1 /* Bottleneck Bandwidth and RTT (BBR) congestion control 2 * 3 * BBR congestion control computes the sending rate based on the delivery 4 * rate (throughput) estimated from ACKs. In a nutshell: 5 * 6 * On each ACK, update our model of the network path: 7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips) 8 * min_rtt = windowed_min(rtt, 10 seconds) 9 * pacing_rate = pacing_gain * bottleneck_bandwidth 10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4) 11 * 12 * The core algorithm does not react directly to packet losses or delays, 13 * although BBR may adjust the size of next send per ACK when loss is 14 * observed, or adjust the sending rate if it estimates there is a 15 * traffic policer, in order to keep the drop rate reasonable. 16 * 17 * Here is a state transition diagram for BBR: 18 * 19 * | 20 * V 21 * +---> STARTUP ----+ 22 * | | | 23 * | V | 24 * | DRAIN ----+ 25 * | | | 26 * | V | 27 * +---> PROBE_BW ----+ 28 * | ^ | | 29 * | | | | 30 * | +----+ | 31 * | | 32 * +---- PROBE_RTT <--+ 33 * 34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly. 35 * When it estimates the pipe is full, it enters DRAIN to drain the queue. 36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT. 37 * A long-lived BBR flow spends the vast majority of its time remaining 38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth 39 * in a fair manner, with a small, bounded queue. *If* a flow has been 40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT 41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then 42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe 43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if 44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW; 45 * otherwise we enter STARTUP to try to fill the pipe. 46 * 47 * BBR is described in detail in: 48 * "BBR: Congestion-Based Congestion Control", 49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, 50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016. 51 * 52 * There is a public e-mail list for discussing BBR development and testing: 53 * https://groups.google.com/forum/#!forum/bbr-dev 54 * 55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled, 56 * otherwise TCP stack falls back to an internal pacing using one high 57 * resolution timer per TCP socket and may use more resources. 58 */ 59 #include <linux/btf.h> 60 #include <linux/btf_ids.h> 61 #include <linux/module.h> 62 #include <net/tcp.h> 63 #include <linux/inet_diag.h> 64 #include <linux/inet.h> 65 #include <linux/random.h> 66 #include <linux/win_minmax.h> 67 68 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth 69 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps. 70 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32. 71 * Since the minimum window is >=4 packets, the lower bound isn't 72 * an issue. The upper bound isn't an issue with existing technologies. 73 */ 74 #define BW_SCALE 24 75 #define BW_UNIT (1 << BW_SCALE) 76 77 #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */ 78 #define BBR_UNIT (1 << BBR_SCALE) 79 80 /* BBR has the following modes for deciding how fast to send: */ 81 enum bbr_mode { 82 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */ 83 BBR_DRAIN, /* drain any queue created during startup */ 84 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */ 85 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */ 86 }; 87 88 /* BBR congestion control block */ 89 struct bbr { 90 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */ 91 u32 min_rtt_stamp; /* timestamp of min_rtt_us */ 92 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */ 93 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */ 94 u32 rtt_cnt; /* count of packet-timed rounds elapsed */ 95 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */ 96 u64 cycle_mstamp; /* time of this cycle phase start */ 97 u32 mode:3, /* current bbr_mode in state machine */ 98 prev_ca_state:3, /* CA state on previous ACK */ 99 packet_conservation:1, /* use packet conservation? */ 100 round_start:1, /* start of packet-timed tx->ack round? */ 101 idle_restart:1, /* restarting after idle? */ 102 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */ 103 unused:13, 104 lt_is_sampling:1, /* taking long-term ("LT") samples now? */ 105 lt_rtt_cnt:7, /* round trips in long-term interval */ 106 lt_use_bw:1; /* use lt_bw as our bw estimate? */ 107 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */ 108 u32 lt_last_delivered; /* LT intvl start: tp->delivered */ 109 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */ 110 u32 lt_last_lost; /* LT intvl start: tp->lost */ 111 u32 pacing_gain:10, /* current gain for setting pacing rate */ 112 cwnd_gain:10, /* current gain for setting cwnd */ 113 full_bw_reached:1, /* reached full bw in Startup? */ 114 full_bw_cnt:2, /* number of rounds without large bw gains */ 115 cycle_idx:3, /* current index in pacing_gain cycle array */ 116 has_seen_rtt:1, /* have we seen an RTT sample yet? */ 117 unused_b:5; 118 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */ 119 u32 full_bw; /* recent bw, to estimate if pipe is full */ 120 121 /* For tracking ACK aggregation: */ 122 u64 ack_epoch_mstamp; /* start of ACK sampling epoch */ 123 u16 extra_acked[2]; /* max excess data ACKed in epoch */ 124 u32 ack_epoch_acked:20, /* packets (S)ACKed in sampling epoch */ 125 extra_acked_win_rtts:5, /* age of extra_acked, in round trips */ 126 extra_acked_win_idx:1, /* current index in extra_acked array */ 127 unused_c:6; 128 }; 129 130 #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */ 131 132 /* Window length of bw filter (in rounds): */ 133 static const int bbr_bw_rtts = CYCLE_LEN + 2; 134 /* Window length of min_rtt filter (in sec): */ 135 static const u32 bbr_min_rtt_win_sec = 10; 136 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */ 137 static const u32 bbr_probe_rtt_mode_ms = 200; 138 /* Skip TSO below the following bandwidth (bits/sec): */ 139 static const int bbr_min_tso_rate = 1200000; 140 141 /* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck. 142 * In order to help drive the network toward lower queues and low latency while 143 * maintaining high utilization, the average pacing rate aims to be slightly 144 * lower than the estimated bandwidth. This is an important aspect of the 145 * design. 146 */ 147 static const int bbr_pacing_margin_percent = 1; 148 149 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain 150 * that will allow a smoothly increasing pacing rate that will double each RTT 151 * and send the same number of packets per RTT that an un-paced, slow-starting 152 * Reno or CUBIC flow would: 153 */ 154 static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1; 155 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain 156 * the queue created in BBR_STARTUP in a single round: 157 */ 158 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885; 159 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */ 160 static const int bbr_cwnd_gain = BBR_UNIT * 2; 161 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */ 162 static const int bbr_pacing_gain[] = { 163 BBR_UNIT * 5 / 4, /* probe for more available bw */ 164 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */ 165 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */ 166 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */ 167 }; 168 /* Randomize the starting gain cycling phase over N phases: */ 169 static const u32 bbr_cycle_rand = 7; 170 171 /* Try to keep at least this many packets in flight, if things go smoothly. For 172 * smooth functioning, a sliding window protocol ACKing every other packet 173 * needs at least 4 packets in flight: 174 */ 175 static const u32 bbr_cwnd_min_target = 4; 176 177 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */ 178 /* If bw has increased significantly (1.25x), there may be more bw available: */ 179 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4; 180 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */ 181 static const u32 bbr_full_bw_cnt = 3; 182 183 /* "long-term" ("LT") bandwidth estimator parameters... */ 184 /* The minimum number of rounds in an LT bw sampling interval: */ 185 static const u32 bbr_lt_intvl_min_rtts = 4; 186 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */ 187 static const u32 bbr_lt_loss_thresh = 50; 188 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */ 189 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8; 190 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */ 191 static const u32 bbr_lt_bw_diff = 4000 / 8; 192 /* If we estimate we're policed, use lt_bw for this many round trips: */ 193 static const u32 bbr_lt_bw_max_rtts = 48; 194 195 /* Gain factor for adding extra_acked to target cwnd: */ 196 static const int bbr_extra_acked_gain = BBR_UNIT; 197 /* Window length of extra_acked window. */ 198 static const u32 bbr_extra_acked_win_rtts = 5; 199 /* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */ 200 static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20; 201 /* Time period for clamping cwnd increment due to ack aggregation */ 202 static const u32 bbr_extra_acked_max_us = 100 * 1000; 203 204 static void bbr_check_probe_rtt_done(struct sock *sk); 205 206 /* Do we estimate that STARTUP filled the pipe? */ 207 static bool bbr_full_bw_reached(const struct sock *sk) 208 { 209 const struct bbr *bbr = inet_csk_ca(sk); 210 211 return bbr->full_bw_reached; 212 } 213 214 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */ 215 static u32 bbr_max_bw(const struct sock *sk) 216 { 217 struct bbr *bbr = inet_csk_ca(sk); 218 219 return minmax_get(&bbr->bw); 220 } 221 222 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */ 223 static u32 bbr_bw(const struct sock *sk) 224 { 225 struct bbr *bbr = inet_csk_ca(sk); 226 227 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk); 228 } 229 230 /* Return maximum extra acked in past k-2k round trips, 231 * where k = bbr_extra_acked_win_rtts. 232 */ 233 static u16 bbr_extra_acked(const struct sock *sk) 234 { 235 struct bbr *bbr = inet_csk_ca(sk); 236 237 return max(bbr->extra_acked[0], bbr->extra_acked[1]); 238 } 239 240 /* Return rate in bytes per second, optionally with a gain. 241 * The order here is chosen carefully to avoid overflow of u64. This should 242 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x. 243 */ 244 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain) 245 { 246 unsigned int mss = tcp_sk(sk)->mss_cache; 247 248 rate *= mss; 249 rate *= gain; 250 rate >>= BBR_SCALE; 251 rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent); 252 return rate >> BW_SCALE; 253 } 254 255 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */ 256 static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain) 257 { 258 u64 rate = bw; 259 260 rate = bbr_rate_bytes_per_sec(sk, rate, gain); 261 rate = min_t(u64, rate, sk->sk_max_pacing_rate); 262 return rate; 263 } 264 265 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */ 266 static void bbr_init_pacing_rate_from_rtt(struct sock *sk) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 struct bbr *bbr = inet_csk_ca(sk); 270 u64 bw; 271 u32 rtt_us; 272 273 if (tp->srtt_us) { /* any RTT sample yet? */ 274 rtt_us = max(tp->srtt_us >> 3, 1U); 275 bbr->has_seen_rtt = 1; 276 } else { /* no RTT sample yet */ 277 rtt_us = USEC_PER_MSEC; /* use nominal default RTT */ 278 } 279 bw = (u64)tp->snd_cwnd * BW_UNIT; 280 do_div(bw, rtt_us); 281 sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain); 282 } 283 284 /* Pace using current bw estimate and a gain factor. */ 285 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain) 286 { 287 struct tcp_sock *tp = tcp_sk(sk); 288 struct bbr *bbr = inet_csk_ca(sk); 289 unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain); 290 291 if (unlikely(!bbr->has_seen_rtt && tp->srtt_us)) 292 bbr_init_pacing_rate_from_rtt(sk); 293 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate) 294 sk->sk_pacing_rate = rate; 295 } 296 297 /* override sysctl_tcp_min_tso_segs */ 298 static u32 bbr_min_tso_segs(struct sock *sk) 299 { 300 return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2; 301 } 302 303 static u32 bbr_tso_segs_goal(struct sock *sk) 304 { 305 struct tcp_sock *tp = tcp_sk(sk); 306 u32 segs, bytes; 307 308 /* Sort of tcp_tso_autosize() but ignoring 309 * driver provided sk_gso_max_size. 310 */ 311 bytes = min_t(unsigned long, 312 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 313 GSO_MAX_SIZE - 1 - MAX_TCP_HEADER); 314 segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk)); 315 316 return min(segs, 0x7FU); 317 } 318 319 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */ 320 static void bbr_save_cwnd(struct sock *sk) 321 { 322 struct tcp_sock *tp = tcp_sk(sk); 323 struct bbr *bbr = inet_csk_ca(sk); 324 325 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT) 326 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */ 327 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */ 328 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd); 329 } 330 331 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 struct bbr *bbr = inet_csk_ca(sk); 335 336 if (event == CA_EVENT_TX_START && tp->app_limited) { 337 bbr->idle_restart = 1; 338 bbr->ack_epoch_mstamp = tp->tcp_mstamp; 339 bbr->ack_epoch_acked = 0; 340 /* Avoid pointless buffer overflows: pace at est. bw if we don't 341 * need more speed (we're restarting from idle and app-limited). 342 */ 343 if (bbr->mode == BBR_PROBE_BW) 344 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT); 345 else if (bbr->mode == BBR_PROBE_RTT) 346 bbr_check_probe_rtt_done(sk); 347 } 348 } 349 350 /* Calculate bdp based on min RTT and the estimated bottleneck bandwidth: 351 * 352 * bdp = ceil(bw * min_rtt * gain) 353 * 354 * The key factor, gain, controls the amount of queue. While a small gain 355 * builds a smaller queue, it becomes more vulnerable to noise in RTT 356 * measurements (e.g., delayed ACKs or other ACK compression effects). This 357 * noise may cause BBR to under-estimate the rate. 358 */ 359 static u32 bbr_bdp(struct sock *sk, u32 bw, int gain) 360 { 361 struct bbr *bbr = inet_csk_ca(sk); 362 u32 bdp; 363 u64 w; 364 365 /* If we've never had a valid RTT sample, cap cwnd at the initial 366 * default. This should only happen when the connection is not using TCP 367 * timestamps and has retransmitted all of the SYN/SYNACK/data packets 368 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which 369 * case we need to slow-start up toward something safe: TCP_INIT_CWND. 370 */ 371 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */ 372 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/ 373 374 w = (u64)bw * bbr->min_rtt_us; 375 376 /* Apply a gain to the given value, remove the BW_SCALE shift, and 377 * round the value up to avoid a negative feedback loop. 378 */ 379 bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT; 380 381 return bdp; 382 } 383 384 /* To achieve full performance in high-speed paths, we budget enough cwnd to 385 * fit full-sized skbs in-flight on both end hosts to fully utilize the path: 386 * - one skb in sending host Qdisc, 387 * - one skb in sending host TSO/GSO engine 388 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine 389 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because 390 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets, 391 * which allows 2 outstanding 2-packet sequences, to try to keep pipe 392 * full even with ACK-every-other-packet delayed ACKs. 393 */ 394 static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd) 395 { 396 struct bbr *bbr = inet_csk_ca(sk); 397 398 /* Allow enough full-sized skbs in flight to utilize end systems. */ 399 cwnd += 3 * bbr_tso_segs_goal(sk); 400 401 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */ 402 cwnd = (cwnd + 1) & ~1U; 403 404 /* Ensure gain cycling gets inflight above BDP even for small BDPs. */ 405 if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0) 406 cwnd += 2; 407 408 return cwnd; 409 } 410 411 /* Find inflight based on min RTT and the estimated bottleneck bandwidth. */ 412 static u32 bbr_inflight(struct sock *sk, u32 bw, int gain) 413 { 414 u32 inflight; 415 416 inflight = bbr_bdp(sk, bw, gain); 417 inflight = bbr_quantization_budget(sk, inflight); 418 419 return inflight; 420 } 421 422 /* With pacing at lower layers, there's often less data "in the network" than 423 * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq), 424 * we often have several skbs queued in the pacing layer with a pre-scheduled 425 * earliest departure time (EDT). BBR adapts its pacing rate based on the 426 * inflight level that it estimates has already been "baked in" by previous 427 * departure time decisions. We calculate a rough estimate of the number of our 428 * packets that might be in the network at the earliest departure time for the 429 * next skb scheduled: 430 * in_network_at_edt = inflight_at_edt - (EDT - now) * bw 431 * If we're increasing inflight, then we want to know if the transmit of the 432 * EDT skb will push inflight above the target, so inflight_at_edt includes 433 * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight, 434 * then estimate if inflight will sink too low just before the EDT transmit. 435 */ 436 static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now) 437 { 438 struct tcp_sock *tp = tcp_sk(sk); 439 struct bbr *bbr = inet_csk_ca(sk); 440 u64 now_ns, edt_ns, interval_us; 441 u32 interval_delivered, inflight_at_edt; 442 443 now_ns = tp->tcp_clock_cache; 444 edt_ns = max(tp->tcp_wstamp_ns, now_ns); 445 interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC); 446 interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE; 447 inflight_at_edt = inflight_now; 448 if (bbr->pacing_gain > BBR_UNIT) /* increasing inflight */ 449 inflight_at_edt += bbr_tso_segs_goal(sk); /* include EDT skb */ 450 if (interval_delivered >= inflight_at_edt) 451 return 0; 452 return inflight_at_edt - interval_delivered; 453 } 454 455 /* Find the cwnd increment based on estimate of ack aggregation */ 456 static u32 bbr_ack_aggregation_cwnd(struct sock *sk) 457 { 458 u32 max_aggr_cwnd, aggr_cwnd = 0; 459 460 if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) { 461 max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us) 462 / BW_UNIT; 463 aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk)) 464 >> BBR_SCALE; 465 aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd); 466 } 467 468 return aggr_cwnd; 469 } 470 471 /* An optimization in BBR to reduce losses: On the first round of recovery, we 472 * follow the packet conservation principle: send P packets per P packets acked. 473 * After that, we slow-start and send at most 2*P packets per P packets acked. 474 * After recovery finishes, or upon undo, we restore the cwnd we had when 475 * recovery started (capped by the target cwnd based on estimated BDP). 476 * 477 * TODO(ycheng/ncardwell): implement a rate-based approach. 478 */ 479 static bool bbr_set_cwnd_to_recover_or_restore( 480 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd) 481 { 482 struct tcp_sock *tp = tcp_sk(sk); 483 struct bbr *bbr = inet_csk_ca(sk); 484 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state; 485 u32 cwnd = tp->snd_cwnd; 486 487 /* An ACK for P pkts should release at most 2*P packets. We do this 488 * in two steps. First, here we deduct the number of lost packets. 489 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd. 490 */ 491 if (rs->losses > 0) 492 cwnd = max_t(s32, cwnd - rs->losses, 1); 493 494 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) { 495 /* Starting 1st round of Recovery, so do packet conservation. */ 496 bbr->packet_conservation = 1; 497 bbr->next_rtt_delivered = tp->delivered; /* start round now */ 498 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */ 499 cwnd = tcp_packets_in_flight(tp) + acked; 500 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) { 501 /* Exiting loss recovery; restore cwnd saved before recovery. */ 502 cwnd = max(cwnd, bbr->prior_cwnd); 503 bbr->packet_conservation = 0; 504 } 505 bbr->prev_ca_state = state; 506 507 if (bbr->packet_conservation) { 508 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked); 509 return true; /* yes, using packet conservation */ 510 } 511 *new_cwnd = cwnd; 512 return false; 513 } 514 515 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss 516 * has drawn us down below target), or snap down to target if we're above it. 517 */ 518 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs, 519 u32 acked, u32 bw, int gain) 520 { 521 struct tcp_sock *tp = tcp_sk(sk); 522 struct bbr *bbr = inet_csk_ca(sk); 523 u32 cwnd = tp->snd_cwnd, target_cwnd = 0; 524 525 if (!acked) 526 goto done; /* no packet fully ACKed; just apply caps */ 527 528 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd)) 529 goto done; 530 531 target_cwnd = bbr_bdp(sk, bw, gain); 532 533 /* Increment the cwnd to account for excess ACKed data that seems 534 * due to aggregation (of data and/or ACKs) visible in the ACK stream. 535 */ 536 target_cwnd += bbr_ack_aggregation_cwnd(sk); 537 target_cwnd = bbr_quantization_budget(sk, target_cwnd); 538 539 /* If we're below target cwnd, slow start cwnd toward target cwnd. */ 540 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */ 541 cwnd = min(cwnd + acked, target_cwnd); 542 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND) 543 cwnd = cwnd + acked; 544 cwnd = max(cwnd, bbr_cwnd_min_target); 545 546 done: 547 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */ 548 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */ 549 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target); 550 } 551 552 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */ 553 static bool bbr_is_next_cycle_phase(struct sock *sk, 554 const struct rate_sample *rs) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 struct bbr *bbr = inet_csk_ca(sk); 558 bool is_full_length = 559 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) > 560 bbr->min_rtt_us; 561 u32 inflight, bw; 562 563 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully 564 * use the pipe without increasing the queue. 565 */ 566 if (bbr->pacing_gain == BBR_UNIT) 567 return is_full_length; /* just use wall clock time */ 568 569 inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight); 570 bw = bbr_max_bw(sk); 571 572 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at 573 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is 574 * small (e.g. on a LAN). We do not persist if packets are lost, since 575 * a path with small buffers may not hold that much. 576 */ 577 if (bbr->pacing_gain > BBR_UNIT) 578 return is_full_length && 579 (rs->losses || /* perhaps pacing_gain*BDP won't fit */ 580 inflight >= bbr_inflight(sk, bw, bbr->pacing_gain)); 581 582 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw 583 * probing didn't find more bw. If inflight falls to match BDP then we 584 * estimate queue is drained; persisting would underutilize the pipe. 585 */ 586 return is_full_length || 587 inflight <= bbr_inflight(sk, bw, BBR_UNIT); 588 } 589 590 static void bbr_advance_cycle_phase(struct sock *sk) 591 { 592 struct tcp_sock *tp = tcp_sk(sk); 593 struct bbr *bbr = inet_csk_ca(sk); 594 595 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1); 596 bbr->cycle_mstamp = tp->delivered_mstamp; 597 } 598 599 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */ 600 static void bbr_update_cycle_phase(struct sock *sk, 601 const struct rate_sample *rs) 602 { 603 struct bbr *bbr = inet_csk_ca(sk); 604 605 if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs)) 606 bbr_advance_cycle_phase(sk); 607 } 608 609 static void bbr_reset_startup_mode(struct sock *sk) 610 { 611 struct bbr *bbr = inet_csk_ca(sk); 612 613 bbr->mode = BBR_STARTUP; 614 } 615 616 static void bbr_reset_probe_bw_mode(struct sock *sk) 617 { 618 struct bbr *bbr = inet_csk_ca(sk); 619 620 bbr->mode = BBR_PROBE_BW; 621 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand); 622 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */ 623 } 624 625 static void bbr_reset_mode(struct sock *sk) 626 { 627 if (!bbr_full_bw_reached(sk)) 628 bbr_reset_startup_mode(sk); 629 else 630 bbr_reset_probe_bw_mode(sk); 631 } 632 633 /* Start a new long-term sampling interval. */ 634 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk) 635 { 636 struct tcp_sock *tp = tcp_sk(sk); 637 struct bbr *bbr = inet_csk_ca(sk); 638 639 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC); 640 bbr->lt_last_delivered = tp->delivered; 641 bbr->lt_last_lost = tp->lost; 642 bbr->lt_rtt_cnt = 0; 643 } 644 645 /* Completely reset long-term bandwidth sampling. */ 646 static void bbr_reset_lt_bw_sampling(struct sock *sk) 647 { 648 struct bbr *bbr = inet_csk_ca(sk); 649 650 bbr->lt_bw = 0; 651 bbr->lt_use_bw = 0; 652 bbr->lt_is_sampling = false; 653 bbr_reset_lt_bw_sampling_interval(sk); 654 } 655 656 /* Long-term bw sampling interval is done. Estimate whether we're policed. */ 657 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw) 658 { 659 struct bbr *bbr = inet_csk_ca(sk); 660 u32 diff; 661 662 if (bbr->lt_bw) { /* do we have bw from a previous interval? */ 663 /* Is new bw close to the lt_bw from the previous interval? */ 664 diff = abs(bw - bbr->lt_bw); 665 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) || 666 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <= 667 bbr_lt_bw_diff)) { 668 /* All criteria are met; estimate we're policed. */ 669 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */ 670 bbr->lt_use_bw = 1; 671 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */ 672 bbr->lt_rtt_cnt = 0; 673 return; 674 } 675 } 676 bbr->lt_bw = bw; 677 bbr_reset_lt_bw_sampling_interval(sk); 678 } 679 680 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of 681 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and 682 * explicitly models their policed rate, to reduce unnecessary losses. We 683 * estimate that we're policed if we see 2 consecutive sampling intervals with 684 * consistent throughput and high packet loss. If we think we're being policed, 685 * set lt_bw to the "long-term" average delivery rate from those 2 intervals. 686 */ 687 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs) 688 { 689 struct tcp_sock *tp = tcp_sk(sk); 690 struct bbr *bbr = inet_csk_ca(sk); 691 u32 lost, delivered; 692 u64 bw; 693 u32 t; 694 695 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */ 696 if (bbr->mode == BBR_PROBE_BW && bbr->round_start && 697 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) { 698 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */ 699 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */ 700 } 701 return; 702 } 703 704 /* Wait for the first loss before sampling, to let the policer exhaust 705 * its tokens and estimate the steady-state rate allowed by the policer. 706 * Starting samples earlier includes bursts that over-estimate the bw. 707 */ 708 if (!bbr->lt_is_sampling) { 709 if (!rs->losses) 710 return; 711 bbr_reset_lt_bw_sampling_interval(sk); 712 bbr->lt_is_sampling = true; 713 } 714 715 /* To avoid underestimates, reset sampling if we run out of data. */ 716 if (rs->is_app_limited) { 717 bbr_reset_lt_bw_sampling(sk); 718 return; 719 } 720 721 if (bbr->round_start) 722 bbr->lt_rtt_cnt++; /* count round trips in this interval */ 723 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts) 724 return; /* sampling interval needs to be longer */ 725 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) { 726 bbr_reset_lt_bw_sampling(sk); /* interval is too long */ 727 return; 728 } 729 730 /* End sampling interval when a packet is lost, so we estimate the 731 * policer tokens were exhausted. Stopping the sampling before the 732 * tokens are exhausted under-estimates the policed rate. 733 */ 734 if (!rs->losses) 735 return; 736 737 /* Calculate packets lost and delivered in sampling interval. */ 738 lost = tp->lost - bbr->lt_last_lost; 739 delivered = tp->delivered - bbr->lt_last_delivered; 740 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */ 741 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered) 742 return; 743 744 /* Find average delivery rate in this sampling interval. */ 745 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp; 746 if ((s32)t < 1) 747 return; /* interval is less than one ms, so wait */ 748 /* Check if can multiply without overflow */ 749 if (t >= ~0U / USEC_PER_MSEC) { 750 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */ 751 return; 752 } 753 t *= USEC_PER_MSEC; 754 bw = (u64)delivered * BW_UNIT; 755 do_div(bw, t); 756 bbr_lt_bw_interval_done(sk, bw); 757 } 758 759 /* Estimate the bandwidth based on how fast packets are delivered */ 760 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 struct bbr *bbr = inet_csk_ca(sk); 764 u64 bw; 765 766 bbr->round_start = 0; 767 if (rs->delivered < 0 || rs->interval_us <= 0) 768 return; /* Not a valid observation */ 769 770 /* See if we've reached the next RTT */ 771 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) { 772 bbr->next_rtt_delivered = tp->delivered; 773 bbr->rtt_cnt++; 774 bbr->round_start = 1; 775 bbr->packet_conservation = 0; 776 } 777 778 bbr_lt_bw_sampling(sk, rs); 779 780 /* Divide delivered by the interval to find a (lower bound) bottleneck 781 * bandwidth sample. Delivered is in packets and interval_us in uS and 782 * ratio will be <<1 for most connections. So delivered is first scaled. 783 */ 784 bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us); 785 786 /* If this sample is application-limited, it is likely to have a very 787 * low delivered count that represents application behavior rather than 788 * the available network rate. Such a sample could drag down estimated 789 * bw, causing needless slow-down. Thus, to continue to send at the 790 * last measured network rate, we filter out app-limited samples unless 791 * they describe the path bw at least as well as our bw model. 792 * 793 * So the goal during app-limited phase is to proceed with the best 794 * network rate no matter how long. We automatically leave this 795 * phase when app writes faster than the network can deliver :) 796 */ 797 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) { 798 /* Incorporate new sample into our max bw filter. */ 799 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw); 800 } 801 } 802 803 /* Estimates the windowed max degree of ack aggregation. 804 * This is used to provision extra in-flight data to keep sending during 805 * inter-ACK silences. 806 * 807 * Degree of ack aggregation is estimated as extra data acked beyond expected. 808 * 809 * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval" 810 * cwnd += max_extra_acked 811 * 812 * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms). 813 * Max filter is an approximate sliding window of 5-10 (packet timed) round 814 * trips. 815 */ 816 static void bbr_update_ack_aggregation(struct sock *sk, 817 const struct rate_sample *rs) 818 { 819 u32 epoch_us, expected_acked, extra_acked; 820 struct bbr *bbr = inet_csk_ca(sk); 821 struct tcp_sock *tp = tcp_sk(sk); 822 823 if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 || 824 rs->delivered < 0 || rs->interval_us <= 0) 825 return; 826 827 if (bbr->round_start) { 828 bbr->extra_acked_win_rtts = min(0x1F, 829 bbr->extra_acked_win_rtts + 1); 830 if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) { 831 bbr->extra_acked_win_rtts = 0; 832 bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ? 833 0 : 1; 834 bbr->extra_acked[bbr->extra_acked_win_idx] = 0; 835 } 836 } 837 838 /* Compute how many packets we expected to be delivered over epoch. */ 839 epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp, 840 bbr->ack_epoch_mstamp); 841 expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT; 842 843 /* Reset the aggregation epoch if ACK rate is below expected rate or 844 * significantly large no. of ack received since epoch (potentially 845 * quite old epoch). 846 */ 847 if (bbr->ack_epoch_acked <= expected_acked || 848 (bbr->ack_epoch_acked + rs->acked_sacked >= 849 bbr_ack_epoch_acked_reset_thresh)) { 850 bbr->ack_epoch_acked = 0; 851 bbr->ack_epoch_mstamp = tp->delivered_mstamp; 852 expected_acked = 0; 853 } 854 855 /* Compute excess data delivered, beyond what was expected. */ 856 bbr->ack_epoch_acked = min_t(u32, 0xFFFFF, 857 bbr->ack_epoch_acked + rs->acked_sacked); 858 extra_acked = bbr->ack_epoch_acked - expected_acked; 859 extra_acked = min(extra_acked, tp->snd_cwnd); 860 if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx]) 861 bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked; 862 } 863 864 /* Estimate when the pipe is full, using the change in delivery rate: BBR 865 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by 866 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited 867 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the 868 * higher rwin, 3: we get higher delivery rate samples. Or transient 869 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar 870 * design goal, but uses delay and inter-ACK spacing instead of bandwidth. 871 */ 872 static void bbr_check_full_bw_reached(struct sock *sk, 873 const struct rate_sample *rs) 874 { 875 struct bbr *bbr = inet_csk_ca(sk); 876 u32 bw_thresh; 877 878 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited) 879 return; 880 881 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE; 882 if (bbr_max_bw(sk) >= bw_thresh) { 883 bbr->full_bw = bbr_max_bw(sk); 884 bbr->full_bw_cnt = 0; 885 return; 886 } 887 ++bbr->full_bw_cnt; 888 bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt; 889 } 890 891 /* If pipe is probably full, drain the queue and then enter steady-state. */ 892 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs) 893 { 894 struct bbr *bbr = inet_csk_ca(sk); 895 896 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) { 897 bbr->mode = BBR_DRAIN; /* drain queue we created */ 898 tcp_sk(sk)->snd_ssthresh = 899 bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT); 900 } /* fall through to check if in-flight is already small: */ 901 if (bbr->mode == BBR_DRAIN && 902 bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <= 903 bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT)) 904 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */ 905 } 906 907 static void bbr_check_probe_rtt_done(struct sock *sk) 908 { 909 struct tcp_sock *tp = tcp_sk(sk); 910 struct bbr *bbr = inet_csk_ca(sk); 911 912 if (!(bbr->probe_rtt_done_stamp && 913 after(tcp_jiffies32, bbr->probe_rtt_done_stamp))) 914 return; 915 916 bbr->min_rtt_stamp = tcp_jiffies32; /* wait a while until PROBE_RTT */ 917 tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd); 918 bbr_reset_mode(sk); 919 } 920 921 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and 922 * periodically drain the bottleneck queue, to converge to measure the true 923 * min_rtt (unloaded propagation delay). This allows the flows to keep queues 924 * small (reducing queuing delay and packet loss) and achieve fairness among 925 * BBR flows. 926 * 927 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires, 928 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets. 929 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed 930 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and 931 * re-enter the previous mode. BBR uses 200ms to approximately bound the 932 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s). 933 * 934 * Note that flows need only pay 2% if they are busy sending over the last 10 935 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have 936 * natural silences or low-rate periods within 10 seconds where the rate is low 937 * enough for long enough to drain its queue in the bottleneck. We pick up 938 * these min RTT measurements opportunistically with our min_rtt filter. :-) 939 */ 940 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs) 941 { 942 struct tcp_sock *tp = tcp_sk(sk); 943 struct bbr *bbr = inet_csk_ca(sk); 944 bool filter_expired; 945 946 /* Track min RTT seen in the min_rtt_win_sec filter window: */ 947 filter_expired = after(tcp_jiffies32, 948 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ); 949 if (rs->rtt_us >= 0 && 950 (rs->rtt_us < bbr->min_rtt_us || 951 (filter_expired && !rs->is_ack_delayed))) { 952 bbr->min_rtt_us = rs->rtt_us; 953 bbr->min_rtt_stamp = tcp_jiffies32; 954 } 955 956 if (bbr_probe_rtt_mode_ms > 0 && filter_expired && 957 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) { 958 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */ 959 bbr_save_cwnd(sk); /* note cwnd so we can restore it */ 960 bbr->probe_rtt_done_stamp = 0; 961 } 962 963 if (bbr->mode == BBR_PROBE_RTT) { 964 /* Ignore low rate samples during this mode. */ 965 tp->app_limited = 966 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1; 967 /* Maintain min packets in flight for max(200 ms, 1 round). */ 968 if (!bbr->probe_rtt_done_stamp && 969 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) { 970 bbr->probe_rtt_done_stamp = tcp_jiffies32 + 971 msecs_to_jiffies(bbr_probe_rtt_mode_ms); 972 bbr->probe_rtt_round_done = 0; 973 bbr->next_rtt_delivered = tp->delivered; 974 } else if (bbr->probe_rtt_done_stamp) { 975 if (bbr->round_start) 976 bbr->probe_rtt_round_done = 1; 977 if (bbr->probe_rtt_round_done) 978 bbr_check_probe_rtt_done(sk); 979 } 980 } 981 /* Restart after idle ends only once we process a new S/ACK for data */ 982 if (rs->delivered > 0) 983 bbr->idle_restart = 0; 984 } 985 986 static void bbr_update_gains(struct sock *sk) 987 { 988 struct bbr *bbr = inet_csk_ca(sk); 989 990 switch (bbr->mode) { 991 case BBR_STARTUP: 992 bbr->pacing_gain = bbr_high_gain; 993 bbr->cwnd_gain = bbr_high_gain; 994 break; 995 case BBR_DRAIN: 996 bbr->pacing_gain = bbr_drain_gain; /* slow, to drain */ 997 bbr->cwnd_gain = bbr_high_gain; /* keep cwnd */ 998 break; 999 case BBR_PROBE_BW: 1000 bbr->pacing_gain = (bbr->lt_use_bw ? 1001 BBR_UNIT : 1002 bbr_pacing_gain[bbr->cycle_idx]); 1003 bbr->cwnd_gain = bbr_cwnd_gain; 1004 break; 1005 case BBR_PROBE_RTT: 1006 bbr->pacing_gain = BBR_UNIT; 1007 bbr->cwnd_gain = BBR_UNIT; 1008 break; 1009 default: 1010 WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode); 1011 break; 1012 } 1013 } 1014 1015 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs) 1016 { 1017 bbr_update_bw(sk, rs); 1018 bbr_update_ack_aggregation(sk, rs); 1019 bbr_update_cycle_phase(sk, rs); 1020 bbr_check_full_bw_reached(sk, rs); 1021 bbr_check_drain(sk, rs); 1022 bbr_update_min_rtt(sk, rs); 1023 bbr_update_gains(sk); 1024 } 1025 1026 static void bbr_main(struct sock *sk, const struct rate_sample *rs) 1027 { 1028 struct bbr *bbr = inet_csk_ca(sk); 1029 u32 bw; 1030 1031 bbr_update_model(sk, rs); 1032 1033 bw = bbr_bw(sk); 1034 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain); 1035 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain); 1036 } 1037 1038 static void bbr_init(struct sock *sk) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct bbr *bbr = inet_csk_ca(sk); 1042 1043 bbr->prior_cwnd = 0; 1044 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 1045 bbr->rtt_cnt = 0; 1046 bbr->next_rtt_delivered = tp->delivered; 1047 bbr->prev_ca_state = TCP_CA_Open; 1048 bbr->packet_conservation = 0; 1049 1050 bbr->probe_rtt_done_stamp = 0; 1051 bbr->probe_rtt_round_done = 0; 1052 bbr->min_rtt_us = tcp_min_rtt(tp); 1053 bbr->min_rtt_stamp = tcp_jiffies32; 1054 1055 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */ 1056 1057 bbr->has_seen_rtt = 0; 1058 bbr_init_pacing_rate_from_rtt(sk); 1059 1060 bbr->round_start = 0; 1061 bbr->idle_restart = 0; 1062 bbr->full_bw_reached = 0; 1063 bbr->full_bw = 0; 1064 bbr->full_bw_cnt = 0; 1065 bbr->cycle_mstamp = 0; 1066 bbr->cycle_idx = 0; 1067 bbr_reset_lt_bw_sampling(sk); 1068 bbr_reset_startup_mode(sk); 1069 1070 bbr->ack_epoch_mstamp = tp->tcp_mstamp; 1071 bbr->ack_epoch_acked = 0; 1072 bbr->extra_acked_win_rtts = 0; 1073 bbr->extra_acked_win_idx = 0; 1074 bbr->extra_acked[0] = 0; 1075 bbr->extra_acked[1] = 0; 1076 1077 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED); 1078 } 1079 1080 static u32 bbr_sndbuf_expand(struct sock *sk) 1081 { 1082 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */ 1083 return 3; 1084 } 1085 1086 /* In theory BBR does not need to undo the cwnd since it does not 1087 * always reduce cwnd on losses (see bbr_main()). Keep it for now. 1088 */ 1089 static u32 bbr_undo_cwnd(struct sock *sk) 1090 { 1091 struct bbr *bbr = inet_csk_ca(sk); 1092 1093 bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */ 1094 bbr->full_bw_cnt = 0; 1095 bbr_reset_lt_bw_sampling(sk); 1096 return tcp_sk(sk)->snd_cwnd; 1097 } 1098 1099 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */ 1100 static u32 bbr_ssthresh(struct sock *sk) 1101 { 1102 bbr_save_cwnd(sk); 1103 return tcp_sk(sk)->snd_ssthresh; 1104 } 1105 1106 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr, 1107 union tcp_cc_info *info) 1108 { 1109 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) || 1110 ext & (1 << (INET_DIAG_VEGASINFO - 1))) { 1111 struct tcp_sock *tp = tcp_sk(sk); 1112 struct bbr *bbr = inet_csk_ca(sk); 1113 u64 bw = bbr_bw(sk); 1114 1115 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE; 1116 memset(&info->bbr, 0, sizeof(info->bbr)); 1117 info->bbr.bbr_bw_lo = (u32)bw; 1118 info->bbr.bbr_bw_hi = (u32)(bw >> 32); 1119 info->bbr.bbr_min_rtt = bbr->min_rtt_us; 1120 info->bbr.bbr_pacing_gain = bbr->pacing_gain; 1121 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain; 1122 *attr = INET_DIAG_BBRINFO; 1123 return sizeof(info->bbr); 1124 } 1125 return 0; 1126 } 1127 1128 static void bbr_set_state(struct sock *sk, u8 new_state) 1129 { 1130 struct bbr *bbr = inet_csk_ca(sk); 1131 1132 if (new_state == TCP_CA_Loss) { 1133 struct rate_sample rs = { .losses = 1 }; 1134 1135 bbr->prev_ca_state = TCP_CA_Loss; 1136 bbr->full_bw = 0; 1137 bbr->round_start = 1; /* treat RTO like end of a round */ 1138 bbr_lt_bw_sampling(sk, &rs); 1139 } 1140 } 1141 1142 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = { 1143 .flags = TCP_CONG_NON_RESTRICTED, 1144 .name = "bbr", 1145 .owner = THIS_MODULE, 1146 .init = bbr_init, 1147 .cong_control = bbr_main, 1148 .sndbuf_expand = bbr_sndbuf_expand, 1149 .undo_cwnd = bbr_undo_cwnd, 1150 .cwnd_event = bbr_cwnd_event, 1151 .ssthresh = bbr_ssthresh, 1152 .min_tso_segs = bbr_min_tso_segs, 1153 .get_info = bbr_get_info, 1154 .set_state = bbr_set_state, 1155 }; 1156 1157 BTF_SET_START(tcp_bbr_check_kfunc_ids) 1158 #ifdef CONFIG_X86 1159 #ifdef CONFIG_DYNAMIC_FTRACE 1160 BTF_ID(func, bbr_init) 1161 BTF_ID(func, bbr_main) 1162 BTF_ID(func, bbr_sndbuf_expand) 1163 BTF_ID(func, bbr_undo_cwnd) 1164 BTF_ID(func, bbr_cwnd_event) 1165 BTF_ID(func, bbr_ssthresh) 1166 BTF_ID(func, bbr_min_tso_segs) 1167 BTF_ID(func, bbr_set_state) 1168 #endif 1169 #endif 1170 BTF_SET_END(tcp_bbr_check_kfunc_ids) 1171 1172 static const struct btf_kfunc_id_set tcp_bbr_kfunc_set = { 1173 .owner = THIS_MODULE, 1174 .check_set = &tcp_bbr_check_kfunc_ids, 1175 }; 1176 1177 static int __init bbr_register(void) 1178 { 1179 int ret; 1180 1181 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE); 1182 1183 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_bbr_kfunc_set); 1184 if (ret < 0) 1185 return ret; 1186 return tcp_register_congestion_control(&tcp_bbr_cong_ops); 1187 } 1188 1189 static void __exit bbr_unregister(void) 1190 { 1191 tcp_unregister_congestion_control(&tcp_bbr_cong_ops); 1192 } 1193 1194 module_init(bbr_register); 1195 module_exit(bbr_unregister); 1196 1197 MODULE_AUTHOR("Van Jacobson <vanj@google.com>"); 1198 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>"); 1199 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>"); 1200 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>"); 1201 MODULE_LICENSE("Dual BSD/GPL"); 1202 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)"); 1203