xref: /openbmc/linux/net/ipv4/tcp_cubic.c (revision a17627ef)
1 /*
2  * TCP CUBIC: Binary Increase Congestion control for TCP v2.1
3  *
4  * This is from the implementation of CUBIC TCP in
5  * Injong Rhee, Lisong Xu.
6  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
7  *  in PFLDnet 2005
8  * Available from:
9  *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
10  *
11  * Unless CUBIC is enabled and congestion window is large
12  * this behaves the same as the original Reno.
13  */
14 
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <net/tcp.h>
18 #include <asm/div64.h>
19 
20 #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
21 					 * max_cwnd = snd_cwnd * beta
22 					 */
23 #define BICTCP_B		4	 /*
24 					  * In binary search,
25 					  * go to point (max+min)/N
26 					  */
27 #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
28 
29 static int fast_convergence __read_mostly = 1;
30 static int max_increment __read_mostly = 16;
31 static int beta __read_mostly = 819;	/* = 819/1024 (BICTCP_BETA_SCALE) */
32 static int initial_ssthresh __read_mostly = 100;
33 static int bic_scale __read_mostly = 41;
34 static int tcp_friendliness __read_mostly = 1;
35 
36 static u32 cube_rtt_scale __read_mostly;
37 static u32 beta_scale __read_mostly;
38 static u64 cube_factor __read_mostly;
39 
40 /* Note parameters that are used for precomputing scale factors are read-only */
41 module_param(fast_convergence, int, 0644);
42 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
43 module_param(max_increment, int, 0644);
44 MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
45 module_param(beta, int, 0444);
46 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
47 module_param(initial_ssthresh, int, 0644);
48 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
49 module_param(bic_scale, int, 0444);
50 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
51 module_param(tcp_friendliness, int, 0644);
52 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
53 
54 /* BIC TCP Parameters */
55 struct bictcp {
56 	u32	cnt;		/* increase cwnd by 1 after ACKs */
57 	u32 	last_max_cwnd;	/* last maximum snd_cwnd */
58 	u32	loss_cwnd;	/* congestion window at last loss */
59 	u32	last_cwnd;	/* the last snd_cwnd */
60 	u32	last_time;	/* time when updated last_cwnd */
61 	u32	bic_origin_point;/* origin point of bic function */
62 	u32	bic_K;		/* time to origin point from the beginning of the current epoch */
63 	u32	delay_min;	/* min delay */
64 	u32	epoch_start;	/* beginning of an epoch */
65 	u32	ack_cnt;	/* number of acks */
66 	u32	tcp_cwnd;	/* estimated tcp cwnd */
67 #define ACK_RATIO_SHIFT	4
68 	u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
69 };
70 
71 static inline void bictcp_reset(struct bictcp *ca)
72 {
73 	ca->cnt = 0;
74 	ca->last_max_cwnd = 0;
75 	ca->loss_cwnd = 0;
76 	ca->last_cwnd = 0;
77 	ca->last_time = 0;
78 	ca->bic_origin_point = 0;
79 	ca->bic_K = 0;
80 	ca->delay_min = 0;
81 	ca->epoch_start = 0;
82 	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
83 	ca->ack_cnt = 0;
84 	ca->tcp_cwnd = 0;
85 }
86 
87 static void bictcp_init(struct sock *sk)
88 {
89 	bictcp_reset(inet_csk_ca(sk));
90 	if (initial_ssthresh)
91 		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
92 }
93 
94 /* calculate the cubic root of x using a table lookup followed by one
95  * Newton-Raphson iteration.
96  * Avg err ~= 0.195%
97  */
98 static u32 cubic_root(u64 a)
99 {
100 	u32 x, b, shift;
101 	/*
102 	 * cbrt(x) MSB values for x MSB values in [0..63].
103 	 * Precomputed then refined by hand - Willy Tarreau
104 	 *
105 	 * For x in [0..63],
106 	 *   v = cbrt(x << 18) - 1
107 	 *   cbrt(x) = (v[x] + 10) >> 6
108 	 */
109 	static const u8 v[] = {
110 		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
111 		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
112 		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
113 		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
114 		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
115 		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
116 		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
117 		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
118 	};
119 
120 	b = fls64(a);
121 	if (b < 7) {
122 		/* a in [0..63] */
123 		return ((u32)v[(u32)a] + 35) >> 6;
124 	}
125 
126 	b = ((b * 84) >> 8) - 1;
127 	shift = (a >> (b * 3));
128 
129 	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
130 
131 	/*
132 	 * Newton-Raphson iteration
133 	 *                         2
134 	 * x    = ( 2 * x  +  a / x  ) / 3
135 	 *  k+1          k         k
136 	 */
137 	x = (2 * x + (u32)div64_64(a, (u64)x * (u64)(x - 1)));
138 	x = ((x * 341) >> 10);
139 	return x;
140 }
141 
142 /*
143  * Compute congestion window to use.
144  */
145 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
146 {
147 	u64 offs;
148 	u32 delta, t, bic_target, min_cnt, max_cnt;
149 
150 	ca->ack_cnt++;	/* count the number of ACKs */
151 
152 	if (ca->last_cwnd == cwnd &&
153 	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
154 		return;
155 
156 	ca->last_cwnd = cwnd;
157 	ca->last_time = tcp_time_stamp;
158 
159 	if (ca->epoch_start == 0) {
160 		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */
161 		ca->ack_cnt = 1;			/* start counting */
162 		ca->tcp_cwnd = cwnd;			/* syn with cubic */
163 
164 		if (ca->last_max_cwnd <= cwnd) {
165 			ca->bic_K = 0;
166 			ca->bic_origin_point = cwnd;
167 		} else {
168 			/* Compute new K based on
169 			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
170 			 */
171 			ca->bic_K = cubic_root(cube_factor
172 					       * (ca->last_max_cwnd - cwnd));
173 			ca->bic_origin_point = ca->last_max_cwnd;
174 		}
175 	}
176 
177 	/* cubic function - calc*/
178 	/* calculate c * time^3 / rtt,
179 	 *  while considering overflow in calculation of time^3
180 	 * (so time^3 is done by using 64 bit)
181 	 * and without the support of division of 64bit numbers
182 	 * (so all divisions are done by using 32 bit)
183 	 *  also NOTE the unit of those veriables
184 	 *	  time  = (t - K) / 2^bictcp_HZ
185 	 *	  c = bic_scale >> 10
186 	 * rtt  = (srtt >> 3) / HZ
187 	 * !!! The following code does not have overflow problems,
188 	 * if the cwnd < 1 million packets !!!
189 	 */
190 
191 	/* change the unit from HZ to bictcp_HZ */
192 	t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)
193 	     << BICTCP_HZ) / HZ;
194 
195 	if (t < ca->bic_K)		/* t - K */
196 		offs = ca->bic_K - t;
197 	else
198 		offs = t - ca->bic_K;
199 
200 	/* c/rtt * (t-K)^3 */
201 	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
202 	if (t < ca->bic_K)                                	/* below origin*/
203 		bic_target = ca->bic_origin_point - delta;
204 	else                                                	/* above origin*/
205 		bic_target = ca->bic_origin_point + delta;
206 
207 	/* cubic function - calc bictcp_cnt*/
208 	if (bic_target > cwnd) {
209 		ca->cnt = cwnd / (bic_target - cwnd);
210 	} else {
211 		ca->cnt = 100 * cwnd;              /* very small increment*/
212 	}
213 
214 	if (ca->delay_min > 0) {
215 		/* max increment = Smax * rtt / 0.1  */
216 		min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
217 
218 		/* use concave growth when the target is above the origin */
219 		if (ca->cnt < min_cnt && t >= ca->bic_K)
220 			ca->cnt = min_cnt;
221 	}
222 
223 	/* slow start and low utilization  */
224 	if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */
225 		ca->cnt = 50;
226 
227 	/* TCP Friendly */
228 	if (tcp_friendliness) {
229 		u32 scale = beta_scale;
230 		delta = (cwnd * scale) >> 3;
231 		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
232 			ca->ack_cnt -= delta;
233 			ca->tcp_cwnd++;
234 		}
235 
236 		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */
237 			delta = ca->tcp_cwnd - cwnd;
238 			max_cnt = cwnd / delta;
239 			if (ca->cnt > max_cnt)
240 				ca->cnt = max_cnt;
241 		}
242 	}
243 
244 	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
245 	if (ca->cnt == 0)			/* cannot be zero */
246 		ca->cnt = 1;
247 }
248 
249 
250 /* Keep track of minimum rtt */
251 static inline void measure_delay(struct sock *sk)
252 {
253 	const struct tcp_sock *tp = tcp_sk(sk);
254 	struct bictcp *ca = inet_csk_ca(sk);
255 	u32 delay;
256 
257 	/* No time stamp */
258 	if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
259 	     /* Discard delay samples right after fast recovery */
260 	    (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
261 		return;
262 
263 	delay = (tcp_time_stamp - tp->rx_opt.rcv_tsecr)<<3;
264 	if (delay == 0)
265 		delay = 1;
266 
267 	/* first time call or link delay decreases */
268 	if (ca->delay_min == 0 || ca->delay_min > delay)
269 		ca->delay_min = delay;
270 }
271 
272 static void bictcp_cong_avoid(struct sock *sk, u32 ack,
273 			      u32 seq_rtt, u32 in_flight, int data_acked)
274 {
275 	struct tcp_sock *tp = tcp_sk(sk);
276 	struct bictcp *ca = inet_csk_ca(sk);
277 
278 	if (data_acked)
279 		measure_delay(sk);
280 
281 	if (!tcp_is_cwnd_limited(sk, in_flight))
282 		return;
283 
284 	if (tp->snd_cwnd <= tp->snd_ssthresh)
285 		tcp_slow_start(tp);
286 	else {
287 		bictcp_update(ca, tp->snd_cwnd);
288 
289 		/* In dangerous area, increase slowly.
290 		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
291 		 */
292 		if (tp->snd_cwnd_cnt >= ca->cnt) {
293 			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
294 				tp->snd_cwnd++;
295 			tp->snd_cwnd_cnt = 0;
296 		} else
297 			tp->snd_cwnd_cnt++;
298 	}
299 
300 }
301 
302 static u32 bictcp_recalc_ssthresh(struct sock *sk)
303 {
304 	const struct tcp_sock *tp = tcp_sk(sk);
305 	struct bictcp *ca = inet_csk_ca(sk);
306 
307 	ca->epoch_start = 0;	/* end of epoch */
308 
309 	/* Wmax and fast convergence */
310 	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
311 		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
312 			/ (2 * BICTCP_BETA_SCALE);
313 	else
314 		ca->last_max_cwnd = tp->snd_cwnd;
315 
316 	ca->loss_cwnd = tp->snd_cwnd;
317 
318 	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
319 }
320 
321 static u32 bictcp_undo_cwnd(struct sock *sk)
322 {
323 	struct bictcp *ca = inet_csk_ca(sk);
324 
325 	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
326 }
327 
328 static void bictcp_state(struct sock *sk, u8 new_state)
329 {
330 	if (new_state == TCP_CA_Loss)
331 		bictcp_reset(inet_csk_ca(sk));
332 }
333 
334 /* Track delayed acknowledgment ratio using sliding window
335  * ratio = (15*ratio + sample) / 16
336  */
337 static void bictcp_acked(struct sock *sk, u32 cnt, ktime_t last)
338 {
339 	const struct inet_connection_sock *icsk = inet_csk(sk);
340 
341 	if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
342 		struct bictcp *ca = inet_csk_ca(sk);
343 		cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
344 		ca->delayed_ack += cnt;
345 	}
346 }
347 
348 
349 static struct tcp_congestion_ops cubictcp = {
350 	.init		= bictcp_init,
351 	.ssthresh	= bictcp_recalc_ssthresh,
352 	.cong_avoid	= bictcp_cong_avoid,
353 	.set_state	= bictcp_state,
354 	.undo_cwnd	= bictcp_undo_cwnd,
355 	.pkts_acked     = bictcp_acked,
356 	.owner		= THIS_MODULE,
357 	.name		= "cubic",
358 };
359 
360 static int __init cubictcp_register(void)
361 {
362 	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
363 
364 	/* Precompute a bunch of the scaling factors that are used per-packet
365 	 * based on SRTT of 100ms
366 	 */
367 
368 	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
369 
370 	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
371 
372 	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
373 	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
374 	 * the unit of K is bictcp_HZ=2^10, not HZ
375 	 *
376 	 *  c = bic_scale >> 10
377 	 *  rtt = 100ms
378 	 *
379 	 * the following code has been designed and tested for
380 	 * cwnd < 1 million packets
381 	 * RTT < 100 seconds
382 	 * HZ < 1,000,00  (corresponding to 10 nano-second)
383 	 */
384 
385 	/* 1/c * 2^2*bictcp_HZ * srtt */
386 	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
387 
388 	/* divide by bic_scale and by constant Srtt (100ms) */
389 	do_div(cube_factor, bic_scale * 10);
390 
391 	return tcp_register_congestion_control(&cubictcp);
392 }
393 
394 static void __exit cubictcp_unregister(void)
395 {
396 	tcp_unregister_congestion_control(&cubictcp);
397 }
398 
399 module_init(cubictcp_register);
400 module_exit(cubictcp_unregister);
401 
402 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
403 MODULE_LICENSE("GPL");
404 MODULE_DESCRIPTION("CUBIC TCP");
405 MODULE_VERSION("2.1");
406