xref: /openbmc/linux/net/ipv4/tcp_bbr.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2  *
3  * BBR congestion control computes the sending rate based on the delivery
4  * rate (throughput) estimated from ACKs. In a nutshell:
5  *
6  *   On each ACK, update our model of the network path:
7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8  *      min_rtt = windowed_min(rtt, 10 seconds)
9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11  *
12  * The core algorithm does not react directly to packet losses or delays,
13  * although BBR may adjust the size of next send per ACK when loss is
14  * observed, or adjust the sending rate if it estimates there is a
15  * traffic policer, in order to keep the drop rate reasonable.
16  *
17  * Here is a state transition diagram for BBR:
18  *
19  *             |
20  *             V
21  *    +---> STARTUP  ----+
22  *    |        |         |
23  *    |        V         |
24  *    |      DRAIN   ----+
25  *    |        |         |
26  *    |        V         |
27  *    +---> PROBE_BW ----+
28  *    |      ^    |      |
29  *    |      |    |      |
30  *    |      +----+      |
31  *    |                  |
32  *    +---- PROBE_RTT <--+
33  *
34  * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35  * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36  * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37  * A long-lived BBR flow spends the vast majority of its time remaining
38  * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39  * in a fair manner, with a small, bounded queue. *If* a flow has been
40  * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41  * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42  * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43  * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44  * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45  * otherwise we enter STARTUP to try to fill the pipe.
46  *
47  * BBR is described in detail in:
48  *   "BBR: Congestion-Based Congestion Control",
49  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51  *
52  * There is a public e-mail list for discussing BBR development and testing:
53  *   https://groups.google.com/forum/#!forum/bbr-dev
54  *
55  * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56  * otherwise TCP stack falls back to an internal pacing using one high
57  * resolution timer per TCP socket and may use more resources.
58  */
59 #include <linux/module.h>
60 #include <net/tcp.h>
61 #include <linux/inet_diag.h>
62 #include <linux/inet.h>
63 #include <linux/random.h>
64 #include <linux/win_minmax.h>
65 
66 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69  * Since the minimum window is >=4 packets, the lower bound isn't
70  * an issue. The upper bound isn't an issue with existing technologies.
71  */
72 #define BW_SCALE 24
73 #define BW_UNIT (1 << BW_SCALE)
74 
75 #define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
76 #define BBR_UNIT (1 << BBR_SCALE)
77 
78 /* BBR has the following modes for deciding how fast to send: */
79 enum bbr_mode {
80 	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
81 	BBR_DRAIN,	/* drain any queue created during startup */
82 	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
83 	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
84 };
85 
86 /* BBR congestion control block */
87 struct bbr {
88 	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
89 	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
90 	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
91 	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
92 	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
93 	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
94 	u64	cycle_mstamp;	     /* time of this cycle phase start */
95 	u32     mode:3,		     /* current bbr_mode in state machine */
96 		prev_ca_state:3,     /* CA state on previous ACK */
97 		packet_conservation:1,  /* use packet conservation? */
98 		round_start:1,	     /* start of packet-timed tx->ack round? */
99 		idle_restart:1,	     /* restarting after idle? */
100 		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
101 		unused:13,
102 		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
103 		lt_rtt_cnt:7,	     /* round trips in long-term interval */
104 		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
105 	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
106 	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
107 	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
108 	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
109 	u32	pacing_gain:10,	/* current gain for setting pacing rate */
110 		cwnd_gain:10,	/* current gain for setting cwnd */
111 		full_bw_reached:1,   /* reached full bw in Startup? */
112 		full_bw_cnt:2,	/* number of rounds without large bw gains */
113 		cycle_idx:3,	/* current index in pacing_gain cycle array */
114 		has_seen_rtt:1, /* have we seen an RTT sample yet? */
115 		unused_b:5;
116 	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
117 	u32	full_bw;	/* recent bw, to estimate if pipe is full */
118 
119 	/* For tracking ACK aggregation: */
120 	u64	ack_epoch_mstamp;	/* start of ACK sampling epoch */
121 	u16	extra_acked[2];		/* max excess data ACKed in epoch */
122 	u32	ack_epoch_acked:20,	/* packets (S)ACKed in sampling epoch */
123 		extra_acked_win_rtts:5,	/* age of extra_acked, in round trips */
124 		extra_acked_win_idx:1,	/* current index in extra_acked array */
125 		unused_c:6;
126 };
127 
128 #define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
129 
130 /* Window length of bw filter (in rounds): */
131 static const int bbr_bw_rtts = CYCLE_LEN + 2;
132 /* Window length of min_rtt filter (in sec): */
133 static const u32 bbr_min_rtt_win_sec = 10;
134 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
135 static const u32 bbr_probe_rtt_mode_ms = 200;
136 /* Skip TSO below the following bandwidth (bits/sec): */
137 static const int bbr_min_tso_rate = 1200000;
138 
139 /* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
140  * In order to help drive the network toward lower queues and low latency while
141  * maintaining high utilization, the average pacing rate aims to be slightly
142  * lower than the estimated bandwidth. This is an important aspect of the
143  * design.
144  */
145 static const int bbr_pacing_margin_percent = 1;
146 
147 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
148  * that will allow a smoothly increasing pacing rate that will double each RTT
149  * and send the same number of packets per RTT that an un-paced, slow-starting
150  * Reno or CUBIC flow would:
151  */
152 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
153 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
154  * the queue created in BBR_STARTUP in a single round:
155  */
156 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
157 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
158 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
159 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
160 static const int bbr_pacing_gain[] = {
161 	BBR_UNIT * 5 / 4,	/* probe for more available bw */
162 	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
163 	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
164 	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
165 };
166 /* Randomize the starting gain cycling phase over N phases: */
167 static const u32 bbr_cycle_rand = 7;
168 
169 /* Try to keep at least this many packets in flight, if things go smoothly. For
170  * smooth functioning, a sliding window protocol ACKing every other packet
171  * needs at least 4 packets in flight:
172  */
173 static const u32 bbr_cwnd_min_target = 4;
174 
175 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
176 /* If bw has increased significantly (1.25x), there may be more bw available: */
177 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
178 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
179 static const u32 bbr_full_bw_cnt = 3;
180 
181 /* "long-term" ("LT") bandwidth estimator parameters... */
182 /* The minimum number of rounds in an LT bw sampling interval: */
183 static const u32 bbr_lt_intvl_min_rtts = 4;
184 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
185 static const u32 bbr_lt_loss_thresh = 50;
186 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
187 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
188 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
189 static const u32 bbr_lt_bw_diff = 4000 / 8;
190 /* If we estimate we're policed, use lt_bw for this many round trips: */
191 static const u32 bbr_lt_bw_max_rtts = 48;
192 
193 /* Gain factor for adding extra_acked to target cwnd: */
194 static const int bbr_extra_acked_gain = BBR_UNIT;
195 /* Window length of extra_acked window. */
196 static const u32 bbr_extra_acked_win_rtts = 5;
197 /* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
198 static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
199 /* Time period for clamping cwnd increment due to ack aggregation */
200 static const u32 bbr_extra_acked_max_us = 100 * 1000;
201 
202 static void bbr_check_probe_rtt_done(struct sock *sk);
203 
204 /* Do we estimate that STARTUP filled the pipe? */
205 static bool bbr_full_bw_reached(const struct sock *sk)
206 {
207 	const struct bbr *bbr = inet_csk_ca(sk);
208 
209 	return bbr->full_bw_reached;
210 }
211 
212 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
213 static u32 bbr_max_bw(const struct sock *sk)
214 {
215 	struct bbr *bbr = inet_csk_ca(sk);
216 
217 	return minmax_get(&bbr->bw);
218 }
219 
220 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
221 static u32 bbr_bw(const struct sock *sk)
222 {
223 	struct bbr *bbr = inet_csk_ca(sk);
224 
225 	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
226 }
227 
228 /* Return maximum extra acked in past k-2k round trips,
229  * where k = bbr_extra_acked_win_rtts.
230  */
231 static u16 bbr_extra_acked(const struct sock *sk)
232 {
233 	struct bbr *bbr = inet_csk_ca(sk);
234 
235 	return max(bbr->extra_acked[0], bbr->extra_acked[1]);
236 }
237 
238 /* Return rate in bytes per second, optionally with a gain.
239  * The order here is chosen carefully to avoid overflow of u64. This should
240  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
241  */
242 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
243 {
244 	unsigned int mss = tcp_sk(sk)->mss_cache;
245 
246 	rate *= mss;
247 	rate *= gain;
248 	rate >>= BBR_SCALE;
249 	rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
250 	return rate >> BW_SCALE;
251 }
252 
253 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
254 static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
255 {
256 	u64 rate = bw;
257 
258 	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
259 	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
260 	return rate;
261 }
262 
263 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
264 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
265 {
266 	struct tcp_sock *tp = tcp_sk(sk);
267 	struct bbr *bbr = inet_csk_ca(sk);
268 	u64 bw;
269 	u32 rtt_us;
270 
271 	if (tp->srtt_us) {		/* any RTT sample yet? */
272 		rtt_us = max(tp->srtt_us >> 3, 1U);
273 		bbr->has_seen_rtt = 1;
274 	} else {			 /* no RTT sample yet */
275 		rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */
276 	}
277 	bw = (u64)tp->snd_cwnd * BW_UNIT;
278 	do_div(bw, rtt_us);
279 	sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
280 }
281 
282 /* Pace using current bw estimate and a gain factor. */
283 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
284 {
285 	struct tcp_sock *tp = tcp_sk(sk);
286 	struct bbr *bbr = inet_csk_ca(sk);
287 	unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
288 
289 	if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
290 		bbr_init_pacing_rate_from_rtt(sk);
291 	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
292 		sk->sk_pacing_rate = rate;
293 }
294 
295 /* override sysctl_tcp_min_tso_segs */
296 static u32 bbr_min_tso_segs(struct sock *sk)
297 {
298 	return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
299 }
300 
301 static u32 bbr_tso_segs_goal(struct sock *sk)
302 {
303 	struct tcp_sock *tp = tcp_sk(sk);
304 	u32 segs, bytes;
305 
306 	/* Sort of tcp_tso_autosize() but ignoring
307 	 * driver provided sk_gso_max_size.
308 	 */
309 	bytes = min_t(unsigned long,
310 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
311 		      GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
312 	segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
313 
314 	return min(segs, 0x7FU);
315 }
316 
317 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
318 static void bbr_save_cwnd(struct sock *sk)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	struct bbr *bbr = inet_csk_ca(sk);
322 
323 	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
324 		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
325 	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
326 		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
327 }
328 
329 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	struct bbr *bbr = inet_csk_ca(sk);
333 
334 	if (event == CA_EVENT_TX_START && tp->app_limited) {
335 		bbr->idle_restart = 1;
336 		bbr->ack_epoch_mstamp = tp->tcp_mstamp;
337 		bbr->ack_epoch_acked = 0;
338 		/* Avoid pointless buffer overflows: pace at est. bw if we don't
339 		 * need more speed (we're restarting from idle and app-limited).
340 		 */
341 		if (bbr->mode == BBR_PROBE_BW)
342 			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
343 		else if (bbr->mode == BBR_PROBE_RTT)
344 			bbr_check_probe_rtt_done(sk);
345 	}
346 }
347 
348 /* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
349  *
350  * bdp = ceil(bw * min_rtt * gain)
351  *
352  * The key factor, gain, controls the amount of queue. While a small gain
353  * builds a smaller queue, it becomes more vulnerable to noise in RTT
354  * measurements (e.g., delayed ACKs or other ACK compression effects). This
355  * noise may cause BBR to under-estimate the rate.
356  */
357 static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
358 {
359 	struct bbr *bbr = inet_csk_ca(sk);
360 	u32 bdp;
361 	u64 w;
362 
363 	/* If we've never had a valid RTT sample, cap cwnd at the initial
364 	 * default. This should only happen when the connection is not using TCP
365 	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
366 	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
367 	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
368 	 */
369 	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
370 		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
371 
372 	w = (u64)bw * bbr->min_rtt_us;
373 
374 	/* Apply a gain to the given value, remove the BW_SCALE shift, and
375 	 * round the value up to avoid a negative feedback loop.
376 	 */
377 	bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
378 
379 	return bdp;
380 }
381 
382 /* To achieve full performance in high-speed paths, we budget enough cwnd to
383  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
384  *   - one skb in sending host Qdisc,
385  *   - one skb in sending host TSO/GSO engine
386  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
387  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
388  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
389  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
390  * full even with ACK-every-other-packet delayed ACKs.
391  */
392 static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
393 {
394 	struct bbr *bbr = inet_csk_ca(sk);
395 
396 	/* Allow enough full-sized skbs in flight to utilize end systems. */
397 	cwnd += 3 * bbr_tso_segs_goal(sk);
398 
399 	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
400 	cwnd = (cwnd + 1) & ~1U;
401 
402 	/* Ensure gain cycling gets inflight above BDP even for small BDPs. */
403 	if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
404 		cwnd += 2;
405 
406 	return cwnd;
407 }
408 
409 /* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
410 static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
411 {
412 	u32 inflight;
413 
414 	inflight = bbr_bdp(sk, bw, gain);
415 	inflight = bbr_quantization_budget(sk, inflight);
416 
417 	return inflight;
418 }
419 
420 /* With pacing at lower layers, there's often less data "in the network" than
421  * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
422  * we often have several skbs queued in the pacing layer with a pre-scheduled
423  * earliest departure time (EDT). BBR adapts its pacing rate based on the
424  * inflight level that it estimates has already been "baked in" by previous
425  * departure time decisions. We calculate a rough estimate of the number of our
426  * packets that might be in the network at the earliest departure time for the
427  * next skb scheduled:
428  *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
429  * If we're increasing inflight, then we want to know if the transmit of the
430  * EDT skb will push inflight above the target, so inflight_at_edt includes
431  * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
432  * then estimate if inflight will sink too low just before the EDT transmit.
433  */
434 static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
435 {
436 	struct tcp_sock *tp = tcp_sk(sk);
437 	struct bbr *bbr = inet_csk_ca(sk);
438 	u64 now_ns, edt_ns, interval_us;
439 	u32 interval_delivered, inflight_at_edt;
440 
441 	now_ns = tp->tcp_clock_cache;
442 	edt_ns = max(tp->tcp_wstamp_ns, now_ns);
443 	interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
444 	interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
445 	inflight_at_edt = inflight_now;
446 	if (bbr->pacing_gain > BBR_UNIT)              /* increasing inflight */
447 		inflight_at_edt += bbr_tso_segs_goal(sk);  /* include EDT skb */
448 	if (interval_delivered >= inflight_at_edt)
449 		return 0;
450 	return inflight_at_edt - interval_delivered;
451 }
452 
453 /* Find the cwnd increment based on estimate of ack aggregation */
454 static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
455 {
456 	u32 max_aggr_cwnd, aggr_cwnd = 0;
457 
458 	if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) {
459 		max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
460 				/ BW_UNIT;
461 		aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk))
462 			     >> BBR_SCALE;
463 		aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
464 	}
465 
466 	return aggr_cwnd;
467 }
468 
469 /* An optimization in BBR to reduce losses: On the first round of recovery, we
470  * follow the packet conservation principle: send P packets per P packets acked.
471  * After that, we slow-start and send at most 2*P packets per P packets acked.
472  * After recovery finishes, or upon undo, we restore the cwnd we had when
473  * recovery started (capped by the target cwnd based on estimated BDP).
474  *
475  * TODO(ycheng/ncardwell): implement a rate-based approach.
476  */
477 static bool bbr_set_cwnd_to_recover_or_restore(
478 	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	struct bbr *bbr = inet_csk_ca(sk);
482 	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
483 	u32 cwnd = tp->snd_cwnd;
484 
485 	/* An ACK for P pkts should release at most 2*P packets. We do this
486 	 * in two steps. First, here we deduct the number of lost packets.
487 	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
488 	 */
489 	if (rs->losses > 0)
490 		cwnd = max_t(s32, cwnd - rs->losses, 1);
491 
492 	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
493 		/* Starting 1st round of Recovery, so do packet conservation. */
494 		bbr->packet_conservation = 1;
495 		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
496 		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
497 		cwnd = tcp_packets_in_flight(tp) + acked;
498 	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
499 		/* Exiting loss recovery; restore cwnd saved before recovery. */
500 		cwnd = max(cwnd, bbr->prior_cwnd);
501 		bbr->packet_conservation = 0;
502 	}
503 	bbr->prev_ca_state = state;
504 
505 	if (bbr->packet_conservation) {
506 		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
507 		return true;	/* yes, using packet conservation */
508 	}
509 	*new_cwnd = cwnd;
510 	return false;
511 }
512 
513 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
514  * has drawn us down below target), or snap down to target if we're above it.
515  */
516 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
517 			 u32 acked, u32 bw, int gain)
518 {
519 	struct tcp_sock *tp = tcp_sk(sk);
520 	struct bbr *bbr = inet_csk_ca(sk);
521 	u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
522 
523 	if (!acked)
524 		goto done;  /* no packet fully ACKed; just apply caps */
525 
526 	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
527 		goto done;
528 
529 	target_cwnd = bbr_bdp(sk, bw, gain);
530 
531 	/* Increment the cwnd to account for excess ACKed data that seems
532 	 * due to aggregation (of data and/or ACKs) visible in the ACK stream.
533 	 */
534 	target_cwnd += bbr_ack_aggregation_cwnd(sk);
535 	target_cwnd = bbr_quantization_budget(sk, target_cwnd);
536 
537 	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
538 	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
539 		cwnd = min(cwnd + acked, target_cwnd);
540 	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
541 		cwnd = cwnd + acked;
542 	cwnd = max(cwnd, bbr_cwnd_min_target);
543 
544 done:
545 	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
546 	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
547 		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
548 }
549 
550 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
551 static bool bbr_is_next_cycle_phase(struct sock *sk,
552 				    const struct rate_sample *rs)
553 {
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	struct bbr *bbr = inet_csk_ca(sk);
556 	bool is_full_length =
557 		tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
558 		bbr->min_rtt_us;
559 	u32 inflight, bw;
560 
561 	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
562 	 * use the pipe without increasing the queue.
563 	 */
564 	if (bbr->pacing_gain == BBR_UNIT)
565 		return is_full_length;		/* just use wall clock time */
566 
567 	inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
568 	bw = bbr_max_bw(sk);
569 
570 	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
571 	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
572 	 * small (e.g. on a LAN). We do not persist if packets are lost, since
573 	 * a path with small buffers may not hold that much.
574 	 */
575 	if (bbr->pacing_gain > BBR_UNIT)
576 		return is_full_length &&
577 			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
578 			 inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));
579 
580 	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
581 	 * probing didn't find more bw. If inflight falls to match BDP then we
582 	 * estimate queue is drained; persisting would underutilize the pipe.
583 	 */
584 	return is_full_length ||
585 		inflight <= bbr_inflight(sk, bw, BBR_UNIT);
586 }
587 
588 static void bbr_advance_cycle_phase(struct sock *sk)
589 {
590 	struct tcp_sock *tp = tcp_sk(sk);
591 	struct bbr *bbr = inet_csk_ca(sk);
592 
593 	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
594 	bbr->cycle_mstamp = tp->delivered_mstamp;
595 }
596 
597 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
598 static void bbr_update_cycle_phase(struct sock *sk,
599 				   const struct rate_sample *rs)
600 {
601 	struct bbr *bbr = inet_csk_ca(sk);
602 
603 	if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
604 		bbr_advance_cycle_phase(sk);
605 }
606 
607 static void bbr_reset_startup_mode(struct sock *sk)
608 {
609 	struct bbr *bbr = inet_csk_ca(sk);
610 
611 	bbr->mode = BBR_STARTUP;
612 }
613 
614 static void bbr_reset_probe_bw_mode(struct sock *sk)
615 {
616 	struct bbr *bbr = inet_csk_ca(sk);
617 
618 	bbr->mode = BBR_PROBE_BW;
619 	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
620 	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
621 }
622 
623 static void bbr_reset_mode(struct sock *sk)
624 {
625 	if (!bbr_full_bw_reached(sk))
626 		bbr_reset_startup_mode(sk);
627 	else
628 		bbr_reset_probe_bw_mode(sk);
629 }
630 
631 /* Start a new long-term sampling interval. */
632 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
633 {
634 	struct tcp_sock *tp = tcp_sk(sk);
635 	struct bbr *bbr = inet_csk_ca(sk);
636 
637 	bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
638 	bbr->lt_last_delivered = tp->delivered;
639 	bbr->lt_last_lost = tp->lost;
640 	bbr->lt_rtt_cnt = 0;
641 }
642 
643 /* Completely reset long-term bandwidth sampling. */
644 static void bbr_reset_lt_bw_sampling(struct sock *sk)
645 {
646 	struct bbr *bbr = inet_csk_ca(sk);
647 
648 	bbr->lt_bw = 0;
649 	bbr->lt_use_bw = 0;
650 	bbr->lt_is_sampling = false;
651 	bbr_reset_lt_bw_sampling_interval(sk);
652 }
653 
654 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
655 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
656 {
657 	struct bbr *bbr = inet_csk_ca(sk);
658 	u32 diff;
659 
660 	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
661 		/* Is new bw close to the lt_bw from the previous interval? */
662 		diff = abs(bw - bbr->lt_bw);
663 		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
664 		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
665 		     bbr_lt_bw_diff)) {
666 			/* All criteria are met; estimate we're policed. */
667 			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
668 			bbr->lt_use_bw = 1;
669 			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
670 			bbr->lt_rtt_cnt = 0;
671 			return;
672 		}
673 	}
674 	bbr->lt_bw = bw;
675 	bbr_reset_lt_bw_sampling_interval(sk);
676 }
677 
678 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
679  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
680  * explicitly models their policed rate, to reduce unnecessary losses. We
681  * estimate that we're policed if we see 2 consecutive sampling intervals with
682  * consistent throughput and high packet loss. If we think we're being policed,
683  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
684  */
685 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
686 {
687 	struct tcp_sock *tp = tcp_sk(sk);
688 	struct bbr *bbr = inet_csk_ca(sk);
689 	u32 lost, delivered;
690 	u64 bw;
691 	u32 t;
692 
693 	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
694 		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
695 		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
696 			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
697 			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
698 		}
699 		return;
700 	}
701 
702 	/* Wait for the first loss before sampling, to let the policer exhaust
703 	 * its tokens and estimate the steady-state rate allowed by the policer.
704 	 * Starting samples earlier includes bursts that over-estimate the bw.
705 	 */
706 	if (!bbr->lt_is_sampling) {
707 		if (!rs->losses)
708 			return;
709 		bbr_reset_lt_bw_sampling_interval(sk);
710 		bbr->lt_is_sampling = true;
711 	}
712 
713 	/* To avoid underestimates, reset sampling if we run out of data. */
714 	if (rs->is_app_limited) {
715 		bbr_reset_lt_bw_sampling(sk);
716 		return;
717 	}
718 
719 	if (bbr->round_start)
720 		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
721 	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
722 		return;		/* sampling interval needs to be longer */
723 	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
724 		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
725 		return;
726 	}
727 
728 	/* End sampling interval when a packet is lost, so we estimate the
729 	 * policer tokens were exhausted. Stopping the sampling before the
730 	 * tokens are exhausted under-estimates the policed rate.
731 	 */
732 	if (!rs->losses)
733 		return;
734 
735 	/* Calculate packets lost and delivered in sampling interval. */
736 	lost = tp->lost - bbr->lt_last_lost;
737 	delivered = tp->delivered - bbr->lt_last_delivered;
738 	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
739 	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
740 		return;
741 
742 	/* Find average delivery rate in this sampling interval. */
743 	t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
744 	if ((s32)t < 1)
745 		return;		/* interval is less than one ms, so wait */
746 	/* Check if can multiply without overflow */
747 	if (t >= ~0U / USEC_PER_MSEC) {
748 		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
749 		return;
750 	}
751 	t *= USEC_PER_MSEC;
752 	bw = (u64)delivered * BW_UNIT;
753 	do_div(bw, t);
754 	bbr_lt_bw_interval_done(sk, bw);
755 }
756 
757 /* Estimate the bandwidth based on how fast packets are delivered */
758 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
759 {
760 	struct tcp_sock *tp = tcp_sk(sk);
761 	struct bbr *bbr = inet_csk_ca(sk);
762 	u64 bw;
763 
764 	bbr->round_start = 0;
765 	if (rs->delivered < 0 || rs->interval_us <= 0)
766 		return; /* Not a valid observation */
767 
768 	/* See if we've reached the next RTT */
769 	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
770 		bbr->next_rtt_delivered = tp->delivered;
771 		bbr->rtt_cnt++;
772 		bbr->round_start = 1;
773 		bbr->packet_conservation = 0;
774 	}
775 
776 	bbr_lt_bw_sampling(sk, rs);
777 
778 	/* Divide delivered by the interval to find a (lower bound) bottleneck
779 	 * bandwidth sample. Delivered is in packets and interval_us in uS and
780 	 * ratio will be <<1 for most connections. So delivered is first scaled.
781 	 */
782 	bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us);
783 
784 	/* If this sample is application-limited, it is likely to have a very
785 	 * low delivered count that represents application behavior rather than
786 	 * the available network rate. Such a sample could drag down estimated
787 	 * bw, causing needless slow-down. Thus, to continue to send at the
788 	 * last measured network rate, we filter out app-limited samples unless
789 	 * they describe the path bw at least as well as our bw model.
790 	 *
791 	 * So the goal during app-limited phase is to proceed with the best
792 	 * network rate no matter how long. We automatically leave this
793 	 * phase when app writes faster than the network can deliver :)
794 	 */
795 	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
796 		/* Incorporate new sample into our max bw filter. */
797 		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
798 	}
799 }
800 
801 /* Estimates the windowed max degree of ack aggregation.
802  * This is used to provision extra in-flight data to keep sending during
803  * inter-ACK silences.
804  *
805  * Degree of ack aggregation is estimated as extra data acked beyond expected.
806  *
807  * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
808  * cwnd += max_extra_acked
809  *
810  * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
811  * Max filter is an approximate sliding window of 5-10 (packet timed) round
812  * trips.
813  */
814 static void bbr_update_ack_aggregation(struct sock *sk,
815 				       const struct rate_sample *rs)
816 {
817 	u32 epoch_us, expected_acked, extra_acked;
818 	struct bbr *bbr = inet_csk_ca(sk);
819 	struct tcp_sock *tp = tcp_sk(sk);
820 
821 	if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 ||
822 	    rs->delivered < 0 || rs->interval_us <= 0)
823 		return;
824 
825 	if (bbr->round_start) {
826 		bbr->extra_acked_win_rtts = min(0x1F,
827 						bbr->extra_acked_win_rtts + 1);
828 		if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) {
829 			bbr->extra_acked_win_rtts = 0;
830 			bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
831 						   0 : 1;
832 			bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
833 		}
834 	}
835 
836 	/* Compute how many packets we expected to be delivered over epoch. */
837 	epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
838 				      bbr->ack_epoch_mstamp);
839 	expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
840 
841 	/* Reset the aggregation epoch if ACK rate is below expected rate or
842 	 * significantly large no. of ack received since epoch (potentially
843 	 * quite old epoch).
844 	 */
845 	if (bbr->ack_epoch_acked <= expected_acked ||
846 	    (bbr->ack_epoch_acked + rs->acked_sacked >=
847 	     bbr_ack_epoch_acked_reset_thresh)) {
848 		bbr->ack_epoch_acked = 0;
849 		bbr->ack_epoch_mstamp = tp->delivered_mstamp;
850 		expected_acked = 0;
851 	}
852 
853 	/* Compute excess data delivered, beyond what was expected. */
854 	bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
855 				     bbr->ack_epoch_acked + rs->acked_sacked);
856 	extra_acked = bbr->ack_epoch_acked - expected_acked;
857 	extra_acked = min(extra_acked, tp->snd_cwnd);
858 	if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
859 		bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
860 }
861 
862 /* Estimate when the pipe is full, using the change in delivery rate: BBR
863  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
864  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
865  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
866  * higher rwin, 3: we get higher delivery rate samples. Or transient
867  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
868  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
869  */
870 static void bbr_check_full_bw_reached(struct sock *sk,
871 				      const struct rate_sample *rs)
872 {
873 	struct bbr *bbr = inet_csk_ca(sk);
874 	u32 bw_thresh;
875 
876 	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
877 		return;
878 
879 	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
880 	if (bbr_max_bw(sk) >= bw_thresh) {
881 		bbr->full_bw = bbr_max_bw(sk);
882 		bbr->full_bw_cnt = 0;
883 		return;
884 	}
885 	++bbr->full_bw_cnt;
886 	bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
887 }
888 
889 /* If pipe is probably full, drain the queue and then enter steady-state. */
890 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
891 {
892 	struct bbr *bbr = inet_csk_ca(sk);
893 
894 	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
895 		bbr->mode = BBR_DRAIN;	/* drain queue we created */
896 		tcp_sk(sk)->snd_ssthresh =
897 				bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
898 	}	/* fall through to check if in-flight is already small: */
899 	if (bbr->mode == BBR_DRAIN &&
900 	    bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
901 	    bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
902 		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
903 }
904 
905 static void bbr_check_probe_rtt_done(struct sock *sk)
906 {
907 	struct tcp_sock *tp = tcp_sk(sk);
908 	struct bbr *bbr = inet_csk_ca(sk);
909 
910 	if (!(bbr->probe_rtt_done_stamp &&
911 	      after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
912 		return;
913 
914 	bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
915 	tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
916 	bbr_reset_mode(sk);
917 }
918 
919 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
920  * periodically drain the bottleneck queue, to converge to measure the true
921  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
922  * small (reducing queuing delay and packet loss) and achieve fairness among
923  * BBR flows.
924  *
925  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
926  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
927  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
928  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
929  * re-enter the previous mode. BBR uses 200ms to approximately bound the
930  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
931  *
932  * Note that flows need only pay 2% if they are busy sending over the last 10
933  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
934  * natural silences or low-rate periods within 10 seconds where the rate is low
935  * enough for long enough to drain its queue in the bottleneck. We pick up
936  * these min RTT measurements opportunistically with our min_rtt filter. :-)
937  */
938 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
939 {
940 	struct tcp_sock *tp = tcp_sk(sk);
941 	struct bbr *bbr = inet_csk_ca(sk);
942 	bool filter_expired;
943 
944 	/* Track min RTT seen in the min_rtt_win_sec filter window: */
945 	filter_expired = after(tcp_jiffies32,
946 			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
947 	if (rs->rtt_us >= 0 &&
948 	    (rs->rtt_us <= bbr->min_rtt_us ||
949 	     (filter_expired && !rs->is_ack_delayed))) {
950 		bbr->min_rtt_us = rs->rtt_us;
951 		bbr->min_rtt_stamp = tcp_jiffies32;
952 	}
953 
954 	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
955 	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
956 		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
957 		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
958 		bbr->probe_rtt_done_stamp = 0;
959 	}
960 
961 	if (bbr->mode == BBR_PROBE_RTT) {
962 		/* Ignore low rate samples during this mode. */
963 		tp->app_limited =
964 			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
965 		/* Maintain min packets in flight for max(200 ms, 1 round). */
966 		if (!bbr->probe_rtt_done_stamp &&
967 		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
968 			bbr->probe_rtt_done_stamp = tcp_jiffies32 +
969 				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
970 			bbr->probe_rtt_round_done = 0;
971 			bbr->next_rtt_delivered = tp->delivered;
972 		} else if (bbr->probe_rtt_done_stamp) {
973 			if (bbr->round_start)
974 				bbr->probe_rtt_round_done = 1;
975 			if (bbr->probe_rtt_round_done)
976 				bbr_check_probe_rtt_done(sk);
977 		}
978 	}
979 	/* Restart after idle ends only once we process a new S/ACK for data */
980 	if (rs->delivered > 0)
981 		bbr->idle_restart = 0;
982 }
983 
984 static void bbr_update_gains(struct sock *sk)
985 {
986 	struct bbr *bbr = inet_csk_ca(sk);
987 
988 	switch (bbr->mode) {
989 	case BBR_STARTUP:
990 		bbr->pacing_gain = bbr_high_gain;
991 		bbr->cwnd_gain	 = bbr_high_gain;
992 		break;
993 	case BBR_DRAIN:
994 		bbr->pacing_gain = bbr_drain_gain;	/* slow, to drain */
995 		bbr->cwnd_gain	 = bbr_high_gain;	/* keep cwnd */
996 		break;
997 	case BBR_PROBE_BW:
998 		bbr->pacing_gain = (bbr->lt_use_bw ?
999 				    BBR_UNIT :
1000 				    bbr_pacing_gain[bbr->cycle_idx]);
1001 		bbr->cwnd_gain	 = bbr_cwnd_gain;
1002 		break;
1003 	case BBR_PROBE_RTT:
1004 		bbr->pacing_gain = BBR_UNIT;
1005 		bbr->cwnd_gain	 = BBR_UNIT;
1006 		break;
1007 	default:
1008 		WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
1009 		break;
1010 	}
1011 }
1012 
1013 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
1014 {
1015 	bbr_update_bw(sk, rs);
1016 	bbr_update_ack_aggregation(sk, rs);
1017 	bbr_update_cycle_phase(sk, rs);
1018 	bbr_check_full_bw_reached(sk, rs);
1019 	bbr_check_drain(sk, rs);
1020 	bbr_update_min_rtt(sk, rs);
1021 	bbr_update_gains(sk);
1022 }
1023 
1024 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
1025 {
1026 	struct bbr *bbr = inet_csk_ca(sk);
1027 	u32 bw;
1028 
1029 	bbr_update_model(sk, rs);
1030 
1031 	bw = bbr_bw(sk);
1032 	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
1033 	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
1034 }
1035 
1036 static void bbr_init(struct sock *sk)
1037 {
1038 	struct tcp_sock *tp = tcp_sk(sk);
1039 	struct bbr *bbr = inet_csk_ca(sk);
1040 
1041 	bbr->prior_cwnd = 0;
1042 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1043 	bbr->rtt_cnt = 0;
1044 	bbr->next_rtt_delivered = 0;
1045 	bbr->prev_ca_state = TCP_CA_Open;
1046 	bbr->packet_conservation = 0;
1047 
1048 	bbr->probe_rtt_done_stamp = 0;
1049 	bbr->probe_rtt_round_done = 0;
1050 	bbr->min_rtt_us = tcp_min_rtt(tp);
1051 	bbr->min_rtt_stamp = tcp_jiffies32;
1052 
1053 	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
1054 
1055 	bbr->has_seen_rtt = 0;
1056 	bbr_init_pacing_rate_from_rtt(sk);
1057 
1058 	bbr->round_start = 0;
1059 	bbr->idle_restart = 0;
1060 	bbr->full_bw_reached = 0;
1061 	bbr->full_bw = 0;
1062 	bbr->full_bw_cnt = 0;
1063 	bbr->cycle_mstamp = 0;
1064 	bbr->cycle_idx = 0;
1065 	bbr_reset_lt_bw_sampling(sk);
1066 	bbr_reset_startup_mode(sk);
1067 
1068 	bbr->ack_epoch_mstamp = tp->tcp_mstamp;
1069 	bbr->ack_epoch_acked = 0;
1070 	bbr->extra_acked_win_rtts = 0;
1071 	bbr->extra_acked_win_idx = 0;
1072 	bbr->extra_acked[0] = 0;
1073 	bbr->extra_acked[1] = 0;
1074 
1075 	cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
1076 }
1077 
1078 static u32 bbr_sndbuf_expand(struct sock *sk)
1079 {
1080 	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
1081 	return 3;
1082 }
1083 
1084 /* In theory BBR does not need to undo the cwnd since it does not
1085  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
1086  */
1087 static u32 bbr_undo_cwnd(struct sock *sk)
1088 {
1089 	struct bbr *bbr = inet_csk_ca(sk);
1090 
1091 	bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
1092 	bbr->full_bw_cnt = 0;
1093 	bbr_reset_lt_bw_sampling(sk);
1094 	return tcp_sk(sk)->snd_cwnd;
1095 }
1096 
1097 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
1098 static u32 bbr_ssthresh(struct sock *sk)
1099 {
1100 	bbr_save_cwnd(sk);
1101 	return tcp_sk(sk)->snd_ssthresh;
1102 }
1103 
1104 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
1105 			   union tcp_cc_info *info)
1106 {
1107 	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
1108 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
1109 		struct tcp_sock *tp = tcp_sk(sk);
1110 		struct bbr *bbr = inet_csk_ca(sk);
1111 		u64 bw = bbr_bw(sk);
1112 
1113 		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
1114 		memset(&info->bbr, 0, sizeof(info->bbr));
1115 		info->bbr.bbr_bw_lo		= (u32)bw;
1116 		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
1117 		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
1118 		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
1119 		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
1120 		*attr = INET_DIAG_BBRINFO;
1121 		return sizeof(info->bbr);
1122 	}
1123 	return 0;
1124 }
1125 
1126 static void bbr_set_state(struct sock *sk, u8 new_state)
1127 {
1128 	struct bbr *bbr = inet_csk_ca(sk);
1129 
1130 	if (new_state == TCP_CA_Loss) {
1131 		struct rate_sample rs = { .losses = 1 };
1132 
1133 		bbr->prev_ca_state = TCP_CA_Loss;
1134 		bbr->full_bw = 0;
1135 		bbr->round_start = 1;	/* treat RTO like end of a round */
1136 		bbr_lt_bw_sampling(sk, &rs);
1137 	}
1138 }
1139 
1140 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
1141 	.flags		= TCP_CONG_NON_RESTRICTED,
1142 	.name		= "bbr",
1143 	.owner		= THIS_MODULE,
1144 	.init		= bbr_init,
1145 	.cong_control	= bbr_main,
1146 	.sndbuf_expand	= bbr_sndbuf_expand,
1147 	.undo_cwnd	= bbr_undo_cwnd,
1148 	.cwnd_event	= bbr_cwnd_event,
1149 	.ssthresh	= bbr_ssthresh,
1150 	.min_tso_segs	= bbr_min_tso_segs,
1151 	.get_info	= bbr_get_info,
1152 	.set_state	= bbr_set_state,
1153 };
1154 
1155 static int __init bbr_register(void)
1156 {
1157 	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
1158 	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
1159 }
1160 
1161 static void __exit bbr_unregister(void)
1162 {
1163 	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
1164 }
1165 
1166 module_init(bbr_register);
1167 module_exit(bbr_unregister);
1168 
1169 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
1170 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
1171 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
1172 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
1173 MODULE_LICENSE("Dual BSD/GPL");
1174 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
1175