 } 5578 5579 if (!tcp_is_sack(tp) || 5580 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5581 goto send_now; 5582 5583 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5584 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5585 tp->dup_ack_counter = 0; 5586 } 5587 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5588 tp->dup_ack_counter++; 5589 goto send_now; 5590 } 5591 tp->compressed_ack++; 5592 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5593 return; 5594 5595 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5596 5597 rtt = tp->rcv_rtt_est.rtt_us; 5598 if (tp->srtt_us && tp->srtt_us < rtt) 5599 rtt = tp->srtt_us; 5600 5601 delay = min_t(unsigned long, 5602 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5603 rtt * (NSEC_PER_USEC >> 3)/20); 5604 sock_hold(sk); 5605 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5606 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5607 HRTIMER_MODE_REL_PINNED_SOFT); 5608 } 5609 5610 static inline void tcp_ack_snd_check(struct sock *sk) 5611 { 5612 if (!inet_csk_ack_scheduled(sk)) { 5613 /* We sent a data segment already. */ 5614 return; 5615 } 5616 __tcp_ack_snd_check(sk, 1); 5617 } 5618 5619 /* 5620 * This routine is only called when we have urgent data 5621 * signaled. Its the 'slow' part of tcp_urg. It could be 5622 * moved inline now as tcp_urg is only called from one 5623 * place. We handle URGent data wrong. We have to - as 5624 * BSD still doesn't use the correction from RFC961. 5625 * For 1003.1g we should support a new option TCP_STDURG to permit 5626 * either form (or just set the sysctl tcp_stdurg). 5627 */ 5628 5629 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5630 { 5631 struct tcp_sock *tp = tcp_sk(sk); 5632 u32 ptr = ntohs(th->urg_ptr); 5633 5634 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5635 ptr--; 5636 ptr += ntohl(th->seq); 5637 5638 /* Ignore urgent data that we've already seen and read. */ 5639 if (after(tp->copied_seq, ptr)) 5640 return; 5641 5642 /* Do not replay urg ptr. 5643 * 5644 * NOTE: interesting situation not covered by specs. 5645 * Misbehaving sender may send urg ptr, pointing to segment, 5646 * which we already have in ofo queue. We are not able to fetch 5647 * such data and will stay in TCP_URG_NOTYET until will be eaten 5648 * by recvmsg(). Seems, we are not obliged to handle such wicked 5649 * situations. But it is worth to think about possibility of some 5650 * DoSes using some hypothetical application level deadlock. 5651 */ 5652 if (before(ptr, tp->rcv_nxt)) 5653 return; 5654 5655 /* Do we already have a newer (or duplicate) urgent pointer? */ 5656 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5657 return; 5658 5659 /* Tell the world about our new urgent pointer. */ 5660 sk_send_sigurg(sk); 5661 5662 /* We may be adding urgent data when the last byte read was 5663 * urgent. To do this requires some care. We cannot just ignore 5664 * tp->copied_seq since we would read the last urgent byte again 5665 * as data, nor can we alter copied_seq until this data arrives 5666 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5667 * 5668 * NOTE. Double Dutch. Rendering to plain English: author of comment 5669 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5670 * and expect that both A and B disappear from stream. This is _wrong_. 5671 * Though this happens in BSD with high probability, this is occasional. 5672 * Any application relying on this is buggy. Note also, that fix "works" 5673 * only in this artificial test. Insert some normal data between A and B and we will 5674 * decline of BSD again. Verdict: it is better to remove to trap 5675 * buggy users. 5676 */ 5677 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5678 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5679 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5680 tp->copied_seq++; 5681 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5682 __skb_unlink(skb, &sk->sk_receive_queue); 5683 __kfree_skb(skb); 5684 } 5685 } 5686 5687 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5688 WRITE_ONCE(tp->urg_seq, ptr); 5689 5690 /* Disable header prediction. */ 5691 tp->pred_flags = 0; 5692 } 5693 5694 /* This is the 'fast' part of urgent handling. */ 5695 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5696 { 5697 struct tcp_sock *tp = tcp_sk(sk); 5698 5699 /* Check if we get a new urgent pointer - normally not. */ 5700 if (unlikely(th->urg)) 5701 tcp_check_urg(sk, th); 5702 5703 /* Do we wait for any urgent data? - normally not... */ 5704 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5705 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5706 th->syn; 5707 5708 /* Is the urgent pointer pointing into this packet? */ 5709 if (ptr < skb->len) { 5710 u8 tmp; 5711 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5712 BUG(); 5713 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5714 if (!sock_flag(sk, SOCK_DEAD)) 5715 sk->sk_data_ready(sk); 5716 } 5717 } 5718 } 5719 5720 /* Accept RST for rcv_nxt - 1 after a FIN. 5721 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5722 * FIN is sent followed by a RST packet. The RST is sent with the same 5723 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5724 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5725 * ACKs on the closed socket. In addition middleboxes can drop either the 5726 * challenge ACK or a subsequent RST. 5727 */ 5728 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5729 { 5730 const struct tcp_sock *tp = tcp_sk(sk); 5731 5732 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5733 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5734 TCPF_CLOSING)); 5735 } 5736 5737 /* Does PAWS and seqno based validation of an incoming segment, flags will 5738 * play significant role here. 5739 */ 5740 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5741 const struct tcphdr *th, int syn_inerr) 5742 { 5743 struct tcp_sock *tp = tcp_sk(sk); 5744 SKB_DR(reason); 5745 5746 /* RFC1323: H1. Apply PAWS check first. */ 5747 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5748 tp->rx_opt.saw_tstamp && 5749 tcp_paws_discard(sk, skb)) { 5750 if (!th->rst) { 5751 if (unlikely(th->syn)) 5752 goto syn_challenge; 5753 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5754 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5755 LINUX_MIB_TCPACKSKIPPEDPAWS, 5756 &tp->last_oow_ack_time)) 5757 tcp_send_dupack(sk, skb); 5758 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5759 goto discard; 5760 } 5761 /* Reset is accepted even if it did not pass PAWS. */ 5762 } 5763 5764 /* Step 1: check sequence number */ 5765 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5766 if (reason) { 5767 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5768 * (RST) segments are validated by checking their SEQ-fields." 5769 * And page 69: "If an incoming segment is not acceptable, 5770 * an acknowledgment should be sent in reply (unless the RST 5771 * bit is set, if so drop the segment and return)". 5772 */ 5773 if (!th->rst) { 5774 if (th->syn) 5775 goto syn_challenge; 5776 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5777 LINUX_MIB_TCPACKSKIPPEDSEQ, 5778 &tp->last_oow_ack_time)) 5779 tcp_send_dupack(sk, skb); 5780 } else if (tcp_reset_check(sk, skb)) { 5781 goto reset; 5782 } 5783 goto discard; 5784 } 5785 5786 /* Step 2: check RST bit */ 5787 if (th->rst) { 5788 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5789 * FIN and SACK too if available): 5790 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5791 * the right-most SACK block, 5792 * then 5793 * RESET the connection 5794 * else 5795 * Send a challenge ACK 5796 */ 5797 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5798 tcp_reset_check(sk, skb)) 5799 goto reset; 5800 5801 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5802 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5803 int max_sack = sp[0].end_seq; 5804 int this_sack; 5805 5806 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5807 ++this_sack) { 5808 max_sack = after(sp[this_sack].end_seq, 5809 max_sack) ? 5810 sp[this_sack].end_seq : max_sack; 5811 } 5812 5813 if (TCP_SKB_CB(skb)->seq == max_sack) 5814 goto reset; 5815 } 5816 5817 /* Disable TFO if RST is out-of-order 5818 * and no data has been received 5819 * for current active TFO socket 5820 */ 5821 if (tp->syn_fastopen && !tp->data_segs_in && 5822 sk->sk_state == TCP_ESTABLISHED) 5823 tcp_fastopen_active_disable(sk); 5824 tcp_send_challenge_ack(sk); 5825 SKB_DR_SET(reason, TCP_RESET); 5826 goto discard; 5827 } 5828 5829 /* step 3: check security and precedence [ignored] */ 5830 5831 /* step 4: Check for a SYN 5832 * RFC 5961 4.2 : Send a challenge ack 5833 */ 5834 if (th->syn) { 5835 syn_challenge: 5836 if (syn_inerr) 5837 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5839 tcp_send_challenge_ack(sk); 5840 SKB_DR_SET(reason, TCP_INVALID_SYN); 5841 goto discard; 5842 } 5843 5844 bpf_skops_parse_hdr(sk, skb); 5845 5846 return true; 5847 5848 discard: 5849 tcp_drop_reason(sk, skb, reason); 5850 return false; 5851 5852 reset: 5853 tcp_reset(sk, skb); 5854 __kfree_skb(skb); 5855 return false; 5856 } 5857 5858 /* 5859 * TCP receive function for the ESTABLISHED state. 5860 * 5861 * It is split into a fast path and a slow path. The fast path is 5862 * disabled when: 5863 * - A zero window was announced from us - zero window probing 5864 * is only handled properly in the slow path. 5865 * - Out of order segments arrived. 5866 * - Urgent data is expected. 5867 * - There is no buffer space left 5868 * - Unexpected TCP flags/window values/header lengths are received 5869 * (detected by checking the TCP header against pred_flags) 5870 * - Data is sent in both directions. Fast path only supports pure senders 5871 * or pure receivers (this means either the sequence number or the ack 5872 * value must stay constant) 5873 * - Unexpected TCP option. 5874 * 5875 * When these conditions are not satisfied it drops into a standard 5876 * receive procedure patterned after RFC793 to handle all cases. 5877 * The first three cases are guaranteed by proper pred_flags setting, 5878 * the rest is checked inline. Fast processing is turned on in 5879 * tcp_data_queue when everything is OK. 5880 */ 5881 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5882 { 5883 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5884 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5885 struct tcp_sock *tp = tcp_sk(sk); 5886 unsigned int len = skb->len; 5887 5888 /* TCP congestion window tracking */ 5889 trace_tcp_probe(sk, skb); 5890 5891 tcp_mstamp_refresh(tp); 5892 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5893 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5894 /* 5895 * Header prediction. 5896 * The code loosely follows the one in the famous 5897 * "30 instruction TCP receive" Van Jacobson mail. 5898 * 5899 * Van's trick is to deposit buffers into socket queue 5900 * on a device interrupt, to call tcp_recv function 5901 * on the receive process context and checksum and copy 5902 * the buffer to user space. smart... 5903 * 5904 * Our current scheme is not silly either but we take the 5905 * extra cost of the net_bh soft interrupt processing... 5906 * We do checksum and copy also but from device to kernel. 5907 */ 5908 5909 tp->rx_opt.saw_tstamp = 0; 5910 5911 /* pred_flags is 0xS?10 << 16 + snd_wnd 5912 * if header_prediction is to be made 5913 * 'S' will always be tp->tcp_header_len >> 2 5914 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5915 * turn it off (when there are holes in the receive 5916 * space for instance) 5917 * PSH flag is ignored. 5918 */ 5919 5920 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5921 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5922 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5923 int tcp_header_len = tp->tcp_header_len; 5924 5925 /* Timestamp header prediction: tcp_header_len 5926 * is automatically equal to th->doff*4 due to pred_flags 5927 * match. 5928 */ 5929 5930 /* Check timestamp */ 5931 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5932 /* No? Slow path! */ 5933 if (!tcp_parse_aligned_timestamp(tp, th)) 5934 goto slow_path; 5935 5936 /* If PAWS failed, check it more carefully in slow path */ 5937 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5938 goto slow_path; 5939 5940 /* DO NOT update ts_recent here, if checksum fails 5941 * and timestamp was corrupted part, it will result 5942 * in a hung connection since we will drop all 5943 * future packets due to the PAWS test. 5944 */ 5945 } 5946 5947 if (len <= tcp_header_len) { 5948 /* Bulk data transfer: sender */ 5949 if (len == tcp_header_len) { 5950 /* Predicted packet is in window by definition. 5951 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5952 * Hence, check seq<=rcv_wup reduces to: 5953 */ 5954 if (tcp_header_len == 5955 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5956 tp->rcv_nxt == tp->rcv_wup) 5957 tcp_store_ts_recent(tp); 5958 5959 /* We know that such packets are checksummed 5960 * on entry. 5961 */ 5962 tcp_ack(sk, skb, 0); 5963 __kfree_skb(skb); 5964 tcp_data_snd_check(sk); 5965 /* When receiving pure ack in fast path, update 5966 * last ts ecr directly instead of calling 5967 * tcp_rcv_rtt_measure_ts() 5968 */ 5969 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5970 return; 5971 } else { /* Header too small */ 5972 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5973 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5974 goto discard; 5975 } 5976 } else { 5977 int eaten = 0; 5978 bool fragstolen = false; 5979 5980 if (tcp_checksum_complete(skb)) 5981 goto csum_error; 5982 5983 if ((int)skb->truesize > sk->sk_forward_alloc) 5984 goto step5; 5985 5986 /* Predicted packet is in window by definition. 5987 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5988 * Hence, check seq<=rcv_wup reduces to: 5989 */ 5990 if (tcp_header_len == 5991 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5992 tp->rcv_nxt == tp->rcv_wup) 5993 tcp_store_ts_recent(tp); 5994 5995 tcp_rcv_rtt_measure_ts(sk, skb); 5996 5997 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5998 5999 /* Bulk data transfer: receiver */ 6000 skb_dst_drop(skb); 6001 __skb_pull(skb, tcp_header_len); 6002 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6003 6004 tcp_event_data_recv(sk, skb); 6005 6006 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6007 /* Well, only one small jumplet in fast path... */ 6008 tcp_ack(sk, skb, FLAG_DATA); 6009 tcp_data_snd_check(sk); 6010 if (!inet_csk_ack_scheduled(sk)) 6011 goto no_ack; 6012 } else { 6013 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6014 } 6015 6016 __tcp_ack_snd_check(sk, 0); 6017 no_ack: 6018 if (eaten) 6019 kfree_skb_partial(skb, fragstolen); 6020 tcp_data_ready(sk); 6021 return; 6022 } 6023 } 6024 6025 slow_path: 6026 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6027 goto csum_error; 6028 6029 if (!th->ack && !th->rst && !th->syn) { 6030 reason = SKB_DROP_REASON_TCP_FLAGS; 6031 goto discard; 6032 } 6033 6034 /* 6035 * Standard slow path. 6036 */ 6037 6038 if (!tcp_validate_incoming(sk, skb, th, 1)) 6039 return; 6040 6041 step5: 6042 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6043 if ((int)reason < 0) { 6044 reason = -reason; 6045 goto discard; 6046 } 6047 tcp_rcv_rtt_measure_ts(sk, skb); 6048 6049 /* Process urgent data. */ 6050 tcp_urg(sk, skb, th); 6051 6052 /* step 7: process the segment text */ 6053 tcp_data_queue(sk, skb); 6054 6055 tcp_data_snd_check(sk); 6056 tcp_ack_snd_check(sk); 6057 return; 6058 6059 csum_error: 6060 reason = SKB_DROP_REASON_TCP_CSUM; 6061 trace_tcp_bad_csum(skb); 6062 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6063 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6064 6065 discard: 6066 tcp_drop_reason(sk, skb, reason); 6067 } 6068 EXPORT_SYMBOL(tcp_rcv_established); 6069 6070 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6071 { 6072 struct inet_connection_sock *icsk = inet_csk(sk); 6073 struct tcp_sock *tp = tcp_sk(sk); 6074 6075 tcp_mtup_init(sk); 6076 icsk->icsk_af_ops->rebuild_header(sk); 6077 tcp_init_metrics(sk); 6078 6079 /* Initialize the congestion window to start the transfer. 6080 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6081 * retransmitted. In light of RFC6298 more aggressive 1sec 6082 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6083 * retransmission has occurred. 6084 */ 6085 if (tp->total_retrans > 1 && tp->undo_marker) 6086 tcp_snd_cwnd_set(tp, 1); 6087 else 6088 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6089 tp->snd_cwnd_stamp = tcp_jiffies32; 6090 6091 bpf_skops_established(sk, bpf_op, skb); 6092 /* Initialize congestion control unless BPF initialized it already: */ 6093 if (!icsk->icsk_ca_initialized) 6094 tcp_init_congestion_control(sk); 6095 tcp_init_buffer_space(sk); 6096 } 6097 6098 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6099 { 6100 struct tcp_sock *tp = tcp_sk(sk); 6101 struct inet_connection_sock *icsk = inet_csk(sk); 6102 6103 tcp_set_state(sk, TCP_ESTABLISHED); 6104 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6105 6106 if (skb) { 6107 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6108 security_inet_conn_established(sk, skb); 6109 sk_mark_napi_id(sk, skb); 6110 } 6111 6112 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6113 6114 /* Prevent spurious tcp_cwnd_restart() on first data 6115 * packet. 6116 */ 6117 tp->lsndtime = tcp_jiffies32; 6118 6119 if (sock_flag(sk, SOCK_KEEPOPEN)) 6120 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6121 6122 if (!tp->rx_opt.snd_wscale) 6123 __tcp_fast_path_on(tp, tp->snd_wnd); 6124 else 6125 tp->pred_flags = 0; 6126 } 6127 6128 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6129 struct tcp_fastopen_cookie *cookie) 6130 { 6131 struct tcp_sock *tp = tcp_sk(sk); 6132 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6133 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6134 bool syn_drop = false; 6135 6136 if (mss == tp->rx_opt.user_mss) { 6137 struct tcp_options_received opt; 6138 6139 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6140 tcp_clear_options(&opt); 6141 opt.user_mss = opt.mss_clamp = 0; 6142 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6143 mss = opt.mss_clamp; 6144 } 6145 6146 if (!tp->syn_fastopen) { 6147 /* Ignore an unsolicited cookie */ 6148 cookie->len = -1; 6149 } else if (tp->total_retrans) { 6150 /* SYN timed out and the SYN-ACK neither has a cookie nor 6151 * acknowledges data. Presumably the remote received only 6152 * the retransmitted (regular) SYNs: either the original 6153 * SYN-data or the corresponding SYN-ACK was dropped. 6154 */ 6155 syn_drop = (cookie->len < 0 && data); 6156 } else if (cookie->len < 0 && !tp->syn_data) { 6157 /* We requested a cookie but didn't get it. If we did not use 6158 * the (old) exp opt format then try so next time (try_exp=1). 6159 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6160 */ 6161 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6162 } 6163 6164 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6165 6166 if (data) { /* Retransmit unacked data in SYN */ 6167 if (tp->total_retrans) 6168 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6169 else 6170 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6171 skb_rbtree_walk_from(data) 6172 tcp_mark_skb_lost(sk, data); 6173 tcp_xmit_retransmit_queue(sk); 6174 NET_INC_STATS(sock_net(sk), 6175 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6176 return true; 6177 } 6178 tp->syn_data_acked = tp->syn_data; 6179 if (tp->syn_data_acked) { 6180 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6181 /* SYN-data is counted as two separate packets in tcp_ack() */ 6182 if (tp->delivered > 1) 6183 --tp->delivered; 6184 } 6185 6186 tcp_fastopen_add_skb(sk, synack); 6187 6188 return false; 6189 } 6190 6191 static void smc_check_reset_syn(struct tcp_sock *tp) 6192 { 6193 #if IS_ENABLED(CONFIG_SMC) 6194 if (static_branch_unlikely(&tcp_have_smc)) { 6195 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6196 tp->syn_smc = 0; 6197 } 6198 #endif 6199 } 6200 6201 static void tcp_try_undo_spurious_syn(struct sock *sk) 6202 { 6203 struct tcp_sock *tp = tcp_sk(sk); 6204 u32 syn_stamp; 6205 6206 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6207 * spurious if the ACK's timestamp option echo value matches the 6208 * original SYN timestamp. 6209 */ 6210 syn_stamp = tp->retrans_stamp; 6211 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6212 syn_stamp == tp->rx_opt.rcv_tsecr) 6213 tp->undo_marker = 0; 6214 } 6215 6216 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6217 const struct tcphdr *th) 6218 { 6219 struct inet_connection_sock *icsk = inet_csk(sk); 6220 struct tcp_sock *tp = tcp_sk(sk); 6221 struct tcp_fastopen_cookie foc = { .len = -1 }; 6222 int saved_clamp = tp->rx_opt.mss_clamp; 6223 bool fastopen_fail; 6224 SKB_DR(reason); 6225 6226 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6227 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6228 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6229 6230 if (th->ack) { 6231 /* rfc793: 6232 * "If the state is SYN-SENT then 6233 * first check the ACK bit 6234 * If the ACK bit is set 6235 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6236 * a reset (unless the RST bit is set, if so drop 6237 * the segment and return)" 6238 */ 6239 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6240 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6241 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6242 if (icsk->icsk_retransmits == 0) 6243 inet_csk_reset_xmit_timer(sk, 6244 ICSK_TIME_RETRANS, 6245 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6246 goto reset_and_undo; 6247 } 6248 6249 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6250 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6251 tcp_time_stamp(tp))) { 6252 NET_INC_STATS(sock_net(sk), 6253 LINUX_MIB_PAWSACTIVEREJECTED); 6254 goto reset_and_undo; 6255 } 6256 6257 /* Now ACK is acceptable. 6258 * 6259 * "If the RST bit is set 6260 * If the ACK was acceptable then signal the user "error: 6261 * connection reset", drop the segment, enter CLOSED state, 6262 * delete TCB, and return." 6263 */ 6264 6265 if (th->rst) { 6266 tcp_reset(sk, skb); 6267 consume: 6268 __kfree_skb(skb); 6269 return 0; 6270 } 6271 6272 /* rfc793: 6273 * "fifth, if neither of the SYN or RST bits is set then 6274 * drop the segment and return." 6275 * 6276 * See note below! 6277 * --ANK(990513) 6278 */ 6279 if (!th->syn) { 6280 SKB_DR_SET(reason, TCP_FLAGS); 6281 goto discard_and_undo; 6282 } 6283 /* rfc793: 6284 * "If the SYN bit is on ... 6285 * are acceptable then ... 6286 * (our SYN has been ACKed), change the connection 6287 * state to ESTABLISHED..." 6288 */ 6289 6290 tcp_ecn_rcv_synack(tp, th); 6291 6292 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6293 tcp_try_undo_spurious_syn(sk); 6294 tcp_ack(sk, skb, FLAG_SLOWPATH); 6295 6296 /* Ok.. it's good. Set up sequence numbers and 6297 * move to established. 6298 */ 6299 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6300 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6301 6302 /* RFC1323: The window in SYN & SYN/ACK segments is 6303 * never scaled. 6304 */ 6305 tp->snd_wnd = ntohs(th->window); 6306 6307 if (!tp->rx_opt.wscale_ok) { 6308 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6309 tp->window_clamp = min(tp->window_clamp, 65535U); 6310 } 6311 6312 if (tp->rx_opt.saw_tstamp) { 6313 tp->rx_opt.tstamp_ok = 1; 6314 tp->tcp_header_len = 6315 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6316 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6317 tcp_store_ts_recent(tp); 6318 } else { 6319 tp->tcp_header_len = sizeof(struct tcphdr); 6320 } 6321 6322 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6323 tcp_initialize_rcv_mss(sk); 6324 6325 /* Remember, tcp_poll() does not lock socket! 6326 * Change state from SYN-SENT only after copied_seq 6327 * is initialized. */ 6328 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6329 6330 smc_check_reset_syn(tp); 6331 6332 smp_mb(); 6333 6334 tcp_finish_connect(sk, skb); 6335 6336 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6337 tcp_rcv_fastopen_synack(sk, skb, &foc); 6338 6339 if (!sock_flag(sk, SOCK_DEAD)) { 6340 sk->sk_state_change(sk); 6341 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6342 } 6343 if (fastopen_fail) 6344 return -1; 6345 if (sk->sk_write_pending || 6346 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6347 inet_csk_in_pingpong_mode(sk)) { 6348 /* Save one ACK. Data will be ready after 6349 * several ticks, if write_pending is set. 6350 * 6351 * It may be deleted, but with this feature tcpdumps 6352 * look so _wonderfully_ clever, that I was not able 6353 * to stand against the temptation 8) --ANK 6354 */ 6355 inet_csk_schedule_ack(sk); 6356 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6357 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6358 TCP_DELACK_MAX, TCP_RTO_MAX); 6359 goto consume; 6360 } 6361 tcp_send_ack(sk); 6362 return -1; 6363 } 6364 6365 /* No ACK in the segment */ 6366 6367 if (th->rst) { 6368 /* rfc793: 6369 * "If the RST bit is set 6370 * 6371 * Otherwise (no ACK) drop the segment and return." 6372 */ 6373 SKB_DR_SET(reason, TCP_RESET); 6374 goto discard_and_undo; 6375 } 6376 6377 /* PAWS check. */ 6378 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6379 tcp_paws_reject(&tp->rx_opt, 0)) { 6380 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6381 goto discard_and_undo; 6382 } 6383 if (th->syn) { 6384 /* We see SYN without ACK. It is attempt of 6385 * simultaneous connect with crossed SYNs. 6386 * Particularly, it can be connect to self. 6387 */ 6388 tcp_set_state(sk, TCP_SYN_RECV); 6389 6390 if (tp->rx_opt.saw_tstamp) { 6391 tp->rx_opt.tstamp_ok = 1; 6392 tcp_store_ts_recent(tp); 6393 tp->tcp_header_len = 6394 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6395 } else { 6396 tp->tcp_header_len = sizeof(struct tcphdr); 6397 } 6398 6399 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6400 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6401 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6402 6403 /* RFC1323: The window in SYN & SYN/ACK segments is 6404 * never scaled. 6405 */ 6406 tp->snd_wnd = ntohs(th->window); 6407 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6408 tp->max_window = tp->snd_wnd; 6409 6410 tcp_ecn_rcv_syn(tp, th); 6411 6412 tcp_mtup_init(sk); 6413 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6414 tcp_initialize_rcv_mss(sk); 6415 6416 tcp_send_synack(sk); 6417 #if 0 6418 /* Note, we could accept data and URG from this segment. 6419 * There are no obstacles to make this (except that we must 6420 * either change tcp_recvmsg() to prevent it from returning data 6421 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6422 * 6423 * However, if we ignore data in ACKless segments sometimes, 6424 * we have no reasons to accept it sometimes. 6425 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6426 * is not flawless. So, discard packet for sanity. 6427 * Uncomment this return to process the data. 6428 */ 6429 return -1; 6430 #else 6431 goto consume; 6432 #endif 6433 } 6434 /* "fifth, if neither of the SYN or RST bits is set then 6435 * drop the segment and return." 6436 */ 6437 6438 discard_and_undo: 6439 tcp_clear_options(&tp->rx_opt); 6440 tp->rx_opt.mss_clamp = saved_clamp; 6441 tcp_drop_reason(sk, skb, reason); 6442 return 0; 6443 6444 reset_and_undo: 6445 tcp_clear_options(&tp->rx_opt); 6446 tp->rx_opt.mss_clamp = saved_clamp; 6447 return 1; 6448 } 6449 6450 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6451 { 6452 struct request_sock *req; 6453 6454 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6455 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6456 */ 6457 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6458 tcp_try_undo_loss(sk, false); 6459 6460 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6461 tcp_sk(sk)->retrans_stamp = 0; 6462 inet_csk(sk)->icsk_retransmits = 0; 6463 6464 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6465 * we no longer need req so release it. 6466 */ 6467 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6468 lockdep_sock_is_held(sk)); 6469 reqsk_fastopen_remove(sk, req, false); 6470 6471 /* Re-arm the timer because data may have been sent out. 6472 * This is similar to the regular data transmission case 6473 * when new data has just been ack'ed. 6474 * 6475 * (TFO) - we could try to be more aggressive and 6476 * retransmitting any data sooner based on when they 6477 * are sent out. 6478 */ 6479 tcp_rearm_rto(sk); 6480 } 6481 6482 /* 6483 * This function implements the receiving procedure of RFC 793 for 6484 * all states except ESTABLISHED and TIME_WAIT. 6485 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6486 * address independent. 6487 */ 6488 6489 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6490 { 6491 struct tcp_sock *tp = tcp_sk(sk); 6492 struct inet_connection_sock *icsk = inet_csk(sk); 6493 const struct tcphdr *th = tcp_hdr(skb); 6494 struct request_sock *req; 6495 int queued = 0; 6496 bool acceptable; 6497 SKB_DR(reason); 6498 6499 switch (sk->sk_state) { 6500 case TCP_CLOSE: 6501 SKB_DR_SET(reason, TCP_CLOSE); 6502 goto discard; 6503 6504 case TCP_LISTEN: 6505 if (th->ack) 6506 return 1; 6507 6508 if (th->rst) { 6509 SKB_DR_SET(reason, TCP_RESET); 6510 goto discard; 6511 } 6512 if (th->syn) { 6513 if (th->fin) { 6514 SKB_DR_SET(reason, TCP_FLAGS); 6515 goto discard; 6516 } 6517 /* It is possible that we process SYN packets from backlog, 6518 * so we need to make sure to disable BH and RCU right there. 6519 */ 6520 rcu_read_lock(); 6521 local_bh_disable(); 6522 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6523 local_bh_enable(); 6524 rcu_read_unlock(); 6525 6526 if (!acceptable) 6527 return 1; 6528 consume_skb(skb); 6529 return 0; 6530 } 6531 SKB_DR_SET(reason, TCP_FLAGS); 6532 goto discard; 6533 6534 case TCP_SYN_SENT: 6535 tp->rx_opt.saw_tstamp = 0; 6536 tcp_mstamp_refresh(tp); 6537 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6538 if (queued >= 0) 6539 return queued; 6540 6541 /* Do step6 onward by hand. */ 6542 tcp_urg(sk, skb, th); 6543 __kfree_skb(skb); 6544 tcp_data_snd_check(sk); 6545 return 0; 6546 } 6547 6548 tcp_mstamp_refresh(tp); 6549 tp->rx_opt.saw_tstamp = 0; 6550 req = rcu_dereference_protected(tp->fastopen_rsk, 6551 lockdep_sock_is_held(sk)); 6552 if (req) { 6553 bool req_stolen; 6554 6555 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6556 sk->sk_state != TCP_FIN_WAIT1); 6557 6558 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6559 SKB_DR_SET(reason, TCP_FASTOPEN); 6560 goto discard; 6561 } 6562 } 6563 6564 if (!th->ack && !th->rst && !th->syn) { 6565 SKB_DR_SET(reason, TCP_FLAGS); 6566 goto discard; 6567 } 6568 if (!tcp_validate_incoming(sk, skb, th, 0)) 6569 return 0; 6570 6571 /* step 5: check the ACK field */ 6572 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6573 FLAG_UPDATE_TS_RECENT | 6574 FLAG_NO_CHALLENGE_ACK) > 0; 6575 6576 if (!acceptable) { 6577 if (sk->sk_state == TCP_SYN_RECV) 6578 return 1; /* send one RST */ 6579 tcp_send_challenge_ack(sk); 6580 SKB_DR_SET(reason, TCP_OLD_ACK); 6581 goto discard; 6582 } 6583 switch (sk->sk_state) { 6584 case TCP_SYN_RECV: 6585 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6586 if (!tp->srtt_us) 6587 tcp_synack_rtt_meas(sk, req); 6588 6589 if (req) { 6590 tcp_rcv_synrecv_state_fastopen(sk); 6591 } else { 6592 tcp_try_undo_spurious_syn(sk); 6593 tp->retrans_stamp = 0; 6594 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6595 skb); 6596 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6597 } 6598 smp_mb(); 6599 tcp_set_state(sk, TCP_ESTABLISHED); 6600 sk->sk_state_change(sk); 6601 6602 /* Note, that this wakeup is only for marginal crossed SYN case. 6603 * Passively open sockets are not waked up, because 6604 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6605 */ 6606 if (sk->sk_socket) 6607 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6608 6609 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6610 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6611 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6612 6613 if (tp->rx_opt.tstamp_ok) 6614 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6615 6616 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6617 tcp_update_pacing_rate(sk); 6618 6619 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6620 tp->lsndtime = tcp_jiffies32; 6621 6622 tcp_initialize_rcv_mss(sk); 6623 tcp_fast_path_on(tp); 6624 break; 6625 6626 case TCP_FIN_WAIT1: { 6627 int tmo; 6628 6629 if (req) 6630 tcp_rcv_synrecv_state_fastopen(sk); 6631 6632 if (tp->snd_una != tp->write_seq) 6633 break; 6634 6635 tcp_set_state(sk, TCP_FIN_WAIT2); 6636 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6637 6638 sk_dst_confirm(sk); 6639 6640 if (!sock_flag(sk, SOCK_DEAD)) { 6641 /* Wake up lingering close() */ 6642 sk->sk_state_change(sk); 6643 break; 6644 } 6645 6646 if (READ_ONCE(tp->linger2) < 0) { 6647 tcp_done(sk); 6648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6649 return 1; 6650 } 6651 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6652 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6653 /* Receive out of order FIN after close() */ 6654 if (tp->syn_fastopen && th->fin) 6655 tcp_fastopen_active_disable(sk); 6656 tcp_done(sk); 6657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6658 return 1; 6659 } 6660 6661 tmo = tcp_fin_time(sk); 6662 if (tmo > TCP_TIMEWAIT_LEN) { 6663 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6664 } else if (th->fin || sock_owned_by_user(sk)) { 6665 /* Bad case. We could lose such FIN otherwise. 6666 * It is not a big problem, but it looks confusing 6667 * and not so rare event. We still can lose it now, 6668 * if it spins in bh_lock_sock(), but it is really 6669 * marginal case. 6670 */ 6671 inet_csk_reset_keepalive_timer(sk, tmo); 6672 } else { 6673 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6674 goto consume; 6675 } 6676 break; 6677 } 6678 6679 case TCP_CLOSING: 6680 if (tp->snd_una == tp->write_seq) { 6681 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6682 goto consume; 6683 } 6684 break; 6685 6686 case TCP_LAST_ACK: 6687 if (tp->snd_una == tp->write_seq) { 6688 tcp_update_metrics(sk); 6689 tcp_done(sk); 6690 goto consume; 6691 } 6692 break; 6693 } 6694 6695 /* step 6: check the URG bit */ 6696 tcp_urg(sk, skb, th); 6697 6698 /* step 7: process the segment text */ 6699 switch (sk->sk_state) { 6700 case TCP_CLOSE_WAIT: 6701 case TCP_CLOSING: 6702 case TCP_LAST_ACK: 6703 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6704 /* If a subflow has been reset, the packet should not 6705 * continue to be processed, drop the packet. 6706 */ 6707 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6708 goto discard; 6709 break; 6710 } 6711 fallthrough; 6712 case TCP_FIN_WAIT1: 6713 case TCP_FIN_WAIT2: 6714 /* RFC 793 says to queue data in these states, 6715 * RFC 1122 says we MUST send a reset. 6716 * BSD 4.4 also does reset. 6717 */ 6718 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6719 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6720 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6722 tcp_reset(sk, skb); 6723 return 1; 6724 } 6725 } 6726 fallthrough; 6727 case TCP_ESTABLISHED: 6728 tcp_data_queue(sk, skb); 6729 queued = 1; 6730 break; 6731 } 6732 6733 /* tcp_data could move socket to TIME-WAIT */ 6734 if (sk->sk_state != TCP_CLOSE) { 6735 tcp_data_snd_check(sk); 6736 tcp_ack_snd_check(sk); 6737 } 6738 6739 if (!queued) { 6740 discard: 6741 tcp_drop_reason(sk, skb, reason); 6742 } 6743 return 0; 6744 6745 consume: 6746 __kfree_skb(skb); 6747 return 0; 6748 } 6749 EXPORT_SYMBOL(tcp_rcv_state_process); 6750 6751 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6752 { 6753 struct inet_request_sock *ireq = inet_rsk(req); 6754 6755 if (family == AF_INET) 6756 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6757 &ireq->ir_rmt_addr, port); 6758 #if IS_ENABLED(CONFIG_IPV6) 6759 else if (family == AF_INET6) 6760 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6761 &ireq->ir_v6_rmt_addr, port); 6762 #endif 6763 } 6764 6765 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6766 * 6767 * If we receive a SYN packet with these bits set, it means a 6768 * network is playing bad games with TOS bits. In order to 6769 * avoid possible false congestion notifications, we disable 6770 * TCP ECN negotiation. 6771 * 6772 * Exception: tcp_ca wants ECN. This is required for DCTCP 6773 * congestion control: Linux DCTCP asserts ECT on all packets, 6774 * including SYN, which is most optimal solution; however, 6775 * others, such as FreeBSD do not. 6776 * 6777 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6778 * set, indicating the use of a future TCP extension (such as AccECN). See 6779 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6780 * extensions. 6781 */ 6782 static void tcp_ecn_create_request(struct request_sock *req, 6783 const struct sk_buff *skb, 6784 const struct sock *listen_sk, 6785 const struct dst_entry *dst) 6786 { 6787 const struct tcphdr *th = tcp_hdr(skb); 6788 const struct net *net = sock_net(listen_sk); 6789 bool th_ecn = th->ece && th->cwr; 6790 bool ect, ecn_ok; 6791 u32 ecn_ok_dst; 6792 6793 if (!th_ecn) 6794 return; 6795 6796 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6797 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6798 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6799 6800 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6801 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6802 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6803 inet_rsk(req)->ecn_ok = 1; 6804 } 6805 6806 static void tcp_openreq_init(struct request_sock *req, 6807 const struct tcp_options_received *rx_opt, 6808 struct sk_buff *skb, const struct sock *sk) 6809 { 6810 struct inet_request_sock *ireq = inet_rsk(req); 6811 6812 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6813 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6814 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6815 tcp_rsk(req)->snt_synack = 0; 6816 tcp_rsk(req)->last_oow_ack_time = 0; 6817 req->mss = rx_opt->mss_clamp; 6818 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6819 ireq->tstamp_ok = rx_opt->tstamp_ok; 6820 ireq->sack_ok = rx_opt->sack_ok; 6821 ireq->snd_wscale = rx_opt->snd_wscale; 6822 ireq->wscale_ok = rx_opt->wscale_ok; 6823 ireq->acked = 0; 6824 ireq->ecn_ok = 0; 6825 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6826 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6827 ireq->ir_mark = inet_request_mark(sk, skb); 6828 #if IS_ENABLED(CONFIG_SMC) 6829 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6830 tcp_sk(sk)->smc_hs_congested(sk)); 6831 #endif 6832 } 6833 6834 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6835 struct sock *sk_listener, 6836 bool attach_listener) 6837 { 6838 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6839 attach_listener); 6840 6841 if (req) { 6842 struct inet_request_sock *ireq = inet_rsk(req); 6843 6844 ireq->ireq_opt = NULL; 6845 #if IS_ENABLED(CONFIG_IPV6) 6846 ireq->pktopts = NULL; 6847 #endif 6848 atomic64_set(&ireq->ir_cookie, 0); 6849 ireq->ireq_state = TCP_NEW_SYN_RECV; 6850 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6851 ireq->ireq_family = sk_listener->sk_family; 6852 req->timeout = TCP_TIMEOUT_INIT; 6853 } 6854 6855 return req; 6856 } 6857 EXPORT_SYMBOL(inet_reqsk_alloc); 6858 6859 /* 6860 * Return true if a syncookie should be sent 6861 */ 6862 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6863 { 6864 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6865 const char *msg = "Dropping request"; 6866 struct net *net = sock_net(sk); 6867 bool want_cookie = false; 6868 u8 syncookies; 6869 6870 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6871 6872 #ifdef CONFIG_SYN_COOKIES 6873 if (syncookies) { 6874 msg = "Sending cookies"; 6875 want_cookie = true; 6876 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6877 } else 6878 #endif 6879 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6880 6881 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6882 xchg(&queue->synflood_warned, 1) == 0) { 6883 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6884 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6885 proto, inet6_rcv_saddr(sk), 6886 sk->sk_num, msg); 6887 } else { 6888 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6889 proto, &sk->sk_rcv_saddr, 6890 sk->sk_num, msg); 6891 } 6892 } 6893 6894 return want_cookie; 6895 } 6896 6897 static void tcp_reqsk_record_syn(const struct sock *sk, 6898 struct request_sock *req, 6899 const struct sk_buff *skb) 6900 { 6901 if (tcp_sk(sk)->save_syn) { 6902 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6903 struct saved_syn *saved_syn; 6904 u32 mac_hdrlen; 6905 void *base; 6906 6907 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6908 base = skb_mac_header(skb); 6909 mac_hdrlen = skb_mac_header_len(skb); 6910 len += mac_hdrlen; 6911 } else { 6912 base = skb_network_header(skb); 6913 mac_hdrlen = 0; 6914 } 6915 6916 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6917 GFP_ATOMIC); 6918 if (saved_syn) { 6919 saved_syn->mac_hdrlen = mac_hdrlen; 6920 saved_syn->network_hdrlen = skb_network_header_len(skb); 6921 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6922 memcpy(saved_syn->data, base, len); 6923 req->saved_syn = saved_syn; 6924 } 6925 } 6926 } 6927 6928 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6929 * used for SYN cookie generation. 6930 */ 6931 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6932 const struct tcp_request_sock_ops *af_ops, 6933 struct sock *sk, struct tcphdr *th) 6934 { 6935 struct tcp_sock *tp = tcp_sk(sk); 6936 u16 mss; 6937 6938 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6939 !inet_csk_reqsk_queue_is_full(sk)) 6940 return 0; 6941 6942 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6943 return 0; 6944 6945 if (sk_acceptq_is_full(sk)) { 6946 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6947 return 0; 6948 } 6949 6950 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6951 if (!mss) 6952 mss = af_ops->mss_clamp; 6953 6954 return mss; 6955 } 6956 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6957 6958 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6959 const struct tcp_request_sock_ops *af_ops, 6960 struct sock *sk, struct sk_buff *skb) 6961 { 6962 struct tcp_fastopen_cookie foc = { .len = -1 }; 6963 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6964 struct tcp_options_received tmp_opt; 6965 struct tcp_sock *tp = tcp_sk(sk); 6966 struct net *net = sock_net(sk); 6967 struct sock *fastopen_sk = NULL; 6968 struct request_sock *req; 6969 bool want_cookie = false; 6970 struct dst_entry *dst; 6971 struct flowi fl; 6972 u8 syncookies; 6973 6974 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6975 6976 /* TW buckets are converted to open requests without 6977 * limitations, they conserve resources and peer is 6978 * evidently real one. 6979 */ 6980 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6981 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6982 if (!want_cookie) 6983 goto drop; 6984 } 6985 6986 if (sk_acceptq_is_full(sk)) { 6987 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6988 goto drop; 6989 } 6990 6991 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6992 if (!req) 6993 goto drop; 6994 6995 req->syncookie = want_cookie; 6996 tcp_rsk(req)->af_specific = af_ops; 6997 tcp_rsk(req)->ts_off = 0; 6998 #if IS_ENABLED(CONFIG_MPTCP) 6999 tcp_rsk(req)->is_mptcp = 0; 7000 #endif 7001 7002 tcp_clear_options(&tmp_opt); 7003 tmp_opt.mss_clamp = af_ops->mss_clamp; 7004 tmp_opt.user_mss = tp->rx_opt.user_mss; 7005 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7006 want_cookie ? NULL : &foc); 7007 7008 if (want_cookie && !tmp_opt.saw_tstamp) 7009 tcp_clear_options(&tmp_opt); 7010 7011 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7012 tmp_opt.smc_ok = 0; 7013 7014 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7015 tcp_openreq_init(req, &tmp_opt, skb, sk); 7016 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7017 7018 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7019 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7020 7021 dst = af_ops->route_req(sk, skb, &fl, req); 7022 if (!dst) 7023 goto drop_and_free; 7024 7025 if (tmp_opt.tstamp_ok) 7026 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7027 7028 if (!want_cookie && !isn) { 7029 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7030 7031 /* Kill the following clause, if you dislike this way. */ 7032 if (!syncookies && 7033 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7034 (max_syn_backlog >> 2)) && 7035 !tcp_peer_is_proven(req, dst)) { 7036 /* Without syncookies last quarter of 7037 * backlog is filled with destinations, 7038 * proven to be alive. 7039 * It means that we continue to communicate 7040 * to destinations, already remembered 7041 * to the moment of synflood. 7042 */ 7043 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7044 rsk_ops->family); 7045 goto drop_and_release; 7046 } 7047 7048 isn = af_ops->init_seq(skb); 7049 } 7050 7051 tcp_ecn_create_request(req, skb, sk, dst); 7052 7053 if (want_cookie) { 7054 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7055 if (!tmp_opt.tstamp_ok) 7056 inet_rsk(req)->ecn_ok = 0; 7057 } 7058 7059 tcp_rsk(req)->snt_isn = isn; 7060 tcp_rsk(req)->txhash = net_tx_rndhash(); 7061 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7062 tcp_openreq_init_rwin(req, sk, dst); 7063 sk_rx_queue_set(req_to_sk(req), skb); 7064 if (!want_cookie) { 7065 tcp_reqsk_record_syn(sk, req, skb); 7066 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7067 } 7068 if (fastopen_sk) { 7069 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7070 &foc, TCP_SYNACK_FASTOPEN, skb); 7071 /* Add the child socket directly into the accept queue */ 7072 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7073 reqsk_fastopen_remove(fastopen_sk, req, false); 7074 bh_unlock_sock(fastopen_sk); 7075 sock_put(fastopen_sk); 7076 goto drop_and_free; 7077 } 7078 sk->sk_data_ready(sk); 7079 bh_unlock_sock(fastopen_sk); 7080 sock_put(fastopen_sk); 7081 } else { 7082 tcp_rsk(req)->tfo_listener = false; 7083 if (!want_cookie) { 7084 req->timeout = tcp_timeout_init((struct sock *)req); 7085 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7086 } 7087 af_ops->send_synack(sk, dst, &fl, req, &foc, 7088 !want_cookie ? TCP_SYNACK_NORMAL : 7089 TCP_SYNACK_COOKIE, 7090 skb); 7091 if (want_cookie) { 7092 reqsk_free(req); 7093 return 0; 7094 } 7095 } 7096 reqsk_put(req); 7097 return 0; 7098 7099 drop_and_release: 7100 dst_release(dst); 7101 drop_and_free: 7102 __reqsk_free(req); 7103 drop: 7104 tcp_listendrop(sk); 7105 return 0; 7106 } 7107 EXPORT_SYMBOL(tcp_conn_request); 7108