xref: /openbmc/linux/net/ipv4/tcp_cubic.c (revision 87c2ce3b)
1 /*
2  * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
3  *
4  * This is from the implementation of CUBIC TCP in
5  * Injong Rhee, Lisong Xu.
6  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
7  *  in PFLDnet 2005
8  * Available from:
9  *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
10  *
11  * Unless CUBIC is enabled and congestion window is large
12  * this behaves the same as the original Reno.
13  */
14 
15 #include <linux/config.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <net/tcp.h>
19 #include <asm/div64.h>
20 
21 #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
22 					 * max_cwnd = snd_cwnd * beta
23 					 */
24 #define BICTCP_B		4	 /*
25 					  * In binary search,
26 					  * go to point (max+min)/N
27 					  */
28 #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
29 
30 static int fast_convergence = 1;
31 static int max_increment = 16;
32 static int beta = 819;		/* = 819/1024 (BICTCP_BETA_SCALE) */
33 static int initial_ssthresh = 100;
34 static int bic_scale = 41;
35 static int tcp_friendliness = 1;
36 
37 static u32 cube_rtt_scale;
38 static u32 beta_scale;
39 static u64 cube_factor;
40 
41 /* Note parameters that are used for precomputing scale factors are read-only */
42 module_param(fast_convergence, int, 0644);
43 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
44 module_param(max_increment, int, 0644);
45 MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
46 module_param(beta, int, 0444);
47 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
48 module_param(initial_ssthresh, int, 0644);
49 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
50 module_param(bic_scale, int, 0444);
51 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
52 module_param(tcp_friendliness, int, 0644);
53 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
54 
55 #include <asm/div64.h>
56 
57 /* BIC TCP Parameters */
58 struct bictcp {
59 	u32	cnt;		/* increase cwnd by 1 after ACKs */
60 	u32 	last_max_cwnd;	/* last maximum snd_cwnd */
61 	u32	loss_cwnd;	/* congestion window at last loss */
62 	u32	last_cwnd;	/* the last snd_cwnd */
63 	u32	last_time;	/* time when updated last_cwnd */
64 	u32	bic_origin_point;/* origin point of bic function */
65 	u32	bic_K;		/* time to origin point from the beginning of the current epoch */
66 	u32	delay_min;	/* min delay */
67 	u32	epoch_start;	/* beginning of an epoch */
68 	u32	ack_cnt;	/* number of acks */
69 	u32	tcp_cwnd;	/* estimated tcp cwnd */
70 #define ACK_RATIO_SHIFT	4
71 	u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
72 };
73 
74 static inline void bictcp_reset(struct bictcp *ca)
75 {
76 	ca->cnt = 0;
77 	ca->last_max_cwnd = 0;
78 	ca->loss_cwnd = 0;
79 	ca->last_cwnd = 0;
80 	ca->last_time = 0;
81 	ca->bic_origin_point = 0;
82 	ca->bic_K = 0;
83 	ca->delay_min = 0;
84 	ca->epoch_start = 0;
85 	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
86 	ca->ack_cnt = 0;
87 	ca->tcp_cwnd = 0;
88 }
89 
90 static void bictcp_init(struct sock *sk)
91 {
92 	bictcp_reset(inet_csk_ca(sk));
93 	if (initial_ssthresh)
94 		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
95 }
96 
97 /* 64bit divisor, dividend and result. dynamic precision */
98 static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor)
99 {
100 	u_int32_t d = divisor;
101 
102 	if (divisor > 0xffffffffULL) {
103 		unsigned int shift = fls(divisor >> 32);
104 
105 		d = divisor >> shift;
106 		dividend >>= shift;
107 	}
108 
109 	/* avoid 64 bit division if possible */
110 	if (dividend >> 32)
111 		do_div(dividend, d);
112 	else
113 		dividend = (uint32_t) dividend / d;
114 
115 	return dividend;
116 }
117 
118 /*
119  * calculate the cubic root of x using Newton-Raphson
120  */
121 static u32 cubic_root(u64 a)
122 {
123 	u32 x, x1;
124 
125 	/* Initial estimate is based on:
126 	 * cbrt(x) = exp(log(x) / 3)
127 	 */
128 	x = 1u << (fls64(a)/3);
129 
130 	/*
131 	 * Iteration based on:
132 	 *                         2
133 	 * x    = ( 2 * x  +  a / x  ) / 3
134 	 *  k+1          k         k
135 	 */
136 	do {
137 		x1 = x;
138 		x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3;
139 	} while (abs(x1 - x) > 1);
140 
141 	return x;
142 }
143 
144 /*
145  * Compute congestion window to use.
146  */
147 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
148 {
149 	u64 offs;
150 	u32 delta, t, bic_target, min_cnt, max_cnt;
151 
152 	ca->ack_cnt++;	/* count the number of ACKs */
153 
154 	if (ca->last_cwnd == cwnd &&
155 	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
156 		return;
157 
158 	ca->last_cwnd = cwnd;
159 	ca->last_time = tcp_time_stamp;
160 
161 	if (ca->epoch_start == 0) {
162 		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */
163 		ca->ack_cnt = 1;			/* start counting */
164 		ca->tcp_cwnd = cwnd;			/* syn with cubic */
165 
166 		if (ca->last_max_cwnd <= cwnd) {
167 			ca->bic_K = 0;
168 			ca->bic_origin_point = cwnd;
169 		} else {
170 			/* Compute new K based on
171 			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
172 			 */
173 			ca->bic_K = cubic_root(cube_factor
174 					       * (ca->last_max_cwnd - cwnd));
175 			ca->bic_origin_point = ca->last_max_cwnd;
176 		}
177 	}
178 
179         /* cubic function - calc*/
180         /* calculate c * time^3 / rtt,
181          *  while considering overflow in calculation of time^3
182 	 * (so time^3 is done by using 64 bit)
183 	 * and without the support of division of 64bit numbers
184 	 * (so all divisions are done by using 32 bit)
185          *  also NOTE the unit of those veriables
186          *	  time  = (t - K) / 2^bictcp_HZ
187          *	  c = bic_scale >> 10
188 	 * rtt  = (srtt >> 3) / HZ
189 	 * !!! The following code does not have overflow problems,
190 	 * if the cwnd < 1 million packets !!!
191          */
192 
193 	/* change the unit from HZ to bictcp_HZ */
194         t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start)
195 	     << BICTCP_HZ) / HZ;
196 
197         if (t < ca->bic_K)		/* t - K */
198 		offs = ca->bic_K - t;
199         else
200                 offs = t - ca->bic_K;
201 
202 	/* c/rtt * (t-K)^3 */
203 	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
204         if (t < ca->bic_K)                                	/* below origin*/
205                 bic_target = ca->bic_origin_point - delta;
206         else                                                	/* above origin*/
207                 bic_target = ca->bic_origin_point + delta;
208 
209         /* cubic function - calc bictcp_cnt*/
210         if (bic_target > cwnd) {
211 		ca->cnt = cwnd / (bic_target - cwnd);
212         } else {
213                 ca->cnt = 100 * cwnd;              /* very small increment*/
214         }
215 
216 	if (ca->delay_min > 0) {
217 		/* max increment = Smax * rtt / 0.1  */
218 		min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
219 		if (ca->cnt < min_cnt)
220 			ca->cnt = min_cnt;
221 	}
222 
223         /* slow start and low utilization  */
224 	if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */
225 		ca->cnt = 50;
226 
227 	/* TCP Friendly */
228 	if (tcp_friendliness) {
229 		u32 scale = beta_scale;
230 		delta = (cwnd * scale) >> 3;
231 	        while (ca->ack_cnt > delta) {		/* update tcp cwnd */
232 	                ca->ack_cnt -= delta;
233         	        ca->tcp_cwnd++;
234 		}
235 
236 		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */
237 			delta = ca->tcp_cwnd - cwnd;
238 			max_cnt = cwnd / delta;
239 			if (ca->cnt > max_cnt)
240 				ca->cnt = max_cnt;
241 		}
242         }
243 
244 	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
245 	if (ca->cnt == 0)			/* cannot be zero */
246 		ca->cnt = 1;
247 }
248 
249 
250 /* Keep track of minimum rtt */
251 static inline void measure_delay(struct sock *sk)
252 {
253 	const struct tcp_sock *tp = tcp_sk(sk);
254 	struct bictcp *ca = inet_csk_ca(sk);
255 	u32 delay;
256 
257 	/* No time stamp */
258 	if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
259 	     /* Discard delay samples right after fast recovery */
260 	    (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
261 		return;
262 
263 	delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
264 	if (delay == 0)
265 		delay = 1;
266 
267 	/* first time call or link delay decreases */
268 	if (ca->delay_min == 0 || ca->delay_min > delay)
269 		ca->delay_min = delay;
270 }
271 
272 static void bictcp_cong_avoid(struct sock *sk, u32 ack,
273 			      u32 seq_rtt, u32 in_flight, int data_acked)
274 {
275 	struct tcp_sock *tp = tcp_sk(sk);
276 	struct bictcp *ca = inet_csk_ca(sk);
277 
278 	if (data_acked)
279 		measure_delay(sk);
280 
281 	if (!tcp_is_cwnd_limited(sk, in_flight))
282 		return;
283 
284 	if (tp->snd_cwnd <= tp->snd_ssthresh)
285 		tcp_slow_start(tp);
286 	else {
287 		bictcp_update(ca, tp->snd_cwnd);
288 
289 		/* In dangerous area, increase slowly.
290 		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
291 		 */
292 		if (tp->snd_cwnd_cnt >= ca->cnt) {
293 			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
294 				tp->snd_cwnd++;
295 			tp->snd_cwnd_cnt = 0;
296 		} else
297 			tp->snd_cwnd_cnt++;
298 	}
299 
300 }
301 
302 static u32 bictcp_recalc_ssthresh(struct sock *sk)
303 {
304 	const struct tcp_sock *tp = tcp_sk(sk);
305 	struct bictcp *ca = inet_csk_ca(sk);
306 
307 	ca->epoch_start = 0;	/* end of epoch */
308 
309 	/* Wmax and fast convergence */
310 	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
311 		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
312 			/ (2 * BICTCP_BETA_SCALE);
313 	else
314 		ca->last_max_cwnd = tp->snd_cwnd;
315 
316 	ca->loss_cwnd = tp->snd_cwnd;
317 
318 	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
319 }
320 
321 static u32 bictcp_undo_cwnd(struct sock *sk)
322 {
323 	struct bictcp *ca = inet_csk_ca(sk);
324 
325 	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
326 }
327 
328 static u32 bictcp_min_cwnd(struct sock *sk)
329 {
330 	return tcp_sk(sk)->snd_ssthresh;
331 }
332 
333 static void bictcp_state(struct sock *sk, u8 new_state)
334 {
335 	if (new_state == TCP_CA_Loss)
336 		bictcp_reset(inet_csk_ca(sk));
337 }
338 
339 /* Track delayed acknowledgment ratio using sliding window
340  * ratio = (15*ratio + sample) / 16
341  */
342 static void bictcp_acked(struct sock *sk, u32 cnt)
343 {
344 	const struct inet_connection_sock *icsk = inet_csk(sk);
345 
346 	if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
347 		struct bictcp *ca = inet_csk_ca(sk);
348 		cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
349 		ca->delayed_ack += cnt;
350 	}
351 }
352 
353 
354 static struct tcp_congestion_ops cubictcp = {
355 	.init		= bictcp_init,
356 	.ssthresh	= bictcp_recalc_ssthresh,
357 	.cong_avoid	= bictcp_cong_avoid,
358 	.set_state	= bictcp_state,
359 	.undo_cwnd	= bictcp_undo_cwnd,
360 	.min_cwnd	= bictcp_min_cwnd,
361 	.pkts_acked     = bictcp_acked,
362 	.owner		= THIS_MODULE,
363 	.name		= "cubic",
364 };
365 
366 static int __init cubictcp_register(void)
367 {
368 	BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
369 
370 	/* Precompute a bunch of the scaling factors that are used per-packet
371 	 * based on SRTT of 100ms
372 	 */
373 
374 	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
375 
376 	cube_rtt_scale = (bic_scale << 3) / 10;	/* 1024*c/rtt */
377 
378 	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
379 	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
380 	 * the unit of K is bictcp_HZ=2^10, not HZ
381 	 *
382 	 *  c = bic_scale >> 10
383 	 *  rtt = 100ms
384 	 *
385 	 * the following code has been designed and tested for
386 	 * cwnd < 1 million packets
387 	 * RTT < 100 seconds
388 	 * HZ < 1,000,00  (corresponding to 10 nano-second)
389 	 */
390 
391 	/* 1/c * 2^2*bictcp_HZ * srtt */
392 	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
393 
394 	/* divide by bic_scale and by constant Srtt (100ms) */
395 	do_div(cube_factor, bic_scale * 10);
396 
397 	return tcp_register_congestion_control(&cubictcp);
398 }
399 
400 static void __exit cubictcp_unregister(void)
401 {
402 	tcp_unregister_congestion_control(&cubictcp);
403 }
404 
405 module_init(cubictcp_register);
406 module_exit(cubictcp_unregister);
407 
408 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
409 MODULE_LICENSE("GPL");
410 MODULE_DESCRIPTION("CUBIC TCP");
411 MODULE_VERSION("2.0");
412