1 /* Bottleneck Bandwidth and RTT (BBR) congestion control 2 * 3 * BBR congestion control computes the sending rate based on the delivery 4 * rate (throughput) estimated from ACKs. In a nutshell: 5 * 6 * On each ACK, update our model of the network path: 7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips) 8 * min_rtt = windowed_min(rtt, 10 seconds) 9 * pacing_rate = pacing_gain * bottleneck_bandwidth 10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4) 11 * 12 * The core algorithm does not react directly to packet losses or delays, 13 * although BBR may adjust the size of next send per ACK when loss is 14 * observed, or adjust the sending rate if it estimates there is a 15 * traffic policer, in order to keep the drop rate reasonable. 16 * 17 * Here is a state transition diagram for BBR: 18 * 19 * | 20 * V 21 * +---> STARTUP ----+ 22 * | | | 23 * | V | 24 * | DRAIN ----+ 25 * | | | 26 * | V | 27 * +---> PROBE_BW ----+ 28 * | ^ | | 29 * | | | | 30 * | +----+ | 31 * | | 32 * +---- PROBE_RTT <--+ 33 * 34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly. 35 * When it estimates the pipe is full, it enters DRAIN to drain the queue. 36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT. 37 * A long-lived BBR flow spends the vast majority of its time remaining 38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth 39 * in a fair manner, with a small, bounded queue. *If* a flow has been 40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT 41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then 42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe 43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if 44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW; 45 * otherwise we enter STARTUP to try to fill the pipe. 46 * 47 * BBR is described in detail in: 48 * "BBR: Congestion-Based Congestion Control", 49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, 50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016. 51 * 52 * There is a public e-mail list for discussing BBR development and testing: 53 * https://groups.google.com/forum/#!forum/bbr-dev 54 * 55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled, 56 * otherwise TCP stack falls back to an internal pacing using one high 57 * resolution timer per TCP socket and may use more resources. 58 */ 59 #include <linux/module.h> 60 #include <net/tcp.h> 61 #include <linux/inet_diag.h> 62 #include <linux/inet.h> 63 #include <linux/random.h> 64 #include <linux/win_minmax.h> 65 66 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth 67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps. 68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32. 69 * Since the minimum window is >=4 packets, the lower bound isn't 70 * an issue. The upper bound isn't an issue with existing technologies. 71 */ 72 #define BW_SCALE 24 73 #define BW_UNIT (1 << BW_SCALE) 74 75 #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */ 76 #define BBR_UNIT (1 << BBR_SCALE) 77 78 /* BBR has the following modes for deciding how fast to send: */ 79 enum bbr_mode { 80 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */ 81 BBR_DRAIN, /* drain any queue created during startup */ 82 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */ 83 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */ 84 }; 85 86 /* BBR congestion control block */ 87 struct bbr { 88 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */ 89 u32 min_rtt_stamp; /* timestamp of min_rtt_us */ 90 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */ 91 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */ 92 u32 rtt_cnt; /* count of packet-timed rounds elapsed */ 93 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */ 94 u64 cycle_mstamp; /* time of this cycle phase start */ 95 u32 mode:3, /* current bbr_mode in state machine */ 96 prev_ca_state:3, /* CA state on previous ACK */ 97 packet_conservation:1, /* use packet conservation? */ 98 restore_cwnd:1, /* decided to revert cwnd to old value */ 99 round_start:1, /* start of packet-timed tx->ack round? */ 100 tso_segs_goal:7, /* segments we want in each skb we send */ 101 idle_restart:1, /* restarting after idle? */ 102 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */ 103 unused:5, 104 lt_is_sampling:1, /* taking long-term ("LT") samples now? */ 105 lt_rtt_cnt:7, /* round trips in long-term interval */ 106 lt_use_bw:1; /* use lt_bw as our bw estimate? */ 107 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */ 108 u32 lt_last_delivered; /* LT intvl start: tp->delivered */ 109 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */ 110 u32 lt_last_lost; /* LT intvl start: tp->lost */ 111 u32 pacing_gain:10, /* current gain for setting pacing rate */ 112 cwnd_gain:10, /* current gain for setting cwnd */ 113 full_bw_cnt:3, /* number of rounds without large bw gains */ 114 cycle_idx:3, /* current index in pacing_gain cycle array */ 115 unused_b:6; 116 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */ 117 u32 full_bw; /* recent bw, to estimate if pipe is full */ 118 }; 119 120 #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */ 121 122 /* Window length of bw filter (in rounds): */ 123 static const int bbr_bw_rtts = CYCLE_LEN + 2; 124 /* Window length of min_rtt filter (in sec): */ 125 static const u32 bbr_min_rtt_win_sec = 10; 126 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */ 127 static const u32 bbr_probe_rtt_mode_ms = 200; 128 /* Skip TSO below the following bandwidth (bits/sec): */ 129 static const int bbr_min_tso_rate = 1200000; 130 131 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain 132 * that will allow a smoothly increasing pacing rate that will double each RTT 133 * and send the same number of packets per RTT that an un-paced, slow-starting 134 * Reno or CUBIC flow would: 135 */ 136 static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1; 137 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain 138 * the queue created in BBR_STARTUP in a single round: 139 */ 140 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885; 141 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */ 142 static const int bbr_cwnd_gain = BBR_UNIT * 2; 143 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */ 144 static const int bbr_pacing_gain[] = { 145 BBR_UNIT * 5 / 4, /* probe for more available bw */ 146 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */ 147 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */ 148 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */ 149 }; 150 /* Randomize the starting gain cycling phase over N phases: */ 151 static const u32 bbr_cycle_rand = 7; 152 153 /* Try to keep at least this many packets in flight, if things go smoothly. For 154 * smooth functioning, a sliding window protocol ACKing every other packet 155 * needs at least 4 packets in flight: 156 */ 157 static const u32 bbr_cwnd_min_target = 4; 158 159 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */ 160 /* If bw has increased significantly (1.25x), there may be more bw available: */ 161 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4; 162 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */ 163 static const u32 bbr_full_bw_cnt = 3; 164 165 /* "long-term" ("LT") bandwidth estimator parameters... */ 166 /* The minimum number of rounds in an LT bw sampling interval: */ 167 static const u32 bbr_lt_intvl_min_rtts = 4; 168 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */ 169 static const u32 bbr_lt_loss_thresh = 50; 170 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */ 171 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8; 172 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */ 173 static const u32 bbr_lt_bw_diff = 4000 / 8; 174 /* If we estimate we're policed, use lt_bw for this many round trips: */ 175 static const u32 bbr_lt_bw_max_rtts = 48; 176 177 /* Do we estimate that STARTUP filled the pipe? */ 178 static bool bbr_full_bw_reached(const struct sock *sk) 179 { 180 const struct bbr *bbr = inet_csk_ca(sk); 181 182 return bbr->full_bw_cnt >= bbr_full_bw_cnt; 183 } 184 185 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */ 186 static u32 bbr_max_bw(const struct sock *sk) 187 { 188 struct bbr *bbr = inet_csk_ca(sk); 189 190 return minmax_get(&bbr->bw); 191 } 192 193 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */ 194 static u32 bbr_bw(const struct sock *sk) 195 { 196 struct bbr *bbr = inet_csk_ca(sk); 197 198 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk); 199 } 200 201 /* Return rate in bytes per second, optionally with a gain. 202 * The order here is chosen carefully to avoid overflow of u64. This should 203 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x. 204 */ 205 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain) 206 { 207 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache); 208 rate *= gain; 209 rate >>= BBR_SCALE; 210 rate *= USEC_PER_SEC; 211 return rate >> BW_SCALE; 212 } 213 214 /* Pace using current bw estimate and a gain factor. In order to help drive the 215 * network toward lower queues while maintaining high utilization and low 216 * latency, the average pacing rate aims to be slightly (~1%) lower than the 217 * estimated bandwidth. This is an important aspect of the design. In this 218 * implementation this slightly lower pacing rate is achieved implicitly by not 219 * including link-layer headers in the packet size used for the pacing rate. 220 */ 221 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain) 222 { 223 struct bbr *bbr = inet_csk_ca(sk); 224 u64 rate = bw; 225 226 rate = bbr_rate_bytes_per_sec(sk, rate, gain); 227 rate = min_t(u64, rate, sk->sk_max_pacing_rate); 228 if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate) 229 sk->sk_pacing_rate = rate; 230 } 231 232 /* Return count of segments we want in the skbs we send, or 0 for default. */ 233 static u32 bbr_tso_segs_goal(struct sock *sk) 234 { 235 struct bbr *bbr = inet_csk_ca(sk); 236 237 return bbr->tso_segs_goal; 238 } 239 240 static void bbr_set_tso_segs_goal(struct sock *sk) 241 { 242 struct tcp_sock *tp = tcp_sk(sk); 243 struct bbr *bbr = inet_csk_ca(sk); 244 u32 min_segs; 245 246 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2; 247 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs), 248 0x7FU); 249 } 250 251 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */ 252 static void bbr_save_cwnd(struct sock *sk) 253 { 254 struct tcp_sock *tp = tcp_sk(sk); 255 struct bbr *bbr = inet_csk_ca(sk); 256 257 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT) 258 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */ 259 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */ 260 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd); 261 } 262 263 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 struct bbr *bbr = inet_csk_ca(sk); 267 268 if (event == CA_EVENT_TX_START && tp->app_limited) { 269 bbr->idle_restart = 1; 270 /* Avoid pointless buffer overflows: pace at est. bw if we don't 271 * need more speed (we're restarting from idle and app-limited). 272 */ 273 if (bbr->mode == BBR_PROBE_BW) 274 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT); 275 } 276 } 277 278 /* Find target cwnd. Right-size the cwnd based on min RTT and the 279 * estimated bottleneck bandwidth: 280 * 281 * cwnd = bw * min_rtt * gain = BDP * gain 282 * 283 * The key factor, gain, controls the amount of queue. While a small gain 284 * builds a smaller queue, it becomes more vulnerable to noise in RTT 285 * measurements (e.g., delayed ACKs or other ACK compression effects). This 286 * noise may cause BBR to under-estimate the rate. 287 * 288 * To achieve full performance in high-speed paths, we budget enough cwnd to 289 * fit full-sized skbs in-flight on both end hosts to fully utilize the path: 290 * - one skb in sending host Qdisc, 291 * - one skb in sending host TSO/GSO engine 292 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine 293 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because 294 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets, 295 * which allows 2 outstanding 2-packet sequences, to try to keep pipe 296 * full even with ACK-every-other-packet delayed ACKs. 297 */ 298 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain) 299 { 300 struct bbr *bbr = inet_csk_ca(sk); 301 u32 cwnd; 302 u64 w; 303 304 /* If we've never had a valid RTT sample, cap cwnd at the initial 305 * default. This should only happen when the connection is not using TCP 306 * timestamps and has retransmitted all of the SYN/SYNACK/data packets 307 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which 308 * case we need to slow-start up toward something safe: TCP_INIT_CWND. 309 */ 310 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */ 311 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/ 312 313 w = (u64)bw * bbr->min_rtt_us; 314 315 /* Apply a gain to the given value, then remove the BW_SCALE shift. */ 316 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT; 317 318 /* Allow enough full-sized skbs in flight to utilize end systems. */ 319 cwnd += 3 * bbr->tso_segs_goal; 320 321 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */ 322 cwnd = (cwnd + 1) & ~1U; 323 324 return cwnd; 325 } 326 327 /* An optimization in BBR to reduce losses: On the first round of recovery, we 328 * follow the packet conservation principle: send P packets per P packets acked. 329 * After that, we slow-start and send at most 2*P packets per P packets acked. 330 * After recovery finishes, or upon undo, we restore the cwnd we had when 331 * recovery started (capped by the target cwnd based on estimated BDP). 332 * 333 * TODO(ycheng/ncardwell): implement a rate-based approach. 334 */ 335 static bool bbr_set_cwnd_to_recover_or_restore( 336 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd) 337 { 338 struct tcp_sock *tp = tcp_sk(sk); 339 struct bbr *bbr = inet_csk_ca(sk); 340 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state; 341 u32 cwnd = tp->snd_cwnd; 342 343 /* An ACK for P pkts should release at most 2*P packets. We do this 344 * in two steps. First, here we deduct the number of lost packets. 345 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd. 346 */ 347 if (rs->losses > 0) 348 cwnd = max_t(s32, cwnd - rs->losses, 1); 349 350 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) { 351 /* Starting 1st round of Recovery, so do packet conservation. */ 352 bbr->packet_conservation = 1; 353 bbr->next_rtt_delivered = tp->delivered; /* start round now */ 354 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */ 355 cwnd = tcp_packets_in_flight(tp) + acked; 356 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) { 357 /* Exiting loss recovery; restore cwnd saved before recovery. */ 358 bbr->restore_cwnd = 1; 359 bbr->packet_conservation = 0; 360 } 361 bbr->prev_ca_state = state; 362 363 if (bbr->restore_cwnd) { 364 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */ 365 cwnd = max(cwnd, bbr->prior_cwnd); 366 bbr->restore_cwnd = 0; 367 } 368 369 if (bbr->packet_conservation) { 370 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked); 371 return true; /* yes, using packet conservation */ 372 } 373 *new_cwnd = cwnd; 374 return false; 375 } 376 377 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss 378 * has drawn us down below target), or snap down to target if we're above it. 379 */ 380 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs, 381 u32 acked, u32 bw, int gain) 382 { 383 struct tcp_sock *tp = tcp_sk(sk); 384 struct bbr *bbr = inet_csk_ca(sk); 385 u32 cwnd = 0, target_cwnd = 0; 386 387 if (!acked) 388 return; 389 390 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd)) 391 goto done; 392 393 /* If we're below target cwnd, slow start cwnd toward target cwnd. */ 394 target_cwnd = bbr_target_cwnd(sk, bw, gain); 395 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */ 396 cwnd = min(cwnd + acked, target_cwnd); 397 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND) 398 cwnd = cwnd + acked; 399 cwnd = max(cwnd, bbr_cwnd_min_target); 400 401 done: 402 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */ 403 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */ 404 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target); 405 } 406 407 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */ 408 static bool bbr_is_next_cycle_phase(struct sock *sk, 409 const struct rate_sample *rs) 410 { 411 struct tcp_sock *tp = tcp_sk(sk); 412 struct bbr *bbr = inet_csk_ca(sk); 413 bool is_full_length = 414 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) > 415 bbr->min_rtt_us; 416 u32 inflight, bw; 417 418 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully 419 * use the pipe without increasing the queue. 420 */ 421 if (bbr->pacing_gain == BBR_UNIT) 422 return is_full_length; /* just use wall clock time */ 423 424 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */ 425 bw = bbr_max_bw(sk); 426 427 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at 428 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is 429 * small (e.g. on a LAN). We do not persist if packets are lost, since 430 * a path with small buffers may not hold that much. 431 */ 432 if (bbr->pacing_gain > BBR_UNIT) 433 return is_full_length && 434 (rs->losses || /* perhaps pacing_gain*BDP won't fit */ 435 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain)); 436 437 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw 438 * probing didn't find more bw. If inflight falls to match BDP then we 439 * estimate queue is drained; persisting would underutilize the pipe. 440 */ 441 return is_full_length || 442 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT); 443 } 444 445 static void bbr_advance_cycle_phase(struct sock *sk) 446 { 447 struct tcp_sock *tp = tcp_sk(sk); 448 struct bbr *bbr = inet_csk_ca(sk); 449 450 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1); 451 bbr->cycle_mstamp = tp->delivered_mstamp; 452 bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx]; 453 } 454 455 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */ 456 static void bbr_update_cycle_phase(struct sock *sk, 457 const struct rate_sample *rs) 458 { 459 struct bbr *bbr = inet_csk_ca(sk); 460 461 if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw && 462 bbr_is_next_cycle_phase(sk, rs)) 463 bbr_advance_cycle_phase(sk); 464 } 465 466 static void bbr_reset_startup_mode(struct sock *sk) 467 { 468 struct bbr *bbr = inet_csk_ca(sk); 469 470 bbr->mode = BBR_STARTUP; 471 bbr->pacing_gain = bbr_high_gain; 472 bbr->cwnd_gain = bbr_high_gain; 473 } 474 475 static void bbr_reset_probe_bw_mode(struct sock *sk) 476 { 477 struct bbr *bbr = inet_csk_ca(sk); 478 479 bbr->mode = BBR_PROBE_BW; 480 bbr->pacing_gain = BBR_UNIT; 481 bbr->cwnd_gain = bbr_cwnd_gain; 482 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand); 483 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */ 484 } 485 486 static void bbr_reset_mode(struct sock *sk) 487 { 488 if (!bbr_full_bw_reached(sk)) 489 bbr_reset_startup_mode(sk); 490 else 491 bbr_reset_probe_bw_mode(sk); 492 } 493 494 /* Start a new long-term sampling interval. */ 495 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk) 496 { 497 struct tcp_sock *tp = tcp_sk(sk); 498 struct bbr *bbr = inet_csk_ca(sk); 499 500 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC); 501 bbr->lt_last_delivered = tp->delivered; 502 bbr->lt_last_lost = tp->lost; 503 bbr->lt_rtt_cnt = 0; 504 } 505 506 /* Completely reset long-term bandwidth sampling. */ 507 static void bbr_reset_lt_bw_sampling(struct sock *sk) 508 { 509 struct bbr *bbr = inet_csk_ca(sk); 510 511 bbr->lt_bw = 0; 512 bbr->lt_use_bw = 0; 513 bbr->lt_is_sampling = false; 514 bbr_reset_lt_bw_sampling_interval(sk); 515 } 516 517 /* Long-term bw sampling interval is done. Estimate whether we're policed. */ 518 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw) 519 { 520 struct bbr *bbr = inet_csk_ca(sk); 521 u32 diff; 522 523 if (bbr->lt_bw) { /* do we have bw from a previous interval? */ 524 /* Is new bw close to the lt_bw from the previous interval? */ 525 diff = abs(bw - bbr->lt_bw); 526 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) || 527 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <= 528 bbr_lt_bw_diff)) { 529 /* All criteria are met; estimate we're policed. */ 530 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */ 531 bbr->lt_use_bw = 1; 532 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */ 533 bbr->lt_rtt_cnt = 0; 534 return; 535 } 536 } 537 bbr->lt_bw = bw; 538 bbr_reset_lt_bw_sampling_interval(sk); 539 } 540 541 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of 542 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and 543 * explicitly models their policed rate, to reduce unnecessary losses. We 544 * estimate that we're policed if we see 2 consecutive sampling intervals with 545 * consistent throughput and high packet loss. If we think we're being policed, 546 * set lt_bw to the "long-term" average delivery rate from those 2 intervals. 547 */ 548 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs) 549 { 550 struct tcp_sock *tp = tcp_sk(sk); 551 struct bbr *bbr = inet_csk_ca(sk); 552 u32 lost, delivered; 553 u64 bw; 554 u32 t; 555 556 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */ 557 if (bbr->mode == BBR_PROBE_BW && bbr->round_start && 558 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) { 559 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */ 560 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */ 561 } 562 return; 563 } 564 565 /* Wait for the first loss before sampling, to let the policer exhaust 566 * its tokens and estimate the steady-state rate allowed by the policer. 567 * Starting samples earlier includes bursts that over-estimate the bw. 568 */ 569 if (!bbr->lt_is_sampling) { 570 if (!rs->losses) 571 return; 572 bbr_reset_lt_bw_sampling_interval(sk); 573 bbr->lt_is_sampling = true; 574 } 575 576 /* To avoid underestimates, reset sampling if we run out of data. */ 577 if (rs->is_app_limited) { 578 bbr_reset_lt_bw_sampling(sk); 579 return; 580 } 581 582 if (bbr->round_start) 583 bbr->lt_rtt_cnt++; /* count round trips in this interval */ 584 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts) 585 return; /* sampling interval needs to be longer */ 586 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) { 587 bbr_reset_lt_bw_sampling(sk); /* interval is too long */ 588 return; 589 } 590 591 /* End sampling interval when a packet is lost, so we estimate the 592 * policer tokens were exhausted. Stopping the sampling before the 593 * tokens are exhausted under-estimates the policed rate. 594 */ 595 if (!rs->losses) 596 return; 597 598 /* Calculate packets lost and delivered in sampling interval. */ 599 lost = tp->lost - bbr->lt_last_lost; 600 delivered = tp->delivered - bbr->lt_last_delivered; 601 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */ 602 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered) 603 return; 604 605 /* Find average delivery rate in this sampling interval. */ 606 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp; 607 if ((s32)t < 1) 608 return; /* interval is less than one ms, so wait */ 609 /* Check if can multiply without overflow */ 610 if (t >= ~0U / USEC_PER_MSEC) { 611 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */ 612 return; 613 } 614 t *= USEC_PER_MSEC; 615 bw = (u64)delivered * BW_UNIT; 616 do_div(bw, t); 617 bbr_lt_bw_interval_done(sk, bw); 618 } 619 620 /* Estimate the bandwidth based on how fast packets are delivered */ 621 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 struct bbr *bbr = inet_csk_ca(sk); 625 u64 bw; 626 627 bbr->round_start = 0; 628 if (rs->delivered < 0 || rs->interval_us <= 0) 629 return; /* Not a valid observation */ 630 631 /* See if we've reached the next RTT */ 632 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) { 633 bbr->next_rtt_delivered = tp->delivered; 634 bbr->rtt_cnt++; 635 bbr->round_start = 1; 636 bbr->packet_conservation = 0; 637 } 638 639 bbr_lt_bw_sampling(sk, rs); 640 641 /* Divide delivered by the interval to find a (lower bound) bottleneck 642 * bandwidth sample. Delivered is in packets and interval_us in uS and 643 * ratio will be <<1 for most connections. So delivered is first scaled. 644 */ 645 bw = (u64)rs->delivered * BW_UNIT; 646 do_div(bw, rs->interval_us); 647 648 /* If this sample is application-limited, it is likely to have a very 649 * low delivered count that represents application behavior rather than 650 * the available network rate. Such a sample could drag down estimated 651 * bw, causing needless slow-down. Thus, to continue to send at the 652 * last measured network rate, we filter out app-limited samples unless 653 * they describe the path bw at least as well as our bw model. 654 * 655 * So the goal during app-limited phase is to proceed with the best 656 * network rate no matter how long. We automatically leave this 657 * phase when app writes faster than the network can deliver :) 658 */ 659 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) { 660 /* Incorporate new sample into our max bw filter. */ 661 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw); 662 } 663 } 664 665 /* Estimate when the pipe is full, using the change in delivery rate: BBR 666 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by 667 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited 668 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the 669 * higher rwin, 3: we get higher delivery rate samples. Or transient 670 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar 671 * design goal, but uses delay and inter-ACK spacing instead of bandwidth. 672 */ 673 static void bbr_check_full_bw_reached(struct sock *sk, 674 const struct rate_sample *rs) 675 { 676 struct bbr *bbr = inet_csk_ca(sk); 677 u32 bw_thresh; 678 679 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited) 680 return; 681 682 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE; 683 if (bbr_max_bw(sk) >= bw_thresh) { 684 bbr->full_bw = bbr_max_bw(sk); 685 bbr->full_bw_cnt = 0; 686 return; 687 } 688 ++bbr->full_bw_cnt; 689 } 690 691 /* If pipe is probably full, drain the queue and then enter steady-state. */ 692 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs) 693 { 694 struct bbr *bbr = inet_csk_ca(sk); 695 696 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) { 697 bbr->mode = BBR_DRAIN; /* drain queue we created */ 698 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */ 699 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */ 700 } /* fall through to check if in-flight is already small: */ 701 if (bbr->mode == BBR_DRAIN && 702 tcp_packets_in_flight(tcp_sk(sk)) <= 703 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT)) 704 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */ 705 } 706 707 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and 708 * periodically drain the bottleneck queue, to converge to measure the true 709 * min_rtt (unloaded propagation delay). This allows the flows to keep queues 710 * small (reducing queuing delay and packet loss) and achieve fairness among 711 * BBR flows. 712 * 713 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires, 714 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets. 715 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed 716 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and 717 * re-enter the previous mode. BBR uses 200ms to approximately bound the 718 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s). 719 * 720 * Note that flows need only pay 2% if they are busy sending over the last 10 721 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have 722 * natural silences or low-rate periods within 10 seconds where the rate is low 723 * enough for long enough to drain its queue in the bottleneck. We pick up 724 * these min RTT measurements opportunistically with our min_rtt filter. :-) 725 */ 726 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs) 727 { 728 struct tcp_sock *tp = tcp_sk(sk); 729 struct bbr *bbr = inet_csk_ca(sk); 730 bool filter_expired; 731 732 /* Track min RTT seen in the min_rtt_win_sec filter window: */ 733 filter_expired = after(tcp_jiffies32, 734 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ); 735 if (rs->rtt_us >= 0 && 736 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) { 737 bbr->min_rtt_us = rs->rtt_us; 738 bbr->min_rtt_stamp = tcp_jiffies32; 739 } 740 741 if (bbr_probe_rtt_mode_ms > 0 && filter_expired && 742 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) { 743 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */ 744 bbr->pacing_gain = BBR_UNIT; 745 bbr->cwnd_gain = BBR_UNIT; 746 bbr_save_cwnd(sk); /* note cwnd so we can restore it */ 747 bbr->probe_rtt_done_stamp = 0; 748 } 749 750 if (bbr->mode == BBR_PROBE_RTT) { 751 /* Ignore low rate samples during this mode. */ 752 tp->app_limited = 753 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1; 754 /* Maintain min packets in flight for max(200 ms, 1 round). */ 755 if (!bbr->probe_rtt_done_stamp && 756 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) { 757 bbr->probe_rtt_done_stamp = tcp_jiffies32 + 758 msecs_to_jiffies(bbr_probe_rtt_mode_ms); 759 bbr->probe_rtt_round_done = 0; 760 bbr->next_rtt_delivered = tp->delivered; 761 } else if (bbr->probe_rtt_done_stamp) { 762 if (bbr->round_start) 763 bbr->probe_rtt_round_done = 1; 764 if (bbr->probe_rtt_round_done && 765 after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) { 766 bbr->min_rtt_stamp = tcp_jiffies32; 767 bbr->restore_cwnd = 1; /* snap to prior_cwnd */ 768 bbr_reset_mode(sk); 769 } 770 } 771 } 772 bbr->idle_restart = 0; 773 } 774 775 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs) 776 { 777 bbr_update_bw(sk, rs); 778 bbr_update_cycle_phase(sk, rs); 779 bbr_check_full_bw_reached(sk, rs); 780 bbr_check_drain(sk, rs); 781 bbr_update_min_rtt(sk, rs); 782 } 783 784 static void bbr_main(struct sock *sk, const struct rate_sample *rs) 785 { 786 struct bbr *bbr = inet_csk_ca(sk); 787 u32 bw; 788 789 bbr_update_model(sk, rs); 790 791 bw = bbr_bw(sk); 792 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain); 793 bbr_set_tso_segs_goal(sk); 794 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain); 795 } 796 797 static void bbr_init(struct sock *sk) 798 { 799 struct tcp_sock *tp = tcp_sk(sk); 800 struct bbr *bbr = inet_csk_ca(sk); 801 u64 bw; 802 803 bbr->prior_cwnd = 0; 804 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */ 805 bbr->rtt_cnt = 0; 806 bbr->next_rtt_delivered = 0; 807 bbr->prev_ca_state = TCP_CA_Open; 808 bbr->packet_conservation = 0; 809 810 bbr->probe_rtt_done_stamp = 0; 811 bbr->probe_rtt_round_done = 0; 812 bbr->min_rtt_us = tcp_min_rtt(tp); 813 bbr->min_rtt_stamp = tcp_jiffies32; 814 815 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */ 816 817 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */ 818 bw = (u64)tp->snd_cwnd * BW_UNIT; 819 do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC); 820 sk->sk_pacing_rate = 0; /* force an update of sk_pacing_rate */ 821 bbr_set_pacing_rate(sk, bw, bbr_high_gain); 822 823 bbr->restore_cwnd = 0; 824 bbr->round_start = 0; 825 bbr->idle_restart = 0; 826 bbr->full_bw = 0; 827 bbr->full_bw_cnt = 0; 828 bbr->cycle_mstamp = 0; 829 bbr->cycle_idx = 0; 830 bbr_reset_lt_bw_sampling(sk); 831 bbr_reset_startup_mode(sk); 832 833 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED); 834 } 835 836 static u32 bbr_sndbuf_expand(struct sock *sk) 837 { 838 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */ 839 return 3; 840 } 841 842 /* In theory BBR does not need to undo the cwnd since it does not 843 * always reduce cwnd on losses (see bbr_main()). Keep it for now. 844 */ 845 static u32 bbr_undo_cwnd(struct sock *sk) 846 { 847 return tcp_sk(sk)->snd_cwnd; 848 } 849 850 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */ 851 static u32 bbr_ssthresh(struct sock *sk) 852 { 853 bbr_save_cwnd(sk); 854 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */ 855 } 856 857 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr, 858 union tcp_cc_info *info) 859 { 860 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) || 861 ext & (1 << (INET_DIAG_VEGASINFO - 1))) { 862 struct tcp_sock *tp = tcp_sk(sk); 863 struct bbr *bbr = inet_csk_ca(sk); 864 u64 bw = bbr_bw(sk); 865 866 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE; 867 memset(&info->bbr, 0, sizeof(info->bbr)); 868 info->bbr.bbr_bw_lo = (u32)bw; 869 info->bbr.bbr_bw_hi = (u32)(bw >> 32); 870 info->bbr.bbr_min_rtt = bbr->min_rtt_us; 871 info->bbr.bbr_pacing_gain = bbr->pacing_gain; 872 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain; 873 *attr = INET_DIAG_BBRINFO; 874 return sizeof(info->bbr); 875 } 876 return 0; 877 } 878 879 static void bbr_set_state(struct sock *sk, u8 new_state) 880 { 881 struct bbr *bbr = inet_csk_ca(sk); 882 883 if (new_state == TCP_CA_Loss) { 884 struct rate_sample rs = { .losses = 1 }; 885 886 bbr->prev_ca_state = TCP_CA_Loss; 887 bbr->full_bw = 0; 888 bbr->round_start = 1; /* treat RTO like end of a round */ 889 bbr_lt_bw_sampling(sk, &rs); 890 } 891 } 892 893 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = { 894 .flags = TCP_CONG_NON_RESTRICTED, 895 .name = "bbr", 896 .owner = THIS_MODULE, 897 .init = bbr_init, 898 .cong_control = bbr_main, 899 .sndbuf_expand = bbr_sndbuf_expand, 900 .undo_cwnd = bbr_undo_cwnd, 901 .cwnd_event = bbr_cwnd_event, 902 .ssthresh = bbr_ssthresh, 903 .tso_segs_goal = bbr_tso_segs_goal, 904 .get_info = bbr_get_info, 905 .set_state = bbr_set_state, 906 }; 907 908 static int __init bbr_register(void) 909 { 910 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE); 911 return tcp_register_congestion_control(&tcp_bbr_cong_ops); 912 } 913 914 static void __exit bbr_unregister(void) 915 { 916 tcp_unregister_congestion_control(&tcp_bbr_cong_ops); 917 } 918 919 module_init(bbr_register); 920 module_exit(bbr_unregister); 921 922 MODULE_AUTHOR("Van Jacobson <vanj@google.com>"); 923 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>"); 924 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>"); 925 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>"); 926 MODULE_LICENSE("Dual BSD/GPL"); 927 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)"); 928