1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/crypto.h> 3 #include <linux/err.h> 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/list.h> 7 #include <linux/tcp.h> 8 #include <linux/rcupdate.h> 9 #include <linux/rculist.h> 10 #include <net/inetpeer.h> 11 #include <net/tcp.h> 12 13 void tcp_fastopen_init_key_once(struct net *net) 14 { 15 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 16 struct tcp_fastopen_context *ctxt; 17 18 rcu_read_lock(); 19 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 20 if (ctxt) { 21 rcu_read_unlock(); 22 return; 23 } 24 rcu_read_unlock(); 25 26 /* tcp_fastopen_reset_cipher publishes the new context 27 * atomically, so we allow this race happening here. 28 * 29 * All call sites of tcp_fastopen_cookie_gen also check 30 * for a valid cookie, so this is an acceptable risk. 31 */ 32 get_random_bytes(key, sizeof(key)); 33 tcp_fastopen_reset_cipher(net, NULL, key, NULL); 34 } 35 36 static void tcp_fastopen_ctx_free(struct rcu_head *head) 37 { 38 struct tcp_fastopen_context *ctx = 39 container_of(head, struct tcp_fastopen_context, rcu); 40 41 kfree_sensitive(ctx); 42 } 43 44 void tcp_fastopen_destroy_cipher(struct sock *sk) 45 { 46 struct tcp_fastopen_context *ctx; 47 48 ctx = rcu_dereference_protected( 49 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 50 if (ctx) 51 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 52 } 53 54 void tcp_fastopen_ctx_destroy(struct net *net) 55 { 56 struct tcp_fastopen_context *ctxt; 57 58 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 59 60 ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 61 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 62 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL); 63 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 64 65 if (ctxt) 66 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 67 } 68 69 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 70 void *primary_key, void *backup_key) 71 { 72 struct tcp_fastopen_context *ctx, *octx; 73 struct fastopen_queue *q; 74 int err = 0; 75 76 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 77 if (!ctx) { 78 err = -ENOMEM; 79 goto out; 80 } 81 82 ctx->key[0].key[0] = get_unaligned_le64(primary_key); 83 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8); 84 if (backup_key) { 85 ctx->key[1].key[0] = get_unaligned_le64(backup_key); 86 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8); 87 ctx->num = 2; 88 } else { 89 ctx->num = 1; 90 } 91 92 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 93 if (sk) { 94 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 95 octx = rcu_dereference_protected(q->ctx, 96 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 97 rcu_assign_pointer(q->ctx, ctx); 98 } else { 99 octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 100 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 101 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx); 102 } 103 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 104 105 if (octx) 106 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 107 out: 108 return err; 109 } 110 111 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 112 u64 *key) 113 { 114 struct tcp_fastopen_context *ctx; 115 int n_keys = 0, i; 116 117 rcu_read_lock(); 118 if (icsk) 119 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 120 else 121 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 122 if (ctx) { 123 n_keys = tcp_fastopen_context_len(ctx); 124 for (i = 0; i < n_keys; i++) { 125 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2)); 126 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1); 127 } 128 } 129 rcu_read_unlock(); 130 131 return n_keys; 132 } 133 134 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, 135 struct sk_buff *syn, 136 const siphash_key_t *key, 137 struct tcp_fastopen_cookie *foc) 138 { 139 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); 140 141 if (req->rsk_ops->family == AF_INET) { 142 const struct iphdr *iph = ip_hdr(syn); 143 144 foc->val[0] = cpu_to_le64(siphash(&iph->saddr, 145 sizeof(iph->saddr) + 146 sizeof(iph->daddr), 147 key)); 148 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 149 return true; 150 } 151 #if IS_ENABLED(CONFIG_IPV6) 152 if (req->rsk_ops->family == AF_INET6) { 153 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 154 155 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, 156 sizeof(ip6h->saddr) + 157 sizeof(ip6h->daddr), 158 key)); 159 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 160 return true; 161 } 162 #endif 163 return false; 164 } 165 166 /* Generate the fastopen cookie by applying SipHash to both the source and 167 * destination addresses. 168 */ 169 static void tcp_fastopen_cookie_gen(struct sock *sk, 170 struct request_sock *req, 171 struct sk_buff *syn, 172 struct tcp_fastopen_cookie *foc) 173 { 174 struct tcp_fastopen_context *ctx; 175 176 rcu_read_lock(); 177 ctx = tcp_fastopen_get_ctx(sk); 178 if (ctx) 179 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc); 180 rcu_read_unlock(); 181 } 182 183 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 184 * queue this additional data / FIN. 185 */ 186 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 187 { 188 struct tcp_sock *tp = tcp_sk(sk); 189 190 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 191 return; 192 193 skb = skb_clone(skb, GFP_ATOMIC); 194 if (!skb) 195 return; 196 197 skb_dst_drop(skb); 198 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 199 * Hence, reset segs_in to 0 before calling tcp_segs_in() 200 * to avoid double counting. Also, tcp_segs_in() expects 201 * skb->len to include the tcp_hdrlen. Hence, it should 202 * be called before __skb_pull(). 203 */ 204 tp->segs_in = 0; 205 tcp_segs_in(tp, skb); 206 __skb_pull(skb, tcp_hdrlen(skb)); 207 sk_forced_mem_schedule(sk, skb->truesize); 208 skb_set_owner_r(skb, sk); 209 210 TCP_SKB_CB(skb)->seq++; 211 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 212 213 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 214 __skb_queue_tail(&sk->sk_receive_queue, skb); 215 tp->syn_data_acked = 1; 216 217 /* u64_stats_update_begin(&tp->syncp) not needed here, 218 * as we certainly are not changing upper 32bit value (0) 219 */ 220 tp->bytes_received = skb->len; 221 222 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 223 tcp_fin(sk); 224 } 225 226 /* returns 0 - no key match, 1 for primary, 2 for backup */ 227 static int tcp_fastopen_cookie_gen_check(struct sock *sk, 228 struct request_sock *req, 229 struct sk_buff *syn, 230 struct tcp_fastopen_cookie *orig, 231 struct tcp_fastopen_cookie *valid_foc) 232 { 233 struct tcp_fastopen_cookie search_foc = { .len = -1 }; 234 struct tcp_fastopen_cookie *foc = valid_foc; 235 struct tcp_fastopen_context *ctx; 236 int i, ret = 0; 237 238 rcu_read_lock(); 239 ctx = tcp_fastopen_get_ctx(sk); 240 if (!ctx) 241 goto out; 242 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { 243 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc); 244 if (tcp_fastopen_cookie_match(foc, orig)) { 245 ret = i + 1; 246 goto out; 247 } 248 foc = &search_foc; 249 } 250 out: 251 rcu_read_unlock(); 252 return ret; 253 } 254 255 static struct sock *tcp_fastopen_create_child(struct sock *sk, 256 struct sk_buff *skb, 257 struct request_sock *req) 258 { 259 struct tcp_sock *tp; 260 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 261 struct sock *child; 262 bool own_req; 263 264 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 265 NULL, &own_req); 266 if (!child) 267 return NULL; 268 269 spin_lock(&queue->fastopenq.lock); 270 queue->fastopenq.qlen++; 271 spin_unlock(&queue->fastopenq.lock); 272 273 /* Initialize the child socket. Have to fix some values to take 274 * into account the child is a Fast Open socket and is created 275 * only out of the bits carried in the SYN packet. 276 */ 277 tp = tcp_sk(child); 278 279 rcu_assign_pointer(tp->fastopen_rsk, req); 280 tcp_rsk(req)->tfo_listener = true; 281 282 /* RFC1323: The window in SYN & SYN/ACK segments is never 283 * scaled. So correct it appropriately. 284 */ 285 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 286 tp->max_window = tp->snd_wnd; 287 288 /* Activate the retrans timer so that SYNACK can be retransmitted. 289 * The request socket is not added to the ehash 290 * because it's been added to the accept queue directly. 291 */ 292 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 293 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 294 295 refcount_set(&req->rsk_refcnt, 2); 296 297 /* Now finish processing the fastopen child socket. */ 298 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); 299 300 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 301 302 tcp_fastopen_add_skb(child, skb); 303 304 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 305 tp->rcv_wup = tp->rcv_nxt; 306 /* tcp_conn_request() is sending the SYNACK, 307 * and queues the child into listener accept queue. 308 */ 309 return child; 310 } 311 312 static bool tcp_fastopen_queue_check(struct sock *sk) 313 { 314 struct fastopen_queue *fastopenq; 315 316 /* Make sure the listener has enabled fastopen, and we don't 317 * exceed the max # of pending TFO requests allowed before trying 318 * to validating the cookie in order to avoid burning CPU cycles 319 * unnecessarily. 320 * 321 * XXX (TFO) - The implication of checking the max_qlen before 322 * processing a cookie request is that clients can't differentiate 323 * between qlen overflow causing Fast Open to be disabled 324 * temporarily vs a server not supporting Fast Open at all. 325 */ 326 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 327 if (fastopenq->max_qlen == 0) 328 return false; 329 330 if (fastopenq->qlen >= fastopenq->max_qlen) { 331 struct request_sock *req1; 332 spin_lock(&fastopenq->lock); 333 req1 = fastopenq->rskq_rst_head; 334 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 335 __NET_INC_STATS(sock_net(sk), 336 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 337 spin_unlock(&fastopenq->lock); 338 return false; 339 } 340 fastopenq->rskq_rst_head = req1->dl_next; 341 fastopenq->qlen--; 342 spin_unlock(&fastopenq->lock); 343 reqsk_put(req1); 344 } 345 return true; 346 } 347 348 static bool tcp_fastopen_no_cookie(const struct sock *sk, 349 const struct dst_entry *dst, 350 int flag) 351 { 352 return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || 353 tcp_sk(sk)->fastopen_no_cookie || 354 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 355 } 356 357 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 358 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 359 * cookie request (foc->len == 0). 360 */ 361 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 362 struct request_sock *req, 363 struct tcp_fastopen_cookie *foc, 364 const struct dst_entry *dst) 365 { 366 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 367 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 368 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 369 struct sock *child; 370 int ret = 0; 371 372 if (foc->len == 0) /* Client requests a cookie */ 373 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 374 375 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 376 (syn_data || foc->len >= 0) && 377 tcp_fastopen_queue_check(sk))) { 378 foc->len = -1; 379 return NULL; 380 } 381 382 if (syn_data && 383 tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 384 goto fastopen; 385 386 if (foc->len == 0) { 387 /* Client requests a cookie. */ 388 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); 389 } else if (foc->len > 0) { 390 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, 391 &valid_foc); 392 if (!ret) { 393 NET_INC_STATS(sock_net(sk), 394 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 395 } else { 396 /* Cookie is valid. Create a (full) child socket to 397 * accept the data in SYN before returning a SYN-ACK to 398 * ack the data. If we fail to create the socket, fall 399 * back and ack the ISN only but includes the same 400 * cookie. 401 * 402 * Note: Data-less SYN with valid cookie is allowed to 403 * send data in SYN_RECV state. 404 */ 405 fastopen: 406 child = tcp_fastopen_create_child(sk, skb, req); 407 if (child) { 408 if (ret == 2) { 409 valid_foc.exp = foc->exp; 410 *foc = valid_foc; 411 NET_INC_STATS(sock_net(sk), 412 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); 413 } else { 414 foc->len = -1; 415 } 416 NET_INC_STATS(sock_net(sk), 417 LINUX_MIB_TCPFASTOPENPASSIVE); 418 return child; 419 } 420 NET_INC_STATS(sock_net(sk), 421 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 422 } 423 } 424 valid_foc.exp = foc->exp; 425 *foc = valid_foc; 426 return NULL; 427 } 428 429 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 430 struct tcp_fastopen_cookie *cookie) 431 { 432 const struct dst_entry *dst; 433 434 tcp_fastopen_cache_get(sk, mss, cookie); 435 436 /* Firewall blackhole issue check */ 437 if (tcp_fastopen_active_should_disable(sk)) { 438 cookie->len = -1; 439 return false; 440 } 441 442 dst = __sk_dst_get(sk); 443 444 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 445 cookie->len = -1; 446 return true; 447 } 448 if (cookie->len > 0) 449 return true; 450 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; 451 return false; 452 } 453 454 /* This function checks if we want to defer sending SYN until the first 455 * write(). We defer under the following conditions: 456 * 1. fastopen_connect sockopt is set 457 * 2. we have a valid cookie 458 * Return value: return true if we want to defer until application writes data 459 * return false if we want to send out SYN immediately 460 */ 461 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 462 { 463 struct tcp_fastopen_cookie cookie = { .len = 0 }; 464 struct tcp_sock *tp = tcp_sk(sk); 465 u16 mss; 466 467 if (tp->fastopen_connect && !tp->fastopen_req) { 468 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 469 inet_sk(sk)->defer_connect = 1; 470 return true; 471 } 472 473 /* Alloc fastopen_req in order for FO option to be included 474 * in SYN 475 */ 476 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 477 sk->sk_allocation); 478 if (tp->fastopen_req) 479 tp->fastopen_req->cookie = cookie; 480 else 481 *err = -ENOBUFS; 482 } 483 return false; 484 } 485 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 486 487 /* 488 * The following code block is to deal with middle box issues with TFO: 489 * Middlebox firewall issues can potentially cause server's data being 490 * blackholed after a successful 3WHS using TFO. 491 * The proposed solution is to disable active TFO globally under the 492 * following circumstances: 493 * 1. client side TFO socket receives out of order FIN 494 * 2. client side TFO socket receives out of order RST 495 * 3. client side TFO socket has timed out three times consecutively during 496 * or after handshake 497 * We disable active side TFO globally for 1hr at first. Then if it 498 * happens again, we disable it for 2h, then 4h, 8h, ... 499 * And we reset the timeout back to 1hr when we see a successful active 500 * TFO connection with data exchanges. 501 */ 502 503 /* Disable active TFO and record current jiffies and 504 * tfo_active_disable_times 505 */ 506 void tcp_fastopen_active_disable(struct sock *sk) 507 { 508 struct net *net = sock_net(sk); 509 510 atomic_inc(&net->ipv4.tfo_active_disable_times); 511 net->ipv4.tfo_active_disable_stamp = jiffies; 512 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 513 } 514 515 /* Calculate timeout for tfo active disable 516 * Return true if we are still in the active TFO disable period 517 * Return false if timeout already expired and we should use active TFO 518 */ 519 bool tcp_fastopen_active_should_disable(struct sock *sk) 520 { 521 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; 522 int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 523 unsigned long timeout; 524 int multiplier; 525 526 if (!tfo_da_times) 527 return false; 528 529 /* Limit timeout to max: 2^6 * initial timeout */ 530 multiplier = 1 << min(tfo_da_times - 1, 6); 531 timeout = multiplier * tfo_bh_timeout * HZ; 532 if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout)) 533 return true; 534 535 /* Mark check bit so we can check for successful active TFO 536 * condition and reset tfo_active_disable_times 537 */ 538 tcp_sk(sk)->syn_fastopen_ch = 1; 539 return false; 540 } 541 542 /* Disable active TFO if FIN is the only packet in the ofo queue 543 * and no data is received. 544 * Also check if we can reset tfo_active_disable_times if data is 545 * received successfully on a marked active TFO sockets opened on 546 * a non-loopback interface 547 */ 548 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 549 { 550 struct tcp_sock *tp = tcp_sk(sk); 551 struct dst_entry *dst; 552 struct sk_buff *skb; 553 554 if (!tp->syn_fastopen) 555 return; 556 557 if (!tp->data_segs_in) { 558 skb = skb_rb_first(&tp->out_of_order_queue); 559 if (skb && !skb_rb_next(skb)) { 560 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 561 tcp_fastopen_active_disable(sk); 562 return; 563 } 564 } 565 } else if (tp->syn_fastopen_ch && 566 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 567 dst = sk_dst_get(sk); 568 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 569 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 570 dst_release(dst); 571 } 572 } 573 574 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 575 { 576 u32 timeouts = inet_csk(sk)->icsk_retransmits; 577 struct tcp_sock *tp = tcp_sk(sk); 578 579 /* Broken middle-boxes may black-hole Fast Open connection during or 580 * even after the handshake. Be extremely conservative and pause 581 * Fast Open globally after hitting the third consecutive timeout or 582 * exceeding the configured timeout limit. 583 */ 584 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 585 (timeouts == 2 || (timeouts < 2 && expired))) { 586 tcp_fastopen_active_disable(sk); 587 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 588 } 589 } 590