xref: /openbmc/linux/net/ipv4/tcp_cubic.c (revision e8f6f3b4)
1 /*
2  * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3  * Home page:
4  *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5  * This is from the implementation of CUBIC TCP in
6  * Sangtae Ha, Injong Rhee and Lisong Xu,
7  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8  *  in ACM SIGOPS Operating System Review, July 2008.
9  * Available from:
10  *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11  *
12  * CUBIC integrates a new slow start algorithm, called HyStart.
13  * The details of HyStart are presented in
14  *  Sangtae Ha and Injong Rhee,
15  *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16  * Available from:
17  *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18  *
19  * All testing results are available from:
20  * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21  *
22  * Unless CUBIC is enabled and congestion window is large
23  * this behaves the same as the original Reno.
24  */
25 
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/math64.h>
29 #include <net/tcp.h>
30 
31 #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
32 					 * max_cwnd = snd_cwnd * beta
33 					 */
34 #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
35 
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN	0x1
38 #define HYSTART_DELAY		0x2
39 
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES	8
42 #define HYSTART_DELAY_MIN	(4U<<3)
43 #define HYSTART_DELAY_MAX	(16U<<3)
44 #define HYSTART_DELAY_THRESH(x)	clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45 
46 static int fast_convergence __read_mostly = 1;
47 static int beta __read_mostly = 717;	/* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly;
49 static int bic_scale __read_mostly = 41;
50 static int tcp_friendliness __read_mostly = 1;
51 
52 static int hystart __read_mostly = 1;
53 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54 static int hystart_low_window __read_mostly = 16;
55 static int hystart_ack_delta __read_mostly = 2;
56 
57 static u32 cube_rtt_scale __read_mostly;
58 static u32 beta_scale __read_mostly;
59 static u64 cube_factor __read_mostly;
60 
61 /* Note parameters that are used for precomputing scale factors are read-only */
62 module_param(fast_convergence, int, 0644);
63 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64 module_param(beta, int, 0644);
65 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66 module_param(initial_ssthresh, int, 0644);
67 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68 module_param(bic_scale, int, 0444);
69 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70 module_param(tcp_friendliness, int, 0644);
71 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72 module_param(hystart, int, 0644);
73 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74 module_param(hystart_detect, int, 0644);
75 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 		 " 1: packet-train 2: delay 3: both packet-train and delay");
77 module_param(hystart_low_window, int, 0644);
78 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79 module_param(hystart_ack_delta, int, 0644);
80 MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81 
82 /* BIC TCP Parameters */
83 struct bictcp {
84 	u32	cnt;		/* increase cwnd by 1 after ACKs */
85 	u32	last_max_cwnd;	/* last maximum snd_cwnd */
86 	u32	loss_cwnd;	/* congestion window at last loss */
87 	u32	last_cwnd;	/* the last snd_cwnd */
88 	u32	last_time;	/* time when updated last_cwnd */
89 	u32	bic_origin_point;/* origin point of bic function */
90 	u32	bic_K;		/* time to origin point
91 				   from the beginning of the current epoch */
92 	u32	delay_min;	/* min delay (msec << 3) */
93 	u32	epoch_start;	/* beginning of an epoch */
94 	u32	ack_cnt;	/* number of acks */
95 	u32	tcp_cwnd;	/* estimated tcp cwnd */
96 #define ACK_RATIO_SHIFT	4
97 #define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
98 	u16	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
99 	u8	sample_cnt;	/* number of samples to decide curr_rtt */
100 	u8	found;		/* the exit point is found? */
101 	u32	round_start;	/* beginning of each round */
102 	u32	end_seq;	/* end_seq of the round */
103 	u32	last_ack;	/* last time when the ACK spacing is close */
104 	u32	curr_rtt;	/* the minimum rtt of current round */
105 };
106 
107 static inline void bictcp_reset(struct bictcp *ca)
108 {
109 	ca->cnt = 0;
110 	ca->last_max_cwnd = 0;
111 	ca->last_cwnd = 0;
112 	ca->last_time = 0;
113 	ca->bic_origin_point = 0;
114 	ca->bic_K = 0;
115 	ca->delay_min = 0;
116 	ca->epoch_start = 0;
117 	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118 	ca->ack_cnt = 0;
119 	ca->tcp_cwnd = 0;
120 	ca->found = 0;
121 }
122 
123 static inline u32 bictcp_clock(void)
124 {
125 #if HZ < 1000
126 	return ktime_to_ms(ktime_get_real());
127 #else
128 	return jiffies_to_msecs(jiffies);
129 #endif
130 }
131 
132 static inline void bictcp_hystart_reset(struct sock *sk)
133 {
134 	struct tcp_sock *tp = tcp_sk(sk);
135 	struct bictcp *ca = inet_csk_ca(sk);
136 
137 	ca->round_start = ca->last_ack = bictcp_clock();
138 	ca->end_seq = tp->snd_nxt;
139 	ca->curr_rtt = 0;
140 	ca->sample_cnt = 0;
141 }
142 
143 static void bictcp_init(struct sock *sk)
144 {
145 	struct bictcp *ca = inet_csk_ca(sk);
146 
147 	bictcp_reset(ca);
148 	ca->loss_cwnd = 0;
149 
150 	if (hystart)
151 		bictcp_hystart_reset(sk);
152 
153 	if (!hystart && initial_ssthresh)
154 		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
155 }
156 
157 /* calculate the cubic root of x using a table lookup followed by one
158  * Newton-Raphson iteration.
159  * Avg err ~= 0.195%
160  */
161 static u32 cubic_root(u64 a)
162 {
163 	u32 x, b, shift;
164 	/*
165 	 * cbrt(x) MSB values for x MSB values in [0..63].
166 	 * Precomputed then refined by hand - Willy Tarreau
167 	 *
168 	 * For x in [0..63],
169 	 *   v = cbrt(x << 18) - 1
170 	 *   cbrt(x) = (v[x] + 10) >> 6
171 	 */
172 	static const u8 v[] = {
173 		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
174 		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
175 		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
176 		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
177 		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
178 		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
179 		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
180 		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
181 	};
182 
183 	b = fls64(a);
184 	if (b < 7) {
185 		/* a in [0..63] */
186 		return ((u32)v[(u32)a] + 35) >> 6;
187 	}
188 
189 	b = ((b * 84) >> 8) - 1;
190 	shift = (a >> (b * 3));
191 
192 	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
193 
194 	/*
195 	 * Newton-Raphson iteration
196 	 *                         2
197 	 * x    = ( 2 * x  +  a / x  ) / 3
198 	 *  k+1          k         k
199 	 */
200 	x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
201 	x = ((x * 341) >> 10);
202 	return x;
203 }
204 
205 /*
206  * Compute congestion window to use.
207  */
208 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
209 {
210 	u32 delta, bic_target, max_cnt;
211 	u64 offs, t;
212 
213 	ca->ack_cnt++;	/* count the number of ACKs */
214 
215 	if (ca->last_cwnd == cwnd &&
216 	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
217 		return;
218 
219 	ca->last_cwnd = cwnd;
220 	ca->last_time = tcp_time_stamp;
221 
222 	if (ca->epoch_start == 0) {
223 		ca->epoch_start = tcp_time_stamp;	/* record beginning */
224 		ca->ack_cnt = 1;			/* start counting */
225 		ca->tcp_cwnd = cwnd;			/* syn with cubic */
226 
227 		if (ca->last_max_cwnd <= cwnd) {
228 			ca->bic_K = 0;
229 			ca->bic_origin_point = cwnd;
230 		} else {
231 			/* Compute new K based on
232 			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
233 			 */
234 			ca->bic_K = cubic_root(cube_factor
235 					       * (ca->last_max_cwnd - cwnd));
236 			ca->bic_origin_point = ca->last_max_cwnd;
237 		}
238 	}
239 
240 	/* cubic function - calc*/
241 	/* calculate c * time^3 / rtt,
242 	 *  while considering overflow in calculation of time^3
243 	 * (so time^3 is done by using 64 bit)
244 	 * and without the support of division of 64bit numbers
245 	 * (so all divisions are done by using 32 bit)
246 	 *  also NOTE the unit of those veriables
247 	 *	  time  = (t - K) / 2^bictcp_HZ
248 	 *	  c = bic_scale >> 10
249 	 * rtt  = (srtt >> 3) / HZ
250 	 * !!! The following code does not have overflow problems,
251 	 * if the cwnd < 1 million packets !!!
252 	 */
253 
254 	t = (s32)(tcp_time_stamp - ca->epoch_start);
255 	t += msecs_to_jiffies(ca->delay_min >> 3);
256 	/* change the unit from HZ to bictcp_HZ */
257 	t <<= BICTCP_HZ;
258 	do_div(t, HZ);
259 
260 	if (t < ca->bic_K)		/* t - K */
261 		offs = ca->bic_K - t;
262 	else
263 		offs = t - ca->bic_K;
264 
265 	/* c/rtt * (t-K)^3 */
266 	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
267 	if (t < ca->bic_K)                            /* below origin*/
268 		bic_target = ca->bic_origin_point - delta;
269 	else                                          /* above origin*/
270 		bic_target = ca->bic_origin_point + delta;
271 
272 	/* cubic function - calc bictcp_cnt*/
273 	if (bic_target > cwnd) {
274 		ca->cnt = cwnd / (bic_target - cwnd);
275 	} else {
276 		ca->cnt = 100 * cwnd;              /* very small increment*/
277 	}
278 
279 	/*
280 	 * The initial growth of cubic function may be too conservative
281 	 * when the available bandwidth is still unknown.
282 	 */
283 	if (ca->last_max_cwnd == 0 && ca->cnt > 20)
284 		ca->cnt = 20;	/* increase cwnd 5% per RTT */
285 
286 	/* TCP Friendly */
287 	if (tcp_friendliness) {
288 		u32 scale = beta_scale;
289 
290 		delta = (cwnd * scale) >> 3;
291 		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
292 			ca->ack_cnt -= delta;
293 			ca->tcp_cwnd++;
294 		}
295 
296 		if (ca->tcp_cwnd > cwnd) {	/* if bic is slower than tcp */
297 			delta = ca->tcp_cwnd - cwnd;
298 			max_cnt = cwnd / delta;
299 			if (ca->cnt > max_cnt)
300 				ca->cnt = max_cnt;
301 		}
302 	}
303 
304 	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
305 	if (ca->cnt == 0)			/* cannot be zero */
306 		ca->cnt = 1;
307 }
308 
309 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
310 {
311 	struct tcp_sock *tp = tcp_sk(sk);
312 	struct bictcp *ca = inet_csk_ca(sk);
313 
314 	if (!tcp_is_cwnd_limited(sk))
315 		return;
316 
317 	if (tp->snd_cwnd <= tp->snd_ssthresh) {
318 		if (hystart && after(ack, ca->end_seq))
319 			bictcp_hystart_reset(sk);
320 		tcp_slow_start(tp, acked);
321 	} else {
322 		bictcp_update(ca, tp->snd_cwnd);
323 		tcp_cong_avoid_ai(tp, ca->cnt);
324 	}
325 }
326 
327 static u32 bictcp_recalc_ssthresh(struct sock *sk)
328 {
329 	const struct tcp_sock *tp = tcp_sk(sk);
330 	struct bictcp *ca = inet_csk_ca(sk);
331 
332 	ca->epoch_start = 0;	/* end of epoch */
333 
334 	/* Wmax and fast convergence */
335 	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
336 		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
337 			/ (2 * BICTCP_BETA_SCALE);
338 	else
339 		ca->last_max_cwnd = tp->snd_cwnd;
340 
341 	ca->loss_cwnd = tp->snd_cwnd;
342 
343 	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
344 }
345 
346 static u32 bictcp_undo_cwnd(struct sock *sk)
347 {
348 	struct bictcp *ca = inet_csk_ca(sk);
349 
350 	return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
351 }
352 
353 static void bictcp_state(struct sock *sk, u8 new_state)
354 {
355 	if (new_state == TCP_CA_Loss) {
356 		bictcp_reset(inet_csk_ca(sk));
357 		bictcp_hystart_reset(sk);
358 	}
359 }
360 
361 static void hystart_update(struct sock *sk, u32 delay)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 	struct bictcp *ca = inet_csk_ca(sk);
365 
366 	if (ca->found & hystart_detect)
367 		return;
368 
369 	if (hystart_detect & HYSTART_ACK_TRAIN) {
370 		u32 now = bictcp_clock();
371 
372 		/* first detection parameter - ack-train detection */
373 		if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
374 			ca->last_ack = now;
375 			if ((s32)(now - ca->round_start) > ca->delay_min >> 4) {
376 				ca->found |= HYSTART_ACK_TRAIN;
377 				NET_INC_STATS_BH(sock_net(sk),
378 						 LINUX_MIB_TCPHYSTARTTRAINDETECT);
379 				NET_ADD_STATS_BH(sock_net(sk),
380 						 LINUX_MIB_TCPHYSTARTTRAINCWND,
381 						 tp->snd_cwnd);
382 				tp->snd_ssthresh = tp->snd_cwnd;
383 			}
384 		}
385 	}
386 
387 	if (hystart_detect & HYSTART_DELAY) {
388 		/* obtain the minimum delay of more than sampling packets */
389 		if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
390 			if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
391 				ca->curr_rtt = delay;
392 
393 			ca->sample_cnt++;
394 		} else {
395 			if (ca->curr_rtt > ca->delay_min +
396 			    HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
397 				ca->found |= HYSTART_DELAY;
398 				NET_INC_STATS_BH(sock_net(sk),
399 						 LINUX_MIB_TCPHYSTARTDELAYDETECT);
400 				NET_ADD_STATS_BH(sock_net(sk),
401 						 LINUX_MIB_TCPHYSTARTDELAYCWND,
402 						 tp->snd_cwnd);
403 				tp->snd_ssthresh = tp->snd_cwnd;
404 			}
405 		}
406 	}
407 }
408 
409 /* Track delayed acknowledgment ratio using sliding window
410  * ratio = (15*ratio + sample) / 16
411  */
412 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
413 {
414 	const struct inet_connection_sock *icsk = inet_csk(sk);
415 	const struct tcp_sock *tp = tcp_sk(sk);
416 	struct bictcp *ca = inet_csk_ca(sk);
417 	u32 delay;
418 
419 	if (icsk->icsk_ca_state == TCP_CA_Open) {
420 		u32 ratio = ca->delayed_ack;
421 
422 		ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
423 		ratio += cnt;
424 
425 		ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
426 	}
427 
428 	/* Some calls are for duplicates without timetamps */
429 	if (rtt_us < 0)
430 		return;
431 
432 	/* Discard delay samples right after fast recovery */
433 	if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
434 		return;
435 
436 	delay = (rtt_us << 3) / USEC_PER_MSEC;
437 	if (delay == 0)
438 		delay = 1;
439 
440 	/* first time call or link delay decreases */
441 	if (ca->delay_min == 0 || ca->delay_min > delay)
442 		ca->delay_min = delay;
443 
444 	/* hystart triggers when cwnd is larger than some threshold */
445 	if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
446 	    tp->snd_cwnd >= hystart_low_window)
447 		hystart_update(sk, delay);
448 }
449 
450 static struct tcp_congestion_ops cubictcp __read_mostly = {
451 	.init		= bictcp_init,
452 	.ssthresh	= bictcp_recalc_ssthresh,
453 	.cong_avoid	= bictcp_cong_avoid,
454 	.set_state	= bictcp_state,
455 	.undo_cwnd	= bictcp_undo_cwnd,
456 	.pkts_acked     = bictcp_acked,
457 	.owner		= THIS_MODULE,
458 	.name		= "cubic",
459 };
460 
461 static int __init cubictcp_register(void)
462 {
463 	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
464 
465 	/* Precompute a bunch of the scaling factors that are used per-packet
466 	 * based on SRTT of 100ms
467 	 */
468 
469 	beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
470 		/ (BICTCP_BETA_SCALE - beta);
471 
472 	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
473 
474 	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
475 	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
476 	 * the unit of K is bictcp_HZ=2^10, not HZ
477 	 *
478 	 *  c = bic_scale >> 10
479 	 *  rtt = 100ms
480 	 *
481 	 * the following code has been designed and tested for
482 	 * cwnd < 1 million packets
483 	 * RTT < 100 seconds
484 	 * HZ < 1,000,00  (corresponding to 10 nano-second)
485 	 */
486 
487 	/* 1/c * 2^2*bictcp_HZ * srtt */
488 	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
489 
490 	/* divide by bic_scale and by constant Srtt (100ms) */
491 	do_div(cube_factor, bic_scale * 10);
492 
493 	return tcp_register_congestion_control(&cubictcp);
494 }
495 
496 static void __exit cubictcp_unregister(void)
497 {
498 	tcp_unregister_congestion_control(&cubictcp);
499 }
500 
501 module_init(cubictcp_register);
502 module_exit(cubictcp_unregister);
503 
504 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
505 MODULE_LICENSE("GPL");
506 MODULE_DESCRIPTION("CUBIC TCP");
507 MODULE_VERSION("2.3");
508