1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 101 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 102 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 103 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 104 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 105 106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 108 109 #define REXMIT_NONE 0 /* no loss recovery to do */ 110 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 111 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 112 113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 114 unsigned int len) 115 { 116 static bool __once __read_mostly; 117 118 if (!__once) { 119 struct net_device *dev; 120 121 __once = true; 122 123 rcu_read_lock(); 124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 125 if (!dev || len >= dev->mtu) 126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 127 dev ? dev->name : "Unknown driver"); 128 rcu_read_unlock(); 129 } 130 } 131 132 /* Adapt the MSS value used to make delayed ack decision to the 133 * real world. 134 */ 135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 136 { 137 struct inet_connection_sock *icsk = inet_csk(sk); 138 const unsigned int lss = icsk->icsk_ack.last_seg_size; 139 unsigned int len; 140 141 icsk->icsk_ack.last_seg_size = 0; 142 143 /* skb->len may jitter because of SACKs, even if peer 144 * sends good full-sized frames. 145 */ 146 len = skb_shinfo(skb)->gso_size ? : skb->len; 147 if (len >= icsk->icsk_ack.rcv_mss) { 148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 149 tcp_sk(sk)->advmss); 150 /* Account for possibly-removed options */ 151 if (unlikely(len > icsk->icsk_ack.rcv_mss + 152 MAX_TCP_OPTION_SPACE)) 153 tcp_gro_dev_warn(sk, skb, len); 154 } else { 155 /* Otherwise, we make more careful check taking into account, 156 * that SACKs block is variable. 157 * 158 * "len" is invariant segment length, including TCP header. 159 */ 160 len += skb->data - skb_transport_header(skb); 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 162 /* If PSH is not set, packet should be 163 * full sized, provided peer TCP is not badly broken. 164 * This observation (if it is correct 8)) allows 165 * to handle super-low mtu links fairly. 166 */ 167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 169 /* Subtract also invariant (if peer is RFC compliant), 170 * tcp header plus fixed timestamp option length. 171 * Resulting "len" is MSS free of SACK jitter. 172 */ 173 len -= tcp_sk(sk)->tcp_header_len; 174 icsk->icsk_ack.last_seg_size = len; 175 if (len == lss) { 176 icsk->icsk_ack.rcv_mss = len; 177 return; 178 } 179 } 180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 183 } 184 } 185 186 static void tcp_incr_quickack(struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 190 191 if (quickacks == 0) 192 quickacks = 2; 193 if (quickacks > icsk->icsk_ack.quick) 194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 195 } 196 197 static void tcp_enter_quickack_mode(struct sock *sk) 198 { 199 struct inet_connection_sock *icsk = inet_csk(sk); 200 tcp_incr_quickack(sk); 201 icsk->icsk_ack.pingpong = 0; 202 icsk->icsk_ack.ato = TCP_ATO_MIN; 203 } 204 205 /* Send ACKs quickly, if "quick" count is not exhausted 206 * and the session is not interactive. 207 */ 208 209 static bool tcp_in_quickack_mode(struct sock *sk) 210 { 211 const struct inet_connection_sock *icsk = inet_csk(sk); 212 const struct dst_entry *dst = __sk_dst_get(sk); 213 214 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 216 } 217 218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 219 { 220 if (tp->ecn_flags & TCP_ECN_OK) 221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 222 } 223 224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 225 { 226 if (tcp_hdr(skb)->cwr) 227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 228 } 229 230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 231 { 232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 233 } 234 235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 236 { 237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 238 case INET_ECN_NOT_ECT: 239 /* Funny extension: if ECT is not set on a segment, 240 * and we already seen ECT on a previous segment, 241 * it is probably a retransmit. 242 */ 243 if (tp->ecn_flags & TCP_ECN_SEEN) 244 tcp_enter_quickack_mode((struct sock *)tp); 245 break; 246 case INET_ECN_CE: 247 if (tcp_ca_needs_ecn((struct sock *)tp)) 248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 249 250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 251 /* Better not delay acks, sender can have a very low cwnd */ 252 tcp_enter_quickack_mode((struct sock *)tp); 253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 254 } 255 tp->ecn_flags |= TCP_ECN_SEEN; 256 break; 257 default: 258 if (tcp_ca_needs_ecn((struct sock *)tp)) 259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 260 tp->ecn_flags |= TCP_ECN_SEEN; 261 break; 262 } 263 } 264 265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 266 { 267 if (tp->ecn_flags & TCP_ECN_OK) 268 __tcp_ecn_check_ce(tp, skb); 269 } 270 271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 280 tp->ecn_flags &= ~TCP_ECN_OK; 281 } 282 283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 284 { 285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 286 return true; 287 return false; 288 } 289 290 /* Buffer size and advertised window tuning. 291 * 292 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 293 */ 294 295 static void tcp_sndbuf_expand(struct sock *sk) 296 { 297 const struct tcp_sock *tp = tcp_sk(sk); 298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 299 int sndmem, per_mss; 300 u32 nr_segs; 301 302 /* Worst case is non GSO/TSO : each frame consumes one skb 303 * and skb->head is kmalloced using power of two area of memory 304 */ 305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 306 MAX_TCP_HEADER + 307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 per_mss = roundup_pow_of_two(per_mss) + 310 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 311 312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 314 315 /* Fast Recovery (RFC 5681 3.2) : 316 * Cubic needs 1.7 factor, rounded to 2 to include 317 * extra cushion (application might react slowly to POLLOUT) 318 */ 319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 320 sndmem *= nr_segs * per_mss; 321 322 if (sk->sk_sndbuf < sndmem) 323 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 324 } 325 326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 327 * 328 * All tcp_full_space() is split to two parts: "network" buffer, allocated 329 * forward and advertised in receiver window (tp->rcv_wnd) and 330 * "application buffer", required to isolate scheduling/application 331 * latencies from network. 332 * window_clamp is maximal advertised window. It can be less than 333 * tcp_full_space(), in this case tcp_full_space() - window_clamp 334 * is reserved for "application" buffer. The less window_clamp is 335 * the smoother our behaviour from viewpoint of network, but the lower 336 * throughput and the higher sensitivity of the connection to losses. 8) 337 * 338 * rcv_ssthresh is more strict window_clamp used at "slow start" 339 * phase to predict further behaviour of this connection. 340 * It is used for two goals: 341 * - to enforce header prediction at sender, even when application 342 * requires some significant "application buffer". It is check #1. 343 * - to prevent pruning of receive queue because of misprediction 344 * of receiver window. Check #2. 345 * 346 * The scheme does not work when sender sends good segments opening 347 * window and then starts to feed us spaghetti. But it should work 348 * in common situations. Otherwise, we have to rely on queue collapsing. 349 */ 350 351 /* Slow part of check#2. */ 352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 /* Optimize this! */ 356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 357 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 358 359 while (tp->rcv_ssthresh <= window) { 360 if (truesize <= skb->len) 361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 362 363 truesize >>= 1; 364 window >>= 1; 365 } 366 return 0; 367 } 368 369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 370 { 371 struct tcp_sock *tp = tcp_sk(sk); 372 373 /* Check #1 */ 374 if (tp->rcv_ssthresh < tp->window_clamp && 375 (int)tp->rcv_ssthresh < tcp_space(sk) && 376 !tcp_under_memory_pressure(sk)) { 377 int incr; 378 379 /* Check #2. Increase window, if skb with such overhead 380 * will fit to rcvbuf in future. 381 */ 382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 383 incr = 2 * tp->advmss; 384 else 385 incr = __tcp_grow_window(sk, skb); 386 387 if (incr) { 388 incr = max_t(int, incr, 2 * skb->len); 389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 390 tp->window_clamp); 391 inet_csk(sk)->icsk_ack.quick |= 1; 392 } 393 } 394 } 395 396 /* 3. Tuning rcvbuf, when connection enters established state. */ 397 static void tcp_fixup_rcvbuf(struct sock *sk) 398 { 399 u32 mss = tcp_sk(sk)->advmss; 400 int rcvmem; 401 402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 403 tcp_default_init_rwnd(mss); 404 405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 406 * Allow enough cushion so that sender is not limited by our window 407 */ 408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 409 rcvmem <<= 2; 410 411 if (sk->sk_rcvbuf < rcvmem) 412 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 413 } 414 415 /* 4. Try to fixup all. It is made immediately after connection enters 416 * established state. 417 */ 418 void tcp_init_buffer_space(struct sock *sk) 419 { 420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 421 struct tcp_sock *tp = tcp_sk(sk); 422 int maxwin; 423 424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 425 tcp_fixup_rcvbuf(sk); 426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 427 tcp_sndbuf_expand(sk); 428 429 tp->rcvq_space.space = tp->rcv_wnd; 430 tcp_mstamp_refresh(tp); 431 tp->rcvq_space.time = tp->tcp_mstamp; 432 tp->rcvq_space.seq = tp->copied_seq; 433 434 maxwin = tcp_full_space(sk); 435 436 if (tp->window_clamp >= maxwin) { 437 tp->window_clamp = maxwin; 438 439 if (tcp_app_win && maxwin > 4 * tp->advmss) 440 tp->window_clamp = max(maxwin - 441 (maxwin >> tcp_app_win), 442 4 * tp->advmss); 443 } 444 445 /* Force reservation of one segment. */ 446 if (tcp_app_win && 447 tp->window_clamp > 2 * tp->advmss && 448 tp->window_clamp + tp->advmss > maxwin) 449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 450 451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 452 tp->snd_cwnd_stamp = tcp_jiffies32; 453 } 454 455 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 456 static void tcp_clamp_window(struct sock *sk) 457 { 458 struct tcp_sock *tp = tcp_sk(sk); 459 struct inet_connection_sock *icsk = inet_csk(sk); 460 struct net *net = sock_net(sk); 461 462 icsk->icsk_ack.quick = 0; 463 464 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 465 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 466 !tcp_under_memory_pressure(sk) && 467 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 468 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 469 net->ipv4.sysctl_tcp_rmem[2]); 470 } 471 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 472 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 473 } 474 475 /* Initialize RCV_MSS value. 476 * RCV_MSS is an our guess about MSS used by the peer. 477 * We haven't any direct information about the MSS. 478 * It's better to underestimate the RCV_MSS rather than overestimate. 479 * Overestimations make us ACKing less frequently than needed. 480 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 481 */ 482 void tcp_initialize_rcv_mss(struct sock *sk) 483 { 484 const struct tcp_sock *tp = tcp_sk(sk); 485 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 486 487 hint = min(hint, tp->rcv_wnd / 2); 488 hint = min(hint, TCP_MSS_DEFAULT); 489 hint = max(hint, TCP_MIN_MSS); 490 491 inet_csk(sk)->icsk_ack.rcv_mss = hint; 492 } 493 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 494 495 /* Receiver "autotuning" code. 496 * 497 * The algorithm for RTT estimation w/o timestamps is based on 498 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 499 * <http://public.lanl.gov/radiant/pubs.html#DRS> 500 * 501 * More detail on this code can be found at 502 * <http://staff.psc.edu/jheffner/>, 503 * though this reference is out of date. A new paper 504 * is pending. 505 */ 506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 507 { 508 u32 new_sample = tp->rcv_rtt_est.rtt_us; 509 long m = sample; 510 511 if (m == 0) 512 m = 1; 513 514 if (new_sample != 0) { 515 /* If we sample in larger samples in the non-timestamp 516 * case, we could grossly overestimate the RTT especially 517 * with chatty applications or bulk transfer apps which 518 * are stalled on filesystem I/O. 519 * 520 * Also, since we are only going for a minimum in the 521 * non-timestamp case, we do not smooth things out 522 * else with timestamps disabled convergence takes too 523 * long. 524 */ 525 if (!win_dep) { 526 m -= (new_sample >> 3); 527 new_sample += m; 528 } else { 529 m <<= 3; 530 if (m < new_sample) 531 new_sample = m; 532 } 533 } else { 534 /* No previous measure. */ 535 new_sample = m << 3; 536 } 537 538 tp->rcv_rtt_est.rtt_us = new_sample; 539 } 540 541 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 542 { 543 u32 delta_us; 544 545 if (tp->rcv_rtt_est.time == 0) 546 goto new_measure; 547 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 548 return; 549 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 550 tcp_rcv_rtt_update(tp, delta_us, 1); 551 552 new_measure: 553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 554 tp->rcv_rtt_est.time = tp->tcp_mstamp; 555 } 556 557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 558 const struct sk_buff *skb) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 562 if (tp->rx_opt.rcv_tsecr && 563 (TCP_SKB_CB(skb)->end_seq - 564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 566 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 567 568 tcp_rcv_rtt_update(tp, delta_us, 0); 569 } 570 } 571 572 /* 573 * This function should be called every time data is copied to user space. 574 * It calculates the appropriate TCP receive buffer space. 575 */ 576 void tcp_rcv_space_adjust(struct sock *sk) 577 { 578 struct tcp_sock *tp = tcp_sk(sk); 579 int time; 580 int copied; 581 582 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 583 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 584 return; 585 586 /* Number of bytes copied to user in last RTT */ 587 copied = tp->copied_seq - tp->rcvq_space.seq; 588 if (copied <= tp->rcvq_space.space) 589 goto new_measure; 590 591 /* A bit of theory : 592 * copied = bytes received in previous RTT, our base window 593 * To cope with packet losses, we need a 2x factor 594 * To cope with slow start, and sender growing its cwin by 100 % 595 * every RTT, we need a 4x factor, because the ACK we are sending 596 * now is for the next RTT, not the current one : 597 * <prev RTT . ><current RTT .. ><next RTT .... > 598 */ 599 600 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 601 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 602 int rcvwin, rcvmem, rcvbuf; 603 604 /* minimal window to cope with packet losses, assuming 605 * steady state. Add some cushion because of small variations. 606 */ 607 rcvwin = (copied << 1) + 16 * tp->advmss; 608 609 /* If rate increased by 25%, 610 * assume slow start, rcvwin = 3 * copied 611 * If rate increased by 50%, 612 * assume sender can use 2x growth, rcvwin = 4 * copied 613 */ 614 if (copied >= 615 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 616 if (copied >= 617 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 618 rcvwin <<= 1; 619 else 620 rcvwin += (rcvwin >> 1); 621 } 622 623 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 624 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 625 rcvmem += 128; 626 627 rcvbuf = min(rcvwin / tp->advmss * rcvmem, 628 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 629 if (rcvbuf > sk->sk_rcvbuf) { 630 sk->sk_rcvbuf = rcvbuf; 631 632 /* Make the window clamp follow along. */ 633 tp->window_clamp = rcvwin; 634 } 635 } 636 tp->rcvq_space.space = copied; 637 638 new_measure: 639 tp->rcvq_space.seq = tp->copied_seq; 640 tp->rcvq_space.time = tp->tcp_mstamp; 641 } 642 643 /* There is something which you must keep in mind when you analyze the 644 * behavior of the tp->ato delayed ack timeout interval. When a 645 * connection starts up, we want to ack as quickly as possible. The 646 * problem is that "good" TCP's do slow start at the beginning of data 647 * transmission. The means that until we send the first few ACK's the 648 * sender will sit on his end and only queue most of his data, because 649 * he can only send snd_cwnd unacked packets at any given time. For 650 * each ACK we send, he increments snd_cwnd and transmits more of his 651 * queue. -DaveM 652 */ 653 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 654 { 655 struct tcp_sock *tp = tcp_sk(sk); 656 struct inet_connection_sock *icsk = inet_csk(sk); 657 u32 now; 658 659 inet_csk_schedule_ack(sk); 660 661 tcp_measure_rcv_mss(sk, skb); 662 663 tcp_rcv_rtt_measure(tp); 664 665 now = tcp_jiffies32; 666 667 if (!icsk->icsk_ack.ato) { 668 /* The _first_ data packet received, initialize 669 * delayed ACK engine. 670 */ 671 tcp_incr_quickack(sk); 672 icsk->icsk_ack.ato = TCP_ATO_MIN; 673 } else { 674 int m = now - icsk->icsk_ack.lrcvtime; 675 676 if (m <= TCP_ATO_MIN / 2) { 677 /* The fastest case is the first. */ 678 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 679 } else if (m < icsk->icsk_ack.ato) { 680 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 681 if (icsk->icsk_ack.ato > icsk->icsk_rto) 682 icsk->icsk_ack.ato = icsk->icsk_rto; 683 } else if (m > icsk->icsk_rto) { 684 /* Too long gap. Apparently sender failed to 685 * restart window, so that we send ACKs quickly. 686 */ 687 tcp_incr_quickack(sk); 688 sk_mem_reclaim(sk); 689 } 690 } 691 icsk->icsk_ack.lrcvtime = now; 692 693 tcp_ecn_check_ce(tp, skb); 694 695 if (skb->len >= 128) 696 tcp_grow_window(sk, skb); 697 } 698 699 /* Called to compute a smoothed rtt estimate. The data fed to this 700 * routine either comes from timestamps, or from segments that were 701 * known _not_ to have been retransmitted [see Karn/Partridge 702 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 703 * piece by Van Jacobson. 704 * NOTE: the next three routines used to be one big routine. 705 * To save cycles in the RFC 1323 implementation it was better to break 706 * it up into three procedures. -- erics 707 */ 708 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 709 { 710 struct tcp_sock *tp = tcp_sk(sk); 711 long m = mrtt_us; /* RTT */ 712 u32 srtt = tp->srtt_us; 713 714 /* The following amusing code comes from Jacobson's 715 * article in SIGCOMM '88. Note that rtt and mdev 716 * are scaled versions of rtt and mean deviation. 717 * This is designed to be as fast as possible 718 * m stands for "measurement". 719 * 720 * On a 1990 paper the rto value is changed to: 721 * RTO = rtt + 4 * mdev 722 * 723 * Funny. This algorithm seems to be very broken. 724 * These formulae increase RTO, when it should be decreased, increase 725 * too slowly, when it should be increased quickly, decrease too quickly 726 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 727 * does not matter how to _calculate_ it. Seems, it was trap 728 * that VJ failed to avoid. 8) 729 */ 730 if (srtt != 0) { 731 m -= (srtt >> 3); /* m is now error in rtt est */ 732 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 733 if (m < 0) { 734 m = -m; /* m is now abs(error) */ 735 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 736 /* This is similar to one of Eifel findings. 737 * Eifel blocks mdev updates when rtt decreases. 738 * This solution is a bit different: we use finer gain 739 * for mdev in this case (alpha*beta). 740 * Like Eifel it also prevents growth of rto, 741 * but also it limits too fast rto decreases, 742 * happening in pure Eifel. 743 */ 744 if (m > 0) 745 m >>= 3; 746 } else { 747 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 748 } 749 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 750 if (tp->mdev_us > tp->mdev_max_us) { 751 tp->mdev_max_us = tp->mdev_us; 752 if (tp->mdev_max_us > tp->rttvar_us) 753 tp->rttvar_us = tp->mdev_max_us; 754 } 755 if (after(tp->snd_una, tp->rtt_seq)) { 756 if (tp->mdev_max_us < tp->rttvar_us) 757 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 758 tp->rtt_seq = tp->snd_nxt; 759 tp->mdev_max_us = tcp_rto_min_us(sk); 760 } 761 } else { 762 /* no previous measure. */ 763 srtt = m << 3; /* take the measured time to be rtt */ 764 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 765 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 766 tp->mdev_max_us = tp->rttvar_us; 767 tp->rtt_seq = tp->snd_nxt; 768 } 769 tp->srtt_us = max(1U, srtt); 770 } 771 772 static void tcp_update_pacing_rate(struct sock *sk) 773 { 774 const struct tcp_sock *tp = tcp_sk(sk); 775 u64 rate; 776 777 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 778 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 779 780 /* current rate is (cwnd * mss) / srtt 781 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 782 * In Congestion Avoidance phase, set it to 120 % the current rate. 783 * 784 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 785 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 786 * end of slow start and should slow down. 787 */ 788 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 789 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 790 else 791 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 792 793 rate *= max(tp->snd_cwnd, tp->packets_out); 794 795 if (likely(tp->srtt_us)) 796 do_div(rate, tp->srtt_us); 797 798 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 799 * without any lock. We want to make sure compiler wont store 800 * intermediate values in this location. 801 */ 802 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 803 sk->sk_max_pacing_rate)); 804 } 805 806 /* Calculate rto without backoff. This is the second half of Van Jacobson's 807 * routine referred to above. 808 */ 809 static void tcp_set_rto(struct sock *sk) 810 { 811 const struct tcp_sock *tp = tcp_sk(sk); 812 /* Old crap is replaced with new one. 8) 813 * 814 * More seriously: 815 * 1. If rtt variance happened to be less 50msec, it is hallucination. 816 * It cannot be less due to utterly erratic ACK generation made 817 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 818 * to do with delayed acks, because at cwnd>2 true delack timeout 819 * is invisible. Actually, Linux-2.4 also generates erratic 820 * ACKs in some circumstances. 821 */ 822 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 823 824 /* 2. Fixups made earlier cannot be right. 825 * If we do not estimate RTO correctly without them, 826 * all the algo is pure shit and should be replaced 827 * with correct one. It is exactly, which we pretend to do. 828 */ 829 830 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 831 * guarantees that rto is higher. 832 */ 833 tcp_bound_rto(sk); 834 } 835 836 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 837 { 838 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 839 840 if (!cwnd) 841 cwnd = TCP_INIT_CWND; 842 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 843 } 844 845 /* Take a notice that peer is sending D-SACKs */ 846 static void tcp_dsack_seen(struct tcp_sock *tp) 847 { 848 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 849 tp->rack.dsack_seen = 1; 850 } 851 852 /* It's reordering when higher sequence was delivered (i.e. sacked) before 853 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 854 * distance is approximated in full-mss packet distance ("reordering"). 855 */ 856 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 857 const int ts) 858 { 859 struct tcp_sock *tp = tcp_sk(sk); 860 const u32 mss = tp->mss_cache; 861 u32 fack, metric; 862 863 fack = tcp_highest_sack_seq(tp); 864 if (!before(low_seq, fack)) 865 return; 866 867 metric = fack - low_seq; 868 if ((metric > tp->reordering * mss) && mss) { 869 #if FASTRETRANS_DEBUG > 1 870 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 872 tp->reordering, 873 0, 874 tp->sacked_out, 875 tp->undo_marker ? tp->undo_retrans : 0); 876 #endif 877 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 878 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 879 } 880 881 tp->rack.reord = 1; 882 /* This exciting event is worth to be remembered. 8) */ 883 NET_INC_STATS(sock_net(sk), 884 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 885 } 886 887 /* This must be called before lost_out is incremented */ 888 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 889 { 890 if (!tp->retransmit_skb_hint || 891 before(TCP_SKB_CB(skb)->seq, 892 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 893 tp->retransmit_skb_hint = skb; 894 } 895 896 /* Sum the number of packets on the wire we have marked as lost. 897 * There are two cases we care about here: 898 * a) Packet hasn't been marked lost (nor retransmitted), 899 * and this is the first loss. 900 * b) Packet has been marked both lost and retransmitted, 901 * and this means we think it was lost again. 902 */ 903 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 904 { 905 __u8 sacked = TCP_SKB_CB(skb)->sacked; 906 907 if (!(sacked & TCPCB_LOST) || 908 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 909 tp->lost += tcp_skb_pcount(skb); 910 } 911 912 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 913 { 914 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 915 tcp_verify_retransmit_hint(tp, skb); 916 917 tp->lost_out += tcp_skb_pcount(skb); 918 tcp_sum_lost(tp, skb); 919 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 920 } 921 } 922 923 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 tcp_verify_retransmit_hint(tp, skb); 926 927 tcp_sum_lost(tp, skb); 928 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 929 tp->lost_out += tcp_skb_pcount(skb); 930 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 931 } 932 } 933 934 /* This procedure tags the retransmission queue when SACKs arrive. 935 * 936 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 937 * Packets in queue with these bits set are counted in variables 938 * sacked_out, retrans_out and lost_out, correspondingly. 939 * 940 * Valid combinations are: 941 * Tag InFlight Description 942 * 0 1 - orig segment is in flight. 943 * S 0 - nothing flies, orig reached receiver. 944 * L 0 - nothing flies, orig lost by net. 945 * R 2 - both orig and retransmit are in flight. 946 * L|R 1 - orig is lost, retransmit is in flight. 947 * S|R 1 - orig reached receiver, retrans is still in flight. 948 * (L|S|R is logically valid, it could occur when L|R is sacked, 949 * but it is equivalent to plain S and code short-curcuits it to S. 950 * L|S is logically invalid, it would mean -1 packet in flight 8)) 951 * 952 * These 6 states form finite state machine, controlled by the following events: 953 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 954 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 955 * 3. Loss detection event of two flavors: 956 * A. Scoreboard estimator decided the packet is lost. 957 * A'. Reno "three dupacks" marks head of queue lost. 958 * B. SACK arrives sacking SND.NXT at the moment, when the 959 * segment was retransmitted. 960 * 4. D-SACK added new rule: D-SACK changes any tag to S. 961 * 962 * It is pleasant to note, that state diagram turns out to be commutative, 963 * so that we are allowed not to be bothered by order of our actions, 964 * when multiple events arrive simultaneously. (see the function below). 965 * 966 * Reordering detection. 967 * -------------------- 968 * Reordering metric is maximal distance, which a packet can be displaced 969 * in packet stream. With SACKs we can estimate it: 970 * 971 * 1. SACK fills old hole and the corresponding segment was not 972 * ever retransmitted -> reordering. Alas, we cannot use it 973 * when segment was retransmitted. 974 * 2. The last flaw is solved with D-SACK. D-SACK arrives 975 * for retransmitted and already SACKed segment -> reordering.. 976 * Both of these heuristics are not used in Loss state, when we cannot 977 * account for retransmits accurately. 978 * 979 * SACK block validation. 980 * ---------------------- 981 * 982 * SACK block range validation checks that the received SACK block fits to 983 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 984 * Note that SND.UNA is not included to the range though being valid because 985 * it means that the receiver is rather inconsistent with itself reporting 986 * SACK reneging when it should advance SND.UNA. Such SACK block this is 987 * perfectly valid, however, in light of RFC2018 which explicitly states 988 * that "SACK block MUST reflect the newest segment. Even if the newest 989 * segment is going to be discarded ...", not that it looks very clever 990 * in case of head skb. Due to potentional receiver driven attacks, we 991 * choose to avoid immediate execution of a walk in write queue due to 992 * reneging and defer head skb's loss recovery to standard loss recovery 993 * procedure that will eventually trigger (nothing forbids us doing this). 994 * 995 * Implements also blockage to start_seq wrap-around. Problem lies in the 996 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 997 * there's no guarantee that it will be before snd_nxt (n). The problem 998 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 999 * wrap (s_w): 1000 * 1001 * <- outs wnd -> <- wrapzone -> 1002 * u e n u_w e_w s n_w 1003 * | | | | | | | 1004 * |<------------+------+----- TCP seqno space --------------+---------->| 1005 * ...-- <2^31 ->| |<--------... 1006 * ...---- >2^31 ------>| |<--------... 1007 * 1008 * Current code wouldn't be vulnerable but it's better still to discard such 1009 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1010 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1011 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1012 * equal to the ideal case (infinite seqno space without wrap caused issues). 1013 * 1014 * With D-SACK the lower bound is extended to cover sequence space below 1015 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1016 * again, D-SACK block must not to go across snd_una (for the same reason as 1017 * for the normal SACK blocks, explained above). But there all simplicity 1018 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1019 * fully below undo_marker they do not affect behavior in anyway and can 1020 * therefore be safely ignored. In rare cases (which are more or less 1021 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1022 * fragmentation and packet reordering past skb's retransmission. To consider 1023 * them correctly, the acceptable range must be extended even more though 1024 * the exact amount is rather hard to quantify. However, tp->max_window can 1025 * be used as an exaggerated estimate. 1026 */ 1027 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1028 u32 start_seq, u32 end_seq) 1029 { 1030 /* Too far in future, or reversed (interpretation is ambiguous) */ 1031 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1032 return false; 1033 1034 /* Nasty start_seq wrap-around check (see comments above) */ 1035 if (!before(start_seq, tp->snd_nxt)) 1036 return false; 1037 1038 /* In outstanding window? ...This is valid exit for D-SACKs too. 1039 * start_seq == snd_una is non-sensical (see comments above) 1040 */ 1041 if (after(start_seq, tp->snd_una)) 1042 return true; 1043 1044 if (!is_dsack || !tp->undo_marker) 1045 return false; 1046 1047 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1048 if (after(end_seq, tp->snd_una)) 1049 return false; 1050 1051 if (!before(start_seq, tp->undo_marker)) 1052 return true; 1053 1054 /* Too old */ 1055 if (!after(end_seq, tp->undo_marker)) 1056 return false; 1057 1058 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1059 * start_seq < undo_marker and end_seq >= undo_marker. 1060 */ 1061 return !before(start_seq, end_seq - tp->max_window); 1062 } 1063 1064 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1065 struct tcp_sack_block_wire *sp, int num_sacks, 1066 u32 prior_snd_una) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1070 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1071 bool dup_sack = false; 1072 1073 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1074 dup_sack = true; 1075 tcp_dsack_seen(tp); 1076 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1077 } else if (num_sacks > 1) { 1078 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1079 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1080 1081 if (!after(end_seq_0, end_seq_1) && 1082 !before(start_seq_0, start_seq_1)) { 1083 dup_sack = true; 1084 tcp_dsack_seen(tp); 1085 NET_INC_STATS(sock_net(sk), 1086 LINUX_MIB_TCPDSACKOFORECV); 1087 } 1088 } 1089 1090 /* D-SACK for already forgotten data... Do dumb counting. */ 1091 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1092 !after(end_seq_0, prior_snd_una) && 1093 after(end_seq_0, tp->undo_marker)) 1094 tp->undo_retrans--; 1095 1096 return dup_sack; 1097 } 1098 1099 struct tcp_sacktag_state { 1100 u32 reord; 1101 /* Timestamps for earliest and latest never-retransmitted segment 1102 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1103 * but congestion control should still get an accurate delay signal. 1104 */ 1105 u64 first_sackt; 1106 u64 last_sackt; 1107 struct rate_sample *rate; 1108 int flag; 1109 unsigned int mss_now; 1110 }; 1111 1112 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1113 * the incoming SACK may not exactly match but we can find smaller MSS 1114 * aligned portion of it that matches. Therefore we might need to fragment 1115 * which may fail and creates some hassle (caller must handle error case 1116 * returns). 1117 * 1118 * FIXME: this could be merged to shift decision code 1119 */ 1120 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1121 u32 start_seq, u32 end_seq) 1122 { 1123 int err; 1124 bool in_sack; 1125 unsigned int pkt_len; 1126 unsigned int mss; 1127 1128 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1129 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1130 1131 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1132 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1133 mss = tcp_skb_mss(skb); 1134 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1135 1136 if (!in_sack) { 1137 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1138 if (pkt_len < mss) 1139 pkt_len = mss; 1140 } else { 1141 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1142 if (pkt_len < mss) 1143 return -EINVAL; 1144 } 1145 1146 /* Round if necessary so that SACKs cover only full MSSes 1147 * and/or the remaining small portion (if present) 1148 */ 1149 if (pkt_len > mss) { 1150 unsigned int new_len = (pkt_len / mss) * mss; 1151 if (!in_sack && new_len < pkt_len) 1152 new_len += mss; 1153 pkt_len = new_len; 1154 } 1155 1156 if (pkt_len >= skb->len && !in_sack) 1157 return 0; 1158 1159 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1160 pkt_len, mss, GFP_ATOMIC); 1161 if (err < 0) 1162 return err; 1163 } 1164 1165 return in_sack; 1166 } 1167 1168 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1169 static u8 tcp_sacktag_one(struct sock *sk, 1170 struct tcp_sacktag_state *state, u8 sacked, 1171 u32 start_seq, u32 end_seq, 1172 int dup_sack, int pcount, 1173 u64 xmit_time) 1174 { 1175 struct tcp_sock *tp = tcp_sk(sk); 1176 1177 /* Account D-SACK for retransmitted packet. */ 1178 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1179 if (tp->undo_marker && tp->undo_retrans > 0 && 1180 after(end_seq, tp->undo_marker)) 1181 tp->undo_retrans--; 1182 if ((sacked & TCPCB_SACKED_ACKED) && 1183 before(start_seq, state->reord)) 1184 state->reord = start_seq; 1185 } 1186 1187 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1188 if (!after(end_seq, tp->snd_una)) 1189 return sacked; 1190 1191 if (!(sacked & TCPCB_SACKED_ACKED)) { 1192 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1193 1194 if (sacked & TCPCB_SACKED_RETRANS) { 1195 /* If the segment is not tagged as lost, 1196 * we do not clear RETRANS, believing 1197 * that retransmission is still in flight. 1198 */ 1199 if (sacked & TCPCB_LOST) { 1200 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1201 tp->lost_out -= pcount; 1202 tp->retrans_out -= pcount; 1203 } 1204 } else { 1205 if (!(sacked & TCPCB_RETRANS)) { 1206 /* New sack for not retransmitted frame, 1207 * which was in hole. It is reordering. 1208 */ 1209 if (before(start_seq, 1210 tcp_highest_sack_seq(tp)) && 1211 before(start_seq, state->reord)) 1212 state->reord = start_seq; 1213 1214 if (!after(end_seq, tp->high_seq)) 1215 state->flag |= FLAG_ORIG_SACK_ACKED; 1216 if (state->first_sackt == 0) 1217 state->first_sackt = xmit_time; 1218 state->last_sackt = xmit_time; 1219 } 1220 1221 if (sacked & TCPCB_LOST) { 1222 sacked &= ~TCPCB_LOST; 1223 tp->lost_out -= pcount; 1224 } 1225 } 1226 1227 sacked |= TCPCB_SACKED_ACKED; 1228 state->flag |= FLAG_DATA_SACKED; 1229 tp->sacked_out += pcount; 1230 tp->delivered += pcount; /* Out-of-order packets delivered */ 1231 1232 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1233 if (tp->lost_skb_hint && 1234 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1235 tp->lost_cnt_hint += pcount; 1236 } 1237 1238 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1239 * frames and clear it. undo_retrans is decreased above, L|R frames 1240 * are accounted above as well. 1241 */ 1242 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1243 sacked &= ~TCPCB_SACKED_RETRANS; 1244 tp->retrans_out -= pcount; 1245 } 1246 1247 return sacked; 1248 } 1249 1250 /* Shift newly-SACKed bytes from this skb to the immediately previous 1251 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1252 */ 1253 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1254 struct sk_buff *skb, 1255 struct tcp_sacktag_state *state, 1256 unsigned int pcount, int shifted, int mss, 1257 bool dup_sack) 1258 { 1259 struct tcp_sock *tp = tcp_sk(sk); 1260 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1261 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1262 1263 BUG_ON(!pcount); 1264 1265 /* Adjust counters and hints for the newly sacked sequence 1266 * range but discard the return value since prev is already 1267 * marked. We must tag the range first because the seq 1268 * advancement below implicitly advances 1269 * tcp_highest_sack_seq() when skb is highest_sack. 1270 */ 1271 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1272 start_seq, end_seq, dup_sack, pcount, 1273 skb->skb_mstamp); 1274 tcp_rate_skb_delivered(sk, skb, state->rate); 1275 1276 if (skb == tp->lost_skb_hint) 1277 tp->lost_cnt_hint += pcount; 1278 1279 TCP_SKB_CB(prev)->end_seq += shifted; 1280 TCP_SKB_CB(skb)->seq += shifted; 1281 1282 tcp_skb_pcount_add(prev, pcount); 1283 BUG_ON(tcp_skb_pcount(skb) < pcount); 1284 tcp_skb_pcount_add(skb, -pcount); 1285 1286 /* When we're adding to gso_segs == 1, gso_size will be zero, 1287 * in theory this shouldn't be necessary but as long as DSACK 1288 * code can come after this skb later on it's better to keep 1289 * setting gso_size to something. 1290 */ 1291 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1292 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1293 1294 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1295 if (tcp_skb_pcount(skb) <= 1) 1296 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1297 1298 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1299 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1300 1301 if (skb->len > 0) { 1302 BUG_ON(!tcp_skb_pcount(skb)); 1303 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1304 return false; 1305 } 1306 1307 /* Whole SKB was eaten :-) */ 1308 1309 if (skb == tp->retransmit_skb_hint) 1310 tp->retransmit_skb_hint = prev; 1311 if (skb == tp->lost_skb_hint) { 1312 tp->lost_skb_hint = prev; 1313 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1314 } 1315 1316 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1317 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1318 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1319 TCP_SKB_CB(prev)->end_seq++; 1320 1321 if (skb == tcp_highest_sack(sk)) 1322 tcp_advance_highest_sack(sk, skb); 1323 1324 tcp_skb_collapse_tstamp(prev, skb); 1325 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1326 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1327 1328 tcp_rtx_queue_unlink_and_free(skb, sk); 1329 1330 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1331 1332 return true; 1333 } 1334 1335 /* I wish gso_size would have a bit more sane initialization than 1336 * something-or-zero which complicates things 1337 */ 1338 static int tcp_skb_seglen(const struct sk_buff *skb) 1339 { 1340 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1341 } 1342 1343 /* Shifting pages past head area doesn't work */ 1344 static int skb_can_shift(const struct sk_buff *skb) 1345 { 1346 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1347 } 1348 1349 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1350 * skb. 1351 */ 1352 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1353 struct tcp_sacktag_state *state, 1354 u32 start_seq, u32 end_seq, 1355 bool dup_sack) 1356 { 1357 struct tcp_sock *tp = tcp_sk(sk); 1358 struct sk_buff *prev; 1359 int mss; 1360 int pcount = 0; 1361 int len; 1362 int in_sack; 1363 1364 if (!sk_can_gso(sk)) 1365 goto fallback; 1366 1367 /* Normally R but no L won't result in plain S */ 1368 if (!dup_sack && 1369 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1370 goto fallback; 1371 if (!skb_can_shift(skb)) 1372 goto fallback; 1373 /* This frame is about to be dropped (was ACKed). */ 1374 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1375 goto fallback; 1376 1377 /* Can only happen with delayed DSACK + discard craziness */ 1378 prev = skb_rb_prev(skb); 1379 if (!prev) 1380 goto fallback; 1381 1382 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1383 goto fallback; 1384 1385 if (!tcp_skb_can_collapse_to(prev)) 1386 goto fallback; 1387 1388 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1389 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1390 1391 if (in_sack) { 1392 len = skb->len; 1393 pcount = tcp_skb_pcount(skb); 1394 mss = tcp_skb_seglen(skb); 1395 1396 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1397 * drop this restriction as unnecessary 1398 */ 1399 if (mss != tcp_skb_seglen(prev)) 1400 goto fallback; 1401 } else { 1402 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1403 goto noop; 1404 /* CHECKME: This is non-MSS split case only?, this will 1405 * cause skipped skbs due to advancing loop btw, original 1406 * has that feature too 1407 */ 1408 if (tcp_skb_pcount(skb) <= 1) 1409 goto noop; 1410 1411 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1412 if (!in_sack) { 1413 /* TODO: head merge to next could be attempted here 1414 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1415 * though it might not be worth of the additional hassle 1416 * 1417 * ...we can probably just fallback to what was done 1418 * previously. We could try merging non-SACKed ones 1419 * as well but it probably isn't going to buy off 1420 * because later SACKs might again split them, and 1421 * it would make skb timestamp tracking considerably 1422 * harder problem. 1423 */ 1424 goto fallback; 1425 } 1426 1427 len = end_seq - TCP_SKB_CB(skb)->seq; 1428 BUG_ON(len < 0); 1429 BUG_ON(len > skb->len); 1430 1431 /* MSS boundaries should be honoured or else pcount will 1432 * severely break even though it makes things bit trickier. 1433 * Optimize common case to avoid most of the divides 1434 */ 1435 mss = tcp_skb_mss(skb); 1436 1437 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1438 * drop this restriction as unnecessary 1439 */ 1440 if (mss != tcp_skb_seglen(prev)) 1441 goto fallback; 1442 1443 if (len == mss) { 1444 pcount = 1; 1445 } else if (len < mss) { 1446 goto noop; 1447 } else { 1448 pcount = len / mss; 1449 len = pcount * mss; 1450 } 1451 } 1452 1453 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1454 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1455 goto fallback; 1456 1457 if (!skb_shift(prev, skb, len)) 1458 goto fallback; 1459 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1460 goto out; 1461 1462 /* Hole filled allows collapsing with the next as well, this is very 1463 * useful when hole on every nth skb pattern happens 1464 */ 1465 skb = skb_rb_next(prev); 1466 if (!skb) 1467 goto out; 1468 1469 if (!skb_can_shift(skb) || 1470 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1471 (mss != tcp_skb_seglen(skb))) 1472 goto out; 1473 1474 len = skb->len; 1475 if (skb_shift(prev, skb, len)) { 1476 pcount += tcp_skb_pcount(skb); 1477 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1478 len, mss, 0); 1479 } 1480 1481 out: 1482 return prev; 1483 1484 noop: 1485 return skb; 1486 1487 fallback: 1488 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1489 return NULL; 1490 } 1491 1492 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1493 struct tcp_sack_block *next_dup, 1494 struct tcp_sacktag_state *state, 1495 u32 start_seq, u32 end_seq, 1496 bool dup_sack_in) 1497 { 1498 struct tcp_sock *tp = tcp_sk(sk); 1499 struct sk_buff *tmp; 1500 1501 skb_rbtree_walk_from(skb) { 1502 int in_sack = 0; 1503 bool dup_sack = dup_sack_in; 1504 1505 /* queue is in-order => we can short-circuit the walk early */ 1506 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1507 break; 1508 1509 if (next_dup && 1510 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1511 in_sack = tcp_match_skb_to_sack(sk, skb, 1512 next_dup->start_seq, 1513 next_dup->end_seq); 1514 if (in_sack > 0) 1515 dup_sack = true; 1516 } 1517 1518 /* skb reference here is a bit tricky to get right, since 1519 * shifting can eat and free both this skb and the next, 1520 * so not even _safe variant of the loop is enough. 1521 */ 1522 if (in_sack <= 0) { 1523 tmp = tcp_shift_skb_data(sk, skb, state, 1524 start_seq, end_seq, dup_sack); 1525 if (tmp) { 1526 if (tmp != skb) { 1527 skb = tmp; 1528 continue; 1529 } 1530 1531 in_sack = 0; 1532 } else { 1533 in_sack = tcp_match_skb_to_sack(sk, skb, 1534 start_seq, 1535 end_seq); 1536 } 1537 } 1538 1539 if (unlikely(in_sack < 0)) 1540 break; 1541 1542 if (in_sack) { 1543 TCP_SKB_CB(skb)->sacked = 1544 tcp_sacktag_one(sk, 1545 state, 1546 TCP_SKB_CB(skb)->sacked, 1547 TCP_SKB_CB(skb)->seq, 1548 TCP_SKB_CB(skb)->end_seq, 1549 dup_sack, 1550 tcp_skb_pcount(skb), 1551 skb->skb_mstamp); 1552 tcp_rate_skb_delivered(sk, skb, state->rate); 1553 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1554 list_del_init(&skb->tcp_tsorted_anchor); 1555 1556 if (!before(TCP_SKB_CB(skb)->seq, 1557 tcp_highest_sack_seq(tp))) 1558 tcp_advance_highest_sack(sk, skb); 1559 } 1560 } 1561 return skb; 1562 } 1563 1564 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1565 struct tcp_sacktag_state *state, 1566 u32 seq) 1567 { 1568 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1569 struct sk_buff *skb; 1570 1571 while (*p) { 1572 parent = *p; 1573 skb = rb_to_skb(parent); 1574 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1575 p = &parent->rb_left; 1576 continue; 1577 } 1578 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1579 p = &parent->rb_right; 1580 continue; 1581 } 1582 return skb; 1583 } 1584 return NULL; 1585 } 1586 1587 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1588 struct tcp_sacktag_state *state, 1589 u32 skip_to_seq) 1590 { 1591 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1592 return skb; 1593 1594 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1595 } 1596 1597 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1598 struct sock *sk, 1599 struct tcp_sack_block *next_dup, 1600 struct tcp_sacktag_state *state, 1601 u32 skip_to_seq) 1602 { 1603 if (!next_dup) 1604 return skb; 1605 1606 if (before(next_dup->start_seq, skip_to_seq)) { 1607 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1608 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1609 next_dup->start_seq, next_dup->end_seq, 1610 1); 1611 } 1612 1613 return skb; 1614 } 1615 1616 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1617 { 1618 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1619 } 1620 1621 static int 1622 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1623 u32 prior_snd_una, struct tcp_sacktag_state *state) 1624 { 1625 struct tcp_sock *tp = tcp_sk(sk); 1626 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1627 TCP_SKB_CB(ack_skb)->sacked); 1628 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1629 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1630 struct tcp_sack_block *cache; 1631 struct sk_buff *skb; 1632 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1633 int used_sacks; 1634 bool found_dup_sack = false; 1635 int i, j; 1636 int first_sack_index; 1637 1638 state->flag = 0; 1639 state->reord = tp->snd_nxt; 1640 1641 if (!tp->sacked_out) 1642 tcp_highest_sack_reset(sk); 1643 1644 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1645 num_sacks, prior_snd_una); 1646 if (found_dup_sack) { 1647 state->flag |= FLAG_DSACKING_ACK; 1648 tp->delivered++; /* A spurious retransmission is delivered */ 1649 } 1650 1651 /* Eliminate too old ACKs, but take into 1652 * account more or less fresh ones, they can 1653 * contain valid SACK info. 1654 */ 1655 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1656 return 0; 1657 1658 if (!tp->packets_out) 1659 goto out; 1660 1661 used_sacks = 0; 1662 first_sack_index = 0; 1663 for (i = 0; i < num_sacks; i++) { 1664 bool dup_sack = !i && found_dup_sack; 1665 1666 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1667 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1668 1669 if (!tcp_is_sackblock_valid(tp, dup_sack, 1670 sp[used_sacks].start_seq, 1671 sp[used_sacks].end_seq)) { 1672 int mib_idx; 1673 1674 if (dup_sack) { 1675 if (!tp->undo_marker) 1676 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1677 else 1678 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1679 } else { 1680 /* Don't count olds caused by ACK reordering */ 1681 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1682 !after(sp[used_sacks].end_seq, tp->snd_una)) 1683 continue; 1684 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1685 } 1686 1687 NET_INC_STATS(sock_net(sk), mib_idx); 1688 if (i == 0) 1689 first_sack_index = -1; 1690 continue; 1691 } 1692 1693 /* Ignore very old stuff early */ 1694 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1695 continue; 1696 1697 used_sacks++; 1698 } 1699 1700 /* order SACK blocks to allow in order walk of the retrans queue */ 1701 for (i = used_sacks - 1; i > 0; i--) { 1702 for (j = 0; j < i; j++) { 1703 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1704 swap(sp[j], sp[j + 1]); 1705 1706 /* Track where the first SACK block goes to */ 1707 if (j == first_sack_index) 1708 first_sack_index = j + 1; 1709 } 1710 } 1711 } 1712 1713 state->mss_now = tcp_current_mss(sk); 1714 skb = NULL; 1715 i = 0; 1716 1717 if (!tp->sacked_out) { 1718 /* It's already past, so skip checking against it */ 1719 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1720 } else { 1721 cache = tp->recv_sack_cache; 1722 /* Skip empty blocks in at head of the cache */ 1723 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1724 !cache->end_seq) 1725 cache++; 1726 } 1727 1728 while (i < used_sacks) { 1729 u32 start_seq = sp[i].start_seq; 1730 u32 end_seq = sp[i].end_seq; 1731 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1732 struct tcp_sack_block *next_dup = NULL; 1733 1734 if (found_dup_sack && ((i + 1) == first_sack_index)) 1735 next_dup = &sp[i + 1]; 1736 1737 /* Skip too early cached blocks */ 1738 while (tcp_sack_cache_ok(tp, cache) && 1739 !before(start_seq, cache->end_seq)) 1740 cache++; 1741 1742 /* Can skip some work by looking recv_sack_cache? */ 1743 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1744 after(end_seq, cache->start_seq)) { 1745 1746 /* Head todo? */ 1747 if (before(start_seq, cache->start_seq)) { 1748 skb = tcp_sacktag_skip(skb, sk, state, 1749 start_seq); 1750 skb = tcp_sacktag_walk(skb, sk, next_dup, 1751 state, 1752 start_seq, 1753 cache->start_seq, 1754 dup_sack); 1755 } 1756 1757 /* Rest of the block already fully processed? */ 1758 if (!after(end_seq, cache->end_seq)) 1759 goto advance_sp; 1760 1761 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1762 state, 1763 cache->end_seq); 1764 1765 /* ...tail remains todo... */ 1766 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1767 /* ...but better entrypoint exists! */ 1768 skb = tcp_highest_sack(sk); 1769 if (!skb) 1770 break; 1771 cache++; 1772 goto walk; 1773 } 1774 1775 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1776 /* Check overlap against next cached too (past this one already) */ 1777 cache++; 1778 continue; 1779 } 1780 1781 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1782 skb = tcp_highest_sack(sk); 1783 if (!skb) 1784 break; 1785 } 1786 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1787 1788 walk: 1789 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1790 start_seq, end_seq, dup_sack); 1791 1792 advance_sp: 1793 i++; 1794 } 1795 1796 /* Clear the head of the cache sack blocks so we can skip it next time */ 1797 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1798 tp->recv_sack_cache[i].start_seq = 0; 1799 tp->recv_sack_cache[i].end_seq = 0; 1800 } 1801 for (j = 0; j < used_sacks; j++) 1802 tp->recv_sack_cache[i++] = sp[j]; 1803 1804 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1805 tcp_check_sack_reordering(sk, state->reord, 0); 1806 1807 tcp_verify_left_out(tp); 1808 out: 1809 1810 #if FASTRETRANS_DEBUG > 0 1811 WARN_ON((int)tp->sacked_out < 0); 1812 WARN_ON((int)tp->lost_out < 0); 1813 WARN_ON((int)tp->retrans_out < 0); 1814 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1815 #endif 1816 return state->flag; 1817 } 1818 1819 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1820 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1821 */ 1822 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1823 { 1824 u32 holes; 1825 1826 holes = max(tp->lost_out, 1U); 1827 holes = min(holes, tp->packets_out); 1828 1829 if ((tp->sacked_out + holes) > tp->packets_out) { 1830 tp->sacked_out = tp->packets_out - holes; 1831 return true; 1832 } 1833 return false; 1834 } 1835 1836 /* If we receive more dupacks than we expected counting segments 1837 * in assumption of absent reordering, interpret this as reordering. 1838 * The only another reason could be bug in receiver TCP. 1839 */ 1840 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1841 { 1842 struct tcp_sock *tp = tcp_sk(sk); 1843 1844 if (!tcp_limit_reno_sacked(tp)) 1845 return; 1846 1847 tp->reordering = min_t(u32, tp->packets_out + addend, 1848 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1850 } 1851 1852 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1853 1854 static void tcp_add_reno_sack(struct sock *sk) 1855 { 1856 struct tcp_sock *tp = tcp_sk(sk); 1857 u32 prior_sacked = tp->sacked_out; 1858 1859 tp->sacked_out++; 1860 tcp_check_reno_reordering(sk, 0); 1861 if (tp->sacked_out > prior_sacked) 1862 tp->delivered++; /* Some out-of-order packet is delivered */ 1863 tcp_verify_left_out(tp); 1864 } 1865 1866 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1867 1868 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1869 { 1870 struct tcp_sock *tp = tcp_sk(sk); 1871 1872 if (acked > 0) { 1873 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1874 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1875 if (acked - 1 >= tp->sacked_out) 1876 tp->sacked_out = 0; 1877 else 1878 tp->sacked_out -= acked - 1; 1879 } 1880 tcp_check_reno_reordering(sk, acked); 1881 tcp_verify_left_out(tp); 1882 } 1883 1884 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1885 { 1886 tp->sacked_out = 0; 1887 } 1888 1889 void tcp_clear_retrans(struct tcp_sock *tp) 1890 { 1891 tp->retrans_out = 0; 1892 tp->lost_out = 0; 1893 tp->undo_marker = 0; 1894 tp->undo_retrans = -1; 1895 tp->sacked_out = 0; 1896 } 1897 1898 static inline void tcp_init_undo(struct tcp_sock *tp) 1899 { 1900 tp->undo_marker = tp->snd_una; 1901 /* Retransmission still in flight may cause DSACKs later. */ 1902 tp->undo_retrans = tp->retrans_out ? : -1; 1903 } 1904 1905 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1906 * and reset tags completely, otherwise preserve SACKs. If receiver 1907 * dropped its ofo queue, we will know this due to reneging detection. 1908 */ 1909 void tcp_enter_loss(struct sock *sk) 1910 { 1911 const struct inet_connection_sock *icsk = inet_csk(sk); 1912 struct tcp_sock *tp = tcp_sk(sk); 1913 struct net *net = sock_net(sk); 1914 struct sk_buff *skb; 1915 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1916 bool is_reneg; /* is receiver reneging on SACKs? */ 1917 bool mark_lost; 1918 1919 /* Reduce ssthresh if it has not yet been made inside this window. */ 1920 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1921 !after(tp->high_seq, tp->snd_una) || 1922 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1923 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1924 tp->prior_cwnd = tp->snd_cwnd; 1925 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1926 tcp_ca_event(sk, CA_EVENT_LOSS); 1927 tcp_init_undo(tp); 1928 } 1929 tp->snd_cwnd = 1; 1930 tp->snd_cwnd_cnt = 0; 1931 tp->snd_cwnd_stamp = tcp_jiffies32; 1932 1933 tp->retrans_out = 0; 1934 tp->lost_out = 0; 1935 1936 if (tcp_is_reno(tp)) 1937 tcp_reset_reno_sack(tp); 1938 1939 skb = tcp_rtx_queue_head(sk); 1940 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1941 if (is_reneg) { 1942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1943 tp->sacked_out = 0; 1944 } 1945 tcp_clear_all_retrans_hints(tp); 1946 1947 skb_rbtree_walk_from(skb) { 1948 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1949 is_reneg); 1950 if (mark_lost) 1951 tcp_sum_lost(tp, skb); 1952 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1953 if (mark_lost) { 1954 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1956 tp->lost_out += tcp_skb_pcount(skb); 1957 } 1958 } 1959 tcp_verify_left_out(tp); 1960 1961 /* Timeout in disordered state after receiving substantial DUPACKs 1962 * suggests that the degree of reordering is over-estimated. 1963 */ 1964 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1965 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1966 tp->reordering = min_t(unsigned int, tp->reordering, 1967 net->ipv4.sysctl_tcp_reordering); 1968 tcp_set_ca_state(sk, TCP_CA_Loss); 1969 tp->high_seq = tp->snd_nxt; 1970 tcp_ecn_queue_cwr(tp); 1971 1972 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1973 * loss recovery is underway except recurring timeout(s) on 1974 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1975 * 1976 * In theory F-RTO can be used repeatedly during loss recovery. 1977 * In practice this interacts badly with broken middle-boxes that 1978 * falsely raise the receive window, which results in repeated 1979 * timeouts and stop-and-go behavior. 1980 */ 1981 tp->frto = net->ipv4.sysctl_tcp_frto && 1982 (new_recovery || icsk->icsk_retransmits) && 1983 !inet_csk(sk)->icsk_mtup.probe_size; 1984 } 1985 1986 /* If ACK arrived pointing to a remembered SACK, it means that our 1987 * remembered SACKs do not reflect real state of receiver i.e. 1988 * receiver _host_ is heavily congested (or buggy). 1989 * 1990 * To avoid big spurious retransmission bursts due to transient SACK 1991 * scoreboard oddities that look like reneging, we give the receiver a 1992 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1993 * restore sanity to the SACK scoreboard. If the apparent reneging 1994 * persists until this RTO then we'll clear the SACK scoreboard. 1995 */ 1996 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1997 { 1998 if (flag & FLAG_SACK_RENEGING) { 1999 struct tcp_sock *tp = tcp_sk(sk); 2000 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2001 msecs_to_jiffies(10)); 2002 2003 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2004 delay, TCP_RTO_MAX); 2005 return true; 2006 } 2007 return false; 2008 } 2009 2010 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2011 * counter when SACK is enabled (without SACK, sacked_out is used for 2012 * that purpose). 2013 * 2014 * With reordering, holes may still be in flight, so RFC3517 recovery 2015 * uses pure sacked_out (total number of SACKed segments) even though 2016 * it violates the RFC that uses duplicate ACKs, often these are equal 2017 * but when e.g. out-of-window ACKs or packet duplication occurs, 2018 * they differ. Since neither occurs due to loss, TCP should really 2019 * ignore them. 2020 */ 2021 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2022 { 2023 return tp->sacked_out + 1; 2024 } 2025 2026 /* Linux NewReno/SACK/ECN state machine. 2027 * -------------------------------------- 2028 * 2029 * "Open" Normal state, no dubious events, fast path. 2030 * "Disorder" In all the respects it is "Open", 2031 * but requires a bit more attention. It is entered when 2032 * we see some SACKs or dupacks. It is split of "Open" 2033 * mainly to move some processing from fast path to slow one. 2034 * "CWR" CWND was reduced due to some Congestion Notification event. 2035 * It can be ECN, ICMP source quench, local device congestion. 2036 * "Recovery" CWND was reduced, we are fast-retransmitting. 2037 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2038 * 2039 * tcp_fastretrans_alert() is entered: 2040 * - each incoming ACK, if state is not "Open" 2041 * - when arrived ACK is unusual, namely: 2042 * * SACK 2043 * * Duplicate ACK. 2044 * * ECN ECE. 2045 * 2046 * Counting packets in flight is pretty simple. 2047 * 2048 * in_flight = packets_out - left_out + retrans_out 2049 * 2050 * packets_out is SND.NXT-SND.UNA counted in packets. 2051 * 2052 * retrans_out is number of retransmitted segments. 2053 * 2054 * left_out is number of segments left network, but not ACKed yet. 2055 * 2056 * left_out = sacked_out + lost_out 2057 * 2058 * sacked_out: Packets, which arrived to receiver out of order 2059 * and hence not ACKed. With SACKs this number is simply 2060 * amount of SACKed data. Even without SACKs 2061 * it is easy to give pretty reliable estimate of this number, 2062 * counting duplicate ACKs. 2063 * 2064 * lost_out: Packets lost by network. TCP has no explicit 2065 * "loss notification" feedback from network (for now). 2066 * It means that this number can be only _guessed_. 2067 * Actually, it is the heuristics to predict lossage that 2068 * distinguishes different algorithms. 2069 * 2070 * F.e. after RTO, when all the queue is considered as lost, 2071 * lost_out = packets_out and in_flight = retrans_out. 2072 * 2073 * Essentially, we have now a few algorithms detecting 2074 * lost packets. 2075 * 2076 * If the receiver supports SACK: 2077 * 2078 * RFC6675/3517: It is the conventional algorithm. A packet is 2079 * considered lost if the number of higher sequence packets 2080 * SACKed is greater than or equal the DUPACK thoreshold 2081 * (reordering). This is implemented in tcp_mark_head_lost and 2082 * tcp_update_scoreboard. 2083 * 2084 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2085 * (2017-) that checks timing instead of counting DUPACKs. 2086 * Essentially a packet is considered lost if it's not S/ACKed 2087 * after RTT + reordering_window, where both metrics are 2088 * dynamically measured and adjusted. This is implemented in 2089 * tcp_rack_mark_lost. 2090 * 2091 * If the receiver does not support SACK: 2092 * 2093 * NewReno (RFC6582): in Recovery we assume that one segment 2094 * is lost (classic Reno). While we are in Recovery and 2095 * a partial ACK arrives, we assume that one more packet 2096 * is lost (NewReno). This heuristics are the same in NewReno 2097 * and SACK. 2098 * 2099 * Really tricky (and requiring careful tuning) part of algorithm 2100 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2101 * The first determines the moment _when_ we should reduce CWND and, 2102 * hence, slow down forward transmission. In fact, it determines the moment 2103 * when we decide that hole is caused by loss, rather than by a reorder. 2104 * 2105 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2106 * holes, caused by lost packets. 2107 * 2108 * And the most logically complicated part of algorithm is undo 2109 * heuristics. We detect false retransmits due to both too early 2110 * fast retransmit (reordering) and underestimated RTO, analyzing 2111 * timestamps and D-SACKs. When we detect that some segments were 2112 * retransmitted by mistake and CWND reduction was wrong, we undo 2113 * window reduction and abort recovery phase. This logic is hidden 2114 * inside several functions named tcp_try_undo_<something>. 2115 */ 2116 2117 /* This function decides, when we should leave Disordered state 2118 * and enter Recovery phase, reducing congestion window. 2119 * 2120 * Main question: may we further continue forward transmission 2121 * with the same cwnd? 2122 */ 2123 static bool tcp_time_to_recover(struct sock *sk, int flag) 2124 { 2125 struct tcp_sock *tp = tcp_sk(sk); 2126 2127 /* Trick#1: The loss is proven. */ 2128 if (tp->lost_out) 2129 return true; 2130 2131 /* Not-A-Trick#2 : Classic rule... */ 2132 if (tcp_dupack_heuristics(tp) > tp->reordering) 2133 return true; 2134 2135 return false; 2136 } 2137 2138 /* Detect loss in event "A" above by marking head of queue up as lost. 2139 * For non-SACK(Reno) senders, the first "packets" number of segments 2140 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2141 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2142 * the maximum SACKed segments to pass before reaching this limit. 2143 */ 2144 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2145 { 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 struct sk_buff *skb; 2148 int cnt, oldcnt, lost; 2149 unsigned int mss; 2150 /* Use SACK to deduce losses of new sequences sent during recovery */ 2151 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2152 2153 WARN_ON(packets > tp->packets_out); 2154 skb = tp->lost_skb_hint; 2155 if (skb) { 2156 /* Head already handled? */ 2157 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2158 return; 2159 cnt = tp->lost_cnt_hint; 2160 } else { 2161 skb = tcp_rtx_queue_head(sk); 2162 cnt = 0; 2163 } 2164 2165 skb_rbtree_walk_from(skb) { 2166 /* TODO: do this better */ 2167 /* this is not the most efficient way to do this... */ 2168 tp->lost_skb_hint = skb; 2169 tp->lost_cnt_hint = cnt; 2170 2171 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2172 break; 2173 2174 oldcnt = cnt; 2175 if (tcp_is_reno(tp) || 2176 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2177 cnt += tcp_skb_pcount(skb); 2178 2179 if (cnt > packets) { 2180 if (tcp_is_sack(tp) || 2181 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2182 (oldcnt >= packets)) 2183 break; 2184 2185 mss = tcp_skb_mss(skb); 2186 /* If needed, chop off the prefix to mark as lost. */ 2187 lost = (packets - oldcnt) * mss; 2188 if (lost < skb->len && 2189 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2190 lost, mss, GFP_ATOMIC) < 0) 2191 break; 2192 cnt = packets; 2193 } 2194 2195 tcp_skb_mark_lost(tp, skb); 2196 2197 if (mark_head) 2198 break; 2199 } 2200 tcp_verify_left_out(tp); 2201 } 2202 2203 /* Account newly detected lost packet(s) */ 2204 2205 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2206 { 2207 struct tcp_sock *tp = tcp_sk(sk); 2208 2209 if (tcp_is_reno(tp)) { 2210 tcp_mark_head_lost(sk, 1, 1); 2211 } else { 2212 int sacked_upto = tp->sacked_out - tp->reordering; 2213 if (sacked_upto >= 0) 2214 tcp_mark_head_lost(sk, sacked_upto, 0); 2215 else if (fast_rexmit) 2216 tcp_mark_head_lost(sk, 1, 1); 2217 } 2218 } 2219 2220 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2221 { 2222 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2223 before(tp->rx_opt.rcv_tsecr, when); 2224 } 2225 2226 /* skb is spurious retransmitted if the returned timestamp echo 2227 * reply is prior to the skb transmission time 2228 */ 2229 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2230 const struct sk_buff *skb) 2231 { 2232 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2233 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2234 } 2235 2236 /* Nothing was retransmitted or returned timestamp is less 2237 * than timestamp of the first retransmission. 2238 */ 2239 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2240 { 2241 return !tp->retrans_stamp || 2242 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2243 } 2244 2245 /* Undo procedures. */ 2246 2247 /* We can clear retrans_stamp when there are no retransmissions in the 2248 * window. It would seem that it is trivially available for us in 2249 * tp->retrans_out, however, that kind of assumptions doesn't consider 2250 * what will happen if errors occur when sending retransmission for the 2251 * second time. ...It could the that such segment has only 2252 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2253 * the head skb is enough except for some reneging corner cases that 2254 * are not worth the effort. 2255 * 2256 * Main reason for all this complexity is the fact that connection dying 2257 * time now depends on the validity of the retrans_stamp, in particular, 2258 * that successive retransmissions of a segment must not advance 2259 * retrans_stamp under any conditions. 2260 */ 2261 static bool tcp_any_retrans_done(const struct sock *sk) 2262 { 2263 const struct tcp_sock *tp = tcp_sk(sk); 2264 struct sk_buff *skb; 2265 2266 if (tp->retrans_out) 2267 return true; 2268 2269 skb = tcp_rtx_queue_head(sk); 2270 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2271 return true; 2272 2273 return false; 2274 } 2275 2276 static void DBGUNDO(struct sock *sk, const char *msg) 2277 { 2278 #if FASTRETRANS_DEBUG > 1 2279 struct tcp_sock *tp = tcp_sk(sk); 2280 struct inet_sock *inet = inet_sk(sk); 2281 2282 if (sk->sk_family == AF_INET) { 2283 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2284 msg, 2285 &inet->inet_daddr, ntohs(inet->inet_dport), 2286 tp->snd_cwnd, tcp_left_out(tp), 2287 tp->snd_ssthresh, tp->prior_ssthresh, 2288 tp->packets_out); 2289 } 2290 #if IS_ENABLED(CONFIG_IPV6) 2291 else if (sk->sk_family == AF_INET6) { 2292 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2293 msg, 2294 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2295 tp->snd_cwnd, tcp_left_out(tp), 2296 tp->snd_ssthresh, tp->prior_ssthresh, 2297 tp->packets_out); 2298 } 2299 #endif 2300 #endif 2301 } 2302 2303 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2304 { 2305 struct tcp_sock *tp = tcp_sk(sk); 2306 2307 if (unmark_loss) { 2308 struct sk_buff *skb; 2309 2310 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2311 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2312 } 2313 tp->lost_out = 0; 2314 tcp_clear_all_retrans_hints(tp); 2315 } 2316 2317 if (tp->prior_ssthresh) { 2318 const struct inet_connection_sock *icsk = inet_csk(sk); 2319 2320 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2321 2322 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2323 tp->snd_ssthresh = tp->prior_ssthresh; 2324 tcp_ecn_withdraw_cwr(tp); 2325 } 2326 } 2327 tp->snd_cwnd_stamp = tcp_jiffies32; 2328 tp->undo_marker = 0; 2329 } 2330 2331 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2332 { 2333 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2334 } 2335 2336 /* People celebrate: "We love our President!" */ 2337 static bool tcp_try_undo_recovery(struct sock *sk) 2338 { 2339 struct tcp_sock *tp = tcp_sk(sk); 2340 2341 if (tcp_may_undo(tp)) { 2342 int mib_idx; 2343 2344 /* Happy end! We did not retransmit anything 2345 * or our original transmission succeeded. 2346 */ 2347 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2348 tcp_undo_cwnd_reduction(sk, false); 2349 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2350 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2351 else 2352 mib_idx = LINUX_MIB_TCPFULLUNDO; 2353 2354 NET_INC_STATS(sock_net(sk), mib_idx); 2355 } else if (tp->rack.reo_wnd_persist) { 2356 tp->rack.reo_wnd_persist--; 2357 } 2358 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2359 /* Hold old state until something *above* high_seq 2360 * is ACKed. For Reno it is MUST to prevent false 2361 * fast retransmits (RFC2582). SACK TCP is safe. */ 2362 if (!tcp_any_retrans_done(sk)) 2363 tp->retrans_stamp = 0; 2364 return true; 2365 } 2366 tcp_set_ca_state(sk, TCP_CA_Open); 2367 return false; 2368 } 2369 2370 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2371 static bool tcp_try_undo_dsack(struct sock *sk) 2372 { 2373 struct tcp_sock *tp = tcp_sk(sk); 2374 2375 if (tp->undo_marker && !tp->undo_retrans) { 2376 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2377 tp->rack.reo_wnd_persist + 1); 2378 DBGUNDO(sk, "D-SACK"); 2379 tcp_undo_cwnd_reduction(sk, false); 2380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2381 return true; 2382 } 2383 return false; 2384 } 2385 2386 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2387 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2388 { 2389 struct tcp_sock *tp = tcp_sk(sk); 2390 2391 if (frto_undo || tcp_may_undo(tp)) { 2392 tcp_undo_cwnd_reduction(sk, true); 2393 2394 DBGUNDO(sk, "partial loss"); 2395 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2396 if (frto_undo) 2397 NET_INC_STATS(sock_net(sk), 2398 LINUX_MIB_TCPSPURIOUSRTOS); 2399 inet_csk(sk)->icsk_retransmits = 0; 2400 if (frto_undo || tcp_is_sack(tp)) 2401 tcp_set_ca_state(sk, TCP_CA_Open); 2402 return true; 2403 } 2404 return false; 2405 } 2406 2407 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2408 * It computes the number of packets to send (sndcnt) based on packets newly 2409 * delivered: 2410 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2411 * cwnd reductions across a full RTT. 2412 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2413 * But when the retransmits are acked without further losses, PRR 2414 * slow starts cwnd up to ssthresh to speed up the recovery. 2415 */ 2416 static void tcp_init_cwnd_reduction(struct sock *sk) 2417 { 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 2420 tp->high_seq = tp->snd_nxt; 2421 tp->tlp_high_seq = 0; 2422 tp->snd_cwnd_cnt = 0; 2423 tp->prior_cwnd = tp->snd_cwnd; 2424 tp->prr_delivered = 0; 2425 tp->prr_out = 0; 2426 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2427 tcp_ecn_queue_cwr(tp); 2428 } 2429 2430 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2431 { 2432 struct tcp_sock *tp = tcp_sk(sk); 2433 int sndcnt = 0; 2434 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2435 2436 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2437 return; 2438 2439 tp->prr_delivered += newly_acked_sacked; 2440 if (delta < 0) { 2441 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2442 tp->prior_cwnd - 1; 2443 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2444 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2445 !(flag & FLAG_LOST_RETRANS)) { 2446 sndcnt = min_t(int, delta, 2447 max_t(int, tp->prr_delivered - tp->prr_out, 2448 newly_acked_sacked) + 1); 2449 } else { 2450 sndcnt = min(delta, newly_acked_sacked); 2451 } 2452 /* Force a fast retransmit upon entering fast recovery */ 2453 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2454 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2455 } 2456 2457 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2458 { 2459 struct tcp_sock *tp = tcp_sk(sk); 2460 2461 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2462 return; 2463 2464 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2465 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2466 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2467 tp->snd_cwnd = tp->snd_ssthresh; 2468 tp->snd_cwnd_stamp = tcp_jiffies32; 2469 } 2470 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2471 } 2472 2473 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2474 void tcp_enter_cwr(struct sock *sk) 2475 { 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 2478 tp->prior_ssthresh = 0; 2479 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2480 tp->undo_marker = 0; 2481 tcp_init_cwnd_reduction(sk); 2482 tcp_set_ca_state(sk, TCP_CA_CWR); 2483 } 2484 } 2485 EXPORT_SYMBOL(tcp_enter_cwr); 2486 2487 static void tcp_try_keep_open(struct sock *sk) 2488 { 2489 struct tcp_sock *tp = tcp_sk(sk); 2490 int state = TCP_CA_Open; 2491 2492 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2493 state = TCP_CA_Disorder; 2494 2495 if (inet_csk(sk)->icsk_ca_state != state) { 2496 tcp_set_ca_state(sk, state); 2497 tp->high_seq = tp->snd_nxt; 2498 } 2499 } 2500 2501 static void tcp_try_to_open(struct sock *sk, int flag) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 2505 tcp_verify_left_out(tp); 2506 2507 if (!tcp_any_retrans_done(sk)) 2508 tp->retrans_stamp = 0; 2509 2510 if (flag & FLAG_ECE) 2511 tcp_enter_cwr(sk); 2512 2513 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2514 tcp_try_keep_open(sk); 2515 } 2516 } 2517 2518 static void tcp_mtup_probe_failed(struct sock *sk) 2519 { 2520 struct inet_connection_sock *icsk = inet_csk(sk); 2521 2522 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2523 icsk->icsk_mtup.probe_size = 0; 2524 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2525 } 2526 2527 static void tcp_mtup_probe_success(struct sock *sk) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 struct inet_connection_sock *icsk = inet_csk(sk); 2531 2532 /* FIXME: breaks with very large cwnd */ 2533 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2534 tp->snd_cwnd = tp->snd_cwnd * 2535 tcp_mss_to_mtu(sk, tp->mss_cache) / 2536 icsk->icsk_mtup.probe_size; 2537 tp->snd_cwnd_cnt = 0; 2538 tp->snd_cwnd_stamp = tcp_jiffies32; 2539 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2540 2541 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2542 icsk->icsk_mtup.probe_size = 0; 2543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2544 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2545 } 2546 2547 /* Do a simple retransmit without using the backoff mechanisms in 2548 * tcp_timer. This is used for path mtu discovery. 2549 * The socket is already locked here. 2550 */ 2551 void tcp_simple_retransmit(struct sock *sk) 2552 { 2553 const struct inet_connection_sock *icsk = inet_csk(sk); 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 struct sk_buff *skb; 2556 unsigned int mss = tcp_current_mss(sk); 2557 2558 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2559 if (tcp_skb_seglen(skb) > mss && 2560 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2561 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2562 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2563 tp->retrans_out -= tcp_skb_pcount(skb); 2564 } 2565 tcp_skb_mark_lost_uncond_verify(tp, skb); 2566 } 2567 } 2568 2569 tcp_clear_retrans_hints_partial(tp); 2570 2571 if (!tp->lost_out) 2572 return; 2573 2574 if (tcp_is_reno(tp)) 2575 tcp_limit_reno_sacked(tp); 2576 2577 tcp_verify_left_out(tp); 2578 2579 /* Don't muck with the congestion window here. 2580 * Reason is that we do not increase amount of _data_ 2581 * in network, but units changed and effective 2582 * cwnd/ssthresh really reduced now. 2583 */ 2584 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2585 tp->high_seq = tp->snd_nxt; 2586 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2587 tp->prior_ssthresh = 0; 2588 tp->undo_marker = 0; 2589 tcp_set_ca_state(sk, TCP_CA_Loss); 2590 } 2591 tcp_xmit_retransmit_queue(sk); 2592 } 2593 EXPORT_SYMBOL(tcp_simple_retransmit); 2594 2595 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 int mib_idx; 2599 2600 if (tcp_is_reno(tp)) 2601 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2602 else 2603 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2604 2605 NET_INC_STATS(sock_net(sk), mib_idx); 2606 2607 tp->prior_ssthresh = 0; 2608 tcp_init_undo(tp); 2609 2610 if (!tcp_in_cwnd_reduction(sk)) { 2611 if (!ece_ack) 2612 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2613 tcp_init_cwnd_reduction(sk); 2614 } 2615 tcp_set_ca_state(sk, TCP_CA_Recovery); 2616 } 2617 2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2619 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2620 */ 2621 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2622 int *rexmit) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 bool recovered = !before(tp->snd_una, tp->high_seq); 2626 2627 if ((flag & FLAG_SND_UNA_ADVANCED) && 2628 tcp_try_undo_loss(sk, false)) 2629 return; 2630 2631 /* The ACK (s)acks some never-retransmitted data meaning not all 2632 * the data packets before the timeout were lost. Therefore we 2633 * undo the congestion window and state. This is essentially 2634 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2635 * a retransmitted skb is permantly marked, we can apply such an 2636 * operation even if F-RTO was not used. 2637 */ 2638 if ((flag & FLAG_ORIG_SACK_ACKED) && 2639 tcp_try_undo_loss(sk, tp->undo_marker)) 2640 return; 2641 2642 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2643 if (after(tp->snd_nxt, tp->high_seq)) { 2644 if (flag & FLAG_DATA_SACKED || is_dupack) 2645 tp->frto = 0; /* Step 3.a. loss was real */ 2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2647 tp->high_seq = tp->snd_nxt; 2648 /* Step 2.b. Try send new data (but deferred until cwnd 2649 * is updated in tcp_ack()). Otherwise fall back to 2650 * the conventional recovery. 2651 */ 2652 if (!tcp_write_queue_empty(sk) && 2653 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2654 *rexmit = REXMIT_NEW; 2655 return; 2656 } 2657 tp->frto = 0; 2658 } 2659 } 2660 2661 if (recovered) { 2662 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2663 tcp_try_undo_recovery(sk); 2664 return; 2665 } 2666 if (tcp_is_reno(tp)) { 2667 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2668 * delivered. Lower inflight to clock out (re)tranmissions. 2669 */ 2670 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2671 tcp_add_reno_sack(sk); 2672 else if (flag & FLAG_SND_UNA_ADVANCED) 2673 tcp_reset_reno_sack(tp); 2674 } 2675 *rexmit = REXMIT_LOST; 2676 } 2677 2678 /* Undo during fast recovery after partial ACK. */ 2679 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 2683 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2684 /* Plain luck! Hole if filled with delayed 2685 * packet, rather than with a retransmit. Check reordering. 2686 */ 2687 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2688 2689 /* We are getting evidence that the reordering degree is higher 2690 * than we realized. If there are no retransmits out then we 2691 * can undo. Otherwise we clock out new packets but do not 2692 * mark more packets lost or retransmit more. 2693 */ 2694 if (tp->retrans_out) 2695 return true; 2696 2697 if (!tcp_any_retrans_done(sk)) 2698 tp->retrans_stamp = 0; 2699 2700 DBGUNDO(sk, "partial recovery"); 2701 tcp_undo_cwnd_reduction(sk, true); 2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2703 tcp_try_keep_open(sk); 2704 return true; 2705 } 2706 return false; 2707 } 2708 2709 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2710 { 2711 struct tcp_sock *tp = tcp_sk(sk); 2712 2713 /* Use RACK to detect loss */ 2714 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2715 u32 prior_retrans = tp->retrans_out; 2716 2717 tcp_rack_mark_lost(sk); 2718 if (prior_retrans > tp->retrans_out) 2719 *ack_flag |= FLAG_LOST_RETRANS; 2720 } 2721 } 2722 2723 static bool tcp_force_fast_retransmit(struct sock *sk) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 2727 return after(tcp_highest_sack_seq(tp), 2728 tp->snd_una + tp->reordering * tp->mss_cache); 2729 } 2730 2731 /* Process an event, which can update packets-in-flight not trivially. 2732 * Main goal of this function is to calculate new estimate for left_out, 2733 * taking into account both packets sitting in receiver's buffer and 2734 * packets lost by network. 2735 * 2736 * Besides that it updates the congestion state when packet loss or ECN 2737 * is detected. But it does not reduce the cwnd, it is done by the 2738 * congestion control later. 2739 * 2740 * It does _not_ decide what to send, it is made in function 2741 * tcp_xmit_retransmit_queue(). 2742 */ 2743 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2744 bool is_dupack, int *ack_flag, int *rexmit) 2745 { 2746 struct inet_connection_sock *icsk = inet_csk(sk); 2747 struct tcp_sock *tp = tcp_sk(sk); 2748 int fast_rexmit = 0, flag = *ack_flag; 2749 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2750 tcp_force_fast_retransmit(sk)); 2751 2752 if (!tp->packets_out && tp->sacked_out) 2753 tp->sacked_out = 0; 2754 2755 /* Now state machine starts. 2756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2757 if (flag & FLAG_ECE) 2758 tp->prior_ssthresh = 0; 2759 2760 /* B. In all the states check for reneging SACKs. */ 2761 if (tcp_check_sack_reneging(sk, flag)) 2762 return; 2763 2764 /* C. Check consistency of the current state. */ 2765 tcp_verify_left_out(tp); 2766 2767 /* D. Check state exit conditions. State can be terminated 2768 * when high_seq is ACKed. */ 2769 if (icsk->icsk_ca_state == TCP_CA_Open) { 2770 WARN_ON(tp->retrans_out != 0); 2771 tp->retrans_stamp = 0; 2772 } else if (!before(tp->snd_una, tp->high_seq)) { 2773 switch (icsk->icsk_ca_state) { 2774 case TCP_CA_CWR: 2775 /* CWR is to be held something *above* high_seq 2776 * is ACKed for CWR bit to reach receiver. */ 2777 if (tp->snd_una != tp->high_seq) { 2778 tcp_end_cwnd_reduction(sk); 2779 tcp_set_ca_state(sk, TCP_CA_Open); 2780 } 2781 break; 2782 2783 case TCP_CA_Recovery: 2784 if (tcp_is_reno(tp)) 2785 tcp_reset_reno_sack(tp); 2786 if (tcp_try_undo_recovery(sk)) 2787 return; 2788 tcp_end_cwnd_reduction(sk); 2789 break; 2790 } 2791 } 2792 2793 /* E. Process state. */ 2794 switch (icsk->icsk_ca_state) { 2795 case TCP_CA_Recovery: 2796 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2797 if (tcp_is_reno(tp) && is_dupack) 2798 tcp_add_reno_sack(sk); 2799 } else { 2800 if (tcp_try_undo_partial(sk, prior_snd_una)) 2801 return; 2802 /* Partial ACK arrived. Force fast retransmit. */ 2803 do_lost = tcp_is_reno(tp) || 2804 tcp_force_fast_retransmit(sk); 2805 } 2806 if (tcp_try_undo_dsack(sk)) { 2807 tcp_try_keep_open(sk); 2808 return; 2809 } 2810 tcp_rack_identify_loss(sk, ack_flag); 2811 break; 2812 case TCP_CA_Loss: 2813 tcp_process_loss(sk, flag, is_dupack, rexmit); 2814 tcp_rack_identify_loss(sk, ack_flag); 2815 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2816 (*ack_flag & FLAG_LOST_RETRANS))) 2817 return; 2818 /* Change state if cwnd is undone or retransmits are lost */ 2819 /* fall through */ 2820 default: 2821 if (tcp_is_reno(tp)) { 2822 if (flag & FLAG_SND_UNA_ADVANCED) 2823 tcp_reset_reno_sack(tp); 2824 if (is_dupack) 2825 tcp_add_reno_sack(sk); 2826 } 2827 2828 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2829 tcp_try_undo_dsack(sk); 2830 2831 tcp_rack_identify_loss(sk, ack_flag); 2832 if (!tcp_time_to_recover(sk, flag)) { 2833 tcp_try_to_open(sk, flag); 2834 return; 2835 } 2836 2837 /* MTU probe failure: don't reduce cwnd */ 2838 if (icsk->icsk_ca_state < TCP_CA_CWR && 2839 icsk->icsk_mtup.probe_size && 2840 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2841 tcp_mtup_probe_failed(sk); 2842 /* Restores the reduction we did in tcp_mtup_probe() */ 2843 tp->snd_cwnd++; 2844 tcp_simple_retransmit(sk); 2845 return; 2846 } 2847 2848 /* Otherwise enter Recovery state */ 2849 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2850 fast_rexmit = 1; 2851 } 2852 2853 if (do_lost) 2854 tcp_update_scoreboard(sk, fast_rexmit); 2855 *rexmit = REXMIT_LOST; 2856 } 2857 2858 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2859 { 2860 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2861 struct tcp_sock *tp = tcp_sk(sk); 2862 2863 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2864 rtt_us ? : jiffies_to_usecs(1)); 2865 } 2866 2867 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2868 long seq_rtt_us, long sack_rtt_us, 2869 long ca_rtt_us, struct rate_sample *rs) 2870 { 2871 const struct tcp_sock *tp = tcp_sk(sk); 2872 2873 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2874 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2875 * Karn's algorithm forbids taking RTT if some retransmitted data 2876 * is acked (RFC6298). 2877 */ 2878 if (seq_rtt_us < 0) 2879 seq_rtt_us = sack_rtt_us; 2880 2881 /* RTTM Rule: A TSecr value received in a segment is used to 2882 * update the averaged RTT measurement only if the segment 2883 * acknowledges some new data, i.e., only if it advances the 2884 * left edge of the send window. 2885 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2886 */ 2887 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2888 flag & FLAG_ACKED) { 2889 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2890 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2891 2892 seq_rtt_us = ca_rtt_us = delta_us; 2893 } 2894 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2895 if (seq_rtt_us < 0) 2896 return false; 2897 2898 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2899 * always taken together with ACK, SACK, or TS-opts. Any negative 2900 * values will be skipped with the seq_rtt_us < 0 check above. 2901 */ 2902 tcp_update_rtt_min(sk, ca_rtt_us); 2903 tcp_rtt_estimator(sk, seq_rtt_us); 2904 tcp_set_rto(sk); 2905 2906 /* RFC6298: only reset backoff on valid RTT measurement. */ 2907 inet_csk(sk)->icsk_backoff = 0; 2908 return true; 2909 } 2910 2911 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2912 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2913 { 2914 struct rate_sample rs; 2915 long rtt_us = -1L; 2916 2917 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2918 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2919 2920 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2921 } 2922 2923 2924 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2925 { 2926 const struct inet_connection_sock *icsk = inet_csk(sk); 2927 2928 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2929 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2930 } 2931 2932 /* Restart timer after forward progress on connection. 2933 * RFC2988 recommends to restart timer to now+rto. 2934 */ 2935 void tcp_rearm_rto(struct sock *sk) 2936 { 2937 const struct inet_connection_sock *icsk = inet_csk(sk); 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 2940 /* If the retrans timer is currently being used by Fast Open 2941 * for SYN-ACK retrans purpose, stay put. 2942 */ 2943 if (tp->fastopen_rsk) 2944 return; 2945 2946 if (!tp->packets_out) { 2947 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2948 } else { 2949 u32 rto = inet_csk(sk)->icsk_rto; 2950 /* Offset the time elapsed after installing regular RTO */ 2951 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2952 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2953 s64 delta_us = tcp_rto_delta_us(sk); 2954 /* delta_us may not be positive if the socket is locked 2955 * when the retrans timer fires and is rescheduled. 2956 */ 2957 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2958 } 2959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2960 TCP_RTO_MAX); 2961 } 2962 } 2963 2964 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2965 static void tcp_set_xmit_timer(struct sock *sk) 2966 { 2967 if (!tcp_schedule_loss_probe(sk, true)) 2968 tcp_rearm_rto(sk); 2969 } 2970 2971 /* If we get here, the whole TSO packet has not been acked. */ 2972 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2973 { 2974 struct tcp_sock *tp = tcp_sk(sk); 2975 u32 packets_acked; 2976 2977 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2978 2979 packets_acked = tcp_skb_pcount(skb); 2980 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2981 return 0; 2982 packets_acked -= tcp_skb_pcount(skb); 2983 2984 if (packets_acked) { 2985 BUG_ON(tcp_skb_pcount(skb) == 0); 2986 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2987 } 2988 2989 return packets_acked; 2990 } 2991 2992 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 2993 u32 prior_snd_una) 2994 { 2995 const struct skb_shared_info *shinfo; 2996 2997 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 2998 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 2999 return; 3000 3001 shinfo = skb_shinfo(skb); 3002 if (!before(shinfo->tskey, prior_snd_una) && 3003 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3004 tcp_skb_tsorted_save(skb) { 3005 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3006 } tcp_skb_tsorted_restore(skb); 3007 } 3008 } 3009 3010 /* Remove acknowledged frames from the retransmission queue. If our packet 3011 * is before the ack sequence we can discard it as it's confirmed to have 3012 * arrived at the other end. 3013 */ 3014 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3015 u32 prior_snd_una, 3016 struct tcp_sacktag_state *sack) 3017 { 3018 const struct inet_connection_sock *icsk = inet_csk(sk); 3019 u64 first_ackt, last_ackt; 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 u32 prior_sacked = tp->sacked_out; 3022 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3023 struct sk_buff *skb, *next; 3024 bool fully_acked = true; 3025 long sack_rtt_us = -1L; 3026 long seq_rtt_us = -1L; 3027 long ca_rtt_us = -1L; 3028 u32 pkts_acked = 0; 3029 u32 last_in_flight = 0; 3030 bool rtt_update; 3031 int flag = 0; 3032 3033 first_ackt = 0; 3034 3035 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3036 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3037 const u32 start_seq = scb->seq; 3038 u8 sacked = scb->sacked; 3039 u32 acked_pcount; 3040 3041 tcp_ack_tstamp(sk, skb, prior_snd_una); 3042 3043 /* Determine how many packets and what bytes were acked, tso and else */ 3044 if (after(scb->end_seq, tp->snd_una)) { 3045 if (tcp_skb_pcount(skb) == 1 || 3046 !after(tp->snd_una, scb->seq)) 3047 break; 3048 3049 acked_pcount = tcp_tso_acked(sk, skb); 3050 if (!acked_pcount) 3051 break; 3052 fully_acked = false; 3053 } else { 3054 acked_pcount = tcp_skb_pcount(skb); 3055 } 3056 3057 if (unlikely(sacked & TCPCB_RETRANS)) { 3058 if (sacked & TCPCB_SACKED_RETRANS) 3059 tp->retrans_out -= acked_pcount; 3060 flag |= FLAG_RETRANS_DATA_ACKED; 3061 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3062 last_ackt = skb->skb_mstamp; 3063 WARN_ON_ONCE(last_ackt == 0); 3064 if (!first_ackt) 3065 first_ackt = last_ackt; 3066 3067 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3068 if (before(start_seq, reord)) 3069 reord = start_seq; 3070 if (!after(scb->end_seq, tp->high_seq)) 3071 flag |= FLAG_ORIG_SACK_ACKED; 3072 } 3073 3074 if (sacked & TCPCB_SACKED_ACKED) { 3075 tp->sacked_out -= acked_pcount; 3076 } else if (tcp_is_sack(tp)) { 3077 tp->delivered += acked_pcount; 3078 if (!tcp_skb_spurious_retrans(tp, skb)) 3079 tcp_rack_advance(tp, sacked, scb->end_seq, 3080 skb->skb_mstamp); 3081 } 3082 if (sacked & TCPCB_LOST) 3083 tp->lost_out -= acked_pcount; 3084 3085 tp->packets_out -= acked_pcount; 3086 pkts_acked += acked_pcount; 3087 tcp_rate_skb_delivered(sk, skb, sack->rate); 3088 3089 /* Initial outgoing SYN's get put onto the write_queue 3090 * just like anything else we transmit. It is not 3091 * true data, and if we misinform our callers that 3092 * this ACK acks real data, we will erroneously exit 3093 * connection startup slow start one packet too 3094 * quickly. This is severely frowned upon behavior. 3095 */ 3096 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3097 flag |= FLAG_DATA_ACKED; 3098 } else { 3099 flag |= FLAG_SYN_ACKED; 3100 tp->retrans_stamp = 0; 3101 } 3102 3103 if (!fully_acked) 3104 break; 3105 3106 next = skb_rb_next(skb); 3107 if (unlikely(skb == tp->retransmit_skb_hint)) 3108 tp->retransmit_skb_hint = NULL; 3109 if (unlikely(skb == tp->lost_skb_hint)) 3110 tp->lost_skb_hint = NULL; 3111 tcp_rtx_queue_unlink_and_free(skb, sk); 3112 } 3113 3114 if (!skb) 3115 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3116 3117 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3118 tp->snd_up = tp->snd_una; 3119 3120 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3121 flag |= FLAG_SACK_RENEGING; 3122 3123 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3124 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3125 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3126 } 3127 if (sack->first_sackt) { 3128 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3129 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3130 } 3131 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3132 ca_rtt_us, sack->rate); 3133 3134 if (flag & FLAG_ACKED) { 3135 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3136 if (unlikely(icsk->icsk_mtup.probe_size && 3137 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3138 tcp_mtup_probe_success(sk); 3139 } 3140 3141 if (tcp_is_reno(tp)) { 3142 tcp_remove_reno_sacks(sk, pkts_acked); 3143 } else { 3144 int delta; 3145 3146 /* Non-retransmitted hole got filled? That's reordering */ 3147 if (before(reord, prior_fack)) 3148 tcp_check_sack_reordering(sk, reord, 0); 3149 3150 delta = prior_sacked - tp->sacked_out; 3151 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3152 } 3153 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3154 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3155 /* Do not re-arm RTO if the sack RTT is measured from data sent 3156 * after when the head was last (re)transmitted. Otherwise the 3157 * timeout may continue to extend in loss recovery. 3158 */ 3159 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3160 } 3161 3162 if (icsk->icsk_ca_ops->pkts_acked) { 3163 struct ack_sample sample = { .pkts_acked = pkts_acked, 3164 .rtt_us = sack->rate->rtt_us, 3165 .in_flight = last_in_flight }; 3166 3167 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3168 } 3169 3170 #if FASTRETRANS_DEBUG > 0 3171 WARN_ON((int)tp->sacked_out < 0); 3172 WARN_ON((int)tp->lost_out < 0); 3173 WARN_ON((int)tp->retrans_out < 0); 3174 if (!tp->packets_out && tcp_is_sack(tp)) { 3175 icsk = inet_csk(sk); 3176 if (tp->lost_out) { 3177 pr_debug("Leak l=%u %d\n", 3178 tp->lost_out, icsk->icsk_ca_state); 3179 tp->lost_out = 0; 3180 } 3181 if (tp->sacked_out) { 3182 pr_debug("Leak s=%u %d\n", 3183 tp->sacked_out, icsk->icsk_ca_state); 3184 tp->sacked_out = 0; 3185 } 3186 if (tp->retrans_out) { 3187 pr_debug("Leak r=%u %d\n", 3188 tp->retrans_out, icsk->icsk_ca_state); 3189 tp->retrans_out = 0; 3190 } 3191 } 3192 #endif 3193 return flag; 3194 } 3195 3196 static void tcp_ack_probe(struct sock *sk) 3197 { 3198 struct inet_connection_sock *icsk = inet_csk(sk); 3199 struct sk_buff *head = tcp_send_head(sk); 3200 const struct tcp_sock *tp = tcp_sk(sk); 3201 3202 /* Was it a usable window open? */ 3203 if (!head) 3204 return; 3205 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3206 icsk->icsk_backoff = 0; 3207 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3208 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3209 * This function is not for random using! 3210 */ 3211 } else { 3212 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3213 3214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3215 when, TCP_RTO_MAX); 3216 } 3217 } 3218 3219 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3220 { 3221 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3222 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3223 } 3224 3225 /* Decide wheather to run the increase function of congestion control. */ 3226 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3227 { 3228 /* If reordering is high then always grow cwnd whenever data is 3229 * delivered regardless of its ordering. Otherwise stay conservative 3230 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3231 * new SACK or ECE mark may first advance cwnd here and later reduce 3232 * cwnd in tcp_fastretrans_alert() based on more states. 3233 */ 3234 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3235 return flag & FLAG_FORWARD_PROGRESS; 3236 3237 return flag & FLAG_DATA_ACKED; 3238 } 3239 3240 /* The "ultimate" congestion control function that aims to replace the rigid 3241 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3242 * It's called toward the end of processing an ACK with precise rate 3243 * information. All transmission or retransmission are delayed afterwards. 3244 */ 3245 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3246 int flag, const struct rate_sample *rs) 3247 { 3248 const struct inet_connection_sock *icsk = inet_csk(sk); 3249 3250 if (icsk->icsk_ca_ops->cong_control) { 3251 icsk->icsk_ca_ops->cong_control(sk, rs); 3252 return; 3253 } 3254 3255 if (tcp_in_cwnd_reduction(sk)) { 3256 /* Reduce cwnd if state mandates */ 3257 tcp_cwnd_reduction(sk, acked_sacked, flag); 3258 } else if (tcp_may_raise_cwnd(sk, flag)) { 3259 /* Advance cwnd if state allows */ 3260 tcp_cong_avoid(sk, ack, acked_sacked); 3261 } 3262 tcp_update_pacing_rate(sk); 3263 } 3264 3265 /* Check that window update is acceptable. 3266 * The function assumes that snd_una<=ack<=snd_next. 3267 */ 3268 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3269 const u32 ack, const u32 ack_seq, 3270 const u32 nwin) 3271 { 3272 return after(ack, tp->snd_una) || 3273 after(ack_seq, tp->snd_wl1) || 3274 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3275 } 3276 3277 /* If we update tp->snd_una, also update tp->bytes_acked */ 3278 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3279 { 3280 u32 delta = ack - tp->snd_una; 3281 3282 sock_owned_by_me((struct sock *)tp); 3283 tp->bytes_acked += delta; 3284 tp->snd_una = ack; 3285 } 3286 3287 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3288 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3289 { 3290 u32 delta = seq - tp->rcv_nxt; 3291 3292 sock_owned_by_me((struct sock *)tp); 3293 tp->bytes_received += delta; 3294 tp->rcv_nxt = seq; 3295 } 3296 3297 /* Update our send window. 3298 * 3299 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3300 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3301 */ 3302 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3303 u32 ack_seq) 3304 { 3305 struct tcp_sock *tp = tcp_sk(sk); 3306 int flag = 0; 3307 u32 nwin = ntohs(tcp_hdr(skb)->window); 3308 3309 if (likely(!tcp_hdr(skb)->syn)) 3310 nwin <<= tp->rx_opt.snd_wscale; 3311 3312 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3313 flag |= FLAG_WIN_UPDATE; 3314 tcp_update_wl(tp, ack_seq); 3315 3316 if (tp->snd_wnd != nwin) { 3317 tp->snd_wnd = nwin; 3318 3319 /* Note, it is the only place, where 3320 * fast path is recovered for sending TCP. 3321 */ 3322 tp->pred_flags = 0; 3323 tcp_fast_path_check(sk); 3324 3325 if (!tcp_write_queue_empty(sk)) 3326 tcp_slow_start_after_idle_check(sk); 3327 3328 if (nwin > tp->max_window) { 3329 tp->max_window = nwin; 3330 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3331 } 3332 } 3333 } 3334 3335 tcp_snd_una_update(tp, ack); 3336 3337 return flag; 3338 } 3339 3340 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3341 u32 *last_oow_ack_time) 3342 { 3343 if (*last_oow_ack_time) { 3344 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3345 3346 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3347 NET_INC_STATS(net, mib_idx); 3348 return true; /* rate-limited: don't send yet! */ 3349 } 3350 } 3351 3352 *last_oow_ack_time = tcp_jiffies32; 3353 3354 return false; /* not rate-limited: go ahead, send dupack now! */ 3355 } 3356 3357 /* Return true if we're currently rate-limiting out-of-window ACKs and 3358 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3359 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3360 * attacks that send repeated SYNs or ACKs for the same connection. To 3361 * do this, we do not send a duplicate SYNACK or ACK if the remote 3362 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3363 */ 3364 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3365 int mib_idx, u32 *last_oow_ack_time) 3366 { 3367 /* Data packets without SYNs are not likely part of an ACK loop. */ 3368 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3369 !tcp_hdr(skb)->syn) 3370 return false; 3371 3372 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3373 } 3374 3375 /* RFC 5961 7 [ACK Throttling] */ 3376 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3377 { 3378 /* unprotected vars, we dont care of overwrites */ 3379 static u32 challenge_timestamp; 3380 static unsigned int challenge_count; 3381 struct tcp_sock *tp = tcp_sk(sk); 3382 struct net *net = sock_net(sk); 3383 u32 count, now; 3384 3385 /* First check our per-socket dupack rate limit. */ 3386 if (__tcp_oow_rate_limited(net, 3387 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3388 &tp->last_oow_ack_time)) 3389 return; 3390 3391 /* Then check host-wide RFC 5961 rate limit. */ 3392 now = jiffies / HZ; 3393 if (now != challenge_timestamp) { 3394 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3395 u32 half = (ack_limit + 1) >> 1; 3396 3397 challenge_timestamp = now; 3398 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3399 } 3400 count = READ_ONCE(challenge_count); 3401 if (count > 0) { 3402 WRITE_ONCE(challenge_count, count - 1); 3403 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3404 tcp_send_ack(sk); 3405 } 3406 } 3407 3408 static void tcp_store_ts_recent(struct tcp_sock *tp) 3409 { 3410 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3411 tp->rx_opt.ts_recent_stamp = get_seconds(); 3412 } 3413 3414 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3415 { 3416 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3417 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3418 * extra check below makes sure this can only happen 3419 * for pure ACK frames. -DaveM 3420 * 3421 * Not only, also it occurs for expired timestamps. 3422 */ 3423 3424 if (tcp_paws_check(&tp->rx_opt, 0)) 3425 tcp_store_ts_recent(tp); 3426 } 3427 } 3428 3429 /* This routine deals with acks during a TLP episode. 3430 * We mark the end of a TLP episode on receiving TLP dupack or when 3431 * ack is after tlp_high_seq. 3432 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3433 */ 3434 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3435 { 3436 struct tcp_sock *tp = tcp_sk(sk); 3437 3438 if (before(ack, tp->tlp_high_seq)) 3439 return; 3440 3441 if (flag & FLAG_DSACKING_ACK) { 3442 /* This DSACK means original and TLP probe arrived; no loss */ 3443 tp->tlp_high_seq = 0; 3444 } else if (after(ack, tp->tlp_high_seq)) { 3445 /* ACK advances: there was a loss, so reduce cwnd. Reset 3446 * tlp_high_seq in tcp_init_cwnd_reduction() 3447 */ 3448 tcp_init_cwnd_reduction(sk); 3449 tcp_set_ca_state(sk, TCP_CA_CWR); 3450 tcp_end_cwnd_reduction(sk); 3451 tcp_try_keep_open(sk); 3452 NET_INC_STATS(sock_net(sk), 3453 LINUX_MIB_TCPLOSSPROBERECOVERY); 3454 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3455 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3456 /* Pure dupack: original and TLP probe arrived; no loss */ 3457 tp->tlp_high_seq = 0; 3458 } 3459 } 3460 3461 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3462 { 3463 const struct inet_connection_sock *icsk = inet_csk(sk); 3464 3465 if (icsk->icsk_ca_ops->in_ack_event) 3466 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3467 } 3468 3469 /* Congestion control has updated the cwnd already. So if we're in 3470 * loss recovery then now we do any new sends (for FRTO) or 3471 * retransmits (for CA_Loss or CA_recovery) that make sense. 3472 */ 3473 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3474 { 3475 struct tcp_sock *tp = tcp_sk(sk); 3476 3477 if (rexmit == REXMIT_NONE) 3478 return; 3479 3480 if (unlikely(rexmit == 2)) { 3481 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3482 TCP_NAGLE_OFF); 3483 if (after(tp->snd_nxt, tp->high_seq)) 3484 return; 3485 tp->frto = 0; 3486 } 3487 tcp_xmit_retransmit_queue(sk); 3488 } 3489 3490 /* This routine deals with incoming acks, but not outgoing ones. */ 3491 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3492 { 3493 struct inet_connection_sock *icsk = inet_csk(sk); 3494 struct tcp_sock *tp = tcp_sk(sk); 3495 struct tcp_sacktag_state sack_state; 3496 struct rate_sample rs = { .prior_delivered = 0 }; 3497 u32 prior_snd_una = tp->snd_una; 3498 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3499 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3500 bool is_dupack = false; 3501 int prior_packets = tp->packets_out; 3502 u32 delivered = tp->delivered; 3503 u32 lost = tp->lost; 3504 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3505 u32 prior_fack; 3506 3507 sack_state.first_sackt = 0; 3508 sack_state.rate = &rs; 3509 3510 /* We very likely will need to access rtx queue. */ 3511 prefetch(sk->tcp_rtx_queue.rb_node); 3512 3513 /* If the ack is older than previous acks 3514 * then we can probably ignore it. 3515 */ 3516 if (before(ack, prior_snd_una)) { 3517 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3518 if (before(ack, prior_snd_una - tp->max_window)) { 3519 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3520 tcp_send_challenge_ack(sk, skb); 3521 return -1; 3522 } 3523 goto old_ack; 3524 } 3525 3526 /* If the ack includes data we haven't sent yet, discard 3527 * this segment (RFC793 Section 3.9). 3528 */ 3529 if (after(ack, tp->snd_nxt)) 3530 goto invalid_ack; 3531 3532 if (after(ack, prior_snd_una)) { 3533 flag |= FLAG_SND_UNA_ADVANCED; 3534 icsk->icsk_retransmits = 0; 3535 } 3536 3537 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3538 rs.prior_in_flight = tcp_packets_in_flight(tp); 3539 3540 /* ts_recent update must be made after we are sure that the packet 3541 * is in window. 3542 */ 3543 if (flag & FLAG_UPDATE_TS_RECENT) 3544 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3545 3546 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3547 /* Window is constant, pure forward advance. 3548 * No more checks are required. 3549 * Note, we use the fact that SND.UNA>=SND.WL2. 3550 */ 3551 tcp_update_wl(tp, ack_seq); 3552 tcp_snd_una_update(tp, ack); 3553 flag |= FLAG_WIN_UPDATE; 3554 3555 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3556 3557 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3558 } else { 3559 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3560 3561 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3562 flag |= FLAG_DATA; 3563 else 3564 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3565 3566 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3567 3568 if (TCP_SKB_CB(skb)->sacked) 3569 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3570 &sack_state); 3571 3572 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3573 flag |= FLAG_ECE; 3574 ack_ev_flags |= CA_ACK_ECE; 3575 } 3576 3577 if (flag & FLAG_WIN_UPDATE) 3578 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3579 3580 tcp_in_ack_event(sk, ack_ev_flags); 3581 } 3582 3583 /* We passed data and got it acked, remove any soft error 3584 * log. Something worked... 3585 */ 3586 sk->sk_err_soft = 0; 3587 icsk->icsk_probes_out = 0; 3588 tp->rcv_tstamp = tcp_jiffies32; 3589 if (!prior_packets) 3590 goto no_queue; 3591 3592 /* See if we can take anything off of the retransmit queue. */ 3593 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3594 3595 tcp_rack_update_reo_wnd(sk, &rs); 3596 3597 if (tp->tlp_high_seq) 3598 tcp_process_tlp_ack(sk, ack, flag); 3599 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3600 if (flag & FLAG_SET_XMIT_TIMER) 3601 tcp_set_xmit_timer(sk); 3602 3603 if (tcp_ack_is_dubious(sk, flag)) { 3604 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3605 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3606 &rexmit); 3607 } 3608 3609 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3610 sk_dst_confirm(sk); 3611 3612 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3613 lost = tp->lost - lost; /* freshly marked lost */ 3614 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3615 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3616 tcp_xmit_recovery(sk, rexmit); 3617 return 1; 3618 3619 no_queue: 3620 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3621 if (flag & FLAG_DSACKING_ACK) 3622 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3623 &rexmit); 3624 /* If this ack opens up a zero window, clear backoff. It was 3625 * being used to time the probes, and is probably far higher than 3626 * it needs to be for normal retransmission. 3627 */ 3628 tcp_ack_probe(sk); 3629 3630 if (tp->tlp_high_seq) 3631 tcp_process_tlp_ack(sk, ack, flag); 3632 return 1; 3633 3634 invalid_ack: 3635 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3636 return -1; 3637 3638 old_ack: 3639 /* If data was SACKed, tag it and see if we should send more data. 3640 * If data was DSACKed, see if we can undo a cwnd reduction. 3641 */ 3642 if (TCP_SKB_CB(skb)->sacked) { 3643 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3644 &sack_state); 3645 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3646 &rexmit); 3647 tcp_xmit_recovery(sk, rexmit); 3648 } 3649 3650 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3651 return 0; 3652 } 3653 3654 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3655 bool syn, struct tcp_fastopen_cookie *foc, 3656 bool exp_opt) 3657 { 3658 /* Valid only in SYN or SYN-ACK with an even length. */ 3659 if (!foc || !syn || len < 0 || (len & 1)) 3660 return; 3661 3662 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3663 len <= TCP_FASTOPEN_COOKIE_MAX) 3664 memcpy(foc->val, cookie, len); 3665 else if (len != 0) 3666 len = -1; 3667 foc->len = len; 3668 foc->exp = exp_opt; 3669 } 3670 3671 static void smc_parse_options(const struct tcphdr *th, 3672 struct tcp_options_received *opt_rx, 3673 const unsigned char *ptr, 3674 int opsize) 3675 { 3676 #if IS_ENABLED(CONFIG_SMC) 3677 if (static_branch_unlikely(&tcp_have_smc)) { 3678 if (th->syn && !(opsize & 1) && 3679 opsize >= TCPOLEN_EXP_SMC_BASE && 3680 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3681 opt_rx->smc_ok = 1; 3682 } 3683 #endif 3684 } 3685 3686 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3687 * But, this can also be called on packets in the established flow when 3688 * the fast version below fails. 3689 */ 3690 void tcp_parse_options(const struct net *net, 3691 const struct sk_buff *skb, 3692 struct tcp_options_received *opt_rx, int estab, 3693 struct tcp_fastopen_cookie *foc) 3694 { 3695 const unsigned char *ptr; 3696 const struct tcphdr *th = tcp_hdr(skb); 3697 int length = (th->doff * 4) - sizeof(struct tcphdr); 3698 3699 ptr = (const unsigned char *)(th + 1); 3700 opt_rx->saw_tstamp = 0; 3701 3702 while (length > 0) { 3703 int opcode = *ptr++; 3704 int opsize; 3705 3706 switch (opcode) { 3707 case TCPOPT_EOL: 3708 return; 3709 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3710 length--; 3711 continue; 3712 default: 3713 opsize = *ptr++; 3714 if (opsize < 2) /* "silly options" */ 3715 return; 3716 if (opsize > length) 3717 return; /* don't parse partial options */ 3718 switch (opcode) { 3719 case TCPOPT_MSS: 3720 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3721 u16 in_mss = get_unaligned_be16(ptr); 3722 if (in_mss) { 3723 if (opt_rx->user_mss && 3724 opt_rx->user_mss < in_mss) 3725 in_mss = opt_rx->user_mss; 3726 opt_rx->mss_clamp = in_mss; 3727 } 3728 } 3729 break; 3730 case TCPOPT_WINDOW: 3731 if (opsize == TCPOLEN_WINDOW && th->syn && 3732 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3733 __u8 snd_wscale = *(__u8 *)ptr; 3734 opt_rx->wscale_ok = 1; 3735 if (snd_wscale > TCP_MAX_WSCALE) { 3736 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3737 __func__, 3738 snd_wscale, 3739 TCP_MAX_WSCALE); 3740 snd_wscale = TCP_MAX_WSCALE; 3741 } 3742 opt_rx->snd_wscale = snd_wscale; 3743 } 3744 break; 3745 case TCPOPT_TIMESTAMP: 3746 if ((opsize == TCPOLEN_TIMESTAMP) && 3747 ((estab && opt_rx->tstamp_ok) || 3748 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3749 opt_rx->saw_tstamp = 1; 3750 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3751 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3752 } 3753 break; 3754 case TCPOPT_SACK_PERM: 3755 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3756 !estab && net->ipv4.sysctl_tcp_sack) { 3757 opt_rx->sack_ok = TCP_SACK_SEEN; 3758 tcp_sack_reset(opt_rx); 3759 } 3760 break; 3761 3762 case TCPOPT_SACK: 3763 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3764 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3765 opt_rx->sack_ok) { 3766 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3767 } 3768 break; 3769 #ifdef CONFIG_TCP_MD5SIG 3770 case TCPOPT_MD5SIG: 3771 /* 3772 * The MD5 Hash has already been 3773 * checked (see tcp_v{4,6}_do_rcv()). 3774 */ 3775 break; 3776 #endif 3777 case TCPOPT_FASTOPEN: 3778 tcp_parse_fastopen_option( 3779 opsize - TCPOLEN_FASTOPEN_BASE, 3780 ptr, th->syn, foc, false); 3781 break; 3782 3783 case TCPOPT_EXP: 3784 /* Fast Open option shares code 254 using a 3785 * 16 bits magic number. 3786 */ 3787 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3788 get_unaligned_be16(ptr) == 3789 TCPOPT_FASTOPEN_MAGIC) 3790 tcp_parse_fastopen_option(opsize - 3791 TCPOLEN_EXP_FASTOPEN_BASE, 3792 ptr + 2, th->syn, foc, true); 3793 else 3794 smc_parse_options(th, opt_rx, ptr, 3795 opsize); 3796 break; 3797 3798 } 3799 ptr += opsize-2; 3800 length -= opsize; 3801 } 3802 } 3803 } 3804 EXPORT_SYMBOL(tcp_parse_options); 3805 3806 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3807 { 3808 const __be32 *ptr = (const __be32 *)(th + 1); 3809 3810 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3811 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3812 tp->rx_opt.saw_tstamp = 1; 3813 ++ptr; 3814 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3815 ++ptr; 3816 if (*ptr) 3817 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3818 else 3819 tp->rx_opt.rcv_tsecr = 0; 3820 return true; 3821 } 3822 return false; 3823 } 3824 3825 /* Fast parse options. This hopes to only see timestamps. 3826 * If it is wrong it falls back on tcp_parse_options(). 3827 */ 3828 static bool tcp_fast_parse_options(const struct net *net, 3829 const struct sk_buff *skb, 3830 const struct tcphdr *th, struct tcp_sock *tp) 3831 { 3832 /* In the spirit of fast parsing, compare doff directly to constant 3833 * values. Because equality is used, short doff can be ignored here. 3834 */ 3835 if (th->doff == (sizeof(*th) / 4)) { 3836 tp->rx_opt.saw_tstamp = 0; 3837 return false; 3838 } else if (tp->rx_opt.tstamp_ok && 3839 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3840 if (tcp_parse_aligned_timestamp(tp, th)) 3841 return true; 3842 } 3843 3844 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3845 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3846 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3847 3848 return true; 3849 } 3850 3851 #ifdef CONFIG_TCP_MD5SIG 3852 /* 3853 * Parse MD5 Signature option 3854 */ 3855 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3856 { 3857 int length = (th->doff << 2) - sizeof(*th); 3858 const u8 *ptr = (const u8 *)(th + 1); 3859 3860 /* If the TCP option is too short, we can short cut */ 3861 if (length < TCPOLEN_MD5SIG) 3862 return NULL; 3863 3864 while (length > 0) { 3865 int opcode = *ptr++; 3866 int opsize; 3867 3868 switch (opcode) { 3869 case TCPOPT_EOL: 3870 return NULL; 3871 case TCPOPT_NOP: 3872 length--; 3873 continue; 3874 default: 3875 opsize = *ptr++; 3876 if (opsize < 2 || opsize > length) 3877 return NULL; 3878 if (opcode == TCPOPT_MD5SIG) 3879 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3880 } 3881 ptr += opsize - 2; 3882 length -= opsize; 3883 } 3884 return NULL; 3885 } 3886 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3887 #endif 3888 3889 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3890 * 3891 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3892 * it can pass through stack. So, the following predicate verifies that 3893 * this segment is not used for anything but congestion avoidance or 3894 * fast retransmit. Moreover, we even are able to eliminate most of such 3895 * second order effects, if we apply some small "replay" window (~RTO) 3896 * to timestamp space. 3897 * 3898 * All these measures still do not guarantee that we reject wrapped ACKs 3899 * on networks with high bandwidth, when sequence space is recycled fastly, 3900 * but it guarantees that such events will be very rare and do not affect 3901 * connection seriously. This doesn't look nice, but alas, PAWS is really 3902 * buggy extension. 3903 * 3904 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3905 * states that events when retransmit arrives after original data are rare. 3906 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3907 * the biggest problem on large power networks even with minor reordering. 3908 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3909 * up to bandwidth of 18Gigabit/sec. 8) ] 3910 */ 3911 3912 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3913 { 3914 const struct tcp_sock *tp = tcp_sk(sk); 3915 const struct tcphdr *th = tcp_hdr(skb); 3916 u32 seq = TCP_SKB_CB(skb)->seq; 3917 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3918 3919 return (/* 1. Pure ACK with correct sequence number. */ 3920 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3921 3922 /* 2. ... and duplicate ACK. */ 3923 ack == tp->snd_una && 3924 3925 /* 3. ... and does not update window. */ 3926 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3927 3928 /* 4. ... and sits in replay window. */ 3929 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3930 } 3931 3932 static inline bool tcp_paws_discard(const struct sock *sk, 3933 const struct sk_buff *skb) 3934 { 3935 const struct tcp_sock *tp = tcp_sk(sk); 3936 3937 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3938 !tcp_disordered_ack(sk, skb); 3939 } 3940 3941 /* Check segment sequence number for validity. 3942 * 3943 * Segment controls are considered valid, if the segment 3944 * fits to the window after truncation to the window. Acceptability 3945 * of data (and SYN, FIN, of course) is checked separately. 3946 * See tcp_data_queue(), for example. 3947 * 3948 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3949 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3950 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3951 * (borrowed from freebsd) 3952 */ 3953 3954 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3955 { 3956 return !before(end_seq, tp->rcv_wup) && 3957 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3958 } 3959 3960 /* When we get a reset we do this. */ 3961 void tcp_reset(struct sock *sk) 3962 { 3963 trace_tcp_receive_reset(sk); 3964 3965 /* We want the right error as BSD sees it (and indeed as we do). */ 3966 switch (sk->sk_state) { 3967 case TCP_SYN_SENT: 3968 sk->sk_err = ECONNREFUSED; 3969 break; 3970 case TCP_CLOSE_WAIT: 3971 sk->sk_err = EPIPE; 3972 break; 3973 case TCP_CLOSE: 3974 return; 3975 default: 3976 sk->sk_err = ECONNRESET; 3977 } 3978 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3979 smp_wmb(); 3980 3981 tcp_done(sk); 3982 3983 if (!sock_flag(sk, SOCK_DEAD)) 3984 sk->sk_error_report(sk); 3985 } 3986 3987 /* 3988 * Process the FIN bit. This now behaves as it is supposed to work 3989 * and the FIN takes effect when it is validly part of sequence 3990 * space. Not before when we get holes. 3991 * 3992 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3993 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3994 * TIME-WAIT) 3995 * 3996 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3997 * close and we go into CLOSING (and later onto TIME-WAIT) 3998 * 3999 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4000 */ 4001 void tcp_fin(struct sock *sk) 4002 { 4003 struct tcp_sock *tp = tcp_sk(sk); 4004 4005 inet_csk_schedule_ack(sk); 4006 4007 sk->sk_shutdown |= RCV_SHUTDOWN; 4008 sock_set_flag(sk, SOCK_DONE); 4009 4010 switch (sk->sk_state) { 4011 case TCP_SYN_RECV: 4012 case TCP_ESTABLISHED: 4013 /* Move to CLOSE_WAIT */ 4014 tcp_set_state(sk, TCP_CLOSE_WAIT); 4015 inet_csk(sk)->icsk_ack.pingpong = 1; 4016 break; 4017 4018 case TCP_CLOSE_WAIT: 4019 case TCP_CLOSING: 4020 /* Received a retransmission of the FIN, do 4021 * nothing. 4022 */ 4023 break; 4024 case TCP_LAST_ACK: 4025 /* RFC793: Remain in the LAST-ACK state. */ 4026 break; 4027 4028 case TCP_FIN_WAIT1: 4029 /* This case occurs when a simultaneous close 4030 * happens, we must ack the received FIN and 4031 * enter the CLOSING state. 4032 */ 4033 tcp_send_ack(sk); 4034 tcp_set_state(sk, TCP_CLOSING); 4035 break; 4036 case TCP_FIN_WAIT2: 4037 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4038 tcp_send_ack(sk); 4039 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4040 break; 4041 default: 4042 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4043 * cases we should never reach this piece of code. 4044 */ 4045 pr_err("%s: Impossible, sk->sk_state=%d\n", 4046 __func__, sk->sk_state); 4047 break; 4048 } 4049 4050 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4051 * Probably, we should reset in this case. For now drop them. 4052 */ 4053 skb_rbtree_purge(&tp->out_of_order_queue); 4054 if (tcp_is_sack(tp)) 4055 tcp_sack_reset(&tp->rx_opt); 4056 sk_mem_reclaim(sk); 4057 4058 if (!sock_flag(sk, SOCK_DEAD)) { 4059 sk->sk_state_change(sk); 4060 4061 /* Do not send POLL_HUP for half duplex close. */ 4062 if (sk->sk_shutdown == SHUTDOWN_MASK || 4063 sk->sk_state == TCP_CLOSE) 4064 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4065 else 4066 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4067 } 4068 } 4069 4070 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4071 u32 end_seq) 4072 { 4073 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4074 if (before(seq, sp->start_seq)) 4075 sp->start_seq = seq; 4076 if (after(end_seq, sp->end_seq)) 4077 sp->end_seq = end_seq; 4078 return true; 4079 } 4080 return false; 4081 } 4082 4083 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4084 { 4085 struct tcp_sock *tp = tcp_sk(sk); 4086 4087 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4088 int mib_idx; 4089 4090 if (before(seq, tp->rcv_nxt)) 4091 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4092 else 4093 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4094 4095 NET_INC_STATS(sock_net(sk), mib_idx); 4096 4097 tp->rx_opt.dsack = 1; 4098 tp->duplicate_sack[0].start_seq = seq; 4099 tp->duplicate_sack[0].end_seq = end_seq; 4100 } 4101 } 4102 4103 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4104 { 4105 struct tcp_sock *tp = tcp_sk(sk); 4106 4107 if (!tp->rx_opt.dsack) 4108 tcp_dsack_set(sk, seq, end_seq); 4109 else 4110 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4111 } 4112 4113 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4114 { 4115 struct tcp_sock *tp = tcp_sk(sk); 4116 4117 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4118 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4119 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4120 tcp_enter_quickack_mode(sk); 4121 4122 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4123 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4124 4125 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4126 end_seq = tp->rcv_nxt; 4127 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4128 } 4129 } 4130 4131 tcp_send_ack(sk); 4132 } 4133 4134 /* These routines update the SACK block as out-of-order packets arrive or 4135 * in-order packets close up the sequence space. 4136 */ 4137 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4138 { 4139 int this_sack; 4140 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4141 struct tcp_sack_block *swalk = sp + 1; 4142 4143 /* See if the recent change to the first SACK eats into 4144 * or hits the sequence space of other SACK blocks, if so coalesce. 4145 */ 4146 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4147 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4148 int i; 4149 4150 /* Zap SWALK, by moving every further SACK up by one slot. 4151 * Decrease num_sacks. 4152 */ 4153 tp->rx_opt.num_sacks--; 4154 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4155 sp[i] = sp[i + 1]; 4156 continue; 4157 } 4158 this_sack++, swalk++; 4159 } 4160 } 4161 4162 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4163 { 4164 struct tcp_sock *tp = tcp_sk(sk); 4165 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4166 int cur_sacks = tp->rx_opt.num_sacks; 4167 int this_sack; 4168 4169 if (!cur_sacks) 4170 goto new_sack; 4171 4172 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4173 if (tcp_sack_extend(sp, seq, end_seq)) { 4174 /* Rotate this_sack to the first one. */ 4175 for (; this_sack > 0; this_sack--, sp--) 4176 swap(*sp, *(sp - 1)); 4177 if (cur_sacks > 1) 4178 tcp_sack_maybe_coalesce(tp); 4179 return; 4180 } 4181 } 4182 4183 /* Could not find an adjacent existing SACK, build a new one, 4184 * put it at the front, and shift everyone else down. We 4185 * always know there is at least one SACK present already here. 4186 * 4187 * If the sack array is full, forget about the last one. 4188 */ 4189 if (this_sack >= TCP_NUM_SACKS) { 4190 this_sack--; 4191 tp->rx_opt.num_sacks--; 4192 sp--; 4193 } 4194 for (; this_sack > 0; this_sack--, sp--) 4195 *sp = *(sp - 1); 4196 4197 new_sack: 4198 /* Build the new head SACK, and we're done. */ 4199 sp->start_seq = seq; 4200 sp->end_seq = end_seq; 4201 tp->rx_opt.num_sacks++; 4202 } 4203 4204 /* RCV.NXT advances, some SACKs should be eaten. */ 4205 4206 static void tcp_sack_remove(struct tcp_sock *tp) 4207 { 4208 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4209 int num_sacks = tp->rx_opt.num_sacks; 4210 int this_sack; 4211 4212 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4213 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4214 tp->rx_opt.num_sacks = 0; 4215 return; 4216 } 4217 4218 for (this_sack = 0; this_sack < num_sacks;) { 4219 /* Check if the start of the sack is covered by RCV.NXT. */ 4220 if (!before(tp->rcv_nxt, sp->start_seq)) { 4221 int i; 4222 4223 /* RCV.NXT must cover all the block! */ 4224 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4225 4226 /* Zap this SACK, by moving forward any other SACKS. */ 4227 for (i = this_sack+1; i < num_sacks; i++) 4228 tp->selective_acks[i-1] = tp->selective_acks[i]; 4229 num_sacks--; 4230 continue; 4231 } 4232 this_sack++; 4233 sp++; 4234 } 4235 tp->rx_opt.num_sacks = num_sacks; 4236 } 4237 4238 /** 4239 * tcp_try_coalesce - try to merge skb to prior one 4240 * @sk: socket 4241 * @dest: destination queue 4242 * @to: prior buffer 4243 * @from: buffer to add in queue 4244 * @fragstolen: pointer to boolean 4245 * 4246 * Before queueing skb @from after @to, try to merge them 4247 * to reduce overall memory use and queue lengths, if cost is small. 4248 * Packets in ofo or receive queues can stay a long time. 4249 * Better try to coalesce them right now to avoid future collapses. 4250 * Returns true if caller should free @from instead of queueing it 4251 */ 4252 static bool tcp_try_coalesce(struct sock *sk, 4253 struct sk_buff *to, 4254 struct sk_buff *from, 4255 bool *fragstolen) 4256 { 4257 int delta; 4258 4259 *fragstolen = false; 4260 4261 /* Its possible this segment overlaps with prior segment in queue */ 4262 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4263 return false; 4264 4265 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4266 return false; 4267 4268 atomic_add(delta, &sk->sk_rmem_alloc); 4269 sk_mem_charge(sk, delta); 4270 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4271 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4272 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4273 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4274 4275 if (TCP_SKB_CB(from)->has_rxtstamp) { 4276 TCP_SKB_CB(to)->has_rxtstamp = true; 4277 to->tstamp = from->tstamp; 4278 } 4279 4280 return true; 4281 } 4282 4283 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4284 { 4285 sk_drops_add(sk, skb); 4286 __kfree_skb(skb); 4287 } 4288 4289 /* This one checks to see if we can put data from the 4290 * out_of_order queue into the receive_queue. 4291 */ 4292 static void tcp_ofo_queue(struct sock *sk) 4293 { 4294 struct tcp_sock *tp = tcp_sk(sk); 4295 __u32 dsack_high = tp->rcv_nxt; 4296 bool fin, fragstolen, eaten; 4297 struct sk_buff *skb, *tail; 4298 struct rb_node *p; 4299 4300 p = rb_first(&tp->out_of_order_queue); 4301 while (p) { 4302 skb = rb_to_skb(p); 4303 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4304 break; 4305 4306 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4307 __u32 dsack = dsack_high; 4308 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4309 dsack_high = TCP_SKB_CB(skb)->end_seq; 4310 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4311 } 4312 p = rb_next(p); 4313 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4314 4315 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4316 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4317 tcp_drop(sk, skb); 4318 continue; 4319 } 4320 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4321 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4322 TCP_SKB_CB(skb)->end_seq); 4323 4324 tail = skb_peek_tail(&sk->sk_receive_queue); 4325 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4326 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4327 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4328 if (!eaten) 4329 __skb_queue_tail(&sk->sk_receive_queue, skb); 4330 else 4331 kfree_skb_partial(skb, fragstolen); 4332 4333 if (unlikely(fin)) { 4334 tcp_fin(sk); 4335 /* tcp_fin() purges tp->out_of_order_queue, 4336 * so we must end this loop right now. 4337 */ 4338 break; 4339 } 4340 } 4341 } 4342 4343 static bool tcp_prune_ofo_queue(struct sock *sk); 4344 static int tcp_prune_queue(struct sock *sk); 4345 4346 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4347 unsigned int size) 4348 { 4349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4350 !sk_rmem_schedule(sk, skb, size)) { 4351 4352 if (tcp_prune_queue(sk) < 0) 4353 return -1; 4354 4355 while (!sk_rmem_schedule(sk, skb, size)) { 4356 if (!tcp_prune_ofo_queue(sk)) 4357 return -1; 4358 } 4359 } 4360 return 0; 4361 } 4362 4363 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4364 { 4365 struct tcp_sock *tp = tcp_sk(sk); 4366 struct rb_node **p, *parent; 4367 struct sk_buff *skb1; 4368 u32 seq, end_seq; 4369 bool fragstolen; 4370 4371 tcp_ecn_check_ce(tp, skb); 4372 4373 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4374 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4375 tcp_drop(sk, skb); 4376 return; 4377 } 4378 4379 /* Disable header prediction. */ 4380 tp->pred_flags = 0; 4381 inet_csk_schedule_ack(sk); 4382 4383 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4384 seq = TCP_SKB_CB(skb)->seq; 4385 end_seq = TCP_SKB_CB(skb)->end_seq; 4386 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4387 tp->rcv_nxt, seq, end_seq); 4388 4389 p = &tp->out_of_order_queue.rb_node; 4390 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4391 /* Initial out of order segment, build 1 SACK. */ 4392 if (tcp_is_sack(tp)) { 4393 tp->rx_opt.num_sacks = 1; 4394 tp->selective_acks[0].start_seq = seq; 4395 tp->selective_acks[0].end_seq = end_seq; 4396 } 4397 rb_link_node(&skb->rbnode, NULL, p); 4398 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4399 tp->ooo_last_skb = skb; 4400 goto end; 4401 } 4402 4403 /* In the typical case, we are adding an skb to the end of the list. 4404 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4405 */ 4406 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4407 skb, &fragstolen)) { 4408 coalesce_done: 4409 tcp_grow_window(sk, skb); 4410 kfree_skb_partial(skb, fragstolen); 4411 skb = NULL; 4412 goto add_sack; 4413 } 4414 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4415 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4416 parent = &tp->ooo_last_skb->rbnode; 4417 p = &parent->rb_right; 4418 goto insert; 4419 } 4420 4421 /* Find place to insert this segment. Handle overlaps on the way. */ 4422 parent = NULL; 4423 while (*p) { 4424 parent = *p; 4425 skb1 = rb_to_skb(parent); 4426 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4427 p = &parent->rb_left; 4428 continue; 4429 } 4430 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4431 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4432 /* All the bits are present. Drop. */ 4433 NET_INC_STATS(sock_net(sk), 4434 LINUX_MIB_TCPOFOMERGE); 4435 __kfree_skb(skb); 4436 skb = NULL; 4437 tcp_dsack_set(sk, seq, end_seq); 4438 goto add_sack; 4439 } 4440 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4441 /* Partial overlap. */ 4442 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4443 } else { 4444 /* skb's seq == skb1's seq and skb covers skb1. 4445 * Replace skb1 with skb. 4446 */ 4447 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4448 &tp->out_of_order_queue); 4449 tcp_dsack_extend(sk, 4450 TCP_SKB_CB(skb1)->seq, 4451 TCP_SKB_CB(skb1)->end_seq); 4452 NET_INC_STATS(sock_net(sk), 4453 LINUX_MIB_TCPOFOMERGE); 4454 __kfree_skb(skb1); 4455 goto merge_right; 4456 } 4457 } else if (tcp_try_coalesce(sk, skb1, 4458 skb, &fragstolen)) { 4459 goto coalesce_done; 4460 } 4461 p = &parent->rb_right; 4462 } 4463 insert: 4464 /* Insert segment into RB tree. */ 4465 rb_link_node(&skb->rbnode, parent, p); 4466 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4467 4468 merge_right: 4469 /* Remove other segments covered by skb. */ 4470 while ((skb1 = skb_rb_next(skb)) != NULL) { 4471 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4472 break; 4473 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4474 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4475 end_seq); 4476 break; 4477 } 4478 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4479 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4480 TCP_SKB_CB(skb1)->end_seq); 4481 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4482 tcp_drop(sk, skb1); 4483 } 4484 /* If there is no skb after us, we are the last_skb ! */ 4485 if (!skb1) 4486 tp->ooo_last_skb = skb; 4487 4488 add_sack: 4489 if (tcp_is_sack(tp)) 4490 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4491 end: 4492 if (skb) { 4493 tcp_grow_window(sk, skb); 4494 skb_condense(skb); 4495 skb_set_owner_r(skb, sk); 4496 } 4497 } 4498 4499 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4500 bool *fragstolen) 4501 { 4502 int eaten; 4503 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4504 4505 __skb_pull(skb, hdrlen); 4506 eaten = (tail && 4507 tcp_try_coalesce(sk, tail, 4508 skb, fragstolen)) ? 1 : 0; 4509 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4510 if (!eaten) { 4511 __skb_queue_tail(&sk->sk_receive_queue, skb); 4512 skb_set_owner_r(skb, sk); 4513 } 4514 return eaten; 4515 } 4516 4517 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4518 { 4519 struct sk_buff *skb; 4520 int err = -ENOMEM; 4521 int data_len = 0; 4522 bool fragstolen; 4523 4524 if (size == 0) 4525 return 0; 4526 4527 if (size > PAGE_SIZE) { 4528 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4529 4530 data_len = npages << PAGE_SHIFT; 4531 size = data_len + (size & ~PAGE_MASK); 4532 } 4533 skb = alloc_skb_with_frags(size - data_len, data_len, 4534 PAGE_ALLOC_COSTLY_ORDER, 4535 &err, sk->sk_allocation); 4536 if (!skb) 4537 goto err; 4538 4539 skb_put(skb, size - data_len); 4540 skb->data_len = data_len; 4541 skb->len = size; 4542 4543 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4544 goto err_free; 4545 4546 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4547 if (err) 4548 goto err_free; 4549 4550 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4551 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4552 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4553 4554 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4555 WARN_ON_ONCE(fragstolen); /* should not happen */ 4556 __kfree_skb(skb); 4557 } 4558 return size; 4559 4560 err_free: 4561 kfree_skb(skb); 4562 err: 4563 return err; 4564 4565 } 4566 4567 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4568 { 4569 struct tcp_sock *tp = tcp_sk(sk); 4570 bool fragstolen; 4571 int eaten; 4572 4573 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4574 __kfree_skb(skb); 4575 return; 4576 } 4577 skb_dst_drop(skb); 4578 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4579 4580 tcp_ecn_accept_cwr(tp, skb); 4581 4582 tp->rx_opt.dsack = 0; 4583 4584 /* Queue data for delivery to the user. 4585 * Packets in sequence go to the receive queue. 4586 * Out of sequence packets to the out_of_order_queue. 4587 */ 4588 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4589 if (tcp_receive_window(tp) == 0) 4590 goto out_of_window; 4591 4592 /* Ok. In sequence. In window. */ 4593 queue_and_out: 4594 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4595 sk_forced_mem_schedule(sk, skb->truesize); 4596 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4597 goto drop; 4598 4599 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4600 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4601 if (skb->len) 4602 tcp_event_data_recv(sk, skb); 4603 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4604 tcp_fin(sk); 4605 4606 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4607 tcp_ofo_queue(sk); 4608 4609 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4610 * gap in queue is filled. 4611 */ 4612 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4613 inet_csk(sk)->icsk_ack.pingpong = 0; 4614 } 4615 4616 if (tp->rx_opt.num_sacks) 4617 tcp_sack_remove(tp); 4618 4619 tcp_fast_path_check(sk); 4620 4621 if (eaten > 0) 4622 kfree_skb_partial(skb, fragstolen); 4623 if (!sock_flag(sk, SOCK_DEAD)) 4624 sk->sk_data_ready(sk); 4625 return; 4626 } 4627 4628 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4629 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4630 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4631 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4632 4633 out_of_window: 4634 tcp_enter_quickack_mode(sk); 4635 inet_csk_schedule_ack(sk); 4636 drop: 4637 tcp_drop(sk, skb); 4638 return; 4639 } 4640 4641 /* Out of window. F.e. zero window probe. */ 4642 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4643 goto out_of_window; 4644 4645 tcp_enter_quickack_mode(sk); 4646 4647 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4648 /* Partial packet, seq < rcv_next < end_seq */ 4649 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4650 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4651 TCP_SKB_CB(skb)->end_seq); 4652 4653 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4654 4655 /* If window is closed, drop tail of packet. But after 4656 * remembering D-SACK for its head made in previous line. 4657 */ 4658 if (!tcp_receive_window(tp)) 4659 goto out_of_window; 4660 goto queue_and_out; 4661 } 4662 4663 tcp_data_queue_ofo(sk, skb); 4664 } 4665 4666 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4667 { 4668 if (list) 4669 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4670 4671 return skb_rb_next(skb); 4672 } 4673 4674 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4675 struct sk_buff_head *list, 4676 struct rb_root *root) 4677 { 4678 struct sk_buff *next = tcp_skb_next(skb, list); 4679 4680 if (list) 4681 __skb_unlink(skb, list); 4682 else 4683 rb_erase(&skb->rbnode, root); 4684 4685 __kfree_skb(skb); 4686 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4687 4688 return next; 4689 } 4690 4691 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4692 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4693 { 4694 struct rb_node **p = &root->rb_node; 4695 struct rb_node *parent = NULL; 4696 struct sk_buff *skb1; 4697 4698 while (*p) { 4699 parent = *p; 4700 skb1 = rb_to_skb(parent); 4701 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4702 p = &parent->rb_left; 4703 else 4704 p = &parent->rb_right; 4705 } 4706 rb_link_node(&skb->rbnode, parent, p); 4707 rb_insert_color(&skb->rbnode, root); 4708 } 4709 4710 /* Collapse contiguous sequence of skbs head..tail with 4711 * sequence numbers start..end. 4712 * 4713 * If tail is NULL, this means until the end of the queue. 4714 * 4715 * Segments with FIN/SYN are not collapsed (only because this 4716 * simplifies code) 4717 */ 4718 static void 4719 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4720 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4721 { 4722 struct sk_buff *skb = head, *n; 4723 struct sk_buff_head tmp; 4724 bool end_of_skbs; 4725 4726 /* First, check that queue is collapsible and find 4727 * the point where collapsing can be useful. 4728 */ 4729 restart: 4730 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4731 n = tcp_skb_next(skb, list); 4732 4733 /* No new bits? It is possible on ofo queue. */ 4734 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4735 skb = tcp_collapse_one(sk, skb, list, root); 4736 if (!skb) 4737 break; 4738 goto restart; 4739 } 4740 4741 /* The first skb to collapse is: 4742 * - not SYN/FIN and 4743 * - bloated or contains data before "start" or 4744 * overlaps to the next one. 4745 */ 4746 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4747 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4748 before(TCP_SKB_CB(skb)->seq, start))) { 4749 end_of_skbs = false; 4750 break; 4751 } 4752 4753 if (n && n != tail && 4754 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4755 end_of_skbs = false; 4756 break; 4757 } 4758 4759 /* Decided to skip this, advance start seq. */ 4760 start = TCP_SKB_CB(skb)->end_seq; 4761 } 4762 if (end_of_skbs || 4763 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4764 return; 4765 4766 __skb_queue_head_init(&tmp); 4767 4768 while (before(start, end)) { 4769 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4770 struct sk_buff *nskb; 4771 4772 nskb = alloc_skb(copy, GFP_ATOMIC); 4773 if (!nskb) 4774 break; 4775 4776 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4777 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4778 if (list) 4779 __skb_queue_before(list, skb, nskb); 4780 else 4781 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4782 skb_set_owner_r(nskb, sk); 4783 4784 /* Copy data, releasing collapsed skbs. */ 4785 while (copy > 0) { 4786 int offset = start - TCP_SKB_CB(skb)->seq; 4787 int size = TCP_SKB_CB(skb)->end_seq - start; 4788 4789 BUG_ON(offset < 0); 4790 if (size > 0) { 4791 size = min(copy, size); 4792 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4793 BUG(); 4794 TCP_SKB_CB(nskb)->end_seq += size; 4795 copy -= size; 4796 start += size; 4797 } 4798 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4799 skb = tcp_collapse_one(sk, skb, list, root); 4800 if (!skb || 4801 skb == tail || 4802 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4803 goto end; 4804 } 4805 } 4806 } 4807 end: 4808 skb_queue_walk_safe(&tmp, skb, n) 4809 tcp_rbtree_insert(root, skb); 4810 } 4811 4812 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4813 * and tcp_collapse() them until all the queue is collapsed. 4814 */ 4815 static void tcp_collapse_ofo_queue(struct sock *sk) 4816 { 4817 struct tcp_sock *tp = tcp_sk(sk); 4818 struct sk_buff *skb, *head; 4819 u32 start, end; 4820 4821 skb = skb_rb_first(&tp->out_of_order_queue); 4822 new_range: 4823 if (!skb) { 4824 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4825 return; 4826 } 4827 start = TCP_SKB_CB(skb)->seq; 4828 end = TCP_SKB_CB(skb)->end_seq; 4829 4830 for (head = skb;;) { 4831 skb = skb_rb_next(skb); 4832 4833 /* Range is terminated when we see a gap or when 4834 * we are at the queue end. 4835 */ 4836 if (!skb || 4837 after(TCP_SKB_CB(skb)->seq, end) || 4838 before(TCP_SKB_CB(skb)->end_seq, start)) { 4839 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4840 head, skb, start, end); 4841 goto new_range; 4842 } 4843 4844 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4845 start = TCP_SKB_CB(skb)->seq; 4846 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4847 end = TCP_SKB_CB(skb)->end_seq; 4848 } 4849 } 4850 4851 /* 4852 * Clean the out-of-order queue to make room. 4853 * We drop high sequences packets to : 4854 * 1) Let a chance for holes to be filled. 4855 * 2) not add too big latencies if thousands of packets sit there. 4856 * (But if application shrinks SO_RCVBUF, we could still end up 4857 * freeing whole queue here) 4858 * 4859 * Return true if queue has shrunk. 4860 */ 4861 static bool tcp_prune_ofo_queue(struct sock *sk) 4862 { 4863 struct tcp_sock *tp = tcp_sk(sk); 4864 struct rb_node *node, *prev; 4865 4866 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4867 return false; 4868 4869 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4870 node = &tp->ooo_last_skb->rbnode; 4871 do { 4872 prev = rb_prev(node); 4873 rb_erase(node, &tp->out_of_order_queue); 4874 tcp_drop(sk, rb_to_skb(node)); 4875 sk_mem_reclaim(sk); 4876 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4877 !tcp_under_memory_pressure(sk)) 4878 break; 4879 node = prev; 4880 } while (node); 4881 tp->ooo_last_skb = rb_to_skb(prev); 4882 4883 /* Reset SACK state. A conforming SACK implementation will 4884 * do the same at a timeout based retransmit. When a connection 4885 * is in a sad state like this, we care only about integrity 4886 * of the connection not performance. 4887 */ 4888 if (tp->rx_opt.sack_ok) 4889 tcp_sack_reset(&tp->rx_opt); 4890 return true; 4891 } 4892 4893 /* Reduce allocated memory if we can, trying to get 4894 * the socket within its memory limits again. 4895 * 4896 * Return less than zero if we should start dropping frames 4897 * until the socket owning process reads some of the data 4898 * to stabilize the situation. 4899 */ 4900 static int tcp_prune_queue(struct sock *sk) 4901 { 4902 struct tcp_sock *tp = tcp_sk(sk); 4903 4904 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4905 4906 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4907 4908 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4909 tcp_clamp_window(sk); 4910 else if (tcp_under_memory_pressure(sk)) 4911 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4912 4913 tcp_collapse_ofo_queue(sk); 4914 if (!skb_queue_empty(&sk->sk_receive_queue)) 4915 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4916 skb_peek(&sk->sk_receive_queue), 4917 NULL, 4918 tp->copied_seq, tp->rcv_nxt); 4919 sk_mem_reclaim(sk); 4920 4921 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4922 return 0; 4923 4924 /* Collapsing did not help, destructive actions follow. 4925 * This must not ever occur. */ 4926 4927 tcp_prune_ofo_queue(sk); 4928 4929 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4930 return 0; 4931 4932 /* If we are really being abused, tell the caller to silently 4933 * drop receive data on the floor. It will get retransmitted 4934 * and hopefully then we'll have sufficient space. 4935 */ 4936 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4937 4938 /* Massive buffer overcommit. */ 4939 tp->pred_flags = 0; 4940 return -1; 4941 } 4942 4943 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4944 { 4945 const struct tcp_sock *tp = tcp_sk(sk); 4946 4947 /* If the user specified a specific send buffer setting, do 4948 * not modify it. 4949 */ 4950 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4951 return false; 4952 4953 /* If we are under global TCP memory pressure, do not expand. */ 4954 if (tcp_under_memory_pressure(sk)) 4955 return false; 4956 4957 /* If we are under soft global TCP memory pressure, do not expand. */ 4958 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4959 return false; 4960 4961 /* If we filled the congestion window, do not expand. */ 4962 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4963 return false; 4964 4965 return true; 4966 } 4967 4968 /* When incoming ACK allowed to free some skb from write_queue, 4969 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4970 * on the exit from tcp input handler. 4971 * 4972 * PROBLEM: sndbuf expansion does not work well with largesend. 4973 */ 4974 static void tcp_new_space(struct sock *sk) 4975 { 4976 struct tcp_sock *tp = tcp_sk(sk); 4977 4978 if (tcp_should_expand_sndbuf(sk)) { 4979 tcp_sndbuf_expand(sk); 4980 tp->snd_cwnd_stamp = tcp_jiffies32; 4981 } 4982 4983 sk->sk_write_space(sk); 4984 } 4985 4986 static void tcp_check_space(struct sock *sk) 4987 { 4988 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4989 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4990 /* pairs with tcp_poll() */ 4991 smp_mb(); 4992 if (sk->sk_socket && 4993 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4994 tcp_new_space(sk); 4995 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4996 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 4997 } 4998 } 4999 } 5000 5001 static inline void tcp_data_snd_check(struct sock *sk) 5002 { 5003 tcp_push_pending_frames(sk); 5004 tcp_check_space(sk); 5005 } 5006 5007 /* 5008 * Check if sending an ack is needed. 5009 */ 5010 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5011 { 5012 struct tcp_sock *tp = tcp_sk(sk); 5013 5014 /* More than one full frame received... */ 5015 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5016 /* ... and right edge of window advances far enough. 5017 * (tcp_recvmsg() will send ACK otherwise). Or... 5018 */ 5019 __tcp_select_window(sk) >= tp->rcv_wnd) || 5020 /* We ACK each frame or... */ 5021 tcp_in_quickack_mode(sk) || 5022 /* We have out of order data. */ 5023 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5024 /* Then ack it now */ 5025 tcp_send_ack(sk); 5026 } else { 5027 /* Else, send delayed ack. */ 5028 tcp_send_delayed_ack(sk); 5029 } 5030 } 5031 5032 static inline void tcp_ack_snd_check(struct sock *sk) 5033 { 5034 if (!inet_csk_ack_scheduled(sk)) { 5035 /* We sent a data segment already. */ 5036 return; 5037 } 5038 __tcp_ack_snd_check(sk, 1); 5039 } 5040 5041 /* 5042 * This routine is only called when we have urgent data 5043 * signaled. Its the 'slow' part of tcp_urg. It could be 5044 * moved inline now as tcp_urg is only called from one 5045 * place. We handle URGent data wrong. We have to - as 5046 * BSD still doesn't use the correction from RFC961. 5047 * For 1003.1g we should support a new option TCP_STDURG to permit 5048 * either form (or just set the sysctl tcp_stdurg). 5049 */ 5050 5051 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5052 { 5053 struct tcp_sock *tp = tcp_sk(sk); 5054 u32 ptr = ntohs(th->urg_ptr); 5055 5056 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5057 ptr--; 5058 ptr += ntohl(th->seq); 5059 5060 /* Ignore urgent data that we've already seen and read. */ 5061 if (after(tp->copied_seq, ptr)) 5062 return; 5063 5064 /* Do not replay urg ptr. 5065 * 5066 * NOTE: interesting situation not covered by specs. 5067 * Misbehaving sender may send urg ptr, pointing to segment, 5068 * which we already have in ofo queue. We are not able to fetch 5069 * such data and will stay in TCP_URG_NOTYET until will be eaten 5070 * by recvmsg(). Seems, we are not obliged to handle such wicked 5071 * situations. But it is worth to think about possibility of some 5072 * DoSes using some hypothetical application level deadlock. 5073 */ 5074 if (before(ptr, tp->rcv_nxt)) 5075 return; 5076 5077 /* Do we already have a newer (or duplicate) urgent pointer? */ 5078 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5079 return; 5080 5081 /* Tell the world about our new urgent pointer. */ 5082 sk_send_sigurg(sk); 5083 5084 /* We may be adding urgent data when the last byte read was 5085 * urgent. To do this requires some care. We cannot just ignore 5086 * tp->copied_seq since we would read the last urgent byte again 5087 * as data, nor can we alter copied_seq until this data arrives 5088 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5089 * 5090 * NOTE. Double Dutch. Rendering to plain English: author of comment 5091 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5092 * and expect that both A and B disappear from stream. This is _wrong_. 5093 * Though this happens in BSD with high probability, this is occasional. 5094 * Any application relying on this is buggy. Note also, that fix "works" 5095 * only in this artificial test. Insert some normal data between A and B and we will 5096 * decline of BSD again. Verdict: it is better to remove to trap 5097 * buggy users. 5098 */ 5099 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5100 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5101 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5102 tp->copied_seq++; 5103 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5104 __skb_unlink(skb, &sk->sk_receive_queue); 5105 __kfree_skb(skb); 5106 } 5107 } 5108 5109 tp->urg_data = TCP_URG_NOTYET; 5110 tp->urg_seq = ptr; 5111 5112 /* Disable header prediction. */ 5113 tp->pred_flags = 0; 5114 } 5115 5116 /* This is the 'fast' part of urgent handling. */ 5117 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5118 { 5119 struct tcp_sock *tp = tcp_sk(sk); 5120 5121 /* Check if we get a new urgent pointer - normally not. */ 5122 if (th->urg) 5123 tcp_check_urg(sk, th); 5124 5125 /* Do we wait for any urgent data? - normally not... */ 5126 if (tp->urg_data == TCP_URG_NOTYET) { 5127 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5128 th->syn; 5129 5130 /* Is the urgent pointer pointing into this packet? */ 5131 if (ptr < skb->len) { 5132 u8 tmp; 5133 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5134 BUG(); 5135 tp->urg_data = TCP_URG_VALID | tmp; 5136 if (!sock_flag(sk, SOCK_DEAD)) 5137 sk->sk_data_ready(sk); 5138 } 5139 } 5140 } 5141 5142 /* Accept RST for rcv_nxt - 1 after a FIN. 5143 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5144 * FIN is sent followed by a RST packet. The RST is sent with the same 5145 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5146 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5147 * ACKs on the closed socket. In addition middleboxes can drop either the 5148 * challenge ACK or a subsequent RST. 5149 */ 5150 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5151 { 5152 struct tcp_sock *tp = tcp_sk(sk); 5153 5154 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5155 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5156 TCPF_CLOSING)); 5157 } 5158 5159 /* Does PAWS and seqno based validation of an incoming segment, flags will 5160 * play significant role here. 5161 */ 5162 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5163 const struct tcphdr *th, int syn_inerr) 5164 { 5165 struct tcp_sock *tp = tcp_sk(sk); 5166 bool rst_seq_match = false; 5167 5168 /* RFC1323: H1. Apply PAWS check first. */ 5169 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5170 tp->rx_opt.saw_tstamp && 5171 tcp_paws_discard(sk, skb)) { 5172 if (!th->rst) { 5173 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5174 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5175 LINUX_MIB_TCPACKSKIPPEDPAWS, 5176 &tp->last_oow_ack_time)) 5177 tcp_send_dupack(sk, skb); 5178 goto discard; 5179 } 5180 /* Reset is accepted even if it did not pass PAWS. */ 5181 } 5182 5183 /* Step 1: check sequence number */ 5184 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5185 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5186 * (RST) segments are validated by checking their SEQ-fields." 5187 * And page 69: "If an incoming segment is not acceptable, 5188 * an acknowledgment should be sent in reply (unless the RST 5189 * bit is set, if so drop the segment and return)". 5190 */ 5191 if (!th->rst) { 5192 if (th->syn) 5193 goto syn_challenge; 5194 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5195 LINUX_MIB_TCPACKSKIPPEDSEQ, 5196 &tp->last_oow_ack_time)) 5197 tcp_send_dupack(sk, skb); 5198 } else if (tcp_reset_check(sk, skb)) { 5199 tcp_reset(sk); 5200 } 5201 goto discard; 5202 } 5203 5204 /* Step 2: check RST bit */ 5205 if (th->rst) { 5206 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5207 * FIN and SACK too if available): 5208 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5209 * the right-most SACK block, 5210 * then 5211 * RESET the connection 5212 * else 5213 * Send a challenge ACK 5214 */ 5215 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5216 tcp_reset_check(sk, skb)) { 5217 rst_seq_match = true; 5218 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5219 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5220 int max_sack = sp[0].end_seq; 5221 int this_sack; 5222 5223 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5224 ++this_sack) { 5225 max_sack = after(sp[this_sack].end_seq, 5226 max_sack) ? 5227 sp[this_sack].end_seq : max_sack; 5228 } 5229 5230 if (TCP_SKB_CB(skb)->seq == max_sack) 5231 rst_seq_match = true; 5232 } 5233 5234 if (rst_seq_match) 5235 tcp_reset(sk); 5236 else { 5237 /* Disable TFO if RST is out-of-order 5238 * and no data has been received 5239 * for current active TFO socket 5240 */ 5241 if (tp->syn_fastopen && !tp->data_segs_in && 5242 sk->sk_state == TCP_ESTABLISHED) 5243 tcp_fastopen_active_disable(sk); 5244 tcp_send_challenge_ack(sk, skb); 5245 } 5246 goto discard; 5247 } 5248 5249 /* step 3: check security and precedence [ignored] */ 5250 5251 /* step 4: Check for a SYN 5252 * RFC 5961 4.2 : Send a challenge ack 5253 */ 5254 if (th->syn) { 5255 syn_challenge: 5256 if (syn_inerr) 5257 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5259 tcp_send_challenge_ack(sk, skb); 5260 goto discard; 5261 } 5262 5263 return true; 5264 5265 discard: 5266 tcp_drop(sk, skb); 5267 return false; 5268 } 5269 5270 /* 5271 * TCP receive function for the ESTABLISHED state. 5272 * 5273 * It is split into a fast path and a slow path. The fast path is 5274 * disabled when: 5275 * - A zero window was announced from us - zero window probing 5276 * is only handled properly in the slow path. 5277 * - Out of order segments arrived. 5278 * - Urgent data is expected. 5279 * - There is no buffer space left 5280 * - Unexpected TCP flags/window values/header lengths are received 5281 * (detected by checking the TCP header against pred_flags) 5282 * - Data is sent in both directions. Fast path only supports pure senders 5283 * or pure receivers (this means either the sequence number or the ack 5284 * value must stay constant) 5285 * - Unexpected TCP option. 5286 * 5287 * When these conditions are not satisfied it drops into a standard 5288 * receive procedure patterned after RFC793 to handle all cases. 5289 * The first three cases are guaranteed by proper pred_flags setting, 5290 * the rest is checked inline. Fast processing is turned on in 5291 * tcp_data_queue when everything is OK. 5292 */ 5293 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5294 const struct tcphdr *th) 5295 { 5296 unsigned int len = skb->len; 5297 struct tcp_sock *tp = tcp_sk(sk); 5298 5299 tcp_mstamp_refresh(tp); 5300 if (unlikely(!sk->sk_rx_dst)) 5301 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5302 /* 5303 * Header prediction. 5304 * The code loosely follows the one in the famous 5305 * "30 instruction TCP receive" Van Jacobson mail. 5306 * 5307 * Van's trick is to deposit buffers into socket queue 5308 * on a device interrupt, to call tcp_recv function 5309 * on the receive process context and checksum and copy 5310 * the buffer to user space. smart... 5311 * 5312 * Our current scheme is not silly either but we take the 5313 * extra cost of the net_bh soft interrupt processing... 5314 * We do checksum and copy also but from device to kernel. 5315 */ 5316 5317 tp->rx_opt.saw_tstamp = 0; 5318 5319 /* pred_flags is 0xS?10 << 16 + snd_wnd 5320 * if header_prediction is to be made 5321 * 'S' will always be tp->tcp_header_len >> 2 5322 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5323 * turn it off (when there are holes in the receive 5324 * space for instance) 5325 * PSH flag is ignored. 5326 */ 5327 5328 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5329 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5330 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5331 int tcp_header_len = tp->tcp_header_len; 5332 5333 /* Timestamp header prediction: tcp_header_len 5334 * is automatically equal to th->doff*4 due to pred_flags 5335 * match. 5336 */ 5337 5338 /* Check timestamp */ 5339 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5340 /* No? Slow path! */ 5341 if (!tcp_parse_aligned_timestamp(tp, th)) 5342 goto slow_path; 5343 5344 /* If PAWS failed, check it more carefully in slow path */ 5345 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5346 goto slow_path; 5347 5348 /* DO NOT update ts_recent here, if checksum fails 5349 * and timestamp was corrupted part, it will result 5350 * in a hung connection since we will drop all 5351 * future packets due to the PAWS test. 5352 */ 5353 } 5354 5355 if (len <= tcp_header_len) { 5356 /* Bulk data transfer: sender */ 5357 if (len == tcp_header_len) { 5358 /* Predicted packet is in window by definition. 5359 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5360 * Hence, check seq<=rcv_wup reduces to: 5361 */ 5362 if (tcp_header_len == 5363 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5364 tp->rcv_nxt == tp->rcv_wup) 5365 tcp_store_ts_recent(tp); 5366 5367 /* We know that such packets are checksummed 5368 * on entry. 5369 */ 5370 tcp_ack(sk, skb, 0); 5371 __kfree_skb(skb); 5372 tcp_data_snd_check(sk); 5373 return; 5374 } else { /* Header too small */ 5375 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5376 goto discard; 5377 } 5378 } else { 5379 int eaten = 0; 5380 bool fragstolen = false; 5381 5382 if (tcp_checksum_complete(skb)) 5383 goto csum_error; 5384 5385 if ((int)skb->truesize > sk->sk_forward_alloc) 5386 goto step5; 5387 5388 /* Predicted packet is in window by definition. 5389 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5390 * Hence, check seq<=rcv_wup reduces to: 5391 */ 5392 if (tcp_header_len == 5393 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5394 tp->rcv_nxt == tp->rcv_wup) 5395 tcp_store_ts_recent(tp); 5396 5397 tcp_rcv_rtt_measure_ts(sk, skb); 5398 5399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5400 5401 /* Bulk data transfer: receiver */ 5402 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5403 &fragstolen); 5404 5405 tcp_event_data_recv(sk, skb); 5406 5407 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5408 /* Well, only one small jumplet in fast path... */ 5409 tcp_ack(sk, skb, FLAG_DATA); 5410 tcp_data_snd_check(sk); 5411 if (!inet_csk_ack_scheduled(sk)) 5412 goto no_ack; 5413 } 5414 5415 __tcp_ack_snd_check(sk, 0); 5416 no_ack: 5417 if (eaten) 5418 kfree_skb_partial(skb, fragstolen); 5419 sk->sk_data_ready(sk); 5420 return; 5421 } 5422 } 5423 5424 slow_path: 5425 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5426 goto csum_error; 5427 5428 if (!th->ack && !th->rst && !th->syn) 5429 goto discard; 5430 5431 /* 5432 * Standard slow path. 5433 */ 5434 5435 if (!tcp_validate_incoming(sk, skb, th, 1)) 5436 return; 5437 5438 step5: 5439 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5440 goto discard; 5441 5442 tcp_rcv_rtt_measure_ts(sk, skb); 5443 5444 /* Process urgent data. */ 5445 tcp_urg(sk, skb, th); 5446 5447 /* step 7: process the segment text */ 5448 tcp_data_queue(sk, skb); 5449 5450 tcp_data_snd_check(sk); 5451 tcp_ack_snd_check(sk); 5452 return; 5453 5454 csum_error: 5455 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5456 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5457 5458 discard: 5459 tcp_drop(sk, skb); 5460 } 5461 EXPORT_SYMBOL(tcp_rcv_established); 5462 5463 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5464 { 5465 struct tcp_sock *tp = tcp_sk(sk); 5466 struct inet_connection_sock *icsk = inet_csk(sk); 5467 5468 tcp_set_state(sk, TCP_ESTABLISHED); 5469 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5470 5471 if (skb) { 5472 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5473 security_inet_conn_established(sk, skb); 5474 } 5475 5476 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5477 5478 /* Prevent spurious tcp_cwnd_restart() on first data 5479 * packet. 5480 */ 5481 tp->lsndtime = tcp_jiffies32; 5482 5483 if (sock_flag(sk, SOCK_KEEPOPEN)) 5484 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5485 5486 if (!tp->rx_opt.snd_wscale) 5487 __tcp_fast_path_on(tp, tp->snd_wnd); 5488 else 5489 tp->pred_flags = 0; 5490 } 5491 5492 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5493 struct tcp_fastopen_cookie *cookie) 5494 { 5495 struct tcp_sock *tp = tcp_sk(sk); 5496 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5497 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5498 bool syn_drop = false; 5499 5500 if (mss == tp->rx_opt.user_mss) { 5501 struct tcp_options_received opt; 5502 5503 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5504 tcp_clear_options(&opt); 5505 opt.user_mss = opt.mss_clamp = 0; 5506 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5507 mss = opt.mss_clamp; 5508 } 5509 5510 if (!tp->syn_fastopen) { 5511 /* Ignore an unsolicited cookie */ 5512 cookie->len = -1; 5513 } else if (tp->total_retrans) { 5514 /* SYN timed out and the SYN-ACK neither has a cookie nor 5515 * acknowledges data. Presumably the remote received only 5516 * the retransmitted (regular) SYNs: either the original 5517 * SYN-data or the corresponding SYN-ACK was dropped. 5518 */ 5519 syn_drop = (cookie->len < 0 && data); 5520 } else if (cookie->len < 0 && !tp->syn_data) { 5521 /* We requested a cookie but didn't get it. If we did not use 5522 * the (old) exp opt format then try so next time (try_exp=1). 5523 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5524 */ 5525 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5526 } 5527 5528 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5529 5530 if (data) { /* Retransmit unacked data in SYN */ 5531 skb_rbtree_walk_from(data) { 5532 if (__tcp_retransmit_skb(sk, data, 1)) 5533 break; 5534 } 5535 tcp_rearm_rto(sk); 5536 NET_INC_STATS(sock_net(sk), 5537 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5538 return true; 5539 } 5540 tp->syn_data_acked = tp->syn_data; 5541 if (tp->syn_data_acked) 5542 NET_INC_STATS(sock_net(sk), 5543 LINUX_MIB_TCPFASTOPENACTIVE); 5544 5545 tcp_fastopen_add_skb(sk, synack); 5546 5547 return false; 5548 } 5549 5550 static void smc_check_reset_syn(struct tcp_sock *tp) 5551 { 5552 #if IS_ENABLED(CONFIG_SMC) 5553 if (static_branch_unlikely(&tcp_have_smc)) { 5554 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5555 tp->syn_smc = 0; 5556 } 5557 #endif 5558 } 5559 5560 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5561 const struct tcphdr *th) 5562 { 5563 struct inet_connection_sock *icsk = inet_csk(sk); 5564 struct tcp_sock *tp = tcp_sk(sk); 5565 struct tcp_fastopen_cookie foc = { .len = -1 }; 5566 int saved_clamp = tp->rx_opt.mss_clamp; 5567 bool fastopen_fail; 5568 5569 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5570 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5571 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5572 5573 if (th->ack) { 5574 /* rfc793: 5575 * "If the state is SYN-SENT then 5576 * first check the ACK bit 5577 * If the ACK bit is set 5578 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5579 * a reset (unless the RST bit is set, if so drop 5580 * the segment and return)" 5581 */ 5582 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5583 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5584 goto reset_and_undo; 5585 5586 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5587 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5588 tcp_time_stamp(tp))) { 5589 NET_INC_STATS(sock_net(sk), 5590 LINUX_MIB_PAWSACTIVEREJECTED); 5591 goto reset_and_undo; 5592 } 5593 5594 /* Now ACK is acceptable. 5595 * 5596 * "If the RST bit is set 5597 * If the ACK was acceptable then signal the user "error: 5598 * connection reset", drop the segment, enter CLOSED state, 5599 * delete TCB, and return." 5600 */ 5601 5602 if (th->rst) { 5603 tcp_reset(sk); 5604 goto discard; 5605 } 5606 5607 /* rfc793: 5608 * "fifth, if neither of the SYN or RST bits is set then 5609 * drop the segment and return." 5610 * 5611 * See note below! 5612 * --ANK(990513) 5613 */ 5614 if (!th->syn) 5615 goto discard_and_undo; 5616 5617 /* rfc793: 5618 * "If the SYN bit is on ... 5619 * are acceptable then ... 5620 * (our SYN has been ACKed), change the connection 5621 * state to ESTABLISHED..." 5622 */ 5623 5624 tcp_ecn_rcv_synack(tp, th); 5625 5626 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5627 tcp_ack(sk, skb, FLAG_SLOWPATH); 5628 5629 /* Ok.. it's good. Set up sequence numbers and 5630 * move to established. 5631 */ 5632 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5633 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5634 5635 /* RFC1323: The window in SYN & SYN/ACK segments is 5636 * never scaled. 5637 */ 5638 tp->snd_wnd = ntohs(th->window); 5639 5640 if (!tp->rx_opt.wscale_ok) { 5641 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5642 tp->window_clamp = min(tp->window_clamp, 65535U); 5643 } 5644 5645 if (tp->rx_opt.saw_tstamp) { 5646 tp->rx_opt.tstamp_ok = 1; 5647 tp->tcp_header_len = 5648 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5649 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5650 tcp_store_ts_recent(tp); 5651 } else { 5652 tp->tcp_header_len = sizeof(struct tcphdr); 5653 } 5654 5655 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5656 tcp_initialize_rcv_mss(sk); 5657 5658 /* Remember, tcp_poll() does not lock socket! 5659 * Change state from SYN-SENT only after copied_seq 5660 * is initialized. */ 5661 tp->copied_seq = tp->rcv_nxt; 5662 5663 smc_check_reset_syn(tp); 5664 5665 smp_mb(); 5666 5667 tcp_finish_connect(sk, skb); 5668 5669 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5670 tcp_rcv_fastopen_synack(sk, skb, &foc); 5671 5672 if (!sock_flag(sk, SOCK_DEAD)) { 5673 sk->sk_state_change(sk); 5674 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5675 } 5676 if (fastopen_fail) 5677 return -1; 5678 if (sk->sk_write_pending || 5679 icsk->icsk_accept_queue.rskq_defer_accept || 5680 icsk->icsk_ack.pingpong) { 5681 /* Save one ACK. Data will be ready after 5682 * several ticks, if write_pending is set. 5683 * 5684 * It may be deleted, but with this feature tcpdumps 5685 * look so _wonderfully_ clever, that I was not able 5686 * to stand against the temptation 8) --ANK 5687 */ 5688 inet_csk_schedule_ack(sk); 5689 tcp_enter_quickack_mode(sk); 5690 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5691 TCP_DELACK_MAX, TCP_RTO_MAX); 5692 5693 discard: 5694 tcp_drop(sk, skb); 5695 return 0; 5696 } else { 5697 tcp_send_ack(sk); 5698 } 5699 return -1; 5700 } 5701 5702 /* No ACK in the segment */ 5703 5704 if (th->rst) { 5705 /* rfc793: 5706 * "If the RST bit is set 5707 * 5708 * Otherwise (no ACK) drop the segment and return." 5709 */ 5710 5711 goto discard_and_undo; 5712 } 5713 5714 /* PAWS check. */ 5715 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5716 tcp_paws_reject(&tp->rx_opt, 0)) 5717 goto discard_and_undo; 5718 5719 if (th->syn) { 5720 /* We see SYN without ACK. It is attempt of 5721 * simultaneous connect with crossed SYNs. 5722 * Particularly, it can be connect to self. 5723 */ 5724 tcp_set_state(sk, TCP_SYN_RECV); 5725 5726 if (tp->rx_opt.saw_tstamp) { 5727 tp->rx_opt.tstamp_ok = 1; 5728 tcp_store_ts_recent(tp); 5729 tp->tcp_header_len = 5730 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5731 } else { 5732 tp->tcp_header_len = sizeof(struct tcphdr); 5733 } 5734 5735 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5736 tp->copied_seq = tp->rcv_nxt; 5737 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5738 5739 /* RFC1323: The window in SYN & SYN/ACK segments is 5740 * never scaled. 5741 */ 5742 tp->snd_wnd = ntohs(th->window); 5743 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5744 tp->max_window = tp->snd_wnd; 5745 5746 tcp_ecn_rcv_syn(tp, th); 5747 5748 tcp_mtup_init(sk); 5749 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5750 tcp_initialize_rcv_mss(sk); 5751 5752 tcp_send_synack(sk); 5753 #if 0 5754 /* Note, we could accept data and URG from this segment. 5755 * There are no obstacles to make this (except that we must 5756 * either change tcp_recvmsg() to prevent it from returning data 5757 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5758 * 5759 * However, if we ignore data in ACKless segments sometimes, 5760 * we have no reasons to accept it sometimes. 5761 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5762 * is not flawless. So, discard packet for sanity. 5763 * Uncomment this return to process the data. 5764 */ 5765 return -1; 5766 #else 5767 goto discard; 5768 #endif 5769 } 5770 /* "fifth, if neither of the SYN or RST bits is set then 5771 * drop the segment and return." 5772 */ 5773 5774 discard_and_undo: 5775 tcp_clear_options(&tp->rx_opt); 5776 tp->rx_opt.mss_clamp = saved_clamp; 5777 goto discard; 5778 5779 reset_and_undo: 5780 tcp_clear_options(&tp->rx_opt); 5781 tp->rx_opt.mss_clamp = saved_clamp; 5782 return 1; 5783 } 5784 5785 /* 5786 * This function implements the receiving procedure of RFC 793 for 5787 * all states except ESTABLISHED and TIME_WAIT. 5788 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5789 * address independent. 5790 */ 5791 5792 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5793 { 5794 struct tcp_sock *tp = tcp_sk(sk); 5795 struct inet_connection_sock *icsk = inet_csk(sk); 5796 const struct tcphdr *th = tcp_hdr(skb); 5797 struct request_sock *req; 5798 int queued = 0; 5799 bool acceptable; 5800 5801 switch (sk->sk_state) { 5802 case TCP_CLOSE: 5803 goto discard; 5804 5805 case TCP_LISTEN: 5806 if (th->ack) 5807 return 1; 5808 5809 if (th->rst) 5810 goto discard; 5811 5812 if (th->syn) { 5813 if (th->fin) 5814 goto discard; 5815 /* It is possible that we process SYN packets from backlog, 5816 * so we need to make sure to disable BH right there. 5817 */ 5818 local_bh_disable(); 5819 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5820 local_bh_enable(); 5821 5822 if (!acceptable) 5823 return 1; 5824 consume_skb(skb); 5825 return 0; 5826 } 5827 goto discard; 5828 5829 case TCP_SYN_SENT: 5830 tp->rx_opt.saw_tstamp = 0; 5831 tcp_mstamp_refresh(tp); 5832 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5833 if (queued >= 0) 5834 return queued; 5835 5836 /* Do step6 onward by hand. */ 5837 tcp_urg(sk, skb, th); 5838 __kfree_skb(skb); 5839 tcp_data_snd_check(sk); 5840 return 0; 5841 } 5842 5843 tcp_mstamp_refresh(tp); 5844 tp->rx_opt.saw_tstamp = 0; 5845 req = tp->fastopen_rsk; 5846 if (req) { 5847 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5848 sk->sk_state != TCP_FIN_WAIT1); 5849 5850 if (!tcp_check_req(sk, skb, req, true)) 5851 goto discard; 5852 } 5853 5854 if (!th->ack && !th->rst && !th->syn) 5855 goto discard; 5856 5857 if (!tcp_validate_incoming(sk, skb, th, 0)) 5858 return 0; 5859 5860 /* step 5: check the ACK field */ 5861 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5862 FLAG_UPDATE_TS_RECENT | 5863 FLAG_NO_CHALLENGE_ACK) > 0; 5864 5865 if (!acceptable) { 5866 if (sk->sk_state == TCP_SYN_RECV) 5867 return 1; /* send one RST */ 5868 tcp_send_challenge_ack(sk, skb); 5869 goto discard; 5870 } 5871 switch (sk->sk_state) { 5872 case TCP_SYN_RECV: 5873 if (!tp->srtt_us) 5874 tcp_synack_rtt_meas(sk, req); 5875 5876 /* Once we leave TCP_SYN_RECV, we no longer need req 5877 * so release it. 5878 */ 5879 if (req) { 5880 inet_csk(sk)->icsk_retransmits = 0; 5881 reqsk_fastopen_remove(sk, req, false); 5882 /* Re-arm the timer because data may have been sent out. 5883 * This is similar to the regular data transmission case 5884 * when new data has just been ack'ed. 5885 * 5886 * (TFO) - we could try to be more aggressive and 5887 * retransmitting any data sooner based on when they 5888 * are sent out. 5889 */ 5890 tcp_rearm_rto(sk); 5891 } else { 5892 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5893 tp->copied_seq = tp->rcv_nxt; 5894 } 5895 smp_mb(); 5896 tcp_set_state(sk, TCP_ESTABLISHED); 5897 sk->sk_state_change(sk); 5898 5899 /* Note, that this wakeup is only for marginal crossed SYN case. 5900 * Passively open sockets are not waked up, because 5901 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5902 */ 5903 if (sk->sk_socket) 5904 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5905 5906 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5907 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5908 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5909 5910 if (tp->rx_opt.tstamp_ok) 5911 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5912 5913 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5914 tcp_update_pacing_rate(sk); 5915 5916 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5917 tp->lsndtime = tcp_jiffies32; 5918 5919 tcp_initialize_rcv_mss(sk); 5920 tcp_fast_path_on(tp); 5921 break; 5922 5923 case TCP_FIN_WAIT1: { 5924 int tmo; 5925 5926 /* If we enter the TCP_FIN_WAIT1 state and we are a 5927 * Fast Open socket and this is the first acceptable 5928 * ACK we have received, this would have acknowledged 5929 * our SYNACK so stop the SYNACK timer. 5930 */ 5931 if (req) { 5932 /* We no longer need the request sock. */ 5933 reqsk_fastopen_remove(sk, req, false); 5934 tcp_rearm_rto(sk); 5935 } 5936 if (tp->snd_una != tp->write_seq) 5937 break; 5938 5939 tcp_set_state(sk, TCP_FIN_WAIT2); 5940 sk->sk_shutdown |= SEND_SHUTDOWN; 5941 5942 sk_dst_confirm(sk); 5943 5944 if (!sock_flag(sk, SOCK_DEAD)) { 5945 /* Wake up lingering close() */ 5946 sk->sk_state_change(sk); 5947 break; 5948 } 5949 5950 if (tp->linger2 < 0) { 5951 tcp_done(sk); 5952 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5953 return 1; 5954 } 5955 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5956 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5957 /* Receive out of order FIN after close() */ 5958 if (tp->syn_fastopen && th->fin) 5959 tcp_fastopen_active_disable(sk); 5960 tcp_done(sk); 5961 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5962 return 1; 5963 } 5964 5965 tmo = tcp_fin_time(sk); 5966 if (tmo > TCP_TIMEWAIT_LEN) { 5967 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5968 } else if (th->fin || sock_owned_by_user(sk)) { 5969 /* Bad case. We could lose such FIN otherwise. 5970 * It is not a big problem, but it looks confusing 5971 * and not so rare event. We still can lose it now, 5972 * if it spins in bh_lock_sock(), but it is really 5973 * marginal case. 5974 */ 5975 inet_csk_reset_keepalive_timer(sk, tmo); 5976 } else { 5977 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5978 goto discard; 5979 } 5980 break; 5981 } 5982 5983 case TCP_CLOSING: 5984 if (tp->snd_una == tp->write_seq) { 5985 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5986 goto discard; 5987 } 5988 break; 5989 5990 case TCP_LAST_ACK: 5991 if (tp->snd_una == tp->write_seq) { 5992 tcp_update_metrics(sk); 5993 tcp_done(sk); 5994 goto discard; 5995 } 5996 break; 5997 } 5998 5999 /* step 6: check the URG bit */ 6000 tcp_urg(sk, skb, th); 6001 6002 /* step 7: process the segment text */ 6003 switch (sk->sk_state) { 6004 case TCP_CLOSE_WAIT: 6005 case TCP_CLOSING: 6006 case TCP_LAST_ACK: 6007 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6008 break; 6009 /* fall through */ 6010 case TCP_FIN_WAIT1: 6011 case TCP_FIN_WAIT2: 6012 /* RFC 793 says to queue data in these states, 6013 * RFC 1122 says we MUST send a reset. 6014 * BSD 4.4 also does reset. 6015 */ 6016 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6017 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6018 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6020 tcp_reset(sk); 6021 return 1; 6022 } 6023 } 6024 /* Fall through */ 6025 case TCP_ESTABLISHED: 6026 tcp_data_queue(sk, skb); 6027 queued = 1; 6028 break; 6029 } 6030 6031 /* tcp_data could move socket to TIME-WAIT */ 6032 if (sk->sk_state != TCP_CLOSE) { 6033 tcp_data_snd_check(sk); 6034 tcp_ack_snd_check(sk); 6035 } 6036 6037 if (!queued) { 6038 discard: 6039 tcp_drop(sk, skb); 6040 } 6041 return 0; 6042 } 6043 EXPORT_SYMBOL(tcp_rcv_state_process); 6044 6045 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6046 { 6047 struct inet_request_sock *ireq = inet_rsk(req); 6048 6049 if (family == AF_INET) 6050 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6051 &ireq->ir_rmt_addr, port); 6052 #if IS_ENABLED(CONFIG_IPV6) 6053 else if (family == AF_INET6) 6054 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6055 &ireq->ir_v6_rmt_addr, port); 6056 #endif 6057 } 6058 6059 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6060 * 6061 * If we receive a SYN packet with these bits set, it means a 6062 * network is playing bad games with TOS bits. In order to 6063 * avoid possible false congestion notifications, we disable 6064 * TCP ECN negotiation. 6065 * 6066 * Exception: tcp_ca wants ECN. This is required for DCTCP 6067 * congestion control: Linux DCTCP asserts ECT on all packets, 6068 * including SYN, which is most optimal solution; however, 6069 * others, such as FreeBSD do not. 6070 */ 6071 static void tcp_ecn_create_request(struct request_sock *req, 6072 const struct sk_buff *skb, 6073 const struct sock *listen_sk, 6074 const struct dst_entry *dst) 6075 { 6076 const struct tcphdr *th = tcp_hdr(skb); 6077 const struct net *net = sock_net(listen_sk); 6078 bool th_ecn = th->ece && th->cwr; 6079 bool ect, ecn_ok; 6080 u32 ecn_ok_dst; 6081 6082 if (!th_ecn) 6083 return; 6084 6085 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6086 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6087 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6088 6089 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6090 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6091 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6092 inet_rsk(req)->ecn_ok = 1; 6093 } 6094 6095 static void tcp_openreq_init(struct request_sock *req, 6096 const struct tcp_options_received *rx_opt, 6097 struct sk_buff *skb, const struct sock *sk) 6098 { 6099 struct inet_request_sock *ireq = inet_rsk(req); 6100 6101 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6102 req->cookie_ts = 0; 6103 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6104 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6105 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6106 tcp_rsk(req)->last_oow_ack_time = 0; 6107 req->mss = rx_opt->mss_clamp; 6108 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6109 ireq->tstamp_ok = rx_opt->tstamp_ok; 6110 ireq->sack_ok = rx_opt->sack_ok; 6111 ireq->snd_wscale = rx_opt->snd_wscale; 6112 ireq->wscale_ok = rx_opt->wscale_ok; 6113 ireq->acked = 0; 6114 ireq->ecn_ok = 0; 6115 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6116 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6117 ireq->ir_mark = inet_request_mark(sk, skb); 6118 #if IS_ENABLED(CONFIG_SMC) 6119 ireq->smc_ok = rx_opt->smc_ok; 6120 #endif 6121 } 6122 6123 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6124 struct sock *sk_listener, 6125 bool attach_listener) 6126 { 6127 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6128 attach_listener); 6129 6130 if (req) { 6131 struct inet_request_sock *ireq = inet_rsk(req); 6132 6133 ireq->ireq_opt = NULL; 6134 #if IS_ENABLED(CONFIG_IPV6) 6135 ireq->pktopts = NULL; 6136 #endif 6137 atomic64_set(&ireq->ir_cookie, 0); 6138 ireq->ireq_state = TCP_NEW_SYN_RECV; 6139 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6140 ireq->ireq_family = sk_listener->sk_family; 6141 } 6142 6143 return req; 6144 } 6145 EXPORT_SYMBOL(inet_reqsk_alloc); 6146 6147 /* 6148 * Return true if a syncookie should be sent 6149 */ 6150 static bool tcp_syn_flood_action(const struct sock *sk, 6151 const struct sk_buff *skb, 6152 const char *proto) 6153 { 6154 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6155 const char *msg = "Dropping request"; 6156 bool want_cookie = false; 6157 struct net *net = sock_net(sk); 6158 6159 #ifdef CONFIG_SYN_COOKIES 6160 if (net->ipv4.sysctl_tcp_syncookies) { 6161 msg = "Sending cookies"; 6162 want_cookie = true; 6163 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6164 } else 6165 #endif 6166 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6167 6168 if (!queue->synflood_warned && 6169 net->ipv4.sysctl_tcp_syncookies != 2 && 6170 xchg(&queue->synflood_warned, 1) == 0) 6171 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6172 proto, ntohs(tcp_hdr(skb)->dest), msg); 6173 6174 return want_cookie; 6175 } 6176 6177 static void tcp_reqsk_record_syn(const struct sock *sk, 6178 struct request_sock *req, 6179 const struct sk_buff *skb) 6180 { 6181 if (tcp_sk(sk)->save_syn) { 6182 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6183 u32 *copy; 6184 6185 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6186 if (copy) { 6187 copy[0] = len; 6188 memcpy(©[1], skb_network_header(skb), len); 6189 req->saved_syn = copy; 6190 } 6191 } 6192 } 6193 6194 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6195 const struct tcp_request_sock_ops *af_ops, 6196 struct sock *sk, struct sk_buff *skb) 6197 { 6198 struct tcp_fastopen_cookie foc = { .len = -1 }; 6199 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6200 struct tcp_options_received tmp_opt; 6201 struct tcp_sock *tp = tcp_sk(sk); 6202 struct net *net = sock_net(sk); 6203 struct sock *fastopen_sk = NULL; 6204 struct request_sock *req; 6205 bool want_cookie = false; 6206 struct dst_entry *dst; 6207 struct flowi fl; 6208 6209 /* TW buckets are converted to open requests without 6210 * limitations, they conserve resources and peer is 6211 * evidently real one. 6212 */ 6213 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6214 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6215 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6216 if (!want_cookie) 6217 goto drop; 6218 } 6219 6220 if (sk_acceptq_is_full(sk)) { 6221 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6222 goto drop; 6223 } 6224 6225 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6226 if (!req) 6227 goto drop; 6228 6229 tcp_rsk(req)->af_specific = af_ops; 6230 tcp_rsk(req)->ts_off = 0; 6231 6232 tcp_clear_options(&tmp_opt); 6233 tmp_opt.mss_clamp = af_ops->mss_clamp; 6234 tmp_opt.user_mss = tp->rx_opt.user_mss; 6235 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6236 want_cookie ? NULL : &foc); 6237 6238 if (want_cookie && !tmp_opt.saw_tstamp) 6239 tcp_clear_options(&tmp_opt); 6240 6241 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6242 tcp_openreq_init(req, &tmp_opt, skb, sk); 6243 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6244 6245 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6246 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6247 6248 af_ops->init_req(req, sk, skb); 6249 6250 if (security_inet_conn_request(sk, skb, req)) 6251 goto drop_and_free; 6252 6253 if (tmp_opt.tstamp_ok) 6254 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6255 6256 dst = af_ops->route_req(sk, &fl, req); 6257 if (!dst) 6258 goto drop_and_free; 6259 6260 if (!want_cookie && !isn) { 6261 /* Kill the following clause, if you dislike this way. */ 6262 if (!net->ipv4.sysctl_tcp_syncookies && 6263 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6264 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6265 !tcp_peer_is_proven(req, dst)) { 6266 /* Without syncookies last quarter of 6267 * backlog is filled with destinations, 6268 * proven to be alive. 6269 * It means that we continue to communicate 6270 * to destinations, already remembered 6271 * to the moment of synflood. 6272 */ 6273 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6274 rsk_ops->family); 6275 goto drop_and_release; 6276 } 6277 6278 isn = af_ops->init_seq(skb); 6279 } 6280 6281 tcp_ecn_create_request(req, skb, sk, dst); 6282 6283 if (want_cookie) { 6284 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6285 req->cookie_ts = tmp_opt.tstamp_ok; 6286 if (!tmp_opt.tstamp_ok) 6287 inet_rsk(req)->ecn_ok = 0; 6288 } 6289 6290 tcp_rsk(req)->snt_isn = isn; 6291 tcp_rsk(req)->txhash = net_tx_rndhash(); 6292 tcp_openreq_init_rwin(req, sk, dst); 6293 if (!want_cookie) { 6294 tcp_reqsk_record_syn(sk, req, skb); 6295 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6296 } 6297 if (fastopen_sk) { 6298 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6299 &foc, TCP_SYNACK_FASTOPEN); 6300 /* Add the child socket directly into the accept queue */ 6301 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6302 sk->sk_data_ready(sk); 6303 bh_unlock_sock(fastopen_sk); 6304 sock_put(fastopen_sk); 6305 } else { 6306 tcp_rsk(req)->tfo_listener = false; 6307 if (!want_cookie) 6308 inet_csk_reqsk_queue_hash_add(sk, req, 6309 tcp_timeout_init((struct sock *)req)); 6310 af_ops->send_synack(sk, dst, &fl, req, &foc, 6311 !want_cookie ? TCP_SYNACK_NORMAL : 6312 TCP_SYNACK_COOKIE); 6313 if (want_cookie) { 6314 reqsk_free(req); 6315 return 0; 6316 } 6317 } 6318 reqsk_put(req); 6319 return 0; 6320 6321 drop_and_release: 6322 dst_release(dst); 6323 drop_and_free: 6324 reqsk_free(req); 6325 drop: 6326 tcp_listendrop(sk); 6327 return 0; 6328 } 6329 EXPORT_SYMBOL(tcp_conn_request); 6330