xref: /openbmc/linux/net/ipv4/tcp_fastopen.c (revision 711aab1d)
1 #include <linux/crypto.h>
2 #include <linux/err.h>
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/list.h>
6 #include <linux/tcp.h>
7 #include <linux/rcupdate.h>
8 #include <linux/rculist.h>
9 #include <net/inetpeer.h>
10 #include <net/tcp.h>
11 
12 int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
13 
14 struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
15 
16 static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
17 
18 void tcp_fastopen_init_key_once(bool publish)
19 {
20 	static u8 key[TCP_FASTOPEN_KEY_LENGTH];
21 
22 	/* tcp_fastopen_reset_cipher publishes the new context
23 	 * atomically, so we allow this race happening here.
24 	 *
25 	 * All call sites of tcp_fastopen_cookie_gen also check
26 	 * for a valid cookie, so this is an acceptable risk.
27 	 */
28 	if (net_get_random_once(key, sizeof(key)) && publish)
29 		tcp_fastopen_reset_cipher(key, sizeof(key));
30 }
31 
32 static void tcp_fastopen_ctx_free(struct rcu_head *head)
33 {
34 	struct tcp_fastopen_context *ctx =
35 	    container_of(head, struct tcp_fastopen_context, rcu);
36 	crypto_free_cipher(ctx->tfm);
37 	kfree(ctx);
38 }
39 
40 int tcp_fastopen_reset_cipher(void *key, unsigned int len)
41 {
42 	int err;
43 	struct tcp_fastopen_context *ctx, *octx;
44 
45 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
46 	if (!ctx)
47 		return -ENOMEM;
48 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
49 
50 	if (IS_ERR(ctx->tfm)) {
51 		err = PTR_ERR(ctx->tfm);
52 error:		kfree(ctx);
53 		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
54 		return err;
55 	}
56 	err = crypto_cipher_setkey(ctx->tfm, key, len);
57 	if (err) {
58 		pr_err("TCP: TFO cipher key error: %d\n", err);
59 		crypto_free_cipher(ctx->tfm);
60 		goto error;
61 	}
62 	memcpy(ctx->key, key, len);
63 
64 	spin_lock(&tcp_fastopen_ctx_lock);
65 
66 	octx = rcu_dereference_protected(tcp_fastopen_ctx,
67 				lockdep_is_held(&tcp_fastopen_ctx_lock));
68 	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
69 	spin_unlock(&tcp_fastopen_ctx_lock);
70 
71 	if (octx)
72 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
73 	return err;
74 }
75 
76 static bool __tcp_fastopen_cookie_gen(const void *path,
77 				      struct tcp_fastopen_cookie *foc)
78 {
79 	struct tcp_fastopen_context *ctx;
80 	bool ok = false;
81 
82 	rcu_read_lock();
83 	ctx = rcu_dereference(tcp_fastopen_ctx);
84 	if (ctx) {
85 		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
86 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
87 		ok = true;
88 	}
89 	rcu_read_unlock();
90 	return ok;
91 }
92 
93 /* Generate the fastopen cookie by doing aes128 encryption on both
94  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
95  * addresses. For the longer IPv6 addresses use CBC-MAC.
96  *
97  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
98  */
99 static bool tcp_fastopen_cookie_gen(struct request_sock *req,
100 				    struct sk_buff *syn,
101 				    struct tcp_fastopen_cookie *foc)
102 {
103 	if (req->rsk_ops->family == AF_INET) {
104 		const struct iphdr *iph = ip_hdr(syn);
105 
106 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
107 		return __tcp_fastopen_cookie_gen(path, foc);
108 	}
109 
110 #if IS_ENABLED(CONFIG_IPV6)
111 	if (req->rsk_ops->family == AF_INET6) {
112 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
113 		struct tcp_fastopen_cookie tmp;
114 
115 		if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116 			struct in6_addr *buf = &tmp.addr;
117 			int i;
118 
119 			for (i = 0; i < 4; i++)
120 				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
121 			return __tcp_fastopen_cookie_gen(buf, foc);
122 		}
123 	}
124 #endif
125 	return false;
126 }
127 
128 
129 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
130  * queue this additional data / FIN.
131  */
132 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
133 {
134 	struct tcp_sock *tp = tcp_sk(sk);
135 
136 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
137 		return;
138 
139 	skb = skb_clone(skb, GFP_ATOMIC);
140 	if (!skb)
141 		return;
142 
143 	skb_dst_drop(skb);
144 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
145 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
146 	 * to avoid double counting.  Also, tcp_segs_in() expects
147 	 * skb->len to include the tcp_hdrlen.  Hence, it should
148 	 * be called before __skb_pull().
149 	 */
150 	tp->segs_in = 0;
151 	tcp_segs_in(tp, skb);
152 	__skb_pull(skb, tcp_hdrlen(skb));
153 	sk_forced_mem_schedule(sk, skb->truesize);
154 	skb_set_owner_r(skb, sk);
155 
156 	TCP_SKB_CB(skb)->seq++;
157 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
158 
159 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
160 	__skb_queue_tail(&sk->sk_receive_queue, skb);
161 	tp->syn_data_acked = 1;
162 
163 	/* u64_stats_update_begin(&tp->syncp) not needed here,
164 	 * as we certainly are not changing upper 32bit value (0)
165 	 */
166 	tp->bytes_received = skb->len;
167 
168 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
169 		tcp_fin(sk);
170 }
171 
172 static struct sock *tcp_fastopen_create_child(struct sock *sk,
173 					      struct sk_buff *skb,
174 					      struct request_sock *req)
175 {
176 	struct tcp_sock *tp;
177 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
178 	struct sock *child;
179 	bool own_req;
180 
181 	req->num_retrans = 0;
182 	req->num_timeout = 0;
183 	req->sk = NULL;
184 
185 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
186 							 NULL, &own_req);
187 	if (!child)
188 		return NULL;
189 
190 	spin_lock(&queue->fastopenq.lock);
191 	queue->fastopenq.qlen++;
192 	spin_unlock(&queue->fastopenq.lock);
193 
194 	/* Initialize the child socket. Have to fix some values to take
195 	 * into account the child is a Fast Open socket and is created
196 	 * only out of the bits carried in the SYN packet.
197 	 */
198 	tp = tcp_sk(child);
199 
200 	tp->fastopen_rsk = req;
201 	tcp_rsk(req)->tfo_listener = true;
202 
203 	/* RFC1323: The window in SYN & SYN/ACK segments is never
204 	 * scaled. So correct it appropriately.
205 	 */
206 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
207 	tp->max_window = tp->snd_wnd;
208 
209 	/* Activate the retrans timer so that SYNACK can be retransmitted.
210 	 * The request socket is not added to the ehash
211 	 * because it's been added to the accept queue directly.
212 	 */
213 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
214 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
215 
216 	refcount_set(&req->rsk_refcnt, 2);
217 
218 	/* Now finish processing the fastopen child socket. */
219 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
220 	tcp_init_congestion_control(child);
221 	tcp_mtup_init(child);
222 	tcp_init_metrics(child);
223 	tcp_call_bpf(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
224 	tcp_init_buffer_space(child);
225 
226 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
227 
228 	tcp_fastopen_add_skb(child, skb);
229 
230 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
231 	tp->rcv_wup = tp->rcv_nxt;
232 	/* tcp_conn_request() is sending the SYNACK,
233 	 * and queues the child into listener accept queue.
234 	 */
235 	return child;
236 }
237 
238 static bool tcp_fastopen_queue_check(struct sock *sk)
239 {
240 	struct fastopen_queue *fastopenq;
241 
242 	/* Make sure the listener has enabled fastopen, and we don't
243 	 * exceed the max # of pending TFO requests allowed before trying
244 	 * to validating the cookie in order to avoid burning CPU cycles
245 	 * unnecessarily.
246 	 *
247 	 * XXX (TFO) - The implication of checking the max_qlen before
248 	 * processing a cookie request is that clients can't differentiate
249 	 * between qlen overflow causing Fast Open to be disabled
250 	 * temporarily vs a server not supporting Fast Open at all.
251 	 */
252 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
253 	if (fastopenq->max_qlen == 0)
254 		return false;
255 
256 	if (fastopenq->qlen >= fastopenq->max_qlen) {
257 		struct request_sock *req1;
258 		spin_lock(&fastopenq->lock);
259 		req1 = fastopenq->rskq_rst_head;
260 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
261 			__NET_INC_STATS(sock_net(sk),
262 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
263 			spin_unlock(&fastopenq->lock);
264 			return false;
265 		}
266 		fastopenq->rskq_rst_head = req1->dl_next;
267 		fastopenq->qlen--;
268 		spin_unlock(&fastopenq->lock);
269 		reqsk_put(req1);
270 	}
271 	return true;
272 }
273 
274 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
275  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
276  * cookie request (foc->len == 0).
277  */
278 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
279 			      struct request_sock *req,
280 			      struct tcp_fastopen_cookie *foc)
281 {
282 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
283 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
284 	struct sock *child;
285 
286 	if (foc->len == 0) /* Client requests a cookie */
287 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
288 
289 	if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
290 	      (syn_data || foc->len >= 0) &&
291 	      tcp_fastopen_queue_check(sk))) {
292 		foc->len = -1;
293 		return NULL;
294 	}
295 
296 	if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
297 		goto fastopen;
298 
299 	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
300 	    tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
301 	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
302 	    foc->len == valid_foc.len &&
303 	    !memcmp(foc->val, valid_foc.val, foc->len)) {
304 		/* Cookie is valid. Create a (full) child socket to accept
305 		 * the data in SYN before returning a SYN-ACK to ack the
306 		 * data. If we fail to create the socket, fall back and
307 		 * ack the ISN only but includes the same cookie.
308 		 *
309 		 * Note: Data-less SYN with valid cookie is allowed to send
310 		 * data in SYN_RECV state.
311 		 */
312 fastopen:
313 		child = tcp_fastopen_create_child(sk, skb, req);
314 		if (child) {
315 			foc->len = -1;
316 			NET_INC_STATS(sock_net(sk),
317 				      LINUX_MIB_TCPFASTOPENPASSIVE);
318 			return child;
319 		}
320 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
321 	} else if (foc->len > 0) /* Client presents an invalid cookie */
322 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
323 
324 	valid_foc.exp = foc->exp;
325 	*foc = valid_foc;
326 	return NULL;
327 }
328 
329 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
330 			       struct tcp_fastopen_cookie *cookie)
331 {
332 	unsigned long last_syn_loss = 0;
333 	int syn_loss = 0;
334 
335 	tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss);
336 
337 	/* Recurring FO SYN losses: no cookie or data in SYN */
338 	if (syn_loss > 1 &&
339 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
340 		cookie->len = -1;
341 		return false;
342 	}
343 
344 	/* Firewall blackhole issue check */
345 	if (tcp_fastopen_active_should_disable(sk)) {
346 		cookie->len = -1;
347 		return false;
348 	}
349 
350 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) {
351 		cookie->len = -1;
352 		return true;
353 	}
354 	return cookie->len > 0;
355 }
356 
357 /* This function checks if we want to defer sending SYN until the first
358  * write().  We defer under the following conditions:
359  * 1. fastopen_connect sockopt is set
360  * 2. we have a valid cookie
361  * Return value: return true if we want to defer until application writes data
362  *               return false if we want to send out SYN immediately
363  */
364 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
365 {
366 	struct tcp_fastopen_cookie cookie = { .len = 0 };
367 	struct tcp_sock *tp = tcp_sk(sk);
368 	u16 mss;
369 
370 	if (tp->fastopen_connect && !tp->fastopen_req) {
371 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
372 			inet_sk(sk)->defer_connect = 1;
373 			return true;
374 		}
375 
376 		/* Alloc fastopen_req in order for FO option to be included
377 		 * in SYN
378 		 */
379 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
380 					   sk->sk_allocation);
381 		if (tp->fastopen_req)
382 			tp->fastopen_req->cookie = cookie;
383 		else
384 			*err = -ENOBUFS;
385 	}
386 	return false;
387 }
388 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
389 
390 /*
391  * The following code block is to deal with middle box issues with TFO:
392  * Middlebox firewall issues can potentially cause server's data being
393  * blackholed after a successful 3WHS using TFO.
394  * The proposed solution is to disable active TFO globally under the
395  * following circumstances:
396  *   1. client side TFO socket receives out of order FIN
397  *   2. client side TFO socket receives out of order RST
398  * We disable active side TFO globally for 1hr at first. Then if it
399  * happens again, we disable it for 2h, then 4h, 8h, ...
400  * And we reset the timeout back to 1hr when we see a successful active
401  * TFO connection with data exchanges.
402  */
403 
404 /* Default to 1hr */
405 unsigned int sysctl_tcp_fastopen_blackhole_timeout __read_mostly = 60 * 60;
406 static atomic_t tfo_active_disable_times __read_mostly = ATOMIC_INIT(0);
407 static unsigned long tfo_active_disable_stamp __read_mostly;
408 
409 /* Disable active TFO and record current jiffies and
410  * tfo_active_disable_times
411  */
412 void tcp_fastopen_active_disable(struct sock *sk)
413 {
414 	atomic_inc(&tfo_active_disable_times);
415 	tfo_active_disable_stamp = jiffies;
416 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENBLACKHOLE);
417 }
418 
419 /* Reset tfo_active_disable_times to 0 */
420 void tcp_fastopen_active_timeout_reset(void)
421 {
422 	atomic_set(&tfo_active_disable_times, 0);
423 }
424 
425 /* Calculate timeout for tfo active disable
426  * Return true if we are still in the active TFO disable period
427  * Return false if timeout already expired and we should use active TFO
428  */
429 bool tcp_fastopen_active_should_disable(struct sock *sk)
430 {
431 	int tfo_da_times = atomic_read(&tfo_active_disable_times);
432 	int multiplier;
433 	unsigned long timeout;
434 
435 	if (!tfo_da_times)
436 		return false;
437 
438 	/* Limit timout to max: 2^6 * initial timeout */
439 	multiplier = 1 << min(tfo_da_times - 1, 6);
440 	timeout = multiplier * sysctl_tcp_fastopen_blackhole_timeout * HZ;
441 	if (time_before(jiffies, tfo_active_disable_stamp + timeout))
442 		return true;
443 
444 	/* Mark check bit so we can check for successful active TFO
445 	 * condition and reset tfo_active_disable_times
446 	 */
447 	tcp_sk(sk)->syn_fastopen_ch = 1;
448 	return false;
449 }
450 
451 /* Disable active TFO if FIN is the only packet in the ofo queue
452  * and no data is received.
453  * Also check if we can reset tfo_active_disable_times if data is
454  * received successfully on a marked active TFO sockets opened on
455  * a non-loopback interface
456  */
457 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	struct rb_node *p;
461 	struct sk_buff *skb;
462 	struct dst_entry *dst;
463 
464 	if (!tp->syn_fastopen)
465 		return;
466 
467 	if (!tp->data_segs_in) {
468 		p = rb_first(&tp->out_of_order_queue);
469 		if (p && !rb_next(p)) {
470 			skb = rb_entry(p, struct sk_buff, rbnode);
471 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
472 				tcp_fastopen_active_disable(sk);
473 				return;
474 			}
475 		}
476 	} else if (tp->syn_fastopen_ch &&
477 		   atomic_read(&tfo_active_disable_times)) {
478 		dst = sk_dst_get(sk);
479 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
480 			tcp_fastopen_active_timeout_reset();
481 		dst_release(dst);
482 	}
483 }
484