xref: /openbmc/linux/net/ipv4/tcp_fastopen.c (revision 61d2bcae)
1 #include <linux/err.h>
2 #include <linux/init.h>
3 #include <linux/kernel.h>
4 #include <linux/list.h>
5 #include <linux/tcp.h>
6 #include <linux/rcupdate.h>
7 #include <linux/rculist.h>
8 #include <net/inetpeer.h>
9 #include <net/tcp.h>
10 
11 int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
12 
13 struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
14 
15 static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
16 
17 void tcp_fastopen_init_key_once(bool publish)
18 {
19 	static u8 key[TCP_FASTOPEN_KEY_LENGTH];
20 
21 	/* tcp_fastopen_reset_cipher publishes the new context
22 	 * atomically, so we allow this race happening here.
23 	 *
24 	 * All call sites of tcp_fastopen_cookie_gen also check
25 	 * for a valid cookie, so this is an acceptable risk.
26 	 */
27 	if (net_get_random_once(key, sizeof(key)) && publish)
28 		tcp_fastopen_reset_cipher(key, sizeof(key));
29 }
30 
31 static void tcp_fastopen_ctx_free(struct rcu_head *head)
32 {
33 	struct tcp_fastopen_context *ctx =
34 	    container_of(head, struct tcp_fastopen_context, rcu);
35 	crypto_free_cipher(ctx->tfm);
36 	kfree(ctx);
37 }
38 
39 int tcp_fastopen_reset_cipher(void *key, unsigned int len)
40 {
41 	int err;
42 	struct tcp_fastopen_context *ctx, *octx;
43 
44 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
45 	if (!ctx)
46 		return -ENOMEM;
47 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
48 
49 	if (IS_ERR(ctx->tfm)) {
50 		err = PTR_ERR(ctx->tfm);
51 error:		kfree(ctx);
52 		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
53 		return err;
54 	}
55 	err = crypto_cipher_setkey(ctx->tfm, key, len);
56 	if (err) {
57 		pr_err("TCP: TFO cipher key error: %d\n", err);
58 		crypto_free_cipher(ctx->tfm);
59 		goto error;
60 	}
61 	memcpy(ctx->key, key, len);
62 
63 	spin_lock(&tcp_fastopen_ctx_lock);
64 
65 	octx = rcu_dereference_protected(tcp_fastopen_ctx,
66 				lockdep_is_held(&tcp_fastopen_ctx_lock));
67 	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
68 	spin_unlock(&tcp_fastopen_ctx_lock);
69 
70 	if (octx)
71 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
72 	return err;
73 }
74 
75 static bool __tcp_fastopen_cookie_gen(const void *path,
76 				      struct tcp_fastopen_cookie *foc)
77 {
78 	struct tcp_fastopen_context *ctx;
79 	bool ok = false;
80 
81 	rcu_read_lock();
82 	ctx = rcu_dereference(tcp_fastopen_ctx);
83 	if (ctx) {
84 		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
85 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
86 		ok = true;
87 	}
88 	rcu_read_unlock();
89 	return ok;
90 }
91 
92 /* Generate the fastopen cookie by doing aes128 encryption on both
93  * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
94  * addresses. For the longer IPv6 addresses use CBC-MAC.
95  *
96  * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
97  */
98 static bool tcp_fastopen_cookie_gen(struct request_sock *req,
99 				    struct sk_buff *syn,
100 				    struct tcp_fastopen_cookie *foc)
101 {
102 	if (req->rsk_ops->family == AF_INET) {
103 		const struct iphdr *iph = ip_hdr(syn);
104 
105 		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
106 		return __tcp_fastopen_cookie_gen(path, foc);
107 	}
108 
109 #if IS_ENABLED(CONFIG_IPV6)
110 	if (req->rsk_ops->family == AF_INET6) {
111 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
112 		struct tcp_fastopen_cookie tmp;
113 
114 		if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
115 			struct in6_addr *buf = (struct in6_addr *) tmp.val;
116 			int i;
117 
118 			for (i = 0; i < 4; i++)
119 				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
120 			return __tcp_fastopen_cookie_gen(buf, foc);
121 		}
122 	}
123 #endif
124 	return false;
125 }
126 
127 
128 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
129  * queue this additional data / FIN.
130  */
131 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
132 {
133 	struct tcp_sock *tp = tcp_sk(sk);
134 
135 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
136 		return;
137 
138 	skb = skb_clone(skb, GFP_ATOMIC);
139 	if (!skb)
140 		return;
141 
142 	skb_dst_drop(skb);
143 	__skb_pull(skb, tcp_hdrlen(skb));
144 	skb_set_owner_r(skb, sk);
145 
146 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 	__skb_queue_tail(&sk->sk_receive_queue, skb);
148 	tp->syn_data_acked = 1;
149 
150 	/* u64_stats_update_begin(&tp->syncp) not needed here,
151 	 * as we certainly are not changing upper 32bit value (0)
152 	 */
153 	tp->bytes_received = skb->len;
154 }
155 
156 static struct sock *tcp_fastopen_create_child(struct sock *sk,
157 					      struct sk_buff *skb,
158 					      struct dst_entry *dst,
159 					      struct request_sock *req)
160 {
161 	struct tcp_sock *tp;
162 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
163 	struct sock *child;
164 	bool own_req;
165 
166 	req->num_retrans = 0;
167 	req->num_timeout = 0;
168 	req->sk = NULL;
169 
170 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
171 							 NULL, &own_req);
172 	if (!child)
173 		return NULL;
174 
175 	spin_lock(&queue->fastopenq.lock);
176 	queue->fastopenq.qlen++;
177 	spin_unlock(&queue->fastopenq.lock);
178 
179 	/* Initialize the child socket. Have to fix some values to take
180 	 * into account the child is a Fast Open socket and is created
181 	 * only out of the bits carried in the SYN packet.
182 	 */
183 	tp = tcp_sk(child);
184 
185 	tp->fastopen_rsk = req;
186 	tcp_rsk(req)->tfo_listener = true;
187 
188 	/* RFC1323: The window in SYN & SYN/ACK segments is never
189 	 * scaled. So correct it appropriately.
190 	 */
191 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
192 
193 	/* Activate the retrans timer so that SYNACK can be retransmitted.
194 	 * The request socket is not added to the ehash
195 	 * because it's been added to the accept queue directly.
196 	 */
197 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
198 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
199 
200 	atomic_set(&req->rsk_refcnt, 2);
201 
202 	/* Now finish processing the fastopen child socket. */
203 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
204 	tcp_init_congestion_control(child);
205 	tcp_mtup_init(child);
206 	tcp_init_metrics(child);
207 	tcp_init_buffer_space(child);
208 
209 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
210 
211 	tcp_fastopen_add_skb(child, skb);
212 
213 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
214 	/* tcp_conn_request() is sending the SYNACK,
215 	 * and queues the child into listener accept queue.
216 	 */
217 	return child;
218 }
219 
220 static bool tcp_fastopen_queue_check(struct sock *sk)
221 {
222 	struct fastopen_queue *fastopenq;
223 
224 	/* Make sure the listener has enabled fastopen, and we don't
225 	 * exceed the max # of pending TFO requests allowed before trying
226 	 * to validating the cookie in order to avoid burning CPU cycles
227 	 * unnecessarily.
228 	 *
229 	 * XXX (TFO) - The implication of checking the max_qlen before
230 	 * processing a cookie request is that clients can't differentiate
231 	 * between qlen overflow causing Fast Open to be disabled
232 	 * temporarily vs a server not supporting Fast Open at all.
233 	 */
234 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
235 	if (fastopenq->max_qlen == 0)
236 		return false;
237 
238 	if (fastopenq->qlen >= fastopenq->max_qlen) {
239 		struct request_sock *req1;
240 		spin_lock(&fastopenq->lock);
241 		req1 = fastopenq->rskq_rst_head;
242 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
243 			spin_unlock(&fastopenq->lock);
244 			NET_INC_STATS_BH(sock_net(sk),
245 					 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
246 			return false;
247 		}
248 		fastopenq->rskq_rst_head = req1->dl_next;
249 		fastopenq->qlen--;
250 		spin_unlock(&fastopenq->lock);
251 		reqsk_put(req1);
252 	}
253 	return true;
254 }
255 
256 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
257  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
258  * cookie request (foc->len == 0).
259  */
260 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
261 			      struct request_sock *req,
262 			      struct tcp_fastopen_cookie *foc,
263 			      struct dst_entry *dst)
264 {
265 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
266 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
267 	struct sock *child;
268 
269 	if (foc->len == 0) /* Client requests a cookie */
270 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
271 
272 	if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
273 	      (syn_data || foc->len >= 0) &&
274 	      tcp_fastopen_queue_check(sk))) {
275 		foc->len = -1;
276 		return NULL;
277 	}
278 
279 	if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
280 		goto fastopen;
281 
282 	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
283 	    tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
284 	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
285 	    foc->len == valid_foc.len &&
286 	    !memcmp(foc->val, valid_foc.val, foc->len)) {
287 		/* Cookie is valid. Create a (full) child socket to accept
288 		 * the data in SYN before returning a SYN-ACK to ack the
289 		 * data. If we fail to create the socket, fall back and
290 		 * ack the ISN only but includes the same cookie.
291 		 *
292 		 * Note: Data-less SYN with valid cookie is allowed to send
293 		 * data in SYN_RECV state.
294 		 */
295 fastopen:
296 		child = tcp_fastopen_create_child(sk, skb, dst, req);
297 		if (child) {
298 			foc->len = -1;
299 			NET_INC_STATS_BH(sock_net(sk),
300 					 LINUX_MIB_TCPFASTOPENPASSIVE);
301 			return child;
302 		}
303 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
304 	} else if (foc->len > 0) /* Client presents an invalid cookie */
305 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
306 
307 	valid_foc.exp = foc->exp;
308 	*foc = valid_foc;
309 	return NULL;
310 }
311