1 #include <linux/crypto.h> 2 #include <linux/err.h> 3 #include <linux/init.h> 4 #include <linux/kernel.h> 5 #include <linux/list.h> 6 #include <linux/tcp.h> 7 #include <linux/rcupdate.h> 8 #include <linux/rculist.h> 9 #include <net/inetpeer.h> 10 #include <net/tcp.h> 11 12 void tcp_fastopen_init_key_once(struct net *net) 13 { 14 u8 key[TCP_FASTOPEN_KEY_LENGTH]; 15 struct tcp_fastopen_context *ctxt; 16 17 rcu_read_lock(); 18 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 19 if (ctxt) { 20 rcu_read_unlock(); 21 return; 22 } 23 rcu_read_unlock(); 24 25 /* tcp_fastopen_reset_cipher publishes the new context 26 * atomically, so we allow this race happening here. 27 * 28 * All call sites of tcp_fastopen_cookie_gen also check 29 * for a valid cookie, so this is an acceptable risk. 30 */ 31 get_random_bytes(key, sizeof(key)); 32 tcp_fastopen_reset_cipher(net, key, sizeof(key)); 33 } 34 35 static void tcp_fastopen_ctx_free(struct rcu_head *head) 36 { 37 struct tcp_fastopen_context *ctx = 38 container_of(head, struct tcp_fastopen_context, rcu); 39 crypto_free_cipher(ctx->tfm); 40 kfree(ctx); 41 } 42 43 void tcp_fastopen_ctx_destroy(struct net *net) 44 { 45 struct tcp_fastopen_context *ctxt; 46 47 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 48 49 ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 50 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 51 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL); 52 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 53 54 if (ctxt) 55 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); 56 } 57 58 int tcp_fastopen_reset_cipher(struct net *net, void *key, unsigned int len) 59 { 60 int err; 61 struct tcp_fastopen_context *ctx, *octx; 62 63 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 64 if (!ctx) 65 return -ENOMEM; 66 ctx->tfm = crypto_alloc_cipher("aes", 0, 0); 67 68 if (IS_ERR(ctx->tfm)) { 69 err = PTR_ERR(ctx->tfm); 70 error: kfree(ctx); 71 pr_err("TCP: TFO aes cipher alloc error: %d\n", err); 72 return err; 73 } 74 err = crypto_cipher_setkey(ctx->tfm, key, len); 75 if (err) { 76 pr_err("TCP: TFO cipher key error: %d\n", err); 77 crypto_free_cipher(ctx->tfm); 78 goto error; 79 } 80 memcpy(ctx->key, key, len); 81 82 spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); 83 84 octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, 85 lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); 86 rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx); 87 spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); 88 89 if (octx) 90 call_rcu(&octx->rcu, tcp_fastopen_ctx_free); 91 return err; 92 } 93 94 static bool __tcp_fastopen_cookie_gen(struct net *net, 95 const void *path, 96 struct tcp_fastopen_cookie *foc) 97 { 98 struct tcp_fastopen_context *ctx; 99 bool ok = false; 100 101 rcu_read_lock(); 102 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); 103 if (ctx) { 104 crypto_cipher_encrypt_one(ctx->tfm, foc->val, path); 105 foc->len = TCP_FASTOPEN_COOKIE_SIZE; 106 ok = true; 107 } 108 rcu_read_unlock(); 109 return ok; 110 } 111 112 /* Generate the fastopen cookie by doing aes128 encryption on both 113 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6 114 * addresses. For the longer IPv6 addresses use CBC-MAC. 115 * 116 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE. 117 */ 118 static bool tcp_fastopen_cookie_gen(struct net *net, 119 struct request_sock *req, 120 struct sk_buff *syn, 121 struct tcp_fastopen_cookie *foc) 122 { 123 if (req->rsk_ops->family == AF_INET) { 124 const struct iphdr *iph = ip_hdr(syn); 125 126 __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 }; 127 return __tcp_fastopen_cookie_gen(net, path, foc); 128 } 129 130 #if IS_ENABLED(CONFIG_IPV6) 131 if (req->rsk_ops->family == AF_INET6) { 132 const struct ipv6hdr *ip6h = ipv6_hdr(syn); 133 struct tcp_fastopen_cookie tmp; 134 135 if (__tcp_fastopen_cookie_gen(net, &ip6h->saddr, &tmp)) { 136 struct in6_addr *buf = &tmp.addr; 137 int i; 138 139 for (i = 0; i < 4; i++) 140 buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i]; 141 return __tcp_fastopen_cookie_gen(net, buf, foc); 142 } 143 } 144 #endif 145 return false; 146 } 147 148 149 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, 150 * queue this additional data / FIN. 151 */ 152 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) 153 { 154 struct tcp_sock *tp = tcp_sk(sk); 155 156 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) 157 return; 158 159 skb = skb_clone(skb, GFP_ATOMIC); 160 if (!skb) 161 return; 162 163 skb_dst_drop(skb); 164 /* segs_in has been initialized to 1 in tcp_create_openreq_child(). 165 * Hence, reset segs_in to 0 before calling tcp_segs_in() 166 * to avoid double counting. Also, tcp_segs_in() expects 167 * skb->len to include the tcp_hdrlen. Hence, it should 168 * be called before __skb_pull(). 169 */ 170 tp->segs_in = 0; 171 tcp_segs_in(tp, skb); 172 __skb_pull(skb, tcp_hdrlen(skb)); 173 sk_forced_mem_schedule(sk, skb->truesize); 174 skb_set_owner_r(skb, sk); 175 176 TCP_SKB_CB(skb)->seq++; 177 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 178 179 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 180 __skb_queue_tail(&sk->sk_receive_queue, skb); 181 tp->syn_data_acked = 1; 182 183 /* u64_stats_update_begin(&tp->syncp) not needed here, 184 * as we certainly are not changing upper 32bit value (0) 185 */ 186 tp->bytes_received = skb->len; 187 188 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 189 tcp_fin(sk); 190 } 191 192 static struct sock *tcp_fastopen_create_child(struct sock *sk, 193 struct sk_buff *skb, 194 struct request_sock *req) 195 { 196 struct tcp_sock *tp; 197 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 198 struct sock *child; 199 bool own_req; 200 201 req->num_retrans = 0; 202 req->num_timeout = 0; 203 req->sk = NULL; 204 205 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 206 NULL, &own_req); 207 if (!child) 208 return NULL; 209 210 spin_lock(&queue->fastopenq.lock); 211 queue->fastopenq.qlen++; 212 spin_unlock(&queue->fastopenq.lock); 213 214 /* Initialize the child socket. Have to fix some values to take 215 * into account the child is a Fast Open socket and is created 216 * only out of the bits carried in the SYN packet. 217 */ 218 tp = tcp_sk(child); 219 220 tp->fastopen_rsk = req; 221 tcp_rsk(req)->tfo_listener = true; 222 223 /* RFC1323: The window in SYN & SYN/ACK segments is never 224 * scaled. So correct it appropriately. 225 */ 226 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 227 tp->max_window = tp->snd_wnd; 228 229 /* Activate the retrans timer so that SYNACK can be retransmitted. 230 * The request socket is not added to the ehash 231 * because it's been added to the accept queue directly. 232 */ 233 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 234 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 235 236 refcount_set(&req->rsk_refcnt, 2); 237 238 /* Now finish processing the fastopen child socket. */ 239 inet_csk(child)->icsk_af_ops->rebuild_header(child); 240 tcp_init_congestion_control(child); 241 tcp_mtup_init(child); 242 tcp_init_metrics(child); 243 tcp_call_bpf(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 244 tcp_init_buffer_space(child); 245 246 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 247 248 tcp_fastopen_add_skb(child, skb); 249 250 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; 251 tp->rcv_wup = tp->rcv_nxt; 252 /* tcp_conn_request() is sending the SYNACK, 253 * and queues the child into listener accept queue. 254 */ 255 return child; 256 } 257 258 static bool tcp_fastopen_queue_check(struct sock *sk) 259 { 260 struct fastopen_queue *fastopenq; 261 262 /* Make sure the listener has enabled fastopen, and we don't 263 * exceed the max # of pending TFO requests allowed before trying 264 * to validating the cookie in order to avoid burning CPU cycles 265 * unnecessarily. 266 * 267 * XXX (TFO) - The implication of checking the max_qlen before 268 * processing a cookie request is that clients can't differentiate 269 * between qlen overflow causing Fast Open to be disabled 270 * temporarily vs a server not supporting Fast Open at all. 271 */ 272 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; 273 if (fastopenq->max_qlen == 0) 274 return false; 275 276 if (fastopenq->qlen >= fastopenq->max_qlen) { 277 struct request_sock *req1; 278 spin_lock(&fastopenq->lock); 279 req1 = fastopenq->rskq_rst_head; 280 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { 281 __NET_INC_STATS(sock_net(sk), 282 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 283 spin_unlock(&fastopenq->lock); 284 return false; 285 } 286 fastopenq->rskq_rst_head = req1->dl_next; 287 fastopenq->qlen--; 288 spin_unlock(&fastopenq->lock); 289 reqsk_put(req1); 290 } 291 return true; 292 } 293 294 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) 295 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open 296 * cookie request (foc->len == 0). 297 */ 298 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 299 struct request_sock *req, 300 struct tcp_fastopen_cookie *foc) 301 { 302 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; 303 int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 304 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 305 struct sock *child; 306 307 if (foc->len == 0) /* Client requests a cookie */ 308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); 309 310 if (!((tcp_fastopen & TFO_SERVER_ENABLE) && 311 (syn_data || foc->len >= 0) && 312 tcp_fastopen_queue_check(sk))) { 313 foc->len = -1; 314 return NULL; 315 } 316 317 if (syn_data && (tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD)) 318 goto fastopen; 319 320 if (foc->len >= 0 && /* Client presents or requests a cookie */ 321 tcp_fastopen_cookie_gen(sock_net(sk), req, skb, &valid_foc) && 322 foc->len == TCP_FASTOPEN_COOKIE_SIZE && 323 foc->len == valid_foc.len && 324 !memcmp(foc->val, valid_foc.val, foc->len)) { 325 /* Cookie is valid. Create a (full) child socket to accept 326 * the data in SYN before returning a SYN-ACK to ack the 327 * data. If we fail to create the socket, fall back and 328 * ack the ISN only but includes the same cookie. 329 * 330 * Note: Data-less SYN with valid cookie is allowed to send 331 * data in SYN_RECV state. 332 */ 333 fastopen: 334 child = tcp_fastopen_create_child(sk, skb, req); 335 if (child) { 336 foc->len = -1; 337 NET_INC_STATS(sock_net(sk), 338 LINUX_MIB_TCPFASTOPENPASSIVE); 339 return child; 340 } 341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 342 } else if (foc->len > 0) /* Client presents an invalid cookie */ 343 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 344 345 valid_foc.exp = foc->exp; 346 *foc = valid_foc; 347 return NULL; 348 } 349 350 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 351 struct tcp_fastopen_cookie *cookie) 352 { 353 unsigned long last_syn_loss = 0; 354 int syn_loss = 0; 355 356 tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss); 357 358 /* Recurring FO SYN losses: no cookie or data in SYN */ 359 if (syn_loss > 1 && 360 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 361 cookie->len = -1; 362 return false; 363 } 364 365 /* Firewall blackhole issue check */ 366 if (tcp_fastopen_active_should_disable(sk)) { 367 cookie->len = -1; 368 return false; 369 } 370 371 if (sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) { 372 cookie->len = -1; 373 return true; 374 } 375 return cookie->len > 0; 376 } 377 378 /* This function checks if we want to defer sending SYN until the first 379 * write(). We defer under the following conditions: 380 * 1. fastopen_connect sockopt is set 381 * 2. we have a valid cookie 382 * Return value: return true if we want to defer until application writes data 383 * return false if we want to send out SYN immediately 384 */ 385 bool tcp_fastopen_defer_connect(struct sock *sk, int *err) 386 { 387 struct tcp_fastopen_cookie cookie = { .len = 0 }; 388 struct tcp_sock *tp = tcp_sk(sk); 389 u16 mss; 390 391 if (tp->fastopen_connect && !tp->fastopen_req) { 392 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { 393 inet_sk(sk)->defer_connect = 1; 394 return true; 395 } 396 397 /* Alloc fastopen_req in order for FO option to be included 398 * in SYN 399 */ 400 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), 401 sk->sk_allocation); 402 if (tp->fastopen_req) 403 tp->fastopen_req->cookie = cookie; 404 else 405 *err = -ENOBUFS; 406 } 407 return false; 408 } 409 EXPORT_SYMBOL(tcp_fastopen_defer_connect); 410 411 /* 412 * The following code block is to deal with middle box issues with TFO: 413 * Middlebox firewall issues can potentially cause server's data being 414 * blackholed after a successful 3WHS using TFO. 415 * The proposed solution is to disable active TFO globally under the 416 * following circumstances: 417 * 1. client side TFO socket receives out of order FIN 418 * 2. client side TFO socket receives out of order RST 419 * We disable active side TFO globally for 1hr at first. Then if it 420 * happens again, we disable it for 2h, then 4h, 8h, ... 421 * And we reset the timeout back to 1hr when we see a successful active 422 * TFO connection with data exchanges. 423 */ 424 425 /* Disable active TFO and record current jiffies and 426 * tfo_active_disable_times 427 */ 428 void tcp_fastopen_active_disable(struct sock *sk) 429 { 430 struct net *net = sock_net(sk); 431 432 atomic_inc(&net->ipv4.tfo_active_disable_times); 433 net->ipv4.tfo_active_disable_stamp = jiffies; 434 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); 435 } 436 437 /* Calculate timeout for tfo active disable 438 * Return true if we are still in the active TFO disable period 439 * Return false if timeout already expired and we should use active TFO 440 */ 441 bool tcp_fastopen_active_should_disable(struct sock *sk) 442 { 443 unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; 444 int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); 445 unsigned long timeout; 446 int multiplier; 447 448 if (!tfo_da_times) 449 return false; 450 451 /* Limit timout to max: 2^6 * initial timeout */ 452 multiplier = 1 << min(tfo_da_times - 1, 6); 453 timeout = multiplier * tfo_bh_timeout * HZ; 454 if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout)) 455 return true; 456 457 /* Mark check bit so we can check for successful active TFO 458 * condition and reset tfo_active_disable_times 459 */ 460 tcp_sk(sk)->syn_fastopen_ch = 1; 461 return false; 462 } 463 464 /* Disable active TFO if FIN is the only packet in the ofo queue 465 * and no data is received. 466 * Also check if we can reset tfo_active_disable_times if data is 467 * received successfully on a marked active TFO sockets opened on 468 * a non-loopback interface 469 */ 470 void tcp_fastopen_active_disable_ofo_check(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct rb_node *p; 474 struct sk_buff *skb; 475 struct dst_entry *dst; 476 477 if (!tp->syn_fastopen) 478 return; 479 480 if (!tp->data_segs_in) { 481 p = rb_first(&tp->out_of_order_queue); 482 if (p && !rb_next(p)) { 483 skb = rb_entry(p, struct sk_buff, rbnode); 484 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 485 tcp_fastopen_active_disable(sk); 486 return; 487 } 488 } 489 } else if (tp->syn_fastopen_ch && 490 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { 491 dst = sk_dst_get(sk); 492 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) 493 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); 494 dst_release(dst); 495 } 496 } 497