1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 252 struct tcp_sock *tp = tcp_sk(sk); 253 254 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 255 tcp_set_window_clamp(sk, val); 256 257 if (tp->window_clamp < tp->rcvq_space.space) 258 tp->rcvq_space.space = tp->window_clamp; 259 } 260 } 261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 262 tcp_sk(sk)->advmss); 263 /* Account for possibly-removed options */ 264 if (unlikely(len > icsk->icsk_ack.rcv_mss + 265 MAX_TCP_OPTION_SPACE)) 266 tcp_gro_dev_warn(sk, skb, len); 267 /* If the skb has a len of exactly 1*MSS and has the PSH bit 268 * set then it is likely the end of an application write. So 269 * more data may not be arriving soon, and yet the data sender 270 * may be waiting for an ACK if cwnd-bound or using TX zero 271 * copy. So we set ICSK_ACK_PUSHED here so that 272 * tcp_cleanup_rbuf() will send an ACK immediately if the app 273 * reads all of the data and is not ping-pong. If len > MSS 274 * then this logic does not matter (and does not hurt) because 275 * tcp_cleanup_rbuf() will always ACK immediately if the app 276 * reads data and there is more than an MSS of unACKed data. 277 */ 278 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 279 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 280 } else { 281 /* Otherwise, we make more careful check taking into account, 282 * that SACKs block is variable. 283 * 284 * "len" is invariant segment length, including TCP header. 285 */ 286 len += skb->data - skb_transport_header(skb); 287 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 288 /* If PSH is not set, packet should be 289 * full sized, provided peer TCP is not badly broken. 290 * This observation (if it is correct 8)) allows 291 * to handle super-low mtu links fairly. 292 */ 293 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 294 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 295 /* Subtract also invariant (if peer is RFC compliant), 296 * tcp header plus fixed timestamp option length. 297 * Resulting "len" is MSS free of SACK jitter. 298 */ 299 len -= tcp_sk(sk)->tcp_header_len; 300 icsk->icsk_ack.last_seg_size = len; 301 if (len == lss) { 302 icsk->icsk_ack.rcv_mss = len; 303 return; 304 } 305 } 306 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 308 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 309 } 310 } 311 312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 313 { 314 struct inet_connection_sock *icsk = inet_csk(sk); 315 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 316 317 if (quickacks == 0) 318 quickacks = 2; 319 quickacks = min(quickacks, max_quickacks); 320 if (quickacks > icsk->icsk_ack.quick) 321 icsk->icsk_ack.quick = quickacks; 322 } 323 324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 325 { 326 struct inet_connection_sock *icsk = inet_csk(sk); 327 328 tcp_incr_quickack(sk, max_quickacks); 329 inet_csk_exit_pingpong_mode(sk); 330 icsk->icsk_ack.ato = TCP_ATO_MIN; 331 } 332 333 /* Send ACKs quickly, if "quick" count is not exhausted 334 * and the session is not interactive. 335 */ 336 337 static bool tcp_in_quickack_mode(struct sock *sk) 338 { 339 const struct inet_connection_sock *icsk = inet_csk(sk); 340 const struct dst_entry *dst = __sk_dst_get(sk); 341 342 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 343 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 344 } 345 346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 347 { 348 if (tp->ecn_flags & TCP_ECN_OK) 349 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 350 } 351 352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 353 { 354 if (tcp_hdr(skb)->cwr) { 355 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 356 357 /* If the sender is telling us it has entered CWR, then its 358 * cwnd may be very low (even just 1 packet), so we should ACK 359 * immediately. 360 */ 361 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 362 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 363 } 364 } 365 366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 367 { 368 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 369 } 370 371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 372 { 373 struct tcp_sock *tp = tcp_sk(sk); 374 375 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 376 case INET_ECN_NOT_ECT: 377 /* Funny extension: if ECT is not set on a segment, 378 * and we already seen ECT on a previous segment, 379 * it is probably a retransmit. 380 */ 381 if (tp->ecn_flags & TCP_ECN_SEEN) 382 tcp_enter_quickack_mode(sk, 2); 383 break; 384 case INET_ECN_CE: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 387 388 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 389 /* Better not delay acks, sender can have a very low cwnd */ 390 tcp_enter_quickack_mode(sk, 2); 391 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 392 } 393 tp->ecn_flags |= TCP_ECN_SEEN; 394 break; 395 default: 396 if (tcp_ca_needs_ecn(sk)) 397 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 398 tp->ecn_flags |= TCP_ECN_SEEN; 399 break; 400 } 401 } 402 403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 404 { 405 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 406 __tcp_ecn_check_ce(sk, skb); 407 } 408 409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 412 tp->ecn_flags &= ~TCP_ECN_OK; 413 } 414 415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 416 { 417 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 418 tp->ecn_flags &= ~TCP_ECN_OK; 419 } 420 421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 422 { 423 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 424 return true; 425 return false; 426 } 427 428 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 429 { 430 tp->delivered_ce += ecn_count; 431 } 432 433 /* Updates the delivered and delivered_ce counts */ 434 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 435 bool ece_ack) 436 { 437 tp->delivered += delivered; 438 if (ece_ack) 439 tcp_count_delivered_ce(tp, delivered); 440 } 441 442 /* Buffer size and advertised window tuning. 443 * 444 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 445 */ 446 447 static void tcp_sndbuf_expand(struct sock *sk) 448 { 449 const struct tcp_sock *tp = tcp_sk(sk); 450 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 451 int sndmem, per_mss; 452 u32 nr_segs; 453 454 /* Worst case is non GSO/TSO : each frame consumes one skb 455 * and skb->head is kmalloced using power of two area of memory 456 */ 457 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 458 MAX_TCP_HEADER + 459 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 460 461 per_mss = roundup_pow_of_two(per_mss) + 462 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 463 464 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 465 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 466 467 /* Fast Recovery (RFC 5681 3.2) : 468 * Cubic needs 1.7 factor, rounded to 2 to include 469 * extra cushion (application might react slowly to EPOLLOUT) 470 */ 471 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 472 sndmem *= nr_segs * per_mss; 473 474 if (sk->sk_sndbuf < sndmem) 475 WRITE_ONCE(sk->sk_sndbuf, 476 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 477 } 478 479 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 480 * 481 * All tcp_full_space() is split to two parts: "network" buffer, allocated 482 * forward and advertised in receiver window (tp->rcv_wnd) and 483 * "application buffer", required to isolate scheduling/application 484 * latencies from network. 485 * window_clamp is maximal advertised window. It can be less than 486 * tcp_full_space(), in this case tcp_full_space() - window_clamp 487 * is reserved for "application" buffer. The less window_clamp is 488 * the smoother our behaviour from viewpoint of network, but the lower 489 * throughput and the higher sensitivity of the connection to losses. 8) 490 * 491 * rcv_ssthresh is more strict window_clamp used at "slow start" 492 * phase to predict further behaviour of this connection. 493 * It is used for two goals: 494 * - to enforce header prediction at sender, even when application 495 * requires some significant "application buffer". It is check #1. 496 * - to prevent pruning of receive queue because of misprediction 497 * of receiver window. Check #2. 498 * 499 * The scheme does not work when sender sends good segments opening 500 * window and then starts to feed us spaghetti. But it should work 501 * in common situations. Otherwise, we have to rely on queue collapsing. 502 */ 503 504 /* Slow part of check#2. */ 505 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 506 unsigned int skbtruesize) 507 { 508 const struct tcp_sock *tp = tcp_sk(sk); 509 /* Optimize this! */ 510 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 511 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 512 513 while (tp->rcv_ssthresh <= window) { 514 if (truesize <= skb->len) 515 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 516 517 truesize >>= 1; 518 window >>= 1; 519 } 520 return 0; 521 } 522 523 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 524 * can play nice with us, as sk_buff and skb->head might be either 525 * freed or shared with up to MAX_SKB_FRAGS segments. 526 * Only give a boost to drivers using page frag(s) to hold the frame(s), 527 * and if no payload was pulled in skb->head before reaching us. 528 */ 529 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 530 { 531 u32 truesize = skb->truesize; 532 533 if (adjust && !skb_headlen(skb)) { 534 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 535 /* paranoid check, some drivers might be buggy */ 536 if (unlikely((int)truesize < (int)skb->len)) 537 truesize = skb->truesize; 538 } 539 return truesize; 540 } 541 542 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 543 bool adjust) 544 { 545 struct tcp_sock *tp = tcp_sk(sk); 546 int room; 547 548 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 549 550 if (room <= 0) 551 return; 552 553 /* Check #1 */ 554 if (!tcp_under_memory_pressure(sk)) { 555 unsigned int truesize = truesize_adjust(adjust, skb); 556 int incr; 557 558 /* Check #2. Increase window, if skb with such overhead 559 * will fit to rcvbuf in future. 560 */ 561 if (tcp_win_from_space(sk, truesize) <= skb->len) 562 incr = 2 * tp->advmss; 563 else 564 incr = __tcp_grow_window(sk, skb, truesize); 565 566 if (incr) { 567 incr = max_t(int, incr, 2 * skb->len); 568 tp->rcv_ssthresh += min(room, incr); 569 inet_csk(sk)->icsk_ack.quick |= 1; 570 } 571 } else { 572 /* Under pressure: 573 * Adjust rcv_ssthresh according to reserved mem 574 */ 575 tcp_adjust_rcv_ssthresh(sk); 576 } 577 } 578 579 /* 3. Try to fixup all. It is made immediately after connection enters 580 * established state. 581 */ 582 static void tcp_init_buffer_space(struct sock *sk) 583 { 584 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 585 struct tcp_sock *tp = tcp_sk(sk); 586 int maxwin; 587 588 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 589 tcp_sndbuf_expand(sk); 590 591 tcp_mstamp_refresh(tp); 592 tp->rcvq_space.time = tp->tcp_mstamp; 593 tp->rcvq_space.seq = tp->copied_seq; 594 595 maxwin = tcp_full_space(sk); 596 597 if (tp->window_clamp >= maxwin) { 598 WRITE_ONCE(tp->window_clamp, maxwin); 599 600 if (tcp_app_win && maxwin > 4 * tp->advmss) 601 WRITE_ONCE(tp->window_clamp, 602 max(maxwin - (maxwin >> tcp_app_win), 603 4 * tp->advmss)); 604 } 605 606 /* Force reservation of one segment. */ 607 if (tcp_app_win && 608 tp->window_clamp > 2 * tp->advmss && 609 tp->window_clamp + tp->advmss > maxwin) 610 WRITE_ONCE(tp->window_clamp, 611 max(2 * tp->advmss, maxwin - tp->advmss)); 612 613 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 614 tp->snd_cwnd_stamp = tcp_jiffies32; 615 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 616 (u32)TCP_INIT_CWND * tp->advmss); 617 } 618 619 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 620 static void tcp_clamp_window(struct sock *sk) 621 { 622 struct tcp_sock *tp = tcp_sk(sk); 623 struct inet_connection_sock *icsk = inet_csk(sk); 624 struct net *net = sock_net(sk); 625 int rmem2; 626 627 icsk->icsk_ack.quick = 0; 628 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 629 630 if (sk->sk_rcvbuf < rmem2 && 631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 632 !tcp_under_memory_pressure(sk) && 633 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 634 WRITE_ONCE(sk->sk_rcvbuf, 635 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 636 } 637 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 638 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 639 } 640 641 /* Initialize RCV_MSS value. 642 * RCV_MSS is an our guess about MSS used by the peer. 643 * We haven't any direct information about the MSS. 644 * It's better to underestimate the RCV_MSS rather than overestimate. 645 * Overestimations make us ACKing less frequently than needed. 646 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 647 */ 648 void tcp_initialize_rcv_mss(struct sock *sk) 649 { 650 const struct tcp_sock *tp = tcp_sk(sk); 651 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 652 653 hint = min(hint, tp->rcv_wnd / 2); 654 hint = min(hint, TCP_MSS_DEFAULT); 655 hint = max(hint, TCP_MIN_MSS); 656 657 inet_csk(sk)->icsk_ack.rcv_mss = hint; 658 } 659 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 660 661 /* Receiver "autotuning" code. 662 * 663 * The algorithm for RTT estimation w/o timestamps is based on 664 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 665 * <https://public.lanl.gov/radiant/pubs.html#DRS> 666 * 667 * More detail on this code can be found at 668 * <http://staff.psc.edu/jheffner/>, 669 * though this reference is out of date. A new paper 670 * is pending. 671 */ 672 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 673 { 674 u32 new_sample = tp->rcv_rtt_est.rtt_us; 675 long m = sample; 676 677 if (new_sample != 0) { 678 /* If we sample in larger samples in the non-timestamp 679 * case, we could grossly overestimate the RTT especially 680 * with chatty applications or bulk transfer apps which 681 * are stalled on filesystem I/O. 682 * 683 * Also, since we are only going for a minimum in the 684 * non-timestamp case, we do not smooth things out 685 * else with timestamps disabled convergence takes too 686 * long. 687 */ 688 if (!win_dep) { 689 m -= (new_sample >> 3); 690 new_sample += m; 691 } else { 692 m <<= 3; 693 if (m < new_sample) 694 new_sample = m; 695 } 696 } else { 697 /* No previous measure. */ 698 new_sample = m << 3; 699 } 700 701 tp->rcv_rtt_est.rtt_us = new_sample; 702 } 703 704 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 705 { 706 u32 delta_us; 707 708 if (tp->rcv_rtt_est.time == 0) 709 goto new_measure; 710 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 711 return; 712 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 713 if (!delta_us) 714 delta_us = 1; 715 tcp_rcv_rtt_update(tp, delta_us, 1); 716 717 new_measure: 718 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 719 tp->rcv_rtt_est.time = tp->tcp_mstamp; 720 } 721 722 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 723 const struct sk_buff *skb) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 727 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 728 return; 729 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 730 731 if (TCP_SKB_CB(skb)->end_seq - 732 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 733 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 734 u32 delta_us; 735 736 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 737 if (!delta) 738 delta = 1; 739 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 740 tcp_rcv_rtt_update(tp, delta_us, 0); 741 } 742 } 743 } 744 745 /* 746 * This function should be called every time data is copied to user space. 747 * It calculates the appropriate TCP receive buffer space. 748 */ 749 void tcp_rcv_space_adjust(struct sock *sk) 750 { 751 struct tcp_sock *tp = tcp_sk(sk); 752 u32 copied; 753 int time; 754 755 trace_tcp_rcv_space_adjust(sk); 756 757 tcp_mstamp_refresh(tp); 758 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 759 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 760 return; 761 762 /* Number of bytes copied to user in last RTT */ 763 copied = tp->copied_seq - tp->rcvq_space.seq; 764 if (copied <= tp->rcvq_space.space) 765 goto new_measure; 766 767 /* A bit of theory : 768 * copied = bytes received in previous RTT, our base window 769 * To cope with packet losses, we need a 2x factor 770 * To cope with slow start, and sender growing its cwin by 100 % 771 * every RTT, we need a 4x factor, because the ACK we are sending 772 * now is for the next RTT, not the current one : 773 * <prev RTT . ><current RTT .. ><next RTT .... > 774 */ 775 776 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 777 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 778 u64 rcvwin, grow; 779 int rcvbuf; 780 781 /* minimal window to cope with packet losses, assuming 782 * steady state. Add some cushion because of small variations. 783 */ 784 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 785 786 /* Accommodate for sender rate increase (eg. slow start) */ 787 grow = rcvwin * (copied - tp->rcvq_space.space); 788 do_div(grow, tp->rcvq_space.space); 789 rcvwin += (grow << 1); 790 791 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 792 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 793 if (rcvbuf > sk->sk_rcvbuf) { 794 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 795 796 /* Make the window clamp follow along. */ 797 WRITE_ONCE(tp->window_clamp, 798 tcp_win_from_space(sk, rcvbuf)); 799 } 800 } 801 tp->rcvq_space.space = copied; 802 803 new_measure: 804 tp->rcvq_space.seq = tp->copied_seq; 805 tp->rcvq_space.time = tp->tcp_mstamp; 806 } 807 808 /* There is something which you must keep in mind when you analyze the 809 * behavior of the tp->ato delayed ack timeout interval. When a 810 * connection starts up, we want to ack as quickly as possible. The 811 * problem is that "good" TCP's do slow start at the beginning of data 812 * transmission. The means that until we send the first few ACK's the 813 * sender will sit on his end and only queue most of his data, because 814 * he can only send snd_cwnd unacked packets at any given time. For 815 * each ACK we send, he increments snd_cwnd and transmits more of his 816 * queue. -DaveM 817 */ 818 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 819 { 820 struct tcp_sock *tp = tcp_sk(sk); 821 struct inet_connection_sock *icsk = inet_csk(sk); 822 u32 now; 823 824 inet_csk_schedule_ack(sk); 825 826 tcp_measure_rcv_mss(sk, skb); 827 828 tcp_rcv_rtt_measure(tp); 829 830 now = tcp_jiffies32; 831 832 if (!icsk->icsk_ack.ato) { 833 /* The _first_ data packet received, initialize 834 * delayed ACK engine. 835 */ 836 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 837 icsk->icsk_ack.ato = TCP_ATO_MIN; 838 } else { 839 int m = now - icsk->icsk_ack.lrcvtime; 840 841 if (m <= TCP_ATO_MIN / 2) { 842 /* The fastest case is the first. */ 843 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 844 } else if (m < icsk->icsk_ack.ato) { 845 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 846 if (icsk->icsk_ack.ato > icsk->icsk_rto) 847 icsk->icsk_ack.ato = icsk->icsk_rto; 848 } else if (m > icsk->icsk_rto) { 849 /* Too long gap. Apparently sender failed to 850 * restart window, so that we send ACKs quickly. 851 */ 852 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 853 } 854 } 855 icsk->icsk_ack.lrcvtime = now; 856 857 tcp_ecn_check_ce(sk, skb); 858 859 if (skb->len >= 128) 860 tcp_grow_window(sk, skb, true); 861 } 862 863 /* Called to compute a smoothed rtt estimate. The data fed to this 864 * routine either comes from timestamps, or from segments that were 865 * known _not_ to have been retransmitted [see Karn/Partridge 866 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 867 * piece by Van Jacobson. 868 * NOTE: the next three routines used to be one big routine. 869 * To save cycles in the RFC 1323 implementation it was better to break 870 * it up into three procedures. -- erics 871 */ 872 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 873 { 874 struct tcp_sock *tp = tcp_sk(sk); 875 long m = mrtt_us; /* RTT */ 876 u32 srtt = tp->srtt_us; 877 878 /* The following amusing code comes from Jacobson's 879 * article in SIGCOMM '88. Note that rtt and mdev 880 * are scaled versions of rtt and mean deviation. 881 * This is designed to be as fast as possible 882 * m stands for "measurement". 883 * 884 * On a 1990 paper the rto value is changed to: 885 * RTO = rtt + 4 * mdev 886 * 887 * Funny. This algorithm seems to be very broken. 888 * These formulae increase RTO, when it should be decreased, increase 889 * too slowly, when it should be increased quickly, decrease too quickly 890 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 891 * does not matter how to _calculate_ it. Seems, it was trap 892 * that VJ failed to avoid. 8) 893 */ 894 if (srtt != 0) { 895 m -= (srtt >> 3); /* m is now error in rtt est */ 896 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 897 if (m < 0) { 898 m = -m; /* m is now abs(error) */ 899 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 900 /* This is similar to one of Eifel findings. 901 * Eifel blocks mdev updates when rtt decreases. 902 * This solution is a bit different: we use finer gain 903 * for mdev in this case (alpha*beta). 904 * Like Eifel it also prevents growth of rto, 905 * but also it limits too fast rto decreases, 906 * happening in pure Eifel. 907 */ 908 if (m > 0) 909 m >>= 3; 910 } else { 911 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 912 } 913 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 914 if (tp->mdev_us > tp->mdev_max_us) { 915 tp->mdev_max_us = tp->mdev_us; 916 if (tp->mdev_max_us > tp->rttvar_us) 917 tp->rttvar_us = tp->mdev_max_us; 918 } 919 if (after(tp->snd_una, tp->rtt_seq)) { 920 if (tp->mdev_max_us < tp->rttvar_us) 921 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 922 tp->rtt_seq = tp->snd_nxt; 923 tp->mdev_max_us = tcp_rto_min_us(sk); 924 925 tcp_bpf_rtt(sk); 926 } 927 } else { 928 /* no previous measure. */ 929 srtt = m << 3; /* take the measured time to be rtt */ 930 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 931 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 932 tp->mdev_max_us = tp->rttvar_us; 933 tp->rtt_seq = tp->snd_nxt; 934 935 tcp_bpf_rtt(sk); 936 } 937 tp->srtt_us = max(1U, srtt); 938 } 939 940 static void tcp_update_pacing_rate(struct sock *sk) 941 { 942 const struct tcp_sock *tp = tcp_sk(sk); 943 u64 rate; 944 945 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 946 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 947 948 /* current rate is (cwnd * mss) / srtt 949 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 950 * In Congestion Avoidance phase, set it to 120 % the current rate. 951 * 952 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 953 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 954 * end of slow start and should slow down. 955 */ 956 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 957 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 958 else 959 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 960 961 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 962 963 if (likely(tp->srtt_us)) 964 do_div(rate, tp->srtt_us); 965 966 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 967 * without any lock. We want to make sure compiler wont store 968 * intermediate values in this location. 969 */ 970 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 971 sk->sk_max_pacing_rate)); 972 } 973 974 /* Calculate rto without backoff. This is the second half of Van Jacobson's 975 * routine referred to above. 976 */ 977 static void tcp_set_rto(struct sock *sk) 978 { 979 const struct tcp_sock *tp = tcp_sk(sk); 980 /* Old crap is replaced with new one. 8) 981 * 982 * More seriously: 983 * 1. If rtt variance happened to be less 50msec, it is hallucination. 984 * It cannot be less due to utterly erratic ACK generation made 985 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 986 * to do with delayed acks, because at cwnd>2 true delack timeout 987 * is invisible. Actually, Linux-2.4 also generates erratic 988 * ACKs in some circumstances. 989 */ 990 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 991 992 /* 2. Fixups made earlier cannot be right. 993 * If we do not estimate RTO correctly without them, 994 * all the algo is pure shit and should be replaced 995 * with correct one. It is exactly, which we pretend to do. 996 */ 997 998 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 999 * guarantees that rto is higher. 1000 */ 1001 tcp_bound_rto(sk); 1002 } 1003 1004 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1005 { 1006 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1007 1008 if (!cwnd) 1009 cwnd = TCP_INIT_CWND; 1010 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1011 } 1012 1013 struct tcp_sacktag_state { 1014 /* Timestamps for earliest and latest never-retransmitted segment 1015 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1016 * but congestion control should still get an accurate delay signal. 1017 */ 1018 u64 first_sackt; 1019 u64 last_sackt; 1020 u32 reord; 1021 u32 sack_delivered; 1022 int flag; 1023 unsigned int mss_now; 1024 struct rate_sample *rate; 1025 }; 1026 1027 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1028 * and spurious retransmission information if this DSACK is unlikely caused by 1029 * sender's action: 1030 * - DSACKed sequence range is larger than maximum receiver's window. 1031 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1032 */ 1033 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1034 u32 end_seq, struct tcp_sacktag_state *state) 1035 { 1036 u32 seq_len, dup_segs = 1; 1037 1038 if (!before(start_seq, end_seq)) 1039 return 0; 1040 1041 seq_len = end_seq - start_seq; 1042 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1043 if (seq_len > tp->max_window) 1044 return 0; 1045 if (seq_len > tp->mss_cache) 1046 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1047 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1048 state->flag |= FLAG_DSACK_TLP; 1049 1050 tp->dsack_dups += dup_segs; 1051 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1052 if (tp->dsack_dups > tp->total_retrans) 1053 return 0; 1054 1055 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1056 /* We increase the RACK ordering window in rounds where we receive 1057 * DSACKs that may have been due to reordering causing RACK to trigger 1058 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1059 * without having seen reordering, or that match TLP probes (TLP 1060 * is timer-driven, not triggered by RACK). 1061 */ 1062 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1063 tp->rack.dsack_seen = 1; 1064 1065 state->flag |= FLAG_DSACKING_ACK; 1066 /* A spurious retransmission is delivered */ 1067 state->sack_delivered += dup_segs; 1068 1069 return dup_segs; 1070 } 1071 1072 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1073 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1074 * distance is approximated in full-mss packet distance ("reordering"). 1075 */ 1076 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1077 const int ts) 1078 { 1079 struct tcp_sock *tp = tcp_sk(sk); 1080 const u32 mss = tp->mss_cache; 1081 u32 fack, metric; 1082 1083 fack = tcp_highest_sack_seq(tp); 1084 if (!before(low_seq, fack)) 1085 return; 1086 1087 metric = fack - low_seq; 1088 if ((metric > tp->reordering * mss) && mss) { 1089 #if FASTRETRANS_DEBUG > 1 1090 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1091 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1092 tp->reordering, 1093 0, 1094 tp->sacked_out, 1095 tp->undo_marker ? tp->undo_retrans : 0); 1096 #endif 1097 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1098 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1099 } 1100 1101 /* This exciting event is worth to be remembered. 8) */ 1102 tp->reord_seen++; 1103 NET_INC_STATS(sock_net(sk), 1104 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1105 } 1106 1107 /* This must be called before lost_out or retrans_out are updated 1108 * on a new loss, because we want to know if all skbs previously 1109 * known to be lost have already been retransmitted, indicating 1110 * that this newly lost skb is our next skb to retransmit. 1111 */ 1112 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1113 { 1114 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1115 (tp->retransmit_skb_hint && 1116 before(TCP_SKB_CB(skb)->seq, 1117 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1118 tp->retransmit_skb_hint = skb; 1119 } 1120 1121 /* Sum the number of packets on the wire we have marked as lost, and 1122 * notify the congestion control module that the given skb was marked lost. 1123 */ 1124 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1125 { 1126 tp->lost += tcp_skb_pcount(skb); 1127 } 1128 1129 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1130 { 1131 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 1134 if (sacked & TCPCB_SACKED_ACKED) 1135 return; 1136 1137 tcp_verify_retransmit_hint(tp, skb); 1138 if (sacked & TCPCB_LOST) { 1139 if (sacked & TCPCB_SACKED_RETRANS) { 1140 /* Account for retransmits that are lost again */ 1141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1142 tp->retrans_out -= tcp_skb_pcount(skb); 1143 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1144 tcp_skb_pcount(skb)); 1145 tcp_notify_skb_loss_event(tp, skb); 1146 } 1147 } else { 1148 tp->lost_out += tcp_skb_pcount(skb); 1149 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1150 tcp_notify_skb_loss_event(tp, skb); 1151 } 1152 } 1153 1154 /* This procedure tags the retransmission queue when SACKs arrive. 1155 * 1156 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1157 * Packets in queue with these bits set are counted in variables 1158 * sacked_out, retrans_out and lost_out, correspondingly. 1159 * 1160 * Valid combinations are: 1161 * Tag InFlight Description 1162 * 0 1 - orig segment is in flight. 1163 * S 0 - nothing flies, orig reached receiver. 1164 * L 0 - nothing flies, orig lost by net. 1165 * R 2 - both orig and retransmit are in flight. 1166 * L|R 1 - orig is lost, retransmit is in flight. 1167 * S|R 1 - orig reached receiver, retrans is still in flight. 1168 * (L|S|R is logically valid, it could occur when L|R is sacked, 1169 * but it is equivalent to plain S and code short-curcuits it to S. 1170 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1171 * 1172 * These 6 states form finite state machine, controlled by the following events: 1173 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1174 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1175 * 3. Loss detection event of two flavors: 1176 * A. Scoreboard estimator decided the packet is lost. 1177 * A'. Reno "three dupacks" marks head of queue lost. 1178 * B. SACK arrives sacking SND.NXT at the moment, when the 1179 * segment was retransmitted. 1180 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1181 * 1182 * It is pleasant to note, that state diagram turns out to be commutative, 1183 * so that we are allowed not to be bothered by order of our actions, 1184 * when multiple events arrive simultaneously. (see the function below). 1185 * 1186 * Reordering detection. 1187 * -------------------- 1188 * Reordering metric is maximal distance, which a packet can be displaced 1189 * in packet stream. With SACKs we can estimate it: 1190 * 1191 * 1. SACK fills old hole and the corresponding segment was not 1192 * ever retransmitted -> reordering. Alas, we cannot use it 1193 * when segment was retransmitted. 1194 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1195 * for retransmitted and already SACKed segment -> reordering.. 1196 * Both of these heuristics are not used in Loss state, when we cannot 1197 * account for retransmits accurately. 1198 * 1199 * SACK block validation. 1200 * ---------------------- 1201 * 1202 * SACK block range validation checks that the received SACK block fits to 1203 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1204 * Note that SND.UNA is not included to the range though being valid because 1205 * it means that the receiver is rather inconsistent with itself reporting 1206 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1207 * perfectly valid, however, in light of RFC2018 which explicitly states 1208 * that "SACK block MUST reflect the newest segment. Even if the newest 1209 * segment is going to be discarded ...", not that it looks very clever 1210 * in case of head skb. Due to potentional receiver driven attacks, we 1211 * choose to avoid immediate execution of a walk in write queue due to 1212 * reneging and defer head skb's loss recovery to standard loss recovery 1213 * procedure that will eventually trigger (nothing forbids us doing this). 1214 * 1215 * Implements also blockage to start_seq wrap-around. Problem lies in the 1216 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1217 * there's no guarantee that it will be before snd_nxt (n). The problem 1218 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1219 * wrap (s_w): 1220 * 1221 * <- outs wnd -> <- wrapzone -> 1222 * u e n u_w e_w s n_w 1223 * | | | | | | | 1224 * |<------------+------+----- TCP seqno space --------------+---------->| 1225 * ...-- <2^31 ->| |<--------... 1226 * ...---- >2^31 ------>| |<--------... 1227 * 1228 * Current code wouldn't be vulnerable but it's better still to discard such 1229 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1230 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1231 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1232 * equal to the ideal case (infinite seqno space without wrap caused issues). 1233 * 1234 * With D-SACK the lower bound is extended to cover sequence space below 1235 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1236 * again, D-SACK block must not to go across snd_una (for the same reason as 1237 * for the normal SACK blocks, explained above). But there all simplicity 1238 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1239 * fully below undo_marker they do not affect behavior in anyway and can 1240 * therefore be safely ignored. In rare cases (which are more or less 1241 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1242 * fragmentation and packet reordering past skb's retransmission. To consider 1243 * them correctly, the acceptable range must be extended even more though 1244 * the exact amount is rather hard to quantify. However, tp->max_window can 1245 * be used as an exaggerated estimate. 1246 */ 1247 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1248 u32 start_seq, u32 end_seq) 1249 { 1250 /* Too far in future, or reversed (interpretation is ambiguous) */ 1251 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1252 return false; 1253 1254 /* Nasty start_seq wrap-around check (see comments above) */ 1255 if (!before(start_seq, tp->snd_nxt)) 1256 return false; 1257 1258 /* In outstanding window? ...This is valid exit for D-SACKs too. 1259 * start_seq == snd_una is non-sensical (see comments above) 1260 */ 1261 if (after(start_seq, tp->snd_una)) 1262 return true; 1263 1264 if (!is_dsack || !tp->undo_marker) 1265 return false; 1266 1267 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1268 if (after(end_seq, tp->snd_una)) 1269 return false; 1270 1271 if (!before(start_seq, tp->undo_marker)) 1272 return true; 1273 1274 /* Too old */ 1275 if (!after(end_seq, tp->undo_marker)) 1276 return false; 1277 1278 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1279 * start_seq < undo_marker and end_seq >= undo_marker. 1280 */ 1281 return !before(start_seq, end_seq - tp->max_window); 1282 } 1283 1284 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1285 struct tcp_sack_block_wire *sp, int num_sacks, 1286 u32 prior_snd_una, struct tcp_sacktag_state *state) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1290 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1291 u32 dup_segs; 1292 1293 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1295 } else if (num_sacks > 1) { 1296 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1297 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1298 1299 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1300 return false; 1301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1302 } else { 1303 return false; 1304 } 1305 1306 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1307 if (!dup_segs) { /* Skip dubious DSACK */ 1308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1309 return false; 1310 } 1311 1312 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1313 1314 /* D-SACK for already forgotten data... Do dumb counting. */ 1315 if (tp->undo_marker && tp->undo_retrans > 0 && 1316 !after(end_seq_0, prior_snd_una) && 1317 after(end_seq_0, tp->undo_marker)) 1318 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1319 1320 return true; 1321 } 1322 1323 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1324 * the incoming SACK may not exactly match but we can find smaller MSS 1325 * aligned portion of it that matches. Therefore we might need to fragment 1326 * which may fail and creates some hassle (caller must handle error case 1327 * returns). 1328 * 1329 * FIXME: this could be merged to shift decision code 1330 */ 1331 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1332 u32 start_seq, u32 end_seq) 1333 { 1334 int err; 1335 bool in_sack; 1336 unsigned int pkt_len; 1337 unsigned int mss; 1338 1339 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1340 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1341 1342 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1343 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1344 mss = tcp_skb_mss(skb); 1345 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1346 1347 if (!in_sack) { 1348 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1349 if (pkt_len < mss) 1350 pkt_len = mss; 1351 } else { 1352 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1353 if (pkt_len < mss) 1354 return -EINVAL; 1355 } 1356 1357 /* Round if necessary so that SACKs cover only full MSSes 1358 * and/or the remaining small portion (if present) 1359 */ 1360 if (pkt_len > mss) { 1361 unsigned int new_len = (pkt_len / mss) * mss; 1362 if (!in_sack && new_len < pkt_len) 1363 new_len += mss; 1364 pkt_len = new_len; 1365 } 1366 1367 if (pkt_len >= skb->len && !in_sack) 1368 return 0; 1369 1370 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1371 pkt_len, mss, GFP_ATOMIC); 1372 if (err < 0) 1373 return err; 1374 } 1375 1376 return in_sack; 1377 } 1378 1379 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1380 static u8 tcp_sacktag_one(struct sock *sk, 1381 struct tcp_sacktag_state *state, u8 sacked, 1382 u32 start_seq, u32 end_seq, 1383 int dup_sack, int pcount, 1384 u64 xmit_time) 1385 { 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 1388 /* Account D-SACK for retransmitted packet. */ 1389 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1390 if (tp->undo_marker && tp->undo_retrans > 0 && 1391 after(end_seq, tp->undo_marker)) 1392 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1393 if ((sacked & TCPCB_SACKED_ACKED) && 1394 before(start_seq, state->reord)) 1395 state->reord = start_seq; 1396 } 1397 1398 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1399 if (!after(end_seq, tp->snd_una)) 1400 return sacked; 1401 1402 if (!(sacked & TCPCB_SACKED_ACKED)) { 1403 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1404 1405 if (sacked & TCPCB_SACKED_RETRANS) { 1406 /* If the segment is not tagged as lost, 1407 * we do not clear RETRANS, believing 1408 * that retransmission is still in flight. 1409 */ 1410 if (sacked & TCPCB_LOST) { 1411 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1412 tp->lost_out -= pcount; 1413 tp->retrans_out -= pcount; 1414 } 1415 } else { 1416 if (!(sacked & TCPCB_RETRANS)) { 1417 /* New sack for not retransmitted frame, 1418 * which was in hole. It is reordering. 1419 */ 1420 if (before(start_seq, 1421 tcp_highest_sack_seq(tp)) && 1422 before(start_seq, state->reord)) 1423 state->reord = start_seq; 1424 1425 if (!after(end_seq, tp->high_seq)) 1426 state->flag |= FLAG_ORIG_SACK_ACKED; 1427 if (state->first_sackt == 0) 1428 state->first_sackt = xmit_time; 1429 state->last_sackt = xmit_time; 1430 } 1431 1432 if (sacked & TCPCB_LOST) { 1433 sacked &= ~TCPCB_LOST; 1434 tp->lost_out -= pcount; 1435 } 1436 } 1437 1438 sacked |= TCPCB_SACKED_ACKED; 1439 state->flag |= FLAG_DATA_SACKED; 1440 tp->sacked_out += pcount; 1441 /* Out-of-order packets delivered */ 1442 state->sack_delivered += pcount; 1443 1444 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1445 if (tp->lost_skb_hint && 1446 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1447 tp->lost_cnt_hint += pcount; 1448 } 1449 1450 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1451 * frames and clear it. undo_retrans is decreased above, L|R frames 1452 * are accounted above as well. 1453 */ 1454 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1455 sacked &= ~TCPCB_SACKED_RETRANS; 1456 tp->retrans_out -= pcount; 1457 } 1458 1459 return sacked; 1460 } 1461 1462 /* Shift newly-SACKed bytes from this skb to the immediately previous 1463 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1464 */ 1465 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1466 struct sk_buff *skb, 1467 struct tcp_sacktag_state *state, 1468 unsigned int pcount, int shifted, int mss, 1469 bool dup_sack) 1470 { 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1473 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1474 1475 BUG_ON(!pcount); 1476 1477 /* Adjust counters and hints for the newly sacked sequence 1478 * range but discard the return value since prev is already 1479 * marked. We must tag the range first because the seq 1480 * advancement below implicitly advances 1481 * tcp_highest_sack_seq() when skb is highest_sack. 1482 */ 1483 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1484 start_seq, end_seq, dup_sack, pcount, 1485 tcp_skb_timestamp_us(skb)); 1486 tcp_rate_skb_delivered(sk, skb, state->rate); 1487 1488 if (skb == tp->lost_skb_hint) 1489 tp->lost_cnt_hint += pcount; 1490 1491 TCP_SKB_CB(prev)->end_seq += shifted; 1492 TCP_SKB_CB(skb)->seq += shifted; 1493 1494 tcp_skb_pcount_add(prev, pcount); 1495 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1496 tcp_skb_pcount_add(skb, -pcount); 1497 1498 /* When we're adding to gso_segs == 1, gso_size will be zero, 1499 * in theory this shouldn't be necessary but as long as DSACK 1500 * code can come after this skb later on it's better to keep 1501 * setting gso_size to something. 1502 */ 1503 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1504 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1505 1506 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1507 if (tcp_skb_pcount(skb) <= 1) 1508 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1509 1510 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1511 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1512 1513 if (skb->len > 0) { 1514 BUG_ON(!tcp_skb_pcount(skb)); 1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1516 return false; 1517 } 1518 1519 /* Whole SKB was eaten :-) */ 1520 1521 if (skb == tp->retransmit_skb_hint) 1522 tp->retransmit_skb_hint = prev; 1523 if (skb == tp->lost_skb_hint) { 1524 tp->lost_skb_hint = prev; 1525 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1526 } 1527 1528 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1529 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1530 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1531 TCP_SKB_CB(prev)->end_seq++; 1532 1533 if (skb == tcp_highest_sack(sk)) 1534 tcp_advance_highest_sack(sk, skb); 1535 1536 tcp_skb_collapse_tstamp(prev, skb); 1537 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1538 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1539 1540 tcp_rtx_queue_unlink_and_free(skb, sk); 1541 1542 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1543 1544 return true; 1545 } 1546 1547 /* I wish gso_size would have a bit more sane initialization than 1548 * something-or-zero which complicates things 1549 */ 1550 static int tcp_skb_seglen(const struct sk_buff *skb) 1551 { 1552 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1553 } 1554 1555 /* Shifting pages past head area doesn't work */ 1556 static int skb_can_shift(const struct sk_buff *skb) 1557 { 1558 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1559 } 1560 1561 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1562 int pcount, int shiftlen) 1563 { 1564 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1565 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1566 * to make sure not storing more than 65535 * 8 bytes per skb, 1567 * even if current MSS is bigger. 1568 */ 1569 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1570 return 0; 1571 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1572 return 0; 1573 return skb_shift(to, from, shiftlen); 1574 } 1575 1576 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1577 * skb. 1578 */ 1579 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1580 struct tcp_sacktag_state *state, 1581 u32 start_seq, u32 end_seq, 1582 bool dup_sack) 1583 { 1584 struct tcp_sock *tp = tcp_sk(sk); 1585 struct sk_buff *prev; 1586 int mss; 1587 int pcount = 0; 1588 int len; 1589 int in_sack; 1590 1591 /* Normally R but no L won't result in plain S */ 1592 if (!dup_sack && 1593 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1594 goto fallback; 1595 if (!skb_can_shift(skb)) 1596 goto fallback; 1597 /* This frame is about to be dropped (was ACKed). */ 1598 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1599 goto fallback; 1600 1601 /* Can only happen with delayed DSACK + discard craziness */ 1602 prev = skb_rb_prev(skb); 1603 if (!prev) 1604 goto fallback; 1605 1606 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1607 goto fallback; 1608 1609 if (!tcp_skb_can_collapse(prev, skb)) 1610 goto fallback; 1611 1612 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1613 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1614 1615 if (in_sack) { 1616 len = skb->len; 1617 pcount = tcp_skb_pcount(skb); 1618 mss = tcp_skb_seglen(skb); 1619 1620 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1621 * drop this restriction as unnecessary 1622 */ 1623 if (mss != tcp_skb_seglen(prev)) 1624 goto fallback; 1625 } else { 1626 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1627 goto noop; 1628 /* CHECKME: This is non-MSS split case only?, this will 1629 * cause skipped skbs due to advancing loop btw, original 1630 * has that feature too 1631 */ 1632 if (tcp_skb_pcount(skb) <= 1) 1633 goto noop; 1634 1635 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1636 if (!in_sack) { 1637 /* TODO: head merge to next could be attempted here 1638 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1639 * though it might not be worth of the additional hassle 1640 * 1641 * ...we can probably just fallback to what was done 1642 * previously. We could try merging non-SACKed ones 1643 * as well but it probably isn't going to buy off 1644 * because later SACKs might again split them, and 1645 * it would make skb timestamp tracking considerably 1646 * harder problem. 1647 */ 1648 goto fallback; 1649 } 1650 1651 len = end_seq - TCP_SKB_CB(skb)->seq; 1652 BUG_ON(len < 0); 1653 BUG_ON(len > skb->len); 1654 1655 /* MSS boundaries should be honoured or else pcount will 1656 * severely break even though it makes things bit trickier. 1657 * Optimize common case to avoid most of the divides 1658 */ 1659 mss = tcp_skb_mss(skb); 1660 1661 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1662 * drop this restriction as unnecessary 1663 */ 1664 if (mss != tcp_skb_seglen(prev)) 1665 goto fallback; 1666 1667 if (len == mss) { 1668 pcount = 1; 1669 } else if (len < mss) { 1670 goto noop; 1671 } else { 1672 pcount = len / mss; 1673 len = pcount * mss; 1674 } 1675 } 1676 1677 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1678 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1679 goto fallback; 1680 1681 if (!tcp_skb_shift(prev, skb, pcount, len)) 1682 goto fallback; 1683 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1684 goto out; 1685 1686 /* Hole filled allows collapsing with the next as well, this is very 1687 * useful when hole on every nth skb pattern happens 1688 */ 1689 skb = skb_rb_next(prev); 1690 if (!skb) 1691 goto out; 1692 1693 if (!skb_can_shift(skb) || 1694 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1695 (mss != tcp_skb_seglen(skb))) 1696 goto out; 1697 1698 if (!tcp_skb_can_collapse(prev, skb)) 1699 goto out; 1700 len = skb->len; 1701 pcount = tcp_skb_pcount(skb); 1702 if (tcp_skb_shift(prev, skb, pcount, len)) 1703 tcp_shifted_skb(sk, prev, skb, state, pcount, 1704 len, mss, 0); 1705 1706 out: 1707 return prev; 1708 1709 noop: 1710 return skb; 1711 1712 fallback: 1713 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1714 return NULL; 1715 } 1716 1717 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1718 struct tcp_sack_block *next_dup, 1719 struct tcp_sacktag_state *state, 1720 u32 start_seq, u32 end_seq, 1721 bool dup_sack_in) 1722 { 1723 struct tcp_sock *tp = tcp_sk(sk); 1724 struct sk_buff *tmp; 1725 1726 skb_rbtree_walk_from(skb) { 1727 int in_sack = 0; 1728 bool dup_sack = dup_sack_in; 1729 1730 /* queue is in-order => we can short-circuit the walk early */ 1731 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1732 break; 1733 1734 if (next_dup && 1735 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1736 in_sack = tcp_match_skb_to_sack(sk, skb, 1737 next_dup->start_seq, 1738 next_dup->end_seq); 1739 if (in_sack > 0) 1740 dup_sack = true; 1741 } 1742 1743 /* skb reference here is a bit tricky to get right, since 1744 * shifting can eat and free both this skb and the next, 1745 * so not even _safe variant of the loop is enough. 1746 */ 1747 if (in_sack <= 0) { 1748 tmp = tcp_shift_skb_data(sk, skb, state, 1749 start_seq, end_seq, dup_sack); 1750 if (tmp) { 1751 if (tmp != skb) { 1752 skb = tmp; 1753 continue; 1754 } 1755 1756 in_sack = 0; 1757 } else { 1758 in_sack = tcp_match_skb_to_sack(sk, skb, 1759 start_seq, 1760 end_seq); 1761 } 1762 } 1763 1764 if (unlikely(in_sack < 0)) 1765 break; 1766 1767 if (in_sack) { 1768 TCP_SKB_CB(skb)->sacked = 1769 tcp_sacktag_one(sk, 1770 state, 1771 TCP_SKB_CB(skb)->sacked, 1772 TCP_SKB_CB(skb)->seq, 1773 TCP_SKB_CB(skb)->end_seq, 1774 dup_sack, 1775 tcp_skb_pcount(skb), 1776 tcp_skb_timestamp_us(skb)); 1777 tcp_rate_skb_delivered(sk, skb, state->rate); 1778 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1779 list_del_init(&skb->tcp_tsorted_anchor); 1780 1781 if (!before(TCP_SKB_CB(skb)->seq, 1782 tcp_highest_sack_seq(tp))) 1783 tcp_advance_highest_sack(sk, skb); 1784 } 1785 } 1786 return skb; 1787 } 1788 1789 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1790 { 1791 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1792 struct sk_buff *skb; 1793 1794 while (*p) { 1795 parent = *p; 1796 skb = rb_to_skb(parent); 1797 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1798 p = &parent->rb_left; 1799 continue; 1800 } 1801 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1802 p = &parent->rb_right; 1803 continue; 1804 } 1805 return skb; 1806 } 1807 return NULL; 1808 } 1809 1810 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1811 u32 skip_to_seq) 1812 { 1813 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1814 return skb; 1815 1816 return tcp_sacktag_bsearch(sk, skip_to_seq); 1817 } 1818 1819 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1820 struct sock *sk, 1821 struct tcp_sack_block *next_dup, 1822 struct tcp_sacktag_state *state, 1823 u32 skip_to_seq) 1824 { 1825 if (!next_dup) 1826 return skb; 1827 1828 if (before(next_dup->start_seq, skip_to_seq)) { 1829 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1830 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1831 next_dup->start_seq, next_dup->end_seq, 1832 1); 1833 } 1834 1835 return skb; 1836 } 1837 1838 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1839 { 1840 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1841 } 1842 1843 static int 1844 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1845 u32 prior_snd_una, struct tcp_sacktag_state *state) 1846 { 1847 struct tcp_sock *tp = tcp_sk(sk); 1848 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1849 TCP_SKB_CB(ack_skb)->sacked); 1850 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1851 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1852 struct tcp_sack_block *cache; 1853 struct sk_buff *skb; 1854 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1855 int used_sacks; 1856 bool found_dup_sack = false; 1857 int i, j; 1858 int first_sack_index; 1859 1860 state->flag = 0; 1861 state->reord = tp->snd_nxt; 1862 1863 if (!tp->sacked_out) 1864 tcp_highest_sack_reset(sk); 1865 1866 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1867 num_sacks, prior_snd_una, state); 1868 1869 /* Eliminate too old ACKs, but take into 1870 * account more or less fresh ones, they can 1871 * contain valid SACK info. 1872 */ 1873 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1874 return 0; 1875 1876 if (!tp->packets_out) 1877 goto out; 1878 1879 used_sacks = 0; 1880 first_sack_index = 0; 1881 for (i = 0; i < num_sacks; i++) { 1882 bool dup_sack = !i && found_dup_sack; 1883 1884 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1885 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1886 1887 if (!tcp_is_sackblock_valid(tp, dup_sack, 1888 sp[used_sacks].start_seq, 1889 sp[used_sacks].end_seq)) { 1890 int mib_idx; 1891 1892 if (dup_sack) { 1893 if (!tp->undo_marker) 1894 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1895 else 1896 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1897 } else { 1898 /* Don't count olds caused by ACK reordering */ 1899 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1900 !after(sp[used_sacks].end_seq, tp->snd_una)) 1901 continue; 1902 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1903 } 1904 1905 NET_INC_STATS(sock_net(sk), mib_idx); 1906 if (i == 0) 1907 first_sack_index = -1; 1908 continue; 1909 } 1910 1911 /* Ignore very old stuff early */ 1912 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1913 if (i == 0) 1914 first_sack_index = -1; 1915 continue; 1916 } 1917 1918 used_sacks++; 1919 } 1920 1921 /* order SACK blocks to allow in order walk of the retrans queue */ 1922 for (i = used_sacks - 1; i > 0; i--) { 1923 for (j = 0; j < i; j++) { 1924 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1925 swap(sp[j], sp[j + 1]); 1926 1927 /* Track where the first SACK block goes to */ 1928 if (j == first_sack_index) 1929 first_sack_index = j + 1; 1930 } 1931 } 1932 } 1933 1934 state->mss_now = tcp_current_mss(sk); 1935 skb = NULL; 1936 i = 0; 1937 1938 if (!tp->sacked_out) { 1939 /* It's already past, so skip checking against it */ 1940 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1941 } else { 1942 cache = tp->recv_sack_cache; 1943 /* Skip empty blocks in at head of the cache */ 1944 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1945 !cache->end_seq) 1946 cache++; 1947 } 1948 1949 while (i < used_sacks) { 1950 u32 start_seq = sp[i].start_seq; 1951 u32 end_seq = sp[i].end_seq; 1952 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1953 struct tcp_sack_block *next_dup = NULL; 1954 1955 if (found_dup_sack && ((i + 1) == first_sack_index)) 1956 next_dup = &sp[i + 1]; 1957 1958 /* Skip too early cached blocks */ 1959 while (tcp_sack_cache_ok(tp, cache) && 1960 !before(start_seq, cache->end_seq)) 1961 cache++; 1962 1963 /* Can skip some work by looking recv_sack_cache? */ 1964 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1965 after(end_seq, cache->start_seq)) { 1966 1967 /* Head todo? */ 1968 if (before(start_seq, cache->start_seq)) { 1969 skb = tcp_sacktag_skip(skb, sk, start_seq); 1970 skb = tcp_sacktag_walk(skb, sk, next_dup, 1971 state, 1972 start_seq, 1973 cache->start_seq, 1974 dup_sack); 1975 } 1976 1977 /* Rest of the block already fully processed? */ 1978 if (!after(end_seq, cache->end_seq)) 1979 goto advance_sp; 1980 1981 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1982 state, 1983 cache->end_seq); 1984 1985 /* ...tail remains todo... */ 1986 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1987 /* ...but better entrypoint exists! */ 1988 skb = tcp_highest_sack(sk); 1989 if (!skb) 1990 break; 1991 cache++; 1992 goto walk; 1993 } 1994 1995 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1996 /* Check overlap against next cached too (past this one already) */ 1997 cache++; 1998 continue; 1999 } 2000 2001 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2002 skb = tcp_highest_sack(sk); 2003 if (!skb) 2004 break; 2005 } 2006 skb = tcp_sacktag_skip(skb, sk, start_seq); 2007 2008 walk: 2009 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2010 start_seq, end_seq, dup_sack); 2011 2012 advance_sp: 2013 i++; 2014 } 2015 2016 /* Clear the head of the cache sack blocks so we can skip it next time */ 2017 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2018 tp->recv_sack_cache[i].start_seq = 0; 2019 tp->recv_sack_cache[i].end_seq = 0; 2020 } 2021 for (j = 0; j < used_sacks; j++) 2022 tp->recv_sack_cache[i++] = sp[j]; 2023 2024 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2025 tcp_check_sack_reordering(sk, state->reord, 0); 2026 2027 tcp_verify_left_out(tp); 2028 out: 2029 2030 #if FASTRETRANS_DEBUG > 0 2031 WARN_ON((int)tp->sacked_out < 0); 2032 WARN_ON((int)tp->lost_out < 0); 2033 WARN_ON((int)tp->retrans_out < 0); 2034 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2035 #endif 2036 return state->flag; 2037 } 2038 2039 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2040 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2041 */ 2042 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2043 { 2044 u32 holes; 2045 2046 holes = max(tp->lost_out, 1U); 2047 holes = min(holes, tp->packets_out); 2048 2049 if ((tp->sacked_out + holes) > tp->packets_out) { 2050 tp->sacked_out = tp->packets_out - holes; 2051 return true; 2052 } 2053 return false; 2054 } 2055 2056 /* If we receive more dupacks than we expected counting segments 2057 * in assumption of absent reordering, interpret this as reordering. 2058 * The only another reason could be bug in receiver TCP. 2059 */ 2060 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2061 { 2062 struct tcp_sock *tp = tcp_sk(sk); 2063 2064 if (!tcp_limit_reno_sacked(tp)) 2065 return; 2066 2067 tp->reordering = min_t(u32, tp->packets_out + addend, 2068 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2069 tp->reord_seen++; 2070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2071 } 2072 2073 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2074 2075 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2076 { 2077 if (num_dupack) { 2078 struct tcp_sock *tp = tcp_sk(sk); 2079 u32 prior_sacked = tp->sacked_out; 2080 s32 delivered; 2081 2082 tp->sacked_out += num_dupack; 2083 tcp_check_reno_reordering(sk, 0); 2084 delivered = tp->sacked_out - prior_sacked; 2085 if (delivered > 0) 2086 tcp_count_delivered(tp, delivered, ece_ack); 2087 tcp_verify_left_out(tp); 2088 } 2089 } 2090 2091 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2092 2093 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2094 { 2095 struct tcp_sock *tp = tcp_sk(sk); 2096 2097 if (acked > 0) { 2098 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2099 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2100 ece_ack); 2101 if (acked - 1 >= tp->sacked_out) 2102 tp->sacked_out = 0; 2103 else 2104 tp->sacked_out -= acked - 1; 2105 } 2106 tcp_check_reno_reordering(sk, acked); 2107 tcp_verify_left_out(tp); 2108 } 2109 2110 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2111 { 2112 tp->sacked_out = 0; 2113 } 2114 2115 void tcp_clear_retrans(struct tcp_sock *tp) 2116 { 2117 tp->retrans_out = 0; 2118 tp->lost_out = 0; 2119 tp->undo_marker = 0; 2120 tp->undo_retrans = -1; 2121 tp->sacked_out = 0; 2122 tp->rto_stamp = 0; 2123 tp->total_rto = 0; 2124 tp->total_rto_recoveries = 0; 2125 tp->total_rto_time = 0; 2126 } 2127 2128 static inline void tcp_init_undo(struct tcp_sock *tp) 2129 { 2130 tp->undo_marker = tp->snd_una; 2131 2132 /* Retransmission still in flight may cause DSACKs later. */ 2133 /* First, account for regular retransmits in flight: */ 2134 tp->undo_retrans = tp->retrans_out; 2135 /* Next, account for TLP retransmits in flight: */ 2136 if (tp->tlp_high_seq && tp->tlp_retrans) 2137 tp->undo_retrans++; 2138 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2139 if (!tp->undo_retrans) 2140 tp->undo_retrans = -1; 2141 } 2142 2143 static bool tcp_is_rack(const struct sock *sk) 2144 { 2145 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2146 TCP_RACK_LOSS_DETECTION; 2147 } 2148 2149 /* If we detect SACK reneging, forget all SACK information 2150 * and reset tags completely, otherwise preserve SACKs. If receiver 2151 * dropped its ofo queue, we will know this due to reneging detection. 2152 */ 2153 static void tcp_timeout_mark_lost(struct sock *sk) 2154 { 2155 struct tcp_sock *tp = tcp_sk(sk); 2156 struct sk_buff *skb, *head; 2157 bool is_reneg; /* is receiver reneging on SACKs? */ 2158 2159 head = tcp_rtx_queue_head(sk); 2160 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2161 if (is_reneg) { 2162 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2163 tp->sacked_out = 0; 2164 /* Mark SACK reneging until we recover from this loss event. */ 2165 tp->is_sack_reneg = 1; 2166 } else if (tcp_is_reno(tp)) { 2167 tcp_reset_reno_sack(tp); 2168 } 2169 2170 skb = head; 2171 skb_rbtree_walk_from(skb) { 2172 if (is_reneg) 2173 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2174 else if (tcp_is_rack(sk) && skb != head && 2175 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2176 continue; /* Don't mark recently sent ones lost yet */ 2177 tcp_mark_skb_lost(sk, skb); 2178 } 2179 tcp_verify_left_out(tp); 2180 tcp_clear_all_retrans_hints(tp); 2181 } 2182 2183 /* Enter Loss state. */ 2184 void tcp_enter_loss(struct sock *sk) 2185 { 2186 const struct inet_connection_sock *icsk = inet_csk(sk); 2187 struct tcp_sock *tp = tcp_sk(sk); 2188 struct net *net = sock_net(sk); 2189 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2190 u8 reordering; 2191 2192 tcp_timeout_mark_lost(sk); 2193 2194 /* Reduce ssthresh if it has not yet been made inside this window. */ 2195 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2196 !after(tp->high_seq, tp->snd_una) || 2197 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2198 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2199 tp->prior_cwnd = tcp_snd_cwnd(tp); 2200 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2201 tcp_ca_event(sk, CA_EVENT_LOSS); 2202 tcp_init_undo(tp); 2203 } 2204 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2205 tp->snd_cwnd_cnt = 0; 2206 tp->snd_cwnd_stamp = tcp_jiffies32; 2207 2208 /* Timeout in disordered state after receiving substantial DUPACKs 2209 * suggests that the degree of reordering is over-estimated. 2210 */ 2211 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2212 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2213 tp->sacked_out >= reordering) 2214 tp->reordering = min_t(unsigned int, tp->reordering, 2215 reordering); 2216 2217 tcp_set_ca_state(sk, TCP_CA_Loss); 2218 tp->high_seq = tp->snd_nxt; 2219 tp->tlp_high_seq = 0; 2220 tcp_ecn_queue_cwr(tp); 2221 2222 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2223 * loss recovery is underway except recurring timeout(s) on 2224 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2225 */ 2226 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2227 (new_recovery || icsk->icsk_retransmits) && 2228 !inet_csk(sk)->icsk_mtup.probe_size; 2229 } 2230 2231 /* If ACK arrived pointing to a remembered SACK, it means that our 2232 * remembered SACKs do not reflect real state of receiver i.e. 2233 * receiver _host_ is heavily congested (or buggy). 2234 * 2235 * To avoid big spurious retransmission bursts due to transient SACK 2236 * scoreboard oddities that look like reneging, we give the receiver a 2237 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2238 * restore sanity to the SACK scoreboard. If the apparent reneging 2239 * persists until this RTO then we'll clear the SACK scoreboard. 2240 */ 2241 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2242 { 2243 if (*ack_flag & FLAG_SACK_RENEGING && 2244 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2245 struct tcp_sock *tp = tcp_sk(sk); 2246 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2247 msecs_to_jiffies(10)); 2248 2249 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2250 delay, TCP_RTO_MAX); 2251 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2252 return true; 2253 } 2254 return false; 2255 } 2256 2257 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2258 * counter when SACK is enabled (without SACK, sacked_out is used for 2259 * that purpose). 2260 * 2261 * With reordering, holes may still be in flight, so RFC3517 recovery 2262 * uses pure sacked_out (total number of SACKed segments) even though 2263 * it violates the RFC that uses duplicate ACKs, often these are equal 2264 * but when e.g. out-of-window ACKs or packet duplication occurs, 2265 * they differ. Since neither occurs due to loss, TCP should really 2266 * ignore them. 2267 */ 2268 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2269 { 2270 return tp->sacked_out + 1; 2271 } 2272 2273 /* Linux NewReno/SACK/ECN state machine. 2274 * -------------------------------------- 2275 * 2276 * "Open" Normal state, no dubious events, fast path. 2277 * "Disorder" In all the respects it is "Open", 2278 * but requires a bit more attention. It is entered when 2279 * we see some SACKs or dupacks. It is split of "Open" 2280 * mainly to move some processing from fast path to slow one. 2281 * "CWR" CWND was reduced due to some Congestion Notification event. 2282 * It can be ECN, ICMP source quench, local device congestion. 2283 * "Recovery" CWND was reduced, we are fast-retransmitting. 2284 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2285 * 2286 * tcp_fastretrans_alert() is entered: 2287 * - each incoming ACK, if state is not "Open" 2288 * - when arrived ACK is unusual, namely: 2289 * * SACK 2290 * * Duplicate ACK. 2291 * * ECN ECE. 2292 * 2293 * Counting packets in flight is pretty simple. 2294 * 2295 * in_flight = packets_out - left_out + retrans_out 2296 * 2297 * packets_out is SND.NXT-SND.UNA counted in packets. 2298 * 2299 * retrans_out is number of retransmitted segments. 2300 * 2301 * left_out is number of segments left network, but not ACKed yet. 2302 * 2303 * left_out = sacked_out + lost_out 2304 * 2305 * sacked_out: Packets, which arrived to receiver out of order 2306 * and hence not ACKed. With SACKs this number is simply 2307 * amount of SACKed data. Even without SACKs 2308 * it is easy to give pretty reliable estimate of this number, 2309 * counting duplicate ACKs. 2310 * 2311 * lost_out: Packets lost by network. TCP has no explicit 2312 * "loss notification" feedback from network (for now). 2313 * It means that this number can be only _guessed_. 2314 * Actually, it is the heuristics to predict lossage that 2315 * distinguishes different algorithms. 2316 * 2317 * F.e. after RTO, when all the queue is considered as lost, 2318 * lost_out = packets_out and in_flight = retrans_out. 2319 * 2320 * Essentially, we have now a few algorithms detecting 2321 * lost packets. 2322 * 2323 * If the receiver supports SACK: 2324 * 2325 * RFC6675/3517: It is the conventional algorithm. A packet is 2326 * considered lost if the number of higher sequence packets 2327 * SACKed is greater than or equal the DUPACK thoreshold 2328 * (reordering). This is implemented in tcp_mark_head_lost and 2329 * tcp_update_scoreboard. 2330 * 2331 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2332 * (2017-) that checks timing instead of counting DUPACKs. 2333 * Essentially a packet is considered lost if it's not S/ACKed 2334 * after RTT + reordering_window, where both metrics are 2335 * dynamically measured and adjusted. This is implemented in 2336 * tcp_rack_mark_lost. 2337 * 2338 * If the receiver does not support SACK: 2339 * 2340 * NewReno (RFC6582): in Recovery we assume that one segment 2341 * is lost (classic Reno). While we are in Recovery and 2342 * a partial ACK arrives, we assume that one more packet 2343 * is lost (NewReno). This heuristics are the same in NewReno 2344 * and SACK. 2345 * 2346 * Really tricky (and requiring careful tuning) part of algorithm 2347 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2348 * The first determines the moment _when_ we should reduce CWND and, 2349 * hence, slow down forward transmission. In fact, it determines the moment 2350 * when we decide that hole is caused by loss, rather than by a reorder. 2351 * 2352 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2353 * holes, caused by lost packets. 2354 * 2355 * And the most logically complicated part of algorithm is undo 2356 * heuristics. We detect false retransmits due to both too early 2357 * fast retransmit (reordering) and underestimated RTO, analyzing 2358 * timestamps and D-SACKs. When we detect that some segments were 2359 * retransmitted by mistake and CWND reduction was wrong, we undo 2360 * window reduction and abort recovery phase. This logic is hidden 2361 * inside several functions named tcp_try_undo_<something>. 2362 */ 2363 2364 /* This function decides, when we should leave Disordered state 2365 * and enter Recovery phase, reducing congestion window. 2366 * 2367 * Main question: may we further continue forward transmission 2368 * with the same cwnd? 2369 */ 2370 static bool tcp_time_to_recover(struct sock *sk, int flag) 2371 { 2372 struct tcp_sock *tp = tcp_sk(sk); 2373 2374 /* Trick#1: The loss is proven. */ 2375 if (tp->lost_out) 2376 return true; 2377 2378 /* Not-A-Trick#2 : Classic rule... */ 2379 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2380 return true; 2381 2382 return false; 2383 } 2384 2385 /* Detect loss in event "A" above by marking head of queue up as lost. 2386 * For RFC3517 SACK, a segment is considered lost if it 2387 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2388 * the maximum SACKed segments to pass before reaching this limit. 2389 */ 2390 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2391 { 2392 struct tcp_sock *tp = tcp_sk(sk); 2393 struct sk_buff *skb; 2394 int cnt; 2395 /* Use SACK to deduce losses of new sequences sent during recovery */ 2396 const u32 loss_high = tp->snd_nxt; 2397 2398 WARN_ON(packets > tp->packets_out); 2399 skb = tp->lost_skb_hint; 2400 if (skb) { 2401 /* Head already handled? */ 2402 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2403 return; 2404 cnt = tp->lost_cnt_hint; 2405 } else { 2406 skb = tcp_rtx_queue_head(sk); 2407 cnt = 0; 2408 } 2409 2410 skb_rbtree_walk_from(skb) { 2411 /* TODO: do this better */ 2412 /* this is not the most efficient way to do this... */ 2413 tp->lost_skb_hint = skb; 2414 tp->lost_cnt_hint = cnt; 2415 2416 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2417 break; 2418 2419 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2420 cnt += tcp_skb_pcount(skb); 2421 2422 if (cnt > packets) 2423 break; 2424 2425 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2426 tcp_mark_skb_lost(sk, skb); 2427 2428 if (mark_head) 2429 break; 2430 } 2431 tcp_verify_left_out(tp); 2432 } 2433 2434 /* Account newly detected lost packet(s) */ 2435 2436 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2437 { 2438 struct tcp_sock *tp = tcp_sk(sk); 2439 2440 if (tcp_is_sack(tp)) { 2441 int sacked_upto = tp->sacked_out - tp->reordering; 2442 if (sacked_upto >= 0) 2443 tcp_mark_head_lost(sk, sacked_upto, 0); 2444 else if (fast_rexmit) 2445 tcp_mark_head_lost(sk, 1, 1); 2446 } 2447 } 2448 2449 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2450 { 2451 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2452 before(tp->rx_opt.rcv_tsecr, when); 2453 } 2454 2455 /* skb is spurious retransmitted if the returned timestamp echo 2456 * reply is prior to the skb transmission time 2457 */ 2458 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2459 const struct sk_buff *skb) 2460 { 2461 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2462 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2463 } 2464 2465 /* Nothing was retransmitted or returned timestamp is less 2466 * than timestamp of the first retransmission. 2467 */ 2468 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2469 { 2470 const struct sock *sk = (const struct sock *)tp; 2471 2472 if (tp->retrans_stamp && 2473 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2474 return true; /* got echoed TS before first retransmission */ 2475 2476 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2477 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2478 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2479 * retrans_stamp even if we had retransmitted the SYN. 2480 */ 2481 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2482 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2483 return true; /* nothing was retransmitted */ 2484 2485 return false; 2486 } 2487 2488 /* Undo procedures. */ 2489 2490 /* We can clear retrans_stamp when there are no retransmissions in the 2491 * window. It would seem that it is trivially available for us in 2492 * tp->retrans_out, however, that kind of assumptions doesn't consider 2493 * what will happen if errors occur when sending retransmission for the 2494 * second time. ...It could the that such segment has only 2495 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2496 * the head skb is enough except for some reneging corner cases that 2497 * are not worth the effort. 2498 * 2499 * Main reason for all this complexity is the fact that connection dying 2500 * time now depends on the validity of the retrans_stamp, in particular, 2501 * that successive retransmissions of a segment must not advance 2502 * retrans_stamp under any conditions. 2503 */ 2504 static bool tcp_any_retrans_done(const struct sock *sk) 2505 { 2506 const struct tcp_sock *tp = tcp_sk(sk); 2507 struct sk_buff *skb; 2508 2509 if (tp->retrans_out) 2510 return true; 2511 2512 skb = tcp_rtx_queue_head(sk); 2513 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2514 return true; 2515 2516 return false; 2517 } 2518 2519 /* If loss recovery is finished and there are no retransmits out in the 2520 * network, then we clear retrans_stamp so that upon the next loss recovery 2521 * retransmits_timed_out() and timestamp-undo are using the correct value. 2522 */ 2523 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2524 { 2525 if (!tcp_any_retrans_done(sk)) 2526 tcp_sk(sk)->retrans_stamp = 0; 2527 } 2528 2529 static void DBGUNDO(struct sock *sk, const char *msg) 2530 { 2531 #if FASTRETRANS_DEBUG > 1 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 struct inet_sock *inet = inet_sk(sk); 2534 2535 if (sk->sk_family == AF_INET) { 2536 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2537 msg, 2538 &inet->inet_daddr, ntohs(inet->inet_dport), 2539 tcp_snd_cwnd(tp), tcp_left_out(tp), 2540 tp->snd_ssthresh, tp->prior_ssthresh, 2541 tp->packets_out); 2542 } 2543 #if IS_ENABLED(CONFIG_IPV6) 2544 else if (sk->sk_family == AF_INET6) { 2545 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2546 msg, 2547 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2548 tcp_snd_cwnd(tp), tcp_left_out(tp), 2549 tp->snd_ssthresh, tp->prior_ssthresh, 2550 tp->packets_out); 2551 } 2552 #endif 2553 #endif 2554 } 2555 2556 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 2560 if (unmark_loss) { 2561 struct sk_buff *skb; 2562 2563 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2564 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2565 } 2566 tp->lost_out = 0; 2567 tcp_clear_all_retrans_hints(tp); 2568 } 2569 2570 if (tp->prior_ssthresh) { 2571 const struct inet_connection_sock *icsk = inet_csk(sk); 2572 2573 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2574 2575 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2576 tp->snd_ssthresh = tp->prior_ssthresh; 2577 tcp_ecn_withdraw_cwr(tp); 2578 } 2579 } 2580 tp->snd_cwnd_stamp = tcp_jiffies32; 2581 tp->undo_marker = 0; 2582 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2583 } 2584 2585 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2586 { 2587 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2588 } 2589 2590 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2591 { 2592 struct tcp_sock *tp = tcp_sk(sk); 2593 2594 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2595 /* Hold old state until something *above* high_seq 2596 * is ACKed. For Reno it is MUST to prevent false 2597 * fast retransmits (RFC2582). SACK TCP is safe. */ 2598 if (!tcp_any_retrans_done(sk)) 2599 tp->retrans_stamp = 0; 2600 return true; 2601 } 2602 return false; 2603 } 2604 2605 /* People celebrate: "We love our President!" */ 2606 static bool tcp_try_undo_recovery(struct sock *sk) 2607 { 2608 struct tcp_sock *tp = tcp_sk(sk); 2609 2610 if (tcp_may_undo(tp)) { 2611 int mib_idx; 2612 2613 /* Happy end! We did not retransmit anything 2614 * or our original transmission succeeded. 2615 */ 2616 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2617 tcp_undo_cwnd_reduction(sk, false); 2618 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2619 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2620 else 2621 mib_idx = LINUX_MIB_TCPFULLUNDO; 2622 2623 NET_INC_STATS(sock_net(sk), mib_idx); 2624 } else if (tp->rack.reo_wnd_persist) { 2625 tp->rack.reo_wnd_persist--; 2626 } 2627 if (tcp_is_non_sack_preventing_reopen(sk)) 2628 return true; 2629 tcp_set_ca_state(sk, TCP_CA_Open); 2630 tp->is_sack_reneg = 0; 2631 return false; 2632 } 2633 2634 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2635 static bool tcp_try_undo_dsack(struct sock *sk) 2636 { 2637 struct tcp_sock *tp = tcp_sk(sk); 2638 2639 if (tp->undo_marker && !tp->undo_retrans) { 2640 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2641 tp->rack.reo_wnd_persist + 1); 2642 DBGUNDO(sk, "D-SACK"); 2643 tcp_undo_cwnd_reduction(sk, false); 2644 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2645 return true; 2646 } 2647 return false; 2648 } 2649 2650 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2651 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2652 { 2653 struct tcp_sock *tp = tcp_sk(sk); 2654 2655 if (frto_undo || tcp_may_undo(tp)) { 2656 tcp_undo_cwnd_reduction(sk, true); 2657 2658 DBGUNDO(sk, "partial loss"); 2659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2660 if (frto_undo) 2661 NET_INC_STATS(sock_net(sk), 2662 LINUX_MIB_TCPSPURIOUSRTOS); 2663 inet_csk(sk)->icsk_retransmits = 0; 2664 if (tcp_is_non_sack_preventing_reopen(sk)) 2665 return true; 2666 if (frto_undo || tcp_is_sack(tp)) { 2667 tcp_set_ca_state(sk, TCP_CA_Open); 2668 tp->is_sack_reneg = 0; 2669 } 2670 return true; 2671 } 2672 return false; 2673 } 2674 2675 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2676 * It computes the number of packets to send (sndcnt) based on packets newly 2677 * delivered: 2678 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2679 * cwnd reductions across a full RTT. 2680 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2681 * But when SND_UNA is acked without further losses, 2682 * slow starts cwnd up to ssthresh to speed up the recovery. 2683 */ 2684 static void tcp_init_cwnd_reduction(struct sock *sk) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 2688 tp->high_seq = tp->snd_nxt; 2689 tp->tlp_high_seq = 0; 2690 tp->snd_cwnd_cnt = 0; 2691 tp->prior_cwnd = tcp_snd_cwnd(tp); 2692 tp->prr_delivered = 0; 2693 tp->prr_out = 0; 2694 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2695 tcp_ecn_queue_cwr(tp); 2696 } 2697 2698 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 int sndcnt = 0; 2702 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2703 2704 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2705 return; 2706 2707 tp->prr_delivered += newly_acked_sacked; 2708 if (delta < 0) { 2709 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2710 tp->prior_cwnd - 1; 2711 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2712 } else { 2713 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2714 newly_acked_sacked); 2715 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2716 sndcnt++; 2717 sndcnt = min(delta, sndcnt); 2718 } 2719 /* Force a fast retransmit upon entering fast recovery */ 2720 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2721 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2722 } 2723 2724 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2725 { 2726 struct tcp_sock *tp = tcp_sk(sk); 2727 2728 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2729 return; 2730 2731 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2732 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2733 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2734 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2735 tp->snd_cwnd_stamp = tcp_jiffies32; 2736 } 2737 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2738 } 2739 2740 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2741 void tcp_enter_cwr(struct sock *sk) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 tp->prior_ssthresh = 0; 2746 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2747 tp->undo_marker = 0; 2748 tcp_init_cwnd_reduction(sk); 2749 tcp_set_ca_state(sk, TCP_CA_CWR); 2750 } 2751 } 2752 EXPORT_SYMBOL(tcp_enter_cwr); 2753 2754 static void tcp_try_keep_open(struct sock *sk) 2755 { 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 int state = TCP_CA_Open; 2758 2759 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2760 state = TCP_CA_Disorder; 2761 2762 if (inet_csk(sk)->icsk_ca_state != state) { 2763 tcp_set_ca_state(sk, state); 2764 tp->high_seq = tp->snd_nxt; 2765 } 2766 } 2767 2768 static void tcp_try_to_open(struct sock *sk, int flag) 2769 { 2770 struct tcp_sock *tp = tcp_sk(sk); 2771 2772 tcp_verify_left_out(tp); 2773 2774 if (!tcp_any_retrans_done(sk)) 2775 tp->retrans_stamp = 0; 2776 2777 if (flag & FLAG_ECE) 2778 tcp_enter_cwr(sk); 2779 2780 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2781 tcp_try_keep_open(sk); 2782 } 2783 } 2784 2785 static void tcp_mtup_probe_failed(struct sock *sk) 2786 { 2787 struct inet_connection_sock *icsk = inet_csk(sk); 2788 2789 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2790 icsk->icsk_mtup.probe_size = 0; 2791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2792 } 2793 2794 static void tcp_mtup_probe_success(struct sock *sk) 2795 { 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 struct inet_connection_sock *icsk = inet_csk(sk); 2798 u64 val; 2799 2800 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2801 2802 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2803 do_div(val, icsk->icsk_mtup.probe_size); 2804 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2805 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2806 2807 tp->snd_cwnd_cnt = 0; 2808 tp->snd_cwnd_stamp = tcp_jiffies32; 2809 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2810 2811 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2812 icsk->icsk_mtup.probe_size = 0; 2813 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2815 } 2816 2817 /* Sometimes we deduce that packets have been dropped due to reasons other than 2818 * congestion, like path MTU reductions or failed client TFO attempts. In these 2819 * cases we call this function to retransmit as many packets as cwnd allows, 2820 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2821 * non-zero value (and may do so in a later calling context due to TSQ), we 2822 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2823 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2824 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2825 * prematurely). 2826 */ 2827 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2828 { 2829 const struct inet_connection_sock *icsk = inet_csk(sk); 2830 struct tcp_sock *tp = tcp_sk(sk); 2831 2832 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2833 tp->high_seq = tp->snd_nxt; 2834 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2835 tp->prior_ssthresh = 0; 2836 tp->undo_marker = 0; 2837 tcp_set_ca_state(sk, TCP_CA_Loss); 2838 } 2839 tcp_xmit_retransmit_queue(sk); 2840 } 2841 2842 /* Do a simple retransmit without using the backoff mechanisms in 2843 * tcp_timer. This is used for path mtu discovery. 2844 * The socket is already locked here. 2845 */ 2846 void tcp_simple_retransmit(struct sock *sk) 2847 { 2848 struct tcp_sock *tp = tcp_sk(sk); 2849 struct sk_buff *skb; 2850 int mss; 2851 2852 /* A fastopen SYN request is stored as two separate packets within 2853 * the retransmit queue, this is done by tcp_send_syn_data(). 2854 * As a result simply checking the MSS of the frames in the queue 2855 * will not work for the SYN packet. 2856 * 2857 * Us being here is an indication of a path MTU issue so we can 2858 * assume that the fastopen SYN was lost and just mark all the 2859 * frames in the retransmit queue as lost. We will use an MSS of 2860 * -1 to mark all frames as lost, otherwise compute the current MSS. 2861 */ 2862 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2863 mss = -1; 2864 else 2865 mss = tcp_current_mss(sk); 2866 2867 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2868 if (tcp_skb_seglen(skb) > mss) 2869 tcp_mark_skb_lost(sk, skb); 2870 } 2871 2872 tcp_clear_retrans_hints_partial(tp); 2873 2874 if (!tp->lost_out) 2875 return; 2876 2877 if (tcp_is_reno(tp)) 2878 tcp_limit_reno_sacked(tp); 2879 2880 tcp_verify_left_out(tp); 2881 2882 /* Don't muck with the congestion window here. 2883 * Reason is that we do not increase amount of _data_ 2884 * in network, but units changed and effective 2885 * cwnd/ssthresh really reduced now. 2886 */ 2887 tcp_non_congestion_loss_retransmit(sk); 2888 } 2889 EXPORT_SYMBOL(tcp_simple_retransmit); 2890 2891 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2892 { 2893 struct tcp_sock *tp = tcp_sk(sk); 2894 int mib_idx; 2895 2896 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2897 tcp_retrans_stamp_cleanup(sk); 2898 2899 if (tcp_is_reno(tp)) 2900 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2901 else 2902 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2903 2904 NET_INC_STATS(sock_net(sk), mib_idx); 2905 2906 tp->prior_ssthresh = 0; 2907 tcp_init_undo(tp); 2908 2909 if (!tcp_in_cwnd_reduction(sk)) { 2910 if (!ece_ack) 2911 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2912 tcp_init_cwnd_reduction(sk); 2913 } 2914 tcp_set_ca_state(sk, TCP_CA_Recovery); 2915 } 2916 2917 static void tcp_update_rto_time(struct tcp_sock *tp) 2918 { 2919 if (tp->rto_stamp) { 2920 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp; 2921 tp->rto_stamp = 0; 2922 } 2923 } 2924 2925 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2926 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2927 */ 2928 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2929 int *rexmit) 2930 { 2931 struct tcp_sock *tp = tcp_sk(sk); 2932 bool recovered = !before(tp->snd_una, tp->high_seq); 2933 2934 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2935 tcp_try_undo_loss(sk, false)) 2936 return; 2937 2938 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2939 /* Step 3.b. A timeout is spurious if not all data are 2940 * lost, i.e., never-retransmitted data are (s)acked. 2941 */ 2942 if ((flag & FLAG_ORIG_SACK_ACKED) && 2943 tcp_try_undo_loss(sk, true)) 2944 return; 2945 2946 if (after(tp->snd_nxt, tp->high_seq)) { 2947 if (flag & FLAG_DATA_SACKED || num_dupack) 2948 tp->frto = 0; /* Step 3.a. loss was real */ 2949 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2950 tp->high_seq = tp->snd_nxt; 2951 /* Step 2.b. Try send new data (but deferred until cwnd 2952 * is updated in tcp_ack()). Otherwise fall back to 2953 * the conventional recovery. 2954 */ 2955 if (!tcp_write_queue_empty(sk) && 2956 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2957 *rexmit = REXMIT_NEW; 2958 return; 2959 } 2960 tp->frto = 0; 2961 } 2962 } 2963 2964 if (recovered) { 2965 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2966 tcp_try_undo_recovery(sk); 2967 return; 2968 } 2969 if (tcp_is_reno(tp)) { 2970 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2971 * delivered. Lower inflight to clock out (re)transmissions. 2972 */ 2973 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2974 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2975 else if (flag & FLAG_SND_UNA_ADVANCED) 2976 tcp_reset_reno_sack(tp); 2977 } 2978 *rexmit = REXMIT_LOST; 2979 } 2980 2981 static bool tcp_force_fast_retransmit(struct sock *sk) 2982 { 2983 struct tcp_sock *tp = tcp_sk(sk); 2984 2985 return after(tcp_highest_sack_seq(tp), 2986 tp->snd_una + tp->reordering * tp->mss_cache); 2987 } 2988 2989 /* Undo during fast recovery after partial ACK. */ 2990 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2991 bool *do_lost) 2992 { 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 2995 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2996 /* Plain luck! Hole if filled with delayed 2997 * packet, rather than with a retransmit. Check reordering. 2998 */ 2999 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3000 3001 /* We are getting evidence that the reordering degree is higher 3002 * than we realized. If there are no retransmits out then we 3003 * can undo. Otherwise we clock out new packets but do not 3004 * mark more packets lost or retransmit more. 3005 */ 3006 if (tp->retrans_out) 3007 return true; 3008 3009 if (!tcp_any_retrans_done(sk)) 3010 tp->retrans_stamp = 0; 3011 3012 DBGUNDO(sk, "partial recovery"); 3013 tcp_undo_cwnd_reduction(sk, true); 3014 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3015 tcp_try_keep_open(sk); 3016 } else { 3017 /* Partial ACK arrived. Force fast retransmit. */ 3018 *do_lost = tcp_force_fast_retransmit(sk); 3019 } 3020 return false; 3021 } 3022 3023 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3024 { 3025 struct tcp_sock *tp = tcp_sk(sk); 3026 3027 if (tcp_rtx_queue_empty(sk)) 3028 return; 3029 3030 if (unlikely(tcp_is_reno(tp))) { 3031 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3032 } else if (tcp_is_rack(sk)) { 3033 u32 prior_retrans = tp->retrans_out; 3034 3035 if (tcp_rack_mark_lost(sk)) 3036 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3037 if (prior_retrans > tp->retrans_out) 3038 *ack_flag |= FLAG_LOST_RETRANS; 3039 } 3040 } 3041 3042 /* Process an event, which can update packets-in-flight not trivially. 3043 * Main goal of this function is to calculate new estimate for left_out, 3044 * taking into account both packets sitting in receiver's buffer and 3045 * packets lost by network. 3046 * 3047 * Besides that it updates the congestion state when packet loss or ECN 3048 * is detected. But it does not reduce the cwnd, it is done by the 3049 * congestion control later. 3050 * 3051 * It does _not_ decide what to send, it is made in function 3052 * tcp_xmit_retransmit_queue(). 3053 */ 3054 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3055 int num_dupack, int *ack_flag, int *rexmit) 3056 { 3057 struct inet_connection_sock *icsk = inet_csk(sk); 3058 struct tcp_sock *tp = tcp_sk(sk); 3059 int fast_rexmit = 0, flag = *ack_flag; 3060 bool ece_ack = flag & FLAG_ECE; 3061 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3062 tcp_force_fast_retransmit(sk)); 3063 3064 if (!tp->packets_out && tp->sacked_out) 3065 tp->sacked_out = 0; 3066 3067 /* Now state machine starts. 3068 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3069 if (ece_ack) 3070 tp->prior_ssthresh = 0; 3071 3072 /* B. In all the states check for reneging SACKs. */ 3073 if (tcp_check_sack_reneging(sk, ack_flag)) 3074 return; 3075 3076 /* C. Check consistency of the current state. */ 3077 tcp_verify_left_out(tp); 3078 3079 /* D. Check state exit conditions. State can be terminated 3080 * when high_seq is ACKed. */ 3081 if (icsk->icsk_ca_state == TCP_CA_Open) { 3082 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3083 tp->retrans_stamp = 0; 3084 } else if (!before(tp->snd_una, tp->high_seq)) { 3085 switch (icsk->icsk_ca_state) { 3086 case TCP_CA_CWR: 3087 /* CWR is to be held something *above* high_seq 3088 * is ACKed for CWR bit to reach receiver. */ 3089 if (tp->snd_una != tp->high_seq) { 3090 tcp_end_cwnd_reduction(sk); 3091 tcp_set_ca_state(sk, TCP_CA_Open); 3092 } 3093 break; 3094 3095 case TCP_CA_Recovery: 3096 if (tcp_is_reno(tp)) 3097 tcp_reset_reno_sack(tp); 3098 if (tcp_try_undo_recovery(sk)) 3099 return; 3100 tcp_end_cwnd_reduction(sk); 3101 break; 3102 } 3103 } 3104 3105 /* E. Process state. */ 3106 switch (icsk->icsk_ca_state) { 3107 case TCP_CA_Recovery: 3108 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3109 if (tcp_is_reno(tp)) 3110 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3111 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3112 return; 3113 3114 if (tcp_try_undo_dsack(sk)) 3115 tcp_try_to_open(sk, flag); 3116 3117 tcp_identify_packet_loss(sk, ack_flag); 3118 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3119 if (!tcp_time_to_recover(sk, flag)) 3120 return; 3121 /* Undo reverts the recovery state. If loss is evident, 3122 * starts a new recovery (e.g. reordering then loss); 3123 */ 3124 tcp_enter_recovery(sk, ece_ack); 3125 } 3126 break; 3127 case TCP_CA_Loss: 3128 tcp_process_loss(sk, flag, num_dupack, rexmit); 3129 if (icsk->icsk_ca_state != TCP_CA_Loss) 3130 tcp_update_rto_time(tp); 3131 tcp_identify_packet_loss(sk, ack_flag); 3132 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3133 (*ack_flag & FLAG_LOST_RETRANS))) 3134 return; 3135 /* Change state if cwnd is undone or retransmits are lost */ 3136 fallthrough; 3137 default: 3138 if (tcp_is_reno(tp)) { 3139 if (flag & FLAG_SND_UNA_ADVANCED) 3140 tcp_reset_reno_sack(tp); 3141 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3142 } 3143 3144 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3145 tcp_try_undo_dsack(sk); 3146 3147 tcp_identify_packet_loss(sk, ack_flag); 3148 if (!tcp_time_to_recover(sk, flag)) { 3149 tcp_try_to_open(sk, flag); 3150 return; 3151 } 3152 3153 /* MTU probe failure: don't reduce cwnd */ 3154 if (icsk->icsk_ca_state < TCP_CA_CWR && 3155 icsk->icsk_mtup.probe_size && 3156 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3157 tcp_mtup_probe_failed(sk); 3158 /* Restores the reduction we did in tcp_mtup_probe() */ 3159 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3160 tcp_simple_retransmit(sk); 3161 return; 3162 } 3163 3164 /* Otherwise enter Recovery state */ 3165 tcp_enter_recovery(sk, ece_ack); 3166 fast_rexmit = 1; 3167 } 3168 3169 if (!tcp_is_rack(sk) && do_lost) 3170 tcp_update_scoreboard(sk, fast_rexmit); 3171 *rexmit = REXMIT_LOST; 3172 } 3173 3174 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3175 { 3176 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3177 struct tcp_sock *tp = tcp_sk(sk); 3178 3179 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3180 /* If the remote keeps returning delayed ACKs, eventually 3181 * the min filter would pick it up and overestimate the 3182 * prop. delay when it expires. Skip suspected delayed ACKs. 3183 */ 3184 return; 3185 } 3186 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3187 rtt_us ? : jiffies_to_usecs(1)); 3188 } 3189 3190 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3191 long seq_rtt_us, long sack_rtt_us, 3192 long ca_rtt_us, struct rate_sample *rs) 3193 { 3194 const struct tcp_sock *tp = tcp_sk(sk); 3195 3196 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3197 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3198 * Karn's algorithm forbids taking RTT if some retransmitted data 3199 * is acked (RFC6298). 3200 */ 3201 if (seq_rtt_us < 0) 3202 seq_rtt_us = sack_rtt_us; 3203 3204 /* RTTM Rule: A TSecr value received in a segment is used to 3205 * update the averaged RTT measurement only if the segment 3206 * acknowledges some new data, i.e., only if it advances the 3207 * left edge of the send window. 3208 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3209 */ 3210 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3211 flag & FLAG_ACKED) { 3212 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3213 3214 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3215 if (!delta) 3216 delta = 1; 3217 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3218 ca_rtt_us = seq_rtt_us; 3219 } 3220 } 3221 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3222 if (seq_rtt_us < 0) 3223 return false; 3224 3225 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3226 * always taken together with ACK, SACK, or TS-opts. Any negative 3227 * values will be skipped with the seq_rtt_us < 0 check above. 3228 */ 3229 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3230 tcp_rtt_estimator(sk, seq_rtt_us); 3231 tcp_set_rto(sk); 3232 3233 /* RFC6298: only reset backoff on valid RTT measurement. */ 3234 inet_csk(sk)->icsk_backoff = 0; 3235 return true; 3236 } 3237 3238 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3239 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3240 { 3241 struct rate_sample rs; 3242 long rtt_us = -1L; 3243 3244 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3245 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3246 3247 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3248 } 3249 3250 3251 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3252 { 3253 const struct inet_connection_sock *icsk = inet_csk(sk); 3254 3255 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3256 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3257 } 3258 3259 /* Restart timer after forward progress on connection. 3260 * RFC2988 recommends to restart timer to now+rto. 3261 */ 3262 void tcp_rearm_rto(struct sock *sk) 3263 { 3264 const struct inet_connection_sock *icsk = inet_csk(sk); 3265 struct tcp_sock *tp = tcp_sk(sk); 3266 3267 /* If the retrans timer is currently being used by Fast Open 3268 * for SYN-ACK retrans purpose, stay put. 3269 */ 3270 if (rcu_access_pointer(tp->fastopen_rsk)) 3271 return; 3272 3273 if (!tp->packets_out) { 3274 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3275 } else { 3276 u32 rto = inet_csk(sk)->icsk_rto; 3277 /* Offset the time elapsed after installing regular RTO */ 3278 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3279 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3280 s64 delta_us = tcp_rto_delta_us(sk); 3281 /* delta_us may not be positive if the socket is locked 3282 * when the retrans timer fires and is rescheduled. 3283 */ 3284 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3285 } 3286 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3287 TCP_RTO_MAX); 3288 } 3289 } 3290 3291 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3292 static void tcp_set_xmit_timer(struct sock *sk) 3293 { 3294 if (!tcp_schedule_loss_probe(sk, true)) 3295 tcp_rearm_rto(sk); 3296 } 3297 3298 /* If we get here, the whole TSO packet has not been acked. */ 3299 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3300 { 3301 struct tcp_sock *tp = tcp_sk(sk); 3302 u32 packets_acked; 3303 3304 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3305 3306 packets_acked = tcp_skb_pcount(skb); 3307 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3308 return 0; 3309 packets_acked -= tcp_skb_pcount(skb); 3310 3311 if (packets_acked) { 3312 BUG_ON(tcp_skb_pcount(skb) == 0); 3313 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3314 } 3315 3316 return packets_acked; 3317 } 3318 3319 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3320 const struct sk_buff *ack_skb, u32 prior_snd_una) 3321 { 3322 const struct skb_shared_info *shinfo; 3323 3324 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3325 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3326 return; 3327 3328 shinfo = skb_shinfo(skb); 3329 if (!before(shinfo->tskey, prior_snd_una) && 3330 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3331 tcp_skb_tsorted_save(skb) { 3332 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3333 } tcp_skb_tsorted_restore(skb); 3334 } 3335 } 3336 3337 /* Remove acknowledged frames from the retransmission queue. If our packet 3338 * is before the ack sequence we can discard it as it's confirmed to have 3339 * arrived at the other end. 3340 */ 3341 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3342 u32 prior_fack, u32 prior_snd_una, 3343 struct tcp_sacktag_state *sack, bool ece_ack) 3344 { 3345 const struct inet_connection_sock *icsk = inet_csk(sk); 3346 u64 first_ackt, last_ackt; 3347 struct tcp_sock *tp = tcp_sk(sk); 3348 u32 prior_sacked = tp->sacked_out; 3349 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3350 struct sk_buff *skb, *next; 3351 bool fully_acked = true; 3352 long sack_rtt_us = -1L; 3353 long seq_rtt_us = -1L; 3354 long ca_rtt_us = -1L; 3355 u32 pkts_acked = 0; 3356 bool rtt_update; 3357 int flag = 0; 3358 3359 first_ackt = 0; 3360 3361 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3362 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3363 const u32 start_seq = scb->seq; 3364 u8 sacked = scb->sacked; 3365 u32 acked_pcount; 3366 3367 /* Determine how many packets and what bytes were acked, tso and else */ 3368 if (after(scb->end_seq, tp->snd_una)) { 3369 if (tcp_skb_pcount(skb) == 1 || 3370 !after(tp->snd_una, scb->seq)) 3371 break; 3372 3373 acked_pcount = tcp_tso_acked(sk, skb); 3374 if (!acked_pcount) 3375 break; 3376 fully_acked = false; 3377 } else { 3378 acked_pcount = tcp_skb_pcount(skb); 3379 } 3380 3381 if (unlikely(sacked & TCPCB_RETRANS)) { 3382 if (sacked & TCPCB_SACKED_RETRANS) 3383 tp->retrans_out -= acked_pcount; 3384 flag |= FLAG_RETRANS_DATA_ACKED; 3385 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3386 last_ackt = tcp_skb_timestamp_us(skb); 3387 WARN_ON_ONCE(last_ackt == 0); 3388 if (!first_ackt) 3389 first_ackt = last_ackt; 3390 3391 if (before(start_seq, reord)) 3392 reord = start_seq; 3393 if (!after(scb->end_seq, tp->high_seq)) 3394 flag |= FLAG_ORIG_SACK_ACKED; 3395 } 3396 3397 if (sacked & TCPCB_SACKED_ACKED) { 3398 tp->sacked_out -= acked_pcount; 3399 } else if (tcp_is_sack(tp)) { 3400 tcp_count_delivered(tp, acked_pcount, ece_ack); 3401 if (!tcp_skb_spurious_retrans(tp, skb)) 3402 tcp_rack_advance(tp, sacked, scb->end_seq, 3403 tcp_skb_timestamp_us(skb)); 3404 } 3405 if (sacked & TCPCB_LOST) 3406 tp->lost_out -= acked_pcount; 3407 3408 tp->packets_out -= acked_pcount; 3409 pkts_acked += acked_pcount; 3410 tcp_rate_skb_delivered(sk, skb, sack->rate); 3411 3412 /* Initial outgoing SYN's get put onto the write_queue 3413 * just like anything else we transmit. It is not 3414 * true data, and if we misinform our callers that 3415 * this ACK acks real data, we will erroneously exit 3416 * connection startup slow start one packet too 3417 * quickly. This is severely frowned upon behavior. 3418 */ 3419 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3420 flag |= FLAG_DATA_ACKED; 3421 } else { 3422 flag |= FLAG_SYN_ACKED; 3423 tp->retrans_stamp = 0; 3424 } 3425 3426 if (!fully_acked) 3427 break; 3428 3429 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3430 3431 next = skb_rb_next(skb); 3432 if (unlikely(skb == tp->retransmit_skb_hint)) 3433 tp->retransmit_skb_hint = NULL; 3434 if (unlikely(skb == tp->lost_skb_hint)) 3435 tp->lost_skb_hint = NULL; 3436 tcp_highest_sack_replace(sk, skb, next); 3437 tcp_rtx_queue_unlink_and_free(skb, sk); 3438 } 3439 3440 if (!skb) 3441 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3442 3443 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3444 tp->snd_up = tp->snd_una; 3445 3446 if (skb) { 3447 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3448 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3449 flag |= FLAG_SACK_RENEGING; 3450 } 3451 3452 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3453 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3454 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3455 3456 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3457 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3458 sack->rate->prior_delivered + 1 == tp->delivered && 3459 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3460 /* Conservatively mark a delayed ACK. It's typically 3461 * from a lone runt packet over the round trip to 3462 * a receiver w/o out-of-order or CE events. 3463 */ 3464 flag |= FLAG_ACK_MAYBE_DELAYED; 3465 } 3466 } 3467 if (sack->first_sackt) { 3468 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3469 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3470 } 3471 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3472 ca_rtt_us, sack->rate); 3473 3474 if (flag & FLAG_ACKED) { 3475 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3476 if (unlikely(icsk->icsk_mtup.probe_size && 3477 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3478 tcp_mtup_probe_success(sk); 3479 } 3480 3481 if (tcp_is_reno(tp)) { 3482 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3483 3484 /* If any of the cumulatively ACKed segments was 3485 * retransmitted, non-SACK case cannot confirm that 3486 * progress was due to original transmission due to 3487 * lack of TCPCB_SACKED_ACKED bits even if some of 3488 * the packets may have been never retransmitted. 3489 */ 3490 if (flag & FLAG_RETRANS_DATA_ACKED) 3491 flag &= ~FLAG_ORIG_SACK_ACKED; 3492 } else { 3493 int delta; 3494 3495 /* Non-retransmitted hole got filled? That's reordering */ 3496 if (before(reord, prior_fack)) 3497 tcp_check_sack_reordering(sk, reord, 0); 3498 3499 delta = prior_sacked - tp->sacked_out; 3500 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3501 } 3502 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3503 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3504 tcp_skb_timestamp_us(skb))) { 3505 /* Do not re-arm RTO if the sack RTT is measured from data sent 3506 * after when the head was last (re)transmitted. Otherwise the 3507 * timeout may continue to extend in loss recovery. 3508 */ 3509 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3510 } 3511 3512 if (icsk->icsk_ca_ops->pkts_acked) { 3513 struct ack_sample sample = { .pkts_acked = pkts_acked, 3514 .rtt_us = sack->rate->rtt_us }; 3515 3516 sample.in_flight = tp->mss_cache * 3517 (tp->delivered - sack->rate->prior_delivered); 3518 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3519 } 3520 3521 #if FASTRETRANS_DEBUG > 0 3522 WARN_ON((int)tp->sacked_out < 0); 3523 WARN_ON((int)tp->lost_out < 0); 3524 WARN_ON((int)tp->retrans_out < 0); 3525 if (!tp->packets_out && tcp_is_sack(tp)) { 3526 icsk = inet_csk(sk); 3527 if (tp->lost_out) { 3528 pr_debug("Leak l=%u %d\n", 3529 tp->lost_out, icsk->icsk_ca_state); 3530 tp->lost_out = 0; 3531 } 3532 if (tp->sacked_out) { 3533 pr_debug("Leak s=%u %d\n", 3534 tp->sacked_out, icsk->icsk_ca_state); 3535 tp->sacked_out = 0; 3536 } 3537 if (tp->retrans_out) { 3538 pr_debug("Leak r=%u %d\n", 3539 tp->retrans_out, icsk->icsk_ca_state); 3540 tp->retrans_out = 0; 3541 } 3542 } 3543 #endif 3544 return flag; 3545 } 3546 3547 static void tcp_ack_probe(struct sock *sk) 3548 { 3549 struct inet_connection_sock *icsk = inet_csk(sk); 3550 struct sk_buff *head = tcp_send_head(sk); 3551 const struct tcp_sock *tp = tcp_sk(sk); 3552 3553 /* Was it a usable window open? */ 3554 if (!head) 3555 return; 3556 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3557 icsk->icsk_backoff = 0; 3558 icsk->icsk_probes_tstamp = 0; 3559 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3560 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3561 * This function is not for random using! 3562 */ 3563 } else { 3564 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3565 3566 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3567 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3568 } 3569 } 3570 3571 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3572 { 3573 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3574 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3575 } 3576 3577 /* Decide wheather to run the increase function of congestion control. */ 3578 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3579 { 3580 /* If reordering is high then always grow cwnd whenever data is 3581 * delivered regardless of its ordering. Otherwise stay conservative 3582 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3583 * new SACK or ECE mark may first advance cwnd here and later reduce 3584 * cwnd in tcp_fastretrans_alert() based on more states. 3585 */ 3586 if (tcp_sk(sk)->reordering > 3587 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3588 return flag & FLAG_FORWARD_PROGRESS; 3589 3590 return flag & FLAG_DATA_ACKED; 3591 } 3592 3593 /* The "ultimate" congestion control function that aims to replace the rigid 3594 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3595 * It's called toward the end of processing an ACK with precise rate 3596 * information. All transmission or retransmission are delayed afterwards. 3597 */ 3598 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3599 int flag, const struct rate_sample *rs) 3600 { 3601 const struct inet_connection_sock *icsk = inet_csk(sk); 3602 3603 if (icsk->icsk_ca_ops->cong_control) { 3604 icsk->icsk_ca_ops->cong_control(sk, rs); 3605 return; 3606 } 3607 3608 if (tcp_in_cwnd_reduction(sk)) { 3609 /* Reduce cwnd if state mandates */ 3610 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3611 } else if (tcp_may_raise_cwnd(sk, flag)) { 3612 /* Advance cwnd if state allows */ 3613 tcp_cong_avoid(sk, ack, acked_sacked); 3614 } 3615 tcp_update_pacing_rate(sk); 3616 } 3617 3618 /* Check that window update is acceptable. 3619 * The function assumes that snd_una<=ack<=snd_next. 3620 */ 3621 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3622 const u32 ack, const u32 ack_seq, 3623 const u32 nwin) 3624 { 3625 return after(ack, tp->snd_una) || 3626 after(ack_seq, tp->snd_wl1) || 3627 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3628 } 3629 3630 /* If we update tp->snd_una, also update tp->bytes_acked */ 3631 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3632 { 3633 u32 delta = ack - tp->snd_una; 3634 3635 sock_owned_by_me((struct sock *)tp); 3636 tp->bytes_acked += delta; 3637 tp->snd_una = ack; 3638 } 3639 3640 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3641 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3642 { 3643 u32 delta = seq - tp->rcv_nxt; 3644 3645 sock_owned_by_me((struct sock *)tp); 3646 tp->bytes_received += delta; 3647 WRITE_ONCE(tp->rcv_nxt, seq); 3648 } 3649 3650 /* Update our send window. 3651 * 3652 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3653 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3654 */ 3655 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3656 u32 ack_seq) 3657 { 3658 struct tcp_sock *tp = tcp_sk(sk); 3659 int flag = 0; 3660 u32 nwin = ntohs(tcp_hdr(skb)->window); 3661 3662 if (likely(!tcp_hdr(skb)->syn)) 3663 nwin <<= tp->rx_opt.snd_wscale; 3664 3665 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3666 flag |= FLAG_WIN_UPDATE; 3667 tcp_update_wl(tp, ack_seq); 3668 3669 if (tp->snd_wnd != nwin) { 3670 tp->snd_wnd = nwin; 3671 3672 /* Note, it is the only place, where 3673 * fast path is recovered for sending TCP. 3674 */ 3675 tp->pred_flags = 0; 3676 tcp_fast_path_check(sk); 3677 3678 if (!tcp_write_queue_empty(sk)) 3679 tcp_slow_start_after_idle_check(sk); 3680 3681 if (nwin > tp->max_window) { 3682 tp->max_window = nwin; 3683 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3684 } 3685 } 3686 } 3687 3688 tcp_snd_una_update(tp, ack); 3689 3690 return flag; 3691 } 3692 3693 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3694 u32 *last_oow_ack_time) 3695 { 3696 /* Paired with the WRITE_ONCE() in this function. */ 3697 u32 val = READ_ONCE(*last_oow_ack_time); 3698 3699 if (val) { 3700 s32 elapsed = (s32)(tcp_jiffies32 - val); 3701 3702 if (0 <= elapsed && 3703 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3704 NET_INC_STATS(net, mib_idx); 3705 return true; /* rate-limited: don't send yet! */ 3706 } 3707 } 3708 3709 /* Paired with the prior READ_ONCE() and with itself, 3710 * as we might be lockless. 3711 */ 3712 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3713 3714 return false; /* not rate-limited: go ahead, send dupack now! */ 3715 } 3716 3717 /* Return true if we're currently rate-limiting out-of-window ACKs and 3718 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3719 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3720 * attacks that send repeated SYNs or ACKs for the same connection. To 3721 * do this, we do not send a duplicate SYNACK or ACK if the remote 3722 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3723 */ 3724 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3725 int mib_idx, u32 *last_oow_ack_time) 3726 { 3727 /* Data packets without SYNs are not likely part of an ACK loop. */ 3728 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3729 !tcp_hdr(skb)->syn) 3730 return false; 3731 3732 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3733 } 3734 3735 /* RFC 5961 7 [ACK Throttling] */ 3736 static void tcp_send_challenge_ack(struct sock *sk) 3737 { 3738 struct tcp_sock *tp = tcp_sk(sk); 3739 struct net *net = sock_net(sk); 3740 u32 count, now, ack_limit; 3741 3742 /* First check our per-socket dupack rate limit. */ 3743 if (__tcp_oow_rate_limited(net, 3744 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3745 &tp->last_oow_ack_time)) 3746 return; 3747 3748 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3749 if (ack_limit == INT_MAX) 3750 goto send_ack; 3751 3752 /* Then check host-wide RFC 5961 rate limit. */ 3753 now = jiffies / HZ; 3754 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3755 u32 half = (ack_limit + 1) >> 1; 3756 3757 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3758 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3759 get_random_u32_inclusive(half, ack_limit + half - 1)); 3760 } 3761 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3762 if (count > 0) { 3763 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3764 send_ack: 3765 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3766 tcp_send_ack(sk); 3767 } 3768 } 3769 3770 static void tcp_store_ts_recent(struct tcp_sock *tp) 3771 { 3772 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3773 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3774 } 3775 3776 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3777 { 3778 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3779 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3780 * extra check below makes sure this can only happen 3781 * for pure ACK frames. -DaveM 3782 * 3783 * Not only, also it occurs for expired timestamps. 3784 */ 3785 3786 if (tcp_paws_check(&tp->rx_opt, 0)) 3787 tcp_store_ts_recent(tp); 3788 } 3789 } 3790 3791 /* This routine deals with acks during a TLP episode and ends an episode by 3792 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3793 */ 3794 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3795 { 3796 struct tcp_sock *tp = tcp_sk(sk); 3797 3798 if (before(ack, tp->tlp_high_seq)) 3799 return; 3800 3801 if (!tp->tlp_retrans) { 3802 /* TLP of new data has been acknowledged */ 3803 tp->tlp_high_seq = 0; 3804 } else if (flag & FLAG_DSACK_TLP) { 3805 /* This DSACK means original and TLP probe arrived; no loss */ 3806 tp->tlp_high_seq = 0; 3807 } else if (after(ack, tp->tlp_high_seq)) { 3808 /* ACK advances: there was a loss, so reduce cwnd. Reset 3809 * tlp_high_seq in tcp_init_cwnd_reduction() 3810 */ 3811 tcp_init_cwnd_reduction(sk); 3812 tcp_set_ca_state(sk, TCP_CA_CWR); 3813 tcp_end_cwnd_reduction(sk); 3814 tcp_try_keep_open(sk); 3815 NET_INC_STATS(sock_net(sk), 3816 LINUX_MIB_TCPLOSSPROBERECOVERY); 3817 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3818 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3819 /* Pure dupack: original and TLP probe arrived; no loss */ 3820 tp->tlp_high_seq = 0; 3821 } 3822 } 3823 3824 static void tcp_in_ack_event(struct sock *sk, int flag) 3825 { 3826 const struct inet_connection_sock *icsk = inet_csk(sk); 3827 3828 if (icsk->icsk_ca_ops->in_ack_event) { 3829 u32 ack_ev_flags = 0; 3830 3831 if (flag & FLAG_WIN_UPDATE) 3832 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3833 if (flag & FLAG_SLOWPATH) { 3834 ack_ev_flags |= CA_ACK_SLOWPATH; 3835 if (flag & FLAG_ECE) 3836 ack_ev_flags |= CA_ACK_ECE; 3837 } 3838 3839 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3840 } 3841 } 3842 3843 /* Congestion control has updated the cwnd already. So if we're in 3844 * loss recovery then now we do any new sends (for FRTO) or 3845 * retransmits (for CA_Loss or CA_recovery) that make sense. 3846 */ 3847 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3848 { 3849 struct tcp_sock *tp = tcp_sk(sk); 3850 3851 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3852 return; 3853 3854 if (unlikely(rexmit == REXMIT_NEW)) { 3855 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3856 TCP_NAGLE_OFF); 3857 if (after(tp->snd_nxt, tp->high_seq)) 3858 return; 3859 tp->frto = 0; 3860 } 3861 tcp_xmit_retransmit_queue(sk); 3862 } 3863 3864 /* Returns the number of packets newly acked or sacked by the current ACK */ 3865 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3866 { 3867 const struct net *net = sock_net(sk); 3868 struct tcp_sock *tp = tcp_sk(sk); 3869 u32 delivered; 3870 3871 delivered = tp->delivered - prior_delivered; 3872 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3873 if (flag & FLAG_ECE) 3874 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3875 3876 return delivered; 3877 } 3878 3879 /* This routine deals with incoming acks, but not outgoing ones. */ 3880 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3881 { 3882 struct inet_connection_sock *icsk = inet_csk(sk); 3883 struct tcp_sock *tp = tcp_sk(sk); 3884 struct tcp_sacktag_state sack_state; 3885 struct rate_sample rs = { .prior_delivered = 0 }; 3886 u32 prior_snd_una = tp->snd_una; 3887 bool is_sack_reneg = tp->is_sack_reneg; 3888 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3889 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3890 int num_dupack = 0; 3891 int prior_packets = tp->packets_out; 3892 u32 delivered = tp->delivered; 3893 u32 lost = tp->lost; 3894 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3895 u32 prior_fack; 3896 3897 sack_state.first_sackt = 0; 3898 sack_state.rate = &rs; 3899 sack_state.sack_delivered = 0; 3900 3901 /* We very likely will need to access rtx queue. */ 3902 prefetch(sk->tcp_rtx_queue.rb_node); 3903 3904 /* If the ack is older than previous acks 3905 * then we can probably ignore it. 3906 */ 3907 if (before(ack, prior_snd_una)) { 3908 u32 max_window; 3909 3910 /* do not accept ACK for bytes we never sent. */ 3911 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3912 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3913 if (before(ack, prior_snd_una - max_window)) { 3914 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3915 tcp_send_challenge_ack(sk); 3916 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3917 } 3918 goto old_ack; 3919 } 3920 3921 /* If the ack includes data we haven't sent yet, discard 3922 * this segment (RFC793 Section 3.9). 3923 */ 3924 if (after(ack, tp->snd_nxt)) 3925 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3926 3927 if (after(ack, prior_snd_una)) { 3928 flag |= FLAG_SND_UNA_ADVANCED; 3929 icsk->icsk_retransmits = 0; 3930 3931 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3932 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3933 if (icsk->icsk_clean_acked) 3934 icsk->icsk_clean_acked(sk, ack); 3935 #endif 3936 } 3937 3938 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3939 rs.prior_in_flight = tcp_packets_in_flight(tp); 3940 3941 /* ts_recent update must be made after we are sure that the packet 3942 * is in window. 3943 */ 3944 if (flag & FLAG_UPDATE_TS_RECENT) 3945 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3946 3947 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3948 FLAG_SND_UNA_ADVANCED) { 3949 /* Window is constant, pure forward advance. 3950 * No more checks are required. 3951 * Note, we use the fact that SND.UNA>=SND.WL2. 3952 */ 3953 tcp_update_wl(tp, ack_seq); 3954 tcp_snd_una_update(tp, ack); 3955 flag |= FLAG_WIN_UPDATE; 3956 3957 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3958 } else { 3959 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3960 flag |= FLAG_DATA; 3961 else 3962 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3963 3964 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3965 3966 if (TCP_SKB_CB(skb)->sacked) 3967 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3968 &sack_state); 3969 3970 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 3971 flag |= FLAG_ECE; 3972 3973 if (sack_state.sack_delivered) 3974 tcp_count_delivered(tp, sack_state.sack_delivered, 3975 flag & FLAG_ECE); 3976 } 3977 3978 /* This is a deviation from RFC3168 since it states that: 3979 * "When the TCP data sender is ready to set the CWR bit after reducing 3980 * the congestion window, it SHOULD set the CWR bit only on the first 3981 * new data packet that it transmits." 3982 * We accept CWR on pure ACKs to be more robust 3983 * with widely-deployed TCP implementations that do this. 3984 */ 3985 tcp_ecn_accept_cwr(sk, skb); 3986 3987 /* We passed data and got it acked, remove any soft error 3988 * log. Something worked... 3989 */ 3990 WRITE_ONCE(sk->sk_err_soft, 0); 3991 icsk->icsk_probes_out = 0; 3992 tp->rcv_tstamp = tcp_jiffies32; 3993 if (!prior_packets) 3994 goto no_queue; 3995 3996 /* See if we can take anything off of the retransmit queue. */ 3997 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3998 &sack_state, flag & FLAG_ECE); 3999 4000 tcp_rack_update_reo_wnd(sk, &rs); 4001 4002 tcp_in_ack_event(sk, flag); 4003 4004 if (tp->tlp_high_seq) 4005 tcp_process_tlp_ack(sk, ack, flag); 4006 4007 if (tcp_ack_is_dubious(sk, flag)) { 4008 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4009 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4010 num_dupack = 1; 4011 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4012 if (!(flag & FLAG_DATA)) 4013 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4014 } 4015 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4016 &rexmit); 4017 } 4018 4019 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4020 if (flag & FLAG_SET_XMIT_TIMER) 4021 tcp_set_xmit_timer(sk); 4022 4023 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4024 sk_dst_confirm(sk); 4025 4026 delivered = tcp_newly_delivered(sk, delivered, flag); 4027 lost = tp->lost - lost; /* freshly marked lost */ 4028 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4029 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4030 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4031 tcp_xmit_recovery(sk, rexmit); 4032 return 1; 4033 4034 no_queue: 4035 tcp_in_ack_event(sk, flag); 4036 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4037 if (flag & FLAG_DSACKING_ACK) { 4038 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4039 &rexmit); 4040 tcp_newly_delivered(sk, delivered, flag); 4041 } 4042 /* If this ack opens up a zero window, clear backoff. It was 4043 * being used to time the probes, and is probably far higher than 4044 * it needs to be for normal retransmission. 4045 */ 4046 tcp_ack_probe(sk); 4047 4048 if (tp->tlp_high_seq) 4049 tcp_process_tlp_ack(sk, ack, flag); 4050 return 1; 4051 4052 old_ack: 4053 /* If data was SACKed, tag it and see if we should send more data. 4054 * If data was DSACKed, see if we can undo a cwnd reduction. 4055 */ 4056 if (TCP_SKB_CB(skb)->sacked) { 4057 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4058 &sack_state); 4059 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4060 &rexmit); 4061 tcp_newly_delivered(sk, delivered, flag); 4062 tcp_xmit_recovery(sk, rexmit); 4063 } 4064 4065 return 0; 4066 } 4067 4068 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4069 bool syn, struct tcp_fastopen_cookie *foc, 4070 bool exp_opt) 4071 { 4072 /* Valid only in SYN or SYN-ACK with an even length. */ 4073 if (!foc || !syn || len < 0 || (len & 1)) 4074 return; 4075 4076 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4077 len <= TCP_FASTOPEN_COOKIE_MAX) 4078 memcpy(foc->val, cookie, len); 4079 else if (len != 0) 4080 len = -1; 4081 foc->len = len; 4082 foc->exp = exp_opt; 4083 } 4084 4085 static bool smc_parse_options(const struct tcphdr *th, 4086 struct tcp_options_received *opt_rx, 4087 const unsigned char *ptr, 4088 int opsize) 4089 { 4090 #if IS_ENABLED(CONFIG_SMC) 4091 if (static_branch_unlikely(&tcp_have_smc)) { 4092 if (th->syn && !(opsize & 1) && 4093 opsize >= TCPOLEN_EXP_SMC_BASE && 4094 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4095 opt_rx->smc_ok = 1; 4096 return true; 4097 } 4098 } 4099 #endif 4100 return false; 4101 } 4102 4103 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4104 * value on success. 4105 */ 4106 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4107 { 4108 const unsigned char *ptr = (const unsigned char *)(th + 1); 4109 int length = (th->doff * 4) - sizeof(struct tcphdr); 4110 u16 mss = 0; 4111 4112 while (length > 0) { 4113 int opcode = *ptr++; 4114 int opsize; 4115 4116 switch (opcode) { 4117 case TCPOPT_EOL: 4118 return mss; 4119 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4120 length--; 4121 continue; 4122 default: 4123 if (length < 2) 4124 return mss; 4125 opsize = *ptr++; 4126 if (opsize < 2) /* "silly options" */ 4127 return mss; 4128 if (opsize > length) 4129 return mss; /* fail on partial options */ 4130 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4131 u16 in_mss = get_unaligned_be16(ptr); 4132 4133 if (in_mss) { 4134 if (user_mss && user_mss < in_mss) 4135 in_mss = user_mss; 4136 mss = in_mss; 4137 } 4138 } 4139 ptr += opsize - 2; 4140 length -= opsize; 4141 } 4142 } 4143 return mss; 4144 } 4145 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4146 4147 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4148 * But, this can also be called on packets in the established flow when 4149 * the fast version below fails. 4150 */ 4151 void tcp_parse_options(const struct net *net, 4152 const struct sk_buff *skb, 4153 struct tcp_options_received *opt_rx, int estab, 4154 struct tcp_fastopen_cookie *foc) 4155 { 4156 const unsigned char *ptr; 4157 const struct tcphdr *th = tcp_hdr(skb); 4158 int length = (th->doff * 4) - sizeof(struct tcphdr); 4159 4160 ptr = (const unsigned char *)(th + 1); 4161 opt_rx->saw_tstamp = 0; 4162 opt_rx->saw_unknown = 0; 4163 4164 while (length > 0) { 4165 int opcode = *ptr++; 4166 int opsize; 4167 4168 switch (opcode) { 4169 case TCPOPT_EOL: 4170 return; 4171 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4172 length--; 4173 continue; 4174 default: 4175 if (length < 2) 4176 return; 4177 opsize = *ptr++; 4178 if (opsize < 2) /* "silly options" */ 4179 return; 4180 if (opsize > length) 4181 return; /* don't parse partial options */ 4182 switch (opcode) { 4183 case TCPOPT_MSS: 4184 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4185 u16 in_mss = get_unaligned_be16(ptr); 4186 if (in_mss) { 4187 if (opt_rx->user_mss && 4188 opt_rx->user_mss < in_mss) 4189 in_mss = opt_rx->user_mss; 4190 opt_rx->mss_clamp = in_mss; 4191 } 4192 } 4193 break; 4194 case TCPOPT_WINDOW: 4195 if (opsize == TCPOLEN_WINDOW && th->syn && 4196 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4197 __u8 snd_wscale = *(__u8 *)ptr; 4198 opt_rx->wscale_ok = 1; 4199 if (snd_wscale > TCP_MAX_WSCALE) { 4200 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4201 __func__, 4202 snd_wscale, 4203 TCP_MAX_WSCALE); 4204 snd_wscale = TCP_MAX_WSCALE; 4205 } 4206 opt_rx->snd_wscale = snd_wscale; 4207 } 4208 break; 4209 case TCPOPT_TIMESTAMP: 4210 if ((opsize == TCPOLEN_TIMESTAMP) && 4211 ((estab && opt_rx->tstamp_ok) || 4212 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4213 opt_rx->saw_tstamp = 1; 4214 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4215 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4216 } 4217 break; 4218 case TCPOPT_SACK_PERM: 4219 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4220 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4221 opt_rx->sack_ok = TCP_SACK_SEEN; 4222 tcp_sack_reset(opt_rx); 4223 } 4224 break; 4225 4226 case TCPOPT_SACK: 4227 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4228 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4229 opt_rx->sack_ok) { 4230 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4231 } 4232 break; 4233 #ifdef CONFIG_TCP_MD5SIG 4234 case TCPOPT_MD5SIG: 4235 /* The MD5 Hash has already been 4236 * checked (see tcp_v{4,6}_rcv()). 4237 */ 4238 break; 4239 #endif 4240 case TCPOPT_FASTOPEN: 4241 tcp_parse_fastopen_option( 4242 opsize - TCPOLEN_FASTOPEN_BASE, 4243 ptr, th->syn, foc, false); 4244 break; 4245 4246 case TCPOPT_EXP: 4247 /* Fast Open option shares code 254 using a 4248 * 16 bits magic number. 4249 */ 4250 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4251 get_unaligned_be16(ptr) == 4252 TCPOPT_FASTOPEN_MAGIC) { 4253 tcp_parse_fastopen_option(opsize - 4254 TCPOLEN_EXP_FASTOPEN_BASE, 4255 ptr + 2, th->syn, foc, true); 4256 break; 4257 } 4258 4259 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4260 break; 4261 4262 opt_rx->saw_unknown = 1; 4263 break; 4264 4265 default: 4266 opt_rx->saw_unknown = 1; 4267 } 4268 ptr += opsize-2; 4269 length -= opsize; 4270 } 4271 } 4272 } 4273 EXPORT_SYMBOL(tcp_parse_options); 4274 4275 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4276 { 4277 const __be32 *ptr = (const __be32 *)(th + 1); 4278 4279 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4280 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4281 tp->rx_opt.saw_tstamp = 1; 4282 ++ptr; 4283 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4284 ++ptr; 4285 if (*ptr) 4286 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4287 else 4288 tp->rx_opt.rcv_tsecr = 0; 4289 return true; 4290 } 4291 return false; 4292 } 4293 4294 /* Fast parse options. This hopes to only see timestamps. 4295 * If it is wrong it falls back on tcp_parse_options(). 4296 */ 4297 static bool tcp_fast_parse_options(const struct net *net, 4298 const struct sk_buff *skb, 4299 const struct tcphdr *th, struct tcp_sock *tp) 4300 { 4301 /* In the spirit of fast parsing, compare doff directly to constant 4302 * values. Because equality is used, short doff can be ignored here. 4303 */ 4304 if (th->doff == (sizeof(*th) / 4)) { 4305 tp->rx_opt.saw_tstamp = 0; 4306 return false; 4307 } else if (tp->rx_opt.tstamp_ok && 4308 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4309 if (tcp_parse_aligned_timestamp(tp, th)) 4310 return true; 4311 } 4312 4313 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4314 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4315 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4316 4317 return true; 4318 } 4319 4320 #ifdef CONFIG_TCP_MD5SIG 4321 /* 4322 * Parse MD5 Signature option 4323 */ 4324 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4325 { 4326 int length = (th->doff << 2) - sizeof(*th); 4327 const u8 *ptr = (const u8 *)(th + 1); 4328 4329 /* If not enough data remaining, we can short cut */ 4330 while (length >= TCPOLEN_MD5SIG) { 4331 int opcode = *ptr++; 4332 int opsize; 4333 4334 switch (opcode) { 4335 case TCPOPT_EOL: 4336 return NULL; 4337 case TCPOPT_NOP: 4338 length--; 4339 continue; 4340 default: 4341 opsize = *ptr++; 4342 if (opsize < 2 || opsize > length) 4343 return NULL; 4344 if (opcode == TCPOPT_MD5SIG) 4345 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4346 } 4347 ptr += opsize - 2; 4348 length -= opsize; 4349 } 4350 return NULL; 4351 } 4352 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4353 #endif 4354 4355 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4356 * 4357 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4358 * it can pass through stack. So, the following predicate verifies that 4359 * this segment is not used for anything but congestion avoidance or 4360 * fast retransmit. Moreover, we even are able to eliminate most of such 4361 * second order effects, if we apply some small "replay" window (~RTO) 4362 * to timestamp space. 4363 * 4364 * All these measures still do not guarantee that we reject wrapped ACKs 4365 * on networks with high bandwidth, when sequence space is recycled fastly, 4366 * but it guarantees that such events will be very rare and do not affect 4367 * connection seriously. This doesn't look nice, but alas, PAWS is really 4368 * buggy extension. 4369 * 4370 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4371 * states that events when retransmit arrives after original data are rare. 4372 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4373 * the biggest problem on large power networks even with minor reordering. 4374 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4375 * up to bandwidth of 18Gigabit/sec. 8) ] 4376 */ 4377 4378 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4379 { 4380 const struct tcp_sock *tp = tcp_sk(sk); 4381 const struct tcphdr *th = tcp_hdr(skb); 4382 u32 seq = TCP_SKB_CB(skb)->seq; 4383 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4384 4385 return (/* 1. Pure ACK with correct sequence number. */ 4386 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4387 4388 /* 2. ... and duplicate ACK. */ 4389 ack == tp->snd_una && 4390 4391 /* 3. ... and does not update window. */ 4392 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4393 4394 /* 4. ... and sits in replay window. */ 4395 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4396 } 4397 4398 static inline bool tcp_paws_discard(const struct sock *sk, 4399 const struct sk_buff *skb) 4400 { 4401 const struct tcp_sock *tp = tcp_sk(sk); 4402 4403 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4404 !tcp_disordered_ack(sk, skb); 4405 } 4406 4407 /* Check segment sequence number for validity. 4408 * 4409 * Segment controls are considered valid, if the segment 4410 * fits to the window after truncation to the window. Acceptability 4411 * of data (and SYN, FIN, of course) is checked separately. 4412 * See tcp_data_queue(), for example. 4413 * 4414 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4415 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4416 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4417 * (borrowed from freebsd) 4418 */ 4419 4420 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4421 u32 seq, u32 end_seq) 4422 { 4423 if (before(end_seq, tp->rcv_wup)) 4424 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4425 4426 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4427 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4428 4429 return SKB_NOT_DROPPED_YET; 4430 } 4431 4432 4433 void tcp_done_with_error(struct sock *sk, int err) 4434 { 4435 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4436 WRITE_ONCE(sk->sk_err, err); 4437 smp_wmb(); 4438 4439 tcp_write_queue_purge(sk); 4440 tcp_done(sk); 4441 4442 if (!sock_flag(sk, SOCK_DEAD)) 4443 sk_error_report(sk); 4444 } 4445 EXPORT_SYMBOL(tcp_done_with_error); 4446 4447 /* When we get a reset we do this. */ 4448 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4449 { 4450 int err; 4451 4452 trace_tcp_receive_reset(sk); 4453 4454 /* mptcp can't tell us to ignore reset pkts, 4455 * so just ignore the return value of mptcp_incoming_options(). 4456 */ 4457 if (sk_is_mptcp(sk)) 4458 mptcp_incoming_options(sk, skb); 4459 4460 /* We want the right error as BSD sees it (and indeed as we do). */ 4461 switch (sk->sk_state) { 4462 case TCP_SYN_SENT: 4463 err = ECONNREFUSED; 4464 break; 4465 case TCP_CLOSE_WAIT: 4466 err = EPIPE; 4467 break; 4468 case TCP_CLOSE: 4469 return; 4470 default: 4471 err = ECONNRESET; 4472 } 4473 tcp_done_with_error(sk, err); 4474 } 4475 4476 /* 4477 * Process the FIN bit. This now behaves as it is supposed to work 4478 * and the FIN takes effect when it is validly part of sequence 4479 * space. Not before when we get holes. 4480 * 4481 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4482 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4483 * TIME-WAIT) 4484 * 4485 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4486 * close and we go into CLOSING (and later onto TIME-WAIT) 4487 * 4488 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4489 */ 4490 void tcp_fin(struct sock *sk) 4491 { 4492 struct tcp_sock *tp = tcp_sk(sk); 4493 4494 inet_csk_schedule_ack(sk); 4495 4496 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4497 sock_set_flag(sk, SOCK_DONE); 4498 4499 switch (sk->sk_state) { 4500 case TCP_SYN_RECV: 4501 case TCP_ESTABLISHED: 4502 /* Move to CLOSE_WAIT */ 4503 tcp_set_state(sk, TCP_CLOSE_WAIT); 4504 inet_csk_enter_pingpong_mode(sk); 4505 break; 4506 4507 case TCP_CLOSE_WAIT: 4508 case TCP_CLOSING: 4509 /* Received a retransmission of the FIN, do 4510 * nothing. 4511 */ 4512 break; 4513 case TCP_LAST_ACK: 4514 /* RFC793: Remain in the LAST-ACK state. */ 4515 break; 4516 4517 case TCP_FIN_WAIT1: 4518 /* This case occurs when a simultaneous close 4519 * happens, we must ack the received FIN and 4520 * enter the CLOSING state. 4521 */ 4522 tcp_send_ack(sk); 4523 tcp_set_state(sk, TCP_CLOSING); 4524 break; 4525 case TCP_FIN_WAIT2: 4526 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4527 tcp_send_ack(sk); 4528 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4529 break; 4530 default: 4531 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4532 * cases we should never reach this piece of code. 4533 */ 4534 pr_err("%s: Impossible, sk->sk_state=%d\n", 4535 __func__, sk->sk_state); 4536 break; 4537 } 4538 4539 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4540 * Probably, we should reset in this case. For now drop them. 4541 */ 4542 skb_rbtree_purge(&tp->out_of_order_queue); 4543 if (tcp_is_sack(tp)) 4544 tcp_sack_reset(&tp->rx_opt); 4545 4546 if (!sock_flag(sk, SOCK_DEAD)) { 4547 sk->sk_state_change(sk); 4548 4549 /* Do not send POLL_HUP for half duplex close. */ 4550 if (sk->sk_shutdown == SHUTDOWN_MASK || 4551 sk->sk_state == TCP_CLOSE) 4552 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4553 else 4554 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4555 } 4556 } 4557 4558 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4559 u32 end_seq) 4560 { 4561 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4562 if (before(seq, sp->start_seq)) 4563 sp->start_seq = seq; 4564 if (after(end_seq, sp->end_seq)) 4565 sp->end_seq = end_seq; 4566 return true; 4567 } 4568 return false; 4569 } 4570 4571 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4572 { 4573 struct tcp_sock *tp = tcp_sk(sk); 4574 4575 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4576 int mib_idx; 4577 4578 if (before(seq, tp->rcv_nxt)) 4579 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4580 else 4581 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4582 4583 NET_INC_STATS(sock_net(sk), mib_idx); 4584 4585 tp->rx_opt.dsack = 1; 4586 tp->duplicate_sack[0].start_seq = seq; 4587 tp->duplicate_sack[0].end_seq = end_seq; 4588 } 4589 } 4590 4591 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4592 { 4593 struct tcp_sock *tp = tcp_sk(sk); 4594 4595 if (!tp->rx_opt.dsack) 4596 tcp_dsack_set(sk, seq, end_seq); 4597 else 4598 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4599 } 4600 4601 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4602 { 4603 /* When the ACK path fails or drops most ACKs, the sender would 4604 * timeout and spuriously retransmit the same segment repeatedly. 4605 * The receiver remembers and reflects via DSACKs. Leverage the 4606 * DSACK state and change the txhash to re-route speculatively. 4607 */ 4608 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4609 sk_rethink_txhash(sk)) 4610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4611 } 4612 4613 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4614 { 4615 struct tcp_sock *tp = tcp_sk(sk); 4616 4617 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4618 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4619 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4620 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4621 4622 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4623 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4624 4625 tcp_rcv_spurious_retrans(sk, skb); 4626 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4627 end_seq = tp->rcv_nxt; 4628 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4629 } 4630 } 4631 4632 tcp_send_ack(sk); 4633 } 4634 4635 /* These routines update the SACK block as out-of-order packets arrive or 4636 * in-order packets close up the sequence space. 4637 */ 4638 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4639 { 4640 int this_sack; 4641 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4642 struct tcp_sack_block *swalk = sp + 1; 4643 4644 /* See if the recent change to the first SACK eats into 4645 * or hits the sequence space of other SACK blocks, if so coalesce. 4646 */ 4647 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4648 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4649 int i; 4650 4651 /* Zap SWALK, by moving every further SACK up by one slot. 4652 * Decrease num_sacks. 4653 */ 4654 tp->rx_opt.num_sacks--; 4655 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4656 sp[i] = sp[i + 1]; 4657 continue; 4658 } 4659 this_sack++; 4660 swalk++; 4661 } 4662 } 4663 4664 void tcp_sack_compress_send_ack(struct sock *sk) 4665 { 4666 struct tcp_sock *tp = tcp_sk(sk); 4667 4668 if (!tp->compressed_ack) 4669 return; 4670 4671 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4672 __sock_put(sk); 4673 4674 /* Since we have to send one ack finally, 4675 * substract one from tp->compressed_ack to keep 4676 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4677 */ 4678 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4679 tp->compressed_ack - 1); 4680 4681 tp->compressed_ack = 0; 4682 tcp_send_ack(sk); 4683 } 4684 4685 /* Reasonable amount of sack blocks included in TCP SACK option 4686 * The max is 4, but this becomes 3 if TCP timestamps are there. 4687 * Given that SACK packets might be lost, be conservative and use 2. 4688 */ 4689 #define TCP_SACK_BLOCKS_EXPECTED 2 4690 4691 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4692 { 4693 struct tcp_sock *tp = tcp_sk(sk); 4694 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4695 int cur_sacks = tp->rx_opt.num_sacks; 4696 int this_sack; 4697 4698 if (!cur_sacks) 4699 goto new_sack; 4700 4701 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4702 if (tcp_sack_extend(sp, seq, end_seq)) { 4703 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4704 tcp_sack_compress_send_ack(sk); 4705 /* Rotate this_sack to the first one. */ 4706 for (; this_sack > 0; this_sack--, sp--) 4707 swap(*sp, *(sp - 1)); 4708 if (cur_sacks > 1) 4709 tcp_sack_maybe_coalesce(tp); 4710 return; 4711 } 4712 } 4713 4714 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4715 tcp_sack_compress_send_ack(sk); 4716 4717 /* Could not find an adjacent existing SACK, build a new one, 4718 * put it at the front, and shift everyone else down. We 4719 * always know there is at least one SACK present already here. 4720 * 4721 * If the sack array is full, forget about the last one. 4722 */ 4723 if (this_sack >= TCP_NUM_SACKS) { 4724 this_sack--; 4725 tp->rx_opt.num_sacks--; 4726 sp--; 4727 } 4728 for (; this_sack > 0; this_sack--, sp--) 4729 *sp = *(sp - 1); 4730 4731 new_sack: 4732 /* Build the new head SACK, and we're done. */ 4733 sp->start_seq = seq; 4734 sp->end_seq = end_seq; 4735 tp->rx_opt.num_sacks++; 4736 } 4737 4738 /* RCV.NXT advances, some SACKs should be eaten. */ 4739 4740 static void tcp_sack_remove(struct tcp_sock *tp) 4741 { 4742 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4743 int num_sacks = tp->rx_opt.num_sacks; 4744 int this_sack; 4745 4746 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4747 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4748 tp->rx_opt.num_sacks = 0; 4749 return; 4750 } 4751 4752 for (this_sack = 0; this_sack < num_sacks;) { 4753 /* Check if the start of the sack is covered by RCV.NXT. */ 4754 if (!before(tp->rcv_nxt, sp->start_seq)) { 4755 int i; 4756 4757 /* RCV.NXT must cover all the block! */ 4758 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4759 4760 /* Zap this SACK, by moving forward any other SACKS. */ 4761 for (i = this_sack+1; i < num_sacks; i++) 4762 tp->selective_acks[i-1] = tp->selective_acks[i]; 4763 num_sacks--; 4764 continue; 4765 } 4766 this_sack++; 4767 sp++; 4768 } 4769 tp->rx_opt.num_sacks = num_sacks; 4770 } 4771 4772 /** 4773 * tcp_try_coalesce - try to merge skb to prior one 4774 * @sk: socket 4775 * @to: prior buffer 4776 * @from: buffer to add in queue 4777 * @fragstolen: pointer to boolean 4778 * 4779 * Before queueing skb @from after @to, try to merge them 4780 * to reduce overall memory use and queue lengths, if cost is small. 4781 * Packets in ofo or receive queues can stay a long time. 4782 * Better try to coalesce them right now to avoid future collapses. 4783 * Returns true if caller should free @from instead of queueing it 4784 */ 4785 static bool tcp_try_coalesce(struct sock *sk, 4786 struct sk_buff *to, 4787 struct sk_buff *from, 4788 bool *fragstolen) 4789 { 4790 int delta; 4791 4792 *fragstolen = false; 4793 4794 /* Its possible this segment overlaps with prior segment in queue */ 4795 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4796 return false; 4797 4798 if (!mptcp_skb_can_collapse(to, from)) 4799 return false; 4800 4801 #ifdef CONFIG_TLS_DEVICE 4802 if (from->decrypted != to->decrypted) 4803 return false; 4804 #endif 4805 4806 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4807 return false; 4808 4809 atomic_add(delta, &sk->sk_rmem_alloc); 4810 sk_mem_charge(sk, delta); 4811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4812 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4813 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4814 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4815 4816 if (TCP_SKB_CB(from)->has_rxtstamp) { 4817 TCP_SKB_CB(to)->has_rxtstamp = true; 4818 to->tstamp = from->tstamp; 4819 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4820 } 4821 4822 return true; 4823 } 4824 4825 static bool tcp_ooo_try_coalesce(struct sock *sk, 4826 struct sk_buff *to, 4827 struct sk_buff *from, 4828 bool *fragstolen) 4829 { 4830 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4831 4832 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4833 if (res) { 4834 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4835 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4836 4837 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4838 } 4839 return res; 4840 } 4841 4842 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4843 enum skb_drop_reason reason) 4844 { 4845 sk_drops_add(sk, skb); 4846 kfree_skb_reason(skb, reason); 4847 } 4848 4849 /* This one checks to see if we can put data from the 4850 * out_of_order queue into the receive_queue. 4851 */ 4852 static void tcp_ofo_queue(struct sock *sk) 4853 { 4854 struct tcp_sock *tp = tcp_sk(sk); 4855 __u32 dsack_high = tp->rcv_nxt; 4856 bool fin, fragstolen, eaten; 4857 struct sk_buff *skb, *tail; 4858 struct rb_node *p; 4859 4860 p = rb_first(&tp->out_of_order_queue); 4861 while (p) { 4862 skb = rb_to_skb(p); 4863 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4864 break; 4865 4866 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4867 __u32 dsack = dsack_high; 4868 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4869 dsack_high = TCP_SKB_CB(skb)->end_seq; 4870 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4871 } 4872 p = rb_next(p); 4873 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4874 4875 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4876 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4877 continue; 4878 } 4879 4880 tail = skb_peek_tail(&sk->sk_receive_queue); 4881 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4882 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4883 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4884 if (!eaten) 4885 tcp_add_receive_queue(sk, skb); 4886 else 4887 kfree_skb_partial(skb, fragstolen); 4888 4889 if (unlikely(fin)) { 4890 tcp_fin(sk); 4891 /* tcp_fin() purges tp->out_of_order_queue, 4892 * so we must end this loop right now. 4893 */ 4894 break; 4895 } 4896 } 4897 } 4898 4899 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4900 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4901 4902 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4903 unsigned int size) 4904 { 4905 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4906 !sk_rmem_schedule(sk, skb, size)) { 4907 4908 if (tcp_prune_queue(sk, skb) < 0) 4909 return -1; 4910 4911 while (!sk_rmem_schedule(sk, skb, size)) { 4912 if (!tcp_prune_ofo_queue(sk, skb)) 4913 return -1; 4914 } 4915 } 4916 return 0; 4917 } 4918 4919 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4920 { 4921 struct tcp_sock *tp = tcp_sk(sk); 4922 struct rb_node **p, *parent; 4923 struct sk_buff *skb1; 4924 u32 seq, end_seq; 4925 bool fragstolen; 4926 4927 tcp_ecn_check_ce(sk, skb); 4928 4929 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4931 sk->sk_data_ready(sk); 4932 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4933 return; 4934 } 4935 4936 /* Disable header prediction. */ 4937 tp->pred_flags = 0; 4938 inet_csk_schedule_ack(sk); 4939 4940 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4942 seq = TCP_SKB_CB(skb)->seq; 4943 end_seq = TCP_SKB_CB(skb)->end_seq; 4944 4945 p = &tp->out_of_order_queue.rb_node; 4946 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4947 /* Initial out of order segment, build 1 SACK. */ 4948 if (tcp_is_sack(tp)) { 4949 tp->rx_opt.num_sacks = 1; 4950 tp->selective_acks[0].start_seq = seq; 4951 tp->selective_acks[0].end_seq = end_seq; 4952 } 4953 rb_link_node(&skb->rbnode, NULL, p); 4954 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4955 tp->ooo_last_skb = skb; 4956 goto end; 4957 } 4958 4959 /* In the typical case, we are adding an skb to the end of the list. 4960 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4961 */ 4962 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4963 skb, &fragstolen)) { 4964 coalesce_done: 4965 /* For non sack flows, do not grow window to force DUPACK 4966 * and trigger fast retransmit. 4967 */ 4968 if (tcp_is_sack(tp)) 4969 tcp_grow_window(sk, skb, true); 4970 kfree_skb_partial(skb, fragstolen); 4971 skb = NULL; 4972 goto add_sack; 4973 } 4974 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4975 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4976 parent = &tp->ooo_last_skb->rbnode; 4977 p = &parent->rb_right; 4978 goto insert; 4979 } 4980 4981 /* Find place to insert this segment. Handle overlaps on the way. */ 4982 parent = NULL; 4983 while (*p) { 4984 parent = *p; 4985 skb1 = rb_to_skb(parent); 4986 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4987 p = &parent->rb_left; 4988 continue; 4989 } 4990 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4991 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4992 /* All the bits are present. Drop. */ 4993 NET_INC_STATS(sock_net(sk), 4994 LINUX_MIB_TCPOFOMERGE); 4995 tcp_drop_reason(sk, skb, 4996 SKB_DROP_REASON_TCP_OFOMERGE); 4997 skb = NULL; 4998 tcp_dsack_set(sk, seq, end_seq); 4999 goto add_sack; 5000 } 5001 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5002 /* Partial overlap. */ 5003 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5004 } else { 5005 /* skb's seq == skb1's seq and skb covers skb1. 5006 * Replace skb1 with skb. 5007 */ 5008 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5009 &tp->out_of_order_queue); 5010 tcp_dsack_extend(sk, 5011 TCP_SKB_CB(skb1)->seq, 5012 TCP_SKB_CB(skb1)->end_seq); 5013 NET_INC_STATS(sock_net(sk), 5014 LINUX_MIB_TCPOFOMERGE); 5015 tcp_drop_reason(sk, skb1, 5016 SKB_DROP_REASON_TCP_OFOMERGE); 5017 goto merge_right; 5018 } 5019 } else if (tcp_ooo_try_coalesce(sk, skb1, 5020 skb, &fragstolen)) { 5021 goto coalesce_done; 5022 } 5023 p = &parent->rb_right; 5024 } 5025 insert: 5026 /* Insert segment into RB tree. */ 5027 rb_link_node(&skb->rbnode, parent, p); 5028 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5029 5030 merge_right: 5031 /* Remove other segments covered by skb. */ 5032 while ((skb1 = skb_rb_next(skb)) != NULL) { 5033 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5034 break; 5035 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5036 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5037 end_seq); 5038 break; 5039 } 5040 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5041 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5042 TCP_SKB_CB(skb1)->end_seq); 5043 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5044 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5045 } 5046 /* If there is no skb after us, we are the last_skb ! */ 5047 if (!skb1) 5048 tp->ooo_last_skb = skb; 5049 5050 add_sack: 5051 if (tcp_is_sack(tp)) 5052 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5053 end: 5054 if (skb) { 5055 /* For non sack flows, do not grow window to force DUPACK 5056 * and trigger fast retransmit. 5057 */ 5058 if (tcp_is_sack(tp)) 5059 tcp_grow_window(sk, skb, false); 5060 skb_condense(skb); 5061 skb_set_owner_r(skb, sk); 5062 } 5063 } 5064 5065 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5066 bool *fragstolen) 5067 { 5068 int eaten; 5069 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5070 5071 eaten = (tail && 5072 tcp_try_coalesce(sk, tail, 5073 skb, fragstolen)) ? 1 : 0; 5074 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5075 if (!eaten) { 5076 tcp_add_receive_queue(sk, skb); 5077 skb_set_owner_r(skb, sk); 5078 } 5079 return eaten; 5080 } 5081 5082 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5083 { 5084 struct sk_buff *skb; 5085 int err = -ENOMEM; 5086 int data_len = 0; 5087 bool fragstolen; 5088 5089 if (size == 0) 5090 return 0; 5091 5092 if (size > PAGE_SIZE) { 5093 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5094 5095 data_len = npages << PAGE_SHIFT; 5096 size = data_len + (size & ~PAGE_MASK); 5097 } 5098 skb = alloc_skb_with_frags(size - data_len, data_len, 5099 PAGE_ALLOC_COSTLY_ORDER, 5100 &err, sk->sk_allocation); 5101 if (!skb) 5102 goto err; 5103 5104 skb_put(skb, size - data_len); 5105 skb->data_len = data_len; 5106 skb->len = size; 5107 5108 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5109 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5110 goto err_free; 5111 } 5112 5113 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5114 if (err) 5115 goto err_free; 5116 5117 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5118 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5119 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5120 5121 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5122 WARN_ON_ONCE(fragstolen); /* should not happen */ 5123 __kfree_skb(skb); 5124 } 5125 return size; 5126 5127 err_free: 5128 kfree_skb(skb); 5129 err: 5130 return err; 5131 5132 } 5133 5134 void tcp_data_ready(struct sock *sk) 5135 { 5136 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5137 sk->sk_data_ready(sk); 5138 } 5139 5140 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5141 { 5142 struct tcp_sock *tp = tcp_sk(sk); 5143 enum skb_drop_reason reason; 5144 bool fragstolen; 5145 int eaten; 5146 5147 /* If a subflow has been reset, the packet should not continue 5148 * to be processed, drop the packet. 5149 */ 5150 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5151 __kfree_skb(skb); 5152 return; 5153 } 5154 5155 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5156 __kfree_skb(skb); 5157 return; 5158 } 5159 tcp_cleanup_skb(skb); 5160 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5161 5162 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5163 tp->rx_opt.dsack = 0; 5164 5165 /* Queue data for delivery to the user. 5166 * Packets in sequence go to the receive queue. 5167 * Out of sequence packets to the out_of_order_queue. 5168 */ 5169 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5170 if (tcp_receive_window(tp) == 0) { 5171 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5172 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5173 goto out_of_window; 5174 } 5175 5176 /* Ok. In sequence. In window. */ 5177 queue_and_out: 5178 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5179 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5180 inet_csk(sk)->icsk_ack.pending |= 5181 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5182 inet_csk_schedule_ack(sk); 5183 sk->sk_data_ready(sk); 5184 5185 if (skb_queue_len(&sk->sk_receive_queue)) { 5186 reason = SKB_DROP_REASON_PROTO_MEM; 5187 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5188 goto drop; 5189 } 5190 sk_forced_mem_schedule(sk, skb->truesize); 5191 } 5192 5193 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5194 if (skb->len) 5195 tcp_event_data_recv(sk, skb); 5196 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5197 tcp_fin(sk); 5198 5199 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5200 tcp_ofo_queue(sk); 5201 5202 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5203 * gap in queue is filled. 5204 */ 5205 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5206 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5207 } 5208 5209 if (tp->rx_opt.num_sacks) 5210 tcp_sack_remove(tp); 5211 5212 tcp_fast_path_check(sk); 5213 5214 if (eaten > 0) 5215 kfree_skb_partial(skb, fragstolen); 5216 if (!sock_flag(sk, SOCK_DEAD)) 5217 tcp_data_ready(sk); 5218 return; 5219 } 5220 5221 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5222 tcp_rcv_spurious_retrans(sk, skb); 5223 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5224 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5225 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5226 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5227 5228 out_of_window: 5229 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5230 inet_csk_schedule_ack(sk); 5231 drop: 5232 tcp_drop_reason(sk, skb, reason); 5233 return; 5234 } 5235 5236 /* Out of window. F.e. zero window probe. */ 5237 if (!before(TCP_SKB_CB(skb)->seq, 5238 tp->rcv_nxt + tcp_receive_window(tp))) { 5239 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5240 goto out_of_window; 5241 } 5242 5243 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5244 /* Partial packet, seq < rcv_next < end_seq */ 5245 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5246 5247 /* If window is closed, drop tail of packet. But after 5248 * remembering D-SACK for its head made in previous line. 5249 */ 5250 if (!tcp_receive_window(tp)) { 5251 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5253 goto out_of_window; 5254 } 5255 goto queue_and_out; 5256 } 5257 5258 tcp_data_queue_ofo(sk, skb); 5259 } 5260 5261 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5262 { 5263 if (list) 5264 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5265 5266 return skb_rb_next(skb); 5267 } 5268 5269 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5270 struct sk_buff_head *list, 5271 struct rb_root *root) 5272 { 5273 struct sk_buff *next = tcp_skb_next(skb, list); 5274 5275 if (list) 5276 __skb_unlink(skb, list); 5277 else 5278 rb_erase(&skb->rbnode, root); 5279 5280 __kfree_skb(skb); 5281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5282 5283 return next; 5284 } 5285 5286 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5287 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5288 { 5289 struct rb_node **p = &root->rb_node; 5290 struct rb_node *parent = NULL; 5291 struct sk_buff *skb1; 5292 5293 while (*p) { 5294 parent = *p; 5295 skb1 = rb_to_skb(parent); 5296 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5297 p = &parent->rb_left; 5298 else 5299 p = &parent->rb_right; 5300 } 5301 rb_link_node(&skb->rbnode, parent, p); 5302 rb_insert_color(&skb->rbnode, root); 5303 } 5304 5305 /* Collapse contiguous sequence of skbs head..tail with 5306 * sequence numbers start..end. 5307 * 5308 * If tail is NULL, this means until the end of the queue. 5309 * 5310 * Segments with FIN/SYN are not collapsed (only because this 5311 * simplifies code) 5312 */ 5313 static void 5314 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5315 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5316 { 5317 struct sk_buff *skb = head, *n; 5318 struct sk_buff_head tmp; 5319 bool end_of_skbs; 5320 5321 /* First, check that queue is collapsible and find 5322 * the point where collapsing can be useful. 5323 */ 5324 restart: 5325 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5326 n = tcp_skb_next(skb, list); 5327 5328 /* No new bits? It is possible on ofo queue. */ 5329 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5330 skb = tcp_collapse_one(sk, skb, list, root); 5331 if (!skb) 5332 break; 5333 goto restart; 5334 } 5335 5336 /* The first skb to collapse is: 5337 * - not SYN/FIN and 5338 * - bloated or contains data before "start" or 5339 * overlaps to the next one and mptcp allow collapsing. 5340 */ 5341 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5342 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5343 before(TCP_SKB_CB(skb)->seq, start))) { 5344 end_of_skbs = false; 5345 break; 5346 } 5347 5348 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5349 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5350 end_of_skbs = false; 5351 break; 5352 } 5353 5354 /* Decided to skip this, advance start seq. */ 5355 start = TCP_SKB_CB(skb)->end_seq; 5356 } 5357 if (end_of_skbs || 5358 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5359 return; 5360 5361 __skb_queue_head_init(&tmp); 5362 5363 while (before(start, end)) { 5364 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5365 struct sk_buff *nskb; 5366 5367 nskb = alloc_skb(copy, GFP_ATOMIC); 5368 if (!nskb) 5369 break; 5370 5371 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5372 #ifdef CONFIG_TLS_DEVICE 5373 nskb->decrypted = skb->decrypted; 5374 #endif 5375 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5376 if (list) 5377 __skb_queue_before(list, skb, nskb); 5378 else 5379 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5380 skb_set_owner_r(nskb, sk); 5381 mptcp_skb_ext_move(nskb, skb); 5382 5383 /* Copy data, releasing collapsed skbs. */ 5384 while (copy > 0) { 5385 int offset = start - TCP_SKB_CB(skb)->seq; 5386 int size = TCP_SKB_CB(skb)->end_seq - start; 5387 5388 BUG_ON(offset < 0); 5389 if (size > 0) { 5390 size = min(copy, size); 5391 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5392 BUG(); 5393 TCP_SKB_CB(nskb)->end_seq += size; 5394 copy -= size; 5395 start += size; 5396 } 5397 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5398 skb = tcp_collapse_one(sk, skb, list, root); 5399 if (!skb || 5400 skb == tail || 5401 !mptcp_skb_can_collapse(nskb, skb) || 5402 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5403 goto end; 5404 #ifdef CONFIG_TLS_DEVICE 5405 if (skb->decrypted != nskb->decrypted) 5406 goto end; 5407 #endif 5408 } 5409 } 5410 } 5411 end: 5412 skb_queue_walk_safe(&tmp, skb, n) 5413 tcp_rbtree_insert(root, skb); 5414 } 5415 5416 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5417 * and tcp_collapse() them until all the queue is collapsed. 5418 */ 5419 static void tcp_collapse_ofo_queue(struct sock *sk) 5420 { 5421 struct tcp_sock *tp = tcp_sk(sk); 5422 u32 range_truesize, sum_tiny = 0; 5423 struct sk_buff *skb, *head; 5424 u32 start, end; 5425 5426 skb = skb_rb_first(&tp->out_of_order_queue); 5427 new_range: 5428 if (!skb) { 5429 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5430 return; 5431 } 5432 start = TCP_SKB_CB(skb)->seq; 5433 end = TCP_SKB_CB(skb)->end_seq; 5434 range_truesize = skb->truesize; 5435 5436 for (head = skb;;) { 5437 skb = skb_rb_next(skb); 5438 5439 /* Range is terminated when we see a gap or when 5440 * we are at the queue end. 5441 */ 5442 if (!skb || 5443 after(TCP_SKB_CB(skb)->seq, end) || 5444 before(TCP_SKB_CB(skb)->end_seq, start)) { 5445 /* Do not attempt collapsing tiny skbs */ 5446 if (range_truesize != head->truesize || 5447 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5448 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5449 head, skb, start, end); 5450 } else { 5451 sum_tiny += range_truesize; 5452 if (sum_tiny > sk->sk_rcvbuf >> 3) 5453 return; 5454 } 5455 goto new_range; 5456 } 5457 5458 range_truesize += skb->truesize; 5459 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5460 start = TCP_SKB_CB(skb)->seq; 5461 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5462 end = TCP_SKB_CB(skb)->end_seq; 5463 } 5464 } 5465 5466 /* 5467 * Clean the out-of-order queue to make room. 5468 * We drop high sequences packets to : 5469 * 1) Let a chance for holes to be filled. 5470 * This means we do not drop packets from ooo queue if their sequence 5471 * is before incoming packet sequence. 5472 * 2) not add too big latencies if thousands of packets sit there. 5473 * (But if application shrinks SO_RCVBUF, we could still end up 5474 * freeing whole queue here) 5475 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5476 * 5477 * Return true if queue has shrunk. 5478 */ 5479 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5480 { 5481 struct tcp_sock *tp = tcp_sk(sk); 5482 struct rb_node *node, *prev; 5483 bool pruned = false; 5484 int goal; 5485 5486 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5487 return false; 5488 5489 goal = sk->sk_rcvbuf >> 3; 5490 node = &tp->ooo_last_skb->rbnode; 5491 5492 do { 5493 struct sk_buff *skb = rb_to_skb(node); 5494 5495 /* If incoming skb would land last in ofo queue, stop pruning. */ 5496 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5497 break; 5498 pruned = true; 5499 prev = rb_prev(node); 5500 rb_erase(node, &tp->out_of_order_queue); 5501 goal -= skb->truesize; 5502 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5503 tp->ooo_last_skb = rb_to_skb(prev); 5504 if (!prev || goal <= 0) { 5505 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5506 !tcp_under_memory_pressure(sk)) 5507 break; 5508 goal = sk->sk_rcvbuf >> 3; 5509 } 5510 node = prev; 5511 } while (node); 5512 5513 if (pruned) { 5514 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5515 /* Reset SACK state. A conforming SACK implementation will 5516 * do the same at a timeout based retransmit. When a connection 5517 * is in a sad state like this, we care only about integrity 5518 * of the connection not performance. 5519 */ 5520 if (tp->rx_opt.sack_ok) 5521 tcp_sack_reset(&tp->rx_opt); 5522 } 5523 return pruned; 5524 } 5525 5526 /* Reduce allocated memory if we can, trying to get 5527 * the socket within its memory limits again. 5528 * 5529 * Return less than zero if we should start dropping frames 5530 * until the socket owning process reads some of the data 5531 * to stabilize the situation. 5532 */ 5533 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5534 { 5535 struct tcp_sock *tp = tcp_sk(sk); 5536 5537 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5538 5539 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5540 tcp_clamp_window(sk); 5541 else if (tcp_under_memory_pressure(sk)) 5542 tcp_adjust_rcv_ssthresh(sk); 5543 5544 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5545 return 0; 5546 5547 tcp_collapse_ofo_queue(sk); 5548 if (!skb_queue_empty(&sk->sk_receive_queue)) 5549 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5550 skb_peek(&sk->sk_receive_queue), 5551 NULL, 5552 tp->copied_seq, tp->rcv_nxt); 5553 5554 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5555 return 0; 5556 5557 /* Collapsing did not help, destructive actions follow. 5558 * This must not ever occur. */ 5559 5560 tcp_prune_ofo_queue(sk, in_skb); 5561 5562 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5563 return 0; 5564 5565 /* If we are really being abused, tell the caller to silently 5566 * drop receive data on the floor. It will get retransmitted 5567 * and hopefully then we'll have sufficient space. 5568 */ 5569 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5570 5571 /* Massive buffer overcommit. */ 5572 tp->pred_flags = 0; 5573 return -1; 5574 } 5575 5576 static bool tcp_should_expand_sndbuf(struct sock *sk) 5577 { 5578 const struct tcp_sock *tp = tcp_sk(sk); 5579 5580 /* If the user specified a specific send buffer setting, do 5581 * not modify it. 5582 */ 5583 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5584 return false; 5585 5586 /* If we are under global TCP memory pressure, do not expand. */ 5587 if (tcp_under_memory_pressure(sk)) { 5588 int unused_mem = sk_unused_reserved_mem(sk); 5589 5590 /* Adjust sndbuf according to reserved mem. But make sure 5591 * it never goes below SOCK_MIN_SNDBUF. 5592 * See sk_stream_moderate_sndbuf() for more details. 5593 */ 5594 if (unused_mem > SOCK_MIN_SNDBUF) 5595 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5596 5597 return false; 5598 } 5599 5600 /* If we are under soft global TCP memory pressure, do not expand. */ 5601 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5602 return false; 5603 5604 /* If we filled the congestion window, do not expand. */ 5605 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5606 return false; 5607 5608 return true; 5609 } 5610 5611 static void tcp_new_space(struct sock *sk) 5612 { 5613 struct tcp_sock *tp = tcp_sk(sk); 5614 5615 if (tcp_should_expand_sndbuf(sk)) { 5616 tcp_sndbuf_expand(sk); 5617 tp->snd_cwnd_stamp = tcp_jiffies32; 5618 } 5619 5620 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5621 } 5622 5623 /* Caller made space either from: 5624 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5625 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5626 * 5627 * We might be able to generate EPOLLOUT to the application if: 5628 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5629 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5630 * small enough that tcp_stream_memory_free() decides it 5631 * is time to generate EPOLLOUT. 5632 */ 5633 void tcp_check_space(struct sock *sk) 5634 { 5635 /* pairs with tcp_poll() */ 5636 smp_mb(); 5637 if (sk->sk_socket && 5638 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5639 tcp_new_space(sk); 5640 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5641 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5642 } 5643 } 5644 5645 static inline void tcp_data_snd_check(struct sock *sk) 5646 { 5647 tcp_push_pending_frames(sk); 5648 tcp_check_space(sk); 5649 } 5650 5651 /* 5652 * Check if sending an ack is needed. 5653 */ 5654 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5655 { 5656 struct tcp_sock *tp = tcp_sk(sk); 5657 unsigned long rtt, delay; 5658 5659 /* More than one full frame received... */ 5660 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5661 /* ... and right edge of window advances far enough. 5662 * (tcp_recvmsg() will send ACK otherwise). 5663 * If application uses SO_RCVLOWAT, we want send ack now if 5664 * we have not received enough bytes to satisfy the condition. 5665 */ 5666 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5667 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5668 /* We ACK each frame or... */ 5669 tcp_in_quickack_mode(sk) || 5670 /* Protocol state mandates a one-time immediate ACK */ 5671 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5672 send_now: 5673 tcp_send_ack(sk); 5674 return; 5675 } 5676 5677 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5678 tcp_send_delayed_ack(sk); 5679 return; 5680 } 5681 5682 if (!tcp_is_sack(tp) || 5683 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5684 goto send_now; 5685 5686 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5687 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5688 tp->dup_ack_counter = 0; 5689 } 5690 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5691 tp->dup_ack_counter++; 5692 goto send_now; 5693 } 5694 tp->compressed_ack++; 5695 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5696 return; 5697 5698 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5699 5700 rtt = tp->rcv_rtt_est.rtt_us; 5701 if (tp->srtt_us && tp->srtt_us < rtt) 5702 rtt = tp->srtt_us; 5703 5704 delay = min_t(unsigned long, 5705 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5706 rtt * (NSEC_PER_USEC >> 3)/20); 5707 sock_hold(sk); 5708 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5709 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5710 HRTIMER_MODE_REL_PINNED_SOFT); 5711 } 5712 5713 static inline void tcp_ack_snd_check(struct sock *sk) 5714 { 5715 if (!inet_csk_ack_scheduled(sk)) { 5716 /* We sent a data segment already. */ 5717 return; 5718 } 5719 __tcp_ack_snd_check(sk, 1); 5720 } 5721 5722 /* 5723 * This routine is only called when we have urgent data 5724 * signaled. Its the 'slow' part of tcp_urg. It could be 5725 * moved inline now as tcp_urg is only called from one 5726 * place. We handle URGent data wrong. We have to - as 5727 * BSD still doesn't use the correction from RFC961. 5728 * For 1003.1g we should support a new option TCP_STDURG to permit 5729 * either form (or just set the sysctl tcp_stdurg). 5730 */ 5731 5732 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5733 { 5734 struct tcp_sock *tp = tcp_sk(sk); 5735 u32 ptr = ntohs(th->urg_ptr); 5736 5737 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5738 ptr--; 5739 ptr += ntohl(th->seq); 5740 5741 /* Ignore urgent data that we've already seen and read. */ 5742 if (after(tp->copied_seq, ptr)) 5743 return; 5744 5745 /* Do not replay urg ptr. 5746 * 5747 * NOTE: interesting situation not covered by specs. 5748 * Misbehaving sender may send urg ptr, pointing to segment, 5749 * which we already have in ofo queue. We are not able to fetch 5750 * such data and will stay in TCP_URG_NOTYET until will be eaten 5751 * by recvmsg(). Seems, we are not obliged to handle such wicked 5752 * situations. But it is worth to think about possibility of some 5753 * DoSes using some hypothetical application level deadlock. 5754 */ 5755 if (before(ptr, tp->rcv_nxt)) 5756 return; 5757 5758 /* Do we already have a newer (or duplicate) urgent pointer? */ 5759 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5760 return; 5761 5762 /* Tell the world about our new urgent pointer. */ 5763 sk_send_sigurg(sk); 5764 5765 /* We may be adding urgent data when the last byte read was 5766 * urgent. To do this requires some care. We cannot just ignore 5767 * tp->copied_seq since we would read the last urgent byte again 5768 * as data, nor can we alter copied_seq until this data arrives 5769 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5770 * 5771 * NOTE. Double Dutch. Rendering to plain English: author of comment 5772 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5773 * and expect that both A and B disappear from stream. This is _wrong_. 5774 * Though this happens in BSD with high probability, this is occasional. 5775 * Any application relying on this is buggy. Note also, that fix "works" 5776 * only in this artificial test. Insert some normal data between A and B and we will 5777 * decline of BSD again. Verdict: it is better to remove to trap 5778 * buggy users. 5779 */ 5780 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5781 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5782 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5783 tp->copied_seq++; 5784 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5785 __skb_unlink(skb, &sk->sk_receive_queue); 5786 __kfree_skb(skb); 5787 } 5788 } 5789 5790 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5791 WRITE_ONCE(tp->urg_seq, ptr); 5792 5793 /* Disable header prediction. */ 5794 tp->pred_flags = 0; 5795 } 5796 5797 /* This is the 'fast' part of urgent handling. */ 5798 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5799 { 5800 struct tcp_sock *tp = tcp_sk(sk); 5801 5802 /* Check if we get a new urgent pointer - normally not. */ 5803 if (unlikely(th->urg)) 5804 tcp_check_urg(sk, th); 5805 5806 /* Do we wait for any urgent data? - normally not... */ 5807 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5808 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5809 th->syn; 5810 5811 /* Is the urgent pointer pointing into this packet? */ 5812 if (ptr < skb->len) { 5813 u8 tmp; 5814 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5815 BUG(); 5816 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5817 if (!sock_flag(sk, SOCK_DEAD)) 5818 sk->sk_data_ready(sk); 5819 } 5820 } 5821 } 5822 5823 /* Accept RST for rcv_nxt - 1 after a FIN. 5824 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5825 * FIN is sent followed by a RST packet. The RST is sent with the same 5826 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5827 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5828 * ACKs on the closed socket. In addition middleboxes can drop either the 5829 * challenge ACK or a subsequent RST. 5830 */ 5831 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5832 { 5833 const struct tcp_sock *tp = tcp_sk(sk); 5834 5835 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5836 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5837 TCPF_CLOSING)); 5838 } 5839 5840 /* Does PAWS and seqno based validation of an incoming segment, flags will 5841 * play significant role here. 5842 */ 5843 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5844 const struct tcphdr *th, int syn_inerr) 5845 { 5846 struct tcp_sock *tp = tcp_sk(sk); 5847 SKB_DR(reason); 5848 5849 /* RFC1323: H1. Apply PAWS check first. */ 5850 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5851 tp->rx_opt.saw_tstamp && 5852 tcp_paws_discard(sk, skb)) { 5853 if (!th->rst) { 5854 if (unlikely(th->syn)) 5855 goto syn_challenge; 5856 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5857 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5858 LINUX_MIB_TCPACKSKIPPEDPAWS, 5859 &tp->last_oow_ack_time)) 5860 tcp_send_dupack(sk, skb); 5861 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5862 goto discard; 5863 } 5864 /* Reset is accepted even if it did not pass PAWS. */ 5865 } 5866 5867 /* Step 1: check sequence number */ 5868 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5869 if (reason) { 5870 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5871 * (RST) segments are validated by checking their SEQ-fields." 5872 * And page 69: "If an incoming segment is not acceptable, 5873 * an acknowledgment should be sent in reply (unless the RST 5874 * bit is set, if so drop the segment and return)". 5875 */ 5876 if (!th->rst) { 5877 if (th->syn) 5878 goto syn_challenge; 5879 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5880 LINUX_MIB_TCPACKSKIPPEDSEQ, 5881 &tp->last_oow_ack_time)) 5882 tcp_send_dupack(sk, skb); 5883 } else if (tcp_reset_check(sk, skb)) { 5884 goto reset; 5885 } 5886 goto discard; 5887 } 5888 5889 /* Step 2: check RST bit */ 5890 if (th->rst) { 5891 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5892 * FIN and SACK too if available): 5893 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5894 * the right-most SACK block, 5895 * then 5896 * RESET the connection 5897 * else 5898 * Send a challenge ACK 5899 */ 5900 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5901 tcp_reset_check(sk, skb)) 5902 goto reset; 5903 5904 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5905 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5906 int max_sack = sp[0].end_seq; 5907 int this_sack; 5908 5909 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5910 ++this_sack) { 5911 max_sack = after(sp[this_sack].end_seq, 5912 max_sack) ? 5913 sp[this_sack].end_seq : max_sack; 5914 } 5915 5916 if (TCP_SKB_CB(skb)->seq == max_sack) 5917 goto reset; 5918 } 5919 5920 /* Disable TFO if RST is out-of-order 5921 * and no data has been received 5922 * for current active TFO socket 5923 */ 5924 if (tp->syn_fastopen && !tp->data_segs_in && 5925 sk->sk_state == TCP_ESTABLISHED) 5926 tcp_fastopen_active_disable(sk); 5927 tcp_send_challenge_ack(sk); 5928 SKB_DR_SET(reason, TCP_RESET); 5929 goto discard; 5930 } 5931 5932 /* step 3: check security and precedence [ignored] */ 5933 5934 /* step 4: Check for a SYN 5935 * RFC 5961 4.2 : Send a challenge ack 5936 */ 5937 if (th->syn) { 5938 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 5939 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 5940 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 5941 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 5942 goto pass; 5943 syn_challenge: 5944 if (syn_inerr) 5945 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5946 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5947 tcp_send_challenge_ack(sk); 5948 SKB_DR_SET(reason, TCP_INVALID_SYN); 5949 goto discard; 5950 } 5951 5952 pass: 5953 bpf_skops_parse_hdr(sk, skb); 5954 5955 return true; 5956 5957 discard: 5958 tcp_drop_reason(sk, skb, reason); 5959 return false; 5960 5961 reset: 5962 tcp_reset(sk, skb); 5963 __kfree_skb(skb); 5964 return false; 5965 } 5966 5967 /* 5968 * TCP receive function for the ESTABLISHED state. 5969 * 5970 * It is split into a fast path and a slow path. The fast path is 5971 * disabled when: 5972 * - A zero window was announced from us - zero window probing 5973 * is only handled properly in the slow path. 5974 * - Out of order segments arrived. 5975 * - Urgent data is expected. 5976 * - There is no buffer space left 5977 * - Unexpected TCP flags/window values/header lengths are received 5978 * (detected by checking the TCP header against pred_flags) 5979 * - Data is sent in both directions. Fast path only supports pure senders 5980 * or pure receivers (this means either the sequence number or the ack 5981 * value must stay constant) 5982 * - Unexpected TCP option. 5983 * 5984 * When these conditions are not satisfied it drops into a standard 5985 * receive procedure patterned after RFC793 to handle all cases. 5986 * The first three cases are guaranteed by proper pred_flags setting, 5987 * the rest is checked inline. Fast processing is turned on in 5988 * tcp_data_queue when everything is OK. 5989 */ 5990 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5991 { 5992 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5993 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5994 struct tcp_sock *tp = tcp_sk(sk); 5995 unsigned int len = skb->len; 5996 5997 /* TCP congestion window tracking */ 5998 trace_tcp_probe(sk, skb); 5999 6000 tcp_mstamp_refresh(tp); 6001 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6002 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6003 /* 6004 * Header prediction. 6005 * The code loosely follows the one in the famous 6006 * "30 instruction TCP receive" Van Jacobson mail. 6007 * 6008 * Van's trick is to deposit buffers into socket queue 6009 * on a device interrupt, to call tcp_recv function 6010 * on the receive process context and checksum and copy 6011 * the buffer to user space. smart... 6012 * 6013 * Our current scheme is not silly either but we take the 6014 * extra cost of the net_bh soft interrupt processing... 6015 * We do checksum and copy also but from device to kernel. 6016 */ 6017 6018 tp->rx_opt.saw_tstamp = 0; 6019 6020 /* pred_flags is 0xS?10 << 16 + snd_wnd 6021 * if header_prediction is to be made 6022 * 'S' will always be tp->tcp_header_len >> 2 6023 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6024 * turn it off (when there are holes in the receive 6025 * space for instance) 6026 * PSH flag is ignored. 6027 */ 6028 6029 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6030 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6031 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6032 int tcp_header_len = tp->tcp_header_len; 6033 6034 /* Timestamp header prediction: tcp_header_len 6035 * is automatically equal to th->doff*4 due to pred_flags 6036 * match. 6037 */ 6038 6039 /* Check timestamp */ 6040 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6041 /* No? Slow path! */ 6042 if (!tcp_parse_aligned_timestamp(tp, th)) 6043 goto slow_path; 6044 6045 /* If PAWS failed, check it more carefully in slow path */ 6046 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6047 goto slow_path; 6048 6049 /* DO NOT update ts_recent here, if checksum fails 6050 * and timestamp was corrupted part, it will result 6051 * in a hung connection since we will drop all 6052 * future packets due to the PAWS test. 6053 */ 6054 } 6055 6056 if (len <= tcp_header_len) { 6057 /* Bulk data transfer: sender */ 6058 if (len == tcp_header_len) { 6059 /* Predicted packet is in window by definition. 6060 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6061 * Hence, check seq<=rcv_wup reduces to: 6062 */ 6063 if (tcp_header_len == 6064 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6065 tp->rcv_nxt == tp->rcv_wup) 6066 tcp_store_ts_recent(tp); 6067 6068 /* We know that such packets are checksummed 6069 * on entry. 6070 */ 6071 tcp_ack(sk, skb, 0); 6072 __kfree_skb(skb); 6073 tcp_data_snd_check(sk); 6074 /* When receiving pure ack in fast path, update 6075 * last ts ecr directly instead of calling 6076 * tcp_rcv_rtt_measure_ts() 6077 */ 6078 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6079 return; 6080 } else { /* Header too small */ 6081 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6082 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6083 goto discard; 6084 } 6085 } else { 6086 int eaten = 0; 6087 bool fragstolen = false; 6088 6089 if (tcp_checksum_complete(skb)) 6090 goto csum_error; 6091 6092 if ((int)skb->truesize > sk->sk_forward_alloc) 6093 goto step5; 6094 6095 /* Predicted packet is in window by definition. 6096 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6097 * Hence, check seq<=rcv_wup reduces to: 6098 */ 6099 if (tcp_header_len == 6100 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6101 tp->rcv_nxt == tp->rcv_wup) 6102 tcp_store_ts_recent(tp); 6103 6104 tcp_rcv_rtt_measure_ts(sk, skb); 6105 6106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6107 6108 /* Bulk data transfer: receiver */ 6109 tcp_cleanup_skb(skb); 6110 __skb_pull(skb, tcp_header_len); 6111 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6112 6113 tcp_event_data_recv(sk, skb); 6114 6115 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6116 /* Well, only one small jumplet in fast path... */ 6117 tcp_ack(sk, skb, FLAG_DATA); 6118 tcp_data_snd_check(sk); 6119 if (!inet_csk_ack_scheduled(sk)) 6120 goto no_ack; 6121 } else { 6122 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6123 } 6124 6125 __tcp_ack_snd_check(sk, 0); 6126 no_ack: 6127 if (eaten) 6128 kfree_skb_partial(skb, fragstolen); 6129 tcp_data_ready(sk); 6130 return; 6131 } 6132 } 6133 6134 slow_path: 6135 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6136 goto csum_error; 6137 6138 if (!th->ack && !th->rst && !th->syn) { 6139 reason = SKB_DROP_REASON_TCP_FLAGS; 6140 goto discard; 6141 } 6142 6143 /* 6144 * Standard slow path. 6145 */ 6146 6147 if (!tcp_validate_incoming(sk, skb, th, 1)) 6148 return; 6149 6150 step5: 6151 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6152 if ((int)reason < 0) { 6153 reason = -reason; 6154 goto discard; 6155 } 6156 tcp_rcv_rtt_measure_ts(sk, skb); 6157 6158 /* Process urgent data. */ 6159 tcp_urg(sk, skb, th); 6160 6161 /* step 7: process the segment text */ 6162 tcp_data_queue(sk, skb); 6163 6164 tcp_data_snd_check(sk); 6165 tcp_ack_snd_check(sk); 6166 return; 6167 6168 csum_error: 6169 reason = SKB_DROP_REASON_TCP_CSUM; 6170 trace_tcp_bad_csum(skb); 6171 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6172 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6173 6174 discard: 6175 tcp_drop_reason(sk, skb, reason); 6176 } 6177 EXPORT_SYMBOL(tcp_rcv_established); 6178 6179 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6180 { 6181 struct inet_connection_sock *icsk = inet_csk(sk); 6182 struct tcp_sock *tp = tcp_sk(sk); 6183 6184 tcp_mtup_init(sk); 6185 icsk->icsk_af_ops->rebuild_header(sk); 6186 tcp_init_metrics(sk); 6187 6188 /* Initialize the congestion window to start the transfer. 6189 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6190 * retransmitted. In light of RFC6298 more aggressive 1sec 6191 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6192 * retransmission has occurred. 6193 */ 6194 if (tp->total_retrans > 1 && tp->undo_marker) 6195 tcp_snd_cwnd_set(tp, 1); 6196 else 6197 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6198 tp->snd_cwnd_stamp = tcp_jiffies32; 6199 6200 bpf_skops_established(sk, bpf_op, skb); 6201 /* Initialize congestion control unless BPF initialized it already: */ 6202 if (!icsk->icsk_ca_initialized) 6203 tcp_init_congestion_control(sk); 6204 tcp_init_buffer_space(sk); 6205 } 6206 6207 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6208 { 6209 struct tcp_sock *tp = tcp_sk(sk); 6210 struct inet_connection_sock *icsk = inet_csk(sk); 6211 6212 tcp_set_state(sk, TCP_ESTABLISHED); 6213 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6214 6215 if (skb) { 6216 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6217 security_inet_conn_established(sk, skb); 6218 sk_mark_napi_id(sk, skb); 6219 } 6220 6221 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6222 6223 /* Prevent spurious tcp_cwnd_restart() on first data 6224 * packet. 6225 */ 6226 tp->lsndtime = tcp_jiffies32; 6227 6228 if (sock_flag(sk, SOCK_KEEPOPEN)) 6229 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6230 6231 if (!tp->rx_opt.snd_wscale) 6232 __tcp_fast_path_on(tp, tp->snd_wnd); 6233 else 6234 tp->pred_flags = 0; 6235 } 6236 6237 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6238 struct tcp_fastopen_cookie *cookie) 6239 { 6240 struct tcp_sock *tp = tcp_sk(sk); 6241 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6242 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6243 bool syn_drop = false; 6244 6245 if (mss == tp->rx_opt.user_mss) { 6246 struct tcp_options_received opt; 6247 6248 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6249 tcp_clear_options(&opt); 6250 opt.user_mss = opt.mss_clamp = 0; 6251 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6252 mss = opt.mss_clamp; 6253 } 6254 6255 if (!tp->syn_fastopen) { 6256 /* Ignore an unsolicited cookie */ 6257 cookie->len = -1; 6258 } else if (tp->total_retrans) { 6259 /* SYN timed out and the SYN-ACK neither has a cookie nor 6260 * acknowledges data. Presumably the remote received only 6261 * the retransmitted (regular) SYNs: either the original 6262 * SYN-data or the corresponding SYN-ACK was dropped. 6263 */ 6264 syn_drop = (cookie->len < 0 && data); 6265 } else if (cookie->len < 0 && !tp->syn_data) { 6266 /* We requested a cookie but didn't get it. If we did not use 6267 * the (old) exp opt format then try so next time (try_exp=1). 6268 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6269 */ 6270 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6271 } 6272 6273 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6274 6275 if (data) { /* Retransmit unacked data in SYN */ 6276 if (tp->total_retrans) 6277 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6278 else 6279 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6280 skb_rbtree_walk_from(data) 6281 tcp_mark_skb_lost(sk, data); 6282 tcp_non_congestion_loss_retransmit(sk); 6283 NET_INC_STATS(sock_net(sk), 6284 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6285 return true; 6286 } 6287 tp->syn_data_acked = tp->syn_data; 6288 if (tp->syn_data_acked) { 6289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6290 /* SYN-data is counted as two separate packets in tcp_ack() */ 6291 if (tp->delivered > 1) 6292 --tp->delivered; 6293 } 6294 6295 tcp_fastopen_add_skb(sk, synack); 6296 6297 return false; 6298 } 6299 6300 static void smc_check_reset_syn(struct tcp_sock *tp) 6301 { 6302 #if IS_ENABLED(CONFIG_SMC) 6303 if (static_branch_unlikely(&tcp_have_smc)) { 6304 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6305 tp->syn_smc = 0; 6306 } 6307 #endif 6308 } 6309 6310 static void tcp_try_undo_spurious_syn(struct sock *sk) 6311 { 6312 struct tcp_sock *tp = tcp_sk(sk); 6313 u32 syn_stamp; 6314 6315 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6316 * spurious if the ACK's timestamp option echo value matches the 6317 * original SYN timestamp. 6318 */ 6319 syn_stamp = tp->retrans_stamp; 6320 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6321 syn_stamp == tp->rx_opt.rcv_tsecr) 6322 tp->undo_marker = 0; 6323 } 6324 6325 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6326 const struct tcphdr *th) 6327 { 6328 struct inet_connection_sock *icsk = inet_csk(sk); 6329 struct tcp_sock *tp = tcp_sk(sk); 6330 struct tcp_fastopen_cookie foc = { .len = -1 }; 6331 int saved_clamp = tp->rx_opt.mss_clamp; 6332 bool fastopen_fail; 6333 SKB_DR(reason); 6334 6335 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6336 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6337 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6338 6339 if (th->ack) { 6340 /* rfc793: 6341 * "If the state is SYN-SENT then 6342 * first check the ACK bit 6343 * If the ACK bit is set 6344 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6345 * a reset (unless the RST bit is set, if so drop 6346 * the segment and return)" 6347 */ 6348 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6349 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6350 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6351 if (icsk->icsk_retransmits == 0) 6352 inet_csk_reset_xmit_timer(sk, 6353 ICSK_TIME_RETRANS, 6354 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6355 goto reset_and_undo; 6356 } 6357 6358 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6359 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6360 tcp_time_stamp(tp))) { 6361 NET_INC_STATS(sock_net(sk), 6362 LINUX_MIB_PAWSACTIVEREJECTED); 6363 goto reset_and_undo; 6364 } 6365 6366 /* Now ACK is acceptable. 6367 * 6368 * "If the RST bit is set 6369 * If the ACK was acceptable then signal the user "error: 6370 * connection reset", drop the segment, enter CLOSED state, 6371 * delete TCB, and return." 6372 */ 6373 6374 if (th->rst) { 6375 tcp_reset(sk, skb); 6376 consume: 6377 __kfree_skb(skb); 6378 return 0; 6379 } 6380 6381 /* rfc793: 6382 * "fifth, if neither of the SYN or RST bits is set then 6383 * drop the segment and return." 6384 * 6385 * See note below! 6386 * --ANK(990513) 6387 */ 6388 if (!th->syn) { 6389 SKB_DR_SET(reason, TCP_FLAGS); 6390 goto discard_and_undo; 6391 } 6392 /* rfc793: 6393 * "If the SYN bit is on ... 6394 * are acceptable then ... 6395 * (our SYN has been ACKed), change the connection 6396 * state to ESTABLISHED..." 6397 */ 6398 6399 tcp_ecn_rcv_synack(tp, th); 6400 6401 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6402 tcp_try_undo_spurious_syn(sk); 6403 tcp_ack(sk, skb, FLAG_SLOWPATH); 6404 6405 /* Ok.. it's good. Set up sequence numbers and 6406 * move to established. 6407 */ 6408 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6409 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6410 6411 /* RFC1323: The window in SYN & SYN/ACK segments is 6412 * never scaled. 6413 */ 6414 tp->snd_wnd = ntohs(th->window); 6415 6416 if (!tp->rx_opt.wscale_ok) { 6417 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6418 WRITE_ONCE(tp->window_clamp, 6419 min(tp->window_clamp, 65535U)); 6420 } 6421 6422 if (tp->rx_opt.saw_tstamp) { 6423 tp->rx_opt.tstamp_ok = 1; 6424 tp->tcp_header_len = 6425 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6426 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6427 tcp_store_ts_recent(tp); 6428 } else { 6429 tp->tcp_header_len = sizeof(struct tcphdr); 6430 } 6431 6432 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6433 tcp_initialize_rcv_mss(sk); 6434 6435 /* Remember, tcp_poll() does not lock socket! 6436 * Change state from SYN-SENT only after copied_seq 6437 * is initialized. */ 6438 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6439 6440 smc_check_reset_syn(tp); 6441 6442 smp_mb(); 6443 6444 tcp_finish_connect(sk, skb); 6445 6446 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6447 tcp_rcv_fastopen_synack(sk, skb, &foc); 6448 6449 if (!sock_flag(sk, SOCK_DEAD)) { 6450 sk->sk_state_change(sk); 6451 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6452 } 6453 if (fastopen_fail) 6454 return -1; 6455 if (sk->sk_write_pending || 6456 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6457 inet_csk_in_pingpong_mode(sk)) { 6458 /* Save one ACK. Data will be ready after 6459 * several ticks, if write_pending is set. 6460 * 6461 * It may be deleted, but with this feature tcpdumps 6462 * look so _wonderfully_ clever, that I was not able 6463 * to stand against the temptation 8) --ANK 6464 */ 6465 inet_csk_schedule_ack(sk); 6466 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6467 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6468 TCP_DELACK_MAX, TCP_RTO_MAX); 6469 goto consume; 6470 } 6471 tcp_send_ack(sk); 6472 return -1; 6473 } 6474 6475 /* No ACK in the segment */ 6476 6477 if (th->rst) { 6478 /* rfc793: 6479 * "If the RST bit is set 6480 * 6481 * Otherwise (no ACK) drop the segment and return." 6482 */ 6483 SKB_DR_SET(reason, TCP_RESET); 6484 goto discard_and_undo; 6485 } 6486 6487 /* PAWS check. */ 6488 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6489 tcp_paws_reject(&tp->rx_opt, 0)) { 6490 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6491 goto discard_and_undo; 6492 } 6493 if (th->syn) { 6494 /* We see SYN without ACK. It is attempt of 6495 * simultaneous connect with crossed SYNs. 6496 * Particularly, it can be connect to self. 6497 */ 6498 tcp_set_state(sk, TCP_SYN_RECV); 6499 6500 if (tp->rx_opt.saw_tstamp) { 6501 tp->rx_opt.tstamp_ok = 1; 6502 tcp_store_ts_recent(tp); 6503 tp->tcp_header_len = 6504 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6505 } else { 6506 tp->tcp_header_len = sizeof(struct tcphdr); 6507 } 6508 6509 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6510 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6511 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6512 6513 /* RFC1323: The window in SYN & SYN/ACK segments is 6514 * never scaled. 6515 */ 6516 tp->snd_wnd = ntohs(th->window); 6517 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6518 tp->max_window = tp->snd_wnd; 6519 6520 tcp_ecn_rcv_syn(tp, th); 6521 6522 tcp_mtup_init(sk); 6523 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6524 tcp_initialize_rcv_mss(sk); 6525 6526 tcp_send_synack(sk); 6527 #if 0 6528 /* Note, we could accept data and URG from this segment. 6529 * There are no obstacles to make this (except that we must 6530 * either change tcp_recvmsg() to prevent it from returning data 6531 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6532 * 6533 * However, if we ignore data in ACKless segments sometimes, 6534 * we have no reasons to accept it sometimes. 6535 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6536 * is not flawless. So, discard packet for sanity. 6537 * Uncomment this return to process the data. 6538 */ 6539 return -1; 6540 #else 6541 goto consume; 6542 #endif 6543 } 6544 /* "fifth, if neither of the SYN or RST bits is set then 6545 * drop the segment and return." 6546 */ 6547 6548 discard_and_undo: 6549 tcp_clear_options(&tp->rx_opt); 6550 tp->rx_opt.mss_clamp = saved_clamp; 6551 tcp_drop_reason(sk, skb, reason); 6552 return 0; 6553 6554 reset_and_undo: 6555 tcp_clear_options(&tp->rx_opt); 6556 tp->rx_opt.mss_clamp = saved_clamp; 6557 return 1; 6558 } 6559 6560 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6561 { 6562 struct tcp_sock *tp = tcp_sk(sk); 6563 struct request_sock *req; 6564 6565 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6566 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6567 */ 6568 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6569 tcp_try_undo_recovery(sk); 6570 6571 tcp_update_rto_time(tp); 6572 inet_csk(sk)->icsk_retransmits = 0; 6573 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6574 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6575 * need to zero retrans_stamp here to prevent spurious 6576 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6577 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6578 * set entering CA_Recovery, for correct retransmits_timed_out() and 6579 * undo behavior. 6580 */ 6581 tcp_retrans_stamp_cleanup(sk); 6582 6583 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6584 * we no longer need req so release it. 6585 */ 6586 req = rcu_dereference_protected(tp->fastopen_rsk, 6587 lockdep_sock_is_held(sk)); 6588 reqsk_fastopen_remove(sk, req, false); 6589 6590 /* Re-arm the timer because data may have been sent out. 6591 * This is similar to the regular data transmission case 6592 * when new data has just been ack'ed. 6593 * 6594 * (TFO) - we could try to be more aggressive and 6595 * retransmitting any data sooner based on when they 6596 * are sent out. 6597 */ 6598 tcp_rearm_rto(sk); 6599 } 6600 6601 /* 6602 * This function implements the receiving procedure of RFC 793 for 6603 * all states except ESTABLISHED and TIME_WAIT. 6604 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6605 * address independent. 6606 */ 6607 6608 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6609 { 6610 struct tcp_sock *tp = tcp_sk(sk); 6611 struct inet_connection_sock *icsk = inet_csk(sk); 6612 const struct tcphdr *th = tcp_hdr(skb); 6613 struct request_sock *req; 6614 int queued = 0; 6615 bool acceptable; 6616 SKB_DR(reason); 6617 6618 switch (sk->sk_state) { 6619 case TCP_CLOSE: 6620 SKB_DR_SET(reason, TCP_CLOSE); 6621 goto discard; 6622 6623 case TCP_LISTEN: 6624 if (th->ack) 6625 return 1; 6626 6627 if (th->rst) { 6628 SKB_DR_SET(reason, TCP_RESET); 6629 goto discard; 6630 } 6631 if (th->syn) { 6632 if (th->fin) { 6633 SKB_DR_SET(reason, TCP_FLAGS); 6634 goto discard; 6635 } 6636 /* It is possible that we process SYN packets from backlog, 6637 * so we need to make sure to disable BH and RCU right there. 6638 */ 6639 rcu_read_lock(); 6640 local_bh_disable(); 6641 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6642 local_bh_enable(); 6643 rcu_read_unlock(); 6644 6645 if (!acceptable) 6646 return 1; 6647 consume_skb(skb); 6648 return 0; 6649 } 6650 SKB_DR_SET(reason, TCP_FLAGS); 6651 goto discard; 6652 6653 case TCP_SYN_SENT: 6654 tp->rx_opt.saw_tstamp = 0; 6655 tcp_mstamp_refresh(tp); 6656 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6657 if (queued >= 0) 6658 return queued; 6659 6660 /* Do step6 onward by hand. */ 6661 tcp_urg(sk, skb, th); 6662 __kfree_skb(skb); 6663 tcp_data_snd_check(sk); 6664 return 0; 6665 } 6666 6667 tcp_mstamp_refresh(tp); 6668 tp->rx_opt.saw_tstamp = 0; 6669 req = rcu_dereference_protected(tp->fastopen_rsk, 6670 lockdep_sock_is_held(sk)); 6671 if (req) { 6672 bool req_stolen; 6673 6674 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6675 sk->sk_state != TCP_FIN_WAIT1); 6676 6677 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6678 SKB_DR_SET(reason, TCP_FASTOPEN); 6679 goto discard; 6680 } 6681 } 6682 6683 if (!th->ack && !th->rst && !th->syn) { 6684 SKB_DR_SET(reason, TCP_FLAGS); 6685 goto discard; 6686 } 6687 if (!tcp_validate_incoming(sk, skb, th, 0)) 6688 return 0; 6689 6690 /* step 5: check the ACK field */ 6691 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6692 FLAG_UPDATE_TS_RECENT | 6693 FLAG_NO_CHALLENGE_ACK) > 0; 6694 6695 if (!acceptable) { 6696 if (sk->sk_state == TCP_SYN_RECV) 6697 return 1; /* send one RST */ 6698 tcp_send_challenge_ack(sk); 6699 SKB_DR_SET(reason, TCP_OLD_ACK); 6700 goto discard; 6701 } 6702 switch (sk->sk_state) { 6703 case TCP_SYN_RECV: 6704 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6705 if (!tp->srtt_us) 6706 tcp_synack_rtt_meas(sk, req); 6707 6708 if (req) { 6709 tcp_rcv_synrecv_state_fastopen(sk); 6710 } else { 6711 tcp_try_undo_spurious_syn(sk); 6712 tp->retrans_stamp = 0; 6713 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6714 skb); 6715 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6716 } 6717 smp_mb(); 6718 tcp_set_state(sk, TCP_ESTABLISHED); 6719 sk->sk_state_change(sk); 6720 6721 /* Note, that this wakeup is only for marginal crossed SYN case. 6722 * Passively open sockets are not waked up, because 6723 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6724 */ 6725 if (sk->sk_socket) 6726 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6727 6728 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6729 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6730 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6731 6732 if (tp->rx_opt.tstamp_ok) 6733 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6734 6735 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6736 tcp_update_pacing_rate(sk); 6737 6738 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6739 tp->lsndtime = tcp_jiffies32; 6740 6741 tcp_initialize_rcv_mss(sk); 6742 tcp_fast_path_on(tp); 6743 if (sk->sk_shutdown & SEND_SHUTDOWN) 6744 tcp_shutdown(sk, SEND_SHUTDOWN); 6745 break; 6746 6747 case TCP_FIN_WAIT1: { 6748 int tmo; 6749 6750 if (req) 6751 tcp_rcv_synrecv_state_fastopen(sk); 6752 6753 if (tp->snd_una != tp->write_seq) 6754 break; 6755 6756 tcp_set_state(sk, TCP_FIN_WAIT2); 6757 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6758 6759 sk_dst_confirm(sk); 6760 6761 if (!sock_flag(sk, SOCK_DEAD)) { 6762 /* Wake up lingering close() */ 6763 sk->sk_state_change(sk); 6764 break; 6765 } 6766 6767 if (READ_ONCE(tp->linger2) < 0) { 6768 tcp_done(sk); 6769 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6770 return 1; 6771 } 6772 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6773 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6774 /* Receive out of order FIN after close() */ 6775 if (tp->syn_fastopen && th->fin) 6776 tcp_fastopen_active_disable(sk); 6777 tcp_done(sk); 6778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6779 return 1; 6780 } 6781 6782 tmo = tcp_fin_time(sk); 6783 if (tmo > TCP_TIMEWAIT_LEN) { 6784 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6785 } else if (th->fin || sock_owned_by_user(sk)) { 6786 /* Bad case. We could lose such FIN otherwise. 6787 * It is not a big problem, but it looks confusing 6788 * and not so rare event. We still can lose it now, 6789 * if it spins in bh_lock_sock(), but it is really 6790 * marginal case. 6791 */ 6792 inet_csk_reset_keepalive_timer(sk, tmo); 6793 } else { 6794 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6795 goto consume; 6796 } 6797 break; 6798 } 6799 6800 case TCP_CLOSING: 6801 if (tp->snd_una == tp->write_seq) { 6802 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6803 goto consume; 6804 } 6805 break; 6806 6807 case TCP_LAST_ACK: 6808 if (tp->snd_una == tp->write_seq) { 6809 tcp_update_metrics(sk); 6810 tcp_done(sk); 6811 goto consume; 6812 } 6813 break; 6814 } 6815 6816 /* step 6: check the URG bit */ 6817 tcp_urg(sk, skb, th); 6818 6819 /* step 7: process the segment text */ 6820 switch (sk->sk_state) { 6821 case TCP_CLOSE_WAIT: 6822 case TCP_CLOSING: 6823 case TCP_LAST_ACK: 6824 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6825 /* If a subflow has been reset, the packet should not 6826 * continue to be processed, drop the packet. 6827 */ 6828 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6829 goto discard; 6830 break; 6831 } 6832 fallthrough; 6833 case TCP_FIN_WAIT1: 6834 case TCP_FIN_WAIT2: 6835 /* RFC 793 says to queue data in these states, 6836 * RFC 1122 says we MUST send a reset. 6837 * BSD 4.4 also does reset. 6838 */ 6839 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6840 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6841 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6842 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6843 tcp_reset(sk, skb); 6844 return 1; 6845 } 6846 } 6847 fallthrough; 6848 case TCP_ESTABLISHED: 6849 tcp_data_queue(sk, skb); 6850 queued = 1; 6851 break; 6852 } 6853 6854 /* tcp_data could move socket to TIME-WAIT */ 6855 if (sk->sk_state != TCP_CLOSE) { 6856 tcp_data_snd_check(sk); 6857 tcp_ack_snd_check(sk); 6858 } 6859 6860 if (!queued) { 6861 discard: 6862 tcp_drop_reason(sk, skb, reason); 6863 } 6864 return 0; 6865 6866 consume: 6867 __kfree_skb(skb); 6868 return 0; 6869 } 6870 EXPORT_SYMBOL(tcp_rcv_state_process); 6871 6872 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6873 { 6874 struct inet_request_sock *ireq = inet_rsk(req); 6875 6876 if (family == AF_INET) 6877 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6878 &ireq->ir_rmt_addr, port); 6879 #if IS_ENABLED(CONFIG_IPV6) 6880 else if (family == AF_INET6) 6881 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6882 &ireq->ir_v6_rmt_addr, port); 6883 #endif 6884 } 6885 6886 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6887 * 6888 * If we receive a SYN packet with these bits set, it means a 6889 * network is playing bad games with TOS bits. In order to 6890 * avoid possible false congestion notifications, we disable 6891 * TCP ECN negotiation. 6892 * 6893 * Exception: tcp_ca wants ECN. This is required for DCTCP 6894 * congestion control: Linux DCTCP asserts ECT on all packets, 6895 * including SYN, which is most optimal solution; however, 6896 * others, such as FreeBSD do not. 6897 * 6898 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6899 * set, indicating the use of a future TCP extension (such as AccECN). See 6900 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6901 * extensions. 6902 */ 6903 static void tcp_ecn_create_request(struct request_sock *req, 6904 const struct sk_buff *skb, 6905 const struct sock *listen_sk, 6906 const struct dst_entry *dst) 6907 { 6908 const struct tcphdr *th = tcp_hdr(skb); 6909 const struct net *net = sock_net(listen_sk); 6910 bool th_ecn = th->ece && th->cwr; 6911 bool ect, ecn_ok; 6912 u32 ecn_ok_dst; 6913 6914 if (!th_ecn) 6915 return; 6916 6917 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6918 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6919 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6920 6921 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6922 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6923 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6924 inet_rsk(req)->ecn_ok = 1; 6925 } 6926 6927 static void tcp_openreq_init(struct request_sock *req, 6928 const struct tcp_options_received *rx_opt, 6929 struct sk_buff *skb, const struct sock *sk) 6930 { 6931 struct inet_request_sock *ireq = inet_rsk(req); 6932 6933 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6934 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6935 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6936 tcp_rsk(req)->snt_synack = 0; 6937 tcp_rsk(req)->last_oow_ack_time = 0; 6938 req->mss = rx_opt->mss_clamp; 6939 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6940 ireq->tstamp_ok = rx_opt->tstamp_ok; 6941 ireq->sack_ok = rx_opt->sack_ok; 6942 ireq->snd_wscale = rx_opt->snd_wscale; 6943 ireq->wscale_ok = rx_opt->wscale_ok; 6944 ireq->acked = 0; 6945 ireq->ecn_ok = 0; 6946 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6947 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6948 ireq->ir_mark = inet_request_mark(sk, skb); 6949 #if IS_ENABLED(CONFIG_SMC) 6950 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6951 tcp_sk(sk)->smc_hs_congested(sk)); 6952 #endif 6953 } 6954 6955 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6956 struct sock *sk_listener, 6957 bool attach_listener) 6958 { 6959 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6960 attach_listener); 6961 6962 if (req) { 6963 struct inet_request_sock *ireq = inet_rsk(req); 6964 6965 ireq->ireq_opt = NULL; 6966 #if IS_ENABLED(CONFIG_IPV6) 6967 ireq->pktopts = NULL; 6968 #endif 6969 atomic64_set(&ireq->ir_cookie, 0); 6970 ireq->ireq_state = TCP_NEW_SYN_RECV; 6971 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6972 ireq->ireq_family = sk_listener->sk_family; 6973 req->timeout = TCP_TIMEOUT_INIT; 6974 } 6975 6976 return req; 6977 } 6978 EXPORT_SYMBOL(inet_reqsk_alloc); 6979 6980 /* 6981 * Return true if a syncookie should be sent 6982 */ 6983 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6984 { 6985 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6986 const char *msg = "Dropping request"; 6987 struct net *net = sock_net(sk); 6988 bool want_cookie = false; 6989 u8 syncookies; 6990 6991 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6992 6993 #ifdef CONFIG_SYN_COOKIES 6994 if (syncookies) { 6995 msg = "Sending cookies"; 6996 want_cookie = true; 6997 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6998 } else 6999 #endif 7000 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7001 7002 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7003 xchg(&queue->synflood_warned, 1) == 0) { 7004 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7005 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7006 proto, inet6_rcv_saddr(sk), 7007 sk->sk_num, msg); 7008 } else { 7009 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7010 proto, &sk->sk_rcv_saddr, 7011 sk->sk_num, msg); 7012 } 7013 } 7014 7015 return want_cookie; 7016 } 7017 7018 static void tcp_reqsk_record_syn(const struct sock *sk, 7019 struct request_sock *req, 7020 const struct sk_buff *skb) 7021 { 7022 if (tcp_sk(sk)->save_syn) { 7023 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7024 struct saved_syn *saved_syn; 7025 u32 mac_hdrlen; 7026 void *base; 7027 7028 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7029 base = skb_mac_header(skb); 7030 mac_hdrlen = skb_mac_header_len(skb); 7031 len += mac_hdrlen; 7032 } else { 7033 base = skb_network_header(skb); 7034 mac_hdrlen = 0; 7035 } 7036 7037 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7038 GFP_ATOMIC); 7039 if (saved_syn) { 7040 saved_syn->mac_hdrlen = mac_hdrlen; 7041 saved_syn->network_hdrlen = skb_network_header_len(skb); 7042 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7043 memcpy(saved_syn->data, base, len); 7044 req->saved_syn = saved_syn; 7045 } 7046 } 7047 } 7048 7049 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7050 * used for SYN cookie generation. 7051 */ 7052 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7053 const struct tcp_request_sock_ops *af_ops, 7054 struct sock *sk, struct tcphdr *th) 7055 { 7056 struct tcp_sock *tp = tcp_sk(sk); 7057 u16 mss; 7058 7059 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7060 !inet_csk_reqsk_queue_is_full(sk)) 7061 return 0; 7062 7063 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7064 return 0; 7065 7066 if (sk_acceptq_is_full(sk)) { 7067 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7068 return 0; 7069 } 7070 7071 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7072 if (!mss) 7073 mss = af_ops->mss_clamp; 7074 7075 return mss; 7076 } 7077 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7078 7079 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7080 const struct tcp_request_sock_ops *af_ops, 7081 struct sock *sk, struct sk_buff *skb) 7082 { 7083 struct tcp_fastopen_cookie foc = { .len = -1 }; 7084 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7085 struct tcp_options_received tmp_opt; 7086 struct tcp_sock *tp = tcp_sk(sk); 7087 struct net *net = sock_net(sk); 7088 struct sock *fastopen_sk = NULL; 7089 struct request_sock *req; 7090 bool want_cookie = false; 7091 struct dst_entry *dst; 7092 struct flowi fl; 7093 u8 syncookies; 7094 7095 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7096 7097 /* TW buckets are converted to open requests without 7098 * limitations, they conserve resources and peer is 7099 * evidently real one. 7100 */ 7101 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7102 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7103 if (!want_cookie) 7104 goto drop; 7105 } 7106 7107 if (sk_acceptq_is_full(sk)) { 7108 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7109 goto drop; 7110 } 7111 7112 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7113 if (!req) 7114 goto drop; 7115 7116 req->syncookie = want_cookie; 7117 tcp_rsk(req)->af_specific = af_ops; 7118 tcp_rsk(req)->ts_off = 0; 7119 #if IS_ENABLED(CONFIG_MPTCP) 7120 tcp_rsk(req)->is_mptcp = 0; 7121 #endif 7122 7123 tcp_clear_options(&tmp_opt); 7124 tmp_opt.mss_clamp = af_ops->mss_clamp; 7125 tmp_opt.user_mss = tp->rx_opt.user_mss; 7126 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7127 want_cookie ? NULL : &foc); 7128 7129 if (want_cookie && !tmp_opt.saw_tstamp) 7130 tcp_clear_options(&tmp_opt); 7131 7132 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7133 tmp_opt.smc_ok = 0; 7134 7135 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7136 tcp_openreq_init(req, &tmp_opt, skb, sk); 7137 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7138 7139 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7140 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7141 7142 dst = af_ops->route_req(sk, skb, &fl, req); 7143 if (!dst) 7144 goto drop_and_free; 7145 7146 if (tmp_opt.tstamp_ok) 7147 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7148 7149 if (!want_cookie && !isn) { 7150 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7151 7152 /* Kill the following clause, if you dislike this way. */ 7153 if (!syncookies && 7154 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7155 (max_syn_backlog >> 2)) && 7156 !tcp_peer_is_proven(req, dst)) { 7157 /* Without syncookies last quarter of 7158 * backlog is filled with destinations, 7159 * proven to be alive. 7160 * It means that we continue to communicate 7161 * to destinations, already remembered 7162 * to the moment of synflood. 7163 */ 7164 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7165 rsk_ops->family); 7166 goto drop_and_release; 7167 } 7168 7169 isn = af_ops->init_seq(skb); 7170 } 7171 7172 tcp_ecn_create_request(req, skb, sk, dst); 7173 7174 if (want_cookie) { 7175 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7176 if (!tmp_opt.tstamp_ok) 7177 inet_rsk(req)->ecn_ok = 0; 7178 } 7179 7180 tcp_rsk(req)->snt_isn = isn; 7181 tcp_rsk(req)->txhash = net_tx_rndhash(); 7182 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7183 tcp_openreq_init_rwin(req, sk, dst); 7184 sk_rx_queue_set(req_to_sk(req), skb); 7185 if (!want_cookie) { 7186 tcp_reqsk_record_syn(sk, req, skb); 7187 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7188 } 7189 if (fastopen_sk) { 7190 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7191 &foc, TCP_SYNACK_FASTOPEN, skb); 7192 /* Add the child socket directly into the accept queue */ 7193 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7194 reqsk_fastopen_remove(fastopen_sk, req, false); 7195 bh_unlock_sock(fastopen_sk); 7196 sock_put(fastopen_sk); 7197 goto drop_and_free; 7198 } 7199 sk->sk_data_ready(sk); 7200 bh_unlock_sock(fastopen_sk); 7201 sock_put(fastopen_sk); 7202 } else { 7203 tcp_rsk(req)->tfo_listener = false; 7204 if (!want_cookie) { 7205 req->timeout = tcp_timeout_init((struct sock *)req); 7206 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7207 req->timeout))) { 7208 reqsk_free(req); 7209 dst_release(dst); 7210 return 0; 7211 } 7212 7213 } 7214 af_ops->send_synack(sk, dst, &fl, req, &foc, 7215 !want_cookie ? TCP_SYNACK_NORMAL : 7216 TCP_SYNACK_COOKIE, 7217 skb); 7218 if (want_cookie) { 7219 reqsk_free(req); 7220 return 0; 7221 } 7222 } 7223 reqsk_put(req); 7224 return 0; 7225 7226 drop_and_release: 7227 dst_release(dst); 7228 drop_and_free: 7229 __reqsk_free(req); 7230 drop: 7231 tcp_listendrop(sk); 7232 return 0; 7233 } 7234 EXPORT_SYMBOL(tcp_conn_request); 7235