xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_dec(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133 
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 			     unsigned int len)
136 {
137 	static bool __once __read_mostly;
138 
139 	if (!__once) {
140 		struct net_device *dev;
141 
142 		__once = true;
143 
144 		rcu_read_lock();
145 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 		if (!dev || len >= dev->mtu)
147 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 				dev ? dev->name : "Unknown driver");
149 		rcu_read_unlock();
150 	}
151 }
152 
153 /* Adapt the MSS value used to make delayed ack decision to the
154  * real world.
155  */
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 	unsigned int len;
161 
162 	icsk->icsk_ack.last_seg_size = 0;
163 
164 	/* skb->len may jitter because of SACKs, even if peer
165 	 * sends good full-sized frames.
166 	 */
167 	len = skb_shinfo(skb)->gso_size ? : skb->len;
168 	if (len >= icsk->icsk_ack.rcv_mss) {
169 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 					       tcp_sk(sk)->advmss);
171 		/* Account for possibly-removed options */
172 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 				   MAX_TCP_OPTION_SPACE))
174 			tcp_gro_dev_warn(sk, skb, len);
175 	} else {
176 		/* Otherwise, we make more careful check taking into account,
177 		 * that SACKs block is variable.
178 		 *
179 		 * "len" is invariant segment length, including TCP header.
180 		 */
181 		len += skb->data - skb_transport_header(skb);
182 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 		    /* If PSH is not set, packet should be
184 		     * full sized, provided peer TCP is not badly broken.
185 		     * This observation (if it is correct 8)) allows
186 		     * to handle super-low mtu links fairly.
187 		     */
188 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 			/* Subtract also invariant (if peer is RFC compliant),
191 			 * tcp header plus fixed timestamp option length.
192 			 * Resulting "len" is MSS free of SACK jitter.
193 			 */
194 			len -= tcp_sk(sk)->tcp_header_len;
195 			icsk->icsk_ack.last_seg_size = len;
196 			if (len == lss) {
197 				icsk->icsk_ack.rcv_mss = len;
198 				return;
199 			}
200 		}
201 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 	}
205 }
206 
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211 
212 	if (quickacks == 0)
213 		quickacks = 2;
214 	quickacks = min(quickacks, max_quickacks);
215 	if (quickacks > icsk->icsk_ack.quick)
216 		icsk->icsk_ack.quick = quickacks;
217 }
218 
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 	struct inet_connection_sock *icsk = inet_csk(sk);
222 
223 	tcp_incr_quickack(sk, max_quickacks);
224 	inet_csk_exit_pingpong_mode(sk);
225 	icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228 
229 /* Send ACKs quickly, if "quick" count is not exhausted
230  * and the session is not interactive.
231  */
232 
233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 	const struct inet_connection_sock *icsk = inet_csk(sk);
236 	const struct dst_entry *dst = __sk_dst_get(sk);
237 
238 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
240 }
241 
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 	if (tp->ecn_flags & TCP_ECN_OK)
245 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247 
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 	if (tcp_hdr(skb)->cwr) {
251 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252 
253 		/* If the sender is telling us it has entered CWR, then its
254 		 * cwnd may be very low (even just 1 packet), so we should ACK
255 		 * immediately.
256 		 */
257 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
258 	}
259 }
260 
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
262 {
263 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
264 }
265 
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 
270 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 	case INET_ECN_NOT_ECT:
272 		/* Funny extension: if ECT is not set on a segment,
273 		 * and we already seen ECT on a previous segment,
274 		 * it is probably a retransmit.
275 		 */
276 		if (tp->ecn_flags & TCP_ECN_SEEN)
277 			tcp_enter_quickack_mode(sk, 2);
278 		break;
279 	case INET_ECN_CE:
280 		if (tcp_ca_needs_ecn(sk))
281 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
282 
283 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 			/* Better not delay acks, sender can have a very low cwnd */
285 			tcp_enter_quickack_mode(sk, 2);
286 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
287 		}
288 		tp->ecn_flags |= TCP_ECN_SEEN;
289 		break;
290 	default:
291 		if (tcp_ca_needs_ecn(sk))
292 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 		tp->ecn_flags |= TCP_ECN_SEEN;
294 		break;
295 	}
296 }
297 
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
299 {
300 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 		__tcp_ecn_check_ce(sk, skb);
302 }
303 
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
305 {
306 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 		tp->ecn_flags &= ~TCP_ECN_OK;
308 }
309 
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 		return true;
320 	return false;
321 }
322 
323 /* Buffer size and advertised window tuning.
324  *
325  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
326  */
327 
328 static void tcp_sndbuf_expand(struct sock *sk)
329 {
330 	const struct tcp_sock *tp = tcp_sk(sk);
331 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 	int sndmem, per_mss;
333 	u32 nr_segs;
334 
335 	/* Worst case is non GSO/TSO : each frame consumes one skb
336 	 * and skb->head is kmalloced using power of two area of memory
337 	 */
338 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 		  MAX_TCP_HEADER +
340 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
341 
342 	per_mss = roundup_pow_of_two(per_mss) +
343 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
344 
345 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
347 
348 	/* Fast Recovery (RFC 5681 3.2) :
349 	 * Cubic needs 1.7 factor, rounded to 2 to include
350 	 * extra cushion (application might react slowly to EPOLLOUT)
351 	 */
352 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 	sndmem *= nr_segs * per_mss;
354 
355 	if (sk->sk_sndbuf < sndmem)
356 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
357 }
358 
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
360  *
361  * All tcp_full_space() is split to two parts: "network" buffer, allocated
362  * forward and advertised in receiver window (tp->rcv_wnd) and
363  * "application buffer", required to isolate scheduling/application
364  * latencies from network.
365  * window_clamp is maximal advertised window. It can be less than
366  * tcp_full_space(), in this case tcp_full_space() - window_clamp
367  * is reserved for "application" buffer. The less window_clamp is
368  * the smoother our behaviour from viewpoint of network, but the lower
369  * throughput and the higher sensitivity of the connection to losses. 8)
370  *
371  * rcv_ssthresh is more strict window_clamp used at "slow start"
372  * phase to predict further behaviour of this connection.
373  * It is used for two goals:
374  * - to enforce header prediction at sender, even when application
375  *   requires some significant "application buffer". It is check #1.
376  * - to prevent pruning of receive queue because of misprediction
377  *   of receiver window. Check #2.
378  *
379  * The scheme does not work when sender sends good segments opening
380  * window and then starts to feed us spaghetti. But it should work
381  * in common situations. Otherwise, we have to rely on queue collapsing.
382  */
383 
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	/* Optimize this! */
389 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
391 
392 	while (tp->rcv_ssthresh <= window) {
393 		if (truesize <= skb->len)
394 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
395 
396 		truesize >>= 1;
397 		window >>= 1;
398 	}
399 	return 0;
400 }
401 
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
403 {
404 	struct tcp_sock *tp = tcp_sk(sk);
405 
406 	/* Check #1 */
407 	if (tp->rcv_ssthresh < tp->window_clamp &&
408 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
409 	    !tcp_under_memory_pressure(sk)) {
410 		int incr;
411 
412 		/* Check #2. Increase window, if skb with such overhead
413 		 * will fit to rcvbuf in future.
414 		 */
415 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
416 			incr = 2 * tp->advmss;
417 		else
418 			incr = __tcp_grow_window(sk, skb);
419 
420 		if (incr) {
421 			incr = max_t(int, incr, 2 * skb->len);
422 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 					       tp->window_clamp);
424 			inet_csk(sk)->icsk_ack.quick |= 1;
425 		}
426 	}
427 }
428 
429 /* 3. Try to fixup all. It is made immediately after connection enters
430  *    established state.
431  */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 		tcp_sndbuf_expand(sk);
440 
441 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
442 	tcp_mstamp_refresh(tp);
443 	tp->rcvq_space.time = tp->tcp_mstamp;
444 	tp->rcvq_space.seq = tp->copied_seq;
445 
446 	maxwin = tcp_full_space(sk);
447 
448 	if (tp->window_clamp >= maxwin) {
449 		tp->window_clamp = maxwin;
450 
451 		if (tcp_app_win && maxwin > 4 * tp->advmss)
452 			tp->window_clamp = max(maxwin -
453 					       (maxwin >> tcp_app_win),
454 					       4 * tp->advmss);
455 	}
456 
457 	/* Force reservation of one segment. */
458 	if (tcp_app_win &&
459 	    tp->window_clamp > 2 * tp->advmss &&
460 	    tp->window_clamp + tp->advmss > maxwin)
461 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
462 
463 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 	tp->snd_cwnd_stamp = tcp_jiffies32;
465 }
466 
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
469 {
470 	struct tcp_sock *tp = tcp_sk(sk);
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	struct net *net = sock_net(sk);
473 
474 	icsk->icsk_ack.quick = 0;
475 
476 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
477 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 	    !tcp_under_memory_pressure(sk) &&
479 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 				    net->ipv4.sysctl_tcp_rmem[2]);
482 	}
483 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486 
487 /* Initialize RCV_MSS value.
488  * RCV_MSS is an our guess about MSS used by the peer.
489  * We haven't any direct information about the MSS.
490  * It's better to underestimate the RCV_MSS rather than overestimate.
491  * Overestimations make us ACKing less frequently than needed.
492  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493  */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498 
499 	hint = min(hint, tp->rcv_wnd / 2);
500 	hint = min(hint, TCP_MSS_DEFAULT);
501 	hint = max(hint, TCP_MIN_MSS);
502 
503 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506 
507 /* Receiver "autotuning" code.
508  *
509  * The algorithm for RTT estimation w/o timestamps is based on
510  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511  * <http://public.lanl.gov/radiant/pubs.html#DRS>
512  *
513  * More detail on this code can be found at
514  * <http://staff.psc.edu/jheffner/>,
515  * though this reference is out of date.  A new paper
516  * is pending.
517  */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 	long m = sample;
522 
523 	if (new_sample != 0) {
524 		/* If we sample in larger samples in the non-timestamp
525 		 * case, we could grossly overestimate the RTT especially
526 		 * with chatty applications or bulk transfer apps which
527 		 * are stalled on filesystem I/O.
528 		 *
529 		 * Also, since we are only going for a minimum in the
530 		 * non-timestamp case, we do not smooth things out
531 		 * else with timestamps disabled convergence takes too
532 		 * long.
533 		 */
534 		if (!win_dep) {
535 			m -= (new_sample >> 3);
536 			new_sample += m;
537 		} else {
538 			m <<= 3;
539 			if (m < new_sample)
540 				new_sample = m;
541 		}
542 	} else {
543 		/* No previous measure. */
544 		new_sample = m << 3;
545 	}
546 
547 	tp->rcv_rtt_est.rtt_us = new_sample;
548 }
549 
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
551 {
552 	u32 delta_us;
553 
554 	if (tp->rcv_rtt_est.time == 0)
555 		goto new_measure;
556 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 		return;
558 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
559 	if (!delta_us)
560 		delta_us = 1;
561 	tcp_rcv_rtt_update(tp, delta_us, 1);
562 
563 new_measure:
564 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
566 }
567 
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 					  const struct sk_buff *skb)
570 {
571 	struct tcp_sock *tp = tcp_sk(sk);
572 
573 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 		return;
575 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
576 
577 	if (TCP_SKB_CB(skb)->end_seq -
578 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
579 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
580 		u32 delta_us;
581 
582 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
583 			if (!delta)
584 				delta = 1;
585 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 			tcp_rcv_rtt_update(tp, delta_us, 0);
587 		}
588 	}
589 }
590 
591 /*
592  * This function should be called every time data is copied to user space.
593  * It calculates the appropriate TCP receive buffer space.
594  */
595 void tcp_rcv_space_adjust(struct sock *sk)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	u32 copied;
599 	int time;
600 
601 	trace_tcp_rcv_space_adjust(sk);
602 
603 	tcp_mstamp_refresh(tp);
604 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
605 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
606 		return;
607 
608 	/* Number of bytes copied to user in last RTT */
609 	copied = tp->copied_seq - tp->rcvq_space.seq;
610 	if (copied <= tp->rcvq_space.space)
611 		goto new_measure;
612 
613 	/* A bit of theory :
614 	 * copied = bytes received in previous RTT, our base window
615 	 * To cope with packet losses, we need a 2x factor
616 	 * To cope with slow start, and sender growing its cwin by 100 %
617 	 * every RTT, we need a 4x factor, because the ACK we are sending
618 	 * now is for the next RTT, not the current one :
619 	 * <prev RTT . ><current RTT .. ><next RTT .... >
620 	 */
621 
622 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
623 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
624 		int rcvmem, rcvbuf;
625 		u64 rcvwin, grow;
626 
627 		/* minimal window to cope with packet losses, assuming
628 		 * steady state. Add some cushion because of small variations.
629 		 */
630 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
631 
632 		/* Accommodate for sender rate increase (eg. slow start) */
633 		grow = rcvwin * (copied - tp->rcvq_space.space);
634 		do_div(grow, tp->rcvq_space.space);
635 		rcvwin += (grow << 1);
636 
637 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
638 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
639 			rcvmem += 128;
640 
641 		do_div(rcvwin, tp->advmss);
642 		rcvbuf = min_t(u64, rcvwin * rcvmem,
643 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
644 		if (rcvbuf > sk->sk_rcvbuf) {
645 			sk->sk_rcvbuf = rcvbuf;
646 
647 			/* Make the window clamp follow along.  */
648 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
649 		}
650 	}
651 	tp->rcvq_space.space = copied;
652 
653 new_measure:
654 	tp->rcvq_space.seq = tp->copied_seq;
655 	tp->rcvq_space.time = tp->tcp_mstamp;
656 }
657 
658 /* There is something which you must keep in mind when you analyze the
659  * behavior of the tp->ato delayed ack timeout interval.  When a
660  * connection starts up, we want to ack as quickly as possible.  The
661  * problem is that "good" TCP's do slow start at the beginning of data
662  * transmission.  The means that until we send the first few ACK's the
663  * sender will sit on his end and only queue most of his data, because
664  * he can only send snd_cwnd unacked packets at any given time.  For
665  * each ACK we send, he increments snd_cwnd and transmits more of his
666  * queue.  -DaveM
667  */
668 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 	struct inet_connection_sock *icsk = inet_csk(sk);
672 	u32 now;
673 
674 	inet_csk_schedule_ack(sk);
675 
676 	tcp_measure_rcv_mss(sk, skb);
677 
678 	tcp_rcv_rtt_measure(tp);
679 
680 	now = tcp_jiffies32;
681 
682 	if (!icsk->icsk_ack.ato) {
683 		/* The _first_ data packet received, initialize
684 		 * delayed ACK engine.
685 		 */
686 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
687 		icsk->icsk_ack.ato = TCP_ATO_MIN;
688 	} else {
689 		int m = now - icsk->icsk_ack.lrcvtime;
690 
691 		if (m <= TCP_ATO_MIN / 2) {
692 			/* The fastest case is the first. */
693 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
694 		} else if (m < icsk->icsk_ack.ato) {
695 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
696 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
697 				icsk->icsk_ack.ato = icsk->icsk_rto;
698 		} else if (m > icsk->icsk_rto) {
699 			/* Too long gap. Apparently sender failed to
700 			 * restart window, so that we send ACKs quickly.
701 			 */
702 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
703 			sk_mem_reclaim(sk);
704 		}
705 	}
706 	icsk->icsk_ack.lrcvtime = now;
707 
708 	tcp_ecn_check_ce(sk, skb);
709 
710 	if (skb->len >= 128)
711 		tcp_grow_window(sk, skb);
712 }
713 
714 /* Called to compute a smoothed rtt estimate. The data fed to this
715  * routine either comes from timestamps, or from segments that were
716  * known _not_ to have been retransmitted [see Karn/Partridge
717  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
718  * piece by Van Jacobson.
719  * NOTE: the next three routines used to be one big routine.
720  * To save cycles in the RFC 1323 implementation it was better to break
721  * it up into three procedures. -- erics
722  */
723 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	long m = mrtt_us; /* RTT */
727 	u32 srtt = tp->srtt_us;
728 
729 	/*	The following amusing code comes from Jacobson's
730 	 *	article in SIGCOMM '88.  Note that rtt and mdev
731 	 *	are scaled versions of rtt and mean deviation.
732 	 *	This is designed to be as fast as possible
733 	 *	m stands for "measurement".
734 	 *
735 	 *	On a 1990 paper the rto value is changed to:
736 	 *	RTO = rtt + 4 * mdev
737 	 *
738 	 * Funny. This algorithm seems to be very broken.
739 	 * These formulae increase RTO, when it should be decreased, increase
740 	 * too slowly, when it should be increased quickly, decrease too quickly
741 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
742 	 * does not matter how to _calculate_ it. Seems, it was trap
743 	 * that VJ failed to avoid. 8)
744 	 */
745 	if (srtt != 0) {
746 		m -= (srtt >> 3);	/* m is now error in rtt est */
747 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
748 		if (m < 0) {
749 			m = -m;		/* m is now abs(error) */
750 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
751 			/* This is similar to one of Eifel findings.
752 			 * Eifel blocks mdev updates when rtt decreases.
753 			 * This solution is a bit different: we use finer gain
754 			 * for mdev in this case (alpha*beta).
755 			 * Like Eifel it also prevents growth of rto,
756 			 * but also it limits too fast rto decreases,
757 			 * happening in pure Eifel.
758 			 */
759 			if (m > 0)
760 				m >>= 3;
761 		} else {
762 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
763 		}
764 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
765 		if (tp->mdev_us > tp->mdev_max_us) {
766 			tp->mdev_max_us = tp->mdev_us;
767 			if (tp->mdev_max_us > tp->rttvar_us)
768 				tp->rttvar_us = tp->mdev_max_us;
769 		}
770 		if (after(tp->snd_una, tp->rtt_seq)) {
771 			if (tp->mdev_max_us < tp->rttvar_us)
772 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
773 			tp->rtt_seq = tp->snd_nxt;
774 			tp->mdev_max_us = tcp_rto_min_us(sk);
775 		}
776 	} else {
777 		/* no previous measure. */
778 		srtt = m << 3;		/* take the measured time to be rtt */
779 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
780 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
781 		tp->mdev_max_us = tp->rttvar_us;
782 		tp->rtt_seq = tp->snd_nxt;
783 	}
784 	tp->srtt_us = max(1U, srtt);
785 }
786 
787 static void tcp_update_pacing_rate(struct sock *sk)
788 {
789 	const struct tcp_sock *tp = tcp_sk(sk);
790 	u64 rate;
791 
792 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
793 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
794 
795 	/* current rate is (cwnd * mss) / srtt
796 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
797 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
798 	 *
799 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
800 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
801 	 *	 end of slow start and should slow down.
802 	 */
803 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
804 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
805 	else
806 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
807 
808 	rate *= max(tp->snd_cwnd, tp->packets_out);
809 
810 	if (likely(tp->srtt_us))
811 		do_div(rate, tp->srtt_us);
812 
813 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
814 	 * without any lock. We want to make sure compiler wont store
815 	 * intermediate values in this location.
816 	 */
817 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
818 					     sk->sk_max_pacing_rate));
819 }
820 
821 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
822  * routine referred to above.
823  */
824 static void tcp_set_rto(struct sock *sk)
825 {
826 	const struct tcp_sock *tp = tcp_sk(sk);
827 	/* Old crap is replaced with new one. 8)
828 	 *
829 	 * More seriously:
830 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
831 	 *    It cannot be less due to utterly erratic ACK generation made
832 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
833 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
834 	 *    is invisible. Actually, Linux-2.4 also generates erratic
835 	 *    ACKs in some circumstances.
836 	 */
837 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
838 
839 	/* 2. Fixups made earlier cannot be right.
840 	 *    If we do not estimate RTO correctly without them,
841 	 *    all the algo is pure shit and should be replaced
842 	 *    with correct one. It is exactly, which we pretend to do.
843 	 */
844 
845 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
846 	 * guarantees that rto is higher.
847 	 */
848 	tcp_bound_rto(sk);
849 }
850 
851 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
852 {
853 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
854 
855 	if (!cwnd)
856 		cwnd = TCP_INIT_CWND;
857 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
858 }
859 
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
862 {
863 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
864 	tp->rack.dsack_seen = 1;
865 	tp->dsack_dups++;
866 }
867 
868 /* It's reordering when higher sequence was delivered (i.e. sacked) before
869  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
870  * distance is approximated in full-mss packet distance ("reordering").
871  */
872 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
873 				      const int ts)
874 {
875 	struct tcp_sock *tp = tcp_sk(sk);
876 	const u32 mss = tp->mss_cache;
877 	u32 fack, metric;
878 
879 	fack = tcp_highest_sack_seq(tp);
880 	if (!before(low_seq, fack))
881 		return;
882 
883 	metric = fack - low_seq;
884 	if ((metric > tp->reordering * mss) && mss) {
885 #if FASTRETRANS_DEBUG > 1
886 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
888 			 tp->reordering,
889 			 0,
890 			 tp->sacked_out,
891 			 tp->undo_marker ? tp->undo_retrans : 0);
892 #endif
893 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
894 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
895 	}
896 
897 	/* This exciting event is worth to be remembered. 8) */
898 	tp->reord_seen++;
899 	NET_INC_STATS(sock_net(sk),
900 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
901 }
902 
903 /* This must be called before lost_out is incremented */
904 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
905 {
906 	if (!tp->retransmit_skb_hint ||
907 	    before(TCP_SKB_CB(skb)->seq,
908 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
909 		tp->retransmit_skb_hint = skb;
910 }
911 
912 /* Sum the number of packets on the wire we have marked as lost.
913  * There are two cases we care about here:
914  * a) Packet hasn't been marked lost (nor retransmitted),
915  *    and this is the first loss.
916  * b) Packet has been marked both lost and retransmitted,
917  *    and this means we think it was lost again.
918  */
919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
920 {
921 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
922 
923 	if (!(sacked & TCPCB_LOST) ||
924 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 		tp->lost += tcp_skb_pcount(skb);
926 }
927 
928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 		tcp_verify_retransmit_hint(tp, skb);
932 
933 		tp->lost_out += tcp_skb_pcount(skb);
934 		tcp_sum_lost(tp, skb);
935 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
936 	}
937 }
938 
939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
940 {
941 	tcp_verify_retransmit_hint(tp, skb);
942 
943 	tcp_sum_lost(tp, skb);
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tp->lost_out += tcp_skb_pcount(skb);
946 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
947 	}
948 }
949 
950 /* This procedure tags the retransmission queue when SACKs arrive.
951  *
952  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953  * Packets in queue with these bits set are counted in variables
954  * sacked_out, retrans_out and lost_out, correspondingly.
955  *
956  * Valid combinations are:
957  * Tag  InFlight	Description
958  * 0	1		- orig segment is in flight.
959  * S	0		- nothing flies, orig reached receiver.
960  * L	0		- nothing flies, orig lost by net.
961  * R	2		- both orig and retransmit are in flight.
962  * L|R	1		- orig is lost, retransmit is in flight.
963  * S|R  1		- orig reached receiver, retrans is still in flight.
964  * (L|S|R is logically valid, it could occur when L|R is sacked,
965  *  but it is equivalent to plain S and code short-curcuits it to S.
966  *  L|S is logically invalid, it would mean -1 packet in flight 8))
967  *
968  * These 6 states form finite state machine, controlled by the following events:
969  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971  * 3. Loss detection event of two flavors:
972  *	A. Scoreboard estimator decided the packet is lost.
973  *	   A'. Reno "three dupacks" marks head of queue lost.
974  *	B. SACK arrives sacking SND.NXT at the moment, when the
975  *	   segment was retransmitted.
976  * 4. D-SACK added new rule: D-SACK changes any tag to S.
977  *
978  * It is pleasant to note, that state diagram turns out to be commutative,
979  * so that we are allowed not to be bothered by order of our actions,
980  * when multiple events arrive simultaneously. (see the function below).
981  *
982  * Reordering detection.
983  * --------------------
984  * Reordering metric is maximal distance, which a packet can be displaced
985  * in packet stream. With SACKs we can estimate it:
986  *
987  * 1. SACK fills old hole and the corresponding segment was not
988  *    ever retransmitted -> reordering. Alas, we cannot use it
989  *    when segment was retransmitted.
990  * 2. The last flaw is solved with D-SACK. D-SACK arrives
991  *    for retransmitted and already SACKed segment -> reordering..
992  * Both of these heuristics are not used in Loss state, when we cannot
993  * account for retransmits accurately.
994  *
995  * SACK block validation.
996  * ----------------------
997  *
998  * SACK block range validation checks that the received SACK block fits to
999  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000  * Note that SND.UNA is not included to the range though being valid because
1001  * it means that the receiver is rather inconsistent with itself reporting
1002  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003  * perfectly valid, however, in light of RFC2018 which explicitly states
1004  * that "SACK block MUST reflect the newest segment.  Even if the newest
1005  * segment is going to be discarded ...", not that it looks very clever
1006  * in case of head skb. Due to potentional receiver driven attacks, we
1007  * choose to avoid immediate execution of a walk in write queue due to
1008  * reneging and defer head skb's loss recovery to standard loss recovery
1009  * procedure that will eventually trigger (nothing forbids us doing this).
1010  *
1011  * Implements also blockage to start_seq wrap-around. Problem lies in the
1012  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013  * there's no guarantee that it will be before snd_nxt (n). The problem
1014  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015  * wrap (s_w):
1016  *
1017  *         <- outs wnd ->                          <- wrapzone ->
1018  *         u     e      n                         u_w   e_w  s n_w
1019  *         |     |      |                          |     |   |  |
1020  * |<------------+------+----- TCP seqno space --------------+---------->|
1021  * ...-- <2^31 ->|                                           |<--------...
1022  * ...---- >2^31 ------>|                                    |<--------...
1023  *
1024  * Current code wouldn't be vulnerable but it's better still to discard such
1025  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028  * equal to the ideal case (infinite seqno space without wrap caused issues).
1029  *
1030  * With D-SACK the lower bound is extended to cover sequence space below
1031  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032  * again, D-SACK block must not to go across snd_una (for the same reason as
1033  * for the normal SACK blocks, explained above). But there all simplicity
1034  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035  * fully below undo_marker they do not affect behavior in anyway and can
1036  * therefore be safely ignored. In rare cases (which are more or less
1037  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038  * fragmentation and packet reordering past skb's retransmission. To consider
1039  * them correctly, the acceptable range must be extended even more though
1040  * the exact amount is rather hard to quantify. However, tp->max_window can
1041  * be used as an exaggerated estimate.
1042  */
1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 				   u32 start_seq, u32 end_seq)
1045 {
1046 	/* Too far in future, or reversed (interpretation is ambiguous) */
1047 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1048 		return false;
1049 
1050 	/* Nasty start_seq wrap-around check (see comments above) */
1051 	if (!before(start_seq, tp->snd_nxt))
1052 		return false;
1053 
1054 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1055 	 * start_seq == snd_una is non-sensical (see comments above)
1056 	 */
1057 	if (after(start_seq, tp->snd_una))
1058 		return true;
1059 
1060 	if (!is_dsack || !tp->undo_marker)
1061 		return false;
1062 
1063 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1064 	if (after(end_seq, tp->snd_una))
1065 		return false;
1066 
1067 	if (!before(start_seq, tp->undo_marker))
1068 		return true;
1069 
1070 	/* Too old */
1071 	if (!after(end_seq, tp->undo_marker))
1072 		return false;
1073 
1074 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1076 	 */
1077 	return !before(start_seq, end_seq - tp->max_window);
1078 }
1079 
1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 			    struct tcp_sack_block_wire *sp, int num_sacks,
1082 			    u32 prior_snd_una)
1083 {
1084 	struct tcp_sock *tp = tcp_sk(sk);
1085 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1087 	bool dup_sack = false;
1088 
1089 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1090 		dup_sack = true;
1091 		tcp_dsack_seen(tp);
1092 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1093 	} else if (num_sacks > 1) {
1094 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1096 
1097 		if (!after(end_seq_0, end_seq_1) &&
1098 		    !before(start_seq_0, start_seq_1)) {
1099 			dup_sack = true;
1100 			tcp_dsack_seen(tp);
1101 			NET_INC_STATS(sock_net(sk),
1102 					LINUX_MIB_TCPDSACKOFORECV);
1103 		}
1104 	}
1105 
1106 	/* D-SACK for already forgotten data... Do dumb counting. */
1107 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1108 	    !after(end_seq_0, prior_snd_una) &&
1109 	    after(end_seq_0, tp->undo_marker))
1110 		tp->undo_retrans--;
1111 
1112 	return dup_sack;
1113 }
1114 
1115 struct tcp_sacktag_state {
1116 	u32	reord;
1117 	/* Timestamps for earliest and latest never-retransmitted segment
1118 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 	 * but congestion control should still get an accurate delay signal.
1120 	 */
1121 	u64	first_sackt;
1122 	u64	last_sackt;
1123 	struct rate_sample *rate;
1124 	int	flag;
1125 	unsigned int mss_now;
1126 };
1127 
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129  * the incoming SACK may not exactly match but we can find smaller MSS
1130  * aligned portion of it that matches. Therefore we might need to fragment
1131  * which may fail and creates some hassle (caller must handle error case
1132  * returns).
1133  *
1134  * FIXME: this could be merged to shift decision code
1135  */
1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1137 				  u32 start_seq, u32 end_seq)
1138 {
1139 	int err;
1140 	bool in_sack;
1141 	unsigned int pkt_len;
1142 	unsigned int mss;
1143 
1144 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1146 
1147 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1149 		mss = tcp_skb_mss(skb);
1150 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1151 
1152 		if (!in_sack) {
1153 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1154 			if (pkt_len < mss)
1155 				pkt_len = mss;
1156 		} else {
1157 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1158 			if (pkt_len < mss)
1159 				return -EINVAL;
1160 		}
1161 
1162 		/* Round if necessary so that SACKs cover only full MSSes
1163 		 * and/or the remaining small portion (if present)
1164 		 */
1165 		if (pkt_len > mss) {
1166 			unsigned int new_len = (pkt_len / mss) * mss;
1167 			if (!in_sack && new_len < pkt_len)
1168 				new_len += mss;
1169 			pkt_len = new_len;
1170 		}
1171 
1172 		if (pkt_len >= skb->len && !in_sack)
1173 			return 0;
1174 
1175 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 				   pkt_len, mss, GFP_ATOMIC);
1177 		if (err < 0)
1178 			return err;
1179 	}
1180 
1181 	return in_sack;
1182 }
1183 
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1185 static u8 tcp_sacktag_one(struct sock *sk,
1186 			  struct tcp_sacktag_state *state, u8 sacked,
1187 			  u32 start_seq, u32 end_seq,
1188 			  int dup_sack, int pcount,
1189 			  u64 xmit_time)
1190 {
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 
1193 	/* Account D-SACK for retransmitted packet. */
1194 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1195 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1196 		    after(end_seq, tp->undo_marker))
1197 			tp->undo_retrans--;
1198 		if ((sacked & TCPCB_SACKED_ACKED) &&
1199 		    before(start_seq, state->reord))
1200 				state->reord = start_seq;
1201 	}
1202 
1203 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 	if (!after(end_seq, tp->snd_una))
1205 		return sacked;
1206 
1207 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1209 
1210 		if (sacked & TCPCB_SACKED_RETRANS) {
1211 			/* If the segment is not tagged as lost,
1212 			 * we do not clear RETRANS, believing
1213 			 * that retransmission is still in flight.
1214 			 */
1215 			if (sacked & TCPCB_LOST) {
1216 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1217 				tp->lost_out -= pcount;
1218 				tp->retrans_out -= pcount;
1219 			}
1220 		} else {
1221 			if (!(sacked & TCPCB_RETRANS)) {
1222 				/* New sack for not retransmitted frame,
1223 				 * which was in hole. It is reordering.
1224 				 */
1225 				if (before(start_seq,
1226 					   tcp_highest_sack_seq(tp)) &&
1227 				    before(start_seq, state->reord))
1228 					state->reord = start_seq;
1229 
1230 				if (!after(end_seq, tp->high_seq))
1231 					state->flag |= FLAG_ORIG_SACK_ACKED;
1232 				if (state->first_sackt == 0)
1233 					state->first_sackt = xmit_time;
1234 				state->last_sackt = xmit_time;
1235 			}
1236 
1237 			if (sacked & TCPCB_LOST) {
1238 				sacked &= ~TCPCB_LOST;
1239 				tp->lost_out -= pcount;
1240 			}
1241 		}
1242 
1243 		sacked |= TCPCB_SACKED_ACKED;
1244 		state->flag |= FLAG_DATA_SACKED;
1245 		tp->sacked_out += pcount;
1246 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1247 
1248 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 		if (tp->lost_skb_hint &&
1250 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1251 			tp->lost_cnt_hint += pcount;
1252 	}
1253 
1254 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 	 * are accounted above as well.
1257 	 */
1258 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 		sacked &= ~TCPCB_SACKED_RETRANS;
1260 		tp->retrans_out -= pcount;
1261 	}
1262 
1263 	return sacked;
1264 }
1265 
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268  */
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 			    struct sk_buff *skb,
1271 			    struct tcp_sacktag_state *state,
1272 			    unsigned int pcount, int shifted, int mss,
1273 			    bool dup_sack)
1274 {
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1277 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1278 
1279 	BUG_ON(!pcount);
1280 
1281 	/* Adjust counters and hints for the newly sacked sequence
1282 	 * range but discard the return value since prev is already
1283 	 * marked. We must tag the range first because the seq
1284 	 * advancement below implicitly advances
1285 	 * tcp_highest_sack_seq() when skb is highest_sack.
1286 	 */
1287 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 			start_seq, end_seq, dup_sack, pcount,
1289 			tcp_skb_timestamp_us(skb));
1290 	tcp_rate_skb_delivered(sk, skb, state->rate);
1291 
1292 	if (skb == tp->lost_skb_hint)
1293 		tp->lost_cnt_hint += pcount;
1294 
1295 	TCP_SKB_CB(prev)->end_seq += shifted;
1296 	TCP_SKB_CB(skb)->seq += shifted;
1297 
1298 	tcp_skb_pcount_add(prev, pcount);
1299 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1300 	tcp_skb_pcount_add(skb, -pcount);
1301 
1302 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1303 	 * in theory this shouldn't be necessary but as long as DSACK
1304 	 * code can come after this skb later on it's better to keep
1305 	 * setting gso_size to something.
1306 	 */
1307 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1309 
1310 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 	if (tcp_skb_pcount(skb) <= 1)
1312 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1313 
1314 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1316 
1317 	if (skb->len > 0) {
1318 		BUG_ON(!tcp_skb_pcount(skb));
1319 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1320 		return false;
1321 	}
1322 
1323 	/* Whole SKB was eaten :-) */
1324 
1325 	if (skb == tp->retransmit_skb_hint)
1326 		tp->retransmit_skb_hint = prev;
1327 	if (skb == tp->lost_skb_hint) {
1328 		tp->lost_skb_hint = prev;
1329 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1330 	}
1331 
1332 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1333 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1334 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 		TCP_SKB_CB(prev)->end_seq++;
1336 
1337 	if (skb == tcp_highest_sack(sk))
1338 		tcp_advance_highest_sack(sk, skb);
1339 
1340 	tcp_skb_collapse_tstamp(prev, skb);
1341 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1343 
1344 	tcp_rtx_queue_unlink_and_free(skb, sk);
1345 
1346 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1347 
1348 	return true;
1349 }
1350 
1351 /* I wish gso_size would have a bit more sane initialization than
1352  * something-or-zero which complicates things
1353  */
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358 
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364 
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366  * skb.
1367  */
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 					  struct tcp_sacktag_state *state,
1370 					  u32 start_seq, u32 end_seq,
1371 					  bool dup_sack)
1372 {
1373 	struct tcp_sock *tp = tcp_sk(sk);
1374 	struct sk_buff *prev;
1375 	int mss;
1376 	int pcount = 0;
1377 	int len;
1378 	int in_sack;
1379 
1380 	/* Normally R but no L won't result in plain S */
1381 	if (!dup_sack &&
1382 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1383 		goto fallback;
1384 	if (!skb_can_shift(skb))
1385 		goto fallback;
1386 	/* This frame is about to be dropped (was ACKed). */
1387 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 		goto fallback;
1389 
1390 	/* Can only happen with delayed DSACK + discard craziness */
1391 	prev = skb_rb_prev(skb);
1392 	if (!prev)
1393 		goto fallback;
1394 
1395 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 		goto fallback;
1397 
1398 	if (!tcp_skb_can_collapse_to(prev))
1399 		goto fallback;
1400 
1401 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403 
1404 	if (in_sack) {
1405 		len = skb->len;
1406 		pcount = tcp_skb_pcount(skb);
1407 		mss = tcp_skb_seglen(skb);
1408 
1409 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 		 * drop this restriction as unnecessary
1411 		 */
1412 		if (mss != tcp_skb_seglen(prev))
1413 			goto fallback;
1414 	} else {
1415 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 			goto noop;
1417 		/* CHECKME: This is non-MSS split case only?, this will
1418 		 * cause skipped skbs due to advancing loop btw, original
1419 		 * has that feature too
1420 		 */
1421 		if (tcp_skb_pcount(skb) <= 1)
1422 			goto noop;
1423 
1424 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 		if (!in_sack) {
1426 			/* TODO: head merge to next could be attempted here
1427 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 			 * though it might not be worth of the additional hassle
1429 			 *
1430 			 * ...we can probably just fallback to what was done
1431 			 * previously. We could try merging non-SACKed ones
1432 			 * as well but it probably isn't going to buy off
1433 			 * because later SACKs might again split them, and
1434 			 * it would make skb timestamp tracking considerably
1435 			 * harder problem.
1436 			 */
1437 			goto fallback;
1438 		}
1439 
1440 		len = end_seq - TCP_SKB_CB(skb)->seq;
1441 		BUG_ON(len < 0);
1442 		BUG_ON(len > skb->len);
1443 
1444 		/* MSS boundaries should be honoured or else pcount will
1445 		 * severely break even though it makes things bit trickier.
1446 		 * Optimize common case to avoid most of the divides
1447 		 */
1448 		mss = tcp_skb_mss(skb);
1449 
1450 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 		 * drop this restriction as unnecessary
1452 		 */
1453 		if (mss != tcp_skb_seglen(prev))
1454 			goto fallback;
1455 
1456 		if (len == mss) {
1457 			pcount = 1;
1458 		} else if (len < mss) {
1459 			goto noop;
1460 		} else {
1461 			pcount = len / mss;
1462 			len = pcount * mss;
1463 		}
1464 	}
1465 
1466 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 		goto fallback;
1469 
1470 	if (!skb_shift(prev, skb, len))
1471 		goto fallback;
1472 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1473 		goto out;
1474 
1475 	/* Hole filled allows collapsing with the next as well, this is very
1476 	 * useful when hole on every nth skb pattern happens
1477 	 */
1478 	skb = skb_rb_next(prev);
1479 	if (!skb)
1480 		goto out;
1481 
1482 	if (!skb_can_shift(skb) ||
1483 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 	    (mss != tcp_skb_seglen(skb)))
1485 		goto out;
1486 
1487 	len = skb->len;
1488 	if (skb_shift(prev, skb, len)) {
1489 		pcount += tcp_skb_pcount(skb);
1490 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1491 				len, mss, 0);
1492 	}
1493 
1494 out:
1495 	return prev;
1496 
1497 noop:
1498 	return skb;
1499 
1500 fallback:
1501 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 	return NULL;
1503 }
1504 
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 					struct tcp_sack_block *next_dup,
1507 					struct tcp_sacktag_state *state,
1508 					u32 start_seq, u32 end_seq,
1509 					bool dup_sack_in)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	struct sk_buff *tmp;
1513 
1514 	skb_rbtree_walk_from(skb) {
1515 		int in_sack = 0;
1516 		bool dup_sack = dup_sack_in;
1517 
1518 		/* queue is in-order => we can short-circuit the walk early */
1519 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1520 			break;
1521 
1522 		if (next_dup  &&
1523 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1524 			in_sack = tcp_match_skb_to_sack(sk, skb,
1525 							next_dup->start_seq,
1526 							next_dup->end_seq);
1527 			if (in_sack > 0)
1528 				dup_sack = true;
1529 		}
1530 
1531 		/* skb reference here is a bit tricky to get right, since
1532 		 * shifting can eat and free both this skb and the next,
1533 		 * so not even _safe variant of the loop is enough.
1534 		 */
1535 		if (in_sack <= 0) {
1536 			tmp = tcp_shift_skb_data(sk, skb, state,
1537 						 start_seq, end_seq, dup_sack);
1538 			if (tmp) {
1539 				if (tmp != skb) {
1540 					skb = tmp;
1541 					continue;
1542 				}
1543 
1544 				in_sack = 0;
1545 			} else {
1546 				in_sack = tcp_match_skb_to_sack(sk, skb,
1547 								start_seq,
1548 								end_seq);
1549 			}
1550 		}
1551 
1552 		if (unlikely(in_sack < 0))
1553 			break;
1554 
1555 		if (in_sack) {
1556 			TCP_SKB_CB(skb)->sacked =
1557 				tcp_sacktag_one(sk,
1558 						state,
1559 						TCP_SKB_CB(skb)->sacked,
1560 						TCP_SKB_CB(skb)->seq,
1561 						TCP_SKB_CB(skb)->end_seq,
1562 						dup_sack,
1563 						tcp_skb_pcount(skb),
1564 						tcp_skb_timestamp_us(skb));
1565 			tcp_rate_skb_delivered(sk, skb, state->rate);
1566 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1567 				list_del_init(&skb->tcp_tsorted_anchor);
1568 
1569 			if (!before(TCP_SKB_CB(skb)->seq,
1570 				    tcp_highest_sack_seq(tp)))
1571 				tcp_advance_highest_sack(sk, skb);
1572 		}
1573 	}
1574 	return skb;
1575 }
1576 
1577 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1578 {
1579 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1580 	struct sk_buff *skb;
1581 
1582 	while (*p) {
1583 		parent = *p;
1584 		skb = rb_to_skb(parent);
1585 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1586 			p = &parent->rb_left;
1587 			continue;
1588 		}
1589 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1590 			p = &parent->rb_right;
1591 			continue;
1592 		}
1593 		return skb;
1594 	}
1595 	return NULL;
1596 }
1597 
1598 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1599 					u32 skip_to_seq)
1600 {
1601 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1602 		return skb;
1603 
1604 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1605 }
1606 
1607 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1608 						struct sock *sk,
1609 						struct tcp_sack_block *next_dup,
1610 						struct tcp_sacktag_state *state,
1611 						u32 skip_to_seq)
1612 {
1613 	if (!next_dup)
1614 		return skb;
1615 
1616 	if (before(next_dup->start_seq, skip_to_seq)) {
1617 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1618 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1619 				       next_dup->start_seq, next_dup->end_seq,
1620 				       1);
1621 	}
1622 
1623 	return skb;
1624 }
1625 
1626 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1627 {
1628 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1629 }
1630 
1631 static int
1632 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1633 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1634 {
1635 	struct tcp_sock *tp = tcp_sk(sk);
1636 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1637 				    TCP_SKB_CB(ack_skb)->sacked);
1638 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1639 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1640 	struct tcp_sack_block *cache;
1641 	struct sk_buff *skb;
1642 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1643 	int used_sacks;
1644 	bool found_dup_sack = false;
1645 	int i, j;
1646 	int first_sack_index;
1647 
1648 	state->flag = 0;
1649 	state->reord = tp->snd_nxt;
1650 
1651 	if (!tp->sacked_out)
1652 		tcp_highest_sack_reset(sk);
1653 
1654 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1655 					 num_sacks, prior_snd_una);
1656 	if (found_dup_sack) {
1657 		state->flag |= FLAG_DSACKING_ACK;
1658 		tp->delivered++; /* A spurious retransmission is delivered */
1659 	}
1660 
1661 	/* Eliminate too old ACKs, but take into
1662 	 * account more or less fresh ones, they can
1663 	 * contain valid SACK info.
1664 	 */
1665 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1666 		return 0;
1667 
1668 	if (!tp->packets_out)
1669 		goto out;
1670 
1671 	used_sacks = 0;
1672 	first_sack_index = 0;
1673 	for (i = 0; i < num_sacks; i++) {
1674 		bool dup_sack = !i && found_dup_sack;
1675 
1676 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1677 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1678 
1679 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1680 					    sp[used_sacks].start_seq,
1681 					    sp[used_sacks].end_seq)) {
1682 			int mib_idx;
1683 
1684 			if (dup_sack) {
1685 				if (!tp->undo_marker)
1686 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1687 				else
1688 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1689 			} else {
1690 				/* Don't count olds caused by ACK reordering */
1691 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1692 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1693 					continue;
1694 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1695 			}
1696 
1697 			NET_INC_STATS(sock_net(sk), mib_idx);
1698 			if (i == 0)
1699 				first_sack_index = -1;
1700 			continue;
1701 		}
1702 
1703 		/* Ignore very old stuff early */
1704 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1705 			continue;
1706 
1707 		used_sacks++;
1708 	}
1709 
1710 	/* order SACK blocks to allow in order walk of the retrans queue */
1711 	for (i = used_sacks - 1; i > 0; i--) {
1712 		for (j = 0; j < i; j++) {
1713 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1714 				swap(sp[j], sp[j + 1]);
1715 
1716 				/* Track where the first SACK block goes to */
1717 				if (j == first_sack_index)
1718 					first_sack_index = j + 1;
1719 			}
1720 		}
1721 	}
1722 
1723 	state->mss_now = tcp_current_mss(sk);
1724 	skb = NULL;
1725 	i = 0;
1726 
1727 	if (!tp->sacked_out) {
1728 		/* It's already past, so skip checking against it */
1729 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1730 	} else {
1731 		cache = tp->recv_sack_cache;
1732 		/* Skip empty blocks in at head of the cache */
1733 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1734 		       !cache->end_seq)
1735 			cache++;
1736 	}
1737 
1738 	while (i < used_sacks) {
1739 		u32 start_seq = sp[i].start_seq;
1740 		u32 end_seq = sp[i].end_seq;
1741 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1742 		struct tcp_sack_block *next_dup = NULL;
1743 
1744 		if (found_dup_sack && ((i + 1) == first_sack_index))
1745 			next_dup = &sp[i + 1];
1746 
1747 		/* Skip too early cached blocks */
1748 		while (tcp_sack_cache_ok(tp, cache) &&
1749 		       !before(start_seq, cache->end_seq))
1750 			cache++;
1751 
1752 		/* Can skip some work by looking recv_sack_cache? */
1753 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1754 		    after(end_seq, cache->start_seq)) {
1755 
1756 			/* Head todo? */
1757 			if (before(start_seq, cache->start_seq)) {
1758 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1759 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1760 						       state,
1761 						       start_seq,
1762 						       cache->start_seq,
1763 						       dup_sack);
1764 			}
1765 
1766 			/* Rest of the block already fully processed? */
1767 			if (!after(end_seq, cache->end_seq))
1768 				goto advance_sp;
1769 
1770 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1771 						       state,
1772 						       cache->end_seq);
1773 
1774 			/* ...tail remains todo... */
1775 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1776 				/* ...but better entrypoint exists! */
1777 				skb = tcp_highest_sack(sk);
1778 				if (!skb)
1779 					break;
1780 				cache++;
1781 				goto walk;
1782 			}
1783 
1784 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1785 			/* Check overlap against next cached too (past this one already) */
1786 			cache++;
1787 			continue;
1788 		}
1789 
1790 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1791 			skb = tcp_highest_sack(sk);
1792 			if (!skb)
1793 				break;
1794 		}
1795 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1796 
1797 walk:
1798 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1799 				       start_seq, end_seq, dup_sack);
1800 
1801 advance_sp:
1802 		i++;
1803 	}
1804 
1805 	/* Clear the head of the cache sack blocks so we can skip it next time */
1806 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1807 		tp->recv_sack_cache[i].start_seq = 0;
1808 		tp->recv_sack_cache[i].end_seq = 0;
1809 	}
1810 	for (j = 0; j < used_sacks; j++)
1811 		tp->recv_sack_cache[i++] = sp[j];
1812 
1813 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1814 		tcp_check_sack_reordering(sk, state->reord, 0);
1815 
1816 	tcp_verify_left_out(tp);
1817 out:
1818 
1819 #if FASTRETRANS_DEBUG > 0
1820 	WARN_ON((int)tp->sacked_out < 0);
1821 	WARN_ON((int)tp->lost_out < 0);
1822 	WARN_ON((int)tp->retrans_out < 0);
1823 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1824 #endif
1825 	return state->flag;
1826 }
1827 
1828 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1829  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1830  */
1831 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1832 {
1833 	u32 holes;
1834 
1835 	holes = max(tp->lost_out, 1U);
1836 	holes = min(holes, tp->packets_out);
1837 
1838 	if ((tp->sacked_out + holes) > tp->packets_out) {
1839 		tp->sacked_out = tp->packets_out - holes;
1840 		return true;
1841 	}
1842 	return false;
1843 }
1844 
1845 /* If we receive more dupacks than we expected counting segments
1846  * in assumption of absent reordering, interpret this as reordering.
1847  * The only another reason could be bug in receiver TCP.
1848  */
1849 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1850 {
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 
1853 	if (!tcp_limit_reno_sacked(tp))
1854 		return;
1855 
1856 	tp->reordering = min_t(u32, tp->packets_out + addend,
1857 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1858 	tp->reord_seen++;
1859 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1860 }
1861 
1862 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1863 
1864 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1865 {
1866 	if (num_dupack) {
1867 		struct tcp_sock *tp = tcp_sk(sk);
1868 		u32 prior_sacked = tp->sacked_out;
1869 		s32 delivered;
1870 
1871 		tp->sacked_out += num_dupack;
1872 		tcp_check_reno_reordering(sk, 0);
1873 		delivered = tp->sacked_out - prior_sacked;
1874 		if (delivered > 0)
1875 			tp->delivered += delivered;
1876 		tcp_verify_left_out(tp);
1877 	}
1878 }
1879 
1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1881 
1882 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1883 {
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 
1886 	if (acked > 0) {
1887 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1888 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1889 		if (acked - 1 >= tp->sacked_out)
1890 			tp->sacked_out = 0;
1891 		else
1892 			tp->sacked_out -= acked - 1;
1893 	}
1894 	tcp_check_reno_reordering(sk, acked);
1895 	tcp_verify_left_out(tp);
1896 }
1897 
1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1899 {
1900 	tp->sacked_out = 0;
1901 }
1902 
1903 void tcp_clear_retrans(struct tcp_sock *tp)
1904 {
1905 	tp->retrans_out = 0;
1906 	tp->lost_out = 0;
1907 	tp->undo_marker = 0;
1908 	tp->undo_retrans = -1;
1909 	tp->sacked_out = 0;
1910 }
1911 
1912 static inline void tcp_init_undo(struct tcp_sock *tp)
1913 {
1914 	tp->undo_marker = tp->snd_una;
1915 	/* Retransmission still in flight may cause DSACKs later. */
1916 	tp->undo_retrans = tp->retrans_out ? : -1;
1917 }
1918 
1919 static bool tcp_is_rack(const struct sock *sk)
1920 {
1921 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1922 }
1923 
1924 /* If we detect SACK reneging, forget all SACK information
1925  * and reset tags completely, otherwise preserve SACKs. If receiver
1926  * dropped its ofo queue, we will know this due to reneging detection.
1927  */
1928 static void tcp_timeout_mark_lost(struct sock *sk)
1929 {
1930 	struct tcp_sock *tp = tcp_sk(sk);
1931 	struct sk_buff *skb, *head;
1932 	bool is_reneg;			/* is receiver reneging on SACKs? */
1933 
1934 	head = tcp_rtx_queue_head(sk);
1935 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1936 	if (is_reneg) {
1937 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1938 		tp->sacked_out = 0;
1939 		/* Mark SACK reneging until we recover from this loss event. */
1940 		tp->is_sack_reneg = 1;
1941 	} else if (tcp_is_reno(tp)) {
1942 		tcp_reset_reno_sack(tp);
1943 	}
1944 
1945 	skb = head;
1946 	skb_rbtree_walk_from(skb) {
1947 		if (is_reneg)
1948 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1949 		else if (tcp_is_rack(sk) && skb != head &&
1950 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1951 			continue; /* Don't mark recently sent ones lost yet */
1952 		tcp_mark_skb_lost(sk, skb);
1953 	}
1954 	tcp_verify_left_out(tp);
1955 	tcp_clear_all_retrans_hints(tp);
1956 }
1957 
1958 /* Enter Loss state. */
1959 void tcp_enter_loss(struct sock *sk)
1960 {
1961 	const struct inet_connection_sock *icsk = inet_csk(sk);
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 	struct net *net = sock_net(sk);
1964 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1965 
1966 	tcp_timeout_mark_lost(sk);
1967 
1968 	/* Reduce ssthresh if it has not yet been made inside this window. */
1969 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1970 	    !after(tp->high_seq, tp->snd_una) ||
1971 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1972 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1973 		tp->prior_cwnd = tp->snd_cwnd;
1974 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1975 		tcp_ca_event(sk, CA_EVENT_LOSS);
1976 		tcp_init_undo(tp);
1977 	}
1978 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1979 	tp->snd_cwnd_cnt   = 0;
1980 	tp->snd_cwnd_stamp = tcp_jiffies32;
1981 
1982 	/* Timeout in disordered state after receiving substantial DUPACKs
1983 	 * suggests that the degree of reordering is over-estimated.
1984 	 */
1985 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1986 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1987 		tp->reordering = min_t(unsigned int, tp->reordering,
1988 				       net->ipv4.sysctl_tcp_reordering);
1989 	tcp_set_ca_state(sk, TCP_CA_Loss);
1990 	tp->high_seq = tp->snd_nxt;
1991 	tcp_ecn_queue_cwr(tp);
1992 
1993 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1994 	 * loss recovery is underway except recurring timeout(s) on
1995 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1996 	 */
1997 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1998 		   (new_recovery || icsk->icsk_retransmits) &&
1999 		   !inet_csk(sk)->icsk_mtup.probe_size;
2000 }
2001 
2002 /* If ACK arrived pointing to a remembered SACK, it means that our
2003  * remembered SACKs do not reflect real state of receiver i.e.
2004  * receiver _host_ is heavily congested (or buggy).
2005  *
2006  * To avoid big spurious retransmission bursts due to transient SACK
2007  * scoreboard oddities that look like reneging, we give the receiver a
2008  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2009  * restore sanity to the SACK scoreboard. If the apparent reneging
2010  * persists until this RTO then we'll clear the SACK scoreboard.
2011  */
2012 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2013 {
2014 	if (flag & FLAG_SACK_RENEGING) {
2015 		struct tcp_sock *tp = tcp_sk(sk);
2016 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2017 					  msecs_to_jiffies(10));
2018 
2019 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2020 					  delay, TCP_RTO_MAX);
2021 		return true;
2022 	}
2023 	return false;
2024 }
2025 
2026 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2027  * counter when SACK is enabled (without SACK, sacked_out is used for
2028  * that purpose).
2029  *
2030  * With reordering, holes may still be in flight, so RFC3517 recovery
2031  * uses pure sacked_out (total number of SACKed segments) even though
2032  * it violates the RFC that uses duplicate ACKs, often these are equal
2033  * but when e.g. out-of-window ACKs or packet duplication occurs,
2034  * they differ. Since neither occurs due to loss, TCP should really
2035  * ignore them.
2036  */
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2038 {
2039 	return tp->sacked_out + 1;
2040 }
2041 
2042 /* Linux NewReno/SACK/ECN state machine.
2043  * --------------------------------------
2044  *
2045  * "Open"	Normal state, no dubious events, fast path.
2046  * "Disorder"   In all the respects it is "Open",
2047  *		but requires a bit more attention. It is entered when
2048  *		we see some SACKs or dupacks. It is split of "Open"
2049  *		mainly to move some processing from fast path to slow one.
2050  * "CWR"	CWND was reduced due to some Congestion Notification event.
2051  *		It can be ECN, ICMP source quench, local device congestion.
2052  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2053  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2054  *
2055  * tcp_fastretrans_alert() is entered:
2056  * - each incoming ACK, if state is not "Open"
2057  * - when arrived ACK is unusual, namely:
2058  *	* SACK
2059  *	* Duplicate ACK.
2060  *	* ECN ECE.
2061  *
2062  * Counting packets in flight is pretty simple.
2063  *
2064  *	in_flight = packets_out - left_out + retrans_out
2065  *
2066  *	packets_out is SND.NXT-SND.UNA counted in packets.
2067  *
2068  *	retrans_out is number of retransmitted segments.
2069  *
2070  *	left_out is number of segments left network, but not ACKed yet.
2071  *
2072  *		left_out = sacked_out + lost_out
2073  *
2074  *     sacked_out: Packets, which arrived to receiver out of order
2075  *		   and hence not ACKed. With SACKs this number is simply
2076  *		   amount of SACKed data. Even without SACKs
2077  *		   it is easy to give pretty reliable estimate of this number,
2078  *		   counting duplicate ACKs.
2079  *
2080  *       lost_out: Packets lost by network. TCP has no explicit
2081  *		   "loss notification" feedback from network (for now).
2082  *		   It means that this number can be only _guessed_.
2083  *		   Actually, it is the heuristics to predict lossage that
2084  *		   distinguishes different algorithms.
2085  *
2086  *	F.e. after RTO, when all the queue is considered as lost,
2087  *	lost_out = packets_out and in_flight = retrans_out.
2088  *
2089  *		Essentially, we have now a few algorithms detecting
2090  *		lost packets.
2091  *
2092  *		If the receiver supports SACK:
2093  *
2094  *		RFC6675/3517: It is the conventional algorithm. A packet is
2095  *		considered lost if the number of higher sequence packets
2096  *		SACKed is greater than or equal the DUPACK thoreshold
2097  *		(reordering). This is implemented in tcp_mark_head_lost and
2098  *		tcp_update_scoreboard.
2099  *
2100  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2101  *		(2017-) that checks timing instead of counting DUPACKs.
2102  *		Essentially a packet is considered lost if it's not S/ACKed
2103  *		after RTT + reordering_window, where both metrics are
2104  *		dynamically measured and adjusted. This is implemented in
2105  *		tcp_rack_mark_lost.
2106  *
2107  *		If the receiver does not support SACK:
2108  *
2109  *		NewReno (RFC6582): in Recovery we assume that one segment
2110  *		is lost (classic Reno). While we are in Recovery and
2111  *		a partial ACK arrives, we assume that one more packet
2112  *		is lost (NewReno). This heuristics are the same in NewReno
2113  *		and SACK.
2114  *
2115  * Really tricky (and requiring careful tuning) part of algorithm
2116  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2117  * The first determines the moment _when_ we should reduce CWND and,
2118  * hence, slow down forward transmission. In fact, it determines the moment
2119  * when we decide that hole is caused by loss, rather than by a reorder.
2120  *
2121  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2122  * holes, caused by lost packets.
2123  *
2124  * And the most logically complicated part of algorithm is undo
2125  * heuristics. We detect false retransmits due to both too early
2126  * fast retransmit (reordering) and underestimated RTO, analyzing
2127  * timestamps and D-SACKs. When we detect that some segments were
2128  * retransmitted by mistake and CWND reduction was wrong, we undo
2129  * window reduction and abort recovery phase. This logic is hidden
2130  * inside several functions named tcp_try_undo_<something>.
2131  */
2132 
2133 /* This function decides, when we should leave Disordered state
2134  * and enter Recovery phase, reducing congestion window.
2135  *
2136  * Main question: may we further continue forward transmission
2137  * with the same cwnd?
2138  */
2139 static bool tcp_time_to_recover(struct sock *sk, int flag)
2140 {
2141 	struct tcp_sock *tp = tcp_sk(sk);
2142 
2143 	/* Trick#1: The loss is proven. */
2144 	if (tp->lost_out)
2145 		return true;
2146 
2147 	/* Not-A-Trick#2 : Classic rule... */
2148 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2149 		return true;
2150 
2151 	return false;
2152 }
2153 
2154 /* Detect loss in event "A" above by marking head of queue up as lost.
2155  * For non-SACK(Reno) senders, the first "packets" number of segments
2156  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2157  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2158  * the maximum SACKed segments to pass before reaching this limit.
2159  */
2160 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2161 {
2162 	struct tcp_sock *tp = tcp_sk(sk);
2163 	struct sk_buff *skb;
2164 	int cnt, oldcnt, lost;
2165 	unsigned int mss;
2166 	/* Use SACK to deduce losses of new sequences sent during recovery */
2167 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2168 
2169 	WARN_ON(packets > tp->packets_out);
2170 	skb = tp->lost_skb_hint;
2171 	if (skb) {
2172 		/* Head already handled? */
2173 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2174 			return;
2175 		cnt = tp->lost_cnt_hint;
2176 	} else {
2177 		skb = tcp_rtx_queue_head(sk);
2178 		cnt = 0;
2179 	}
2180 
2181 	skb_rbtree_walk_from(skb) {
2182 		/* TODO: do this better */
2183 		/* this is not the most efficient way to do this... */
2184 		tp->lost_skb_hint = skb;
2185 		tp->lost_cnt_hint = cnt;
2186 
2187 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2188 			break;
2189 
2190 		oldcnt = cnt;
2191 		if (tcp_is_reno(tp) ||
2192 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2193 			cnt += tcp_skb_pcount(skb);
2194 
2195 		if (cnt > packets) {
2196 			if (tcp_is_sack(tp) ||
2197 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2198 			    (oldcnt >= packets))
2199 				break;
2200 
2201 			mss = tcp_skb_mss(skb);
2202 			/* If needed, chop off the prefix to mark as lost. */
2203 			lost = (packets - oldcnt) * mss;
2204 			if (lost < skb->len &&
2205 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2206 					 lost, mss, GFP_ATOMIC) < 0)
2207 				break;
2208 			cnt = packets;
2209 		}
2210 
2211 		tcp_skb_mark_lost(tp, skb);
2212 
2213 		if (mark_head)
2214 			break;
2215 	}
2216 	tcp_verify_left_out(tp);
2217 }
2218 
2219 /* Account newly detected lost packet(s) */
2220 
2221 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2222 {
2223 	struct tcp_sock *tp = tcp_sk(sk);
2224 
2225 	if (tcp_is_sack(tp)) {
2226 		int sacked_upto = tp->sacked_out - tp->reordering;
2227 		if (sacked_upto >= 0)
2228 			tcp_mark_head_lost(sk, sacked_upto, 0);
2229 		else if (fast_rexmit)
2230 			tcp_mark_head_lost(sk, 1, 1);
2231 	}
2232 }
2233 
2234 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2235 {
2236 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2237 	       before(tp->rx_opt.rcv_tsecr, when);
2238 }
2239 
2240 /* skb is spurious retransmitted if the returned timestamp echo
2241  * reply is prior to the skb transmission time
2242  */
2243 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2244 				     const struct sk_buff *skb)
2245 {
2246 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2247 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2248 }
2249 
2250 /* Nothing was retransmitted or returned timestamp is less
2251  * than timestamp of the first retransmission.
2252  */
2253 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2254 {
2255 	return !tp->retrans_stamp ||
2256 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2257 }
2258 
2259 /* Undo procedures. */
2260 
2261 /* We can clear retrans_stamp when there are no retransmissions in the
2262  * window. It would seem that it is trivially available for us in
2263  * tp->retrans_out, however, that kind of assumptions doesn't consider
2264  * what will happen if errors occur when sending retransmission for the
2265  * second time. ...It could the that such segment has only
2266  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2267  * the head skb is enough except for some reneging corner cases that
2268  * are not worth the effort.
2269  *
2270  * Main reason for all this complexity is the fact that connection dying
2271  * time now depends on the validity of the retrans_stamp, in particular,
2272  * that successive retransmissions of a segment must not advance
2273  * retrans_stamp under any conditions.
2274  */
2275 static bool tcp_any_retrans_done(const struct sock *sk)
2276 {
2277 	const struct tcp_sock *tp = tcp_sk(sk);
2278 	struct sk_buff *skb;
2279 
2280 	if (tp->retrans_out)
2281 		return true;
2282 
2283 	skb = tcp_rtx_queue_head(sk);
2284 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2285 		return true;
2286 
2287 	return false;
2288 }
2289 
2290 static void DBGUNDO(struct sock *sk, const char *msg)
2291 {
2292 #if FASTRETRANS_DEBUG > 1
2293 	struct tcp_sock *tp = tcp_sk(sk);
2294 	struct inet_sock *inet = inet_sk(sk);
2295 
2296 	if (sk->sk_family == AF_INET) {
2297 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2298 			 msg,
2299 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2300 			 tp->snd_cwnd, tcp_left_out(tp),
2301 			 tp->snd_ssthresh, tp->prior_ssthresh,
2302 			 tp->packets_out);
2303 	}
2304 #if IS_ENABLED(CONFIG_IPV6)
2305 	else if (sk->sk_family == AF_INET6) {
2306 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2307 			 msg,
2308 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2309 			 tp->snd_cwnd, tcp_left_out(tp),
2310 			 tp->snd_ssthresh, tp->prior_ssthresh,
2311 			 tp->packets_out);
2312 	}
2313 #endif
2314 #endif
2315 }
2316 
2317 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2318 {
2319 	struct tcp_sock *tp = tcp_sk(sk);
2320 
2321 	if (unmark_loss) {
2322 		struct sk_buff *skb;
2323 
2324 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2325 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2326 		}
2327 		tp->lost_out = 0;
2328 		tcp_clear_all_retrans_hints(tp);
2329 	}
2330 
2331 	if (tp->prior_ssthresh) {
2332 		const struct inet_connection_sock *icsk = inet_csk(sk);
2333 
2334 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2335 
2336 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2337 			tp->snd_ssthresh = tp->prior_ssthresh;
2338 			tcp_ecn_withdraw_cwr(tp);
2339 		}
2340 	}
2341 	tp->snd_cwnd_stamp = tcp_jiffies32;
2342 	tp->undo_marker = 0;
2343 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2344 }
2345 
2346 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2347 {
2348 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2349 }
2350 
2351 /* People celebrate: "We love our President!" */
2352 static bool tcp_try_undo_recovery(struct sock *sk)
2353 {
2354 	struct tcp_sock *tp = tcp_sk(sk);
2355 
2356 	if (tcp_may_undo(tp)) {
2357 		int mib_idx;
2358 
2359 		/* Happy end! We did not retransmit anything
2360 		 * or our original transmission succeeded.
2361 		 */
2362 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2363 		tcp_undo_cwnd_reduction(sk, false);
2364 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2365 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2366 		else
2367 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2368 
2369 		NET_INC_STATS(sock_net(sk), mib_idx);
2370 	} else if (tp->rack.reo_wnd_persist) {
2371 		tp->rack.reo_wnd_persist--;
2372 	}
2373 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2374 		/* Hold old state until something *above* high_seq
2375 		 * is ACKed. For Reno it is MUST to prevent false
2376 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2377 		if (!tcp_any_retrans_done(sk))
2378 			tp->retrans_stamp = 0;
2379 		return true;
2380 	}
2381 	tcp_set_ca_state(sk, TCP_CA_Open);
2382 	tp->is_sack_reneg = 0;
2383 	return false;
2384 }
2385 
2386 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2387 static bool tcp_try_undo_dsack(struct sock *sk)
2388 {
2389 	struct tcp_sock *tp = tcp_sk(sk);
2390 
2391 	if (tp->undo_marker && !tp->undo_retrans) {
2392 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2393 					       tp->rack.reo_wnd_persist + 1);
2394 		DBGUNDO(sk, "D-SACK");
2395 		tcp_undo_cwnd_reduction(sk, false);
2396 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2397 		return true;
2398 	}
2399 	return false;
2400 }
2401 
2402 /* Undo during loss recovery after partial ACK or using F-RTO. */
2403 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2404 {
2405 	struct tcp_sock *tp = tcp_sk(sk);
2406 
2407 	if (frto_undo || tcp_may_undo(tp)) {
2408 		tcp_undo_cwnd_reduction(sk, true);
2409 
2410 		DBGUNDO(sk, "partial loss");
2411 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2412 		if (frto_undo)
2413 			NET_INC_STATS(sock_net(sk),
2414 					LINUX_MIB_TCPSPURIOUSRTOS);
2415 		inet_csk(sk)->icsk_retransmits = 0;
2416 		if (frto_undo || tcp_is_sack(tp)) {
2417 			tcp_set_ca_state(sk, TCP_CA_Open);
2418 			tp->is_sack_reneg = 0;
2419 		}
2420 		return true;
2421 	}
2422 	return false;
2423 }
2424 
2425 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2426  * It computes the number of packets to send (sndcnt) based on packets newly
2427  * delivered:
2428  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2429  *	cwnd reductions across a full RTT.
2430  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2431  *      But when the retransmits are acked without further losses, PRR
2432  *      slow starts cwnd up to ssthresh to speed up the recovery.
2433  */
2434 static void tcp_init_cwnd_reduction(struct sock *sk)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 
2438 	tp->high_seq = tp->snd_nxt;
2439 	tp->tlp_high_seq = 0;
2440 	tp->snd_cwnd_cnt = 0;
2441 	tp->prior_cwnd = tp->snd_cwnd;
2442 	tp->prr_delivered = 0;
2443 	tp->prr_out = 0;
2444 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2445 	tcp_ecn_queue_cwr(tp);
2446 }
2447 
2448 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2449 {
2450 	struct tcp_sock *tp = tcp_sk(sk);
2451 	int sndcnt = 0;
2452 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2453 
2454 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2455 		return;
2456 
2457 	tp->prr_delivered += newly_acked_sacked;
2458 	if (delta < 0) {
2459 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2460 			       tp->prior_cwnd - 1;
2461 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2462 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2463 		   FLAG_RETRANS_DATA_ACKED) {
2464 		sndcnt = min_t(int, delta,
2465 			       max_t(int, tp->prr_delivered - tp->prr_out,
2466 				     newly_acked_sacked) + 1);
2467 	} else {
2468 		sndcnt = min(delta, newly_acked_sacked);
2469 	}
2470 	/* Force a fast retransmit upon entering fast recovery */
2471 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2472 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2473 }
2474 
2475 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 
2479 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2480 		return;
2481 
2482 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2483 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2484 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2485 		tp->snd_cwnd = tp->snd_ssthresh;
2486 		tp->snd_cwnd_stamp = tcp_jiffies32;
2487 	}
2488 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2489 }
2490 
2491 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2492 void tcp_enter_cwr(struct sock *sk)
2493 {
2494 	struct tcp_sock *tp = tcp_sk(sk);
2495 
2496 	tp->prior_ssthresh = 0;
2497 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2498 		tp->undo_marker = 0;
2499 		tcp_init_cwnd_reduction(sk);
2500 		tcp_set_ca_state(sk, TCP_CA_CWR);
2501 	}
2502 }
2503 EXPORT_SYMBOL(tcp_enter_cwr);
2504 
2505 static void tcp_try_keep_open(struct sock *sk)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 	int state = TCP_CA_Open;
2509 
2510 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2511 		state = TCP_CA_Disorder;
2512 
2513 	if (inet_csk(sk)->icsk_ca_state != state) {
2514 		tcp_set_ca_state(sk, state);
2515 		tp->high_seq = tp->snd_nxt;
2516 	}
2517 }
2518 
2519 static void tcp_try_to_open(struct sock *sk, int flag)
2520 {
2521 	struct tcp_sock *tp = tcp_sk(sk);
2522 
2523 	tcp_verify_left_out(tp);
2524 
2525 	if (!tcp_any_retrans_done(sk))
2526 		tp->retrans_stamp = 0;
2527 
2528 	if (flag & FLAG_ECE)
2529 		tcp_enter_cwr(sk);
2530 
2531 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2532 		tcp_try_keep_open(sk);
2533 	}
2534 }
2535 
2536 static void tcp_mtup_probe_failed(struct sock *sk)
2537 {
2538 	struct inet_connection_sock *icsk = inet_csk(sk);
2539 
2540 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2541 	icsk->icsk_mtup.probe_size = 0;
2542 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2543 }
2544 
2545 static void tcp_mtup_probe_success(struct sock *sk)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 	struct inet_connection_sock *icsk = inet_csk(sk);
2549 
2550 	/* FIXME: breaks with very large cwnd */
2551 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2552 	tp->snd_cwnd = tp->snd_cwnd *
2553 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2554 		       icsk->icsk_mtup.probe_size;
2555 	tp->snd_cwnd_cnt = 0;
2556 	tp->snd_cwnd_stamp = tcp_jiffies32;
2557 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2558 
2559 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2560 	icsk->icsk_mtup.probe_size = 0;
2561 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2562 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2563 }
2564 
2565 /* Do a simple retransmit without using the backoff mechanisms in
2566  * tcp_timer. This is used for path mtu discovery.
2567  * The socket is already locked here.
2568  */
2569 void tcp_simple_retransmit(struct sock *sk)
2570 {
2571 	const struct inet_connection_sock *icsk = inet_csk(sk);
2572 	struct tcp_sock *tp = tcp_sk(sk);
2573 	struct sk_buff *skb;
2574 	unsigned int mss = tcp_current_mss(sk);
2575 
2576 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2577 		if (tcp_skb_seglen(skb) > mss &&
2578 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2579 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2580 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2581 				tp->retrans_out -= tcp_skb_pcount(skb);
2582 			}
2583 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2584 		}
2585 	}
2586 
2587 	tcp_clear_retrans_hints_partial(tp);
2588 
2589 	if (!tp->lost_out)
2590 		return;
2591 
2592 	if (tcp_is_reno(tp))
2593 		tcp_limit_reno_sacked(tp);
2594 
2595 	tcp_verify_left_out(tp);
2596 
2597 	/* Don't muck with the congestion window here.
2598 	 * Reason is that we do not increase amount of _data_
2599 	 * in network, but units changed and effective
2600 	 * cwnd/ssthresh really reduced now.
2601 	 */
2602 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2603 		tp->high_seq = tp->snd_nxt;
2604 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2605 		tp->prior_ssthresh = 0;
2606 		tp->undo_marker = 0;
2607 		tcp_set_ca_state(sk, TCP_CA_Loss);
2608 	}
2609 	tcp_xmit_retransmit_queue(sk);
2610 }
2611 EXPORT_SYMBOL(tcp_simple_retransmit);
2612 
2613 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 	int mib_idx;
2617 
2618 	if (tcp_is_reno(tp))
2619 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2620 	else
2621 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2622 
2623 	NET_INC_STATS(sock_net(sk), mib_idx);
2624 
2625 	tp->prior_ssthresh = 0;
2626 	tcp_init_undo(tp);
2627 
2628 	if (!tcp_in_cwnd_reduction(sk)) {
2629 		if (!ece_ack)
2630 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2631 		tcp_init_cwnd_reduction(sk);
2632 	}
2633 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2634 }
2635 
2636 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2637  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2638  */
2639 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2640 			     int *rexmit)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 	bool recovered = !before(tp->snd_una, tp->high_seq);
2644 
2645 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2646 	    tcp_try_undo_loss(sk, false))
2647 		return;
2648 
2649 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2650 		/* Step 3.b. A timeout is spurious if not all data are
2651 		 * lost, i.e., never-retransmitted data are (s)acked.
2652 		 */
2653 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2654 		    tcp_try_undo_loss(sk, true))
2655 			return;
2656 
2657 		if (after(tp->snd_nxt, tp->high_seq)) {
2658 			if (flag & FLAG_DATA_SACKED || num_dupack)
2659 				tp->frto = 0; /* Step 3.a. loss was real */
2660 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2661 			tp->high_seq = tp->snd_nxt;
2662 			/* Step 2.b. Try send new data (but deferred until cwnd
2663 			 * is updated in tcp_ack()). Otherwise fall back to
2664 			 * the conventional recovery.
2665 			 */
2666 			if (!tcp_write_queue_empty(sk) &&
2667 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2668 				*rexmit = REXMIT_NEW;
2669 				return;
2670 			}
2671 			tp->frto = 0;
2672 		}
2673 	}
2674 
2675 	if (recovered) {
2676 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2677 		tcp_try_undo_recovery(sk);
2678 		return;
2679 	}
2680 	if (tcp_is_reno(tp)) {
2681 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2682 		 * delivered. Lower inflight to clock out (re)tranmissions.
2683 		 */
2684 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2685 			tcp_add_reno_sack(sk, num_dupack);
2686 		else if (flag & FLAG_SND_UNA_ADVANCED)
2687 			tcp_reset_reno_sack(tp);
2688 	}
2689 	*rexmit = REXMIT_LOST;
2690 }
2691 
2692 /* Undo during fast recovery after partial ACK. */
2693 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2694 {
2695 	struct tcp_sock *tp = tcp_sk(sk);
2696 
2697 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2698 		/* Plain luck! Hole if filled with delayed
2699 		 * packet, rather than with a retransmit. Check reordering.
2700 		 */
2701 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2702 
2703 		/* We are getting evidence that the reordering degree is higher
2704 		 * than we realized. If there are no retransmits out then we
2705 		 * can undo. Otherwise we clock out new packets but do not
2706 		 * mark more packets lost or retransmit more.
2707 		 */
2708 		if (tp->retrans_out)
2709 			return true;
2710 
2711 		if (!tcp_any_retrans_done(sk))
2712 			tp->retrans_stamp = 0;
2713 
2714 		DBGUNDO(sk, "partial recovery");
2715 		tcp_undo_cwnd_reduction(sk, true);
2716 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2717 		tcp_try_keep_open(sk);
2718 		return true;
2719 	}
2720 	return false;
2721 }
2722 
2723 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 
2727 	if (tcp_rtx_queue_empty(sk))
2728 		return;
2729 
2730 	if (unlikely(tcp_is_reno(tp))) {
2731 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2732 	} else if (tcp_is_rack(sk)) {
2733 		u32 prior_retrans = tp->retrans_out;
2734 
2735 		tcp_rack_mark_lost(sk);
2736 		if (prior_retrans > tp->retrans_out)
2737 			*ack_flag |= FLAG_LOST_RETRANS;
2738 	}
2739 }
2740 
2741 static bool tcp_force_fast_retransmit(struct sock *sk)
2742 {
2743 	struct tcp_sock *tp = tcp_sk(sk);
2744 
2745 	return after(tcp_highest_sack_seq(tp),
2746 		     tp->snd_una + tp->reordering * tp->mss_cache);
2747 }
2748 
2749 /* Process an event, which can update packets-in-flight not trivially.
2750  * Main goal of this function is to calculate new estimate for left_out,
2751  * taking into account both packets sitting in receiver's buffer and
2752  * packets lost by network.
2753  *
2754  * Besides that it updates the congestion state when packet loss or ECN
2755  * is detected. But it does not reduce the cwnd, it is done by the
2756  * congestion control later.
2757  *
2758  * It does _not_ decide what to send, it is made in function
2759  * tcp_xmit_retransmit_queue().
2760  */
2761 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2762 				  int num_dupack, int *ack_flag, int *rexmit)
2763 {
2764 	struct inet_connection_sock *icsk = inet_csk(sk);
2765 	struct tcp_sock *tp = tcp_sk(sk);
2766 	int fast_rexmit = 0, flag = *ack_flag;
2767 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2768 				      tcp_force_fast_retransmit(sk));
2769 
2770 	if (!tp->packets_out && tp->sacked_out)
2771 		tp->sacked_out = 0;
2772 
2773 	/* Now state machine starts.
2774 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2775 	if (flag & FLAG_ECE)
2776 		tp->prior_ssthresh = 0;
2777 
2778 	/* B. In all the states check for reneging SACKs. */
2779 	if (tcp_check_sack_reneging(sk, flag))
2780 		return;
2781 
2782 	/* C. Check consistency of the current state. */
2783 	tcp_verify_left_out(tp);
2784 
2785 	/* D. Check state exit conditions. State can be terminated
2786 	 *    when high_seq is ACKed. */
2787 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2788 		WARN_ON(tp->retrans_out != 0);
2789 		tp->retrans_stamp = 0;
2790 	} else if (!before(tp->snd_una, tp->high_seq)) {
2791 		switch (icsk->icsk_ca_state) {
2792 		case TCP_CA_CWR:
2793 			/* CWR is to be held something *above* high_seq
2794 			 * is ACKed for CWR bit to reach receiver. */
2795 			if (tp->snd_una != tp->high_seq) {
2796 				tcp_end_cwnd_reduction(sk);
2797 				tcp_set_ca_state(sk, TCP_CA_Open);
2798 			}
2799 			break;
2800 
2801 		case TCP_CA_Recovery:
2802 			if (tcp_is_reno(tp))
2803 				tcp_reset_reno_sack(tp);
2804 			if (tcp_try_undo_recovery(sk))
2805 				return;
2806 			tcp_end_cwnd_reduction(sk);
2807 			break;
2808 		}
2809 	}
2810 
2811 	/* E. Process state. */
2812 	switch (icsk->icsk_ca_state) {
2813 	case TCP_CA_Recovery:
2814 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2815 			if (tcp_is_reno(tp))
2816 				tcp_add_reno_sack(sk, num_dupack);
2817 		} else {
2818 			if (tcp_try_undo_partial(sk, prior_snd_una))
2819 				return;
2820 			/* Partial ACK arrived. Force fast retransmit. */
2821 			do_lost = tcp_is_reno(tp) ||
2822 				  tcp_force_fast_retransmit(sk);
2823 		}
2824 		if (tcp_try_undo_dsack(sk)) {
2825 			tcp_try_keep_open(sk);
2826 			return;
2827 		}
2828 		tcp_identify_packet_loss(sk, ack_flag);
2829 		break;
2830 	case TCP_CA_Loss:
2831 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2832 		tcp_identify_packet_loss(sk, ack_flag);
2833 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2834 		      (*ack_flag & FLAG_LOST_RETRANS)))
2835 			return;
2836 		/* Change state if cwnd is undone or retransmits are lost */
2837 		/* fall through */
2838 	default:
2839 		if (tcp_is_reno(tp)) {
2840 			if (flag & FLAG_SND_UNA_ADVANCED)
2841 				tcp_reset_reno_sack(tp);
2842 			tcp_add_reno_sack(sk, num_dupack);
2843 		}
2844 
2845 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2846 			tcp_try_undo_dsack(sk);
2847 
2848 		tcp_identify_packet_loss(sk, ack_flag);
2849 		if (!tcp_time_to_recover(sk, flag)) {
2850 			tcp_try_to_open(sk, flag);
2851 			return;
2852 		}
2853 
2854 		/* MTU probe failure: don't reduce cwnd */
2855 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2856 		    icsk->icsk_mtup.probe_size &&
2857 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2858 			tcp_mtup_probe_failed(sk);
2859 			/* Restores the reduction we did in tcp_mtup_probe() */
2860 			tp->snd_cwnd++;
2861 			tcp_simple_retransmit(sk);
2862 			return;
2863 		}
2864 
2865 		/* Otherwise enter Recovery state */
2866 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2867 		fast_rexmit = 1;
2868 	}
2869 
2870 	if (!tcp_is_rack(sk) && do_lost)
2871 		tcp_update_scoreboard(sk, fast_rexmit);
2872 	*rexmit = REXMIT_LOST;
2873 }
2874 
2875 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2876 {
2877 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 
2880 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2881 		/* If the remote keeps returning delayed ACKs, eventually
2882 		 * the min filter would pick it up and overestimate the
2883 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2884 		 */
2885 		return;
2886 	}
2887 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2888 			   rtt_us ? : jiffies_to_usecs(1));
2889 }
2890 
2891 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2892 			       long seq_rtt_us, long sack_rtt_us,
2893 			       long ca_rtt_us, struct rate_sample *rs)
2894 {
2895 	const struct tcp_sock *tp = tcp_sk(sk);
2896 
2897 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2898 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2899 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2900 	 * is acked (RFC6298).
2901 	 */
2902 	if (seq_rtt_us < 0)
2903 		seq_rtt_us = sack_rtt_us;
2904 
2905 	/* RTTM Rule: A TSecr value received in a segment is used to
2906 	 * update the averaged RTT measurement only if the segment
2907 	 * acknowledges some new data, i.e., only if it advances the
2908 	 * left edge of the send window.
2909 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2910 	 */
2911 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2912 	    flag & FLAG_ACKED) {
2913 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2914 
2915 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2916 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2917 			ca_rtt_us = seq_rtt_us;
2918 		}
2919 	}
2920 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2921 	if (seq_rtt_us < 0)
2922 		return false;
2923 
2924 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2925 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2926 	 * values will be skipped with the seq_rtt_us < 0 check above.
2927 	 */
2928 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2929 	tcp_rtt_estimator(sk, seq_rtt_us);
2930 	tcp_set_rto(sk);
2931 
2932 	/* RFC6298: only reset backoff on valid RTT measurement. */
2933 	inet_csk(sk)->icsk_backoff = 0;
2934 	return true;
2935 }
2936 
2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2938 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2939 {
2940 	struct rate_sample rs;
2941 	long rtt_us = -1L;
2942 
2943 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2944 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2945 
2946 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2947 }
2948 
2949 
2950 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2951 {
2952 	const struct inet_connection_sock *icsk = inet_csk(sk);
2953 
2954 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2955 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2956 }
2957 
2958 /* Restart timer after forward progress on connection.
2959  * RFC2988 recommends to restart timer to now+rto.
2960  */
2961 void tcp_rearm_rto(struct sock *sk)
2962 {
2963 	const struct inet_connection_sock *icsk = inet_csk(sk);
2964 	struct tcp_sock *tp = tcp_sk(sk);
2965 
2966 	/* If the retrans timer is currently being used by Fast Open
2967 	 * for SYN-ACK retrans purpose, stay put.
2968 	 */
2969 	if (tp->fastopen_rsk)
2970 		return;
2971 
2972 	if (!tp->packets_out) {
2973 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2974 	} else {
2975 		u32 rto = inet_csk(sk)->icsk_rto;
2976 		/* Offset the time elapsed after installing regular RTO */
2977 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2978 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2979 			s64 delta_us = tcp_rto_delta_us(sk);
2980 			/* delta_us may not be positive if the socket is locked
2981 			 * when the retrans timer fires and is rescheduled.
2982 			 */
2983 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2984 		}
2985 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2986 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2987 	}
2988 }
2989 
2990 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2991 static void tcp_set_xmit_timer(struct sock *sk)
2992 {
2993 	if (!tcp_schedule_loss_probe(sk, true))
2994 		tcp_rearm_rto(sk);
2995 }
2996 
2997 /* If we get here, the whole TSO packet has not been acked. */
2998 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2999 {
3000 	struct tcp_sock *tp = tcp_sk(sk);
3001 	u32 packets_acked;
3002 
3003 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3004 
3005 	packets_acked = tcp_skb_pcount(skb);
3006 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3007 		return 0;
3008 	packets_acked -= tcp_skb_pcount(skb);
3009 
3010 	if (packets_acked) {
3011 		BUG_ON(tcp_skb_pcount(skb) == 0);
3012 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3013 	}
3014 
3015 	return packets_acked;
3016 }
3017 
3018 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3019 			   u32 prior_snd_una)
3020 {
3021 	const struct skb_shared_info *shinfo;
3022 
3023 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3024 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3025 		return;
3026 
3027 	shinfo = skb_shinfo(skb);
3028 	if (!before(shinfo->tskey, prior_snd_una) &&
3029 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3030 		tcp_skb_tsorted_save(skb) {
3031 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3032 		} tcp_skb_tsorted_restore(skb);
3033 	}
3034 }
3035 
3036 /* Remove acknowledged frames from the retransmission queue. If our packet
3037  * is before the ack sequence we can discard it as it's confirmed to have
3038  * arrived at the other end.
3039  */
3040 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3041 			       u32 prior_snd_una,
3042 			       struct tcp_sacktag_state *sack)
3043 {
3044 	const struct inet_connection_sock *icsk = inet_csk(sk);
3045 	u64 first_ackt, last_ackt;
3046 	struct tcp_sock *tp = tcp_sk(sk);
3047 	u32 prior_sacked = tp->sacked_out;
3048 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3049 	struct sk_buff *skb, *next;
3050 	bool fully_acked = true;
3051 	long sack_rtt_us = -1L;
3052 	long seq_rtt_us = -1L;
3053 	long ca_rtt_us = -1L;
3054 	u32 pkts_acked = 0;
3055 	u32 last_in_flight = 0;
3056 	bool rtt_update;
3057 	int flag = 0;
3058 
3059 	first_ackt = 0;
3060 
3061 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3062 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3063 		const u32 start_seq = scb->seq;
3064 		u8 sacked = scb->sacked;
3065 		u32 acked_pcount;
3066 
3067 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3068 
3069 		/* Determine how many packets and what bytes were acked, tso and else */
3070 		if (after(scb->end_seq, tp->snd_una)) {
3071 			if (tcp_skb_pcount(skb) == 1 ||
3072 			    !after(tp->snd_una, scb->seq))
3073 				break;
3074 
3075 			acked_pcount = tcp_tso_acked(sk, skb);
3076 			if (!acked_pcount)
3077 				break;
3078 			fully_acked = false;
3079 		} else {
3080 			acked_pcount = tcp_skb_pcount(skb);
3081 		}
3082 
3083 		if (unlikely(sacked & TCPCB_RETRANS)) {
3084 			if (sacked & TCPCB_SACKED_RETRANS)
3085 				tp->retrans_out -= acked_pcount;
3086 			flag |= FLAG_RETRANS_DATA_ACKED;
3087 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3088 			last_ackt = tcp_skb_timestamp_us(skb);
3089 			WARN_ON_ONCE(last_ackt == 0);
3090 			if (!first_ackt)
3091 				first_ackt = last_ackt;
3092 
3093 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3094 			if (before(start_seq, reord))
3095 				reord = start_seq;
3096 			if (!after(scb->end_seq, tp->high_seq))
3097 				flag |= FLAG_ORIG_SACK_ACKED;
3098 		}
3099 
3100 		if (sacked & TCPCB_SACKED_ACKED) {
3101 			tp->sacked_out -= acked_pcount;
3102 		} else if (tcp_is_sack(tp)) {
3103 			tp->delivered += acked_pcount;
3104 			if (!tcp_skb_spurious_retrans(tp, skb))
3105 				tcp_rack_advance(tp, sacked, scb->end_seq,
3106 						 tcp_skb_timestamp_us(skb));
3107 		}
3108 		if (sacked & TCPCB_LOST)
3109 			tp->lost_out -= acked_pcount;
3110 
3111 		tp->packets_out -= acked_pcount;
3112 		pkts_acked += acked_pcount;
3113 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3114 
3115 		/* Initial outgoing SYN's get put onto the write_queue
3116 		 * just like anything else we transmit.  It is not
3117 		 * true data, and if we misinform our callers that
3118 		 * this ACK acks real data, we will erroneously exit
3119 		 * connection startup slow start one packet too
3120 		 * quickly.  This is severely frowned upon behavior.
3121 		 */
3122 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3123 			flag |= FLAG_DATA_ACKED;
3124 		} else {
3125 			flag |= FLAG_SYN_ACKED;
3126 			tp->retrans_stamp = 0;
3127 		}
3128 
3129 		if (!fully_acked)
3130 			break;
3131 
3132 		next = skb_rb_next(skb);
3133 		if (unlikely(skb == tp->retransmit_skb_hint))
3134 			tp->retransmit_skb_hint = NULL;
3135 		if (unlikely(skb == tp->lost_skb_hint))
3136 			tp->lost_skb_hint = NULL;
3137 		tcp_rtx_queue_unlink_and_free(skb, sk);
3138 	}
3139 
3140 	if (!skb)
3141 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3142 
3143 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3144 		tp->snd_up = tp->snd_una;
3145 
3146 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3147 		flag |= FLAG_SACK_RENEGING;
3148 
3149 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3150 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3151 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3152 
3153 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3154 		    last_in_flight && !prior_sacked && fully_acked &&
3155 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3156 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3157 			/* Conservatively mark a delayed ACK. It's typically
3158 			 * from a lone runt packet over the round trip to
3159 			 * a receiver w/o out-of-order or CE events.
3160 			 */
3161 			flag |= FLAG_ACK_MAYBE_DELAYED;
3162 		}
3163 	}
3164 	if (sack->first_sackt) {
3165 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3166 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3167 	}
3168 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3169 					ca_rtt_us, sack->rate);
3170 
3171 	if (flag & FLAG_ACKED) {
3172 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3173 		if (unlikely(icsk->icsk_mtup.probe_size &&
3174 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3175 			tcp_mtup_probe_success(sk);
3176 		}
3177 
3178 		if (tcp_is_reno(tp)) {
3179 			tcp_remove_reno_sacks(sk, pkts_acked);
3180 
3181 			/* If any of the cumulatively ACKed segments was
3182 			 * retransmitted, non-SACK case cannot confirm that
3183 			 * progress was due to original transmission due to
3184 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3185 			 * the packets may have been never retransmitted.
3186 			 */
3187 			if (flag & FLAG_RETRANS_DATA_ACKED)
3188 				flag &= ~FLAG_ORIG_SACK_ACKED;
3189 		} else {
3190 			int delta;
3191 
3192 			/* Non-retransmitted hole got filled? That's reordering */
3193 			if (before(reord, prior_fack))
3194 				tcp_check_sack_reordering(sk, reord, 0);
3195 
3196 			delta = prior_sacked - tp->sacked_out;
3197 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3198 		}
3199 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3200 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3201 						    tcp_skb_timestamp_us(skb))) {
3202 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3203 		 * after when the head was last (re)transmitted. Otherwise the
3204 		 * timeout may continue to extend in loss recovery.
3205 		 */
3206 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3207 	}
3208 
3209 	if (icsk->icsk_ca_ops->pkts_acked) {
3210 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3211 					     .rtt_us = sack->rate->rtt_us,
3212 					     .in_flight = last_in_flight };
3213 
3214 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3215 	}
3216 
3217 #if FASTRETRANS_DEBUG > 0
3218 	WARN_ON((int)tp->sacked_out < 0);
3219 	WARN_ON((int)tp->lost_out < 0);
3220 	WARN_ON((int)tp->retrans_out < 0);
3221 	if (!tp->packets_out && tcp_is_sack(tp)) {
3222 		icsk = inet_csk(sk);
3223 		if (tp->lost_out) {
3224 			pr_debug("Leak l=%u %d\n",
3225 				 tp->lost_out, icsk->icsk_ca_state);
3226 			tp->lost_out = 0;
3227 		}
3228 		if (tp->sacked_out) {
3229 			pr_debug("Leak s=%u %d\n",
3230 				 tp->sacked_out, icsk->icsk_ca_state);
3231 			tp->sacked_out = 0;
3232 		}
3233 		if (tp->retrans_out) {
3234 			pr_debug("Leak r=%u %d\n",
3235 				 tp->retrans_out, icsk->icsk_ca_state);
3236 			tp->retrans_out = 0;
3237 		}
3238 	}
3239 #endif
3240 	return flag;
3241 }
3242 
3243 static void tcp_ack_probe(struct sock *sk)
3244 {
3245 	struct inet_connection_sock *icsk = inet_csk(sk);
3246 	struct sk_buff *head = tcp_send_head(sk);
3247 	const struct tcp_sock *tp = tcp_sk(sk);
3248 
3249 	/* Was it a usable window open? */
3250 	if (!head)
3251 		return;
3252 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3253 		icsk->icsk_backoff = 0;
3254 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3255 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3256 		 * This function is not for random using!
3257 		 */
3258 	} else {
3259 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3260 
3261 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3262 				     when, TCP_RTO_MAX, NULL);
3263 	}
3264 }
3265 
3266 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3267 {
3268 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3269 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3270 }
3271 
3272 /* Decide wheather to run the increase function of congestion control. */
3273 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3274 {
3275 	/* If reordering is high then always grow cwnd whenever data is
3276 	 * delivered regardless of its ordering. Otherwise stay conservative
3277 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3278 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3279 	 * cwnd in tcp_fastretrans_alert() based on more states.
3280 	 */
3281 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3282 		return flag & FLAG_FORWARD_PROGRESS;
3283 
3284 	return flag & FLAG_DATA_ACKED;
3285 }
3286 
3287 /* The "ultimate" congestion control function that aims to replace the rigid
3288  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3289  * It's called toward the end of processing an ACK with precise rate
3290  * information. All transmission or retransmission are delayed afterwards.
3291  */
3292 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3293 			     int flag, const struct rate_sample *rs)
3294 {
3295 	const struct inet_connection_sock *icsk = inet_csk(sk);
3296 
3297 	if (icsk->icsk_ca_ops->cong_control) {
3298 		icsk->icsk_ca_ops->cong_control(sk, rs);
3299 		return;
3300 	}
3301 
3302 	if (tcp_in_cwnd_reduction(sk)) {
3303 		/* Reduce cwnd if state mandates */
3304 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3305 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3306 		/* Advance cwnd if state allows */
3307 		tcp_cong_avoid(sk, ack, acked_sacked);
3308 	}
3309 	tcp_update_pacing_rate(sk);
3310 }
3311 
3312 /* Check that window update is acceptable.
3313  * The function assumes that snd_una<=ack<=snd_next.
3314  */
3315 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3316 					const u32 ack, const u32 ack_seq,
3317 					const u32 nwin)
3318 {
3319 	return	after(ack, tp->snd_una) ||
3320 		after(ack_seq, tp->snd_wl1) ||
3321 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3322 }
3323 
3324 /* If we update tp->snd_una, also update tp->bytes_acked */
3325 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3326 {
3327 	u32 delta = ack - tp->snd_una;
3328 
3329 	sock_owned_by_me((struct sock *)tp);
3330 	tp->bytes_acked += delta;
3331 	tp->snd_una = ack;
3332 }
3333 
3334 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3335 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3336 {
3337 	u32 delta = seq - tp->rcv_nxt;
3338 
3339 	sock_owned_by_me((struct sock *)tp);
3340 	tp->bytes_received += delta;
3341 	tp->rcv_nxt = seq;
3342 }
3343 
3344 /* Update our send window.
3345  *
3346  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3347  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3348  */
3349 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3350 				 u32 ack_seq)
3351 {
3352 	struct tcp_sock *tp = tcp_sk(sk);
3353 	int flag = 0;
3354 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3355 
3356 	if (likely(!tcp_hdr(skb)->syn))
3357 		nwin <<= tp->rx_opt.snd_wscale;
3358 
3359 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3360 		flag |= FLAG_WIN_UPDATE;
3361 		tcp_update_wl(tp, ack_seq);
3362 
3363 		if (tp->snd_wnd != nwin) {
3364 			tp->snd_wnd = nwin;
3365 
3366 			/* Note, it is the only place, where
3367 			 * fast path is recovered for sending TCP.
3368 			 */
3369 			tp->pred_flags = 0;
3370 			tcp_fast_path_check(sk);
3371 
3372 			if (!tcp_write_queue_empty(sk))
3373 				tcp_slow_start_after_idle_check(sk);
3374 
3375 			if (nwin > tp->max_window) {
3376 				tp->max_window = nwin;
3377 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3378 			}
3379 		}
3380 	}
3381 
3382 	tcp_snd_una_update(tp, ack);
3383 
3384 	return flag;
3385 }
3386 
3387 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3388 				   u32 *last_oow_ack_time)
3389 {
3390 	if (*last_oow_ack_time) {
3391 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3392 
3393 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3394 			NET_INC_STATS(net, mib_idx);
3395 			return true;	/* rate-limited: don't send yet! */
3396 		}
3397 	}
3398 
3399 	*last_oow_ack_time = tcp_jiffies32;
3400 
3401 	return false;	/* not rate-limited: go ahead, send dupack now! */
3402 }
3403 
3404 /* Return true if we're currently rate-limiting out-of-window ACKs and
3405  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3406  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3407  * attacks that send repeated SYNs or ACKs for the same connection. To
3408  * do this, we do not send a duplicate SYNACK or ACK if the remote
3409  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3410  */
3411 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3412 			  int mib_idx, u32 *last_oow_ack_time)
3413 {
3414 	/* Data packets without SYNs are not likely part of an ACK loop. */
3415 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3416 	    !tcp_hdr(skb)->syn)
3417 		return false;
3418 
3419 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3420 }
3421 
3422 /* RFC 5961 7 [ACK Throttling] */
3423 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3424 {
3425 	/* unprotected vars, we dont care of overwrites */
3426 	static u32 challenge_timestamp;
3427 	static unsigned int challenge_count;
3428 	struct tcp_sock *tp = tcp_sk(sk);
3429 	struct net *net = sock_net(sk);
3430 	u32 count, now;
3431 
3432 	/* First check our per-socket dupack rate limit. */
3433 	if (__tcp_oow_rate_limited(net,
3434 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3435 				   &tp->last_oow_ack_time))
3436 		return;
3437 
3438 	/* Then check host-wide RFC 5961 rate limit. */
3439 	now = jiffies / HZ;
3440 	if (now != challenge_timestamp) {
3441 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3442 		u32 half = (ack_limit + 1) >> 1;
3443 
3444 		challenge_timestamp = now;
3445 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3446 	}
3447 	count = READ_ONCE(challenge_count);
3448 	if (count > 0) {
3449 		WRITE_ONCE(challenge_count, count - 1);
3450 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3451 		tcp_send_ack(sk);
3452 	}
3453 }
3454 
3455 static void tcp_store_ts_recent(struct tcp_sock *tp)
3456 {
3457 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3458 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3459 }
3460 
3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3462 {
3463 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3464 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3465 		 * extra check below makes sure this can only happen
3466 		 * for pure ACK frames.  -DaveM
3467 		 *
3468 		 * Not only, also it occurs for expired timestamps.
3469 		 */
3470 
3471 		if (tcp_paws_check(&tp->rx_opt, 0))
3472 			tcp_store_ts_recent(tp);
3473 	}
3474 }
3475 
3476 /* This routine deals with acks during a TLP episode.
3477  * We mark the end of a TLP episode on receiving TLP dupack or when
3478  * ack is after tlp_high_seq.
3479  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3480  */
3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3482 {
3483 	struct tcp_sock *tp = tcp_sk(sk);
3484 
3485 	if (before(ack, tp->tlp_high_seq))
3486 		return;
3487 
3488 	if (flag & FLAG_DSACKING_ACK) {
3489 		/* This DSACK means original and TLP probe arrived; no loss */
3490 		tp->tlp_high_seq = 0;
3491 	} else if (after(ack, tp->tlp_high_seq)) {
3492 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3493 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3494 		 */
3495 		tcp_init_cwnd_reduction(sk);
3496 		tcp_set_ca_state(sk, TCP_CA_CWR);
3497 		tcp_end_cwnd_reduction(sk);
3498 		tcp_try_keep_open(sk);
3499 		NET_INC_STATS(sock_net(sk),
3500 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3501 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3502 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3503 		/* Pure dupack: original and TLP probe arrived; no loss */
3504 		tp->tlp_high_seq = 0;
3505 	}
3506 }
3507 
3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3509 {
3510 	const struct inet_connection_sock *icsk = inet_csk(sk);
3511 
3512 	if (icsk->icsk_ca_ops->in_ack_event)
3513 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3514 }
3515 
3516 /* Congestion control has updated the cwnd already. So if we're in
3517  * loss recovery then now we do any new sends (for FRTO) or
3518  * retransmits (for CA_Loss or CA_recovery) that make sense.
3519  */
3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3521 {
3522 	struct tcp_sock *tp = tcp_sk(sk);
3523 
3524 	if (rexmit == REXMIT_NONE)
3525 		return;
3526 
3527 	if (unlikely(rexmit == 2)) {
3528 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3529 					  TCP_NAGLE_OFF);
3530 		if (after(tp->snd_nxt, tp->high_seq))
3531 			return;
3532 		tp->frto = 0;
3533 	}
3534 	tcp_xmit_retransmit_queue(sk);
3535 }
3536 
3537 /* Returns the number of packets newly acked or sacked by the current ACK */
3538 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3539 {
3540 	const struct net *net = sock_net(sk);
3541 	struct tcp_sock *tp = tcp_sk(sk);
3542 	u32 delivered;
3543 
3544 	delivered = tp->delivered - prior_delivered;
3545 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3546 	if (flag & FLAG_ECE) {
3547 		tp->delivered_ce += delivered;
3548 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3549 	}
3550 	return delivered;
3551 }
3552 
3553 /* This routine deals with incoming acks, but not outgoing ones. */
3554 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3555 {
3556 	struct inet_connection_sock *icsk = inet_csk(sk);
3557 	struct tcp_sock *tp = tcp_sk(sk);
3558 	struct tcp_sacktag_state sack_state;
3559 	struct rate_sample rs = { .prior_delivered = 0 };
3560 	u32 prior_snd_una = tp->snd_una;
3561 	bool is_sack_reneg = tp->is_sack_reneg;
3562 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3563 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3564 	int num_dupack = 0;
3565 	int prior_packets = tp->packets_out;
3566 	u32 delivered = tp->delivered;
3567 	u32 lost = tp->lost;
3568 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3569 	u32 prior_fack;
3570 
3571 	sack_state.first_sackt = 0;
3572 	sack_state.rate = &rs;
3573 
3574 	/* We very likely will need to access rtx queue. */
3575 	prefetch(sk->tcp_rtx_queue.rb_node);
3576 
3577 	/* If the ack is older than previous acks
3578 	 * then we can probably ignore it.
3579 	 */
3580 	if (before(ack, prior_snd_una)) {
3581 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3582 		if (before(ack, prior_snd_una - tp->max_window)) {
3583 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3584 				tcp_send_challenge_ack(sk, skb);
3585 			return -1;
3586 		}
3587 		goto old_ack;
3588 	}
3589 
3590 	/* If the ack includes data we haven't sent yet, discard
3591 	 * this segment (RFC793 Section 3.9).
3592 	 */
3593 	if (after(ack, tp->snd_nxt))
3594 		return -1;
3595 
3596 	if (after(ack, prior_snd_una)) {
3597 		flag |= FLAG_SND_UNA_ADVANCED;
3598 		icsk->icsk_retransmits = 0;
3599 
3600 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3601 		if (static_branch_unlikely(&clean_acked_data_enabled))
3602 			if (icsk->icsk_clean_acked)
3603 				icsk->icsk_clean_acked(sk, ack);
3604 #endif
3605 	}
3606 
3607 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3608 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3609 
3610 	/* ts_recent update must be made after we are sure that the packet
3611 	 * is in window.
3612 	 */
3613 	if (flag & FLAG_UPDATE_TS_RECENT)
3614 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3615 
3616 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3617 	    FLAG_SND_UNA_ADVANCED) {
3618 		/* Window is constant, pure forward advance.
3619 		 * No more checks are required.
3620 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3621 		 */
3622 		tcp_update_wl(tp, ack_seq);
3623 		tcp_snd_una_update(tp, ack);
3624 		flag |= FLAG_WIN_UPDATE;
3625 
3626 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3627 
3628 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3629 	} else {
3630 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3631 
3632 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3633 			flag |= FLAG_DATA;
3634 		else
3635 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3636 
3637 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3638 
3639 		if (TCP_SKB_CB(skb)->sacked)
3640 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3641 							&sack_state);
3642 
3643 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3644 			flag |= FLAG_ECE;
3645 			ack_ev_flags |= CA_ACK_ECE;
3646 		}
3647 
3648 		if (flag & FLAG_WIN_UPDATE)
3649 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3650 
3651 		tcp_in_ack_event(sk, ack_ev_flags);
3652 	}
3653 
3654 	/* We passed data and got it acked, remove any soft error
3655 	 * log. Something worked...
3656 	 */
3657 	sk->sk_err_soft = 0;
3658 	icsk->icsk_probes_out = 0;
3659 	tp->rcv_tstamp = tcp_jiffies32;
3660 	if (!prior_packets)
3661 		goto no_queue;
3662 
3663 	/* See if we can take anything off of the retransmit queue. */
3664 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3665 
3666 	tcp_rack_update_reo_wnd(sk, &rs);
3667 
3668 	if (tp->tlp_high_seq)
3669 		tcp_process_tlp_ack(sk, ack, flag);
3670 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3671 	if (flag & FLAG_SET_XMIT_TIMER)
3672 		tcp_set_xmit_timer(sk);
3673 
3674 	if (tcp_ack_is_dubious(sk, flag)) {
3675 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3676 			num_dupack = 1;
3677 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3678 			if (!(flag & FLAG_DATA))
3679 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3680 		}
3681 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3682 				      &rexmit);
3683 	}
3684 
3685 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3686 		sk_dst_confirm(sk);
3687 
3688 	delivered = tcp_newly_delivered(sk, delivered, flag);
3689 	lost = tp->lost - lost;			/* freshly marked lost */
3690 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3691 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3692 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3693 	tcp_xmit_recovery(sk, rexmit);
3694 	return 1;
3695 
3696 no_queue:
3697 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3698 	if (flag & FLAG_DSACKING_ACK) {
3699 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3700 				      &rexmit);
3701 		tcp_newly_delivered(sk, delivered, flag);
3702 	}
3703 	/* If this ack opens up a zero window, clear backoff.  It was
3704 	 * being used to time the probes, and is probably far higher than
3705 	 * it needs to be for normal retransmission.
3706 	 */
3707 	tcp_ack_probe(sk);
3708 
3709 	if (tp->tlp_high_seq)
3710 		tcp_process_tlp_ack(sk, ack, flag);
3711 	return 1;
3712 
3713 old_ack:
3714 	/* If data was SACKed, tag it and see if we should send more data.
3715 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3716 	 */
3717 	if (TCP_SKB_CB(skb)->sacked) {
3718 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3719 						&sack_state);
3720 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3721 				      &rexmit);
3722 		tcp_newly_delivered(sk, delivered, flag);
3723 		tcp_xmit_recovery(sk, rexmit);
3724 	}
3725 
3726 	return 0;
3727 }
3728 
3729 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3730 				      bool syn, struct tcp_fastopen_cookie *foc,
3731 				      bool exp_opt)
3732 {
3733 	/* Valid only in SYN or SYN-ACK with an even length.  */
3734 	if (!foc || !syn || len < 0 || (len & 1))
3735 		return;
3736 
3737 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3738 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3739 		memcpy(foc->val, cookie, len);
3740 	else if (len != 0)
3741 		len = -1;
3742 	foc->len = len;
3743 	foc->exp = exp_opt;
3744 }
3745 
3746 static void smc_parse_options(const struct tcphdr *th,
3747 			      struct tcp_options_received *opt_rx,
3748 			      const unsigned char *ptr,
3749 			      int opsize)
3750 {
3751 #if IS_ENABLED(CONFIG_SMC)
3752 	if (static_branch_unlikely(&tcp_have_smc)) {
3753 		if (th->syn && !(opsize & 1) &&
3754 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3755 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3756 			opt_rx->smc_ok = 1;
3757 	}
3758 #endif
3759 }
3760 
3761 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3762  * But, this can also be called on packets in the established flow when
3763  * the fast version below fails.
3764  */
3765 void tcp_parse_options(const struct net *net,
3766 		       const struct sk_buff *skb,
3767 		       struct tcp_options_received *opt_rx, int estab,
3768 		       struct tcp_fastopen_cookie *foc)
3769 {
3770 	const unsigned char *ptr;
3771 	const struct tcphdr *th = tcp_hdr(skb);
3772 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3773 
3774 	ptr = (const unsigned char *)(th + 1);
3775 	opt_rx->saw_tstamp = 0;
3776 
3777 	while (length > 0) {
3778 		int opcode = *ptr++;
3779 		int opsize;
3780 
3781 		switch (opcode) {
3782 		case TCPOPT_EOL:
3783 			return;
3784 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3785 			length--;
3786 			continue;
3787 		default:
3788 			opsize = *ptr++;
3789 			if (opsize < 2) /* "silly options" */
3790 				return;
3791 			if (opsize > length)
3792 				return;	/* don't parse partial options */
3793 			switch (opcode) {
3794 			case TCPOPT_MSS:
3795 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3796 					u16 in_mss = get_unaligned_be16(ptr);
3797 					if (in_mss) {
3798 						if (opt_rx->user_mss &&
3799 						    opt_rx->user_mss < in_mss)
3800 							in_mss = opt_rx->user_mss;
3801 						opt_rx->mss_clamp = in_mss;
3802 					}
3803 				}
3804 				break;
3805 			case TCPOPT_WINDOW:
3806 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3807 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3808 					__u8 snd_wscale = *(__u8 *)ptr;
3809 					opt_rx->wscale_ok = 1;
3810 					if (snd_wscale > TCP_MAX_WSCALE) {
3811 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3812 								     __func__,
3813 								     snd_wscale,
3814 								     TCP_MAX_WSCALE);
3815 						snd_wscale = TCP_MAX_WSCALE;
3816 					}
3817 					opt_rx->snd_wscale = snd_wscale;
3818 				}
3819 				break;
3820 			case TCPOPT_TIMESTAMP:
3821 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3822 				    ((estab && opt_rx->tstamp_ok) ||
3823 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3824 					opt_rx->saw_tstamp = 1;
3825 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3826 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3827 				}
3828 				break;
3829 			case TCPOPT_SACK_PERM:
3830 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3831 				    !estab && net->ipv4.sysctl_tcp_sack) {
3832 					opt_rx->sack_ok = TCP_SACK_SEEN;
3833 					tcp_sack_reset(opt_rx);
3834 				}
3835 				break;
3836 
3837 			case TCPOPT_SACK:
3838 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3839 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3840 				   opt_rx->sack_ok) {
3841 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3842 				}
3843 				break;
3844 #ifdef CONFIG_TCP_MD5SIG
3845 			case TCPOPT_MD5SIG:
3846 				/*
3847 				 * The MD5 Hash has already been
3848 				 * checked (see tcp_v{4,6}_do_rcv()).
3849 				 */
3850 				break;
3851 #endif
3852 			case TCPOPT_FASTOPEN:
3853 				tcp_parse_fastopen_option(
3854 					opsize - TCPOLEN_FASTOPEN_BASE,
3855 					ptr, th->syn, foc, false);
3856 				break;
3857 
3858 			case TCPOPT_EXP:
3859 				/* Fast Open option shares code 254 using a
3860 				 * 16 bits magic number.
3861 				 */
3862 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3863 				    get_unaligned_be16(ptr) ==
3864 				    TCPOPT_FASTOPEN_MAGIC)
3865 					tcp_parse_fastopen_option(opsize -
3866 						TCPOLEN_EXP_FASTOPEN_BASE,
3867 						ptr + 2, th->syn, foc, true);
3868 				else
3869 					smc_parse_options(th, opt_rx, ptr,
3870 							  opsize);
3871 				break;
3872 
3873 			}
3874 			ptr += opsize-2;
3875 			length -= opsize;
3876 		}
3877 	}
3878 }
3879 EXPORT_SYMBOL(tcp_parse_options);
3880 
3881 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3882 {
3883 	const __be32 *ptr = (const __be32 *)(th + 1);
3884 
3885 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3886 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3887 		tp->rx_opt.saw_tstamp = 1;
3888 		++ptr;
3889 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3890 		++ptr;
3891 		if (*ptr)
3892 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3893 		else
3894 			tp->rx_opt.rcv_tsecr = 0;
3895 		return true;
3896 	}
3897 	return false;
3898 }
3899 
3900 /* Fast parse options. This hopes to only see timestamps.
3901  * If it is wrong it falls back on tcp_parse_options().
3902  */
3903 static bool tcp_fast_parse_options(const struct net *net,
3904 				   const struct sk_buff *skb,
3905 				   const struct tcphdr *th, struct tcp_sock *tp)
3906 {
3907 	/* In the spirit of fast parsing, compare doff directly to constant
3908 	 * values.  Because equality is used, short doff can be ignored here.
3909 	 */
3910 	if (th->doff == (sizeof(*th) / 4)) {
3911 		tp->rx_opt.saw_tstamp = 0;
3912 		return false;
3913 	} else if (tp->rx_opt.tstamp_ok &&
3914 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3915 		if (tcp_parse_aligned_timestamp(tp, th))
3916 			return true;
3917 	}
3918 
3919 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3920 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3921 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3922 
3923 	return true;
3924 }
3925 
3926 #ifdef CONFIG_TCP_MD5SIG
3927 /*
3928  * Parse MD5 Signature option
3929  */
3930 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3931 {
3932 	int length = (th->doff << 2) - sizeof(*th);
3933 	const u8 *ptr = (const u8 *)(th + 1);
3934 
3935 	/* If not enough data remaining, we can short cut */
3936 	while (length >= TCPOLEN_MD5SIG) {
3937 		int opcode = *ptr++;
3938 		int opsize;
3939 
3940 		switch (opcode) {
3941 		case TCPOPT_EOL:
3942 			return NULL;
3943 		case TCPOPT_NOP:
3944 			length--;
3945 			continue;
3946 		default:
3947 			opsize = *ptr++;
3948 			if (opsize < 2 || opsize > length)
3949 				return NULL;
3950 			if (opcode == TCPOPT_MD5SIG)
3951 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3952 		}
3953 		ptr += opsize - 2;
3954 		length -= opsize;
3955 	}
3956 	return NULL;
3957 }
3958 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3959 #endif
3960 
3961 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3962  *
3963  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3964  * it can pass through stack. So, the following predicate verifies that
3965  * this segment is not used for anything but congestion avoidance or
3966  * fast retransmit. Moreover, we even are able to eliminate most of such
3967  * second order effects, if we apply some small "replay" window (~RTO)
3968  * to timestamp space.
3969  *
3970  * All these measures still do not guarantee that we reject wrapped ACKs
3971  * on networks with high bandwidth, when sequence space is recycled fastly,
3972  * but it guarantees that such events will be very rare and do not affect
3973  * connection seriously. This doesn't look nice, but alas, PAWS is really
3974  * buggy extension.
3975  *
3976  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3977  * states that events when retransmit arrives after original data are rare.
3978  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3979  * the biggest problem on large power networks even with minor reordering.
3980  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3981  * up to bandwidth of 18Gigabit/sec. 8) ]
3982  */
3983 
3984 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3985 {
3986 	const struct tcp_sock *tp = tcp_sk(sk);
3987 	const struct tcphdr *th = tcp_hdr(skb);
3988 	u32 seq = TCP_SKB_CB(skb)->seq;
3989 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3990 
3991 	return (/* 1. Pure ACK with correct sequence number. */
3992 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3993 
3994 		/* 2. ... and duplicate ACK. */
3995 		ack == tp->snd_una &&
3996 
3997 		/* 3. ... and does not update window. */
3998 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3999 
4000 		/* 4. ... and sits in replay window. */
4001 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4002 }
4003 
4004 static inline bool tcp_paws_discard(const struct sock *sk,
4005 				   const struct sk_buff *skb)
4006 {
4007 	const struct tcp_sock *tp = tcp_sk(sk);
4008 
4009 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4010 	       !tcp_disordered_ack(sk, skb);
4011 }
4012 
4013 /* Check segment sequence number for validity.
4014  *
4015  * Segment controls are considered valid, if the segment
4016  * fits to the window after truncation to the window. Acceptability
4017  * of data (and SYN, FIN, of course) is checked separately.
4018  * See tcp_data_queue(), for example.
4019  *
4020  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4021  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4022  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4023  * (borrowed from freebsd)
4024  */
4025 
4026 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4027 {
4028 	return	!before(end_seq, tp->rcv_wup) &&
4029 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4030 }
4031 
4032 /* When we get a reset we do this. */
4033 void tcp_reset(struct sock *sk)
4034 {
4035 	trace_tcp_receive_reset(sk);
4036 
4037 	/* We want the right error as BSD sees it (and indeed as we do). */
4038 	switch (sk->sk_state) {
4039 	case TCP_SYN_SENT:
4040 		sk->sk_err = ECONNREFUSED;
4041 		break;
4042 	case TCP_CLOSE_WAIT:
4043 		sk->sk_err = EPIPE;
4044 		break;
4045 	case TCP_CLOSE:
4046 		return;
4047 	default:
4048 		sk->sk_err = ECONNRESET;
4049 	}
4050 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4051 	smp_wmb();
4052 
4053 	tcp_write_queue_purge(sk);
4054 	tcp_done(sk);
4055 
4056 	if (!sock_flag(sk, SOCK_DEAD))
4057 		sk->sk_error_report(sk);
4058 }
4059 
4060 /*
4061  * 	Process the FIN bit. This now behaves as it is supposed to work
4062  *	and the FIN takes effect when it is validly part of sequence
4063  *	space. Not before when we get holes.
4064  *
4065  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4067  *	TIME-WAIT)
4068  *
4069  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4070  *	close and we go into CLOSING (and later onto TIME-WAIT)
4071  *
4072  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4073  */
4074 void tcp_fin(struct sock *sk)
4075 {
4076 	struct tcp_sock *tp = tcp_sk(sk);
4077 
4078 	inet_csk_schedule_ack(sk);
4079 
4080 	sk->sk_shutdown |= RCV_SHUTDOWN;
4081 	sock_set_flag(sk, SOCK_DONE);
4082 
4083 	switch (sk->sk_state) {
4084 	case TCP_SYN_RECV:
4085 	case TCP_ESTABLISHED:
4086 		/* Move to CLOSE_WAIT */
4087 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4088 		inet_csk_enter_pingpong_mode(sk);
4089 		break;
4090 
4091 	case TCP_CLOSE_WAIT:
4092 	case TCP_CLOSING:
4093 		/* Received a retransmission of the FIN, do
4094 		 * nothing.
4095 		 */
4096 		break;
4097 	case TCP_LAST_ACK:
4098 		/* RFC793: Remain in the LAST-ACK state. */
4099 		break;
4100 
4101 	case TCP_FIN_WAIT1:
4102 		/* This case occurs when a simultaneous close
4103 		 * happens, we must ack the received FIN and
4104 		 * enter the CLOSING state.
4105 		 */
4106 		tcp_send_ack(sk);
4107 		tcp_set_state(sk, TCP_CLOSING);
4108 		break;
4109 	case TCP_FIN_WAIT2:
4110 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4111 		tcp_send_ack(sk);
4112 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4113 		break;
4114 	default:
4115 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116 		 * cases we should never reach this piece of code.
4117 		 */
4118 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4119 		       __func__, sk->sk_state);
4120 		break;
4121 	}
4122 
4123 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4124 	 * Probably, we should reset in this case. For now drop them.
4125 	 */
4126 	skb_rbtree_purge(&tp->out_of_order_queue);
4127 	if (tcp_is_sack(tp))
4128 		tcp_sack_reset(&tp->rx_opt);
4129 	sk_mem_reclaim(sk);
4130 
4131 	if (!sock_flag(sk, SOCK_DEAD)) {
4132 		sk->sk_state_change(sk);
4133 
4134 		/* Do not send POLL_HUP for half duplex close. */
4135 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4136 		    sk->sk_state == TCP_CLOSE)
4137 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4138 		else
4139 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4140 	}
4141 }
4142 
4143 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4144 				  u32 end_seq)
4145 {
4146 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4147 		if (before(seq, sp->start_seq))
4148 			sp->start_seq = seq;
4149 		if (after(end_seq, sp->end_seq))
4150 			sp->end_seq = end_seq;
4151 		return true;
4152 	}
4153 	return false;
4154 }
4155 
4156 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4157 {
4158 	struct tcp_sock *tp = tcp_sk(sk);
4159 
4160 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4161 		int mib_idx;
4162 
4163 		if (before(seq, tp->rcv_nxt))
4164 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4165 		else
4166 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4167 
4168 		NET_INC_STATS(sock_net(sk), mib_idx);
4169 
4170 		tp->rx_opt.dsack = 1;
4171 		tp->duplicate_sack[0].start_seq = seq;
4172 		tp->duplicate_sack[0].end_seq = end_seq;
4173 	}
4174 }
4175 
4176 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4177 {
4178 	struct tcp_sock *tp = tcp_sk(sk);
4179 
4180 	if (!tp->rx_opt.dsack)
4181 		tcp_dsack_set(sk, seq, end_seq);
4182 	else
4183 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4184 }
4185 
4186 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4187 {
4188 	/* When the ACK path fails or drops most ACKs, the sender would
4189 	 * timeout and spuriously retransmit the same segment repeatedly.
4190 	 * The receiver remembers and reflects via DSACKs. Leverage the
4191 	 * DSACK state and change the txhash to re-route speculatively.
4192 	 */
4193 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4194 		sk_rethink_txhash(sk);
4195 }
4196 
4197 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4198 {
4199 	struct tcp_sock *tp = tcp_sk(sk);
4200 
4201 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4202 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4203 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4204 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4205 
4206 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4207 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4208 
4209 			tcp_rcv_spurious_retrans(sk, skb);
4210 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4211 				end_seq = tp->rcv_nxt;
4212 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4213 		}
4214 	}
4215 
4216 	tcp_send_ack(sk);
4217 }
4218 
4219 /* These routines update the SACK block as out-of-order packets arrive or
4220  * in-order packets close up the sequence space.
4221  */
4222 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4223 {
4224 	int this_sack;
4225 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4226 	struct tcp_sack_block *swalk = sp + 1;
4227 
4228 	/* See if the recent change to the first SACK eats into
4229 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4230 	 */
4231 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4232 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4233 			int i;
4234 
4235 			/* Zap SWALK, by moving every further SACK up by one slot.
4236 			 * Decrease num_sacks.
4237 			 */
4238 			tp->rx_opt.num_sacks--;
4239 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4240 				sp[i] = sp[i + 1];
4241 			continue;
4242 		}
4243 		this_sack++, swalk++;
4244 	}
4245 }
4246 
4247 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4248 {
4249 	struct tcp_sock *tp = tcp_sk(sk);
4250 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4251 	int cur_sacks = tp->rx_opt.num_sacks;
4252 	int this_sack;
4253 
4254 	if (!cur_sacks)
4255 		goto new_sack;
4256 
4257 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4258 		if (tcp_sack_extend(sp, seq, end_seq)) {
4259 			/* Rotate this_sack to the first one. */
4260 			for (; this_sack > 0; this_sack--, sp--)
4261 				swap(*sp, *(sp - 1));
4262 			if (cur_sacks > 1)
4263 				tcp_sack_maybe_coalesce(tp);
4264 			return;
4265 		}
4266 	}
4267 
4268 	/* Could not find an adjacent existing SACK, build a new one,
4269 	 * put it at the front, and shift everyone else down.  We
4270 	 * always know there is at least one SACK present already here.
4271 	 *
4272 	 * If the sack array is full, forget about the last one.
4273 	 */
4274 	if (this_sack >= TCP_NUM_SACKS) {
4275 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4276 			tcp_send_ack(sk);
4277 		this_sack--;
4278 		tp->rx_opt.num_sacks--;
4279 		sp--;
4280 	}
4281 	for (; this_sack > 0; this_sack--, sp--)
4282 		*sp = *(sp - 1);
4283 
4284 new_sack:
4285 	/* Build the new head SACK, and we're done. */
4286 	sp->start_seq = seq;
4287 	sp->end_seq = end_seq;
4288 	tp->rx_opt.num_sacks++;
4289 }
4290 
4291 /* RCV.NXT advances, some SACKs should be eaten. */
4292 
4293 static void tcp_sack_remove(struct tcp_sock *tp)
4294 {
4295 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4296 	int num_sacks = tp->rx_opt.num_sacks;
4297 	int this_sack;
4298 
4299 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4300 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4301 		tp->rx_opt.num_sacks = 0;
4302 		return;
4303 	}
4304 
4305 	for (this_sack = 0; this_sack < num_sacks;) {
4306 		/* Check if the start of the sack is covered by RCV.NXT. */
4307 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4308 			int i;
4309 
4310 			/* RCV.NXT must cover all the block! */
4311 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4312 
4313 			/* Zap this SACK, by moving forward any other SACKS. */
4314 			for (i = this_sack+1; i < num_sacks; i++)
4315 				tp->selective_acks[i-1] = tp->selective_acks[i];
4316 			num_sacks--;
4317 			continue;
4318 		}
4319 		this_sack++;
4320 		sp++;
4321 	}
4322 	tp->rx_opt.num_sacks = num_sacks;
4323 }
4324 
4325 /**
4326  * tcp_try_coalesce - try to merge skb to prior one
4327  * @sk: socket
4328  * @dest: destination queue
4329  * @to: prior buffer
4330  * @from: buffer to add in queue
4331  * @fragstolen: pointer to boolean
4332  *
4333  * Before queueing skb @from after @to, try to merge them
4334  * to reduce overall memory use and queue lengths, if cost is small.
4335  * Packets in ofo or receive queues can stay a long time.
4336  * Better try to coalesce them right now to avoid future collapses.
4337  * Returns true if caller should free @from instead of queueing it
4338  */
4339 static bool tcp_try_coalesce(struct sock *sk,
4340 			     struct sk_buff *to,
4341 			     struct sk_buff *from,
4342 			     bool *fragstolen)
4343 {
4344 	int delta;
4345 
4346 	*fragstolen = false;
4347 
4348 	/* Its possible this segment overlaps with prior segment in queue */
4349 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4350 		return false;
4351 
4352 #ifdef CONFIG_TLS_DEVICE
4353 	if (from->decrypted != to->decrypted)
4354 		return false;
4355 #endif
4356 
4357 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4358 		return false;
4359 
4360 	atomic_add(delta, &sk->sk_rmem_alloc);
4361 	sk_mem_charge(sk, delta);
4362 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4363 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4364 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4365 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4366 
4367 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4368 		TCP_SKB_CB(to)->has_rxtstamp = true;
4369 		to->tstamp = from->tstamp;
4370 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4371 	}
4372 
4373 	return true;
4374 }
4375 
4376 static bool tcp_ooo_try_coalesce(struct sock *sk,
4377 			     struct sk_buff *to,
4378 			     struct sk_buff *from,
4379 			     bool *fragstolen)
4380 {
4381 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4382 
4383 	/* In case tcp_drop() is called later, update to->gso_segs */
4384 	if (res) {
4385 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4386 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4387 
4388 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4389 	}
4390 	return res;
4391 }
4392 
4393 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4394 {
4395 	sk_drops_add(sk, skb);
4396 	__kfree_skb(skb);
4397 }
4398 
4399 /* This one checks to see if we can put data from the
4400  * out_of_order queue into the receive_queue.
4401  */
4402 static void tcp_ofo_queue(struct sock *sk)
4403 {
4404 	struct tcp_sock *tp = tcp_sk(sk);
4405 	__u32 dsack_high = tp->rcv_nxt;
4406 	bool fin, fragstolen, eaten;
4407 	struct sk_buff *skb, *tail;
4408 	struct rb_node *p;
4409 
4410 	p = rb_first(&tp->out_of_order_queue);
4411 	while (p) {
4412 		skb = rb_to_skb(p);
4413 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4414 			break;
4415 
4416 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4417 			__u32 dsack = dsack_high;
4418 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4419 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4420 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4421 		}
4422 		p = rb_next(p);
4423 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4424 
4425 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4426 			tcp_drop(sk, skb);
4427 			continue;
4428 		}
4429 
4430 		tail = skb_peek_tail(&sk->sk_receive_queue);
4431 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4432 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4433 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4434 		if (!eaten)
4435 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4436 		else
4437 			kfree_skb_partial(skb, fragstolen);
4438 
4439 		if (unlikely(fin)) {
4440 			tcp_fin(sk);
4441 			/* tcp_fin() purges tp->out_of_order_queue,
4442 			 * so we must end this loop right now.
4443 			 */
4444 			break;
4445 		}
4446 	}
4447 }
4448 
4449 static bool tcp_prune_ofo_queue(struct sock *sk);
4450 static int tcp_prune_queue(struct sock *sk);
4451 
4452 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4453 				 unsigned int size)
4454 {
4455 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4456 	    !sk_rmem_schedule(sk, skb, size)) {
4457 
4458 		if (tcp_prune_queue(sk) < 0)
4459 			return -1;
4460 
4461 		while (!sk_rmem_schedule(sk, skb, size)) {
4462 			if (!tcp_prune_ofo_queue(sk))
4463 				return -1;
4464 		}
4465 	}
4466 	return 0;
4467 }
4468 
4469 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4470 {
4471 	struct tcp_sock *tp = tcp_sk(sk);
4472 	struct rb_node **p, *parent;
4473 	struct sk_buff *skb1;
4474 	u32 seq, end_seq;
4475 	bool fragstolen;
4476 
4477 	tcp_ecn_check_ce(sk, skb);
4478 
4479 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4480 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4481 		tcp_drop(sk, skb);
4482 		return;
4483 	}
4484 
4485 	/* Disable header prediction. */
4486 	tp->pred_flags = 0;
4487 	inet_csk_schedule_ack(sk);
4488 
4489 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4490 	seq = TCP_SKB_CB(skb)->seq;
4491 	end_seq = TCP_SKB_CB(skb)->end_seq;
4492 
4493 	p = &tp->out_of_order_queue.rb_node;
4494 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4495 		/* Initial out of order segment, build 1 SACK. */
4496 		if (tcp_is_sack(tp)) {
4497 			tp->rx_opt.num_sacks = 1;
4498 			tp->selective_acks[0].start_seq = seq;
4499 			tp->selective_acks[0].end_seq = end_seq;
4500 		}
4501 		rb_link_node(&skb->rbnode, NULL, p);
4502 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4503 		tp->ooo_last_skb = skb;
4504 		goto end;
4505 	}
4506 
4507 	/* In the typical case, we are adding an skb to the end of the list.
4508 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4509 	 */
4510 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4511 				 skb, &fragstolen)) {
4512 coalesce_done:
4513 		tcp_grow_window(sk, skb);
4514 		kfree_skb_partial(skb, fragstolen);
4515 		skb = NULL;
4516 		goto add_sack;
4517 	}
4518 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4519 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4520 		parent = &tp->ooo_last_skb->rbnode;
4521 		p = &parent->rb_right;
4522 		goto insert;
4523 	}
4524 
4525 	/* Find place to insert this segment. Handle overlaps on the way. */
4526 	parent = NULL;
4527 	while (*p) {
4528 		parent = *p;
4529 		skb1 = rb_to_skb(parent);
4530 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4531 			p = &parent->rb_left;
4532 			continue;
4533 		}
4534 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4535 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4536 				/* All the bits are present. Drop. */
4537 				NET_INC_STATS(sock_net(sk),
4538 					      LINUX_MIB_TCPOFOMERGE);
4539 				tcp_drop(sk, skb);
4540 				skb = NULL;
4541 				tcp_dsack_set(sk, seq, end_seq);
4542 				goto add_sack;
4543 			}
4544 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4545 				/* Partial overlap. */
4546 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4547 			} else {
4548 				/* skb's seq == skb1's seq and skb covers skb1.
4549 				 * Replace skb1 with skb.
4550 				 */
4551 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4552 						&tp->out_of_order_queue);
4553 				tcp_dsack_extend(sk,
4554 						 TCP_SKB_CB(skb1)->seq,
4555 						 TCP_SKB_CB(skb1)->end_seq);
4556 				NET_INC_STATS(sock_net(sk),
4557 					      LINUX_MIB_TCPOFOMERGE);
4558 				tcp_drop(sk, skb1);
4559 				goto merge_right;
4560 			}
4561 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4562 						skb, &fragstolen)) {
4563 			goto coalesce_done;
4564 		}
4565 		p = &parent->rb_right;
4566 	}
4567 insert:
4568 	/* Insert segment into RB tree. */
4569 	rb_link_node(&skb->rbnode, parent, p);
4570 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4571 
4572 merge_right:
4573 	/* Remove other segments covered by skb. */
4574 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4575 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4576 			break;
4577 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4578 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4579 					 end_seq);
4580 			break;
4581 		}
4582 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4583 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4584 				 TCP_SKB_CB(skb1)->end_seq);
4585 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4586 		tcp_drop(sk, skb1);
4587 	}
4588 	/* If there is no skb after us, we are the last_skb ! */
4589 	if (!skb1)
4590 		tp->ooo_last_skb = skb;
4591 
4592 add_sack:
4593 	if (tcp_is_sack(tp))
4594 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4595 end:
4596 	if (skb) {
4597 		tcp_grow_window(sk, skb);
4598 		skb_condense(skb);
4599 		skb_set_owner_r(skb, sk);
4600 	}
4601 }
4602 
4603 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4604 				      bool *fragstolen)
4605 {
4606 	int eaten;
4607 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4608 
4609 	eaten = (tail &&
4610 		 tcp_try_coalesce(sk, tail,
4611 				  skb, fragstolen)) ? 1 : 0;
4612 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4613 	if (!eaten) {
4614 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4615 		skb_set_owner_r(skb, sk);
4616 	}
4617 	return eaten;
4618 }
4619 
4620 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4621 {
4622 	struct sk_buff *skb;
4623 	int err = -ENOMEM;
4624 	int data_len = 0;
4625 	bool fragstolen;
4626 
4627 	if (size == 0)
4628 		return 0;
4629 
4630 	if (size > PAGE_SIZE) {
4631 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4632 
4633 		data_len = npages << PAGE_SHIFT;
4634 		size = data_len + (size & ~PAGE_MASK);
4635 	}
4636 	skb = alloc_skb_with_frags(size - data_len, data_len,
4637 				   PAGE_ALLOC_COSTLY_ORDER,
4638 				   &err, sk->sk_allocation);
4639 	if (!skb)
4640 		goto err;
4641 
4642 	skb_put(skb, size - data_len);
4643 	skb->data_len = data_len;
4644 	skb->len = size;
4645 
4646 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4647 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4648 		goto err_free;
4649 	}
4650 
4651 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4652 	if (err)
4653 		goto err_free;
4654 
4655 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4656 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4657 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4658 
4659 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4660 		WARN_ON_ONCE(fragstolen); /* should not happen */
4661 		__kfree_skb(skb);
4662 	}
4663 	return size;
4664 
4665 err_free:
4666 	kfree_skb(skb);
4667 err:
4668 	return err;
4669 
4670 }
4671 
4672 void tcp_data_ready(struct sock *sk)
4673 {
4674 	const struct tcp_sock *tp = tcp_sk(sk);
4675 	int avail = tp->rcv_nxt - tp->copied_seq;
4676 
4677 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4678 		return;
4679 
4680 	sk->sk_data_ready(sk);
4681 }
4682 
4683 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4684 {
4685 	struct tcp_sock *tp = tcp_sk(sk);
4686 	bool fragstolen;
4687 	int eaten;
4688 
4689 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4690 		__kfree_skb(skb);
4691 		return;
4692 	}
4693 	skb_dst_drop(skb);
4694 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4695 
4696 	tcp_ecn_accept_cwr(sk, skb);
4697 
4698 	tp->rx_opt.dsack = 0;
4699 
4700 	/*  Queue data for delivery to the user.
4701 	 *  Packets in sequence go to the receive queue.
4702 	 *  Out of sequence packets to the out_of_order_queue.
4703 	 */
4704 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4705 		if (tcp_receive_window(tp) == 0) {
4706 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4707 			goto out_of_window;
4708 		}
4709 
4710 		/* Ok. In sequence. In window. */
4711 queue_and_out:
4712 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4713 			sk_forced_mem_schedule(sk, skb->truesize);
4714 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4716 			goto drop;
4717 		}
4718 
4719 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4720 		if (skb->len)
4721 			tcp_event_data_recv(sk, skb);
4722 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4723 			tcp_fin(sk);
4724 
4725 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4726 			tcp_ofo_queue(sk);
4727 
4728 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4729 			 * gap in queue is filled.
4730 			 */
4731 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4732 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4733 		}
4734 
4735 		if (tp->rx_opt.num_sacks)
4736 			tcp_sack_remove(tp);
4737 
4738 		tcp_fast_path_check(sk);
4739 
4740 		if (eaten > 0)
4741 			kfree_skb_partial(skb, fragstolen);
4742 		if (!sock_flag(sk, SOCK_DEAD))
4743 			tcp_data_ready(sk);
4744 		return;
4745 	}
4746 
4747 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4748 		tcp_rcv_spurious_retrans(sk, skb);
4749 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4750 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4751 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4752 
4753 out_of_window:
4754 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4755 		inet_csk_schedule_ack(sk);
4756 drop:
4757 		tcp_drop(sk, skb);
4758 		return;
4759 	}
4760 
4761 	/* Out of window. F.e. zero window probe. */
4762 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4763 		goto out_of_window;
4764 
4765 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4766 		/* Partial packet, seq < rcv_next < end_seq */
4767 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4768 
4769 		/* If window is closed, drop tail of packet. But after
4770 		 * remembering D-SACK for its head made in previous line.
4771 		 */
4772 		if (!tcp_receive_window(tp)) {
4773 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4774 			goto out_of_window;
4775 		}
4776 		goto queue_and_out;
4777 	}
4778 
4779 	tcp_data_queue_ofo(sk, skb);
4780 }
4781 
4782 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4783 {
4784 	if (list)
4785 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4786 
4787 	return skb_rb_next(skb);
4788 }
4789 
4790 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4791 					struct sk_buff_head *list,
4792 					struct rb_root *root)
4793 {
4794 	struct sk_buff *next = tcp_skb_next(skb, list);
4795 
4796 	if (list)
4797 		__skb_unlink(skb, list);
4798 	else
4799 		rb_erase(&skb->rbnode, root);
4800 
4801 	__kfree_skb(skb);
4802 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4803 
4804 	return next;
4805 }
4806 
4807 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4808 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4809 {
4810 	struct rb_node **p = &root->rb_node;
4811 	struct rb_node *parent = NULL;
4812 	struct sk_buff *skb1;
4813 
4814 	while (*p) {
4815 		parent = *p;
4816 		skb1 = rb_to_skb(parent);
4817 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4818 			p = &parent->rb_left;
4819 		else
4820 			p = &parent->rb_right;
4821 	}
4822 	rb_link_node(&skb->rbnode, parent, p);
4823 	rb_insert_color(&skb->rbnode, root);
4824 }
4825 
4826 /* Collapse contiguous sequence of skbs head..tail with
4827  * sequence numbers start..end.
4828  *
4829  * If tail is NULL, this means until the end of the queue.
4830  *
4831  * Segments with FIN/SYN are not collapsed (only because this
4832  * simplifies code)
4833  */
4834 static void
4835 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4836 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4837 {
4838 	struct sk_buff *skb = head, *n;
4839 	struct sk_buff_head tmp;
4840 	bool end_of_skbs;
4841 
4842 	/* First, check that queue is collapsible and find
4843 	 * the point where collapsing can be useful.
4844 	 */
4845 restart:
4846 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4847 		n = tcp_skb_next(skb, list);
4848 
4849 		/* No new bits? It is possible on ofo queue. */
4850 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4851 			skb = tcp_collapse_one(sk, skb, list, root);
4852 			if (!skb)
4853 				break;
4854 			goto restart;
4855 		}
4856 
4857 		/* The first skb to collapse is:
4858 		 * - not SYN/FIN and
4859 		 * - bloated or contains data before "start" or
4860 		 *   overlaps to the next one.
4861 		 */
4862 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4863 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4864 		     before(TCP_SKB_CB(skb)->seq, start))) {
4865 			end_of_skbs = false;
4866 			break;
4867 		}
4868 
4869 		if (n && n != tail &&
4870 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4871 			end_of_skbs = false;
4872 			break;
4873 		}
4874 
4875 		/* Decided to skip this, advance start seq. */
4876 		start = TCP_SKB_CB(skb)->end_seq;
4877 	}
4878 	if (end_of_skbs ||
4879 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4880 		return;
4881 
4882 	__skb_queue_head_init(&tmp);
4883 
4884 	while (before(start, end)) {
4885 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4886 		struct sk_buff *nskb;
4887 
4888 		nskb = alloc_skb(copy, GFP_ATOMIC);
4889 		if (!nskb)
4890 			break;
4891 
4892 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4893 #ifdef CONFIG_TLS_DEVICE
4894 		nskb->decrypted = skb->decrypted;
4895 #endif
4896 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4897 		if (list)
4898 			__skb_queue_before(list, skb, nskb);
4899 		else
4900 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4901 		skb_set_owner_r(nskb, sk);
4902 
4903 		/* Copy data, releasing collapsed skbs. */
4904 		while (copy > 0) {
4905 			int offset = start - TCP_SKB_CB(skb)->seq;
4906 			int size = TCP_SKB_CB(skb)->end_seq - start;
4907 
4908 			BUG_ON(offset < 0);
4909 			if (size > 0) {
4910 				size = min(copy, size);
4911 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4912 					BUG();
4913 				TCP_SKB_CB(nskb)->end_seq += size;
4914 				copy -= size;
4915 				start += size;
4916 			}
4917 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4918 				skb = tcp_collapse_one(sk, skb, list, root);
4919 				if (!skb ||
4920 				    skb == tail ||
4921 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4922 					goto end;
4923 #ifdef CONFIG_TLS_DEVICE
4924 				if (skb->decrypted != nskb->decrypted)
4925 					goto end;
4926 #endif
4927 			}
4928 		}
4929 	}
4930 end:
4931 	skb_queue_walk_safe(&tmp, skb, n)
4932 		tcp_rbtree_insert(root, skb);
4933 }
4934 
4935 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4936  * and tcp_collapse() them until all the queue is collapsed.
4937  */
4938 static void tcp_collapse_ofo_queue(struct sock *sk)
4939 {
4940 	struct tcp_sock *tp = tcp_sk(sk);
4941 	u32 range_truesize, sum_tiny = 0;
4942 	struct sk_buff *skb, *head;
4943 	u32 start, end;
4944 
4945 	skb = skb_rb_first(&tp->out_of_order_queue);
4946 new_range:
4947 	if (!skb) {
4948 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4949 		return;
4950 	}
4951 	start = TCP_SKB_CB(skb)->seq;
4952 	end = TCP_SKB_CB(skb)->end_seq;
4953 	range_truesize = skb->truesize;
4954 
4955 	for (head = skb;;) {
4956 		skb = skb_rb_next(skb);
4957 
4958 		/* Range is terminated when we see a gap or when
4959 		 * we are at the queue end.
4960 		 */
4961 		if (!skb ||
4962 		    after(TCP_SKB_CB(skb)->seq, end) ||
4963 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4964 			/* Do not attempt collapsing tiny skbs */
4965 			if (range_truesize != head->truesize ||
4966 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4967 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4968 					     head, skb, start, end);
4969 			} else {
4970 				sum_tiny += range_truesize;
4971 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4972 					return;
4973 			}
4974 			goto new_range;
4975 		}
4976 
4977 		range_truesize += skb->truesize;
4978 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4979 			start = TCP_SKB_CB(skb)->seq;
4980 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4981 			end = TCP_SKB_CB(skb)->end_seq;
4982 	}
4983 }
4984 
4985 /*
4986  * Clean the out-of-order queue to make room.
4987  * We drop high sequences packets to :
4988  * 1) Let a chance for holes to be filled.
4989  * 2) not add too big latencies if thousands of packets sit there.
4990  *    (But if application shrinks SO_RCVBUF, we could still end up
4991  *     freeing whole queue here)
4992  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4993  *
4994  * Return true if queue has shrunk.
4995  */
4996 static bool tcp_prune_ofo_queue(struct sock *sk)
4997 {
4998 	struct tcp_sock *tp = tcp_sk(sk);
4999 	struct rb_node *node, *prev;
5000 	int goal;
5001 
5002 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5003 		return false;
5004 
5005 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5006 	goal = sk->sk_rcvbuf >> 3;
5007 	node = &tp->ooo_last_skb->rbnode;
5008 	do {
5009 		prev = rb_prev(node);
5010 		rb_erase(node, &tp->out_of_order_queue);
5011 		goal -= rb_to_skb(node)->truesize;
5012 		tcp_drop(sk, rb_to_skb(node));
5013 		if (!prev || goal <= 0) {
5014 			sk_mem_reclaim(sk);
5015 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5016 			    !tcp_under_memory_pressure(sk))
5017 				break;
5018 			goal = sk->sk_rcvbuf >> 3;
5019 		}
5020 		node = prev;
5021 	} while (node);
5022 	tp->ooo_last_skb = rb_to_skb(prev);
5023 
5024 	/* Reset SACK state.  A conforming SACK implementation will
5025 	 * do the same at a timeout based retransmit.  When a connection
5026 	 * is in a sad state like this, we care only about integrity
5027 	 * of the connection not performance.
5028 	 */
5029 	if (tp->rx_opt.sack_ok)
5030 		tcp_sack_reset(&tp->rx_opt);
5031 	return true;
5032 }
5033 
5034 /* Reduce allocated memory if we can, trying to get
5035  * the socket within its memory limits again.
5036  *
5037  * Return less than zero if we should start dropping frames
5038  * until the socket owning process reads some of the data
5039  * to stabilize the situation.
5040  */
5041 static int tcp_prune_queue(struct sock *sk)
5042 {
5043 	struct tcp_sock *tp = tcp_sk(sk);
5044 
5045 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5046 
5047 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5048 		tcp_clamp_window(sk);
5049 	else if (tcp_under_memory_pressure(sk))
5050 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5051 
5052 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5053 		return 0;
5054 
5055 	tcp_collapse_ofo_queue(sk);
5056 	if (!skb_queue_empty(&sk->sk_receive_queue))
5057 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5058 			     skb_peek(&sk->sk_receive_queue),
5059 			     NULL,
5060 			     tp->copied_seq, tp->rcv_nxt);
5061 	sk_mem_reclaim(sk);
5062 
5063 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5064 		return 0;
5065 
5066 	/* Collapsing did not help, destructive actions follow.
5067 	 * This must not ever occur. */
5068 
5069 	tcp_prune_ofo_queue(sk);
5070 
5071 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5072 		return 0;
5073 
5074 	/* If we are really being abused, tell the caller to silently
5075 	 * drop receive data on the floor.  It will get retransmitted
5076 	 * and hopefully then we'll have sufficient space.
5077 	 */
5078 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5079 
5080 	/* Massive buffer overcommit. */
5081 	tp->pred_flags = 0;
5082 	return -1;
5083 }
5084 
5085 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5086 {
5087 	const struct tcp_sock *tp = tcp_sk(sk);
5088 
5089 	/* If the user specified a specific send buffer setting, do
5090 	 * not modify it.
5091 	 */
5092 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5093 		return false;
5094 
5095 	/* If we are under global TCP memory pressure, do not expand.  */
5096 	if (tcp_under_memory_pressure(sk))
5097 		return false;
5098 
5099 	/* If we are under soft global TCP memory pressure, do not expand.  */
5100 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5101 		return false;
5102 
5103 	/* If we filled the congestion window, do not expand.  */
5104 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5105 		return false;
5106 
5107 	return true;
5108 }
5109 
5110 /* When incoming ACK allowed to free some skb from write_queue,
5111  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5112  * on the exit from tcp input handler.
5113  *
5114  * PROBLEM: sndbuf expansion does not work well with largesend.
5115  */
5116 static void tcp_new_space(struct sock *sk)
5117 {
5118 	struct tcp_sock *tp = tcp_sk(sk);
5119 
5120 	if (tcp_should_expand_sndbuf(sk)) {
5121 		tcp_sndbuf_expand(sk);
5122 		tp->snd_cwnd_stamp = tcp_jiffies32;
5123 	}
5124 
5125 	sk->sk_write_space(sk);
5126 }
5127 
5128 static void tcp_check_space(struct sock *sk)
5129 {
5130 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5131 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5132 		/* pairs with tcp_poll() */
5133 		smp_mb();
5134 		if (sk->sk_socket &&
5135 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5136 			tcp_new_space(sk);
5137 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5138 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5139 		}
5140 	}
5141 }
5142 
5143 static inline void tcp_data_snd_check(struct sock *sk)
5144 {
5145 	tcp_push_pending_frames(sk);
5146 	tcp_check_space(sk);
5147 }
5148 
5149 /*
5150  * Check if sending an ack is needed.
5151  */
5152 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5153 {
5154 	struct tcp_sock *tp = tcp_sk(sk);
5155 	unsigned long rtt, delay;
5156 
5157 	    /* More than one full frame received... */
5158 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5159 	     /* ... and right edge of window advances far enough.
5160 	      * (tcp_recvmsg() will send ACK otherwise).
5161 	      * If application uses SO_RCVLOWAT, we want send ack now if
5162 	      * we have not received enough bytes to satisfy the condition.
5163 	      */
5164 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5165 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5166 	    /* We ACK each frame or... */
5167 	    tcp_in_quickack_mode(sk) ||
5168 	    /* Protocol state mandates a one-time immediate ACK */
5169 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5170 send_now:
5171 		tcp_send_ack(sk);
5172 		return;
5173 	}
5174 
5175 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5176 		tcp_send_delayed_ack(sk);
5177 		return;
5178 	}
5179 
5180 	if (!tcp_is_sack(tp) ||
5181 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5182 		goto send_now;
5183 
5184 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5185 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5186 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5187 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5188 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5189 		tp->compressed_ack = 0;
5190 	}
5191 
5192 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5193 		goto send_now;
5194 
5195 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5196 		return;
5197 
5198 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5199 
5200 	rtt = tp->rcv_rtt_est.rtt_us;
5201 	if (tp->srtt_us && tp->srtt_us < rtt)
5202 		rtt = tp->srtt_us;
5203 
5204 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5205 		      rtt * (NSEC_PER_USEC >> 3)/20);
5206 	sock_hold(sk);
5207 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5208 		      HRTIMER_MODE_REL_PINNED_SOFT);
5209 }
5210 
5211 static inline void tcp_ack_snd_check(struct sock *sk)
5212 {
5213 	if (!inet_csk_ack_scheduled(sk)) {
5214 		/* We sent a data segment already. */
5215 		return;
5216 	}
5217 	__tcp_ack_snd_check(sk, 1);
5218 }
5219 
5220 /*
5221  *	This routine is only called when we have urgent data
5222  *	signaled. Its the 'slow' part of tcp_urg. It could be
5223  *	moved inline now as tcp_urg is only called from one
5224  *	place. We handle URGent data wrong. We have to - as
5225  *	BSD still doesn't use the correction from RFC961.
5226  *	For 1003.1g we should support a new option TCP_STDURG to permit
5227  *	either form (or just set the sysctl tcp_stdurg).
5228  */
5229 
5230 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5231 {
5232 	struct tcp_sock *tp = tcp_sk(sk);
5233 	u32 ptr = ntohs(th->urg_ptr);
5234 
5235 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5236 		ptr--;
5237 	ptr += ntohl(th->seq);
5238 
5239 	/* Ignore urgent data that we've already seen and read. */
5240 	if (after(tp->copied_seq, ptr))
5241 		return;
5242 
5243 	/* Do not replay urg ptr.
5244 	 *
5245 	 * NOTE: interesting situation not covered by specs.
5246 	 * Misbehaving sender may send urg ptr, pointing to segment,
5247 	 * which we already have in ofo queue. We are not able to fetch
5248 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5249 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5250 	 * situations. But it is worth to think about possibility of some
5251 	 * DoSes using some hypothetical application level deadlock.
5252 	 */
5253 	if (before(ptr, tp->rcv_nxt))
5254 		return;
5255 
5256 	/* Do we already have a newer (or duplicate) urgent pointer? */
5257 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5258 		return;
5259 
5260 	/* Tell the world about our new urgent pointer. */
5261 	sk_send_sigurg(sk);
5262 
5263 	/* We may be adding urgent data when the last byte read was
5264 	 * urgent. To do this requires some care. We cannot just ignore
5265 	 * tp->copied_seq since we would read the last urgent byte again
5266 	 * as data, nor can we alter copied_seq until this data arrives
5267 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5268 	 *
5269 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5270 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5271 	 * and expect that both A and B disappear from stream. This is _wrong_.
5272 	 * Though this happens in BSD with high probability, this is occasional.
5273 	 * Any application relying on this is buggy. Note also, that fix "works"
5274 	 * only in this artificial test. Insert some normal data between A and B and we will
5275 	 * decline of BSD again. Verdict: it is better to remove to trap
5276 	 * buggy users.
5277 	 */
5278 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5279 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5280 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5281 		tp->copied_seq++;
5282 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5283 			__skb_unlink(skb, &sk->sk_receive_queue);
5284 			__kfree_skb(skb);
5285 		}
5286 	}
5287 
5288 	tp->urg_data = TCP_URG_NOTYET;
5289 	tp->urg_seq = ptr;
5290 
5291 	/* Disable header prediction. */
5292 	tp->pred_flags = 0;
5293 }
5294 
5295 /* This is the 'fast' part of urgent handling. */
5296 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5297 {
5298 	struct tcp_sock *tp = tcp_sk(sk);
5299 
5300 	/* Check if we get a new urgent pointer - normally not. */
5301 	if (th->urg)
5302 		tcp_check_urg(sk, th);
5303 
5304 	/* Do we wait for any urgent data? - normally not... */
5305 	if (tp->urg_data == TCP_URG_NOTYET) {
5306 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5307 			  th->syn;
5308 
5309 		/* Is the urgent pointer pointing into this packet? */
5310 		if (ptr < skb->len) {
5311 			u8 tmp;
5312 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5313 				BUG();
5314 			tp->urg_data = TCP_URG_VALID | tmp;
5315 			if (!sock_flag(sk, SOCK_DEAD))
5316 				sk->sk_data_ready(sk);
5317 		}
5318 	}
5319 }
5320 
5321 /* Accept RST for rcv_nxt - 1 after a FIN.
5322  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5323  * FIN is sent followed by a RST packet. The RST is sent with the same
5324  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5325  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5326  * ACKs on the closed socket. In addition middleboxes can drop either the
5327  * challenge ACK or a subsequent RST.
5328  */
5329 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5330 {
5331 	struct tcp_sock *tp = tcp_sk(sk);
5332 
5333 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5334 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5335 					       TCPF_CLOSING));
5336 }
5337 
5338 /* Does PAWS and seqno based validation of an incoming segment, flags will
5339  * play significant role here.
5340  */
5341 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5342 				  const struct tcphdr *th, int syn_inerr)
5343 {
5344 	struct tcp_sock *tp = tcp_sk(sk);
5345 	bool rst_seq_match = false;
5346 
5347 	/* RFC1323: H1. Apply PAWS check first. */
5348 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5349 	    tp->rx_opt.saw_tstamp &&
5350 	    tcp_paws_discard(sk, skb)) {
5351 		if (!th->rst) {
5352 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5353 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5354 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5355 						  &tp->last_oow_ack_time))
5356 				tcp_send_dupack(sk, skb);
5357 			goto discard;
5358 		}
5359 		/* Reset is accepted even if it did not pass PAWS. */
5360 	}
5361 
5362 	/* Step 1: check sequence number */
5363 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5364 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5365 		 * (RST) segments are validated by checking their SEQ-fields."
5366 		 * And page 69: "If an incoming segment is not acceptable,
5367 		 * an acknowledgment should be sent in reply (unless the RST
5368 		 * bit is set, if so drop the segment and return)".
5369 		 */
5370 		if (!th->rst) {
5371 			if (th->syn)
5372 				goto syn_challenge;
5373 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5374 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5375 						  &tp->last_oow_ack_time))
5376 				tcp_send_dupack(sk, skb);
5377 		} else if (tcp_reset_check(sk, skb)) {
5378 			tcp_reset(sk);
5379 		}
5380 		goto discard;
5381 	}
5382 
5383 	/* Step 2: check RST bit */
5384 	if (th->rst) {
5385 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5386 		 * FIN and SACK too if available):
5387 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5388 		 * the right-most SACK block,
5389 		 * then
5390 		 *     RESET the connection
5391 		 * else
5392 		 *     Send a challenge ACK
5393 		 */
5394 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5395 		    tcp_reset_check(sk, skb)) {
5396 			rst_seq_match = true;
5397 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5398 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5399 			int max_sack = sp[0].end_seq;
5400 			int this_sack;
5401 
5402 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5403 			     ++this_sack) {
5404 				max_sack = after(sp[this_sack].end_seq,
5405 						 max_sack) ?
5406 					sp[this_sack].end_seq : max_sack;
5407 			}
5408 
5409 			if (TCP_SKB_CB(skb)->seq == max_sack)
5410 				rst_seq_match = true;
5411 		}
5412 
5413 		if (rst_seq_match)
5414 			tcp_reset(sk);
5415 		else {
5416 			/* Disable TFO if RST is out-of-order
5417 			 * and no data has been received
5418 			 * for current active TFO socket
5419 			 */
5420 			if (tp->syn_fastopen && !tp->data_segs_in &&
5421 			    sk->sk_state == TCP_ESTABLISHED)
5422 				tcp_fastopen_active_disable(sk);
5423 			tcp_send_challenge_ack(sk, skb);
5424 		}
5425 		goto discard;
5426 	}
5427 
5428 	/* step 3: check security and precedence [ignored] */
5429 
5430 	/* step 4: Check for a SYN
5431 	 * RFC 5961 4.2 : Send a challenge ack
5432 	 */
5433 	if (th->syn) {
5434 syn_challenge:
5435 		if (syn_inerr)
5436 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5437 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5438 		tcp_send_challenge_ack(sk, skb);
5439 		goto discard;
5440 	}
5441 
5442 	return true;
5443 
5444 discard:
5445 	tcp_drop(sk, skb);
5446 	return false;
5447 }
5448 
5449 /*
5450  *	TCP receive function for the ESTABLISHED state.
5451  *
5452  *	It is split into a fast path and a slow path. The fast path is
5453  * 	disabled when:
5454  *	- A zero window was announced from us - zero window probing
5455  *        is only handled properly in the slow path.
5456  *	- Out of order segments arrived.
5457  *	- Urgent data is expected.
5458  *	- There is no buffer space left
5459  *	- Unexpected TCP flags/window values/header lengths are received
5460  *	  (detected by checking the TCP header against pred_flags)
5461  *	- Data is sent in both directions. Fast path only supports pure senders
5462  *	  or pure receivers (this means either the sequence number or the ack
5463  *	  value must stay constant)
5464  *	- Unexpected TCP option.
5465  *
5466  *	When these conditions are not satisfied it drops into a standard
5467  *	receive procedure patterned after RFC793 to handle all cases.
5468  *	The first three cases are guaranteed by proper pred_flags setting,
5469  *	the rest is checked inline. Fast processing is turned on in
5470  *	tcp_data_queue when everything is OK.
5471  */
5472 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5473 {
5474 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5475 	struct tcp_sock *tp = tcp_sk(sk);
5476 	unsigned int len = skb->len;
5477 
5478 	/* TCP congestion window tracking */
5479 	trace_tcp_probe(sk, skb);
5480 
5481 	tcp_mstamp_refresh(tp);
5482 	if (unlikely(!sk->sk_rx_dst))
5483 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5484 	/*
5485 	 *	Header prediction.
5486 	 *	The code loosely follows the one in the famous
5487 	 *	"30 instruction TCP receive" Van Jacobson mail.
5488 	 *
5489 	 *	Van's trick is to deposit buffers into socket queue
5490 	 *	on a device interrupt, to call tcp_recv function
5491 	 *	on the receive process context and checksum and copy
5492 	 *	the buffer to user space. smart...
5493 	 *
5494 	 *	Our current scheme is not silly either but we take the
5495 	 *	extra cost of the net_bh soft interrupt processing...
5496 	 *	We do checksum and copy also but from device to kernel.
5497 	 */
5498 
5499 	tp->rx_opt.saw_tstamp = 0;
5500 
5501 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5502 	 *	if header_prediction is to be made
5503 	 *	'S' will always be tp->tcp_header_len >> 2
5504 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5505 	 *  turn it off	(when there are holes in the receive
5506 	 *	 space for instance)
5507 	 *	PSH flag is ignored.
5508 	 */
5509 
5510 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5511 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5512 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5513 		int tcp_header_len = tp->tcp_header_len;
5514 
5515 		/* Timestamp header prediction: tcp_header_len
5516 		 * is automatically equal to th->doff*4 due to pred_flags
5517 		 * match.
5518 		 */
5519 
5520 		/* Check timestamp */
5521 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5522 			/* No? Slow path! */
5523 			if (!tcp_parse_aligned_timestamp(tp, th))
5524 				goto slow_path;
5525 
5526 			/* If PAWS failed, check it more carefully in slow path */
5527 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5528 				goto slow_path;
5529 
5530 			/* DO NOT update ts_recent here, if checksum fails
5531 			 * and timestamp was corrupted part, it will result
5532 			 * in a hung connection since we will drop all
5533 			 * future packets due to the PAWS test.
5534 			 */
5535 		}
5536 
5537 		if (len <= tcp_header_len) {
5538 			/* Bulk data transfer: sender */
5539 			if (len == tcp_header_len) {
5540 				/* Predicted packet is in window by definition.
5541 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5542 				 * Hence, check seq<=rcv_wup reduces to:
5543 				 */
5544 				if (tcp_header_len ==
5545 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5546 				    tp->rcv_nxt == tp->rcv_wup)
5547 					tcp_store_ts_recent(tp);
5548 
5549 				/* We know that such packets are checksummed
5550 				 * on entry.
5551 				 */
5552 				tcp_ack(sk, skb, 0);
5553 				__kfree_skb(skb);
5554 				tcp_data_snd_check(sk);
5555 				/* When receiving pure ack in fast path, update
5556 				 * last ts ecr directly instead of calling
5557 				 * tcp_rcv_rtt_measure_ts()
5558 				 */
5559 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5560 				return;
5561 			} else { /* Header too small */
5562 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5563 				goto discard;
5564 			}
5565 		} else {
5566 			int eaten = 0;
5567 			bool fragstolen = false;
5568 
5569 			if (tcp_checksum_complete(skb))
5570 				goto csum_error;
5571 
5572 			if ((int)skb->truesize > sk->sk_forward_alloc)
5573 				goto step5;
5574 
5575 			/* Predicted packet is in window by definition.
5576 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5577 			 * Hence, check seq<=rcv_wup reduces to:
5578 			 */
5579 			if (tcp_header_len ==
5580 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5581 			    tp->rcv_nxt == tp->rcv_wup)
5582 				tcp_store_ts_recent(tp);
5583 
5584 			tcp_rcv_rtt_measure_ts(sk, skb);
5585 
5586 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5587 
5588 			/* Bulk data transfer: receiver */
5589 			__skb_pull(skb, tcp_header_len);
5590 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5591 
5592 			tcp_event_data_recv(sk, skb);
5593 
5594 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5595 				/* Well, only one small jumplet in fast path... */
5596 				tcp_ack(sk, skb, FLAG_DATA);
5597 				tcp_data_snd_check(sk);
5598 				if (!inet_csk_ack_scheduled(sk))
5599 					goto no_ack;
5600 			}
5601 
5602 			__tcp_ack_snd_check(sk, 0);
5603 no_ack:
5604 			if (eaten)
5605 				kfree_skb_partial(skb, fragstolen);
5606 			tcp_data_ready(sk);
5607 			return;
5608 		}
5609 	}
5610 
5611 slow_path:
5612 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5613 		goto csum_error;
5614 
5615 	if (!th->ack && !th->rst && !th->syn)
5616 		goto discard;
5617 
5618 	/*
5619 	 *	Standard slow path.
5620 	 */
5621 
5622 	if (!tcp_validate_incoming(sk, skb, th, 1))
5623 		return;
5624 
5625 step5:
5626 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5627 		goto discard;
5628 
5629 	tcp_rcv_rtt_measure_ts(sk, skb);
5630 
5631 	/* Process urgent data. */
5632 	tcp_urg(sk, skb, th);
5633 
5634 	/* step 7: process the segment text */
5635 	tcp_data_queue(sk, skb);
5636 
5637 	tcp_data_snd_check(sk);
5638 	tcp_ack_snd_check(sk);
5639 	return;
5640 
5641 csum_error:
5642 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5643 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5644 
5645 discard:
5646 	tcp_drop(sk, skb);
5647 }
5648 EXPORT_SYMBOL(tcp_rcv_established);
5649 
5650 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5651 {
5652 	struct tcp_sock *tp = tcp_sk(sk);
5653 	struct inet_connection_sock *icsk = inet_csk(sk);
5654 
5655 	tcp_set_state(sk, TCP_ESTABLISHED);
5656 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5657 
5658 	if (skb) {
5659 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5660 		security_inet_conn_established(sk, skb);
5661 		sk_mark_napi_id(sk, skb);
5662 	}
5663 
5664 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5665 
5666 	/* Prevent spurious tcp_cwnd_restart() on first data
5667 	 * packet.
5668 	 */
5669 	tp->lsndtime = tcp_jiffies32;
5670 
5671 	if (sock_flag(sk, SOCK_KEEPOPEN))
5672 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5673 
5674 	if (!tp->rx_opt.snd_wscale)
5675 		__tcp_fast_path_on(tp, tp->snd_wnd);
5676 	else
5677 		tp->pred_flags = 0;
5678 }
5679 
5680 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5681 				    struct tcp_fastopen_cookie *cookie)
5682 {
5683 	struct tcp_sock *tp = tcp_sk(sk);
5684 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5685 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5686 	bool syn_drop = false;
5687 
5688 	if (mss == tp->rx_opt.user_mss) {
5689 		struct tcp_options_received opt;
5690 
5691 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5692 		tcp_clear_options(&opt);
5693 		opt.user_mss = opt.mss_clamp = 0;
5694 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5695 		mss = opt.mss_clamp;
5696 	}
5697 
5698 	if (!tp->syn_fastopen) {
5699 		/* Ignore an unsolicited cookie */
5700 		cookie->len = -1;
5701 	} else if (tp->total_retrans) {
5702 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5703 		 * acknowledges data. Presumably the remote received only
5704 		 * the retransmitted (regular) SYNs: either the original
5705 		 * SYN-data or the corresponding SYN-ACK was dropped.
5706 		 */
5707 		syn_drop = (cookie->len < 0 && data);
5708 	} else if (cookie->len < 0 && !tp->syn_data) {
5709 		/* We requested a cookie but didn't get it. If we did not use
5710 		 * the (old) exp opt format then try so next time (try_exp=1).
5711 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5712 		 */
5713 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5714 	}
5715 
5716 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5717 
5718 	if (data) { /* Retransmit unacked data in SYN */
5719 		skb_rbtree_walk_from(data) {
5720 			if (__tcp_retransmit_skb(sk, data, 1))
5721 				break;
5722 		}
5723 		tcp_rearm_rto(sk);
5724 		NET_INC_STATS(sock_net(sk),
5725 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5726 		return true;
5727 	}
5728 	tp->syn_data_acked = tp->syn_data;
5729 	if (tp->syn_data_acked) {
5730 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5731 		/* SYN-data is counted as two separate packets in tcp_ack() */
5732 		if (tp->delivered > 1)
5733 			--tp->delivered;
5734 	}
5735 
5736 	tcp_fastopen_add_skb(sk, synack);
5737 
5738 	return false;
5739 }
5740 
5741 static void smc_check_reset_syn(struct tcp_sock *tp)
5742 {
5743 #if IS_ENABLED(CONFIG_SMC)
5744 	if (static_branch_unlikely(&tcp_have_smc)) {
5745 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5746 			tp->syn_smc = 0;
5747 	}
5748 #endif
5749 }
5750 
5751 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5752 					 const struct tcphdr *th)
5753 {
5754 	struct inet_connection_sock *icsk = inet_csk(sk);
5755 	struct tcp_sock *tp = tcp_sk(sk);
5756 	struct tcp_fastopen_cookie foc = { .len = -1 };
5757 	int saved_clamp = tp->rx_opt.mss_clamp;
5758 	bool fastopen_fail;
5759 
5760 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5761 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5762 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5763 
5764 	if (th->ack) {
5765 		/* rfc793:
5766 		 * "If the state is SYN-SENT then
5767 		 *    first check the ACK bit
5768 		 *      If the ACK bit is set
5769 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5770 		 *        a reset (unless the RST bit is set, if so drop
5771 		 *        the segment and return)"
5772 		 */
5773 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5774 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5775 			goto reset_and_undo;
5776 
5777 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5778 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5779 			     tcp_time_stamp(tp))) {
5780 			NET_INC_STATS(sock_net(sk),
5781 					LINUX_MIB_PAWSACTIVEREJECTED);
5782 			goto reset_and_undo;
5783 		}
5784 
5785 		/* Now ACK is acceptable.
5786 		 *
5787 		 * "If the RST bit is set
5788 		 *    If the ACK was acceptable then signal the user "error:
5789 		 *    connection reset", drop the segment, enter CLOSED state,
5790 		 *    delete TCB, and return."
5791 		 */
5792 
5793 		if (th->rst) {
5794 			tcp_reset(sk);
5795 			goto discard;
5796 		}
5797 
5798 		/* rfc793:
5799 		 *   "fifth, if neither of the SYN or RST bits is set then
5800 		 *    drop the segment and return."
5801 		 *
5802 		 *    See note below!
5803 		 *                                        --ANK(990513)
5804 		 */
5805 		if (!th->syn)
5806 			goto discard_and_undo;
5807 
5808 		/* rfc793:
5809 		 *   "If the SYN bit is on ...
5810 		 *    are acceptable then ...
5811 		 *    (our SYN has been ACKed), change the connection
5812 		 *    state to ESTABLISHED..."
5813 		 */
5814 
5815 		tcp_ecn_rcv_synack(tp, th);
5816 
5817 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5818 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5819 
5820 		/* Ok.. it's good. Set up sequence numbers and
5821 		 * move to established.
5822 		 */
5823 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5824 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5825 
5826 		/* RFC1323: The window in SYN & SYN/ACK segments is
5827 		 * never scaled.
5828 		 */
5829 		tp->snd_wnd = ntohs(th->window);
5830 
5831 		if (!tp->rx_opt.wscale_ok) {
5832 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5833 			tp->window_clamp = min(tp->window_clamp, 65535U);
5834 		}
5835 
5836 		if (tp->rx_opt.saw_tstamp) {
5837 			tp->rx_opt.tstamp_ok	   = 1;
5838 			tp->tcp_header_len =
5839 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5840 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5841 			tcp_store_ts_recent(tp);
5842 		} else {
5843 			tp->tcp_header_len = sizeof(struct tcphdr);
5844 		}
5845 
5846 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5847 		tcp_initialize_rcv_mss(sk);
5848 
5849 		/* Remember, tcp_poll() does not lock socket!
5850 		 * Change state from SYN-SENT only after copied_seq
5851 		 * is initialized. */
5852 		tp->copied_seq = tp->rcv_nxt;
5853 
5854 		smc_check_reset_syn(tp);
5855 
5856 		smp_mb();
5857 
5858 		tcp_finish_connect(sk, skb);
5859 
5860 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5861 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5862 
5863 		if (!sock_flag(sk, SOCK_DEAD)) {
5864 			sk->sk_state_change(sk);
5865 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5866 		}
5867 		if (fastopen_fail)
5868 			return -1;
5869 		if (sk->sk_write_pending ||
5870 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5871 		    inet_csk_in_pingpong_mode(sk)) {
5872 			/* Save one ACK. Data will be ready after
5873 			 * several ticks, if write_pending is set.
5874 			 *
5875 			 * It may be deleted, but with this feature tcpdumps
5876 			 * look so _wonderfully_ clever, that I was not able
5877 			 * to stand against the temptation 8)     --ANK
5878 			 */
5879 			inet_csk_schedule_ack(sk);
5880 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5881 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5882 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5883 
5884 discard:
5885 			tcp_drop(sk, skb);
5886 			return 0;
5887 		} else {
5888 			tcp_send_ack(sk);
5889 		}
5890 		return -1;
5891 	}
5892 
5893 	/* No ACK in the segment */
5894 
5895 	if (th->rst) {
5896 		/* rfc793:
5897 		 * "If the RST bit is set
5898 		 *
5899 		 *      Otherwise (no ACK) drop the segment and return."
5900 		 */
5901 
5902 		goto discard_and_undo;
5903 	}
5904 
5905 	/* PAWS check. */
5906 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5907 	    tcp_paws_reject(&tp->rx_opt, 0))
5908 		goto discard_and_undo;
5909 
5910 	if (th->syn) {
5911 		/* We see SYN without ACK. It is attempt of
5912 		 * simultaneous connect with crossed SYNs.
5913 		 * Particularly, it can be connect to self.
5914 		 */
5915 		tcp_set_state(sk, TCP_SYN_RECV);
5916 
5917 		if (tp->rx_opt.saw_tstamp) {
5918 			tp->rx_opt.tstamp_ok = 1;
5919 			tcp_store_ts_recent(tp);
5920 			tp->tcp_header_len =
5921 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5922 		} else {
5923 			tp->tcp_header_len = sizeof(struct tcphdr);
5924 		}
5925 
5926 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5927 		tp->copied_seq = tp->rcv_nxt;
5928 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5929 
5930 		/* RFC1323: The window in SYN & SYN/ACK segments is
5931 		 * never scaled.
5932 		 */
5933 		tp->snd_wnd    = ntohs(th->window);
5934 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5935 		tp->max_window = tp->snd_wnd;
5936 
5937 		tcp_ecn_rcv_syn(tp, th);
5938 
5939 		tcp_mtup_init(sk);
5940 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5941 		tcp_initialize_rcv_mss(sk);
5942 
5943 		tcp_send_synack(sk);
5944 #if 0
5945 		/* Note, we could accept data and URG from this segment.
5946 		 * There are no obstacles to make this (except that we must
5947 		 * either change tcp_recvmsg() to prevent it from returning data
5948 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5949 		 *
5950 		 * However, if we ignore data in ACKless segments sometimes,
5951 		 * we have no reasons to accept it sometimes.
5952 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5953 		 * is not flawless. So, discard packet for sanity.
5954 		 * Uncomment this return to process the data.
5955 		 */
5956 		return -1;
5957 #else
5958 		goto discard;
5959 #endif
5960 	}
5961 	/* "fifth, if neither of the SYN or RST bits is set then
5962 	 * drop the segment and return."
5963 	 */
5964 
5965 discard_and_undo:
5966 	tcp_clear_options(&tp->rx_opt);
5967 	tp->rx_opt.mss_clamp = saved_clamp;
5968 	goto discard;
5969 
5970 reset_and_undo:
5971 	tcp_clear_options(&tp->rx_opt);
5972 	tp->rx_opt.mss_clamp = saved_clamp;
5973 	return 1;
5974 }
5975 
5976 /*
5977  *	This function implements the receiving procedure of RFC 793 for
5978  *	all states except ESTABLISHED and TIME_WAIT.
5979  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5980  *	address independent.
5981  */
5982 
5983 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5984 {
5985 	struct tcp_sock *tp = tcp_sk(sk);
5986 	struct inet_connection_sock *icsk = inet_csk(sk);
5987 	const struct tcphdr *th = tcp_hdr(skb);
5988 	struct request_sock *req;
5989 	int queued = 0;
5990 	bool acceptable;
5991 
5992 	switch (sk->sk_state) {
5993 	case TCP_CLOSE:
5994 		goto discard;
5995 
5996 	case TCP_LISTEN:
5997 		if (th->ack)
5998 			return 1;
5999 
6000 		if (th->rst)
6001 			goto discard;
6002 
6003 		if (th->syn) {
6004 			if (th->fin)
6005 				goto discard;
6006 			/* It is possible that we process SYN packets from backlog,
6007 			 * so we need to make sure to disable BH and RCU right there.
6008 			 */
6009 			rcu_read_lock();
6010 			local_bh_disable();
6011 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6012 			local_bh_enable();
6013 			rcu_read_unlock();
6014 
6015 			if (!acceptable)
6016 				return 1;
6017 			consume_skb(skb);
6018 			return 0;
6019 		}
6020 		goto discard;
6021 
6022 	case TCP_SYN_SENT:
6023 		tp->rx_opt.saw_tstamp = 0;
6024 		tcp_mstamp_refresh(tp);
6025 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6026 		if (queued >= 0)
6027 			return queued;
6028 
6029 		/* Do step6 onward by hand. */
6030 		tcp_urg(sk, skb, th);
6031 		__kfree_skb(skb);
6032 		tcp_data_snd_check(sk);
6033 		return 0;
6034 	}
6035 
6036 	tcp_mstamp_refresh(tp);
6037 	tp->rx_opt.saw_tstamp = 0;
6038 	req = tp->fastopen_rsk;
6039 	if (req) {
6040 		bool req_stolen;
6041 
6042 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6043 		    sk->sk_state != TCP_FIN_WAIT1);
6044 
6045 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6046 			goto discard;
6047 	}
6048 
6049 	if (!th->ack && !th->rst && !th->syn)
6050 		goto discard;
6051 
6052 	if (!tcp_validate_incoming(sk, skb, th, 0))
6053 		return 0;
6054 
6055 	/* step 5: check the ACK field */
6056 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6057 				      FLAG_UPDATE_TS_RECENT |
6058 				      FLAG_NO_CHALLENGE_ACK) > 0;
6059 
6060 	if (!acceptable) {
6061 		if (sk->sk_state == TCP_SYN_RECV)
6062 			return 1;	/* send one RST */
6063 		tcp_send_challenge_ack(sk, skb);
6064 		goto discard;
6065 	}
6066 	switch (sk->sk_state) {
6067 	case TCP_SYN_RECV:
6068 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6069 		if (!tp->srtt_us)
6070 			tcp_synack_rtt_meas(sk, req);
6071 
6072 		/* Once we leave TCP_SYN_RECV, we no longer need req
6073 		 * so release it.
6074 		 */
6075 		if (req) {
6076 			inet_csk(sk)->icsk_retransmits = 0;
6077 			reqsk_fastopen_remove(sk, req, false);
6078 			/* Re-arm the timer because data may have been sent out.
6079 			 * This is similar to the regular data transmission case
6080 			 * when new data has just been ack'ed.
6081 			 *
6082 			 * (TFO) - we could try to be more aggressive and
6083 			 * retransmitting any data sooner based on when they
6084 			 * are sent out.
6085 			 */
6086 			tcp_rearm_rto(sk);
6087 		} else {
6088 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6089 			tp->copied_seq = tp->rcv_nxt;
6090 		}
6091 		smp_mb();
6092 		tcp_set_state(sk, TCP_ESTABLISHED);
6093 		sk->sk_state_change(sk);
6094 
6095 		/* Note, that this wakeup is only for marginal crossed SYN case.
6096 		 * Passively open sockets are not waked up, because
6097 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6098 		 */
6099 		if (sk->sk_socket)
6100 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6101 
6102 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6103 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6104 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6105 
6106 		if (tp->rx_opt.tstamp_ok)
6107 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6108 
6109 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6110 			tcp_update_pacing_rate(sk);
6111 
6112 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6113 		tp->lsndtime = tcp_jiffies32;
6114 
6115 		tcp_initialize_rcv_mss(sk);
6116 		tcp_fast_path_on(tp);
6117 		break;
6118 
6119 	case TCP_FIN_WAIT1: {
6120 		int tmo;
6121 
6122 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6123 		 * Fast Open socket and this is the first acceptable
6124 		 * ACK we have received, this would have acknowledged
6125 		 * our SYNACK so stop the SYNACK timer.
6126 		 */
6127 		if (req) {
6128 			/* We no longer need the request sock. */
6129 			reqsk_fastopen_remove(sk, req, false);
6130 			tcp_rearm_rto(sk);
6131 		}
6132 		if (tp->snd_una != tp->write_seq)
6133 			break;
6134 
6135 		tcp_set_state(sk, TCP_FIN_WAIT2);
6136 		sk->sk_shutdown |= SEND_SHUTDOWN;
6137 
6138 		sk_dst_confirm(sk);
6139 
6140 		if (!sock_flag(sk, SOCK_DEAD)) {
6141 			/* Wake up lingering close() */
6142 			sk->sk_state_change(sk);
6143 			break;
6144 		}
6145 
6146 		if (tp->linger2 < 0) {
6147 			tcp_done(sk);
6148 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6149 			return 1;
6150 		}
6151 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6152 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6153 			/* Receive out of order FIN after close() */
6154 			if (tp->syn_fastopen && th->fin)
6155 				tcp_fastopen_active_disable(sk);
6156 			tcp_done(sk);
6157 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6158 			return 1;
6159 		}
6160 
6161 		tmo = tcp_fin_time(sk);
6162 		if (tmo > TCP_TIMEWAIT_LEN) {
6163 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6164 		} else if (th->fin || sock_owned_by_user(sk)) {
6165 			/* Bad case. We could lose such FIN otherwise.
6166 			 * It is not a big problem, but it looks confusing
6167 			 * and not so rare event. We still can lose it now,
6168 			 * if it spins in bh_lock_sock(), but it is really
6169 			 * marginal case.
6170 			 */
6171 			inet_csk_reset_keepalive_timer(sk, tmo);
6172 		} else {
6173 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6174 			goto discard;
6175 		}
6176 		break;
6177 	}
6178 
6179 	case TCP_CLOSING:
6180 		if (tp->snd_una == tp->write_seq) {
6181 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6182 			goto discard;
6183 		}
6184 		break;
6185 
6186 	case TCP_LAST_ACK:
6187 		if (tp->snd_una == tp->write_seq) {
6188 			tcp_update_metrics(sk);
6189 			tcp_done(sk);
6190 			goto discard;
6191 		}
6192 		break;
6193 	}
6194 
6195 	/* step 6: check the URG bit */
6196 	tcp_urg(sk, skb, th);
6197 
6198 	/* step 7: process the segment text */
6199 	switch (sk->sk_state) {
6200 	case TCP_CLOSE_WAIT:
6201 	case TCP_CLOSING:
6202 	case TCP_LAST_ACK:
6203 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6204 			break;
6205 		/* fall through */
6206 	case TCP_FIN_WAIT1:
6207 	case TCP_FIN_WAIT2:
6208 		/* RFC 793 says to queue data in these states,
6209 		 * RFC 1122 says we MUST send a reset.
6210 		 * BSD 4.4 also does reset.
6211 		 */
6212 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6213 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6214 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6215 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6216 				tcp_reset(sk);
6217 				return 1;
6218 			}
6219 		}
6220 		/* Fall through */
6221 	case TCP_ESTABLISHED:
6222 		tcp_data_queue(sk, skb);
6223 		queued = 1;
6224 		break;
6225 	}
6226 
6227 	/* tcp_data could move socket to TIME-WAIT */
6228 	if (sk->sk_state != TCP_CLOSE) {
6229 		tcp_data_snd_check(sk);
6230 		tcp_ack_snd_check(sk);
6231 	}
6232 
6233 	if (!queued) {
6234 discard:
6235 		tcp_drop(sk, skb);
6236 	}
6237 	return 0;
6238 }
6239 EXPORT_SYMBOL(tcp_rcv_state_process);
6240 
6241 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6242 {
6243 	struct inet_request_sock *ireq = inet_rsk(req);
6244 
6245 	if (family == AF_INET)
6246 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6247 				    &ireq->ir_rmt_addr, port);
6248 #if IS_ENABLED(CONFIG_IPV6)
6249 	else if (family == AF_INET6)
6250 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6251 				    &ireq->ir_v6_rmt_addr, port);
6252 #endif
6253 }
6254 
6255 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6256  *
6257  * If we receive a SYN packet with these bits set, it means a
6258  * network is playing bad games with TOS bits. In order to
6259  * avoid possible false congestion notifications, we disable
6260  * TCP ECN negotiation.
6261  *
6262  * Exception: tcp_ca wants ECN. This is required for DCTCP
6263  * congestion control: Linux DCTCP asserts ECT on all packets,
6264  * including SYN, which is most optimal solution; however,
6265  * others, such as FreeBSD do not.
6266  */
6267 static void tcp_ecn_create_request(struct request_sock *req,
6268 				   const struct sk_buff *skb,
6269 				   const struct sock *listen_sk,
6270 				   const struct dst_entry *dst)
6271 {
6272 	const struct tcphdr *th = tcp_hdr(skb);
6273 	const struct net *net = sock_net(listen_sk);
6274 	bool th_ecn = th->ece && th->cwr;
6275 	bool ect, ecn_ok;
6276 	u32 ecn_ok_dst;
6277 
6278 	if (!th_ecn)
6279 		return;
6280 
6281 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6282 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6283 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6284 
6285 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6286 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6287 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6288 		inet_rsk(req)->ecn_ok = 1;
6289 }
6290 
6291 static void tcp_openreq_init(struct request_sock *req,
6292 			     const struct tcp_options_received *rx_opt,
6293 			     struct sk_buff *skb, const struct sock *sk)
6294 {
6295 	struct inet_request_sock *ireq = inet_rsk(req);
6296 
6297 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6298 	req->cookie_ts = 0;
6299 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6300 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6301 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6302 	tcp_rsk(req)->last_oow_ack_time = 0;
6303 	req->mss = rx_opt->mss_clamp;
6304 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6305 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6306 	ireq->sack_ok = rx_opt->sack_ok;
6307 	ireq->snd_wscale = rx_opt->snd_wscale;
6308 	ireq->wscale_ok = rx_opt->wscale_ok;
6309 	ireq->acked = 0;
6310 	ireq->ecn_ok = 0;
6311 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6312 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6313 	ireq->ir_mark = inet_request_mark(sk, skb);
6314 #if IS_ENABLED(CONFIG_SMC)
6315 	ireq->smc_ok = rx_opt->smc_ok;
6316 #endif
6317 }
6318 
6319 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6320 				      struct sock *sk_listener,
6321 				      bool attach_listener)
6322 {
6323 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6324 					       attach_listener);
6325 
6326 	if (req) {
6327 		struct inet_request_sock *ireq = inet_rsk(req);
6328 
6329 		ireq->ireq_opt = NULL;
6330 #if IS_ENABLED(CONFIG_IPV6)
6331 		ireq->pktopts = NULL;
6332 #endif
6333 		atomic64_set(&ireq->ir_cookie, 0);
6334 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6335 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6336 		ireq->ireq_family = sk_listener->sk_family;
6337 	}
6338 
6339 	return req;
6340 }
6341 EXPORT_SYMBOL(inet_reqsk_alloc);
6342 
6343 /*
6344  * Return true if a syncookie should be sent
6345  */
6346 static bool tcp_syn_flood_action(const struct sock *sk,
6347 				 const struct sk_buff *skb,
6348 				 const char *proto)
6349 {
6350 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6351 	const char *msg = "Dropping request";
6352 	bool want_cookie = false;
6353 	struct net *net = sock_net(sk);
6354 
6355 #ifdef CONFIG_SYN_COOKIES
6356 	if (net->ipv4.sysctl_tcp_syncookies) {
6357 		msg = "Sending cookies";
6358 		want_cookie = true;
6359 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6360 	} else
6361 #endif
6362 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6363 
6364 	if (!queue->synflood_warned &&
6365 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6366 	    xchg(&queue->synflood_warned, 1) == 0)
6367 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6368 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6369 
6370 	return want_cookie;
6371 }
6372 
6373 static void tcp_reqsk_record_syn(const struct sock *sk,
6374 				 struct request_sock *req,
6375 				 const struct sk_buff *skb)
6376 {
6377 	if (tcp_sk(sk)->save_syn) {
6378 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6379 		u32 *copy;
6380 
6381 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6382 		if (copy) {
6383 			copy[0] = len;
6384 			memcpy(&copy[1], skb_network_header(skb), len);
6385 			req->saved_syn = copy;
6386 		}
6387 	}
6388 }
6389 
6390 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6391 		     const struct tcp_request_sock_ops *af_ops,
6392 		     struct sock *sk, struct sk_buff *skb)
6393 {
6394 	struct tcp_fastopen_cookie foc = { .len = -1 };
6395 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6396 	struct tcp_options_received tmp_opt;
6397 	struct tcp_sock *tp = tcp_sk(sk);
6398 	struct net *net = sock_net(sk);
6399 	struct sock *fastopen_sk = NULL;
6400 	struct request_sock *req;
6401 	bool want_cookie = false;
6402 	struct dst_entry *dst;
6403 	struct flowi fl;
6404 
6405 	/* TW buckets are converted to open requests without
6406 	 * limitations, they conserve resources and peer is
6407 	 * evidently real one.
6408 	 */
6409 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6410 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6411 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6412 		if (!want_cookie)
6413 			goto drop;
6414 	}
6415 
6416 	if (sk_acceptq_is_full(sk)) {
6417 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6418 		goto drop;
6419 	}
6420 
6421 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6422 	if (!req)
6423 		goto drop;
6424 
6425 	tcp_rsk(req)->af_specific = af_ops;
6426 	tcp_rsk(req)->ts_off = 0;
6427 
6428 	tcp_clear_options(&tmp_opt);
6429 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6430 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6431 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6432 			  want_cookie ? NULL : &foc);
6433 
6434 	if (want_cookie && !tmp_opt.saw_tstamp)
6435 		tcp_clear_options(&tmp_opt);
6436 
6437 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6438 		tmp_opt.smc_ok = 0;
6439 
6440 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6441 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6442 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6443 
6444 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6445 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6446 
6447 	af_ops->init_req(req, sk, skb);
6448 
6449 	if (security_inet_conn_request(sk, skb, req))
6450 		goto drop_and_free;
6451 
6452 	if (tmp_opt.tstamp_ok)
6453 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6454 
6455 	dst = af_ops->route_req(sk, &fl, req);
6456 	if (!dst)
6457 		goto drop_and_free;
6458 
6459 	if (!want_cookie && !isn) {
6460 		/* Kill the following clause, if you dislike this way. */
6461 		if (!net->ipv4.sysctl_tcp_syncookies &&
6462 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6463 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6464 		    !tcp_peer_is_proven(req, dst)) {
6465 			/* Without syncookies last quarter of
6466 			 * backlog is filled with destinations,
6467 			 * proven to be alive.
6468 			 * It means that we continue to communicate
6469 			 * to destinations, already remembered
6470 			 * to the moment of synflood.
6471 			 */
6472 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6473 				    rsk_ops->family);
6474 			goto drop_and_release;
6475 		}
6476 
6477 		isn = af_ops->init_seq(skb);
6478 	}
6479 
6480 	tcp_ecn_create_request(req, skb, sk, dst);
6481 
6482 	if (want_cookie) {
6483 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6484 		req->cookie_ts = tmp_opt.tstamp_ok;
6485 		if (!tmp_opt.tstamp_ok)
6486 			inet_rsk(req)->ecn_ok = 0;
6487 	}
6488 
6489 	tcp_rsk(req)->snt_isn = isn;
6490 	tcp_rsk(req)->txhash = net_tx_rndhash();
6491 	tcp_openreq_init_rwin(req, sk, dst);
6492 	sk_rx_queue_set(req_to_sk(req), skb);
6493 	if (!want_cookie) {
6494 		tcp_reqsk_record_syn(sk, req, skb);
6495 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6496 	}
6497 	if (fastopen_sk) {
6498 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6499 				    &foc, TCP_SYNACK_FASTOPEN);
6500 		/* Add the child socket directly into the accept queue */
6501 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6502 			reqsk_fastopen_remove(fastopen_sk, req, false);
6503 			bh_unlock_sock(fastopen_sk);
6504 			sock_put(fastopen_sk);
6505 			reqsk_put(req);
6506 			goto drop;
6507 		}
6508 		sk->sk_data_ready(sk);
6509 		bh_unlock_sock(fastopen_sk);
6510 		sock_put(fastopen_sk);
6511 	} else {
6512 		tcp_rsk(req)->tfo_listener = false;
6513 		if (!want_cookie)
6514 			inet_csk_reqsk_queue_hash_add(sk, req,
6515 				tcp_timeout_init((struct sock *)req));
6516 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6517 				    !want_cookie ? TCP_SYNACK_NORMAL :
6518 						   TCP_SYNACK_COOKIE);
6519 		if (want_cookie) {
6520 			reqsk_free(req);
6521 			return 0;
6522 		}
6523 	}
6524 	reqsk_put(req);
6525 	return 0;
6526 
6527 drop_and_release:
6528 	dst_release(dst);
6529 drop_and_free:
6530 	reqsk_free(req);
6531 drop:
6532 	tcp_listendrop(sk);
6533 	return 0;
6534 }
6535 EXPORT_SYMBOL(tcp_conn_request);
6536