xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 0bea2a65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 
101 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
103 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
104 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
105 
106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
108 
109 #define REXMIT_NONE	0 /* no loss recovery to do */
110 #define REXMIT_LOST	1 /* retransmit packets marked lost */
111 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
112 
113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 			     unsigned int len)
115 {
116 	static bool __once __read_mostly;
117 
118 	if (!__once) {
119 		struct net_device *dev;
120 
121 		__once = true;
122 
123 		rcu_read_lock();
124 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
125 		if (!dev || len >= dev->mtu)
126 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 				dev ? dev->name : "Unknown driver");
128 		rcu_read_unlock();
129 	}
130 }
131 
132 /* Adapt the MSS value used to make delayed ack decision to the
133  * real world.
134  */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 	struct inet_connection_sock *icsk = inet_csk(sk);
138 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 	unsigned int len;
140 
141 	icsk->icsk_ack.last_seg_size = 0;
142 
143 	/* skb->len may jitter because of SACKs, even if peer
144 	 * sends good full-sized frames.
145 	 */
146 	len = skb_shinfo(skb)->gso_size ? : skb->len;
147 	if (len >= icsk->icsk_ack.rcv_mss) {
148 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 					       tcp_sk(sk)->advmss);
150 		/* Account for possibly-removed options */
151 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 				   MAX_TCP_OPTION_SPACE))
153 			tcp_gro_dev_warn(sk, skb, len);
154 	} else {
155 		/* Otherwise, we make more careful check taking into account,
156 		 * that SACKs block is variable.
157 		 *
158 		 * "len" is invariant segment length, including TCP header.
159 		 */
160 		len += skb->data - skb_transport_header(skb);
161 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
162 		    /* If PSH is not set, packet should be
163 		     * full sized, provided peer TCP is not badly broken.
164 		     * This observation (if it is correct 8)) allows
165 		     * to handle super-low mtu links fairly.
166 		     */
167 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
168 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
169 			/* Subtract also invariant (if peer is RFC compliant),
170 			 * tcp header plus fixed timestamp option length.
171 			 * Resulting "len" is MSS free of SACK jitter.
172 			 */
173 			len -= tcp_sk(sk)->tcp_header_len;
174 			icsk->icsk_ack.last_seg_size = len;
175 			if (len == lss) {
176 				icsk->icsk_ack.rcv_mss = len;
177 				return;
178 			}
179 		}
180 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
182 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
183 	}
184 }
185 
186 static void tcp_incr_quickack(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
190 
191 	if (quickacks == 0)
192 		quickacks = 2;
193 	if (quickacks > icsk->icsk_ack.quick)
194 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
195 }
196 
197 static void tcp_enter_quickack_mode(struct sock *sk)
198 {
199 	struct inet_connection_sock *icsk = inet_csk(sk);
200 	tcp_incr_quickack(sk);
201 	icsk->icsk_ack.pingpong = 0;
202 	icsk->icsk_ack.ato = TCP_ATO_MIN;
203 }
204 
205 /* Send ACKs quickly, if "quick" count is not exhausted
206  * and the session is not interactive.
207  */
208 
209 static bool tcp_in_quickack_mode(struct sock *sk)
210 {
211 	const struct inet_connection_sock *icsk = inet_csk(sk);
212 	const struct dst_entry *dst = __sk_dst_get(sk);
213 
214 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
216 }
217 
218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
219 {
220 	if (tp->ecn_flags & TCP_ECN_OK)
221 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222 }
223 
224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226 	if (tcp_hdr(skb)->cwr)
227 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229 
230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
231 {
232 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233 }
234 
235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
236 {
237 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
238 	case INET_ECN_NOT_ECT:
239 		/* Funny extension: if ECT is not set on a segment,
240 		 * and we already seen ECT on a previous segment,
241 		 * it is probably a retransmit.
242 		 */
243 		if (tp->ecn_flags & TCP_ECN_SEEN)
244 			tcp_enter_quickack_mode((struct sock *)tp);
245 		break;
246 	case INET_ECN_CE:
247 		if (tcp_ca_needs_ecn((struct sock *)tp))
248 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249 
250 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 			/* Better not delay acks, sender can have a very low cwnd */
252 			tcp_enter_quickack_mode((struct sock *)tp);
253 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 		}
255 		tp->ecn_flags |= TCP_ECN_SEEN;
256 		break;
257 	default:
258 		if (tcp_ca_needs_ecn((struct sock *)tp))
259 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
260 		tp->ecn_flags |= TCP_ECN_SEEN;
261 		break;
262 	}
263 }
264 
265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266 {
267 	if (tp->ecn_flags & TCP_ECN_OK)
268 		__tcp_ecn_check_ce(tp, skb);
269 }
270 
271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
280 		tp->ecn_flags &= ~TCP_ECN_OK;
281 }
282 
283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
286 		return true;
287 	return false;
288 }
289 
290 /* Buffer size and advertised window tuning.
291  *
292  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293  */
294 
295 static void tcp_sndbuf_expand(struct sock *sk)
296 {
297 	const struct tcp_sock *tp = tcp_sk(sk);
298 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
299 	int sndmem, per_mss;
300 	u32 nr_segs;
301 
302 	/* Worst case is non GSO/TSO : each frame consumes one skb
303 	 * and skb->head is kmalloced using power of two area of memory
304 	 */
305 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 		  MAX_TCP_HEADER +
307 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	per_mss = roundup_pow_of_two(per_mss) +
310 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
311 
312 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314 
315 	/* Fast Recovery (RFC 5681 3.2) :
316 	 * Cubic needs 1.7 factor, rounded to 2 to include
317 	 * extra cushion (application might react slowly to POLLOUT)
318 	 */
319 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 	sndmem *= nr_segs * per_mss;
321 
322 	if (sk->sk_sndbuf < sndmem)
323 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
324 }
325 
326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327  *
328  * All tcp_full_space() is split to two parts: "network" buffer, allocated
329  * forward and advertised in receiver window (tp->rcv_wnd) and
330  * "application buffer", required to isolate scheduling/application
331  * latencies from network.
332  * window_clamp is maximal advertised window. It can be less than
333  * tcp_full_space(), in this case tcp_full_space() - window_clamp
334  * is reserved for "application" buffer. The less window_clamp is
335  * the smoother our behaviour from viewpoint of network, but the lower
336  * throughput and the higher sensitivity of the connection to losses. 8)
337  *
338  * rcv_ssthresh is more strict window_clamp used at "slow start"
339  * phase to predict further behaviour of this connection.
340  * It is used for two goals:
341  * - to enforce header prediction at sender, even when application
342  *   requires some significant "application buffer". It is check #1.
343  * - to prevent pruning of receive queue because of misprediction
344  *   of receiver window. Check #2.
345  *
346  * The scheme does not work when sender sends good segments opening
347  * window and then starts to feed us spaghetti. But it should work
348  * in common situations. Otherwise, we have to rely on queue collapsing.
349  */
350 
351 /* Slow part of check#2. */
352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	/* Optimize this! */
356 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
357 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
358 
359 	while (tp->rcv_ssthresh <= window) {
360 		if (truesize <= skb->len)
361 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
362 
363 		truesize >>= 1;
364 		window >>= 1;
365 	}
366 	return 0;
367 }
368 
369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	/* Check #1 */
374 	if (tp->rcv_ssthresh < tp->window_clamp &&
375 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
376 	    !tcp_under_memory_pressure(sk)) {
377 		int incr;
378 
379 		/* Check #2. Increase window, if skb with such overhead
380 		 * will fit to rcvbuf in future.
381 		 */
382 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
383 			incr = 2 * tp->advmss;
384 		else
385 			incr = __tcp_grow_window(sk, skb);
386 
387 		if (incr) {
388 			incr = max_t(int, incr, 2 * skb->len);
389 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 					       tp->window_clamp);
391 			inet_csk(sk)->icsk_ack.quick |= 1;
392 		}
393 	}
394 }
395 
396 /* 3. Tuning rcvbuf, when connection enters established state. */
397 static void tcp_fixup_rcvbuf(struct sock *sk)
398 {
399 	u32 mss = tcp_sk(sk)->advmss;
400 	int rcvmem;
401 
402 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 		 tcp_default_init_rwnd(mss);
404 
405 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 	 * Allow enough cushion so that sender is not limited by our window
407 	 */
408 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
409 		rcvmem <<= 2;
410 
411 	if (sk->sk_rcvbuf < rcvmem)
412 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
413 }
414 
415 /* 4. Try to fixup all. It is made immediately after connection enters
416  *    established state.
417  */
418 void tcp_init_buffer_space(struct sock *sk)
419 {
420 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	int maxwin;
423 
424 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 		tcp_fixup_rcvbuf(sk);
426 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
427 		tcp_sndbuf_expand(sk);
428 
429 	tp->rcvq_space.space = tp->rcv_wnd;
430 	tcp_mstamp_refresh(tp);
431 	tp->rcvq_space.time = tp->tcp_mstamp;
432 	tp->rcvq_space.seq = tp->copied_seq;
433 
434 	maxwin = tcp_full_space(sk);
435 
436 	if (tp->window_clamp >= maxwin) {
437 		tp->window_clamp = maxwin;
438 
439 		if (tcp_app_win && maxwin > 4 * tp->advmss)
440 			tp->window_clamp = max(maxwin -
441 					       (maxwin >> tcp_app_win),
442 					       4 * tp->advmss);
443 	}
444 
445 	/* Force reservation of one segment. */
446 	if (tcp_app_win &&
447 	    tp->window_clamp > 2 * tp->advmss &&
448 	    tp->window_clamp + tp->advmss > maxwin)
449 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450 
451 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
452 	tp->snd_cwnd_stamp = tcp_jiffies32;
453 }
454 
455 /* 5. Recalculate window clamp after socket hit its memory bounds. */
456 static void tcp_clamp_window(struct sock *sk)
457 {
458 	struct tcp_sock *tp = tcp_sk(sk);
459 	struct inet_connection_sock *icsk = inet_csk(sk);
460 	struct net *net = sock_net(sk);
461 
462 	icsk->icsk_ack.quick = 0;
463 
464 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
465 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
466 	    !tcp_under_memory_pressure(sk) &&
467 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
468 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
469 				    net->ipv4.sysctl_tcp_rmem[2]);
470 	}
471 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
472 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
473 }
474 
475 /* Initialize RCV_MSS value.
476  * RCV_MSS is an our guess about MSS used by the peer.
477  * We haven't any direct information about the MSS.
478  * It's better to underestimate the RCV_MSS rather than overestimate.
479  * Overestimations make us ACKing less frequently than needed.
480  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481  */
482 void tcp_initialize_rcv_mss(struct sock *sk)
483 {
484 	const struct tcp_sock *tp = tcp_sk(sk);
485 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486 
487 	hint = min(hint, tp->rcv_wnd / 2);
488 	hint = min(hint, TCP_MSS_DEFAULT);
489 	hint = max(hint, TCP_MIN_MSS);
490 
491 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
492 }
493 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
494 
495 /* Receiver "autotuning" code.
496  *
497  * The algorithm for RTT estimation w/o timestamps is based on
498  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
499  * <http://public.lanl.gov/radiant/pubs.html#DRS>
500  *
501  * More detail on this code can be found at
502  * <http://staff.psc.edu/jheffner/>,
503  * though this reference is out of date.  A new paper
504  * is pending.
505  */
506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507 {
508 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
509 	long m = sample;
510 
511 	if (m == 0)
512 		m = 1;
513 
514 	if (new_sample != 0) {
515 		/* If we sample in larger samples in the non-timestamp
516 		 * case, we could grossly overestimate the RTT especially
517 		 * with chatty applications or bulk transfer apps which
518 		 * are stalled on filesystem I/O.
519 		 *
520 		 * Also, since we are only going for a minimum in the
521 		 * non-timestamp case, we do not smooth things out
522 		 * else with timestamps disabled convergence takes too
523 		 * long.
524 		 */
525 		if (!win_dep) {
526 			m -= (new_sample >> 3);
527 			new_sample += m;
528 		} else {
529 			m <<= 3;
530 			if (m < new_sample)
531 				new_sample = m;
532 		}
533 	} else {
534 		/* No previous measure. */
535 		new_sample = m << 3;
536 	}
537 
538 	tp->rcv_rtt_est.rtt_us = new_sample;
539 }
540 
541 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
542 {
543 	u32 delta_us;
544 
545 	if (tp->rcv_rtt_est.time == 0)
546 		goto new_measure;
547 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
548 		return;
549 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
550 	tcp_rcv_rtt_update(tp, delta_us, 1);
551 
552 new_measure:
553 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
554 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
555 }
556 
557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 					  const struct sk_buff *skb)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 
562 	if (tp->rx_opt.rcv_tsecr &&
563 	    (TCP_SKB_CB(skb)->end_seq -
564 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
567 
568 		tcp_rcv_rtt_update(tp, delta_us, 0);
569 	}
570 }
571 
572 /*
573  * This function should be called every time data is copied to user space.
574  * It calculates the appropriate TCP receive buffer space.
575  */
576 void tcp_rcv_space_adjust(struct sock *sk)
577 {
578 	struct tcp_sock *tp = tcp_sk(sk);
579 	int time;
580 	int copied;
581 
582 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
583 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
584 		return;
585 
586 	/* Number of bytes copied to user in last RTT */
587 	copied = tp->copied_seq - tp->rcvq_space.seq;
588 	if (copied <= tp->rcvq_space.space)
589 		goto new_measure;
590 
591 	/* A bit of theory :
592 	 * copied = bytes received in previous RTT, our base window
593 	 * To cope with packet losses, we need a 2x factor
594 	 * To cope with slow start, and sender growing its cwin by 100 %
595 	 * every RTT, we need a 4x factor, because the ACK we are sending
596 	 * now is for the next RTT, not the current one :
597 	 * <prev RTT . ><current RTT .. ><next RTT .... >
598 	 */
599 
600 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
601 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
602 		int rcvwin, rcvmem, rcvbuf;
603 
604 		/* minimal window to cope with packet losses, assuming
605 		 * steady state. Add some cushion because of small variations.
606 		 */
607 		rcvwin = (copied << 1) + 16 * tp->advmss;
608 
609 		/* If rate increased by 25%,
610 		 *	assume slow start, rcvwin = 3 * copied
611 		 * If rate increased by 50%,
612 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
613 		 */
614 		if (copied >=
615 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
616 			if (copied >=
617 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
618 				rcvwin <<= 1;
619 			else
620 				rcvwin += (rcvwin >> 1);
621 		}
622 
623 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
624 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
625 			rcvmem += 128;
626 
627 		rcvbuf = min(rcvwin / tp->advmss * rcvmem,
628 			     sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
629 		if (rcvbuf > sk->sk_rcvbuf) {
630 			sk->sk_rcvbuf = rcvbuf;
631 
632 			/* Make the window clamp follow along.  */
633 			tp->window_clamp = rcvwin;
634 		}
635 	}
636 	tp->rcvq_space.space = copied;
637 
638 new_measure:
639 	tp->rcvq_space.seq = tp->copied_seq;
640 	tp->rcvq_space.time = tp->tcp_mstamp;
641 }
642 
643 /* There is something which you must keep in mind when you analyze the
644  * behavior of the tp->ato delayed ack timeout interval.  When a
645  * connection starts up, we want to ack as quickly as possible.  The
646  * problem is that "good" TCP's do slow start at the beginning of data
647  * transmission.  The means that until we send the first few ACK's the
648  * sender will sit on his end and only queue most of his data, because
649  * he can only send snd_cwnd unacked packets at any given time.  For
650  * each ACK we send, he increments snd_cwnd and transmits more of his
651  * queue.  -DaveM
652  */
653 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
654 {
655 	struct tcp_sock *tp = tcp_sk(sk);
656 	struct inet_connection_sock *icsk = inet_csk(sk);
657 	u32 now;
658 
659 	inet_csk_schedule_ack(sk);
660 
661 	tcp_measure_rcv_mss(sk, skb);
662 
663 	tcp_rcv_rtt_measure(tp);
664 
665 	now = tcp_jiffies32;
666 
667 	if (!icsk->icsk_ack.ato) {
668 		/* The _first_ data packet received, initialize
669 		 * delayed ACK engine.
670 		 */
671 		tcp_incr_quickack(sk);
672 		icsk->icsk_ack.ato = TCP_ATO_MIN;
673 	} else {
674 		int m = now - icsk->icsk_ack.lrcvtime;
675 
676 		if (m <= TCP_ATO_MIN / 2) {
677 			/* The fastest case is the first. */
678 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
679 		} else if (m < icsk->icsk_ack.ato) {
680 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
681 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
682 				icsk->icsk_ack.ato = icsk->icsk_rto;
683 		} else if (m > icsk->icsk_rto) {
684 			/* Too long gap. Apparently sender failed to
685 			 * restart window, so that we send ACKs quickly.
686 			 */
687 			tcp_incr_quickack(sk);
688 			sk_mem_reclaim(sk);
689 		}
690 	}
691 	icsk->icsk_ack.lrcvtime = now;
692 
693 	tcp_ecn_check_ce(tp, skb);
694 
695 	if (skb->len >= 128)
696 		tcp_grow_window(sk, skb);
697 }
698 
699 /* Called to compute a smoothed rtt estimate. The data fed to this
700  * routine either comes from timestamps, or from segments that were
701  * known _not_ to have been retransmitted [see Karn/Partridge
702  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
703  * piece by Van Jacobson.
704  * NOTE: the next three routines used to be one big routine.
705  * To save cycles in the RFC 1323 implementation it was better to break
706  * it up into three procedures. -- erics
707  */
708 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
709 {
710 	struct tcp_sock *tp = tcp_sk(sk);
711 	long m = mrtt_us; /* RTT */
712 	u32 srtt = tp->srtt_us;
713 
714 	/*	The following amusing code comes from Jacobson's
715 	 *	article in SIGCOMM '88.  Note that rtt and mdev
716 	 *	are scaled versions of rtt and mean deviation.
717 	 *	This is designed to be as fast as possible
718 	 *	m stands for "measurement".
719 	 *
720 	 *	On a 1990 paper the rto value is changed to:
721 	 *	RTO = rtt + 4 * mdev
722 	 *
723 	 * Funny. This algorithm seems to be very broken.
724 	 * These formulae increase RTO, when it should be decreased, increase
725 	 * too slowly, when it should be increased quickly, decrease too quickly
726 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
727 	 * does not matter how to _calculate_ it. Seems, it was trap
728 	 * that VJ failed to avoid. 8)
729 	 */
730 	if (srtt != 0) {
731 		m -= (srtt >> 3);	/* m is now error in rtt est */
732 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
733 		if (m < 0) {
734 			m = -m;		/* m is now abs(error) */
735 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
736 			/* This is similar to one of Eifel findings.
737 			 * Eifel blocks mdev updates when rtt decreases.
738 			 * This solution is a bit different: we use finer gain
739 			 * for mdev in this case (alpha*beta).
740 			 * Like Eifel it also prevents growth of rto,
741 			 * but also it limits too fast rto decreases,
742 			 * happening in pure Eifel.
743 			 */
744 			if (m > 0)
745 				m >>= 3;
746 		} else {
747 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
748 		}
749 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
750 		if (tp->mdev_us > tp->mdev_max_us) {
751 			tp->mdev_max_us = tp->mdev_us;
752 			if (tp->mdev_max_us > tp->rttvar_us)
753 				tp->rttvar_us = tp->mdev_max_us;
754 		}
755 		if (after(tp->snd_una, tp->rtt_seq)) {
756 			if (tp->mdev_max_us < tp->rttvar_us)
757 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
758 			tp->rtt_seq = tp->snd_nxt;
759 			tp->mdev_max_us = tcp_rto_min_us(sk);
760 		}
761 	} else {
762 		/* no previous measure. */
763 		srtt = m << 3;		/* take the measured time to be rtt */
764 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
765 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
766 		tp->mdev_max_us = tp->rttvar_us;
767 		tp->rtt_seq = tp->snd_nxt;
768 	}
769 	tp->srtt_us = max(1U, srtt);
770 }
771 
772 static void tcp_update_pacing_rate(struct sock *sk)
773 {
774 	const struct tcp_sock *tp = tcp_sk(sk);
775 	u64 rate;
776 
777 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
778 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
779 
780 	/* current rate is (cwnd * mss) / srtt
781 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
782 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
783 	 *
784 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
785 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
786 	 *	 end of slow start and should slow down.
787 	 */
788 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
789 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
790 	else
791 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
792 
793 	rate *= max(tp->snd_cwnd, tp->packets_out);
794 
795 	if (likely(tp->srtt_us))
796 		do_div(rate, tp->srtt_us);
797 
798 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
799 	 * without any lock. We want to make sure compiler wont store
800 	 * intermediate values in this location.
801 	 */
802 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
803 					     sk->sk_max_pacing_rate));
804 }
805 
806 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
807  * routine referred to above.
808  */
809 static void tcp_set_rto(struct sock *sk)
810 {
811 	const struct tcp_sock *tp = tcp_sk(sk);
812 	/* Old crap is replaced with new one. 8)
813 	 *
814 	 * More seriously:
815 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
816 	 *    It cannot be less due to utterly erratic ACK generation made
817 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
818 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
819 	 *    is invisible. Actually, Linux-2.4 also generates erratic
820 	 *    ACKs in some circumstances.
821 	 */
822 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
823 
824 	/* 2. Fixups made earlier cannot be right.
825 	 *    If we do not estimate RTO correctly without them,
826 	 *    all the algo is pure shit and should be replaced
827 	 *    with correct one. It is exactly, which we pretend to do.
828 	 */
829 
830 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
831 	 * guarantees that rto is higher.
832 	 */
833 	tcp_bound_rto(sk);
834 }
835 
836 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
837 {
838 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
839 
840 	if (!cwnd)
841 		cwnd = TCP_INIT_CWND;
842 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
843 }
844 
845 /* Take a notice that peer is sending D-SACKs */
846 static void tcp_dsack_seen(struct tcp_sock *tp)
847 {
848 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
849 	tp->rack.dsack_seen = 1;
850 }
851 
852 /* It's reordering when higher sequence was delivered (i.e. sacked) before
853  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
854  * distance is approximated in full-mss packet distance ("reordering").
855  */
856 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
857 				      const int ts)
858 {
859 	struct tcp_sock *tp = tcp_sk(sk);
860 	const u32 mss = tp->mss_cache;
861 	u32 fack, metric;
862 
863 	fack = tcp_highest_sack_seq(tp);
864 	if (!before(low_seq, fack))
865 		return;
866 
867 	metric = fack - low_seq;
868 	if ((metric > tp->reordering * mss) && mss) {
869 #if FASTRETRANS_DEBUG > 1
870 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
871 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
872 			 tp->reordering,
873 			 0,
874 			 tp->sacked_out,
875 			 tp->undo_marker ? tp->undo_retrans : 0);
876 #endif
877 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
878 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
879 	}
880 
881 	tp->rack.reord = 1;
882 	/* This exciting event is worth to be remembered. 8) */
883 	NET_INC_STATS(sock_net(sk),
884 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
885 }
886 
887 /* This must be called before lost_out is incremented */
888 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
889 {
890 	if (!tp->retransmit_skb_hint ||
891 	    before(TCP_SKB_CB(skb)->seq,
892 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
893 		tp->retransmit_skb_hint = skb;
894 }
895 
896 /* Sum the number of packets on the wire we have marked as lost.
897  * There are two cases we care about here:
898  * a) Packet hasn't been marked lost (nor retransmitted),
899  *    and this is the first loss.
900  * b) Packet has been marked both lost and retransmitted,
901  *    and this means we think it was lost again.
902  */
903 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
904 {
905 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
906 
907 	if (!(sacked & TCPCB_LOST) ||
908 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
909 		tp->lost += tcp_skb_pcount(skb);
910 }
911 
912 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
915 		tcp_verify_retransmit_hint(tp, skb);
916 
917 		tp->lost_out += tcp_skb_pcount(skb);
918 		tcp_sum_lost(tp, skb);
919 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
920 	}
921 }
922 
923 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	tcp_verify_retransmit_hint(tp, skb);
926 
927 	tcp_sum_lost(tp, skb);
928 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
929 		tp->lost_out += tcp_skb_pcount(skb);
930 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
931 	}
932 }
933 
934 /* This procedure tags the retransmission queue when SACKs arrive.
935  *
936  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
937  * Packets in queue with these bits set are counted in variables
938  * sacked_out, retrans_out and lost_out, correspondingly.
939  *
940  * Valid combinations are:
941  * Tag  InFlight	Description
942  * 0	1		- orig segment is in flight.
943  * S	0		- nothing flies, orig reached receiver.
944  * L	0		- nothing flies, orig lost by net.
945  * R	2		- both orig and retransmit are in flight.
946  * L|R	1		- orig is lost, retransmit is in flight.
947  * S|R  1		- orig reached receiver, retrans is still in flight.
948  * (L|S|R is logically valid, it could occur when L|R is sacked,
949  *  but it is equivalent to plain S and code short-curcuits it to S.
950  *  L|S is logically invalid, it would mean -1 packet in flight 8))
951  *
952  * These 6 states form finite state machine, controlled by the following events:
953  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
954  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
955  * 3. Loss detection event of two flavors:
956  *	A. Scoreboard estimator decided the packet is lost.
957  *	   A'. Reno "three dupacks" marks head of queue lost.
958  *	B. SACK arrives sacking SND.NXT at the moment, when the
959  *	   segment was retransmitted.
960  * 4. D-SACK added new rule: D-SACK changes any tag to S.
961  *
962  * It is pleasant to note, that state diagram turns out to be commutative,
963  * so that we are allowed not to be bothered by order of our actions,
964  * when multiple events arrive simultaneously. (see the function below).
965  *
966  * Reordering detection.
967  * --------------------
968  * Reordering metric is maximal distance, which a packet can be displaced
969  * in packet stream. With SACKs we can estimate it:
970  *
971  * 1. SACK fills old hole and the corresponding segment was not
972  *    ever retransmitted -> reordering. Alas, we cannot use it
973  *    when segment was retransmitted.
974  * 2. The last flaw is solved with D-SACK. D-SACK arrives
975  *    for retransmitted and already SACKed segment -> reordering..
976  * Both of these heuristics are not used in Loss state, when we cannot
977  * account for retransmits accurately.
978  *
979  * SACK block validation.
980  * ----------------------
981  *
982  * SACK block range validation checks that the received SACK block fits to
983  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
984  * Note that SND.UNA is not included to the range though being valid because
985  * it means that the receiver is rather inconsistent with itself reporting
986  * SACK reneging when it should advance SND.UNA. Such SACK block this is
987  * perfectly valid, however, in light of RFC2018 which explicitly states
988  * that "SACK block MUST reflect the newest segment.  Even if the newest
989  * segment is going to be discarded ...", not that it looks very clever
990  * in case of head skb. Due to potentional receiver driven attacks, we
991  * choose to avoid immediate execution of a walk in write queue due to
992  * reneging and defer head skb's loss recovery to standard loss recovery
993  * procedure that will eventually trigger (nothing forbids us doing this).
994  *
995  * Implements also blockage to start_seq wrap-around. Problem lies in the
996  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
997  * there's no guarantee that it will be before snd_nxt (n). The problem
998  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
999  * wrap (s_w):
1000  *
1001  *         <- outs wnd ->                          <- wrapzone ->
1002  *         u     e      n                         u_w   e_w  s n_w
1003  *         |     |      |                          |     |   |  |
1004  * |<------------+------+----- TCP seqno space --------------+---------->|
1005  * ...-- <2^31 ->|                                           |<--------...
1006  * ...---- >2^31 ------>|                                    |<--------...
1007  *
1008  * Current code wouldn't be vulnerable but it's better still to discard such
1009  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1010  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1011  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1012  * equal to the ideal case (infinite seqno space without wrap caused issues).
1013  *
1014  * With D-SACK the lower bound is extended to cover sequence space below
1015  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1016  * again, D-SACK block must not to go across snd_una (for the same reason as
1017  * for the normal SACK blocks, explained above). But there all simplicity
1018  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1019  * fully below undo_marker they do not affect behavior in anyway and can
1020  * therefore be safely ignored. In rare cases (which are more or less
1021  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1022  * fragmentation and packet reordering past skb's retransmission. To consider
1023  * them correctly, the acceptable range must be extended even more though
1024  * the exact amount is rather hard to quantify. However, tp->max_window can
1025  * be used as an exaggerated estimate.
1026  */
1027 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1028 				   u32 start_seq, u32 end_seq)
1029 {
1030 	/* Too far in future, or reversed (interpretation is ambiguous) */
1031 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1032 		return false;
1033 
1034 	/* Nasty start_seq wrap-around check (see comments above) */
1035 	if (!before(start_seq, tp->snd_nxt))
1036 		return false;
1037 
1038 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1039 	 * start_seq == snd_una is non-sensical (see comments above)
1040 	 */
1041 	if (after(start_seq, tp->snd_una))
1042 		return true;
1043 
1044 	if (!is_dsack || !tp->undo_marker)
1045 		return false;
1046 
1047 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1048 	if (after(end_seq, tp->snd_una))
1049 		return false;
1050 
1051 	if (!before(start_seq, tp->undo_marker))
1052 		return true;
1053 
1054 	/* Too old */
1055 	if (!after(end_seq, tp->undo_marker))
1056 		return false;
1057 
1058 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1059 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1060 	 */
1061 	return !before(start_seq, end_seq - tp->max_window);
1062 }
1063 
1064 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1065 			    struct tcp_sack_block_wire *sp, int num_sacks,
1066 			    u32 prior_snd_una)
1067 {
1068 	struct tcp_sock *tp = tcp_sk(sk);
1069 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1070 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1071 	bool dup_sack = false;
1072 
1073 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1074 		dup_sack = true;
1075 		tcp_dsack_seen(tp);
1076 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1077 	} else if (num_sacks > 1) {
1078 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1079 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1080 
1081 		if (!after(end_seq_0, end_seq_1) &&
1082 		    !before(start_seq_0, start_seq_1)) {
1083 			dup_sack = true;
1084 			tcp_dsack_seen(tp);
1085 			NET_INC_STATS(sock_net(sk),
1086 					LINUX_MIB_TCPDSACKOFORECV);
1087 		}
1088 	}
1089 
1090 	/* D-SACK for already forgotten data... Do dumb counting. */
1091 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1092 	    !after(end_seq_0, prior_snd_una) &&
1093 	    after(end_seq_0, tp->undo_marker))
1094 		tp->undo_retrans--;
1095 
1096 	return dup_sack;
1097 }
1098 
1099 struct tcp_sacktag_state {
1100 	u32	reord;
1101 	/* Timestamps for earliest and latest never-retransmitted segment
1102 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1103 	 * but congestion control should still get an accurate delay signal.
1104 	 */
1105 	u64	first_sackt;
1106 	u64	last_sackt;
1107 	struct rate_sample *rate;
1108 	int	flag;
1109 	unsigned int mss_now;
1110 };
1111 
1112 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1113  * the incoming SACK may not exactly match but we can find smaller MSS
1114  * aligned portion of it that matches. Therefore we might need to fragment
1115  * which may fail and creates some hassle (caller must handle error case
1116  * returns).
1117  *
1118  * FIXME: this could be merged to shift decision code
1119  */
1120 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1121 				  u32 start_seq, u32 end_seq)
1122 {
1123 	int err;
1124 	bool in_sack;
1125 	unsigned int pkt_len;
1126 	unsigned int mss;
1127 
1128 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1129 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1130 
1131 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1132 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1133 		mss = tcp_skb_mss(skb);
1134 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1135 
1136 		if (!in_sack) {
1137 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1138 			if (pkt_len < mss)
1139 				pkt_len = mss;
1140 		} else {
1141 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1142 			if (pkt_len < mss)
1143 				return -EINVAL;
1144 		}
1145 
1146 		/* Round if necessary so that SACKs cover only full MSSes
1147 		 * and/or the remaining small portion (if present)
1148 		 */
1149 		if (pkt_len > mss) {
1150 			unsigned int new_len = (pkt_len / mss) * mss;
1151 			if (!in_sack && new_len < pkt_len)
1152 				new_len += mss;
1153 			pkt_len = new_len;
1154 		}
1155 
1156 		if (pkt_len >= skb->len && !in_sack)
1157 			return 0;
1158 
1159 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1160 				   pkt_len, mss, GFP_ATOMIC);
1161 		if (err < 0)
1162 			return err;
1163 	}
1164 
1165 	return in_sack;
1166 }
1167 
1168 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1169 static u8 tcp_sacktag_one(struct sock *sk,
1170 			  struct tcp_sacktag_state *state, u8 sacked,
1171 			  u32 start_seq, u32 end_seq,
1172 			  int dup_sack, int pcount,
1173 			  u64 xmit_time)
1174 {
1175 	struct tcp_sock *tp = tcp_sk(sk);
1176 
1177 	/* Account D-SACK for retransmitted packet. */
1178 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1179 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1180 		    after(end_seq, tp->undo_marker))
1181 			tp->undo_retrans--;
1182 		if ((sacked & TCPCB_SACKED_ACKED) &&
1183 		    before(start_seq, state->reord))
1184 				state->reord = start_seq;
1185 	}
1186 
1187 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1188 	if (!after(end_seq, tp->snd_una))
1189 		return sacked;
1190 
1191 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1192 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1193 
1194 		if (sacked & TCPCB_SACKED_RETRANS) {
1195 			/* If the segment is not tagged as lost,
1196 			 * we do not clear RETRANS, believing
1197 			 * that retransmission is still in flight.
1198 			 */
1199 			if (sacked & TCPCB_LOST) {
1200 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1201 				tp->lost_out -= pcount;
1202 				tp->retrans_out -= pcount;
1203 			}
1204 		} else {
1205 			if (!(sacked & TCPCB_RETRANS)) {
1206 				/* New sack for not retransmitted frame,
1207 				 * which was in hole. It is reordering.
1208 				 */
1209 				if (before(start_seq,
1210 					   tcp_highest_sack_seq(tp)) &&
1211 				    before(start_seq, state->reord))
1212 					state->reord = start_seq;
1213 
1214 				if (!after(end_seq, tp->high_seq))
1215 					state->flag |= FLAG_ORIG_SACK_ACKED;
1216 				if (state->first_sackt == 0)
1217 					state->first_sackt = xmit_time;
1218 				state->last_sackt = xmit_time;
1219 			}
1220 
1221 			if (sacked & TCPCB_LOST) {
1222 				sacked &= ~TCPCB_LOST;
1223 				tp->lost_out -= pcount;
1224 			}
1225 		}
1226 
1227 		sacked |= TCPCB_SACKED_ACKED;
1228 		state->flag |= FLAG_DATA_SACKED;
1229 		tp->sacked_out += pcount;
1230 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1231 
1232 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1233 		if (tp->lost_skb_hint &&
1234 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1235 			tp->lost_cnt_hint += pcount;
1236 	}
1237 
1238 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1239 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1240 	 * are accounted above as well.
1241 	 */
1242 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1243 		sacked &= ~TCPCB_SACKED_RETRANS;
1244 		tp->retrans_out -= pcount;
1245 	}
1246 
1247 	return sacked;
1248 }
1249 
1250 /* Shift newly-SACKed bytes from this skb to the immediately previous
1251  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1252  */
1253 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1254 			    struct sk_buff *skb,
1255 			    struct tcp_sacktag_state *state,
1256 			    unsigned int pcount, int shifted, int mss,
1257 			    bool dup_sack)
1258 {
1259 	struct tcp_sock *tp = tcp_sk(sk);
1260 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1261 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1262 
1263 	BUG_ON(!pcount);
1264 
1265 	/* Adjust counters and hints for the newly sacked sequence
1266 	 * range but discard the return value since prev is already
1267 	 * marked. We must tag the range first because the seq
1268 	 * advancement below implicitly advances
1269 	 * tcp_highest_sack_seq() when skb is highest_sack.
1270 	 */
1271 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1272 			start_seq, end_seq, dup_sack, pcount,
1273 			skb->skb_mstamp);
1274 	tcp_rate_skb_delivered(sk, skb, state->rate);
1275 
1276 	if (skb == tp->lost_skb_hint)
1277 		tp->lost_cnt_hint += pcount;
1278 
1279 	TCP_SKB_CB(prev)->end_seq += shifted;
1280 	TCP_SKB_CB(skb)->seq += shifted;
1281 
1282 	tcp_skb_pcount_add(prev, pcount);
1283 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1284 	tcp_skb_pcount_add(skb, -pcount);
1285 
1286 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1287 	 * in theory this shouldn't be necessary but as long as DSACK
1288 	 * code can come after this skb later on it's better to keep
1289 	 * setting gso_size to something.
1290 	 */
1291 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1292 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1293 
1294 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1295 	if (tcp_skb_pcount(skb) <= 1)
1296 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1297 
1298 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1299 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1300 
1301 	if (skb->len > 0) {
1302 		BUG_ON(!tcp_skb_pcount(skb));
1303 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1304 		return false;
1305 	}
1306 
1307 	/* Whole SKB was eaten :-) */
1308 
1309 	if (skb == tp->retransmit_skb_hint)
1310 		tp->retransmit_skb_hint = prev;
1311 	if (skb == tp->lost_skb_hint) {
1312 		tp->lost_skb_hint = prev;
1313 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1314 	}
1315 
1316 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1317 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1318 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1319 		TCP_SKB_CB(prev)->end_seq++;
1320 
1321 	if (skb == tcp_highest_sack(sk))
1322 		tcp_advance_highest_sack(sk, skb);
1323 
1324 	tcp_skb_collapse_tstamp(prev, skb);
1325 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1326 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1327 
1328 	tcp_rtx_queue_unlink_and_free(skb, sk);
1329 
1330 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1331 
1332 	return true;
1333 }
1334 
1335 /* I wish gso_size would have a bit more sane initialization than
1336  * something-or-zero which complicates things
1337  */
1338 static int tcp_skb_seglen(const struct sk_buff *skb)
1339 {
1340 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1341 }
1342 
1343 /* Shifting pages past head area doesn't work */
1344 static int skb_can_shift(const struct sk_buff *skb)
1345 {
1346 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1347 }
1348 
1349 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1350  * skb.
1351  */
1352 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1353 					  struct tcp_sacktag_state *state,
1354 					  u32 start_seq, u32 end_seq,
1355 					  bool dup_sack)
1356 {
1357 	struct tcp_sock *tp = tcp_sk(sk);
1358 	struct sk_buff *prev;
1359 	int mss;
1360 	int pcount = 0;
1361 	int len;
1362 	int in_sack;
1363 
1364 	if (!sk_can_gso(sk))
1365 		goto fallback;
1366 
1367 	/* Normally R but no L won't result in plain S */
1368 	if (!dup_sack &&
1369 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1370 		goto fallback;
1371 	if (!skb_can_shift(skb))
1372 		goto fallback;
1373 	/* This frame is about to be dropped (was ACKed). */
1374 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1375 		goto fallback;
1376 
1377 	/* Can only happen with delayed DSACK + discard craziness */
1378 	prev = skb_rb_prev(skb);
1379 	if (!prev)
1380 		goto fallback;
1381 
1382 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1383 		goto fallback;
1384 
1385 	if (!tcp_skb_can_collapse_to(prev))
1386 		goto fallback;
1387 
1388 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1389 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1390 
1391 	if (in_sack) {
1392 		len = skb->len;
1393 		pcount = tcp_skb_pcount(skb);
1394 		mss = tcp_skb_seglen(skb);
1395 
1396 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1397 		 * drop this restriction as unnecessary
1398 		 */
1399 		if (mss != tcp_skb_seglen(prev))
1400 			goto fallback;
1401 	} else {
1402 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1403 			goto noop;
1404 		/* CHECKME: This is non-MSS split case only?, this will
1405 		 * cause skipped skbs due to advancing loop btw, original
1406 		 * has that feature too
1407 		 */
1408 		if (tcp_skb_pcount(skb) <= 1)
1409 			goto noop;
1410 
1411 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1412 		if (!in_sack) {
1413 			/* TODO: head merge to next could be attempted here
1414 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1415 			 * though it might not be worth of the additional hassle
1416 			 *
1417 			 * ...we can probably just fallback to what was done
1418 			 * previously. We could try merging non-SACKed ones
1419 			 * as well but it probably isn't going to buy off
1420 			 * because later SACKs might again split them, and
1421 			 * it would make skb timestamp tracking considerably
1422 			 * harder problem.
1423 			 */
1424 			goto fallback;
1425 		}
1426 
1427 		len = end_seq - TCP_SKB_CB(skb)->seq;
1428 		BUG_ON(len < 0);
1429 		BUG_ON(len > skb->len);
1430 
1431 		/* MSS boundaries should be honoured or else pcount will
1432 		 * severely break even though it makes things bit trickier.
1433 		 * Optimize common case to avoid most of the divides
1434 		 */
1435 		mss = tcp_skb_mss(skb);
1436 
1437 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1438 		 * drop this restriction as unnecessary
1439 		 */
1440 		if (mss != tcp_skb_seglen(prev))
1441 			goto fallback;
1442 
1443 		if (len == mss) {
1444 			pcount = 1;
1445 		} else if (len < mss) {
1446 			goto noop;
1447 		} else {
1448 			pcount = len / mss;
1449 			len = pcount * mss;
1450 		}
1451 	}
1452 
1453 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1454 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1455 		goto fallback;
1456 
1457 	if (!skb_shift(prev, skb, len))
1458 		goto fallback;
1459 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1460 		goto out;
1461 
1462 	/* Hole filled allows collapsing with the next as well, this is very
1463 	 * useful when hole on every nth skb pattern happens
1464 	 */
1465 	skb = skb_rb_next(prev);
1466 	if (!skb)
1467 		goto out;
1468 
1469 	if (!skb_can_shift(skb) ||
1470 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1471 	    (mss != tcp_skb_seglen(skb)))
1472 		goto out;
1473 
1474 	len = skb->len;
1475 	if (skb_shift(prev, skb, len)) {
1476 		pcount += tcp_skb_pcount(skb);
1477 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1478 				len, mss, 0);
1479 	}
1480 
1481 out:
1482 	return prev;
1483 
1484 noop:
1485 	return skb;
1486 
1487 fallback:
1488 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1489 	return NULL;
1490 }
1491 
1492 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1493 					struct tcp_sack_block *next_dup,
1494 					struct tcp_sacktag_state *state,
1495 					u32 start_seq, u32 end_seq,
1496 					bool dup_sack_in)
1497 {
1498 	struct tcp_sock *tp = tcp_sk(sk);
1499 	struct sk_buff *tmp;
1500 
1501 	skb_rbtree_walk_from(skb) {
1502 		int in_sack = 0;
1503 		bool dup_sack = dup_sack_in;
1504 
1505 		/* queue is in-order => we can short-circuit the walk early */
1506 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1507 			break;
1508 
1509 		if (next_dup  &&
1510 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1511 			in_sack = tcp_match_skb_to_sack(sk, skb,
1512 							next_dup->start_seq,
1513 							next_dup->end_seq);
1514 			if (in_sack > 0)
1515 				dup_sack = true;
1516 		}
1517 
1518 		/* skb reference here is a bit tricky to get right, since
1519 		 * shifting can eat and free both this skb and the next,
1520 		 * so not even _safe variant of the loop is enough.
1521 		 */
1522 		if (in_sack <= 0) {
1523 			tmp = tcp_shift_skb_data(sk, skb, state,
1524 						 start_seq, end_seq, dup_sack);
1525 			if (tmp) {
1526 				if (tmp != skb) {
1527 					skb = tmp;
1528 					continue;
1529 				}
1530 
1531 				in_sack = 0;
1532 			} else {
1533 				in_sack = tcp_match_skb_to_sack(sk, skb,
1534 								start_seq,
1535 								end_seq);
1536 			}
1537 		}
1538 
1539 		if (unlikely(in_sack < 0))
1540 			break;
1541 
1542 		if (in_sack) {
1543 			TCP_SKB_CB(skb)->sacked =
1544 				tcp_sacktag_one(sk,
1545 						state,
1546 						TCP_SKB_CB(skb)->sacked,
1547 						TCP_SKB_CB(skb)->seq,
1548 						TCP_SKB_CB(skb)->end_seq,
1549 						dup_sack,
1550 						tcp_skb_pcount(skb),
1551 						skb->skb_mstamp);
1552 			tcp_rate_skb_delivered(sk, skb, state->rate);
1553 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1554 				list_del_init(&skb->tcp_tsorted_anchor);
1555 
1556 			if (!before(TCP_SKB_CB(skb)->seq,
1557 				    tcp_highest_sack_seq(tp)))
1558 				tcp_advance_highest_sack(sk, skb);
1559 		}
1560 	}
1561 	return skb;
1562 }
1563 
1564 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1565 					   struct tcp_sacktag_state *state,
1566 					   u32 seq)
1567 {
1568 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1569 	struct sk_buff *skb;
1570 
1571 	while (*p) {
1572 		parent = *p;
1573 		skb = rb_to_skb(parent);
1574 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1575 			p = &parent->rb_left;
1576 			continue;
1577 		}
1578 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1579 			p = &parent->rb_right;
1580 			continue;
1581 		}
1582 		return skb;
1583 	}
1584 	return NULL;
1585 }
1586 
1587 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1588 					struct tcp_sacktag_state *state,
1589 					u32 skip_to_seq)
1590 {
1591 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1592 		return skb;
1593 
1594 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1595 }
1596 
1597 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1598 						struct sock *sk,
1599 						struct tcp_sack_block *next_dup,
1600 						struct tcp_sacktag_state *state,
1601 						u32 skip_to_seq)
1602 {
1603 	if (!next_dup)
1604 		return skb;
1605 
1606 	if (before(next_dup->start_seq, skip_to_seq)) {
1607 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1608 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1609 				       next_dup->start_seq, next_dup->end_seq,
1610 				       1);
1611 	}
1612 
1613 	return skb;
1614 }
1615 
1616 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1617 {
1618 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1619 }
1620 
1621 static int
1622 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1623 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1624 {
1625 	struct tcp_sock *tp = tcp_sk(sk);
1626 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1627 				    TCP_SKB_CB(ack_skb)->sacked);
1628 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1629 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1630 	struct tcp_sack_block *cache;
1631 	struct sk_buff *skb;
1632 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1633 	int used_sacks;
1634 	bool found_dup_sack = false;
1635 	int i, j;
1636 	int first_sack_index;
1637 
1638 	state->flag = 0;
1639 	state->reord = tp->snd_nxt;
1640 
1641 	if (!tp->sacked_out)
1642 		tcp_highest_sack_reset(sk);
1643 
1644 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1645 					 num_sacks, prior_snd_una);
1646 	if (found_dup_sack) {
1647 		state->flag |= FLAG_DSACKING_ACK;
1648 		tp->delivered++; /* A spurious retransmission is delivered */
1649 	}
1650 
1651 	/* Eliminate too old ACKs, but take into
1652 	 * account more or less fresh ones, they can
1653 	 * contain valid SACK info.
1654 	 */
1655 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1656 		return 0;
1657 
1658 	if (!tp->packets_out)
1659 		goto out;
1660 
1661 	used_sacks = 0;
1662 	first_sack_index = 0;
1663 	for (i = 0; i < num_sacks; i++) {
1664 		bool dup_sack = !i && found_dup_sack;
1665 
1666 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1667 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1668 
1669 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1670 					    sp[used_sacks].start_seq,
1671 					    sp[used_sacks].end_seq)) {
1672 			int mib_idx;
1673 
1674 			if (dup_sack) {
1675 				if (!tp->undo_marker)
1676 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1677 				else
1678 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1679 			} else {
1680 				/* Don't count olds caused by ACK reordering */
1681 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1682 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1683 					continue;
1684 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1685 			}
1686 
1687 			NET_INC_STATS(sock_net(sk), mib_idx);
1688 			if (i == 0)
1689 				first_sack_index = -1;
1690 			continue;
1691 		}
1692 
1693 		/* Ignore very old stuff early */
1694 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1695 			continue;
1696 
1697 		used_sacks++;
1698 	}
1699 
1700 	/* order SACK blocks to allow in order walk of the retrans queue */
1701 	for (i = used_sacks - 1; i > 0; i--) {
1702 		for (j = 0; j < i; j++) {
1703 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1704 				swap(sp[j], sp[j + 1]);
1705 
1706 				/* Track where the first SACK block goes to */
1707 				if (j == first_sack_index)
1708 					first_sack_index = j + 1;
1709 			}
1710 		}
1711 	}
1712 
1713 	state->mss_now = tcp_current_mss(sk);
1714 	skb = NULL;
1715 	i = 0;
1716 
1717 	if (!tp->sacked_out) {
1718 		/* It's already past, so skip checking against it */
1719 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1720 	} else {
1721 		cache = tp->recv_sack_cache;
1722 		/* Skip empty blocks in at head of the cache */
1723 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1724 		       !cache->end_seq)
1725 			cache++;
1726 	}
1727 
1728 	while (i < used_sacks) {
1729 		u32 start_seq = sp[i].start_seq;
1730 		u32 end_seq = sp[i].end_seq;
1731 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1732 		struct tcp_sack_block *next_dup = NULL;
1733 
1734 		if (found_dup_sack && ((i + 1) == first_sack_index))
1735 			next_dup = &sp[i + 1];
1736 
1737 		/* Skip too early cached blocks */
1738 		while (tcp_sack_cache_ok(tp, cache) &&
1739 		       !before(start_seq, cache->end_seq))
1740 			cache++;
1741 
1742 		/* Can skip some work by looking recv_sack_cache? */
1743 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1744 		    after(end_seq, cache->start_seq)) {
1745 
1746 			/* Head todo? */
1747 			if (before(start_seq, cache->start_seq)) {
1748 				skb = tcp_sacktag_skip(skb, sk, state,
1749 						       start_seq);
1750 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1751 						       state,
1752 						       start_seq,
1753 						       cache->start_seq,
1754 						       dup_sack);
1755 			}
1756 
1757 			/* Rest of the block already fully processed? */
1758 			if (!after(end_seq, cache->end_seq))
1759 				goto advance_sp;
1760 
1761 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1762 						       state,
1763 						       cache->end_seq);
1764 
1765 			/* ...tail remains todo... */
1766 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1767 				/* ...but better entrypoint exists! */
1768 				skb = tcp_highest_sack(sk);
1769 				if (!skb)
1770 					break;
1771 				cache++;
1772 				goto walk;
1773 			}
1774 
1775 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1776 			/* Check overlap against next cached too (past this one already) */
1777 			cache++;
1778 			continue;
1779 		}
1780 
1781 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1782 			skb = tcp_highest_sack(sk);
1783 			if (!skb)
1784 				break;
1785 		}
1786 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1787 
1788 walk:
1789 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1790 				       start_seq, end_seq, dup_sack);
1791 
1792 advance_sp:
1793 		i++;
1794 	}
1795 
1796 	/* Clear the head of the cache sack blocks so we can skip it next time */
1797 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1798 		tp->recv_sack_cache[i].start_seq = 0;
1799 		tp->recv_sack_cache[i].end_seq = 0;
1800 	}
1801 	for (j = 0; j < used_sacks; j++)
1802 		tp->recv_sack_cache[i++] = sp[j];
1803 
1804 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1805 		tcp_check_sack_reordering(sk, state->reord, 0);
1806 
1807 	tcp_verify_left_out(tp);
1808 out:
1809 
1810 #if FASTRETRANS_DEBUG > 0
1811 	WARN_ON((int)tp->sacked_out < 0);
1812 	WARN_ON((int)tp->lost_out < 0);
1813 	WARN_ON((int)tp->retrans_out < 0);
1814 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1815 #endif
1816 	return state->flag;
1817 }
1818 
1819 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1820  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1821  */
1822 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1823 {
1824 	u32 holes;
1825 
1826 	holes = max(tp->lost_out, 1U);
1827 	holes = min(holes, tp->packets_out);
1828 
1829 	if ((tp->sacked_out + holes) > tp->packets_out) {
1830 		tp->sacked_out = tp->packets_out - holes;
1831 		return true;
1832 	}
1833 	return false;
1834 }
1835 
1836 /* If we receive more dupacks than we expected counting segments
1837  * in assumption of absent reordering, interpret this as reordering.
1838  * The only another reason could be bug in receiver TCP.
1839  */
1840 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1841 {
1842 	struct tcp_sock *tp = tcp_sk(sk);
1843 
1844 	if (!tcp_limit_reno_sacked(tp))
1845 		return;
1846 
1847 	tp->reordering = min_t(u32, tp->packets_out + addend,
1848 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1849 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1850 }
1851 
1852 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1853 
1854 static void tcp_add_reno_sack(struct sock *sk)
1855 {
1856 	struct tcp_sock *tp = tcp_sk(sk);
1857 	u32 prior_sacked = tp->sacked_out;
1858 
1859 	tp->sacked_out++;
1860 	tcp_check_reno_reordering(sk, 0);
1861 	if (tp->sacked_out > prior_sacked)
1862 		tp->delivered++; /* Some out-of-order packet is delivered */
1863 	tcp_verify_left_out(tp);
1864 }
1865 
1866 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1867 
1868 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1869 {
1870 	struct tcp_sock *tp = tcp_sk(sk);
1871 
1872 	if (acked > 0) {
1873 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1874 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1875 		if (acked - 1 >= tp->sacked_out)
1876 			tp->sacked_out = 0;
1877 		else
1878 			tp->sacked_out -= acked - 1;
1879 	}
1880 	tcp_check_reno_reordering(sk, acked);
1881 	tcp_verify_left_out(tp);
1882 }
1883 
1884 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1885 {
1886 	tp->sacked_out = 0;
1887 }
1888 
1889 void tcp_clear_retrans(struct tcp_sock *tp)
1890 {
1891 	tp->retrans_out = 0;
1892 	tp->lost_out = 0;
1893 	tp->undo_marker = 0;
1894 	tp->undo_retrans = -1;
1895 	tp->sacked_out = 0;
1896 }
1897 
1898 static inline void tcp_init_undo(struct tcp_sock *tp)
1899 {
1900 	tp->undo_marker = tp->snd_una;
1901 	/* Retransmission still in flight may cause DSACKs later. */
1902 	tp->undo_retrans = tp->retrans_out ? : -1;
1903 }
1904 
1905 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1906  * and reset tags completely, otherwise preserve SACKs. If receiver
1907  * dropped its ofo queue, we will know this due to reneging detection.
1908  */
1909 void tcp_enter_loss(struct sock *sk)
1910 {
1911 	const struct inet_connection_sock *icsk = inet_csk(sk);
1912 	struct tcp_sock *tp = tcp_sk(sk);
1913 	struct net *net = sock_net(sk);
1914 	struct sk_buff *skb;
1915 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1916 	bool is_reneg;			/* is receiver reneging on SACKs? */
1917 	bool mark_lost;
1918 
1919 	/* Reduce ssthresh if it has not yet been made inside this window. */
1920 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1921 	    !after(tp->high_seq, tp->snd_una) ||
1922 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1923 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1924 		tp->prior_cwnd = tp->snd_cwnd;
1925 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1926 		tcp_ca_event(sk, CA_EVENT_LOSS);
1927 		tcp_init_undo(tp);
1928 	}
1929 	tp->snd_cwnd	   = 1;
1930 	tp->snd_cwnd_cnt   = 0;
1931 	tp->snd_cwnd_stamp = tcp_jiffies32;
1932 
1933 	tp->retrans_out = 0;
1934 	tp->lost_out = 0;
1935 
1936 	if (tcp_is_reno(tp))
1937 		tcp_reset_reno_sack(tp);
1938 
1939 	skb = tcp_rtx_queue_head(sk);
1940 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1941 	if (is_reneg) {
1942 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1943 		tp->sacked_out = 0;
1944 	}
1945 	tcp_clear_all_retrans_hints(tp);
1946 
1947 	skb_rbtree_walk_from(skb) {
1948 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1949 			     is_reneg);
1950 		if (mark_lost)
1951 			tcp_sum_lost(tp, skb);
1952 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1953 		if (mark_lost) {
1954 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1955 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1956 			tp->lost_out += tcp_skb_pcount(skb);
1957 		}
1958 	}
1959 	tcp_verify_left_out(tp);
1960 
1961 	/* Timeout in disordered state after receiving substantial DUPACKs
1962 	 * suggests that the degree of reordering is over-estimated.
1963 	 */
1964 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1965 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1966 		tp->reordering = min_t(unsigned int, tp->reordering,
1967 				       net->ipv4.sysctl_tcp_reordering);
1968 	tcp_set_ca_state(sk, TCP_CA_Loss);
1969 	tp->high_seq = tp->snd_nxt;
1970 	tcp_ecn_queue_cwr(tp);
1971 
1972 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1973 	 * loss recovery is underway except recurring timeout(s) on
1974 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1975 	 *
1976 	 * In theory F-RTO can be used repeatedly during loss recovery.
1977 	 * In practice this interacts badly with broken middle-boxes that
1978 	 * falsely raise the receive window, which results in repeated
1979 	 * timeouts and stop-and-go behavior.
1980 	 */
1981 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1982 		   (new_recovery || icsk->icsk_retransmits) &&
1983 		   !inet_csk(sk)->icsk_mtup.probe_size;
1984 }
1985 
1986 /* If ACK arrived pointing to a remembered SACK, it means that our
1987  * remembered SACKs do not reflect real state of receiver i.e.
1988  * receiver _host_ is heavily congested (or buggy).
1989  *
1990  * To avoid big spurious retransmission bursts due to transient SACK
1991  * scoreboard oddities that look like reneging, we give the receiver a
1992  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1993  * restore sanity to the SACK scoreboard. If the apparent reneging
1994  * persists until this RTO then we'll clear the SACK scoreboard.
1995  */
1996 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1997 {
1998 	if (flag & FLAG_SACK_RENEGING) {
1999 		struct tcp_sock *tp = tcp_sk(sk);
2000 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2001 					  msecs_to_jiffies(10));
2002 
2003 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2004 					  delay, TCP_RTO_MAX);
2005 		return true;
2006 	}
2007 	return false;
2008 }
2009 
2010 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2011  * counter when SACK is enabled (without SACK, sacked_out is used for
2012  * that purpose).
2013  *
2014  * With reordering, holes may still be in flight, so RFC3517 recovery
2015  * uses pure sacked_out (total number of SACKed segments) even though
2016  * it violates the RFC that uses duplicate ACKs, often these are equal
2017  * but when e.g. out-of-window ACKs or packet duplication occurs,
2018  * they differ. Since neither occurs due to loss, TCP should really
2019  * ignore them.
2020  */
2021 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2022 {
2023 	return tp->sacked_out + 1;
2024 }
2025 
2026 /* Linux NewReno/SACK/ECN state machine.
2027  * --------------------------------------
2028  *
2029  * "Open"	Normal state, no dubious events, fast path.
2030  * "Disorder"   In all the respects it is "Open",
2031  *		but requires a bit more attention. It is entered when
2032  *		we see some SACKs or dupacks. It is split of "Open"
2033  *		mainly to move some processing from fast path to slow one.
2034  * "CWR"	CWND was reduced due to some Congestion Notification event.
2035  *		It can be ECN, ICMP source quench, local device congestion.
2036  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2037  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2038  *
2039  * tcp_fastretrans_alert() is entered:
2040  * - each incoming ACK, if state is not "Open"
2041  * - when arrived ACK is unusual, namely:
2042  *	* SACK
2043  *	* Duplicate ACK.
2044  *	* ECN ECE.
2045  *
2046  * Counting packets in flight is pretty simple.
2047  *
2048  *	in_flight = packets_out - left_out + retrans_out
2049  *
2050  *	packets_out is SND.NXT-SND.UNA counted in packets.
2051  *
2052  *	retrans_out is number of retransmitted segments.
2053  *
2054  *	left_out is number of segments left network, but not ACKed yet.
2055  *
2056  *		left_out = sacked_out + lost_out
2057  *
2058  *     sacked_out: Packets, which arrived to receiver out of order
2059  *		   and hence not ACKed. With SACKs this number is simply
2060  *		   amount of SACKed data. Even without SACKs
2061  *		   it is easy to give pretty reliable estimate of this number,
2062  *		   counting duplicate ACKs.
2063  *
2064  *       lost_out: Packets lost by network. TCP has no explicit
2065  *		   "loss notification" feedback from network (for now).
2066  *		   It means that this number can be only _guessed_.
2067  *		   Actually, it is the heuristics to predict lossage that
2068  *		   distinguishes different algorithms.
2069  *
2070  *	F.e. after RTO, when all the queue is considered as lost,
2071  *	lost_out = packets_out and in_flight = retrans_out.
2072  *
2073  *		Essentially, we have now a few algorithms detecting
2074  *		lost packets.
2075  *
2076  *		If the receiver supports SACK:
2077  *
2078  *		RFC6675/3517: It is the conventional algorithm. A packet is
2079  *		considered lost if the number of higher sequence packets
2080  *		SACKed is greater than or equal the DUPACK thoreshold
2081  *		(reordering). This is implemented in tcp_mark_head_lost and
2082  *		tcp_update_scoreboard.
2083  *
2084  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2085  *		(2017-) that checks timing instead of counting DUPACKs.
2086  *		Essentially a packet is considered lost if it's not S/ACKed
2087  *		after RTT + reordering_window, where both metrics are
2088  *		dynamically measured and adjusted. This is implemented in
2089  *		tcp_rack_mark_lost.
2090  *
2091  *		If the receiver does not support SACK:
2092  *
2093  *		NewReno (RFC6582): in Recovery we assume that one segment
2094  *		is lost (classic Reno). While we are in Recovery and
2095  *		a partial ACK arrives, we assume that one more packet
2096  *		is lost (NewReno). This heuristics are the same in NewReno
2097  *		and SACK.
2098  *
2099  * Really tricky (and requiring careful tuning) part of algorithm
2100  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2101  * The first determines the moment _when_ we should reduce CWND and,
2102  * hence, slow down forward transmission. In fact, it determines the moment
2103  * when we decide that hole is caused by loss, rather than by a reorder.
2104  *
2105  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2106  * holes, caused by lost packets.
2107  *
2108  * And the most logically complicated part of algorithm is undo
2109  * heuristics. We detect false retransmits due to both too early
2110  * fast retransmit (reordering) and underestimated RTO, analyzing
2111  * timestamps and D-SACKs. When we detect that some segments were
2112  * retransmitted by mistake and CWND reduction was wrong, we undo
2113  * window reduction and abort recovery phase. This logic is hidden
2114  * inside several functions named tcp_try_undo_<something>.
2115  */
2116 
2117 /* This function decides, when we should leave Disordered state
2118  * and enter Recovery phase, reducing congestion window.
2119  *
2120  * Main question: may we further continue forward transmission
2121  * with the same cwnd?
2122  */
2123 static bool tcp_time_to_recover(struct sock *sk, int flag)
2124 {
2125 	struct tcp_sock *tp = tcp_sk(sk);
2126 
2127 	/* Trick#1: The loss is proven. */
2128 	if (tp->lost_out)
2129 		return true;
2130 
2131 	/* Not-A-Trick#2 : Classic rule... */
2132 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2133 		return true;
2134 
2135 	return false;
2136 }
2137 
2138 /* Detect loss in event "A" above by marking head of queue up as lost.
2139  * For non-SACK(Reno) senders, the first "packets" number of segments
2140  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2141  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2142  * the maximum SACKed segments to pass before reaching this limit.
2143  */
2144 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2145 {
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 	struct sk_buff *skb;
2148 	int cnt, oldcnt, lost;
2149 	unsigned int mss;
2150 	/* Use SACK to deduce losses of new sequences sent during recovery */
2151 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2152 
2153 	WARN_ON(packets > tp->packets_out);
2154 	skb = tp->lost_skb_hint;
2155 	if (skb) {
2156 		/* Head already handled? */
2157 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2158 			return;
2159 		cnt = tp->lost_cnt_hint;
2160 	} else {
2161 		skb = tcp_rtx_queue_head(sk);
2162 		cnt = 0;
2163 	}
2164 
2165 	skb_rbtree_walk_from(skb) {
2166 		/* TODO: do this better */
2167 		/* this is not the most efficient way to do this... */
2168 		tp->lost_skb_hint = skb;
2169 		tp->lost_cnt_hint = cnt;
2170 
2171 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2172 			break;
2173 
2174 		oldcnt = cnt;
2175 		if (tcp_is_reno(tp) ||
2176 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2177 			cnt += tcp_skb_pcount(skb);
2178 
2179 		if (cnt > packets) {
2180 			if (tcp_is_sack(tp) ||
2181 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2182 			    (oldcnt >= packets))
2183 				break;
2184 
2185 			mss = tcp_skb_mss(skb);
2186 			/* If needed, chop off the prefix to mark as lost. */
2187 			lost = (packets - oldcnt) * mss;
2188 			if (lost < skb->len &&
2189 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2190 					 lost, mss, GFP_ATOMIC) < 0)
2191 				break;
2192 			cnt = packets;
2193 		}
2194 
2195 		tcp_skb_mark_lost(tp, skb);
2196 
2197 		if (mark_head)
2198 			break;
2199 	}
2200 	tcp_verify_left_out(tp);
2201 }
2202 
2203 /* Account newly detected lost packet(s) */
2204 
2205 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2206 {
2207 	struct tcp_sock *tp = tcp_sk(sk);
2208 
2209 	if (tcp_is_reno(tp)) {
2210 		tcp_mark_head_lost(sk, 1, 1);
2211 	} else {
2212 		int sacked_upto = tp->sacked_out - tp->reordering;
2213 		if (sacked_upto >= 0)
2214 			tcp_mark_head_lost(sk, sacked_upto, 0);
2215 		else if (fast_rexmit)
2216 			tcp_mark_head_lost(sk, 1, 1);
2217 	}
2218 }
2219 
2220 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2221 {
2222 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2223 	       before(tp->rx_opt.rcv_tsecr, when);
2224 }
2225 
2226 /* skb is spurious retransmitted if the returned timestamp echo
2227  * reply is prior to the skb transmission time
2228  */
2229 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2230 				     const struct sk_buff *skb)
2231 {
2232 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2233 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2234 }
2235 
2236 /* Nothing was retransmitted or returned timestamp is less
2237  * than timestamp of the first retransmission.
2238  */
2239 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2240 {
2241 	return !tp->retrans_stamp ||
2242 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2243 }
2244 
2245 /* Undo procedures. */
2246 
2247 /* We can clear retrans_stamp when there are no retransmissions in the
2248  * window. It would seem that it is trivially available for us in
2249  * tp->retrans_out, however, that kind of assumptions doesn't consider
2250  * what will happen if errors occur when sending retransmission for the
2251  * second time. ...It could the that such segment has only
2252  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2253  * the head skb is enough except for some reneging corner cases that
2254  * are not worth the effort.
2255  *
2256  * Main reason for all this complexity is the fact that connection dying
2257  * time now depends on the validity of the retrans_stamp, in particular,
2258  * that successive retransmissions of a segment must not advance
2259  * retrans_stamp under any conditions.
2260  */
2261 static bool tcp_any_retrans_done(const struct sock *sk)
2262 {
2263 	const struct tcp_sock *tp = tcp_sk(sk);
2264 	struct sk_buff *skb;
2265 
2266 	if (tp->retrans_out)
2267 		return true;
2268 
2269 	skb = tcp_rtx_queue_head(sk);
2270 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2271 		return true;
2272 
2273 	return false;
2274 }
2275 
2276 static void DBGUNDO(struct sock *sk, const char *msg)
2277 {
2278 #if FASTRETRANS_DEBUG > 1
2279 	struct tcp_sock *tp = tcp_sk(sk);
2280 	struct inet_sock *inet = inet_sk(sk);
2281 
2282 	if (sk->sk_family == AF_INET) {
2283 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2284 			 msg,
2285 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2286 			 tp->snd_cwnd, tcp_left_out(tp),
2287 			 tp->snd_ssthresh, tp->prior_ssthresh,
2288 			 tp->packets_out);
2289 	}
2290 #if IS_ENABLED(CONFIG_IPV6)
2291 	else if (sk->sk_family == AF_INET6) {
2292 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2293 			 msg,
2294 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2295 			 tp->snd_cwnd, tcp_left_out(tp),
2296 			 tp->snd_ssthresh, tp->prior_ssthresh,
2297 			 tp->packets_out);
2298 	}
2299 #endif
2300 #endif
2301 }
2302 
2303 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2304 {
2305 	struct tcp_sock *tp = tcp_sk(sk);
2306 
2307 	if (unmark_loss) {
2308 		struct sk_buff *skb;
2309 
2310 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2311 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2312 		}
2313 		tp->lost_out = 0;
2314 		tcp_clear_all_retrans_hints(tp);
2315 	}
2316 
2317 	if (tp->prior_ssthresh) {
2318 		const struct inet_connection_sock *icsk = inet_csk(sk);
2319 
2320 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2321 
2322 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2323 			tp->snd_ssthresh = tp->prior_ssthresh;
2324 			tcp_ecn_withdraw_cwr(tp);
2325 		}
2326 	}
2327 	tp->snd_cwnd_stamp = tcp_jiffies32;
2328 	tp->undo_marker = 0;
2329 }
2330 
2331 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2332 {
2333 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2334 }
2335 
2336 /* People celebrate: "We love our President!" */
2337 static bool tcp_try_undo_recovery(struct sock *sk)
2338 {
2339 	struct tcp_sock *tp = tcp_sk(sk);
2340 
2341 	if (tcp_may_undo(tp)) {
2342 		int mib_idx;
2343 
2344 		/* Happy end! We did not retransmit anything
2345 		 * or our original transmission succeeded.
2346 		 */
2347 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2348 		tcp_undo_cwnd_reduction(sk, false);
2349 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2350 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2351 		else
2352 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2353 
2354 		NET_INC_STATS(sock_net(sk), mib_idx);
2355 	} else if (tp->rack.reo_wnd_persist) {
2356 		tp->rack.reo_wnd_persist--;
2357 	}
2358 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2359 		/* Hold old state until something *above* high_seq
2360 		 * is ACKed. For Reno it is MUST to prevent false
2361 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2362 		if (!tcp_any_retrans_done(sk))
2363 			tp->retrans_stamp = 0;
2364 		return true;
2365 	}
2366 	tcp_set_ca_state(sk, TCP_CA_Open);
2367 	return false;
2368 }
2369 
2370 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2371 static bool tcp_try_undo_dsack(struct sock *sk)
2372 {
2373 	struct tcp_sock *tp = tcp_sk(sk);
2374 
2375 	if (tp->undo_marker && !tp->undo_retrans) {
2376 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2377 					       tp->rack.reo_wnd_persist + 1);
2378 		DBGUNDO(sk, "D-SACK");
2379 		tcp_undo_cwnd_reduction(sk, false);
2380 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2381 		return true;
2382 	}
2383 	return false;
2384 }
2385 
2386 /* Undo during loss recovery after partial ACK or using F-RTO. */
2387 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2388 {
2389 	struct tcp_sock *tp = tcp_sk(sk);
2390 
2391 	if (frto_undo || tcp_may_undo(tp)) {
2392 		tcp_undo_cwnd_reduction(sk, true);
2393 
2394 		DBGUNDO(sk, "partial loss");
2395 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2396 		if (frto_undo)
2397 			NET_INC_STATS(sock_net(sk),
2398 					LINUX_MIB_TCPSPURIOUSRTOS);
2399 		inet_csk(sk)->icsk_retransmits = 0;
2400 		if (frto_undo || tcp_is_sack(tp))
2401 			tcp_set_ca_state(sk, TCP_CA_Open);
2402 		return true;
2403 	}
2404 	return false;
2405 }
2406 
2407 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2408  * It computes the number of packets to send (sndcnt) based on packets newly
2409  * delivered:
2410  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2411  *	cwnd reductions across a full RTT.
2412  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2413  *      But when the retransmits are acked without further losses, PRR
2414  *      slow starts cwnd up to ssthresh to speed up the recovery.
2415  */
2416 static void tcp_init_cwnd_reduction(struct sock *sk)
2417 {
2418 	struct tcp_sock *tp = tcp_sk(sk);
2419 
2420 	tp->high_seq = tp->snd_nxt;
2421 	tp->tlp_high_seq = 0;
2422 	tp->snd_cwnd_cnt = 0;
2423 	tp->prior_cwnd = tp->snd_cwnd;
2424 	tp->prr_delivered = 0;
2425 	tp->prr_out = 0;
2426 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2427 	tcp_ecn_queue_cwr(tp);
2428 }
2429 
2430 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2431 {
2432 	struct tcp_sock *tp = tcp_sk(sk);
2433 	int sndcnt = 0;
2434 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2435 
2436 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2437 		return;
2438 
2439 	tp->prr_delivered += newly_acked_sacked;
2440 	if (delta < 0) {
2441 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2442 			       tp->prior_cwnd - 1;
2443 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2444 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2445 		   !(flag & FLAG_LOST_RETRANS)) {
2446 		sndcnt = min_t(int, delta,
2447 			       max_t(int, tp->prr_delivered - tp->prr_out,
2448 				     newly_acked_sacked) + 1);
2449 	} else {
2450 		sndcnt = min(delta, newly_acked_sacked);
2451 	}
2452 	/* Force a fast retransmit upon entering fast recovery */
2453 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2454 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2455 }
2456 
2457 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2458 {
2459 	struct tcp_sock *tp = tcp_sk(sk);
2460 
2461 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2462 		return;
2463 
2464 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2465 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2466 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2467 		tp->snd_cwnd = tp->snd_ssthresh;
2468 		tp->snd_cwnd_stamp = tcp_jiffies32;
2469 	}
2470 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2471 }
2472 
2473 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2474 void tcp_enter_cwr(struct sock *sk)
2475 {
2476 	struct tcp_sock *tp = tcp_sk(sk);
2477 
2478 	tp->prior_ssthresh = 0;
2479 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2480 		tp->undo_marker = 0;
2481 		tcp_init_cwnd_reduction(sk);
2482 		tcp_set_ca_state(sk, TCP_CA_CWR);
2483 	}
2484 }
2485 EXPORT_SYMBOL(tcp_enter_cwr);
2486 
2487 static void tcp_try_keep_open(struct sock *sk)
2488 {
2489 	struct tcp_sock *tp = tcp_sk(sk);
2490 	int state = TCP_CA_Open;
2491 
2492 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2493 		state = TCP_CA_Disorder;
2494 
2495 	if (inet_csk(sk)->icsk_ca_state != state) {
2496 		tcp_set_ca_state(sk, state);
2497 		tp->high_seq = tp->snd_nxt;
2498 	}
2499 }
2500 
2501 static void tcp_try_to_open(struct sock *sk, int flag)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 
2505 	tcp_verify_left_out(tp);
2506 
2507 	if (!tcp_any_retrans_done(sk))
2508 		tp->retrans_stamp = 0;
2509 
2510 	if (flag & FLAG_ECE)
2511 		tcp_enter_cwr(sk);
2512 
2513 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2514 		tcp_try_keep_open(sk);
2515 	}
2516 }
2517 
2518 static void tcp_mtup_probe_failed(struct sock *sk)
2519 {
2520 	struct inet_connection_sock *icsk = inet_csk(sk);
2521 
2522 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2523 	icsk->icsk_mtup.probe_size = 0;
2524 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2525 }
2526 
2527 static void tcp_mtup_probe_success(struct sock *sk)
2528 {
2529 	struct tcp_sock *tp = tcp_sk(sk);
2530 	struct inet_connection_sock *icsk = inet_csk(sk);
2531 
2532 	/* FIXME: breaks with very large cwnd */
2533 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2534 	tp->snd_cwnd = tp->snd_cwnd *
2535 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2536 		       icsk->icsk_mtup.probe_size;
2537 	tp->snd_cwnd_cnt = 0;
2538 	tp->snd_cwnd_stamp = tcp_jiffies32;
2539 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2540 
2541 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2542 	icsk->icsk_mtup.probe_size = 0;
2543 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2544 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2545 }
2546 
2547 /* Do a simple retransmit without using the backoff mechanisms in
2548  * tcp_timer. This is used for path mtu discovery.
2549  * The socket is already locked here.
2550  */
2551 void tcp_simple_retransmit(struct sock *sk)
2552 {
2553 	const struct inet_connection_sock *icsk = inet_csk(sk);
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 	struct sk_buff *skb;
2556 	unsigned int mss = tcp_current_mss(sk);
2557 
2558 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2559 		if (tcp_skb_seglen(skb) > mss &&
2560 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2561 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2562 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2563 				tp->retrans_out -= tcp_skb_pcount(skb);
2564 			}
2565 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2566 		}
2567 	}
2568 
2569 	tcp_clear_retrans_hints_partial(tp);
2570 
2571 	if (!tp->lost_out)
2572 		return;
2573 
2574 	if (tcp_is_reno(tp))
2575 		tcp_limit_reno_sacked(tp);
2576 
2577 	tcp_verify_left_out(tp);
2578 
2579 	/* Don't muck with the congestion window here.
2580 	 * Reason is that we do not increase amount of _data_
2581 	 * in network, but units changed and effective
2582 	 * cwnd/ssthresh really reduced now.
2583 	 */
2584 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2585 		tp->high_seq = tp->snd_nxt;
2586 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2587 		tp->prior_ssthresh = 0;
2588 		tp->undo_marker = 0;
2589 		tcp_set_ca_state(sk, TCP_CA_Loss);
2590 	}
2591 	tcp_xmit_retransmit_queue(sk);
2592 }
2593 EXPORT_SYMBOL(tcp_simple_retransmit);
2594 
2595 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2596 {
2597 	struct tcp_sock *tp = tcp_sk(sk);
2598 	int mib_idx;
2599 
2600 	if (tcp_is_reno(tp))
2601 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2602 	else
2603 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2604 
2605 	NET_INC_STATS(sock_net(sk), mib_idx);
2606 
2607 	tp->prior_ssthresh = 0;
2608 	tcp_init_undo(tp);
2609 
2610 	if (!tcp_in_cwnd_reduction(sk)) {
2611 		if (!ece_ack)
2612 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2613 		tcp_init_cwnd_reduction(sk);
2614 	}
2615 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2616 }
2617 
2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2619  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2620  */
2621 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2622 			     int *rexmit)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 	bool recovered = !before(tp->snd_una, tp->high_seq);
2626 
2627 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2628 	    tcp_try_undo_loss(sk, false))
2629 		return;
2630 
2631 	/* The ACK (s)acks some never-retransmitted data meaning not all
2632 	 * the data packets before the timeout were lost. Therefore we
2633 	 * undo the congestion window and state. This is essentially
2634 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2635 	 * a retransmitted skb is permantly marked, we can apply such an
2636 	 * operation even if F-RTO was not used.
2637 	 */
2638 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2639 	    tcp_try_undo_loss(sk, tp->undo_marker))
2640 		return;
2641 
2642 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2643 		if (after(tp->snd_nxt, tp->high_seq)) {
2644 			if (flag & FLAG_DATA_SACKED || is_dupack)
2645 				tp->frto = 0; /* Step 3.a. loss was real */
2646 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2647 			tp->high_seq = tp->snd_nxt;
2648 			/* Step 2.b. Try send new data (but deferred until cwnd
2649 			 * is updated in tcp_ack()). Otherwise fall back to
2650 			 * the conventional recovery.
2651 			 */
2652 			if (!tcp_write_queue_empty(sk) &&
2653 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2654 				*rexmit = REXMIT_NEW;
2655 				return;
2656 			}
2657 			tp->frto = 0;
2658 		}
2659 	}
2660 
2661 	if (recovered) {
2662 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2663 		tcp_try_undo_recovery(sk);
2664 		return;
2665 	}
2666 	if (tcp_is_reno(tp)) {
2667 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2668 		 * delivered. Lower inflight to clock out (re)tranmissions.
2669 		 */
2670 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2671 			tcp_add_reno_sack(sk);
2672 		else if (flag & FLAG_SND_UNA_ADVANCED)
2673 			tcp_reset_reno_sack(tp);
2674 	}
2675 	*rexmit = REXMIT_LOST;
2676 }
2677 
2678 /* Undo during fast recovery after partial ACK. */
2679 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2684 		/* Plain luck! Hole if filled with delayed
2685 		 * packet, rather than with a retransmit. Check reordering.
2686 		 */
2687 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2688 
2689 		/* We are getting evidence that the reordering degree is higher
2690 		 * than we realized. If there are no retransmits out then we
2691 		 * can undo. Otherwise we clock out new packets but do not
2692 		 * mark more packets lost or retransmit more.
2693 		 */
2694 		if (tp->retrans_out)
2695 			return true;
2696 
2697 		if (!tcp_any_retrans_done(sk))
2698 			tp->retrans_stamp = 0;
2699 
2700 		DBGUNDO(sk, "partial recovery");
2701 		tcp_undo_cwnd_reduction(sk, true);
2702 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2703 		tcp_try_keep_open(sk);
2704 		return true;
2705 	}
2706 	return false;
2707 }
2708 
2709 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2710 {
2711 	struct tcp_sock *tp = tcp_sk(sk);
2712 
2713 	/* Use RACK to detect loss */
2714 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2715 		u32 prior_retrans = tp->retrans_out;
2716 
2717 		tcp_rack_mark_lost(sk);
2718 		if (prior_retrans > tp->retrans_out)
2719 			*ack_flag |= FLAG_LOST_RETRANS;
2720 	}
2721 }
2722 
2723 static bool tcp_force_fast_retransmit(struct sock *sk)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 
2727 	return after(tcp_highest_sack_seq(tp),
2728 		     tp->snd_una + tp->reordering * tp->mss_cache);
2729 }
2730 
2731 /* Process an event, which can update packets-in-flight not trivially.
2732  * Main goal of this function is to calculate new estimate for left_out,
2733  * taking into account both packets sitting in receiver's buffer and
2734  * packets lost by network.
2735  *
2736  * Besides that it updates the congestion state when packet loss or ECN
2737  * is detected. But it does not reduce the cwnd, it is done by the
2738  * congestion control later.
2739  *
2740  * It does _not_ decide what to send, it is made in function
2741  * tcp_xmit_retransmit_queue().
2742  */
2743 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2744 				  bool is_dupack, int *ack_flag, int *rexmit)
2745 {
2746 	struct inet_connection_sock *icsk = inet_csk(sk);
2747 	struct tcp_sock *tp = tcp_sk(sk);
2748 	int fast_rexmit = 0, flag = *ack_flag;
2749 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2750 				     tcp_force_fast_retransmit(sk));
2751 
2752 	if (!tp->packets_out && tp->sacked_out)
2753 		tp->sacked_out = 0;
2754 
2755 	/* Now state machine starts.
2756 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2757 	if (flag & FLAG_ECE)
2758 		tp->prior_ssthresh = 0;
2759 
2760 	/* B. In all the states check for reneging SACKs. */
2761 	if (tcp_check_sack_reneging(sk, flag))
2762 		return;
2763 
2764 	/* C. Check consistency of the current state. */
2765 	tcp_verify_left_out(tp);
2766 
2767 	/* D. Check state exit conditions. State can be terminated
2768 	 *    when high_seq is ACKed. */
2769 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2770 		WARN_ON(tp->retrans_out != 0);
2771 		tp->retrans_stamp = 0;
2772 	} else if (!before(tp->snd_una, tp->high_seq)) {
2773 		switch (icsk->icsk_ca_state) {
2774 		case TCP_CA_CWR:
2775 			/* CWR is to be held something *above* high_seq
2776 			 * is ACKed for CWR bit to reach receiver. */
2777 			if (tp->snd_una != tp->high_seq) {
2778 				tcp_end_cwnd_reduction(sk);
2779 				tcp_set_ca_state(sk, TCP_CA_Open);
2780 			}
2781 			break;
2782 
2783 		case TCP_CA_Recovery:
2784 			if (tcp_is_reno(tp))
2785 				tcp_reset_reno_sack(tp);
2786 			if (tcp_try_undo_recovery(sk))
2787 				return;
2788 			tcp_end_cwnd_reduction(sk);
2789 			break;
2790 		}
2791 	}
2792 
2793 	/* E. Process state. */
2794 	switch (icsk->icsk_ca_state) {
2795 	case TCP_CA_Recovery:
2796 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2797 			if (tcp_is_reno(tp) && is_dupack)
2798 				tcp_add_reno_sack(sk);
2799 		} else {
2800 			if (tcp_try_undo_partial(sk, prior_snd_una))
2801 				return;
2802 			/* Partial ACK arrived. Force fast retransmit. */
2803 			do_lost = tcp_is_reno(tp) ||
2804 				  tcp_force_fast_retransmit(sk);
2805 		}
2806 		if (tcp_try_undo_dsack(sk)) {
2807 			tcp_try_keep_open(sk);
2808 			return;
2809 		}
2810 		tcp_rack_identify_loss(sk, ack_flag);
2811 		break;
2812 	case TCP_CA_Loss:
2813 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2814 		tcp_rack_identify_loss(sk, ack_flag);
2815 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2816 		      (*ack_flag & FLAG_LOST_RETRANS)))
2817 			return;
2818 		/* Change state if cwnd is undone or retransmits are lost */
2819 		/* fall through */
2820 	default:
2821 		if (tcp_is_reno(tp)) {
2822 			if (flag & FLAG_SND_UNA_ADVANCED)
2823 				tcp_reset_reno_sack(tp);
2824 			if (is_dupack)
2825 				tcp_add_reno_sack(sk);
2826 		}
2827 
2828 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2829 			tcp_try_undo_dsack(sk);
2830 
2831 		tcp_rack_identify_loss(sk, ack_flag);
2832 		if (!tcp_time_to_recover(sk, flag)) {
2833 			tcp_try_to_open(sk, flag);
2834 			return;
2835 		}
2836 
2837 		/* MTU probe failure: don't reduce cwnd */
2838 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2839 		    icsk->icsk_mtup.probe_size &&
2840 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2841 			tcp_mtup_probe_failed(sk);
2842 			/* Restores the reduction we did in tcp_mtup_probe() */
2843 			tp->snd_cwnd++;
2844 			tcp_simple_retransmit(sk);
2845 			return;
2846 		}
2847 
2848 		/* Otherwise enter Recovery state */
2849 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2850 		fast_rexmit = 1;
2851 	}
2852 
2853 	if (do_lost)
2854 		tcp_update_scoreboard(sk, fast_rexmit);
2855 	*rexmit = REXMIT_LOST;
2856 }
2857 
2858 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2859 {
2860 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2861 	struct tcp_sock *tp = tcp_sk(sk);
2862 
2863 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2864 			   rtt_us ? : jiffies_to_usecs(1));
2865 }
2866 
2867 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2868 			       long seq_rtt_us, long sack_rtt_us,
2869 			       long ca_rtt_us, struct rate_sample *rs)
2870 {
2871 	const struct tcp_sock *tp = tcp_sk(sk);
2872 
2873 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2874 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2875 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2876 	 * is acked (RFC6298).
2877 	 */
2878 	if (seq_rtt_us < 0)
2879 		seq_rtt_us = sack_rtt_us;
2880 
2881 	/* RTTM Rule: A TSecr value received in a segment is used to
2882 	 * update the averaged RTT measurement only if the segment
2883 	 * acknowledges some new data, i.e., only if it advances the
2884 	 * left edge of the send window.
2885 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2886 	 */
2887 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2888 	    flag & FLAG_ACKED) {
2889 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2890 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2891 
2892 		seq_rtt_us = ca_rtt_us = delta_us;
2893 	}
2894 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2895 	if (seq_rtt_us < 0)
2896 		return false;
2897 
2898 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2899 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2900 	 * values will be skipped with the seq_rtt_us < 0 check above.
2901 	 */
2902 	tcp_update_rtt_min(sk, ca_rtt_us);
2903 	tcp_rtt_estimator(sk, seq_rtt_us);
2904 	tcp_set_rto(sk);
2905 
2906 	/* RFC6298: only reset backoff on valid RTT measurement. */
2907 	inet_csk(sk)->icsk_backoff = 0;
2908 	return true;
2909 }
2910 
2911 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2912 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2913 {
2914 	struct rate_sample rs;
2915 	long rtt_us = -1L;
2916 
2917 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2918 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2919 
2920 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2921 }
2922 
2923 
2924 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2925 {
2926 	const struct inet_connection_sock *icsk = inet_csk(sk);
2927 
2928 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2929 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2930 }
2931 
2932 /* Restart timer after forward progress on connection.
2933  * RFC2988 recommends to restart timer to now+rto.
2934  */
2935 void tcp_rearm_rto(struct sock *sk)
2936 {
2937 	const struct inet_connection_sock *icsk = inet_csk(sk);
2938 	struct tcp_sock *tp = tcp_sk(sk);
2939 
2940 	/* If the retrans timer is currently being used by Fast Open
2941 	 * for SYN-ACK retrans purpose, stay put.
2942 	 */
2943 	if (tp->fastopen_rsk)
2944 		return;
2945 
2946 	if (!tp->packets_out) {
2947 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2948 	} else {
2949 		u32 rto = inet_csk(sk)->icsk_rto;
2950 		/* Offset the time elapsed after installing regular RTO */
2951 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2952 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2953 			s64 delta_us = tcp_rto_delta_us(sk);
2954 			/* delta_us may not be positive if the socket is locked
2955 			 * when the retrans timer fires and is rescheduled.
2956 			 */
2957 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2958 		}
2959 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2960 					  TCP_RTO_MAX);
2961 	}
2962 }
2963 
2964 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2965 static void tcp_set_xmit_timer(struct sock *sk)
2966 {
2967 	if (!tcp_schedule_loss_probe(sk, true))
2968 		tcp_rearm_rto(sk);
2969 }
2970 
2971 /* If we get here, the whole TSO packet has not been acked. */
2972 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2973 {
2974 	struct tcp_sock *tp = tcp_sk(sk);
2975 	u32 packets_acked;
2976 
2977 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2978 
2979 	packets_acked = tcp_skb_pcount(skb);
2980 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2981 		return 0;
2982 	packets_acked -= tcp_skb_pcount(skb);
2983 
2984 	if (packets_acked) {
2985 		BUG_ON(tcp_skb_pcount(skb) == 0);
2986 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2987 	}
2988 
2989 	return packets_acked;
2990 }
2991 
2992 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2993 			   u32 prior_snd_una)
2994 {
2995 	const struct skb_shared_info *shinfo;
2996 
2997 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
2998 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
2999 		return;
3000 
3001 	shinfo = skb_shinfo(skb);
3002 	if (!before(shinfo->tskey, prior_snd_una) &&
3003 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3004 		tcp_skb_tsorted_save(skb) {
3005 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3006 		} tcp_skb_tsorted_restore(skb);
3007 	}
3008 }
3009 
3010 /* Remove acknowledged frames from the retransmission queue. If our packet
3011  * is before the ack sequence we can discard it as it's confirmed to have
3012  * arrived at the other end.
3013  */
3014 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3015 			       u32 prior_snd_una,
3016 			       struct tcp_sacktag_state *sack)
3017 {
3018 	const struct inet_connection_sock *icsk = inet_csk(sk);
3019 	u64 first_ackt, last_ackt;
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	u32 prior_sacked = tp->sacked_out;
3022 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3023 	struct sk_buff *skb, *next;
3024 	bool fully_acked = true;
3025 	long sack_rtt_us = -1L;
3026 	long seq_rtt_us = -1L;
3027 	long ca_rtt_us = -1L;
3028 	u32 pkts_acked = 0;
3029 	u32 last_in_flight = 0;
3030 	bool rtt_update;
3031 	int flag = 0;
3032 
3033 	first_ackt = 0;
3034 
3035 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3036 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3037 		const u32 start_seq = scb->seq;
3038 		u8 sacked = scb->sacked;
3039 		u32 acked_pcount;
3040 
3041 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3042 
3043 		/* Determine how many packets and what bytes were acked, tso and else */
3044 		if (after(scb->end_seq, tp->snd_una)) {
3045 			if (tcp_skb_pcount(skb) == 1 ||
3046 			    !after(tp->snd_una, scb->seq))
3047 				break;
3048 
3049 			acked_pcount = tcp_tso_acked(sk, skb);
3050 			if (!acked_pcount)
3051 				break;
3052 			fully_acked = false;
3053 		} else {
3054 			acked_pcount = tcp_skb_pcount(skb);
3055 		}
3056 
3057 		if (unlikely(sacked & TCPCB_RETRANS)) {
3058 			if (sacked & TCPCB_SACKED_RETRANS)
3059 				tp->retrans_out -= acked_pcount;
3060 			flag |= FLAG_RETRANS_DATA_ACKED;
3061 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3062 			last_ackt = skb->skb_mstamp;
3063 			WARN_ON_ONCE(last_ackt == 0);
3064 			if (!first_ackt)
3065 				first_ackt = last_ackt;
3066 
3067 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3068 			if (before(start_seq, reord))
3069 				reord = start_seq;
3070 			if (!after(scb->end_seq, tp->high_seq))
3071 				flag |= FLAG_ORIG_SACK_ACKED;
3072 		}
3073 
3074 		if (sacked & TCPCB_SACKED_ACKED) {
3075 			tp->sacked_out -= acked_pcount;
3076 		} else if (tcp_is_sack(tp)) {
3077 			tp->delivered += acked_pcount;
3078 			if (!tcp_skb_spurious_retrans(tp, skb))
3079 				tcp_rack_advance(tp, sacked, scb->end_seq,
3080 						 skb->skb_mstamp);
3081 		}
3082 		if (sacked & TCPCB_LOST)
3083 			tp->lost_out -= acked_pcount;
3084 
3085 		tp->packets_out -= acked_pcount;
3086 		pkts_acked += acked_pcount;
3087 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3088 
3089 		/* Initial outgoing SYN's get put onto the write_queue
3090 		 * just like anything else we transmit.  It is not
3091 		 * true data, and if we misinform our callers that
3092 		 * this ACK acks real data, we will erroneously exit
3093 		 * connection startup slow start one packet too
3094 		 * quickly.  This is severely frowned upon behavior.
3095 		 */
3096 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3097 			flag |= FLAG_DATA_ACKED;
3098 		} else {
3099 			flag |= FLAG_SYN_ACKED;
3100 			tp->retrans_stamp = 0;
3101 		}
3102 
3103 		if (!fully_acked)
3104 			break;
3105 
3106 		next = skb_rb_next(skb);
3107 		if (unlikely(skb == tp->retransmit_skb_hint))
3108 			tp->retransmit_skb_hint = NULL;
3109 		if (unlikely(skb == tp->lost_skb_hint))
3110 			tp->lost_skb_hint = NULL;
3111 		tcp_rtx_queue_unlink_and_free(skb, sk);
3112 	}
3113 
3114 	if (!skb)
3115 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3116 
3117 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3118 		tp->snd_up = tp->snd_una;
3119 
3120 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3121 		flag |= FLAG_SACK_RENEGING;
3122 
3123 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3124 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3125 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3126 	}
3127 	if (sack->first_sackt) {
3128 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3129 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3130 	}
3131 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3132 					ca_rtt_us, sack->rate);
3133 
3134 	if (flag & FLAG_ACKED) {
3135 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3136 		if (unlikely(icsk->icsk_mtup.probe_size &&
3137 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3138 			tcp_mtup_probe_success(sk);
3139 		}
3140 
3141 		if (tcp_is_reno(tp)) {
3142 			tcp_remove_reno_sacks(sk, pkts_acked);
3143 		} else {
3144 			int delta;
3145 
3146 			/* Non-retransmitted hole got filled? That's reordering */
3147 			if (before(reord, prior_fack))
3148 				tcp_check_sack_reordering(sk, reord, 0);
3149 
3150 			delta = prior_sacked - tp->sacked_out;
3151 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3152 		}
3153 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3154 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3155 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3156 		 * after when the head was last (re)transmitted. Otherwise the
3157 		 * timeout may continue to extend in loss recovery.
3158 		 */
3159 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3160 	}
3161 
3162 	if (icsk->icsk_ca_ops->pkts_acked) {
3163 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3164 					     .rtt_us = sack->rate->rtt_us,
3165 					     .in_flight = last_in_flight };
3166 
3167 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3168 	}
3169 
3170 #if FASTRETRANS_DEBUG > 0
3171 	WARN_ON((int)tp->sacked_out < 0);
3172 	WARN_ON((int)tp->lost_out < 0);
3173 	WARN_ON((int)tp->retrans_out < 0);
3174 	if (!tp->packets_out && tcp_is_sack(tp)) {
3175 		icsk = inet_csk(sk);
3176 		if (tp->lost_out) {
3177 			pr_debug("Leak l=%u %d\n",
3178 				 tp->lost_out, icsk->icsk_ca_state);
3179 			tp->lost_out = 0;
3180 		}
3181 		if (tp->sacked_out) {
3182 			pr_debug("Leak s=%u %d\n",
3183 				 tp->sacked_out, icsk->icsk_ca_state);
3184 			tp->sacked_out = 0;
3185 		}
3186 		if (tp->retrans_out) {
3187 			pr_debug("Leak r=%u %d\n",
3188 				 tp->retrans_out, icsk->icsk_ca_state);
3189 			tp->retrans_out = 0;
3190 		}
3191 	}
3192 #endif
3193 	return flag;
3194 }
3195 
3196 static void tcp_ack_probe(struct sock *sk)
3197 {
3198 	struct inet_connection_sock *icsk = inet_csk(sk);
3199 	struct sk_buff *head = tcp_send_head(sk);
3200 	const struct tcp_sock *tp = tcp_sk(sk);
3201 
3202 	/* Was it a usable window open? */
3203 	if (!head)
3204 		return;
3205 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3206 		icsk->icsk_backoff = 0;
3207 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3208 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3209 		 * This function is not for random using!
3210 		 */
3211 	} else {
3212 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3213 
3214 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3215 					  when, TCP_RTO_MAX);
3216 	}
3217 }
3218 
3219 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3220 {
3221 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3222 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3223 }
3224 
3225 /* Decide wheather to run the increase function of congestion control. */
3226 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3227 {
3228 	/* If reordering is high then always grow cwnd whenever data is
3229 	 * delivered regardless of its ordering. Otherwise stay conservative
3230 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3231 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3232 	 * cwnd in tcp_fastretrans_alert() based on more states.
3233 	 */
3234 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3235 		return flag & FLAG_FORWARD_PROGRESS;
3236 
3237 	return flag & FLAG_DATA_ACKED;
3238 }
3239 
3240 /* The "ultimate" congestion control function that aims to replace the rigid
3241  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3242  * It's called toward the end of processing an ACK with precise rate
3243  * information. All transmission or retransmission are delayed afterwards.
3244  */
3245 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3246 			     int flag, const struct rate_sample *rs)
3247 {
3248 	const struct inet_connection_sock *icsk = inet_csk(sk);
3249 
3250 	if (icsk->icsk_ca_ops->cong_control) {
3251 		icsk->icsk_ca_ops->cong_control(sk, rs);
3252 		return;
3253 	}
3254 
3255 	if (tcp_in_cwnd_reduction(sk)) {
3256 		/* Reduce cwnd if state mandates */
3257 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3258 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3259 		/* Advance cwnd if state allows */
3260 		tcp_cong_avoid(sk, ack, acked_sacked);
3261 	}
3262 	tcp_update_pacing_rate(sk);
3263 }
3264 
3265 /* Check that window update is acceptable.
3266  * The function assumes that snd_una<=ack<=snd_next.
3267  */
3268 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3269 					const u32 ack, const u32 ack_seq,
3270 					const u32 nwin)
3271 {
3272 	return	after(ack, tp->snd_una) ||
3273 		after(ack_seq, tp->snd_wl1) ||
3274 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3275 }
3276 
3277 /* If we update tp->snd_una, also update tp->bytes_acked */
3278 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3279 {
3280 	u32 delta = ack - tp->snd_una;
3281 
3282 	sock_owned_by_me((struct sock *)tp);
3283 	tp->bytes_acked += delta;
3284 	tp->snd_una = ack;
3285 }
3286 
3287 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3288 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3289 {
3290 	u32 delta = seq - tp->rcv_nxt;
3291 
3292 	sock_owned_by_me((struct sock *)tp);
3293 	tp->bytes_received += delta;
3294 	tp->rcv_nxt = seq;
3295 }
3296 
3297 /* Update our send window.
3298  *
3299  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3300  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3301  */
3302 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3303 				 u32 ack_seq)
3304 {
3305 	struct tcp_sock *tp = tcp_sk(sk);
3306 	int flag = 0;
3307 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3308 
3309 	if (likely(!tcp_hdr(skb)->syn))
3310 		nwin <<= tp->rx_opt.snd_wscale;
3311 
3312 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3313 		flag |= FLAG_WIN_UPDATE;
3314 		tcp_update_wl(tp, ack_seq);
3315 
3316 		if (tp->snd_wnd != nwin) {
3317 			tp->snd_wnd = nwin;
3318 
3319 			/* Note, it is the only place, where
3320 			 * fast path is recovered for sending TCP.
3321 			 */
3322 			tp->pred_flags = 0;
3323 			tcp_fast_path_check(sk);
3324 
3325 			if (!tcp_write_queue_empty(sk))
3326 				tcp_slow_start_after_idle_check(sk);
3327 
3328 			if (nwin > tp->max_window) {
3329 				tp->max_window = nwin;
3330 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3331 			}
3332 		}
3333 	}
3334 
3335 	tcp_snd_una_update(tp, ack);
3336 
3337 	return flag;
3338 }
3339 
3340 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3341 				   u32 *last_oow_ack_time)
3342 {
3343 	if (*last_oow_ack_time) {
3344 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3345 
3346 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3347 			NET_INC_STATS(net, mib_idx);
3348 			return true;	/* rate-limited: don't send yet! */
3349 		}
3350 	}
3351 
3352 	*last_oow_ack_time = tcp_jiffies32;
3353 
3354 	return false;	/* not rate-limited: go ahead, send dupack now! */
3355 }
3356 
3357 /* Return true if we're currently rate-limiting out-of-window ACKs and
3358  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3359  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3360  * attacks that send repeated SYNs or ACKs for the same connection. To
3361  * do this, we do not send a duplicate SYNACK or ACK if the remote
3362  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3363  */
3364 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3365 			  int mib_idx, u32 *last_oow_ack_time)
3366 {
3367 	/* Data packets without SYNs are not likely part of an ACK loop. */
3368 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3369 	    !tcp_hdr(skb)->syn)
3370 		return false;
3371 
3372 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3373 }
3374 
3375 /* RFC 5961 7 [ACK Throttling] */
3376 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3377 {
3378 	/* unprotected vars, we dont care of overwrites */
3379 	static u32 challenge_timestamp;
3380 	static unsigned int challenge_count;
3381 	struct tcp_sock *tp = tcp_sk(sk);
3382 	struct net *net = sock_net(sk);
3383 	u32 count, now;
3384 
3385 	/* First check our per-socket dupack rate limit. */
3386 	if (__tcp_oow_rate_limited(net,
3387 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3388 				   &tp->last_oow_ack_time))
3389 		return;
3390 
3391 	/* Then check host-wide RFC 5961 rate limit. */
3392 	now = jiffies / HZ;
3393 	if (now != challenge_timestamp) {
3394 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3395 		u32 half = (ack_limit + 1) >> 1;
3396 
3397 		challenge_timestamp = now;
3398 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3399 	}
3400 	count = READ_ONCE(challenge_count);
3401 	if (count > 0) {
3402 		WRITE_ONCE(challenge_count, count - 1);
3403 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3404 		tcp_send_ack(sk);
3405 	}
3406 }
3407 
3408 static void tcp_store_ts_recent(struct tcp_sock *tp)
3409 {
3410 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3411 	tp->rx_opt.ts_recent_stamp = get_seconds();
3412 }
3413 
3414 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3415 {
3416 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3417 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3418 		 * extra check below makes sure this can only happen
3419 		 * for pure ACK frames.  -DaveM
3420 		 *
3421 		 * Not only, also it occurs for expired timestamps.
3422 		 */
3423 
3424 		if (tcp_paws_check(&tp->rx_opt, 0))
3425 			tcp_store_ts_recent(tp);
3426 	}
3427 }
3428 
3429 /* This routine deals with acks during a TLP episode.
3430  * We mark the end of a TLP episode on receiving TLP dupack or when
3431  * ack is after tlp_high_seq.
3432  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3433  */
3434 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3435 {
3436 	struct tcp_sock *tp = tcp_sk(sk);
3437 
3438 	if (before(ack, tp->tlp_high_seq))
3439 		return;
3440 
3441 	if (flag & FLAG_DSACKING_ACK) {
3442 		/* This DSACK means original and TLP probe arrived; no loss */
3443 		tp->tlp_high_seq = 0;
3444 	} else if (after(ack, tp->tlp_high_seq)) {
3445 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3446 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3447 		 */
3448 		tcp_init_cwnd_reduction(sk);
3449 		tcp_set_ca_state(sk, TCP_CA_CWR);
3450 		tcp_end_cwnd_reduction(sk);
3451 		tcp_try_keep_open(sk);
3452 		NET_INC_STATS(sock_net(sk),
3453 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3454 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3455 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3456 		/* Pure dupack: original and TLP probe arrived; no loss */
3457 		tp->tlp_high_seq = 0;
3458 	}
3459 }
3460 
3461 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3462 {
3463 	const struct inet_connection_sock *icsk = inet_csk(sk);
3464 
3465 	if (icsk->icsk_ca_ops->in_ack_event)
3466 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3467 }
3468 
3469 /* Congestion control has updated the cwnd already. So if we're in
3470  * loss recovery then now we do any new sends (for FRTO) or
3471  * retransmits (for CA_Loss or CA_recovery) that make sense.
3472  */
3473 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3474 {
3475 	struct tcp_sock *tp = tcp_sk(sk);
3476 
3477 	if (rexmit == REXMIT_NONE)
3478 		return;
3479 
3480 	if (unlikely(rexmit == 2)) {
3481 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3482 					  TCP_NAGLE_OFF);
3483 		if (after(tp->snd_nxt, tp->high_seq))
3484 			return;
3485 		tp->frto = 0;
3486 	}
3487 	tcp_xmit_retransmit_queue(sk);
3488 }
3489 
3490 /* This routine deals with incoming acks, but not outgoing ones. */
3491 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3492 {
3493 	struct inet_connection_sock *icsk = inet_csk(sk);
3494 	struct tcp_sock *tp = tcp_sk(sk);
3495 	struct tcp_sacktag_state sack_state;
3496 	struct rate_sample rs = { .prior_delivered = 0 };
3497 	u32 prior_snd_una = tp->snd_una;
3498 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3499 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3500 	bool is_dupack = false;
3501 	int prior_packets = tp->packets_out;
3502 	u32 delivered = tp->delivered;
3503 	u32 lost = tp->lost;
3504 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3505 	u32 prior_fack;
3506 
3507 	sack_state.first_sackt = 0;
3508 	sack_state.rate = &rs;
3509 
3510 	/* We very likely will need to access rtx queue. */
3511 	prefetch(sk->tcp_rtx_queue.rb_node);
3512 
3513 	/* If the ack is older than previous acks
3514 	 * then we can probably ignore it.
3515 	 */
3516 	if (before(ack, prior_snd_una)) {
3517 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3518 		if (before(ack, prior_snd_una - tp->max_window)) {
3519 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3520 				tcp_send_challenge_ack(sk, skb);
3521 			return -1;
3522 		}
3523 		goto old_ack;
3524 	}
3525 
3526 	/* If the ack includes data we haven't sent yet, discard
3527 	 * this segment (RFC793 Section 3.9).
3528 	 */
3529 	if (after(ack, tp->snd_nxt))
3530 		goto invalid_ack;
3531 
3532 	if (after(ack, prior_snd_una)) {
3533 		flag |= FLAG_SND_UNA_ADVANCED;
3534 		icsk->icsk_retransmits = 0;
3535 	}
3536 
3537 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3538 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3539 
3540 	/* ts_recent update must be made after we are sure that the packet
3541 	 * is in window.
3542 	 */
3543 	if (flag & FLAG_UPDATE_TS_RECENT)
3544 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3545 
3546 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3547 		/* Window is constant, pure forward advance.
3548 		 * No more checks are required.
3549 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3550 		 */
3551 		tcp_update_wl(tp, ack_seq);
3552 		tcp_snd_una_update(tp, ack);
3553 		flag |= FLAG_WIN_UPDATE;
3554 
3555 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3556 
3557 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3558 	} else {
3559 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3560 
3561 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3562 			flag |= FLAG_DATA;
3563 		else
3564 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3565 
3566 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3567 
3568 		if (TCP_SKB_CB(skb)->sacked)
3569 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3570 							&sack_state);
3571 
3572 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3573 			flag |= FLAG_ECE;
3574 			ack_ev_flags |= CA_ACK_ECE;
3575 		}
3576 
3577 		if (flag & FLAG_WIN_UPDATE)
3578 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3579 
3580 		tcp_in_ack_event(sk, ack_ev_flags);
3581 	}
3582 
3583 	/* We passed data and got it acked, remove any soft error
3584 	 * log. Something worked...
3585 	 */
3586 	sk->sk_err_soft = 0;
3587 	icsk->icsk_probes_out = 0;
3588 	tp->rcv_tstamp = tcp_jiffies32;
3589 	if (!prior_packets)
3590 		goto no_queue;
3591 
3592 	/* See if we can take anything off of the retransmit queue. */
3593 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3594 
3595 	tcp_rack_update_reo_wnd(sk, &rs);
3596 
3597 	if (tp->tlp_high_seq)
3598 		tcp_process_tlp_ack(sk, ack, flag);
3599 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3600 	if (flag & FLAG_SET_XMIT_TIMER)
3601 		tcp_set_xmit_timer(sk);
3602 
3603 	if (tcp_ack_is_dubious(sk, flag)) {
3604 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3605 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3606 				      &rexmit);
3607 	}
3608 
3609 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3610 		sk_dst_confirm(sk);
3611 
3612 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3613 	lost = tp->lost - lost;			/* freshly marked lost */
3614 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3615 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3616 	tcp_xmit_recovery(sk, rexmit);
3617 	return 1;
3618 
3619 no_queue:
3620 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3621 	if (flag & FLAG_DSACKING_ACK)
3622 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3623 				      &rexmit);
3624 	/* If this ack opens up a zero window, clear backoff.  It was
3625 	 * being used to time the probes, and is probably far higher than
3626 	 * it needs to be for normal retransmission.
3627 	 */
3628 	tcp_ack_probe(sk);
3629 
3630 	if (tp->tlp_high_seq)
3631 		tcp_process_tlp_ack(sk, ack, flag);
3632 	return 1;
3633 
3634 invalid_ack:
3635 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3636 	return -1;
3637 
3638 old_ack:
3639 	/* If data was SACKed, tag it and see if we should send more data.
3640 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3641 	 */
3642 	if (TCP_SKB_CB(skb)->sacked) {
3643 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3644 						&sack_state);
3645 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3646 				      &rexmit);
3647 		tcp_xmit_recovery(sk, rexmit);
3648 	}
3649 
3650 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3651 	return 0;
3652 }
3653 
3654 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3655 				      bool syn, struct tcp_fastopen_cookie *foc,
3656 				      bool exp_opt)
3657 {
3658 	/* Valid only in SYN or SYN-ACK with an even length.  */
3659 	if (!foc || !syn || len < 0 || (len & 1))
3660 		return;
3661 
3662 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3663 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3664 		memcpy(foc->val, cookie, len);
3665 	else if (len != 0)
3666 		len = -1;
3667 	foc->len = len;
3668 	foc->exp = exp_opt;
3669 }
3670 
3671 static void smc_parse_options(const struct tcphdr *th,
3672 			      struct tcp_options_received *opt_rx,
3673 			      const unsigned char *ptr,
3674 			      int opsize)
3675 {
3676 #if IS_ENABLED(CONFIG_SMC)
3677 	if (static_branch_unlikely(&tcp_have_smc)) {
3678 		if (th->syn && !(opsize & 1) &&
3679 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3680 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3681 			opt_rx->smc_ok = 1;
3682 	}
3683 #endif
3684 }
3685 
3686 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3687  * But, this can also be called on packets in the established flow when
3688  * the fast version below fails.
3689  */
3690 void tcp_parse_options(const struct net *net,
3691 		       const struct sk_buff *skb,
3692 		       struct tcp_options_received *opt_rx, int estab,
3693 		       struct tcp_fastopen_cookie *foc)
3694 {
3695 	const unsigned char *ptr;
3696 	const struct tcphdr *th = tcp_hdr(skb);
3697 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3698 
3699 	ptr = (const unsigned char *)(th + 1);
3700 	opt_rx->saw_tstamp = 0;
3701 
3702 	while (length > 0) {
3703 		int opcode = *ptr++;
3704 		int opsize;
3705 
3706 		switch (opcode) {
3707 		case TCPOPT_EOL:
3708 			return;
3709 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3710 			length--;
3711 			continue;
3712 		default:
3713 			opsize = *ptr++;
3714 			if (opsize < 2) /* "silly options" */
3715 				return;
3716 			if (opsize > length)
3717 				return;	/* don't parse partial options */
3718 			switch (opcode) {
3719 			case TCPOPT_MSS:
3720 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3721 					u16 in_mss = get_unaligned_be16(ptr);
3722 					if (in_mss) {
3723 						if (opt_rx->user_mss &&
3724 						    opt_rx->user_mss < in_mss)
3725 							in_mss = opt_rx->user_mss;
3726 						opt_rx->mss_clamp = in_mss;
3727 					}
3728 				}
3729 				break;
3730 			case TCPOPT_WINDOW:
3731 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3732 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3733 					__u8 snd_wscale = *(__u8 *)ptr;
3734 					opt_rx->wscale_ok = 1;
3735 					if (snd_wscale > TCP_MAX_WSCALE) {
3736 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3737 								     __func__,
3738 								     snd_wscale,
3739 								     TCP_MAX_WSCALE);
3740 						snd_wscale = TCP_MAX_WSCALE;
3741 					}
3742 					opt_rx->snd_wscale = snd_wscale;
3743 				}
3744 				break;
3745 			case TCPOPT_TIMESTAMP:
3746 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3747 				    ((estab && opt_rx->tstamp_ok) ||
3748 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3749 					opt_rx->saw_tstamp = 1;
3750 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3751 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3752 				}
3753 				break;
3754 			case TCPOPT_SACK_PERM:
3755 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3756 				    !estab && net->ipv4.sysctl_tcp_sack) {
3757 					opt_rx->sack_ok = TCP_SACK_SEEN;
3758 					tcp_sack_reset(opt_rx);
3759 				}
3760 				break;
3761 
3762 			case TCPOPT_SACK:
3763 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3764 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3765 				   opt_rx->sack_ok) {
3766 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3767 				}
3768 				break;
3769 #ifdef CONFIG_TCP_MD5SIG
3770 			case TCPOPT_MD5SIG:
3771 				/*
3772 				 * The MD5 Hash has already been
3773 				 * checked (see tcp_v{4,6}_do_rcv()).
3774 				 */
3775 				break;
3776 #endif
3777 			case TCPOPT_FASTOPEN:
3778 				tcp_parse_fastopen_option(
3779 					opsize - TCPOLEN_FASTOPEN_BASE,
3780 					ptr, th->syn, foc, false);
3781 				break;
3782 
3783 			case TCPOPT_EXP:
3784 				/* Fast Open option shares code 254 using a
3785 				 * 16 bits magic number.
3786 				 */
3787 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3788 				    get_unaligned_be16(ptr) ==
3789 				    TCPOPT_FASTOPEN_MAGIC)
3790 					tcp_parse_fastopen_option(opsize -
3791 						TCPOLEN_EXP_FASTOPEN_BASE,
3792 						ptr + 2, th->syn, foc, true);
3793 				else
3794 					smc_parse_options(th, opt_rx, ptr,
3795 							  opsize);
3796 				break;
3797 
3798 			}
3799 			ptr += opsize-2;
3800 			length -= opsize;
3801 		}
3802 	}
3803 }
3804 EXPORT_SYMBOL(tcp_parse_options);
3805 
3806 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3807 {
3808 	const __be32 *ptr = (const __be32 *)(th + 1);
3809 
3810 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3811 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3812 		tp->rx_opt.saw_tstamp = 1;
3813 		++ptr;
3814 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3815 		++ptr;
3816 		if (*ptr)
3817 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3818 		else
3819 			tp->rx_opt.rcv_tsecr = 0;
3820 		return true;
3821 	}
3822 	return false;
3823 }
3824 
3825 /* Fast parse options. This hopes to only see timestamps.
3826  * If it is wrong it falls back on tcp_parse_options().
3827  */
3828 static bool tcp_fast_parse_options(const struct net *net,
3829 				   const struct sk_buff *skb,
3830 				   const struct tcphdr *th, struct tcp_sock *tp)
3831 {
3832 	/* In the spirit of fast parsing, compare doff directly to constant
3833 	 * values.  Because equality is used, short doff can be ignored here.
3834 	 */
3835 	if (th->doff == (sizeof(*th) / 4)) {
3836 		tp->rx_opt.saw_tstamp = 0;
3837 		return false;
3838 	} else if (tp->rx_opt.tstamp_ok &&
3839 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3840 		if (tcp_parse_aligned_timestamp(tp, th))
3841 			return true;
3842 	}
3843 
3844 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3845 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3846 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3847 
3848 	return true;
3849 }
3850 
3851 #ifdef CONFIG_TCP_MD5SIG
3852 /*
3853  * Parse MD5 Signature option
3854  */
3855 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3856 {
3857 	int length = (th->doff << 2) - sizeof(*th);
3858 	const u8 *ptr = (const u8 *)(th + 1);
3859 
3860 	/* If the TCP option is too short, we can short cut */
3861 	if (length < TCPOLEN_MD5SIG)
3862 		return NULL;
3863 
3864 	while (length > 0) {
3865 		int opcode = *ptr++;
3866 		int opsize;
3867 
3868 		switch (opcode) {
3869 		case TCPOPT_EOL:
3870 			return NULL;
3871 		case TCPOPT_NOP:
3872 			length--;
3873 			continue;
3874 		default:
3875 			opsize = *ptr++;
3876 			if (opsize < 2 || opsize > length)
3877 				return NULL;
3878 			if (opcode == TCPOPT_MD5SIG)
3879 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3880 		}
3881 		ptr += opsize - 2;
3882 		length -= opsize;
3883 	}
3884 	return NULL;
3885 }
3886 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3887 #endif
3888 
3889 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3890  *
3891  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3892  * it can pass through stack. So, the following predicate verifies that
3893  * this segment is not used for anything but congestion avoidance or
3894  * fast retransmit. Moreover, we even are able to eliminate most of such
3895  * second order effects, if we apply some small "replay" window (~RTO)
3896  * to timestamp space.
3897  *
3898  * All these measures still do not guarantee that we reject wrapped ACKs
3899  * on networks with high bandwidth, when sequence space is recycled fastly,
3900  * but it guarantees that such events will be very rare and do not affect
3901  * connection seriously. This doesn't look nice, but alas, PAWS is really
3902  * buggy extension.
3903  *
3904  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3905  * states that events when retransmit arrives after original data are rare.
3906  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3907  * the biggest problem on large power networks even with minor reordering.
3908  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3909  * up to bandwidth of 18Gigabit/sec. 8) ]
3910  */
3911 
3912 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3913 {
3914 	const struct tcp_sock *tp = tcp_sk(sk);
3915 	const struct tcphdr *th = tcp_hdr(skb);
3916 	u32 seq = TCP_SKB_CB(skb)->seq;
3917 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3918 
3919 	return (/* 1. Pure ACK with correct sequence number. */
3920 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3921 
3922 		/* 2. ... and duplicate ACK. */
3923 		ack == tp->snd_una &&
3924 
3925 		/* 3. ... and does not update window. */
3926 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3927 
3928 		/* 4. ... and sits in replay window. */
3929 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3930 }
3931 
3932 static inline bool tcp_paws_discard(const struct sock *sk,
3933 				   const struct sk_buff *skb)
3934 {
3935 	const struct tcp_sock *tp = tcp_sk(sk);
3936 
3937 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3938 	       !tcp_disordered_ack(sk, skb);
3939 }
3940 
3941 /* Check segment sequence number for validity.
3942  *
3943  * Segment controls are considered valid, if the segment
3944  * fits to the window after truncation to the window. Acceptability
3945  * of data (and SYN, FIN, of course) is checked separately.
3946  * See tcp_data_queue(), for example.
3947  *
3948  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3949  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3950  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3951  * (borrowed from freebsd)
3952  */
3953 
3954 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3955 {
3956 	return	!before(end_seq, tp->rcv_wup) &&
3957 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3958 }
3959 
3960 /* When we get a reset we do this. */
3961 void tcp_reset(struct sock *sk)
3962 {
3963 	trace_tcp_receive_reset(sk);
3964 
3965 	/* We want the right error as BSD sees it (and indeed as we do). */
3966 	switch (sk->sk_state) {
3967 	case TCP_SYN_SENT:
3968 		sk->sk_err = ECONNREFUSED;
3969 		break;
3970 	case TCP_CLOSE_WAIT:
3971 		sk->sk_err = EPIPE;
3972 		break;
3973 	case TCP_CLOSE:
3974 		return;
3975 	default:
3976 		sk->sk_err = ECONNRESET;
3977 	}
3978 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3979 	smp_wmb();
3980 
3981 	tcp_done(sk);
3982 
3983 	if (!sock_flag(sk, SOCK_DEAD))
3984 		sk->sk_error_report(sk);
3985 }
3986 
3987 /*
3988  * 	Process the FIN bit. This now behaves as it is supposed to work
3989  *	and the FIN takes effect when it is validly part of sequence
3990  *	space. Not before when we get holes.
3991  *
3992  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3993  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3994  *	TIME-WAIT)
3995  *
3996  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3997  *	close and we go into CLOSING (and later onto TIME-WAIT)
3998  *
3999  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4000  */
4001 void tcp_fin(struct sock *sk)
4002 {
4003 	struct tcp_sock *tp = tcp_sk(sk);
4004 
4005 	inet_csk_schedule_ack(sk);
4006 
4007 	sk->sk_shutdown |= RCV_SHUTDOWN;
4008 	sock_set_flag(sk, SOCK_DONE);
4009 
4010 	switch (sk->sk_state) {
4011 	case TCP_SYN_RECV:
4012 	case TCP_ESTABLISHED:
4013 		/* Move to CLOSE_WAIT */
4014 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4015 		inet_csk(sk)->icsk_ack.pingpong = 1;
4016 		break;
4017 
4018 	case TCP_CLOSE_WAIT:
4019 	case TCP_CLOSING:
4020 		/* Received a retransmission of the FIN, do
4021 		 * nothing.
4022 		 */
4023 		break;
4024 	case TCP_LAST_ACK:
4025 		/* RFC793: Remain in the LAST-ACK state. */
4026 		break;
4027 
4028 	case TCP_FIN_WAIT1:
4029 		/* This case occurs when a simultaneous close
4030 		 * happens, we must ack the received FIN and
4031 		 * enter the CLOSING state.
4032 		 */
4033 		tcp_send_ack(sk);
4034 		tcp_set_state(sk, TCP_CLOSING);
4035 		break;
4036 	case TCP_FIN_WAIT2:
4037 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4038 		tcp_send_ack(sk);
4039 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4040 		break;
4041 	default:
4042 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4043 		 * cases we should never reach this piece of code.
4044 		 */
4045 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4046 		       __func__, sk->sk_state);
4047 		break;
4048 	}
4049 
4050 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4051 	 * Probably, we should reset in this case. For now drop them.
4052 	 */
4053 	skb_rbtree_purge(&tp->out_of_order_queue);
4054 	if (tcp_is_sack(tp))
4055 		tcp_sack_reset(&tp->rx_opt);
4056 	sk_mem_reclaim(sk);
4057 
4058 	if (!sock_flag(sk, SOCK_DEAD)) {
4059 		sk->sk_state_change(sk);
4060 
4061 		/* Do not send POLL_HUP for half duplex close. */
4062 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4063 		    sk->sk_state == TCP_CLOSE)
4064 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4065 		else
4066 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4067 	}
4068 }
4069 
4070 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4071 				  u32 end_seq)
4072 {
4073 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4074 		if (before(seq, sp->start_seq))
4075 			sp->start_seq = seq;
4076 		if (after(end_seq, sp->end_seq))
4077 			sp->end_seq = end_seq;
4078 		return true;
4079 	}
4080 	return false;
4081 }
4082 
4083 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4084 {
4085 	struct tcp_sock *tp = tcp_sk(sk);
4086 
4087 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4088 		int mib_idx;
4089 
4090 		if (before(seq, tp->rcv_nxt))
4091 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4092 		else
4093 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4094 
4095 		NET_INC_STATS(sock_net(sk), mib_idx);
4096 
4097 		tp->rx_opt.dsack = 1;
4098 		tp->duplicate_sack[0].start_seq = seq;
4099 		tp->duplicate_sack[0].end_seq = end_seq;
4100 	}
4101 }
4102 
4103 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4104 {
4105 	struct tcp_sock *tp = tcp_sk(sk);
4106 
4107 	if (!tp->rx_opt.dsack)
4108 		tcp_dsack_set(sk, seq, end_seq);
4109 	else
4110 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4111 }
4112 
4113 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4114 {
4115 	struct tcp_sock *tp = tcp_sk(sk);
4116 
4117 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4118 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4119 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4120 		tcp_enter_quickack_mode(sk);
4121 
4122 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4123 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4124 
4125 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4126 				end_seq = tp->rcv_nxt;
4127 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4128 		}
4129 	}
4130 
4131 	tcp_send_ack(sk);
4132 }
4133 
4134 /* These routines update the SACK block as out-of-order packets arrive or
4135  * in-order packets close up the sequence space.
4136  */
4137 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4138 {
4139 	int this_sack;
4140 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4141 	struct tcp_sack_block *swalk = sp + 1;
4142 
4143 	/* See if the recent change to the first SACK eats into
4144 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4145 	 */
4146 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4147 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4148 			int i;
4149 
4150 			/* Zap SWALK, by moving every further SACK up by one slot.
4151 			 * Decrease num_sacks.
4152 			 */
4153 			tp->rx_opt.num_sacks--;
4154 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4155 				sp[i] = sp[i + 1];
4156 			continue;
4157 		}
4158 		this_sack++, swalk++;
4159 	}
4160 }
4161 
4162 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4163 {
4164 	struct tcp_sock *tp = tcp_sk(sk);
4165 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4166 	int cur_sacks = tp->rx_opt.num_sacks;
4167 	int this_sack;
4168 
4169 	if (!cur_sacks)
4170 		goto new_sack;
4171 
4172 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4173 		if (tcp_sack_extend(sp, seq, end_seq)) {
4174 			/* Rotate this_sack to the first one. */
4175 			for (; this_sack > 0; this_sack--, sp--)
4176 				swap(*sp, *(sp - 1));
4177 			if (cur_sacks > 1)
4178 				tcp_sack_maybe_coalesce(tp);
4179 			return;
4180 		}
4181 	}
4182 
4183 	/* Could not find an adjacent existing SACK, build a new one,
4184 	 * put it at the front, and shift everyone else down.  We
4185 	 * always know there is at least one SACK present already here.
4186 	 *
4187 	 * If the sack array is full, forget about the last one.
4188 	 */
4189 	if (this_sack >= TCP_NUM_SACKS) {
4190 		this_sack--;
4191 		tp->rx_opt.num_sacks--;
4192 		sp--;
4193 	}
4194 	for (; this_sack > 0; this_sack--, sp--)
4195 		*sp = *(sp - 1);
4196 
4197 new_sack:
4198 	/* Build the new head SACK, and we're done. */
4199 	sp->start_seq = seq;
4200 	sp->end_seq = end_seq;
4201 	tp->rx_opt.num_sacks++;
4202 }
4203 
4204 /* RCV.NXT advances, some SACKs should be eaten. */
4205 
4206 static void tcp_sack_remove(struct tcp_sock *tp)
4207 {
4208 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4209 	int num_sacks = tp->rx_opt.num_sacks;
4210 	int this_sack;
4211 
4212 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4213 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4214 		tp->rx_opt.num_sacks = 0;
4215 		return;
4216 	}
4217 
4218 	for (this_sack = 0; this_sack < num_sacks;) {
4219 		/* Check if the start of the sack is covered by RCV.NXT. */
4220 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4221 			int i;
4222 
4223 			/* RCV.NXT must cover all the block! */
4224 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4225 
4226 			/* Zap this SACK, by moving forward any other SACKS. */
4227 			for (i = this_sack+1; i < num_sacks; i++)
4228 				tp->selective_acks[i-1] = tp->selective_acks[i];
4229 			num_sacks--;
4230 			continue;
4231 		}
4232 		this_sack++;
4233 		sp++;
4234 	}
4235 	tp->rx_opt.num_sacks = num_sacks;
4236 }
4237 
4238 /**
4239  * tcp_try_coalesce - try to merge skb to prior one
4240  * @sk: socket
4241  * @dest: destination queue
4242  * @to: prior buffer
4243  * @from: buffer to add in queue
4244  * @fragstolen: pointer to boolean
4245  *
4246  * Before queueing skb @from after @to, try to merge them
4247  * to reduce overall memory use and queue lengths, if cost is small.
4248  * Packets in ofo or receive queues can stay a long time.
4249  * Better try to coalesce them right now to avoid future collapses.
4250  * Returns true if caller should free @from instead of queueing it
4251  */
4252 static bool tcp_try_coalesce(struct sock *sk,
4253 			     struct sk_buff *to,
4254 			     struct sk_buff *from,
4255 			     bool *fragstolen)
4256 {
4257 	int delta;
4258 
4259 	*fragstolen = false;
4260 
4261 	/* Its possible this segment overlaps with prior segment in queue */
4262 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4263 		return false;
4264 
4265 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4266 		return false;
4267 
4268 	atomic_add(delta, &sk->sk_rmem_alloc);
4269 	sk_mem_charge(sk, delta);
4270 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4271 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4272 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4273 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4274 
4275 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4276 		TCP_SKB_CB(to)->has_rxtstamp = true;
4277 		to->tstamp = from->tstamp;
4278 	}
4279 
4280 	return true;
4281 }
4282 
4283 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4284 {
4285 	sk_drops_add(sk, skb);
4286 	__kfree_skb(skb);
4287 }
4288 
4289 /* This one checks to see if we can put data from the
4290  * out_of_order queue into the receive_queue.
4291  */
4292 static void tcp_ofo_queue(struct sock *sk)
4293 {
4294 	struct tcp_sock *tp = tcp_sk(sk);
4295 	__u32 dsack_high = tp->rcv_nxt;
4296 	bool fin, fragstolen, eaten;
4297 	struct sk_buff *skb, *tail;
4298 	struct rb_node *p;
4299 
4300 	p = rb_first(&tp->out_of_order_queue);
4301 	while (p) {
4302 		skb = rb_to_skb(p);
4303 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4304 			break;
4305 
4306 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4307 			__u32 dsack = dsack_high;
4308 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4309 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4310 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4311 		}
4312 		p = rb_next(p);
4313 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4314 
4315 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4316 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4317 			tcp_drop(sk, skb);
4318 			continue;
4319 		}
4320 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4321 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4322 			   TCP_SKB_CB(skb)->end_seq);
4323 
4324 		tail = skb_peek_tail(&sk->sk_receive_queue);
4325 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4326 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4327 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4328 		if (!eaten)
4329 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4330 		else
4331 			kfree_skb_partial(skb, fragstolen);
4332 
4333 		if (unlikely(fin)) {
4334 			tcp_fin(sk);
4335 			/* tcp_fin() purges tp->out_of_order_queue,
4336 			 * so we must end this loop right now.
4337 			 */
4338 			break;
4339 		}
4340 	}
4341 }
4342 
4343 static bool tcp_prune_ofo_queue(struct sock *sk);
4344 static int tcp_prune_queue(struct sock *sk);
4345 
4346 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4347 				 unsigned int size)
4348 {
4349 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4350 	    !sk_rmem_schedule(sk, skb, size)) {
4351 
4352 		if (tcp_prune_queue(sk) < 0)
4353 			return -1;
4354 
4355 		while (!sk_rmem_schedule(sk, skb, size)) {
4356 			if (!tcp_prune_ofo_queue(sk))
4357 				return -1;
4358 		}
4359 	}
4360 	return 0;
4361 }
4362 
4363 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4364 {
4365 	struct tcp_sock *tp = tcp_sk(sk);
4366 	struct rb_node **p, *parent;
4367 	struct sk_buff *skb1;
4368 	u32 seq, end_seq;
4369 	bool fragstolen;
4370 
4371 	tcp_ecn_check_ce(tp, skb);
4372 
4373 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4374 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4375 		tcp_drop(sk, skb);
4376 		return;
4377 	}
4378 
4379 	/* Disable header prediction. */
4380 	tp->pred_flags = 0;
4381 	inet_csk_schedule_ack(sk);
4382 
4383 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4384 	seq = TCP_SKB_CB(skb)->seq;
4385 	end_seq = TCP_SKB_CB(skb)->end_seq;
4386 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4387 		   tp->rcv_nxt, seq, end_seq);
4388 
4389 	p = &tp->out_of_order_queue.rb_node;
4390 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4391 		/* Initial out of order segment, build 1 SACK. */
4392 		if (tcp_is_sack(tp)) {
4393 			tp->rx_opt.num_sacks = 1;
4394 			tp->selective_acks[0].start_seq = seq;
4395 			tp->selective_acks[0].end_seq = end_seq;
4396 		}
4397 		rb_link_node(&skb->rbnode, NULL, p);
4398 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4399 		tp->ooo_last_skb = skb;
4400 		goto end;
4401 	}
4402 
4403 	/* In the typical case, we are adding an skb to the end of the list.
4404 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4405 	 */
4406 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4407 			     skb, &fragstolen)) {
4408 coalesce_done:
4409 		tcp_grow_window(sk, skb);
4410 		kfree_skb_partial(skb, fragstolen);
4411 		skb = NULL;
4412 		goto add_sack;
4413 	}
4414 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4415 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4416 		parent = &tp->ooo_last_skb->rbnode;
4417 		p = &parent->rb_right;
4418 		goto insert;
4419 	}
4420 
4421 	/* Find place to insert this segment. Handle overlaps on the way. */
4422 	parent = NULL;
4423 	while (*p) {
4424 		parent = *p;
4425 		skb1 = rb_to_skb(parent);
4426 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4427 			p = &parent->rb_left;
4428 			continue;
4429 		}
4430 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4431 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4432 				/* All the bits are present. Drop. */
4433 				NET_INC_STATS(sock_net(sk),
4434 					      LINUX_MIB_TCPOFOMERGE);
4435 				__kfree_skb(skb);
4436 				skb = NULL;
4437 				tcp_dsack_set(sk, seq, end_seq);
4438 				goto add_sack;
4439 			}
4440 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4441 				/* Partial overlap. */
4442 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4443 			} else {
4444 				/* skb's seq == skb1's seq and skb covers skb1.
4445 				 * Replace skb1 with skb.
4446 				 */
4447 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4448 						&tp->out_of_order_queue);
4449 				tcp_dsack_extend(sk,
4450 						 TCP_SKB_CB(skb1)->seq,
4451 						 TCP_SKB_CB(skb1)->end_seq);
4452 				NET_INC_STATS(sock_net(sk),
4453 					      LINUX_MIB_TCPOFOMERGE);
4454 				__kfree_skb(skb1);
4455 				goto merge_right;
4456 			}
4457 		} else if (tcp_try_coalesce(sk, skb1,
4458 					    skb, &fragstolen)) {
4459 			goto coalesce_done;
4460 		}
4461 		p = &parent->rb_right;
4462 	}
4463 insert:
4464 	/* Insert segment into RB tree. */
4465 	rb_link_node(&skb->rbnode, parent, p);
4466 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4467 
4468 merge_right:
4469 	/* Remove other segments covered by skb. */
4470 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4471 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4472 			break;
4473 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4474 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4475 					 end_seq);
4476 			break;
4477 		}
4478 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4479 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4480 				 TCP_SKB_CB(skb1)->end_seq);
4481 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4482 		tcp_drop(sk, skb1);
4483 	}
4484 	/* If there is no skb after us, we are the last_skb ! */
4485 	if (!skb1)
4486 		tp->ooo_last_skb = skb;
4487 
4488 add_sack:
4489 	if (tcp_is_sack(tp))
4490 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4491 end:
4492 	if (skb) {
4493 		tcp_grow_window(sk, skb);
4494 		skb_condense(skb);
4495 		skb_set_owner_r(skb, sk);
4496 	}
4497 }
4498 
4499 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4500 		  bool *fragstolen)
4501 {
4502 	int eaten;
4503 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4504 
4505 	__skb_pull(skb, hdrlen);
4506 	eaten = (tail &&
4507 		 tcp_try_coalesce(sk, tail,
4508 				  skb, fragstolen)) ? 1 : 0;
4509 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4510 	if (!eaten) {
4511 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4512 		skb_set_owner_r(skb, sk);
4513 	}
4514 	return eaten;
4515 }
4516 
4517 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4518 {
4519 	struct sk_buff *skb;
4520 	int err = -ENOMEM;
4521 	int data_len = 0;
4522 	bool fragstolen;
4523 
4524 	if (size == 0)
4525 		return 0;
4526 
4527 	if (size > PAGE_SIZE) {
4528 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4529 
4530 		data_len = npages << PAGE_SHIFT;
4531 		size = data_len + (size & ~PAGE_MASK);
4532 	}
4533 	skb = alloc_skb_with_frags(size - data_len, data_len,
4534 				   PAGE_ALLOC_COSTLY_ORDER,
4535 				   &err, sk->sk_allocation);
4536 	if (!skb)
4537 		goto err;
4538 
4539 	skb_put(skb, size - data_len);
4540 	skb->data_len = data_len;
4541 	skb->len = size;
4542 
4543 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4544 		goto err_free;
4545 
4546 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4547 	if (err)
4548 		goto err_free;
4549 
4550 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4551 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4552 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4553 
4554 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4555 		WARN_ON_ONCE(fragstolen); /* should not happen */
4556 		__kfree_skb(skb);
4557 	}
4558 	return size;
4559 
4560 err_free:
4561 	kfree_skb(skb);
4562 err:
4563 	return err;
4564 
4565 }
4566 
4567 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4568 {
4569 	struct tcp_sock *tp = tcp_sk(sk);
4570 	bool fragstolen;
4571 	int eaten;
4572 
4573 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4574 		__kfree_skb(skb);
4575 		return;
4576 	}
4577 	skb_dst_drop(skb);
4578 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4579 
4580 	tcp_ecn_accept_cwr(tp, skb);
4581 
4582 	tp->rx_opt.dsack = 0;
4583 
4584 	/*  Queue data for delivery to the user.
4585 	 *  Packets in sequence go to the receive queue.
4586 	 *  Out of sequence packets to the out_of_order_queue.
4587 	 */
4588 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4589 		if (tcp_receive_window(tp) == 0)
4590 			goto out_of_window;
4591 
4592 		/* Ok. In sequence. In window. */
4593 queue_and_out:
4594 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4595 			sk_forced_mem_schedule(sk, skb->truesize);
4596 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4597 			goto drop;
4598 
4599 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4600 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4601 		if (skb->len)
4602 			tcp_event_data_recv(sk, skb);
4603 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4604 			tcp_fin(sk);
4605 
4606 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4607 			tcp_ofo_queue(sk);
4608 
4609 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4610 			 * gap in queue is filled.
4611 			 */
4612 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4613 				inet_csk(sk)->icsk_ack.pingpong = 0;
4614 		}
4615 
4616 		if (tp->rx_opt.num_sacks)
4617 			tcp_sack_remove(tp);
4618 
4619 		tcp_fast_path_check(sk);
4620 
4621 		if (eaten > 0)
4622 			kfree_skb_partial(skb, fragstolen);
4623 		if (!sock_flag(sk, SOCK_DEAD))
4624 			sk->sk_data_ready(sk);
4625 		return;
4626 	}
4627 
4628 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4629 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4630 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4631 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4632 
4633 out_of_window:
4634 		tcp_enter_quickack_mode(sk);
4635 		inet_csk_schedule_ack(sk);
4636 drop:
4637 		tcp_drop(sk, skb);
4638 		return;
4639 	}
4640 
4641 	/* Out of window. F.e. zero window probe. */
4642 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4643 		goto out_of_window;
4644 
4645 	tcp_enter_quickack_mode(sk);
4646 
4647 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4648 		/* Partial packet, seq < rcv_next < end_seq */
4649 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4650 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4651 			   TCP_SKB_CB(skb)->end_seq);
4652 
4653 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4654 
4655 		/* If window is closed, drop tail of packet. But after
4656 		 * remembering D-SACK for its head made in previous line.
4657 		 */
4658 		if (!tcp_receive_window(tp))
4659 			goto out_of_window;
4660 		goto queue_and_out;
4661 	}
4662 
4663 	tcp_data_queue_ofo(sk, skb);
4664 }
4665 
4666 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4667 {
4668 	if (list)
4669 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4670 
4671 	return skb_rb_next(skb);
4672 }
4673 
4674 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4675 					struct sk_buff_head *list,
4676 					struct rb_root *root)
4677 {
4678 	struct sk_buff *next = tcp_skb_next(skb, list);
4679 
4680 	if (list)
4681 		__skb_unlink(skb, list);
4682 	else
4683 		rb_erase(&skb->rbnode, root);
4684 
4685 	__kfree_skb(skb);
4686 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4687 
4688 	return next;
4689 }
4690 
4691 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4692 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4693 {
4694 	struct rb_node **p = &root->rb_node;
4695 	struct rb_node *parent = NULL;
4696 	struct sk_buff *skb1;
4697 
4698 	while (*p) {
4699 		parent = *p;
4700 		skb1 = rb_to_skb(parent);
4701 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4702 			p = &parent->rb_left;
4703 		else
4704 			p = &parent->rb_right;
4705 	}
4706 	rb_link_node(&skb->rbnode, parent, p);
4707 	rb_insert_color(&skb->rbnode, root);
4708 }
4709 
4710 /* Collapse contiguous sequence of skbs head..tail with
4711  * sequence numbers start..end.
4712  *
4713  * If tail is NULL, this means until the end of the queue.
4714  *
4715  * Segments with FIN/SYN are not collapsed (only because this
4716  * simplifies code)
4717  */
4718 static void
4719 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4720 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4721 {
4722 	struct sk_buff *skb = head, *n;
4723 	struct sk_buff_head tmp;
4724 	bool end_of_skbs;
4725 
4726 	/* First, check that queue is collapsible and find
4727 	 * the point where collapsing can be useful.
4728 	 */
4729 restart:
4730 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4731 		n = tcp_skb_next(skb, list);
4732 
4733 		/* No new bits? It is possible on ofo queue. */
4734 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4735 			skb = tcp_collapse_one(sk, skb, list, root);
4736 			if (!skb)
4737 				break;
4738 			goto restart;
4739 		}
4740 
4741 		/* The first skb to collapse is:
4742 		 * - not SYN/FIN and
4743 		 * - bloated or contains data before "start" or
4744 		 *   overlaps to the next one.
4745 		 */
4746 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4747 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4748 		     before(TCP_SKB_CB(skb)->seq, start))) {
4749 			end_of_skbs = false;
4750 			break;
4751 		}
4752 
4753 		if (n && n != tail &&
4754 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4755 			end_of_skbs = false;
4756 			break;
4757 		}
4758 
4759 		/* Decided to skip this, advance start seq. */
4760 		start = TCP_SKB_CB(skb)->end_seq;
4761 	}
4762 	if (end_of_skbs ||
4763 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4764 		return;
4765 
4766 	__skb_queue_head_init(&tmp);
4767 
4768 	while (before(start, end)) {
4769 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4770 		struct sk_buff *nskb;
4771 
4772 		nskb = alloc_skb(copy, GFP_ATOMIC);
4773 		if (!nskb)
4774 			break;
4775 
4776 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4777 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4778 		if (list)
4779 			__skb_queue_before(list, skb, nskb);
4780 		else
4781 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4782 		skb_set_owner_r(nskb, sk);
4783 
4784 		/* Copy data, releasing collapsed skbs. */
4785 		while (copy > 0) {
4786 			int offset = start - TCP_SKB_CB(skb)->seq;
4787 			int size = TCP_SKB_CB(skb)->end_seq - start;
4788 
4789 			BUG_ON(offset < 0);
4790 			if (size > 0) {
4791 				size = min(copy, size);
4792 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4793 					BUG();
4794 				TCP_SKB_CB(nskb)->end_seq += size;
4795 				copy -= size;
4796 				start += size;
4797 			}
4798 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4799 				skb = tcp_collapse_one(sk, skb, list, root);
4800 				if (!skb ||
4801 				    skb == tail ||
4802 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4803 					goto end;
4804 			}
4805 		}
4806 	}
4807 end:
4808 	skb_queue_walk_safe(&tmp, skb, n)
4809 		tcp_rbtree_insert(root, skb);
4810 }
4811 
4812 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4813  * and tcp_collapse() them until all the queue is collapsed.
4814  */
4815 static void tcp_collapse_ofo_queue(struct sock *sk)
4816 {
4817 	struct tcp_sock *tp = tcp_sk(sk);
4818 	struct sk_buff *skb, *head;
4819 	u32 start, end;
4820 
4821 	skb = skb_rb_first(&tp->out_of_order_queue);
4822 new_range:
4823 	if (!skb) {
4824 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4825 		return;
4826 	}
4827 	start = TCP_SKB_CB(skb)->seq;
4828 	end = TCP_SKB_CB(skb)->end_seq;
4829 
4830 	for (head = skb;;) {
4831 		skb = skb_rb_next(skb);
4832 
4833 		/* Range is terminated when we see a gap or when
4834 		 * we are at the queue end.
4835 		 */
4836 		if (!skb ||
4837 		    after(TCP_SKB_CB(skb)->seq, end) ||
4838 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4839 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4840 				     head, skb, start, end);
4841 			goto new_range;
4842 		}
4843 
4844 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4845 			start = TCP_SKB_CB(skb)->seq;
4846 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4847 			end = TCP_SKB_CB(skb)->end_seq;
4848 	}
4849 }
4850 
4851 /*
4852  * Clean the out-of-order queue to make room.
4853  * We drop high sequences packets to :
4854  * 1) Let a chance for holes to be filled.
4855  * 2) not add too big latencies if thousands of packets sit there.
4856  *    (But if application shrinks SO_RCVBUF, we could still end up
4857  *     freeing whole queue here)
4858  *
4859  * Return true if queue has shrunk.
4860  */
4861 static bool tcp_prune_ofo_queue(struct sock *sk)
4862 {
4863 	struct tcp_sock *tp = tcp_sk(sk);
4864 	struct rb_node *node, *prev;
4865 
4866 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4867 		return false;
4868 
4869 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4870 	node = &tp->ooo_last_skb->rbnode;
4871 	do {
4872 		prev = rb_prev(node);
4873 		rb_erase(node, &tp->out_of_order_queue);
4874 		tcp_drop(sk, rb_to_skb(node));
4875 		sk_mem_reclaim(sk);
4876 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4877 		    !tcp_under_memory_pressure(sk))
4878 			break;
4879 		node = prev;
4880 	} while (node);
4881 	tp->ooo_last_skb = rb_to_skb(prev);
4882 
4883 	/* Reset SACK state.  A conforming SACK implementation will
4884 	 * do the same at a timeout based retransmit.  When a connection
4885 	 * is in a sad state like this, we care only about integrity
4886 	 * of the connection not performance.
4887 	 */
4888 	if (tp->rx_opt.sack_ok)
4889 		tcp_sack_reset(&tp->rx_opt);
4890 	return true;
4891 }
4892 
4893 /* Reduce allocated memory if we can, trying to get
4894  * the socket within its memory limits again.
4895  *
4896  * Return less than zero if we should start dropping frames
4897  * until the socket owning process reads some of the data
4898  * to stabilize the situation.
4899  */
4900 static int tcp_prune_queue(struct sock *sk)
4901 {
4902 	struct tcp_sock *tp = tcp_sk(sk);
4903 
4904 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4905 
4906 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4907 
4908 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4909 		tcp_clamp_window(sk);
4910 	else if (tcp_under_memory_pressure(sk))
4911 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4912 
4913 	tcp_collapse_ofo_queue(sk);
4914 	if (!skb_queue_empty(&sk->sk_receive_queue))
4915 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4916 			     skb_peek(&sk->sk_receive_queue),
4917 			     NULL,
4918 			     tp->copied_seq, tp->rcv_nxt);
4919 	sk_mem_reclaim(sk);
4920 
4921 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4922 		return 0;
4923 
4924 	/* Collapsing did not help, destructive actions follow.
4925 	 * This must not ever occur. */
4926 
4927 	tcp_prune_ofo_queue(sk);
4928 
4929 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4930 		return 0;
4931 
4932 	/* If we are really being abused, tell the caller to silently
4933 	 * drop receive data on the floor.  It will get retransmitted
4934 	 * and hopefully then we'll have sufficient space.
4935 	 */
4936 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4937 
4938 	/* Massive buffer overcommit. */
4939 	tp->pred_flags = 0;
4940 	return -1;
4941 }
4942 
4943 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4944 {
4945 	const struct tcp_sock *tp = tcp_sk(sk);
4946 
4947 	/* If the user specified a specific send buffer setting, do
4948 	 * not modify it.
4949 	 */
4950 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4951 		return false;
4952 
4953 	/* If we are under global TCP memory pressure, do not expand.  */
4954 	if (tcp_under_memory_pressure(sk))
4955 		return false;
4956 
4957 	/* If we are under soft global TCP memory pressure, do not expand.  */
4958 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4959 		return false;
4960 
4961 	/* If we filled the congestion window, do not expand.  */
4962 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4963 		return false;
4964 
4965 	return true;
4966 }
4967 
4968 /* When incoming ACK allowed to free some skb from write_queue,
4969  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4970  * on the exit from tcp input handler.
4971  *
4972  * PROBLEM: sndbuf expansion does not work well with largesend.
4973  */
4974 static void tcp_new_space(struct sock *sk)
4975 {
4976 	struct tcp_sock *tp = tcp_sk(sk);
4977 
4978 	if (tcp_should_expand_sndbuf(sk)) {
4979 		tcp_sndbuf_expand(sk);
4980 		tp->snd_cwnd_stamp = tcp_jiffies32;
4981 	}
4982 
4983 	sk->sk_write_space(sk);
4984 }
4985 
4986 static void tcp_check_space(struct sock *sk)
4987 {
4988 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4989 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4990 		/* pairs with tcp_poll() */
4991 		smp_mb();
4992 		if (sk->sk_socket &&
4993 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4994 			tcp_new_space(sk);
4995 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4996 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
4997 		}
4998 	}
4999 }
5000 
5001 static inline void tcp_data_snd_check(struct sock *sk)
5002 {
5003 	tcp_push_pending_frames(sk);
5004 	tcp_check_space(sk);
5005 }
5006 
5007 /*
5008  * Check if sending an ack is needed.
5009  */
5010 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5011 {
5012 	struct tcp_sock *tp = tcp_sk(sk);
5013 
5014 	    /* More than one full frame received... */
5015 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5016 	     /* ... and right edge of window advances far enough.
5017 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5018 	      */
5019 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5020 	    /* We ACK each frame or... */
5021 	    tcp_in_quickack_mode(sk) ||
5022 	    /* We have out of order data. */
5023 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5024 		/* Then ack it now */
5025 		tcp_send_ack(sk);
5026 	} else {
5027 		/* Else, send delayed ack. */
5028 		tcp_send_delayed_ack(sk);
5029 	}
5030 }
5031 
5032 static inline void tcp_ack_snd_check(struct sock *sk)
5033 {
5034 	if (!inet_csk_ack_scheduled(sk)) {
5035 		/* We sent a data segment already. */
5036 		return;
5037 	}
5038 	__tcp_ack_snd_check(sk, 1);
5039 }
5040 
5041 /*
5042  *	This routine is only called when we have urgent data
5043  *	signaled. Its the 'slow' part of tcp_urg. It could be
5044  *	moved inline now as tcp_urg is only called from one
5045  *	place. We handle URGent data wrong. We have to - as
5046  *	BSD still doesn't use the correction from RFC961.
5047  *	For 1003.1g we should support a new option TCP_STDURG to permit
5048  *	either form (or just set the sysctl tcp_stdurg).
5049  */
5050 
5051 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5052 {
5053 	struct tcp_sock *tp = tcp_sk(sk);
5054 	u32 ptr = ntohs(th->urg_ptr);
5055 
5056 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5057 		ptr--;
5058 	ptr += ntohl(th->seq);
5059 
5060 	/* Ignore urgent data that we've already seen and read. */
5061 	if (after(tp->copied_seq, ptr))
5062 		return;
5063 
5064 	/* Do not replay urg ptr.
5065 	 *
5066 	 * NOTE: interesting situation not covered by specs.
5067 	 * Misbehaving sender may send urg ptr, pointing to segment,
5068 	 * which we already have in ofo queue. We are not able to fetch
5069 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5070 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5071 	 * situations. But it is worth to think about possibility of some
5072 	 * DoSes using some hypothetical application level deadlock.
5073 	 */
5074 	if (before(ptr, tp->rcv_nxt))
5075 		return;
5076 
5077 	/* Do we already have a newer (or duplicate) urgent pointer? */
5078 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5079 		return;
5080 
5081 	/* Tell the world about our new urgent pointer. */
5082 	sk_send_sigurg(sk);
5083 
5084 	/* We may be adding urgent data when the last byte read was
5085 	 * urgent. To do this requires some care. We cannot just ignore
5086 	 * tp->copied_seq since we would read the last urgent byte again
5087 	 * as data, nor can we alter copied_seq until this data arrives
5088 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5089 	 *
5090 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5091 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5092 	 * and expect that both A and B disappear from stream. This is _wrong_.
5093 	 * Though this happens in BSD with high probability, this is occasional.
5094 	 * Any application relying on this is buggy. Note also, that fix "works"
5095 	 * only in this artificial test. Insert some normal data between A and B and we will
5096 	 * decline of BSD again. Verdict: it is better to remove to trap
5097 	 * buggy users.
5098 	 */
5099 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5100 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5101 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5102 		tp->copied_seq++;
5103 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5104 			__skb_unlink(skb, &sk->sk_receive_queue);
5105 			__kfree_skb(skb);
5106 		}
5107 	}
5108 
5109 	tp->urg_data = TCP_URG_NOTYET;
5110 	tp->urg_seq = ptr;
5111 
5112 	/* Disable header prediction. */
5113 	tp->pred_flags = 0;
5114 }
5115 
5116 /* This is the 'fast' part of urgent handling. */
5117 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5118 {
5119 	struct tcp_sock *tp = tcp_sk(sk);
5120 
5121 	/* Check if we get a new urgent pointer - normally not. */
5122 	if (th->urg)
5123 		tcp_check_urg(sk, th);
5124 
5125 	/* Do we wait for any urgent data? - normally not... */
5126 	if (tp->urg_data == TCP_URG_NOTYET) {
5127 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5128 			  th->syn;
5129 
5130 		/* Is the urgent pointer pointing into this packet? */
5131 		if (ptr < skb->len) {
5132 			u8 tmp;
5133 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5134 				BUG();
5135 			tp->urg_data = TCP_URG_VALID | tmp;
5136 			if (!sock_flag(sk, SOCK_DEAD))
5137 				sk->sk_data_ready(sk);
5138 		}
5139 	}
5140 }
5141 
5142 /* Accept RST for rcv_nxt - 1 after a FIN.
5143  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5144  * FIN is sent followed by a RST packet. The RST is sent with the same
5145  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5146  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5147  * ACKs on the closed socket. In addition middleboxes can drop either the
5148  * challenge ACK or a subsequent RST.
5149  */
5150 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5151 {
5152 	struct tcp_sock *tp = tcp_sk(sk);
5153 
5154 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5155 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5156 					       TCPF_CLOSING));
5157 }
5158 
5159 /* Does PAWS and seqno based validation of an incoming segment, flags will
5160  * play significant role here.
5161  */
5162 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5163 				  const struct tcphdr *th, int syn_inerr)
5164 {
5165 	struct tcp_sock *tp = tcp_sk(sk);
5166 	bool rst_seq_match = false;
5167 
5168 	/* RFC1323: H1. Apply PAWS check first. */
5169 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5170 	    tp->rx_opt.saw_tstamp &&
5171 	    tcp_paws_discard(sk, skb)) {
5172 		if (!th->rst) {
5173 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5174 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5175 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5176 						  &tp->last_oow_ack_time))
5177 				tcp_send_dupack(sk, skb);
5178 			goto discard;
5179 		}
5180 		/* Reset is accepted even if it did not pass PAWS. */
5181 	}
5182 
5183 	/* Step 1: check sequence number */
5184 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5185 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5186 		 * (RST) segments are validated by checking their SEQ-fields."
5187 		 * And page 69: "If an incoming segment is not acceptable,
5188 		 * an acknowledgment should be sent in reply (unless the RST
5189 		 * bit is set, if so drop the segment and return)".
5190 		 */
5191 		if (!th->rst) {
5192 			if (th->syn)
5193 				goto syn_challenge;
5194 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5195 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5196 						  &tp->last_oow_ack_time))
5197 				tcp_send_dupack(sk, skb);
5198 		} else if (tcp_reset_check(sk, skb)) {
5199 			tcp_reset(sk);
5200 		}
5201 		goto discard;
5202 	}
5203 
5204 	/* Step 2: check RST bit */
5205 	if (th->rst) {
5206 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5207 		 * FIN and SACK too if available):
5208 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5209 		 * the right-most SACK block,
5210 		 * then
5211 		 *     RESET the connection
5212 		 * else
5213 		 *     Send a challenge ACK
5214 		 */
5215 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5216 		    tcp_reset_check(sk, skb)) {
5217 			rst_seq_match = true;
5218 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5219 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5220 			int max_sack = sp[0].end_seq;
5221 			int this_sack;
5222 
5223 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5224 			     ++this_sack) {
5225 				max_sack = after(sp[this_sack].end_seq,
5226 						 max_sack) ?
5227 					sp[this_sack].end_seq : max_sack;
5228 			}
5229 
5230 			if (TCP_SKB_CB(skb)->seq == max_sack)
5231 				rst_seq_match = true;
5232 		}
5233 
5234 		if (rst_seq_match)
5235 			tcp_reset(sk);
5236 		else {
5237 			/* Disable TFO if RST is out-of-order
5238 			 * and no data has been received
5239 			 * for current active TFO socket
5240 			 */
5241 			if (tp->syn_fastopen && !tp->data_segs_in &&
5242 			    sk->sk_state == TCP_ESTABLISHED)
5243 				tcp_fastopen_active_disable(sk);
5244 			tcp_send_challenge_ack(sk, skb);
5245 		}
5246 		goto discard;
5247 	}
5248 
5249 	/* step 3: check security and precedence [ignored] */
5250 
5251 	/* step 4: Check for a SYN
5252 	 * RFC 5961 4.2 : Send a challenge ack
5253 	 */
5254 	if (th->syn) {
5255 syn_challenge:
5256 		if (syn_inerr)
5257 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5258 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5259 		tcp_send_challenge_ack(sk, skb);
5260 		goto discard;
5261 	}
5262 
5263 	return true;
5264 
5265 discard:
5266 	tcp_drop(sk, skb);
5267 	return false;
5268 }
5269 
5270 /*
5271  *	TCP receive function for the ESTABLISHED state.
5272  *
5273  *	It is split into a fast path and a slow path. The fast path is
5274  * 	disabled when:
5275  *	- A zero window was announced from us - zero window probing
5276  *        is only handled properly in the slow path.
5277  *	- Out of order segments arrived.
5278  *	- Urgent data is expected.
5279  *	- There is no buffer space left
5280  *	- Unexpected TCP flags/window values/header lengths are received
5281  *	  (detected by checking the TCP header against pred_flags)
5282  *	- Data is sent in both directions. Fast path only supports pure senders
5283  *	  or pure receivers (this means either the sequence number or the ack
5284  *	  value must stay constant)
5285  *	- Unexpected TCP option.
5286  *
5287  *	When these conditions are not satisfied it drops into a standard
5288  *	receive procedure patterned after RFC793 to handle all cases.
5289  *	The first three cases are guaranteed by proper pred_flags setting,
5290  *	the rest is checked inline. Fast processing is turned on in
5291  *	tcp_data_queue when everything is OK.
5292  */
5293 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5294 			 const struct tcphdr *th)
5295 {
5296 	unsigned int len = skb->len;
5297 	struct tcp_sock *tp = tcp_sk(sk);
5298 
5299 	tcp_mstamp_refresh(tp);
5300 	if (unlikely(!sk->sk_rx_dst))
5301 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5302 	/*
5303 	 *	Header prediction.
5304 	 *	The code loosely follows the one in the famous
5305 	 *	"30 instruction TCP receive" Van Jacobson mail.
5306 	 *
5307 	 *	Van's trick is to deposit buffers into socket queue
5308 	 *	on a device interrupt, to call tcp_recv function
5309 	 *	on the receive process context and checksum and copy
5310 	 *	the buffer to user space. smart...
5311 	 *
5312 	 *	Our current scheme is not silly either but we take the
5313 	 *	extra cost of the net_bh soft interrupt processing...
5314 	 *	We do checksum and copy also but from device to kernel.
5315 	 */
5316 
5317 	tp->rx_opt.saw_tstamp = 0;
5318 
5319 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5320 	 *	if header_prediction is to be made
5321 	 *	'S' will always be tp->tcp_header_len >> 2
5322 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5323 	 *  turn it off	(when there are holes in the receive
5324 	 *	 space for instance)
5325 	 *	PSH flag is ignored.
5326 	 */
5327 
5328 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5329 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5330 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5331 		int tcp_header_len = tp->tcp_header_len;
5332 
5333 		/* Timestamp header prediction: tcp_header_len
5334 		 * is automatically equal to th->doff*4 due to pred_flags
5335 		 * match.
5336 		 */
5337 
5338 		/* Check timestamp */
5339 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5340 			/* No? Slow path! */
5341 			if (!tcp_parse_aligned_timestamp(tp, th))
5342 				goto slow_path;
5343 
5344 			/* If PAWS failed, check it more carefully in slow path */
5345 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5346 				goto slow_path;
5347 
5348 			/* DO NOT update ts_recent here, if checksum fails
5349 			 * and timestamp was corrupted part, it will result
5350 			 * in a hung connection since we will drop all
5351 			 * future packets due to the PAWS test.
5352 			 */
5353 		}
5354 
5355 		if (len <= tcp_header_len) {
5356 			/* Bulk data transfer: sender */
5357 			if (len == tcp_header_len) {
5358 				/* Predicted packet is in window by definition.
5359 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5360 				 * Hence, check seq<=rcv_wup reduces to:
5361 				 */
5362 				if (tcp_header_len ==
5363 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5364 				    tp->rcv_nxt == tp->rcv_wup)
5365 					tcp_store_ts_recent(tp);
5366 
5367 				/* We know that such packets are checksummed
5368 				 * on entry.
5369 				 */
5370 				tcp_ack(sk, skb, 0);
5371 				__kfree_skb(skb);
5372 				tcp_data_snd_check(sk);
5373 				return;
5374 			} else { /* Header too small */
5375 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5376 				goto discard;
5377 			}
5378 		} else {
5379 			int eaten = 0;
5380 			bool fragstolen = false;
5381 
5382 			if (tcp_checksum_complete(skb))
5383 				goto csum_error;
5384 
5385 			if ((int)skb->truesize > sk->sk_forward_alloc)
5386 				goto step5;
5387 
5388 			/* Predicted packet is in window by definition.
5389 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5390 			 * Hence, check seq<=rcv_wup reduces to:
5391 			 */
5392 			if (tcp_header_len ==
5393 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5394 			    tp->rcv_nxt == tp->rcv_wup)
5395 				tcp_store_ts_recent(tp);
5396 
5397 			tcp_rcv_rtt_measure_ts(sk, skb);
5398 
5399 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5400 
5401 			/* Bulk data transfer: receiver */
5402 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5403 					      &fragstolen);
5404 
5405 			tcp_event_data_recv(sk, skb);
5406 
5407 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5408 				/* Well, only one small jumplet in fast path... */
5409 				tcp_ack(sk, skb, FLAG_DATA);
5410 				tcp_data_snd_check(sk);
5411 				if (!inet_csk_ack_scheduled(sk))
5412 					goto no_ack;
5413 			}
5414 
5415 			__tcp_ack_snd_check(sk, 0);
5416 no_ack:
5417 			if (eaten)
5418 				kfree_skb_partial(skb, fragstolen);
5419 			sk->sk_data_ready(sk);
5420 			return;
5421 		}
5422 	}
5423 
5424 slow_path:
5425 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5426 		goto csum_error;
5427 
5428 	if (!th->ack && !th->rst && !th->syn)
5429 		goto discard;
5430 
5431 	/*
5432 	 *	Standard slow path.
5433 	 */
5434 
5435 	if (!tcp_validate_incoming(sk, skb, th, 1))
5436 		return;
5437 
5438 step5:
5439 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5440 		goto discard;
5441 
5442 	tcp_rcv_rtt_measure_ts(sk, skb);
5443 
5444 	/* Process urgent data. */
5445 	tcp_urg(sk, skb, th);
5446 
5447 	/* step 7: process the segment text */
5448 	tcp_data_queue(sk, skb);
5449 
5450 	tcp_data_snd_check(sk);
5451 	tcp_ack_snd_check(sk);
5452 	return;
5453 
5454 csum_error:
5455 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5456 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5457 
5458 discard:
5459 	tcp_drop(sk, skb);
5460 }
5461 EXPORT_SYMBOL(tcp_rcv_established);
5462 
5463 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5464 {
5465 	struct tcp_sock *tp = tcp_sk(sk);
5466 	struct inet_connection_sock *icsk = inet_csk(sk);
5467 
5468 	tcp_set_state(sk, TCP_ESTABLISHED);
5469 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5470 
5471 	if (skb) {
5472 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5473 		security_inet_conn_established(sk, skb);
5474 	}
5475 
5476 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5477 
5478 	/* Prevent spurious tcp_cwnd_restart() on first data
5479 	 * packet.
5480 	 */
5481 	tp->lsndtime = tcp_jiffies32;
5482 
5483 	if (sock_flag(sk, SOCK_KEEPOPEN))
5484 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5485 
5486 	if (!tp->rx_opt.snd_wscale)
5487 		__tcp_fast_path_on(tp, tp->snd_wnd);
5488 	else
5489 		tp->pred_flags = 0;
5490 }
5491 
5492 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5493 				    struct tcp_fastopen_cookie *cookie)
5494 {
5495 	struct tcp_sock *tp = tcp_sk(sk);
5496 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5497 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5498 	bool syn_drop = false;
5499 
5500 	if (mss == tp->rx_opt.user_mss) {
5501 		struct tcp_options_received opt;
5502 
5503 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5504 		tcp_clear_options(&opt);
5505 		opt.user_mss = opt.mss_clamp = 0;
5506 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5507 		mss = opt.mss_clamp;
5508 	}
5509 
5510 	if (!tp->syn_fastopen) {
5511 		/* Ignore an unsolicited cookie */
5512 		cookie->len = -1;
5513 	} else if (tp->total_retrans) {
5514 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5515 		 * acknowledges data. Presumably the remote received only
5516 		 * the retransmitted (regular) SYNs: either the original
5517 		 * SYN-data or the corresponding SYN-ACK was dropped.
5518 		 */
5519 		syn_drop = (cookie->len < 0 && data);
5520 	} else if (cookie->len < 0 && !tp->syn_data) {
5521 		/* We requested a cookie but didn't get it. If we did not use
5522 		 * the (old) exp opt format then try so next time (try_exp=1).
5523 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5524 		 */
5525 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5526 	}
5527 
5528 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5529 
5530 	if (data) { /* Retransmit unacked data in SYN */
5531 		skb_rbtree_walk_from(data) {
5532 			if (__tcp_retransmit_skb(sk, data, 1))
5533 				break;
5534 		}
5535 		tcp_rearm_rto(sk);
5536 		NET_INC_STATS(sock_net(sk),
5537 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5538 		return true;
5539 	}
5540 	tp->syn_data_acked = tp->syn_data;
5541 	if (tp->syn_data_acked)
5542 		NET_INC_STATS(sock_net(sk),
5543 				LINUX_MIB_TCPFASTOPENACTIVE);
5544 
5545 	tcp_fastopen_add_skb(sk, synack);
5546 
5547 	return false;
5548 }
5549 
5550 static void smc_check_reset_syn(struct tcp_sock *tp)
5551 {
5552 #if IS_ENABLED(CONFIG_SMC)
5553 	if (static_branch_unlikely(&tcp_have_smc)) {
5554 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5555 			tp->syn_smc = 0;
5556 	}
5557 #endif
5558 }
5559 
5560 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5561 					 const struct tcphdr *th)
5562 {
5563 	struct inet_connection_sock *icsk = inet_csk(sk);
5564 	struct tcp_sock *tp = tcp_sk(sk);
5565 	struct tcp_fastopen_cookie foc = { .len = -1 };
5566 	int saved_clamp = tp->rx_opt.mss_clamp;
5567 	bool fastopen_fail;
5568 
5569 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5570 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5571 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5572 
5573 	if (th->ack) {
5574 		/* rfc793:
5575 		 * "If the state is SYN-SENT then
5576 		 *    first check the ACK bit
5577 		 *      If the ACK bit is set
5578 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5579 		 *        a reset (unless the RST bit is set, if so drop
5580 		 *        the segment and return)"
5581 		 */
5582 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5583 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5584 			goto reset_and_undo;
5585 
5586 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5587 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5588 			     tcp_time_stamp(tp))) {
5589 			NET_INC_STATS(sock_net(sk),
5590 					LINUX_MIB_PAWSACTIVEREJECTED);
5591 			goto reset_and_undo;
5592 		}
5593 
5594 		/* Now ACK is acceptable.
5595 		 *
5596 		 * "If the RST bit is set
5597 		 *    If the ACK was acceptable then signal the user "error:
5598 		 *    connection reset", drop the segment, enter CLOSED state,
5599 		 *    delete TCB, and return."
5600 		 */
5601 
5602 		if (th->rst) {
5603 			tcp_reset(sk);
5604 			goto discard;
5605 		}
5606 
5607 		/* rfc793:
5608 		 *   "fifth, if neither of the SYN or RST bits is set then
5609 		 *    drop the segment and return."
5610 		 *
5611 		 *    See note below!
5612 		 *                                        --ANK(990513)
5613 		 */
5614 		if (!th->syn)
5615 			goto discard_and_undo;
5616 
5617 		/* rfc793:
5618 		 *   "If the SYN bit is on ...
5619 		 *    are acceptable then ...
5620 		 *    (our SYN has been ACKed), change the connection
5621 		 *    state to ESTABLISHED..."
5622 		 */
5623 
5624 		tcp_ecn_rcv_synack(tp, th);
5625 
5626 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5627 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5628 
5629 		/* Ok.. it's good. Set up sequence numbers and
5630 		 * move to established.
5631 		 */
5632 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5633 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5634 
5635 		/* RFC1323: The window in SYN & SYN/ACK segments is
5636 		 * never scaled.
5637 		 */
5638 		tp->snd_wnd = ntohs(th->window);
5639 
5640 		if (!tp->rx_opt.wscale_ok) {
5641 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5642 			tp->window_clamp = min(tp->window_clamp, 65535U);
5643 		}
5644 
5645 		if (tp->rx_opt.saw_tstamp) {
5646 			tp->rx_opt.tstamp_ok	   = 1;
5647 			tp->tcp_header_len =
5648 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5649 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5650 			tcp_store_ts_recent(tp);
5651 		} else {
5652 			tp->tcp_header_len = sizeof(struct tcphdr);
5653 		}
5654 
5655 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5656 		tcp_initialize_rcv_mss(sk);
5657 
5658 		/* Remember, tcp_poll() does not lock socket!
5659 		 * Change state from SYN-SENT only after copied_seq
5660 		 * is initialized. */
5661 		tp->copied_seq = tp->rcv_nxt;
5662 
5663 		smc_check_reset_syn(tp);
5664 
5665 		smp_mb();
5666 
5667 		tcp_finish_connect(sk, skb);
5668 
5669 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5670 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5671 
5672 		if (!sock_flag(sk, SOCK_DEAD)) {
5673 			sk->sk_state_change(sk);
5674 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5675 		}
5676 		if (fastopen_fail)
5677 			return -1;
5678 		if (sk->sk_write_pending ||
5679 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5680 		    icsk->icsk_ack.pingpong) {
5681 			/* Save one ACK. Data will be ready after
5682 			 * several ticks, if write_pending is set.
5683 			 *
5684 			 * It may be deleted, but with this feature tcpdumps
5685 			 * look so _wonderfully_ clever, that I was not able
5686 			 * to stand against the temptation 8)     --ANK
5687 			 */
5688 			inet_csk_schedule_ack(sk);
5689 			tcp_enter_quickack_mode(sk);
5690 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5691 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5692 
5693 discard:
5694 			tcp_drop(sk, skb);
5695 			return 0;
5696 		} else {
5697 			tcp_send_ack(sk);
5698 		}
5699 		return -1;
5700 	}
5701 
5702 	/* No ACK in the segment */
5703 
5704 	if (th->rst) {
5705 		/* rfc793:
5706 		 * "If the RST bit is set
5707 		 *
5708 		 *      Otherwise (no ACK) drop the segment and return."
5709 		 */
5710 
5711 		goto discard_and_undo;
5712 	}
5713 
5714 	/* PAWS check. */
5715 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5716 	    tcp_paws_reject(&tp->rx_opt, 0))
5717 		goto discard_and_undo;
5718 
5719 	if (th->syn) {
5720 		/* We see SYN without ACK. It is attempt of
5721 		 * simultaneous connect with crossed SYNs.
5722 		 * Particularly, it can be connect to self.
5723 		 */
5724 		tcp_set_state(sk, TCP_SYN_RECV);
5725 
5726 		if (tp->rx_opt.saw_tstamp) {
5727 			tp->rx_opt.tstamp_ok = 1;
5728 			tcp_store_ts_recent(tp);
5729 			tp->tcp_header_len =
5730 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5731 		} else {
5732 			tp->tcp_header_len = sizeof(struct tcphdr);
5733 		}
5734 
5735 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5736 		tp->copied_seq = tp->rcv_nxt;
5737 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5738 
5739 		/* RFC1323: The window in SYN & SYN/ACK segments is
5740 		 * never scaled.
5741 		 */
5742 		tp->snd_wnd    = ntohs(th->window);
5743 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5744 		tp->max_window = tp->snd_wnd;
5745 
5746 		tcp_ecn_rcv_syn(tp, th);
5747 
5748 		tcp_mtup_init(sk);
5749 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5750 		tcp_initialize_rcv_mss(sk);
5751 
5752 		tcp_send_synack(sk);
5753 #if 0
5754 		/* Note, we could accept data and URG from this segment.
5755 		 * There are no obstacles to make this (except that we must
5756 		 * either change tcp_recvmsg() to prevent it from returning data
5757 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5758 		 *
5759 		 * However, if we ignore data in ACKless segments sometimes,
5760 		 * we have no reasons to accept it sometimes.
5761 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5762 		 * is not flawless. So, discard packet for sanity.
5763 		 * Uncomment this return to process the data.
5764 		 */
5765 		return -1;
5766 #else
5767 		goto discard;
5768 #endif
5769 	}
5770 	/* "fifth, if neither of the SYN or RST bits is set then
5771 	 * drop the segment and return."
5772 	 */
5773 
5774 discard_and_undo:
5775 	tcp_clear_options(&tp->rx_opt);
5776 	tp->rx_opt.mss_clamp = saved_clamp;
5777 	goto discard;
5778 
5779 reset_and_undo:
5780 	tcp_clear_options(&tp->rx_opt);
5781 	tp->rx_opt.mss_clamp = saved_clamp;
5782 	return 1;
5783 }
5784 
5785 /*
5786  *	This function implements the receiving procedure of RFC 793 for
5787  *	all states except ESTABLISHED and TIME_WAIT.
5788  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5789  *	address independent.
5790  */
5791 
5792 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5793 {
5794 	struct tcp_sock *tp = tcp_sk(sk);
5795 	struct inet_connection_sock *icsk = inet_csk(sk);
5796 	const struct tcphdr *th = tcp_hdr(skb);
5797 	struct request_sock *req;
5798 	int queued = 0;
5799 	bool acceptable;
5800 
5801 	switch (sk->sk_state) {
5802 	case TCP_CLOSE:
5803 		goto discard;
5804 
5805 	case TCP_LISTEN:
5806 		if (th->ack)
5807 			return 1;
5808 
5809 		if (th->rst)
5810 			goto discard;
5811 
5812 		if (th->syn) {
5813 			if (th->fin)
5814 				goto discard;
5815 			/* It is possible that we process SYN packets from backlog,
5816 			 * so we need to make sure to disable BH right there.
5817 			 */
5818 			local_bh_disable();
5819 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5820 			local_bh_enable();
5821 
5822 			if (!acceptable)
5823 				return 1;
5824 			consume_skb(skb);
5825 			return 0;
5826 		}
5827 		goto discard;
5828 
5829 	case TCP_SYN_SENT:
5830 		tp->rx_opt.saw_tstamp = 0;
5831 		tcp_mstamp_refresh(tp);
5832 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5833 		if (queued >= 0)
5834 			return queued;
5835 
5836 		/* Do step6 onward by hand. */
5837 		tcp_urg(sk, skb, th);
5838 		__kfree_skb(skb);
5839 		tcp_data_snd_check(sk);
5840 		return 0;
5841 	}
5842 
5843 	tcp_mstamp_refresh(tp);
5844 	tp->rx_opt.saw_tstamp = 0;
5845 	req = tp->fastopen_rsk;
5846 	if (req) {
5847 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5848 		    sk->sk_state != TCP_FIN_WAIT1);
5849 
5850 		if (!tcp_check_req(sk, skb, req, true))
5851 			goto discard;
5852 	}
5853 
5854 	if (!th->ack && !th->rst && !th->syn)
5855 		goto discard;
5856 
5857 	if (!tcp_validate_incoming(sk, skb, th, 0))
5858 		return 0;
5859 
5860 	/* step 5: check the ACK field */
5861 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5862 				      FLAG_UPDATE_TS_RECENT |
5863 				      FLAG_NO_CHALLENGE_ACK) > 0;
5864 
5865 	if (!acceptable) {
5866 		if (sk->sk_state == TCP_SYN_RECV)
5867 			return 1;	/* send one RST */
5868 		tcp_send_challenge_ack(sk, skb);
5869 		goto discard;
5870 	}
5871 	switch (sk->sk_state) {
5872 	case TCP_SYN_RECV:
5873 		if (!tp->srtt_us)
5874 			tcp_synack_rtt_meas(sk, req);
5875 
5876 		/* Once we leave TCP_SYN_RECV, we no longer need req
5877 		 * so release it.
5878 		 */
5879 		if (req) {
5880 			inet_csk(sk)->icsk_retransmits = 0;
5881 			reqsk_fastopen_remove(sk, req, false);
5882 			/* Re-arm the timer because data may have been sent out.
5883 			 * This is similar to the regular data transmission case
5884 			 * when new data has just been ack'ed.
5885 			 *
5886 			 * (TFO) - we could try to be more aggressive and
5887 			 * retransmitting any data sooner based on when they
5888 			 * are sent out.
5889 			 */
5890 			tcp_rearm_rto(sk);
5891 		} else {
5892 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5893 			tp->copied_seq = tp->rcv_nxt;
5894 		}
5895 		smp_mb();
5896 		tcp_set_state(sk, TCP_ESTABLISHED);
5897 		sk->sk_state_change(sk);
5898 
5899 		/* Note, that this wakeup is only for marginal crossed SYN case.
5900 		 * Passively open sockets are not waked up, because
5901 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5902 		 */
5903 		if (sk->sk_socket)
5904 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5905 
5906 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5907 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5908 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5909 
5910 		if (tp->rx_opt.tstamp_ok)
5911 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5912 
5913 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5914 			tcp_update_pacing_rate(sk);
5915 
5916 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5917 		tp->lsndtime = tcp_jiffies32;
5918 
5919 		tcp_initialize_rcv_mss(sk);
5920 		tcp_fast_path_on(tp);
5921 		break;
5922 
5923 	case TCP_FIN_WAIT1: {
5924 		int tmo;
5925 
5926 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5927 		 * Fast Open socket and this is the first acceptable
5928 		 * ACK we have received, this would have acknowledged
5929 		 * our SYNACK so stop the SYNACK timer.
5930 		 */
5931 		if (req) {
5932 			/* We no longer need the request sock. */
5933 			reqsk_fastopen_remove(sk, req, false);
5934 			tcp_rearm_rto(sk);
5935 		}
5936 		if (tp->snd_una != tp->write_seq)
5937 			break;
5938 
5939 		tcp_set_state(sk, TCP_FIN_WAIT2);
5940 		sk->sk_shutdown |= SEND_SHUTDOWN;
5941 
5942 		sk_dst_confirm(sk);
5943 
5944 		if (!sock_flag(sk, SOCK_DEAD)) {
5945 			/* Wake up lingering close() */
5946 			sk->sk_state_change(sk);
5947 			break;
5948 		}
5949 
5950 		if (tp->linger2 < 0) {
5951 			tcp_done(sk);
5952 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5953 			return 1;
5954 		}
5955 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5956 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5957 			/* Receive out of order FIN after close() */
5958 			if (tp->syn_fastopen && th->fin)
5959 				tcp_fastopen_active_disable(sk);
5960 			tcp_done(sk);
5961 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5962 			return 1;
5963 		}
5964 
5965 		tmo = tcp_fin_time(sk);
5966 		if (tmo > TCP_TIMEWAIT_LEN) {
5967 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5968 		} else if (th->fin || sock_owned_by_user(sk)) {
5969 			/* Bad case. We could lose such FIN otherwise.
5970 			 * It is not a big problem, but it looks confusing
5971 			 * and not so rare event. We still can lose it now,
5972 			 * if it spins in bh_lock_sock(), but it is really
5973 			 * marginal case.
5974 			 */
5975 			inet_csk_reset_keepalive_timer(sk, tmo);
5976 		} else {
5977 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5978 			goto discard;
5979 		}
5980 		break;
5981 	}
5982 
5983 	case TCP_CLOSING:
5984 		if (tp->snd_una == tp->write_seq) {
5985 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5986 			goto discard;
5987 		}
5988 		break;
5989 
5990 	case TCP_LAST_ACK:
5991 		if (tp->snd_una == tp->write_seq) {
5992 			tcp_update_metrics(sk);
5993 			tcp_done(sk);
5994 			goto discard;
5995 		}
5996 		break;
5997 	}
5998 
5999 	/* step 6: check the URG bit */
6000 	tcp_urg(sk, skb, th);
6001 
6002 	/* step 7: process the segment text */
6003 	switch (sk->sk_state) {
6004 	case TCP_CLOSE_WAIT:
6005 	case TCP_CLOSING:
6006 	case TCP_LAST_ACK:
6007 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6008 			break;
6009 		/* fall through */
6010 	case TCP_FIN_WAIT1:
6011 	case TCP_FIN_WAIT2:
6012 		/* RFC 793 says to queue data in these states,
6013 		 * RFC 1122 says we MUST send a reset.
6014 		 * BSD 4.4 also does reset.
6015 		 */
6016 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6017 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6018 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6019 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6020 				tcp_reset(sk);
6021 				return 1;
6022 			}
6023 		}
6024 		/* Fall through */
6025 	case TCP_ESTABLISHED:
6026 		tcp_data_queue(sk, skb);
6027 		queued = 1;
6028 		break;
6029 	}
6030 
6031 	/* tcp_data could move socket to TIME-WAIT */
6032 	if (sk->sk_state != TCP_CLOSE) {
6033 		tcp_data_snd_check(sk);
6034 		tcp_ack_snd_check(sk);
6035 	}
6036 
6037 	if (!queued) {
6038 discard:
6039 		tcp_drop(sk, skb);
6040 	}
6041 	return 0;
6042 }
6043 EXPORT_SYMBOL(tcp_rcv_state_process);
6044 
6045 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6046 {
6047 	struct inet_request_sock *ireq = inet_rsk(req);
6048 
6049 	if (family == AF_INET)
6050 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6051 				    &ireq->ir_rmt_addr, port);
6052 #if IS_ENABLED(CONFIG_IPV6)
6053 	else if (family == AF_INET6)
6054 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6055 				    &ireq->ir_v6_rmt_addr, port);
6056 #endif
6057 }
6058 
6059 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6060  *
6061  * If we receive a SYN packet with these bits set, it means a
6062  * network is playing bad games with TOS bits. In order to
6063  * avoid possible false congestion notifications, we disable
6064  * TCP ECN negotiation.
6065  *
6066  * Exception: tcp_ca wants ECN. This is required for DCTCP
6067  * congestion control: Linux DCTCP asserts ECT on all packets,
6068  * including SYN, which is most optimal solution; however,
6069  * others, such as FreeBSD do not.
6070  */
6071 static void tcp_ecn_create_request(struct request_sock *req,
6072 				   const struct sk_buff *skb,
6073 				   const struct sock *listen_sk,
6074 				   const struct dst_entry *dst)
6075 {
6076 	const struct tcphdr *th = tcp_hdr(skb);
6077 	const struct net *net = sock_net(listen_sk);
6078 	bool th_ecn = th->ece && th->cwr;
6079 	bool ect, ecn_ok;
6080 	u32 ecn_ok_dst;
6081 
6082 	if (!th_ecn)
6083 		return;
6084 
6085 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6086 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6087 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6088 
6089 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6090 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6091 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6092 		inet_rsk(req)->ecn_ok = 1;
6093 }
6094 
6095 static void tcp_openreq_init(struct request_sock *req,
6096 			     const struct tcp_options_received *rx_opt,
6097 			     struct sk_buff *skb, const struct sock *sk)
6098 {
6099 	struct inet_request_sock *ireq = inet_rsk(req);
6100 
6101 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6102 	req->cookie_ts = 0;
6103 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6104 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6105 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6106 	tcp_rsk(req)->last_oow_ack_time = 0;
6107 	req->mss = rx_opt->mss_clamp;
6108 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6109 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6110 	ireq->sack_ok = rx_opt->sack_ok;
6111 	ireq->snd_wscale = rx_opt->snd_wscale;
6112 	ireq->wscale_ok = rx_opt->wscale_ok;
6113 	ireq->acked = 0;
6114 	ireq->ecn_ok = 0;
6115 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6116 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6117 	ireq->ir_mark = inet_request_mark(sk, skb);
6118 #if IS_ENABLED(CONFIG_SMC)
6119 	ireq->smc_ok = rx_opt->smc_ok;
6120 #endif
6121 }
6122 
6123 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6124 				      struct sock *sk_listener,
6125 				      bool attach_listener)
6126 {
6127 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6128 					       attach_listener);
6129 
6130 	if (req) {
6131 		struct inet_request_sock *ireq = inet_rsk(req);
6132 
6133 		ireq->ireq_opt = NULL;
6134 #if IS_ENABLED(CONFIG_IPV6)
6135 		ireq->pktopts = NULL;
6136 #endif
6137 		atomic64_set(&ireq->ir_cookie, 0);
6138 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6139 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6140 		ireq->ireq_family = sk_listener->sk_family;
6141 	}
6142 
6143 	return req;
6144 }
6145 EXPORT_SYMBOL(inet_reqsk_alloc);
6146 
6147 /*
6148  * Return true if a syncookie should be sent
6149  */
6150 static bool tcp_syn_flood_action(const struct sock *sk,
6151 				 const struct sk_buff *skb,
6152 				 const char *proto)
6153 {
6154 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6155 	const char *msg = "Dropping request";
6156 	bool want_cookie = false;
6157 	struct net *net = sock_net(sk);
6158 
6159 #ifdef CONFIG_SYN_COOKIES
6160 	if (net->ipv4.sysctl_tcp_syncookies) {
6161 		msg = "Sending cookies";
6162 		want_cookie = true;
6163 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6164 	} else
6165 #endif
6166 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6167 
6168 	if (!queue->synflood_warned &&
6169 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6170 	    xchg(&queue->synflood_warned, 1) == 0)
6171 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6172 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6173 
6174 	return want_cookie;
6175 }
6176 
6177 static void tcp_reqsk_record_syn(const struct sock *sk,
6178 				 struct request_sock *req,
6179 				 const struct sk_buff *skb)
6180 {
6181 	if (tcp_sk(sk)->save_syn) {
6182 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6183 		u32 *copy;
6184 
6185 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6186 		if (copy) {
6187 			copy[0] = len;
6188 			memcpy(&copy[1], skb_network_header(skb), len);
6189 			req->saved_syn = copy;
6190 		}
6191 	}
6192 }
6193 
6194 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6195 		     const struct tcp_request_sock_ops *af_ops,
6196 		     struct sock *sk, struct sk_buff *skb)
6197 {
6198 	struct tcp_fastopen_cookie foc = { .len = -1 };
6199 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6200 	struct tcp_options_received tmp_opt;
6201 	struct tcp_sock *tp = tcp_sk(sk);
6202 	struct net *net = sock_net(sk);
6203 	struct sock *fastopen_sk = NULL;
6204 	struct request_sock *req;
6205 	bool want_cookie = false;
6206 	struct dst_entry *dst;
6207 	struct flowi fl;
6208 
6209 	/* TW buckets are converted to open requests without
6210 	 * limitations, they conserve resources and peer is
6211 	 * evidently real one.
6212 	 */
6213 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6214 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6215 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6216 		if (!want_cookie)
6217 			goto drop;
6218 	}
6219 
6220 	if (sk_acceptq_is_full(sk)) {
6221 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6222 		goto drop;
6223 	}
6224 
6225 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6226 	if (!req)
6227 		goto drop;
6228 
6229 	tcp_rsk(req)->af_specific = af_ops;
6230 	tcp_rsk(req)->ts_off = 0;
6231 
6232 	tcp_clear_options(&tmp_opt);
6233 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6234 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6235 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6236 			  want_cookie ? NULL : &foc);
6237 
6238 	if (want_cookie && !tmp_opt.saw_tstamp)
6239 		tcp_clear_options(&tmp_opt);
6240 
6241 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6242 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6243 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6244 
6245 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6246 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6247 
6248 	af_ops->init_req(req, sk, skb);
6249 
6250 	if (security_inet_conn_request(sk, skb, req))
6251 		goto drop_and_free;
6252 
6253 	if (tmp_opt.tstamp_ok)
6254 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6255 
6256 	dst = af_ops->route_req(sk, &fl, req);
6257 	if (!dst)
6258 		goto drop_and_free;
6259 
6260 	if (!want_cookie && !isn) {
6261 		/* Kill the following clause, if you dislike this way. */
6262 		if (!net->ipv4.sysctl_tcp_syncookies &&
6263 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6264 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6265 		    !tcp_peer_is_proven(req, dst)) {
6266 			/* Without syncookies last quarter of
6267 			 * backlog is filled with destinations,
6268 			 * proven to be alive.
6269 			 * It means that we continue to communicate
6270 			 * to destinations, already remembered
6271 			 * to the moment of synflood.
6272 			 */
6273 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6274 				    rsk_ops->family);
6275 			goto drop_and_release;
6276 		}
6277 
6278 		isn = af_ops->init_seq(skb);
6279 	}
6280 
6281 	tcp_ecn_create_request(req, skb, sk, dst);
6282 
6283 	if (want_cookie) {
6284 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6285 		req->cookie_ts = tmp_opt.tstamp_ok;
6286 		if (!tmp_opt.tstamp_ok)
6287 			inet_rsk(req)->ecn_ok = 0;
6288 	}
6289 
6290 	tcp_rsk(req)->snt_isn = isn;
6291 	tcp_rsk(req)->txhash = net_tx_rndhash();
6292 	tcp_openreq_init_rwin(req, sk, dst);
6293 	if (!want_cookie) {
6294 		tcp_reqsk_record_syn(sk, req, skb);
6295 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6296 	}
6297 	if (fastopen_sk) {
6298 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6299 				    &foc, TCP_SYNACK_FASTOPEN);
6300 		/* Add the child socket directly into the accept queue */
6301 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6302 		sk->sk_data_ready(sk);
6303 		bh_unlock_sock(fastopen_sk);
6304 		sock_put(fastopen_sk);
6305 	} else {
6306 		tcp_rsk(req)->tfo_listener = false;
6307 		if (!want_cookie)
6308 			inet_csk_reqsk_queue_hash_add(sk, req,
6309 				tcp_timeout_init((struct sock *)req));
6310 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6311 				    !want_cookie ? TCP_SYNACK_NORMAL :
6312 						   TCP_SYNACK_COOKIE);
6313 		if (want_cookie) {
6314 			reqsk_free(req);
6315 			return 0;
6316 		}
6317 	}
6318 	reqsk_put(req);
6319 	return 0;
6320 
6321 drop_and_release:
6322 	dst_release(dst);
6323 drop_and_free:
6324 	reqsk_free(req);
6325 drop:
6326 	tcp_listendrop(sk);
6327 	return 0;
6328 }
6329 EXPORT_SYMBOL(tcp_conn_request);
6330