xref: /openbmc/linux/net/ipv4/tcp.c (revision fcb8918f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
269 
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276 
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279 
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 long sysctl_tcp_mem[3] __read_mostly;
286 int sysctl_tcp_wmem[3] __read_mostly;
287 int sysctl_tcp_rmem[3] __read_mostly;
288 
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /*
367  *	Wait for a TCP event.
368  *
369  *	Note that we don't need to lock the socket, as the upper poll layers
370  *	take care of normal races (between the test and the event) and we don't
371  *	go look at any of the socket buffers directly.
372  */
373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 	unsigned int mask;
376 	struct sock *sk = sock->sk;
377 	struct tcp_sock *tp = tcp_sk(sk);
378 
379 	sock_poll_wait(file, sk_sleep(sk), wait);
380 	if (sk->sk_state == TCP_LISTEN)
381 		return inet_csk_listen_poll(sk);
382 
383 	/* Socket is not locked. We are protected from async events
384 	 * by poll logic and correct handling of state changes
385 	 * made by other threads is impossible in any case.
386 	 */
387 
388 	mask = 0;
389 
390 	/*
391 	 * POLLHUP is certainly not done right. But poll() doesn't
392 	 * have a notion of HUP in just one direction, and for a
393 	 * socket the read side is more interesting.
394 	 *
395 	 * Some poll() documentation says that POLLHUP is incompatible
396 	 * with the POLLOUT/POLLWR flags, so somebody should check this
397 	 * all. But careful, it tends to be safer to return too many
398 	 * bits than too few, and you can easily break real applications
399 	 * if you don't tell them that something has hung up!
400 	 *
401 	 * Check-me.
402 	 *
403 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404 	 * our fs/select.c). It means that after we received EOF,
405 	 * poll always returns immediately, making impossible poll() on write()
406 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407 	 * if and only if shutdown has been made in both directions.
408 	 * Actually, it is interesting to look how Solaris and DUX
409 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410 	 * then we could set it on SND_SHUTDOWN. BTW examples given
411 	 * in Stevens' books assume exactly this behaviour, it explains
412 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413 	 *
414 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415 	 * blocking on fresh not-connected or disconnected socket. --ANK
416 	 */
417 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418 		mask |= POLLHUP;
419 	if (sk->sk_shutdown & RCV_SHUTDOWN)
420 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421 
422 	/* Connected? */
423 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424 		int target = sock_rcvlowat(sk, 0, INT_MAX);
425 
426 		if (tp->urg_seq == tp->copied_seq &&
427 		    !sock_flag(sk, SOCK_URGINLINE) &&
428 		    tp->urg_data)
429 			target++;
430 
431 		/* Potential race condition. If read of tp below will
432 		 * escape above sk->sk_state, we can be illegally awaken
433 		 * in SYN_* states. */
434 		if (tp->rcv_nxt - tp->copied_seq >= target)
435 			mask |= POLLIN | POLLRDNORM;
436 
437 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439 				mask |= POLLOUT | POLLWRNORM;
440 			} else {  /* send SIGIO later */
441 				set_bit(SOCK_ASYNC_NOSPACE,
442 					&sk->sk_socket->flags);
443 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444 
445 				/* Race breaker. If space is freed after
446 				 * wspace test but before the flags are set,
447 				 * IO signal will be lost.
448 				 */
449 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450 					mask |= POLLOUT | POLLWRNORM;
451 			}
452 		} else
453 			mask |= POLLOUT | POLLWRNORM;
454 
455 		if (tp->urg_data & TCP_URG_VALID)
456 			mask |= POLLPRI;
457 	}
458 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459 	smp_rmb();
460 	if (sk->sk_err)
461 		mask |= POLLERR;
462 
463 	return mask;
464 }
465 EXPORT_SYMBOL(tcp_poll);
466 
467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468 {
469 	struct tcp_sock *tp = tcp_sk(sk);
470 	int answ;
471 
472 	switch (cmd) {
473 	case SIOCINQ:
474 		if (sk->sk_state == TCP_LISTEN)
475 			return -EINVAL;
476 
477 		lock_sock(sk);
478 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479 			answ = 0;
480 		else if (sock_flag(sk, SOCK_URGINLINE) ||
481 			 !tp->urg_data ||
482 			 before(tp->urg_seq, tp->copied_seq) ||
483 			 !before(tp->urg_seq, tp->rcv_nxt)) {
484 			struct sk_buff *skb;
485 
486 			answ = tp->rcv_nxt - tp->copied_seq;
487 
488 			/* Subtract 1, if FIN is in queue. */
489 			skb = skb_peek_tail(&sk->sk_receive_queue);
490 			if (answ && skb)
491 				answ -= tcp_hdr(skb)->fin;
492 		} else
493 			answ = tp->urg_seq - tp->copied_seq;
494 		release_sock(sk);
495 		break;
496 	case SIOCATMARK:
497 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498 		break;
499 	case SIOCOUTQ:
500 		if (sk->sk_state == TCP_LISTEN)
501 			return -EINVAL;
502 
503 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504 			answ = 0;
505 		else
506 			answ = tp->write_seq - tp->snd_una;
507 		break;
508 	case SIOCOUTQNSD:
509 		if (sk->sk_state == TCP_LISTEN)
510 			return -EINVAL;
511 
512 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
513 			answ = 0;
514 		else
515 			answ = tp->write_seq - tp->snd_nxt;
516 		break;
517 	default:
518 		return -ENOIOCTLCMD;
519 	}
520 
521 	return put_user(answ, (int __user *)arg);
522 }
523 EXPORT_SYMBOL(tcp_ioctl);
524 
525 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
526 {
527 	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
528 	tp->pushed_seq = tp->write_seq;
529 }
530 
531 static inline int forced_push(struct tcp_sock *tp)
532 {
533 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
534 }
535 
536 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
537 {
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
540 
541 	skb->csum    = 0;
542 	tcb->seq     = tcb->end_seq = tp->write_seq;
543 	tcb->flags   = TCPHDR_ACK;
544 	tcb->sacked  = 0;
545 	skb_header_release(skb);
546 	tcp_add_write_queue_tail(sk, skb);
547 	sk->sk_wmem_queued += skb->truesize;
548 	sk_mem_charge(sk, skb->truesize);
549 	if (tp->nonagle & TCP_NAGLE_PUSH)
550 		tp->nonagle &= ~TCP_NAGLE_PUSH;
551 }
552 
553 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
554 {
555 	if (flags & MSG_OOB)
556 		tp->snd_up = tp->write_seq;
557 }
558 
559 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
560 			    int nonagle)
561 {
562 	if (tcp_send_head(sk)) {
563 		struct tcp_sock *tp = tcp_sk(sk);
564 
565 		if (!(flags & MSG_MORE) || forced_push(tp))
566 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
567 
568 		tcp_mark_urg(tp, flags);
569 		__tcp_push_pending_frames(sk, mss_now,
570 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
571 	}
572 }
573 
574 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
575 				unsigned int offset, size_t len)
576 {
577 	struct tcp_splice_state *tss = rd_desc->arg.data;
578 	int ret;
579 
580 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
581 			      tss->flags);
582 	if (ret > 0)
583 		rd_desc->count -= ret;
584 	return ret;
585 }
586 
587 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
588 {
589 	/* Store TCP splice context information in read_descriptor_t. */
590 	read_descriptor_t rd_desc = {
591 		.arg.data = tss,
592 		.count	  = tss->len,
593 	};
594 
595 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
596 }
597 
598 /**
599  *  tcp_splice_read - splice data from TCP socket to a pipe
600  * @sock:	socket to splice from
601  * @ppos:	position (not valid)
602  * @pipe:	pipe to splice to
603  * @len:	number of bytes to splice
604  * @flags:	splice modifier flags
605  *
606  * Description:
607  *    Will read pages from given socket and fill them into a pipe.
608  *
609  **/
610 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
611 			struct pipe_inode_info *pipe, size_t len,
612 			unsigned int flags)
613 {
614 	struct sock *sk = sock->sk;
615 	struct tcp_splice_state tss = {
616 		.pipe = pipe,
617 		.len = len,
618 		.flags = flags,
619 	};
620 	long timeo;
621 	ssize_t spliced;
622 	int ret;
623 
624 	sock_rps_record_flow(sk);
625 	/*
626 	 * We can't seek on a socket input
627 	 */
628 	if (unlikely(*ppos))
629 		return -ESPIPE;
630 
631 	ret = spliced = 0;
632 
633 	lock_sock(sk);
634 
635 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
636 	while (tss.len) {
637 		ret = __tcp_splice_read(sk, &tss);
638 		if (ret < 0)
639 			break;
640 		else if (!ret) {
641 			if (spliced)
642 				break;
643 			if (sock_flag(sk, SOCK_DONE))
644 				break;
645 			if (sk->sk_err) {
646 				ret = sock_error(sk);
647 				break;
648 			}
649 			if (sk->sk_shutdown & RCV_SHUTDOWN)
650 				break;
651 			if (sk->sk_state == TCP_CLOSE) {
652 				/*
653 				 * This occurs when user tries to read
654 				 * from never connected socket.
655 				 */
656 				if (!sock_flag(sk, SOCK_DONE))
657 					ret = -ENOTCONN;
658 				break;
659 			}
660 			if (!timeo) {
661 				ret = -EAGAIN;
662 				break;
663 			}
664 			sk_wait_data(sk, &timeo);
665 			if (signal_pending(current)) {
666 				ret = sock_intr_errno(timeo);
667 				break;
668 			}
669 			continue;
670 		}
671 		tss.len -= ret;
672 		spliced += ret;
673 
674 		if (!timeo)
675 			break;
676 		release_sock(sk);
677 		lock_sock(sk);
678 
679 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
680 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
681 		    signal_pending(current))
682 			break;
683 	}
684 
685 	release_sock(sk);
686 
687 	if (spliced)
688 		return spliced;
689 
690 	return ret;
691 }
692 EXPORT_SYMBOL(tcp_splice_read);
693 
694 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
695 {
696 	struct sk_buff *skb;
697 
698 	/* The TCP header must be at least 32-bit aligned.  */
699 	size = ALIGN(size, 4);
700 
701 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
702 	if (skb) {
703 		if (sk_wmem_schedule(sk, skb->truesize)) {
704 			/*
705 			 * Make sure that we have exactly size bytes
706 			 * available to the caller, no more, no less.
707 			 */
708 			skb_reserve(skb, skb_tailroom(skb) - size);
709 			return skb;
710 		}
711 		__kfree_skb(skb);
712 	} else {
713 		sk->sk_prot->enter_memory_pressure(sk);
714 		sk_stream_moderate_sndbuf(sk);
715 	}
716 	return NULL;
717 }
718 
719 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
720 				       int large_allowed)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	u32 xmit_size_goal, old_size_goal;
724 
725 	xmit_size_goal = mss_now;
726 
727 	if (large_allowed && sk_can_gso(sk)) {
728 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
729 				  inet_csk(sk)->icsk_af_ops->net_header_len -
730 				  inet_csk(sk)->icsk_ext_hdr_len -
731 				  tp->tcp_header_len);
732 
733 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
734 
735 		/* We try hard to avoid divides here */
736 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
737 
738 		if (likely(old_size_goal <= xmit_size_goal &&
739 			   old_size_goal + mss_now > xmit_size_goal)) {
740 			xmit_size_goal = old_size_goal;
741 		} else {
742 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
743 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
744 		}
745 	}
746 
747 	return max(xmit_size_goal, mss_now);
748 }
749 
750 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
751 {
752 	int mss_now;
753 
754 	mss_now = tcp_current_mss(sk);
755 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
756 
757 	return mss_now;
758 }
759 
760 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
761 			 size_t psize, int flags)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	int mss_now, size_goal;
765 	int err;
766 	ssize_t copied;
767 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
768 
769 	/* Wait for a connection to finish. */
770 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
771 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
772 			goto out_err;
773 
774 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
775 
776 	mss_now = tcp_send_mss(sk, &size_goal, flags);
777 	copied = 0;
778 
779 	err = -EPIPE;
780 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
781 		goto out_err;
782 
783 	while (psize > 0) {
784 		struct sk_buff *skb = tcp_write_queue_tail(sk);
785 		struct page *page = pages[poffset / PAGE_SIZE];
786 		int copy, i, can_coalesce;
787 		int offset = poffset % PAGE_SIZE;
788 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
789 
790 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
791 new_segment:
792 			if (!sk_stream_memory_free(sk))
793 				goto wait_for_sndbuf;
794 
795 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
796 			if (!skb)
797 				goto wait_for_memory;
798 
799 			skb_entail(sk, skb);
800 			copy = size_goal;
801 		}
802 
803 		if (copy > size)
804 			copy = size;
805 
806 		i = skb_shinfo(skb)->nr_frags;
807 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
808 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
809 			tcp_mark_push(tp, skb);
810 			goto new_segment;
811 		}
812 		if (!sk_wmem_schedule(sk, copy))
813 			goto wait_for_memory;
814 
815 		if (can_coalesce) {
816 			skb_shinfo(skb)->frags[i - 1].size += copy;
817 		} else {
818 			get_page(page);
819 			skb_fill_page_desc(skb, i, page, offset, copy);
820 		}
821 
822 		skb->len += copy;
823 		skb->data_len += copy;
824 		skb->truesize += copy;
825 		sk->sk_wmem_queued += copy;
826 		sk_mem_charge(sk, copy);
827 		skb->ip_summed = CHECKSUM_PARTIAL;
828 		tp->write_seq += copy;
829 		TCP_SKB_CB(skb)->end_seq += copy;
830 		skb_shinfo(skb)->gso_segs = 0;
831 
832 		if (!copied)
833 			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
834 
835 		copied += copy;
836 		poffset += copy;
837 		if (!(psize -= copy))
838 			goto out;
839 
840 		if (skb->len < size_goal || (flags & MSG_OOB))
841 			continue;
842 
843 		if (forced_push(tp)) {
844 			tcp_mark_push(tp, skb);
845 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
846 		} else if (skb == tcp_send_head(sk))
847 			tcp_push_one(sk, mss_now);
848 		continue;
849 
850 wait_for_sndbuf:
851 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
852 wait_for_memory:
853 		if (copied)
854 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
855 
856 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
857 			goto do_error;
858 
859 		mss_now = tcp_send_mss(sk, &size_goal, flags);
860 	}
861 
862 out:
863 	if (copied)
864 		tcp_push(sk, flags, mss_now, tp->nonagle);
865 	return copied;
866 
867 do_error:
868 	if (copied)
869 		goto out;
870 out_err:
871 	return sk_stream_error(sk, flags, err);
872 }
873 
874 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
875 		 size_t size, int flags)
876 {
877 	ssize_t res;
878 
879 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
880 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
881 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
882 					flags);
883 
884 	lock_sock(sk);
885 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
886 	release_sock(sk);
887 	return res;
888 }
889 EXPORT_SYMBOL(tcp_sendpage);
890 
891 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
892 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
893 
894 static inline int select_size(struct sock *sk, int sg)
895 {
896 	struct tcp_sock *tp = tcp_sk(sk);
897 	int tmp = tp->mss_cache;
898 
899 	if (sg) {
900 		if (sk_can_gso(sk))
901 			tmp = 0;
902 		else {
903 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
904 
905 			if (tmp >= pgbreak &&
906 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
907 				tmp = pgbreak;
908 		}
909 	}
910 
911 	return tmp;
912 }
913 
914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
915 		size_t size)
916 {
917 	struct iovec *iov;
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	struct sk_buff *skb;
920 	int iovlen, flags;
921 	int mss_now, size_goal;
922 	int sg, err, copied;
923 	long timeo;
924 
925 	lock_sock(sk);
926 
927 	flags = msg->msg_flags;
928 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
929 
930 	/* Wait for a connection to finish. */
931 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
932 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
933 			goto out_err;
934 
935 	/* This should be in poll */
936 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
937 
938 	mss_now = tcp_send_mss(sk, &size_goal, flags);
939 
940 	/* Ok commence sending. */
941 	iovlen = msg->msg_iovlen;
942 	iov = msg->msg_iov;
943 	copied = 0;
944 
945 	err = -EPIPE;
946 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
947 		goto out_err;
948 
949 	sg = sk->sk_route_caps & NETIF_F_SG;
950 
951 	while (--iovlen >= 0) {
952 		size_t seglen = iov->iov_len;
953 		unsigned char __user *from = iov->iov_base;
954 
955 		iov++;
956 
957 		while (seglen > 0) {
958 			int copy = 0;
959 			int max = size_goal;
960 
961 			skb = tcp_write_queue_tail(sk);
962 			if (tcp_send_head(sk)) {
963 				if (skb->ip_summed == CHECKSUM_NONE)
964 					max = mss_now;
965 				copy = max - skb->len;
966 			}
967 
968 			if (copy <= 0) {
969 new_segment:
970 				/* Allocate new segment. If the interface is SG,
971 				 * allocate skb fitting to single page.
972 				 */
973 				if (!sk_stream_memory_free(sk))
974 					goto wait_for_sndbuf;
975 
976 				skb = sk_stream_alloc_skb(sk,
977 							  select_size(sk, sg),
978 							  sk->sk_allocation);
979 				if (!skb)
980 					goto wait_for_memory;
981 
982 				/*
983 				 * Check whether we can use HW checksum.
984 				 */
985 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
986 					skb->ip_summed = CHECKSUM_PARTIAL;
987 
988 				skb_entail(sk, skb);
989 				copy = size_goal;
990 				max = size_goal;
991 			}
992 
993 			/* Try to append data to the end of skb. */
994 			if (copy > seglen)
995 				copy = seglen;
996 
997 			/* Where to copy to? */
998 			if (skb_tailroom(skb) > 0) {
999 				/* We have some space in skb head. Superb! */
1000 				if (copy > skb_tailroom(skb))
1001 					copy = skb_tailroom(skb);
1002 				if ((err = skb_add_data(skb, from, copy)) != 0)
1003 					goto do_fault;
1004 			} else {
1005 				int merge = 0;
1006 				int i = skb_shinfo(skb)->nr_frags;
1007 				struct page *page = TCP_PAGE(sk);
1008 				int off = TCP_OFF(sk);
1009 
1010 				if (skb_can_coalesce(skb, i, page, off) &&
1011 				    off != PAGE_SIZE) {
1012 					/* We can extend the last page
1013 					 * fragment. */
1014 					merge = 1;
1015 				} else if (i == MAX_SKB_FRAGS || !sg) {
1016 					/* Need to add new fragment and cannot
1017 					 * do this because interface is non-SG,
1018 					 * or because all the page slots are
1019 					 * busy. */
1020 					tcp_mark_push(tp, skb);
1021 					goto new_segment;
1022 				} else if (page) {
1023 					if (off == PAGE_SIZE) {
1024 						put_page(page);
1025 						TCP_PAGE(sk) = page = NULL;
1026 						off = 0;
1027 					}
1028 				} else
1029 					off = 0;
1030 
1031 				if (copy > PAGE_SIZE - off)
1032 					copy = PAGE_SIZE - off;
1033 
1034 				if (!sk_wmem_schedule(sk, copy))
1035 					goto wait_for_memory;
1036 
1037 				if (!page) {
1038 					/* Allocate new cache page. */
1039 					if (!(page = sk_stream_alloc_page(sk)))
1040 						goto wait_for_memory;
1041 				}
1042 
1043 				/* Time to copy data. We are close to
1044 				 * the end! */
1045 				err = skb_copy_to_page(sk, from, skb, page,
1046 						       off, copy);
1047 				if (err) {
1048 					/* If this page was new, give it to the
1049 					 * socket so it does not get leaked.
1050 					 */
1051 					if (!TCP_PAGE(sk)) {
1052 						TCP_PAGE(sk) = page;
1053 						TCP_OFF(sk) = 0;
1054 					}
1055 					goto do_error;
1056 				}
1057 
1058 				/* Update the skb. */
1059 				if (merge) {
1060 					skb_shinfo(skb)->frags[i - 1].size +=
1061 									copy;
1062 				} else {
1063 					skb_fill_page_desc(skb, i, page, off, copy);
1064 					if (TCP_PAGE(sk)) {
1065 						get_page(page);
1066 					} else if (off + copy < PAGE_SIZE) {
1067 						get_page(page);
1068 						TCP_PAGE(sk) = page;
1069 					}
1070 				}
1071 
1072 				TCP_OFF(sk) = off + copy;
1073 			}
1074 
1075 			if (!copied)
1076 				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1077 
1078 			tp->write_seq += copy;
1079 			TCP_SKB_CB(skb)->end_seq += copy;
1080 			skb_shinfo(skb)->gso_segs = 0;
1081 
1082 			from += copy;
1083 			copied += copy;
1084 			if ((seglen -= copy) == 0 && iovlen == 0)
1085 				goto out;
1086 
1087 			if (skb->len < max || (flags & MSG_OOB))
1088 				continue;
1089 
1090 			if (forced_push(tp)) {
1091 				tcp_mark_push(tp, skb);
1092 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1093 			} else if (skb == tcp_send_head(sk))
1094 				tcp_push_one(sk, mss_now);
1095 			continue;
1096 
1097 wait_for_sndbuf:
1098 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1099 wait_for_memory:
1100 			if (copied)
1101 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1102 
1103 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1104 				goto do_error;
1105 
1106 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1107 		}
1108 	}
1109 
1110 out:
1111 	if (copied)
1112 		tcp_push(sk, flags, mss_now, tp->nonagle);
1113 	release_sock(sk);
1114 	return copied;
1115 
1116 do_fault:
1117 	if (!skb->len) {
1118 		tcp_unlink_write_queue(skb, sk);
1119 		/* It is the one place in all of TCP, except connection
1120 		 * reset, where we can be unlinking the send_head.
1121 		 */
1122 		tcp_check_send_head(sk, skb);
1123 		sk_wmem_free_skb(sk, skb);
1124 	}
1125 
1126 do_error:
1127 	if (copied)
1128 		goto out;
1129 out_err:
1130 	err = sk_stream_error(sk, flags, err);
1131 	release_sock(sk);
1132 	return err;
1133 }
1134 EXPORT_SYMBOL(tcp_sendmsg);
1135 
1136 /*
1137  *	Handle reading urgent data. BSD has very simple semantics for
1138  *	this, no blocking and very strange errors 8)
1139  */
1140 
1141 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1142 {
1143 	struct tcp_sock *tp = tcp_sk(sk);
1144 
1145 	/* No URG data to read. */
1146 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1147 	    tp->urg_data == TCP_URG_READ)
1148 		return -EINVAL;	/* Yes this is right ! */
1149 
1150 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1151 		return -ENOTCONN;
1152 
1153 	if (tp->urg_data & TCP_URG_VALID) {
1154 		int err = 0;
1155 		char c = tp->urg_data;
1156 
1157 		if (!(flags & MSG_PEEK))
1158 			tp->urg_data = TCP_URG_READ;
1159 
1160 		/* Read urgent data. */
1161 		msg->msg_flags |= MSG_OOB;
1162 
1163 		if (len > 0) {
1164 			if (!(flags & MSG_TRUNC))
1165 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1166 			len = 1;
1167 		} else
1168 			msg->msg_flags |= MSG_TRUNC;
1169 
1170 		return err ? -EFAULT : len;
1171 	}
1172 
1173 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1174 		return 0;
1175 
1176 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1177 	 * the available implementations agree in this case:
1178 	 * this call should never block, independent of the
1179 	 * blocking state of the socket.
1180 	 * Mike <pall@rz.uni-karlsruhe.de>
1181 	 */
1182 	return -EAGAIN;
1183 }
1184 
1185 /* Clean up the receive buffer for full frames taken by the user,
1186  * then send an ACK if necessary.  COPIED is the number of bytes
1187  * tcp_recvmsg has given to the user so far, it speeds up the
1188  * calculation of whether or not we must ACK for the sake of
1189  * a window update.
1190  */
1191 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1192 {
1193 	struct tcp_sock *tp = tcp_sk(sk);
1194 	int time_to_ack = 0;
1195 
1196 #if TCP_DEBUG
1197 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1198 
1199 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1200 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1201 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1202 #endif
1203 
1204 	if (inet_csk_ack_scheduled(sk)) {
1205 		const struct inet_connection_sock *icsk = inet_csk(sk);
1206 		   /* Delayed ACKs frequently hit locked sockets during bulk
1207 		    * receive. */
1208 		if (icsk->icsk_ack.blocked ||
1209 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1210 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1211 		    /*
1212 		     * If this read emptied read buffer, we send ACK, if
1213 		     * connection is not bidirectional, user drained
1214 		     * receive buffer and there was a small segment
1215 		     * in queue.
1216 		     */
1217 		    (copied > 0 &&
1218 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1219 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1220 		       !icsk->icsk_ack.pingpong)) &&
1221 		      !atomic_read(&sk->sk_rmem_alloc)))
1222 			time_to_ack = 1;
1223 	}
1224 
1225 	/* We send an ACK if we can now advertise a non-zero window
1226 	 * which has been raised "significantly".
1227 	 *
1228 	 * Even if window raised up to infinity, do not send window open ACK
1229 	 * in states, where we will not receive more. It is useless.
1230 	 */
1231 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1232 		__u32 rcv_window_now = tcp_receive_window(tp);
1233 
1234 		/* Optimize, __tcp_select_window() is not cheap. */
1235 		if (2*rcv_window_now <= tp->window_clamp) {
1236 			__u32 new_window = __tcp_select_window(sk);
1237 
1238 			/* Send ACK now, if this read freed lots of space
1239 			 * in our buffer. Certainly, new_window is new window.
1240 			 * We can advertise it now, if it is not less than current one.
1241 			 * "Lots" means "at least twice" here.
1242 			 */
1243 			if (new_window && new_window >= 2 * rcv_window_now)
1244 				time_to_ack = 1;
1245 		}
1246 	}
1247 	if (time_to_ack)
1248 		tcp_send_ack(sk);
1249 }
1250 
1251 static void tcp_prequeue_process(struct sock *sk)
1252 {
1253 	struct sk_buff *skb;
1254 	struct tcp_sock *tp = tcp_sk(sk);
1255 
1256 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1257 
1258 	/* RX process wants to run with disabled BHs, though it is not
1259 	 * necessary */
1260 	local_bh_disable();
1261 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1262 		sk_backlog_rcv(sk, skb);
1263 	local_bh_enable();
1264 
1265 	/* Clear memory counter. */
1266 	tp->ucopy.memory = 0;
1267 }
1268 
1269 #ifdef CONFIG_NET_DMA
1270 static void tcp_service_net_dma(struct sock *sk, bool wait)
1271 {
1272 	dma_cookie_t done, used;
1273 	dma_cookie_t last_issued;
1274 	struct tcp_sock *tp = tcp_sk(sk);
1275 
1276 	if (!tp->ucopy.dma_chan)
1277 		return;
1278 
1279 	last_issued = tp->ucopy.dma_cookie;
1280 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1281 
1282 	do {
1283 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1284 					      last_issued, &done,
1285 					      &used) == DMA_SUCCESS) {
1286 			/* Safe to free early-copied skbs now */
1287 			__skb_queue_purge(&sk->sk_async_wait_queue);
1288 			break;
1289 		} else {
1290 			struct sk_buff *skb;
1291 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1292 			       (dma_async_is_complete(skb->dma_cookie, done,
1293 						      used) == DMA_SUCCESS)) {
1294 				__skb_dequeue(&sk->sk_async_wait_queue);
1295 				kfree_skb(skb);
1296 			}
1297 		}
1298 	} while (wait);
1299 }
1300 #endif
1301 
1302 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1303 {
1304 	struct sk_buff *skb;
1305 	u32 offset;
1306 
1307 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1308 		offset = seq - TCP_SKB_CB(skb)->seq;
1309 		if (tcp_hdr(skb)->syn)
1310 			offset--;
1311 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1312 			*off = offset;
1313 			return skb;
1314 		}
1315 	}
1316 	return NULL;
1317 }
1318 
1319 /*
1320  * This routine provides an alternative to tcp_recvmsg() for routines
1321  * that would like to handle copying from skbuffs directly in 'sendfile'
1322  * fashion.
1323  * Note:
1324  *	- It is assumed that the socket was locked by the caller.
1325  *	- The routine does not block.
1326  *	- At present, there is no support for reading OOB data
1327  *	  or for 'peeking' the socket using this routine
1328  *	  (although both would be easy to implement).
1329  */
1330 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1331 		  sk_read_actor_t recv_actor)
1332 {
1333 	struct sk_buff *skb;
1334 	struct tcp_sock *tp = tcp_sk(sk);
1335 	u32 seq = tp->copied_seq;
1336 	u32 offset;
1337 	int copied = 0;
1338 
1339 	if (sk->sk_state == TCP_LISTEN)
1340 		return -ENOTCONN;
1341 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1342 		if (offset < skb->len) {
1343 			int used;
1344 			size_t len;
1345 
1346 			len = skb->len - offset;
1347 			/* Stop reading if we hit a patch of urgent data */
1348 			if (tp->urg_data) {
1349 				u32 urg_offset = tp->urg_seq - seq;
1350 				if (urg_offset < len)
1351 					len = urg_offset;
1352 				if (!len)
1353 					break;
1354 			}
1355 			used = recv_actor(desc, skb, offset, len);
1356 			if (used < 0) {
1357 				if (!copied)
1358 					copied = used;
1359 				break;
1360 			} else if (used <= len) {
1361 				seq += used;
1362 				copied += used;
1363 				offset += used;
1364 			}
1365 			/*
1366 			 * If recv_actor drops the lock (e.g. TCP splice
1367 			 * receive) the skb pointer might be invalid when
1368 			 * getting here: tcp_collapse might have deleted it
1369 			 * while aggregating skbs from the socket queue.
1370 			 */
1371 			skb = tcp_recv_skb(sk, seq-1, &offset);
1372 			if (!skb || (offset+1 != skb->len))
1373 				break;
1374 		}
1375 		if (tcp_hdr(skb)->fin) {
1376 			sk_eat_skb(sk, skb, 0);
1377 			++seq;
1378 			break;
1379 		}
1380 		sk_eat_skb(sk, skb, 0);
1381 		if (!desc->count)
1382 			break;
1383 		tp->copied_seq = seq;
1384 	}
1385 	tp->copied_seq = seq;
1386 
1387 	tcp_rcv_space_adjust(sk);
1388 
1389 	/* Clean up data we have read: This will do ACK frames. */
1390 	if (copied > 0)
1391 		tcp_cleanup_rbuf(sk, copied);
1392 	return copied;
1393 }
1394 EXPORT_SYMBOL(tcp_read_sock);
1395 
1396 /*
1397  *	This routine copies from a sock struct into the user buffer.
1398  *
1399  *	Technical note: in 2.3 we work on _locked_ socket, so that
1400  *	tricks with *seq access order and skb->users are not required.
1401  *	Probably, code can be easily improved even more.
1402  */
1403 
1404 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1405 		size_t len, int nonblock, int flags, int *addr_len)
1406 {
1407 	struct tcp_sock *tp = tcp_sk(sk);
1408 	int copied = 0;
1409 	u32 peek_seq;
1410 	u32 *seq;
1411 	unsigned long used;
1412 	int err;
1413 	int target;		/* Read at least this many bytes */
1414 	long timeo;
1415 	struct task_struct *user_recv = NULL;
1416 	int copied_early = 0;
1417 	struct sk_buff *skb;
1418 	u32 urg_hole = 0;
1419 
1420 	lock_sock(sk);
1421 
1422 	err = -ENOTCONN;
1423 	if (sk->sk_state == TCP_LISTEN)
1424 		goto out;
1425 
1426 	timeo = sock_rcvtimeo(sk, nonblock);
1427 
1428 	/* Urgent data needs to be handled specially. */
1429 	if (flags & MSG_OOB)
1430 		goto recv_urg;
1431 
1432 	seq = &tp->copied_seq;
1433 	if (flags & MSG_PEEK) {
1434 		peek_seq = tp->copied_seq;
1435 		seq = &peek_seq;
1436 	}
1437 
1438 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1439 
1440 #ifdef CONFIG_NET_DMA
1441 	tp->ucopy.dma_chan = NULL;
1442 	preempt_disable();
1443 	skb = skb_peek_tail(&sk->sk_receive_queue);
1444 	{
1445 		int available = 0;
1446 
1447 		if (skb)
1448 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1449 		if ((available < target) &&
1450 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1451 		    !sysctl_tcp_low_latency &&
1452 		    dma_find_channel(DMA_MEMCPY)) {
1453 			preempt_enable_no_resched();
1454 			tp->ucopy.pinned_list =
1455 					dma_pin_iovec_pages(msg->msg_iov, len);
1456 		} else {
1457 			preempt_enable_no_resched();
1458 		}
1459 	}
1460 #endif
1461 
1462 	do {
1463 		u32 offset;
1464 
1465 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1466 		if (tp->urg_data && tp->urg_seq == *seq) {
1467 			if (copied)
1468 				break;
1469 			if (signal_pending(current)) {
1470 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1471 				break;
1472 			}
1473 		}
1474 
1475 		/* Next get a buffer. */
1476 
1477 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1478 			/* Now that we have two receive queues this
1479 			 * shouldn't happen.
1480 			 */
1481 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1482 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1483 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1484 				 flags))
1485 				break;
1486 
1487 			offset = *seq - TCP_SKB_CB(skb)->seq;
1488 			if (tcp_hdr(skb)->syn)
1489 				offset--;
1490 			if (offset < skb->len)
1491 				goto found_ok_skb;
1492 			if (tcp_hdr(skb)->fin)
1493 				goto found_fin_ok;
1494 			WARN(!(flags & MSG_PEEK),
1495 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1496 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1497 		}
1498 
1499 		/* Well, if we have backlog, try to process it now yet. */
1500 
1501 		if (copied >= target && !sk->sk_backlog.tail)
1502 			break;
1503 
1504 		if (copied) {
1505 			if (sk->sk_err ||
1506 			    sk->sk_state == TCP_CLOSE ||
1507 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1508 			    !timeo ||
1509 			    signal_pending(current))
1510 				break;
1511 		} else {
1512 			if (sock_flag(sk, SOCK_DONE))
1513 				break;
1514 
1515 			if (sk->sk_err) {
1516 				copied = sock_error(sk);
1517 				break;
1518 			}
1519 
1520 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1521 				break;
1522 
1523 			if (sk->sk_state == TCP_CLOSE) {
1524 				if (!sock_flag(sk, SOCK_DONE)) {
1525 					/* This occurs when user tries to read
1526 					 * from never connected socket.
1527 					 */
1528 					copied = -ENOTCONN;
1529 					break;
1530 				}
1531 				break;
1532 			}
1533 
1534 			if (!timeo) {
1535 				copied = -EAGAIN;
1536 				break;
1537 			}
1538 
1539 			if (signal_pending(current)) {
1540 				copied = sock_intr_errno(timeo);
1541 				break;
1542 			}
1543 		}
1544 
1545 		tcp_cleanup_rbuf(sk, copied);
1546 
1547 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1548 			/* Install new reader */
1549 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1550 				user_recv = current;
1551 				tp->ucopy.task = user_recv;
1552 				tp->ucopy.iov = msg->msg_iov;
1553 			}
1554 
1555 			tp->ucopy.len = len;
1556 
1557 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1558 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1559 
1560 			/* Ugly... If prequeue is not empty, we have to
1561 			 * process it before releasing socket, otherwise
1562 			 * order will be broken at second iteration.
1563 			 * More elegant solution is required!!!
1564 			 *
1565 			 * Look: we have the following (pseudo)queues:
1566 			 *
1567 			 * 1. packets in flight
1568 			 * 2. backlog
1569 			 * 3. prequeue
1570 			 * 4. receive_queue
1571 			 *
1572 			 * Each queue can be processed only if the next ones
1573 			 * are empty. At this point we have empty receive_queue.
1574 			 * But prequeue _can_ be not empty after 2nd iteration,
1575 			 * when we jumped to start of loop because backlog
1576 			 * processing added something to receive_queue.
1577 			 * We cannot release_sock(), because backlog contains
1578 			 * packets arrived _after_ prequeued ones.
1579 			 *
1580 			 * Shortly, algorithm is clear --- to process all
1581 			 * the queues in order. We could make it more directly,
1582 			 * requeueing packets from backlog to prequeue, if
1583 			 * is not empty. It is more elegant, but eats cycles,
1584 			 * unfortunately.
1585 			 */
1586 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1587 				goto do_prequeue;
1588 
1589 			/* __ Set realtime policy in scheduler __ */
1590 		}
1591 
1592 #ifdef CONFIG_NET_DMA
1593 		if (tp->ucopy.dma_chan)
1594 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1595 #endif
1596 		if (copied >= target) {
1597 			/* Do not sleep, just process backlog. */
1598 			release_sock(sk);
1599 			lock_sock(sk);
1600 		} else
1601 			sk_wait_data(sk, &timeo);
1602 
1603 #ifdef CONFIG_NET_DMA
1604 		tcp_service_net_dma(sk, false);  /* Don't block */
1605 		tp->ucopy.wakeup = 0;
1606 #endif
1607 
1608 		if (user_recv) {
1609 			int chunk;
1610 
1611 			/* __ Restore normal policy in scheduler __ */
1612 
1613 			if ((chunk = len - tp->ucopy.len) != 0) {
1614 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1615 				len -= chunk;
1616 				copied += chunk;
1617 			}
1618 
1619 			if (tp->rcv_nxt == tp->copied_seq &&
1620 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1621 do_prequeue:
1622 				tcp_prequeue_process(sk);
1623 
1624 				if ((chunk = len - tp->ucopy.len) != 0) {
1625 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1626 					len -= chunk;
1627 					copied += chunk;
1628 				}
1629 			}
1630 		}
1631 		if ((flags & MSG_PEEK) &&
1632 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1633 			if (net_ratelimit())
1634 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1635 				       current->comm, task_pid_nr(current));
1636 			peek_seq = tp->copied_seq;
1637 		}
1638 		continue;
1639 
1640 	found_ok_skb:
1641 		/* Ok so how much can we use? */
1642 		used = skb->len - offset;
1643 		if (len < used)
1644 			used = len;
1645 
1646 		/* Do we have urgent data here? */
1647 		if (tp->urg_data) {
1648 			u32 urg_offset = tp->urg_seq - *seq;
1649 			if (urg_offset < used) {
1650 				if (!urg_offset) {
1651 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1652 						++*seq;
1653 						urg_hole++;
1654 						offset++;
1655 						used--;
1656 						if (!used)
1657 							goto skip_copy;
1658 					}
1659 				} else
1660 					used = urg_offset;
1661 			}
1662 		}
1663 
1664 		if (!(flags & MSG_TRUNC)) {
1665 #ifdef CONFIG_NET_DMA
1666 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1667 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1668 
1669 			if (tp->ucopy.dma_chan) {
1670 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1671 					tp->ucopy.dma_chan, skb, offset,
1672 					msg->msg_iov, used,
1673 					tp->ucopy.pinned_list);
1674 
1675 				if (tp->ucopy.dma_cookie < 0) {
1676 
1677 					printk(KERN_ALERT "dma_cookie < 0\n");
1678 
1679 					/* Exception. Bailout! */
1680 					if (!copied)
1681 						copied = -EFAULT;
1682 					break;
1683 				}
1684 
1685 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1686 
1687 				if ((offset + used) == skb->len)
1688 					copied_early = 1;
1689 
1690 			} else
1691 #endif
1692 			{
1693 				err = skb_copy_datagram_iovec(skb, offset,
1694 						msg->msg_iov, used);
1695 				if (err) {
1696 					/* Exception. Bailout! */
1697 					if (!copied)
1698 						copied = -EFAULT;
1699 					break;
1700 				}
1701 			}
1702 		}
1703 
1704 		*seq += used;
1705 		copied += used;
1706 		len -= used;
1707 
1708 		tcp_rcv_space_adjust(sk);
1709 
1710 skip_copy:
1711 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1712 			tp->urg_data = 0;
1713 			tcp_fast_path_check(sk);
1714 		}
1715 		if (used + offset < skb->len)
1716 			continue;
1717 
1718 		if (tcp_hdr(skb)->fin)
1719 			goto found_fin_ok;
1720 		if (!(flags & MSG_PEEK)) {
1721 			sk_eat_skb(sk, skb, copied_early);
1722 			copied_early = 0;
1723 		}
1724 		continue;
1725 
1726 	found_fin_ok:
1727 		/* Process the FIN. */
1728 		++*seq;
1729 		if (!(flags & MSG_PEEK)) {
1730 			sk_eat_skb(sk, skb, copied_early);
1731 			copied_early = 0;
1732 		}
1733 		break;
1734 	} while (len > 0);
1735 
1736 	if (user_recv) {
1737 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1738 			int chunk;
1739 
1740 			tp->ucopy.len = copied > 0 ? len : 0;
1741 
1742 			tcp_prequeue_process(sk);
1743 
1744 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1745 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1746 				len -= chunk;
1747 				copied += chunk;
1748 			}
1749 		}
1750 
1751 		tp->ucopy.task = NULL;
1752 		tp->ucopy.len = 0;
1753 	}
1754 
1755 #ifdef CONFIG_NET_DMA
1756 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1757 	tp->ucopy.dma_chan = NULL;
1758 
1759 	if (tp->ucopy.pinned_list) {
1760 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1761 		tp->ucopy.pinned_list = NULL;
1762 	}
1763 #endif
1764 
1765 	/* According to UNIX98, msg_name/msg_namelen are ignored
1766 	 * on connected socket. I was just happy when found this 8) --ANK
1767 	 */
1768 
1769 	/* Clean up data we have read: This will do ACK frames. */
1770 	tcp_cleanup_rbuf(sk, copied);
1771 
1772 	release_sock(sk);
1773 	return copied;
1774 
1775 out:
1776 	release_sock(sk);
1777 	return err;
1778 
1779 recv_urg:
1780 	err = tcp_recv_urg(sk, msg, len, flags);
1781 	goto out;
1782 }
1783 EXPORT_SYMBOL(tcp_recvmsg);
1784 
1785 void tcp_set_state(struct sock *sk, int state)
1786 {
1787 	int oldstate = sk->sk_state;
1788 
1789 	switch (state) {
1790 	case TCP_ESTABLISHED:
1791 		if (oldstate != TCP_ESTABLISHED)
1792 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1793 		break;
1794 
1795 	case TCP_CLOSE:
1796 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1797 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1798 
1799 		sk->sk_prot->unhash(sk);
1800 		if (inet_csk(sk)->icsk_bind_hash &&
1801 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1802 			inet_put_port(sk);
1803 		/* fall through */
1804 	default:
1805 		if (oldstate == TCP_ESTABLISHED)
1806 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1807 	}
1808 
1809 	/* Change state AFTER socket is unhashed to avoid closed
1810 	 * socket sitting in hash tables.
1811 	 */
1812 	sk->sk_state = state;
1813 
1814 #ifdef STATE_TRACE
1815 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1816 #endif
1817 }
1818 EXPORT_SYMBOL_GPL(tcp_set_state);
1819 
1820 /*
1821  *	State processing on a close. This implements the state shift for
1822  *	sending our FIN frame. Note that we only send a FIN for some
1823  *	states. A shutdown() may have already sent the FIN, or we may be
1824  *	closed.
1825  */
1826 
1827 static const unsigned char new_state[16] = {
1828   /* current state:        new state:      action:	*/
1829   /* (Invalid)		*/ TCP_CLOSE,
1830   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1831   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1832   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1833   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1834   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1835   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1836   /* TCP_CLOSE		*/ TCP_CLOSE,
1837   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1838   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1839   /* TCP_LISTEN		*/ TCP_CLOSE,
1840   /* TCP_CLOSING	*/ TCP_CLOSING,
1841 };
1842 
1843 static int tcp_close_state(struct sock *sk)
1844 {
1845 	int next = (int)new_state[sk->sk_state];
1846 	int ns = next & TCP_STATE_MASK;
1847 
1848 	tcp_set_state(sk, ns);
1849 
1850 	return next & TCP_ACTION_FIN;
1851 }
1852 
1853 /*
1854  *	Shutdown the sending side of a connection. Much like close except
1855  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1856  */
1857 
1858 void tcp_shutdown(struct sock *sk, int how)
1859 {
1860 	/*	We need to grab some memory, and put together a FIN,
1861 	 *	and then put it into the queue to be sent.
1862 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1863 	 */
1864 	if (!(how & SEND_SHUTDOWN))
1865 		return;
1866 
1867 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1868 	if ((1 << sk->sk_state) &
1869 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1870 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1871 		/* Clear out any half completed packets.  FIN if needed. */
1872 		if (tcp_close_state(sk))
1873 			tcp_send_fin(sk);
1874 	}
1875 }
1876 EXPORT_SYMBOL(tcp_shutdown);
1877 
1878 void tcp_close(struct sock *sk, long timeout)
1879 {
1880 	struct sk_buff *skb;
1881 	int data_was_unread = 0;
1882 	int state;
1883 
1884 	lock_sock(sk);
1885 	sk->sk_shutdown = SHUTDOWN_MASK;
1886 
1887 	if (sk->sk_state == TCP_LISTEN) {
1888 		tcp_set_state(sk, TCP_CLOSE);
1889 
1890 		/* Special case. */
1891 		inet_csk_listen_stop(sk);
1892 
1893 		goto adjudge_to_death;
1894 	}
1895 
1896 	/*  We need to flush the recv. buffs.  We do this only on the
1897 	 *  descriptor close, not protocol-sourced closes, because the
1898 	 *  reader process may not have drained the data yet!
1899 	 */
1900 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1901 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1902 			  tcp_hdr(skb)->fin;
1903 		data_was_unread += len;
1904 		__kfree_skb(skb);
1905 	}
1906 
1907 	sk_mem_reclaim(sk);
1908 
1909 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1910 	if (sk->sk_state == TCP_CLOSE)
1911 		goto adjudge_to_death;
1912 
1913 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1914 	 * data was lost. To witness the awful effects of the old behavior of
1915 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1916 	 * GET in an FTP client, suspend the process, wait for the client to
1917 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1918 	 * Note: timeout is always zero in such a case.
1919 	 */
1920 	if (data_was_unread) {
1921 		/* Unread data was tossed, zap the connection. */
1922 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1923 		tcp_set_state(sk, TCP_CLOSE);
1924 		tcp_send_active_reset(sk, sk->sk_allocation);
1925 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1926 		/* Check zero linger _after_ checking for unread data. */
1927 		sk->sk_prot->disconnect(sk, 0);
1928 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1929 	} else if (tcp_close_state(sk)) {
1930 		/* We FIN if the application ate all the data before
1931 		 * zapping the connection.
1932 		 */
1933 
1934 		/* RED-PEN. Formally speaking, we have broken TCP state
1935 		 * machine. State transitions:
1936 		 *
1937 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1938 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1939 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1940 		 *
1941 		 * are legal only when FIN has been sent (i.e. in window),
1942 		 * rather than queued out of window. Purists blame.
1943 		 *
1944 		 * F.e. "RFC state" is ESTABLISHED,
1945 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1946 		 *
1947 		 * The visible declinations are that sometimes
1948 		 * we enter time-wait state, when it is not required really
1949 		 * (harmless), do not send active resets, when they are
1950 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1951 		 * they look as CLOSING or LAST_ACK for Linux)
1952 		 * Probably, I missed some more holelets.
1953 		 * 						--ANK
1954 		 */
1955 		tcp_send_fin(sk);
1956 	}
1957 
1958 	sk_stream_wait_close(sk, timeout);
1959 
1960 adjudge_to_death:
1961 	state = sk->sk_state;
1962 	sock_hold(sk);
1963 	sock_orphan(sk);
1964 
1965 	/* It is the last release_sock in its life. It will remove backlog. */
1966 	release_sock(sk);
1967 
1968 
1969 	/* Now socket is owned by kernel and we acquire BH lock
1970 	   to finish close. No need to check for user refs.
1971 	 */
1972 	local_bh_disable();
1973 	bh_lock_sock(sk);
1974 	WARN_ON(sock_owned_by_user(sk));
1975 
1976 	percpu_counter_inc(sk->sk_prot->orphan_count);
1977 
1978 	/* Have we already been destroyed by a softirq or backlog? */
1979 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1980 		goto out;
1981 
1982 	/*	This is a (useful) BSD violating of the RFC. There is a
1983 	 *	problem with TCP as specified in that the other end could
1984 	 *	keep a socket open forever with no application left this end.
1985 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1986 	 *	our end. If they send after that then tough - BUT: long enough
1987 	 *	that we won't make the old 4*rto = almost no time - whoops
1988 	 *	reset mistake.
1989 	 *
1990 	 *	Nope, it was not mistake. It is really desired behaviour
1991 	 *	f.e. on http servers, when such sockets are useless, but
1992 	 *	consume significant resources. Let's do it with special
1993 	 *	linger2	option.					--ANK
1994 	 */
1995 
1996 	if (sk->sk_state == TCP_FIN_WAIT2) {
1997 		struct tcp_sock *tp = tcp_sk(sk);
1998 		if (tp->linger2 < 0) {
1999 			tcp_set_state(sk, TCP_CLOSE);
2000 			tcp_send_active_reset(sk, GFP_ATOMIC);
2001 			NET_INC_STATS_BH(sock_net(sk),
2002 					LINUX_MIB_TCPABORTONLINGER);
2003 		} else {
2004 			const int tmo = tcp_fin_time(sk);
2005 
2006 			if (tmo > TCP_TIMEWAIT_LEN) {
2007 				inet_csk_reset_keepalive_timer(sk,
2008 						tmo - TCP_TIMEWAIT_LEN);
2009 			} else {
2010 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2011 				goto out;
2012 			}
2013 		}
2014 	}
2015 	if (sk->sk_state != TCP_CLOSE) {
2016 		sk_mem_reclaim(sk);
2017 		if (tcp_too_many_orphans(sk, 0)) {
2018 			if (net_ratelimit())
2019 				printk(KERN_INFO "TCP: too many of orphaned "
2020 				       "sockets\n");
2021 			tcp_set_state(sk, TCP_CLOSE);
2022 			tcp_send_active_reset(sk, GFP_ATOMIC);
2023 			NET_INC_STATS_BH(sock_net(sk),
2024 					LINUX_MIB_TCPABORTONMEMORY);
2025 		}
2026 	}
2027 
2028 	if (sk->sk_state == TCP_CLOSE)
2029 		inet_csk_destroy_sock(sk);
2030 	/* Otherwise, socket is reprieved until protocol close. */
2031 
2032 out:
2033 	bh_unlock_sock(sk);
2034 	local_bh_enable();
2035 	sock_put(sk);
2036 }
2037 EXPORT_SYMBOL(tcp_close);
2038 
2039 /* These states need RST on ABORT according to RFC793 */
2040 
2041 static inline int tcp_need_reset(int state)
2042 {
2043 	return (1 << state) &
2044 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2045 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2046 }
2047 
2048 int tcp_disconnect(struct sock *sk, int flags)
2049 {
2050 	struct inet_sock *inet = inet_sk(sk);
2051 	struct inet_connection_sock *icsk = inet_csk(sk);
2052 	struct tcp_sock *tp = tcp_sk(sk);
2053 	int err = 0;
2054 	int old_state = sk->sk_state;
2055 
2056 	if (old_state != TCP_CLOSE)
2057 		tcp_set_state(sk, TCP_CLOSE);
2058 
2059 	/* ABORT function of RFC793 */
2060 	if (old_state == TCP_LISTEN) {
2061 		inet_csk_listen_stop(sk);
2062 	} else if (tcp_need_reset(old_state) ||
2063 		   (tp->snd_nxt != tp->write_seq &&
2064 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2065 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2066 		 * states
2067 		 */
2068 		tcp_send_active_reset(sk, gfp_any());
2069 		sk->sk_err = ECONNRESET;
2070 	} else if (old_state == TCP_SYN_SENT)
2071 		sk->sk_err = ECONNRESET;
2072 
2073 	tcp_clear_xmit_timers(sk);
2074 	__skb_queue_purge(&sk->sk_receive_queue);
2075 	tcp_write_queue_purge(sk);
2076 	__skb_queue_purge(&tp->out_of_order_queue);
2077 #ifdef CONFIG_NET_DMA
2078 	__skb_queue_purge(&sk->sk_async_wait_queue);
2079 #endif
2080 
2081 	inet->inet_dport = 0;
2082 
2083 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2084 		inet_reset_saddr(sk);
2085 
2086 	sk->sk_shutdown = 0;
2087 	sock_reset_flag(sk, SOCK_DONE);
2088 	tp->srtt = 0;
2089 	if ((tp->write_seq += tp->max_window + 2) == 0)
2090 		tp->write_seq = 1;
2091 	icsk->icsk_backoff = 0;
2092 	tp->snd_cwnd = 2;
2093 	icsk->icsk_probes_out = 0;
2094 	tp->packets_out = 0;
2095 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2096 	tp->snd_cwnd_cnt = 0;
2097 	tp->bytes_acked = 0;
2098 	tp->window_clamp = 0;
2099 	tcp_set_ca_state(sk, TCP_CA_Open);
2100 	tcp_clear_retrans(tp);
2101 	inet_csk_delack_init(sk);
2102 	tcp_init_send_head(sk);
2103 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2104 	__sk_dst_reset(sk);
2105 
2106 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2107 
2108 	sk->sk_error_report(sk);
2109 	return err;
2110 }
2111 EXPORT_SYMBOL(tcp_disconnect);
2112 
2113 /*
2114  *	Socket option code for TCP.
2115  */
2116 static int do_tcp_setsockopt(struct sock *sk, int level,
2117 		int optname, char __user *optval, unsigned int optlen)
2118 {
2119 	struct tcp_sock *tp = tcp_sk(sk);
2120 	struct inet_connection_sock *icsk = inet_csk(sk);
2121 	int val;
2122 	int err = 0;
2123 
2124 	/* These are data/string values, all the others are ints */
2125 	switch (optname) {
2126 	case TCP_CONGESTION: {
2127 		char name[TCP_CA_NAME_MAX];
2128 
2129 		if (optlen < 1)
2130 			return -EINVAL;
2131 
2132 		val = strncpy_from_user(name, optval,
2133 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2134 		if (val < 0)
2135 			return -EFAULT;
2136 		name[val] = 0;
2137 
2138 		lock_sock(sk);
2139 		err = tcp_set_congestion_control(sk, name);
2140 		release_sock(sk);
2141 		return err;
2142 	}
2143 	case TCP_COOKIE_TRANSACTIONS: {
2144 		struct tcp_cookie_transactions ctd;
2145 		struct tcp_cookie_values *cvp = NULL;
2146 
2147 		if (sizeof(ctd) > optlen)
2148 			return -EINVAL;
2149 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2150 			return -EFAULT;
2151 
2152 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2153 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2154 			return -EINVAL;
2155 
2156 		if (ctd.tcpct_cookie_desired == 0) {
2157 			/* default to global value */
2158 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2159 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2160 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2161 			return -EINVAL;
2162 		}
2163 
2164 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2165 			/* Supercedes all other values */
2166 			lock_sock(sk);
2167 			if (tp->cookie_values != NULL) {
2168 				kref_put(&tp->cookie_values->kref,
2169 					 tcp_cookie_values_release);
2170 				tp->cookie_values = NULL;
2171 			}
2172 			tp->rx_opt.cookie_in_always = 0; /* false */
2173 			tp->rx_opt.cookie_out_never = 1; /* true */
2174 			release_sock(sk);
2175 			return err;
2176 		}
2177 
2178 		/* Allocate ancillary memory before locking.
2179 		 */
2180 		if (ctd.tcpct_used > 0 ||
2181 		    (tp->cookie_values == NULL &&
2182 		     (sysctl_tcp_cookie_size > 0 ||
2183 		      ctd.tcpct_cookie_desired > 0 ||
2184 		      ctd.tcpct_s_data_desired > 0))) {
2185 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2186 				      GFP_KERNEL);
2187 			if (cvp == NULL)
2188 				return -ENOMEM;
2189 
2190 			kref_init(&cvp->kref);
2191 		}
2192 		lock_sock(sk);
2193 		tp->rx_opt.cookie_in_always =
2194 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2195 		tp->rx_opt.cookie_out_never = 0; /* false */
2196 
2197 		if (tp->cookie_values != NULL) {
2198 			if (cvp != NULL) {
2199 				/* Changed values are recorded by a changed
2200 				 * pointer, ensuring the cookie will differ,
2201 				 * without separately hashing each value later.
2202 				 */
2203 				kref_put(&tp->cookie_values->kref,
2204 					 tcp_cookie_values_release);
2205 			} else {
2206 				cvp = tp->cookie_values;
2207 			}
2208 		}
2209 
2210 		if (cvp != NULL) {
2211 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2212 
2213 			if (ctd.tcpct_used > 0) {
2214 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2215 				       ctd.tcpct_used);
2216 				cvp->s_data_desired = ctd.tcpct_used;
2217 				cvp->s_data_constant = 1; /* true */
2218 			} else {
2219 				/* No constant payload data. */
2220 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2221 				cvp->s_data_constant = 0; /* false */
2222 			}
2223 
2224 			tp->cookie_values = cvp;
2225 		}
2226 		release_sock(sk);
2227 		return err;
2228 	}
2229 	default:
2230 		/* fallthru */
2231 		break;
2232 	}
2233 
2234 	if (optlen < sizeof(int))
2235 		return -EINVAL;
2236 
2237 	if (get_user(val, (int __user *)optval))
2238 		return -EFAULT;
2239 
2240 	lock_sock(sk);
2241 
2242 	switch (optname) {
2243 	case TCP_MAXSEG:
2244 		/* Values greater than interface MTU won't take effect. However
2245 		 * at the point when this call is done we typically don't yet
2246 		 * know which interface is going to be used */
2247 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2248 			err = -EINVAL;
2249 			break;
2250 		}
2251 		tp->rx_opt.user_mss = val;
2252 		break;
2253 
2254 	case TCP_NODELAY:
2255 		if (val) {
2256 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2257 			 * this option on corked socket is remembered, but
2258 			 * it is not activated until cork is cleared.
2259 			 *
2260 			 * However, when TCP_NODELAY is set we make
2261 			 * an explicit push, which overrides even TCP_CORK
2262 			 * for currently queued segments.
2263 			 */
2264 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2265 			tcp_push_pending_frames(sk);
2266 		} else {
2267 			tp->nonagle &= ~TCP_NAGLE_OFF;
2268 		}
2269 		break;
2270 
2271 	case TCP_THIN_LINEAR_TIMEOUTS:
2272 		if (val < 0 || val > 1)
2273 			err = -EINVAL;
2274 		else
2275 			tp->thin_lto = val;
2276 		break;
2277 
2278 	case TCP_THIN_DUPACK:
2279 		if (val < 0 || val > 1)
2280 			err = -EINVAL;
2281 		else
2282 			tp->thin_dupack = val;
2283 		break;
2284 
2285 	case TCP_CORK:
2286 		/* When set indicates to always queue non-full frames.
2287 		 * Later the user clears this option and we transmit
2288 		 * any pending partial frames in the queue.  This is
2289 		 * meant to be used alongside sendfile() to get properly
2290 		 * filled frames when the user (for example) must write
2291 		 * out headers with a write() call first and then use
2292 		 * sendfile to send out the data parts.
2293 		 *
2294 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2295 		 * stronger than TCP_NODELAY.
2296 		 */
2297 		if (val) {
2298 			tp->nonagle |= TCP_NAGLE_CORK;
2299 		} else {
2300 			tp->nonagle &= ~TCP_NAGLE_CORK;
2301 			if (tp->nonagle&TCP_NAGLE_OFF)
2302 				tp->nonagle |= TCP_NAGLE_PUSH;
2303 			tcp_push_pending_frames(sk);
2304 		}
2305 		break;
2306 
2307 	case TCP_KEEPIDLE:
2308 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2309 			err = -EINVAL;
2310 		else {
2311 			tp->keepalive_time = val * HZ;
2312 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2313 			    !((1 << sk->sk_state) &
2314 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2315 				u32 elapsed = keepalive_time_elapsed(tp);
2316 				if (tp->keepalive_time > elapsed)
2317 					elapsed = tp->keepalive_time - elapsed;
2318 				else
2319 					elapsed = 0;
2320 				inet_csk_reset_keepalive_timer(sk, elapsed);
2321 			}
2322 		}
2323 		break;
2324 	case TCP_KEEPINTVL:
2325 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2326 			err = -EINVAL;
2327 		else
2328 			tp->keepalive_intvl = val * HZ;
2329 		break;
2330 	case TCP_KEEPCNT:
2331 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2332 			err = -EINVAL;
2333 		else
2334 			tp->keepalive_probes = val;
2335 		break;
2336 	case TCP_SYNCNT:
2337 		if (val < 1 || val > MAX_TCP_SYNCNT)
2338 			err = -EINVAL;
2339 		else
2340 			icsk->icsk_syn_retries = val;
2341 		break;
2342 
2343 	case TCP_LINGER2:
2344 		if (val < 0)
2345 			tp->linger2 = -1;
2346 		else if (val > sysctl_tcp_fin_timeout / HZ)
2347 			tp->linger2 = 0;
2348 		else
2349 			tp->linger2 = val * HZ;
2350 		break;
2351 
2352 	case TCP_DEFER_ACCEPT:
2353 		/* Translate value in seconds to number of retransmits */
2354 		icsk->icsk_accept_queue.rskq_defer_accept =
2355 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2356 					TCP_RTO_MAX / HZ);
2357 		break;
2358 
2359 	case TCP_WINDOW_CLAMP:
2360 		if (!val) {
2361 			if (sk->sk_state != TCP_CLOSE) {
2362 				err = -EINVAL;
2363 				break;
2364 			}
2365 			tp->window_clamp = 0;
2366 		} else
2367 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2368 						SOCK_MIN_RCVBUF / 2 : val;
2369 		break;
2370 
2371 	case TCP_QUICKACK:
2372 		if (!val) {
2373 			icsk->icsk_ack.pingpong = 1;
2374 		} else {
2375 			icsk->icsk_ack.pingpong = 0;
2376 			if ((1 << sk->sk_state) &
2377 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2378 			    inet_csk_ack_scheduled(sk)) {
2379 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2380 				tcp_cleanup_rbuf(sk, 1);
2381 				if (!(val & 1))
2382 					icsk->icsk_ack.pingpong = 1;
2383 			}
2384 		}
2385 		break;
2386 
2387 #ifdef CONFIG_TCP_MD5SIG
2388 	case TCP_MD5SIG:
2389 		/* Read the IP->Key mappings from userspace */
2390 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2391 		break;
2392 #endif
2393 	case TCP_USER_TIMEOUT:
2394 		/* Cap the max timeout in ms TCP will retry/retrans
2395 		 * before giving up and aborting (ETIMEDOUT) a connection.
2396 		 */
2397 		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2398 		break;
2399 	default:
2400 		err = -ENOPROTOOPT;
2401 		break;
2402 	}
2403 
2404 	release_sock(sk);
2405 	return err;
2406 }
2407 
2408 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2409 		   unsigned int optlen)
2410 {
2411 	struct inet_connection_sock *icsk = inet_csk(sk);
2412 
2413 	if (level != SOL_TCP)
2414 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2415 						     optval, optlen);
2416 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2417 }
2418 EXPORT_SYMBOL(tcp_setsockopt);
2419 
2420 #ifdef CONFIG_COMPAT
2421 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2422 			  char __user *optval, unsigned int optlen)
2423 {
2424 	if (level != SOL_TCP)
2425 		return inet_csk_compat_setsockopt(sk, level, optname,
2426 						  optval, optlen);
2427 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2428 }
2429 EXPORT_SYMBOL(compat_tcp_setsockopt);
2430 #endif
2431 
2432 /* Return information about state of tcp endpoint in API format. */
2433 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 	const struct inet_connection_sock *icsk = inet_csk(sk);
2437 	u32 now = tcp_time_stamp;
2438 
2439 	memset(info, 0, sizeof(*info));
2440 
2441 	info->tcpi_state = sk->sk_state;
2442 	info->tcpi_ca_state = icsk->icsk_ca_state;
2443 	info->tcpi_retransmits = icsk->icsk_retransmits;
2444 	info->tcpi_probes = icsk->icsk_probes_out;
2445 	info->tcpi_backoff = icsk->icsk_backoff;
2446 
2447 	if (tp->rx_opt.tstamp_ok)
2448 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2449 	if (tcp_is_sack(tp))
2450 		info->tcpi_options |= TCPI_OPT_SACK;
2451 	if (tp->rx_opt.wscale_ok) {
2452 		info->tcpi_options |= TCPI_OPT_WSCALE;
2453 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2454 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2455 	}
2456 
2457 	if (tp->ecn_flags&TCP_ECN_OK)
2458 		info->tcpi_options |= TCPI_OPT_ECN;
2459 
2460 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2461 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2462 	info->tcpi_snd_mss = tp->mss_cache;
2463 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2464 
2465 	if (sk->sk_state == TCP_LISTEN) {
2466 		info->tcpi_unacked = sk->sk_ack_backlog;
2467 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2468 	} else {
2469 		info->tcpi_unacked = tp->packets_out;
2470 		info->tcpi_sacked = tp->sacked_out;
2471 	}
2472 	info->tcpi_lost = tp->lost_out;
2473 	info->tcpi_retrans = tp->retrans_out;
2474 	info->tcpi_fackets = tp->fackets_out;
2475 
2476 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2477 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2478 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2479 
2480 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2481 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2482 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2483 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2484 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2485 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2486 	info->tcpi_advmss = tp->advmss;
2487 	info->tcpi_reordering = tp->reordering;
2488 
2489 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2490 	info->tcpi_rcv_space = tp->rcvq_space.space;
2491 
2492 	info->tcpi_total_retrans = tp->total_retrans;
2493 }
2494 EXPORT_SYMBOL_GPL(tcp_get_info);
2495 
2496 static int do_tcp_getsockopt(struct sock *sk, int level,
2497 		int optname, char __user *optval, int __user *optlen)
2498 {
2499 	struct inet_connection_sock *icsk = inet_csk(sk);
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 	int val, len;
2502 
2503 	if (get_user(len, optlen))
2504 		return -EFAULT;
2505 
2506 	len = min_t(unsigned int, len, sizeof(int));
2507 
2508 	if (len < 0)
2509 		return -EINVAL;
2510 
2511 	switch (optname) {
2512 	case TCP_MAXSEG:
2513 		val = tp->mss_cache;
2514 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2515 			val = tp->rx_opt.user_mss;
2516 		break;
2517 	case TCP_NODELAY:
2518 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2519 		break;
2520 	case TCP_CORK:
2521 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2522 		break;
2523 	case TCP_KEEPIDLE:
2524 		val = keepalive_time_when(tp) / HZ;
2525 		break;
2526 	case TCP_KEEPINTVL:
2527 		val = keepalive_intvl_when(tp) / HZ;
2528 		break;
2529 	case TCP_KEEPCNT:
2530 		val = keepalive_probes(tp);
2531 		break;
2532 	case TCP_SYNCNT:
2533 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2534 		break;
2535 	case TCP_LINGER2:
2536 		val = tp->linger2;
2537 		if (val >= 0)
2538 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2539 		break;
2540 	case TCP_DEFER_ACCEPT:
2541 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2542 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2543 		break;
2544 	case TCP_WINDOW_CLAMP:
2545 		val = tp->window_clamp;
2546 		break;
2547 	case TCP_INFO: {
2548 		struct tcp_info info;
2549 
2550 		if (get_user(len, optlen))
2551 			return -EFAULT;
2552 
2553 		tcp_get_info(sk, &info);
2554 
2555 		len = min_t(unsigned int, len, sizeof(info));
2556 		if (put_user(len, optlen))
2557 			return -EFAULT;
2558 		if (copy_to_user(optval, &info, len))
2559 			return -EFAULT;
2560 		return 0;
2561 	}
2562 	case TCP_QUICKACK:
2563 		val = !icsk->icsk_ack.pingpong;
2564 		break;
2565 
2566 	case TCP_CONGESTION:
2567 		if (get_user(len, optlen))
2568 			return -EFAULT;
2569 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2570 		if (put_user(len, optlen))
2571 			return -EFAULT;
2572 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2573 			return -EFAULT;
2574 		return 0;
2575 
2576 	case TCP_COOKIE_TRANSACTIONS: {
2577 		struct tcp_cookie_transactions ctd;
2578 		struct tcp_cookie_values *cvp = tp->cookie_values;
2579 
2580 		if (get_user(len, optlen))
2581 			return -EFAULT;
2582 		if (len < sizeof(ctd))
2583 			return -EINVAL;
2584 
2585 		memset(&ctd, 0, sizeof(ctd));
2586 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2587 				   TCP_COOKIE_IN_ALWAYS : 0)
2588 				| (tp->rx_opt.cookie_out_never ?
2589 				   TCP_COOKIE_OUT_NEVER : 0);
2590 
2591 		if (cvp != NULL) {
2592 			ctd.tcpct_flags |= (cvp->s_data_in ?
2593 					    TCP_S_DATA_IN : 0)
2594 					 | (cvp->s_data_out ?
2595 					    TCP_S_DATA_OUT : 0);
2596 
2597 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2598 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2599 
2600 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2601 			       cvp->cookie_pair_size);
2602 			ctd.tcpct_used = cvp->cookie_pair_size;
2603 		}
2604 
2605 		if (put_user(sizeof(ctd), optlen))
2606 			return -EFAULT;
2607 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2608 			return -EFAULT;
2609 		return 0;
2610 	}
2611 	case TCP_THIN_LINEAR_TIMEOUTS:
2612 		val = tp->thin_lto;
2613 		break;
2614 	case TCP_THIN_DUPACK:
2615 		val = tp->thin_dupack;
2616 		break;
2617 
2618 	case TCP_USER_TIMEOUT:
2619 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2620 		break;
2621 	default:
2622 		return -ENOPROTOOPT;
2623 	}
2624 
2625 	if (put_user(len, optlen))
2626 		return -EFAULT;
2627 	if (copy_to_user(optval, &val, len))
2628 		return -EFAULT;
2629 	return 0;
2630 }
2631 
2632 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2633 		   int __user *optlen)
2634 {
2635 	struct inet_connection_sock *icsk = inet_csk(sk);
2636 
2637 	if (level != SOL_TCP)
2638 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2639 						     optval, optlen);
2640 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2641 }
2642 EXPORT_SYMBOL(tcp_getsockopt);
2643 
2644 #ifdef CONFIG_COMPAT
2645 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2646 			  char __user *optval, int __user *optlen)
2647 {
2648 	if (level != SOL_TCP)
2649 		return inet_csk_compat_getsockopt(sk, level, optname,
2650 						  optval, optlen);
2651 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2652 }
2653 EXPORT_SYMBOL(compat_tcp_getsockopt);
2654 #endif
2655 
2656 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2657 {
2658 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2659 	struct tcphdr *th;
2660 	unsigned thlen;
2661 	unsigned int seq;
2662 	__be32 delta;
2663 	unsigned int oldlen;
2664 	unsigned int mss;
2665 
2666 	if (!pskb_may_pull(skb, sizeof(*th)))
2667 		goto out;
2668 
2669 	th = tcp_hdr(skb);
2670 	thlen = th->doff * 4;
2671 	if (thlen < sizeof(*th))
2672 		goto out;
2673 
2674 	if (!pskb_may_pull(skb, thlen))
2675 		goto out;
2676 
2677 	oldlen = (u16)~skb->len;
2678 	__skb_pull(skb, thlen);
2679 
2680 	mss = skb_shinfo(skb)->gso_size;
2681 	if (unlikely(skb->len <= mss))
2682 		goto out;
2683 
2684 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2685 		/* Packet is from an untrusted source, reset gso_segs. */
2686 		int type = skb_shinfo(skb)->gso_type;
2687 
2688 		if (unlikely(type &
2689 			     ~(SKB_GSO_TCPV4 |
2690 			       SKB_GSO_DODGY |
2691 			       SKB_GSO_TCP_ECN |
2692 			       SKB_GSO_TCPV6 |
2693 			       0) ||
2694 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2695 			goto out;
2696 
2697 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2698 
2699 		segs = NULL;
2700 		goto out;
2701 	}
2702 
2703 	segs = skb_segment(skb, features);
2704 	if (IS_ERR(segs))
2705 		goto out;
2706 
2707 	delta = htonl(oldlen + (thlen + mss));
2708 
2709 	skb = segs;
2710 	th = tcp_hdr(skb);
2711 	seq = ntohl(th->seq);
2712 
2713 	do {
2714 		th->fin = th->psh = 0;
2715 
2716 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2717 				       (__force u32)delta));
2718 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2719 			th->check =
2720 			     csum_fold(csum_partial(skb_transport_header(skb),
2721 						    thlen, skb->csum));
2722 
2723 		seq += mss;
2724 		skb = skb->next;
2725 		th = tcp_hdr(skb);
2726 
2727 		th->seq = htonl(seq);
2728 		th->cwr = 0;
2729 	} while (skb->next);
2730 
2731 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2732 		      skb->data_len);
2733 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2734 				(__force u32)delta));
2735 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2736 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2737 						   thlen, skb->csum));
2738 
2739 out:
2740 	return segs;
2741 }
2742 EXPORT_SYMBOL(tcp_tso_segment);
2743 
2744 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2745 {
2746 	struct sk_buff **pp = NULL;
2747 	struct sk_buff *p;
2748 	struct tcphdr *th;
2749 	struct tcphdr *th2;
2750 	unsigned int len;
2751 	unsigned int thlen;
2752 	__be32 flags;
2753 	unsigned int mss = 1;
2754 	unsigned int hlen;
2755 	unsigned int off;
2756 	int flush = 1;
2757 	int i;
2758 
2759 	off = skb_gro_offset(skb);
2760 	hlen = off + sizeof(*th);
2761 	th = skb_gro_header_fast(skb, off);
2762 	if (skb_gro_header_hard(skb, hlen)) {
2763 		th = skb_gro_header_slow(skb, hlen, off);
2764 		if (unlikely(!th))
2765 			goto out;
2766 	}
2767 
2768 	thlen = th->doff * 4;
2769 	if (thlen < sizeof(*th))
2770 		goto out;
2771 
2772 	hlen = off + thlen;
2773 	if (skb_gro_header_hard(skb, hlen)) {
2774 		th = skb_gro_header_slow(skb, hlen, off);
2775 		if (unlikely(!th))
2776 			goto out;
2777 	}
2778 
2779 	skb_gro_pull(skb, thlen);
2780 
2781 	len = skb_gro_len(skb);
2782 	flags = tcp_flag_word(th);
2783 
2784 	for (; (p = *head); head = &p->next) {
2785 		if (!NAPI_GRO_CB(p)->same_flow)
2786 			continue;
2787 
2788 		th2 = tcp_hdr(p);
2789 
2790 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2791 			NAPI_GRO_CB(p)->same_flow = 0;
2792 			continue;
2793 		}
2794 
2795 		goto found;
2796 	}
2797 
2798 	goto out_check_final;
2799 
2800 found:
2801 	flush = NAPI_GRO_CB(p)->flush;
2802 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2803 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2804 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2805 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2806 	for (i = sizeof(*th); i < thlen; i += 4)
2807 		flush |= *(u32 *)((u8 *)th + i) ^
2808 			 *(u32 *)((u8 *)th2 + i);
2809 
2810 	mss = skb_shinfo(p)->gso_size;
2811 
2812 	flush |= (len - 1) >= mss;
2813 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2814 
2815 	if (flush || skb_gro_receive(head, skb)) {
2816 		mss = 1;
2817 		goto out_check_final;
2818 	}
2819 
2820 	p = *head;
2821 	th2 = tcp_hdr(p);
2822 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2823 
2824 out_check_final:
2825 	flush = len < mss;
2826 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2827 					TCP_FLAG_RST | TCP_FLAG_SYN |
2828 					TCP_FLAG_FIN));
2829 
2830 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2831 		pp = head;
2832 
2833 out:
2834 	NAPI_GRO_CB(skb)->flush |= flush;
2835 
2836 	return pp;
2837 }
2838 EXPORT_SYMBOL(tcp_gro_receive);
2839 
2840 int tcp_gro_complete(struct sk_buff *skb)
2841 {
2842 	struct tcphdr *th = tcp_hdr(skb);
2843 
2844 	skb->csum_start = skb_transport_header(skb) - skb->head;
2845 	skb->csum_offset = offsetof(struct tcphdr, check);
2846 	skb->ip_summed = CHECKSUM_PARTIAL;
2847 
2848 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2849 
2850 	if (th->cwr)
2851 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2852 
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(tcp_gro_complete);
2856 
2857 #ifdef CONFIG_TCP_MD5SIG
2858 static unsigned long tcp_md5sig_users;
2859 static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2860 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2861 
2862 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2863 {
2864 	int cpu;
2865 	for_each_possible_cpu(cpu) {
2866 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2867 		if (p) {
2868 			if (p->md5_desc.tfm)
2869 				crypto_free_hash(p->md5_desc.tfm);
2870 			kfree(p);
2871 		}
2872 	}
2873 	free_percpu(pool);
2874 }
2875 
2876 void tcp_free_md5sig_pool(void)
2877 {
2878 	struct tcp_md5sig_pool * __percpu *pool = NULL;
2879 
2880 	spin_lock_bh(&tcp_md5sig_pool_lock);
2881 	if (--tcp_md5sig_users == 0) {
2882 		pool = tcp_md5sig_pool;
2883 		tcp_md5sig_pool = NULL;
2884 	}
2885 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2886 	if (pool)
2887 		__tcp_free_md5sig_pool(pool);
2888 }
2889 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2890 
2891 static struct tcp_md5sig_pool * __percpu *
2892 __tcp_alloc_md5sig_pool(struct sock *sk)
2893 {
2894 	int cpu;
2895 	struct tcp_md5sig_pool * __percpu *pool;
2896 
2897 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2898 	if (!pool)
2899 		return NULL;
2900 
2901 	for_each_possible_cpu(cpu) {
2902 		struct tcp_md5sig_pool *p;
2903 		struct crypto_hash *hash;
2904 
2905 		p = kzalloc(sizeof(*p), sk->sk_allocation);
2906 		if (!p)
2907 			goto out_free;
2908 		*per_cpu_ptr(pool, cpu) = p;
2909 
2910 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2911 		if (!hash || IS_ERR(hash))
2912 			goto out_free;
2913 
2914 		p->md5_desc.tfm = hash;
2915 	}
2916 	return pool;
2917 out_free:
2918 	__tcp_free_md5sig_pool(pool);
2919 	return NULL;
2920 }
2921 
2922 struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2923 {
2924 	struct tcp_md5sig_pool * __percpu *pool;
2925 	int alloc = 0;
2926 
2927 retry:
2928 	spin_lock_bh(&tcp_md5sig_pool_lock);
2929 	pool = tcp_md5sig_pool;
2930 	if (tcp_md5sig_users++ == 0) {
2931 		alloc = 1;
2932 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2933 	} else if (!pool) {
2934 		tcp_md5sig_users--;
2935 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2936 		cpu_relax();
2937 		goto retry;
2938 	} else
2939 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2940 
2941 	if (alloc) {
2942 		/* we cannot hold spinlock here because this may sleep. */
2943 		struct tcp_md5sig_pool * __percpu *p;
2944 
2945 		p = __tcp_alloc_md5sig_pool(sk);
2946 		spin_lock_bh(&tcp_md5sig_pool_lock);
2947 		if (!p) {
2948 			tcp_md5sig_users--;
2949 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2950 			return NULL;
2951 		}
2952 		pool = tcp_md5sig_pool;
2953 		if (pool) {
2954 			/* oops, it has already been assigned. */
2955 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2956 			__tcp_free_md5sig_pool(p);
2957 		} else {
2958 			tcp_md5sig_pool = pool = p;
2959 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2960 		}
2961 	}
2962 	return pool;
2963 }
2964 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2965 
2966 
2967 /**
2968  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2969  *
2970  *	We use percpu structure, so if we succeed, we exit with preemption
2971  *	and BH disabled, to make sure another thread or softirq handling
2972  *	wont try to get same context.
2973  */
2974 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2975 {
2976 	struct tcp_md5sig_pool * __percpu *p;
2977 
2978 	local_bh_disable();
2979 
2980 	spin_lock(&tcp_md5sig_pool_lock);
2981 	p = tcp_md5sig_pool;
2982 	if (p)
2983 		tcp_md5sig_users++;
2984 	spin_unlock(&tcp_md5sig_pool_lock);
2985 
2986 	if (p)
2987 		return *this_cpu_ptr(p);
2988 
2989 	local_bh_enable();
2990 	return NULL;
2991 }
2992 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2993 
2994 void tcp_put_md5sig_pool(void)
2995 {
2996 	local_bh_enable();
2997 	tcp_free_md5sig_pool();
2998 }
2999 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3000 
3001 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3002 			struct tcphdr *th)
3003 {
3004 	struct scatterlist sg;
3005 	int err;
3006 
3007 	__sum16 old_checksum = th->check;
3008 	th->check = 0;
3009 	/* options aren't included in the hash */
3010 	sg_init_one(&sg, th, sizeof(struct tcphdr));
3011 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3012 	th->check = old_checksum;
3013 	return err;
3014 }
3015 EXPORT_SYMBOL(tcp_md5_hash_header);
3016 
3017 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3018 			  struct sk_buff *skb, unsigned header_len)
3019 {
3020 	struct scatterlist sg;
3021 	const struct tcphdr *tp = tcp_hdr(skb);
3022 	struct hash_desc *desc = &hp->md5_desc;
3023 	unsigned i;
3024 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3025 				       skb_headlen(skb) - header_len : 0;
3026 	const struct skb_shared_info *shi = skb_shinfo(skb);
3027 	struct sk_buff *frag_iter;
3028 
3029 	sg_init_table(&sg, 1);
3030 
3031 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3032 	if (crypto_hash_update(desc, &sg, head_data_len))
3033 		return 1;
3034 
3035 	for (i = 0; i < shi->nr_frags; ++i) {
3036 		const struct skb_frag_struct *f = &shi->frags[i];
3037 		sg_set_page(&sg, f->page, f->size, f->page_offset);
3038 		if (crypto_hash_update(desc, &sg, f->size))
3039 			return 1;
3040 	}
3041 
3042 	skb_walk_frags(skb, frag_iter)
3043 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3044 			return 1;
3045 
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3049 
3050 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3051 {
3052 	struct scatterlist sg;
3053 
3054 	sg_init_one(&sg, key->key, key->keylen);
3055 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3056 }
3057 EXPORT_SYMBOL(tcp_md5_hash_key);
3058 
3059 #endif
3060 
3061 /**
3062  * Each Responder maintains up to two secret values concurrently for
3063  * efficient secret rollover.  Each secret value has 4 states:
3064  *
3065  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3066  *    Generates new Responder-Cookies, but not yet used for primary
3067  *    verification.  This is a short-term state, typically lasting only
3068  *    one round trip time (RTT).
3069  *
3070  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3071  *    Used both for generation and primary verification.
3072  *
3073  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3074  *    Used for verification, until the first failure that can be
3075  *    verified by the newer Generating secret.  At that time, this
3076  *    cookie's state is changed to Secondary, and the Generating
3077  *    cookie's state is changed to Primary.  This is a short-term state,
3078  *    typically lasting only one round trip time (RTT).
3079  *
3080  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3081  *    Used for secondary verification, after primary verification
3082  *    failures.  This state lasts no more than twice the Maximum Segment
3083  *    Lifetime (2MSL).  Then, the secret is discarded.
3084  */
3085 struct tcp_cookie_secret {
3086 	/* The secret is divided into two parts.  The digest part is the
3087 	 * equivalent of previously hashing a secret and saving the state,
3088 	 * and serves as an initialization vector (IV).  The message part
3089 	 * serves as the trailing secret.
3090 	 */
3091 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3092 	unsigned long			expires;
3093 };
3094 
3095 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3096 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3097 #define TCP_SECRET_LIFE (HZ * 600)
3098 
3099 static struct tcp_cookie_secret tcp_secret_one;
3100 static struct tcp_cookie_secret tcp_secret_two;
3101 
3102 /* Essentially a circular list, without dynamic allocation. */
3103 static struct tcp_cookie_secret *tcp_secret_generating;
3104 static struct tcp_cookie_secret *tcp_secret_primary;
3105 static struct tcp_cookie_secret *tcp_secret_retiring;
3106 static struct tcp_cookie_secret *tcp_secret_secondary;
3107 
3108 static DEFINE_SPINLOCK(tcp_secret_locker);
3109 
3110 /* Select a pseudo-random word in the cookie workspace.
3111  */
3112 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3113 {
3114 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3115 }
3116 
3117 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3118  * Called in softirq context.
3119  * Returns: 0 for success.
3120  */
3121 int tcp_cookie_generator(u32 *bakery)
3122 {
3123 	unsigned long jiffy = jiffies;
3124 
3125 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3126 		spin_lock_bh(&tcp_secret_locker);
3127 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3128 			/* refreshed by another */
3129 			memcpy(bakery,
3130 			       &tcp_secret_generating->secrets[0],
3131 			       COOKIE_WORKSPACE_WORDS);
3132 		} else {
3133 			/* still needs refreshing */
3134 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3135 
3136 			/* The first time, paranoia assumes that the
3137 			 * randomization function isn't as strong.  But,
3138 			 * this secret initialization is delayed until
3139 			 * the last possible moment (packet arrival).
3140 			 * Although that time is observable, it is
3141 			 * unpredictably variable.  Mash in the most
3142 			 * volatile clock bits available, and expire the
3143 			 * secret extra quickly.
3144 			 */
3145 			if (unlikely(tcp_secret_primary->expires ==
3146 				     tcp_secret_secondary->expires)) {
3147 				struct timespec tv;
3148 
3149 				getnstimeofday(&tv);
3150 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3151 					(u32)tv.tv_nsec;
3152 
3153 				tcp_secret_secondary->expires = jiffy
3154 					+ TCP_SECRET_1MSL
3155 					+ (0x0f & tcp_cookie_work(bakery, 0));
3156 			} else {
3157 				tcp_secret_secondary->expires = jiffy
3158 					+ TCP_SECRET_LIFE
3159 					+ (0xff & tcp_cookie_work(bakery, 1));
3160 				tcp_secret_primary->expires = jiffy
3161 					+ TCP_SECRET_2MSL
3162 					+ (0x1f & tcp_cookie_work(bakery, 2));
3163 			}
3164 			memcpy(&tcp_secret_secondary->secrets[0],
3165 			       bakery, COOKIE_WORKSPACE_WORDS);
3166 
3167 			rcu_assign_pointer(tcp_secret_generating,
3168 					   tcp_secret_secondary);
3169 			rcu_assign_pointer(tcp_secret_retiring,
3170 					   tcp_secret_primary);
3171 			/*
3172 			 * Neither call_rcu() nor synchronize_rcu() needed.
3173 			 * Retiring data is not freed.  It is replaced after
3174 			 * further (locked) pointer updates, and a quiet time
3175 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3176 			 */
3177 		}
3178 		spin_unlock_bh(&tcp_secret_locker);
3179 	} else {
3180 		rcu_read_lock_bh();
3181 		memcpy(bakery,
3182 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3183 		       COOKIE_WORKSPACE_WORDS);
3184 		rcu_read_unlock_bh();
3185 	}
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL(tcp_cookie_generator);
3189 
3190 void tcp_done(struct sock *sk)
3191 {
3192 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3193 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3194 
3195 	tcp_set_state(sk, TCP_CLOSE);
3196 	tcp_clear_xmit_timers(sk);
3197 
3198 	sk->sk_shutdown = SHUTDOWN_MASK;
3199 
3200 	if (!sock_flag(sk, SOCK_DEAD))
3201 		sk->sk_state_change(sk);
3202 	else
3203 		inet_csk_destroy_sock(sk);
3204 }
3205 EXPORT_SYMBOL_GPL(tcp_done);
3206 
3207 extern struct tcp_congestion_ops tcp_reno;
3208 
3209 static __initdata unsigned long thash_entries;
3210 static int __init set_thash_entries(char *str)
3211 {
3212 	if (!str)
3213 		return 0;
3214 	thash_entries = simple_strtoul(str, &str, 0);
3215 	return 1;
3216 }
3217 __setup("thash_entries=", set_thash_entries);
3218 
3219 void __init tcp_init(void)
3220 {
3221 	struct sk_buff *skb = NULL;
3222 	unsigned long nr_pages, limit;
3223 	int i, max_share, cnt;
3224 	unsigned long jiffy = jiffies;
3225 
3226 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3227 
3228 	percpu_counter_init(&tcp_sockets_allocated, 0);
3229 	percpu_counter_init(&tcp_orphan_count, 0);
3230 	tcp_hashinfo.bind_bucket_cachep =
3231 		kmem_cache_create("tcp_bind_bucket",
3232 				  sizeof(struct inet_bind_bucket), 0,
3233 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3234 
3235 	/* Size and allocate the main established and bind bucket
3236 	 * hash tables.
3237 	 *
3238 	 * The methodology is similar to that of the buffer cache.
3239 	 */
3240 	tcp_hashinfo.ehash =
3241 		alloc_large_system_hash("TCP established",
3242 					sizeof(struct inet_ehash_bucket),
3243 					thash_entries,
3244 					(totalram_pages >= 128 * 1024) ?
3245 					13 : 15,
3246 					0,
3247 					NULL,
3248 					&tcp_hashinfo.ehash_mask,
3249 					thash_entries ? 0 : 512 * 1024);
3250 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3251 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3252 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3253 	}
3254 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3255 		panic("TCP: failed to alloc ehash_locks");
3256 	tcp_hashinfo.bhash =
3257 		alloc_large_system_hash("TCP bind",
3258 					sizeof(struct inet_bind_hashbucket),
3259 					tcp_hashinfo.ehash_mask + 1,
3260 					(totalram_pages >= 128 * 1024) ?
3261 					13 : 15,
3262 					0,
3263 					&tcp_hashinfo.bhash_size,
3264 					NULL,
3265 					64 * 1024);
3266 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3267 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3268 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3269 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3270 	}
3271 
3272 
3273 	cnt = tcp_hashinfo.ehash_mask + 1;
3274 
3275 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3276 	sysctl_tcp_max_orphans = cnt / 2;
3277 	sysctl_max_syn_backlog = max(128, cnt / 256);
3278 
3279 	/* Set the pressure threshold to be a fraction of global memory that
3280 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3281 	 * memory, with a floor of 128 pages.
3282 	 */
3283 	nr_pages = totalram_pages - totalhigh_pages;
3284 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3285 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3286 	limit = max(limit, 128UL);
3287 	sysctl_tcp_mem[0] = limit / 4 * 3;
3288 	sysctl_tcp_mem[1] = limit;
3289 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3290 
3291 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3292 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3293 	max_share = min(4UL*1024*1024, limit);
3294 
3295 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3296 	sysctl_tcp_wmem[1] = 16*1024;
3297 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3298 
3299 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3300 	sysctl_tcp_rmem[1] = 87380;
3301 	sysctl_tcp_rmem[2] = max(87380, max_share);
3302 
3303 	printk(KERN_INFO "TCP: Hash tables configured "
3304 	       "(established %u bind %u)\n",
3305 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3306 
3307 	tcp_register_congestion_control(&tcp_reno);
3308 
3309 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3310 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3311 	tcp_secret_one.expires = jiffy; /* past due */
3312 	tcp_secret_two.expires = jiffy; /* past due */
3313 	tcp_secret_generating = &tcp_secret_one;
3314 	tcp_secret_primary = &tcp_secret_one;
3315 	tcp_secret_retiring = &tcp_secret_two;
3316 	tcp_secret_secondary = &tcp_secret_two;
3317 }
3318