1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/crypto.h> 3 #include <linux/err.h> 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/list.h> 7 #include <linux/tcp.h> 8 #include <linux/rcupdate.h> 9 #include <linux/rculist.h> 10 #include <net/inetpeer.h> 11 #include <net/tcp.h> 12 13 void tcp_fastopen_init_key_once(struct net *net) 14 { 15 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 16 struct tcp_fastopen_context *ctxt; 17 18 rcu_read_lock(); 19 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 20 if (ctxt) { 21 rcu_read_unlock(); 22 return; 23 } 24 rcu_read_unlock(); 25 26 /* tcp_fastopen_reset_cipher publishes the new context 27 * atomically, so we allow this race happening here. 28 * 29 * All call sites of tcp_fastopen_cookie_gen also check 30 * for a valid cookie, so this is an acceptable risk. 31 */ 32 get_random_bytes(key, sizeof(key)); 33 tcp_fastopen_reset_cipher(net, NULL, key, NULL); 34 } 35 36 static void tcp_fastopen_ctx_free(struct rcu_head *head) 37 { 38 struct tcp_fastopen_context *ctx = 39 container_of(head, struct tcp_fastopen_context, rcu); 40 41 kfree_sensitive(ctx); 42 } 43 44 void tcp_fastopen_destroy_cipher(struct sock *sk) 45 { 46 struct tcp_fastopen_context *ctx; 47 48 ctx = rcu_dereference_protected( 49 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); 50 if (ctx) 51 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); 52 } 53 54 void tcp_fastopen_ctx_destroy(struct net *net) 55 { 56 struct tcp_fastopen_context *ctxt; 57 58 ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL); 59 60 if (ctxt) 61 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 62 } 63 64 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 65 void *primary_key, void *backup_key) 66 { 67 struct tcp_fastopen_context *ctx, *octx; 68 struct fastopen_queue *q; 69 int err = 0; 70 71 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 72 if (!ctx) { 73 err = -ENOMEM; 74 goto out; 75 } 76 77 ctx->key[0].key[0] = get_unaligned_le64(primary_key); 78 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8); 79 if (backup_key) { 80 ctx->key[1].key[0] = get_unaligned_le64(backup_key); 81 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8); 82 ctx->num = 2; 83 } else { 84 ctx->num = 1; 85 } 86 87 if (sk) { 88 q = &inet_csk(sk)->icsk_accept_queue.fastopenq; 89 octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx); 90 } else { 91 octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx); 92 } 93 94 if (octx) 95 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 96 out: 97 return err; 98 } 99 100 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 101 u64 *key) 102 { 103 struct tcp_fastopen_context *ctx; 104 int n_keys = 0, i; 105 106 rcu_read_lock(); 107 if (icsk) 108 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 109 else 110 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 111 if (ctx) { 112 n_keys = tcp_fastopen_context_len(ctx); 113 for (i = 0; i < n_keys; i++) { 114 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2)); 115 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1); 116 } 117 } 118 rcu_read_unlock(); 119 120 return n_keys; 121 } 122 123 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, 124 struct sk_buff *syn, 125 const siphash_key_t *key, 126 struct tcp_fastopen_cookie *foc) 127 { 128 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); 129 130 if (req->rsk_ops->family == AF_INET) { 131 const struct iphdr *iph = ip_hdr(syn); 132 133 foc->val[0] = cpu_to_le64(siphash(&iph->saddr, 134 sizeof(iph->saddr) + 135 sizeof(iph->daddr), 136 key)); 137 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 138 return true; 139 } 140 #if IS_ENABLED(CONFIG_IPV6) 141 if (req->rsk_ops->family == AF_INET6) { 142 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 143 144 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, 145 sizeof(ip6h->saddr) + 146 sizeof(ip6h->daddr), 147 key)); 148 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 149 return true; 150 } 151 #endif 152 return false; 153 } 154 155 /* Generate the fastopen cookie by applying SipHash to both the source and 156 * destination addresses. 157 */ 158 static void tcp_fastopen_cookie_gen(struct sock *sk, 159 struct request_sock *req, 160 struct sk_buff *syn, 161 struct tcp_fastopen_cookie *foc) 162 { 163 struct tcp_fastopen_context *ctx; 164 165 rcu_read_lock(); 166 ctx = tcp_fastopen_get_ctx(sk); 167 if (ctx) 168 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc); 169 rcu_read_unlock(); 170 } 171 172 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 173 * queue this additional data / FIN. 174 */ 175 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 176 { 177 struct tcp_sock *tp = tcp_sk(sk); 178 179 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 180 return; 181 182 skb = skb_clone(skb, GFP_ATOMIC); 183 if (!skb) 184 return; 185 186 skb_dst_drop(skb); 187 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 188 * Hence, reset segs_in to 0 before calling tcp_segs_in() 189 * to avoid double counting. Also, tcp_segs_in() expects 190 * skb->len to include the tcp_hdrlen. Hence, it should 191 * be called before __skb_pull(). 192 */ 193 tp->segs_in = 0; 194 tcp_segs_in(tp, skb); 195 __skb_pull(skb, tcp_hdrlen(skb)); 196 sk_forced_mem_schedule(sk, skb->truesize); 197 skb_set_owner_r(skb, sk); 198 199 TCP_SKB_CB(skb)->seq++; 200 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 201 202 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 203 __skb_queue_tail(&sk->sk_receive_queue, skb); 204 tp->syn_data_acked = 1; 205 206 /* u64_stats_update_begin(&tp->syncp) not needed here, 207 * as we certainly are not changing upper 32bit value (0) 208 */ 209 tp->bytes_received = skb->len; 210 211 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 212 tcp_fin(sk); 213 } 214 215 /* returns 0 - no key match, 1 for primary, 2 for backup */ 216 static int tcp_fastopen_cookie_gen_check(struct sock *sk, 217 struct request_sock *req, 218 struct sk_buff *syn, 219 struct tcp_fastopen_cookie *orig, 220 struct tcp_fastopen_cookie *valid_foc) 221 { 222 struct tcp_fastopen_cookie search_foc = { .len = -1 }; 223 struct tcp_fastopen_cookie *foc = valid_foc; 224 struct tcp_fastopen_context *ctx; 225 int i, ret = 0; 226 227 rcu_read_lock(); 228 ctx = tcp_fastopen_get_ctx(sk); 229 if (!ctx) 230 goto out; 231 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { 232 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc); 233 if (tcp_fastopen_cookie_match(foc, orig)) { 234 ret = i + 1; 235 goto out; 236 } 237 foc = &search_foc; 238 } 239 out: 240 rcu_read_unlock(); 241 return ret; 242 } 243 244 static struct sock *tcp_fastopen_create_child(struct sock *sk, 245 struct sk_buff *skb, 246 struct request_sock *req) 247 { 248 struct tcp_sock *tp; 249 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 250 struct sock *child; 251 bool own_req; 252 253 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 254 NULL, &own_req); 255 if (!child) 256 return NULL; 257 258 spin_lock(&queue->fastopenq.lock); 259 queue->fastopenq.qlen++; 260 spin_unlock(&queue->fastopenq.lock); 261 262 /* Initialize the child socket. Have to fix some values to take 263 * into account the child is a Fast Open socket and is created 264 * only out of the bits carried in the SYN packet. 265 */ 266 tp = tcp_sk(child); 267 268 rcu_assign_pointer(tp->fastopen_rsk, req); 269 tcp_rsk(req)->tfo_listener = true; 270 271 /* RFC1323: The window in SYN & SYN/ACK segments is never 272 * scaled. So correct it appropriately. 273 */ 274 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 275 tp->max_window = tp->snd_wnd; 276 277 /* Activate the retrans timer so that SYNACK can be retransmitted. 278 * The request socket is not added to the ehash 279 * because it's been added to the accept queue directly. 280 */ 281 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 282 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 283 284 refcount_set(&req->rsk_refcnt, 2); 285 286 /* Now finish processing the fastopen child socket. */ 287 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); 288 289 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 290 291 tcp_fastopen_add_skb(child, skb); 292 293 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 294 tp->rcv_wup = tp->rcv_nxt; 295 /* tcp_conn_request() is sending the SYNACK, 296 * and queues the child into listener accept queue. 297 */ 298 return child; 299 } 300 301 static bool tcp_fastopen_queue_check(struct sock *sk) 302 { 303 struct fastopen_queue *fastopenq; 304 305 /* Make sure the listener has enabled fastopen, and we don't 306 * exceed the max # of pending TFO requests allowed before trying 307 * to validating the cookie in order to avoid burning CPU cycles 308 * unnecessarily. 309 * 310 * XXX (TFO) - The implication of checking the max_qlen before 311 * processing a cookie request is that clients can't differentiate 312 * between qlen overflow causing Fast Open to be disabled 313 * temporarily vs a server not supporting Fast Open at all. 314 */ 315 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 316 if (fastopenq->max_qlen == 0) 317 return false; 318 319 if (fastopenq->qlen >= fastopenq->max_qlen) { 320 struct request_sock *req1; 321 spin_lock(&fastopenq->lock); 322 req1 = fastopenq->rskq_rst_head; 323 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 324 __NET_INC_STATS(sock_net(sk), 325 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 326 spin_unlock(&fastopenq->lock); 327 return false; 328 } 329 fastopenq->rskq_rst_head = req1->dl_next; 330 fastopenq->qlen--; 331 spin_unlock(&fastopenq->lock); 332 reqsk_put(req1); 333 } 334 return true; 335 } 336 337 static bool tcp_fastopen_no_cookie(const struct sock *sk, 338 const struct dst_entry *dst, 339 int flag) 340 { 341 return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || 342 tcp_sk(sk)->fastopen_no_cookie || 343 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); 344 } 345 346 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 347 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 348 * cookie request (foc->len == 0). 349 */ 350 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 351 struct request_sock *req, 352 struct tcp_fastopen_cookie *foc, 353 const struct dst_entry *dst) 354 { 355 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 356 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 357 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 358 struct sock *child; 359 int ret = 0; 360 361 if (foc->len == 0) /* Client requests a cookie */ 362 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 363 364 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 365 (syn_data || foc->len >= 0) && 366 tcp_fastopen_queue_check(sk))) { 367 foc->len = -1; 368 return NULL; 369 } 370 371 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) 372 goto fastopen; 373 374 if (foc->len == 0) { 375 /* Client requests a cookie. */ 376 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); 377 } else if (foc->len > 0) { 378 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, 379 &valid_foc); 380 if (!ret) { 381 NET_INC_STATS(sock_net(sk), 382 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 383 } else { 384 /* Cookie is valid. Create a (full) child socket to 385 * accept the data in SYN before returning a SYN-ACK to 386 * ack the data. If we fail to create the socket, fall 387 * back and ack the ISN only but includes the same 388 * cookie. 389 * 390 * Note: Data-less SYN with valid cookie is allowed to 391 * send data in SYN_RECV state. 392 */ 393 fastopen: 394 child = tcp_fastopen_create_child(sk, skb, req); 395 if (child) { 396 if (ret == 2) { 397 valid_foc.exp = foc->exp; 398 *foc = valid_foc; 399 NET_INC_STATS(sock_net(sk), 400 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); 401 } else { 402 foc->len = -1; 403 } 404 NET_INC_STATS(sock_net(sk), 405 LINUX_MIB_TCPFASTOPENPASSIVE); 406 return child; 407 } 408 NET_INC_STATS(sock_net(sk), 409 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 410 } 411 } 412 valid_foc.exp = foc->exp; 413 *foc = valid_foc; 414 return NULL; 415 } 416 417 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 418 struct tcp_fastopen_cookie *cookie) 419 { 420 const struct dst_entry *dst; 421 422 tcp_fastopen_cache_get(sk, mss, cookie); 423 424 /* Firewall blackhole issue check */ 425 if (tcp_fastopen_active_should_disable(sk)) { 426 cookie->len = -1; 427 return false; 428 } 429 430 dst = __sk_dst_get(sk); 431 432 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { 433 cookie->len = -1; 434 return true; 435 } 436 if (cookie->len > 0) 437 return true; 438 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; 439 return false; 440 } 441 442 /* This function checks if we want to defer sending SYN until the first 443 * write(). We defer under the following conditions: 444 * 1. fastopen_connect sockopt is set 445 * 2. we have a valid cookie 446 * Return value: return true if we want to defer until application writes data 447 * return false if we want to send out SYN immediately 448 */ 449 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 450 { 451 struct tcp_fastopen_cookie cookie = { .len = 0 }; 452 struct tcp_sock *tp = tcp_sk(sk); 453 u16 mss; 454 455 if (tp->fastopen_connect && !tp->fastopen_req) { 456 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 457 inet_sk(sk)->defer_connect = 1; 458 return true; 459 } 460 461 /* Alloc fastopen_req in order for FO option to be included 462 * in SYN 463 */ 464 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 465 sk->sk_allocation); 466 if (tp->fastopen_req) 467 tp->fastopen_req->cookie = cookie; 468 else 469 *err = -ENOBUFS; 470 } 471 return false; 472 } 473 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 474 475 /* 476 * The following code block is to deal with middle box issues with TFO: 477 * Middlebox firewall issues can potentially cause server's data being 478 * blackholed after a successful 3WHS using TFO. 479 * The proposed solution is to disable active TFO globally under the 480 * following circumstances: 481 * 1. client side TFO socket receives out of order FIN 482 * 2. client side TFO socket receives out of order RST 483 * 3. client side TFO socket has timed out three times consecutively during 484 * or after handshake 485 * We disable active side TFO globally for 1hr at first. Then if it 486 * happens again, we disable it for 2h, then 4h, 8h, ... 487 * And we reset the timeout back to 1hr when we see a successful active 488 * TFO connection with data exchanges. 489 */ 490 491 /* Disable active TFO and record current jiffies and 492 * tfo_active_disable_times 493 */ 494 void tcp_fastopen_active_disable(struct sock *sk) 495 { 496 struct net *net = sock_net(sk); 497 498 if (!sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout) 499 return; 500 501 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */ 502 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies); 503 504 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable(). 505 * We want net->ipv4.tfo_active_disable_stamp to be updated first. 506 */ 507 smp_mb__before_atomic(); 508 atomic_inc(&net->ipv4.tfo_active_disable_times); 509 510 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 511 } 512 513 /* Calculate timeout for tfo active disable 514 * Return true if we are still in the active TFO disable period 515 * Return false if timeout already expired and we should use active TFO 516 */ 517 bool tcp_fastopen_active_should_disable(struct sock *sk) 518 { 519 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; 520 unsigned long timeout; 521 int tfo_da_times; 522 int multiplier; 523 524 if (!tfo_bh_timeout) 525 return false; 526 527 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 528 if (!tfo_da_times) 529 return false; 530 531 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */ 532 smp_rmb(); 533 534 /* Limit timeout to max: 2^6 * initial timeout */ 535 multiplier = 1 << min(tfo_da_times - 1, 6); 536 537 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */ 538 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) + 539 multiplier * tfo_bh_timeout * HZ; 540 if (time_before(jiffies, timeout)) 541 return true; 542 543 /* Mark check bit so we can check for successful active TFO 544 * condition and reset tfo_active_disable_times 545 */ 546 tcp_sk(sk)->syn_fastopen_ch = 1; 547 return false; 548 } 549 550 /* Disable active TFO if FIN is the only packet in the ofo queue 551 * and no data is received. 552 * Also check if we can reset tfo_active_disable_times if data is 553 * received successfully on a marked active TFO sockets opened on 554 * a non-loopback interface 555 */ 556 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 557 { 558 struct tcp_sock *tp = tcp_sk(sk); 559 struct dst_entry *dst; 560 struct sk_buff *skb; 561 562 if (!tp->syn_fastopen) 563 return; 564 565 if (!tp->data_segs_in) { 566 skb = skb_rb_first(&tp->out_of_order_queue); 567 if (skb && !skb_rb_next(skb)) { 568 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 569 tcp_fastopen_active_disable(sk); 570 return; 571 } 572 } 573 } else if (tp->syn_fastopen_ch && 574 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 575 dst = sk_dst_get(sk); 576 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 577 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 578 dst_release(dst); 579 } 580 } 581 582 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) 583 { 584 u32 timeouts = inet_csk(sk)->icsk_retransmits; 585 struct tcp_sock *tp = tcp_sk(sk); 586 587 /* Broken middle-boxes may black-hole Fast Open connection during or 588 * even after the handshake. Be extremely conservative and pause 589 * Fast Open globally after hitting the third consecutive timeout or 590 * exceeding the configured timeout limit. 591 */ 592 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && 593 (timeouts == 2 || (timeouts < 2 && expired))) { 594 tcp_fastopen_active_disable(sk); 595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 596 } 597 } 598