1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_dec(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 #endif 133 134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 135 unsigned int len) 136 { 137 static bool __once __read_mostly; 138 139 if (!__once) { 140 struct net_device *dev; 141 142 __once = true; 143 144 rcu_read_lock(); 145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 146 if (!dev || len >= dev->mtu) 147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 148 dev ? dev->name : "Unknown driver"); 149 rcu_read_unlock(); 150 } 151 } 152 153 /* Adapt the MSS value used to make delayed ack decision to the 154 * real world. 155 */ 156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 157 { 158 struct inet_connection_sock *icsk = inet_csk(sk); 159 const unsigned int lss = icsk->icsk_ack.last_seg_size; 160 unsigned int len; 161 162 icsk->icsk_ack.last_seg_size = 0; 163 164 /* skb->len may jitter because of SACKs, even if peer 165 * sends good full-sized frames. 166 */ 167 len = skb_shinfo(skb)->gso_size ? : skb->len; 168 if (len >= icsk->icsk_ack.rcv_mss) { 169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 170 tcp_sk(sk)->advmss); 171 /* Account for possibly-removed options */ 172 if (unlikely(len > icsk->icsk_ack.rcv_mss + 173 MAX_TCP_OPTION_SPACE)) 174 tcp_gro_dev_warn(sk, skb, len); 175 } else { 176 /* Otherwise, we make more careful check taking into account, 177 * that SACKs block is variable. 178 * 179 * "len" is invariant segment length, including TCP header. 180 */ 181 len += skb->data - skb_transport_header(skb); 182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 183 /* If PSH is not set, packet should be 184 * full sized, provided peer TCP is not badly broken. 185 * This observation (if it is correct 8)) allows 186 * to handle super-low mtu links fairly. 187 */ 188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 190 /* Subtract also invariant (if peer is RFC compliant), 191 * tcp header plus fixed timestamp option length. 192 * Resulting "len" is MSS free of SACK jitter. 193 */ 194 len -= tcp_sk(sk)->tcp_header_len; 195 icsk->icsk_ack.last_seg_size = len; 196 if (len == lss) { 197 icsk->icsk_ack.rcv_mss = len; 198 return; 199 } 200 } 201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 204 } 205 } 206 207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 208 { 209 struct inet_connection_sock *icsk = inet_csk(sk); 210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 211 212 if (quickacks == 0) 213 quickacks = 2; 214 quickacks = min(quickacks, max_quickacks); 215 if (quickacks > icsk->icsk_ack.quick) 216 icsk->icsk_ack.quick = quickacks; 217 } 218 219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 220 { 221 struct inet_connection_sock *icsk = inet_csk(sk); 222 223 tcp_incr_quickack(sk, max_quickacks); 224 icsk->icsk_ack.pingpong = 0; 225 icsk->icsk_ack.ato = TCP_ATO_MIN; 226 } 227 EXPORT_SYMBOL(tcp_enter_quickack_mode); 228 229 /* Send ACKs quickly, if "quick" count is not exhausted 230 * and the session is not interactive. 231 */ 232 233 static bool tcp_in_quickack_mode(struct sock *sk) 234 { 235 const struct inet_connection_sock *icsk = inet_csk(sk); 236 const struct dst_entry *dst = __sk_dst_get(sk); 237 238 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 240 } 241 242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 243 { 244 if (tp->ecn_flags & TCP_ECN_OK) 245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 246 } 247 248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 249 { 250 if (tcp_hdr(skb)->cwr) { 251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 252 253 /* If the sender is telling us it has entered CWR, then its 254 * cwnd may be very low (even just 1 packet), so we should ACK 255 * immediately. 256 */ 257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 258 } 259 } 260 261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 262 { 263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 264 } 265 266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 271 case INET_ECN_NOT_ECT: 272 /* Funny extension: if ECT is not set on a segment, 273 * and we already seen ECT on a previous segment, 274 * it is probably a retransmit. 275 */ 276 if (tp->ecn_flags & TCP_ECN_SEEN) 277 tcp_enter_quickack_mode(sk, 2); 278 break; 279 case INET_ECN_CE: 280 if (tcp_ca_needs_ecn(sk)) 281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 282 283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 284 /* Better not delay acks, sender can have a very low cwnd */ 285 tcp_enter_quickack_mode(sk, 2); 286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 287 } 288 tp->ecn_flags |= TCP_ECN_SEEN; 289 break; 290 default: 291 if (tcp_ca_needs_ecn(sk)) 292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 293 tp->ecn_flags |= TCP_ECN_SEEN; 294 break; 295 } 296 } 297 298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 299 { 300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 301 __tcp_ecn_check_ce(sk, skb); 302 } 303 304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 305 { 306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 307 tp->ecn_flags &= ~TCP_ECN_OK; 308 } 309 310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 319 return true; 320 return false; 321 } 322 323 /* Buffer size and advertised window tuning. 324 * 325 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 326 */ 327 328 static void tcp_sndbuf_expand(struct sock *sk) 329 { 330 const struct tcp_sock *tp = tcp_sk(sk); 331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 332 int sndmem, per_mss; 333 u32 nr_segs; 334 335 /* Worst case is non GSO/TSO : each frame consumes one skb 336 * and skb->head is kmalloced using power of two area of memory 337 */ 338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 339 MAX_TCP_HEADER + 340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 341 342 per_mss = roundup_pow_of_two(per_mss) + 343 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 344 345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 347 348 /* Fast Recovery (RFC 5681 3.2) : 349 * Cubic needs 1.7 factor, rounded to 2 to include 350 * extra cushion (application might react slowly to EPOLLOUT) 351 */ 352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 353 sndmem *= nr_segs * per_mss; 354 355 if (sk->sk_sndbuf < sndmem) 356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 357 } 358 359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 360 * 361 * All tcp_full_space() is split to two parts: "network" buffer, allocated 362 * forward and advertised in receiver window (tp->rcv_wnd) and 363 * "application buffer", required to isolate scheduling/application 364 * latencies from network. 365 * window_clamp is maximal advertised window. It can be less than 366 * tcp_full_space(), in this case tcp_full_space() - window_clamp 367 * is reserved for "application" buffer. The less window_clamp is 368 * the smoother our behaviour from viewpoint of network, but the lower 369 * throughput and the higher sensitivity of the connection to losses. 8) 370 * 371 * rcv_ssthresh is more strict window_clamp used at "slow start" 372 * phase to predict further behaviour of this connection. 373 * It is used for two goals: 374 * - to enforce header prediction at sender, even when application 375 * requires some significant "application buffer". It is check #1. 376 * - to prevent pruning of receive queue because of misprediction 377 * of receiver window. Check #2. 378 * 379 * The scheme does not work when sender sends good segments opening 380 * window and then starts to feed us spaghetti. But it should work 381 * in common situations. Otherwise, we have to rely on queue collapsing. 382 */ 383 384 /* Slow part of check#2. */ 385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 /* Optimize this! */ 389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 391 392 while (tp->rcv_ssthresh <= window) { 393 if (truesize <= skb->len) 394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 395 396 truesize >>= 1; 397 window >>= 1; 398 } 399 return 0; 400 } 401 402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 403 { 404 struct tcp_sock *tp = tcp_sk(sk); 405 406 /* Check #1 */ 407 if (tp->rcv_ssthresh < tp->window_clamp && 408 (int)tp->rcv_ssthresh < tcp_space(sk) && 409 !tcp_under_memory_pressure(sk)) { 410 int incr; 411 412 /* Check #2. Increase window, if skb with such overhead 413 * will fit to rcvbuf in future. 414 */ 415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 416 incr = 2 * tp->advmss; 417 else 418 incr = __tcp_grow_window(sk, skb); 419 420 if (incr) { 421 incr = max_t(int, incr, 2 * skb->len); 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 423 tp->window_clamp); 424 inet_csk(sk)->icsk_ack.quick |= 1; 425 } 426 } 427 } 428 429 /* 3. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 439 tcp_sndbuf_expand(sk); 440 441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 442 tcp_mstamp_refresh(tp); 443 tp->rcvq_space.time = tp->tcp_mstamp; 444 tp->rcvq_space.seq = tp->copied_seq; 445 446 maxwin = tcp_full_space(sk); 447 448 if (tp->window_clamp >= maxwin) { 449 tp->window_clamp = maxwin; 450 451 if (tcp_app_win && maxwin > 4 * tp->advmss) 452 tp->window_clamp = max(maxwin - 453 (maxwin >> tcp_app_win), 454 4 * tp->advmss); 455 } 456 457 /* Force reservation of one segment. */ 458 if (tcp_app_win && 459 tp->window_clamp > 2 * tp->advmss && 460 tp->window_clamp + tp->advmss > maxwin) 461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 462 463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 464 tp->snd_cwnd_stamp = tcp_jiffies32; 465 } 466 467 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 468 static void tcp_clamp_window(struct sock *sk) 469 { 470 struct tcp_sock *tp = tcp_sk(sk); 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 struct net *net = sock_net(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 net->ipv4.sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (new_sample != 0) { 524 /* If we sample in larger samples in the non-timestamp 525 * case, we could grossly overestimate the RTT especially 526 * with chatty applications or bulk transfer apps which 527 * are stalled on filesystem I/O. 528 * 529 * Also, since we are only going for a minimum in the 530 * non-timestamp case, we do not smooth things out 531 * else with timestamps disabled convergence takes too 532 * long. 533 */ 534 if (!win_dep) { 535 m -= (new_sample >> 3); 536 new_sample += m; 537 } else { 538 m <<= 3; 539 if (m < new_sample) 540 new_sample = m; 541 } 542 } else { 543 /* No previous measure. */ 544 new_sample = m << 3; 545 } 546 547 tp->rcv_rtt_est.rtt_us = new_sample; 548 } 549 550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 551 { 552 u32 delta_us; 553 554 if (tp->rcv_rtt_est.time == 0) 555 goto new_measure; 556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 557 return; 558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 559 if (!delta_us) 560 delta_us = 1; 561 tcp_rcv_rtt_update(tp, delta_us, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tp->tcp_mstamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 574 return; 575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 576 577 if (TCP_SKB_CB(skb)->end_seq - 578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 580 u32 delta_us; 581 582 if (!delta) 583 delta = 1; 584 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 585 tcp_rcv_rtt_update(tp, delta_us, 0); 586 } 587 } 588 589 /* 590 * This function should be called every time data is copied to user space. 591 * It calculates the appropriate TCP receive buffer space. 592 */ 593 void tcp_rcv_space_adjust(struct sock *sk) 594 { 595 struct tcp_sock *tp = tcp_sk(sk); 596 u32 copied; 597 int time; 598 599 trace_tcp_rcv_space_adjust(sk); 600 601 tcp_mstamp_refresh(tp); 602 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 603 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 604 return; 605 606 /* Number of bytes copied to user in last RTT */ 607 copied = tp->copied_seq - tp->rcvq_space.seq; 608 if (copied <= tp->rcvq_space.space) 609 goto new_measure; 610 611 /* A bit of theory : 612 * copied = bytes received in previous RTT, our base window 613 * To cope with packet losses, we need a 2x factor 614 * To cope with slow start, and sender growing its cwin by 100 % 615 * every RTT, we need a 4x factor, because the ACK we are sending 616 * now is for the next RTT, not the current one : 617 * <prev RTT . ><current RTT .. ><next RTT .... > 618 */ 619 620 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 621 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 622 int rcvmem, rcvbuf; 623 u64 rcvwin, grow; 624 625 /* minimal window to cope with packet losses, assuming 626 * steady state. Add some cushion because of small variations. 627 */ 628 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 629 630 /* Accommodate for sender rate increase (eg. slow start) */ 631 grow = rcvwin * (copied - tp->rcvq_space.space); 632 do_div(grow, tp->rcvq_space.space); 633 rcvwin += (grow << 1); 634 635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 636 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 637 rcvmem += 128; 638 639 do_div(rcvwin, tp->advmss); 640 rcvbuf = min_t(u64, rcvwin * rcvmem, 641 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 642 if (rcvbuf > sk->sk_rcvbuf) { 643 sk->sk_rcvbuf = rcvbuf; 644 645 /* Make the window clamp follow along. */ 646 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 647 } 648 } 649 tp->rcvq_space.space = copied; 650 651 new_measure: 652 tp->rcvq_space.seq = tp->copied_seq; 653 tp->rcvq_space.time = tp->tcp_mstamp; 654 } 655 656 /* There is something which you must keep in mind when you analyze the 657 * behavior of the tp->ato delayed ack timeout interval. When a 658 * connection starts up, we want to ack as quickly as possible. The 659 * problem is that "good" TCP's do slow start at the beginning of data 660 * transmission. The means that until we send the first few ACK's the 661 * sender will sit on his end and only queue most of his data, because 662 * he can only send snd_cwnd unacked packets at any given time. For 663 * each ACK we send, he increments snd_cwnd and transmits more of his 664 * queue. -DaveM 665 */ 666 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 667 { 668 struct tcp_sock *tp = tcp_sk(sk); 669 struct inet_connection_sock *icsk = inet_csk(sk); 670 u32 now; 671 672 inet_csk_schedule_ack(sk); 673 674 tcp_measure_rcv_mss(sk, skb); 675 676 tcp_rcv_rtt_measure(tp); 677 678 now = tcp_jiffies32; 679 680 if (!icsk->icsk_ack.ato) { 681 /* The _first_ data packet received, initialize 682 * delayed ACK engine. 683 */ 684 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 685 icsk->icsk_ack.ato = TCP_ATO_MIN; 686 } else { 687 int m = now - icsk->icsk_ack.lrcvtime; 688 689 if (m <= TCP_ATO_MIN / 2) { 690 /* The fastest case is the first. */ 691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 692 } else if (m < icsk->icsk_ack.ato) { 693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 694 if (icsk->icsk_ack.ato > icsk->icsk_rto) 695 icsk->icsk_ack.ato = icsk->icsk_rto; 696 } else if (m > icsk->icsk_rto) { 697 /* Too long gap. Apparently sender failed to 698 * restart window, so that we send ACKs quickly. 699 */ 700 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 701 sk_mem_reclaim(sk); 702 } 703 } 704 icsk->icsk_ack.lrcvtime = now; 705 706 tcp_ecn_check_ce(sk, skb); 707 708 if (skb->len >= 128) 709 tcp_grow_window(sk, skb); 710 } 711 712 /* Called to compute a smoothed rtt estimate. The data fed to this 713 * routine either comes from timestamps, or from segments that were 714 * known _not_ to have been retransmitted [see Karn/Partridge 715 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 716 * piece by Van Jacobson. 717 * NOTE: the next three routines used to be one big routine. 718 * To save cycles in the RFC 1323 implementation it was better to break 719 * it up into three procedures. -- erics 720 */ 721 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 722 { 723 struct tcp_sock *tp = tcp_sk(sk); 724 long m = mrtt_us; /* RTT */ 725 u32 srtt = tp->srtt_us; 726 727 /* The following amusing code comes from Jacobson's 728 * article in SIGCOMM '88. Note that rtt and mdev 729 * are scaled versions of rtt and mean deviation. 730 * This is designed to be as fast as possible 731 * m stands for "measurement". 732 * 733 * On a 1990 paper the rto value is changed to: 734 * RTO = rtt + 4 * mdev 735 * 736 * Funny. This algorithm seems to be very broken. 737 * These formulae increase RTO, when it should be decreased, increase 738 * too slowly, when it should be increased quickly, decrease too quickly 739 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 740 * does not matter how to _calculate_ it. Seems, it was trap 741 * that VJ failed to avoid. 8) 742 */ 743 if (srtt != 0) { 744 m -= (srtt >> 3); /* m is now error in rtt est */ 745 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 746 if (m < 0) { 747 m = -m; /* m is now abs(error) */ 748 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 749 /* This is similar to one of Eifel findings. 750 * Eifel blocks mdev updates when rtt decreases. 751 * This solution is a bit different: we use finer gain 752 * for mdev in this case (alpha*beta). 753 * Like Eifel it also prevents growth of rto, 754 * but also it limits too fast rto decreases, 755 * happening in pure Eifel. 756 */ 757 if (m > 0) 758 m >>= 3; 759 } else { 760 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 761 } 762 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 763 if (tp->mdev_us > tp->mdev_max_us) { 764 tp->mdev_max_us = tp->mdev_us; 765 if (tp->mdev_max_us > tp->rttvar_us) 766 tp->rttvar_us = tp->mdev_max_us; 767 } 768 if (after(tp->snd_una, tp->rtt_seq)) { 769 if (tp->mdev_max_us < tp->rttvar_us) 770 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 771 tp->rtt_seq = tp->snd_nxt; 772 tp->mdev_max_us = tcp_rto_min_us(sk); 773 } 774 } else { 775 /* no previous measure. */ 776 srtt = m << 3; /* take the measured time to be rtt */ 777 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 778 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 779 tp->mdev_max_us = tp->rttvar_us; 780 tp->rtt_seq = tp->snd_nxt; 781 } 782 tp->srtt_us = max(1U, srtt); 783 } 784 785 static void tcp_update_pacing_rate(struct sock *sk) 786 { 787 const struct tcp_sock *tp = tcp_sk(sk); 788 u64 rate; 789 790 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 791 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 792 793 /* current rate is (cwnd * mss) / srtt 794 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 795 * In Congestion Avoidance phase, set it to 120 % the current rate. 796 * 797 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 798 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 799 * end of slow start and should slow down. 800 */ 801 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 802 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 803 else 804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 805 806 rate *= max(tp->snd_cwnd, tp->packets_out); 807 808 if (likely(tp->srtt_us)) 809 do_div(rate, tp->srtt_us); 810 811 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 812 * without any lock. We want to make sure compiler wont store 813 * intermediate values in this location. 814 */ 815 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 816 sk->sk_max_pacing_rate)); 817 } 818 819 /* Calculate rto without backoff. This is the second half of Van Jacobson's 820 * routine referred to above. 821 */ 822 static void tcp_set_rto(struct sock *sk) 823 { 824 const struct tcp_sock *tp = tcp_sk(sk); 825 /* Old crap is replaced with new one. 8) 826 * 827 * More seriously: 828 * 1. If rtt variance happened to be less 50msec, it is hallucination. 829 * It cannot be less due to utterly erratic ACK generation made 830 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 831 * to do with delayed acks, because at cwnd>2 true delack timeout 832 * is invisible. Actually, Linux-2.4 also generates erratic 833 * ACKs in some circumstances. 834 */ 835 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 836 837 /* 2. Fixups made earlier cannot be right. 838 * If we do not estimate RTO correctly without them, 839 * all the algo is pure shit and should be replaced 840 * with correct one. It is exactly, which we pretend to do. 841 */ 842 843 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 844 * guarantees that rto is higher. 845 */ 846 tcp_bound_rto(sk); 847 } 848 849 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 850 { 851 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 852 853 if (!cwnd) 854 cwnd = TCP_INIT_CWND; 855 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 856 } 857 858 /* Take a notice that peer is sending D-SACKs */ 859 static void tcp_dsack_seen(struct tcp_sock *tp) 860 { 861 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 862 tp->rack.dsack_seen = 1; 863 tp->dsack_dups++; 864 } 865 866 /* It's reordering when higher sequence was delivered (i.e. sacked) before 867 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 868 * distance is approximated in full-mss packet distance ("reordering"). 869 */ 870 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 871 const int ts) 872 { 873 struct tcp_sock *tp = tcp_sk(sk); 874 const u32 mss = tp->mss_cache; 875 u32 fack, metric; 876 877 fack = tcp_highest_sack_seq(tp); 878 if (!before(low_seq, fack)) 879 return; 880 881 metric = fack - low_seq; 882 if ((metric > tp->reordering * mss) && mss) { 883 #if FASTRETRANS_DEBUG > 1 884 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 885 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 886 tp->reordering, 887 0, 888 tp->sacked_out, 889 tp->undo_marker ? tp->undo_retrans : 0); 890 #endif 891 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 892 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 893 } 894 895 /* This exciting event is worth to be remembered. 8) */ 896 tp->reord_seen++; 897 NET_INC_STATS(sock_net(sk), 898 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 899 } 900 901 /* This must be called before lost_out is incremented */ 902 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 903 { 904 if (!tp->retransmit_skb_hint || 905 before(TCP_SKB_CB(skb)->seq, 906 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 907 tp->retransmit_skb_hint = skb; 908 } 909 910 /* Sum the number of packets on the wire we have marked as lost. 911 * There are two cases we care about here: 912 * a) Packet hasn't been marked lost (nor retransmitted), 913 * and this is the first loss. 914 * b) Packet has been marked both lost and retransmitted, 915 * and this means we think it was lost again. 916 */ 917 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 918 { 919 __u8 sacked = TCP_SKB_CB(skb)->sacked; 920 921 if (!(sacked & TCPCB_LOST) || 922 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 923 tp->lost += tcp_skb_pcount(skb); 924 } 925 926 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 927 { 928 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 929 tcp_verify_retransmit_hint(tp, skb); 930 931 tp->lost_out += tcp_skb_pcount(skb); 932 tcp_sum_lost(tp, skb); 933 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 934 } 935 } 936 937 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 tcp_verify_retransmit_hint(tp, skb); 940 941 tcp_sum_lost(tp, skb); 942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 943 tp->lost_out += tcp_skb_pcount(skb); 944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 945 } 946 } 947 948 /* This procedure tags the retransmission queue when SACKs arrive. 949 * 950 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 951 * Packets in queue with these bits set are counted in variables 952 * sacked_out, retrans_out and lost_out, correspondingly. 953 * 954 * Valid combinations are: 955 * Tag InFlight Description 956 * 0 1 - orig segment is in flight. 957 * S 0 - nothing flies, orig reached receiver. 958 * L 0 - nothing flies, orig lost by net. 959 * R 2 - both orig and retransmit are in flight. 960 * L|R 1 - orig is lost, retransmit is in flight. 961 * S|R 1 - orig reached receiver, retrans is still in flight. 962 * (L|S|R is logically valid, it could occur when L|R is sacked, 963 * but it is equivalent to plain S and code short-curcuits it to S. 964 * L|S is logically invalid, it would mean -1 packet in flight 8)) 965 * 966 * These 6 states form finite state machine, controlled by the following events: 967 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 968 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 969 * 3. Loss detection event of two flavors: 970 * A. Scoreboard estimator decided the packet is lost. 971 * A'. Reno "three dupacks" marks head of queue lost. 972 * B. SACK arrives sacking SND.NXT at the moment, when the 973 * segment was retransmitted. 974 * 4. D-SACK added new rule: D-SACK changes any tag to S. 975 * 976 * It is pleasant to note, that state diagram turns out to be commutative, 977 * so that we are allowed not to be bothered by order of our actions, 978 * when multiple events arrive simultaneously. (see the function below). 979 * 980 * Reordering detection. 981 * -------------------- 982 * Reordering metric is maximal distance, which a packet can be displaced 983 * in packet stream. With SACKs we can estimate it: 984 * 985 * 1. SACK fills old hole and the corresponding segment was not 986 * ever retransmitted -> reordering. Alas, we cannot use it 987 * when segment was retransmitted. 988 * 2. The last flaw is solved with D-SACK. D-SACK arrives 989 * for retransmitted and already SACKed segment -> reordering.. 990 * Both of these heuristics are not used in Loss state, when we cannot 991 * account for retransmits accurately. 992 * 993 * SACK block validation. 994 * ---------------------- 995 * 996 * SACK block range validation checks that the received SACK block fits to 997 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 998 * Note that SND.UNA is not included to the range though being valid because 999 * it means that the receiver is rather inconsistent with itself reporting 1000 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1001 * perfectly valid, however, in light of RFC2018 which explicitly states 1002 * that "SACK block MUST reflect the newest segment. Even if the newest 1003 * segment is going to be discarded ...", not that it looks very clever 1004 * in case of head skb. Due to potentional receiver driven attacks, we 1005 * choose to avoid immediate execution of a walk in write queue due to 1006 * reneging and defer head skb's loss recovery to standard loss recovery 1007 * procedure that will eventually trigger (nothing forbids us doing this). 1008 * 1009 * Implements also blockage to start_seq wrap-around. Problem lies in the 1010 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1011 * there's no guarantee that it will be before snd_nxt (n). The problem 1012 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1013 * wrap (s_w): 1014 * 1015 * <- outs wnd -> <- wrapzone -> 1016 * u e n u_w e_w s n_w 1017 * | | | | | | | 1018 * |<------------+------+----- TCP seqno space --------------+---------->| 1019 * ...-- <2^31 ->| |<--------... 1020 * ...---- >2^31 ------>| |<--------... 1021 * 1022 * Current code wouldn't be vulnerable but it's better still to discard such 1023 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1024 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1025 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1026 * equal to the ideal case (infinite seqno space without wrap caused issues). 1027 * 1028 * With D-SACK the lower bound is extended to cover sequence space below 1029 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1030 * again, D-SACK block must not to go across snd_una (for the same reason as 1031 * for the normal SACK blocks, explained above). But there all simplicity 1032 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1033 * fully below undo_marker they do not affect behavior in anyway and can 1034 * therefore be safely ignored. In rare cases (which are more or less 1035 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1036 * fragmentation and packet reordering past skb's retransmission. To consider 1037 * them correctly, the acceptable range must be extended even more though 1038 * the exact amount is rather hard to quantify. However, tp->max_window can 1039 * be used as an exaggerated estimate. 1040 */ 1041 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1042 u32 start_seq, u32 end_seq) 1043 { 1044 /* Too far in future, or reversed (interpretation is ambiguous) */ 1045 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1046 return false; 1047 1048 /* Nasty start_seq wrap-around check (see comments above) */ 1049 if (!before(start_seq, tp->snd_nxt)) 1050 return false; 1051 1052 /* In outstanding window? ...This is valid exit for D-SACKs too. 1053 * start_seq == snd_una is non-sensical (see comments above) 1054 */ 1055 if (after(start_seq, tp->snd_una)) 1056 return true; 1057 1058 if (!is_dsack || !tp->undo_marker) 1059 return false; 1060 1061 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1062 if (after(end_seq, tp->snd_una)) 1063 return false; 1064 1065 if (!before(start_seq, tp->undo_marker)) 1066 return true; 1067 1068 /* Too old */ 1069 if (!after(end_seq, tp->undo_marker)) 1070 return false; 1071 1072 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1073 * start_seq < undo_marker and end_seq >= undo_marker. 1074 */ 1075 return !before(start_seq, end_seq - tp->max_window); 1076 } 1077 1078 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1079 struct tcp_sack_block_wire *sp, int num_sacks, 1080 u32 prior_snd_una) 1081 { 1082 struct tcp_sock *tp = tcp_sk(sk); 1083 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1084 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1085 bool dup_sack = false; 1086 1087 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1088 dup_sack = true; 1089 tcp_dsack_seen(tp); 1090 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1091 } else if (num_sacks > 1) { 1092 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1093 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1094 1095 if (!after(end_seq_0, end_seq_1) && 1096 !before(start_seq_0, start_seq_1)) { 1097 dup_sack = true; 1098 tcp_dsack_seen(tp); 1099 NET_INC_STATS(sock_net(sk), 1100 LINUX_MIB_TCPDSACKOFORECV); 1101 } 1102 } 1103 1104 /* D-SACK for already forgotten data... Do dumb counting. */ 1105 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1106 !after(end_seq_0, prior_snd_una) && 1107 after(end_seq_0, tp->undo_marker)) 1108 tp->undo_retrans--; 1109 1110 return dup_sack; 1111 } 1112 1113 struct tcp_sacktag_state { 1114 u32 reord; 1115 /* Timestamps for earliest and latest never-retransmitted segment 1116 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1117 * but congestion control should still get an accurate delay signal. 1118 */ 1119 u64 first_sackt; 1120 u64 last_sackt; 1121 struct rate_sample *rate; 1122 int flag; 1123 unsigned int mss_now; 1124 }; 1125 1126 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1127 * the incoming SACK may not exactly match but we can find smaller MSS 1128 * aligned portion of it that matches. Therefore we might need to fragment 1129 * which may fail and creates some hassle (caller must handle error case 1130 * returns). 1131 * 1132 * FIXME: this could be merged to shift decision code 1133 */ 1134 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1135 u32 start_seq, u32 end_seq) 1136 { 1137 int err; 1138 bool in_sack; 1139 unsigned int pkt_len; 1140 unsigned int mss; 1141 1142 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1143 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1144 1145 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1146 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1147 mss = tcp_skb_mss(skb); 1148 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1149 1150 if (!in_sack) { 1151 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1152 if (pkt_len < mss) 1153 pkt_len = mss; 1154 } else { 1155 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1156 if (pkt_len < mss) 1157 return -EINVAL; 1158 } 1159 1160 /* Round if necessary so that SACKs cover only full MSSes 1161 * and/or the remaining small portion (if present) 1162 */ 1163 if (pkt_len > mss) { 1164 unsigned int new_len = (pkt_len / mss) * mss; 1165 if (!in_sack && new_len < pkt_len) 1166 new_len += mss; 1167 pkt_len = new_len; 1168 } 1169 1170 if (pkt_len >= skb->len && !in_sack) 1171 return 0; 1172 1173 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1174 pkt_len, mss, GFP_ATOMIC); 1175 if (err < 0) 1176 return err; 1177 } 1178 1179 return in_sack; 1180 } 1181 1182 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1183 static u8 tcp_sacktag_one(struct sock *sk, 1184 struct tcp_sacktag_state *state, u8 sacked, 1185 u32 start_seq, u32 end_seq, 1186 int dup_sack, int pcount, 1187 u64 xmit_time) 1188 { 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 1191 /* Account D-SACK for retransmitted packet. */ 1192 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1193 if (tp->undo_marker && tp->undo_retrans > 0 && 1194 after(end_seq, tp->undo_marker)) 1195 tp->undo_retrans--; 1196 if ((sacked & TCPCB_SACKED_ACKED) && 1197 before(start_seq, state->reord)) 1198 state->reord = start_seq; 1199 } 1200 1201 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1202 if (!after(end_seq, tp->snd_una)) 1203 return sacked; 1204 1205 if (!(sacked & TCPCB_SACKED_ACKED)) { 1206 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1207 1208 if (sacked & TCPCB_SACKED_RETRANS) { 1209 /* If the segment is not tagged as lost, 1210 * we do not clear RETRANS, believing 1211 * that retransmission is still in flight. 1212 */ 1213 if (sacked & TCPCB_LOST) { 1214 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1215 tp->lost_out -= pcount; 1216 tp->retrans_out -= pcount; 1217 } 1218 } else { 1219 if (!(sacked & TCPCB_RETRANS)) { 1220 /* New sack for not retransmitted frame, 1221 * which was in hole. It is reordering. 1222 */ 1223 if (before(start_seq, 1224 tcp_highest_sack_seq(tp)) && 1225 before(start_seq, state->reord)) 1226 state->reord = start_seq; 1227 1228 if (!after(end_seq, tp->high_seq)) 1229 state->flag |= FLAG_ORIG_SACK_ACKED; 1230 if (state->first_sackt == 0) 1231 state->first_sackt = xmit_time; 1232 state->last_sackt = xmit_time; 1233 } 1234 1235 if (sacked & TCPCB_LOST) { 1236 sacked &= ~TCPCB_LOST; 1237 tp->lost_out -= pcount; 1238 } 1239 } 1240 1241 sacked |= TCPCB_SACKED_ACKED; 1242 state->flag |= FLAG_DATA_SACKED; 1243 tp->sacked_out += pcount; 1244 tp->delivered += pcount; /* Out-of-order packets delivered */ 1245 1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1247 if (tp->lost_skb_hint && 1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1249 tp->lost_cnt_hint += pcount; 1250 } 1251 1252 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1253 * frames and clear it. undo_retrans is decreased above, L|R frames 1254 * are accounted above as well. 1255 */ 1256 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1257 sacked &= ~TCPCB_SACKED_RETRANS; 1258 tp->retrans_out -= pcount; 1259 } 1260 1261 return sacked; 1262 } 1263 1264 /* Shift newly-SACKed bytes from this skb to the immediately previous 1265 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1266 */ 1267 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1268 struct sk_buff *skb, 1269 struct tcp_sacktag_state *state, 1270 unsigned int pcount, int shifted, int mss, 1271 bool dup_sack) 1272 { 1273 struct tcp_sock *tp = tcp_sk(sk); 1274 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1275 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1276 1277 BUG_ON(!pcount); 1278 1279 /* Adjust counters and hints for the newly sacked sequence 1280 * range but discard the return value since prev is already 1281 * marked. We must tag the range first because the seq 1282 * advancement below implicitly advances 1283 * tcp_highest_sack_seq() when skb is highest_sack. 1284 */ 1285 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1286 start_seq, end_seq, dup_sack, pcount, 1287 tcp_skb_timestamp_us(skb)); 1288 tcp_rate_skb_delivered(sk, skb, state->rate); 1289 1290 if (skb == tp->lost_skb_hint) 1291 tp->lost_cnt_hint += pcount; 1292 1293 TCP_SKB_CB(prev)->end_seq += shifted; 1294 TCP_SKB_CB(skb)->seq += shifted; 1295 1296 tcp_skb_pcount_add(prev, pcount); 1297 BUG_ON(tcp_skb_pcount(skb) < pcount); 1298 tcp_skb_pcount_add(skb, -pcount); 1299 1300 /* When we're adding to gso_segs == 1, gso_size will be zero, 1301 * in theory this shouldn't be necessary but as long as DSACK 1302 * code can come after this skb later on it's better to keep 1303 * setting gso_size to something. 1304 */ 1305 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1306 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1307 1308 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1309 if (tcp_skb_pcount(skb) <= 1) 1310 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1311 1312 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1313 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1314 1315 if (skb->len > 0) { 1316 BUG_ON(!tcp_skb_pcount(skb)); 1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1318 return false; 1319 } 1320 1321 /* Whole SKB was eaten :-) */ 1322 1323 if (skb == tp->retransmit_skb_hint) 1324 tp->retransmit_skb_hint = prev; 1325 if (skb == tp->lost_skb_hint) { 1326 tp->lost_skb_hint = prev; 1327 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1328 } 1329 1330 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1331 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1332 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1333 TCP_SKB_CB(prev)->end_seq++; 1334 1335 if (skb == tcp_highest_sack(sk)) 1336 tcp_advance_highest_sack(sk, skb); 1337 1338 tcp_skb_collapse_tstamp(prev, skb); 1339 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1340 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1341 1342 tcp_rtx_queue_unlink_and_free(skb, sk); 1343 1344 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1345 1346 return true; 1347 } 1348 1349 /* I wish gso_size would have a bit more sane initialization than 1350 * something-or-zero which complicates things 1351 */ 1352 static int tcp_skb_seglen(const struct sk_buff *skb) 1353 { 1354 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1355 } 1356 1357 /* Shifting pages past head area doesn't work */ 1358 static int skb_can_shift(const struct sk_buff *skb) 1359 { 1360 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1361 } 1362 1363 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1364 * skb. 1365 */ 1366 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1367 struct tcp_sacktag_state *state, 1368 u32 start_seq, u32 end_seq, 1369 bool dup_sack) 1370 { 1371 struct tcp_sock *tp = tcp_sk(sk); 1372 struct sk_buff *prev; 1373 int mss; 1374 int pcount = 0; 1375 int len; 1376 int in_sack; 1377 1378 /* Normally R but no L won't result in plain S */ 1379 if (!dup_sack && 1380 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1381 goto fallback; 1382 if (!skb_can_shift(skb)) 1383 goto fallback; 1384 /* This frame is about to be dropped (was ACKed). */ 1385 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1386 goto fallback; 1387 1388 /* Can only happen with delayed DSACK + discard craziness */ 1389 prev = skb_rb_prev(skb); 1390 if (!prev) 1391 goto fallback; 1392 1393 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1394 goto fallback; 1395 1396 if (!tcp_skb_can_collapse_to(prev)) 1397 goto fallback; 1398 1399 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1400 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1401 1402 if (in_sack) { 1403 len = skb->len; 1404 pcount = tcp_skb_pcount(skb); 1405 mss = tcp_skb_seglen(skb); 1406 1407 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1408 * drop this restriction as unnecessary 1409 */ 1410 if (mss != tcp_skb_seglen(prev)) 1411 goto fallback; 1412 } else { 1413 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1414 goto noop; 1415 /* CHECKME: This is non-MSS split case only?, this will 1416 * cause skipped skbs due to advancing loop btw, original 1417 * has that feature too 1418 */ 1419 if (tcp_skb_pcount(skb) <= 1) 1420 goto noop; 1421 1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1423 if (!in_sack) { 1424 /* TODO: head merge to next could be attempted here 1425 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1426 * though it might not be worth of the additional hassle 1427 * 1428 * ...we can probably just fallback to what was done 1429 * previously. We could try merging non-SACKed ones 1430 * as well but it probably isn't going to buy off 1431 * because later SACKs might again split them, and 1432 * it would make skb timestamp tracking considerably 1433 * harder problem. 1434 */ 1435 goto fallback; 1436 } 1437 1438 len = end_seq - TCP_SKB_CB(skb)->seq; 1439 BUG_ON(len < 0); 1440 BUG_ON(len > skb->len); 1441 1442 /* MSS boundaries should be honoured or else pcount will 1443 * severely break even though it makes things bit trickier. 1444 * Optimize common case to avoid most of the divides 1445 */ 1446 mss = tcp_skb_mss(skb); 1447 1448 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1449 * drop this restriction as unnecessary 1450 */ 1451 if (mss != tcp_skb_seglen(prev)) 1452 goto fallback; 1453 1454 if (len == mss) { 1455 pcount = 1; 1456 } else if (len < mss) { 1457 goto noop; 1458 } else { 1459 pcount = len / mss; 1460 len = pcount * mss; 1461 } 1462 } 1463 1464 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1465 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1466 goto fallback; 1467 1468 if (!skb_shift(prev, skb, len)) 1469 goto fallback; 1470 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1471 goto out; 1472 1473 /* Hole filled allows collapsing with the next as well, this is very 1474 * useful when hole on every nth skb pattern happens 1475 */ 1476 skb = skb_rb_next(prev); 1477 if (!skb) 1478 goto out; 1479 1480 if (!skb_can_shift(skb) || 1481 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1482 (mss != tcp_skb_seglen(skb))) 1483 goto out; 1484 1485 len = skb->len; 1486 if (skb_shift(prev, skb, len)) { 1487 pcount += tcp_skb_pcount(skb); 1488 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1489 len, mss, 0); 1490 } 1491 1492 out: 1493 return prev; 1494 1495 noop: 1496 return skb; 1497 1498 fallback: 1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1500 return NULL; 1501 } 1502 1503 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1504 struct tcp_sack_block *next_dup, 1505 struct tcp_sacktag_state *state, 1506 u32 start_seq, u32 end_seq, 1507 bool dup_sack_in) 1508 { 1509 struct tcp_sock *tp = tcp_sk(sk); 1510 struct sk_buff *tmp; 1511 1512 skb_rbtree_walk_from(skb) { 1513 int in_sack = 0; 1514 bool dup_sack = dup_sack_in; 1515 1516 /* queue is in-order => we can short-circuit the walk early */ 1517 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1518 break; 1519 1520 if (next_dup && 1521 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1522 in_sack = tcp_match_skb_to_sack(sk, skb, 1523 next_dup->start_seq, 1524 next_dup->end_seq); 1525 if (in_sack > 0) 1526 dup_sack = true; 1527 } 1528 1529 /* skb reference here is a bit tricky to get right, since 1530 * shifting can eat and free both this skb and the next, 1531 * so not even _safe variant of the loop is enough. 1532 */ 1533 if (in_sack <= 0) { 1534 tmp = tcp_shift_skb_data(sk, skb, state, 1535 start_seq, end_seq, dup_sack); 1536 if (tmp) { 1537 if (tmp != skb) { 1538 skb = tmp; 1539 continue; 1540 } 1541 1542 in_sack = 0; 1543 } else { 1544 in_sack = tcp_match_skb_to_sack(sk, skb, 1545 start_seq, 1546 end_seq); 1547 } 1548 } 1549 1550 if (unlikely(in_sack < 0)) 1551 break; 1552 1553 if (in_sack) { 1554 TCP_SKB_CB(skb)->sacked = 1555 tcp_sacktag_one(sk, 1556 state, 1557 TCP_SKB_CB(skb)->sacked, 1558 TCP_SKB_CB(skb)->seq, 1559 TCP_SKB_CB(skb)->end_seq, 1560 dup_sack, 1561 tcp_skb_pcount(skb), 1562 tcp_skb_timestamp_us(skb)); 1563 tcp_rate_skb_delivered(sk, skb, state->rate); 1564 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1565 list_del_init(&skb->tcp_tsorted_anchor); 1566 1567 if (!before(TCP_SKB_CB(skb)->seq, 1568 tcp_highest_sack_seq(tp))) 1569 tcp_advance_highest_sack(sk, skb); 1570 } 1571 } 1572 return skb; 1573 } 1574 1575 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1576 struct tcp_sacktag_state *state, 1577 u32 seq) 1578 { 1579 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1580 struct sk_buff *skb; 1581 1582 while (*p) { 1583 parent = *p; 1584 skb = rb_to_skb(parent); 1585 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1586 p = &parent->rb_left; 1587 continue; 1588 } 1589 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1590 p = &parent->rb_right; 1591 continue; 1592 } 1593 return skb; 1594 } 1595 return NULL; 1596 } 1597 1598 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1599 struct tcp_sacktag_state *state, 1600 u32 skip_to_seq) 1601 { 1602 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1603 return skb; 1604 1605 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1606 } 1607 1608 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1609 struct sock *sk, 1610 struct tcp_sack_block *next_dup, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 if (!next_dup) 1615 return skb; 1616 1617 if (before(next_dup->start_seq, skip_to_seq)) { 1618 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1619 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1620 next_dup->start_seq, next_dup->end_seq, 1621 1); 1622 } 1623 1624 return skb; 1625 } 1626 1627 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1628 { 1629 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1630 } 1631 1632 static int 1633 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1634 u32 prior_snd_una, struct tcp_sacktag_state *state) 1635 { 1636 struct tcp_sock *tp = tcp_sk(sk); 1637 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1638 TCP_SKB_CB(ack_skb)->sacked); 1639 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1640 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1641 struct tcp_sack_block *cache; 1642 struct sk_buff *skb; 1643 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1644 int used_sacks; 1645 bool found_dup_sack = false; 1646 int i, j; 1647 int first_sack_index; 1648 1649 state->flag = 0; 1650 state->reord = tp->snd_nxt; 1651 1652 if (!tp->sacked_out) 1653 tcp_highest_sack_reset(sk); 1654 1655 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1656 num_sacks, prior_snd_una); 1657 if (found_dup_sack) { 1658 state->flag |= FLAG_DSACKING_ACK; 1659 tp->delivered++; /* A spurious retransmission is delivered */ 1660 } 1661 1662 /* Eliminate too old ACKs, but take into 1663 * account more or less fresh ones, they can 1664 * contain valid SACK info. 1665 */ 1666 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1667 return 0; 1668 1669 if (!tp->packets_out) 1670 goto out; 1671 1672 used_sacks = 0; 1673 first_sack_index = 0; 1674 for (i = 0; i < num_sacks; i++) { 1675 bool dup_sack = !i && found_dup_sack; 1676 1677 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1678 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1679 1680 if (!tcp_is_sackblock_valid(tp, dup_sack, 1681 sp[used_sacks].start_seq, 1682 sp[used_sacks].end_seq)) { 1683 int mib_idx; 1684 1685 if (dup_sack) { 1686 if (!tp->undo_marker) 1687 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1688 else 1689 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1690 } else { 1691 /* Don't count olds caused by ACK reordering */ 1692 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1693 !after(sp[used_sacks].end_seq, tp->snd_una)) 1694 continue; 1695 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1696 } 1697 1698 NET_INC_STATS(sock_net(sk), mib_idx); 1699 if (i == 0) 1700 first_sack_index = -1; 1701 continue; 1702 } 1703 1704 /* Ignore very old stuff early */ 1705 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1706 continue; 1707 1708 used_sacks++; 1709 } 1710 1711 /* order SACK blocks to allow in order walk of the retrans queue */ 1712 for (i = used_sacks - 1; i > 0; i--) { 1713 for (j = 0; j < i; j++) { 1714 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1715 swap(sp[j], sp[j + 1]); 1716 1717 /* Track where the first SACK block goes to */ 1718 if (j == first_sack_index) 1719 first_sack_index = j + 1; 1720 } 1721 } 1722 } 1723 1724 state->mss_now = tcp_current_mss(sk); 1725 skb = NULL; 1726 i = 0; 1727 1728 if (!tp->sacked_out) { 1729 /* It's already past, so skip checking against it */ 1730 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1731 } else { 1732 cache = tp->recv_sack_cache; 1733 /* Skip empty blocks in at head of the cache */ 1734 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1735 !cache->end_seq) 1736 cache++; 1737 } 1738 1739 while (i < used_sacks) { 1740 u32 start_seq = sp[i].start_seq; 1741 u32 end_seq = sp[i].end_seq; 1742 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1743 struct tcp_sack_block *next_dup = NULL; 1744 1745 if (found_dup_sack && ((i + 1) == first_sack_index)) 1746 next_dup = &sp[i + 1]; 1747 1748 /* Skip too early cached blocks */ 1749 while (tcp_sack_cache_ok(tp, cache) && 1750 !before(start_seq, cache->end_seq)) 1751 cache++; 1752 1753 /* Can skip some work by looking recv_sack_cache? */ 1754 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1755 after(end_seq, cache->start_seq)) { 1756 1757 /* Head todo? */ 1758 if (before(start_seq, cache->start_seq)) { 1759 skb = tcp_sacktag_skip(skb, sk, state, 1760 start_seq); 1761 skb = tcp_sacktag_walk(skb, sk, next_dup, 1762 state, 1763 start_seq, 1764 cache->start_seq, 1765 dup_sack); 1766 } 1767 1768 /* Rest of the block already fully processed? */ 1769 if (!after(end_seq, cache->end_seq)) 1770 goto advance_sp; 1771 1772 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1773 state, 1774 cache->end_seq); 1775 1776 /* ...tail remains todo... */ 1777 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1778 /* ...but better entrypoint exists! */ 1779 skb = tcp_highest_sack(sk); 1780 if (!skb) 1781 break; 1782 cache++; 1783 goto walk; 1784 } 1785 1786 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1787 /* Check overlap against next cached too (past this one already) */ 1788 cache++; 1789 continue; 1790 } 1791 1792 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1793 skb = tcp_highest_sack(sk); 1794 if (!skb) 1795 break; 1796 } 1797 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1798 1799 walk: 1800 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1801 start_seq, end_seq, dup_sack); 1802 1803 advance_sp: 1804 i++; 1805 } 1806 1807 /* Clear the head of the cache sack blocks so we can skip it next time */ 1808 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1809 tp->recv_sack_cache[i].start_seq = 0; 1810 tp->recv_sack_cache[i].end_seq = 0; 1811 } 1812 for (j = 0; j < used_sacks; j++) 1813 tp->recv_sack_cache[i++] = sp[j]; 1814 1815 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1816 tcp_check_sack_reordering(sk, state->reord, 0); 1817 1818 tcp_verify_left_out(tp); 1819 out: 1820 1821 #if FASTRETRANS_DEBUG > 0 1822 WARN_ON((int)tp->sacked_out < 0); 1823 WARN_ON((int)tp->lost_out < 0); 1824 WARN_ON((int)tp->retrans_out < 0); 1825 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1826 #endif 1827 return state->flag; 1828 } 1829 1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1832 */ 1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1834 { 1835 u32 holes; 1836 1837 holes = max(tp->lost_out, 1U); 1838 holes = min(holes, tp->packets_out); 1839 1840 if ((tp->sacked_out + holes) > tp->packets_out) { 1841 tp->sacked_out = tp->packets_out - holes; 1842 return true; 1843 } 1844 return false; 1845 } 1846 1847 /* If we receive more dupacks than we expected counting segments 1848 * in assumption of absent reordering, interpret this as reordering. 1849 * The only another reason could be bug in receiver TCP. 1850 */ 1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 1855 if (!tcp_limit_reno_sacked(tp)) 1856 return; 1857 1858 tp->reordering = min_t(u32, tp->packets_out + addend, 1859 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1860 tp->reord_seen++; 1861 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1862 } 1863 1864 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1865 1866 static void tcp_add_reno_sack(struct sock *sk) 1867 { 1868 struct tcp_sock *tp = tcp_sk(sk); 1869 u32 prior_sacked = tp->sacked_out; 1870 1871 tp->sacked_out++; 1872 tcp_check_reno_reordering(sk, 0); 1873 if (tp->sacked_out > prior_sacked) 1874 tp->delivered++; /* Some out-of-order packet is delivered */ 1875 tcp_verify_left_out(tp); 1876 } 1877 1878 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1879 1880 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1881 { 1882 struct tcp_sock *tp = tcp_sk(sk); 1883 1884 if (acked > 0) { 1885 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1886 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1887 if (acked - 1 >= tp->sacked_out) 1888 tp->sacked_out = 0; 1889 else 1890 tp->sacked_out -= acked - 1; 1891 } 1892 tcp_check_reno_reordering(sk, acked); 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1897 { 1898 tp->sacked_out = 0; 1899 } 1900 1901 void tcp_clear_retrans(struct tcp_sock *tp) 1902 { 1903 tp->retrans_out = 0; 1904 tp->lost_out = 0; 1905 tp->undo_marker = 0; 1906 tp->undo_retrans = -1; 1907 tp->sacked_out = 0; 1908 } 1909 1910 static inline void tcp_init_undo(struct tcp_sock *tp) 1911 { 1912 tp->undo_marker = tp->snd_una; 1913 /* Retransmission still in flight may cause DSACKs later. */ 1914 tp->undo_retrans = tp->retrans_out ? : -1; 1915 } 1916 1917 static bool tcp_is_rack(const struct sock *sk) 1918 { 1919 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1920 } 1921 1922 /* If we detect SACK reneging, forget all SACK information 1923 * and reset tags completely, otherwise preserve SACKs. If receiver 1924 * dropped its ofo queue, we will know this due to reneging detection. 1925 */ 1926 static void tcp_timeout_mark_lost(struct sock *sk) 1927 { 1928 struct tcp_sock *tp = tcp_sk(sk); 1929 struct sk_buff *skb, *head; 1930 bool is_reneg; /* is receiver reneging on SACKs? */ 1931 1932 head = tcp_rtx_queue_head(sk); 1933 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1934 if (is_reneg) { 1935 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1936 tp->sacked_out = 0; 1937 /* Mark SACK reneging until we recover from this loss event. */ 1938 tp->is_sack_reneg = 1; 1939 } else if (tcp_is_reno(tp)) { 1940 tcp_reset_reno_sack(tp); 1941 } 1942 1943 skb = head; 1944 skb_rbtree_walk_from(skb) { 1945 if (is_reneg) 1946 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1947 else if (tcp_is_rack(sk) && skb != head && 1948 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1949 continue; /* Don't mark recently sent ones lost yet */ 1950 tcp_mark_skb_lost(sk, skb); 1951 } 1952 tcp_verify_left_out(tp); 1953 tcp_clear_all_retrans_hints(tp); 1954 } 1955 1956 /* Enter Loss state. */ 1957 void tcp_enter_loss(struct sock *sk) 1958 { 1959 const struct inet_connection_sock *icsk = inet_csk(sk); 1960 struct tcp_sock *tp = tcp_sk(sk); 1961 struct net *net = sock_net(sk); 1962 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1963 1964 tcp_timeout_mark_lost(sk); 1965 1966 /* Reduce ssthresh if it has not yet been made inside this window. */ 1967 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1968 !after(tp->high_seq, tp->snd_una) || 1969 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1970 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1971 tp->prior_cwnd = tp->snd_cwnd; 1972 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1973 tcp_ca_event(sk, CA_EVENT_LOSS); 1974 tcp_init_undo(tp); 1975 } 1976 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1977 tp->snd_cwnd_cnt = 0; 1978 tp->snd_cwnd_stamp = tcp_jiffies32; 1979 1980 /* Timeout in disordered state after receiving substantial DUPACKs 1981 * suggests that the degree of reordering is over-estimated. 1982 */ 1983 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1984 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1985 tp->reordering = min_t(unsigned int, tp->reordering, 1986 net->ipv4.sysctl_tcp_reordering); 1987 tcp_set_ca_state(sk, TCP_CA_Loss); 1988 tp->high_seq = tp->snd_nxt; 1989 tcp_ecn_queue_cwr(tp); 1990 1991 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1992 * loss recovery is underway except recurring timeout(s) on 1993 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1994 */ 1995 tp->frto = net->ipv4.sysctl_tcp_frto && 1996 (new_recovery || icsk->icsk_retransmits) && 1997 !inet_csk(sk)->icsk_mtup.probe_size; 1998 } 1999 2000 /* If ACK arrived pointing to a remembered SACK, it means that our 2001 * remembered SACKs do not reflect real state of receiver i.e. 2002 * receiver _host_ is heavily congested (or buggy). 2003 * 2004 * To avoid big spurious retransmission bursts due to transient SACK 2005 * scoreboard oddities that look like reneging, we give the receiver a 2006 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2007 * restore sanity to the SACK scoreboard. If the apparent reneging 2008 * persists until this RTO then we'll clear the SACK scoreboard. 2009 */ 2010 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2011 { 2012 if (flag & FLAG_SACK_RENEGING) { 2013 struct tcp_sock *tp = tcp_sk(sk); 2014 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2015 msecs_to_jiffies(10)); 2016 2017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2018 delay, TCP_RTO_MAX); 2019 return true; 2020 } 2021 return false; 2022 } 2023 2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2025 * counter when SACK is enabled (without SACK, sacked_out is used for 2026 * that purpose). 2027 * 2028 * With reordering, holes may still be in flight, so RFC3517 recovery 2029 * uses pure sacked_out (total number of SACKed segments) even though 2030 * it violates the RFC that uses duplicate ACKs, often these are equal 2031 * but when e.g. out-of-window ACKs or packet duplication occurs, 2032 * they differ. Since neither occurs due to loss, TCP should really 2033 * ignore them. 2034 */ 2035 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2036 { 2037 return tp->sacked_out + 1; 2038 } 2039 2040 /* Linux NewReno/SACK/ECN state machine. 2041 * -------------------------------------- 2042 * 2043 * "Open" Normal state, no dubious events, fast path. 2044 * "Disorder" In all the respects it is "Open", 2045 * but requires a bit more attention. It is entered when 2046 * we see some SACKs or dupacks. It is split of "Open" 2047 * mainly to move some processing from fast path to slow one. 2048 * "CWR" CWND was reduced due to some Congestion Notification event. 2049 * It can be ECN, ICMP source quench, local device congestion. 2050 * "Recovery" CWND was reduced, we are fast-retransmitting. 2051 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2052 * 2053 * tcp_fastretrans_alert() is entered: 2054 * - each incoming ACK, if state is not "Open" 2055 * - when arrived ACK is unusual, namely: 2056 * * SACK 2057 * * Duplicate ACK. 2058 * * ECN ECE. 2059 * 2060 * Counting packets in flight is pretty simple. 2061 * 2062 * in_flight = packets_out - left_out + retrans_out 2063 * 2064 * packets_out is SND.NXT-SND.UNA counted in packets. 2065 * 2066 * retrans_out is number of retransmitted segments. 2067 * 2068 * left_out is number of segments left network, but not ACKed yet. 2069 * 2070 * left_out = sacked_out + lost_out 2071 * 2072 * sacked_out: Packets, which arrived to receiver out of order 2073 * and hence not ACKed. With SACKs this number is simply 2074 * amount of SACKed data. Even without SACKs 2075 * it is easy to give pretty reliable estimate of this number, 2076 * counting duplicate ACKs. 2077 * 2078 * lost_out: Packets lost by network. TCP has no explicit 2079 * "loss notification" feedback from network (for now). 2080 * It means that this number can be only _guessed_. 2081 * Actually, it is the heuristics to predict lossage that 2082 * distinguishes different algorithms. 2083 * 2084 * F.e. after RTO, when all the queue is considered as lost, 2085 * lost_out = packets_out and in_flight = retrans_out. 2086 * 2087 * Essentially, we have now a few algorithms detecting 2088 * lost packets. 2089 * 2090 * If the receiver supports SACK: 2091 * 2092 * RFC6675/3517: It is the conventional algorithm. A packet is 2093 * considered lost if the number of higher sequence packets 2094 * SACKed is greater than or equal the DUPACK thoreshold 2095 * (reordering). This is implemented in tcp_mark_head_lost and 2096 * tcp_update_scoreboard. 2097 * 2098 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2099 * (2017-) that checks timing instead of counting DUPACKs. 2100 * Essentially a packet is considered lost if it's not S/ACKed 2101 * after RTT + reordering_window, where both metrics are 2102 * dynamically measured and adjusted. This is implemented in 2103 * tcp_rack_mark_lost. 2104 * 2105 * If the receiver does not support SACK: 2106 * 2107 * NewReno (RFC6582): in Recovery we assume that one segment 2108 * is lost (classic Reno). While we are in Recovery and 2109 * a partial ACK arrives, we assume that one more packet 2110 * is lost (NewReno). This heuristics are the same in NewReno 2111 * and SACK. 2112 * 2113 * Really tricky (and requiring careful tuning) part of algorithm 2114 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2115 * The first determines the moment _when_ we should reduce CWND and, 2116 * hence, slow down forward transmission. In fact, it determines the moment 2117 * when we decide that hole is caused by loss, rather than by a reorder. 2118 * 2119 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2120 * holes, caused by lost packets. 2121 * 2122 * And the most logically complicated part of algorithm is undo 2123 * heuristics. We detect false retransmits due to both too early 2124 * fast retransmit (reordering) and underestimated RTO, analyzing 2125 * timestamps and D-SACKs. When we detect that some segments were 2126 * retransmitted by mistake and CWND reduction was wrong, we undo 2127 * window reduction and abort recovery phase. This logic is hidden 2128 * inside several functions named tcp_try_undo_<something>. 2129 */ 2130 2131 /* This function decides, when we should leave Disordered state 2132 * and enter Recovery phase, reducing congestion window. 2133 * 2134 * Main question: may we further continue forward transmission 2135 * with the same cwnd? 2136 */ 2137 static bool tcp_time_to_recover(struct sock *sk, int flag) 2138 { 2139 struct tcp_sock *tp = tcp_sk(sk); 2140 2141 /* Trick#1: The loss is proven. */ 2142 if (tp->lost_out) 2143 return true; 2144 2145 /* Not-A-Trick#2 : Classic rule... */ 2146 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 /* Detect loss in event "A" above by marking head of queue up as lost. 2153 * For non-SACK(Reno) senders, the first "packets" number of segments 2154 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2155 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2156 * the maximum SACKed segments to pass before reaching this limit. 2157 */ 2158 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2159 { 2160 struct tcp_sock *tp = tcp_sk(sk); 2161 struct sk_buff *skb; 2162 int cnt, oldcnt, lost; 2163 unsigned int mss; 2164 /* Use SACK to deduce losses of new sequences sent during recovery */ 2165 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2166 2167 WARN_ON(packets > tp->packets_out); 2168 skb = tp->lost_skb_hint; 2169 if (skb) { 2170 /* Head already handled? */ 2171 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2172 return; 2173 cnt = tp->lost_cnt_hint; 2174 } else { 2175 skb = tcp_rtx_queue_head(sk); 2176 cnt = 0; 2177 } 2178 2179 skb_rbtree_walk_from(skb) { 2180 /* TODO: do this better */ 2181 /* this is not the most efficient way to do this... */ 2182 tp->lost_skb_hint = skb; 2183 tp->lost_cnt_hint = cnt; 2184 2185 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2186 break; 2187 2188 oldcnt = cnt; 2189 if (tcp_is_reno(tp) || 2190 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2191 cnt += tcp_skb_pcount(skb); 2192 2193 if (cnt > packets) { 2194 if (tcp_is_sack(tp) || 2195 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2196 (oldcnt >= packets)) 2197 break; 2198 2199 mss = tcp_skb_mss(skb); 2200 /* If needed, chop off the prefix to mark as lost. */ 2201 lost = (packets - oldcnt) * mss; 2202 if (lost < skb->len && 2203 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2204 lost, mss, GFP_ATOMIC) < 0) 2205 break; 2206 cnt = packets; 2207 } 2208 2209 tcp_skb_mark_lost(tp, skb); 2210 2211 if (mark_head) 2212 break; 2213 } 2214 tcp_verify_left_out(tp); 2215 } 2216 2217 /* Account newly detected lost packet(s) */ 2218 2219 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2220 { 2221 struct tcp_sock *tp = tcp_sk(sk); 2222 2223 if (tcp_is_sack(tp)) { 2224 int sacked_upto = tp->sacked_out - tp->reordering; 2225 if (sacked_upto >= 0) 2226 tcp_mark_head_lost(sk, sacked_upto, 0); 2227 else if (fast_rexmit) 2228 tcp_mark_head_lost(sk, 1, 1); 2229 } 2230 } 2231 2232 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2233 { 2234 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2235 before(tp->rx_opt.rcv_tsecr, when); 2236 } 2237 2238 /* skb is spurious retransmitted if the returned timestamp echo 2239 * reply is prior to the skb transmission time 2240 */ 2241 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2242 const struct sk_buff *skb) 2243 { 2244 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2245 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2246 } 2247 2248 /* Nothing was retransmitted or returned timestamp is less 2249 * than timestamp of the first retransmission. 2250 */ 2251 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2252 { 2253 return !tp->retrans_stamp || 2254 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2255 } 2256 2257 /* Undo procedures. */ 2258 2259 /* We can clear retrans_stamp when there are no retransmissions in the 2260 * window. It would seem that it is trivially available for us in 2261 * tp->retrans_out, however, that kind of assumptions doesn't consider 2262 * what will happen if errors occur when sending retransmission for the 2263 * second time. ...It could the that such segment has only 2264 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2265 * the head skb is enough except for some reneging corner cases that 2266 * are not worth the effort. 2267 * 2268 * Main reason for all this complexity is the fact that connection dying 2269 * time now depends on the validity of the retrans_stamp, in particular, 2270 * that successive retransmissions of a segment must not advance 2271 * retrans_stamp under any conditions. 2272 */ 2273 static bool tcp_any_retrans_done(const struct sock *sk) 2274 { 2275 const struct tcp_sock *tp = tcp_sk(sk); 2276 struct sk_buff *skb; 2277 2278 if (tp->retrans_out) 2279 return true; 2280 2281 skb = tcp_rtx_queue_head(sk); 2282 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2283 return true; 2284 2285 return false; 2286 } 2287 2288 static void DBGUNDO(struct sock *sk, const char *msg) 2289 { 2290 #if FASTRETRANS_DEBUG > 1 2291 struct tcp_sock *tp = tcp_sk(sk); 2292 struct inet_sock *inet = inet_sk(sk); 2293 2294 if (sk->sk_family == AF_INET) { 2295 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2296 msg, 2297 &inet->inet_daddr, ntohs(inet->inet_dport), 2298 tp->snd_cwnd, tcp_left_out(tp), 2299 tp->snd_ssthresh, tp->prior_ssthresh, 2300 tp->packets_out); 2301 } 2302 #if IS_ENABLED(CONFIG_IPV6) 2303 else if (sk->sk_family == AF_INET6) { 2304 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2305 msg, 2306 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2307 tp->snd_cwnd, tcp_left_out(tp), 2308 tp->snd_ssthresh, tp->prior_ssthresh, 2309 tp->packets_out); 2310 } 2311 #endif 2312 #endif 2313 } 2314 2315 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2316 { 2317 struct tcp_sock *tp = tcp_sk(sk); 2318 2319 if (unmark_loss) { 2320 struct sk_buff *skb; 2321 2322 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2324 } 2325 tp->lost_out = 0; 2326 tcp_clear_all_retrans_hints(tp); 2327 } 2328 2329 if (tp->prior_ssthresh) { 2330 const struct inet_connection_sock *icsk = inet_csk(sk); 2331 2332 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2333 2334 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2335 tp->snd_ssthresh = tp->prior_ssthresh; 2336 tcp_ecn_withdraw_cwr(tp); 2337 } 2338 } 2339 tp->snd_cwnd_stamp = tcp_jiffies32; 2340 tp->undo_marker = 0; 2341 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2342 } 2343 2344 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2345 { 2346 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2347 } 2348 2349 /* People celebrate: "We love our President!" */ 2350 static bool tcp_try_undo_recovery(struct sock *sk) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 2354 if (tcp_may_undo(tp)) { 2355 int mib_idx; 2356 2357 /* Happy end! We did not retransmit anything 2358 * or our original transmission succeeded. 2359 */ 2360 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2361 tcp_undo_cwnd_reduction(sk, false); 2362 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2363 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2364 else 2365 mib_idx = LINUX_MIB_TCPFULLUNDO; 2366 2367 NET_INC_STATS(sock_net(sk), mib_idx); 2368 } else if (tp->rack.reo_wnd_persist) { 2369 tp->rack.reo_wnd_persist--; 2370 } 2371 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2372 /* Hold old state until something *above* high_seq 2373 * is ACKed. For Reno it is MUST to prevent false 2374 * fast retransmits (RFC2582). SACK TCP is safe. */ 2375 if (!tcp_any_retrans_done(sk)) 2376 tp->retrans_stamp = 0; 2377 return true; 2378 } 2379 tcp_set_ca_state(sk, TCP_CA_Open); 2380 tp->is_sack_reneg = 0; 2381 return false; 2382 } 2383 2384 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2385 static bool tcp_try_undo_dsack(struct sock *sk) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 2389 if (tp->undo_marker && !tp->undo_retrans) { 2390 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2391 tp->rack.reo_wnd_persist + 1); 2392 DBGUNDO(sk, "D-SACK"); 2393 tcp_undo_cwnd_reduction(sk, false); 2394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2395 return true; 2396 } 2397 return false; 2398 } 2399 2400 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2401 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2402 { 2403 struct tcp_sock *tp = tcp_sk(sk); 2404 2405 if (frto_undo || tcp_may_undo(tp)) { 2406 tcp_undo_cwnd_reduction(sk, true); 2407 2408 DBGUNDO(sk, "partial loss"); 2409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2410 if (frto_undo) 2411 NET_INC_STATS(sock_net(sk), 2412 LINUX_MIB_TCPSPURIOUSRTOS); 2413 inet_csk(sk)->icsk_retransmits = 0; 2414 if (frto_undo || tcp_is_sack(tp)) { 2415 tcp_set_ca_state(sk, TCP_CA_Open); 2416 tp->is_sack_reneg = 0; 2417 } 2418 return true; 2419 } 2420 return false; 2421 } 2422 2423 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2424 * It computes the number of packets to send (sndcnt) based on packets newly 2425 * delivered: 2426 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2427 * cwnd reductions across a full RTT. 2428 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2429 * But when the retransmits are acked without further losses, PRR 2430 * slow starts cwnd up to ssthresh to speed up the recovery. 2431 */ 2432 static void tcp_init_cwnd_reduction(struct sock *sk) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 tp->high_seq = tp->snd_nxt; 2437 tp->tlp_high_seq = 0; 2438 tp->snd_cwnd_cnt = 0; 2439 tp->prior_cwnd = tp->snd_cwnd; 2440 tp->prr_delivered = 0; 2441 tp->prr_out = 0; 2442 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2443 tcp_ecn_queue_cwr(tp); 2444 } 2445 2446 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 int sndcnt = 0; 2450 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2451 2452 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2453 return; 2454 2455 tp->prr_delivered += newly_acked_sacked; 2456 if (delta < 0) { 2457 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2458 tp->prior_cwnd - 1; 2459 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2460 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2461 FLAG_RETRANS_DATA_ACKED) { 2462 sndcnt = min_t(int, delta, 2463 max_t(int, tp->prr_delivered - tp->prr_out, 2464 newly_acked_sacked) + 1); 2465 } else { 2466 sndcnt = min(delta, newly_acked_sacked); 2467 } 2468 /* Force a fast retransmit upon entering fast recovery */ 2469 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2470 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2471 } 2472 2473 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2474 { 2475 struct tcp_sock *tp = tcp_sk(sk); 2476 2477 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2478 return; 2479 2480 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2481 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2482 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2483 tp->snd_cwnd = tp->snd_ssthresh; 2484 tp->snd_cwnd_stamp = tcp_jiffies32; 2485 } 2486 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2487 } 2488 2489 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2490 void tcp_enter_cwr(struct sock *sk) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 2494 tp->prior_ssthresh = 0; 2495 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2496 tp->undo_marker = 0; 2497 tcp_init_cwnd_reduction(sk); 2498 tcp_set_ca_state(sk, TCP_CA_CWR); 2499 } 2500 } 2501 EXPORT_SYMBOL(tcp_enter_cwr); 2502 2503 static void tcp_try_keep_open(struct sock *sk) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 int state = TCP_CA_Open; 2507 2508 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2509 state = TCP_CA_Disorder; 2510 2511 if (inet_csk(sk)->icsk_ca_state != state) { 2512 tcp_set_ca_state(sk, state); 2513 tp->high_seq = tp->snd_nxt; 2514 } 2515 } 2516 2517 static void tcp_try_to_open(struct sock *sk, int flag) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 2521 tcp_verify_left_out(tp); 2522 2523 if (!tcp_any_retrans_done(sk)) 2524 tp->retrans_stamp = 0; 2525 2526 if (flag & FLAG_ECE) 2527 tcp_enter_cwr(sk); 2528 2529 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2530 tcp_try_keep_open(sk); 2531 } 2532 } 2533 2534 static void tcp_mtup_probe_failed(struct sock *sk) 2535 { 2536 struct inet_connection_sock *icsk = inet_csk(sk); 2537 2538 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2539 icsk->icsk_mtup.probe_size = 0; 2540 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2541 } 2542 2543 static void tcp_mtup_probe_success(struct sock *sk) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 struct inet_connection_sock *icsk = inet_csk(sk); 2547 2548 /* FIXME: breaks with very large cwnd */ 2549 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2550 tp->snd_cwnd = tp->snd_cwnd * 2551 tcp_mss_to_mtu(sk, tp->mss_cache) / 2552 icsk->icsk_mtup.probe_size; 2553 tp->snd_cwnd_cnt = 0; 2554 tp->snd_cwnd_stamp = tcp_jiffies32; 2555 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2556 2557 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2558 icsk->icsk_mtup.probe_size = 0; 2559 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2561 } 2562 2563 /* Do a simple retransmit without using the backoff mechanisms in 2564 * tcp_timer. This is used for path mtu discovery. 2565 * The socket is already locked here. 2566 */ 2567 void tcp_simple_retransmit(struct sock *sk) 2568 { 2569 const struct inet_connection_sock *icsk = inet_csk(sk); 2570 struct tcp_sock *tp = tcp_sk(sk); 2571 struct sk_buff *skb; 2572 unsigned int mss = tcp_current_mss(sk); 2573 2574 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2575 if (tcp_skb_seglen(skb) > mss && 2576 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2577 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2578 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2579 tp->retrans_out -= tcp_skb_pcount(skb); 2580 } 2581 tcp_skb_mark_lost_uncond_verify(tp, skb); 2582 } 2583 } 2584 2585 tcp_clear_retrans_hints_partial(tp); 2586 2587 if (!tp->lost_out) 2588 return; 2589 2590 if (tcp_is_reno(tp)) 2591 tcp_limit_reno_sacked(tp); 2592 2593 tcp_verify_left_out(tp); 2594 2595 /* Don't muck with the congestion window here. 2596 * Reason is that we do not increase amount of _data_ 2597 * in network, but units changed and effective 2598 * cwnd/ssthresh really reduced now. 2599 */ 2600 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2601 tp->high_seq = tp->snd_nxt; 2602 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2603 tp->prior_ssthresh = 0; 2604 tp->undo_marker = 0; 2605 tcp_set_ca_state(sk, TCP_CA_Loss); 2606 } 2607 tcp_xmit_retransmit_queue(sk); 2608 } 2609 EXPORT_SYMBOL(tcp_simple_retransmit); 2610 2611 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 int mib_idx; 2615 2616 if (tcp_is_reno(tp)) 2617 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2618 else 2619 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2620 2621 NET_INC_STATS(sock_net(sk), mib_idx); 2622 2623 tp->prior_ssthresh = 0; 2624 tcp_init_undo(tp); 2625 2626 if (!tcp_in_cwnd_reduction(sk)) { 2627 if (!ece_ack) 2628 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2629 tcp_init_cwnd_reduction(sk); 2630 } 2631 tcp_set_ca_state(sk, TCP_CA_Recovery); 2632 } 2633 2634 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2635 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2636 */ 2637 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2638 int *rexmit) 2639 { 2640 struct tcp_sock *tp = tcp_sk(sk); 2641 bool recovered = !before(tp->snd_una, tp->high_seq); 2642 2643 if ((flag & FLAG_SND_UNA_ADVANCED) && 2644 tcp_try_undo_loss(sk, false)) 2645 return; 2646 2647 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2648 /* Step 3.b. A timeout is spurious if not all data are 2649 * lost, i.e., never-retransmitted data are (s)acked. 2650 */ 2651 if ((flag & FLAG_ORIG_SACK_ACKED) && 2652 tcp_try_undo_loss(sk, true)) 2653 return; 2654 2655 if (after(tp->snd_nxt, tp->high_seq)) { 2656 if (flag & FLAG_DATA_SACKED || is_dupack) 2657 tp->frto = 0; /* Step 3.a. loss was real */ 2658 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2659 tp->high_seq = tp->snd_nxt; 2660 /* Step 2.b. Try send new data (but deferred until cwnd 2661 * is updated in tcp_ack()). Otherwise fall back to 2662 * the conventional recovery. 2663 */ 2664 if (!tcp_write_queue_empty(sk) && 2665 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2666 *rexmit = REXMIT_NEW; 2667 return; 2668 } 2669 tp->frto = 0; 2670 } 2671 } 2672 2673 if (recovered) { 2674 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2675 tcp_try_undo_recovery(sk); 2676 return; 2677 } 2678 if (tcp_is_reno(tp)) { 2679 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2680 * delivered. Lower inflight to clock out (re)tranmissions. 2681 */ 2682 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2683 tcp_add_reno_sack(sk); 2684 else if (flag & FLAG_SND_UNA_ADVANCED) 2685 tcp_reset_reno_sack(tp); 2686 } 2687 *rexmit = REXMIT_LOST; 2688 } 2689 2690 /* Undo during fast recovery after partial ACK. */ 2691 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2692 { 2693 struct tcp_sock *tp = tcp_sk(sk); 2694 2695 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2696 /* Plain luck! Hole if filled with delayed 2697 * packet, rather than with a retransmit. Check reordering. 2698 */ 2699 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2700 2701 /* We are getting evidence that the reordering degree is higher 2702 * than we realized. If there are no retransmits out then we 2703 * can undo. Otherwise we clock out new packets but do not 2704 * mark more packets lost or retransmit more. 2705 */ 2706 if (tp->retrans_out) 2707 return true; 2708 2709 if (!tcp_any_retrans_done(sk)) 2710 tp->retrans_stamp = 0; 2711 2712 DBGUNDO(sk, "partial recovery"); 2713 tcp_undo_cwnd_reduction(sk, true); 2714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2715 tcp_try_keep_open(sk); 2716 return true; 2717 } 2718 return false; 2719 } 2720 2721 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 2725 if (tcp_rtx_queue_empty(sk)) 2726 return; 2727 2728 if (unlikely(tcp_is_reno(tp))) { 2729 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2730 } else if (tcp_is_rack(sk)) { 2731 u32 prior_retrans = tp->retrans_out; 2732 2733 tcp_rack_mark_lost(sk); 2734 if (prior_retrans > tp->retrans_out) 2735 *ack_flag |= FLAG_LOST_RETRANS; 2736 } 2737 } 2738 2739 static bool tcp_force_fast_retransmit(struct sock *sk) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 2743 return after(tcp_highest_sack_seq(tp), 2744 tp->snd_una + tp->reordering * tp->mss_cache); 2745 } 2746 2747 /* Process an event, which can update packets-in-flight not trivially. 2748 * Main goal of this function is to calculate new estimate for left_out, 2749 * taking into account both packets sitting in receiver's buffer and 2750 * packets lost by network. 2751 * 2752 * Besides that it updates the congestion state when packet loss or ECN 2753 * is detected. But it does not reduce the cwnd, it is done by the 2754 * congestion control later. 2755 * 2756 * It does _not_ decide what to send, it is made in function 2757 * tcp_xmit_retransmit_queue(). 2758 */ 2759 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2760 bool is_dupack, int *ack_flag, int *rexmit) 2761 { 2762 struct inet_connection_sock *icsk = inet_csk(sk); 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 int fast_rexmit = 0, flag = *ack_flag; 2765 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2766 tcp_force_fast_retransmit(sk)); 2767 2768 if (!tp->packets_out && tp->sacked_out) 2769 tp->sacked_out = 0; 2770 2771 /* Now state machine starts. 2772 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2773 if (flag & FLAG_ECE) 2774 tp->prior_ssthresh = 0; 2775 2776 /* B. In all the states check for reneging SACKs. */ 2777 if (tcp_check_sack_reneging(sk, flag)) 2778 return; 2779 2780 /* C. Check consistency of the current state. */ 2781 tcp_verify_left_out(tp); 2782 2783 /* D. Check state exit conditions. State can be terminated 2784 * when high_seq is ACKed. */ 2785 if (icsk->icsk_ca_state == TCP_CA_Open) { 2786 WARN_ON(tp->retrans_out != 0); 2787 tp->retrans_stamp = 0; 2788 } else if (!before(tp->snd_una, tp->high_seq)) { 2789 switch (icsk->icsk_ca_state) { 2790 case TCP_CA_CWR: 2791 /* CWR is to be held something *above* high_seq 2792 * is ACKed for CWR bit to reach receiver. */ 2793 if (tp->snd_una != tp->high_seq) { 2794 tcp_end_cwnd_reduction(sk); 2795 tcp_set_ca_state(sk, TCP_CA_Open); 2796 } 2797 break; 2798 2799 case TCP_CA_Recovery: 2800 if (tcp_is_reno(tp)) 2801 tcp_reset_reno_sack(tp); 2802 if (tcp_try_undo_recovery(sk)) 2803 return; 2804 tcp_end_cwnd_reduction(sk); 2805 break; 2806 } 2807 } 2808 2809 /* E. Process state. */ 2810 switch (icsk->icsk_ca_state) { 2811 case TCP_CA_Recovery: 2812 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2813 if (tcp_is_reno(tp) && is_dupack) 2814 tcp_add_reno_sack(sk); 2815 } else { 2816 if (tcp_try_undo_partial(sk, prior_snd_una)) 2817 return; 2818 /* Partial ACK arrived. Force fast retransmit. */ 2819 do_lost = tcp_is_reno(tp) || 2820 tcp_force_fast_retransmit(sk); 2821 } 2822 if (tcp_try_undo_dsack(sk)) { 2823 tcp_try_keep_open(sk); 2824 return; 2825 } 2826 tcp_identify_packet_loss(sk, ack_flag); 2827 break; 2828 case TCP_CA_Loss: 2829 tcp_process_loss(sk, flag, is_dupack, rexmit); 2830 tcp_identify_packet_loss(sk, ack_flag); 2831 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2832 (*ack_flag & FLAG_LOST_RETRANS))) 2833 return; 2834 /* Change state if cwnd is undone or retransmits are lost */ 2835 /* fall through */ 2836 default: 2837 if (tcp_is_reno(tp)) { 2838 if (flag & FLAG_SND_UNA_ADVANCED) 2839 tcp_reset_reno_sack(tp); 2840 if (is_dupack) 2841 tcp_add_reno_sack(sk); 2842 } 2843 2844 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2845 tcp_try_undo_dsack(sk); 2846 2847 tcp_identify_packet_loss(sk, ack_flag); 2848 if (!tcp_time_to_recover(sk, flag)) { 2849 tcp_try_to_open(sk, flag); 2850 return; 2851 } 2852 2853 /* MTU probe failure: don't reduce cwnd */ 2854 if (icsk->icsk_ca_state < TCP_CA_CWR && 2855 icsk->icsk_mtup.probe_size && 2856 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2857 tcp_mtup_probe_failed(sk); 2858 /* Restores the reduction we did in tcp_mtup_probe() */ 2859 tp->snd_cwnd++; 2860 tcp_simple_retransmit(sk); 2861 return; 2862 } 2863 2864 /* Otherwise enter Recovery state */ 2865 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2866 fast_rexmit = 1; 2867 } 2868 2869 if (!tcp_is_rack(sk) && do_lost) 2870 tcp_update_scoreboard(sk, fast_rexmit); 2871 *rexmit = REXMIT_LOST; 2872 } 2873 2874 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2875 { 2876 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 2879 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2880 /* If the remote keeps returning delayed ACKs, eventually 2881 * the min filter would pick it up and overestimate the 2882 * prop. delay when it expires. Skip suspected delayed ACKs. 2883 */ 2884 return; 2885 } 2886 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2887 rtt_us ? : jiffies_to_usecs(1)); 2888 } 2889 2890 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2891 long seq_rtt_us, long sack_rtt_us, 2892 long ca_rtt_us, struct rate_sample *rs) 2893 { 2894 const struct tcp_sock *tp = tcp_sk(sk); 2895 2896 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2897 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2898 * Karn's algorithm forbids taking RTT if some retransmitted data 2899 * is acked (RFC6298). 2900 */ 2901 if (seq_rtt_us < 0) 2902 seq_rtt_us = sack_rtt_us; 2903 2904 /* RTTM Rule: A TSecr value received in a segment is used to 2905 * update the averaged RTT measurement only if the segment 2906 * acknowledges some new data, i.e., only if it advances the 2907 * left edge of the send window. 2908 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2909 */ 2910 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2911 flag & FLAG_ACKED) { 2912 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2913 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2914 2915 seq_rtt_us = ca_rtt_us = delta_us; 2916 } 2917 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2918 if (seq_rtt_us < 0) 2919 return false; 2920 2921 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2922 * always taken together with ACK, SACK, or TS-opts. Any negative 2923 * values will be skipped with the seq_rtt_us < 0 check above. 2924 */ 2925 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2926 tcp_rtt_estimator(sk, seq_rtt_us); 2927 tcp_set_rto(sk); 2928 2929 /* RFC6298: only reset backoff on valid RTT measurement. */ 2930 inet_csk(sk)->icsk_backoff = 0; 2931 return true; 2932 } 2933 2934 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2935 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2936 { 2937 struct rate_sample rs; 2938 long rtt_us = -1L; 2939 2940 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2941 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2942 2943 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2944 } 2945 2946 2947 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2948 { 2949 const struct inet_connection_sock *icsk = inet_csk(sk); 2950 2951 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2952 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2953 } 2954 2955 /* Restart timer after forward progress on connection. 2956 * RFC2988 recommends to restart timer to now+rto. 2957 */ 2958 void tcp_rearm_rto(struct sock *sk) 2959 { 2960 const struct inet_connection_sock *icsk = inet_csk(sk); 2961 struct tcp_sock *tp = tcp_sk(sk); 2962 2963 /* If the retrans timer is currently being used by Fast Open 2964 * for SYN-ACK retrans purpose, stay put. 2965 */ 2966 if (tp->fastopen_rsk) 2967 return; 2968 2969 if (!tp->packets_out) { 2970 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2971 } else { 2972 u32 rto = inet_csk(sk)->icsk_rto; 2973 /* Offset the time elapsed after installing regular RTO */ 2974 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2975 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2976 s64 delta_us = tcp_rto_delta_us(sk); 2977 /* delta_us may not be positive if the socket is locked 2978 * when the retrans timer fires and is rescheduled. 2979 */ 2980 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2981 } 2982 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2983 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 2984 } 2985 } 2986 2987 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2988 static void tcp_set_xmit_timer(struct sock *sk) 2989 { 2990 if (!tcp_schedule_loss_probe(sk, true)) 2991 tcp_rearm_rto(sk); 2992 } 2993 2994 /* If we get here, the whole TSO packet has not been acked. */ 2995 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2996 { 2997 struct tcp_sock *tp = tcp_sk(sk); 2998 u32 packets_acked; 2999 3000 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3001 3002 packets_acked = tcp_skb_pcount(skb); 3003 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3004 return 0; 3005 packets_acked -= tcp_skb_pcount(skb); 3006 3007 if (packets_acked) { 3008 BUG_ON(tcp_skb_pcount(skb) == 0); 3009 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3010 } 3011 3012 return packets_acked; 3013 } 3014 3015 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3016 u32 prior_snd_una) 3017 { 3018 const struct skb_shared_info *shinfo; 3019 3020 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3021 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3022 return; 3023 3024 shinfo = skb_shinfo(skb); 3025 if (!before(shinfo->tskey, prior_snd_una) && 3026 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3027 tcp_skb_tsorted_save(skb) { 3028 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3029 } tcp_skb_tsorted_restore(skb); 3030 } 3031 } 3032 3033 /* Remove acknowledged frames from the retransmission queue. If our packet 3034 * is before the ack sequence we can discard it as it's confirmed to have 3035 * arrived at the other end. 3036 */ 3037 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3038 u32 prior_snd_una, 3039 struct tcp_sacktag_state *sack) 3040 { 3041 const struct inet_connection_sock *icsk = inet_csk(sk); 3042 u64 first_ackt, last_ackt; 3043 struct tcp_sock *tp = tcp_sk(sk); 3044 u32 prior_sacked = tp->sacked_out; 3045 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3046 struct sk_buff *skb, *next; 3047 bool fully_acked = true; 3048 long sack_rtt_us = -1L; 3049 long seq_rtt_us = -1L; 3050 long ca_rtt_us = -1L; 3051 u32 pkts_acked = 0; 3052 u32 last_in_flight = 0; 3053 bool rtt_update; 3054 int flag = 0; 3055 3056 first_ackt = 0; 3057 3058 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3059 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3060 const u32 start_seq = scb->seq; 3061 u8 sacked = scb->sacked; 3062 u32 acked_pcount; 3063 3064 tcp_ack_tstamp(sk, skb, prior_snd_una); 3065 3066 /* Determine how many packets and what bytes were acked, tso and else */ 3067 if (after(scb->end_seq, tp->snd_una)) { 3068 if (tcp_skb_pcount(skb) == 1 || 3069 !after(tp->snd_una, scb->seq)) 3070 break; 3071 3072 acked_pcount = tcp_tso_acked(sk, skb); 3073 if (!acked_pcount) 3074 break; 3075 fully_acked = false; 3076 } else { 3077 acked_pcount = tcp_skb_pcount(skb); 3078 } 3079 3080 if (unlikely(sacked & TCPCB_RETRANS)) { 3081 if (sacked & TCPCB_SACKED_RETRANS) 3082 tp->retrans_out -= acked_pcount; 3083 flag |= FLAG_RETRANS_DATA_ACKED; 3084 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3085 last_ackt = tcp_skb_timestamp_us(skb); 3086 WARN_ON_ONCE(last_ackt == 0); 3087 if (!first_ackt) 3088 first_ackt = last_ackt; 3089 3090 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3091 if (before(start_seq, reord)) 3092 reord = start_seq; 3093 if (!after(scb->end_seq, tp->high_seq)) 3094 flag |= FLAG_ORIG_SACK_ACKED; 3095 } 3096 3097 if (sacked & TCPCB_SACKED_ACKED) { 3098 tp->sacked_out -= acked_pcount; 3099 } else if (tcp_is_sack(tp)) { 3100 tp->delivered += acked_pcount; 3101 if (!tcp_skb_spurious_retrans(tp, skb)) 3102 tcp_rack_advance(tp, sacked, scb->end_seq, 3103 tcp_skb_timestamp_us(skb)); 3104 } 3105 if (sacked & TCPCB_LOST) 3106 tp->lost_out -= acked_pcount; 3107 3108 tp->packets_out -= acked_pcount; 3109 pkts_acked += acked_pcount; 3110 tcp_rate_skb_delivered(sk, skb, sack->rate); 3111 3112 /* Initial outgoing SYN's get put onto the write_queue 3113 * just like anything else we transmit. It is not 3114 * true data, and if we misinform our callers that 3115 * this ACK acks real data, we will erroneously exit 3116 * connection startup slow start one packet too 3117 * quickly. This is severely frowned upon behavior. 3118 */ 3119 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3120 flag |= FLAG_DATA_ACKED; 3121 } else { 3122 flag |= FLAG_SYN_ACKED; 3123 tp->retrans_stamp = 0; 3124 } 3125 3126 if (!fully_acked) 3127 break; 3128 3129 next = skb_rb_next(skb); 3130 if (unlikely(skb == tp->retransmit_skb_hint)) 3131 tp->retransmit_skb_hint = NULL; 3132 if (unlikely(skb == tp->lost_skb_hint)) 3133 tp->lost_skb_hint = NULL; 3134 tcp_rtx_queue_unlink_and_free(skb, sk); 3135 } 3136 3137 if (!skb) 3138 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3139 3140 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3141 tp->snd_up = tp->snd_una; 3142 3143 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3144 flag |= FLAG_SACK_RENEGING; 3145 3146 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3147 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3148 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3149 3150 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3151 last_in_flight && !prior_sacked && fully_acked && 3152 sack->rate->prior_delivered + 1 == tp->delivered && 3153 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3154 /* Conservatively mark a delayed ACK. It's typically 3155 * from a lone runt packet over the round trip to 3156 * a receiver w/o out-of-order or CE events. 3157 */ 3158 flag |= FLAG_ACK_MAYBE_DELAYED; 3159 } 3160 } 3161 if (sack->first_sackt) { 3162 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3163 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3164 } 3165 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3166 ca_rtt_us, sack->rate); 3167 3168 if (flag & FLAG_ACKED) { 3169 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3170 if (unlikely(icsk->icsk_mtup.probe_size && 3171 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3172 tcp_mtup_probe_success(sk); 3173 } 3174 3175 if (tcp_is_reno(tp)) { 3176 tcp_remove_reno_sacks(sk, pkts_acked); 3177 3178 /* If any of the cumulatively ACKed segments was 3179 * retransmitted, non-SACK case cannot confirm that 3180 * progress was due to original transmission due to 3181 * lack of TCPCB_SACKED_ACKED bits even if some of 3182 * the packets may have been never retransmitted. 3183 */ 3184 if (flag & FLAG_RETRANS_DATA_ACKED) 3185 flag &= ~FLAG_ORIG_SACK_ACKED; 3186 } else { 3187 int delta; 3188 3189 /* Non-retransmitted hole got filled? That's reordering */ 3190 if (before(reord, prior_fack)) 3191 tcp_check_sack_reordering(sk, reord, 0); 3192 3193 delta = prior_sacked - tp->sacked_out; 3194 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3195 } 3196 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3197 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3198 tcp_skb_timestamp_us(skb))) { 3199 /* Do not re-arm RTO if the sack RTT is measured from data sent 3200 * after when the head was last (re)transmitted. Otherwise the 3201 * timeout may continue to extend in loss recovery. 3202 */ 3203 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3204 } 3205 3206 if (icsk->icsk_ca_ops->pkts_acked) { 3207 struct ack_sample sample = { .pkts_acked = pkts_acked, 3208 .rtt_us = sack->rate->rtt_us, 3209 .in_flight = last_in_flight }; 3210 3211 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3212 } 3213 3214 #if FASTRETRANS_DEBUG > 0 3215 WARN_ON((int)tp->sacked_out < 0); 3216 WARN_ON((int)tp->lost_out < 0); 3217 WARN_ON((int)tp->retrans_out < 0); 3218 if (!tp->packets_out && tcp_is_sack(tp)) { 3219 icsk = inet_csk(sk); 3220 if (tp->lost_out) { 3221 pr_debug("Leak l=%u %d\n", 3222 tp->lost_out, icsk->icsk_ca_state); 3223 tp->lost_out = 0; 3224 } 3225 if (tp->sacked_out) { 3226 pr_debug("Leak s=%u %d\n", 3227 tp->sacked_out, icsk->icsk_ca_state); 3228 tp->sacked_out = 0; 3229 } 3230 if (tp->retrans_out) { 3231 pr_debug("Leak r=%u %d\n", 3232 tp->retrans_out, icsk->icsk_ca_state); 3233 tp->retrans_out = 0; 3234 } 3235 } 3236 #endif 3237 return flag; 3238 } 3239 3240 static void tcp_ack_probe(struct sock *sk) 3241 { 3242 struct inet_connection_sock *icsk = inet_csk(sk); 3243 struct sk_buff *head = tcp_send_head(sk); 3244 const struct tcp_sock *tp = tcp_sk(sk); 3245 3246 /* Was it a usable window open? */ 3247 if (!head) 3248 return; 3249 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3250 icsk->icsk_backoff = 0; 3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3252 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3253 * This function is not for random using! 3254 */ 3255 } else { 3256 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3257 3258 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3259 when, TCP_RTO_MAX, NULL); 3260 } 3261 } 3262 3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3264 { 3265 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3266 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3267 } 3268 3269 /* Decide wheather to run the increase function of congestion control. */ 3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3271 { 3272 /* If reordering is high then always grow cwnd whenever data is 3273 * delivered regardless of its ordering. Otherwise stay conservative 3274 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3275 * new SACK or ECE mark may first advance cwnd here and later reduce 3276 * cwnd in tcp_fastretrans_alert() based on more states. 3277 */ 3278 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3279 return flag & FLAG_FORWARD_PROGRESS; 3280 3281 return flag & FLAG_DATA_ACKED; 3282 } 3283 3284 /* The "ultimate" congestion control function that aims to replace the rigid 3285 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3286 * It's called toward the end of processing an ACK with precise rate 3287 * information. All transmission or retransmission are delayed afterwards. 3288 */ 3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3290 int flag, const struct rate_sample *rs) 3291 { 3292 const struct inet_connection_sock *icsk = inet_csk(sk); 3293 3294 if (icsk->icsk_ca_ops->cong_control) { 3295 icsk->icsk_ca_ops->cong_control(sk, rs); 3296 return; 3297 } 3298 3299 if (tcp_in_cwnd_reduction(sk)) { 3300 /* Reduce cwnd if state mandates */ 3301 tcp_cwnd_reduction(sk, acked_sacked, flag); 3302 } else if (tcp_may_raise_cwnd(sk, flag)) { 3303 /* Advance cwnd if state allows */ 3304 tcp_cong_avoid(sk, ack, acked_sacked); 3305 } 3306 tcp_update_pacing_rate(sk); 3307 } 3308 3309 /* Check that window update is acceptable. 3310 * The function assumes that snd_una<=ack<=snd_next. 3311 */ 3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3313 const u32 ack, const u32 ack_seq, 3314 const u32 nwin) 3315 { 3316 return after(ack, tp->snd_una) || 3317 after(ack_seq, tp->snd_wl1) || 3318 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3319 } 3320 3321 /* If we update tp->snd_una, also update tp->bytes_acked */ 3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3323 { 3324 u32 delta = ack - tp->snd_una; 3325 3326 sock_owned_by_me((struct sock *)tp); 3327 tp->bytes_acked += delta; 3328 tp->snd_una = ack; 3329 } 3330 3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3333 { 3334 u32 delta = seq - tp->rcv_nxt; 3335 3336 sock_owned_by_me((struct sock *)tp); 3337 tp->bytes_received += delta; 3338 tp->rcv_nxt = seq; 3339 } 3340 3341 /* Update our send window. 3342 * 3343 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3344 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3345 */ 3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3347 u32 ack_seq) 3348 { 3349 struct tcp_sock *tp = tcp_sk(sk); 3350 int flag = 0; 3351 u32 nwin = ntohs(tcp_hdr(skb)->window); 3352 3353 if (likely(!tcp_hdr(skb)->syn)) 3354 nwin <<= tp->rx_opt.snd_wscale; 3355 3356 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3357 flag |= FLAG_WIN_UPDATE; 3358 tcp_update_wl(tp, ack_seq); 3359 3360 if (tp->snd_wnd != nwin) { 3361 tp->snd_wnd = nwin; 3362 3363 /* Note, it is the only place, where 3364 * fast path is recovered for sending TCP. 3365 */ 3366 tp->pred_flags = 0; 3367 tcp_fast_path_check(sk); 3368 3369 if (!tcp_write_queue_empty(sk)) 3370 tcp_slow_start_after_idle_check(sk); 3371 3372 if (nwin > tp->max_window) { 3373 tp->max_window = nwin; 3374 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3375 } 3376 } 3377 } 3378 3379 tcp_snd_una_update(tp, ack); 3380 3381 return flag; 3382 } 3383 3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3385 u32 *last_oow_ack_time) 3386 { 3387 if (*last_oow_ack_time) { 3388 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3389 3390 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3391 NET_INC_STATS(net, mib_idx); 3392 return true; /* rate-limited: don't send yet! */ 3393 } 3394 } 3395 3396 *last_oow_ack_time = tcp_jiffies32; 3397 3398 return false; /* not rate-limited: go ahead, send dupack now! */ 3399 } 3400 3401 /* Return true if we're currently rate-limiting out-of-window ACKs and 3402 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3403 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3404 * attacks that send repeated SYNs or ACKs for the same connection. To 3405 * do this, we do not send a duplicate SYNACK or ACK if the remote 3406 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3407 */ 3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3409 int mib_idx, u32 *last_oow_ack_time) 3410 { 3411 /* Data packets without SYNs are not likely part of an ACK loop. */ 3412 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3413 !tcp_hdr(skb)->syn) 3414 return false; 3415 3416 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3417 } 3418 3419 /* RFC 5961 7 [ACK Throttling] */ 3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3421 { 3422 /* unprotected vars, we dont care of overwrites */ 3423 static u32 challenge_timestamp; 3424 static unsigned int challenge_count; 3425 struct tcp_sock *tp = tcp_sk(sk); 3426 struct net *net = sock_net(sk); 3427 u32 count, now; 3428 3429 /* First check our per-socket dupack rate limit. */ 3430 if (__tcp_oow_rate_limited(net, 3431 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3432 &tp->last_oow_ack_time)) 3433 return; 3434 3435 /* Then check host-wide RFC 5961 rate limit. */ 3436 now = jiffies / HZ; 3437 if (now != challenge_timestamp) { 3438 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3439 u32 half = (ack_limit + 1) >> 1; 3440 3441 challenge_timestamp = now; 3442 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3443 } 3444 count = READ_ONCE(challenge_count); 3445 if (count > 0) { 3446 WRITE_ONCE(challenge_count, count - 1); 3447 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3448 tcp_send_ack(sk); 3449 } 3450 } 3451 3452 static void tcp_store_ts_recent(struct tcp_sock *tp) 3453 { 3454 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3455 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3456 } 3457 3458 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3459 { 3460 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3461 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3462 * extra check below makes sure this can only happen 3463 * for pure ACK frames. -DaveM 3464 * 3465 * Not only, also it occurs for expired timestamps. 3466 */ 3467 3468 if (tcp_paws_check(&tp->rx_opt, 0)) 3469 tcp_store_ts_recent(tp); 3470 } 3471 } 3472 3473 /* This routine deals with acks during a TLP episode. 3474 * We mark the end of a TLP episode on receiving TLP dupack or when 3475 * ack is after tlp_high_seq. 3476 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3477 */ 3478 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3479 { 3480 struct tcp_sock *tp = tcp_sk(sk); 3481 3482 if (before(ack, tp->tlp_high_seq)) 3483 return; 3484 3485 if (flag & FLAG_DSACKING_ACK) { 3486 /* This DSACK means original and TLP probe arrived; no loss */ 3487 tp->tlp_high_seq = 0; 3488 } else if (after(ack, tp->tlp_high_seq)) { 3489 /* ACK advances: there was a loss, so reduce cwnd. Reset 3490 * tlp_high_seq in tcp_init_cwnd_reduction() 3491 */ 3492 tcp_init_cwnd_reduction(sk); 3493 tcp_set_ca_state(sk, TCP_CA_CWR); 3494 tcp_end_cwnd_reduction(sk); 3495 tcp_try_keep_open(sk); 3496 NET_INC_STATS(sock_net(sk), 3497 LINUX_MIB_TCPLOSSPROBERECOVERY); 3498 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3499 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3500 /* Pure dupack: original and TLP probe arrived; no loss */ 3501 tp->tlp_high_seq = 0; 3502 } 3503 } 3504 3505 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3506 { 3507 const struct inet_connection_sock *icsk = inet_csk(sk); 3508 3509 if (icsk->icsk_ca_ops->in_ack_event) 3510 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3511 } 3512 3513 /* Congestion control has updated the cwnd already. So if we're in 3514 * loss recovery then now we do any new sends (for FRTO) or 3515 * retransmits (for CA_Loss or CA_recovery) that make sense. 3516 */ 3517 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3518 { 3519 struct tcp_sock *tp = tcp_sk(sk); 3520 3521 if (rexmit == REXMIT_NONE) 3522 return; 3523 3524 if (unlikely(rexmit == 2)) { 3525 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3526 TCP_NAGLE_OFF); 3527 if (after(tp->snd_nxt, tp->high_seq)) 3528 return; 3529 tp->frto = 0; 3530 } 3531 tcp_xmit_retransmit_queue(sk); 3532 } 3533 3534 /* Returns the number of packets newly acked or sacked by the current ACK */ 3535 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3536 { 3537 const struct net *net = sock_net(sk); 3538 struct tcp_sock *tp = tcp_sk(sk); 3539 u32 delivered; 3540 3541 delivered = tp->delivered - prior_delivered; 3542 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3543 if (flag & FLAG_ECE) { 3544 tp->delivered_ce += delivered; 3545 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3546 } 3547 return delivered; 3548 } 3549 3550 /* This routine deals with incoming acks, but not outgoing ones. */ 3551 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3552 { 3553 struct inet_connection_sock *icsk = inet_csk(sk); 3554 struct tcp_sock *tp = tcp_sk(sk); 3555 struct tcp_sacktag_state sack_state; 3556 struct rate_sample rs = { .prior_delivered = 0 }; 3557 u32 prior_snd_una = tp->snd_una; 3558 bool is_sack_reneg = tp->is_sack_reneg; 3559 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3560 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3561 bool is_dupack = false; 3562 int prior_packets = tp->packets_out; 3563 u32 delivered = tp->delivered; 3564 u32 lost = tp->lost; 3565 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3566 u32 prior_fack; 3567 3568 sack_state.first_sackt = 0; 3569 sack_state.rate = &rs; 3570 3571 /* We very likely will need to access rtx queue. */ 3572 prefetch(sk->tcp_rtx_queue.rb_node); 3573 3574 /* If the ack is older than previous acks 3575 * then we can probably ignore it. 3576 */ 3577 if (before(ack, prior_snd_una)) { 3578 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3579 if (before(ack, prior_snd_una - tp->max_window)) { 3580 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3581 tcp_send_challenge_ack(sk, skb); 3582 return -1; 3583 } 3584 goto old_ack; 3585 } 3586 3587 /* If the ack includes data we haven't sent yet, discard 3588 * this segment (RFC793 Section 3.9). 3589 */ 3590 if (after(ack, tp->snd_nxt)) 3591 goto invalid_ack; 3592 3593 if (after(ack, prior_snd_una)) { 3594 flag |= FLAG_SND_UNA_ADVANCED; 3595 icsk->icsk_retransmits = 0; 3596 3597 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3598 if (static_branch_unlikely(&clean_acked_data_enabled)) 3599 if (icsk->icsk_clean_acked) 3600 icsk->icsk_clean_acked(sk, ack); 3601 #endif 3602 } 3603 3604 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3605 rs.prior_in_flight = tcp_packets_in_flight(tp); 3606 3607 /* ts_recent update must be made after we are sure that the packet 3608 * is in window. 3609 */ 3610 if (flag & FLAG_UPDATE_TS_RECENT) 3611 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3612 3613 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3614 FLAG_SND_UNA_ADVANCED) { 3615 /* Window is constant, pure forward advance. 3616 * No more checks are required. 3617 * Note, we use the fact that SND.UNA>=SND.WL2. 3618 */ 3619 tcp_update_wl(tp, ack_seq); 3620 tcp_snd_una_update(tp, ack); 3621 flag |= FLAG_WIN_UPDATE; 3622 3623 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3624 3625 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3626 } else { 3627 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3628 3629 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3630 flag |= FLAG_DATA; 3631 else 3632 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3633 3634 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3635 3636 if (TCP_SKB_CB(skb)->sacked) 3637 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3638 &sack_state); 3639 3640 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3641 flag |= FLAG_ECE; 3642 ack_ev_flags |= CA_ACK_ECE; 3643 } 3644 3645 if (flag & FLAG_WIN_UPDATE) 3646 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3647 3648 tcp_in_ack_event(sk, ack_ev_flags); 3649 } 3650 3651 /* We passed data and got it acked, remove any soft error 3652 * log. Something worked... 3653 */ 3654 sk->sk_err_soft = 0; 3655 icsk->icsk_probes_out = 0; 3656 tp->rcv_tstamp = tcp_jiffies32; 3657 if (!prior_packets) 3658 goto no_queue; 3659 3660 /* See if we can take anything off of the retransmit queue. */ 3661 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3662 3663 tcp_rack_update_reo_wnd(sk, &rs); 3664 3665 if (tp->tlp_high_seq) 3666 tcp_process_tlp_ack(sk, ack, flag); 3667 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3668 if (flag & FLAG_SET_XMIT_TIMER) 3669 tcp_set_xmit_timer(sk); 3670 3671 if (tcp_ack_is_dubious(sk, flag)) { 3672 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3673 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3674 &rexmit); 3675 } 3676 3677 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3678 sk_dst_confirm(sk); 3679 3680 delivered = tcp_newly_delivered(sk, delivered, flag); 3681 lost = tp->lost - lost; /* freshly marked lost */ 3682 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3683 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3684 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3685 tcp_xmit_recovery(sk, rexmit); 3686 return 1; 3687 3688 no_queue: 3689 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3690 if (flag & FLAG_DSACKING_ACK) { 3691 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3692 &rexmit); 3693 tcp_newly_delivered(sk, delivered, flag); 3694 } 3695 /* If this ack opens up a zero window, clear backoff. It was 3696 * being used to time the probes, and is probably far higher than 3697 * it needs to be for normal retransmission. 3698 */ 3699 tcp_ack_probe(sk); 3700 3701 if (tp->tlp_high_seq) 3702 tcp_process_tlp_ack(sk, ack, flag); 3703 return 1; 3704 3705 invalid_ack: 3706 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3707 return -1; 3708 3709 old_ack: 3710 /* If data was SACKed, tag it and see if we should send more data. 3711 * If data was DSACKed, see if we can undo a cwnd reduction. 3712 */ 3713 if (TCP_SKB_CB(skb)->sacked) { 3714 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3715 &sack_state); 3716 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3717 &rexmit); 3718 tcp_newly_delivered(sk, delivered, flag); 3719 tcp_xmit_recovery(sk, rexmit); 3720 } 3721 3722 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3723 return 0; 3724 } 3725 3726 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3727 bool syn, struct tcp_fastopen_cookie *foc, 3728 bool exp_opt) 3729 { 3730 /* Valid only in SYN or SYN-ACK with an even length. */ 3731 if (!foc || !syn || len < 0 || (len & 1)) 3732 return; 3733 3734 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3735 len <= TCP_FASTOPEN_COOKIE_MAX) 3736 memcpy(foc->val, cookie, len); 3737 else if (len != 0) 3738 len = -1; 3739 foc->len = len; 3740 foc->exp = exp_opt; 3741 } 3742 3743 static void smc_parse_options(const struct tcphdr *th, 3744 struct tcp_options_received *opt_rx, 3745 const unsigned char *ptr, 3746 int opsize) 3747 { 3748 #if IS_ENABLED(CONFIG_SMC) 3749 if (static_branch_unlikely(&tcp_have_smc)) { 3750 if (th->syn && !(opsize & 1) && 3751 opsize >= TCPOLEN_EXP_SMC_BASE && 3752 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3753 opt_rx->smc_ok = 1; 3754 } 3755 #endif 3756 } 3757 3758 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3759 * But, this can also be called on packets in the established flow when 3760 * the fast version below fails. 3761 */ 3762 void tcp_parse_options(const struct net *net, 3763 const struct sk_buff *skb, 3764 struct tcp_options_received *opt_rx, int estab, 3765 struct tcp_fastopen_cookie *foc) 3766 { 3767 const unsigned char *ptr; 3768 const struct tcphdr *th = tcp_hdr(skb); 3769 int length = (th->doff * 4) - sizeof(struct tcphdr); 3770 3771 ptr = (const unsigned char *)(th + 1); 3772 opt_rx->saw_tstamp = 0; 3773 3774 while (length > 0) { 3775 int opcode = *ptr++; 3776 int opsize; 3777 3778 switch (opcode) { 3779 case TCPOPT_EOL: 3780 return; 3781 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3782 length--; 3783 continue; 3784 default: 3785 opsize = *ptr++; 3786 if (opsize < 2) /* "silly options" */ 3787 return; 3788 if (opsize > length) 3789 return; /* don't parse partial options */ 3790 switch (opcode) { 3791 case TCPOPT_MSS: 3792 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3793 u16 in_mss = get_unaligned_be16(ptr); 3794 if (in_mss) { 3795 if (opt_rx->user_mss && 3796 opt_rx->user_mss < in_mss) 3797 in_mss = opt_rx->user_mss; 3798 opt_rx->mss_clamp = in_mss; 3799 } 3800 } 3801 break; 3802 case TCPOPT_WINDOW: 3803 if (opsize == TCPOLEN_WINDOW && th->syn && 3804 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3805 __u8 snd_wscale = *(__u8 *)ptr; 3806 opt_rx->wscale_ok = 1; 3807 if (snd_wscale > TCP_MAX_WSCALE) { 3808 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3809 __func__, 3810 snd_wscale, 3811 TCP_MAX_WSCALE); 3812 snd_wscale = TCP_MAX_WSCALE; 3813 } 3814 opt_rx->snd_wscale = snd_wscale; 3815 } 3816 break; 3817 case TCPOPT_TIMESTAMP: 3818 if ((opsize == TCPOLEN_TIMESTAMP) && 3819 ((estab && opt_rx->tstamp_ok) || 3820 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3821 opt_rx->saw_tstamp = 1; 3822 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3823 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3824 } 3825 break; 3826 case TCPOPT_SACK_PERM: 3827 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3828 !estab && net->ipv4.sysctl_tcp_sack) { 3829 opt_rx->sack_ok = TCP_SACK_SEEN; 3830 tcp_sack_reset(opt_rx); 3831 } 3832 break; 3833 3834 case TCPOPT_SACK: 3835 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3836 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3837 opt_rx->sack_ok) { 3838 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3839 } 3840 break; 3841 #ifdef CONFIG_TCP_MD5SIG 3842 case TCPOPT_MD5SIG: 3843 /* 3844 * The MD5 Hash has already been 3845 * checked (see tcp_v{4,6}_do_rcv()). 3846 */ 3847 break; 3848 #endif 3849 case TCPOPT_FASTOPEN: 3850 tcp_parse_fastopen_option( 3851 opsize - TCPOLEN_FASTOPEN_BASE, 3852 ptr, th->syn, foc, false); 3853 break; 3854 3855 case TCPOPT_EXP: 3856 /* Fast Open option shares code 254 using a 3857 * 16 bits magic number. 3858 */ 3859 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3860 get_unaligned_be16(ptr) == 3861 TCPOPT_FASTOPEN_MAGIC) 3862 tcp_parse_fastopen_option(opsize - 3863 TCPOLEN_EXP_FASTOPEN_BASE, 3864 ptr + 2, th->syn, foc, true); 3865 else 3866 smc_parse_options(th, opt_rx, ptr, 3867 opsize); 3868 break; 3869 3870 } 3871 ptr += opsize-2; 3872 length -= opsize; 3873 } 3874 } 3875 } 3876 EXPORT_SYMBOL(tcp_parse_options); 3877 3878 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3879 { 3880 const __be32 *ptr = (const __be32 *)(th + 1); 3881 3882 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3883 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3884 tp->rx_opt.saw_tstamp = 1; 3885 ++ptr; 3886 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3887 ++ptr; 3888 if (*ptr) 3889 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3890 else 3891 tp->rx_opt.rcv_tsecr = 0; 3892 return true; 3893 } 3894 return false; 3895 } 3896 3897 /* Fast parse options. This hopes to only see timestamps. 3898 * If it is wrong it falls back on tcp_parse_options(). 3899 */ 3900 static bool tcp_fast_parse_options(const struct net *net, 3901 const struct sk_buff *skb, 3902 const struct tcphdr *th, struct tcp_sock *tp) 3903 { 3904 /* In the spirit of fast parsing, compare doff directly to constant 3905 * values. Because equality is used, short doff can be ignored here. 3906 */ 3907 if (th->doff == (sizeof(*th) / 4)) { 3908 tp->rx_opt.saw_tstamp = 0; 3909 return false; 3910 } else if (tp->rx_opt.tstamp_ok && 3911 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3912 if (tcp_parse_aligned_timestamp(tp, th)) 3913 return true; 3914 } 3915 3916 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3917 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3918 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3919 3920 return true; 3921 } 3922 3923 #ifdef CONFIG_TCP_MD5SIG 3924 /* 3925 * Parse MD5 Signature option 3926 */ 3927 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3928 { 3929 int length = (th->doff << 2) - sizeof(*th); 3930 const u8 *ptr = (const u8 *)(th + 1); 3931 3932 /* If not enough data remaining, we can short cut */ 3933 while (length >= TCPOLEN_MD5SIG) { 3934 int opcode = *ptr++; 3935 int opsize; 3936 3937 switch (opcode) { 3938 case TCPOPT_EOL: 3939 return NULL; 3940 case TCPOPT_NOP: 3941 length--; 3942 continue; 3943 default: 3944 opsize = *ptr++; 3945 if (opsize < 2 || opsize > length) 3946 return NULL; 3947 if (opcode == TCPOPT_MD5SIG) 3948 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3949 } 3950 ptr += opsize - 2; 3951 length -= opsize; 3952 } 3953 return NULL; 3954 } 3955 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3956 #endif 3957 3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3959 * 3960 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3961 * it can pass through stack. So, the following predicate verifies that 3962 * this segment is not used for anything but congestion avoidance or 3963 * fast retransmit. Moreover, we even are able to eliminate most of such 3964 * second order effects, if we apply some small "replay" window (~RTO) 3965 * to timestamp space. 3966 * 3967 * All these measures still do not guarantee that we reject wrapped ACKs 3968 * on networks with high bandwidth, when sequence space is recycled fastly, 3969 * but it guarantees that such events will be very rare and do not affect 3970 * connection seriously. This doesn't look nice, but alas, PAWS is really 3971 * buggy extension. 3972 * 3973 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3974 * states that events when retransmit arrives after original data are rare. 3975 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3976 * the biggest problem on large power networks even with minor reordering. 3977 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3978 * up to bandwidth of 18Gigabit/sec. 8) ] 3979 */ 3980 3981 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3982 { 3983 const struct tcp_sock *tp = tcp_sk(sk); 3984 const struct tcphdr *th = tcp_hdr(skb); 3985 u32 seq = TCP_SKB_CB(skb)->seq; 3986 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3987 3988 return (/* 1. Pure ACK with correct sequence number. */ 3989 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3990 3991 /* 2. ... and duplicate ACK. */ 3992 ack == tp->snd_una && 3993 3994 /* 3. ... and does not update window. */ 3995 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3996 3997 /* 4. ... and sits in replay window. */ 3998 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3999 } 4000 4001 static inline bool tcp_paws_discard(const struct sock *sk, 4002 const struct sk_buff *skb) 4003 { 4004 const struct tcp_sock *tp = tcp_sk(sk); 4005 4006 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4007 !tcp_disordered_ack(sk, skb); 4008 } 4009 4010 /* Check segment sequence number for validity. 4011 * 4012 * Segment controls are considered valid, if the segment 4013 * fits to the window after truncation to the window. Acceptability 4014 * of data (and SYN, FIN, of course) is checked separately. 4015 * See tcp_data_queue(), for example. 4016 * 4017 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4018 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4019 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4020 * (borrowed from freebsd) 4021 */ 4022 4023 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4024 { 4025 return !before(end_seq, tp->rcv_wup) && 4026 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4027 } 4028 4029 /* When we get a reset we do this. */ 4030 void tcp_reset(struct sock *sk) 4031 { 4032 trace_tcp_receive_reset(sk); 4033 4034 /* We want the right error as BSD sees it (and indeed as we do). */ 4035 switch (sk->sk_state) { 4036 case TCP_SYN_SENT: 4037 sk->sk_err = ECONNREFUSED; 4038 break; 4039 case TCP_CLOSE_WAIT: 4040 sk->sk_err = EPIPE; 4041 break; 4042 case TCP_CLOSE: 4043 return; 4044 default: 4045 sk->sk_err = ECONNRESET; 4046 } 4047 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4048 smp_wmb(); 4049 4050 tcp_write_queue_purge(sk); 4051 tcp_done(sk); 4052 4053 if (!sock_flag(sk, SOCK_DEAD)) 4054 sk->sk_error_report(sk); 4055 } 4056 4057 /* 4058 * Process the FIN bit. This now behaves as it is supposed to work 4059 * and the FIN takes effect when it is validly part of sequence 4060 * space. Not before when we get holes. 4061 * 4062 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4063 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4064 * TIME-WAIT) 4065 * 4066 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4067 * close and we go into CLOSING (and later onto TIME-WAIT) 4068 * 4069 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4070 */ 4071 void tcp_fin(struct sock *sk) 4072 { 4073 struct tcp_sock *tp = tcp_sk(sk); 4074 4075 inet_csk_schedule_ack(sk); 4076 4077 sk->sk_shutdown |= RCV_SHUTDOWN; 4078 sock_set_flag(sk, SOCK_DONE); 4079 4080 switch (sk->sk_state) { 4081 case TCP_SYN_RECV: 4082 case TCP_ESTABLISHED: 4083 /* Move to CLOSE_WAIT */ 4084 tcp_set_state(sk, TCP_CLOSE_WAIT); 4085 inet_csk(sk)->icsk_ack.pingpong = 1; 4086 break; 4087 4088 case TCP_CLOSE_WAIT: 4089 case TCP_CLOSING: 4090 /* Received a retransmission of the FIN, do 4091 * nothing. 4092 */ 4093 break; 4094 case TCP_LAST_ACK: 4095 /* RFC793: Remain in the LAST-ACK state. */ 4096 break; 4097 4098 case TCP_FIN_WAIT1: 4099 /* This case occurs when a simultaneous close 4100 * happens, we must ack the received FIN and 4101 * enter the CLOSING state. 4102 */ 4103 tcp_send_ack(sk); 4104 tcp_set_state(sk, TCP_CLOSING); 4105 break; 4106 case TCP_FIN_WAIT2: 4107 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4108 tcp_send_ack(sk); 4109 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4110 break; 4111 default: 4112 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4113 * cases we should never reach this piece of code. 4114 */ 4115 pr_err("%s: Impossible, sk->sk_state=%d\n", 4116 __func__, sk->sk_state); 4117 break; 4118 } 4119 4120 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4121 * Probably, we should reset in this case. For now drop them. 4122 */ 4123 skb_rbtree_purge(&tp->out_of_order_queue); 4124 if (tcp_is_sack(tp)) 4125 tcp_sack_reset(&tp->rx_opt); 4126 sk_mem_reclaim(sk); 4127 4128 if (!sock_flag(sk, SOCK_DEAD)) { 4129 sk->sk_state_change(sk); 4130 4131 /* Do not send POLL_HUP for half duplex close. */ 4132 if (sk->sk_shutdown == SHUTDOWN_MASK || 4133 sk->sk_state == TCP_CLOSE) 4134 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4135 else 4136 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4137 } 4138 } 4139 4140 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4141 u32 end_seq) 4142 { 4143 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4144 if (before(seq, sp->start_seq)) 4145 sp->start_seq = seq; 4146 if (after(end_seq, sp->end_seq)) 4147 sp->end_seq = end_seq; 4148 return true; 4149 } 4150 return false; 4151 } 4152 4153 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4154 { 4155 struct tcp_sock *tp = tcp_sk(sk); 4156 4157 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4158 int mib_idx; 4159 4160 if (before(seq, tp->rcv_nxt)) 4161 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4162 else 4163 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4164 4165 NET_INC_STATS(sock_net(sk), mib_idx); 4166 4167 tp->rx_opt.dsack = 1; 4168 tp->duplicate_sack[0].start_seq = seq; 4169 tp->duplicate_sack[0].end_seq = end_seq; 4170 } 4171 } 4172 4173 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4174 { 4175 struct tcp_sock *tp = tcp_sk(sk); 4176 4177 if (!tp->rx_opt.dsack) 4178 tcp_dsack_set(sk, seq, end_seq); 4179 else 4180 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4181 } 4182 4183 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4184 { 4185 /* When the ACK path fails or drops most ACKs, the sender would 4186 * timeout and spuriously retransmit the same segment repeatedly. 4187 * The receiver remembers and reflects via DSACKs. Leverage the 4188 * DSACK state and change the txhash to re-route speculatively. 4189 */ 4190 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4191 sk_rethink_txhash(sk); 4192 } 4193 4194 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4195 { 4196 struct tcp_sock *tp = tcp_sk(sk); 4197 4198 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4199 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4200 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4201 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4202 4203 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4204 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4205 4206 tcp_rcv_spurious_retrans(sk, skb); 4207 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4208 end_seq = tp->rcv_nxt; 4209 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4210 } 4211 } 4212 4213 tcp_send_ack(sk); 4214 } 4215 4216 /* These routines update the SACK block as out-of-order packets arrive or 4217 * in-order packets close up the sequence space. 4218 */ 4219 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4220 { 4221 int this_sack; 4222 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4223 struct tcp_sack_block *swalk = sp + 1; 4224 4225 /* See if the recent change to the first SACK eats into 4226 * or hits the sequence space of other SACK blocks, if so coalesce. 4227 */ 4228 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4229 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4230 int i; 4231 4232 /* Zap SWALK, by moving every further SACK up by one slot. 4233 * Decrease num_sacks. 4234 */ 4235 tp->rx_opt.num_sacks--; 4236 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4237 sp[i] = sp[i + 1]; 4238 continue; 4239 } 4240 this_sack++, swalk++; 4241 } 4242 } 4243 4244 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4245 { 4246 struct tcp_sock *tp = tcp_sk(sk); 4247 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4248 int cur_sacks = tp->rx_opt.num_sacks; 4249 int this_sack; 4250 4251 if (!cur_sacks) 4252 goto new_sack; 4253 4254 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4255 if (tcp_sack_extend(sp, seq, end_seq)) { 4256 /* Rotate this_sack to the first one. */ 4257 for (; this_sack > 0; this_sack--, sp--) 4258 swap(*sp, *(sp - 1)); 4259 if (cur_sacks > 1) 4260 tcp_sack_maybe_coalesce(tp); 4261 return; 4262 } 4263 } 4264 4265 /* Could not find an adjacent existing SACK, build a new one, 4266 * put it at the front, and shift everyone else down. We 4267 * always know there is at least one SACK present already here. 4268 * 4269 * If the sack array is full, forget about the last one. 4270 */ 4271 if (this_sack >= TCP_NUM_SACKS) { 4272 if (tp->compressed_ack) 4273 tcp_send_ack(sk); 4274 this_sack--; 4275 tp->rx_opt.num_sacks--; 4276 sp--; 4277 } 4278 for (; this_sack > 0; this_sack--, sp--) 4279 *sp = *(sp - 1); 4280 4281 new_sack: 4282 /* Build the new head SACK, and we're done. */ 4283 sp->start_seq = seq; 4284 sp->end_seq = end_seq; 4285 tp->rx_opt.num_sacks++; 4286 } 4287 4288 /* RCV.NXT advances, some SACKs should be eaten. */ 4289 4290 static void tcp_sack_remove(struct tcp_sock *tp) 4291 { 4292 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4293 int num_sacks = tp->rx_opt.num_sacks; 4294 int this_sack; 4295 4296 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4297 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4298 tp->rx_opt.num_sacks = 0; 4299 return; 4300 } 4301 4302 for (this_sack = 0; this_sack < num_sacks;) { 4303 /* Check if the start of the sack is covered by RCV.NXT. */ 4304 if (!before(tp->rcv_nxt, sp->start_seq)) { 4305 int i; 4306 4307 /* RCV.NXT must cover all the block! */ 4308 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4309 4310 /* Zap this SACK, by moving forward any other SACKS. */ 4311 for (i = this_sack+1; i < num_sacks; i++) 4312 tp->selective_acks[i-1] = tp->selective_acks[i]; 4313 num_sacks--; 4314 continue; 4315 } 4316 this_sack++; 4317 sp++; 4318 } 4319 tp->rx_opt.num_sacks = num_sacks; 4320 } 4321 4322 /** 4323 * tcp_try_coalesce - try to merge skb to prior one 4324 * @sk: socket 4325 * @dest: destination queue 4326 * @to: prior buffer 4327 * @from: buffer to add in queue 4328 * @fragstolen: pointer to boolean 4329 * 4330 * Before queueing skb @from after @to, try to merge them 4331 * to reduce overall memory use and queue lengths, if cost is small. 4332 * Packets in ofo or receive queues can stay a long time. 4333 * Better try to coalesce them right now to avoid future collapses. 4334 * Returns true if caller should free @from instead of queueing it 4335 */ 4336 static bool tcp_try_coalesce(struct sock *sk, 4337 struct sk_buff *to, 4338 struct sk_buff *from, 4339 bool *fragstolen) 4340 { 4341 int delta; 4342 4343 *fragstolen = false; 4344 4345 /* Its possible this segment overlaps with prior segment in queue */ 4346 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4347 return false; 4348 4349 #ifdef CONFIG_TLS_DEVICE 4350 if (from->decrypted != to->decrypted) 4351 return false; 4352 #endif 4353 4354 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4355 return false; 4356 4357 atomic_add(delta, &sk->sk_rmem_alloc); 4358 sk_mem_charge(sk, delta); 4359 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4360 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4361 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4362 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4363 4364 if (TCP_SKB_CB(from)->has_rxtstamp) { 4365 TCP_SKB_CB(to)->has_rxtstamp = true; 4366 to->tstamp = from->tstamp; 4367 } 4368 4369 return true; 4370 } 4371 4372 static bool tcp_ooo_try_coalesce(struct sock *sk, 4373 struct sk_buff *to, 4374 struct sk_buff *from, 4375 bool *fragstolen) 4376 { 4377 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4378 4379 /* In case tcp_drop() is called later, update to->gso_segs */ 4380 if (res) { 4381 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4382 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4383 4384 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4385 } 4386 return res; 4387 } 4388 4389 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4390 { 4391 sk_drops_add(sk, skb); 4392 __kfree_skb(skb); 4393 } 4394 4395 /* This one checks to see if we can put data from the 4396 * out_of_order queue into the receive_queue. 4397 */ 4398 static void tcp_ofo_queue(struct sock *sk) 4399 { 4400 struct tcp_sock *tp = tcp_sk(sk); 4401 __u32 dsack_high = tp->rcv_nxt; 4402 bool fin, fragstolen, eaten; 4403 struct sk_buff *skb, *tail; 4404 struct rb_node *p; 4405 4406 p = rb_first(&tp->out_of_order_queue); 4407 while (p) { 4408 skb = rb_to_skb(p); 4409 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4410 break; 4411 4412 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4413 __u32 dsack = dsack_high; 4414 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4415 dsack_high = TCP_SKB_CB(skb)->end_seq; 4416 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4417 } 4418 p = rb_next(p); 4419 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4420 4421 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4422 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4423 tcp_drop(sk, skb); 4424 continue; 4425 } 4426 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4427 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4428 TCP_SKB_CB(skb)->end_seq); 4429 4430 tail = skb_peek_tail(&sk->sk_receive_queue); 4431 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4432 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4433 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4434 if (!eaten) 4435 __skb_queue_tail(&sk->sk_receive_queue, skb); 4436 else 4437 kfree_skb_partial(skb, fragstolen); 4438 4439 if (unlikely(fin)) { 4440 tcp_fin(sk); 4441 /* tcp_fin() purges tp->out_of_order_queue, 4442 * so we must end this loop right now. 4443 */ 4444 break; 4445 } 4446 } 4447 } 4448 4449 static bool tcp_prune_ofo_queue(struct sock *sk); 4450 static int tcp_prune_queue(struct sock *sk); 4451 4452 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4453 unsigned int size) 4454 { 4455 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4456 !sk_rmem_schedule(sk, skb, size)) { 4457 4458 if (tcp_prune_queue(sk) < 0) 4459 return -1; 4460 4461 while (!sk_rmem_schedule(sk, skb, size)) { 4462 if (!tcp_prune_ofo_queue(sk)) 4463 return -1; 4464 } 4465 } 4466 return 0; 4467 } 4468 4469 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4470 { 4471 struct tcp_sock *tp = tcp_sk(sk); 4472 struct rb_node **p, *parent; 4473 struct sk_buff *skb1; 4474 u32 seq, end_seq; 4475 bool fragstolen; 4476 4477 tcp_ecn_check_ce(sk, skb); 4478 4479 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4481 tcp_drop(sk, skb); 4482 return; 4483 } 4484 4485 /* Disable header prediction. */ 4486 tp->pred_flags = 0; 4487 inet_csk_schedule_ack(sk); 4488 4489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4490 seq = TCP_SKB_CB(skb)->seq; 4491 end_seq = TCP_SKB_CB(skb)->end_seq; 4492 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4493 tp->rcv_nxt, seq, end_seq); 4494 4495 p = &tp->out_of_order_queue.rb_node; 4496 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4497 /* Initial out of order segment, build 1 SACK. */ 4498 if (tcp_is_sack(tp)) { 4499 tp->rx_opt.num_sacks = 1; 4500 tp->selective_acks[0].start_seq = seq; 4501 tp->selective_acks[0].end_seq = end_seq; 4502 } 4503 rb_link_node(&skb->rbnode, NULL, p); 4504 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4505 tp->ooo_last_skb = skb; 4506 goto end; 4507 } 4508 4509 /* In the typical case, we are adding an skb to the end of the list. 4510 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4511 */ 4512 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4513 skb, &fragstolen)) { 4514 coalesce_done: 4515 tcp_grow_window(sk, skb); 4516 kfree_skb_partial(skb, fragstolen); 4517 skb = NULL; 4518 goto add_sack; 4519 } 4520 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4521 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4522 parent = &tp->ooo_last_skb->rbnode; 4523 p = &parent->rb_right; 4524 goto insert; 4525 } 4526 4527 /* Find place to insert this segment. Handle overlaps on the way. */ 4528 parent = NULL; 4529 while (*p) { 4530 parent = *p; 4531 skb1 = rb_to_skb(parent); 4532 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4533 p = &parent->rb_left; 4534 continue; 4535 } 4536 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4537 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4538 /* All the bits are present. Drop. */ 4539 NET_INC_STATS(sock_net(sk), 4540 LINUX_MIB_TCPOFOMERGE); 4541 tcp_drop(sk, skb); 4542 skb = NULL; 4543 tcp_dsack_set(sk, seq, end_seq); 4544 goto add_sack; 4545 } 4546 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4547 /* Partial overlap. */ 4548 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4549 } else { 4550 /* skb's seq == skb1's seq and skb covers skb1. 4551 * Replace skb1 with skb. 4552 */ 4553 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4554 &tp->out_of_order_queue); 4555 tcp_dsack_extend(sk, 4556 TCP_SKB_CB(skb1)->seq, 4557 TCP_SKB_CB(skb1)->end_seq); 4558 NET_INC_STATS(sock_net(sk), 4559 LINUX_MIB_TCPOFOMERGE); 4560 tcp_drop(sk, skb1); 4561 goto merge_right; 4562 } 4563 } else if (tcp_ooo_try_coalesce(sk, skb1, 4564 skb, &fragstolen)) { 4565 goto coalesce_done; 4566 } 4567 p = &parent->rb_right; 4568 } 4569 insert: 4570 /* Insert segment into RB tree. */ 4571 rb_link_node(&skb->rbnode, parent, p); 4572 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4573 4574 merge_right: 4575 /* Remove other segments covered by skb. */ 4576 while ((skb1 = skb_rb_next(skb)) != NULL) { 4577 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4578 break; 4579 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4580 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4581 end_seq); 4582 break; 4583 } 4584 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4585 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4586 TCP_SKB_CB(skb1)->end_seq); 4587 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4588 tcp_drop(sk, skb1); 4589 } 4590 /* If there is no skb after us, we are the last_skb ! */ 4591 if (!skb1) 4592 tp->ooo_last_skb = skb; 4593 4594 add_sack: 4595 if (tcp_is_sack(tp)) 4596 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4597 end: 4598 if (skb) { 4599 tcp_grow_window(sk, skb); 4600 skb_condense(skb); 4601 skb_set_owner_r(skb, sk); 4602 } 4603 } 4604 4605 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4606 bool *fragstolen) 4607 { 4608 int eaten; 4609 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4610 4611 __skb_pull(skb, hdrlen); 4612 eaten = (tail && 4613 tcp_try_coalesce(sk, tail, 4614 skb, fragstolen)) ? 1 : 0; 4615 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4616 if (!eaten) { 4617 __skb_queue_tail(&sk->sk_receive_queue, skb); 4618 skb_set_owner_r(skb, sk); 4619 } 4620 return eaten; 4621 } 4622 4623 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4624 { 4625 struct sk_buff *skb; 4626 int err = -ENOMEM; 4627 int data_len = 0; 4628 bool fragstolen; 4629 4630 if (size == 0) 4631 return 0; 4632 4633 if (size > PAGE_SIZE) { 4634 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4635 4636 data_len = npages << PAGE_SHIFT; 4637 size = data_len + (size & ~PAGE_MASK); 4638 } 4639 skb = alloc_skb_with_frags(size - data_len, data_len, 4640 PAGE_ALLOC_COSTLY_ORDER, 4641 &err, sk->sk_allocation); 4642 if (!skb) 4643 goto err; 4644 4645 skb_put(skb, size - data_len); 4646 skb->data_len = data_len; 4647 skb->len = size; 4648 4649 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4651 goto err_free; 4652 } 4653 4654 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4655 if (err) 4656 goto err_free; 4657 4658 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4659 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4660 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4661 4662 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4663 WARN_ON_ONCE(fragstolen); /* should not happen */ 4664 __kfree_skb(skb); 4665 } 4666 return size; 4667 4668 err_free: 4669 kfree_skb(skb); 4670 err: 4671 return err; 4672 4673 } 4674 4675 void tcp_data_ready(struct sock *sk) 4676 { 4677 const struct tcp_sock *tp = tcp_sk(sk); 4678 int avail = tp->rcv_nxt - tp->copied_seq; 4679 4680 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4681 return; 4682 4683 sk->sk_data_ready(sk); 4684 } 4685 4686 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4687 { 4688 struct tcp_sock *tp = tcp_sk(sk); 4689 bool fragstolen; 4690 int eaten; 4691 4692 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4693 __kfree_skb(skb); 4694 return; 4695 } 4696 skb_dst_drop(skb); 4697 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4698 4699 tcp_ecn_accept_cwr(sk, skb); 4700 4701 tp->rx_opt.dsack = 0; 4702 4703 /* Queue data for delivery to the user. 4704 * Packets in sequence go to the receive queue. 4705 * Out of sequence packets to the out_of_order_queue. 4706 */ 4707 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4708 if (tcp_receive_window(tp) == 0) { 4709 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4710 goto out_of_window; 4711 } 4712 4713 /* Ok. In sequence. In window. */ 4714 queue_and_out: 4715 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4716 sk_forced_mem_schedule(sk, skb->truesize); 4717 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4719 goto drop; 4720 } 4721 4722 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4723 if (skb->len) 4724 tcp_event_data_recv(sk, skb); 4725 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4726 tcp_fin(sk); 4727 4728 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4729 tcp_ofo_queue(sk); 4730 4731 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4732 * gap in queue is filled. 4733 */ 4734 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4735 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4736 } 4737 4738 if (tp->rx_opt.num_sacks) 4739 tcp_sack_remove(tp); 4740 4741 tcp_fast_path_check(sk); 4742 4743 if (eaten > 0) 4744 kfree_skb_partial(skb, fragstolen); 4745 if (!sock_flag(sk, SOCK_DEAD)) 4746 tcp_data_ready(sk); 4747 return; 4748 } 4749 4750 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4751 tcp_rcv_spurious_retrans(sk, skb); 4752 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4753 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4754 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4755 4756 out_of_window: 4757 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4758 inet_csk_schedule_ack(sk); 4759 drop: 4760 tcp_drop(sk, skb); 4761 return; 4762 } 4763 4764 /* Out of window. F.e. zero window probe. */ 4765 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4766 goto out_of_window; 4767 4768 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4769 /* Partial packet, seq < rcv_next < end_seq */ 4770 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4771 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4772 TCP_SKB_CB(skb)->end_seq); 4773 4774 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4775 4776 /* If window is closed, drop tail of packet. But after 4777 * remembering D-SACK for its head made in previous line. 4778 */ 4779 if (!tcp_receive_window(tp)) { 4780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4781 goto out_of_window; 4782 } 4783 goto queue_and_out; 4784 } 4785 4786 tcp_data_queue_ofo(sk, skb); 4787 } 4788 4789 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4790 { 4791 if (list) 4792 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4793 4794 return skb_rb_next(skb); 4795 } 4796 4797 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4798 struct sk_buff_head *list, 4799 struct rb_root *root) 4800 { 4801 struct sk_buff *next = tcp_skb_next(skb, list); 4802 4803 if (list) 4804 __skb_unlink(skb, list); 4805 else 4806 rb_erase(&skb->rbnode, root); 4807 4808 __kfree_skb(skb); 4809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4810 4811 return next; 4812 } 4813 4814 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4815 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4816 { 4817 struct rb_node **p = &root->rb_node; 4818 struct rb_node *parent = NULL; 4819 struct sk_buff *skb1; 4820 4821 while (*p) { 4822 parent = *p; 4823 skb1 = rb_to_skb(parent); 4824 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4825 p = &parent->rb_left; 4826 else 4827 p = &parent->rb_right; 4828 } 4829 rb_link_node(&skb->rbnode, parent, p); 4830 rb_insert_color(&skb->rbnode, root); 4831 } 4832 4833 /* Collapse contiguous sequence of skbs head..tail with 4834 * sequence numbers start..end. 4835 * 4836 * If tail is NULL, this means until the end of the queue. 4837 * 4838 * Segments with FIN/SYN are not collapsed (only because this 4839 * simplifies code) 4840 */ 4841 static void 4842 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4843 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4844 { 4845 struct sk_buff *skb = head, *n; 4846 struct sk_buff_head tmp; 4847 bool end_of_skbs; 4848 4849 /* First, check that queue is collapsible and find 4850 * the point where collapsing can be useful. 4851 */ 4852 restart: 4853 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4854 n = tcp_skb_next(skb, list); 4855 4856 /* No new bits? It is possible on ofo queue. */ 4857 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4858 skb = tcp_collapse_one(sk, skb, list, root); 4859 if (!skb) 4860 break; 4861 goto restart; 4862 } 4863 4864 /* The first skb to collapse is: 4865 * - not SYN/FIN and 4866 * - bloated or contains data before "start" or 4867 * overlaps to the next one. 4868 */ 4869 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4870 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4871 before(TCP_SKB_CB(skb)->seq, start))) { 4872 end_of_skbs = false; 4873 break; 4874 } 4875 4876 if (n && n != tail && 4877 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4878 end_of_skbs = false; 4879 break; 4880 } 4881 4882 /* Decided to skip this, advance start seq. */ 4883 start = TCP_SKB_CB(skb)->end_seq; 4884 } 4885 if (end_of_skbs || 4886 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4887 return; 4888 4889 __skb_queue_head_init(&tmp); 4890 4891 while (before(start, end)) { 4892 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4893 struct sk_buff *nskb; 4894 4895 nskb = alloc_skb(copy, GFP_ATOMIC); 4896 if (!nskb) 4897 break; 4898 4899 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4900 #ifdef CONFIG_TLS_DEVICE 4901 nskb->decrypted = skb->decrypted; 4902 #endif 4903 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4904 if (list) 4905 __skb_queue_before(list, skb, nskb); 4906 else 4907 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4908 skb_set_owner_r(nskb, sk); 4909 4910 /* Copy data, releasing collapsed skbs. */ 4911 while (copy > 0) { 4912 int offset = start - TCP_SKB_CB(skb)->seq; 4913 int size = TCP_SKB_CB(skb)->end_seq - start; 4914 4915 BUG_ON(offset < 0); 4916 if (size > 0) { 4917 size = min(copy, size); 4918 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4919 BUG(); 4920 TCP_SKB_CB(nskb)->end_seq += size; 4921 copy -= size; 4922 start += size; 4923 } 4924 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4925 skb = tcp_collapse_one(sk, skb, list, root); 4926 if (!skb || 4927 skb == tail || 4928 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4929 goto end; 4930 #ifdef CONFIG_TLS_DEVICE 4931 if (skb->decrypted != nskb->decrypted) 4932 goto end; 4933 #endif 4934 } 4935 } 4936 } 4937 end: 4938 skb_queue_walk_safe(&tmp, skb, n) 4939 tcp_rbtree_insert(root, skb); 4940 } 4941 4942 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4943 * and tcp_collapse() them until all the queue is collapsed. 4944 */ 4945 static void tcp_collapse_ofo_queue(struct sock *sk) 4946 { 4947 struct tcp_sock *tp = tcp_sk(sk); 4948 u32 range_truesize, sum_tiny = 0; 4949 struct sk_buff *skb, *head; 4950 u32 start, end; 4951 4952 skb = skb_rb_first(&tp->out_of_order_queue); 4953 new_range: 4954 if (!skb) { 4955 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4956 return; 4957 } 4958 start = TCP_SKB_CB(skb)->seq; 4959 end = TCP_SKB_CB(skb)->end_seq; 4960 range_truesize = skb->truesize; 4961 4962 for (head = skb;;) { 4963 skb = skb_rb_next(skb); 4964 4965 /* Range is terminated when we see a gap or when 4966 * we are at the queue end. 4967 */ 4968 if (!skb || 4969 after(TCP_SKB_CB(skb)->seq, end) || 4970 before(TCP_SKB_CB(skb)->end_seq, start)) { 4971 /* Do not attempt collapsing tiny skbs */ 4972 if (range_truesize != head->truesize || 4973 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4974 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4975 head, skb, start, end); 4976 } else { 4977 sum_tiny += range_truesize; 4978 if (sum_tiny > sk->sk_rcvbuf >> 3) 4979 return; 4980 } 4981 goto new_range; 4982 } 4983 4984 range_truesize += skb->truesize; 4985 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4986 start = TCP_SKB_CB(skb)->seq; 4987 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4988 end = TCP_SKB_CB(skb)->end_seq; 4989 } 4990 } 4991 4992 /* 4993 * Clean the out-of-order queue to make room. 4994 * We drop high sequences packets to : 4995 * 1) Let a chance for holes to be filled. 4996 * 2) not add too big latencies if thousands of packets sit there. 4997 * (But if application shrinks SO_RCVBUF, we could still end up 4998 * freeing whole queue here) 4999 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5000 * 5001 * Return true if queue has shrunk. 5002 */ 5003 static bool tcp_prune_ofo_queue(struct sock *sk) 5004 { 5005 struct tcp_sock *tp = tcp_sk(sk); 5006 struct rb_node *node, *prev; 5007 int goal; 5008 5009 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5010 return false; 5011 5012 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5013 goal = sk->sk_rcvbuf >> 3; 5014 node = &tp->ooo_last_skb->rbnode; 5015 do { 5016 prev = rb_prev(node); 5017 rb_erase(node, &tp->out_of_order_queue); 5018 goal -= rb_to_skb(node)->truesize; 5019 tcp_drop(sk, rb_to_skb(node)); 5020 if (!prev || goal <= 0) { 5021 sk_mem_reclaim(sk); 5022 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5023 !tcp_under_memory_pressure(sk)) 5024 break; 5025 goal = sk->sk_rcvbuf >> 3; 5026 } 5027 node = prev; 5028 } while (node); 5029 tp->ooo_last_skb = rb_to_skb(prev); 5030 5031 /* Reset SACK state. A conforming SACK implementation will 5032 * do the same at a timeout based retransmit. When a connection 5033 * is in a sad state like this, we care only about integrity 5034 * of the connection not performance. 5035 */ 5036 if (tp->rx_opt.sack_ok) 5037 tcp_sack_reset(&tp->rx_opt); 5038 return true; 5039 } 5040 5041 /* Reduce allocated memory if we can, trying to get 5042 * the socket within its memory limits again. 5043 * 5044 * Return less than zero if we should start dropping frames 5045 * until the socket owning process reads some of the data 5046 * to stabilize the situation. 5047 */ 5048 static int tcp_prune_queue(struct sock *sk) 5049 { 5050 struct tcp_sock *tp = tcp_sk(sk); 5051 5052 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 5053 5054 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5055 5056 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5057 tcp_clamp_window(sk); 5058 else if (tcp_under_memory_pressure(sk)) 5059 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5060 5061 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5062 return 0; 5063 5064 tcp_collapse_ofo_queue(sk); 5065 if (!skb_queue_empty(&sk->sk_receive_queue)) 5066 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5067 skb_peek(&sk->sk_receive_queue), 5068 NULL, 5069 tp->copied_seq, tp->rcv_nxt); 5070 sk_mem_reclaim(sk); 5071 5072 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5073 return 0; 5074 5075 /* Collapsing did not help, destructive actions follow. 5076 * This must not ever occur. */ 5077 5078 tcp_prune_ofo_queue(sk); 5079 5080 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5081 return 0; 5082 5083 /* If we are really being abused, tell the caller to silently 5084 * drop receive data on the floor. It will get retransmitted 5085 * and hopefully then we'll have sufficient space. 5086 */ 5087 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5088 5089 /* Massive buffer overcommit. */ 5090 tp->pred_flags = 0; 5091 return -1; 5092 } 5093 5094 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5095 { 5096 const struct tcp_sock *tp = tcp_sk(sk); 5097 5098 /* If the user specified a specific send buffer setting, do 5099 * not modify it. 5100 */ 5101 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5102 return false; 5103 5104 /* If we are under global TCP memory pressure, do not expand. */ 5105 if (tcp_under_memory_pressure(sk)) 5106 return false; 5107 5108 /* If we are under soft global TCP memory pressure, do not expand. */ 5109 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5110 return false; 5111 5112 /* If we filled the congestion window, do not expand. */ 5113 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5114 return false; 5115 5116 return true; 5117 } 5118 5119 /* When incoming ACK allowed to free some skb from write_queue, 5120 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5121 * on the exit from tcp input handler. 5122 * 5123 * PROBLEM: sndbuf expansion does not work well with largesend. 5124 */ 5125 static void tcp_new_space(struct sock *sk) 5126 { 5127 struct tcp_sock *tp = tcp_sk(sk); 5128 5129 if (tcp_should_expand_sndbuf(sk)) { 5130 tcp_sndbuf_expand(sk); 5131 tp->snd_cwnd_stamp = tcp_jiffies32; 5132 } 5133 5134 sk->sk_write_space(sk); 5135 } 5136 5137 static void tcp_check_space(struct sock *sk) 5138 { 5139 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5140 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5141 /* pairs with tcp_poll() */ 5142 smp_mb(); 5143 if (sk->sk_socket && 5144 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5145 tcp_new_space(sk); 5146 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5147 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5148 } 5149 } 5150 } 5151 5152 static inline void tcp_data_snd_check(struct sock *sk) 5153 { 5154 tcp_push_pending_frames(sk); 5155 tcp_check_space(sk); 5156 } 5157 5158 /* 5159 * Check if sending an ack is needed. 5160 */ 5161 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5162 { 5163 struct tcp_sock *tp = tcp_sk(sk); 5164 unsigned long rtt, delay; 5165 5166 /* More than one full frame received... */ 5167 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5168 /* ... and right edge of window advances far enough. 5169 * (tcp_recvmsg() will send ACK otherwise). 5170 * If application uses SO_RCVLOWAT, we want send ack now if 5171 * we have not received enough bytes to satisfy the condition. 5172 */ 5173 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5174 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5175 /* We ACK each frame or... */ 5176 tcp_in_quickack_mode(sk) || 5177 /* Protocol state mandates a one-time immediate ACK */ 5178 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5179 send_now: 5180 tcp_send_ack(sk); 5181 return; 5182 } 5183 5184 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5185 tcp_send_delayed_ack(sk); 5186 return; 5187 } 5188 5189 if (!tcp_is_sack(tp) || 5190 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5191 goto send_now; 5192 tp->compressed_ack++; 5193 5194 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5195 return; 5196 5197 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5198 5199 rtt = tp->rcv_rtt_est.rtt_us; 5200 if (tp->srtt_us && tp->srtt_us < rtt) 5201 rtt = tp->srtt_us; 5202 5203 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5204 rtt * (NSEC_PER_USEC >> 3)/20); 5205 sock_hold(sk); 5206 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5207 HRTIMER_MODE_REL_PINNED_SOFT); 5208 } 5209 5210 static inline void tcp_ack_snd_check(struct sock *sk) 5211 { 5212 if (!inet_csk_ack_scheduled(sk)) { 5213 /* We sent a data segment already. */ 5214 return; 5215 } 5216 __tcp_ack_snd_check(sk, 1); 5217 } 5218 5219 /* 5220 * This routine is only called when we have urgent data 5221 * signaled. Its the 'slow' part of tcp_urg. It could be 5222 * moved inline now as tcp_urg is only called from one 5223 * place. We handle URGent data wrong. We have to - as 5224 * BSD still doesn't use the correction from RFC961. 5225 * For 1003.1g we should support a new option TCP_STDURG to permit 5226 * either form (or just set the sysctl tcp_stdurg). 5227 */ 5228 5229 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5230 { 5231 struct tcp_sock *tp = tcp_sk(sk); 5232 u32 ptr = ntohs(th->urg_ptr); 5233 5234 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5235 ptr--; 5236 ptr += ntohl(th->seq); 5237 5238 /* Ignore urgent data that we've already seen and read. */ 5239 if (after(tp->copied_seq, ptr)) 5240 return; 5241 5242 /* Do not replay urg ptr. 5243 * 5244 * NOTE: interesting situation not covered by specs. 5245 * Misbehaving sender may send urg ptr, pointing to segment, 5246 * which we already have in ofo queue. We are not able to fetch 5247 * such data and will stay in TCP_URG_NOTYET until will be eaten 5248 * by recvmsg(). Seems, we are not obliged to handle such wicked 5249 * situations. But it is worth to think about possibility of some 5250 * DoSes using some hypothetical application level deadlock. 5251 */ 5252 if (before(ptr, tp->rcv_nxt)) 5253 return; 5254 5255 /* Do we already have a newer (or duplicate) urgent pointer? */ 5256 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5257 return; 5258 5259 /* Tell the world about our new urgent pointer. */ 5260 sk_send_sigurg(sk); 5261 5262 /* We may be adding urgent data when the last byte read was 5263 * urgent. To do this requires some care. We cannot just ignore 5264 * tp->copied_seq since we would read the last urgent byte again 5265 * as data, nor can we alter copied_seq until this data arrives 5266 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5267 * 5268 * NOTE. Double Dutch. Rendering to plain English: author of comment 5269 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5270 * and expect that both A and B disappear from stream. This is _wrong_. 5271 * Though this happens in BSD with high probability, this is occasional. 5272 * Any application relying on this is buggy. Note also, that fix "works" 5273 * only in this artificial test. Insert some normal data between A and B and we will 5274 * decline of BSD again. Verdict: it is better to remove to trap 5275 * buggy users. 5276 */ 5277 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5278 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5279 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5280 tp->copied_seq++; 5281 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5282 __skb_unlink(skb, &sk->sk_receive_queue); 5283 __kfree_skb(skb); 5284 } 5285 } 5286 5287 tp->urg_data = TCP_URG_NOTYET; 5288 tp->urg_seq = ptr; 5289 5290 /* Disable header prediction. */ 5291 tp->pred_flags = 0; 5292 } 5293 5294 /* This is the 'fast' part of urgent handling. */ 5295 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5296 { 5297 struct tcp_sock *tp = tcp_sk(sk); 5298 5299 /* Check if we get a new urgent pointer - normally not. */ 5300 if (th->urg) 5301 tcp_check_urg(sk, th); 5302 5303 /* Do we wait for any urgent data? - normally not... */ 5304 if (tp->urg_data == TCP_URG_NOTYET) { 5305 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5306 th->syn; 5307 5308 /* Is the urgent pointer pointing into this packet? */ 5309 if (ptr < skb->len) { 5310 u8 tmp; 5311 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5312 BUG(); 5313 tp->urg_data = TCP_URG_VALID | tmp; 5314 if (!sock_flag(sk, SOCK_DEAD)) 5315 sk->sk_data_ready(sk); 5316 } 5317 } 5318 } 5319 5320 /* Accept RST for rcv_nxt - 1 after a FIN. 5321 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5322 * FIN is sent followed by a RST packet. The RST is sent with the same 5323 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5324 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5325 * ACKs on the closed socket. In addition middleboxes can drop either the 5326 * challenge ACK or a subsequent RST. 5327 */ 5328 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5329 { 5330 struct tcp_sock *tp = tcp_sk(sk); 5331 5332 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5333 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5334 TCPF_CLOSING)); 5335 } 5336 5337 /* Does PAWS and seqno based validation of an incoming segment, flags will 5338 * play significant role here. 5339 */ 5340 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5341 const struct tcphdr *th, int syn_inerr) 5342 { 5343 struct tcp_sock *tp = tcp_sk(sk); 5344 bool rst_seq_match = false; 5345 5346 /* RFC1323: H1. Apply PAWS check first. */ 5347 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5348 tp->rx_opt.saw_tstamp && 5349 tcp_paws_discard(sk, skb)) { 5350 if (!th->rst) { 5351 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5352 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5353 LINUX_MIB_TCPACKSKIPPEDPAWS, 5354 &tp->last_oow_ack_time)) 5355 tcp_send_dupack(sk, skb); 5356 goto discard; 5357 } 5358 /* Reset is accepted even if it did not pass PAWS. */ 5359 } 5360 5361 /* Step 1: check sequence number */ 5362 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5363 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5364 * (RST) segments are validated by checking their SEQ-fields." 5365 * And page 69: "If an incoming segment is not acceptable, 5366 * an acknowledgment should be sent in reply (unless the RST 5367 * bit is set, if so drop the segment and return)". 5368 */ 5369 if (!th->rst) { 5370 if (th->syn) 5371 goto syn_challenge; 5372 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5373 LINUX_MIB_TCPACKSKIPPEDSEQ, 5374 &tp->last_oow_ack_time)) 5375 tcp_send_dupack(sk, skb); 5376 } else if (tcp_reset_check(sk, skb)) { 5377 tcp_reset(sk); 5378 } 5379 goto discard; 5380 } 5381 5382 /* Step 2: check RST bit */ 5383 if (th->rst) { 5384 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5385 * FIN and SACK too if available): 5386 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5387 * the right-most SACK block, 5388 * then 5389 * RESET the connection 5390 * else 5391 * Send a challenge ACK 5392 */ 5393 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5394 tcp_reset_check(sk, skb)) { 5395 rst_seq_match = true; 5396 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5397 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5398 int max_sack = sp[0].end_seq; 5399 int this_sack; 5400 5401 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5402 ++this_sack) { 5403 max_sack = after(sp[this_sack].end_seq, 5404 max_sack) ? 5405 sp[this_sack].end_seq : max_sack; 5406 } 5407 5408 if (TCP_SKB_CB(skb)->seq == max_sack) 5409 rst_seq_match = true; 5410 } 5411 5412 if (rst_seq_match) 5413 tcp_reset(sk); 5414 else { 5415 /* Disable TFO if RST is out-of-order 5416 * and no data has been received 5417 * for current active TFO socket 5418 */ 5419 if (tp->syn_fastopen && !tp->data_segs_in && 5420 sk->sk_state == TCP_ESTABLISHED) 5421 tcp_fastopen_active_disable(sk); 5422 tcp_send_challenge_ack(sk, skb); 5423 } 5424 goto discard; 5425 } 5426 5427 /* step 3: check security and precedence [ignored] */ 5428 5429 /* step 4: Check for a SYN 5430 * RFC 5961 4.2 : Send a challenge ack 5431 */ 5432 if (th->syn) { 5433 syn_challenge: 5434 if (syn_inerr) 5435 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5436 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5437 tcp_send_challenge_ack(sk, skb); 5438 goto discard; 5439 } 5440 5441 return true; 5442 5443 discard: 5444 tcp_drop(sk, skb); 5445 return false; 5446 } 5447 5448 /* 5449 * TCP receive function for the ESTABLISHED state. 5450 * 5451 * It is split into a fast path and a slow path. The fast path is 5452 * disabled when: 5453 * - A zero window was announced from us - zero window probing 5454 * is only handled properly in the slow path. 5455 * - Out of order segments arrived. 5456 * - Urgent data is expected. 5457 * - There is no buffer space left 5458 * - Unexpected TCP flags/window values/header lengths are received 5459 * (detected by checking the TCP header against pred_flags) 5460 * - Data is sent in both directions. Fast path only supports pure senders 5461 * or pure receivers (this means either the sequence number or the ack 5462 * value must stay constant) 5463 * - Unexpected TCP option. 5464 * 5465 * When these conditions are not satisfied it drops into a standard 5466 * receive procedure patterned after RFC793 to handle all cases. 5467 * The first three cases are guaranteed by proper pred_flags setting, 5468 * the rest is checked inline. Fast processing is turned on in 5469 * tcp_data_queue when everything is OK. 5470 */ 5471 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5472 { 5473 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5474 struct tcp_sock *tp = tcp_sk(sk); 5475 unsigned int len = skb->len; 5476 5477 /* TCP congestion window tracking */ 5478 trace_tcp_probe(sk, skb); 5479 5480 tcp_mstamp_refresh(tp); 5481 if (unlikely(!sk->sk_rx_dst)) 5482 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5483 /* 5484 * Header prediction. 5485 * The code loosely follows the one in the famous 5486 * "30 instruction TCP receive" Van Jacobson mail. 5487 * 5488 * Van's trick is to deposit buffers into socket queue 5489 * on a device interrupt, to call tcp_recv function 5490 * on the receive process context and checksum and copy 5491 * the buffer to user space. smart... 5492 * 5493 * Our current scheme is not silly either but we take the 5494 * extra cost of the net_bh soft interrupt processing... 5495 * We do checksum and copy also but from device to kernel. 5496 */ 5497 5498 tp->rx_opt.saw_tstamp = 0; 5499 5500 /* pred_flags is 0xS?10 << 16 + snd_wnd 5501 * if header_prediction is to be made 5502 * 'S' will always be tp->tcp_header_len >> 2 5503 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5504 * turn it off (when there are holes in the receive 5505 * space for instance) 5506 * PSH flag is ignored. 5507 */ 5508 5509 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5510 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5511 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5512 int tcp_header_len = tp->tcp_header_len; 5513 5514 /* Timestamp header prediction: tcp_header_len 5515 * is automatically equal to th->doff*4 due to pred_flags 5516 * match. 5517 */ 5518 5519 /* Check timestamp */ 5520 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5521 /* No? Slow path! */ 5522 if (!tcp_parse_aligned_timestamp(tp, th)) 5523 goto slow_path; 5524 5525 /* If PAWS failed, check it more carefully in slow path */ 5526 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5527 goto slow_path; 5528 5529 /* DO NOT update ts_recent here, if checksum fails 5530 * and timestamp was corrupted part, it will result 5531 * in a hung connection since we will drop all 5532 * future packets due to the PAWS test. 5533 */ 5534 } 5535 5536 if (len <= tcp_header_len) { 5537 /* Bulk data transfer: sender */ 5538 if (len == tcp_header_len) { 5539 /* Predicted packet is in window by definition. 5540 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5541 * Hence, check seq<=rcv_wup reduces to: 5542 */ 5543 if (tcp_header_len == 5544 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5545 tp->rcv_nxt == tp->rcv_wup) 5546 tcp_store_ts_recent(tp); 5547 5548 /* We know that such packets are checksummed 5549 * on entry. 5550 */ 5551 tcp_ack(sk, skb, 0); 5552 __kfree_skb(skb); 5553 tcp_data_snd_check(sk); 5554 /* When receiving pure ack in fast path, update 5555 * last ts ecr directly instead of calling 5556 * tcp_rcv_rtt_measure_ts() 5557 */ 5558 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5559 return; 5560 } else { /* Header too small */ 5561 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5562 goto discard; 5563 } 5564 } else { 5565 int eaten = 0; 5566 bool fragstolen = false; 5567 5568 if (tcp_checksum_complete(skb)) 5569 goto csum_error; 5570 5571 if ((int)skb->truesize > sk->sk_forward_alloc) 5572 goto step5; 5573 5574 /* Predicted packet is in window by definition. 5575 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5576 * Hence, check seq<=rcv_wup reduces to: 5577 */ 5578 if (tcp_header_len == 5579 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5580 tp->rcv_nxt == tp->rcv_wup) 5581 tcp_store_ts_recent(tp); 5582 5583 tcp_rcv_rtt_measure_ts(sk, skb); 5584 5585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5586 5587 /* Bulk data transfer: receiver */ 5588 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5589 &fragstolen); 5590 5591 tcp_event_data_recv(sk, skb); 5592 5593 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5594 /* Well, only one small jumplet in fast path... */ 5595 tcp_ack(sk, skb, FLAG_DATA); 5596 tcp_data_snd_check(sk); 5597 if (!inet_csk_ack_scheduled(sk)) 5598 goto no_ack; 5599 } 5600 5601 __tcp_ack_snd_check(sk, 0); 5602 no_ack: 5603 if (eaten) 5604 kfree_skb_partial(skb, fragstolen); 5605 tcp_data_ready(sk); 5606 return; 5607 } 5608 } 5609 5610 slow_path: 5611 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5612 goto csum_error; 5613 5614 if (!th->ack && !th->rst && !th->syn) 5615 goto discard; 5616 5617 /* 5618 * Standard slow path. 5619 */ 5620 5621 if (!tcp_validate_incoming(sk, skb, th, 1)) 5622 return; 5623 5624 step5: 5625 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5626 goto discard; 5627 5628 tcp_rcv_rtt_measure_ts(sk, skb); 5629 5630 /* Process urgent data. */ 5631 tcp_urg(sk, skb, th); 5632 5633 /* step 7: process the segment text */ 5634 tcp_data_queue(sk, skb); 5635 5636 tcp_data_snd_check(sk); 5637 tcp_ack_snd_check(sk); 5638 return; 5639 5640 csum_error: 5641 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5642 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5643 5644 discard: 5645 tcp_drop(sk, skb); 5646 } 5647 EXPORT_SYMBOL(tcp_rcv_established); 5648 5649 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5650 { 5651 struct tcp_sock *tp = tcp_sk(sk); 5652 struct inet_connection_sock *icsk = inet_csk(sk); 5653 5654 tcp_set_state(sk, TCP_ESTABLISHED); 5655 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5656 5657 if (skb) { 5658 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5659 security_inet_conn_established(sk, skb); 5660 sk_mark_napi_id(sk, skb); 5661 } 5662 5663 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5664 5665 /* Prevent spurious tcp_cwnd_restart() on first data 5666 * packet. 5667 */ 5668 tp->lsndtime = tcp_jiffies32; 5669 5670 if (sock_flag(sk, SOCK_KEEPOPEN)) 5671 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5672 5673 if (!tp->rx_opt.snd_wscale) 5674 __tcp_fast_path_on(tp, tp->snd_wnd); 5675 else 5676 tp->pred_flags = 0; 5677 } 5678 5679 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5680 struct tcp_fastopen_cookie *cookie) 5681 { 5682 struct tcp_sock *tp = tcp_sk(sk); 5683 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5684 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5685 bool syn_drop = false; 5686 5687 if (mss == tp->rx_opt.user_mss) { 5688 struct tcp_options_received opt; 5689 5690 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5691 tcp_clear_options(&opt); 5692 opt.user_mss = opt.mss_clamp = 0; 5693 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5694 mss = opt.mss_clamp; 5695 } 5696 5697 if (!tp->syn_fastopen) { 5698 /* Ignore an unsolicited cookie */ 5699 cookie->len = -1; 5700 } else if (tp->total_retrans) { 5701 /* SYN timed out and the SYN-ACK neither has a cookie nor 5702 * acknowledges data. Presumably the remote received only 5703 * the retransmitted (regular) SYNs: either the original 5704 * SYN-data or the corresponding SYN-ACK was dropped. 5705 */ 5706 syn_drop = (cookie->len < 0 && data); 5707 } else if (cookie->len < 0 && !tp->syn_data) { 5708 /* We requested a cookie but didn't get it. If we did not use 5709 * the (old) exp opt format then try so next time (try_exp=1). 5710 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5711 */ 5712 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5713 } 5714 5715 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5716 5717 if (data) { /* Retransmit unacked data in SYN */ 5718 skb_rbtree_walk_from(data) { 5719 if (__tcp_retransmit_skb(sk, data, 1)) 5720 break; 5721 } 5722 tcp_rearm_rto(sk); 5723 NET_INC_STATS(sock_net(sk), 5724 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5725 return true; 5726 } 5727 tp->syn_data_acked = tp->syn_data; 5728 if (tp->syn_data_acked) { 5729 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5730 /* SYN-data is counted as two separate packets in tcp_ack() */ 5731 if (tp->delivered > 1) 5732 --tp->delivered; 5733 } 5734 5735 tcp_fastopen_add_skb(sk, synack); 5736 5737 return false; 5738 } 5739 5740 static void smc_check_reset_syn(struct tcp_sock *tp) 5741 { 5742 #if IS_ENABLED(CONFIG_SMC) 5743 if (static_branch_unlikely(&tcp_have_smc)) { 5744 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5745 tp->syn_smc = 0; 5746 } 5747 #endif 5748 } 5749 5750 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5751 const struct tcphdr *th) 5752 { 5753 struct inet_connection_sock *icsk = inet_csk(sk); 5754 struct tcp_sock *tp = tcp_sk(sk); 5755 struct tcp_fastopen_cookie foc = { .len = -1 }; 5756 int saved_clamp = tp->rx_opt.mss_clamp; 5757 bool fastopen_fail; 5758 5759 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5760 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5761 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5762 5763 if (th->ack) { 5764 /* rfc793: 5765 * "If the state is SYN-SENT then 5766 * first check the ACK bit 5767 * If the ACK bit is set 5768 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5769 * a reset (unless the RST bit is set, if so drop 5770 * the segment and return)" 5771 */ 5772 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5773 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5774 goto reset_and_undo; 5775 5776 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5777 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5778 tcp_time_stamp(tp))) { 5779 NET_INC_STATS(sock_net(sk), 5780 LINUX_MIB_PAWSACTIVEREJECTED); 5781 goto reset_and_undo; 5782 } 5783 5784 /* Now ACK is acceptable. 5785 * 5786 * "If the RST bit is set 5787 * If the ACK was acceptable then signal the user "error: 5788 * connection reset", drop the segment, enter CLOSED state, 5789 * delete TCB, and return." 5790 */ 5791 5792 if (th->rst) { 5793 tcp_reset(sk); 5794 goto discard; 5795 } 5796 5797 /* rfc793: 5798 * "fifth, if neither of the SYN or RST bits is set then 5799 * drop the segment and return." 5800 * 5801 * See note below! 5802 * --ANK(990513) 5803 */ 5804 if (!th->syn) 5805 goto discard_and_undo; 5806 5807 /* rfc793: 5808 * "If the SYN bit is on ... 5809 * are acceptable then ... 5810 * (our SYN has been ACKed), change the connection 5811 * state to ESTABLISHED..." 5812 */ 5813 5814 tcp_ecn_rcv_synack(tp, th); 5815 5816 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5817 tcp_ack(sk, skb, FLAG_SLOWPATH); 5818 5819 /* Ok.. it's good. Set up sequence numbers and 5820 * move to established. 5821 */ 5822 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5823 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5824 5825 /* RFC1323: The window in SYN & SYN/ACK segments is 5826 * never scaled. 5827 */ 5828 tp->snd_wnd = ntohs(th->window); 5829 5830 if (!tp->rx_opt.wscale_ok) { 5831 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5832 tp->window_clamp = min(tp->window_clamp, 65535U); 5833 } 5834 5835 if (tp->rx_opt.saw_tstamp) { 5836 tp->rx_opt.tstamp_ok = 1; 5837 tp->tcp_header_len = 5838 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5839 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5840 tcp_store_ts_recent(tp); 5841 } else { 5842 tp->tcp_header_len = sizeof(struct tcphdr); 5843 } 5844 5845 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5846 tcp_initialize_rcv_mss(sk); 5847 5848 /* Remember, tcp_poll() does not lock socket! 5849 * Change state from SYN-SENT only after copied_seq 5850 * is initialized. */ 5851 tp->copied_seq = tp->rcv_nxt; 5852 5853 smc_check_reset_syn(tp); 5854 5855 smp_mb(); 5856 5857 tcp_finish_connect(sk, skb); 5858 5859 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5860 tcp_rcv_fastopen_synack(sk, skb, &foc); 5861 5862 if (!sock_flag(sk, SOCK_DEAD)) { 5863 sk->sk_state_change(sk); 5864 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5865 } 5866 if (fastopen_fail) 5867 return -1; 5868 if (sk->sk_write_pending || 5869 icsk->icsk_accept_queue.rskq_defer_accept || 5870 icsk->icsk_ack.pingpong) { 5871 /* Save one ACK. Data will be ready after 5872 * several ticks, if write_pending is set. 5873 * 5874 * It may be deleted, but with this feature tcpdumps 5875 * look so _wonderfully_ clever, that I was not able 5876 * to stand against the temptation 8) --ANK 5877 */ 5878 inet_csk_schedule_ack(sk); 5879 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5880 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5881 TCP_DELACK_MAX, TCP_RTO_MAX); 5882 5883 discard: 5884 tcp_drop(sk, skb); 5885 return 0; 5886 } else { 5887 tcp_send_ack(sk); 5888 } 5889 return -1; 5890 } 5891 5892 /* No ACK in the segment */ 5893 5894 if (th->rst) { 5895 /* rfc793: 5896 * "If the RST bit is set 5897 * 5898 * Otherwise (no ACK) drop the segment and return." 5899 */ 5900 5901 goto discard_and_undo; 5902 } 5903 5904 /* PAWS check. */ 5905 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5906 tcp_paws_reject(&tp->rx_opt, 0)) 5907 goto discard_and_undo; 5908 5909 if (th->syn) { 5910 /* We see SYN without ACK. It is attempt of 5911 * simultaneous connect with crossed SYNs. 5912 * Particularly, it can be connect to self. 5913 */ 5914 tcp_set_state(sk, TCP_SYN_RECV); 5915 5916 if (tp->rx_opt.saw_tstamp) { 5917 tp->rx_opt.tstamp_ok = 1; 5918 tcp_store_ts_recent(tp); 5919 tp->tcp_header_len = 5920 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5921 } else { 5922 tp->tcp_header_len = sizeof(struct tcphdr); 5923 } 5924 5925 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5926 tp->copied_seq = tp->rcv_nxt; 5927 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5928 5929 /* RFC1323: The window in SYN & SYN/ACK segments is 5930 * never scaled. 5931 */ 5932 tp->snd_wnd = ntohs(th->window); 5933 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5934 tp->max_window = tp->snd_wnd; 5935 5936 tcp_ecn_rcv_syn(tp, th); 5937 5938 tcp_mtup_init(sk); 5939 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5940 tcp_initialize_rcv_mss(sk); 5941 5942 tcp_send_synack(sk); 5943 #if 0 5944 /* Note, we could accept data and URG from this segment. 5945 * There are no obstacles to make this (except that we must 5946 * either change tcp_recvmsg() to prevent it from returning data 5947 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5948 * 5949 * However, if we ignore data in ACKless segments sometimes, 5950 * we have no reasons to accept it sometimes. 5951 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5952 * is not flawless. So, discard packet for sanity. 5953 * Uncomment this return to process the data. 5954 */ 5955 return -1; 5956 #else 5957 goto discard; 5958 #endif 5959 } 5960 /* "fifth, if neither of the SYN or RST bits is set then 5961 * drop the segment and return." 5962 */ 5963 5964 discard_and_undo: 5965 tcp_clear_options(&tp->rx_opt); 5966 tp->rx_opt.mss_clamp = saved_clamp; 5967 goto discard; 5968 5969 reset_and_undo: 5970 tcp_clear_options(&tp->rx_opt); 5971 tp->rx_opt.mss_clamp = saved_clamp; 5972 return 1; 5973 } 5974 5975 /* 5976 * This function implements the receiving procedure of RFC 793 for 5977 * all states except ESTABLISHED and TIME_WAIT. 5978 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5979 * address independent. 5980 */ 5981 5982 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5983 { 5984 struct tcp_sock *tp = tcp_sk(sk); 5985 struct inet_connection_sock *icsk = inet_csk(sk); 5986 const struct tcphdr *th = tcp_hdr(skb); 5987 struct request_sock *req; 5988 int queued = 0; 5989 bool acceptable; 5990 5991 switch (sk->sk_state) { 5992 case TCP_CLOSE: 5993 goto discard; 5994 5995 case TCP_LISTEN: 5996 if (th->ack) 5997 return 1; 5998 5999 if (th->rst) 6000 goto discard; 6001 6002 if (th->syn) { 6003 if (th->fin) 6004 goto discard; 6005 /* It is possible that we process SYN packets from backlog, 6006 * so we need to make sure to disable BH and RCU right there. 6007 */ 6008 rcu_read_lock(); 6009 local_bh_disable(); 6010 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6011 local_bh_enable(); 6012 rcu_read_unlock(); 6013 6014 if (!acceptable) 6015 return 1; 6016 consume_skb(skb); 6017 return 0; 6018 } 6019 goto discard; 6020 6021 case TCP_SYN_SENT: 6022 tp->rx_opt.saw_tstamp = 0; 6023 tcp_mstamp_refresh(tp); 6024 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6025 if (queued >= 0) 6026 return queued; 6027 6028 /* Do step6 onward by hand. */ 6029 tcp_urg(sk, skb, th); 6030 __kfree_skb(skb); 6031 tcp_data_snd_check(sk); 6032 return 0; 6033 } 6034 6035 tcp_mstamp_refresh(tp); 6036 tp->rx_opt.saw_tstamp = 0; 6037 req = tp->fastopen_rsk; 6038 if (req) { 6039 bool req_stolen; 6040 6041 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6042 sk->sk_state != TCP_FIN_WAIT1); 6043 6044 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6045 goto discard; 6046 } 6047 6048 if (!th->ack && !th->rst && !th->syn) 6049 goto discard; 6050 6051 if (!tcp_validate_incoming(sk, skb, th, 0)) 6052 return 0; 6053 6054 /* step 5: check the ACK field */ 6055 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6056 FLAG_UPDATE_TS_RECENT | 6057 FLAG_NO_CHALLENGE_ACK) > 0; 6058 6059 if (!acceptable) { 6060 if (sk->sk_state == TCP_SYN_RECV) 6061 return 1; /* send one RST */ 6062 tcp_send_challenge_ack(sk, skb); 6063 goto discard; 6064 } 6065 switch (sk->sk_state) { 6066 case TCP_SYN_RECV: 6067 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6068 if (!tp->srtt_us) 6069 tcp_synack_rtt_meas(sk, req); 6070 6071 /* Once we leave TCP_SYN_RECV, we no longer need req 6072 * so release it. 6073 */ 6074 if (req) { 6075 inet_csk(sk)->icsk_retransmits = 0; 6076 reqsk_fastopen_remove(sk, req, false); 6077 /* Re-arm the timer because data may have been sent out. 6078 * This is similar to the regular data transmission case 6079 * when new data has just been ack'ed. 6080 * 6081 * (TFO) - we could try to be more aggressive and 6082 * retransmitting any data sooner based on when they 6083 * are sent out. 6084 */ 6085 tcp_rearm_rto(sk); 6086 } else { 6087 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6088 tp->copied_seq = tp->rcv_nxt; 6089 } 6090 smp_mb(); 6091 tcp_set_state(sk, TCP_ESTABLISHED); 6092 sk->sk_state_change(sk); 6093 6094 /* Note, that this wakeup is only for marginal crossed SYN case. 6095 * Passively open sockets are not waked up, because 6096 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6097 */ 6098 if (sk->sk_socket) 6099 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6100 6101 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6102 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6103 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6104 6105 if (tp->rx_opt.tstamp_ok) 6106 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6107 6108 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6109 tcp_update_pacing_rate(sk); 6110 6111 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6112 tp->lsndtime = tcp_jiffies32; 6113 6114 tcp_initialize_rcv_mss(sk); 6115 tcp_fast_path_on(tp); 6116 break; 6117 6118 case TCP_FIN_WAIT1: { 6119 int tmo; 6120 6121 /* If we enter the TCP_FIN_WAIT1 state and we are a 6122 * Fast Open socket and this is the first acceptable 6123 * ACK we have received, this would have acknowledged 6124 * our SYNACK so stop the SYNACK timer. 6125 */ 6126 if (req) { 6127 /* We no longer need the request sock. */ 6128 reqsk_fastopen_remove(sk, req, false); 6129 tcp_rearm_rto(sk); 6130 } 6131 if (tp->snd_una != tp->write_seq) 6132 break; 6133 6134 tcp_set_state(sk, TCP_FIN_WAIT2); 6135 sk->sk_shutdown |= SEND_SHUTDOWN; 6136 6137 sk_dst_confirm(sk); 6138 6139 if (!sock_flag(sk, SOCK_DEAD)) { 6140 /* Wake up lingering close() */ 6141 sk->sk_state_change(sk); 6142 break; 6143 } 6144 6145 if (tp->linger2 < 0) { 6146 tcp_done(sk); 6147 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6148 return 1; 6149 } 6150 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6151 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6152 /* Receive out of order FIN after close() */ 6153 if (tp->syn_fastopen && th->fin) 6154 tcp_fastopen_active_disable(sk); 6155 tcp_done(sk); 6156 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6157 return 1; 6158 } 6159 6160 tmo = tcp_fin_time(sk); 6161 if (tmo > TCP_TIMEWAIT_LEN) { 6162 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6163 } else if (th->fin || sock_owned_by_user(sk)) { 6164 /* Bad case. We could lose such FIN otherwise. 6165 * It is not a big problem, but it looks confusing 6166 * and not so rare event. We still can lose it now, 6167 * if it spins in bh_lock_sock(), but it is really 6168 * marginal case. 6169 */ 6170 inet_csk_reset_keepalive_timer(sk, tmo); 6171 } else { 6172 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6173 goto discard; 6174 } 6175 break; 6176 } 6177 6178 case TCP_CLOSING: 6179 if (tp->snd_una == tp->write_seq) { 6180 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6181 goto discard; 6182 } 6183 break; 6184 6185 case TCP_LAST_ACK: 6186 if (tp->snd_una == tp->write_seq) { 6187 tcp_update_metrics(sk); 6188 tcp_done(sk); 6189 goto discard; 6190 } 6191 break; 6192 } 6193 6194 /* step 6: check the URG bit */ 6195 tcp_urg(sk, skb, th); 6196 6197 /* step 7: process the segment text */ 6198 switch (sk->sk_state) { 6199 case TCP_CLOSE_WAIT: 6200 case TCP_CLOSING: 6201 case TCP_LAST_ACK: 6202 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6203 break; 6204 /* fall through */ 6205 case TCP_FIN_WAIT1: 6206 case TCP_FIN_WAIT2: 6207 /* RFC 793 says to queue data in these states, 6208 * RFC 1122 says we MUST send a reset. 6209 * BSD 4.4 also does reset. 6210 */ 6211 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6212 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6213 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6214 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6215 tcp_reset(sk); 6216 return 1; 6217 } 6218 } 6219 /* Fall through */ 6220 case TCP_ESTABLISHED: 6221 tcp_data_queue(sk, skb); 6222 queued = 1; 6223 break; 6224 } 6225 6226 /* tcp_data could move socket to TIME-WAIT */ 6227 if (sk->sk_state != TCP_CLOSE) { 6228 tcp_data_snd_check(sk); 6229 tcp_ack_snd_check(sk); 6230 } 6231 6232 if (!queued) { 6233 discard: 6234 tcp_drop(sk, skb); 6235 } 6236 return 0; 6237 } 6238 EXPORT_SYMBOL(tcp_rcv_state_process); 6239 6240 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6241 { 6242 struct inet_request_sock *ireq = inet_rsk(req); 6243 6244 if (family == AF_INET) 6245 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6246 &ireq->ir_rmt_addr, port); 6247 #if IS_ENABLED(CONFIG_IPV6) 6248 else if (family == AF_INET6) 6249 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6250 &ireq->ir_v6_rmt_addr, port); 6251 #endif 6252 } 6253 6254 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6255 * 6256 * If we receive a SYN packet with these bits set, it means a 6257 * network is playing bad games with TOS bits. In order to 6258 * avoid possible false congestion notifications, we disable 6259 * TCP ECN negotiation. 6260 * 6261 * Exception: tcp_ca wants ECN. This is required for DCTCP 6262 * congestion control: Linux DCTCP asserts ECT on all packets, 6263 * including SYN, which is most optimal solution; however, 6264 * others, such as FreeBSD do not. 6265 */ 6266 static void tcp_ecn_create_request(struct request_sock *req, 6267 const struct sk_buff *skb, 6268 const struct sock *listen_sk, 6269 const struct dst_entry *dst) 6270 { 6271 const struct tcphdr *th = tcp_hdr(skb); 6272 const struct net *net = sock_net(listen_sk); 6273 bool th_ecn = th->ece && th->cwr; 6274 bool ect, ecn_ok; 6275 u32 ecn_ok_dst; 6276 6277 if (!th_ecn) 6278 return; 6279 6280 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6281 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6282 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6283 6284 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6285 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6286 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6287 inet_rsk(req)->ecn_ok = 1; 6288 } 6289 6290 static void tcp_openreq_init(struct request_sock *req, 6291 const struct tcp_options_received *rx_opt, 6292 struct sk_buff *skb, const struct sock *sk) 6293 { 6294 struct inet_request_sock *ireq = inet_rsk(req); 6295 6296 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6297 req->cookie_ts = 0; 6298 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6299 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6300 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6301 tcp_rsk(req)->last_oow_ack_time = 0; 6302 req->mss = rx_opt->mss_clamp; 6303 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6304 ireq->tstamp_ok = rx_opt->tstamp_ok; 6305 ireq->sack_ok = rx_opt->sack_ok; 6306 ireq->snd_wscale = rx_opt->snd_wscale; 6307 ireq->wscale_ok = rx_opt->wscale_ok; 6308 ireq->acked = 0; 6309 ireq->ecn_ok = 0; 6310 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6311 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6312 ireq->ir_mark = inet_request_mark(sk, skb); 6313 #if IS_ENABLED(CONFIG_SMC) 6314 ireq->smc_ok = rx_opt->smc_ok; 6315 #endif 6316 } 6317 6318 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6319 struct sock *sk_listener, 6320 bool attach_listener) 6321 { 6322 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6323 attach_listener); 6324 6325 if (req) { 6326 struct inet_request_sock *ireq = inet_rsk(req); 6327 6328 ireq->ireq_opt = NULL; 6329 #if IS_ENABLED(CONFIG_IPV6) 6330 ireq->pktopts = NULL; 6331 #endif 6332 atomic64_set(&ireq->ir_cookie, 0); 6333 ireq->ireq_state = TCP_NEW_SYN_RECV; 6334 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6335 ireq->ireq_family = sk_listener->sk_family; 6336 } 6337 6338 return req; 6339 } 6340 EXPORT_SYMBOL(inet_reqsk_alloc); 6341 6342 /* 6343 * Return true if a syncookie should be sent 6344 */ 6345 static bool tcp_syn_flood_action(const struct sock *sk, 6346 const struct sk_buff *skb, 6347 const char *proto) 6348 { 6349 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6350 const char *msg = "Dropping request"; 6351 bool want_cookie = false; 6352 struct net *net = sock_net(sk); 6353 6354 #ifdef CONFIG_SYN_COOKIES 6355 if (net->ipv4.sysctl_tcp_syncookies) { 6356 msg = "Sending cookies"; 6357 want_cookie = true; 6358 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6359 } else 6360 #endif 6361 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6362 6363 if (!queue->synflood_warned && 6364 net->ipv4.sysctl_tcp_syncookies != 2 && 6365 xchg(&queue->synflood_warned, 1) == 0) 6366 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6367 proto, ntohs(tcp_hdr(skb)->dest), msg); 6368 6369 return want_cookie; 6370 } 6371 6372 static void tcp_reqsk_record_syn(const struct sock *sk, 6373 struct request_sock *req, 6374 const struct sk_buff *skb) 6375 { 6376 if (tcp_sk(sk)->save_syn) { 6377 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6378 u32 *copy; 6379 6380 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6381 if (copy) { 6382 copy[0] = len; 6383 memcpy(©[1], skb_network_header(skb), len); 6384 req->saved_syn = copy; 6385 } 6386 } 6387 } 6388 6389 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6390 const struct tcp_request_sock_ops *af_ops, 6391 struct sock *sk, struct sk_buff *skb) 6392 { 6393 struct tcp_fastopen_cookie foc = { .len = -1 }; 6394 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6395 struct tcp_options_received tmp_opt; 6396 struct tcp_sock *tp = tcp_sk(sk); 6397 struct net *net = sock_net(sk); 6398 struct sock *fastopen_sk = NULL; 6399 struct request_sock *req; 6400 bool want_cookie = false; 6401 struct dst_entry *dst; 6402 struct flowi fl; 6403 6404 /* TW buckets are converted to open requests without 6405 * limitations, they conserve resources and peer is 6406 * evidently real one. 6407 */ 6408 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6409 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6410 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6411 if (!want_cookie) 6412 goto drop; 6413 } 6414 6415 if (sk_acceptq_is_full(sk)) { 6416 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6417 goto drop; 6418 } 6419 6420 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6421 if (!req) 6422 goto drop; 6423 6424 tcp_rsk(req)->af_specific = af_ops; 6425 tcp_rsk(req)->ts_off = 0; 6426 6427 tcp_clear_options(&tmp_opt); 6428 tmp_opt.mss_clamp = af_ops->mss_clamp; 6429 tmp_opt.user_mss = tp->rx_opt.user_mss; 6430 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6431 want_cookie ? NULL : &foc); 6432 6433 if (want_cookie && !tmp_opt.saw_tstamp) 6434 tcp_clear_options(&tmp_opt); 6435 6436 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6437 tmp_opt.smc_ok = 0; 6438 6439 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6440 tcp_openreq_init(req, &tmp_opt, skb, sk); 6441 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6442 6443 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6444 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6445 6446 af_ops->init_req(req, sk, skb); 6447 6448 if (security_inet_conn_request(sk, skb, req)) 6449 goto drop_and_free; 6450 6451 if (tmp_opt.tstamp_ok) 6452 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6453 6454 dst = af_ops->route_req(sk, &fl, req); 6455 if (!dst) 6456 goto drop_and_free; 6457 6458 if (!want_cookie && !isn) { 6459 /* Kill the following clause, if you dislike this way. */ 6460 if (!net->ipv4.sysctl_tcp_syncookies && 6461 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6462 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6463 !tcp_peer_is_proven(req, dst)) { 6464 /* Without syncookies last quarter of 6465 * backlog is filled with destinations, 6466 * proven to be alive. 6467 * It means that we continue to communicate 6468 * to destinations, already remembered 6469 * to the moment of synflood. 6470 */ 6471 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6472 rsk_ops->family); 6473 goto drop_and_release; 6474 } 6475 6476 isn = af_ops->init_seq(skb); 6477 } 6478 6479 tcp_ecn_create_request(req, skb, sk, dst); 6480 6481 if (want_cookie) { 6482 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6483 req->cookie_ts = tmp_opt.tstamp_ok; 6484 if (!tmp_opt.tstamp_ok) 6485 inet_rsk(req)->ecn_ok = 0; 6486 } 6487 6488 tcp_rsk(req)->snt_isn = isn; 6489 tcp_rsk(req)->txhash = net_tx_rndhash(); 6490 tcp_openreq_init_rwin(req, sk, dst); 6491 sk_rx_queue_set(req_to_sk(req), skb); 6492 if (!want_cookie) { 6493 tcp_reqsk_record_syn(sk, req, skb); 6494 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6495 } 6496 if (fastopen_sk) { 6497 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6498 &foc, TCP_SYNACK_FASTOPEN); 6499 /* Add the child socket directly into the accept queue */ 6500 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6501 sk->sk_data_ready(sk); 6502 bh_unlock_sock(fastopen_sk); 6503 sock_put(fastopen_sk); 6504 } else { 6505 tcp_rsk(req)->tfo_listener = false; 6506 if (!want_cookie) 6507 inet_csk_reqsk_queue_hash_add(sk, req, 6508 tcp_timeout_init((struct sock *)req)); 6509 af_ops->send_synack(sk, dst, &fl, req, &foc, 6510 !want_cookie ? TCP_SYNACK_NORMAL : 6511 TCP_SYNACK_COOKIE); 6512 if (want_cookie) { 6513 reqsk_free(req); 6514 return 0; 6515 } 6516 } 6517 reqsk_put(req); 6518 return 0; 6519 6520 drop_and_release: 6521 dst_release(dst); 6522 drop_and_free: 6523 reqsk_free(req); 6524 drop: 6525 tcp_listendrop(sk); 6526 return 0; 6527 } 6528 EXPORT_SYMBOL(tcp_conn_request); 6529