xref: /openbmc/linux/net/ipv4/tcp_fastopen.c (revision cf80e0e4)
1 #include <linux/crypto.h>
2 #include <linux/err.h>
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/list.h>
6 #include <linux/tcp.h>
7 #include <linux/rcupdate.h>
8 #include <linux/rculist.h>
9 #include <net/inetpeer.h>
10 #include <net/tcp.h>
11 
12 int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
13 
14 struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
15 
16 static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
17 
18 void tcp_fastopen_init_key_once(bool publish)
19 {
20 	static u8 key[TCP_FASTOPEN_KEY_LENGTH];
21 
22 	/* tcp_fastopen_reset_cipher publishes the new context
23 	 * atomically, so we allow this race happening here.
24 	 *
25 	 * All call sites of tcp_fastopen_cookie_gen also check
26 	 * for a valid cookie, so this is an acceptable risk.
27 	 */
28 	if (net_get_random_once(key, sizeof(key)) && publish)
29 		tcp_fastopen_reset_cipher(key, sizeof(key));
30 }
31 
32 static void tcp_fastopen_ctx_free(struct rcu_head *head)
33 {
34 	struct tcp_fastopen_context *ctx =
35 	    container_of(head, struct tcp_fastopen_context, rcu);
36 	crypto_free_cipher(ctx->tfm);
37 	kfree(ctx);
38 }
39 
40 int tcp_fastopen_reset_cipher(void *key, unsigned int len)
41 {
42 	int err;
43 	struct tcp_fastopen_context *ctx, *octx;
44 
45 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
46 	if (!ctx)
47 		return -ENOMEM;
48 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
49 
50 	if (IS_ERR(ctx->tfm)) {
51 		err = PTR_ERR(ctx->tfm);
52 error:		kfree(ctx);
53 		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
54 		return err;
55 	}
56 	err = crypto_cipher_setkey(ctx->tfm, key, len);
57 	if (err) {
58 		pr_err("TCP: TFO cipher key error: %d\n", err);
59 		crypto_free_cipher(ctx->tfm);
60 		goto error;
61 	}
62 	memcpy(ctx->key, key, len);
63 
64 	spin_lock(&tcp_fastopen_ctx_lock);
65 
66 	octx = rcu_dereference_protected(tcp_fastopen_ctx,
67 				lockdep_is_held(&tcp_fastopen_ctx_lock));
68 	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
69 	spin_unlock(&tcp_fastopen_ctx_lock);
70 
71 	if (octx)
72 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
73 	return err;
74 }
75 
76 static bool __tcp_fastopen_cookie_gen(const void *path,
77 				      struct tcp_fastopen_cookie *foc)
78 {
79 	struct tcp_fastopen_context *ctx;
80 	bool ok = false;
81 
82 	rcu_read_lock();
83 	ctx = rcu_dereference(tcp_fastopen_ctx);
84 	if (ctx) {
85 		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
86 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
87 		ok = true;
88 	}
89 	rcu_read_unlock();
90 	return ok;
91 }
92 
93 /* Generate the fastopen cookie by doing aes128 encryption on both
94  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
95  * addresses. For the longer IPv6 addresses use CBC-MAC.
96  *
97  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
98  */
99 static bool tcp_fastopen_cookie_gen(struct request_sock *req,
100 				    struct sk_buff *syn,
101 				    struct tcp_fastopen_cookie *foc)
102 {
103 	if (req->rsk_ops->family == AF_INET) {
104 		const struct iphdr *iph = ip_hdr(syn);
105 
106 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
107 		return __tcp_fastopen_cookie_gen(path, foc);
108 	}
109 
110 #if IS_ENABLED(CONFIG_IPV6)
111 	if (req->rsk_ops->family == AF_INET6) {
112 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
113 		struct tcp_fastopen_cookie tmp;
114 
115 		if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116 			struct in6_addr *buf = (struct in6_addr *) tmp.val;
117 			int i;
118 
119 			for (i = 0; i < 4; i++)
120 				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
121 			return __tcp_fastopen_cookie_gen(buf, foc);
122 		}
123 	}
124 #endif
125 	return false;
126 }
127 
128 static struct sock *tcp_fastopen_create_child(struct sock *sk,
129 					      struct sk_buff *skb,
130 					      struct dst_entry *dst,
131 					      struct request_sock *req)
132 {
133 	struct tcp_sock *tp;
134 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
135 	struct sock *child;
136 	u32 end_seq;
137 	bool own_req;
138 
139 	req->num_retrans = 0;
140 	req->num_timeout = 0;
141 	req->sk = NULL;
142 
143 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
144 							 NULL, &own_req);
145 	if (!child)
146 		return NULL;
147 
148 	spin_lock(&queue->fastopenq.lock);
149 	queue->fastopenq.qlen++;
150 	spin_unlock(&queue->fastopenq.lock);
151 
152 	/* Initialize the child socket. Have to fix some values to take
153 	 * into account the child is a Fast Open socket and is created
154 	 * only out of the bits carried in the SYN packet.
155 	 */
156 	tp = tcp_sk(child);
157 
158 	tp->fastopen_rsk = req;
159 	tcp_rsk(req)->tfo_listener = true;
160 
161 	/* RFC1323: The window in SYN & SYN/ACK segments is never
162 	 * scaled. So correct it appropriately.
163 	 */
164 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
165 
166 	/* Activate the retrans timer so that SYNACK can be retransmitted.
167 	 * The request socket is not added to the ehash
168 	 * because it's been added to the accept queue directly.
169 	 */
170 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
171 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
172 
173 	atomic_set(&req->rsk_refcnt, 2);
174 
175 	/* Now finish processing the fastopen child socket. */
176 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
177 	tcp_init_congestion_control(child);
178 	tcp_mtup_init(child);
179 	tcp_init_metrics(child);
180 	tcp_init_buffer_space(child);
181 
182 	/* Queue the data carried in the SYN packet.
183 	 * We used to play tricky games with skb_get().
184 	 * With lockless listener, it is a dead end.
185 	 * Do not think about it.
186 	 *
187 	 * XXX (TFO) - we honor a zero-payload TFO request for now,
188 	 * (any reason not to?) but no need to queue the skb since
189 	 * there is no data. How about SYN+FIN?
190 	 */
191 	end_seq = TCP_SKB_CB(skb)->end_seq;
192 	if (end_seq != TCP_SKB_CB(skb)->seq + 1) {
193 		struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
194 
195 		if (likely(skb2)) {
196 			skb_dst_drop(skb2);
197 			__skb_pull(skb2, tcp_hdrlen(skb));
198 			skb_set_owner_r(skb2, child);
199 			__skb_queue_tail(&child->sk_receive_queue, skb2);
200 			tp->syn_data_acked = 1;
201 
202 			/* u64_stats_update_begin(&tp->syncp) not needed here,
203 			 * as we certainly are not changing upper 32bit value (0)
204 			 */
205 			tp->bytes_received = end_seq - TCP_SKB_CB(skb)->seq - 1;
206 		} else {
207 			end_seq = TCP_SKB_CB(skb)->seq + 1;
208 		}
209 	}
210 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt = end_seq;
211 	/* tcp_conn_request() is sending the SYNACK,
212 	 * and queues the child into listener accept queue.
213 	 */
214 	return child;
215 }
216 
217 static bool tcp_fastopen_queue_check(struct sock *sk)
218 {
219 	struct fastopen_queue *fastopenq;
220 
221 	/* Make sure the listener has enabled fastopen, and we don't
222 	 * exceed the max # of pending TFO requests allowed before trying
223 	 * to validating the cookie in order to avoid burning CPU cycles
224 	 * unnecessarily.
225 	 *
226 	 * XXX (TFO) - The implication of checking the max_qlen before
227 	 * processing a cookie request is that clients can't differentiate
228 	 * between qlen overflow causing Fast Open to be disabled
229 	 * temporarily vs a server not supporting Fast Open at all.
230 	 */
231 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
232 	if (fastopenq->max_qlen == 0)
233 		return false;
234 
235 	if (fastopenq->qlen >= fastopenq->max_qlen) {
236 		struct request_sock *req1;
237 		spin_lock(&fastopenq->lock);
238 		req1 = fastopenq->rskq_rst_head;
239 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
240 			spin_unlock(&fastopenq->lock);
241 			NET_INC_STATS_BH(sock_net(sk),
242 					 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
243 			return false;
244 		}
245 		fastopenq->rskq_rst_head = req1->dl_next;
246 		fastopenq->qlen--;
247 		spin_unlock(&fastopenq->lock);
248 		reqsk_put(req1);
249 	}
250 	return true;
251 }
252 
253 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
254  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
255  * cookie request (foc->len == 0).
256  */
257 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
258 			      struct request_sock *req,
259 			      struct tcp_fastopen_cookie *foc,
260 			      struct dst_entry *dst)
261 {
262 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
263 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
264 	struct sock *child;
265 
266 	if (foc->len == 0) /* Client requests a cookie */
267 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
268 
269 	if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
270 	      (syn_data || foc->len >= 0) &&
271 	      tcp_fastopen_queue_check(sk))) {
272 		foc->len = -1;
273 		return NULL;
274 	}
275 
276 	if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
277 		goto fastopen;
278 
279 	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
280 	    tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
281 	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
282 	    foc->len == valid_foc.len &&
283 	    !memcmp(foc->val, valid_foc.val, foc->len)) {
284 		/* Cookie is valid. Create a (full) child socket to accept
285 		 * the data in SYN before returning a SYN-ACK to ack the
286 		 * data. If we fail to create the socket, fall back and
287 		 * ack the ISN only but includes the same cookie.
288 		 *
289 		 * Note: Data-less SYN with valid cookie is allowed to send
290 		 * data in SYN_RECV state.
291 		 */
292 fastopen:
293 		child = tcp_fastopen_create_child(sk, skb, dst, req);
294 		if (child) {
295 			foc->len = -1;
296 			NET_INC_STATS_BH(sock_net(sk),
297 					 LINUX_MIB_TCPFASTOPENPASSIVE);
298 			return child;
299 		}
300 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
301 	} else if (foc->len > 0) /* Client presents an invalid cookie */
302 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
303 
304 	valid_foc.exp = foc->exp;
305 	*foc = valid_foc;
306 	return NULL;
307 }
308