xref: /openbmc/linux/net/ipv4/tcp_fastopen.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/crypto.h>
3 #include <linux/err.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/list.h>
7 #include <linux/tcp.h>
8 #include <linux/rcupdate.h>
9 #include <linux/rculist.h>
10 #include <net/inetpeer.h>
11 #include <net/tcp.h>
12 
13 void tcp_fastopen_init_key_once(struct net *net)
14 {
15 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
16 	struct tcp_fastopen_context *ctxt;
17 
18 	rcu_read_lock();
19 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 	if (ctxt) {
21 		rcu_read_unlock();
22 		return;
23 	}
24 	rcu_read_unlock();
25 
26 	/* tcp_fastopen_reset_cipher publishes the new context
27 	 * atomically, so we allow this race happening here.
28 	 *
29 	 * All call sites of tcp_fastopen_cookie_gen also check
30 	 * for a valid cookie, so this is an acceptable risk.
31 	 */
32 	get_random_bytes(key, sizeof(key));
33 	tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key));
34 }
35 
36 static void tcp_fastopen_ctx_free(struct rcu_head *head)
37 {
38 	struct tcp_fastopen_context *ctx =
39 	    container_of(head, struct tcp_fastopen_context, rcu);
40 	crypto_free_cipher(ctx->tfm);
41 	kfree(ctx);
42 }
43 
44 void tcp_fastopen_destroy_cipher(struct sock *sk)
45 {
46 	struct tcp_fastopen_context *ctx;
47 
48 	ctx = rcu_dereference_protected(
49 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
50 	if (ctx)
51 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
52 }
53 
54 void tcp_fastopen_ctx_destroy(struct net *net)
55 {
56 	struct tcp_fastopen_context *ctxt;
57 
58 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
59 
60 	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
61 				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
62 	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
63 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
64 
65 	if (ctxt)
66 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
67 }
68 
69 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
70 			      void *key, unsigned int len)
71 {
72 	struct tcp_fastopen_context *ctx, *octx;
73 	struct fastopen_queue *q;
74 	int err;
75 
76 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 	if (!ctx)
78 		return -ENOMEM;
79 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
80 
81 	if (IS_ERR(ctx->tfm)) {
82 		err = PTR_ERR(ctx->tfm);
83 error:		kfree(ctx);
84 		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
85 		return err;
86 	}
87 	err = crypto_cipher_setkey(ctx->tfm, key, len);
88 	if (err) {
89 		pr_err("TCP: TFO cipher key error: %d\n", err);
90 		crypto_free_cipher(ctx->tfm);
91 		goto error;
92 	}
93 	memcpy(ctx->key, key, len);
94 
95 
96 	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
97 	if (sk) {
98 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
99 		octx = rcu_dereference_protected(q->ctx,
100 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
101 		rcu_assign_pointer(q->ctx, ctx);
102 	} else {
103 		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
104 			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
105 		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
106 	}
107 	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
108 
109 	if (octx)
110 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
111 	return err;
112 }
113 
114 static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path,
115 				      struct tcp_fastopen_cookie *foc)
116 {
117 	struct tcp_fastopen_context *ctx;
118 	bool ok = false;
119 
120 	rcu_read_lock();
121 
122 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
123 	if (!ctx)
124 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
125 
126 	if (ctx) {
127 		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
128 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
129 		ok = true;
130 	}
131 	rcu_read_unlock();
132 	return ok;
133 }
134 
135 /* Generate the fastopen cookie by doing aes128 encryption on both
136  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
137  * addresses. For the longer IPv6 addresses use CBC-MAC.
138  *
139  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
140  */
141 static bool tcp_fastopen_cookie_gen(struct sock *sk,
142 				    struct request_sock *req,
143 				    struct sk_buff *syn,
144 				    struct tcp_fastopen_cookie *foc)
145 {
146 	if (req->rsk_ops->family == AF_INET) {
147 		const struct iphdr *iph = ip_hdr(syn);
148 
149 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
150 		return __tcp_fastopen_cookie_gen(sk, path, foc);
151 	}
152 
153 #if IS_ENABLED(CONFIG_IPV6)
154 	if (req->rsk_ops->family == AF_INET6) {
155 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
156 		struct tcp_fastopen_cookie tmp;
157 
158 		if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) {
159 			struct in6_addr *buf = &tmp.addr;
160 			int i;
161 
162 			for (i = 0; i < 4; i++)
163 				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
164 			return __tcp_fastopen_cookie_gen(sk, buf, foc);
165 		}
166 	}
167 #endif
168 	return false;
169 }
170 
171 
172 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
173  * queue this additional data / FIN.
174  */
175 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
176 {
177 	struct tcp_sock *tp = tcp_sk(sk);
178 
179 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
180 		return;
181 
182 	skb = skb_clone(skb, GFP_ATOMIC);
183 	if (!skb)
184 		return;
185 
186 	skb_dst_drop(skb);
187 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
188 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
189 	 * to avoid double counting.  Also, tcp_segs_in() expects
190 	 * skb->len to include the tcp_hdrlen.  Hence, it should
191 	 * be called before __skb_pull().
192 	 */
193 	tp->segs_in = 0;
194 	tcp_segs_in(tp, skb);
195 	__skb_pull(skb, tcp_hdrlen(skb));
196 	sk_forced_mem_schedule(sk, skb->truesize);
197 	skb_set_owner_r(skb, sk);
198 
199 	TCP_SKB_CB(skb)->seq++;
200 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
201 
202 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
203 	__skb_queue_tail(&sk->sk_receive_queue, skb);
204 	tp->syn_data_acked = 1;
205 
206 	/* u64_stats_update_begin(&tp->syncp) not needed here,
207 	 * as we certainly are not changing upper 32bit value (0)
208 	 */
209 	tp->bytes_received = skb->len;
210 
211 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
212 		tcp_fin(sk);
213 }
214 
215 static struct sock *tcp_fastopen_create_child(struct sock *sk,
216 					      struct sk_buff *skb,
217 					      struct request_sock *req)
218 {
219 	struct tcp_sock *tp;
220 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
221 	struct sock *child;
222 	bool own_req;
223 
224 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
225 							 NULL, &own_req);
226 	if (!child)
227 		return NULL;
228 
229 	spin_lock(&queue->fastopenq.lock);
230 	queue->fastopenq.qlen++;
231 	spin_unlock(&queue->fastopenq.lock);
232 
233 	/* Initialize the child socket. Have to fix some values to take
234 	 * into account the child is a Fast Open socket and is created
235 	 * only out of the bits carried in the SYN packet.
236 	 */
237 	tp = tcp_sk(child);
238 
239 	tp->fastopen_rsk = req;
240 	tcp_rsk(req)->tfo_listener = true;
241 
242 	/* RFC1323: The window in SYN & SYN/ACK segments is never
243 	 * scaled. So correct it appropriately.
244 	 */
245 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
246 	tp->max_window = tp->snd_wnd;
247 
248 	/* Activate the retrans timer so that SYNACK can be retransmitted.
249 	 * The request socket is not added to the ehash
250 	 * because it's been added to the accept queue directly.
251 	 */
252 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
253 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
254 
255 	refcount_set(&req->rsk_refcnt, 2);
256 
257 	/* Now finish processing the fastopen child socket. */
258 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
259 
260 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
261 
262 	tcp_fastopen_add_skb(child, skb);
263 
264 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
265 	tp->rcv_wup = tp->rcv_nxt;
266 	/* tcp_conn_request() is sending the SYNACK,
267 	 * and queues the child into listener accept queue.
268 	 */
269 	return child;
270 }
271 
272 static bool tcp_fastopen_queue_check(struct sock *sk)
273 {
274 	struct fastopen_queue *fastopenq;
275 
276 	/* Make sure the listener has enabled fastopen, and we don't
277 	 * exceed the max # of pending TFO requests allowed before trying
278 	 * to validating the cookie in order to avoid burning CPU cycles
279 	 * unnecessarily.
280 	 *
281 	 * XXX (TFO) - The implication of checking the max_qlen before
282 	 * processing a cookie request is that clients can't differentiate
283 	 * between qlen overflow causing Fast Open to be disabled
284 	 * temporarily vs a server not supporting Fast Open at all.
285 	 */
286 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
287 	if (fastopenq->max_qlen == 0)
288 		return false;
289 
290 	if (fastopenq->qlen >= fastopenq->max_qlen) {
291 		struct request_sock *req1;
292 		spin_lock(&fastopenq->lock);
293 		req1 = fastopenq->rskq_rst_head;
294 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
295 			__NET_INC_STATS(sock_net(sk),
296 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
297 			spin_unlock(&fastopenq->lock);
298 			return false;
299 		}
300 		fastopenq->rskq_rst_head = req1->dl_next;
301 		fastopenq->qlen--;
302 		spin_unlock(&fastopenq->lock);
303 		reqsk_put(req1);
304 	}
305 	return true;
306 }
307 
308 static bool tcp_fastopen_no_cookie(const struct sock *sk,
309 				   const struct dst_entry *dst,
310 				   int flag)
311 {
312 	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
313 	       tcp_sk(sk)->fastopen_no_cookie ||
314 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
315 }
316 
317 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
318  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
319  * cookie request (foc->len == 0).
320  */
321 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
322 			      struct request_sock *req,
323 			      struct tcp_fastopen_cookie *foc,
324 			      const struct dst_entry *dst)
325 {
326 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
327 	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
328 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
329 	struct sock *child;
330 
331 	if (foc->len == 0) /* Client requests a cookie */
332 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
333 
334 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
335 	      (syn_data || foc->len >= 0) &&
336 	      tcp_fastopen_queue_check(sk))) {
337 		foc->len = -1;
338 		return NULL;
339 	}
340 
341 	if (syn_data &&
342 	    tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
343 		goto fastopen;
344 
345 	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
346 	    tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) &&
347 	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
348 	    foc->len == valid_foc.len &&
349 	    !memcmp(foc->val, valid_foc.val, foc->len)) {
350 		/* Cookie is valid. Create a (full) child socket to accept
351 		 * the data in SYN before returning a SYN-ACK to ack the
352 		 * data. If we fail to create the socket, fall back and
353 		 * ack the ISN only but includes the same cookie.
354 		 *
355 		 * Note: Data-less SYN with valid cookie is allowed to send
356 		 * data in SYN_RECV state.
357 		 */
358 fastopen:
359 		child = tcp_fastopen_create_child(sk, skb, req);
360 		if (child) {
361 			foc->len = -1;
362 			NET_INC_STATS(sock_net(sk),
363 				      LINUX_MIB_TCPFASTOPENPASSIVE);
364 			return child;
365 		}
366 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
367 	} else if (foc->len > 0) /* Client presents an invalid cookie */
368 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
369 
370 	valid_foc.exp = foc->exp;
371 	*foc = valid_foc;
372 	return NULL;
373 }
374 
375 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
376 			       struct tcp_fastopen_cookie *cookie)
377 {
378 	const struct dst_entry *dst;
379 
380 	tcp_fastopen_cache_get(sk, mss, cookie);
381 
382 	/* Firewall blackhole issue check */
383 	if (tcp_fastopen_active_should_disable(sk)) {
384 		cookie->len = -1;
385 		return false;
386 	}
387 
388 	dst = __sk_dst_get(sk);
389 
390 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
391 		cookie->len = -1;
392 		return true;
393 	}
394 	return cookie->len > 0;
395 }
396 
397 /* This function checks if we want to defer sending SYN until the first
398  * write().  We defer under the following conditions:
399  * 1. fastopen_connect sockopt is set
400  * 2. we have a valid cookie
401  * Return value: return true if we want to defer until application writes data
402  *               return false if we want to send out SYN immediately
403  */
404 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
405 {
406 	struct tcp_fastopen_cookie cookie = { .len = 0 };
407 	struct tcp_sock *tp = tcp_sk(sk);
408 	u16 mss;
409 
410 	if (tp->fastopen_connect && !tp->fastopen_req) {
411 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
412 			inet_sk(sk)->defer_connect = 1;
413 			return true;
414 		}
415 
416 		/* Alloc fastopen_req in order for FO option to be included
417 		 * in SYN
418 		 */
419 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
420 					   sk->sk_allocation);
421 		if (tp->fastopen_req)
422 			tp->fastopen_req->cookie = cookie;
423 		else
424 			*err = -ENOBUFS;
425 	}
426 	return false;
427 }
428 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
429 
430 /*
431  * The following code block is to deal with middle box issues with TFO:
432  * Middlebox firewall issues can potentially cause server's data being
433  * blackholed after a successful 3WHS using TFO.
434  * The proposed solution is to disable active TFO globally under the
435  * following circumstances:
436  *   1. client side TFO socket receives out of order FIN
437  *   2. client side TFO socket receives out of order RST
438  *   3. client side TFO socket has timed out three times consecutively during
439  *      or after handshake
440  * We disable active side TFO globally for 1hr at first. Then if it
441  * happens again, we disable it for 2h, then 4h, 8h, ...
442  * And we reset the timeout back to 1hr when we see a successful active
443  * TFO connection with data exchanges.
444  */
445 
446 /* Disable active TFO and record current jiffies and
447  * tfo_active_disable_times
448  */
449 void tcp_fastopen_active_disable(struct sock *sk)
450 {
451 	struct net *net = sock_net(sk);
452 
453 	atomic_inc(&net->ipv4.tfo_active_disable_times);
454 	net->ipv4.tfo_active_disable_stamp = jiffies;
455 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
456 }
457 
458 /* Calculate timeout for tfo active disable
459  * Return true if we are still in the active TFO disable period
460  * Return false if timeout already expired and we should use active TFO
461  */
462 bool tcp_fastopen_active_should_disable(struct sock *sk)
463 {
464 	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
465 	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
466 	unsigned long timeout;
467 	int multiplier;
468 
469 	if (!tfo_da_times)
470 		return false;
471 
472 	/* Limit timout to max: 2^6 * initial timeout */
473 	multiplier = 1 << min(tfo_da_times - 1, 6);
474 	timeout = multiplier * tfo_bh_timeout * HZ;
475 	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
476 		return true;
477 
478 	/* Mark check bit so we can check for successful active TFO
479 	 * condition and reset tfo_active_disable_times
480 	 */
481 	tcp_sk(sk)->syn_fastopen_ch = 1;
482 	return false;
483 }
484 
485 /* Disable active TFO if FIN is the only packet in the ofo queue
486  * and no data is received.
487  * Also check if we can reset tfo_active_disable_times if data is
488  * received successfully on a marked active TFO sockets opened on
489  * a non-loopback interface
490  */
491 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
492 {
493 	struct tcp_sock *tp = tcp_sk(sk);
494 	struct dst_entry *dst;
495 	struct sk_buff *skb;
496 
497 	if (!tp->syn_fastopen)
498 		return;
499 
500 	if (!tp->data_segs_in) {
501 		skb = skb_rb_first(&tp->out_of_order_queue);
502 		if (skb && !skb_rb_next(skb)) {
503 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
504 				tcp_fastopen_active_disable(sk);
505 				return;
506 			}
507 		}
508 	} else if (tp->syn_fastopen_ch &&
509 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
510 		dst = sk_dst_get(sk);
511 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
512 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
513 		dst_release(dst);
514 	}
515 }
516 
517 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
518 {
519 	u32 timeouts = inet_csk(sk)->icsk_retransmits;
520 	struct tcp_sock *tp = tcp_sk(sk);
521 
522 	/* Broken middle-boxes may black-hole Fast Open connection during or
523 	 * even after the handshake. Be extremely conservative and pause
524 	 * Fast Open globally after hitting the third consecutive timeout or
525 	 * exceeding the configured timeout limit.
526 	 */
527 	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
528 	    (timeouts == 2 || (timeouts < 2 && expired))) {
529 		tcp_fastopen_active_disable(sk);
530 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
531 	}
532 }
533