1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 252 struct tcp_sock *tp = tcp_sk(sk); 253 254 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 255 tcp_set_window_clamp(sk, val); 256 257 if (tp->window_clamp < tp->rcvq_space.space) 258 tp->rcvq_space.space = tp->window_clamp; 259 } 260 } 261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 262 tcp_sk(sk)->advmss); 263 /* Account for possibly-removed options */ 264 if (unlikely(len > icsk->icsk_ack.rcv_mss + 265 MAX_TCP_OPTION_SPACE)) 266 tcp_gro_dev_warn(sk, skb, len); 267 /* If the skb has a len of exactly 1*MSS and has the PSH bit 268 * set then it is likely the end of an application write. So 269 * more data may not be arriving soon, and yet the data sender 270 * may be waiting for an ACK if cwnd-bound or using TX zero 271 * copy. So we set ICSK_ACK_PUSHED here so that 272 * tcp_cleanup_rbuf() will send an ACK immediately if the app 273 * reads all of the data and is not ping-pong. If len > MSS 274 * then this logic does not matter (and does not hurt) because 275 * tcp_cleanup_rbuf() will always ACK immediately if the app 276 * reads data and there is more than an MSS of unACKed data. 277 */ 278 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 279 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 280 } else { 281 /* Otherwise, we make more careful check taking into account, 282 * that SACKs block is variable. 283 * 284 * "len" is invariant segment length, including TCP header. 285 */ 286 len += skb->data - skb_transport_header(skb); 287 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 288 /* If PSH is not set, packet should be 289 * full sized, provided peer TCP is not badly broken. 290 * This observation (if it is correct 8)) allows 291 * to handle super-low mtu links fairly. 292 */ 293 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 294 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 295 /* Subtract also invariant (if peer is RFC compliant), 296 * tcp header plus fixed timestamp option length. 297 * Resulting "len" is MSS free of SACK jitter. 298 */ 299 len -= tcp_sk(sk)->tcp_header_len; 300 icsk->icsk_ack.last_seg_size = len; 301 if (len == lss) { 302 icsk->icsk_ack.rcv_mss = len; 303 return; 304 } 305 } 306 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 308 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 309 } 310 } 311 312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 313 { 314 struct inet_connection_sock *icsk = inet_csk(sk); 315 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 316 317 if (quickacks == 0) 318 quickacks = 2; 319 quickacks = min(quickacks, max_quickacks); 320 if (quickacks > icsk->icsk_ack.quick) 321 icsk->icsk_ack.quick = quickacks; 322 } 323 324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 325 { 326 struct inet_connection_sock *icsk = inet_csk(sk); 327 328 tcp_incr_quickack(sk, max_quickacks); 329 inet_csk_exit_pingpong_mode(sk); 330 icsk->icsk_ack.ato = TCP_ATO_MIN; 331 } 332 333 /* Send ACKs quickly, if "quick" count is not exhausted 334 * and the session is not interactive. 335 */ 336 337 static bool tcp_in_quickack_mode(struct sock *sk) 338 { 339 const struct inet_connection_sock *icsk = inet_csk(sk); 340 const struct dst_entry *dst = __sk_dst_get(sk); 341 342 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 343 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 344 } 345 346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 347 { 348 if (tp->ecn_flags & TCP_ECN_OK) 349 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 350 } 351 352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 353 { 354 if (tcp_hdr(skb)->cwr) { 355 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 356 357 /* If the sender is telling us it has entered CWR, then its 358 * cwnd may be very low (even just 1 packet), so we should ACK 359 * immediately. 360 */ 361 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 362 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 363 } 364 } 365 366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 367 { 368 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 369 } 370 371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 372 { 373 struct tcp_sock *tp = tcp_sk(sk); 374 375 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 376 case INET_ECN_NOT_ECT: 377 /* Funny extension: if ECT is not set on a segment, 378 * and we already seen ECT on a previous segment, 379 * it is probably a retransmit. 380 */ 381 if (tp->ecn_flags & TCP_ECN_SEEN) 382 tcp_enter_quickack_mode(sk, 2); 383 break; 384 case INET_ECN_CE: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 387 388 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 389 /* Better not delay acks, sender can have a very low cwnd */ 390 tcp_enter_quickack_mode(sk, 2); 391 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 392 } 393 tp->ecn_flags |= TCP_ECN_SEEN; 394 break; 395 default: 396 if (tcp_ca_needs_ecn(sk)) 397 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 398 tp->ecn_flags |= TCP_ECN_SEEN; 399 break; 400 } 401 } 402 403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 404 { 405 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 406 __tcp_ecn_check_ce(sk, skb); 407 } 408 409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 412 tp->ecn_flags &= ~TCP_ECN_OK; 413 } 414 415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 416 { 417 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 418 tp->ecn_flags &= ~TCP_ECN_OK; 419 } 420 421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 422 { 423 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 424 return true; 425 return false; 426 } 427 428 /* Buffer size and advertised window tuning. 429 * 430 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 431 */ 432 433 static void tcp_sndbuf_expand(struct sock *sk) 434 { 435 const struct tcp_sock *tp = tcp_sk(sk); 436 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 437 int sndmem, per_mss; 438 u32 nr_segs; 439 440 /* Worst case is non GSO/TSO : each frame consumes one skb 441 * and skb->head is kmalloced using power of two area of memory 442 */ 443 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 444 MAX_TCP_HEADER + 445 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 446 447 per_mss = roundup_pow_of_two(per_mss) + 448 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 449 450 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 451 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 452 453 /* Fast Recovery (RFC 5681 3.2) : 454 * Cubic needs 1.7 factor, rounded to 2 to include 455 * extra cushion (application might react slowly to EPOLLOUT) 456 */ 457 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 458 sndmem *= nr_segs * per_mss; 459 460 if (sk->sk_sndbuf < sndmem) 461 WRITE_ONCE(sk->sk_sndbuf, 462 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 463 } 464 465 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 466 * 467 * All tcp_full_space() is split to two parts: "network" buffer, allocated 468 * forward and advertised in receiver window (tp->rcv_wnd) and 469 * "application buffer", required to isolate scheduling/application 470 * latencies from network. 471 * window_clamp is maximal advertised window. It can be less than 472 * tcp_full_space(), in this case tcp_full_space() - window_clamp 473 * is reserved for "application" buffer. The less window_clamp is 474 * the smoother our behaviour from viewpoint of network, but the lower 475 * throughput and the higher sensitivity of the connection to losses. 8) 476 * 477 * rcv_ssthresh is more strict window_clamp used at "slow start" 478 * phase to predict further behaviour of this connection. 479 * It is used for two goals: 480 * - to enforce header prediction at sender, even when application 481 * requires some significant "application buffer". It is check #1. 482 * - to prevent pruning of receive queue because of misprediction 483 * of receiver window. Check #2. 484 * 485 * The scheme does not work when sender sends good segments opening 486 * window and then starts to feed us spaghetti. But it should work 487 * in common situations. Otherwise, we have to rely on queue collapsing. 488 */ 489 490 /* Slow part of check#2. */ 491 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 492 unsigned int skbtruesize) 493 { 494 const struct tcp_sock *tp = tcp_sk(sk); 495 /* Optimize this! */ 496 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 497 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 498 499 while (tp->rcv_ssthresh <= window) { 500 if (truesize <= skb->len) 501 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 502 503 truesize >>= 1; 504 window >>= 1; 505 } 506 return 0; 507 } 508 509 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 510 * can play nice with us, as sk_buff and skb->head might be either 511 * freed or shared with up to MAX_SKB_FRAGS segments. 512 * Only give a boost to drivers using page frag(s) to hold the frame(s), 513 * and if no payload was pulled in skb->head before reaching us. 514 */ 515 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 516 { 517 u32 truesize = skb->truesize; 518 519 if (adjust && !skb_headlen(skb)) { 520 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 521 /* paranoid check, some drivers might be buggy */ 522 if (unlikely((int)truesize < (int)skb->len)) 523 truesize = skb->truesize; 524 } 525 return truesize; 526 } 527 528 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 529 bool adjust) 530 { 531 struct tcp_sock *tp = tcp_sk(sk); 532 int room; 533 534 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 535 536 if (room <= 0) 537 return; 538 539 /* Check #1 */ 540 if (!tcp_under_memory_pressure(sk)) { 541 unsigned int truesize = truesize_adjust(adjust, skb); 542 int incr; 543 544 /* Check #2. Increase window, if skb with such overhead 545 * will fit to rcvbuf in future. 546 */ 547 if (tcp_win_from_space(sk, truesize) <= skb->len) 548 incr = 2 * tp->advmss; 549 else 550 incr = __tcp_grow_window(sk, skb, truesize); 551 552 if (incr) { 553 incr = max_t(int, incr, 2 * skb->len); 554 tp->rcv_ssthresh += min(room, incr); 555 inet_csk(sk)->icsk_ack.quick |= 1; 556 } 557 } else { 558 /* Under pressure: 559 * Adjust rcv_ssthresh according to reserved mem 560 */ 561 tcp_adjust_rcv_ssthresh(sk); 562 } 563 } 564 565 /* 3. Try to fixup all. It is made immediately after connection enters 566 * established state. 567 */ 568 static void tcp_init_buffer_space(struct sock *sk) 569 { 570 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 571 struct tcp_sock *tp = tcp_sk(sk); 572 int maxwin; 573 574 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 575 tcp_sndbuf_expand(sk); 576 577 tcp_mstamp_refresh(tp); 578 tp->rcvq_space.time = tp->tcp_mstamp; 579 tp->rcvq_space.seq = tp->copied_seq; 580 581 maxwin = tcp_full_space(sk); 582 583 if (tp->window_clamp >= maxwin) { 584 WRITE_ONCE(tp->window_clamp, maxwin); 585 586 if (tcp_app_win && maxwin > 4 * tp->advmss) 587 WRITE_ONCE(tp->window_clamp, 588 max(maxwin - (maxwin >> tcp_app_win), 589 4 * tp->advmss)); 590 } 591 592 /* Force reservation of one segment. */ 593 if (tcp_app_win && 594 tp->window_clamp > 2 * tp->advmss && 595 tp->window_clamp + tp->advmss > maxwin) 596 WRITE_ONCE(tp->window_clamp, 597 max(2 * tp->advmss, maxwin - tp->advmss)); 598 599 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 600 tp->snd_cwnd_stamp = tcp_jiffies32; 601 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 602 (u32)TCP_INIT_CWND * tp->advmss); 603 } 604 605 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 606 static void tcp_clamp_window(struct sock *sk) 607 { 608 struct tcp_sock *tp = tcp_sk(sk); 609 struct inet_connection_sock *icsk = inet_csk(sk); 610 struct net *net = sock_net(sk); 611 int rmem2; 612 613 icsk->icsk_ack.quick = 0; 614 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 615 616 if (sk->sk_rcvbuf < rmem2 && 617 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 618 !tcp_under_memory_pressure(sk) && 619 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 620 WRITE_ONCE(sk->sk_rcvbuf, 621 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 622 } 623 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 624 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 625 } 626 627 /* Initialize RCV_MSS value. 628 * RCV_MSS is an our guess about MSS used by the peer. 629 * We haven't any direct information about the MSS. 630 * It's better to underestimate the RCV_MSS rather than overestimate. 631 * Overestimations make us ACKing less frequently than needed. 632 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 633 */ 634 void tcp_initialize_rcv_mss(struct sock *sk) 635 { 636 const struct tcp_sock *tp = tcp_sk(sk); 637 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 638 639 hint = min(hint, tp->rcv_wnd / 2); 640 hint = min(hint, TCP_MSS_DEFAULT); 641 hint = max(hint, TCP_MIN_MSS); 642 643 inet_csk(sk)->icsk_ack.rcv_mss = hint; 644 } 645 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 646 647 /* Receiver "autotuning" code. 648 * 649 * The algorithm for RTT estimation w/o timestamps is based on 650 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 651 * <https://public.lanl.gov/radiant/pubs.html#DRS> 652 * 653 * More detail on this code can be found at 654 * <http://staff.psc.edu/jheffner/>, 655 * though this reference is out of date. A new paper 656 * is pending. 657 */ 658 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 659 { 660 u32 new_sample = tp->rcv_rtt_est.rtt_us; 661 long m = sample; 662 663 if (new_sample != 0) { 664 /* If we sample in larger samples in the non-timestamp 665 * case, we could grossly overestimate the RTT especially 666 * with chatty applications or bulk transfer apps which 667 * are stalled on filesystem I/O. 668 * 669 * Also, since we are only going for a minimum in the 670 * non-timestamp case, we do not smooth things out 671 * else with timestamps disabled convergence takes too 672 * long. 673 */ 674 if (!win_dep) { 675 m -= (new_sample >> 3); 676 new_sample += m; 677 } else { 678 m <<= 3; 679 if (m < new_sample) 680 new_sample = m; 681 } 682 } else { 683 /* No previous measure. */ 684 new_sample = m << 3; 685 } 686 687 tp->rcv_rtt_est.rtt_us = new_sample; 688 } 689 690 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 691 { 692 u32 delta_us; 693 694 if (tp->rcv_rtt_est.time == 0) 695 goto new_measure; 696 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 697 return; 698 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 699 if (!delta_us) 700 delta_us = 1; 701 tcp_rcv_rtt_update(tp, delta_us, 1); 702 703 new_measure: 704 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 705 tp->rcv_rtt_est.time = tp->tcp_mstamp; 706 } 707 708 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 709 const struct sk_buff *skb) 710 { 711 struct tcp_sock *tp = tcp_sk(sk); 712 713 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 714 return; 715 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 716 717 if (TCP_SKB_CB(skb)->end_seq - 718 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 719 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 720 u32 delta_us; 721 722 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 723 if (!delta) 724 delta = 1; 725 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 726 tcp_rcv_rtt_update(tp, delta_us, 0); 727 } 728 } 729 } 730 731 /* 732 * This function should be called every time data is copied to user space. 733 * It calculates the appropriate TCP receive buffer space. 734 */ 735 void tcp_rcv_space_adjust(struct sock *sk) 736 { 737 struct tcp_sock *tp = tcp_sk(sk); 738 u32 copied; 739 int time; 740 741 trace_tcp_rcv_space_adjust(sk); 742 743 tcp_mstamp_refresh(tp); 744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 746 return; 747 748 /* Number of bytes copied to user in last RTT */ 749 copied = tp->copied_seq - tp->rcvq_space.seq; 750 if (copied <= tp->rcvq_space.space) 751 goto new_measure; 752 753 /* A bit of theory : 754 * copied = bytes received in previous RTT, our base window 755 * To cope with packet losses, we need a 2x factor 756 * To cope with slow start, and sender growing its cwin by 100 % 757 * every RTT, we need a 4x factor, because the ACK we are sending 758 * now is for the next RTT, not the current one : 759 * <prev RTT . ><current RTT .. ><next RTT .... > 760 */ 761 762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 764 u64 rcvwin, grow; 765 int rcvbuf; 766 767 /* minimal window to cope with packet losses, assuming 768 * steady state. Add some cushion because of small variations. 769 */ 770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 771 772 /* Accommodate for sender rate increase (eg. slow start) */ 773 grow = rcvwin * (copied - tp->rcvq_space.space); 774 do_div(grow, tp->rcvq_space.space); 775 rcvwin += (grow << 1); 776 777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 779 if (rcvbuf > sk->sk_rcvbuf) { 780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 781 782 /* Make the window clamp follow along. */ 783 WRITE_ONCE(tp->window_clamp, 784 tcp_win_from_space(sk, rcvbuf)); 785 } 786 } 787 tp->rcvq_space.space = copied; 788 789 new_measure: 790 tp->rcvq_space.seq = tp->copied_seq; 791 tp->rcvq_space.time = tp->tcp_mstamp; 792 } 793 794 /* There is something which you must keep in mind when you analyze the 795 * behavior of the tp->ato delayed ack timeout interval. When a 796 * connection starts up, we want to ack as quickly as possible. The 797 * problem is that "good" TCP's do slow start at the beginning of data 798 * transmission. The means that until we send the first few ACK's the 799 * sender will sit on his end and only queue most of his data, because 800 * he can only send snd_cwnd unacked packets at any given time. For 801 * each ACK we send, he increments snd_cwnd and transmits more of his 802 * queue. -DaveM 803 */ 804 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 805 { 806 struct tcp_sock *tp = tcp_sk(sk); 807 struct inet_connection_sock *icsk = inet_csk(sk); 808 u32 now; 809 810 inet_csk_schedule_ack(sk); 811 812 tcp_measure_rcv_mss(sk, skb); 813 814 tcp_rcv_rtt_measure(tp); 815 816 now = tcp_jiffies32; 817 818 if (!icsk->icsk_ack.ato) { 819 /* The _first_ data packet received, initialize 820 * delayed ACK engine. 821 */ 822 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 823 icsk->icsk_ack.ato = TCP_ATO_MIN; 824 } else { 825 int m = now - icsk->icsk_ack.lrcvtime; 826 827 if (m <= TCP_ATO_MIN / 2) { 828 /* The fastest case is the first. */ 829 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 830 } else if (m < icsk->icsk_ack.ato) { 831 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 832 if (icsk->icsk_ack.ato > icsk->icsk_rto) 833 icsk->icsk_ack.ato = icsk->icsk_rto; 834 } else if (m > icsk->icsk_rto) { 835 /* Too long gap. Apparently sender failed to 836 * restart window, so that we send ACKs quickly. 837 */ 838 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 839 } 840 } 841 icsk->icsk_ack.lrcvtime = now; 842 843 tcp_ecn_check_ce(sk, skb); 844 845 if (skb->len >= 128) 846 tcp_grow_window(sk, skb, true); 847 } 848 849 /* Called to compute a smoothed rtt estimate. The data fed to this 850 * routine either comes from timestamps, or from segments that were 851 * known _not_ to have been retransmitted [see Karn/Partridge 852 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 853 * piece by Van Jacobson. 854 * NOTE: the next three routines used to be one big routine. 855 * To save cycles in the RFC 1323 implementation it was better to break 856 * it up into three procedures. -- erics 857 */ 858 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 859 { 860 struct tcp_sock *tp = tcp_sk(sk); 861 long m = mrtt_us; /* RTT */ 862 u32 srtt = tp->srtt_us; 863 864 /* The following amusing code comes from Jacobson's 865 * article in SIGCOMM '88. Note that rtt and mdev 866 * are scaled versions of rtt and mean deviation. 867 * This is designed to be as fast as possible 868 * m stands for "measurement". 869 * 870 * On a 1990 paper the rto value is changed to: 871 * RTO = rtt + 4 * mdev 872 * 873 * Funny. This algorithm seems to be very broken. 874 * These formulae increase RTO, when it should be decreased, increase 875 * too slowly, when it should be increased quickly, decrease too quickly 876 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 877 * does not matter how to _calculate_ it. Seems, it was trap 878 * that VJ failed to avoid. 8) 879 */ 880 if (srtt != 0) { 881 m -= (srtt >> 3); /* m is now error in rtt est */ 882 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 883 if (m < 0) { 884 m = -m; /* m is now abs(error) */ 885 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 886 /* This is similar to one of Eifel findings. 887 * Eifel blocks mdev updates when rtt decreases. 888 * This solution is a bit different: we use finer gain 889 * for mdev in this case (alpha*beta). 890 * Like Eifel it also prevents growth of rto, 891 * but also it limits too fast rto decreases, 892 * happening in pure Eifel. 893 */ 894 if (m > 0) 895 m >>= 3; 896 } else { 897 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 898 } 899 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 900 if (tp->mdev_us > tp->mdev_max_us) { 901 tp->mdev_max_us = tp->mdev_us; 902 if (tp->mdev_max_us > tp->rttvar_us) 903 tp->rttvar_us = tp->mdev_max_us; 904 } 905 if (after(tp->snd_una, tp->rtt_seq)) { 906 if (tp->mdev_max_us < tp->rttvar_us) 907 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 908 tp->rtt_seq = tp->snd_nxt; 909 tp->mdev_max_us = tcp_rto_min_us(sk); 910 911 tcp_bpf_rtt(sk); 912 } 913 } else { 914 /* no previous measure. */ 915 srtt = m << 3; /* take the measured time to be rtt */ 916 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 917 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 918 tp->mdev_max_us = tp->rttvar_us; 919 tp->rtt_seq = tp->snd_nxt; 920 921 tcp_bpf_rtt(sk); 922 } 923 tp->srtt_us = max(1U, srtt); 924 } 925 926 static void tcp_update_pacing_rate(struct sock *sk) 927 { 928 const struct tcp_sock *tp = tcp_sk(sk); 929 u64 rate; 930 931 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 932 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 933 934 /* current rate is (cwnd * mss) / srtt 935 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 936 * In Congestion Avoidance phase, set it to 120 % the current rate. 937 * 938 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 939 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 940 * end of slow start and should slow down. 941 */ 942 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 943 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 944 else 945 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 946 947 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 948 949 if (likely(tp->srtt_us)) 950 do_div(rate, tp->srtt_us); 951 952 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 953 * without any lock. We want to make sure compiler wont store 954 * intermediate values in this location. 955 */ 956 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 957 sk->sk_max_pacing_rate)); 958 } 959 960 /* Calculate rto without backoff. This is the second half of Van Jacobson's 961 * routine referred to above. 962 */ 963 static void tcp_set_rto(struct sock *sk) 964 { 965 const struct tcp_sock *tp = tcp_sk(sk); 966 /* Old crap is replaced with new one. 8) 967 * 968 * More seriously: 969 * 1. If rtt variance happened to be less 50msec, it is hallucination. 970 * It cannot be less due to utterly erratic ACK generation made 971 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 972 * to do with delayed acks, because at cwnd>2 true delack timeout 973 * is invisible. Actually, Linux-2.4 also generates erratic 974 * ACKs in some circumstances. 975 */ 976 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 977 978 /* 2. Fixups made earlier cannot be right. 979 * If we do not estimate RTO correctly without them, 980 * all the algo is pure shit and should be replaced 981 * with correct one. It is exactly, which we pretend to do. 982 */ 983 984 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 985 * guarantees that rto is higher. 986 */ 987 tcp_bound_rto(sk); 988 } 989 990 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 991 { 992 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 993 994 if (!cwnd) 995 cwnd = TCP_INIT_CWND; 996 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 997 } 998 999 struct tcp_sacktag_state { 1000 /* Timestamps for earliest and latest never-retransmitted segment 1001 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1002 * but congestion control should still get an accurate delay signal. 1003 */ 1004 u64 first_sackt; 1005 u64 last_sackt; 1006 u32 reord; 1007 u32 sack_delivered; 1008 int flag; 1009 unsigned int mss_now; 1010 struct rate_sample *rate; 1011 }; 1012 1013 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1014 * and spurious retransmission information if this DSACK is unlikely caused by 1015 * sender's action: 1016 * - DSACKed sequence range is larger than maximum receiver's window. 1017 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1018 */ 1019 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1020 u32 end_seq, struct tcp_sacktag_state *state) 1021 { 1022 u32 seq_len, dup_segs = 1; 1023 1024 if (!before(start_seq, end_seq)) 1025 return 0; 1026 1027 seq_len = end_seq - start_seq; 1028 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1029 if (seq_len > tp->max_window) 1030 return 0; 1031 if (seq_len > tp->mss_cache) 1032 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1033 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1034 state->flag |= FLAG_DSACK_TLP; 1035 1036 tp->dsack_dups += dup_segs; 1037 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1038 if (tp->dsack_dups > tp->total_retrans) 1039 return 0; 1040 1041 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1042 /* We increase the RACK ordering window in rounds where we receive 1043 * DSACKs that may have been due to reordering causing RACK to trigger 1044 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1045 * without having seen reordering, or that match TLP probes (TLP 1046 * is timer-driven, not triggered by RACK). 1047 */ 1048 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1049 tp->rack.dsack_seen = 1; 1050 1051 state->flag |= FLAG_DSACKING_ACK; 1052 /* A spurious retransmission is delivered */ 1053 state->sack_delivered += dup_segs; 1054 1055 return dup_segs; 1056 } 1057 1058 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1059 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1060 * distance is approximated in full-mss packet distance ("reordering"). 1061 */ 1062 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1063 const int ts) 1064 { 1065 struct tcp_sock *tp = tcp_sk(sk); 1066 const u32 mss = tp->mss_cache; 1067 u32 fack, metric; 1068 1069 fack = tcp_highest_sack_seq(tp); 1070 if (!before(low_seq, fack)) 1071 return; 1072 1073 metric = fack - low_seq; 1074 if ((metric > tp->reordering * mss) && mss) { 1075 #if FASTRETRANS_DEBUG > 1 1076 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1077 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1078 tp->reordering, 1079 0, 1080 tp->sacked_out, 1081 tp->undo_marker ? tp->undo_retrans : 0); 1082 #endif 1083 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1084 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1085 } 1086 1087 /* This exciting event is worth to be remembered. 8) */ 1088 tp->reord_seen++; 1089 NET_INC_STATS(sock_net(sk), 1090 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1091 } 1092 1093 /* This must be called before lost_out or retrans_out are updated 1094 * on a new loss, because we want to know if all skbs previously 1095 * known to be lost have already been retransmitted, indicating 1096 * that this newly lost skb is our next skb to retransmit. 1097 */ 1098 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1099 { 1100 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1101 (tp->retransmit_skb_hint && 1102 before(TCP_SKB_CB(skb)->seq, 1103 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1104 tp->retransmit_skb_hint = skb; 1105 } 1106 1107 /* Sum the number of packets on the wire we have marked as lost, and 1108 * notify the congestion control module that the given skb was marked lost. 1109 */ 1110 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1111 { 1112 tp->lost += tcp_skb_pcount(skb); 1113 } 1114 1115 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1116 { 1117 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1118 struct tcp_sock *tp = tcp_sk(sk); 1119 1120 if (sacked & TCPCB_SACKED_ACKED) 1121 return; 1122 1123 tcp_verify_retransmit_hint(tp, skb); 1124 if (sacked & TCPCB_LOST) { 1125 if (sacked & TCPCB_SACKED_RETRANS) { 1126 /* Account for retransmits that are lost again */ 1127 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1128 tp->retrans_out -= tcp_skb_pcount(skb); 1129 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1130 tcp_skb_pcount(skb)); 1131 tcp_notify_skb_loss_event(tp, skb); 1132 } 1133 } else { 1134 tp->lost_out += tcp_skb_pcount(skb); 1135 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1136 tcp_notify_skb_loss_event(tp, skb); 1137 } 1138 } 1139 1140 /* Updates the delivered and delivered_ce counts */ 1141 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1142 bool ece_ack) 1143 { 1144 tp->delivered += delivered; 1145 if (ece_ack) 1146 tp->delivered_ce += delivered; 1147 } 1148 1149 /* This procedure tags the retransmission queue when SACKs arrive. 1150 * 1151 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1152 * Packets in queue with these bits set are counted in variables 1153 * sacked_out, retrans_out and lost_out, correspondingly. 1154 * 1155 * Valid combinations are: 1156 * Tag InFlight Description 1157 * 0 1 - orig segment is in flight. 1158 * S 0 - nothing flies, orig reached receiver. 1159 * L 0 - nothing flies, orig lost by net. 1160 * R 2 - both orig and retransmit are in flight. 1161 * L|R 1 - orig is lost, retransmit is in flight. 1162 * S|R 1 - orig reached receiver, retrans is still in flight. 1163 * (L|S|R is logically valid, it could occur when L|R is sacked, 1164 * but it is equivalent to plain S and code short-curcuits it to S. 1165 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1166 * 1167 * These 6 states form finite state machine, controlled by the following events: 1168 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1169 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1170 * 3. Loss detection event of two flavors: 1171 * A. Scoreboard estimator decided the packet is lost. 1172 * A'. Reno "three dupacks" marks head of queue lost. 1173 * B. SACK arrives sacking SND.NXT at the moment, when the 1174 * segment was retransmitted. 1175 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1176 * 1177 * It is pleasant to note, that state diagram turns out to be commutative, 1178 * so that we are allowed not to be bothered by order of our actions, 1179 * when multiple events arrive simultaneously. (see the function below). 1180 * 1181 * Reordering detection. 1182 * -------------------- 1183 * Reordering metric is maximal distance, which a packet can be displaced 1184 * in packet stream. With SACKs we can estimate it: 1185 * 1186 * 1. SACK fills old hole and the corresponding segment was not 1187 * ever retransmitted -> reordering. Alas, we cannot use it 1188 * when segment was retransmitted. 1189 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1190 * for retransmitted and already SACKed segment -> reordering.. 1191 * Both of these heuristics are not used in Loss state, when we cannot 1192 * account for retransmits accurately. 1193 * 1194 * SACK block validation. 1195 * ---------------------- 1196 * 1197 * SACK block range validation checks that the received SACK block fits to 1198 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1199 * Note that SND.UNA is not included to the range though being valid because 1200 * it means that the receiver is rather inconsistent with itself reporting 1201 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1202 * perfectly valid, however, in light of RFC2018 which explicitly states 1203 * that "SACK block MUST reflect the newest segment. Even if the newest 1204 * segment is going to be discarded ...", not that it looks very clever 1205 * in case of head skb. Due to potentional receiver driven attacks, we 1206 * choose to avoid immediate execution of a walk in write queue due to 1207 * reneging and defer head skb's loss recovery to standard loss recovery 1208 * procedure that will eventually trigger (nothing forbids us doing this). 1209 * 1210 * Implements also blockage to start_seq wrap-around. Problem lies in the 1211 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1212 * there's no guarantee that it will be before snd_nxt (n). The problem 1213 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1214 * wrap (s_w): 1215 * 1216 * <- outs wnd -> <- wrapzone -> 1217 * u e n u_w e_w s n_w 1218 * | | | | | | | 1219 * |<------------+------+----- TCP seqno space --------------+---------->| 1220 * ...-- <2^31 ->| |<--------... 1221 * ...---- >2^31 ------>| |<--------... 1222 * 1223 * Current code wouldn't be vulnerable but it's better still to discard such 1224 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1225 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1226 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1227 * equal to the ideal case (infinite seqno space without wrap caused issues). 1228 * 1229 * With D-SACK the lower bound is extended to cover sequence space below 1230 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1231 * again, D-SACK block must not to go across snd_una (for the same reason as 1232 * for the normal SACK blocks, explained above). But there all simplicity 1233 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1234 * fully below undo_marker they do not affect behavior in anyway and can 1235 * therefore be safely ignored. In rare cases (which are more or less 1236 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1237 * fragmentation and packet reordering past skb's retransmission. To consider 1238 * them correctly, the acceptable range must be extended even more though 1239 * the exact amount is rather hard to quantify. However, tp->max_window can 1240 * be used as an exaggerated estimate. 1241 */ 1242 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1243 u32 start_seq, u32 end_seq) 1244 { 1245 /* Too far in future, or reversed (interpretation is ambiguous) */ 1246 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1247 return false; 1248 1249 /* Nasty start_seq wrap-around check (see comments above) */ 1250 if (!before(start_seq, tp->snd_nxt)) 1251 return false; 1252 1253 /* In outstanding window? ...This is valid exit for D-SACKs too. 1254 * start_seq == snd_una is non-sensical (see comments above) 1255 */ 1256 if (after(start_seq, tp->snd_una)) 1257 return true; 1258 1259 if (!is_dsack || !tp->undo_marker) 1260 return false; 1261 1262 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1263 if (after(end_seq, tp->snd_una)) 1264 return false; 1265 1266 if (!before(start_seq, tp->undo_marker)) 1267 return true; 1268 1269 /* Too old */ 1270 if (!after(end_seq, tp->undo_marker)) 1271 return false; 1272 1273 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1274 * start_seq < undo_marker and end_seq >= undo_marker. 1275 */ 1276 return !before(start_seq, end_seq - tp->max_window); 1277 } 1278 1279 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1280 struct tcp_sack_block_wire *sp, int num_sacks, 1281 u32 prior_snd_una, struct tcp_sacktag_state *state) 1282 { 1283 struct tcp_sock *tp = tcp_sk(sk); 1284 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1285 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1286 u32 dup_segs; 1287 1288 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1290 } else if (num_sacks > 1) { 1291 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1292 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1293 1294 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1295 return false; 1296 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1297 } else { 1298 return false; 1299 } 1300 1301 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1302 if (!dup_segs) { /* Skip dubious DSACK */ 1303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1304 return false; 1305 } 1306 1307 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1308 1309 /* D-SACK for already forgotten data... Do dumb counting. */ 1310 if (tp->undo_marker && tp->undo_retrans > 0 && 1311 !after(end_seq_0, prior_snd_una) && 1312 after(end_seq_0, tp->undo_marker)) 1313 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1314 1315 return true; 1316 } 1317 1318 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1319 * the incoming SACK may not exactly match but we can find smaller MSS 1320 * aligned portion of it that matches. Therefore we might need to fragment 1321 * which may fail and creates some hassle (caller must handle error case 1322 * returns). 1323 * 1324 * FIXME: this could be merged to shift decision code 1325 */ 1326 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1327 u32 start_seq, u32 end_seq) 1328 { 1329 int err; 1330 bool in_sack; 1331 unsigned int pkt_len; 1332 unsigned int mss; 1333 1334 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1335 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1336 1337 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1338 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1339 mss = tcp_skb_mss(skb); 1340 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1341 1342 if (!in_sack) { 1343 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1344 if (pkt_len < mss) 1345 pkt_len = mss; 1346 } else { 1347 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1348 if (pkt_len < mss) 1349 return -EINVAL; 1350 } 1351 1352 /* Round if necessary so that SACKs cover only full MSSes 1353 * and/or the remaining small portion (if present) 1354 */ 1355 if (pkt_len > mss) { 1356 unsigned int new_len = (pkt_len / mss) * mss; 1357 if (!in_sack && new_len < pkt_len) 1358 new_len += mss; 1359 pkt_len = new_len; 1360 } 1361 1362 if (pkt_len >= skb->len && !in_sack) 1363 return 0; 1364 1365 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1366 pkt_len, mss, GFP_ATOMIC); 1367 if (err < 0) 1368 return err; 1369 } 1370 1371 return in_sack; 1372 } 1373 1374 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1375 static u8 tcp_sacktag_one(struct sock *sk, 1376 struct tcp_sacktag_state *state, u8 sacked, 1377 u32 start_seq, u32 end_seq, 1378 int dup_sack, int pcount, 1379 u64 xmit_time) 1380 { 1381 struct tcp_sock *tp = tcp_sk(sk); 1382 1383 /* Account D-SACK for retransmitted packet. */ 1384 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1385 if (tp->undo_marker && tp->undo_retrans > 0 && 1386 after(end_seq, tp->undo_marker)) 1387 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1388 if ((sacked & TCPCB_SACKED_ACKED) && 1389 before(start_seq, state->reord)) 1390 state->reord = start_seq; 1391 } 1392 1393 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1394 if (!after(end_seq, tp->snd_una)) 1395 return sacked; 1396 1397 if (!(sacked & TCPCB_SACKED_ACKED)) { 1398 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1399 1400 if (sacked & TCPCB_SACKED_RETRANS) { 1401 /* If the segment is not tagged as lost, 1402 * we do not clear RETRANS, believing 1403 * that retransmission is still in flight. 1404 */ 1405 if (sacked & TCPCB_LOST) { 1406 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1407 tp->lost_out -= pcount; 1408 tp->retrans_out -= pcount; 1409 } 1410 } else { 1411 if (!(sacked & TCPCB_RETRANS)) { 1412 /* New sack for not retransmitted frame, 1413 * which was in hole. It is reordering. 1414 */ 1415 if (before(start_seq, 1416 tcp_highest_sack_seq(tp)) && 1417 before(start_seq, state->reord)) 1418 state->reord = start_seq; 1419 1420 if (!after(end_seq, tp->high_seq)) 1421 state->flag |= FLAG_ORIG_SACK_ACKED; 1422 if (state->first_sackt == 0) 1423 state->first_sackt = xmit_time; 1424 state->last_sackt = xmit_time; 1425 } 1426 1427 if (sacked & TCPCB_LOST) { 1428 sacked &= ~TCPCB_LOST; 1429 tp->lost_out -= pcount; 1430 } 1431 } 1432 1433 sacked |= TCPCB_SACKED_ACKED; 1434 state->flag |= FLAG_DATA_SACKED; 1435 tp->sacked_out += pcount; 1436 /* Out-of-order packets delivered */ 1437 state->sack_delivered += pcount; 1438 1439 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1440 if (tp->lost_skb_hint && 1441 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1442 tp->lost_cnt_hint += pcount; 1443 } 1444 1445 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1446 * frames and clear it. undo_retrans is decreased above, L|R frames 1447 * are accounted above as well. 1448 */ 1449 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1450 sacked &= ~TCPCB_SACKED_RETRANS; 1451 tp->retrans_out -= pcount; 1452 } 1453 1454 return sacked; 1455 } 1456 1457 /* Shift newly-SACKed bytes from this skb to the immediately previous 1458 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1459 */ 1460 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1461 struct sk_buff *skb, 1462 struct tcp_sacktag_state *state, 1463 unsigned int pcount, int shifted, int mss, 1464 bool dup_sack) 1465 { 1466 struct tcp_sock *tp = tcp_sk(sk); 1467 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1468 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1469 1470 BUG_ON(!pcount); 1471 1472 /* Adjust counters and hints for the newly sacked sequence 1473 * range but discard the return value since prev is already 1474 * marked. We must tag the range first because the seq 1475 * advancement below implicitly advances 1476 * tcp_highest_sack_seq() when skb is highest_sack. 1477 */ 1478 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1479 start_seq, end_seq, dup_sack, pcount, 1480 tcp_skb_timestamp_us(skb)); 1481 tcp_rate_skb_delivered(sk, skb, state->rate); 1482 1483 if (skb == tp->lost_skb_hint) 1484 tp->lost_cnt_hint += pcount; 1485 1486 TCP_SKB_CB(prev)->end_seq += shifted; 1487 TCP_SKB_CB(skb)->seq += shifted; 1488 1489 tcp_skb_pcount_add(prev, pcount); 1490 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1491 tcp_skb_pcount_add(skb, -pcount); 1492 1493 /* When we're adding to gso_segs == 1, gso_size will be zero, 1494 * in theory this shouldn't be necessary but as long as DSACK 1495 * code can come after this skb later on it's better to keep 1496 * setting gso_size to something. 1497 */ 1498 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1499 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1500 1501 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1502 if (tcp_skb_pcount(skb) <= 1) 1503 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1504 1505 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1506 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1507 1508 if (skb->len > 0) { 1509 BUG_ON(!tcp_skb_pcount(skb)); 1510 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1511 return false; 1512 } 1513 1514 /* Whole SKB was eaten :-) */ 1515 1516 if (skb == tp->retransmit_skb_hint) 1517 tp->retransmit_skb_hint = prev; 1518 if (skb == tp->lost_skb_hint) { 1519 tp->lost_skb_hint = prev; 1520 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1521 } 1522 1523 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1524 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1525 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1526 TCP_SKB_CB(prev)->end_seq++; 1527 1528 if (skb == tcp_highest_sack(sk)) 1529 tcp_advance_highest_sack(sk, skb); 1530 1531 tcp_skb_collapse_tstamp(prev, skb); 1532 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1533 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1534 1535 tcp_rtx_queue_unlink_and_free(skb, sk); 1536 1537 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1538 1539 return true; 1540 } 1541 1542 /* I wish gso_size would have a bit more sane initialization than 1543 * something-or-zero which complicates things 1544 */ 1545 static int tcp_skb_seglen(const struct sk_buff *skb) 1546 { 1547 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1548 } 1549 1550 /* Shifting pages past head area doesn't work */ 1551 static int skb_can_shift(const struct sk_buff *skb) 1552 { 1553 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1554 } 1555 1556 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1557 int pcount, int shiftlen) 1558 { 1559 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1560 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1561 * to make sure not storing more than 65535 * 8 bytes per skb, 1562 * even if current MSS is bigger. 1563 */ 1564 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1565 return 0; 1566 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1567 return 0; 1568 return skb_shift(to, from, shiftlen); 1569 } 1570 1571 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1572 * skb. 1573 */ 1574 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1575 struct tcp_sacktag_state *state, 1576 u32 start_seq, u32 end_seq, 1577 bool dup_sack) 1578 { 1579 struct tcp_sock *tp = tcp_sk(sk); 1580 struct sk_buff *prev; 1581 int mss; 1582 int pcount = 0; 1583 int len; 1584 int in_sack; 1585 1586 /* Normally R but no L won't result in plain S */ 1587 if (!dup_sack && 1588 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1589 goto fallback; 1590 if (!skb_can_shift(skb)) 1591 goto fallback; 1592 /* This frame is about to be dropped (was ACKed). */ 1593 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1594 goto fallback; 1595 1596 /* Can only happen with delayed DSACK + discard craziness */ 1597 prev = skb_rb_prev(skb); 1598 if (!prev) 1599 goto fallback; 1600 1601 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1602 goto fallback; 1603 1604 if (!tcp_skb_can_collapse(prev, skb)) 1605 goto fallback; 1606 1607 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1608 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1609 1610 if (in_sack) { 1611 len = skb->len; 1612 pcount = tcp_skb_pcount(skb); 1613 mss = tcp_skb_seglen(skb); 1614 1615 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1616 * drop this restriction as unnecessary 1617 */ 1618 if (mss != tcp_skb_seglen(prev)) 1619 goto fallback; 1620 } else { 1621 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1622 goto noop; 1623 /* CHECKME: This is non-MSS split case only?, this will 1624 * cause skipped skbs due to advancing loop btw, original 1625 * has that feature too 1626 */ 1627 if (tcp_skb_pcount(skb) <= 1) 1628 goto noop; 1629 1630 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1631 if (!in_sack) { 1632 /* TODO: head merge to next could be attempted here 1633 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1634 * though it might not be worth of the additional hassle 1635 * 1636 * ...we can probably just fallback to what was done 1637 * previously. We could try merging non-SACKed ones 1638 * as well but it probably isn't going to buy off 1639 * because later SACKs might again split them, and 1640 * it would make skb timestamp tracking considerably 1641 * harder problem. 1642 */ 1643 goto fallback; 1644 } 1645 1646 len = end_seq - TCP_SKB_CB(skb)->seq; 1647 BUG_ON(len < 0); 1648 BUG_ON(len > skb->len); 1649 1650 /* MSS boundaries should be honoured or else pcount will 1651 * severely break even though it makes things bit trickier. 1652 * Optimize common case to avoid most of the divides 1653 */ 1654 mss = tcp_skb_mss(skb); 1655 1656 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1657 * drop this restriction as unnecessary 1658 */ 1659 if (mss != tcp_skb_seglen(prev)) 1660 goto fallback; 1661 1662 if (len == mss) { 1663 pcount = 1; 1664 } else if (len < mss) { 1665 goto noop; 1666 } else { 1667 pcount = len / mss; 1668 len = pcount * mss; 1669 } 1670 } 1671 1672 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1673 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1674 goto fallback; 1675 1676 if (!tcp_skb_shift(prev, skb, pcount, len)) 1677 goto fallback; 1678 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1679 goto out; 1680 1681 /* Hole filled allows collapsing with the next as well, this is very 1682 * useful when hole on every nth skb pattern happens 1683 */ 1684 skb = skb_rb_next(prev); 1685 if (!skb) 1686 goto out; 1687 1688 if (!skb_can_shift(skb) || 1689 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1690 (mss != tcp_skb_seglen(skb))) 1691 goto out; 1692 1693 if (!tcp_skb_can_collapse(prev, skb)) 1694 goto out; 1695 len = skb->len; 1696 pcount = tcp_skb_pcount(skb); 1697 if (tcp_skb_shift(prev, skb, pcount, len)) 1698 tcp_shifted_skb(sk, prev, skb, state, pcount, 1699 len, mss, 0); 1700 1701 out: 1702 return prev; 1703 1704 noop: 1705 return skb; 1706 1707 fallback: 1708 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1709 return NULL; 1710 } 1711 1712 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1713 struct tcp_sack_block *next_dup, 1714 struct tcp_sacktag_state *state, 1715 u32 start_seq, u32 end_seq, 1716 bool dup_sack_in) 1717 { 1718 struct tcp_sock *tp = tcp_sk(sk); 1719 struct sk_buff *tmp; 1720 1721 skb_rbtree_walk_from(skb) { 1722 int in_sack = 0; 1723 bool dup_sack = dup_sack_in; 1724 1725 /* queue is in-order => we can short-circuit the walk early */ 1726 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1727 break; 1728 1729 if (next_dup && 1730 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1731 in_sack = tcp_match_skb_to_sack(sk, skb, 1732 next_dup->start_seq, 1733 next_dup->end_seq); 1734 if (in_sack > 0) 1735 dup_sack = true; 1736 } 1737 1738 /* skb reference here is a bit tricky to get right, since 1739 * shifting can eat and free both this skb and the next, 1740 * so not even _safe variant of the loop is enough. 1741 */ 1742 if (in_sack <= 0) { 1743 tmp = tcp_shift_skb_data(sk, skb, state, 1744 start_seq, end_seq, dup_sack); 1745 if (tmp) { 1746 if (tmp != skb) { 1747 skb = tmp; 1748 continue; 1749 } 1750 1751 in_sack = 0; 1752 } else { 1753 in_sack = tcp_match_skb_to_sack(sk, skb, 1754 start_seq, 1755 end_seq); 1756 } 1757 } 1758 1759 if (unlikely(in_sack < 0)) 1760 break; 1761 1762 if (in_sack) { 1763 TCP_SKB_CB(skb)->sacked = 1764 tcp_sacktag_one(sk, 1765 state, 1766 TCP_SKB_CB(skb)->sacked, 1767 TCP_SKB_CB(skb)->seq, 1768 TCP_SKB_CB(skb)->end_seq, 1769 dup_sack, 1770 tcp_skb_pcount(skb), 1771 tcp_skb_timestamp_us(skb)); 1772 tcp_rate_skb_delivered(sk, skb, state->rate); 1773 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1774 list_del_init(&skb->tcp_tsorted_anchor); 1775 1776 if (!before(TCP_SKB_CB(skb)->seq, 1777 tcp_highest_sack_seq(tp))) 1778 tcp_advance_highest_sack(sk, skb); 1779 } 1780 } 1781 return skb; 1782 } 1783 1784 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1785 { 1786 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1787 struct sk_buff *skb; 1788 1789 while (*p) { 1790 parent = *p; 1791 skb = rb_to_skb(parent); 1792 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1793 p = &parent->rb_left; 1794 continue; 1795 } 1796 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1797 p = &parent->rb_right; 1798 continue; 1799 } 1800 return skb; 1801 } 1802 return NULL; 1803 } 1804 1805 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1806 u32 skip_to_seq) 1807 { 1808 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1809 return skb; 1810 1811 return tcp_sacktag_bsearch(sk, skip_to_seq); 1812 } 1813 1814 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1815 struct sock *sk, 1816 struct tcp_sack_block *next_dup, 1817 struct tcp_sacktag_state *state, 1818 u32 skip_to_seq) 1819 { 1820 if (!next_dup) 1821 return skb; 1822 1823 if (before(next_dup->start_seq, skip_to_seq)) { 1824 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1825 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1826 next_dup->start_seq, next_dup->end_seq, 1827 1); 1828 } 1829 1830 return skb; 1831 } 1832 1833 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1834 { 1835 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1836 } 1837 1838 static int 1839 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1840 u32 prior_snd_una, struct tcp_sacktag_state *state) 1841 { 1842 struct tcp_sock *tp = tcp_sk(sk); 1843 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1844 TCP_SKB_CB(ack_skb)->sacked); 1845 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1846 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1847 struct tcp_sack_block *cache; 1848 struct sk_buff *skb; 1849 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1850 int used_sacks; 1851 bool found_dup_sack = false; 1852 int i, j; 1853 int first_sack_index; 1854 1855 state->flag = 0; 1856 state->reord = tp->snd_nxt; 1857 1858 if (!tp->sacked_out) 1859 tcp_highest_sack_reset(sk); 1860 1861 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1862 num_sacks, prior_snd_una, state); 1863 1864 /* Eliminate too old ACKs, but take into 1865 * account more or less fresh ones, they can 1866 * contain valid SACK info. 1867 */ 1868 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1869 return 0; 1870 1871 if (!tp->packets_out) 1872 goto out; 1873 1874 used_sacks = 0; 1875 first_sack_index = 0; 1876 for (i = 0; i < num_sacks; i++) { 1877 bool dup_sack = !i && found_dup_sack; 1878 1879 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1880 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1881 1882 if (!tcp_is_sackblock_valid(tp, dup_sack, 1883 sp[used_sacks].start_seq, 1884 sp[used_sacks].end_seq)) { 1885 int mib_idx; 1886 1887 if (dup_sack) { 1888 if (!tp->undo_marker) 1889 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1890 else 1891 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1892 } else { 1893 /* Don't count olds caused by ACK reordering */ 1894 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1895 !after(sp[used_sacks].end_seq, tp->snd_una)) 1896 continue; 1897 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1898 } 1899 1900 NET_INC_STATS(sock_net(sk), mib_idx); 1901 if (i == 0) 1902 first_sack_index = -1; 1903 continue; 1904 } 1905 1906 /* Ignore very old stuff early */ 1907 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1908 if (i == 0) 1909 first_sack_index = -1; 1910 continue; 1911 } 1912 1913 used_sacks++; 1914 } 1915 1916 /* order SACK blocks to allow in order walk of the retrans queue */ 1917 for (i = used_sacks - 1; i > 0; i--) { 1918 for (j = 0; j < i; j++) { 1919 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1920 swap(sp[j], sp[j + 1]); 1921 1922 /* Track where the first SACK block goes to */ 1923 if (j == first_sack_index) 1924 first_sack_index = j + 1; 1925 } 1926 } 1927 } 1928 1929 state->mss_now = tcp_current_mss(sk); 1930 skb = NULL; 1931 i = 0; 1932 1933 if (!tp->sacked_out) { 1934 /* It's already past, so skip checking against it */ 1935 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1936 } else { 1937 cache = tp->recv_sack_cache; 1938 /* Skip empty blocks in at head of the cache */ 1939 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1940 !cache->end_seq) 1941 cache++; 1942 } 1943 1944 while (i < used_sacks) { 1945 u32 start_seq = sp[i].start_seq; 1946 u32 end_seq = sp[i].end_seq; 1947 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1948 struct tcp_sack_block *next_dup = NULL; 1949 1950 if (found_dup_sack && ((i + 1) == first_sack_index)) 1951 next_dup = &sp[i + 1]; 1952 1953 /* Skip too early cached blocks */ 1954 while (tcp_sack_cache_ok(tp, cache) && 1955 !before(start_seq, cache->end_seq)) 1956 cache++; 1957 1958 /* Can skip some work by looking recv_sack_cache? */ 1959 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1960 after(end_seq, cache->start_seq)) { 1961 1962 /* Head todo? */ 1963 if (before(start_seq, cache->start_seq)) { 1964 skb = tcp_sacktag_skip(skb, sk, start_seq); 1965 skb = tcp_sacktag_walk(skb, sk, next_dup, 1966 state, 1967 start_seq, 1968 cache->start_seq, 1969 dup_sack); 1970 } 1971 1972 /* Rest of the block already fully processed? */ 1973 if (!after(end_seq, cache->end_seq)) 1974 goto advance_sp; 1975 1976 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1977 state, 1978 cache->end_seq); 1979 1980 /* ...tail remains todo... */ 1981 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1982 /* ...but better entrypoint exists! */ 1983 skb = tcp_highest_sack(sk); 1984 if (!skb) 1985 break; 1986 cache++; 1987 goto walk; 1988 } 1989 1990 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1991 /* Check overlap against next cached too (past this one already) */ 1992 cache++; 1993 continue; 1994 } 1995 1996 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1997 skb = tcp_highest_sack(sk); 1998 if (!skb) 1999 break; 2000 } 2001 skb = tcp_sacktag_skip(skb, sk, start_seq); 2002 2003 walk: 2004 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2005 start_seq, end_seq, dup_sack); 2006 2007 advance_sp: 2008 i++; 2009 } 2010 2011 /* Clear the head of the cache sack blocks so we can skip it next time */ 2012 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2013 tp->recv_sack_cache[i].start_seq = 0; 2014 tp->recv_sack_cache[i].end_seq = 0; 2015 } 2016 for (j = 0; j < used_sacks; j++) 2017 tp->recv_sack_cache[i++] = sp[j]; 2018 2019 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2020 tcp_check_sack_reordering(sk, state->reord, 0); 2021 2022 tcp_verify_left_out(tp); 2023 out: 2024 2025 #if FASTRETRANS_DEBUG > 0 2026 WARN_ON((int)tp->sacked_out < 0); 2027 WARN_ON((int)tp->lost_out < 0); 2028 WARN_ON((int)tp->retrans_out < 0); 2029 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2030 #endif 2031 return state->flag; 2032 } 2033 2034 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2035 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2036 */ 2037 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2038 { 2039 u32 holes; 2040 2041 holes = max(tp->lost_out, 1U); 2042 holes = min(holes, tp->packets_out); 2043 2044 if ((tp->sacked_out + holes) > tp->packets_out) { 2045 tp->sacked_out = tp->packets_out - holes; 2046 return true; 2047 } 2048 return false; 2049 } 2050 2051 /* If we receive more dupacks than we expected counting segments 2052 * in assumption of absent reordering, interpret this as reordering. 2053 * The only another reason could be bug in receiver TCP. 2054 */ 2055 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2056 { 2057 struct tcp_sock *tp = tcp_sk(sk); 2058 2059 if (!tcp_limit_reno_sacked(tp)) 2060 return; 2061 2062 tp->reordering = min_t(u32, tp->packets_out + addend, 2063 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2064 tp->reord_seen++; 2065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2066 } 2067 2068 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2069 2070 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2071 { 2072 if (num_dupack) { 2073 struct tcp_sock *tp = tcp_sk(sk); 2074 u32 prior_sacked = tp->sacked_out; 2075 s32 delivered; 2076 2077 tp->sacked_out += num_dupack; 2078 tcp_check_reno_reordering(sk, 0); 2079 delivered = tp->sacked_out - prior_sacked; 2080 if (delivered > 0) 2081 tcp_count_delivered(tp, delivered, ece_ack); 2082 tcp_verify_left_out(tp); 2083 } 2084 } 2085 2086 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2087 2088 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2089 { 2090 struct tcp_sock *tp = tcp_sk(sk); 2091 2092 if (acked > 0) { 2093 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2094 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2095 ece_ack); 2096 if (acked - 1 >= tp->sacked_out) 2097 tp->sacked_out = 0; 2098 else 2099 tp->sacked_out -= acked - 1; 2100 } 2101 tcp_check_reno_reordering(sk, acked); 2102 tcp_verify_left_out(tp); 2103 } 2104 2105 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2106 { 2107 tp->sacked_out = 0; 2108 } 2109 2110 void tcp_clear_retrans(struct tcp_sock *tp) 2111 { 2112 tp->retrans_out = 0; 2113 tp->lost_out = 0; 2114 tp->undo_marker = 0; 2115 tp->undo_retrans = -1; 2116 tp->sacked_out = 0; 2117 tp->rto_stamp = 0; 2118 tp->total_rto = 0; 2119 tp->total_rto_recoveries = 0; 2120 tp->total_rto_time = 0; 2121 } 2122 2123 static inline void tcp_init_undo(struct tcp_sock *tp) 2124 { 2125 tp->undo_marker = tp->snd_una; 2126 2127 /* Retransmission still in flight may cause DSACKs later. */ 2128 /* First, account for regular retransmits in flight: */ 2129 tp->undo_retrans = tp->retrans_out; 2130 /* Next, account for TLP retransmits in flight: */ 2131 if (tp->tlp_high_seq && tp->tlp_retrans) 2132 tp->undo_retrans++; 2133 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2134 if (!tp->undo_retrans) 2135 tp->undo_retrans = -1; 2136 } 2137 2138 static bool tcp_is_rack(const struct sock *sk) 2139 { 2140 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2141 TCP_RACK_LOSS_DETECTION; 2142 } 2143 2144 /* If we detect SACK reneging, forget all SACK information 2145 * and reset tags completely, otherwise preserve SACKs. If receiver 2146 * dropped its ofo queue, we will know this due to reneging detection. 2147 */ 2148 static void tcp_timeout_mark_lost(struct sock *sk) 2149 { 2150 struct tcp_sock *tp = tcp_sk(sk); 2151 struct sk_buff *skb, *head; 2152 bool is_reneg; /* is receiver reneging on SACKs? */ 2153 2154 head = tcp_rtx_queue_head(sk); 2155 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2156 if (is_reneg) { 2157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2158 tp->sacked_out = 0; 2159 /* Mark SACK reneging until we recover from this loss event. */ 2160 tp->is_sack_reneg = 1; 2161 } else if (tcp_is_reno(tp)) { 2162 tcp_reset_reno_sack(tp); 2163 } 2164 2165 skb = head; 2166 skb_rbtree_walk_from(skb) { 2167 if (is_reneg) 2168 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2169 else if (tcp_is_rack(sk) && skb != head && 2170 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2171 continue; /* Don't mark recently sent ones lost yet */ 2172 tcp_mark_skb_lost(sk, skb); 2173 } 2174 tcp_verify_left_out(tp); 2175 tcp_clear_all_retrans_hints(tp); 2176 } 2177 2178 /* Enter Loss state. */ 2179 void tcp_enter_loss(struct sock *sk) 2180 { 2181 const struct inet_connection_sock *icsk = inet_csk(sk); 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 struct net *net = sock_net(sk); 2184 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2185 u8 reordering; 2186 2187 tcp_timeout_mark_lost(sk); 2188 2189 /* Reduce ssthresh if it has not yet been made inside this window. */ 2190 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2191 !after(tp->high_seq, tp->snd_una) || 2192 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2193 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2194 tp->prior_cwnd = tcp_snd_cwnd(tp); 2195 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2196 tcp_ca_event(sk, CA_EVENT_LOSS); 2197 tcp_init_undo(tp); 2198 } 2199 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2200 tp->snd_cwnd_cnt = 0; 2201 tp->snd_cwnd_stamp = tcp_jiffies32; 2202 2203 /* Timeout in disordered state after receiving substantial DUPACKs 2204 * suggests that the degree of reordering is over-estimated. 2205 */ 2206 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2207 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2208 tp->sacked_out >= reordering) 2209 tp->reordering = min_t(unsigned int, tp->reordering, 2210 reordering); 2211 2212 tcp_set_ca_state(sk, TCP_CA_Loss); 2213 tp->high_seq = tp->snd_nxt; 2214 tp->tlp_high_seq = 0; 2215 tcp_ecn_queue_cwr(tp); 2216 2217 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2218 * loss recovery is underway except recurring timeout(s) on 2219 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2220 */ 2221 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2222 (new_recovery || icsk->icsk_retransmits) && 2223 !inet_csk(sk)->icsk_mtup.probe_size; 2224 } 2225 2226 /* If ACK arrived pointing to a remembered SACK, it means that our 2227 * remembered SACKs do not reflect real state of receiver i.e. 2228 * receiver _host_ is heavily congested (or buggy). 2229 * 2230 * To avoid big spurious retransmission bursts due to transient SACK 2231 * scoreboard oddities that look like reneging, we give the receiver a 2232 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2233 * restore sanity to the SACK scoreboard. If the apparent reneging 2234 * persists until this RTO then we'll clear the SACK scoreboard. 2235 */ 2236 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2237 { 2238 if (*ack_flag & FLAG_SACK_RENEGING && 2239 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2240 struct tcp_sock *tp = tcp_sk(sk); 2241 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2242 msecs_to_jiffies(10)); 2243 2244 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2245 delay, TCP_RTO_MAX); 2246 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2247 return true; 2248 } 2249 return false; 2250 } 2251 2252 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2253 * counter when SACK is enabled (without SACK, sacked_out is used for 2254 * that purpose). 2255 * 2256 * With reordering, holes may still be in flight, so RFC3517 recovery 2257 * uses pure sacked_out (total number of SACKed segments) even though 2258 * it violates the RFC that uses duplicate ACKs, often these are equal 2259 * but when e.g. out-of-window ACKs or packet duplication occurs, 2260 * they differ. Since neither occurs due to loss, TCP should really 2261 * ignore them. 2262 */ 2263 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2264 { 2265 return tp->sacked_out + 1; 2266 } 2267 2268 /* Linux NewReno/SACK/ECN state machine. 2269 * -------------------------------------- 2270 * 2271 * "Open" Normal state, no dubious events, fast path. 2272 * "Disorder" In all the respects it is "Open", 2273 * but requires a bit more attention. It is entered when 2274 * we see some SACKs or dupacks. It is split of "Open" 2275 * mainly to move some processing from fast path to slow one. 2276 * "CWR" CWND was reduced due to some Congestion Notification event. 2277 * It can be ECN, ICMP source quench, local device congestion. 2278 * "Recovery" CWND was reduced, we are fast-retransmitting. 2279 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2280 * 2281 * tcp_fastretrans_alert() is entered: 2282 * - each incoming ACK, if state is not "Open" 2283 * - when arrived ACK is unusual, namely: 2284 * * SACK 2285 * * Duplicate ACK. 2286 * * ECN ECE. 2287 * 2288 * Counting packets in flight is pretty simple. 2289 * 2290 * in_flight = packets_out - left_out + retrans_out 2291 * 2292 * packets_out is SND.NXT-SND.UNA counted in packets. 2293 * 2294 * retrans_out is number of retransmitted segments. 2295 * 2296 * left_out is number of segments left network, but not ACKed yet. 2297 * 2298 * left_out = sacked_out + lost_out 2299 * 2300 * sacked_out: Packets, which arrived to receiver out of order 2301 * and hence not ACKed. With SACKs this number is simply 2302 * amount of SACKed data. Even without SACKs 2303 * it is easy to give pretty reliable estimate of this number, 2304 * counting duplicate ACKs. 2305 * 2306 * lost_out: Packets lost by network. TCP has no explicit 2307 * "loss notification" feedback from network (for now). 2308 * It means that this number can be only _guessed_. 2309 * Actually, it is the heuristics to predict lossage that 2310 * distinguishes different algorithms. 2311 * 2312 * F.e. after RTO, when all the queue is considered as lost, 2313 * lost_out = packets_out and in_flight = retrans_out. 2314 * 2315 * Essentially, we have now a few algorithms detecting 2316 * lost packets. 2317 * 2318 * If the receiver supports SACK: 2319 * 2320 * RFC6675/3517: It is the conventional algorithm. A packet is 2321 * considered lost if the number of higher sequence packets 2322 * SACKed is greater than or equal the DUPACK thoreshold 2323 * (reordering). This is implemented in tcp_mark_head_lost and 2324 * tcp_update_scoreboard. 2325 * 2326 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2327 * (2017-) that checks timing instead of counting DUPACKs. 2328 * Essentially a packet is considered lost if it's not S/ACKed 2329 * after RTT + reordering_window, where both metrics are 2330 * dynamically measured and adjusted. This is implemented in 2331 * tcp_rack_mark_lost. 2332 * 2333 * If the receiver does not support SACK: 2334 * 2335 * NewReno (RFC6582): in Recovery we assume that one segment 2336 * is lost (classic Reno). While we are in Recovery and 2337 * a partial ACK arrives, we assume that one more packet 2338 * is lost (NewReno). This heuristics are the same in NewReno 2339 * and SACK. 2340 * 2341 * Really tricky (and requiring careful tuning) part of algorithm 2342 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2343 * The first determines the moment _when_ we should reduce CWND and, 2344 * hence, slow down forward transmission. In fact, it determines the moment 2345 * when we decide that hole is caused by loss, rather than by a reorder. 2346 * 2347 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2348 * holes, caused by lost packets. 2349 * 2350 * And the most logically complicated part of algorithm is undo 2351 * heuristics. We detect false retransmits due to both too early 2352 * fast retransmit (reordering) and underestimated RTO, analyzing 2353 * timestamps and D-SACKs. When we detect that some segments were 2354 * retransmitted by mistake and CWND reduction was wrong, we undo 2355 * window reduction and abort recovery phase. This logic is hidden 2356 * inside several functions named tcp_try_undo_<something>. 2357 */ 2358 2359 /* This function decides, when we should leave Disordered state 2360 * and enter Recovery phase, reducing congestion window. 2361 * 2362 * Main question: may we further continue forward transmission 2363 * with the same cwnd? 2364 */ 2365 static bool tcp_time_to_recover(struct sock *sk, int flag) 2366 { 2367 struct tcp_sock *tp = tcp_sk(sk); 2368 2369 /* Trick#1: The loss is proven. */ 2370 if (tp->lost_out) 2371 return true; 2372 2373 /* Not-A-Trick#2 : Classic rule... */ 2374 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2375 return true; 2376 2377 return false; 2378 } 2379 2380 /* Detect loss in event "A" above by marking head of queue up as lost. 2381 * For RFC3517 SACK, a segment is considered lost if it 2382 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2383 * the maximum SACKed segments to pass before reaching this limit. 2384 */ 2385 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 struct sk_buff *skb; 2389 int cnt; 2390 /* Use SACK to deduce losses of new sequences sent during recovery */ 2391 const u32 loss_high = tp->snd_nxt; 2392 2393 WARN_ON(packets > tp->packets_out); 2394 skb = tp->lost_skb_hint; 2395 if (skb) { 2396 /* Head already handled? */ 2397 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2398 return; 2399 cnt = tp->lost_cnt_hint; 2400 } else { 2401 skb = tcp_rtx_queue_head(sk); 2402 cnt = 0; 2403 } 2404 2405 skb_rbtree_walk_from(skb) { 2406 /* TODO: do this better */ 2407 /* this is not the most efficient way to do this... */ 2408 tp->lost_skb_hint = skb; 2409 tp->lost_cnt_hint = cnt; 2410 2411 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2412 break; 2413 2414 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2415 cnt += tcp_skb_pcount(skb); 2416 2417 if (cnt > packets) 2418 break; 2419 2420 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2421 tcp_mark_skb_lost(sk, skb); 2422 2423 if (mark_head) 2424 break; 2425 } 2426 tcp_verify_left_out(tp); 2427 } 2428 2429 /* Account newly detected lost packet(s) */ 2430 2431 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (tcp_is_sack(tp)) { 2436 int sacked_upto = tp->sacked_out - tp->reordering; 2437 if (sacked_upto >= 0) 2438 tcp_mark_head_lost(sk, sacked_upto, 0); 2439 else if (fast_rexmit) 2440 tcp_mark_head_lost(sk, 1, 1); 2441 } 2442 } 2443 2444 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2445 { 2446 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2447 before(tp->rx_opt.rcv_tsecr, when); 2448 } 2449 2450 /* skb is spurious retransmitted if the returned timestamp echo 2451 * reply is prior to the skb transmission time 2452 */ 2453 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2454 const struct sk_buff *skb) 2455 { 2456 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2457 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2458 } 2459 2460 /* Nothing was retransmitted or returned timestamp is less 2461 * than timestamp of the first retransmission. 2462 */ 2463 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2464 { 2465 const struct sock *sk = (const struct sock *)tp; 2466 2467 if (tp->retrans_stamp && 2468 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2469 return true; /* got echoed TS before first retransmission */ 2470 2471 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2472 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2473 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2474 * retrans_stamp even if we had retransmitted the SYN. 2475 */ 2476 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2477 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2478 return true; /* nothing was retransmitted */ 2479 2480 return false; 2481 } 2482 2483 /* Undo procedures. */ 2484 2485 /* We can clear retrans_stamp when there are no retransmissions in the 2486 * window. It would seem that it is trivially available for us in 2487 * tp->retrans_out, however, that kind of assumptions doesn't consider 2488 * what will happen if errors occur when sending retransmission for the 2489 * second time. ...It could the that such segment has only 2490 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2491 * the head skb is enough except for some reneging corner cases that 2492 * are not worth the effort. 2493 * 2494 * Main reason for all this complexity is the fact that connection dying 2495 * time now depends on the validity of the retrans_stamp, in particular, 2496 * that successive retransmissions of a segment must not advance 2497 * retrans_stamp under any conditions. 2498 */ 2499 static bool tcp_any_retrans_done(const struct sock *sk) 2500 { 2501 const struct tcp_sock *tp = tcp_sk(sk); 2502 struct sk_buff *skb; 2503 2504 if (tp->retrans_out) 2505 return true; 2506 2507 skb = tcp_rtx_queue_head(sk); 2508 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2509 return true; 2510 2511 return false; 2512 } 2513 2514 /* If loss recovery is finished and there are no retransmits out in the 2515 * network, then we clear retrans_stamp so that upon the next loss recovery 2516 * retransmits_timed_out() and timestamp-undo are using the correct value. 2517 */ 2518 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2519 { 2520 if (!tcp_any_retrans_done(sk)) 2521 tcp_sk(sk)->retrans_stamp = 0; 2522 } 2523 2524 static void DBGUNDO(struct sock *sk, const char *msg) 2525 { 2526 #if FASTRETRANS_DEBUG > 1 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 struct inet_sock *inet = inet_sk(sk); 2529 2530 if (sk->sk_family == AF_INET) { 2531 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2532 msg, 2533 &inet->inet_daddr, ntohs(inet->inet_dport), 2534 tcp_snd_cwnd(tp), tcp_left_out(tp), 2535 tp->snd_ssthresh, tp->prior_ssthresh, 2536 tp->packets_out); 2537 } 2538 #if IS_ENABLED(CONFIG_IPV6) 2539 else if (sk->sk_family == AF_INET6) { 2540 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2541 msg, 2542 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2543 tcp_snd_cwnd(tp), tcp_left_out(tp), 2544 tp->snd_ssthresh, tp->prior_ssthresh, 2545 tp->packets_out); 2546 } 2547 #endif 2548 #endif 2549 } 2550 2551 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 2555 if (unmark_loss) { 2556 struct sk_buff *skb; 2557 2558 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2559 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2560 } 2561 tp->lost_out = 0; 2562 tcp_clear_all_retrans_hints(tp); 2563 } 2564 2565 if (tp->prior_ssthresh) { 2566 const struct inet_connection_sock *icsk = inet_csk(sk); 2567 2568 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2569 2570 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2571 tp->snd_ssthresh = tp->prior_ssthresh; 2572 tcp_ecn_withdraw_cwr(tp); 2573 } 2574 } 2575 tp->snd_cwnd_stamp = tcp_jiffies32; 2576 tp->undo_marker = 0; 2577 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2578 } 2579 2580 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2581 { 2582 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2583 } 2584 2585 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2586 { 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 2589 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2590 /* Hold old state until something *above* high_seq 2591 * is ACKed. For Reno it is MUST to prevent false 2592 * fast retransmits (RFC2582). SACK TCP is safe. */ 2593 if (!tcp_any_retrans_done(sk)) 2594 tp->retrans_stamp = 0; 2595 return true; 2596 } 2597 return false; 2598 } 2599 2600 /* People celebrate: "We love our President!" */ 2601 static bool tcp_try_undo_recovery(struct sock *sk) 2602 { 2603 struct tcp_sock *tp = tcp_sk(sk); 2604 2605 if (tcp_may_undo(tp)) { 2606 int mib_idx; 2607 2608 /* Happy end! We did not retransmit anything 2609 * or our original transmission succeeded. 2610 */ 2611 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2612 tcp_undo_cwnd_reduction(sk, false); 2613 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2614 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2615 else 2616 mib_idx = LINUX_MIB_TCPFULLUNDO; 2617 2618 NET_INC_STATS(sock_net(sk), mib_idx); 2619 } else if (tp->rack.reo_wnd_persist) { 2620 tp->rack.reo_wnd_persist--; 2621 } 2622 if (tcp_is_non_sack_preventing_reopen(sk)) 2623 return true; 2624 tcp_set_ca_state(sk, TCP_CA_Open); 2625 tp->is_sack_reneg = 0; 2626 return false; 2627 } 2628 2629 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2630 static bool tcp_try_undo_dsack(struct sock *sk) 2631 { 2632 struct tcp_sock *tp = tcp_sk(sk); 2633 2634 if (tp->undo_marker && !tp->undo_retrans) { 2635 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2636 tp->rack.reo_wnd_persist + 1); 2637 DBGUNDO(sk, "D-SACK"); 2638 tcp_undo_cwnd_reduction(sk, false); 2639 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2640 return true; 2641 } 2642 return false; 2643 } 2644 2645 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2646 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2647 { 2648 struct tcp_sock *tp = tcp_sk(sk); 2649 2650 if (frto_undo || tcp_may_undo(tp)) { 2651 tcp_undo_cwnd_reduction(sk, true); 2652 2653 DBGUNDO(sk, "partial loss"); 2654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2655 if (frto_undo) 2656 NET_INC_STATS(sock_net(sk), 2657 LINUX_MIB_TCPSPURIOUSRTOS); 2658 inet_csk(sk)->icsk_retransmits = 0; 2659 if (tcp_is_non_sack_preventing_reopen(sk)) 2660 return true; 2661 if (frto_undo || tcp_is_sack(tp)) { 2662 tcp_set_ca_state(sk, TCP_CA_Open); 2663 tp->is_sack_reneg = 0; 2664 } 2665 return true; 2666 } 2667 return false; 2668 } 2669 2670 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2671 * It computes the number of packets to send (sndcnt) based on packets newly 2672 * delivered: 2673 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2674 * cwnd reductions across a full RTT. 2675 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2676 * But when SND_UNA is acked without further losses, 2677 * slow starts cwnd up to ssthresh to speed up the recovery. 2678 */ 2679 static void tcp_init_cwnd_reduction(struct sock *sk) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 2683 tp->high_seq = tp->snd_nxt; 2684 tp->tlp_high_seq = 0; 2685 tp->snd_cwnd_cnt = 0; 2686 tp->prior_cwnd = tcp_snd_cwnd(tp); 2687 tp->prr_delivered = 0; 2688 tp->prr_out = 0; 2689 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2690 tcp_ecn_queue_cwr(tp); 2691 } 2692 2693 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2694 { 2695 struct tcp_sock *tp = tcp_sk(sk); 2696 int sndcnt = 0; 2697 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2698 2699 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2700 return; 2701 2702 tp->prr_delivered += newly_acked_sacked; 2703 if (delta < 0) { 2704 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2705 tp->prior_cwnd - 1; 2706 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2707 } else { 2708 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2709 newly_acked_sacked); 2710 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2711 sndcnt++; 2712 sndcnt = min(delta, sndcnt); 2713 } 2714 /* Force a fast retransmit upon entering fast recovery */ 2715 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2716 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2717 } 2718 2719 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 2723 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2724 return; 2725 2726 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2727 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2728 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2729 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2730 tp->snd_cwnd_stamp = tcp_jiffies32; 2731 } 2732 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2733 } 2734 2735 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2736 void tcp_enter_cwr(struct sock *sk) 2737 { 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 2740 tp->prior_ssthresh = 0; 2741 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2742 tp->undo_marker = 0; 2743 tcp_init_cwnd_reduction(sk); 2744 tcp_set_ca_state(sk, TCP_CA_CWR); 2745 } 2746 } 2747 EXPORT_SYMBOL(tcp_enter_cwr); 2748 2749 static void tcp_try_keep_open(struct sock *sk) 2750 { 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 int state = TCP_CA_Open; 2753 2754 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2755 state = TCP_CA_Disorder; 2756 2757 if (inet_csk(sk)->icsk_ca_state != state) { 2758 tcp_set_ca_state(sk, state); 2759 tp->high_seq = tp->snd_nxt; 2760 } 2761 } 2762 2763 static void tcp_try_to_open(struct sock *sk, int flag) 2764 { 2765 struct tcp_sock *tp = tcp_sk(sk); 2766 2767 tcp_verify_left_out(tp); 2768 2769 if (!tcp_any_retrans_done(sk)) 2770 tp->retrans_stamp = 0; 2771 2772 if (flag & FLAG_ECE) 2773 tcp_enter_cwr(sk); 2774 2775 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2776 tcp_try_keep_open(sk); 2777 } 2778 } 2779 2780 static void tcp_mtup_probe_failed(struct sock *sk) 2781 { 2782 struct inet_connection_sock *icsk = inet_csk(sk); 2783 2784 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2785 icsk->icsk_mtup.probe_size = 0; 2786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2787 } 2788 2789 static void tcp_mtup_probe_success(struct sock *sk) 2790 { 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 struct inet_connection_sock *icsk = inet_csk(sk); 2793 u64 val; 2794 2795 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2796 2797 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2798 do_div(val, icsk->icsk_mtup.probe_size); 2799 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2800 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2801 2802 tp->snd_cwnd_cnt = 0; 2803 tp->snd_cwnd_stamp = tcp_jiffies32; 2804 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2805 2806 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2807 icsk->icsk_mtup.probe_size = 0; 2808 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2810 } 2811 2812 /* Sometimes we deduce that packets have been dropped due to reasons other than 2813 * congestion, like path MTU reductions or failed client TFO attempts. In these 2814 * cases we call this function to retransmit as many packets as cwnd allows, 2815 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2816 * non-zero value (and may do so in a later calling context due to TSQ), we 2817 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2818 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2819 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2820 * prematurely). 2821 */ 2822 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2823 { 2824 const struct inet_connection_sock *icsk = inet_csk(sk); 2825 struct tcp_sock *tp = tcp_sk(sk); 2826 2827 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2828 tp->high_seq = tp->snd_nxt; 2829 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2830 tp->prior_ssthresh = 0; 2831 tp->undo_marker = 0; 2832 tcp_set_ca_state(sk, TCP_CA_Loss); 2833 } 2834 tcp_xmit_retransmit_queue(sk); 2835 } 2836 2837 /* Do a simple retransmit without using the backoff mechanisms in 2838 * tcp_timer. This is used for path mtu discovery. 2839 * The socket is already locked here. 2840 */ 2841 void tcp_simple_retransmit(struct sock *sk) 2842 { 2843 struct tcp_sock *tp = tcp_sk(sk); 2844 struct sk_buff *skb; 2845 int mss; 2846 2847 /* A fastopen SYN request is stored as two separate packets within 2848 * the retransmit queue, this is done by tcp_send_syn_data(). 2849 * As a result simply checking the MSS of the frames in the queue 2850 * will not work for the SYN packet. 2851 * 2852 * Us being here is an indication of a path MTU issue so we can 2853 * assume that the fastopen SYN was lost and just mark all the 2854 * frames in the retransmit queue as lost. We will use an MSS of 2855 * -1 to mark all frames as lost, otherwise compute the current MSS. 2856 */ 2857 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2858 mss = -1; 2859 else 2860 mss = tcp_current_mss(sk); 2861 2862 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2863 if (tcp_skb_seglen(skb) > mss) 2864 tcp_mark_skb_lost(sk, skb); 2865 } 2866 2867 tcp_clear_retrans_hints_partial(tp); 2868 2869 if (!tp->lost_out) 2870 return; 2871 2872 if (tcp_is_reno(tp)) 2873 tcp_limit_reno_sacked(tp); 2874 2875 tcp_verify_left_out(tp); 2876 2877 /* Don't muck with the congestion window here. 2878 * Reason is that we do not increase amount of _data_ 2879 * in network, but units changed and effective 2880 * cwnd/ssthresh really reduced now. 2881 */ 2882 tcp_non_congestion_loss_retransmit(sk); 2883 } 2884 EXPORT_SYMBOL(tcp_simple_retransmit); 2885 2886 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2887 { 2888 struct tcp_sock *tp = tcp_sk(sk); 2889 int mib_idx; 2890 2891 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2892 tcp_retrans_stamp_cleanup(sk); 2893 2894 if (tcp_is_reno(tp)) 2895 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2896 else 2897 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2898 2899 NET_INC_STATS(sock_net(sk), mib_idx); 2900 2901 tp->prior_ssthresh = 0; 2902 tcp_init_undo(tp); 2903 2904 if (!tcp_in_cwnd_reduction(sk)) { 2905 if (!ece_ack) 2906 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2907 tcp_init_cwnd_reduction(sk); 2908 } 2909 tcp_set_ca_state(sk, TCP_CA_Recovery); 2910 } 2911 2912 static void tcp_update_rto_time(struct tcp_sock *tp) 2913 { 2914 if (tp->rto_stamp) { 2915 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp; 2916 tp->rto_stamp = 0; 2917 } 2918 } 2919 2920 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2921 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2922 */ 2923 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2924 int *rexmit) 2925 { 2926 struct tcp_sock *tp = tcp_sk(sk); 2927 bool recovered = !before(tp->snd_una, tp->high_seq); 2928 2929 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2930 tcp_try_undo_loss(sk, false)) 2931 return; 2932 2933 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2934 /* Step 3.b. A timeout is spurious if not all data are 2935 * lost, i.e., never-retransmitted data are (s)acked. 2936 */ 2937 if ((flag & FLAG_ORIG_SACK_ACKED) && 2938 tcp_try_undo_loss(sk, true)) 2939 return; 2940 2941 if (after(tp->snd_nxt, tp->high_seq)) { 2942 if (flag & FLAG_DATA_SACKED || num_dupack) 2943 tp->frto = 0; /* Step 3.a. loss was real */ 2944 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2945 tp->high_seq = tp->snd_nxt; 2946 /* Step 2.b. Try send new data (but deferred until cwnd 2947 * is updated in tcp_ack()). Otherwise fall back to 2948 * the conventional recovery. 2949 */ 2950 if (!tcp_write_queue_empty(sk) && 2951 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2952 *rexmit = REXMIT_NEW; 2953 return; 2954 } 2955 tp->frto = 0; 2956 } 2957 } 2958 2959 if (recovered) { 2960 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2961 tcp_try_undo_recovery(sk); 2962 return; 2963 } 2964 if (tcp_is_reno(tp)) { 2965 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2966 * delivered. Lower inflight to clock out (re)transmissions. 2967 */ 2968 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2969 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2970 else if (flag & FLAG_SND_UNA_ADVANCED) 2971 tcp_reset_reno_sack(tp); 2972 } 2973 *rexmit = REXMIT_LOST; 2974 } 2975 2976 static bool tcp_force_fast_retransmit(struct sock *sk) 2977 { 2978 struct tcp_sock *tp = tcp_sk(sk); 2979 2980 return after(tcp_highest_sack_seq(tp), 2981 tp->snd_una + tp->reordering * tp->mss_cache); 2982 } 2983 2984 /* Undo during fast recovery after partial ACK. */ 2985 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2986 bool *do_lost) 2987 { 2988 struct tcp_sock *tp = tcp_sk(sk); 2989 2990 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2991 /* Plain luck! Hole if filled with delayed 2992 * packet, rather than with a retransmit. Check reordering. 2993 */ 2994 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2995 2996 /* We are getting evidence that the reordering degree is higher 2997 * than we realized. If there are no retransmits out then we 2998 * can undo. Otherwise we clock out new packets but do not 2999 * mark more packets lost or retransmit more. 3000 */ 3001 if (tp->retrans_out) 3002 return true; 3003 3004 if (!tcp_any_retrans_done(sk)) 3005 tp->retrans_stamp = 0; 3006 3007 DBGUNDO(sk, "partial recovery"); 3008 tcp_undo_cwnd_reduction(sk, true); 3009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3010 tcp_try_keep_open(sk); 3011 } else { 3012 /* Partial ACK arrived. Force fast retransmit. */ 3013 *do_lost = tcp_force_fast_retransmit(sk); 3014 } 3015 return false; 3016 } 3017 3018 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3019 { 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 3022 if (tcp_rtx_queue_empty(sk)) 3023 return; 3024 3025 if (unlikely(tcp_is_reno(tp))) { 3026 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3027 } else if (tcp_is_rack(sk)) { 3028 u32 prior_retrans = tp->retrans_out; 3029 3030 if (tcp_rack_mark_lost(sk)) 3031 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3032 if (prior_retrans > tp->retrans_out) 3033 *ack_flag |= FLAG_LOST_RETRANS; 3034 } 3035 } 3036 3037 /* Process an event, which can update packets-in-flight not trivially. 3038 * Main goal of this function is to calculate new estimate for left_out, 3039 * taking into account both packets sitting in receiver's buffer and 3040 * packets lost by network. 3041 * 3042 * Besides that it updates the congestion state when packet loss or ECN 3043 * is detected. But it does not reduce the cwnd, it is done by the 3044 * congestion control later. 3045 * 3046 * It does _not_ decide what to send, it is made in function 3047 * tcp_xmit_retransmit_queue(). 3048 */ 3049 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3050 int num_dupack, int *ack_flag, int *rexmit) 3051 { 3052 struct inet_connection_sock *icsk = inet_csk(sk); 3053 struct tcp_sock *tp = tcp_sk(sk); 3054 int fast_rexmit = 0, flag = *ack_flag; 3055 bool ece_ack = flag & FLAG_ECE; 3056 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3057 tcp_force_fast_retransmit(sk)); 3058 3059 if (!tp->packets_out && tp->sacked_out) 3060 tp->sacked_out = 0; 3061 3062 /* Now state machine starts. 3063 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3064 if (ece_ack) 3065 tp->prior_ssthresh = 0; 3066 3067 /* B. In all the states check for reneging SACKs. */ 3068 if (tcp_check_sack_reneging(sk, ack_flag)) 3069 return; 3070 3071 /* C. Check consistency of the current state. */ 3072 tcp_verify_left_out(tp); 3073 3074 /* D. Check state exit conditions. State can be terminated 3075 * when high_seq is ACKed. */ 3076 if (icsk->icsk_ca_state == TCP_CA_Open) { 3077 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3078 tp->retrans_stamp = 0; 3079 } else if (!before(tp->snd_una, tp->high_seq)) { 3080 switch (icsk->icsk_ca_state) { 3081 case TCP_CA_CWR: 3082 /* CWR is to be held something *above* high_seq 3083 * is ACKed for CWR bit to reach receiver. */ 3084 if (tp->snd_una != tp->high_seq) { 3085 tcp_end_cwnd_reduction(sk); 3086 tcp_set_ca_state(sk, TCP_CA_Open); 3087 } 3088 break; 3089 3090 case TCP_CA_Recovery: 3091 if (tcp_is_reno(tp)) 3092 tcp_reset_reno_sack(tp); 3093 if (tcp_try_undo_recovery(sk)) 3094 return; 3095 tcp_end_cwnd_reduction(sk); 3096 break; 3097 } 3098 } 3099 3100 /* E. Process state. */ 3101 switch (icsk->icsk_ca_state) { 3102 case TCP_CA_Recovery: 3103 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3104 if (tcp_is_reno(tp)) 3105 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3106 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3107 return; 3108 3109 if (tcp_try_undo_dsack(sk)) 3110 tcp_try_to_open(sk, flag); 3111 3112 tcp_identify_packet_loss(sk, ack_flag); 3113 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3114 if (!tcp_time_to_recover(sk, flag)) 3115 return; 3116 /* Undo reverts the recovery state. If loss is evident, 3117 * starts a new recovery (e.g. reordering then loss); 3118 */ 3119 tcp_enter_recovery(sk, ece_ack); 3120 } 3121 break; 3122 case TCP_CA_Loss: 3123 tcp_process_loss(sk, flag, num_dupack, rexmit); 3124 if (icsk->icsk_ca_state != TCP_CA_Loss) 3125 tcp_update_rto_time(tp); 3126 tcp_identify_packet_loss(sk, ack_flag); 3127 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3128 (*ack_flag & FLAG_LOST_RETRANS))) 3129 return; 3130 /* Change state if cwnd is undone or retransmits are lost */ 3131 fallthrough; 3132 default: 3133 if (tcp_is_reno(tp)) { 3134 if (flag & FLAG_SND_UNA_ADVANCED) 3135 tcp_reset_reno_sack(tp); 3136 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3137 } 3138 3139 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3140 tcp_try_undo_dsack(sk); 3141 3142 tcp_identify_packet_loss(sk, ack_flag); 3143 if (!tcp_time_to_recover(sk, flag)) { 3144 tcp_try_to_open(sk, flag); 3145 return; 3146 } 3147 3148 /* MTU probe failure: don't reduce cwnd */ 3149 if (icsk->icsk_ca_state < TCP_CA_CWR && 3150 icsk->icsk_mtup.probe_size && 3151 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3152 tcp_mtup_probe_failed(sk); 3153 /* Restores the reduction we did in tcp_mtup_probe() */ 3154 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3155 tcp_simple_retransmit(sk); 3156 return; 3157 } 3158 3159 /* Otherwise enter Recovery state */ 3160 tcp_enter_recovery(sk, ece_ack); 3161 fast_rexmit = 1; 3162 } 3163 3164 if (!tcp_is_rack(sk) && do_lost) 3165 tcp_update_scoreboard(sk, fast_rexmit); 3166 *rexmit = REXMIT_LOST; 3167 } 3168 3169 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3170 { 3171 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3172 struct tcp_sock *tp = tcp_sk(sk); 3173 3174 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3175 /* If the remote keeps returning delayed ACKs, eventually 3176 * the min filter would pick it up and overestimate the 3177 * prop. delay when it expires. Skip suspected delayed ACKs. 3178 */ 3179 return; 3180 } 3181 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3182 rtt_us ? : jiffies_to_usecs(1)); 3183 } 3184 3185 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3186 long seq_rtt_us, long sack_rtt_us, 3187 long ca_rtt_us, struct rate_sample *rs) 3188 { 3189 const struct tcp_sock *tp = tcp_sk(sk); 3190 3191 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3192 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3193 * Karn's algorithm forbids taking RTT if some retransmitted data 3194 * is acked (RFC6298). 3195 */ 3196 if (seq_rtt_us < 0) 3197 seq_rtt_us = sack_rtt_us; 3198 3199 /* RTTM Rule: A TSecr value received in a segment is used to 3200 * update the averaged RTT measurement only if the segment 3201 * acknowledges some new data, i.e., only if it advances the 3202 * left edge of the send window. 3203 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3204 */ 3205 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3206 flag & FLAG_ACKED) { 3207 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3208 3209 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3210 if (!delta) 3211 delta = 1; 3212 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3213 ca_rtt_us = seq_rtt_us; 3214 } 3215 } 3216 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3217 if (seq_rtt_us < 0) 3218 return false; 3219 3220 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3221 * always taken together with ACK, SACK, or TS-opts. Any negative 3222 * values will be skipped with the seq_rtt_us < 0 check above. 3223 */ 3224 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3225 tcp_rtt_estimator(sk, seq_rtt_us); 3226 tcp_set_rto(sk); 3227 3228 /* RFC6298: only reset backoff on valid RTT measurement. */ 3229 inet_csk(sk)->icsk_backoff = 0; 3230 return true; 3231 } 3232 3233 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3234 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3235 { 3236 struct rate_sample rs; 3237 long rtt_us = -1L; 3238 3239 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3240 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3241 3242 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3243 } 3244 3245 3246 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3247 { 3248 const struct inet_connection_sock *icsk = inet_csk(sk); 3249 3250 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3251 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3252 } 3253 3254 /* Restart timer after forward progress on connection. 3255 * RFC2988 recommends to restart timer to now+rto. 3256 */ 3257 void tcp_rearm_rto(struct sock *sk) 3258 { 3259 const struct inet_connection_sock *icsk = inet_csk(sk); 3260 struct tcp_sock *tp = tcp_sk(sk); 3261 3262 /* If the retrans timer is currently being used by Fast Open 3263 * for SYN-ACK retrans purpose, stay put. 3264 */ 3265 if (rcu_access_pointer(tp->fastopen_rsk)) 3266 return; 3267 3268 if (!tp->packets_out) { 3269 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3270 } else { 3271 u32 rto = inet_csk(sk)->icsk_rto; 3272 /* Offset the time elapsed after installing regular RTO */ 3273 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3274 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3275 s64 delta_us = tcp_rto_delta_us(sk); 3276 /* delta_us may not be positive if the socket is locked 3277 * when the retrans timer fires and is rescheduled. 3278 */ 3279 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3280 } 3281 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3282 TCP_RTO_MAX); 3283 } 3284 } 3285 3286 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3287 static void tcp_set_xmit_timer(struct sock *sk) 3288 { 3289 if (!tcp_schedule_loss_probe(sk, true)) 3290 tcp_rearm_rto(sk); 3291 } 3292 3293 /* If we get here, the whole TSO packet has not been acked. */ 3294 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3295 { 3296 struct tcp_sock *tp = tcp_sk(sk); 3297 u32 packets_acked; 3298 3299 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3300 3301 packets_acked = tcp_skb_pcount(skb); 3302 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3303 return 0; 3304 packets_acked -= tcp_skb_pcount(skb); 3305 3306 if (packets_acked) { 3307 BUG_ON(tcp_skb_pcount(skb) == 0); 3308 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3309 } 3310 3311 return packets_acked; 3312 } 3313 3314 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3315 const struct sk_buff *ack_skb, u32 prior_snd_una) 3316 { 3317 const struct skb_shared_info *shinfo; 3318 3319 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3320 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3321 return; 3322 3323 shinfo = skb_shinfo(skb); 3324 if (!before(shinfo->tskey, prior_snd_una) && 3325 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3326 tcp_skb_tsorted_save(skb) { 3327 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3328 } tcp_skb_tsorted_restore(skb); 3329 } 3330 } 3331 3332 /* Remove acknowledged frames from the retransmission queue. If our packet 3333 * is before the ack sequence we can discard it as it's confirmed to have 3334 * arrived at the other end. 3335 */ 3336 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3337 u32 prior_fack, u32 prior_snd_una, 3338 struct tcp_sacktag_state *sack, bool ece_ack) 3339 { 3340 const struct inet_connection_sock *icsk = inet_csk(sk); 3341 u64 first_ackt, last_ackt; 3342 struct tcp_sock *tp = tcp_sk(sk); 3343 u32 prior_sacked = tp->sacked_out; 3344 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3345 struct sk_buff *skb, *next; 3346 bool fully_acked = true; 3347 long sack_rtt_us = -1L; 3348 long seq_rtt_us = -1L; 3349 long ca_rtt_us = -1L; 3350 u32 pkts_acked = 0; 3351 bool rtt_update; 3352 int flag = 0; 3353 3354 first_ackt = 0; 3355 3356 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3357 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3358 const u32 start_seq = scb->seq; 3359 u8 sacked = scb->sacked; 3360 u32 acked_pcount; 3361 3362 /* Determine how many packets and what bytes were acked, tso and else */ 3363 if (after(scb->end_seq, tp->snd_una)) { 3364 if (tcp_skb_pcount(skb) == 1 || 3365 !after(tp->snd_una, scb->seq)) 3366 break; 3367 3368 acked_pcount = tcp_tso_acked(sk, skb); 3369 if (!acked_pcount) 3370 break; 3371 fully_acked = false; 3372 } else { 3373 acked_pcount = tcp_skb_pcount(skb); 3374 } 3375 3376 if (unlikely(sacked & TCPCB_RETRANS)) { 3377 if (sacked & TCPCB_SACKED_RETRANS) 3378 tp->retrans_out -= acked_pcount; 3379 flag |= FLAG_RETRANS_DATA_ACKED; 3380 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3381 last_ackt = tcp_skb_timestamp_us(skb); 3382 WARN_ON_ONCE(last_ackt == 0); 3383 if (!first_ackt) 3384 first_ackt = last_ackt; 3385 3386 if (before(start_seq, reord)) 3387 reord = start_seq; 3388 if (!after(scb->end_seq, tp->high_seq)) 3389 flag |= FLAG_ORIG_SACK_ACKED; 3390 } 3391 3392 if (sacked & TCPCB_SACKED_ACKED) { 3393 tp->sacked_out -= acked_pcount; 3394 } else if (tcp_is_sack(tp)) { 3395 tcp_count_delivered(tp, acked_pcount, ece_ack); 3396 if (!tcp_skb_spurious_retrans(tp, skb)) 3397 tcp_rack_advance(tp, sacked, scb->end_seq, 3398 tcp_skb_timestamp_us(skb)); 3399 } 3400 if (sacked & TCPCB_LOST) 3401 tp->lost_out -= acked_pcount; 3402 3403 tp->packets_out -= acked_pcount; 3404 pkts_acked += acked_pcount; 3405 tcp_rate_skb_delivered(sk, skb, sack->rate); 3406 3407 /* Initial outgoing SYN's get put onto the write_queue 3408 * just like anything else we transmit. It is not 3409 * true data, and if we misinform our callers that 3410 * this ACK acks real data, we will erroneously exit 3411 * connection startup slow start one packet too 3412 * quickly. This is severely frowned upon behavior. 3413 */ 3414 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3415 flag |= FLAG_DATA_ACKED; 3416 } else { 3417 flag |= FLAG_SYN_ACKED; 3418 tp->retrans_stamp = 0; 3419 } 3420 3421 if (!fully_acked) 3422 break; 3423 3424 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3425 3426 next = skb_rb_next(skb); 3427 if (unlikely(skb == tp->retransmit_skb_hint)) 3428 tp->retransmit_skb_hint = NULL; 3429 if (unlikely(skb == tp->lost_skb_hint)) 3430 tp->lost_skb_hint = NULL; 3431 tcp_highest_sack_replace(sk, skb, next); 3432 tcp_rtx_queue_unlink_and_free(skb, sk); 3433 } 3434 3435 if (!skb) 3436 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3437 3438 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3439 tp->snd_up = tp->snd_una; 3440 3441 if (skb) { 3442 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3443 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3444 flag |= FLAG_SACK_RENEGING; 3445 } 3446 3447 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3448 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3449 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3450 3451 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3452 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3453 sack->rate->prior_delivered + 1 == tp->delivered && 3454 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3455 /* Conservatively mark a delayed ACK. It's typically 3456 * from a lone runt packet over the round trip to 3457 * a receiver w/o out-of-order or CE events. 3458 */ 3459 flag |= FLAG_ACK_MAYBE_DELAYED; 3460 } 3461 } 3462 if (sack->first_sackt) { 3463 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3464 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3465 } 3466 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3467 ca_rtt_us, sack->rate); 3468 3469 if (flag & FLAG_ACKED) { 3470 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3471 if (unlikely(icsk->icsk_mtup.probe_size && 3472 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3473 tcp_mtup_probe_success(sk); 3474 } 3475 3476 if (tcp_is_reno(tp)) { 3477 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3478 3479 /* If any of the cumulatively ACKed segments was 3480 * retransmitted, non-SACK case cannot confirm that 3481 * progress was due to original transmission due to 3482 * lack of TCPCB_SACKED_ACKED bits even if some of 3483 * the packets may have been never retransmitted. 3484 */ 3485 if (flag & FLAG_RETRANS_DATA_ACKED) 3486 flag &= ~FLAG_ORIG_SACK_ACKED; 3487 } else { 3488 int delta; 3489 3490 /* Non-retransmitted hole got filled? That's reordering */ 3491 if (before(reord, prior_fack)) 3492 tcp_check_sack_reordering(sk, reord, 0); 3493 3494 delta = prior_sacked - tp->sacked_out; 3495 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3496 } 3497 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3498 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3499 tcp_skb_timestamp_us(skb))) { 3500 /* Do not re-arm RTO if the sack RTT is measured from data sent 3501 * after when the head was last (re)transmitted. Otherwise the 3502 * timeout may continue to extend in loss recovery. 3503 */ 3504 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3505 } 3506 3507 if (icsk->icsk_ca_ops->pkts_acked) { 3508 struct ack_sample sample = { .pkts_acked = pkts_acked, 3509 .rtt_us = sack->rate->rtt_us }; 3510 3511 sample.in_flight = tp->mss_cache * 3512 (tp->delivered - sack->rate->prior_delivered); 3513 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3514 } 3515 3516 #if FASTRETRANS_DEBUG > 0 3517 WARN_ON((int)tp->sacked_out < 0); 3518 WARN_ON((int)tp->lost_out < 0); 3519 WARN_ON((int)tp->retrans_out < 0); 3520 if (!tp->packets_out && tcp_is_sack(tp)) { 3521 icsk = inet_csk(sk); 3522 if (tp->lost_out) { 3523 pr_debug("Leak l=%u %d\n", 3524 tp->lost_out, icsk->icsk_ca_state); 3525 tp->lost_out = 0; 3526 } 3527 if (tp->sacked_out) { 3528 pr_debug("Leak s=%u %d\n", 3529 tp->sacked_out, icsk->icsk_ca_state); 3530 tp->sacked_out = 0; 3531 } 3532 if (tp->retrans_out) { 3533 pr_debug("Leak r=%u %d\n", 3534 tp->retrans_out, icsk->icsk_ca_state); 3535 tp->retrans_out = 0; 3536 } 3537 } 3538 #endif 3539 return flag; 3540 } 3541 3542 static void tcp_ack_probe(struct sock *sk) 3543 { 3544 struct inet_connection_sock *icsk = inet_csk(sk); 3545 struct sk_buff *head = tcp_send_head(sk); 3546 const struct tcp_sock *tp = tcp_sk(sk); 3547 3548 /* Was it a usable window open? */ 3549 if (!head) 3550 return; 3551 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3552 icsk->icsk_backoff = 0; 3553 icsk->icsk_probes_tstamp = 0; 3554 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3555 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3556 * This function is not for random using! 3557 */ 3558 } else { 3559 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3560 3561 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3562 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3563 } 3564 } 3565 3566 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3567 { 3568 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3569 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3570 } 3571 3572 /* Decide wheather to run the increase function of congestion control. */ 3573 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3574 { 3575 /* If reordering is high then always grow cwnd whenever data is 3576 * delivered regardless of its ordering. Otherwise stay conservative 3577 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3578 * new SACK or ECE mark may first advance cwnd here and later reduce 3579 * cwnd in tcp_fastretrans_alert() based on more states. 3580 */ 3581 if (tcp_sk(sk)->reordering > 3582 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3583 return flag & FLAG_FORWARD_PROGRESS; 3584 3585 return flag & FLAG_DATA_ACKED; 3586 } 3587 3588 /* The "ultimate" congestion control function that aims to replace the rigid 3589 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3590 * It's called toward the end of processing an ACK with precise rate 3591 * information. All transmission or retransmission are delayed afterwards. 3592 */ 3593 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3594 int flag, const struct rate_sample *rs) 3595 { 3596 const struct inet_connection_sock *icsk = inet_csk(sk); 3597 3598 if (icsk->icsk_ca_ops->cong_control) { 3599 icsk->icsk_ca_ops->cong_control(sk, rs); 3600 return; 3601 } 3602 3603 if (tcp_in_cwnd_reduction(sk)) { 3604 /* Reduce cwnd if state mandates */ 3605 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3606 } else if (tcp_may_raise_cwnd(sk, flag)) { 3607 /* Advance cwnd if state allows */ 3608 tcp_cong_avoid(sk, ack, acked_sacked); 3609 } 3610 tcp_update_pacing_rate(sk); 3611 } 3612 3613 /* Check that window update is acceptable. 3614 * The function assumes that snd_una<=ack<=snd_next. 3615 */ 3616 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3617 const u32 ack, const u32 ack_seq, 3618 const u32 nwin) 3619 { 3620 return after(ack, tp->snd_una) || 3621 after(ack_seq, tp->snd_wl1) || 3622 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3623 } 3624 3625 /* If we update tp->snd_una, also update tp->bytes_acked */ 3626 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3627 { 3628 u32 delta = ack - tp->snd_una; 3629 3630 sock_owned_by_me((struct sock *)tp); 3631 tp->bytes_acked += delta; 3632 tp->snd_una = ack; 3633 } 3634 3635 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3636 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3637 { 3638 u32 delta = seq - tp->rcv_nxt; 3639 3640 sock_owned_by_me((struct sock *)tp); 3641 tp->bytes_received += delta; 3642 WRITE_ONCE(tp->rcv_nxt, seq); 3643 } 3644 3645 /* Update our send window. 3646 * 3647 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3648 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3649 */ 3650 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3651 u32 ack_seq) 3652 { 3653 struct tcp_sock *tp = tcp_sk(sk); 3654 int flag = 0; 3655 u32 nwin = ntohs(tcp_hdr(skb)->window); 3656 3657 if (likely(!tcp_hdr(skb)->syn)) 3658 nwin <<= tp->rx_opt.snd_wscale; 3659 3660 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3661 flag |= FLAG_WIN_UPDATE; 3662 tcp_update_wl(tp, ack_seq); 3663 3664 if (tp->snd_wnd != nwin) { 3665 tp->snd_wnd = nwin; 3666 3667 /* Note, it is the only place, where 3668 * fast path is recovered for sending TCP. 3669 */ 3670 tp->pred_flags = 0; 3671 tcp_fast_path_check(sk); 3672 3673 if (!tcp_write_queue_empty(sk)) 3674 tcp_slow_start_after_idle_check(sk); 3675 3676 if (nwin > tp->max_window) { 3677 tp->max_window = nwin; 3678 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3679 } 3680 } 3681 } 3682 3683 tcp_snd_una_update(tp, ack); 3684 3685 return flag; 3686 } 3687 3688 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3689 u32 *last_oow_ack_time) 3690 { 3691 /* Paired with the WRITE_ONCE() in this function. */ 3692 u32 val = READ_ONCE(*last_oow_ack_time); 3693 3694 if (val) { 3695 s32 elapsed = (s32)(tcp_jiffies32 - val); 3696 3697 if (0 <= elapsed && 3698 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3699 NET_INC_STATS(net, mib_idx); 3700 return true; /* rate-limited: don't send yet! */ 3701 } 3702 } 3703 3704 /* Paired with the prior READ_ONCE() and with itself, 3705 * as we might be lockless. 3706 */ 3707 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3708 3709 return false; /* not rate-limited: go ahead, send dupack now! */ 3710 } 3711 3712 /* Return true if we're currently rate-limiting out-of-window ACKs and 3713 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3714 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3715 * attacks that send repeated SYNs or ACKs for the same connection. To 3716 * do this, we do not send a duplicate SYNACK or ACK if the remote 3717 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3718 */ 3719 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3720 int mib_idx, u32 *last_oow_ack_time) 3721 { 3722 /* Data packets without SYNs are not likely part of an ACK loop. */ 3723 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3724 !tcp_hdr(skb)->syn) 3725 return false; 3726 3727 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3728 } 3729 3730 /* RFC 5961 7 [ACK Throttling] */ 3731 static void tcp_send_challenge_ack(struct sock *sk) 3732 { 3733 struct tcp_sock *tp = tcp_sk(sk); 3734 struct net *net = sock_net(sk); 3735 u32 count, now, ack_limit; 3736 3737 /* First check our per-socket dupack rate limit. */ 3738 if (__tcp_oow_rate_limited(net, 3739 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3740 &tp->last_oow_ack_time)) 3741 return; 3742 3743 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3744 if (ack_limit == INT_MAX) 3745 goto send_ack; 3746 3747 /* Then check host-wide RFC 5961 rate limit. */ 3748 now = jiffies / HZ; 3749 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3750 u32 half = (ack_limit + 1) >> 1; 3751 3752 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3753 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3754 get_random_u32_inclusive(half, ack_limit + half - 1)); 3755 } 3756 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3757 if (count > 0) { 3758 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3759 send_ack: 3760 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3761 tcp_send_ack(sk); 3762 } 3763 } 3764 3765 static void tcp_store_ts_recent(struct tcp_sock *tp) 3766 { 3767 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3768 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3769 } 3770 3771 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3772 { 3773 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3774 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3775 * extra check below makes sure this can only happen 3776 * for pure ACK frames. -DaveM 3777 * 3778 * Not only, also it occurs for expired timestamps. 3779 */ 3780 3781 if (tcp_paws_check(&tp->rx_opt, 0)) 3782 tcp_store_ts_recent(tp); 3783 } 3784 } 3785 3786 /* This routine deals with acks during a TLP episode and ends an episode by 3787 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3788 */ 3789 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3790 { 3791 struct tcp_sock *tp = tcp_sk(sk); 3792 3793 if (before(ack, tp->tlp_high_seq)) 3794 return; 3795 3796 if (!tp->tlp_retrans) { 3797 /* TLP of new data has been acknowledged */ 3798 tp->tlp_high_seq = 0; 3799 } else if (flag & FLAG_DSACK_TLP) { 3800 /* This DSACK means original and TLP probe arrived; no loss */ 3801 tp->tlp_high_seq = 0; 3802 } else if (after(ack, tp->tlp_high_seq)) { 3803 /* ACK advances: there was a loss, so reduce cwnd. Reset 3804 * tlp_high_seq in tcp_init_cwnd_reduction() 3805 */ 3806 tcp_init_cwnd_reduction(sk); 3807 tcp_set_ca_state(sk, TCP_CA_CWR); 3808 tcp_end_cwnd_reduction(sk); 3809 tcp_try_keep_open(sk); 3810 NET_INC_STATS(sock_net(sk), 3811 LINUX_MIB_TCPLOSSPROBERECOVERY); 3812 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3813 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3814 /* Pure dupack: original and TLP probe arrived; no loss */ 3815 tp->tlp_high_seq = 0; 3816 } 3817 } 3818 3819 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3820 { 3821 const struct inet_connection_sock *icsk = inet_csk(sk); 3822 3823 if (icsk->icsk_ca_ops->in_ack_event) 3824 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3825 } 3826 3827 /* Congestion control has updated the cwnd already. So if we're in 3828 * loss recovery then now we do any new sends (for FRTO) or 3829 * retransmits (for CA_Loss or CA_recovery) that make sense. 3830 */ 3831 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3832 { 3833 struct tcp_sock *tp = tcp_sk(sk); 3834 3835 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3836 return; 3837 3838 if (unlikely(rexmit == REXMIT_NEW)) { 3839 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3840 TCP_NAGLE_OFF); 3841 if (after(tp->snd_nxt, tp->high_seq)) 3842 return; 3843 tp->frto = 0; 3844 } 3845 tcp_xmit_retransmit_queue(sk); 3846 } 3847 3848 /* Returns the number of packets newly acked or sacked by the current ACK */ 3849 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3850 { 3851 const struct net *net = sock_net(sk); 3852 struct tcp_sock *tp = tcp_sk(sk); 3853 u32 delivered; 3854 3855 delivered = tp->delivered - prior_delivered; 3856 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3857 if (flag & FLAG_ECE) 3858 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3859 3860 return delivered; 3861 } 3862 3863 /* This routine deals with incoming acks, but not outgoing ones. */ 3864 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3865 { 3866 struct inet_connection_sock *icsk = inet_csk(sk); 3867 struct tcp_sock *tp = tcp_sk(sk); 3868 struct tcp_sacktag_state sack_state; 3869 struct rate_sample rs = { .prior_delivered = 0 }; 3870 u32 prior_snd_una = tp->snd_una; 3871 bool is_sack_reneg = tp->is_sack_reneg; 3872 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3873 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3874 int num_dupack = 0; 3875 int prior_packets = tp->packets_out; 3876 u32 delivered = tp->delivered; 3877 u32 lost = tp->lost; 3878 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3879 u32 prior_fack; 3880 3881 sack_state.first_sackt = 0; 3882 sack_state.rate = &rs; 3883 sack_state.sack_delivered = 0; 3884 3885 /* We very likely will need to access rtx queue. */ 3886 prefetch(sk->tcp_rtx_queue.rb_node); 3887 3888 /* If the ack is older than previous acks 3889 * then we can probably ignore it. 3890 */ 3891 if (before(ack, prior_snd_una)) { 3892 u32 max_window; 3893 3894 /* do not accept ACK for bytes we never sent. */ 3895 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3896 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3897 if (before(ack, prior_snd_una - max_window)) { 3898 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3899 tcp_send_challenge_ack(sk); 3900 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3901 } 3902 goto old_ack; 3903 } 3904 3905 /* If the ack includes data we haven't sent yet, discard 3906 * this segment (RFC793 Section 3.9). 3907 */ 3908 if (after(ack, tp->snd_nxt)) 3909 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3910 3911 if (after(ack, prior_snd_una)) { 3912 flag |= FLAG_SND_UNA_ADVANCED; 3913 icsk->icsk_retransmits = 0; 3914 3915 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3916 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3917 if (icsk->icsk_clean_acked) 3918 icsk->icsk_clean_acked(sk, ack); 3919 #endif 3920 } 3921 3922 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3923 rs.prior_in_flight = tcp_packets_in_flight(tp); 3924 3925 /* ts_recent update must be made after we are sure that the packet 3926 * is in window. 3927 */ 3928 if (flag & FLAG_UPDATE_TS_RECENT) 3929 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3930 3931 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3932 FLAG_SND_UNA_ADVANCED) { 3933 /* Window is constant, pure forward advance. 3934 * No more checks are required. 3935 * Note, we use the fact that SND.UNA>=SND.WL2. 3936 */ 3937 tcp_update_wl(tp, ack_seq); 3938 tcp_snd_una_update(tp, ack); 3939 flag |= FLAG_WIN_UPDATE; 3940 3941 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3942 3943 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3944 } else { 3945 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3946 3947 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3948 flag |= FLAG_DATA; 3949 else 3950 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3951 3952 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3953 3954 if (TCP_SKB_CB(skb)->sacked) 3955 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3956 &sack_state); 3957 3958 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3959 flag |= FLAG_ECE; 3960 ack_ev_flags |= CA_ACK_ECE; 3961 } 3962 3963 if (sack_state.sack_delivered) 3964 tcp_count_delivered(tp, sack_state.sack_delivered, 3965 flag & FLAG_ECE); 3966 3967 if (flag & FLAG_WIN_UPDATE) 3968 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3969 3970 tcp_in_ack_event(sk, ack_ev_flags); 3971 } 3972 3973 /* This is a deviation from RFC3168 since it states that: 3974 * "When the TCP data sender is ready to set the CWR bit after reducing 3975 * the congestion window, it SHOULD set the CWR bit only on the first 3976 * new data packet that it transmits." 3977 * We accept CWR on pure ACKs to be more robust 3978 * with widely-deployed TCP implementations that do this. 3979 */ 3980 tcp_ecn_accept_cwr(sk, skb); 3981 3982 /* We passed data and got it acked, remove any soft error 3983 * log. Something worked... 3984 */ 3985 WRITE_ONCE(sk->sk_err_soft, 0); 3986 icsk->icsk_probes_out = 0; 3987 tp->rcv_tstamp = tcp_jiffies32; 3988 if (!prior_packets) 3989 goto no_queue; 3990 3991 /* See if we can take anything off of the retransmit queue. */ 3992 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3993 &sack_state, flag & FLAG_ECE); 3994 3995 tcp_rack_update_reo_wnd(sk, &rs); 3996 3997 if (tp->tlp_high_seq) 3998 tcp_process_tlp_ack(sk, ack, flag); 3999 4000 if (tcp_ack_is_dubious(sk, flag)) { 4001 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4002 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4003 num_dupack = 1; 4004 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4005 if (!(flag & FLAG_DATA)) 4006 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4007 } 4008 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4009 &rexmit); 4010 } 4011 4012 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4013 if (flag & FLAG_SET_XMIT_TIMER) 4014 tcp_set_xmit_timer(sk); 4015 4016 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4017 sk_dst_confirm(sk); 4018 4019 delivered = tcp_newly_delivered(sk, delivered, flag); 4020 lost = tp->lost - lost; /* freshly marked lost */ 4021 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4022 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4023 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4024 tcp_xmit_recovery(sk, rexmit); 4025 return 1; 4026 4027 no_queue: 4028 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4029 if (flag & FLAG_DSACKING_ACK) { 4030 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4031 &rexmit); 4032 tcp_newly_delivered(sk, delivered, flag); 4033 } 4034 /* If this ack opens up a zero window, clear backoff. It was 4035 * being used to time the probes, and is probably far higher than 4036 * it needs to be for normal retransmission. 4037 */ 4038 tcp_ack_probe(sk); 4039 4040 if (tp->tlp_high_seq) 4041 tcp_process_tlp_ack(sk, ack, flag); 4042 return 1; 4043 4044 old_ack: 4045 /* If data was SACKed, tag it and see if we should send more data. 4046 * If data was DSACKed, see if we can undo a cwnd reduction. 4047 */ 4048 if (TCP_SKB_CB(skb)->sacked) { 4049 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4050 &sack_state); 4051 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4052 &rexmit); 4053 tcp_newly_delivered(sk, delivered, flag); 4054 tcp_xmit_recovery(sk, rexmit); 4055 } 4056 4057 return 0; 4058 } 4059 4060 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4061 bool syn, struct tcp_fastopen_cookie *foc, 4062 bool exp_opt) 4063 { 4064 /* Valid only in SYN or SYN-ACK with an even length. */ 4065 if (!foc || !syn || len < 0 || (len & 1)) 4066 return; 4067 4068 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4069 len <= TCP_FASTOPEN_COOKIE_MAX) 4070 memcpy(foc->val, cookie, len); 4071 else if (len != 0) 4072 len = -1; 4073 foc->len = len; 4074 foc->exp = exp_opt; 4075 } 4076 4077 static bool smc_parse_options(const struct tcphdr *th, 4078 struct tcp_options_received *opt_rx, 4079 const unsigned char *ptr, 4080 int opsize) 4081 { 4082 #if IS_ENABLED(CONFIG_SMC) 4083 if (static_branch_unlikely(&tcp_have_smc)) { 4084 if (th->syn && !(opsize & 1) && 4085 opsize >= TCPOLEN_EXP_SMC_BASE && 4086 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4087 opt_rx->smc_ok = 1; 4088 return true; 4089 } 4090 } 4091 #endif 4092 return false; 4093 } 4094 4095 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4096 * value on success. 4097 */ 4098 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4099 { 4100 const unsigned char *ptr = (const unsigned char *)(th + 1); 4101 int length = (th->doff * 4) - sizeof(struct tcphdr); 4102 u16 mss = 0; 4103 4104 while (length > 0) { 4105 int opcode = *ptr++; 4106 int opsize; 4107 4108 switch (opcode) { 4109 case TCPOPT_EOL: 4110 return mss; 4111 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4112 length--; 4113 continue; 4114 default: 4115 if (length < 2) 4116 return mss; 4117 opsize = *ptr++; 4118 if (opsize < 2) /* "silly options" */ 4119 return mss; 4120 if (opsize > length) 4121 return mss; /* fail on partial options */ 4122 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4123 u16 in_mss = get_unaligned_be16(ptr); 4124 4125 if (in_mss) { 4126 if (user_mss && user_mss < in_mss) 4127 in_mss = user_mss; 4128 mss = in_mss; 4129 } 4130 } 4131 ptr += opsize - 2; 4132 length -= opsize; 4133 } 4134 } 4135 return mss; 4136 } 4137 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4138 4139 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4140 * But, this can also be called on packets in the established flow when 4141 * the fast version below fails. 4142 */ 4143 void tcp_parse_options(const struct net *net, 4144 const struct sk_buff *skb, 4145 struct tcp_options_received *opt_rx, int estab, 4146 struct tcp_fastopen_cookie *foc) 4147 { 4148 const unsigned char *ptr; 4149 const struct tcphdr *th = tcp_hdr(skb); 4150 int length = (th->doff * 4) - sizeof(struct tcphdr); 4151 4152 ptr = (const unsigned char *)(th + 1); 4153 opt_rx->saw_tstamp = 0; 4154 opt_rx->saw_unknown = 0; 4155 4156 while (length > 0) { 4157 int opcode = *ptr++; 4158 int opsize; 4159 4160 switch (opcode) { 4161 case TCPOPT_EOL: 4162 return; 4163 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4164 length--; 4165 continue; 4166 default: 4167 if (length < 2) 4168 return; 4169 opsize = *ptr++; 4170 if (opsize < 2) /* "silly options" */ 4171 return; 4172 if (opsize > length) 4173 return; /* don't parse partial options */ 4174 switch (opcode) { 4175 case TCPOPT_MSS: 4176 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4177 u16 in_mss = get_unaligned_be16(ptr); 4178 if (in_mss) { 4179 if (opt_rx->user_mss && 4180 opt_rx->user_mss < in_mss) 4181 in_mss = opt_rx->user_mss; 4182 opt_rx->mss_clamp = in_mss; 4183 } 4184 } 4185 break; 4186 case TCPOPT_WINDOW: 4187 if (opsize == TCPOLEN_WINDOW && th->syn && 4188 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4189 __u8 snd_wscale = *(__u8 *)ptr; 4190 opt_rx->wscale_ok = 1; 4191 if (snd_wscale > TCP_MAX_WSCALE) { 4192 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4193 __func__, 4194 snd_wscale, 4195 TCP_MAX_WSCALE); 4196 snd_wscale = TCP_MAX_WSCALE; 4197 } 4198 opt_rx->snd_wscale = snd_wscale; 4199 } 4200 break; 4201 case TCPOPT_TIMESTAMP: 4202 if ((opsize == TCPOLEN_TIMESTAMP) && 4203 ((estab && opt_rx->tstamp_ok) || 4204 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4205 opt_rx->saw_tstamp = 1; 4206 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4207 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4208 } 4209 break; 4210 case TCPOPT_SACK_PERM: 4211 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4212 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4213 opt_rx->sack_ok = TCP_SACK_SEEN; 4214 tcp_sack_reset(opt_rx); 4215 } 4216 break; 4217 4218 case TCPOPT_SACK: 4219 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4220 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4221 opt_rx->sack_ok) { 4222 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4223 } 4224 break; 4225 #ifdef CONFIG_TCP_MD5SIG 4226 case TCPOPT_MD5SIG: 4227 /* The MD5 Hash has already been 4228 * checked (see tcp_v{4,6}_rcv()). 4229 */ 4230 break; 4231 #endif 4232 case TCPOPT_FASTOPEN: 4233 tcp_parse_fastopen_option( 4234 opsize - TCPOLEN_FASTOPEN_BASE, 4235 ptr, th->syn, foc, false); 4236 break; 4237 4238 case TCPOPT_EXP: 4239 /* Fast Open option shares code 254 using a 4240 * 16 bits magic number. 4241 */ 4242 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4243 get_unaligned_be16(ptr) == 4244 TCPOPT_FASTOPEN_MAGIC) { 4245 tcp_parse_fastopen_option(opsize - 4246 TCPOLEN_EXP_FASTOPEN_BASE, 4247 ptr + 2, th->syn, foc, true); 4248 break; 4249 } 4250 4251 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4252 break; 4253 4254 opt_rx->saw_unknown = 1; 4255 break; 4256 4257 default: 4258 opt_rx->saw_unknown = 1; 4259 } 4260 ptr += opsize-2; 4261 length -= opsize; 4262 } 4263 } 4264 } 4265 EXPORT_SYMBOL(tcp_parse_options); 4266 4267 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4268 { 4269 const __be32 *ptr = (const __be32 *)(th + 1); 4270 4271 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4272 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4273 tp->rx_opt.saw_tstamp = 1; 4274 ++ptr; 4275 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4276 ++ptr; 4277 if (*ptr) 4278 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4279 else 4280 tp->rx_opt.rcv_tsecr = 0; 4281 return true; 4282 } 4283 return false; 4284 } 4285 4286 /* Fast parse options. This hopes to only see timestamps. 4287 * If it is wrong it falls back on tcp_parse_options(). 4288 */ 4289 static bool tcp_fast_parse_options(const struct net *net, 4290 const struct sk_buff *skb, 4291 const struct tcphdr *th, struct tcp_sock *tp) 4292 { 4293 /* In the spirit of fast parsing, compare doff directly to constant 4294 * values. Because equality is used, short doff can be ignored here. 4295 */ 4296 if (th->doff == (sizeof(*th) / 4)) { 4297 tp->rx_opt.saw_tstamp = 0; 4298 return false; 4299 } else if (tp->rx_opt.tstamp_ok && 4300 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4301 if (tcp_parse_aligned_timestamp(tp, th)) 4302 return true; 4303 } 4304 4305 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4306 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4307 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4308 4309 return true; 4310 } 4311 4312 #ifdef CONFIG_TCP_MD5SIG 4313 /* 4314 * Parse MD5 Signature option 4315 */ 4316 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4317 { 4318 int length = (th->doff << 2) - sizeof(*th); 4319 const u8 *ptr = (const u8 *)(th + 1); 4320 4321 /* If not enough data remaining, we can short cut */ 4322 while (length >= TCPOLEN_MD5SIG) { 4323 int opcode = *ptr++; 4324 int opsize; 4325 4326 switch (opcode) { 4327 case TCPOPT_EOL: 4328 return NULL; 4329 case TCPOPT_NOP: 4330 length--; 4331 continue; 4332 default: 4333 opsize = *ptr++; 4334 if (opsize < 2 || opsize > length) 4335 return NULL; 4336 if (opcode == TCPOPT_MD5SIG) 4337 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4338 } 4339 ptr += opsize - 2; 4340 length -= opsize; 4341 } 4342 return NULL; 4343 } 4344 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4345 #endif 4346 4347 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4348 * 4349 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4350 * it can pass through stack. So, the following predicate verifies that 4351 * this segment is not used for anything but congestion avoidance or 4352 * fast retransmit. Moreover, we even are able to eliminate most of such 4353 * second order effects, if we apply some small "replay" window (~RTO) 4354 * to timestamp space. 4355 * 4356 * All these measures still do not guarantee that we reject wrapped ACKs 4357 * on networks with high bandwidth, when sequence space is recycled fastly, 4358 * but it guarantees that such events will be very rare and do not affect 4359 * connection seriously. This doesn't look nice, but alas, PAWS is really 4360 * buggy extension. 4361 * 4362 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4363 * states that events when retransmit arrives after original data are rare. 4364 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4365 * the biggest problem on large power networks even with minor reordering. 4366 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4367 * up to bandwidth of 18Gigabit/sec. 8) ] 4368 */ 4369 4370 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4371 { 4372 const struct tcp_sock *tp = tcp_sk(sk); 4373 const struct tcphdr *th = tcp_hdr(skb); 4374 u32 seq = TCP_SKB_CB(skb)->seq; 4375 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4376 4377 return (/* 1. Pure ACK with correct sequence number. */ 4378 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4379 4380 /* 2. ... and duplicate ACK. */ 4381 ack == tp->snd_una && 4382 4383 /* 3. ... and does not update window. */ 4384 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4385 4386 /* 4. ... and sits in replay window. */ 4387 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4388 } 4389 4390 static inline bool tcp_paws_discard(const struct sock *sk, 4391 const struct sk_buff *skb) 4392 { 4393 const struct tcp_sock *tp = tcp_sk(sk); 4394 4395 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4396 !tcp_disordered_ack(sk, skb); 4397 } 4398 4399 /* Check segment sequence number for validity. 4400 * 4401 * Segment controls are considered valid, if the segment 4402 * fits to the window after truncation to the window. Acceptability 4403 * of data (and SYN, FIN, of course) is checked separately. 4404 * See tcp_data_queue(), for example. 4405 * 4406 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4407 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4408 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4409 * (borrowed from freebsd) 4410 */ 4411 4412 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4413 u32 seq, u32 end_seq) 4414 { 4415 if (before(end_seq, tp->rcv_wup)) 4416 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4417 4418 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4419 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4420 4421 return SKB_NOT_DROPPED_YET; 4422 } 4423 4424 4425 void tcp_done_with_error(struct sock *sk, int err) 4426 { 4427 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4428 WRITE_ONCE(sk->sk_err, err); 4429 smp_wmb(); 4430 4431 tcp_write_queue_purge(sk); 4432 tcp_done(sk); 4433 4434 if (!sock_flag(sk, SOCK_DEAD)) 4435 sk_error_report(sk); 4436 } 4437 EXPORT_SYMBOL(tcp_done_with_error); 4438 4439 /* When we get a reset we do this. */ 4440 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4441 { 4442 int err; 4443 4444 trace_tcp_receive_reset(sk); 4445 4446 /* mptcp can't tell us to ignore reset pkts, 4447 * so just ignore the return value of mptcp_incoming_options(). 4448 */ 4449 if (sk_is_mptcp(sk)) 4450 mptcp_incoming_options(sk, skb); 4451 4452 /* We want the right error as BSD sees it (and indeed as we do). */ 4453 switch (sk->sk_state) { 4454 case TCP_SYN_SENT: 4455 err = ECONNREFUSED; 4456 break; 4457 case TCP_CLOSE_WAIT: 4458 err = EPIPE; 4459 break; 4460 case TCP_CLOSE: 4461 return; 4462 default: 4463 err = ECONNRESET; 4464 } 4465 tcp_done_with_error(sk, err); 4466 } 4467 4468 /* 4469 * Process the FIN bit. This now behaves as it is supposed to work 4470 * and the FIN takes effect when it is validly part of sequence 4471 * space. Not before when we get holes. 4472 * 4473 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4474 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4475 * TIME-WAIT) 4476 * 4477 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4478 * close and we go into CLOSING (and later onto TIME-WAIT) 4479 * 4480 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4481 */ 4482 void tcp_fin(struct sock *sk) 4483 { 4484 struct tcp_sock *tp = tcp_sk(sk); 4485 4486 inet_csk_schedule_ack(sk); 4487 4488 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4489 sock_set_flag(sk, SOCK_DONE); 4490 4491 switch (sk->sk_state) { 4492 case TCP_SYN_RECV: 4493 case TCP_ESTABLISHED: 4494 /* Move to CLOSE_WAIT */ 4495 tcp_set_state(sk, TCP_CLOSE_WAIT); 4496 inet_csk_enter_pingpong_mode(sk); 4497 break; 4498 4499 case TCP_CLOSE_WAIT: 4500 case TCP_CLOSING: 4501 /* Received a retransmission of the FIN, do 4502 * nothing. 4503 */ 4504 break; 4505 case TCP_LAST_ACK: 4506 /* RFC793: Remain in the LAST-ACK state. */ 4507 break; 4508 4509 case TCP_FIN_WAIT1: 4510 /* This case occurs when a simultaneous close 4511 * happens, we must ack the received FIN and 4512 * enter the CLOSING state. 4513 */ 4514 tcp_send_ack(sk); 4515 tcp_set_state(sk, TCP_CLOSING); 4516 break; 4517 case TCP_FIN_WAIT2: 4518 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4519 tcp_send_ack(sk); 4520 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4521 break; 4522 default: 4523 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4524 * cases we should never reach this piece of code. 4525 */ 4526 pr_err("%s: Impossible, sk->sk_state=%d\n", 4527 __func__, sk->sk_state); 4528 break; 4529 } 4530 4531 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4532 * Probably, we should reset in this case. For now drop them. 4533 */ 4534 skb_rbtree_purge(&tp->out_of_order_queue); 4535 if (tcp_is_sack(tp)) 4536 tcp_sack_reset(&tp->rx_opt); 4537 4538 if (!sock_flag(sk, SOCK_DEAD)) { 4539 sk->sk_state_change(sk); 4540 4541 /* Do not send POLL_HUP for half duplex close. */ 4542 if (sk->sk_shutdown == SHUTDOWN_MASK || 4543 sk->sk_state == TCP_CLOSE) 4544 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4545 else 4546 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4547 } 4548 } 4549 4550 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4551 u32 end_seq) 4552 { 4553 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4554 if (before(seq, sp->start_seq)) 4555 sp->start_seq = seq; 4556 if (after(end_seq, sp->end_seq)) 4557 sp->end_seq = end_seq; 4558 return true; 4559 } 4560 return false; 4561 } 4562 4563 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4564 { 4565 struct tcp_sock *tp = tcp_sk(sk); 4566 4567 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4568 int mib_idx; 4569 4570 if (before(seq, tp->rcv_nxt)) 4571 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4572 else 4573 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4574 4575 NET_INC_STATS(sock_net(sk), mib_idx); 4576 4577 tp->rx_opt.dsack = 1; 4578 tp->duplicate_sack[0].start_seq = seq; 4579 tp->duplicate_sack[0].end_seq = end_seq; 4580 } 4581 } 4582 4583 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4584 { 4585 struct tcp_sock *tp = tcp_sk(sk); 4586 4587 if (!tp->rx_opt.dsack) 4588 tcp_dsack_set(sk, seq, end_seq); 4589 else 4590 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4591 } 4592 4593 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4594 { 4595 /* When the ACK path fails or drops most ACKs, the sender would 4596 * timeout and spuriously retransmit the same segment repeatedly. 4597 * The receiver remembers and reflects via DSACKs. Leverage the 4598 * DSACK state and change the txhash to re-route speculatively. 4599 */ 4600 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4601 sk_rethink_txhash(sk)) 4602 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4603 } 4604 4605 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4606 { 4607 struct tcp_sock *tp = tcp_sk(sk); 4608 4609 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4610 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4611 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4612 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4613 4614 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4615 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4616 4617 tcp_rcv_spurious_retrans(sk, skb); 4618 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4619 end_seq = tp->rcv_nxt; 4620 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4621 } 4622 } 4623 4624 tcp_send_ack(sk); 4625 } 4626 4627 /* These routines update the SACK block as out-of-order packets arrive or 4628 * in-order packets close up the sequence space. 4629 */ 4630 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4631 { 4632 int this_sack; 4633 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4634 struct tcp_sack_block *swalk = sp + 1; 4635 4636 /* See if the recent change to the first SACK eats into 4637 * or hits the sequence space of other SACK blocks, if so coalesce. 4638 */ 4639 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4640 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4641 int i; 4642 4643 /* Zap SWALK, by moving every further SACK up by one slot. 4644 * Decrease num_sacks. 4645 */ 4646 tp->rx_opt.num_sacks--; 4647 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4648 sp[i] = sp[i + 1]; 4649 continue; 4650 } 4651 this_sack++; 4652 swalk++; 4653 } 4654 } 4655 4656 void tcp_sack_compress_send_ack(struct sock *sk) 4657 { 4658 struct tcp_sock *tp = tcp_sk(sk); 4659 4660 if (!tp->compressed_ack) 4661 return; 4662 4663 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4664 __sock_put(sk); 4665 4666 /* Since we have to send one ack finally, 4667 * substract one from tp->compressed_ack to keep 4668 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4669 */ 4670 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4671 tp->compressed_ack - 1); 4672 4673 tp->compressed_ack = 0; 4674 tcp_send_ack(sk); 4675 } 4676 4677 /* Reasonable amount of sack blocks included in TCP SACK option 4678 * The max is 4, but this becomes 3 if TCP timestamps are there. 4679 * Given that SACK packets might be lost, be conservative and use 2. 4680 */ 4681 #define TCP_SACK_BLOCKS_EXPECTED 2 4682 4683 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4684 { 4685 struct tcp_sock *tp = tcp_sk(sk); 4686 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4687 int cur_sacks = tp->rx_opt.num_sacks; 4688 int this_sack; 4689 4690 if (!cur_sacks) 4691 goto new_sack; 4692 4693 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4694 if (tcp_sack_extend(sp, seq, end_seq)) { 4695 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4696 tcp_sack_compress_send_ack(sk); 4697 /* Rotate this_sack to the first one. */ 4698 for (; this_sack > 0; this_sack--, sp--) 4699 swap(*sp, *(sp - 1)); 4700 if (cur_sacks > 1) 4701 tcp_sack_maybe_coalesce(tp); 4702 return; 4703 } 4704 } 4705 4706 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4707 tcp_sack_compress_send_ack(sk); 4708 4709 /* Could not find an adjacent existing SACK, build a new one, 4710 * put it at the front, and shift everyone else down. We 4711 * always know there is at least one SACK present already here. 4712 * 4713 * If the sack array is full, forget about the last one. 4714 */ 4715 if (this_sack >= TCP_NUM_SACKS) { 4716 this_sack--; 4717 tp->rx_opt.num_sacks--; 4718 sp--; 4719 } 4720 for (; this_sack > 0; this_sack--, sp--) 4721 *sp = *(sp - 1); 4722 4723 new_sack: 4724 /* Build the new head SACK, and we're done. */ 4725 sp->start_seq = seq; 4726 sp->end_seq = end_seq; 4727 tp->rx_opt.num_sacks++; 4728 } 4729 4730 /* RCV.NXT advances, some SACKs should be eaten. */ 4731 4732 static void tcp_sack_remove(struct tcp_sock *tp) 4733 { 4734 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4735 int num_sacks = tp->rx_opt.num_sacks; 4736 int this_sack; 4737 4738 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4739 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4740 tp->rx_opt.num_sacks = 0; 4741 return; 4742 } 4743 4744 for (this_sack = 0; this_sack < num_sacks;) { 4745 /* Check if the start of the sack is covered by RCV.NXT. */ 4746 if (!before(tp->rcv_nxt, sp->start_seq)) { 4747 int i; 4748 4749 /* RCV.NXT must cover all the block! */ 4750 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4751 4752 /* Zap this SACK, by moving forward any other SACKS. */ 4753 for (i = this_sack+1; i < num_sacks; i++) 4754 tp->selective_acks[i-1] = tp->selective_acks[i]; 4755 num_sacks--; 4756 continue; 4757 } 4758 this_sack++; 4759 sp++; 4760 } 4761 tp->rx_opt.num_sacks = num_sacks; 4762 } 4763 4764 /** 4765 * tcp_try_coalesce - try to merge skb to prior one 4766 * @sk: socket 4767 * @to: prior buffer 4768 * @from: buffer to add in queue 4769 * @fragstolen: pointer to boolean 4770 * 4771 * Before queueing skb @from after @to, try to merge them 4772 * to reduce overall memory use and queue lengths, if cost is small. 4773 * Packets in ofo or receive queues can stay a long time. 4774 * Better try to coalesce them right now to avoid future collapses. 4775 * Returns true if caller should free @from instead of queueing it 4776 */ 4777 static bool tcp_try_coalesce(struct sock *sk, 4778 struct sk_buff *to, 4779 struct sk_buff *from, 4780 bool *fragstolen) 4781 { 4782 int delta; 4783 4784 *fragstolen = false; 4785 4786 /* Its possible this segment overlaps with prior segment in queue */ 4787 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4788 return false; 4789 4790 if (!mptcp_skb_can_collapse(to, from)) 4791 return false; 4792 4793 #ifdef CONFIG_TLS_DEVICE 4794 if (from->decrypted != to->decrypted) 4795 return false; 4796 #endif 4797 4798 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4799 return false; 4800 4801 atomic_add(delta, &sk->sk_rmem_alloc); 4802 sk_mem_charge(sk, delta); 4803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4804 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4805 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4806 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4807 4808 if (TCP_SKB_CB(from)->has_rxtstamp) { 4809 TCP_SKB_CB(to)->has_rxtstamp = true; 4810 to->tstamp = from->tstamp; 4811 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4812 } 4813 4814 return true; 4815 } 4816 4817 static bool tcp_ooo_try_coalesce(struct sock *sk, 4818 struct sk_buff *to, 4819 struct sk_buff *from, 4820 bool *fragstolen) 4821 { 4822 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4823 4824 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4825 if (res) { 4826 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4827 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4828 4829 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4830 } 4831 return res; 4832 } 4833 4834 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4835 enum skb_drop_reason reason) 4836 { 4837 sk_drops_add(sk, skb); 4838 kfree_skb_reason(skb, reason); 4839 } 4840 4841 /* This one checks to see if we can put data from the 4842 * out_of_order queue into the receive_queue. 4843 */ 4844 static void tcp_ofo_queue(struct sock *sk) 4845 { 4846 struct tcp_sock *tp = tcp_sk(sk); 4847 __u32 dsack_high = tp->rcv_nxt; 4848 bool fin, fragstolen, eaten; 4849 struct sk_buff *skb, *tail; 4850 struct rb_node *p; 4851 4852 p = rb_first(&tp->out_of_order_queue); 4853 while (p) { 4854 skb = rb_to_skb(p); 4855 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4856 break; 4857 4858 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4859 __u32 dsack = dsack_high; 4860 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4861 dsack_high = TCP_SKB_CB(skb)->end_seq; 4862 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4863 } 4864 p = rb_next(p); 4865 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4866 4867 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4868 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4869 continue; 4870 } 4871 4872 tail = skb_peek_tail(&sk->sk_receive_queue); 4873 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4874 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4875 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4876 if (!eaten) 4877 tcp_add_receive_queue(sk, skb); 4878 else 4879 kfree_skb_partial(skb, fragstolen); 4880 4881 if (unlikely(fin)) { 4882 tcp_fin(sk); 4883 /* tcp_fin() purges tp->out_of_order_queue, 4884 * so we must end this loop right now. 4885 */ 4886 break; 4887 } 4888 } 4889 } 4890 4891 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4892 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4893 4894 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4895 unsigned int size) 4896 { 4897 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4898 !sk_rmem_schedule(sk, skb, size)) { 4899 4900 if (tcp_prune_queue(sk, skb) < 0) 4901 return -1; 4902 4903 while (!sk_rmem_schedule(sk, skb, size)) { 4904 if (!tcp_prune_ofo_queue(sk, skb)) 4905 return -1; 4906 } 4907 } 4908 return 0; 4909 } 4910 4911 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4912 { 4913 struct tcp_sock *tp = tcp_sk(sk); 4914 struct rb_node **p, *parent; 4915 struct sk_buff *skb1; 4916 u32 seq, end_seq; 4917 bool fragstolen; 4918 4919 tcp_ecn_check_ce(sk, skb); 4920 4921 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4922 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4923 sk->sk_data_ready(sk); 4924 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4925 return; 4926 } 4927 4928 /* Disable header prediction. */ 4929 tp->pred_flags = 0; 4930 inet_csk_schedule_ack(sk); 4931 4932 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4933 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4934 seq = TCP_SKB_CB(skb)->seq; 4935 end_seq = TCP_SKB_CB(skb)->end_seq; 4936 4937 p = &tp->out_of_order_queue.rb_node; 4938 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4939 /* Initial out of order segment, build 1 SACK. */ 4940 if (tcp_is_sack(tp)) { 4941 tp->rx_opt.num_sacks = 1; 4942 tp->selective_acks[0].start_seq = seq; 4943 tp->selective_acks[0].end_seq = end_seq; 4944 } 4945 rb_link_node(&skb->rbnode, NULL, p); 4946 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4947 tp->ooo_last_skb = skb; 4948 goto end; 4949 } 4950 4951 /* In the typical case, we are adding an skb to the end of the list. 4952 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4953 */ 4954 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4955 skb, &fragstolen)) { 4956 coalesce_done: 4957 /* For non sack flows, do not grow window to force DUPACK 4958 * and trigger fast retransmit. 4959 */ 4960 if (tcp_is_sack(tp)) 4961 tcp_grow_window(sk, skb, true); 4962 kfree_skb_partial(skb, fragstolen); 4963 skb = NULL; 4964 goto add_sack; 4965 } 4966 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4967 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4968 parent = &tp->ooo_last_skb->rbnode; 4969 p = &parent->rb_right; 4970 goto insert; 4971 } 4972 4973 /* Find place to insert this segment. Handle overlaps on the way. */ 4974 parent = NULL; 4975 while (*p) { 4976 parent = *p; 4977 skb1 = rb_to_skb(parent); 4978 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4979 p = &parent->rb_left; 4980 continue; 4981 } 4982 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4983 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4984 /* All the bits are present. Drop. */ 4985 NET_INC_STATS(sock_net(sk), 4986 LINUX_MIB_TCPOFOMERGE); 4987 tcp_drop_reason(sk, skb, 4988 SKB_DROP_REASON_TCP_OFOMERGE); 4989 skb = NULL; 4990 tcp_dsack_set(sk, seq, end_seq); 4991 goto add_sack; 4992 } 4993 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4994 /* Partial overlap. */ 4995 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4996 } else { 4997 /* skb's seq == skb1's seq and skb covers skb1. 4998 * Replace skb1 with skb. 4999 */ 5000 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5001 &tp->out_of_order_queue); 5002 tcp_dsack_extend(sk, 5003 TCP_SKB_CB(skb1)->seq, 5004 TCP_SKB_CB(skb1)->end_seq); 5005 NET_INC_STATS(sock_net(sk), 5006 LINUX_MIB_TCPOFOMERGE); 5007 tcp_drop_reason(sk, skb1, 5008 SKB_DROP_REASON_TCP_OFOMERGE); 5009 goto merge_right; 5010 } 5011 } else if (tcp_ooo_try_coalesce(sk, skb1, 5012 skb, &fragstolen)) { 5013 goto coalesce_done; 5014 } 5015 p = &parent->rb_right; 5016 } 5017 insert: 5018 /* Insert segment into RB tree. */ 5019 rb_link_node(&skb->rbnode, parent, p); 5020 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5021 5022 merge_right: 5023 /* Remove other segments covered by skb. */ 5024 while ((skb1 = skb_rb_next(skb)) != NULL) { 5025 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5026 break; 5027 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5028 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5029 end_seq); 5030 break; 5031 } 5032 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5033 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5034 TCP_SKB_CB(skb1)->end_seq); 5035 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5036 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5037 } 5038 /* If there is no skb after us, we are the last_skb ! */ 5039 if (!skb1) 5040 tp->ooo_last_skb = skb; 5041 5042 add_sack: 5043 if (tcp_is_sack(tp)) 5044 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5045 end: 5046 if (skb) { 5047 /* For non sack flows, do not grow window to force DUPACK 5048 * and trigger fast retransmit. 5049 */ 5050 if (tcp_is_sack(tp)) 5051 tcp_grow_window(sk, skb, false); 5052 skb_condense(skb); 5053 skb_set_owner_r(skb, sk); 5054 } 5055 } 5056 5057 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5058 bool *fragstolen) 5059 { 5060 int eaten; 5061 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5062 5063 eaten = (tail && 5064 tcp_try_coalesce(sk, tail, 5065 skb, fragstolen)) ? 1 : 0; 5066 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5067 if (!eaten) { 5068 tcp_add_receive_queue(sk, skb); 5069 skb_set_owner_r(skb, sk); 5070 } 5071 return eaten; 5072 } 5073 5074 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5075 { 5076 struct sk_buff *skb; 5077 int err = -ENOMEM; 5078 int data_len = 0; 5079 bool fragstolen; 5080 5081 if (size == 0) 5082 return 0; 5083 5084 if (size > PAGE_SIZE) { 5085 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5086 5087 data_len = npages << PAGE_SHIFT; 5088 size = data_len + (size & ~PAGE_MASK); 5089 } 5090 skb = alloc_skb_with_frags(size - data_len, data_len, 5091 PAGE_ALLOC_COSTLY_ORDER, 5092 &err, sk->sk_allocation); 5093 if (!skb) 5094 goto err; 5095 5096 skb_put(skb, size - data_len); 5097 skb->data_len = data_len; 5098 skb->len = size; 5099 5100 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5102 goto err_free; 5103 } 5104 5105 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5106 if (err) 5107 goto err_free; 5108 5109 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5110 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5111 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5112 5113 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5114 WARN_ON_ONCE(fragstolen); /* should not happen */ 5115 __kfree_skb(skb); 5116 } 5117 return size; 5118 5119 err_free: 5120 kfree_skb(skb); 5121 err: 5122 return err; 5123 5124 } 5125 5126 void tcp_data_ready(struct sock *sk) 5127 { 5128 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5129 sk->sk_data_ready(sk); 5130 } 5131 5132 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5133 { 5134 struct tcp_sock *tp = tcp_sk(sk); 5135 enum skb_drop_reason reason; 5136 bool fragstolen; 5137 int eaten; 5138 5139 /* If a subflow has been reset, the packet should not continue 5140 * to be processed, drop the packet. 5141 */ 5142 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5143 __kfree_skb(skb); 5144 return; 5145 } 5146 5147 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5148 __kfree_skb(skb); 5149 return; 5150 } 5151 tcp_cleanup_skb(skb); 5152 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5153 5154 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5155 tp->rx_opt.dsack = 0; 5156 5157 /* Queue data for delivery to the user. 5158 * Packets in sequence go to the receive queue. 5159 * Out of sequence packets to the out_of_order_queue. 5160 */ 5161 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5162 if (tcp_receive_window(tp) == 0) { 5163 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5165 goto out_of_window; 5166 } 5167 5168 /* Ok. In sequence. In window. */ 5169 queue_and_out: 5170 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5171 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5172 inet_csk(sk)->icsk_ack.pending |= 5173 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5174 inet_csk_schedule_ack(sk); 5175 sk->sk_data_ready(sk); 5176 5177 if (skb_queue_len(&sk->sk_receive_queue)) { 5178 reason = SKB_DROP_REASON_PROTO_MEM; 5179 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5180 goto drop; 5181 } 5182 sk_forced_mem_schedule(sk, skb->truesize); 5183 } 5184 5185 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5186 if (skb->len) 5187 tcp_event_data_recv(sk, skb); 5188 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5189 tcp_fin(sk); 5190 5191 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5192 tcp_ofo_queue(sk); 5193 5194 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5195 * gap in queue is filled. 5196 */ 5197 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5198 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5199 } 5200 5201 if (tp->rx_opt.num_sacks) 5202 tcp_sack_remove(tp); 5203 5204 tcp_fast_path_check(sk); 5205 5206 if (eaten > 0) 5207 kfree_skb_partial(skb, fragstolen); 5208 if (!sock_flag(sk, SOCK_DEAD)) 5209 tcp_data_ready(sk); 5210 return; 5211 } 5212 5213 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5214 tcp_rcv_spurious_retrans(sk, skb); 5215 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5216 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5217 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5218 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5219 5220 out_of_window: 5221 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5222 inet_csk_schedule_ack(sk); 5223 drop: 5224 tcp_drop_reason(sk, skb, reason); 5225 return; 5226 } 5227 5228 /* Out of window. F.e. zero window probe. */ 5229 if (!before(TCP_SKB_CB(skb)->seq, 5230 tp->rcv_nxt + tcp_receive_window(tp))) { 5231 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5232 goto out_of_window; 5233 } 5234 5235 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5236 /* Partial packet, seq < rcv_next < end_seq */ 5237 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5238 5239 /* If window is closed, drop tail of packet. But after 5240 * remembering D-SACK for its head made in previous line. 5241 */ 5242 if (!tcp_receive_window(tp)) { 5243 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5244 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5245 goto out_of_window; 5246 } 5247 goto queue_and_out; 5248 } 5249 5250 tcp_data_queue_ofo(sk, skb); 5251 } 5252 5253 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5254 { 5255 if (list) 5256 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5257 5258 return skb_rb_next(skb); 5259 } 5260 5261 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5262 struct sk_buff_head *list, 5263 struct rb_root *root) 5264 { 5265 struct sk_buff *next = tcp_skb_next(skb, list); 5266 5267 if (list) 5268 __skb_unlink(skb, list); 5269 else 5270 rb_erase(&skb->rbnode, root); 5271 5272 __kfree_skb(skb); 5273 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5274 5275 return next; 5276 } 5277 5278 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5279 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5280 { 5281 struct rb_node **p = &root->rb_node; 5282 struct rb_node *parent = NULL; 5283 struct sk_buff *skb1; 5284 5285 while (*p) { 5286 parent = *p; 5287 skb1 = rb_to_skb(parent); 5288 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5289 p = &parent->rb_left; 5290 else 5291 p = &parent->rb_right; 5292 } 5293 rb_link_node(&skb->rbnode, parent, p); 5294 rb_insert_color(&skb->rbnode, root); 5295 } 5296 5297 /* Collapse contiguous sequence of skbs head..tail with 5298 * sequence numbers start..end. 5299 * 5300 * If tail is NULL, this means until the end of the queue. 5301 * 5302 * Segments with FIN/SYN are not collapsed (only because this 5303 * simplifies code) 5304 */ 5305 static void 5306 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5307 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5308 { 5309 struct sk_buff *skb = head, *n; 5310 struct sk_buff_head tmp; 5311 bool end_of_skbs; 5312 5313 /* First, check that queue is collapsible and find 5314 * the point where collapsing can be useful. 5315 */ 5316 restart: 5317 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5318 n = tcp_skb_next(skb, list); 5319 5320 /* No new bits? It is possible on ofo queue. */ 5321 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5322 skb = tcp_collapse_one(sk, skb, list, root); 5323 if (!skb) 5324 break; 5325 goto restart; 5326 } 5327 5328 /* The first skb to collapse is: 5329 * - not SYN/FIN and 5330 * - bloated or contains data before "start" or 5331 * overlaps to the next one and mptcp allow collapsing. 5332 */ 5333 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5334 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5335 before(TCP_SKB_CB(skb)->seq, start))) { 5336 end_of_skbs = false; 5337 break; 5338 } 5339 5340 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5341 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5342 end_of_skbs = false; 5343 break; 5344 } 5345 5346 /* Decided to skip this, advance start seq. */ 5347 start = TCP_SKB_CB(skb)->end_seq; 5348 } 5349 if (end_of_skbs || 5350 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5351 return; 5352 5353 __skb_queue_head_init(&tmp); 5354 5355 while (before(start, end)) { 5356 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5357 struct sk_buff *nskb; 5358 5359 nskb = alloc_skb(copy, GFP_ATOMIC); 5360 if (!nskb) 5361 break; 5362 5363 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5364 #ifdef CONFIG_TLS_DEVICE 5365 nskb->decrypted = skb->decrypted; 5366 #endif 5367 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5368 if (list) 5369 __skb_queue_before(list, skb, nskb); 5370 else 5371 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5372 skb_set_owner_r(nskb, sk); 5373 mptcp_skb_ext_move(nskb, skb); 5374 5375 /* Copy data, releasing collapsed skbs. */ 5376 while (copy > 0) { 5377 int offset = start - TCP_SKB_CB(skb)->seq; 5378 int size = TCP_SKB_CB(skb)->end_seq - start; 5379 5380 BUG_ON(offset < 0); 5381 if (size > 0) { 5382 size = min(copy, size); 5383 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5384 BUG(); 5385 TCP_SKB_CB(nskb)->end_seq += size; 5386 copy -= size; 5387 start += size; 5388 } 5389 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5390 skb = tcp_collapse_one(sk, skb, list, root); 5391 if (!skb || 5392 skb == tail || 5393 !mptcp_skb_can_collapse(nskb, skb) || 5394 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5395 goto end; 5396 #ifdef CONFIG_TLS_DEVICE 5397 if (skb->decrypted != nskb->decrypted) 5398 goto end; 5399 #endif 5400 } 5401 } 5402 } 5403 end: 5404 skb_queue_walk_safe(&tmp, skb, n) 5405 tcp_rbtree_insert(root, skb); 5406 } 5407 5408 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5409 * and tcp_collapse() them until all the queue is collapsed. 5410 */ 5411 static void tcp_collapse_ofo_queue(struct sock *sk) 5412 { 5413 struct tcp_sock *tp = tcp_sk(sk); 5414 u32 range_truesize, sum_tiny = 0; 5415 struct sk_buff *skb, *head; 5416 u32 start, end; 5417 5418 skb = skb_rb_first(&tp->out_of_order_queue); 5419 new_range: 5420 if (!skb) { 5421 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5422 return; 5423 } 5424 start = TCP_SKB_CB(skb)->seq; 5425 end = TCP_SKB_CB(skb)->end_seq; 5426 range_truesize = skb->truesize; 5427 5428 for (head = skb;;) { 5429 skb = skb_rb_next(skb); 5430 5431 /* Range is terminated when we see a gap or when 5432 * we are at the queue end. 5433 */ 5434 if (!skb || 5435 after(TCP_SKB_CB(skb)->seq, end) || 5436 before(TCP_SKB_CB(skb)->end_seq, start)) { 5437 /* Do not attempt collapsing tiny skbs */ 5438 if (range_truesize != head->truesize || 5439 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5440 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5441 head, skb, start, end); 5442 } else { 5443 sum_tiny += range_truesize; 5444 if (sum_tiny > sk->sk_rcvbuf >> 3) 5445 return; 5446 } 5447 goto new_range; 5448 } 5449 5450 range_truesize += skb->truesize; 5451 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5452 start = TCP_SKB_CB(skb)->seq; 5453 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5454 end = TCP_SKB_CB(skb)->end_seq; 5455 } 5456 } 5457 5458 /* 5459 * Clean the out-of-order queue to make room. 5460 * We drop high sequences packets to : 5461 * 1) Let a chance for holes to be filled. 5462 * This means we do not drop packets from ooo queue if their sequence 5463 * is before incoming packet sequence. 5464 * 2) not add too big latencies if thousands of packets sit there. 5465 * (But if application shrinks SO_RCVBUF, we could still end up 5466 * freeing whole queue here) 5467 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5468 * 5469 * Return true if queue has shrunk. 5470 */ 5471 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5472 { 5473 struct tcp_sock *tp = tcp_sk(sk); 5474 struct rb_node *node, *prev; 5475 bool pruned = false; 5476 int goal; 5477 5478 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5479 return false; 5480 5481 goal = sk->sk_rcvbuf >> 3; 5482 node = &tp->ooo_last_skb->rbnode; 5483 5484 do { 5485 struct sk_buff *skb = rb_to_skb(node); 5486 5487 /* If incoming skb would land last in ofo queue, stop pruning. */ 5488 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5489 break; 5490 pruned = true; 5491 prev = rb_prev(node); 5492 rb_erase(node, &tp->out_of_order_queue); 5493 goal -= skb->truesize; 5494 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5495 tp->ooo_last_skb = rb_to_skb(prev); 5496 if (!prev || goal <= 0) { 5497 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5498 !tcp_under_memory_pressure(sk)) 5499 break; 5500 goal = sk->sk_rcvbuf >> 3; 5501 } 5502 node = prev; 5503 } while (node); 5504 5505 if (pruned) { 5506 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5507 /* Reset SACK state. A conforming SACK implementation will 5508 * do the same at a timeout based retransmit. When a connection 5509 * is in a sad state like this, we care only about integrity 5510 * of the connection not performance. 5511 */ 5512 if (tp->rx_opt.sack_ok) 5513 tcp_sack_reset(&tp->rx_opt); 5514 } 5515 return pruned; 5516 } 5517 5518 /* Reduce allocated memory if we can, trying to get 5519 * the socket within its memory limits again. 5520 * 5521 * Return less than zero if we should start dropping frames 5522 * until the socket owning process reads some of the data 5523 * to stabilize the situation. 5524 */ 5525 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5526 { 5527 struct tcp_sock *tp = tcp_sk(sk); 5528 5529 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5530 5531 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5532 tcp_clamp_window(sk); 5533 else if (tcp_under_memory_pressure(sk)) 5534 tcp_adjust_rcv_ssthresh(sk); 5535 5536 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5537 return 0; 5538 5539 tcp_collapse_ofo_queue(sk); 5540 if (!skb_queue_empty(&sk->sk_receive_queue)) 5541 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5542 skb_peek(&sk->sk_receive_queue), 5543 NULL, 5544 tp->copied_seq, tp->rcv_nxt); 5545 5546 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5547 return 0; 5548 5549 /* Collapsing did not help, destructive actions follow. 5550 * This must not ever occur. */ 5551 5552 tcp_prune_ofo_queue(sk, in_skb); 5553 5554 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5555 return 0; 5556 5557 /* If we are really being abused, tell the caller to silently 5558 * drop receive data on the floor. It will get retransmitted 5559 * and hopefully then we'll have sufficient space. 5560 */ 5561 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5562 5563 /* Massive buffer overcommit. */ 5564 tp->pred_flags = 0; 5565 return -1; 5566 } 5567 5568 static bool tcp_should_expand_sndbuf(struct sock *sk) 5569 { 5570 const struct tcp_sock *tp = tcp_sk(sk); 5571 5572 /* If the user specified a specific send buffer setting, do 5573 * not modify it. 5574 */ 5575 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5576 return false; 5577 5578 /* If we are under global TCP memory pressure, do not expand. */ 5579 if (tcp_under_memory_pressure(sk)) { 5580 int unused_mem = sk_unused_reserved_mem(sk); 5581 5582 /* Adjust sndbuf according to reserved mem. But make sure 5583 * it never goes below SOCK_MIN_SNDBUF. 5584 * See sk_stream_moderate_sndbuf() for more details. 5585 */ 5586 if (unused_mem > SOCK_MIN_SNDBUF) 5587 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5588 5589 return false; 5590 } 5591 5592 /* If we are under soft global TCP memory pressure, do not expand. */ 5593 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5594 return false; 5595 5596 /* If we filled the congestion window, do not expand. */ 5597 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5598 return false; 5599 5600 return true; 5601 } 5602 5603 static void tcp_new_space(struct sock *sk) 5604 { 5605 struct tcp_sock *tp = tcp_sk(sk); 5606 5607 if (tcp_should_expand_sndbuf(sk)) { 5608 tcp_sndbuf_expand(sk); 5609 tp->snd_cwnd_stamp = tcp_jiffies32; 5610 } 5611 5612 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5613 } 5614 5615 /* Caller made space either from: 5616 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5617 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5618 * 5619 * We might be able to generate EPOLLOUT to the application if: 5620 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5621 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5622 * small enough that tcp_stream_memory_free() decides it 5623 * is time to generate EPOLLOUT. 5624 */ 5625 void tcp_check_space(struct sock *sk) 5626 { 5627 /* pairs with tcp_poll() */ 5628 smp_mb(); 5629 if (sk->sk_socket && 5630 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5631 tcp_new_space(sk); 5632 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5633 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5634 } 5635 } 5636 5637 static inline void tcp_data_snd_check(struct sock *sk) 5638 { 5639 tcp_push_pending_frames(sk); 5640 tcp_check_space(sk); 5641 } 5642 5643 /* 5644 * Check if sending an ack is needed. 5645 */ 5646 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5647 { 5648 struct tcp_sock *tp = tcp_sk(sk); 5649 unsigned long rtt, delay; 5650 5651 /* More than one full frame received... */ 5652 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5653 /* ... and right edge of window advances far enough. 5654 * (tcp_recvmsg() will send ACK otherwise). 5655 * If application uses SO_RCVLOWAT, we want send ack now if 5656 * we have not received enough bytes to satisfy the condition. 5657 */ 5658 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5659 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5660 /* We ACK each frame or... */ 5661 tcp_in_quickack_mode(sk) || 5662 /* Protocol state mandates a one-time immediate ACK */ 5663 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5664 send_now: 5665 tcp_send_ack(sk); 5666 return; 5667 } 5668 5669 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5670 tcp_send_delayed_ack(sk); 5671 return; 5672 } 5673 5674 if (!tcp_is_sack(tp) || 5675 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5676 goto send_now; 5677 5678 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5679 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5680 tp->dup_ack_counter = 0; 5681 } 5682 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5683 tp->dup_ack_counter++; 5684 goto send_now; 5685 } 5686 tp->compressed_ack++; 5687 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5688 return; 5689 5690 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5691 5692 rtt = tp->rcv_rtt_est.rtt_us; 5693 if (tp->srtt_us && tp->srtt_us < rtt) 5694 rtt = tp->srtt_us; 5695 5696 delay = min_t(unsigned long, 5697 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5698 rtt * (NSEC_PER_USEC >> 3)/20); 5699 sock_hold(sk); 5700 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5701 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5702 HRTIMER_MODE_REL_PINNED_SOFT); 5703 } 5704 5705 static inline void tcp_ack_snd_check(struct sock *sk) 5706 { 5707 if (!inet_csk_ack_scheduled(sk)) { 5708 /* We sent a data segment already. */ 5709 return; 5710 } 5711 __tcp_ack_snd_check(sk, 1); 5712 } 5713 5714 /* 5715 * This routine is only called when we have urgent data 5716 * signaled. Its the 'slow' part of tcp_urg. It could be 5717 * moved inline now as tcp_urg is only called from one 5718 * place. We handle URGent data wrong. We have to - as 5719 * BSD still doesn't use the correction from RFC961. 5720 * For 1003.1g we should support a new option TCP_STDURG to permit 5721 * either form (or just set the sysctl tcp_stdurg). 5722 */ 5723 5724 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5725 { 5726 struct tcp_sock *tp = tcp_sk(sk); 5727 u32 ptr = ntohs(th->urg_ptr); 5728 5729 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5730 ptr--; 5731 ptr += ntohl(th->seq); 5732 5733 /* Ignore urgent data that we've already seen and read. */ 5734 if (after(tp->copied_seq, ptr)) 5735 return; 5736 5737 /* Do not replay urg ptr. 5738 * 5739 * NOTE: interesting situation not covered by specs. 5740 * Misbehaving sender may send urg ptr, pointing to segment, 5741 * which we already have in ofo queue. We are not able to fetch 5742 * such data and will stay in TCP_URG_NOTYET until will be eaten 5743 * by recvmsg(). Seems, we are not obliged to handle such wicked 5744 * situations. But it is worth to think about possibility of some 5745 * DoSes using some hypothetical application level deadlock. 5746 */ 5747 if (before(ptr, tp->rcv_nxt)) 5748 return; 5749 5750 /* Do we already have a newer (or duplicate) urgent pointer? */ 5751 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5752 return; 5753 5754 /* Tell the world about our new urgent pointer. */ 5755 sk_send_sigurg(sk); 5756 5757 /* We may be adding urgent data when the last byte read was 5758 * urgent. To do this requires some care. We cannot just ignore 5759 * tp->copied_seq since we would read the last urgent byte again 5760 * as data, nor can we alter copied_seq until this data arrives 5761 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5762 * 5763 * NOTE. Double Dutch. Rendering to plain English: author of comment 5764 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5765 * and expect that both A and B disappear from stream. This is _wrong_. 5766 * Though this happens in BSD with high probability, this is occasional. 5767 * Any application relying on this is buggy. Note also, that fix "works" 5768 * only in this artificial test. Insert some normal data between A and B and we will 5769 * decline of BSD again. Verdict: it is better to remove to trap 5770 * buggy users. 5771 */ 5772 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5773 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5774 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5775 tp->copied_seq++; 5776 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5777 __skb_unlink(skb, &sk->sk_receive_queue); 5778 __kfree_skb(skb); 5779 } 5780 } 5781 5782 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5783 WRITE_ONCE(tp->urg_seq, ptr); 5784 5785 /* Disable header prediction. */ 5786 tp->pred_flags = 0; 5787 } 5788 5789 /* This is the 'fast' part of urgent handling. */ 5790 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5791 { 5792 struct tcp_sock *tp = tcp_sk(sk); 5793 5794 /* Check if we get a new urgent pointer - normally not. */ 5795 if (unlikely(th->urg)) 5796 tcp_check_urg(sk, th); 5797 5798 /* Do we wait for any urgent data? - normally not... */ 5799 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5800 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5801 th->syn; 5802 5803 /* Is the urgent pointer pointing into this packet? */ 5804 if (ptr < skb->len) { 5805 u8 tmp; 5806 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5807 BUG(); 5808 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5809 if (!sock_flag(sk, SOCK_DEAD)) 5810 sk->sk_data_ready(sk); 5811 } 5812 } 5813 } 5814 5815 /* Accept RST for rcv_nxt - 1 after a FIN. 5816 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5817 * FIN is sent followed by a RST packet. The RST is sent with the same 5818 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5819 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5820 * ACKs on the closed socket. In addition middleboxes can drop either the 5821 * challenge ACK or a subsequent RST. 5822 */ 5823 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5824 { 5825 const struct tcp_sock *tp = tcp_sk(sk); 5826 5827 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5828 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5829 TCPF_CLOSING)); 5830 } 5831 5832 /* Does PAWS and seqno based validation of an incoming segment, flags will 5833 * play significant role here. 5834 */ 5835 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5836 const struct tcphdr *th, int syn_inerr) 5837 { 5838 struct tcp_sock *tp = tcp_sk(sk); 5839 SKB_DR(reason); 5840 5841 /* RFC1323: H1. Apply PAWS check first. */ 5842 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5843 tp->rx_opt.saw_tstamp && 5844 tcp_paws_discard(sk, skb)) { 5845 if (!th->rst) { 5846 if (unlikely(th->syn)) 5847 goto syn_challenge; 5848 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5849 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5850 LINUX_MIB_TCPACKSKIPPEDPAWS, 5851 &tp->last_oow_ack_time)) 5852 tcp_send_dupack(sk, skb); 5853 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5854 goto discard; 5855 } 5856 /* Reset is accepted even if it did not pass PAWS. */ 5857 } 5858 5859 /* Step 1: check sequence number */ 5860 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5861 if (reason) { 5862 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5863 * (RST) segments are validated by checking their SEQ-fields." 5864 * And page 69: "If an incoming segment is not acceptable, 5865 * an acknowledgment should be sent in reply (unless the RST 5866 * bit is set, if so drop the segment and return)". 5867 */ 5868 if (!th->rst) { 5869 if (th->syn) 5870 goto syn_challenge; 5871 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5872 LINUX_MIB_TCPACKSKIPPEDSEQ, 5873 &tp->last_oow_ack_time)) 5874 tcp_send_dupack(sk, skb); 5875 } else if (tcp_reset_check(sk, skb)) { 5876 goto reset; 5877 } 5878 goto discard; 5879 } 5880 5881 /* Step 2: check RST bit */ 5882 if (th->rst) { 5883 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5884 * FIN and SACK too if available): 5885 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5886 * the right-most SACK block, 5887 * then 5888 * RESET the connection 5889 * else 5890 * Send a challenge ACK 5891 */ 5892 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5893 tcp_reset_check(sk, skb)) 5894 goto reset; 5895 5896 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5897 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5898 int max_sack = sp[0].end_seq; 5899 int this_sack; 5900 5901 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5902 ++this_sack) { 5903 max_sack = after(sp[this_sack].end_seq, 5904 max_sack) ? 5905 sp[this_sack].end_seq : max_sack; 5906 } 5907 5908 if (TCP_SKB_CB(skb)->seq == max_sack) 5909 goto reset; 5910 } 5911 5912 /* Disable TFO if RST is out-of-order 5913 * and no data has been received 5914 * for current active TFO socket 5915 */ 5916 if (tp->syn_fastopen && !tp->data_segs_in && 5917 sk->sk_state == TCP_ESTABLISHED) 5918 tcp_fastopen_active_disable(sk); 5919 tcp_send_challenge_ack(sk); 5920 SKB_DR_SET(reason, TCP_RESET); 5921 goto discard; 5922 } 5923 5924 /* step 3: check security and precedence [ignored] */ 5925 5926 /* step 4: Check for a SYN 5927 * RFC 5961 4.2 : Send a challenge ack 5928 */ 5929 if (th->syn) { 5930 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 5931 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 5932 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 5933 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 5934 goto pass; 5935 syn_challenge: 5936 if (syn_inerr) 5937 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5938 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5939 tcp_send_challenge_ack(sk); 5940 SKB_DR_SET(reason, TCP_INVALID_SYN); 5941 goto discard; 5942 } 5943 5944 pass: 5945 bpf_skops_parse_hdr(sk, skb); 5946 5947 return true; 5948 5949 discard: 5950 tcp_drop_reason(sk, skb, reason); 5951 return false; 5952 5953 reset: 5954 tcp_reset(sk, skb); 5955 __kfree_skb(skb); 5956 return false; 5957 } 5958 5959 /* 5960 * TCP receive function for the ESTABLISHED state. 5961 * 5962 * It is split into a fast path and a slow path. The fast path is 5963 * disabled when: 5964 * - A zero window was announced from us - zero window probing 5965 * is only handled properly in the slow path. 5966 * - Out of order segments arrived. 5967 * - Urgent data is expected. 5968 * - There is no buffer space left 5969 * - Unexpected TCP flags/window values/header lengths are received 5970 * (detected by checking the TCP header against pred_flags) 5971 * - Data is sent in both directions. Fast path only supports pure senders 5972 * or pure receivers (this means either the sequence number or the ack 5973 * value must stay constant) 5974 * - Unexpected TCP option. 5975 * 5976 * When these conditions are not satisfied it drops into a standard 5977 * receive procedure patterned after RFC793 to handle all cases. 5978 * The first three cases are guaranteed by proper pred_flags setting, 5979 * the rest is checked inline. Fast processing is turned on in 5980 * tcp_data_queue when everything is OK. 5981 */ 5982 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5983 { 5984 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5985 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5986 struct tcp_sock *tp = tcp_sk(sk); 5987 unsigned int len = skb->len; 5988 5989 /* TCP congestion window tracking */ 5990 trace_tcp_probe(sk, skb); 5991 5992 tcp_mstamp_refresh(tp); 5993 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5994 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5995 /* 5996 * Header prediction. 5997 * The code loosely follows the one in the famous 5998 * "30 instruction TCP receive" Van Jacobson mail. 5999 * 6000 * Van's trick is to deposit buffers into socket queue 6001 * on a device interrupt, to call tcp_recv function 6002 * on the receive process context and checksum and copy 6003 * the buffer to user space. smart... 6004 * 6005 * Our current scheme is not silly either but we take the 6006 * extra cost of the net_bh soft interrupt processing... 6007 * We do checksum and copy also but from device to kernel. 6008 */ 6009 6010 tp->rx_opt.saw_tstamp = 0; 6011 6012 /* pred_flags is 0xS?10 << 16 + snd_wnd 6013 * if header_prediction is to be made 6014 * 'S' will always be tp->tcp_header_len >> 2 6015 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6016 * turn it off (when there are holes in the receive 6017 * space for instance) 6018 * PSH flag is ignored. 6019 */ 6020 6021 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6022 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6023 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6024 int tcp_header_len = tp->tcp_header_len; 6025 6026 /* Timestamp header prediction: tcp_header_len 6027 * is automatically equal to th->doff*4 due to pred_flags 6028 * match. 6029 */ 6030 6031 /* Check timestamp */ 6032 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6033 /* No? Slow path! */ 6034 if (!tcp_parse_aligned_timestamp(tp, th)) 6035 goto slow_path; 6036 6037 /* If PAWS failed, check it more carefully in slow path */ 6038 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6039 goto slow_path; 6040 6041 /* DO NOT update ts_recent here, if checksum fails 6042 * and timestamp was corrupted part, it will result 6043 * in a hung connection since we will drop all 6044 * future packets due to the PAWS test. 6045 */ 6046 } 6047 6048 if (len <= tcp_header_len) { 6049 /* Bulk data transfer: sender */ 6050 if (len == tcp_header_len) { 6051 /* Predicted packet is in window by definition. 6052 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6053 * Hence, check seq<=rcv_wup reduces to: 6054 */ 6055 if (tcp_header_len == 6056 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6057 tp->rcv_nxt == tp->rcv_wup) 6058 tcp_store_ts_recent(tp); 6059 6060 /* We know that such packets are checksummed 6061 * on entry. 6062 */ 6063 tcp_ack(sk, skb, 0); 6064 __kfree_skb(skb); 6065 tcp_data_snd_check(sk); 6066 /* When receiving pure ack in fast path, update 6067 * last ts ecr directly instead of calling 6068 * tcp_rcv_rtt_measure_ts() 6069 */ 6070 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6071 return; 6072 } else { /* Header too small */ 6073 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6074 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6075 goto discard; 6076 } 6077 } else { 6078 int eaten = 0; 6079 bool fragstolen = false; 6080 6081 if (tcp_checksum_complete(skb)) 6082 goto csum_error; 6083 6084 if ((int)skb->truesize > sk->sk_forward_alloc) 6085 goto step5; 6086 6087 /* Predicted packet is in window by definition. 6088 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6089 * Hence, check seq<=rcv_wup reduces to: 6090 */ 6091 if (tcp_header_len == 6092 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6093 tp->rcv_nxt == tp->rcv_wup) 6094 tcp_store_ts_recent(tp); 6095 6096 tcp_rcv_rtt_measure_ts(sk, skb); 6097 6098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6099 6100 /* Bulk data transfer: receiver */ 6101 tcp_cleanup_skb(skb); 6102 __skb_pull(skb, tcp_header_len); 6103 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6104 6105 tcp_event_data_recv(sk, skb); 6106 6107 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6108 /* Well, only one small jumplet in fast path... */ 6109 tcp_ack(sk, skb, FLAG_DATA); 6110 tcp_data_snd_check(sk); 6111 if (!inet_csk_ack_scheduled(sk)) 6112 goto no_ack; 6113 } else { 6114 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6115 } 6116 6117 __tcp_ack_snd_check(sk, 0); 6118 no_ack: 6119 if (eaten) 6120 kfree_skb_partial(skb, fragstolen); 6121 tcp_data_ready(sk); 6122 return; 6123 } 6124 } 6125 6126 slow_path: 6127 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6128 goto csum_error; 6129 6130 if (!th->ack && !th->rst && !th->syn) { 6131 reason = SKB_DROP_REASON_TCP_FLAGS; 6132 goto discard; 6133 } 6134 6135 /* 6136 * Standard slow path. 6137 */ 6138 6139 if (!tcp_validate_incoming(sk, skb, th, 1)) 6140 return; 6141 6142 step5: 6143 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6144 if ((int)reason < 0) { 6145 reason = -reason; 6146 goto discard; 6147 } 6148 tcp_rcv_rtt_measure_ts(sk, skb); 6149 6150 /* Process urgent data. */ 6151 tcp_urg(sk, skb, th); 6152 6153 /* step 7: process the segment text */ 6154 tcp_data_queue(sk, skb); 6155 6156 tcp_data_snd_check(sk); 6157 tcp_ack_snd_check(sk); 6158 return; 6159 6160 csum_error: 6161 reason = SKB_DROP_REASON_TCP_CSUM; 6162 trace_tcp_bad_csum(skb); 6163 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6164 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6165 6166 discard: 6167 tcp_drop_reason(sk, skb, reason); 6168 } 6169 EXPORT_SYMBOL(tcp_rcv_established); 6170 6171 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6172 { 6173 struct inet_connection_sock *icsk = inet_csk(sk); 6174 struct tcp_sock *tp = tcp_sk(sk); 6175 6176 tcp_mtup_init(sk); 6177 icsk->icsk_af_ops->rebuild_header(sk); 6178 tcp_init_metrics(sk); 6179 6180 /* Initialize the congestion window to start the transfer. 6181 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6182 * retransmitted. In light of RFC6298 more aggressive 1sec 6183 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6184 * retransmission has occurred. 6185 */ 6186 if (tp->total_retrans > 1 && tp->undo_marker) 6187 tcp_snd_cwnd_set(tp, 1); 6188 else 6189 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6190 tp->snd_cwnd_stamp = tcp_jiffies32; 6191 6192 bpf_skops_established(sk, bpf_op, skb); 6193 /* Initialize congestion control unless BPF initialized it already: */ 6194 if (!icsk->icsk_ca_initialized) 6195 tcp_init_congestion_control(sk); 6196 tcp_init_buffer_space(sk); 6197 } 6198 6199 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6200 { 6201 struct tcp_sock *tp = tcp_sk(sk); 6202 struct inet_connection_sock *icsk = inet_csk(sk); 6203 6204 tcp_set_state(sk, TCP_ESTABLISHED); 6205 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6206 6207 if (skb) { 6208 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6209 security_inet_conn_established(sk, skb); 6210 sk_mark_napi_id(sk, skb); 6211 } 6212 6213 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6214 6215 /* Prevent spurious tcp_cwnd_restart() on first data 6216 * packet. 6217 */ 6218 tp->lsndtime = tcp_jiffies32; 6219 6220 if (sock_flag(sk, SOCK_KEEPOPEN)) 6221 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6222 6223 if (!tp->rx_opt.snd_wscale) 6224 __tcp_fast_path_on(tp, tp->snd_wnd); 6225 else 6226 tp->pred_flags = 0; 6227 } 6228 6229 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6230 struct tcp_fastopen_cookie *cookie) 6231 { 6232 struct tcp_sock *tp = tcp_sk(sk); 6233 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6234 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6235 bool syn_drop = false; 6236 6237 if (mss == tp->rx_opt.user_mss) { 6238 struct tcp_options_received opt; 6239 6240 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6241 tcp_clear_options(&opt); 6242 opt.user_mss = opt.mss_clamp = 0; 6243 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6244 mss = opt.mss_clamp; 6245 } 6246 6247 if (!tp->syn_fastopen) { 6248 /* Ignore an unsolicited cookie */ 6249 cookie->len = -1; 6250 } else if (tp->total_retrans) { 6251 /* SYN timed out and the SYN-ACK neither has a cookie nor 6252 * acknowledges data. Presumably the remote received only 6253 * the retransmitted (regular) SYNs: either the original 6254 * SYN-data or the corresponding SYN-ACK was dropped. 6255 */ 6256 syn_drop = (cookie->len < 0 && data); 6257 } else if (cookie->len < 0 && !tp->syn_data) { 6258 /* We requested a cookie but didn't get it. If we did not use 6259 * the (old) exp opt format then try so next time (try_exp=1). 6260 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6261 */ 6262 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6263 } 6264 6265 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6266 6267 if (data) { /* Retransmit unacked data in SYN */ 6268 if (tp->total_retrans) 6269 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6270 else 6271 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6272 skb_rbtree_walk_from(data) 6273 tcp_mark_skb_lost(sk, data); 6274 tcp_non_congestion_loss_retransmit(sk); 6275 NET_INC_STATS(sock_net(sk), 6276 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6277 return true; 6278 } 6279 tp->syn_data_acked = tp->syn_data; 6280 if (tp->syn_data_acked) { 6281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6282 /* SYN-data is counted as two separate packets in tcp_ack() */ 6283 if (tp->delivered > 1) 6284 --tp->delivered; 6285 } 6286 6287 tcp_fastopen_add_skb(sk, synack); 6288 6289 return false; 6290 } 6291 6292 static void smc_check_reset_syn(struct tcp_sock *tp) 6293 { 6294 #if IS_ENABLED(CONFIG_SMC) 6295 if (static_branch_unlikely(&tcp_have_smc)) { 6296 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6297 tp->syn_smc = 0; 6298 } 6299 #endif 6300 } 6301 6302 static void tcp_try_undo_spurious_syn(struct sock *sk) 6303 { 6304 struct tcp_sock *tp = tcp_sk(sk); 6305 u32 syn_stamp; 6306 6307 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6308 * spurious if the ACK's timestamp option echo value matches the 6309 * original SYN timestamp. 6310 */ 6311 syn_stamp = tp->retrans_stamp; 6312 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6313 syn_stamp == tp->rx_opt.rcv_tsecr) 6314 tp->undo_marker = 0; 6315 } 6316 6317 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6318 const struct tcphdr *th) 6319 { 6320 struct inet_connection_sock *icsk = inet_csk(sk); 6321 struct tcp_sock *tp = tcp_sk(sk); 6322 struct tcp_fastopen_cookie foc = { .len = -1 }; 6323 int saved_clamp = tp->rx_opt.mss_clamp; 6324 bool fastopen_fail; 6325 SKB_DR(reason); 6326 6327 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6328 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6329 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6330 6331 if (th->ack) { 6332 /* rfc793: 6333 * "If the state is SYN-SENT then 6334 * first check the ACK bit 6335 * If the ACK bit is set 6336 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6337 * a reset (unless the RST bit is set, if so drop 6338 * the segment and return)" 6339 */ 6340 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6341 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6342 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6343 if (icsk->icsk_retransmits == 0) 6344 inet_csk_reset_xmit_timer(sk, 6345 ICSK_TIME_RETRANS, 6346 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6347 goto reset_and_undo; 6348 } 6349 6350 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6351 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6352 tcp_time_stamp(tp))) { 6353 NET_INC_STATS(sock_net(sk), 6354 LINUX_MIB_PAWSACTIVEREJECTED); 6355 goto reset_and_undo; 6356 } 6357 6358 /* Now ACK is acceptable. 6359 * 6360 * "If the RST bit is set 6361 * If the ACK was acceptable then signal the user "error: 6362 * connection reset", drop the segment, enter CLOSED state, 6363 * delete TCB, and return." 6364 */ 6365 6366 if (th->rst) { 6367 tcp_reset(sk, skb); 6368 consume: 6369 __kfree_skb(skb); 6370 return 0; 6371 } 6372 6373 /* rfc793: 6374 * "fifth, if neither of the SYN or RST bits is set then 6375 * drop the segment and return." 6376 * 6377 * See note below! 6378 * --ANK(990513) 6379 */ 6380 if (!th->syn) { 6381 SKB_DR_SET(reason, TCP_FLAGS); 6382 goto discard_and_undo; 6383 } 6384 /* rfc793: 6385 * "If the SYN bit is on ... 6386 * are acceptable then ... 6387 * (our SYN has been ACKed), change the connection 6388 * state to ESTABLISHED..." 6389 */ 6390 6391 tcp_ecn_rcv_synack(tp, th); 6392 6393 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6394 tcp_try_undo_spurious_syn(sk); 6395 tcp_ack(sk, skb, FLAG_SLOWPATH); 6396 6397 /* Ok.. it's good. Set up sequence numbers and 6398 * move to established. 6399 */ 6400 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6401 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6402 6403 /* RFC1323: The window in SYN & SYN/ACK segments is 6404 * never scaled. 6405 */ 6406 tp->snd_wnd = ntohs(th->window); 6407 6408 if (!tp->rx_opt.wscale_ok) { 6409 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6410 WRITE_ONCE(tp->window_clamp, 6411 min(tp->window_clamp, 65535U)); 6412 } 6413 6414 if (tp->rx_opt.saw_tstamp) { 6415 tp->rx_opt.tstamp_ok = 1; 6416 tp->tcp_header_len = 6417 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6418 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6419 tcp_store_ts_recent(tp); 6420 } else { 6421 tp->tcp_header_len = sizeof(struct tcphdr); 6422 } 6423 6424 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6425 tcp_initialize_rcv_mss(sk); 6426 6427 /* Remember, tcp_poll() does not lock socket! 6428 * Change state from SYN-SENT only after copied_seq 6429 * is initialized. */ 6430 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6431 6432 smc_check_reset_syn(tp); 6433 6434 smp_mb(); 6435 6436 tcp_finish_connect(sk, skb); 6437 6438 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6439 tcp_rcv_fastopen_synack(sk, skb, &foc); 6440 6441 if (!sock_flag(sk, SOCK_DEAD)) { 6442 sk->sk_state_change(sk); 6443 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6444 } 6445 if (fastopen_fail) 6446 return -1; 6447 if (sk->sk_write_pending || 6448 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6449 inet_csk_in_pingpong_mode(sk)) { 6450 /* Save one ACK. Data will be ready after 6451 * several ticks, if write_pending is set. 6452 * 6453 * It may be deleted, but with this feature tcpdumps 6454 * look so _wonderfully_ clever, that I was not able 6455 * to stand against the temptation 8) --ANK 6456 */ 6457 inet_csk_schedule_ack(sk); 6458 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6459 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6460 TCP_DELACK_MAX, TCP_RTO_MAX); 6461 goto consume; 6462 } 6463 tcp_send_ack(sk); 6464 return -1; 6465 } 6466 6467 /* No ACK in the segment */ 6468 6469 if (th->rst) { 6470 /* rfc793: 6471 * "If the RST bit is set 6472 * 6473 * Otherwise (no ACK) drop the segment and return." 6474 */ 6475 SKB_DR_SET(reason, TCP_RESET); 6476 goto discard_and_undo; 6477 } 6478 6479 /* PAWS check. */ 6480 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6481 tcp_paws_reject(&tp->rx_opt, 0)) { 6482 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6483 goto discard_and_undo; 6484 } 6485 if (th->syn) { 6486 /* We see SYN without ACK. It is attempt of 6487 * simultaneous connect with crossed SYNs. 6488 * Particularly, it can be connect to self. 6489 */ 6490 tcp_set_state(sk, TCP_SYN_RECV); 6491 6492 if (tp->rx_opt.saw_tstamp) { 6493 tp->rx_opt.tstamp_ok = 1; 6494 tcp_store_ts_recent(tp); 6495 tp->tcp_header_len = 6496 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6497 } else { 6498 tp->tcp_header_len = sizeof(struct tcphdr); 6499 } 6500 6501 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6502 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6503 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6504 6505 /* RFC1323: The window in SYN & SYN/ACK segments is 6506 * never scaled. 6507 */ 6508 tp->snd_wnd = ntohs(th->window); 6509 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6510 tp->max_window = tp->snd_wnd; 6511 6512 tcp_ecn_rcv_syn(tp, th); 6513 6514 tcp_mtup_init(sk); 6515 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6516 tcp_initialize_rcv_mss(sk); 6517 6518 tcp_send_synack(sk); 6519 #if 0 6520 /* Note, we could accept data and URG from this segment. 6521 * There are no obstacles to make this (except that we must 6522 * either change tcp_recvmsg() to prevent it from returning data 6523 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6524 * 6525 * However, if we ignore data in ACKless segments sometimes, 6526 * we have no reasons to accept it sometimes. 6527 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6528 * is not flawless. So, discard packet for sanity. 6529 * Uncomment this return to process the data. 6530 */ 6531 return -1; 6532 #else 6533 goto consume; 6534 #endif 6535 } 6536 /* "fifth, if neither of the SYN or RST bits is set then 6537 * drop the segment and return." 6538 */ 6539 6540 discard_and_undo: 6541 tcp_clear_options(&tp->rx_opt); 6542 tp->rx_opt.mss_clamp = saved_clamp; 6543 tcp_drop_reason(sk, skb, reason); 6544 return 0; 6545 6546 reset_and_undo: 6547 tcp_clear_options(&tp->rx_opt); 6548 tp->rx_opt.mss_clamp = saved_clamp; 6549 return 1; 6550 } 6551 6552 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6553 { 6554 struct tcp_sock *tp = tcp_sk(sk); 6555 struct request_sock *req; 6556 6557 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6558 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6559 */ 6560 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6561 tcp_try_undo_recovery(sk); 6562 6563 tcp_update_rto_time(tp); 6564 inet_csk(sk)->icsk_retransmits = 0; 6565 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6566 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6567 * need to zero retrans_stamp here to prevent spurious 6568 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6569 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6570 * set entering CA_Recovery, for correct retransmits_timed_out() and 6571 * undo behavior. 6572 */ 6573 tcp_retrans_stamp_cleanup(sk); 6574 6575 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6576 * we no longer need req so release it. 6577 */ 6578 req = rcu_dereference_protected(tp->fastopen_rsk, 6579 lockdep_sock_is_held(sk)); 6580 reqsk_fastopen_remove(sk, req, false); 6581 6582 /* Re-arm the timer because data may have been sent out. 6583 * This is similar to the regular data transmission case 6584 * when new data has just been ack'ed. 6585 * 6586 * (TFO) - we could try to be more aggressive and 6587 * retransmitting any data sooner based on when they 6588 * are sent out. 6589 */ 6590 tcp_rearm_rto(sk); 6591 } 6592 6593 /* 6594 * This function implements the receiving procedure of RFC 793 for 6595 * all states except ESTABLISHED and TIME_WAIT. 6596 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6597 * address independent. 6598 */ 6599 6600 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6601 { 6602 struct tcp_sock *tp = tcp_sk(sk); 6603 struct inet_connection_sock *icsk = inet_csk(sk); 6604 const struct tcphdr *th = tcp_hdr(skb); 6605 struct request_sock *req; 6606 int queued = 0; 6607 bool acceptable; 6608 SKB_DR(reason); 6609 6610 switch (sk->sk_state) { 6611 case TCP_CLOSE: 6612 SKB_DR_SET(reason, TCP_CLOSE); 6613 goto discard; 6614 6615 case TCP_LISTEN: 6616 if (th->ack) 6617 return 1; 6618 6619 if (th->rst) { 6620 SKB_DR_SET(reason, TCP_RESET); 6621 goto discard; 6622 } 6623 if (th->syn) { 6624 if (th->fin) { 6625 SKB_DR_SET(reason, TCP_FLAGS); 6626 goto discard; 6627 } 6628 /* It is possible that we process SYN packets from backlog, 6629 * so we need to make sure to disable BH and RCU right there. 6630 */ 6631 rcu_read_lock(); 6632 local_bh_disable(); 6633 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6634 local_bh_enable(); 6635 rcu_read_unlock(); 6636 6637 if (!acceptable) 6638 return 1; 6639 consume_skb(skb); 6640 return 0; 6641 } 6642 SKB_DR_SET(reason, TCP_FLAGS); 6643 goto discard; 6644 6645 case TCP_SYN_SENT: 6646 tp->rx_opt.saw_tstamp = 0; 6647 tcp_mstamp_refresh(tp); 6648 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6649 if (queued >= 0) 6650 return queued; 6651 6652 /* Do step6 onward by hand. */ 6653 tcp_urg(sk, skb, th); 6654 __kfree_skb(skb); 6655 tcp_data_snd_check(sk); 6656 return 0; 6657 } 6658 6659 tcp_mstamp_refresh(tp); 6660 tp->rx_opt.saw_tstamp = 0; 6661 req = rcu_dereference_protected(tp->fastopen_rsk, 6662 lockdep_sock_is_held(sk)); 6663 if (req) { 6664 bool req_stolen; 6665 6666 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6667 sk->sk_state != TCP_FIN_WAIT1); 6668 6669 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6670 SKB_DR_SET(reason, TCP_FASTOPEN); 6671 goto discard; 6672 } 6673 } 6674 6675 if (!th->ack && !th->rst && !th->syn) { 6676 SKB_DR_SET(reason, TCP_FLAGS); 6677 goto discard; 6678 } 6679 if (!tcp_validate_incoming(sk, skb, th, 0)) 6680 return 0; 6681 6682 /* step 5: check the ACK field */ 6683 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6684 FLAG_UPDATE_TS_RECENT | 6685 FLAG_NO_CHALLENGE_ACK) > 0; 6686 6687 if (!acceptable) { 6688 if (sk->sk_state == TCP_SYN_RECV) 6689 return 1; /* send one RST */ 6690 tcp_send_challenge_ack(sk); 6691 SKB_DR_SET(reason, TCP_OLD_ACK); 6692 goto discard; 6693 } 6694 switch (sk->sk_state) { 6695 case TCP_SYN_RECV: 6696 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6697 if (!tp->srtt_us) 6698 tcp_synack_rtt_meas(sk, req); 6699 6700 if (req) { 6701 tcp_rcv_synrecv_state_fastopen(sk); 6702 } else { 6703 tcp_try_undo_spurious_syn(sk); 6704 tp->retrans_stamp = 0; 6705 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6706 skb); 6707 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6708 } 6709 smp_mb(); 6710 tcp_set_state(sk, TCP_ESTABLISHED); 6711 sk->sk_state_change(sk); 6712 6713 /* Note, that this wakeup is only for marginal crossed SYN case. 6714 * Passively open sockets are not waked up, because 6715 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6716 */ 6717 if (sk->sk_socket) 6718 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6719 6720 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6721 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6722 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6723 6724 if (tp->rx_opt.tstamp_ok) 6725 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6726 6727 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6728 tcp_update_pacing_rate(sk); 6729 6730 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6731 tp->lsndtime = tcp_jiffies32; 6732 6733 tcp_initialize_rcv_mss(sk); 6734 tcp_fast_path_on(tp); 6735 if (sk->sk_shutdown & SEND_SHUTDOWN) 6736 tcp_shutdown(sk, SEND_SHUTDOWN); 6737 break; 6738 6739 case TCP_FIN_WAIT1: { 6740 int tmo; 6741 6742 if (req) 6743 tcp_rcv_synrecv_state_fastopen(sk); 6744 6745 if (tp->snd_una != tp->write_seq) 6746 break; 6747 6748 tcp_set_state(sk, TCP_FIN_WAIT2); 6749 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6750 6751 sk_dst_confirm(sk); 6752 6753 if (!sock_flag(sk, SOCK_DEAD)) { 6754 /* Wake up lingering close() */ 6755 sk->sk_state_change(sk); 6756 break; 6757 } 6758 6759 if (READ_ONCE(tp->linger2) < 0) { 6760 tcp_done(sk); 6761 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6762 return 1; 6763 } 6764 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6765 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6766 /* Receive out of order FIN after close() */ 6767 if (tp->syn_fastopen && th->fin) 6768 tcp_fastopen_active_disable(sk); 6769 tcp_done(sk); 6770 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6771 return 1; 6772 } 6773 6774 tmo = tcp_fin_time(sk); 6775 if (tmo > TCP_TIMEWAIT_LEN) { 6776 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6777 } else if (th->fin || sock_owned_by_user(sk)) { 6778 /* Bad case. We could lose such FIN otherwise. 6779 * It is not a big problem, but it looks confusing 6780 * and not so rare event. We still can lose it now, 6781 * if it spins in bh_lock_sock(), but it is really 6782 * marginal case. 6783 */ 6784 inet_csk_reset_keepalive_timer(sk, tmo); 6785 } else { 6786 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6787 goto consume; 6788 } 6789 break; 6790 } 6791 6792 case TCP_CLOSING: 6793 if (tp->snd_una == tp->write_seq) { 6794 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6795 goto consume; 6796 } 6797 break; 6798 6799 case TCP_LAST_ACK: 6800 if (tp->snd_una == tp->write_seq) { 6801 tcp_update_metrics(sk); 6802 tcp_done(sk); 6803 goto consume; 6804 } 6805 break; 6806 } 6807 6808 /* step 6: check the URG bit */ 6809 tcp_urg(sk, skb, th); 6810 6811 /* step 7: process the segment text */ 6812 switch (sk->sk_state) { 6813 case TCP_CLOSE_WAIT: 6814 case TCP_CLOSING: 6815 case TCP_LAST_ACK: 6816 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6817 /* If a subflow has been reset, the packet should not 6818 * continue to be processed, drop the packet. 6819 */ 6820 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6821 goto discard; 6822 break; 6823 } 6824 fallthrough; 6825 case TCP_FIN_WAIT1: 6826 case TCP_FIN_WAIT2: 6827 /* RFC 793 says to queue data in these states, 6828 * RFC 1122 says we MUST send a reset. 6829 * BSD 4.4 also does reset. 6830 */ 6831 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6832 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6833 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6834 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6835 tcp_reset(sk, skb); 6836 return 1; 6837 } 6838 } 6839 fallthrough; 6840 case TCP_ESTABLISHED: 6841 tcp_data_queue(sk, skb); 6842 queued = 1; 6843 break; 6844 } 6845 6846 /* tcp_data could move socket to TIME-WAIT */ 6847 if (sk->sk_state != TCP_CLOSE) { 6848 tcp_data_snd_check(sk); 6849 tcp_ack_snd_check(sk); 6850 } 6851 6852 if (!queued) { 6853 discard: 6854 tcp_drop_reason(sk, skb, reason); 6855 } 6856 return 0; 6857 6858 consume: 6859 __kfree_skb(skb); 6860 return 0; 6861 } 6862 EXPORT_SYMBOL(tcp_rcv_state_process); 6863 6864 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6865 { 6866 struct inet_request_sock *ireq = inet_rsk(req); 6867 6868 if (family == AF_INET) 6869 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6870 &ireq->ir_rmt_addr, port); 6871 #if IS_ENABLED(CONFIG_IPV6) 6872 else if (family == AF_INET6) 6873 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6874 &ireq->ir_v6_rmt_addr, port); 6875 #endif 6876 } 6877 6878 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6879 * 6880 * If we receive a SYN packet with these bits set, it means a 6881 * network is playing bad games with TOS bits. In order to 6882 * avoid possible false congestion notifications, we disable 6883 * TCP ECN negotiation. 6884 * 6885 * Exception: tcp_ca wants ECN. This is required for DCTCP 6886 * congestion control: Linux DCTCP asserts ECT on all packets, 6887 * including SYN, which is most optimal solution; however, 6888 * others, such as FreeBSD do not. 6889 * 6890 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6891 * set, indicating the use of a future TCP extension (such as AccECN). See 6892 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6893 * extensions. 6894 */ 6895 static void tcp_ecn_create_request(struct request_sock *req, 6896 const struct sk_buff *skb, 6897 const struct sock *listen_sk, 6898 const struct dst_entry *dst) 6899 { 6900 const struct tcphdr *th = tcp_hdr(skb); 6901 const struct net *net = sock_net(listen_sk); 6902 bool th_ecn = th->ece && th->cwr; 6903 bool ect, ecn_ok; 6904 u32 ecn_ok_dst; 6905 6906 if (!th_ecn) 6907 return; 6908 6909 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6910 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6911 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6912 6913 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6914 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6915 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6916 inet_rsk(req)->ecn_ok = 1; 6917 } 6918 6919 static void tcp_openreq_init(struct request_sock *req, 6920 const struct tcp_options_received *rx_opt, 6921 struct sk_buff *skb, const struct sock *sk) 6922 { 6923 struct inet_request_sock *ireq = inet_rsk(req); 6924 6925 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6926 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6927 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6928 tcp_rsk(req)->snt_synack = 0; 6929 tcp_rsk(req)->last_oow_ack_time = 0; 6930 req->mss = rx_opt->mss_clamp; 6931 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6932 ireq->tstamp_ok = rx_opt->tstamp_ok; 6933 ireq->sack_ok = rx_opt->sack_ok; 6934 ireq->snd_wscale = rx_opt->snd_wscale; 6935 ireq->wscale_ok = rx_opt->wscale_ok; 6936 ireq->acked = 0; 6937 ireq->ecn_ok = 0; 6938 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6939 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6940 ireq->ir_mark = inet_request_mark(sk, skb); 6941 #if IS_ENABLED(CONFIG_SMC) 6942 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6943 tcp_sk(sk)->smc_hs_congested(sk)); 6944 #endif 6945 } 6946 6947 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6948 struct sock *sk_listener, 6949 bool attach_listener) 6950 { 6951 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6952 attach_listener); 6953 6954 if (req) { 6955 struct inet_request_sock *ireq = inet_rsk(req); 6956 6957 ireq->ireq_opt = NULL; 6958 #if IS_ENABLED(CONFIG_IPV6) 6959 ireq->pktopts = NULL; 6960 #endif 6961 atomic64_set(&ireq->ir_cookie, 0); 6962 ireq->ireq_state = TCP_NEW_SYN_RECV; 6963 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6964 ireq->ireq_family = sk_listener->sk_family; 6965 req->timeout = TCP_TIMEOUT_INIT; 6966 } 6967 6968 return req; 6969 } 6970 EXPORT_SYMBOL(inet_reqsk_alloc); 6971 6972 /* 6973 * Return true if a syncookie should be sent 6974 */ 6975 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6976 { 6977 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6978 const char *msg = "Dropping request"; 6979 struct net *net = sock_net(sk); 6980 bool want_cookie = false; 6981 u8 syncookies; 6982 6983 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6984 6985 #ifdef CONFIG_SYN_COOKIES 6986 if (syncookies) { 6987 msg = "Sending cookies"; 6988 want_cookie = true; 6989 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6990 } else 6991 #endif 6992 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6993 6994 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6995 xchg(&queue->synflood_warned, 1) == 0) { 6996 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6997 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6998 proto, inet6_rcv_saddr(sk), 6999 sk->sk_num, msg); 7000 } else { 7001 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7002 proto, &sk->sk_rcv_saddr, 7003 sk->sk_num, msg); 7004 } 7005 } 7006 7007 return want_cookie; 7008 } 7009 7010 static void tcp_reqsk_record_syn(const struct sock *sk, 7011 struct request_sock *req, 7012 const struct sk_buff *skb) 7013 { 7014 if (tcp_sk(sk)->save_syn) { 7015 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7016 struct saved_syn *saved_syn; 7017 u32 mac_hdrlen; 7018 void *base; 7019 7020 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7021 base = skb_mac_header(skb); 7022 mac_hdrlen = skb_mac_header_len(skb); 7023 len += mac_hdrlen; 7024 } else { 7025 base = skb_network_header(skb); 7026 mac_hdrlen = 0; 7027 } 7028 7029 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7030 GFP_ATOMIC); 7031 if (saved_syn) { 7032 saved_syn->mac_hdrlen = mac_hdrlen; 7033 saved_syn->network_hdrlen = skb_network_header_len(skb); 7034 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7035 memcpy(saved_syn->data, base, len); 7036 req->saved_syn = saved_syn; 7037 } 7038 } 7039 } 7040 7041 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7042 * used for SYN cookie generation. 7043 */ 7044 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7045 const struct tcp_request_sock_ops *af_ops, 7046 struct sock *sk, struct tcphdr *th) 7047 { 7048 struct tcp_sock *tp = tcp_sk(sk); 7049 u16 mss; 7050 7051 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7052 !inet_csk_reqsk_queue_is_full(sk)) 7053 return 0; 7054 7055 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7056 return 0; 7057 7058 if (sk_acceptq_is_full(sk)) { 7059 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7060 return 0; 7061 } 7062 7063 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7064 if (!mss) 7065 mss = af_ops->mss_clamp; 7066 7067 return mss; 7068 } 7069 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7070 7071 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7072 const struct tcp_request_sock_ops *af_ops, 7073 struct sock *sk, struct sk_buff *skb) 7074 { 7075 struct tcp_fastopen_cookie foc = { .len = -1 }; 7076 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7077 struct tcp_options_received tmp_opt; 7078 struct tcp_sock *tp = tcp_sk(sk); 7079 struct net *net = sock_net(sk); 7080 struct sock *fastopen_sk = NULL; 7081 struct request_sock *req; 7082 bool want_cookie = false; 7083 struct dst_entry *dst; 7084 struct flowi fl; 7085 u8 syncookies; 7086 7087 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7088 7089 /* TW buckets are converted to open requests without 7090 * limitations, they conserve resources and peer is 7091 * evidently real one. 7092 */ 7093 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7094 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7095 if (!want_cookie) 7096 goto drop; 7097 } 7098 7099 if (sk_acceptq_is_full(sk)) { 7100 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7101 goto drop; 7102 } 7103 7104 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7105 if (!req) 7106 goto drop; 7107 7108 req->syncookie = want_cookie; 7109 tcp_rsk(req)->af_specific = af_ops; 7110 tcp_rsk(req)->ts_off = 0; 7111 #if IS_ENABLED(CONFIG_MPTCP) 7112 tcp_rsk(req)->is_mptcp = 0; 7113 #endif 7114 7115 tcp_clear_options(&tmp_opt); 7116 tmp_opt.mss_clamp = af_ops->mss_clamp; 7117 tmp_opt.user_mss = tp->rx_opt.user_mss; 7118 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7119 want_cookie ? NULL : &foc); 7120 7121 if (want_cookie && !tmp_opt.saw_tstamp) 7122 tcp_clear_options(&tmp_opt); 7123 7124 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7125 tmp_opt.smc_ok = 0; 7126 7127 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7128 tcp_openreq_init(req, &tmp_opt, skb, sk); 7129 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7130 7131 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7132 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7133 7134 dst = af_ops->route_req(sk, skb, &fl, req); 7135 if (!dst) 7136 goto drop_and_free; 7137 7138 if (tmp_opt.tstamp_ok) 7139 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7140 7141 if (!want_cookie && !isn) { 7142 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7143 7144 /* Kill the following clause, if you dislike this way. */ 7145 if (!syncookies && 7146 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7147 (max_syn_backlog >> 2)) && 7148 !tcp_peer_is_proven(req, dst)) { 7149 /* Without syncookies last quarter of 7150 * backlog is filled with destinations, 7151 * proven to be alive. 7152 * It means that we continue to communicate 7153 * to destinations, already remembered 7154 * to the moment of synflood. 7155 */ 7156 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7157 rsk_ops->family); 7158 goto drop_and_release; 7159 } 7160 7161 isn = af_ops->init_seq(skb); 7162 } 7163 7164 tcp_ecn_create_request(req, skb, sk, dst); 7165 7166 if (want_cookie) { 7167 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7168 if (!tmp_opt.tstamp_ok) 7169 inet_rsk(req)->ecn_ok = 0; 7170 } 7171 7172 tcp_rsk(req)->snt_isn = isn; 7173 tcp_rsk(req)->txhash = net_tx_rndhash(); 7174 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7175 tcp_openreq_init_rwin(req, sk, dst); 7176 sk_rx_queue_set(req_to_sk(req), skb); 7177 if (!want_cookie) { 7178 tcp_reqsk_record_syn(sk, req, skb); 7179 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7180 } 7181 if (fastopen_sk) { 7182 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7183 &foc, TCP_SYNACK_FASTOPEN, skb); 7184 /* Add the child socket directly into the accept queue */ 7185 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7186 reqsk_fastopen_remove(fastopen_sk, req, false); 7187 bh_unlock_sock(fastopen_sk); 7188 sock_put(fastopen_sk); 7189 goto drop_and_free; 7190 } 7191 sk->sk_data_ready(sk); 7192 bh_unlock_sock(fastopen_sk); 7193 sock_put(fastopen_sk); 7194 } else { 7195 tcp_rsk(req)->tfo_listener = false; 7196 if (!want_cookie) { 7197 req->timeout = tcp_timeout_init((struct sock *)req); 7198 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7199 req->timeout))) { 7200 reqsk_free(req); 7201 dst_release(dst); 7202 return 0; 7203 } 7204 7205 } 7206 af_ops->send_synack(sk, dst, &fl, req, &foc, 7207 !want_cookie ? TCP_SYNACK_NORMAL : 7208 TCP_SYNACK_COOKIE, 7209 skb); 7210 if (want_cookie) { 7211 reqsk_free(req); 7212 return 0; 7213 } 7214 } 7215 reqsk_put(req); 7216 return 0; 7217 7218 drop_and_release: 7219 dst_release(dst); 7220 drop_and_free: 7221 __reqsk_free(req); 7222 drop: 7223 tcp_listendrop(sk); 7224 return 0; 7225 } 7226 EXPORT_SYMBOL(tcp_conn_request); 7227