xref: /openbmc/linux/net/ipv4/tcp_bbr.c (revision 465191d6)
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2  *
3  * BBR congestion control computes the sending rate based on the delivery
4  * rate (throughput) estimated from ACKs. In a nutshell:
5  *
6  *   On each ACK, update our model of the network path:
7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8  *      min_rtt = windowed_min(rtt, 10 seconds)
9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11  *
12  * The core algorithm does not react directly to packet losses or delays,
13  * although BBR may adjust the size of next send per ACK when loss is
14  * observed, or adjust the sending rate if it estimates there is a
15  * traffic policer, in order to keep the drop rate reasonable.
16  *
17  * Here is a state transition diagram for BBR:
18  *
19  *             |
20  *             V
21  *    +---> STARTUP  ----+
22  *    |        |         |
23  *    |        V         |
24  *    |      DRAIN   ----+
25  *    |        |         |
26  *    |        V         |
27  *    +---> PROBE_BW ----+
28  *    |      ^    |      |
29  *    |      |    |      |
30  *    |      +----+      |
31  *    |                  |
32  *    +---- PROBE_RTT <--+
33  *
34  * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35  * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36  * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37  * A long-lived BBR flow spends the vast majority of its time remaining
38  * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39  * in a fair manner, with a small, bounded queue. *If* a flow has been
40  * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41  * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42  * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43  * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44  * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45  * otherwise we enter STARTUP to try to fill the pipe.
46  *
47  * BBR is described in detail in:
48  *   "BBR: Congestion-Based Congestion Control",
49  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51  *
52  * There is a public e-mail list for discussing BBR development and testing:
53  *   https://groups.google.com/forum/#!forum/bbr-dev
54  *
55  * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56  * otherwise TCP stack falls back to an internal pacing using one high
57  * resolution timer per TCP socket and may use more resources.
58  */
59 #include <linux/btf.h>
60 #include <linux/btf_ids.h>
61 #include <linux/module.h>
62 #include <net/tcp.h>
63 #include <linux/inet_diag.h>
64 #include <linux/inet.h>
65 #include <linux/random.h>
66 #include <linux/win_minmax.h>
67 
68 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
69  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
70  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
71  * Since the minimum window is >=4 packets, the lower bound isn't
72  * an issue. The upper bound isn't an issue with existing technologies.
73  */
74 #define BW_SCALE 24
75 #define BW_UNIT (1 << BW_SCALE)
76 
77 #define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
78 #define BBR_UNIT (1 << BBR_SCALE)
79 
80 /* BBR has the following modes for deciding how fast to send: */
81 enum bbr_mode {
82 	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
83 	BBR_DRAIN,	/* drain any queue created during startup */
84 	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
85 	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
86 };
87 
88 /* BBR congestion control block */
89 struct bbr {
90 	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
91 	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
92 	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
93 	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
94 	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
95 	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
96 	u64	cycle_mstamp;	     /* time of this cycle phase start */
97 	u32     mode:3,		     /* current bbr_mode in state machine */
98 		prev_ca_state:3,     /* CA state on previous ACK */
99 		packet_conservation:1,  /* use packet conservation? */
100 		round_start:1,	     /* start of packet-timed tx->ack round? */
101 		idle_restart:1,	     /* restarting after idle? */
102 		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
103 		unused:13,
104 		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
105 		lt_rtt_cnt:7,	     /* round trips in long-term interval */
106 		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
107 	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
108 	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
109 	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
110 	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
111 	u32	pacing_gain:10,	/* current gain for setting pacing rate */
112 		cwnd_gain:10,	/* current gain for setting cwnd */
113 		full_bw_reached:1,   /* reached full bw in Startup? */
114 		full_bw_cnt:2,	/* number of rounds without large bw gains */
115 		cycle_idx:3,	/* current index in pacing_gain cycle array */
116 		has_seen_rtt:1, /* have we seen an RTT sample yet? */
117 		unused_b:5;
118 	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
119 	u32	full_bw;	/* recent bw, to estimate if pipe is full */
120 
121 	/* For tracking ACK aggregation: */
122 	u64	ack_epoch_mstamp;	/* start of ACK sampling epoch */
123 	u16	extra_acked[2];		/* max excess data ACKed in epoch */
124 	u32	ack_epoch_acked:20,	/* packets (S)ACKed in sampling epoch */
125 		extra_acked_win_rtts:5,	/* age of extra_acked, in round trips */
126 		extra_acked_win_idx:1,	/* current index in extra_acked array */
127 		unused_c:6;
128 };
129 
130 #define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
131 
132 /* Window length of bw filter (in rounds): */
133 static const int bbr_bw_rtts = CYCLE_LEN + 2;
134 /* Window length of min_rtt filter (in sec): */
135 static const u32 bbr_min_rtt_win_sec = 10;
136 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
137 static const u32 bbr_probe_rtt_mode_ms = 200;
138 /* Skip TSO below the following bandwidth (bits/sec): */
139 static const int bbr_min_tso_rate = 1200000;
140 
141 /* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
142  * In order to help drive the network toward lower queues and low latency while
143  * maintaining high utilization, the average pacing rate aims to be slightly
144  * lower than the estimated bandwidth. This is an important aspect of the
145  * design.
146  */
147 static const int bbr_pacing_margin_percent = 1;
148 
149 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
150  * that will allow a smoothly increasing pacing rate that will double each RTT
151  * and send the same number of packets per RTT that an un-paced, slow-starting
152  * Reno or CUBIC flow would:
153  */
154 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
155 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
156  * the queue created in BBR_STARTUP in a single round:
157  */
158 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
159 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
160 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
161 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
162 static const int bbr_pacing_gain[] = {
163 	BBR_UNIT * 5 / 4,	/* probe for more available bw */
164 	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
165 	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
166 	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
167 };
168 /* Randomize the starting gain cycling phase over N phases: */
169 static const u32 bbr_cycle_rand = 7;
170 
171 /* Try to keep at least this many packets in flight, if things go smoothly. For
172  * smooth functioning, a sliding window protocol ACKing every other packet
173  * needs at least 4 packets in flight:
174  */
175 static const u32 bbr_cwnd_min_target = 4;
176 
177 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
178 /* If bw has increased significantly (1.25x), there may be more bw available: */
179 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
180 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
181 static const u32 bbr_full_bw_cnt = 3;
182 
183 /* "long-term" ("LT") bandwidth estimator parameters... */
184 /* The minimum number of rounds in an LT bw sampling interval: */
185 static const u32 bbr_lt_intvl_min_rtts = 4;
186 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
187 static const u32 bbr_lt_loss_thresh = 50;
188 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
189 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
190 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
191 static const u32 bbr_lt_bw_diff = 4000 / 8;
192 /* If we estimate we're policed, use lt_bw for this many round trips: */
193 static const u32 bbr_lt_bw_max_rtts = 48;
194 
195 /* Gain factor for adding extra_acked to target cwnd: */
196 static const int bbr_extra_acked_gain = BBR_UNIT;
197 /* Window length of extra_acked window. */
198 static const u32 bbr_extra_acked_win_rtts = 5;
199 /* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
200 static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
201 /* Time period for clamping cwnd increment due to ack aggregation */
202 static const u32 bbr_extra_acked_max_us = 100 * 1000;
203 
204 static void bbr_check_probe_rtt_done(struct sock *sk);
205 
206 /* Do we estimate that STARTUP filled the pipe? */
207 static bool bbr_full_bw_reached(const struct sock *sk)
208 {
209 	const struct bbr *bbr = inet_csk_ca(sk);
210 
211 	return bbr->full_bw_reached;
212 }
213 
214 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
215 static u32 bbr_max_bw(const struct sock *sk)
216 {
217 	struct bbr *bbr = inet_csk_ca(sk);
218 
219 	return minmax_get(&bbr->bw);
220 }
221 
222 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
223 static u32 bbr_bw(const struct sock *sk)
224 {
225 	struct bbr *bbr = inet_csk_ca(sk);
226 
227 	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
228 }
229 
230 /* Return maximum extra acked in past k-2k round trips,
231  * where k = bbr_extra_acked_win_rtts.
232  */
233 static u16 bbr_extra_acked(const struct sock *sk)
234 {
235 	struct bbr *bbr = inet_csk_ca(sk);
236 
237 	return max(bbr->extra_acked[0], bbr->extra_acked[1]);
238 }
239 
240 /* Return rate in bytes per second, optionally with a gain.
241  * The order here is chosen carefully to avoid overflow of u64. This should
242  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
243  */
244 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
245 {
246 	unsigned int mss = tcp_sk(sk)->mss_cache;
247 
248 	rate *= mss;
249 	rate *= gain;
250 	rate >>= BBR_SCALE;
251 	rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
252 	return rate >> BW_SCALE;
253 }
254 
255 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
256 static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
257 {
258 	u64 rate = bw;
259 
260 	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
261 	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
262 	return rate;
263 }
264 
265 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
266 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 	struct bbr *bbr = inet_csk_ca(sk);
270 	u64 bw;
271 	u32 rtt_us;
272 
273 	if (tp->srtt_us) {		/* any RTT sample yet? */
274 		rtt_us = max(tp->srtt_us >> 3, 1U);
275 		bbr->has_seen_rtt = 1;
276 	} else {			 /* no RTT sample yet */
277 		rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */
278 	}
279 	bw = (u64)tcp_snd_cwnd(tp) * BW_UNIT;
280 	do_div(bw, rtt_us);
281 	sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
282 }
283 
284 /* Pace using current bw estimate and a gain factor. */
285 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
286 {
287 	struct tcp_sock *tp = tcp_sk(sk);
288 	struct bbr *bbr = inet_csk_ca(sk);
289 	unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
290 
291 	if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
292 		bbr_init_pacing_rate_from_rtt(sk);
293 	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
294 		sk->sk_pacing_rate = rate;
295 }
296 
297 /* override sysctl_tcp_min_tso_segs */
298 static u32 bbr_min_tso_segs(struct sock *sk)
299 {
300 	return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
301 }
302 
303 static u32 bbr_tso_segs_goal(struct sock *sk)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 	u32 segs, bytes;
307 
308 	/* Sort of tcp_tso_autosize() but ignoring
309 	 * driver provided sk_gso_max_size.
310 	 */
311 	bytes = min_t(unsigned long,
312 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
313 		      GSO_LEGACY_MAX_SIZE - 1 - MAX_TCP_HEADER);
314 	segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
315 
316 	return min(segs, 0x7FU);
317 }
318 
319 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
320 static void bbr_save_cwnd(struct sock *sk)
321 {
322 	struct tcp_sock *tp = tcp_sk(sk);
323 	struct bbr *bbr = inet_csk_ca(sk);
324 
325 	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
326 		bbr->prior_cwnd = tcp_snd_cwnd(tp);  /* this cwnd is good enough */
327 	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
328 		bbr->prior_cwnd = max(bbr->prior_cwnd, tcp_snd_cwnd(tp));
329 }
330 
331 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	struct bbr *bbr = inet_csk_ca(sk);
335 
336 	if (event == CA_EVENT_TX_START && tp->app_limited) {
337 		bbr->idle_restart = 1;
338 		bbr->ack_epoch_mstamp = tp->tcp_mstamp;
339 		bbr->ack_epoch_acked = 0;
340 		/* Avoid pointless buffer overflows: pace at est. bw if we don't
341 		 * need more speed (we're restarting from idle and app-limited).
342 		 */
343 		if (bbr->mode == BBR_PROBE_BW)
344 			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
345 		else if (bbr->mode == BBR_PROBE_RTT)
346 			bbr_check_probe_rtt_done(sk);
347 	}
348 }
349 
350 /* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
351  *
352  * bdp = ceil(bw * min_rtt * gain)
353  *
354  * The key factor, gain, controls the amount of queue. While a small gain
355  * builds a smaller queue, it becomes more vulnerable to noise in RTT
356  * measurements (e.g., delayed ACKs or other ACK compression effects). This
357  * noise may cause BBR to under-estimate the rate.
358  */
359 static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
360 {
361 	struct bbr *bbr = inet_csk_ca(sk);
362 	u32 bdp;
363 	u64 w;
364 
365 	/* If we've never had a valid RTT sample, cap cwnd at the initial
366 	 * default. This should only happen when the connection is not using TCP
367 	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
368 	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
369 	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
370 	 */
371 	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
372 		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
373 
374 	w = (u64)bw * bbr->min_rtt_us;
375 
376 	/* Apply a gain to the given value, remove the BW_SCALE shift, and
377 	 * round the value up to avoid a negative feedback loop.
378 	 */
379 	bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
380 
381 	return bdp;
382 }
383 
384 /* To achieve full performance in high-speed paths, we budget enough cwnd to
385  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
386  *   - one skb in sending host Qdisc,
387  *   - one skb in sending host TSO/GSO engine
388  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
389  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
390  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
391  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
392  * full even with ACK-every-other-packet delayed ACKs.
393  */
394 static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
395 {
396 	struct bbr *bbr = inet_csk_ca(sk);
397 
398 	/* Allow enough full-sized skbs in flight to utilize end systems. */
399 	cwnd += 3 * bbr_tso_segs_goal(sk);
400 
401 	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
402 	cwnd = (cwnd + 1) & ~1U;
403 
404 	/* Ensure gain cycling gets inflight above BDP even for small BDPs. */
405 	if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
406 		cwnd += 2;
407 
408 	return cwnd;
409 }
410 
411 /* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
412 static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
413 {
414 	u32 inflight;
415 
416 	inflight = bbr_bdp(sk, bw, gain);
417 	inflight = bbr_quantization_budget(sk, inflight);
418 
419 	return inflight;
420 }
421 
422 /* With pacing at lower layers, there's often less data "in the network" than
423  * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
424  * we often have several skbs queued in the pacing layer with a pre-scheduled
425  * earliest departure time (EDT). BBR adapts its pacing rate based on the
426  * inflight level that it estimates has already been "baked in" by previous
427  * departure time decisions. We calculate a rough estimate of the number of our
428  * packets that might be in the network at the earliest departure time for the
429  * next skb scheduled:
430  *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
431  * If we're increasing inflight, then we want to know if the transmit of the
432  * EDT skb will push inflight above the target, so inflight_at_edt includes
433  * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
434  * then estimate if inflight will sink too low just before the EDT transmit.
435  */
436 static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
437 {
438 	struct tcp_sock *tp = tcp_sk(sk);
439 	struct bbr *bbr = inet_csk_ca(sk);
440 	u64 now_ns, edt_ns, interval_us;
441 	u32 interval_delivered, inflight_at_edt;
442 
443 	now_ns = tp->tcp_clock_cache;
444 	edt_ns = max(tp->tcp_wstamp_ns, now_ns);
445 	interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
446 	interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
447 	inflight_at_edt = inflight_now;
448 	if (bbr->pacing_gain > BBR_UNIT)              /* increasing inflight */
449 		inflight_at_edt += bbr_tso_segs_goal(sk);  /* include EDT skb */
450 	if (interval_delivered >= inflight_at_edt)
451 		return 0;
452 	return inflight_at_edt - interval_delivered;
453 }
454 
455 /* Find the cwnd increment based on estimate of ack aggregation */
456 static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
457 {
458 	u32 max_aggr_cwnd, aggr_cwnd = 0;
459 
460 	if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) {
461 		max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
462 				/ BW_UNIT;
463 		aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk))
464 			     >> BBR_SCALE;
465 		aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
466 	}
467 
468 	return aggr_cwnd;
469 }
470 
471 /* An optimization in BBR to reduce losses: On the first round of recovery, we
472  * follow the packet conservation principle: send P packets per P packets acked.
473  * After that, we slow-start and send at most 2*P packets per P packets acked.
474  * After recovery finishes, or upon undo, we restore the cwnd we had when
475  * recovery started (capped by the target cwnd based on estimated BDP).
476  *
477  * TODO(ycheng/ncardwell): implement a rate-based approach.
478  */
479 static bool bbr_set_cwnd_to_recover_or_restore(
480 	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	struct bbr *bbr = inet_csk_ca(sk);
484 	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
485 	u32 cwnd = tcp_snd_cwnd(tp);
486 
487 	/* An ACK for P pkts should release at most 2*P packets. We do this
488 	 * in two steps. First, here we deduct the number of lost packets.
489 	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
490 	 */
491 	if (rs->losses > 0)
492 		cwnd = max_t(s32, cwnd - rs->losses, 1);
493 
494 	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
495 		/* Starting 1st round of Recovery, so do packet conservation. */
496 		bbr->packet_conservation = 1;
497 		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
498 		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
499 		cwnd = tcp_packets_in_flight(tp) + acked;
500 	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
501 		/* Exiting loss recovery; restore cwnd saved before recovery. */
502 		cwnd = max(cwnd, bbr->prior_cwnd);
503 		bbr->packet_conservation = 0;
504 	}
505 	bbr->prev_ca_state = state;
506 
507 	if (bbr->packet_conservation) {
508 		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
509 		return true;	/* yes, using packet conservation */
510 	}
511 	*new_cwnd = cwnd;
512 	return false;
513 }
514 
515 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
516  * has drawn us down below target), or snap down to target if we're above it.
517  */
518 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
519 			 u32 acked, u32 bw, int gain)
520 {
521 	struct tcp_sock *tp = tcp_sk(sk);
522 	struct bbr *bbr = inet_csk_ca(sk);
523 	u32 cwnd = tcp_snd_cwnd(tp), target_cwnd = 0;
524 
525 	if (!acked)
526 		goto done;  /* no packet fully ACKed; just apply caps */
527 
528 	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
529 		goto done;
530 
531 	target_cwnd = bbr_bdp(sk, bw, gain);
532 
533 	/* Increment the cwnd to account for excess ACKed data that seems
534 	 * due to aggregation (of data and/or ACKs) visible in the ACK stream.
535 	 */
536 	target_cwnd += bbr_ack_aggregation_cwnd(sk);
537 	target_cwnd = bbr_quantization_budget(sk, target_cwnd);
538 
539 	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
540 	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
541 		cwnd = min(cwnd + acked, target_cwnd);
542 	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
543 		cwnd = cwnd + acked;
544 	cwnd = max(cwnd, bbr_cwnd_min_target);
545 
546 done:
547 	tcp_snd_cwnd_set(tp, min(cwnd, tp->snd_cwnd_clamp));	/* apply global cap */
548 	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
549 		tcp_snd_cwnd_set(tp, min(tcp_snd_cwnd(tp), bbr_cwnd_min_target));
550 }
551 
552 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
553 static bool bbr_is_next_cycle_phase(struct sock *sk,
554 				    const struct rate_sample *rs)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	struct bbr *bbr = inet_csk_ca(sk);
558 	bool is_full_length =
559 		tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
560 		bbr->min_rtt_us;
561 	u32 inflight, bw;
562 
563 	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
564 	 * use the pipe without increasing the queue.
565 	 */
566 	if (bbr->pacing_gain == BBR_UNIT)
567 		return is_full_length;		/* just use wall clock time */
568 
569 	inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
570 	bw = bbr_max_bw(sk);
571 
572 	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
573 	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
574 	 * small (e.g. on a LAN). We do not persist if packets are lost, since
575 	 * a path with small buffers may not hold that much.
576 	 */
577 	if (bbr->pacing_gain > BBR_UNIT)
578 		return is_full_length &&
579 			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
580 			 inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));
581 
582 	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
583 	 * probing didn't find more bw. If inflight falls to match BDP then we
584 	 * estimate queue is drained; persisting would underutilize the pipe.
585 	 */
586 	return is_full_length ||
587 		inflight <= bbr_inflight(sk, bw, BBR_UNIT);
588 }
589 
590 static void bbr_advance_cycle_phase(struct sock *sk)
591 {
592 	struct tcp_sock *tp = tcp_sk(sk);
593 	struct bbr *bbr = inet_csk_ca(sk);
594 
595 	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
596 	bbr->cycle_mstamp = tp->delivered_mstamp;
597 }
598 
599 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
600 static void bbr_update_cycle_phase(struct sock *sk,
601 				   const struct rate_sample *rs)
602 {
603 	struct bbr *bbr = inet_csk_ca(sk);
604 
605 	if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
606 		bbr_advance_cycle_phase(sk);
607 }
608 
609 static void bbr_reset_startup_mode(struct sock *sk)
610 {
611 	struct bbr *bbr = inet_csk_ca(sk);
612 
613 	bbr->mode = BBR_STARTUP;
614 }
615 
616 static void bbr_reset_probe_bw_mode(struct sock *sk)
617 {
618 	struct bbr *bbr = inet_csk_ca(sk);
619 
620 	bbr->mode = BBR_PROBE_BW;
621 	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
622 	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
623 }
624 
625 static void bbr_reset_mode(struct sock *sk)
626 {
627 	if (!bbr_full_bw_reached(sk))
628 		bbr_reset_startup_mode(sk);
629 	else
630 		bbr_reset_probe_bw_mode(sk);
631 }
632 
633 /* Start a new long-term sampling interval. */
634 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	struct bbr *bbr = inet_csk_ca(sk);
638 
639 	bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
640 	bbr->lt_last_delivered = tp->delivered;
641 	bbr->lt_last_lost = tp->lost;
642 	bbr->lt_rtt_cnt = 0;
643 }
644 
645 /* Completely reset long-term bandwidth sampling. */
646 static void bbr_reset_lt_bw_sampling(struct sock *sk)
647 {
648 	struct bbr *bbr = inet_csk_ca(sk);
649 
650 	bbr->lt_bw = 0;
651 	bbr->lt_use_bw = 0;
652 	bbr->lt_is_sampling = false;
653 	bbr_reset_lt_bw_sampling_interval(sk);
654 }
655 
656 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
657 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
658 {
659 	struct bbr *bbr = inet_csk_ca(sk);
660 	u32 diff;
661 
662 	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
663 		/* Is new bw close to the lt_bw from the previous interval? */
664 		diff = abs(bw - bbr->lt_bw);
665 		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
666 		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
667 		     bbr_lt_bw_diff)) {
668 			/* All criteria are met; estimate we're policed. */
669 			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
670 			bbr->lt_use_bw = 1;
671 			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
672 			bbr->lt_rtt_cnt = 0;
673 			return;
674 		}
675 	}
676 	bbr->lt_bw = bw;
677 	bbr_reset_lt_bw_sampling_interval(sk);
678 }
679 
680 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
681  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
682  * explicitly models their policed rate, to reduce unnecessary losses. We
683  * estimate that we're policed if we see 2 consecutive sampling intervals with
684  * consistent throughput and high packet loss. If we think we're being policed,
685  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
686  */
687 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 	struct bbr *bbr = inet_csk_ca(sk);
691 	u32 lost, delivered;
692 	u64 bw;
693 	u32 t;
694 
695 	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
696 		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
697 		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
698 			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
699 			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
700 		}
701 		return;
702 	}
703 
704 	/* Wait for the first loss before sampling, to let the policer exhaust
705 	 * its tokens and estimate the steady-state rate allowed by the policer.
706 	 * Starting samples earlier includes bursts that over-estimate the bw.
707 	 */
708 	if (!bbr->lt_is_sampling) {
709 		if (!rs->losses)
710 			return;
711 		bbr_reset_lt_bw_sampling_interval(sk);
712 		bbr->lt_is_sampling = true;
713 	}
714 
715 	/* To avoid underestimates, reset sampling if we run out of data. */
716 	if (rs->is_app_limited) {
717 		bbr_reset_lt_bw_sampling(sk);
718 		return;
719 	}
720 
721 	if (bbr->round_start)
722 		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
723 	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
724 		return;		/* sampling interval needs to be longer */
725 	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
726 		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
727 		return;
728 	}
729 
730 	/* End sampling interval when a packet is lost, so we estimate the
731 	 * policer tokens were exhausted. Stopping the sampling before the
732 	 * tokens are exhausted under-estimates the policed rate.
733 	 */
734 	if (!rs->losses)
735 		return;
736 
737 	/* Calculate packets lost and delivered in sampling interval. */
738 	lost = tp->lost - bbr->lt_last_lost;
739 	delivered = tp->delivered - bbr->lt_last_delivered;
740 	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
741 	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
742 		return;
743 
744 	/* Find average delivery rate in this sampling interval. */
745 	t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
746 	if ((s32)t < 1)
747 		return;		/* interval is less than one ms, so wait */
748 	/* Check if can multiply without overflow */
749 	if (t >= ~0U / USEC_PER_MSEC) {
750 		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
751 		return;
752 	}
753 	t *= USEC_PER_MSEC;
754 	bw = (u64)delivered * BW_UNIT;
755 	do_div(bw, t);
756 	bbr_lt_bw_interval_done(sk, bw);
757 }
758 
759 /* Estimate the bandwidth based on how fast packets are delivered */
760 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 	struct bbr *bbr = inet_csk_ca(sk);
764 	u64 bw;
765 
766 	bbr->round_start = 0;
767 	if (rs->delivered < 0 || rs->interval_us <= 0)
768 		return; /* Not a valid observation */
769 
770 	/* See if we've reached the next RTT */
771 	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
772 		bbr->next_rtt_delivered = tp->delivered;
773 		bbr->rtt_cnt++;
774 		bbr->round_start = 1;
775 		bbr->packet_conservation = 0;
776 	}
777 
778 	bbr_lt_bw_sampling(sk, rs);
779 
780 	/* Divide delivered by the interval to find a (lower bound) bottleneck
781 	 * bandwidth sample. Delivered is in packets and interval_us in uS and
782 	 * ratio will be <<1 for most connections. So delivered is first scaled.
783 	 */
784 	bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us);
785 
786 	/* If this sample is application-limited, it is likely to have a very
787 	 * low delivered count that represents application behavior rather than
788 	 * the available network rate. Such a sample could drag down estimated
789 	 * bw, causing needless slow-down. Thus, to continue to send at the
790 	 * last measured network rate, we filter out app-limited samples unless
791 	 * they describe the path bw at least as well as our bw model.
792 	 *
793 	 * So the goal during app-limited phase is to proceed with the best
794 	 * network rate no matter how long. We automatically leave this
795 	 * phase when app writes faster than the network can deliver :)
796 	 */
797 	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
798 		/* Incorporate new sample into our max bw filter. */
799 		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
800 	}
801 }
802 
803 /* Estimates the windowed max degree of ack aggregation.
804  * This is used to provision extra in-flight data to keep sending during
805  * inter-ACK silences.
806  *
807  * Degree of ack aggregation is estimated as extra data acked beyond expected.
808  *
809  * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
810  * cwnd += max_extra_acked
811  *
812  * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
813  * Max filter is an approximate sliding window of 5-10 (packet timed) round
814  * trips.
815  */
816 static void bbr_update_ack_aggregation(struct sock *sk,
817 				       const struct rate_sample *rs)
818 {
819 	u32 epoch_us, expected_acked, extra_acked;
820 	struct bbr *bbr = inet_csk_ca(sk);
821 	struct tcp_sock *tp = tcp_sk(sk);
822 
823 	if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 ||
824 	    rs->delivered < 0 || rs->interval_us <= 0)
825 		return;
826 
827 	if (bbr->round_start) {
828 		bbr->extra_acked_win_rtts = min(0x1F,
829 						bbr->extra_acked_win_rtts + 1);
830 		if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) {
831 			bbr->extra_acked_win_rtts = 0;
832 			bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
833 						   0 : 1;
834 			bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
835 		}
836 	}
837 
838 	/* Compute how many packets we expected to be delivered over epoch. */
839 	epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
840 				      bbr->ack_epoch_mstamp);
841 	expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
842 
843 	/* Reset the aggregation epoch if ACK rate is below expected rate or
844 	 * significantly large no. of ack received since epoch (potentially
845 	 * quite old epoch).
846 	 */
847 	if (bbr->ack_epoch_acked <= expected_acked ||
848 	    (bbr->ack_epoch_acked + rs->acked_sacked >=
849 	     bbr_ack_epoch_acked_reset_thresh)) {
850 		bbr->ack_epoch_acked = 0;
851 		bbr->ack_epoch_mstamp = tp->delivered_mstamp;
852 		expected_acked = 0;
853 	}
854 
855 	/* Compute excess data delivered, beyond what was expected. */
856 	bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
857 				     bbr->ack_epoch_acked + rs->acked_sacked);
858 	extra_acked = bbr->ack_epoch_acked - expected_acked;
859 	extra_acked = min(extra_acked, tcp_snd_cwnd(tp));
860 	if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
861 		bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
862 }
863 
864 /* Estimate when the pipe is full, using the change in delivery rate: BBR
865  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
866  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
867  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
868  * higher rwin, 3: we get higher delivery rate samples. Or transient
869  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
870  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
871  */
872 static void bbr_check_full_bw_reached(struct sock *sk,
873 				      const struct rate_sample *rs)
874 {
875 	struct bbr *bbr = inet_csk_ca(sk);
876 	u32 bw_thresh;
877 
878 	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
879 		return;
880 
881 	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
882 	if (bbr_max_bw(sk) >= bw_thresh) {
883 		bbr->full_bw = bbr_max_bw(sk);
884 		bbr->full_bw_cnt = 0;
885 		return;
886 	}
887 	++bbr->full_bw_cnt;
888 	bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
889 }
890 
891 /* If pipe is probably full, drain the queue and then enter steady-state. */
892 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
893 {
894 	struct bbr *bbr = inet_csk_ca(sk);
895 
896 	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
897 		bbr->mode = BBR_DRAIN;	/* drain queue we created */
898 		tcp_sk(sk)->snd_ssthresh =
899 				bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
900 	}	/* fall through to check if in-flight is already small: */
901 	if (bbr->mode == BBR_DRAIN &&
902 	    bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
903 	    bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
904 		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
905 }
906 
907 static void bbr_check_probe_rtt_done(struct sock *sk)
908 {
909 	struct tcp_sock *tp = tcp_sk(sk);
910 	struct bbr *bbr = inet_csk_ca(sk);
911 
912 	if (!(bbr->probe_rtt_done_stamp &&
913 	      after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
914 		return;
915 
916 	bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
917 	tcp_snd_cwnd_set(tp, max(tcp_snd_cwnd(tp), bbr->prior_cwnd));
918 	bbr_reset_mode(sk);
919 }
920 
921 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
922  * periodically drain the bottleneck queue, to converge to measure the true
923  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
924  * small (reducing queuing delay and packet loss) and achieve fairness among
925  * BBR flows.
926  *
927  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
928  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
929  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
930  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
931  * re-enter the previous mode. BBR uses 200ms to approximately bound the
932  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
933  *
934  * Note that flows need only pay 2% if they are busy sending over the last 10
935  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
936  * natural silences or low-rate periods within 10 seconds where the rate is low
937  * enough for long enough to drain its queue in the bottleneck. We pick up
938  * these min RTT measurements opportunistically with our min_rtt filter. :-)
939  */
940 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
941 {
942 	struct tcp_sock *tp = tcp_sk(sk);
943 	struct bbr *bbr = inet_csk_ca(sk);
944 	bool filter_expired;
945 
946 	/* Track min RTT seen in the min_rtt_win_sec filter window: */
947 	filter_expired = after(tcp_jiffies32,
948 			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
949 	if (rs->rtt_us >= 0 &&
950 	    (rs->rtt_us < bbr->min_rtt_us ||
951 	     (filter_expired && !rs->is_ack_delayed))) {
952 		bbr->min_rtt_us = rs->rtt_us;
953 		bbr->min_rtt_stamp = tcp_jiffies32;
954 	}
955 
956 	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
957 	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
958 		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
959 		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
960 		bbr->probe_rtt_done_stamp = 0;
961 	}
962 
963 	if (bbr->mode == BBR_PROBE_RTT) {
964 		/* Ignore low rate samples during this mode. */
965 		tp->app_limited =
966 			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
967 		/* Maintain min packets in flight for max(200 ms, 1 round). */
968 		if (!bbr->probe_rtt_done_stamp &&
969 		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
970 			bbr->probe_rtt_done_stamp = tcp_jiffies32 +
971 				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
972 			bbr->probe_rtt_round_done = 0;
973 			bbr->next_rtt_delivered = tp->delivered;
974 		} else if (bbr->probe_rtt_done_stamp) {
975 			if (bbr->round_start)
976 				bbr->probe_rtt_round_done = 1;
977 			if (bbr->probe_rtt_round_done)
978 				bbr_check_probe_rtt_done(sk);
979 		}
980 	}
981 	/* Restart after idle ends only once we process a new S/ACK for data */
982 	if (rs->delivered > 0)
983 		bbr->idle_restart = 0;
984 }
985 
986 static void bbr_update_gains(struct sock *sk)
987 {
988 	struct bbr *bbr = inet_csk_ca(sk);
989 
990 	switch (bbr->mode) {
991 	case BBR_STARTUP:
992 		bbr->pacing_gain = bbr_high_gain;
993 		bbr->cwnd_gain	 = bbr_high_gain;
994 		break;
995 	case BBR_DRAIN:
996 		bbr->pacing_gain = bbr_drain_gain;	/* slow, to drain */
997 		bbr->cwnd_gain	 = bbr_high_gain;	/* keep cwnd */
998 		break;
999 	case BBR_PROBE_BW:
1000 		bbr->pacing_gain = (bbr->lt_use_bw ?
1001 				    BBR_UNIT :
1002 				    bbr_pacing_gain[bbr->cycle_idx]);
1003 		bbr->cwnd_gain	 = bbr_cwnd_gain;
1004 		break;
1005 	case BBR_PROBE_RTT:
1006 		bbr->pacing_gain = BBR_UNIT;
1007 		bbr->cwnd_gain	 = BBR_UNIT;
1008 		break;
1009 	default:
1010 		WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
1011 		break;
1012 	}
1013 }
1014 
1015 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
1016 {
1017 	bbr_update_bw(sk, rs);
1018 	bbr_update_ack_aggregation(sk, rs);
1019 	bbr_update_cycle_phase(sk, rs);
1020 	bbr_check_full_bw_reached(sk, rs);
1021 	bbr_check_drain(sk, rs);
1022 	bbr_update_min_rtt(sk, rs);
1023 	bbr_update_gains(sk);
1024 }
1025 
1026 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
1027 {
1028 	struct bbr *bbr = inet_csk_ca(sk);
1029 	u32 bw;
1030 
1031 	bbr_update_model(sk, rs);
1032 
1033 	bw = bbr_bw(sk);
1034 	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
1035 	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
1036 }
1037 
1038 static void bbr_init(struct sock *sk)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	struct bbr *bbr = inet_csk_ca(sk);
1042 
1043 	bbr->prior_cwnd = 0;
1044 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1045 	bbr->rtt_cnt = 0;
1046 	bbr->next_rtt_delivered = tp->delivered;
1047 	bbr->prev_ca_state = TCP_CA_Open;
1048 	bbr->packet_conservation = 0;
1049 
1050 	bbr->probe_rtt_done_stamp = 0;
1051 	bbr->probe_rtt_round_done = 0;
1052 	bbr->min_rtt_us = tcp_min_rtt(tp);
1053 	bbr->min_rtt_stamp = tcp_jiffies32;
1054 
1055 	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
1056 
1057 	bbr->has_seen_rtt = 0;
1058 	bbr_init_pacing_rate_from_rtt(sk);
1059 
1060 	bbr->round_start = 0;
1061 	bbr->idle_restart = 0;
1062 	bbr->full_bw_reached = 0;
1063 	bbr->full_bw = 0;
1064 	bbr->full_bw_cnt = 0;
1065 	bbr->cycle_mstamp = 0;
1066 	bbr->cycle_idx = 0;
1067 	bbr_reset_lt_bw_sampling(sk);
1068 	bbr_reset_startup_mode(sk);
1069 
1070 	bbr->ack_epoch_mstamp = tp->tcp_mstamp;
1071 	bbr->ack_epoch_acked = 0;
1072 	bbr->extra_acked_win_rtts = 0;
1073 	bbr->extra_acked_win_idx = 0;
1074 	bbr->extra_acked[0] = 0;
1075 	bbr->extra_acked[1] = 0;
1076 
1077 	cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
1078 }
1079 
1080 static u32 bbr_sndbuf_expand(struct sock *sk)
1081 {
1082 	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
1083 	return 3;
1084 }
1085 
1086 /* In theory BBR does not need to undo the cwnd since it does not
1087  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
1088  */
1089 static u32 bbr_undo_cwnd(struct sock *sk)
1090 {
1091 	struct bbr *bbr = inet_csk_ca(sk);
1092 
1093 	bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
1094 	bbr->full_bw_cnt = 0;
1095 	bbr_reset_lt_bw_sampling(sk);
1096 	return tcp_snd_cwnd(tcp_sk(sk));
1097 }
1098 
1099 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
1100 static u32 bbr_ssthresh(struct sock *sk)
1101 {
1102 	bbr_save_cwnd(sk);
1103 	return tcp_sk(sk)->snd_ssthresh;
1104 }
1105 
1106 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
1107 			   union tcp_cc_info *info)
1108 {
1109 	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
1110 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
1111 		struct tcp_sock *tp = tcp_sk(sk);
1112 		struct bbr *bbr = inet_csk_ca(sk);
1113 		u64 bw = bbr_bw(sk);
1114 
1115 		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
1116 		memset(&info->bbr, 0, sizeof(info->bbr));
1117 		info->bbr.bbr_bw_lo		= (u32)bw;
1118 		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
1119 		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
1120 		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
1121 		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
1122 		*attr = INET_DIAG_BBRINFO;
1123 		return sizeof(info->bbr);
1124 	}
1125 	return 0;
1126 }
1127 
1128 static void bbr_set_state(struct sock *sk, u8 new_state)
1129 {
1130 	struct bbr *bbr = inet_csk_ca(sk);
1131 
1132 	if (new_state == TCP_CA_Loss) {
1133 		struct rate_sample rs = { .losses = 1 };
1134 
1135 		bbr->prev_ca_state = TCP_CA_Loss;
1136 		bbr->full_bw = 0;
1137 		bbr->round_start = 1;	/* treat RTO like end of a round */
1138 		bbr_lt_bw_sampling(sk, &rs);
1139 	}
1140 }
1141 
1142 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
1143 	.flags		= TCP_CONG_NON_RESTRICTED,
1144 	.name		= "bbr",
1145 	.owner		= THIS_MODULE,
1146 	.init		= bbr_init,
1147 	.cong_control	= bbr_main,
1148 	.sndbuf_expand	= bbr_sndbuf_expand,
1149 	.undo_cwnd	= bbr_undo_cwnd,
1150 	.cwnd_event	= bbr_cwnd_event,
1151 	.ssthresh	= bbr_ssthresh,
1152 	.min_tso_segs	= bbr_min_tso_segs,
1153 	.get_info	= bbr_get_info,
1154 	.set_state	= bbr_set_state,
1155 };
1156 
1157 BTF_SET_START(tcp_bbr_check_kfunc_ids)
1158 #ifdef CONFIG_X86
1159 #ifdef CONFIG_DYNAMIC_FTRACE
1160 BTF_ID(func, bbr_init)
1161 BTF_ID(func, bbr_main)
1162 BTF_ID(func, bbr_sndbuf_expand)
1163 BTF_ID(func, bbr_undo_cwnd)
1164 BTF_ID(func, bbr_cwnd_event)
1165 BTF_ID(func, bbr_ssthresh)
1166 BTF_ID(func, bbr_min_tso_segs)
1167 BTF_ID(func, bbr_set_state)
1168 #endif
1169 #endif
1170 BTF_SET_END(tcp_bbr_check_kfunc_ids)
1171 
1172 static const struct btf_kfunc_id_set tcp_bbr_kfunc_set = {
1173 	.owner     = THIS_MODULE,
1174 	.check_set = &tcp_bbr_check_kfunc_ids,
1175 };
1176 
1177 static int __init bbr_register(void)
1178 {
1179 	int ret;
1180 
1181 	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
1182 
1183 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_bbr_kfunc_set);
1184 	if (ret < 0)
1185 		return ret;
1186 	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
1187 }
1188 
1189 static void __exit bbr_unregister(void)
1190 {
1191 	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
1192 }
1193 
1194 module_init(bbr_register);
1195 module_exit(bbr_unregister);
1196 
1197 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
1198 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
1199 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
1200 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
1201 MODULE_LICENSE("Dual BSD/GPL");
1202 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
1203