xref: /openbmc/linux/net/ipv4/tcp_bbr.c (revision e6dec923)
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2  *
3  * BBR congestion control computes the sending rate based on the delivery
4  * rate (throughput) estimated from ACKs. In a nutshell:
5  *
6  *   On each ACK, update our model of the network path:
7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8  *      min_rtt = windowed_min(rtt, 10 seconds)
9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11  *
12  * The core algorithm does not react directly to packet losses or delays,
13  * although BBR may adjust the size of next send per ACK when loss is
14  * observed, or adjust the sending rate if it estimates there is a
15  * traffic policer, in order to keep the drop rate reasonable.
16  *
17  * Here is a state transition diagram for BBR:
18  *
19  *             |
20  *             V
21  *    +---> STARTUP  ----+
22  *    |        |         |
23  *    |        V         |
24  *    |      DRAIN   ----+
25  *    |        |         |
26  *    |        V         |
27  *    +---> PROBE_BW ----+
28  *    |      ^    |      |
29  *    |      |    |      |
30  *    |      +----+      |
31  *    |                  |
32  *    +---- PROBE_RTT <--+
33  *
34  * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35  * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36  * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37  * A long-lived BBR flow spends the vast majority of its time remaining
38  * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39  * in a fair manner, with a small, bounded queue. *If* a flow has been
40  * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41  * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42  * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43  * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44  * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45  * otherwise we enter STARTUP to try to fill the pipe.
46  *
47  * BBR is described in detail in:
48  *   "BBR: Congestion-Based Congestion Control",
49  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51  *
52  * There is a public e-mail list for discussing BBR development and testing:
53  *   https://groups.google.com/forum/#!forum/bbr-dev
54  *
55  * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56  * otherwise TCP stack falls back to an internal pacing using one high
57  * resolution timer per TCP socket and may use more resources.
58  */
59 #include <linux/module.h>
60 #include <net/tcp.h>
61 #include <linux/inet_diag.h>
62 #include <linux/inet.h>
63 #include <linux/random.h>
64 #include <linux/win_minmax.h>
65 
66 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69  * Since the minimum window is >=4 packets, the lower bound isn't
70  * an issue. The upper bound isn't an issue with existing technologies.
71  */
72 #define BW_SCALE 24
73 #define BW_UNIT (1 << BW_SCALE)
74 
75 #define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
76 #define BBR_UNIT (1 << BBR_SCALE)
77 
78 /* BBR has the following modes for deciding how fast to send: */
79 enum bbr_mode {
80 	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
81 	BBR_DRAIN,	/* drain any queue created during startup */
82 	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
83 	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
84 };
85 
86 /* BBR congestion control block */
87 struct bbr {
88 	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
89 	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
90 	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
91 	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
92 	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
93 	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
94 	u64	cycle_mstamp;	     /* time of this cycle phase start */
95 	u32     mode:3,		     /* current bbr_mode in state machine */
96 		prev_ca_state:3,     /* CA state on previous ACK */
97 		packet_conservation:1,  /* use packet conservation? */
98 		restore_cwnd:1,	     /* decided to revert cwnd to old value */
99 		round_start:1,	     /* start of packet-timed tx->ack round? */
100 		tso_segs_goal:7,     /* segments we want in each skb we send */
101 		idle_restart:1,	     /* restarting after idle? */
102 		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
103 		unused:5,
104 		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
105 		lt_rtt_cnt:7,	     /* round trips in long-term interval */
106 		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
107 	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
108 	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
109 	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
110 	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
111 	u32	pacing_gain:10,	/* current gain for setting pacing rate */
112 		cwnd_gain:10,	/* current gain for setting cwnd */
113 		full_bw_cnt:3,	/* number of rounds without large bw gains */
114 		cycle_idx:3,	/* current index in pacing_gain cycle array */
115 		has_seen_rtt:1, /* have we seen an RTT sample yet? */
116 		unused_b:5;
117 	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
118 	u32	full_bw;	/* recent bw, to estimate if pipe is full */
119 };
120 
121 #define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
122 
123 /* Window length of bw filter (in rounds): */
124 static const int bbr_bw_rtts = CYCLE_LEN + 2;
125 /* Window length of min_rtt filter (in sec): */
126 static const u32 bbr_min_rtt_win_sec = 10;
127 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
128 static const u32 bbr_probe_rtt_mode_ms = 200;
129 /* Skip TSO below the following bandwidth (bits/sec): */
130 static const int bbr_min_tso_rate = 1200000;
131 
132 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
133  * that will allow a smoothly increasing pacing rate that will double each RTT
134  * and send the same number of packets per RTT that an un-paced, slow-starting
135  * Reno or CUBIC flow would:
136  */
137 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
138 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
139  * the queue created in BBR_STARTUP in a single round:
140  */
141 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
142 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
143 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
144 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
145 static const int bbr_pacing_gain[] = {
146 	BBR_UNIT * 5 / 4,	/* probe for more available bw */
147 	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
148 	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
149 	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
150 };
151 /* Randomize the starting gain cycling phase over N phases: */
152 static const u32 bbr_cycle_rand = 7;
153 
154 /* Try to keep at least this many packets in flight, if things go smoothly. For
155  * smooth functioning, a sliding window protocol ACKing every other packet
156  * needs at least 4 packets in flight:
157  */
158 static const u32 bbr_cwnd_min_target = 4;
159 
160 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
161 /* If bw has increased significantly (1.25x), there may be more bw available: */
162 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
163 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
164 static const u32 bbr_full_bw_cnt = 3;
165 
166 /* "long-term" ("LT") bandwidth estimator parameters... */
167 /* The minimum number of rounds in an LT bw sampling interval: */
168 static const u32 bbr_lt_intvl_min_rtts = 4;
169 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
170 static const u32 bbr_lt_loss_thresh = 50;
171 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
172 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
173 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
174 static const u32 bbr_lt_bw_diff = 4000 / 8;
175 /* If we estimate we're policed, use lt_bw for this many round trips: */
176 static const u32 bbr_lt_bw_max_rtts = 48;
177 
178 /* Do we estimate that STARTUP filled the pipe? */
179 static bool bbr_full_bw_reached(const struct sock *sk)
180 {
181 	const struct bbr *bbr = inet_csk_ca(sk);
182 
183 	return bbr->full_bw_cnt >= bbr_full_bw_cnt;
184 }
185 
186 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
187 static u32 bbr_max_bw(const struct sock *sk)
188 {
189 	struct bbr *bbr = inet_csk_ca(sk);
190 
191 	return minmax_get(&bbr->bw);
192 }
193 
194 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
195 static u32 bbr_bw(const struct sock *sk)
196 {
197 	struct bbr *bbr = inet_csk_ca(sk);
198 
199 	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
200 }
201 
202 /* Return rate in bytes per second, optionally with a gain.
203  * The order here is chosen carefully to avoid overflow of u64. This should
204  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
205  */
206 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
207 {
208 	rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
209 	rate *= gain;
210 	rate >>= BBR_SCALE;
211 	rate *= USEC_PER_SEC;
212 	return rate >> BW_SCALE;
213 }
214 
215 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
216 static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
217 {
218 	u64 rate = bw;
219 
220 	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
221 	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
222 	return rate;
223 }
224 
225 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
226 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
227 {
228 	struct tcp_sock *tp = tcp_sk(sk);
229 	struct bbr *bbr = inet_csk_ca(sk);
230 	u64 bw;
231 	u32 rtt_us;
232 
233 	if (tp->srtt_us) {		/* any RTT sample yet? */
234 		rtt_us = max(tp->srtt_us >> 3, 1U);
235 		bbr->has_seen_rtt = 1;
236 	} else {			 /* no RTT sample yet */
237 		rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */
238 	}
239 	bw = (u64)tp->snd_cwnd * BW_UNIT;
240 	do_div(bw, rtt_us);
241 	sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
242 }
243 
244 /* Pace using current bw estimate and a gain factor. In order to help drive the
245  * network toward lower queues while maintaining high utilization and low
246  * latency, the average pacing rate aims to be slightly (~1%) lower than the
247  * estimated bandwidth. This is an important aspect of the design. In this
248  * implementation this slightly lower pacing rate is achieved implicitly by not
249  * including link-layer headers in the packet size used for the pacing rate.
250  */
251 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
252 {
253 	struct tcp_sock *tp = tcp_sk(sk);
254 	struct bbr *bbr = inet_csk_ca(sk);
255 	u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
256 
257 	if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
258 		bbr_init_pacing_rate_from_rtt(sk);
259 	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
260 		sk->sk_pacing_rate = rate;
261 }
262 
263 /* Return count of segments we want in the skbs we send, or 0 for default. */
264 static u32 bbr_tso_segs_goal(struct sock *sk)
265 {
266 	struct bbr *bbr = inet_csk_ca(sk);
267 
268 	return bbr->tso_segs_goal;
269 }
270 
271 static void bbr_set_tso_segs_goal(struct sock *sk)
272 {
273 	struct tcp_sock *tp = tcp_sk(sk);
274 	struct bbr *bbr = inet_csk_ca(sk);
275 	u32 min_segs;
276 
277 	min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
278 	bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
279 				 0x7FU);
280 }
281 
282 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
283 static void bbr_save_cwnd(struct sock *sk)
284 {
285 	struct tcp_sock *tp = tcp_sk(sk);
286 	struct bbr *bbr = inet_csk_ca(sk);
287 
288 	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
289 		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
290 	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
291 		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
292 }
293 
294 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
295 {
296 	struct tcp_sock *tp = tcp_sk(sk);
297 	struct bbr *bbr = inet_csk_ca(sk);
298 
299 	if (event == CA_EVENT_TX_START && tp->app_limited) {
300 		bbr->idle_restart = 1;
301 		/* Avoid pointless buffer overflows: pace at est. bw if we don't
302 		 * need more speed (we're restarting from idle and app-limited).
303 		 */
304 		if (bbr->mode == BBR_PROBE_BW)
305 			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
306 	}
307 }
308 
309 /* Find target cwnd. Right-size the cwnd based on min RTT and the
310  * estimated bottleneck bandwidth:
311  *
312  * cwnd = bw * min_rtt * gain = BDP * gain
313  *
314  * The key factor, gain, controls the amount of queue. While a small gain
315  * builds a smaller queue, it becomes more vulnerable to noise in RTT
316  * measurements (e.g., delayed ACKs or other ACK compression effects). This
317  * noise may cause BBR to under-estimate the rate.
318  *
319  * To achieve full performance in high-speed paths, we budget enough cwnd to
320  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
321  *   - one skb in sending host Qdisc,
322  *   - one skb in sending host TSO/GSO engine
323  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
324  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
325  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
326  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
327  * full even with ACK-every-other-packet delayed ACKs.
328  */
329 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
330 {
331 	struct bbr *bbr = inet_csk_ca(sk);
332 	u32 cwnd;
333 	u64 w;
334 
335 	/* If we've never had a valid RTT sample, cap cwnd at the initial
336 	 * default. This should only happen when the connection is not using TCP
337 	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
338 	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
339 	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
340 	 */
341 	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
342 		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
343 
344 	w = (u64)bw * bbr->min_rtt_us;
345 
346 	/* Apply a gain to the given value, then remove the BW_SCALE shift. */
347 	cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
348 
349 	/* Allow enough full-sized skbs in flight to utilize end systems. */
350 	cwnd += 3 * bbr->tso_segs_goal;
351 
352 	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
353 	cwnd = (cwnd + 1) & ~1U;
354 
355 	return cwnd;
356 }
357 
358 /* An optimization in BBR to reduce losses: On the first round of recovery, we
359  * follow the packet conservation principle: send P packets per P packets acked.
360  * After that, we slow-start and send at most 2*P packets per P packets acked.
361  * After recovery finishes, or upon undo, we restore the cwnd we had when
362  * recovery started (capped by the target cwnd based on estimated BDP).
363  *
364  * TODO(ycheng/ncardwell): implement a rate-based approach.
365  */
366 static bool bbr_set_cwnd_to_recover_or_restore(
367 	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	struct bbr *bbr = inet_csk_ca(sk);
371 	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
372 	u32 cwnd = tp->snd_cwnd;
373 
374 	/* An ACK for P pkts should release at most 2*P packets. We do this
375 	 * in two steps. First, here we deduct the number of lost packets.
376 	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
377 	 */
378 	if (rs->losses > 0)
379 		cwnd = max_t(s32, cwnd - rs->losses, 1);
380 
381 	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
382 		/* Starting 1st round of Recovery, so do packet conservation. */
383 		bbr->packet_conservation = 1;
384 		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
385 		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
386 		cwnd = tcp_packets_in_flight(tp) + acked;
387 	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
388 		/* Exiting loss recovery; restore cwnd saved before recovery. */
389 		bbr->restore_cwnd = 1;
390 		bbr->packet_conservation = 0;
391 	}
392 	bbr->prev_ca_state = state;
393 
394 	if (bbr->restore_cwnd) {
395 		/* Restore cwnd after exiting loss recovery or PROBE_RTT. */
396 		cwnd = max(cwnd, bbr->prior_cwnd);
397 		bbr->restore_cwnd = 0;
398 	}
399 
400 	if (bbr->packet_conservation) {
401 		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
402 		return true;	/* yes, using packet conservation */
403 	}
404 	*new_cwnd = cwnd;
405 	return false;
406 }
407 
408 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
409  * has drawn us down below target), or snap down to target if we're above it.
410  */
411 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
412 			 u32 acked, u32 bw, int gain)
413 {
414 	struct tcp_sock *tp = tcp_sk(sk);
415 	struct bbr *bbr = inet_csk_ca(sk);
416 	u32 cwnd = 0, target_cwnd = 0;
417 
418 	if (!acked)
419 		return;
420 
421 	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
422 		goto done;
423 
424 	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
425 	target_cwnd = bbr_target_cwnd(sk, bw, gain);
426 	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
427 		cwnd = min(cwnd + acked, target_cwnd);
428 	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
429 		cwnd = cwnd + acked;
430 	cwnd = max(cwnd, bbr_cwnd_min_target);
431 
432 done:
433 	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
434 	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
435 		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
436 }
437 
438 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
439 static bool bbr_is_next_cycle_phase(struct sock *sk,
440 				    const struct rate_sample *rs)
441 {
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	struct bbr *bbr = inet_csk_ca(sk);
444 	bool is_full_length =
445 		tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
446 		bbr->min_rtt_us;
447 	u32 inflight, bw;
448 
449 	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
450 	 * use the pipe without increasing the queue.
451 	 */
452 	if (bbr->pacing_gain == BBR_UNIT)
453 		return is_full_length;		/* just use wall clock time */
454 
455 	inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
456 	bw = bbr_max_bw(sk);
457 
458 	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
459 	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
460 	 * small (e.g. on a LAN). We do not persist if packets are lost, since
461 	 * a path with small buffers may not hold that much.
462 	 */
463 	if (bbr->pacing_gain > BBR_UNIT)
464 		return is_full_length &&
465 			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
466 			 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
467 
468 	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
469 	 * probing didn't find more bw. If inflight falls to match BDP then we
470 	 * estimate queue is drained; persisting would underutilize the pipe.
471 	 */
472 	return is_full_length ||
473 		inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
474 }
475 
476 static void bbr_advance_cycle_phase(struct sock *sk)
477 {
478 	struct tcp_sock *tp = tcp_sk(sk);
479 	struct bbr *bbr = inet_csk_ca(sk);
480 
481 	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
482 	bbr->cycle_mstamp = tp->delivered_mstamp;
483 	bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
484 }
485 
486 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
487 static void bbr_update_cycle_phase(struct sock *sk,
488 				   const struct rate_sample *rs)
489 {
490 	struct bbr *bbr = inet_csk_ca(sk);
491 
492 	if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
493 	    bbr_is_next_cycle_phase(sk, rs))
494 		bbr_advance_cycle_phase(sk);
495 }
496 
497 static void bbr_reset_startup_mode(struct sock *sk)
498 {
499 	struct bbr *bbr = inet_csk_ca(sk);
500 
501 	bbr->mode = BBR_STARTUP;
502 	bbr->pacing_gain = bbr_high_gain;
503 	bbr->cwnd_gain	 = bbr_high_gain;
504 }
505 
506 static void bbr_reset_probe_bw_mode(struct sock *sk)
507 {
508 	struct bbr *bbr = inet_csk_ca(sk);
509 
510 	bbr->mode = BBR_PROBE_BW;
511 	bbr->pacing_gain = BBR_UNIT;
512 	bbr->cwnd_gain = bbr_cwnd_gain;
513 	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
514 	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
515 }
516 
517 static void bbr_reset_mode(struct sock *sk)
518 {
519 	if (!bbr_full_bw_reached(sk))
520 		bbr_reset_startup_mode(sk);
521 	else
522 		bbr_reset_probe_bw_mode(sk);
523 }
524 
525 /* Start a new long-term sampling interval. */
526 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
527 {
528 	struct tcp_sock *tp = tcp_sk(sk);
529 	struct bbr *bbr = inet_csk_ca(sk);
530 
531 	bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
532 	bbr->lt_last_delivered = tp->delivered;
533 	bbr->lt_last_lost = tp->lost;
534 	bbr->lt_rtt_cnt = 0;
535 }
536 
537 /* Completely reset long-term bandwidth sampling. */
538 static void bbr_reset_lt_bw_sampling(struct sock *sk)
539 {
540 	struct bbr *bbr = inet_csk_ca(sk);
541 
542 	bbr->lt_bw = 0;
543 	bbr->lt_use_bw = 0;
544 	bbr->lt_is_sampling = false;
545 	bbr_reset_lt_bw_sampling_interval(sk);
546 }
547 
548 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
549 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
550 {
551 	struct bbr *bbr = inet_csk_ca(sk);
552 	u32 diff;
553 
554 	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
555 		/* Is new bw close to the lt_bw from the previous interval? */
556 		diff = abs(bw - bbr->lt_bw);
557 		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
558 		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
559 		     bbr_lt_bw_diff)) {
560 			/* All criteria are met; estimate we're policed. */
561 			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
562 			bbr->lt_use_bw = 1;
563 			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
564 			bbr->lt_rtt_cnt = 0;
565 			return;
566 		}
567 	}
568 	bbr->lt_bw = bw;
569 	bbr_reset_lt_bw_sampling_interval(sk);
570 }
571 
572 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
573  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
574  * explicitly models their policed rate, to reduce unnecessary losses. We
575  * estimate that we're policed if we see 2 consecutive sampling intervals with
576  * consistent throughput and high packet loss. If we think we're being policed,
577  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
578  */
579 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 	struct bbr *bbr = inet_csk_ca(sk);
583 	u32 lost, delivered;
584 	u64 bw;
585 	u32 t;
586 
587 	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
588 		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
589 		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
590 			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
591 			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
592 		}
593 		return;
594 	}
595 
596 	/* Wait for the first loss before sampling, to let the policer exhaust
597 	 * its tokens and estimate the steady-state rate allowed by the policer.
598 	 * Starting samples earlier includes bursts that over-estimate the bw.
599 	 */
600 	if (!bbr->lt_is_sampling) {
601 		if (!rs->losses)
602 			return;
603 		bbr_reset_lt_bw_sampling_interval(sk);
604 		bbr->lt_is_sampling = true;
605 	}
606 
607 	/* To avoid underestimates, reset sampling if we run out of data. */
608 	if (rs->is_app_limited) {
609 		bbr_reset_lt_bw_sampling(sk);
610 		return;
611 	}
612 
613 	if (bbr->round_start)
614 		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
615 	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
616 		return;		/* sampling interval needs to be longer */
617 	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
618 		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
619 		return;
620 	}
621 
622 	/* End sampling interval when a packet is lost, so we estimate the
623 	 * policer tokens were exhausted. Stopping the sampling before the
624 	 * tokens are exhausted under-estimates the policed rate.
625 	 */
626 	if (!rs->losses)
627 		return;
628 
629 	/* Calculate packets lost and delivered in sampling interval. */
630 	lost = tp->lost - bbr->lt_last_lost;
631 	delivered = tp->delivered - bbr->lt_last_delivered;
632 	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
633 	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
634 		return;
635 
636 	/* Find average delivery rate in this sampling interval. */
637 	t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
638 	if ((s32)t < 1)
639 		return;		/* interval is less than one ms, so wait */
640 	/* Check if can multiply without overflow */
641 	if (t >= ~0U / USEC_PER_MSEC) {
642 		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
643 		return;
644 	}
645 	t *= USEC_PER_MSEC;
646 	bw = (u64)delivered * BW_UNIT;
647 	do_div(bw, t);
648 	bbr_lt_bw_interval_done(sk, bw);
649 }
650 
651 /* Estimate the bandwidth based on how fast packets are delivered */
652 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct bbr *bbr = inet_csk_ca(sk);
656 	u64 bw;
657 
658 	bbr->round_start = 0;
659 	if (rs->delivered < 0 || rs->interval_us <= 0)
660 		return; /* Not a valid observation */
661 
662 	/* See if we've reached the next RTT */
663 	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
664 		bbr->next_rtt_delivered = tp->delivered;
665 		bbr->rtt_cnt++;
666 		bbr->round_start = 1;
667 		bbr->packet_conservation = 0;
668 	}
669 
670 	bbr_lt_bw_sampling(sk, rs);
671 
672 	/* Divide delivered by the interval to find a (lower bound) bottleneck
673 	 * bandwidth sample. Delivered is in packets and interval_us in uS and
674 	 * ratio will be <<1 for most connections. So delivered is first scaled.
675 	 */
676 	bw = (u64)rs->delivered * BW_UNIT;
677 	do_div(bw, rs->interval_us);
678 
679 	/* If this sample is application-limited, it is likely to have a very
680 	 * low delivered count that represents application behavior rather than
681 	 * the available network rate. Such a sample could drag down estimated
682 	 * bw, causing needless slow-down. Thus, to continue to send at the
683 	 * last measured network rate, we filter out app-limited samples unless
684 	 * they describe the path bw at least as well as our bw model.
685 	 *
686 	 * So the goal during app-limited phase is to proceed with the best
687 	 * network rate no matter how long. We automatically leave this
688 	 * phase when app writes faster than the network can deliver :)
689 	 */
690 	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
691 		/* Incorporate new sample into our max bw filter. */
692 		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
693 	}
694 }
695 
696 /* Estimate when the pipe is full, using the change in delivery rate: BBR
697  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
698  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
699  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
700  * higher rwin, 3: we get higher delivery rate samples. Or transient
701  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
702  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
703  */
704 static void bbr_check_full_bw_reached(struct sock *sk,
705 				      const struct rate_sample *rs)
706 {
707 	struct bbr *bbr = inet_csk_ca(sk);
708 	u32 bw_thresh;
709 
710 	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
711 		return;
712 
713 	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
714 	if (bbr_max_bw(sk) >= bw_thresh) {
715 		bbr->full_bw = bbr_max_bw(sk);
716 		bbr->full_bw_cnt = 0;
717 		return;
718 	}
719 	++bbr->full_bw_cnt;
720 }
721 
722 /* If pipe is probably full, drain the queue and then enter steady-state. */
723 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
724 {
725 	struct bbr *bbr = inet_csk_ca(sk);
726 
727 	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
728 		bbr->mode = BBR_DRAIN;	/* drain queue we created */
729 		bbr->pacing_gain = bbr_drain_gain;	/* pace slow to drain */
730 		bbr->cwnd_gain = bbr_high_gain;	/* maintain cwnd */
731 	}	/* fall through to check if in-flight is already small: */
732 	if (bbr->mode == BBR_DRAIN &&
733 	    tcp_packets_in_flight(tcp_sk(sk)) <=
734 	    bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
735 		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
736 }
737 
738 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
739  * periodically drain the bottleneck queue, to converge to measure the true
740  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
741  * small (reducing queuing delay and packet loss) and achieve fairness among
742  * BBR flows.
743  *
744  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
745  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
746  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
747  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
748  * re-enter the previous mode. BBR uses 200ms to approximately bound the
749  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
750  *
751  * Note that flows need only pay 2% if they are busy sending over the last 10
752  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
753  * natural silences or low-rate periods within 10 seconds where the rate is low
754  * enough for long enough to drain its queue in the bottleneck. We pick up
755  * these min RTT measurements opportunistically with our min_rtt filter. :-)
756  */
757 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
758 {
759 	struct tcp_sock *tp = tcp_sk(sk);
760 	struct bbr *bbr = inet_csk_ca(sk);
761 	bool filter_expired;
762 
763 	/* Track min RTT seen in the min_rtt_win_sec filter window: */
764 	filter_expired = after(tcp_jiffies32,
765 			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
766 	if (rs->rtt_us >= 0 &&
767 	    (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
768 		bbr->min_rtt_us = rs->rtt_us;
769 		bbr->min_rtt_stamp = tcp_jiffies32;
770 	}
771 
772 	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
773 	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
774 		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
775 		bbr->pacing_gain = BBR_UNIT;
776 		bbr->cwnd_gain = BBR_UNIT;
777 		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
778 		bbr->probe_rtt_done_stamp = 0;
779 	}
780 
781 	if (bbr->mode == BBR_PROBE_RTT) {
782 		/* Ignore low rate samples during this mode. */
783 		tp->app_limited =
784 			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
785 		/* Maintain min packets in flight for max(200 ms, 1 round). */
786 		if (!bbr->probe_rtt_done_stamp &&
787 		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
788 			bbr->probe_rtt_done_stamp = tcp_jiffies32 +
789 				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
790 			bbr->probe_rtt_round_done = 0;
791 			bbr->next_rtt_delivered = tp->delivered;
792 		} else if (bbr->probe_rtt_done_stamp) {
793 			if (bbr->round_start)
794 				bbr->probe_rtt_round_done = 1;
795 			if (bbr->probe_rtt_round_done &&
796 			    after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
797 				bbr->min_rtt_stamp = tcp_jiffies32;
798 				bbr->restore_cwnd = 1;  /* snap to prior_cwnd */
799 				bbr_reset_mode(sk);
800 			}
801 		}
802 	}
803 	bbr->idle_restart = 0;
804 }
805 
806 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
807 {
808 	bbr_update_bw(sk, rs);
809 	bbr_update_cycle_phase(sk, rs);
810 	bbr_check_full_bw_reached(sk, rs);
811 	bbr_check_drain(sk, rs);
812 	bbr_update_min_rtt(sk, rs);
813 }
814 
815 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
816 {
817 	struct bbr *bbr = inet_csk_ca(sk);
818 	u32 bw;
819 
820 	bbr_update_model(sk, rs);
821 
822 	bw = bbr_bw(sk);
823 	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
824 	bbr_set_tso_segs_goal(sk);
825 	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
826 }
827 
828 static void bbr_init(struct sock *sk)
829 {
830 	struct tcp_sock *tp = tcp_sk(sk);
831 	struct bbr *bbr = inet_csk_ca(sk);
832 
833 	bbr->prior_cwnd = 0;
834 	bbr->tso_segs_goal = 0;	 /* default segs per skb until first ACK */
835 	bbr->rtt_cnt = 0;
836 	bbr->next_rtt_delivered = 0;
837 	bbr->prev_ca_state = TCP_CA_Open;
838 	bbr->packet_conservation = 0;
839 
840 	bbr->probe_rtt_done_stamp = 0;
841 	bbr->probe_rtt_round_done = 0;
842 	bbr->min_rtt_us = tcp_min_rtt(tp);
843 	bbr->min_rtt_stamp = tcp_jiffies32;
844 
845 	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
846 
847 	bbr->has_seen_rtt = 0;
848 	bbr_init_pacing_rate_from_rtt(sk);
849 
850 	bbr->restore_cwnd = 0;
851 	bbr->round_start = 0;
852 	bbr->idle_restart = 0;
853 	bbr->full_bw = 0;
854 	bbr->full_bw_cnt = 0;
855 	bbr->cycle_mstamp = 0;
856 	bbr->cycle_idx = 0;
857 	bbr_reset_lt_bw_sampling(sk);
858 	bbr_reset_startup_mode(sk);
859 
860 	cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
861 }
862 
863 static u32 bbr_sndbuf_expand(struct sock *sk)
864 {
865 	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
866 	return 3;
867 }
868 
869 /* In theory BBR does not need to undo the cwnd since it does not
870  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
871  */
872 static u32 bbr_undo_cwnd(struct sock *sk)
873 {
874 	return tcp_sk(sk)->snd_cwnd;
875 }
876 
877 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
878 static u32 bbr_ssthresh(struct sock *sk)
879 {
880 	bbr_save_cwnd(sk);
881 	return TCP_INFINITE_SSTHRESH;	 /* BBR does not use ssthresh */
882 }
883 
884 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
885 			   union tcp_cc_info *info)
886 {
887 	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
888 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
889 		struct tcp_sock *tp = tcp_sk(sk);
890 		struct bbr *bbr = inet_csk_ca(sk);
891 		u64 bw = bbr_bw(sk);
892 
893 		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
894 		memset(&info->bbr, 0, sizeof(info->bbr));
895 		info->bbr.bbr_bw_lo		= (u32)bw;
896 		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
897 		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
898 		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
899 		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
900 		*attr = INET_DIAG_BBRINFO;
901 		return sizeof(info->bbr);
902 	}
903 	return 0;
904 }
905 
906 static void bbr_set_state(struct sock *sk, u8 new_state)
907 {
908 	struct bbr *bbr = inet_csk_ca(sk);
909 
910 	if (new_state == TCP_CA_Loss) {
911 		struct rate_sample rs = { .losses = 1 };
912 
913 		bbr->prev_ca_state = TCP_CA_Loss;
914 		bbr->full_bw = 0;
915 		bbr->round_start = 1;	/* treat RTO like end of a round */
916 		bbr_lt_bw_sampling(sk, &rs);
917 	}
918 }
919 
920 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
921 	.flags		= TCP_CONG_NON_RESTRICTED,
922 	.name		= "bbr",
923 	.owner		= THIS_MODULE,
924 	.init		= bbr_init,
925 	.cong_control	= bbr_main,
926 	.sndbuf_expand	= bbr_sndbuf_expand,
927 	.undo_cwnd	= bbr_undo_cwnd,
928 	.cwnd_event	= bbr_cwnd_event,
929 	.ssthresh	= bbr_ssthresh,
930 	.tso_segs_goal	= bbr_tso_segs_goal,
931 	.get_info	= bbr_get_info,
932 	.set_state	= bbr_set_state,
933 };
934 
935 static int __init bbr_register(void)
936 {
937 	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
938 	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
939 }
940 
941 static void __exit bbr_unregister(void)
942 {
943 	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
944 }
945 
946 module_init(bbr_register);
947 module_exit(bbr_unregister);
948 
949 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
950 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
951 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
952 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
953 MODULE_LICENSE("Dual BSD/GPL");
954 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
955