xref: /openbmc/linux/net/ipv4/tcp.c (revision fb574682)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
285 
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 
289 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320 
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323 
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (READ_ONCE(tcp_memory_pressure))
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!READ_ONCE(tcp_memory_pressure))
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 	u32 rate = READ_ONCE(tp->rate_delivered);
394 	u32 intv = READ_ONCE(tp->rate_interval_us);
395 	u64 rate64 = 0;
396 
397 	if (rate && intv) {
398 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 		do_div(rate64, intv);
400 	}
401 	return rate64;
402 }
403 
404 /* Address-family independent initialization for a tcp_sock.
405  *
406  * NOTE: A lot of things set to zero explicitly by call to
407  *       sk_alloc() so need not be done here.
408  */
409 void tcp_init_sock(struct sock *sk)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	struct tcp_sock *tp = tcp_sk(sk);
413 
414 	tp->out_of_order_queue = RB_ROOT;
415 	sk->tcp_rtx_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419 
420 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423 
424 	/* So many TCP implementations out there (incorrectly) count the
425 	 * initial SYN frame in their delayed-ACK and congestion control
426 	 * algorithms that we must have the following bandaid to talk
427 	 * efficiently to them.  -DaveM
428 	 */
429 	tp->snd_cwnd = TCP_INIT_CWND;
430 
431 	/* There's a bubble in the pipe until at least the first ACK. */
432 	tp->app_limited = ~0U;
433 
434 	/* See draft-stevens-tcpca-spec-01 for discussion of the
435 	 * initialization of these values.
436 	 */
437 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 	tp->snd_cwnd_clamp = ~0;
439 	tp->mss_cache = TCP_MSS_DEFAULT;
440 
441 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 	tcp_assign_congestion_control(sk);
443 
444 	tp->tsoffset = 0;
445 	tp->rack.reo_wnd_steps = 1;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
453 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
454 
455 	sk_sockets_allocated_inc(sk);
456 	sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459 
460 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
461 {
462 	struct sk_buff *skb = tcp_write_queue_tail(sk);
463 
464 	if (tsflags && skb) {
465 		struct skb_shared_info *shinfo = skb_shinfo(skb);
466 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
467 
468 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
469 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
470 			tcb->txstamp_ack = 1;
471 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
472 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
473 	}
474 }
475 
476 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
477 					  int target, struct sock *sk)
478 {
479 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
480 
481 	if (avail > 0) {
482 		if (avail >= target)
483 			return true;
484 		if (tcp_rmem_pressure(sk))
485 			return true;
486 	}
487 	if (sk->sk_prot->stream_memory_read)
488 		return sk->sk_prot->stream_memory_read(sk);
489 	return false;
490 }
491 
492 /*
493  *	Wait for a TCP event.
494  *
495  *	Note that we don't need to lock the socket, as the upper poll layers
496  *	take care of normal races (between the test and the event) and we don't
497  *	go look at any of the socket buffers directly.
498  */
499 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
500 {
501 	__poll_t mask;
502 	struct sock *sk = sock->sk;
503 	const struct tcp_sock *tp = tcp_sk(sk);
504 	int state;
505 
506 	sock_poll_wait(file, sock, wait);
507 
508 	state = inet_sk_state_load(sk);
509 	if (state == TCP_LISTEN)
510 		return inet_csk_listen_poll(sk);
511 
512 	/* Socket is not locked. We are protected from async events
513 	 * by poll logic and correct handling of state changes
514 	 * made by other threads is impossible in any case.
515 	 */
516 
517 	mask = 0;
518 
519 	/*
520 	 * EPOLLHUP is certainly not done right. But poll() doesn't
521 	 * have a notion of HUP in just one direction, and for a
522 	 * socket the read side is more interesting.
523 	 *
524 	 * Some poll() documentation says that EPOLLHUP is incompatible
525 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 	 * all. But careful, it tends to be safer to return too many
527 	 * bits than too few, and you can easily break real applications
528 	 * if you don't tell them that something has hung up!
529 	 *
530 	 * Check-me.
531 	 *
532 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 	 * our fs/select.c). It means that after we received EOF,
534 	 * poll always returns immediately, making impossible poll() on write()
535 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 	 * if and only if shutdown has been made in both directions.
537 	 * Actually, it is interesting to look how Solaris and DUX
538 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 	 * then we could set it on SND_SHUTDOWN. BTW examples given
540 	 * in Stevens' books assume exactly this behaviour, it explains
541 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
542 	 *
543 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 	 * blocking on fresh not-connected or disconnected socket. --ANK
545 	 */
546 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (sk->sk_shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 
556 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
557 		    !sock_flag(sk, SOCK_URGINLINE) &&
558 		    tp->urg_data)
559 			target++;
560 
561 		if (tcp_stream_is_readable(tp, target, sk))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
565 			if (sk_stream_is_writeable(sk)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (sk_stream_is_writeable(sk))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (tp->urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
595 		mask |= EPOLLERR;
596 
597 	return mask;
598 }
599 EXPORT_SYMBOL(tcp_poll);
600 
601 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	int answ;
605 	bool slow;
606 
607 	switch (cmd) {
608 	case SIOCINQ:
609 		if (sk->sk_state == TCP_LISTEN)
610 			return -EINVAL;
611 
612 		slow = lock_sock_fast(sk);
613 		answ = tcp_inq(sk);
614 		unlock_sock_fast(sk, slow);
615 		break;
616 	case SIOCATMARK:
617 		answ = tp->urg_data &&
618 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
619 		break;
620 	case SIOCOUTQ:
621 		if (sk->sk_state == TCP_LISTEN)
622 			return -EINVAL;
623 
624 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
625 			answ = 0;
626 		else
627 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
628 		break;
629 	case SIOCOUTQNSD:
630 		if (sk->sk_state == TCP_LISTEN)
631 			return -EINVAL;
632 
633 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 			answ = 0;
635 		else
636 			answ = READ_ONCE(tp->write_seq) -
637 			       READ_ONCE(tp->snd_nxt);
638 		break;
639 	default:
640 		return -ENOIOCTLCMD;
641 	}
642 
643 	return put_user(answ, (int __user *)arg);
644 }
645 EXPORT_SYMBOL(tcp_ioctl);
646 
647 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
648 {
649 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
650 	tp->pushed_seq = tp->write_seq;
651 }
652 
653 static inline bool forced_push(const struct tcp_sock *tp)
654 {
655 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
656 }
657 
658 static void skb_entail(struct sock *sk, struct sk_buff *skb)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
662 
663 	skb->csum    = 0;
664 	tcb->seq     = tcb->end_seq = tp->write_seq;
665 	tcb->tcp_flags = TCPHDR_ACK;
666 	tcb->sacked  = 0;
667 	__skb_header_release(skb);
668 	tcp_add_write_queue_tail(sk, skb);
669 	sk_wmem_queued_add(sk, skb->truesize);
670 	sk_mem_charge(sk, skb->truesize);
671 	if (tp->nonagle & TCP_NAGLE_PUSH)
672 		tp->nonagle &= ~TCP_NAGLE_PUSH;
673 
674 	tcp_slow_start_after_idle_check(sk);
675 }
676 
677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 	if (flags & MSG_OOB)
680 		tp->snd_up = tp->write_seq;
681 }
682 
683 /* If a not yet filled skb is pushed, do not send it if
684  * we have data packets in Qdisc or NIC queues :
685  * Because TX completion will happen shortly, it gives a chance
686  * to coalesce future sendmsg() payload into this skb, without
687  * need for a timer, and with no latency trade off.
688  * As packets containing data payload have a bigger truesize
689  * than pure acks (dataless) packets, the last checks prevent
690  * autocorking if we only have an ACK in Qdisc/NIC queues,
691  * or if TX completion was delayed after we processed ACK packet.
692  */
693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 				int size_goal)
695 {
696 	return skb->len < size_goal &&
697 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
698 	       !tcp_rtx_queue_empty(sk) &&
699 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
700 }
701 
702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 	      int nonagle, int size_goal)
704 {
705 	struct tcp_sock *tp = tcp_sk(sk);
706 	struct sk_buff *skb;
707 
708 	skb = tcp_write_queue_tail(sk);
709 	if (!skb)
710 		return;
711 	if (!(flags & MSG_MORE) || forced_push(tp))
712 		tcp_mark_push(tp, skb);
713 
714 	tcp_mark_urg(tp, flags);
715 
716 	if (tcp_should_autocork(sk, skb, size_goal)) {
717 
718 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
719 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 		}
723 		/* It is possible TX completion already happened
724 		 * before we set TSQ_THROTTLED.
725 		 */
726 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 			return;
728 	}
729 
730 	if (flags & MSG_MORE)
731 		nonagle = TCP_NAGLE_CORK;
732 
733 	__tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735 
736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 				unsigned int offset, size_t len)
738 {
739 	struct tcp_splice_state *tss = rd_desc->arg.data;
740 	int ret;
741 
742 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 			      min(rd_desc->count, len), tss->flags);
744 	if (ret > 0)
745 		rd_desc->count -= ret;
746 	return ret;
747 }
748 
749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 	/* Store TCP splice context information in read_descriptor_t. */
752 	read_descriptor_t rd_desc = {
753 		.arg.data = tss,
754 		.count	  = tss->len,
755 	};
756 
757 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759 
760 /**
761  *  tcp_splice_read - splice data from TCP socket to a pipe
762  * @sock:	socket to splice from
763  * @ppos:	position (not valid)
764  * @pipe:	pipe to splice to
765  * @len:	number of bytes to splice
766  * @flags:	splice modifier flags
767  *
768  * Description:
769  *    Will read pages from given socket and fill them into a pipe.
770  *
771  **/
772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 			struct pipe_inode_info *pipe, size_t len,
774 			unsigned int flags)
775 {
776 	struct sock *sk = sock->sk;
777 	struct tcp_splice_state tss = {
778 		.pipe = pipe,
779 		.len = len,
780 		.flags = flags,
781 	};
782 	long timeo;
783 	ssize_t spliced;
784 	int ret;
785 
786 	sock_rps_record_flow(sk);
787 	/*
788 	 * We can't seek on a socket input
789 	 */
790 	if (unlikely(*ppos))
791 		return -ESPIPE;
792 
793 	ret = spliced = 0;
794 
795 	lock_sock(sk);
796 
797 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 	while (tss.len) {
799 		ret = __tcp_splice_read(sk, &tss);
800 		if (ret < 0)
801 			break;
802 		else if (!ret) {
803 			if (spliced)
804 				break;
805 			if (sock_flag(sk, SOCK_DONE))
806 				break;
807 			if (sk->sk_err) {
808 				ret = sock_error(sk);
809 				break;
810 			}
811 			if (sk->sk_shutdown & RCV_SHUTDOWN)
812 				break;
813 			if (sk->sk_state == TCP_CLOSE) {
814 				/*
815 				 * This occurs when user tries to read
816 				 * from never connected socket.
817 				 */
818 				ret = -ENOTCONN;
819 				break;
820 			}
821 			if (!timeo) {
822 				ret = -EAGAIN;
823 				break;
824 			}
825 			/* if __tcp_splice_read() got nothing while we have
826 			 * an skb in receive queue, we do not want to loop.
827 			 * This might happen with URG data.
828 			 */
829 			if (!skb_queue_empty(&sk->sk_receive_queue))
830 				break;
831 			sk_wait_data(sk, &timeo, NULL);
832 			if (signal_pending(current)) {
833 				ret = sock_intr_errno(timeo);
834 				break;
835 			}
836 			continue;
837 		}
838 		tss.len -= ret;
839 		spliced += ret;
840 
841 		if (!timeo)
842 			break;
843 		release_sock(sk);
844 		lock_sock(sk);
845 
846 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 		    signal_pending(current))
849 			break;
850 	}
851 
852 	release_sock(sk);
853 
854 	if (spliced)
855 		return spliced;
856 
857 	return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860 
861 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 				    bool force_schedule)
863 {
864 	struct sk_buff *skb;
865 
866 	if (likely(!size)) {
867 		skb = sk->sk_tx_skb_cache;
868 		if (skb) {
869 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
870 			sk->sk_tx_skb_cache = NULL;
871 			pskb_trim(skb, 0);
872 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
873 			skb_shinfo(skb)->tx_flags = 0;
874 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
875 			return skb;
876 		}
877 	}
878 	/* The TCP header must be at least 32-bit aligned.  */
879 	size = ALIGN(size, 4);
880 
881 	if (unlikely(tcp_under_memory_pressure(sk)))
882 		sk_mem_reclaim_partial(sk);
883 
884 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
885 	if (likely(skb)) {
886 		bool mem_scheduled;
887 
888 		if (force_schedule) {
889 			mem_scheduled = true;
890 			sk_forced_mem_schedule(sk, skb->truesize);
891 		} else {
892 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
893 		}
894 		if (likely(mem_scheduled)) {
895 			skb_reserve(skb, sk->sk_prot->max_header);
896 			/*
897 			 * Make sure that we have exactly size bytes
898 			 * available to the caller, no more, no less.
899 			 */
900 			skb->reserved_tailroom = skb->end - skb->tail - size;
901 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
902 			return skb;
903 		}
904 		__kfree_skb(skb);
905 	} else {
906 		sk->sk_prot->enter_memory_pressure(sk);
907 		sk_stream_moderate_sndbuf(sk);
908 	}
909 	return NULL;
910 }
911 
912 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
913 				       int large_allowed)
914 {
915 	struct tcp_sock *tp = tcp_sk(sk);
916 	u32 new_size_goal, size_goal;
917 
918 	if (!large_allowed)
919 		return mss_now;
920 
921 	/* Note : tcp_tso_autosize() will eventually split this later */
922 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
923 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
924 
925 	/* We try hard to avoid divides here */
926 	size_goal = tp->gso_segs * mss_now;
927 	if (unlikely(new_size_goal < size_goal ||
928 		     new_size_goal >= size_goal + mss_now)) {
929 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
930 				     sk->sk_gso_max_segs);
931 		size_goal = tp->gso_segs * mss_now;
932 	}
933 
934 	return max(size_goal, mss_now);
935 }
936 
937 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
938 {
939 	int mss_now;
940 
941 	mss_now = tcp_current_mss(sk);
942 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
943 
944 	return mss_now;
945 }
946 
947 /* In some cases, both sendpage() and sendmsg() could have added
948  * an skb to the write queue, but failed adding payload on it.
949  * We need to remove it to consume less memory, but more
950  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
951  * users.
952  */
953 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
954 {
955 	if (skb && !skb->len) {
956 		tcp_unlink_write_queue(skb, sk);
957 		if (tcp_write_queue_empty(sk))
958 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 		sk_wmem_free_skb(sk, skb);
960 	}
961 }
962 
963 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
964 			 size_t size, int flags)
965 {
966 	struct tcp_sock *tp = tcp_sk(sk);
967 	int mss_now, size_goal;
968 	int err;
969 	ssize_t copied;
970 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
971 
972 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
973 	    WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
974 		return -EINVAL;
975 
976 	/* Wait for a connection to finish. One exception is TCP Fast Open
977 	 * (passive side) where data is allowed to be sent before a connection
978 	 * is fully established.
979 	 */
980 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
981 	    !tcp_passive_fastopen(sk)) {
982 		err = sk_stream_wait_connect(sk, &timeo);
983 		if (err != 0)
984 			goto out_err;
985 	}
986 
987 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
988 
989 	mss_now = tcp_send_mss(sk, &size_goal, flags);
990 	copied = 0;
991 
992 	err = -EPIPE;
993 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
994 		goto out_err;
995 
996 	while (size > 0) {
997 		struct sk_buff *skb = tcp_write_queue_tail(sk);
998 		int copy, i;
999 		bool can_coalesce;
1000 
1001 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1002 		    !tcp_skb_can_collapse_to(skb)) {
1003 new_segment:
1004 			if (!sk_stream_memory_free(sk))
1005 				goto wait_for_sndbuf;
1006 
1007 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1008 					tcp_rtx_and_write_queues_empty(sk));
1009 			if (!skb)
1010 				goto wait_for_memory;
1011 
1012 #ifdef CONFIG_TLS_DEVICE
1013 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1014 #endif
1015 			skb_entail(sk, skb);
1016 			copy = size_goal;
1017 		}
1018 
1019 		if (copy > size)
1020 			copy = size;
1021 
1022 		i = skb_shinfo(skb)->nr_frags;
1023 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1024 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1025 			tcp_mark_push(tp, skb);
1026 			goto new_segment;
1027 		}
1028 		if (!sk_wmem_schedule(sk, copy))
1029 			goto wait_for_memory;
1030 
1031 		if (can_coalesce) {
1032 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1033 		} else {
1034 			get_page(page);
1035 			skb_fill_page_desc(skb, i, page, offset, copy);
1036 		}
1037 
1038 		if (!(flags & MSG_NO_SHARED_FRAGS))
1039 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1040 
1041 		skb->len += copy;
1042 		skb->data_len += copy;
1043 		skb->truesize += copy;
1044 		sk_wmem_queued_add(sk, copy);
1045 		sk_mem_charge(sk, copy);
1046 		skb->ip_summed = CHECKSUM_PARTIAL;
1047 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1048 		TCP_SKB_CB(skb)->end_seq += copy;
1049 		tcp_skb_pcount_set(skb, 0);
1050 
1051 		if (!copied)
1052 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1053 
1054 		copied += copy;
1055 		offset += copy;
1056 		size -= copy;
1057 		if (!size)
1058 			goto out;
1059 
1060 		if (skb->len < size_goal || (flags & MSG_OOB))
1061 			continue;
1062 
1063 		if (forced_push(tp)) {
1064 			tcp_mark_push(tp, skb);
1065 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1066 		} else if (skb == tcp_send_head(sk))
1067 			tcp_push_one(sk, mss_now);
1068 		continue;
1069 
1070 wait_for_sndbuf:
1071 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1072 wait_for_memory:
1073 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1074 			 TCP_NAGLE_PUSH, size_goal);
1075 
1076 		err = sk_stream_wait_memory(sk, &timeo);
1077 		if (err != 0)
1078 			goto do_error;
1079 
1080 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1081 	}
1082 
1083 out:
1084 	if (copied) {
1085 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1086 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1087 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1088 	}
1089 	return copied;
1090 
1091 do_error:
1092 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1093 	if (copied)
1094 		goto out;
1095 out_err:
1096 	/* make sure we wake any epoll edge trigger waiter */
1097 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1098 		sk->sk_write_space(sk);
1099 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1100 	}
1101 	return sk_stream_error(sk, flags, err);
1102 }
1103 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1104 
1105 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1106 			size_t size, int flags)
1107 {
1108 	if (!(sk->sk_route_caps & NETIF_F_SG))
1109 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1110 
1111 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1112 
1113 	return do_tcp_sendpages(sk, page, offset, size, flags);
1114 }
1115 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1116 
1117 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1118 		 size_t size, int flags)
1119 {
1120 	int ret;
1121 
1122 	lock_sock(sk);
1123 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1124 	release_sock(sk);
1125 
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(tcp_sendpage);
1129 
1130 void tcp_free_fastopen_req(struct tcp_sock *tp)
1131 {
1132 	if (tp->fastopen_req) {
1133 		kfree(tp->fastopen_req);
1134 		tp->fastopen_req = NULL;
1135 	}
1136 }
1137 
1138 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1139 				int *copied, size_t size,
1140 				struct ubuf_info *uarg)
1141 {
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	struct inet_sock *inet = inet_sk(sk);
1144 	struct sockaddr *uaddr = msg->msg_name;
1145 	int err, flags;
1146 
1147 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1148 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1149 	     uaddr->sa_family == AF_UNSPEC))
1150 		return -EOPNOTSUPP;
1151 	if (tp->fastopen_req)
1152 		return -EALREADY; /* Another Fast Open is in progress */
1153 
1154 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1155 				   sk->sk_allocation);
1156 	if (unlikely(!tp->fastopen_req))
1157 		return -ENOBUFS;
1158 	tp->fastopen_req->data = msg;
1159 	tp->fastopen_req->size = size;
1160 	tp->fastopen_req->uarg = uarg;
1161 
1162 	if (inet->defer_connect) {
1163 		err = tcp_connect(sk);
1164 		/* Same failure procedure as in tcp_v4/6_connect */
1165 		if (err) {
1166 			tcp_set_state(sk, TCP_CLOSE);
1167 			inet->inet_dport = 0;
1168 			sk->sk_route_caps = 0;
1169 		}
1170 	}
1171 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1172 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1173 				    msg->msg_namelen, flags, 1);
1174 	/* fastopen_req could already be freed in __inet_stream_connect
1175 	 * if the connection times out or gets rst
1176 	 */
1177 	if (tp->fastopen_req) {
1178 		*copied = tp->fastopen_req->copied;
1179 		tcp_free_fastopen_req(tp);
1180 		inet->defer_connect = 0;
1181 	}
1182 	return err;
1183 }
1184 
1185 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1186 {
1187 	struct tcp_sock *tp = tcp_sk(sk);
1188 	struct ubuf_info *uarg = NULL;
1189 	struct sk_buff *skb;
1190 	struct sockcm_cookie sockc;
1191 	int flags, err, copied = 0;
1192 	int mss_now = 0, size_goal, copied_syn = 0;
1193 	int process_backlog = 0;
1194 	bool zc = false;
1195 	long timeo;
1196 
1197 	flags = msg->msg_flags;
1198 
1199 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1200 		skb = tcp_write_queue_tail(sk);
1201 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1202 		if (!uarg) {
1203 			err = -ENOBUFS;
1204 			goto out_err;
1205 		}
1206 
1207 		zc = sk->sk_route_caps & NETIF_F_SG;
1208 		if (!zc)
1209 			uarg->zerocopy = 0;
1210 	}
1211 
1212 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1213 	    !tp->repair) {
1214 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1215 		if (err == -EINPROGRESS && copied_syn > 0)
1216 			goto out;
1217 		else if (err)
1218 			goto out_err;
1219 	}
1220 
1221 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222 
1223 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1224 
1225 	/* Wait for a connection to finish. One exception is TCP Fast Open
1226 	 * (passive side) where data is allowed to be sent before a connection
1227 	 * is fully established.
1228 	 */
1229 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1230 	    !tcp_passive_fastopen(sk)) {
1231 		err = sk_stream_wait_connect(sk, &timeo);
1232 		if (err != 0)
1233 			goto do_error;
1234 	}
1235 
1236 	if (unlikely(tp->repair)) {
1237 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1238 			copied = tcp_send_rcvq(sk, msg, size);
1239 			goto out_nopush;
1240 		}
1241 
1242 		err = -EINVAL;
1243 		if (tp->repair_queue == TCP_NO_QUEUE)
1244 			goto out_err;
1245 
1246 		/* 'common' sending to sendq */
1247 	}
1248 
1249 	sockcm_init(&sockc, sk);
1250 	if (msg->msg_controllen) {
1251 		err = sock_cmsg_send(sk, msg, &sockc);
1252 		if (unlikely(err)) {
1253 			err = -EINVAL;
1254 			goto out_err;
1255 		}
1256 	}
1257 
1258 	/* This should be in poll */
1259 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1260 
1261 	/* Ok commence sending. */
1262 	copied = 0;
1263 
1264 restart:
1265 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1266 
1267 	err = -EPIPE;
1268 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1269 		goto do_error;
1270 
1271 	while (msg_data_left(msg)) {
1272 		int copy = 0;
1273 
1274 		skb = tcp_write_queue_tail(sk);
1275 		if (skb)
1276 			copy = size_goal - skb->len;
1277 
1278 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1279 			bool first_skb;
1280 
1281 new_segment:
1282 			if (!sk_stream_memory_free(sk))
1283 				goto wait_for_sndbuf;
1284 
1285 			if (unlikely(process_backlog >= 16)) {
1286 				process_backlog = 0;
1287 				if (sk_flush_backlog(sk))
1288 					goto restart;
1289 			}
1290 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1291 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1292 						  first_skb);
1293 			if (!skb)
1294 				goto wait_for_memory;
1295 
1296 			process_backlog++;
1297 			skb->ip_summed = CHECKSUM_PARTIAL;
1298 
1299 			skb_entail(sk, skb);
1300 			copy = size_goal;
1301 
1302 			/* All packets are restored as if they have
1303 			 * already been sent. skb_mstamp_ns isn't set to
1304 			 * avoid wrong rtt estimation.
1305 			 */
1306 			if (tp->repair)
1307 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1308 		}
1309 
1310 		/* Try to append data to the end of skb. */
1311 		if (copy > msg_data_left(msg))
1312 			copy = msg_data_left(msg);
1313 
1314 		/* Where to copy to? */
1315 		if (skb_availroom(skb) > 0 && !zc) {
1316 			/* We have some space in skb head. Superb! */
1317 			copy = min_t(int, copy, skb_availroom(skb));
1318 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1319 			if (err)
1320 				goto do_fault;
1321 		} else if (!zc) {
1322 			bool merge = true;
1323 			int i = skb_shinfo(skb)->nr_frags;
1324 			struct page_frag *pfrag = sk_page_frag(sk);
1325 
1326 			if (!sk_page_frag_refill(sk, pfrag))
1327 				goto wait_for_memory;
1328 
1329 			if (!skb_can_coalesce(skb, i, pfrag->page,
1330 					      pfrag->offset)) {
1331 				if (i >= sysctl_max_skb_frags) {
1332 					tcp_mark_push(tp, skb);
1333 					goto new_segment;
1334 				}
1335 				merge = false;
1336 			}
1337 
1338 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1339 
1340 			if (!sk_wmem_schedule(sk, copy))
1341 				goto wait_for_memory;
1342 
1343 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1344 						       pfrag->page,
1345 						       pfrag->offset,
1346 						       copy);
1347 			if (err)
1348 				goto do_error;
1349 
1350 			/* Update the skb. */
1351 			if (merge) {
1352 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1353 			} else {
1354 				skb_fill_page_desc(skb, i, pfrag->page,
1355 						   pfrag->offset, copy);
1356 				page_ref_inc(pfrag->page);
1357 			}
1358 			pfrag->offset += copy;
1359 		} else {
1360 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1361 			if (err == -EMSGSIZE || err == -EEXIST) {
1362 				tcp_mark_push(tp, skb);
1363 				goto new_segment;
1364 			}
1365 			if (err < 0)
1366 				goto do_error;
1367 			copy = err;
1368 		}
1369 
1370 		if (!copied)
1371 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1372 
1373 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1374 		TCP_SKB_CB(skb)->end_seq += copy;
1375 		tcp_skb_pcount_set(skb, 0);
1376 
1377 		copied += copy;
1378 		if (!msg_data_left(msg)) {
1379 			if (unlikely(flags & MSG_EOR))
1380 				TCP_SKB_CB(skb)->eor = 1;
1381 			goto out;
1382 		}
1383 
1384 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1385 			continue;
1386 
1387 		if (forced_push(tp)) {
1388 			tcp_mark_push(tp, skb);
1389 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1390 		} else if (skb == tcp_send_head(sk))
1391 			tcp_push_one(sk, mss_now);
1392 		continue;
1393 
1394 wait_for_sndbuf:
1395 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1396 wait_for_memory:
1397 		if (copied)
1398 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1399 				 TCP_NAGLE_PUSH, size_goal);
1400 
1401 		err = sk_stream_wait_memory(sk, &timeo);
1402 		if (err != 0)
1403 			goto do_error;
1404 
1405 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1406 	}
1407 
1408 out:
1409 	if (copied) {
1410 		tcp_tx_timestamp(sk, sockc.tsflags);
1411 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1412 	}
1413 out_nopush:
1414 	sock_zerocopy_put(uarg);
1415 	return copied + copied_syn;
1416 
1417 do_error:
1418 	skb = tcp_write_queue_tail(sk);
1419 do_fault:
1420 	tcp_remove_empty_skb(sk, skb);
1421 
1422 	if (copied + copied_syn)
1423 		goto out;
1424 out_err:
1425 	sock_zerocopy_put_abort(uarg, true);
1426 	err = sk_stream_error(sk, flags, err);
1427 	/* make sure we wake any epoll edge trigger waiter */
1428 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1429 		sk->sk_write_space(sk);
1430 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1431 	}
1432 	return err;
1433 }
1434 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1435 
1436 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1437 {
1438 	int ret;
1439 
1440 	lock_sock(sk);
1441 	ret = tcp_sendmsg_locked(sk, msg, size);
1442 	release_sock(sk);
1443 
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL(tcp_sendmsg);
1447 
1448 /*
1449  *	Handle reading urgent data. BSD has very simple semantics for
1450  *	this, no blocking and very strange errors 8)
1451  */
1452 
1453 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1454 {
1455 	struct tcp_sock *tp = tcp_sk(sk);
1456 
1457 	/* No URG data to read. */
1458 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1459 	    tp->urg_data == TCP_URG_READ)
1460 		return -EINVAL;	/* Yes this is right ! */
1461 
1462 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1463 		return -ENOTCONN;
1464 
1465 	if (tp->urg_data & TCP_URG_VALID) {
1466 		int err = 0;
1467 		char c = tp->urg_data;
1468 
1469 		if (!(flags & MSG_PEEK))
1470 			tp->urg_data = TCP_URG_READ;
1471 
1472 		/* Read urgent data. */
1473 		msg->msg_flags |= MSG_OOB;
1474 
1475 		if (len > 0) {
1476 			if (!(flags & MSG_TRUNC))
1477 				err = memcpy_to_msg(msg, &c, 1);
1478 			len = 1;
1479 		} else
1480 			msg->msg_flags |= MSG_TRUNC;
1481 
1482 		return err ? -EFAULT : len;
1483 	}
1484 
1485 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1486 		return 0;
1487 
1488 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1489 	 * the available implementations agree in this case:
1490 	 * this call should never block, independent of the
1491 	 * blocking state of the socket.
1492 	 * Mike <pall@rz.uni-karlsruhe.de>
1493 	 */
1494 	return -EAGAIN;
1495 }
1496 
1497 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1498 {
1499 	struct sk_buff *skb;
1500 	int copied = 0, err = 0;
1501 
1502 	/* XXX -- need to support SO_PEEK_OFF */
1503 
1504 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1505 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1506 		if (err)
1507 			return err;
1508 		copied += skb->len;
1509 	}
1510 
1511 	skb_queue_walk(&sk->sk_write_queue, skb) {
1512 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1513 		if (err)
1514 			break;
1515 
1516 		copied += skb->len;
1517 	}
1518 
1519 	return err ?: copied;
1520 }
1521 
1522 /* Clean up the receive buffer for full frames taken by the user,
1523  * then send an ACK if necessary.  COPIED is the number of bytes
1524  * tcp_recvmsg has given to the user so far, it speeds up the
1525  * calculation of whether or not we must ACK for the sake of
1526  * a window update.
1527  */
1528 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1529 {
1530 	struct tcp_sock *tp = tcp_sk(sk);
1531 	bool time_to_ack = false;
1532 
1533 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1534 
1535 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1536 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1537 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1538 
1539 	if (inet_csk_ack_scheduled(sk)) {
1540 		const struct inet_connection_sock *icsk = inet_csk(sk);
1541 		   /* Delayed ACKs frequently hit locked sockets during bulk
1542 		    * receive. */
1543 		if (icsk->icsk_ack.blocked ||
1544 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1545 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1546 		    /*
1547 		     * If this read emptied read buffer, we send ACK, if
1548 		     * connection is not bidirectional, user drained
1549 		     * receive buffer and there was a small segment
1550 		     * in queue.
1551 		     */
1552 		    (copied > 0 &&
1553 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1554 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1555 		       !inet_csk_in_pingpong_mode(sk))) &&
1556 		      !atomic_read(&sk->sk_rmem_alloc)))
1557 			time_to_ack = true;
1558 	}
1559 
1560 	/* We send an ACK if we can now advertise a non-zero window
1561 	 * which has been raised "significantly".
1562 	 *
1563 	 * Even if window raised up to infinity, do not send window open ACK
1564 	 * in states, where we will not receive more. It is useless.
1565 	 */
1566 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1567 		__u32 rcv_window_now = tcp_receive_window(tp);
1568 
1569 		/* Optimize, __tcp_select_window() is not cheap. */
1570 		if (2*rcv_window_now <= tp->window_clamp) {
1571 			__u32 new_window = __tcp_select_window(sk);
1572 
1573 			/* Send ACK now, if this read freed lots of space
1574 			 * in our buffer. Certainly, new_window is new window.
1575 			 * We can advertise it now, if it is not less than current one.
1576 			 * "Lots" means "at least twice" here.
1577 			 */
1578 			if (new_window && new_window >= 2 * rcv_window_now)
1579 				time_to_ack = true;
1580 		}
1581 	}
1582 	if (time_to_ack)
1583 		tcp_send_ack(sk);
1584 }
1585 
1586 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1587 {
1588 	struct sk_buff *skb;
1589 	u32 offset;
1590 
1591 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1592 		offset = seq - TCP_SKB_CB(skb)->seq;
1593 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1594 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1595 			offset--;
1596 		}
1597 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1598 			*off = offset;
1599 			return skb;
1600 		}
1601 		/* This looks weird, but this can happen if TCP collapsing
1602 		 * splitted a fat GRO packet, while we released socket lock
1603 		 * in skb_splice_bits()
1604 		 */
1605 		sk_eat_skb(sk, skb);
1606 	}
1607 	return NULL;
1608 }
1609 
1610 /*
1611  * This routine provides an alternative to tcp_recvmsg() for routines
1612  * that would like to handle copying from skbuffs directly in 'sendfile'
1613  * fashion.
1614  * Note:
1615  *	- It is assumed that the socket was locked by the caller.
1616  *	- The routine does not block.
1617  *	- At present, there is no support for reading OOB data
1618  *	  or for 'peeking' the socket using this routine
1619  *	  (although both would be easy to implement).
1620  */
1621 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1622 		  sk_read_actor_t recv_actor)
1623 {
1624 	struct sk_buff *skb;
1625 	struct tcp_sock *tp = tcp_sk(sk);
1626 	u32 seq = tp->copied_seq;
1627 	u32 offset;
1628 	int copied = 0;
1629 
1630 	if (sk->sk_state == TCP_LISTEN)
1631 		return -ENOTCONN;
1632 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1633 		if (offset < skb->len) {
1634 			int used;
1635 			size_t len;
1636 
1637 			len = skb->len - offset;
1638 			/* Stop reading if we hit a patch of urgent data */
1639 			if (tp->urg_data) {
1640 				u32 urg_offset = tp->urg_seq - seq;
1641 				if (urg_offset < len)
1642 					len = urg_offset;
1643 				if (!len)
1644 					break;
1645 			}
1646 			used = recv_actor(desc, skb, offset, len);
1647 			if (used <= 0) {
1648 				if (!copied)
1649 					copied = used;
1650 				break;
1651 			} else if (used <= len) {
1652 				seq += used;
1653 				copied += used;
1654 				offset += used;
1655 			}
1656 			/* If recv_actor drops the lock (e.g. TCP splice
1657 			 * receive) the skb pointer might be invalid when
1658 			 * getting here: tcp_collapse might have deleted it
1659 			 * while aggregating skbs from the socket queue.
1660 			 */
1661 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1662 			if (!skb)
1663 				break;
1664 			/* TCP coalescing might have appended data to the skb.
1665 			 * Try to splice more frags
1666 			 */
1667 			if (offset + 1 != skb->len)
1668 				continue;
1669 		}
1670 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1671 			sk_eat_skb(sk, skb);
1672 			++seq;
1673 			break;
1674 		}
1675 		sk_eat_skb(sk, skb);
1676 		if (!desc->count)
1677 			break;
1678 		WRITE_ONCE(tp->copied_seq, seq);
1679 	}
1680 	WRITE_ONCE(tp->copied_seq, seq);
1681 
1682 	tcp_rcv_space_adjust(sk);
1683 
1684 	/* Clean up data we have read: This will do ACK frames. */
1685 	if (copied > 0) {
1686 		tcp_recv_skb(sk, seq, &offset);
1687 		tcp_cleanup_rbuf(sk, copied);
1688 	}
1689 	return copied;
1690 }
1691 EXPORT_SYMBOL(tcp_read_sock);
1692 
1693 int tcp_peek_len(struct socket *sock)
1694 {
1695 	return tcp_inq(sock->sk);
1696 }
1697 EXPORT_SYMBOL(tcp_peek_len);
1698 
1699 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1700 int tcp_set_rcvlowat(struct sock *sk, int val)
1701 {
1702 	int cap;
1703 
1704 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1705 		cap = sk->sk_rcvbuf >> 1;
1706 	else
1707 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1708 	val = min(val, cap);
1709 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1710 
1711 	/* Check if we need to signal EPOLLIN right now */
1712 	tcp_data_ready(sk);
1713 
1714 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 		return 0;
1716 
1717 	val <<= 1;
1718 	if (val > sk->sk_rcvbuf) {
1719 		WRITE_ONCE(sk->sk_rcvbuf, val);
1720 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1721 	}
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(tcp_set_rcvlowat);
1725 
1726 #ifdef CONFIG_MMU
1727 static const struct vm_operations_struct tcp_vm_ops = {
1728 };
1729 
1730 int tcp_mmap(struct file *file, struct socket *sock,
1731 	     struct vm_area_struct *vma)
1732 {
1733 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1734 		return -EPERM;
1735 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1736 
1737 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1738 	vma->vm_flags |= VM_MIXEDMAP;
1739 
1740 	vma->vm_ops = &tcp_vm_ops;
1741 	return 0;
1742 }
1743 EXPORT_SYMBOL(tcp_mmap);
1744 
1745 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1746 					struct page **pages,
1747 					unsigned long pages_to_map,
1748 					unsigned long *insert_addr,
1749 					u32 *length_with_pending,
1750 					u32 *seq,
1751 					struct tcp_zerocopy_receive *zc)
1752 {
1753 	unsigned long pages_remaining = pages_to_map;
1754 	int bytes_mapped;
1755 	int ret;
1756 
1757 	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1758 	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1759 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1760 	 * mapping (some but not all of the pages).
1761 	 */
1762 	*seq += bytes_mapped;
1763 	*insert_addr += bytes_mapped;
1764 	if (ret) {
1765 		/* But if vm_insert_pages did fail, we have to unroll some state
1766 		 * we speculatively touched before.
1767 		 */
1768 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1769 		*length_with_pending -= bytes_not_mapped;
1770 		zc->recv_skip_hint += bytes_not_mapped;
1771 	}
1772 	return ret;
1773 }
1774 
1775 static int tcp_zerocopy_receive(struct sock *sk,
1776 				struct tcp_zerocopy_receive *zc)
1777 {
1778 	unsigned long address = (unsigned long)zc->address;
1779 	u32 length = 0, seq, offset, zap_len;
1780 	#define PAGE_BATCH_SIZE 8
1781 	struct page *pages[PAGE_BATCH_SIZE];
1782 	const skb_frag_t *frags = NULL;
1783 	struct vm_area_struct *vma;
1784 	struct sk_buff *skb = NULL;
1785 	unsigned long pg_idx = 0;
1786 	unsigned long curr_addr;
1787 	struct tcp_sock *tp;
1788 	int inq;
1789 	int ret;
1790 
1791 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1792 		return -EINVAL;
1793 
1794 	if (sk->sk_state == TCP_LISTEN)
1795 		return -ENOTCONN;
1796 
1797 	sock_rps_record_flow(sk);
1798 
1799 	tp = tcp_sk(sk);
1800 
1801 	mmap_read_lock(current->mm);
1802 
1803 	vma = find_vma(current->mm, address);
1804 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1805 		mmap_read_unlock(current->mm);
1806 		return -EINVAL;
1807 	}
1808 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1809 
1810 	seq = tp->copied_seq;
1811 	inq = tcp_inq(sk);
1812 	zc->length = min_t(u32, zc->length, inq);
1813 	zap_len = zc->length & ~(PAGE_SIZE - 1);
1814 	if (zap_len) {
1815 		zap_page_range(vma, address, zap_len);
1816 		zc->recv_skip_hint = 0;
1817 	} else {
1818 		zc->recv_skip_hint = zc->length;
1819 	}
1820 	ret = 0;
1821 	curr_addr = address;
1822 	while (length + PAGE_SIZE <= zc->length) {
1823 		if (zc->recv_skip_hint < PAGE_SIZE) {
1824 			/* If we're here, finish the current batch. */
1825 			if (pg_idx) {
1826 				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1827 								   pg_idx,
1828 								   &curr_addr,
1829 								   &length,
1830 								   &seq, zc);
1831 				if (ret)
1832 					goto out;
1833 				pg_idx = 0;
1834 			}
1835 			if (skb) {
1836 				if (zc->recv_skip_hint > 0)
1837 					break;
1838 				skb = skb->next;
1839 				offset = seq - TCP_SKB_CB(skb)->seq;
1840 			} else {
1841 				skb = tcp_recv_skb(sk, seq, &offset);
1842 			}
1843 			zc->recv_skip_hint = skb->len - offset;
1844 			offset -= skb_headlen(skb);
1845 			if ((int)offset < 0 || skb_has_frag_list(skb))
1846 				break;
1847 			frags = skb_shinfo(skb)->frags;
1848 			while (offset) {
1849 				if (skb_frag_size(frags) > offset)
1850 					goto out;
1851 				offset -= skb_frag_size(frags);
1852 				frags++;
1853 			}
1854 		}
1855 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1856 			int remaining = zc->recv_skip_hint;
1857 
1858 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1859 					     skb_frag_off(frags))) {
1860 				remaining -= skb_frag_size(frags);
1861 				frags++;
1862 			}
1863 			zc->recv_skip_hint -= remaining;
1864 			break;
1865 		}
1866 		pages[pg_idx] = skb_frag_page(frags);
1867 		pg_idx++;
1868 		length += PAGE_SIZE;
1869 		zc->recv_skip_hint -= PAGE_SIZE;
1870 		frags++;
1871 		if (pg_idx == PAGE_BATCH_SIZE) {
1872 			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1873 							   &curr_addr, &length,
1874 							   &seq, zc);
1875 			if (ret)
1876 				goto out;
1877 			pg_idx = 0;
1878 		}
1879 	}
1880 	if (pg_idx) {
1881 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1882 						   &curr_addr, &length, &seq,
1883 						   zc);
1884 	}
1885 out:
1886 	mmap_read_unlock(current->mm);
1887 	if (length) {
1888 		WRITE_ONCE(tp->copied_seq, seq);
1889 		tcp_rcv_space_adjust(sk);
1890 
1891 		/* Clean up data we have read: This will do ACK frames. */
1892 		tcp_recv_skb(sk, seq, &offset);
1893 		tcp_cleanup_rbuf(sk, length);
1894 		ret = 0;
1895 		if (length == zc->length)
1896 			zc->recv_skip_hint = 0;
1897 	} else {
1898 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1899 			ret = -EIO;
1900 	}
1901 	zc->length = length;
1902 	return ret;
1903 }
1904 #endif
1905 
1906 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1907 				    struct scm_timestamping_internal *tss)
1908 {
1909 	if (skb->tstamp)
1910 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1911 	else
1912 		tss->ts[0] = (struct timespec64) {0};
1913 
1914 	if (skb_hwtstamps(skb)->hwtstamp)
1915 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1916 	else
1917 		tss->ts[2] = (struct timespec64) {0};
1918 }
1919 
1920 /* Similar to __sock_recv_timestamp, but does not require an skb */
1921 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1922 			       struct scm_timestamping_internal *tss)
1923 {
1924 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1925 	bool has_timestamping = false;
1926 
1927 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1928 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1929 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1930 				if (new_tstamp) {
1931 					struct __kernel_timespec kts = {
1932 						.tv_sec = tss->ts[0].tv_sec,
1933 						.tv_nsec = tss->ts[0].tv_nsec,
1934 					};
1935 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1936 						 sizeof(kts), &kts);
1937 				} else {
1938 					struct __kernel_old_timespec ts_old = {
1939 						.tv_sec = tss->ts[0].tv_sec,
1940 						.tv_nsec = tss->ts[0].tv_nsec,
1941 					};
1942 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1943 						 sizeof(ts_old), &ts_old);
1944 				}
1945 			} else {
1946 				if (new_tstamp) {
1947 					struct __kernel_sock_timeval stv = {
1948 						.tv_sec = tss->ts[0].tv_sec,
1949 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1950 					};
1951 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1952 						 sizeof(stv), &stv);
1953 				} else {
1954 					struct __kernel_old_timeval tv = {
1955 						.tv_sec = tss->ts[0].tv_sec,
1956 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1957 					};
1958 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1959 						 sizeof(tv), &tv);
1960 				}
1961 			}
1962 		}
1963 
1964 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1965 			has_timestamping = true;
1966 		else
1967 			tss->ts[0] = (struct timespec64) {0};
1968 	}
1969 
1970 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1971 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1972 			has_timestamping = true;
1973 		else
1974 			tss->ts[2] = (struct timespec64) {0};
1975 	}
1976 
1977 	if (has_timestamping) {
1978 		tss->ts[1] = (struct timespec64) {0};
1979 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1980 			put_cmsg_scm_timestamping64(msg, tss);
1981 		else
1982 			put_cmsg_scm_timestamping(msg, tss);
1983 	}
1984 }
1985 
1986 static int tcp_inq_hint(struct sock *sk)
1987 {
1988 	const struct tcp_sock *tp = tcp_sk(sk);
1989 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1990 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1991 	int inq;
1992 
1993 	inq = rcv_nxt - copied_seq;
1994 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1995 		lock_sock(sk);
1996 		inq = tp->rcv_nxt - tp->copied_seq;
1997 		release_sock(sk);
1998 	}
1999 	/* After receiving a FIN, tell the user-space to continue reading
2000 	 * by returning a non-zero inq.
2001 	 */
2002 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2003 		inq = 1;
2004 	return inq;
2005 }
2006 
2007 /*
2008  *	This routine copies from a sock struct into the user buffer.
2009  *
2010  *	Technical note: in 2.3 we work on _locked_ socket, so that
2011  *	tricks with *seq access order and skb->users are not required.
2012  *	Probably, code can be easily improved even more.
2013  */
2014 
2015 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2016 		int flags, int *addr_len)
2017 {
2018 	struct tcp_sock *tp = tcp_sk(sk);
2019 	int copied = 0;
2020 	u32 peek_seq;
2021 	u32 *seq;
2022 	unsigned long used;
2023 	int err, inq;
2024 	int target;		/* Read at least this many bytes */
2025 	long timeo;
2026 	struct sk_buff *skb, *last;
2027 	u32 urg_hole = 0;
2028 	struct scm_timestamping_internal tss;
2029 	int cmsg_flags;
2030 
2031 	if (unlikely(flags & MSG_ERRQUEUE))
2032 		return inet_recv_error(sk, msg, len, addr_len);
2033 
2034 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2035 	    (sk->sk_state == TCP_ESTABLISHED))
2036 		sk_busy_loop(sk, nonblock);
2037 
2038 	lock_sock(sk);
2039 
2040 	err = -ENOTCONN;
2041 	if (sk->sk_state == TCP_LISTEN)
2042 		goto out;
2043 
2044 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2045 	timeo = sock_rcvtimeo(sk, nonblock);
2046 
2047 	/* Urgent data needs to be handled specially. */
2048 	if (flags & MSG_OOB)
2049 		goto recv_urg;
2050 
2051 	if (unlikely(tp->repair)) {
2052 		err = -EPERM;
2053 		if (!(flags & MSG_PEEK))
2054 			goto out;
2055 
2056 		if (tp->repair_queue == TCP_SEND_QUEUE)
2057 			goto recv_sndq;
2058 
2059 		err = -EINVAL;
2060 		if (tp->repair_queue == TCP_NO_QUEUE)
2061 			goto out;
2062 
2063 		/* 'common' recv queue MSG_PEEK-ing */
2064 	}
2065 
2066 	seq = &tp->copied_seq;
2067 	if (flags & MSG_PEEK) {
2068 		peek_seq = tp->copied_seq;
2069 		seq = &peek_seq;
2070 	}
2071 
2072 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2073 
2074 	do {
2075 		u32 offset;
2076 
2077 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2078 		if (tp->urg_data && tp->urg_seq == *seq) {
2079 			if (copied)
2080 				break;
2081 			if (signal_pending(current)) {
2082 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2083 				break;
2084 			}
2085 		}
2086 
2087 		/* Next get a buffer. */
2088 
2089 		last = skb_peek_tail(&sk->sk_receive_queue);
2090 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2091 			last = skb;
2092 			/* Now that we have two receive queues this
2093 			 * shouldn't happen.
2094 			 */
2095 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2096 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2097 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2098 				 flags))
2099 				break;
2100 
2101 			offset = *seq - TCP_SKB_CB(skb)->seq;
2102 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2103 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2104 				offset--;
2105 			}
2106 			if (offset < skb->len)
2107 				goto found_ok_skb;
2108 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2109 				goto found_fin_ok;
2110 			WARN(!(flags & MSG_PEEK),
2111 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2112 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2113 		}
2114 
2115 		/* Well, if we have backlog, try to process it now yet. */
2116 
2117 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2118 			break;
2119 
2120 		if (copied) {
2121 			if (sk->sk_err ||
2122 			    sk->sk_state == TCP_CLOSE ||
2123 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2124 			    !timeo ||
2125 			    signal_pending(current))
2126 				break;
2127 		} else {
2128 			if (sock_flag(sk, SOCK_DONE))
2129 				break;
2130 
2131 			if (sk->sk_err) {
2132 				copied = sock_error(sk);
2133 				break;
2134 			}
2135 
2136 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2137 				break;
2138 
2139 			if (sk->sk_state == TCP_CLOSE) {
2140 				/* This occurs when user tries to read
2141 				 * from never connected socket.
2142 				 */
2143 				copied = -ENOTCONN;
2144 				break;
2145 			}
2146 
2147 			if (!timeo) {
2148 				copied = -EAGAIN;
2149 				break;
2150 			}
2151 
2152 			if (signal_pending(current)) {
2153 				copied = sock_intr_errno(timeo);
2154 				break;
2155 			}
2156 		}
2157 
2158 		tcp_cleanup_rbuf(sk, copied);
2159 
2160 		if (copied >= target) {
2161 			/* Do not sleep, just process backlog. */
2162 			release_sock(sk);
2163 			lock_sock(sk);
2164 		} else {
2165 			sk_wait_data(sk, &timeo, last);
2166 		}
2167 
2168 		if ((flags & MSG_PEEK) &&
2169 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2170 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2171 					    current->comm,
2172 					    task_pid_nr(current));
2173 			peek_seq = tp->copied_seq;
2174 		}
2175 		continue;
2176 
2177 found_ok_skb:
2178 		/* Ok so how much can we use? */
2179 		used = skb->len - offset;
2180 		if (len < used)
2181 			used = len;
2182 
2183 		/* Do we have urgent data here? */
2184 		if (tp->urg_data) {
2185 			u32 urg_offset = tp->urg_seq - *seq;
2186 			if (urg_offset < used) {
2187 				if (!urg_offset) {
2188 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2189 						WRITE_ONCE(*seq, *seq + 1);
2190 						urg_hole++;
2191 						offset++;
2192 						used--;
2193 						if (!used)
2194 							goto skip_copy;
2195 					}
2196 				} else
2197 					used = urg_offset;
2198 			}
2199 		}
2200 
2201 		if (!(flags & MSG_TRUNC)) {
2202 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2203 			if (err) {
2204 				/* Exception. Bailout! */
2205 				if (!copied)
2206 					copied = -EFAULT;
2207 				break;
2208 			}
2209 		}
2210 
2211 		WRITE_ONCE(*seq, *seq + used);
2212 		copied += used;
2213 		len -= used;
2214 
2215 		tcp_rcv_space_adjust(sk);
2216 
2217 skip_copy:
2218 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2219 			tp->urg_data = 0;
2220 			tcp_fast_path_check(sk);
2221 		}
2222 
2223 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2224 			tcp_update_recv_tstamps(skb, &tss);
2225 			cmsg_flags |= 2;
2226 		}
2227 
2228 		if (used + offset < skb->len)
2229 			continue;
2230 
2231 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2232 			goto found_fin_ok;
2233 		if (!(flags & MSG_PEEK))
2234 			sk_eat_skb(sk, skb);
2235 		continue;
2236 
2237 found_fin_ok:
2238 		/* Process the FIN. */
2239 		WRITE_ONCE(*seq, *seq + 1);
2240 		if (!(flags & MSG_PEEK))
2241 			sk_eat_skb(sk, skb);
2242 		break;
2243 	} while (len > 0);
2244 
2245 	/* According to UNIX98, msg_name/msg_namelen are ignored
2246 	 * on connected socket. I was just happy when found this 8) --ANK
2247 	 */
2248 
2249 	/* Clean up data we have read: This will do ACK frames. */
2250 	tcp_cleanup_rbuf(sk, copied);
2251 
2252 	release_sock(sk);
2253 
2254 	if (cmsg_flags) {
2255 		if (cmsg_flags & 2)
2256 			tcp_recv_timestamp(msg, sk, &tss);
2257 		if (cmsg_flags & 1) {
2258 			inq = tcp_inq_hint(sk);
2259 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2260 		}
2261 	}
2262 
2263 	return copied;
2264 
2265 out:
2266 	release_sock(sk);
2267 	return err;
2268 
2269 recv_urg:
2270 	err = tcp_recv_urg(sk, msg, len, flags);
2271 	goto out;
2272 
2273 recv_sndq:
2274 	err = tcp_peek_sndq(sk, msg, len);
2275 	goto out;
2276 }
2277 EXPORT_SYMBOL(tcp_recvmsg);
2278 
2279 void tcp_set_state(struct sock *sk, int state)
2280 {
2281 	int oldstate = sk->sk_state;
2282 
2283 	/* We defined a new enum for TCP states that are exported in BPF
2284 	 * so as not force the internal TCP states to be frozen. The
2285 	 * following checks will detect if an internal state value ever
2286 	 * differs from the BPF value. If this ever happens, then we will
2287 	 * need to remap the internal value to the BPF value before calling
2288 	 * tcp_call_bpf_2arg.
2289 	 */
2290 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2291 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2292 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2293 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2294 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2295 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2296 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2297 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2298 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2299 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2300 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2301 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2302 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2303 
2304 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2305 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2306 
2307 	switch (state) {
2308 	case TCP_ESTABLISHED:
2309 		if (oldstate != TCP_ESTABLISHED)
2310 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2311 		break;
2312 
2313 	case TCP_CLOSE:
2314 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2315 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2316 
2317 		sk->sk_prot->unhash(sk);
2318 		if (inet_csk(sk)->icsk_bind_hash &&
2319 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2320 			inet_put_port(sk);
2321 		fallthrough;
2322 	default:
2323 		if (oldstate == TCP_ESTABLISHED)
2324 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2325 	}
2326 
2327 	/* Change state AFTER socket is unhashed to avoid closed
2328 	 * socket sitting in hash tables.
2329 	 */
2330 	inet_sk_state_store(sk, state);
2331 }
2332 EXPORT_SYMBOL_GPL(tcp_set_state);
2333 
2334 /*
2335  *	State processing on a close. This implements the state shift for
2336  *	sending our FIN frame. Note that we only send a FIN for some
2337  *	states. A shutdown() may have already sent the FIN, or we may be
2338  *	closed.
2339  */
2340 
2341 static const unsigned char new_state[16] = {
2342   /* current state:        new state:      action:	*/
2343   [0 /* (Invalid) */]	= TCP_CLOSE,
2344   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2345   [TCP_SYN_SENT]	= TCP_CLOSE,
2346   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2347   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2348   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2349   [TCP_TIME_WAIT]	= TCP_CLOSE,
2350   [TCP_CLOSE]		= TCP_CLOSE,
2351   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2352   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2353   [TCP_LISTEN]		= TCP_CLOSE,
2354   [TCP_CLOSING]		= TCP_CLOSING,
2355   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2356 };
2357 
2358 static int tcp_close_state(struct sock *sk)
2359 {
2360 	int next = (int)new_state[sk->sk_state];
2361 	int ns = next & TCP_STATE_MASK;
2362 
2363 	tcp_set_state(sk, ns);
2364 
2365 	return next & TCP_ACTION_FIN;
2366 }
2367 
2368 /*
2369  *	Shutdown the sending side of a connection. Much like close except
2370  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2371  */
2372 
2373 void tcp_shutdown(struct sock *sk, int how)
2374 {
2375 	/*	We need to grab some memory, and put together a FIN,
2376 	 *	and then put it into the queue to be sent.
2377 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2378 	 */
2379 	if (!(how & SEND_SHUTDOWN))
2380 		return;
2381 
2382 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2383 	if ((1 << sk->sk_state) &
2384 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2385 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2386 		/* Clear out any half completed packets.  FIN if needed. */
2387 		if (tcp_close_state(sk))
2388 			tcp_send_fin(sk);
2389 	}
2390 }
2391 EXPORT_SYMBOL(tcp_shutdown);
2392 
2393 bool tcp_check_oom(struct sock *sk, int shift)
2394 {
2395 	bool too_many_orphans, out_of_socket_memory;
2396 
2397 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2398 	out_of_socket_memory = tcp_out_of_memory(sk);
2399 
2400 	if (too_many_orphans)
2401 		net_info_ratelimited("too many orphaned sockets\n");
2402 	if (out_of_socket_memory)
2403 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2404 	return too_many_orphans || out_of_socket_memory;
2405 }
2406 
2407 void tcp_close(struct sock *sk, long timeout)
2408 {
2409 	struct sk_buff *skb;
2410 	int data_was_unread = 0;
2411 	int state;
2412 
2413 	lock_sock(sk);
2414 	sk->sk_shutdown = SHUTDOWN_MASK;
2415 
2416 	if (sk->sk_state == TCP_LISTEN) {
2417 		tcp_set_state(sk, TCP_CLOSE);
2418 
2419 		/* Special case. */
2420 		inet_csk_listen_stop(sk);
2421 
2422 		goto adjudge_to_death;
2423 	}
2424 
2425 	/*  We need to flush the recv. buffs.  We do this only on the
2426 	 *  descriptor close, not protocol-sourced closes, because the
2427 	 *  reader process may not have drained the data yet!
2428 	 */
2429 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2430 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2431 
2432 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2433 			len--;
2434 		data_was_unread += len;
2435 		__kfree_skb(skb);
2436 	}
2437 
2438 	sk_mem_reclaim(sk);
2439 
2440 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2441 	if (sk->sk_state == TCP_CLOSE)
2442 		goto adjudge_to_death;
2443 
2444 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2445 	 * data was lost. To witness the awful effects of the old behavior of
2446 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2447 	 * GET in an FTP client, suspend the process, wait for the client to
2448 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2449 	 * Note: timeout is always zero in such a case.
2450 	 */
2451 	if (unlikely(tcp_sk(sk)->repair)) {
2452 		sk->sk_prot->disconnect(sk, 0);
2453 	} else if (data_was_unread) {
2454 		/* Unread data was tossed, zap the connection. */
2455 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2456 		tcp_set_state(sk, TCP_CLOSE);
2457 		tcp_send_active_reset(sk, sk->sk_allocation);
2458 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2459 		/* Check zero linger _after_ checking for unread data. */
2460 		sk->sk_prot->disconnect(sk, 0);
2461 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2462 	} else if (tcp_close_state(sk)) {
2463 		/* We FIN if the application ate all the data before
2464 		 * zapping the connection.
2465 		 */
2466 
2467 		/* RED-PEN. Formally speaking, we have broken TCP state
2468 		 * machine. State transitions:
2469 		 *
2470 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2471 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2472 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2473 		 *
2474 		 * are legal only when FIN has been sent (i.e. in window),
2475 		 * rather than queued out of window. Purists blame.
2476 		 *
2477 		 * F.e. "RFC state" is ESTABLISHED,
2478 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2479 		 *
2480 		 * The visible declinations are that sometimes
2481 		 * we enter time-wait state, when it is not required really
2482 		 * (harmless), do not send active resets, when they are
2483 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2484 		 * they look as CLOSING or LAST_ACK for Linux)
2485 		 * Probably, I missed some more holelets.
2486 		 * 						--ANK
2487 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2488 		 * in a single packet! (May consider it later but will
2489 		 * probably need API support or TCP_CORK SYN-ACK until
2490 		 * data is written and socket is closed.)
2491 		 */
2492 		tcp_send_fin(sk);
2493 	}
2494 
2495 	sk_stream_wait_close(sk, timeout);
2496 
2497 adjudge_to_death:
2498 	state = sk->sk_state;
2499 	sock_hold(sk);
2500 	sock_orphan(sk);
2501 
2502 	local_bh_disable();
2503 	bh_lock_sock(sk);
2504 	/* remove backlog if any, without releasing ownership. */
2505 	__release_sock(sk);
2506 
2507 	percpu_counter_inc(sk->sk_prot->orphan_count);
2508 
2509 	/* Have we already been destroyed by a softirq or backlog? */
2510 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2511 		goto out;
2512 
2513 	/*	This is a (useful) BSD violating of the RFC. There is a
2514 	 *	problem with TCP as specified in that the other end could
2515 	 *	keep a socket open forever with no application left this end.
2516 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2517 	 *	our end. If they send after that then tough - BUT: long enough
2518 	 *	that we won't make the old 4*rto = almost no time - whoops
2519 	 *	reset mistake.
2520 	 *
2521 	 *	Nope, it was not mistake. It is really desired behaviour
2522 	 *	f.e. on http servers, when such sockets are useless, but
2523 	 *	consume significant resources. Let's do it with special
2524 	 *	linger2	option.					--ANK
2525 	 */
2526 
2527 	if (sk->sk_state == TCP_FIN_WAIT2) {
2528 		struct tcp_sock *tp = tcp_sk(sk);
2529 		if (tp->linger2 < 0) {
2530 			tcp_set_state(sk, TCP_CLOSE);
2531 			tcp_send_active_reset(sk, GFP_ATOMIC);
2532 			__NET_INC_STATS(sock_net(sk),
2533 					LINUX_MIB_TCPABORTONLINGER);
2534 		} else {
2535 			const int tmo = tcp_fin_time(sk);
2536 
2537 			if (tmo > TCP_TIMEWAIT_LEN) {
2538 				inet_csk_reset_keepalive_timer(sk,
2539 						tmo - TCP_TIMEWAIT_LEN);
2540 			} else {
2541 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2542 				goto out;
2543 			}
2544 		}
2545 	}
2546 	if (sk->sk_state != TCP_CLOSE) {
2547 		sk_mem_reclaim(sk);
2548 		if (tcp_check_oom(sk, 0)) {
2549 			tcp_set_state(sk, TCP_CLOSE);
2550 			tcp_send_active_reset(sk, GFP_ATOMIC);
2551 			__NET_INC_STATS(sock_net(sk),
2552 					LINUX_MIB_TCPABORTONMEMORY);
2553 		} else if (!check_net(sock_net(sk))) {
2554 			/* Not possible to send reset; just close */
2555 			tcp_set_state(sk, TCP_CLOSE);
2556 		}
2557 	}
2558 
2559 	if (sk->sk_state == TCP_CLOSE) {
2560 		struct request_sock *req;
2561 
2562 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2563 						lockdep_sock_is_held(sk));
2564 		/* We could get here with a non-NULL req if the socket is
2565 		 * aborted (e.g., closed with unread data) before 3WHS
2566 		 * finishes.
2567 		 */
2568 		if (req)
2569 			reqsk_fastopen_remove(sk, req, false);
2570 		inet_csk_destroy_sock(sk);
2571 	}
2572 	/* Otherwise, socket is reprieved until protocol close. */
2573 
2574 out:
2575 	bh_unlock_sock(sk);
2576 	local_bh_enable();
2577 	release_sock(sk);
2578 	sock_put(sk);
2579 }
2580 EXPORT_SYMBOL(tcp_close);
2581 
2582 /* These states need RST on ABORT according to RFC793 */
2583 
2584 static inline bool tcp_need_reset(int state)
2585 {
2586 	return (1 << state) &
2587 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2588 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2589 }
2590 
2591 static void tcp_rtx_queue_purge(struct sock *sk)
2592 {
2593 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2594 
2595 	tcp_sk(sk)->highest_sack = NULL;
2596 	while (p) {
2597 		struct sk_buff *skb = rb_to_skb(p);
2598 
2599 		p = rb_next(p);
2600 		/* Since we are deleting whole queue, no need to
2601 		 * list_del(&skb->tcp_tsorted_anchor)
2602 		 */
2603 		tcp_rtx_queue_unlink(skb, sk);
2604 		sk_wmem_free_skb(sk, skb);
2605 	}
2606 }
2607 
2608 void tcp_write_queue_purge(struct sock *sk)
2609 {
2610 	struct sk_buff *skb;
2611 
2612 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2613 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2614 		tcp_skb_tsorted_anchor_cleanup(skb);
2615 		sk_wmem_free_skb(sk, skb);
2616 	}
2617 	tcp_rtx_queue_purge(sk);
2618 	skb = sk->sk_tx_skb_cache;
2619 	if (skb) {
2620 		__kfree_skb(skb);
2621 		sk->sk_tx_skb_cache = NULL;
2622 	}
2623 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2624 	sk_mem_reclaim(sk);
2625 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2626 	tcp_sk(sk)->packets_out = 0;
2627 	inet_csk(sk)->icsk_backoff = 0;
2628 }
2629 
2630 int tcp_disconnect(struct sock *sk, int flags)
2631 {
2632 	struct inet_sock *inet = inet_sk(sk);
2633 	struct inet_connection_sock *icsk = inet_csk(sk);
2634 	struct tcp_sock *tp = tcp_sk(sk);
2635 	int old_state = sk->sk_state;
2636 	u32 seq;
2637 
2638 	if (old_state != TCP_CLOSE)
2639 		tcp_set_state(sk, TCP_CLOSE);
2640 
2641 	/* ABORT function of RFC793 */
2642 	if (old_state == TCP_LISTEN) {
2643 		inet_csk_listen_stop(sk);
2644 	} else if (unlikely(tp->repair)) {
2645 		sk->sk_err = ECONNABORTED;
2646 	} else if (tcp_need_reset(old_state) ||
2647 		   (tp->snd_nxt != tp->write_seq &&
2648 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2649 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2650 		 * states
2651 		 */
2652 		tcp_send_active_reset(sk, gfp_any());
2653 		sk->sk_err = ECONNRESET;
2654 	} else if (old_state == TCP_SYN_SENT)
2655 		sk->sk_err = ECONNRESET;
2656 
2657 	tcp_clear_xmit_timers(sk);
2658 	__skb_queue_purge(&sk->sk_receive_queue);
2659 	if (sk->sk_rx_skb_cache) {
2660 		__kfree_skb(sk->sk_rx_skb_cache);
2661 		sk->sk_rx_skb_cache = NULL;
2662 	}
2663 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2664 	tp->urg_data = 0;
2665 	tcp_write_queue_purge(sk);
2666 	tcp_fastopen_active_disable_ofo_check(sk);
2667 	skb_rbtree_purge(&tp->out_of_order_queue);
2668 
2669 	inet->inet_dport = 0;
2670 
2671 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2672 		inet_reset_saddr(sk);
2673 
2674 	sk->sk_shutdown = 0;
2675 	sock_reset_flag(sk, SOCK_DONE);
2676 	tp->srtt_us = 0;
2677 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2678 	tp->rcv_rtt_last_tsecr = 0;
2679 
2680 	seq = tp->write_seq + tp->max_window + 2;
2681 	if (!seq)
2682 		seq = 1;
2683 	WRITE_ONCE(tp->write_seq, seq);
2684 
2685 	icsk->icsk_backoff = 0;
2686 	icsk->icsk_probes_out = 0;
2687 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2688 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2689 	tp->snd_cwnd = TCP_INIT_CWND;
2690 	tp->snd_cwnd_cnt = 0;
2691 	tp->window_clamp = 0;
2692 	tp->delivered = 0;
2693 	tp->delivered_ce = 0;
2694 	tcp_set_ca_state(sk, TCP_CA_Open);
2695 	tp->is_sack_reneg = 0;
2696 	tcp_clear_retrans(tp);
2697 	tp->total_retrans = 0;
2698 	inet_csk_delack_init(sk);
2699 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2700 	 * issue in __tcp_select_window()
2701 	 */
2702 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2703 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2704 	__sk_dst_reset(sk);
2705 	dst_release(sk->sk_rx_dst);
2706 	sk->sk_rx_dst = NULL;
2707 	tcp_saved_syn_free(tp);
2708 	tp->compressed_ack = 0;
2709 	tp->segs_in = 0;
2710 	tp->segs_out = 0;
2711 	tp->bytes_sent = 0;
2712 	tp->bytes_acked = 0;
2713 	tp->bytes_received = 0;
2714 	tp->bytes_retrans = 0;
2715 	tp->data_segs_in = 0;
2716 	tp->data_segs_out = 0;
2717 	tp->duplicate_sack[0].start_seq = 0;
2718 	tp->duplicate_sack[0].end_seq = 0;
2719 	tp->dsack_dups = 0;
2720 	tp->reord_seen = 0;
2721 	tp->retrans_out = 0;
2722 	tp->sacked_out = 0;
2723 	tp->tlp_high_seq = 0;
2724 	tp->last_oow_ack_time = 0;
2725 	/* There's a bubble in the pipe until at least the first ACK. */
2726 	tp->app_limited = ~0U;
2727 	tp->rack.mstamp = 0;
2728 	tp->rack.advanced = 0;
2729 	tp->rack.reo_wnd_steps = 1;
2730 	tp->rack.last_delivered = 0;
2731 	tp->rack.reo_wnd_persist = 0;
2732 	tp->rack.dsack_seen = 0;
2733 	tp->syn_data_acked = 0;
2734 	tp->rx_opt.saw_tstamp = 0;
2735 	tp->rx_opt.dsack = 0;
2736 	tp->rx_opt.num_sacks = 0;
2737 	tp->rcv_ooopack = 0;
2738 
2739 
2740 	/* Clean up fastopen related fields */
2741 	tcp_free_fastopen_req(tp);
2742 	inet->defer_connect = 0;
2743 	tp->fastopen_client_fail = 0;
2744 
2745 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2746 
2747 	if (sk->sk_frag.page) {
2748 		put_page(sk->sk_frag.page);
2749 		sk->sk_frag.page = NULL;
2750 		sk->sk_frag.offset = 0;
2751 	}
2752 
2753 	sk->sk_error_report(sk);
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL(tcp_disconnect);
2757 
2758 static inline bool tcp_can_repair_sock(const struct sock *sk)
2759 {
2760 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2761 		(sk->sk_state != TCP_LISTEN);
2762 }
2763 
2764 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2765 {
2766 	struct tcp_repair_window opt;
2767 
2768 	if (!tp->repair)
2769 		return -EPERM;
2770 
2771 	if (len != sizeof(opt))
2772 		return -EINVAL;
2773 
2774 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2775 		return -EFAULT;
2776 
2777 	if (opt.max_window < opt.snd_wnd)
2778 		return -EINVAL;
2779 
2780 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2781 		return -EINVAL;
2782 
2783 	if (after(opt.rcv_wup, tp->rcv_nxt))
2784 		return -EINVAL;
2785 
2786 	tp->snd_wl1	= opt.snd_wl1;
2787 	tp->snd_wnd	= opt.snd_wnd;
2788 	tp->max_window	= opt.max_window;
2789 
2790 	tp->rcv_wnd	= opt.rcv_wnd;
2791 	tp->rcv_wup	= opt.rcv_wup;
2792 
2793 	return 0;
2794 }
2795 
2796 static int tcp_repair_options_est(struct sock *sk,
2797 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2798 {
2799 	struct tcp_sock *tp = tcp_sk(sk);
2800 	struct tcp_repair_opt opt;
2801 
2802 	while (len >= sizeof(opt)) {
2803 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2804 			return -EFAULT;
2805 
2806 		optbuf++;
2807 		len -= sizeof(opt);
2808 
2809 		switch (opt.opt_code) {
2810 		case TCPOPT_MSS:
2811 			tp->rx_opt.mss_clamp = opt.opt_val;
2812 			tcp_mtup_init(sk);
2813 			break;
2814 		case TCPOPT_WINDOW:
2815 			{
2816 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2817 				u16 rcv_wscale = opt.opt_val >> 16;
2818 
2819 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2820 					return -EFBIG;
2821 
2822 				tp->rx_opt.snd_wscale = snd_wscale;
2823 				tp->rx_opt.rcv_wscale = rcv_wscale;
2824 				tp->rx_opt.wscale_ok = 1;
2825 			}
2826 			break;
2827 		case TCPOPT_SACK_PERM:
2828 			if (opt.opt_val != 0)
2829 				return -EINVAL;
2830 
2831 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2832 			break;
2833 		case TCPOPT_TIMESTAMP:
2834 			if (opt.opt_val != 0)
2835 				return -EINVAL;
2836 
2837 			tp->rx_opt.tstamp_ok = 1;
2838 			break;
2839 		}
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2846 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2847 
2848 static void tcp_enable_tx_delay(void)
2849 {
2850 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2851 		static int __tcp_tx_delay_enabled = 0;
2852 
2853 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2854 			static_branch_enable(&tcp_tx_delay_enabled);
2855 			pr_info("TCP_TX_DELAY enabled\n");
2856 		}
2857 	}
2858 }
2859 
2860 /* When set indicates to always queue non-full frames.  Later the user clears
2861  * this option and we transmit any pending partial frames in the queue.  This is
2862  * meant to be used alongside sendfile() to get properly filled frames when the
2863  * user (for example) must write out headers with a write() call first and then
2864  * use sendfile to send out the data parts.
2865  *
2866  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2867  * TCP_NODELAY.
2868  */
2869 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2870 {
2871 	struct tcp_sock *tp = tcp_sk(sk);
2872 
2873 	if (on) {
2874 		tp->nonagle |= TCP_NAGLE_CORK;
2875 	} else {
2876 		tp->nonagle &= ~TCP_NAGLE_CORK;
2877 		if (tp->nonagle & TCP_NAGLE_OFF)
2878 			tp->nonagle |= TCP_NAGLE_PUSH;
2879 		tcp_push_pending_frames(sk);
2880 	}
2881 }
2882 
2883 void tcp_sock_set_cork(struct sock *sk, bool on)
2884 {
2885 	lock_sock(sk);
2886 	__tcp_sock_set_cork(sk, on);
2887 	release_sock(sk);
2888 }
2889 EXPORT_SYMBOL(tcp_sock_set_cork);
2890 
2891 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
2892  * remembered, but it is not activated until cork is cleared.
2893  *
2894  * However, when TCP_NODELAY is set we make an explicit push, which overrides
2895  * even TCP_CORK for currently queued segments.
2896  */
2897 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
2898 {
2899 	if (on) {
2900 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2901 		tcp_push_pending_frames(sk);
2902 	} else {
2903 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
2904 	}
2905 }
2906 
2907 void tcp_sock_set_nodelay(struct sock *sk)
2908 {
2909 	lock_sock(sk);
2910 	__tcp_sock_set_nodelay(sk, true);
2911 	release_sock(sk);
2912 }
2913 EXPORT_SYMBOL(tcp_sock_set_nodelay);
2914 
2915 static void __tcp_sock_set_quickack(struct sock *sk, int val)
2916 {
2917 	if (!val) {
2918 		inet_csk_enter_pingpong_mode(sk);
2919 		return;
2920 	}
2921 
2922 	inet_csk_exit_pingpong_mode(sk);
2923 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2924 	    inet_csk_ack_scheduled(sk)) {
2925 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
2926 		tcp_cleanup_rbuf(sk, 1);
2927 		if (!(val & 1))
2928 			inet_csk_enter_pingpong_mode(sk);
2929 	}
2930 }
2931 
2932 void tcp_sock_set_quickack(struct sock *sk, int val)
2933 {
2934 	lock_sock(sk);
2935 	__tcp_sock_set_quickack(sk, val);
2936 	release_sock(sk);
2937 }
2938 EXPORT_SYMBOL(tcp_sock_set_quickack);
2939 
2940 int tcp_sock_set_syncnt(struct sock *sk, int val)
2941 {
2942 	if (val < 1 || val > MAX_TCP_SYNCNT)
2943 		return -EINVAL;
2944 
2945 	lock_sock(sk);
2946 	inet_csk(sk)->icsk_syn_retries = val;
2947 	release_sock(sk);
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(tcp_sock_set_syncnt);
2951 
2952 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
2953 {
2954 	lock_sock(sk);
2955 	inet_csk(sk)->icsk_user_timeout = val;
2956 	release_sock(sk);
2957 }
2958 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
2959 
2960 static int __tcp_sock_set_keepidle(struct sock *sk, int val)
2961 {
2962 	struct tcp_sock *tp = tcp_sk(sk);
2963 
2964 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
2965 		return -EINVAL;
2966 
2967 	tp->keepalive_time = val * HZ;
2968 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
2969 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
2970 		u32 elapsed = keepalive_time_elapsed(tp);
2971 
2972 		if (tp->keepalive_time > elapsed)
2973 			elapsed = tp->keepalive_time - elapsed;
2974 		else
2975 			elapsed = 0;
2976 		inet_csk_reset_keepalive_timer(sk, elapsed);
2977 	}
2978 
2979 	return 0;
2980 }
2981 
2982 int tcp_sock_set_keepidle(struct sock *sk, int val)
2983 {
2984 	int err;
2985 
2986 	lock_sock(sk);
2987 	err = __tcp_sock_set_keepidle(sk, val);
2988 	release_sock(sk);
2989 	return err;
2990 }
2991 EXPORT_SYMBOL(tcp_sock_set_keepidle);
2992 
2993 int tcp_sock_set_keepintvl(struct sock *sk, int val)
2994 {
2995 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
2996 		return -EINVAL;
2997 
2998 	lock_sock(sk);
2999 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3000 	release_sock(sk);
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3004 
3005 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3006 {
3007 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3008 		return -EINVAL;
3009 
3010 	lock_sock(sk);
3011 	tcp_sk(sk)->keepalive_probes = val;
3012 	release_sock(sk);
3013 	return 0;
3014 }
3015 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3016 
3017 /*
3018  *	Socket option code for TCP.
3019  */
3020 static int do_tcp_setsockopt(struct sock *sk, int level,
3021 		int optname, char __user *optval, unsigned int optlen)
3022 {
3023 	struct tcp_sock *tp = tcp_sk(sk);
3024 	struct inet_connection_sock *icsk = inet_csk(sk);
3025 	struct net *net = sock_net(sk);
3026 	int val;
3027 	int err = 0;
3028 
3029 	/* These are data/string values, all the others are ints */
3030 	switch (optname) {
3031 	case TCP_CONGESTION: {
3032 		char name[TCP_CA_NAME_MAX];
3033 
3034 		if (optlen < 1)
3035 			return -EINVAL;
3036 
3037 		val = strncpy_from_user(name, optval,
3038 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3039 		if (val < 0)
3040 			return -EFAULT;
3041 		name[val] = 0;
3042 
3043 		lock_sock(sk);
3044 		err = tcp_set_congestion_control(sk, name, true, true,
3045 						 ns_capable(sock_net(sk)->user_ns,
3046 							    CAP_NET_ADMIN));
3047 		release_sock(sk);
3048 		return err;
3049 	}
3050 	case TCP_ULP: {
3051 		char name[TCP_ULP_NAME_MAX];
3052 
3053 		if (optlen < 1)
3054 			return -EINVAL;
3055 
3056 		val = strncpy_from_user(name, optval,
3057 					min_t(long, TCP_ULP_NAME_MAX - 1,
3058 					      optlen));
3059 		if (val < 0)
3060 			return -EFAULT;
3061 		name[val] = 0;
3062 
3063 		lock_sock(sk);
3064 		err = tcp_set_ulp(sk, name);
3065 		release_sock(sk);
3066 		return err;
3067 	}
3068 	case TCP_FASTOPEN_KEY: {
3069 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3070 		__u8 *backup_key = NULL;
3071 
3072 		/* Allow a backup key as well to facilitate key rotation
3073 		 * First key is the active one.
3074 		 */
3075 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3076 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3077 			return -EINVAL;
3078 
3079 		if (copy_from_user(key, optval, optlen))
3080 			return -EFAULT;
3081 
3082 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3083 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3084 
3085 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3086 	}
3087 	default:
3088 		/* fallthru */
3089 		break;
3090 	}
3091 
3092 	if (optlen < sizeof(int))
3093 		return -EINVAL;
3094 
3095 	if (get_user(val, (int __user *)optval))
3096 		return -EFAULT;
3097 
3098 	lock_sock(sk);
3099 
3100 	switch (optname) {
3101 	case TCP_MAXSEG:
3102 		/* Values greater than interface MTU won't take effect. However
3103 		 * at the point when this call is done we typically don't yet
3104 		 * know which interface is going to be used
3105 		 */
3106 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3107 			err = -EINVAL;
3108 			break;
3109 		}
3110 		tp->rx_opt.user_mss = val;
3111 		break;
3112 
3113 	case TCP_NODELAY:
3114 		__tcp_sock_set_nodelay(sk, val);
3115 		break;
3116 
3117 	case TCP_THIN_LINEAR_TIMEOUTS:
3118 		if (val < 0 || val > 1)
3119 			err = -EINVAL;
3120 		else
3121 			tp->thin_lto = val;
3122 		break;
3123 
3124 	case TCP_THIN_DUPACK:
3125 		if (val < 0 || val > 1)
3126 			err = -EINVAL;
3127 		break;
3128 
3129 	case TCP_REPAIR:
3130 		if (!tcp_can_repair_sock(sk))
3131 			err = -EPERM;
3132 		else if (val == TCP_REPAIR_ON) {
3133 			tp->repair = 1;
3134 			sk->sk_reuse = SK_FORCE_REUSE;
3135 			tp->repair_queue = TCP_NO_QUEUE;
3136 		} else if (val == TCP_REPAIR_OFF) {
3137 			tp->repair = 0;
3138 			sk->sk_reuse = SK_NO_REUSE;
3139 			tcp_send_window_probe(sk);
3140 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3141 			tp->repair = 0;
3142 			sk->sk_reuse = SK_NO_REUSE;
3143 		} else
3144 			err = -EINVAL;
3145 
3146 		break;
3147 
3148 	case TCP_REPAIR_QUEUE:
3149 		if (!tp->repair)
3150 			err = -EPERM;
3151 		else if ((unsigned int)val < TCP_QUEUES_NR)
3152 			tp->repair_queue = val;
3153 		else
3154 			err = -EINVAL;
3155 		break;
3156 
3157 	case TCP_QUEUE_SEQ:
3158 		if (sk->sk_state != TCP_CLOSE)
3159 			err = -EPERM;
3160 		else if (tp->repair_queue == TCP_SEND_QUEUE)
3161 			WRITE_ONCE(tp->write_seq, val);
3162 		else if (tp->repair_queue == TCP_RECV_QUEUE) {
3163 			WRITE_ONCE(tp->rcv_nxt, val);
3164 			WRITE_ONCE(tp->copied_seq, val);
3165 		}
3166 		else
3167 			err = -EINVAL;
3168 		break;
3169 
3170 	case TCP_REPAIR_OPTIONS:
3171 		if (!tp->repair)
3172 			err = -EINVAL;
3173 		else if (sk->sk_state == TCP_ESTABLISHED)
3174 			err = tcp_repair_options_est(sk,
3175 					(struct tcp_repair_opt __user *)optval,
3176 					optlen);
3177 		else
3178 			err = -EPERM;
3179 		break;
3180 
3181 	case TCP_CORK:
3182 		__tcp_sock_set_cork(sk, val);
3183 		break;
3184 
3185 	case TCP_KEEPIDLE:
3186 		err = __tcp_sock_set_keepidle(sk, val);
3187 		break;
3188 	case TCP_KEEPINTVL:
3189 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3190 			err = -EINVAL;
3191 		else
3192 			tp->keepalive_intvl = val * HZ;
3193 		break;
3194 	case TCP_KEEPCNT:
3195 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3196 			err = -EINVAL;
3197 		else
3198 			tp->keepalive_probes = val;
3199 		break;
3200 	case TCP_SYNCNT:
3201 		if (val < 1 || val > MAX_TCP_SYNCNT)
3202 			err = -EINVAL;
3203 		else
3204 			icsk->icsk_syn_retries = val;
3205 		break;
3206 
3207 	case TCP_SAVE_SYN:
3208 		if (val < 0 || val > 1)
3209 			err = -EINVAL;
3210 		else
3211 			tp->save_syn = val;
3212 		break;
3213 
3214 	case TCP_LINGER2:
3215 		if (val < 0)
3216 			tp->linger2 = -1;
3217 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3218 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3219 		else
3220 			tp->linger2 = val * HZ;
3221 		break;
3222 
3223 	case TCP_DEFER_ACCEPT:
3224 		/* Translate value in seconds to number of retransmits */
3225 		icsk->icsk_accept_queue.rskq_defer_accept =
3226 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3227 					TCP_RTO_MAX / HZ);
3228 		break;
3229 
3230 	case TCP_WINDOW_CLAMP:
3231 		if (!val) {
3232 			if (sk->sk_state != TCP_CLOSE) {
3233 				err = -EINVAL;
3234 				break;
3235 			}
3236 			tp->window_clamp = 0;
3237 		} else
3238 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3239 						SOCK_MIN_RCVBUF / 2 : val;
3240 		break;
3241 
3242 	case TCP_QUICKACK:
3243 		__tcp_sock_set_quickack(sk, val);
3244 		break;
3245 
3246 #ifdef CONFIG_TCP_MD5SIG
3247 	case TCP_MD5SIG:
3248 	case TCP_MD5SIG_EXT:
3249 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3250 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3251 		else
3252 			err = -EINVAL;
3253 		break;
3254 #endif
3255 	case TCP_USER_TIMEOUT:
3256 		/* Cap the max time in ms TCP will retry or probe the window
3257 		 * before giving up and aborting (ETIMEDOUT) a connection.
3258 		 */
3259 		if (val < 0)
3260 			err = -EINVAL;
3261 		else
3262 			icsk->icsk_user_timeout = val;
3263 		break;
3264 
3265 	case TCP_FASTOPEN:
3266 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3267 		    TCPF_LISTEN))) {
3268 			tcp_fastopen_init_key_once(net);
3269 
3270 			fastopen_queue_tune(sk, val);
3271 		} else {
3272 			err = -EINVAL;
3273 		}
3274 		break;
3275 	case TCP_FASTOPEN_CONNECT:
3276 		if (val > 1 || val < 0) {
3277 			err = -EINVAL;
3278 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3279 			if (sk->sk_state == TCP_CLOSE)
3280 				tp->fastopen_connect = val;
3281 			else
3282 				err = -EINVAL;
3283 		} else {
3284 			err = -EOPNOTSUPP;
3285 		}
3286 		break;
3287 	case TCP_FASTOPEN_NO_COOKIE:
3288 		if (val > 1 || val < 0)
3289 			err = -EINVAL;
3290 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3291 			err = -EINVAL;
3292 		else
3293 			tp->fastopen_no_cookie = val;
3294 		break;
3295 	case TCP_TIMESTAMP:
3296 		if (!tp->repair)
3297 			err = -EPERM;
3298 		else
3299 			tp->tsoffset = val - tcp_time_stamp_raw();
3300 		break;
3301 	case TCP_REPAIR_WINDOW:
3302 		err = tcp_repair_set_window(tp, optval, optlen);
3303 		break;
3304 	case TCP_NOTSENT_LOWAT:
3305 		tp->notsent_lowat = val;
3306 		sk->sk_write_space(sk);
3307 		break;
3308 	case TCP_INQ:
3309 		if (val > 1 || val < 0)
3310 			err = -EINVAL;
3311 		else
3312 			tp->recvmsg_inq = val;
3313 		break;
3314 	case TCP_TX_DELAY:
3315 		if (val)
3316 			tcp_enable_tx_delay();
3317 		tp->tcp_tx_delay = val;
3318 		break;
3319 	default:
3320 		err = -ENOPROTOOPT;
3321 		break;
3322 	}
3323 
3324 	release_sock(sk);
3325 	return err;
3326 }
3327 
3328 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3329 		   unsigned int optlen)
3330 {
3331 	const struct inet_connection_sock *icsk = inet_csk(sk);
3332 
3333 	if (level != SOL_TCP)
3334 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3335 						     optval, optlen);
3336 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3337 }
3338 EXPORT_SYMBOL(tcp_setsockopt);
3339 
3340 #ifdef CONFIG_COMPAT
3341 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3342 			  char __user *optval, unsigned int optlen)
3343 {
3344 	if (level != SOL_TCP)
3345 		return inet_csk_compat_setsockopt(sk, level, optname,
3346 						  optval, optlen);
3347 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3348 }
3349 EXPORT_SYMBOL(compat_tcp_setsockopt);
3350 #endif
3351 
3352 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3353 				      struct tcp_info *info)
3354 {
3355 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3356 	enum tcp_chrono i;
3357 
3358 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3359 		stats[i] = tp->chrono_stat[i - 1];
3360 		if (i == tp->chrono_type)
3361 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3362 		stats[i] *= USEC_PER_SEC / HZ;
3363 		total += stats[i];
3364 	}
3365 
3366 	info->tcpi_busy_time = total;
3367 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3368 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3369 }
3370 
3371 /* Return information about state of tcp endpoint in API format. */
3372 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3373 {
3374 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3375 	const struct inet_connection_sock *icsk = inet_csk(sk);
3376 	unsigned long rate;
3377 	u32 now;
3378 	u64 rate64;
3379 	bool slow;
3380 
3381 	memset(info, 0, sizeof(*info));
3382 	if (sk->sk_type != SOCK_STREAM)
3383 		return;
3384 
3385 	info->tcpi_state = inet_sk_state_load(sk);
3386 
3387 	/* Report meaningful fields for all TCP states, including listeners */
3388 	rate = READ_ONCE(sk->sk_pacing_rate);
3389 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3390 	info->tcpi_pacing_rate = rate64;
3391 
3392 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3393 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3394 	info->tcpi_max_pacing_rate = rate64;
3395 
3396 	info->tcpi_reordering = tp->reordering;
3397 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3398 
3399 	if (info->tcpi_state == TCP_LISTEN) {
3400 		/* listeners aliased fields :
3401 		 * tcpi_unacked -> Number of children ready for accept()
3402 		 * tcpi_sacked  -> max backlog
3403 		 */
3404 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3405 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3406 		return;
3407 	}
3408 
3409 	slow = lock_sock_fast(sk);
3410 
3411 	info->tcpi_ca_state = icsk->icsk_ca_state;
3412 	info->tcpi_retransmits = icsk->icsk_retransmits;
3413 	info->tcpi_probes = icsk->icsk_probes_out;
3414 	info->tcpi_backoff = icsk->icsk_backoff;
3415 
3416 	if (tp->rx_opt.tstamp_ok)
3417 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3418 	if (tcp_is_sack(tp))
3419 		info->tcpi_options |= TCPI_OPT_SACK;
3420 	if (tp->rx_opt.wscale_ok) {
3421 		info->tcpi_options |= TCPI_OPT_WSCALE;
3422 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3423 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3424 	}
3425 
3426 	if (tp->ecn_flags & TCP_ECN_OK)
3427 		info->tcpi_options |= TCPI_OPT_ECN;
3428 	if (tp->ecn_flags & TCP_ECN_SEEN)
3429 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3430 	if (tp->syn_data_acked)
3431 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3432 
3433 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3434 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3435 	info->tcpi_snd_mss = tp->mss_cache;
3436 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3437 
3438 	info->tcpi_unacked = tp->packets_out;
3439 	info->tcpi_sacked = tp->sacked_out;
3440 
3441 	info->tcpi_lost = tp->lost_out;
3442 	info->tcpi_retrans = tp->retrans_out;
3443 
3444 	now = tcp_jiffies32;
3445 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3446 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3447 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3448 
3449 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3450 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3451 	info->tcpi_rtt = tp->srtt_us >> 3;
3452 	info->tcpi_rttvar = tp->mdev_us >> 2;
3453 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3454 	info->tcpi_advmss = tp->advmss;
3455 
3456 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3457 	info->tcpi_rcv_space = tp->rcvq_space.space;
3458 
3459 	info->tcpi_total_retrans = tp->total_retrans;
3460 
3461 	info->tcpi_bytes_acked = tp->bytes_acked;
3462 	info->tcpi_bytes_received = tp->bytes_received;
3463 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3464 	tcp_get_info_chrono_stats(tp, info);
3465 
3466 	info->tcpi_segs_out = tp->segs_out;
3467 	info->tcpi_segs_in = tp->segs_in;
3468 
3469 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3470 	info->tcpi_data_segs_in = tp->data_segs_in;
3471 	info->tcpi_data_segs_out = tp->data_segs_out;
3472 
3473 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3474 	rate64 = tcp_compute_delivery_rate(tp);
3475 	if (rate64)
3476 		info->tcpi_delivery_rate = rate64;
3477 	info->tcpi_delivered = tp->delivered;
3478 	info->tcpi_delivered_ce = tp->delivered_ce;
3479 	info->tcpi_bytes_sent = tp->bytes_sent;
3480 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3481 	info->tcpi_dsack_dups = tp->dsack_dups;
3482 	info->tcpi_reord_seen = tp->reord_seen;
3483 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3484 	info->tcpi_snd_wnd = tp->snd_wnd;
3485 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3486 	unlock_sock_fast(sk, slow);
3487 }
3488 EXPORT_SYMBOL_GPL(tcp_get_info);
3489 
3490 static size_t tcp_opt_stats_get_size(void)
3491 {
3492 	return
3493 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3494 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3495 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3496 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3497 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3498 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3499 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3500 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3501 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3502 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3503 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3504 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3505 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3506 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3507 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3508 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3509 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3510 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3511 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3512 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3513 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3514 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3515 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3516 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3517 		0;
3518 }
3519 
3520 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3521 {
3522 	const struct tcp_sock *tp = tcp_sk(sk);
3523 	struct sk_buff *stats;
3524 	struct tcp_info info;
3525 	unsigned long rate;
3526 	u64 rate64;
3527 
3528 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3529 	if (!stats)
3530 		return NULL;
3531 
3532 	tcp_get_info_chrono_stats(tp, &info);
3533 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3534 			  info.tcpi_busy_time, TCP_NLA_PAD);
3535 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3536 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3537 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3538 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3539 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3540 			  tp->data_segs_out, TCP_NLA_PAD);
3541 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3542 			  tp->total_retrans, TCP_NLA_PAD);
3543 
3544 	rate = READ_ONCE(sk->sk_pacing_rate);
3545 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3546 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3547 
3548 	rate64 = tcp_compute_delivery_rate(tp);
3549 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3550 
3551 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3552 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3553 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3554 
3555 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3556 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3557 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3558 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3559 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3560 
3561 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3562 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3563 
3564 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3565 			  TCP_NLA_PAD);
3566 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3567 			  TCP_NLA_PAD);
3568 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3569 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3570 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3571 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3572 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3573 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3574 
3575 	return stats;
3576 }
3577 
3578 static int do_tcp_getsockopt(struct sock *sk, int level,
3579 		int optname, char __user *optval, int __user *optlen)
3580 {
3581 	struct inet_connection_sock *icsk = inet_csk(sk);
3582 	struct tcp_sock *tp = tcp_sk(sk);
3583 	struct net *net = sock_net(sk);
3584 	int val, len;
3585 
3586 	if (get_user(len, optlen))
3587 		return -EFAULT;
3588 
3589 	len = min_t(unsigned int, len, sizeof(int));
3590 
3591 	if (len < 0)
3592 		return -EINVAL;
3593 
3594 	switch (optname) {
3595 	case TCP_MAXSEG:
3596 		val = tp->mss_cache;
3597 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3598 			val = tp->rx_opt.user_mss;
3599 		if (tp->repair)
3600 			val = tp->rx_opt.mss_clamp;
3601 		break;
3602 	case TCP_NODELAY:
3603 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3604 		break;
3605 	case TCP_CORK:
3606 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3607 		break;
3608 	case TCP_KEEPIDLE:
3609 		val = keepalive_time_when(tp) / HZ;
3610 		break;
3611 	case TCP_KEEPINTVL:
3612 		val = keepalive_intvl_when(tp) / HZ;
3613 		break;
3614 	case TCP_KEEPCNT:
3615 		val = keepalive_probes(tp);
3616 		break;
3617 	case TCP_SYNCNT:
3618 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3619 		break;
3620 	case TCP_LINGER2:
3621 		val = tp->linger2;
3622 		if (val >= 0)
3623 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3624 		break;
3625 	case TCP_DEFER_ACCEPT:
3626 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3627 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3628 		break;
3629 	case TCP_WINDOW_CLAMP:
3630 		val = tp->window_clamp;
3631 		break;
3632 	case TCP_INFO: {
3633 		struct tcp_info info;
3634 
3635 		if (get_user(len, optlen))
3636 			return -EFAULT;
3637 
3638 		tcp_get_info(sk, &info);
3639 
3640 		len = min_t(unsigned int, len, sizeof(info));
3641 		if (put_user(len, optlen))
3642 			return -EFAULT;
3643 		if (copy_to_user(optval, &info, len))
3644 			return -EFAULT;
3645 		return 0;
3646 	}
3647 	case TCP_CC_INFO: {
3648 		const struct tcp_congestion_ops *ca_ops;
3649 		union tcp_cc_info info;
3650 		size_t sz = 0;
3651 		int attr;
3652 
3653 		if (get_user(len, optlen))
3654 			return -EFAULT;
3655 
3656 		ca_ops = icsk->icsk_ca_ops;
3657 		if (ca_ops && ca_ops->get_info)
3658 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3659 
3660 		len = min_t(unsigned int, len, sz);
3661 		if (put_user(len, optlen))
3662 			return -EFAULT;
3663 		if (copy_to_user(optval, &info, len))
3664 			return -EFAULT;
3665 		return 0;
3666 	}
3667 	case TCP_QUICKACK:
3668 		val = !inet_csk_in_pingpong_mode(sk);
3669 		break;
3670 
3671 	case TCP_CONGESTION:
3672 		if (get_user(len, optlen))
3673 			return -EFAULT;
3674 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3675 		if (put_user(len, optlen))
3676 			return -EFAULT;
3677 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3678 			return -EFAULT;
3679 		return 0;
3680 
3681 	case TCP_ULP:
3682 		if (get_user(len, optlen))
3683 			return -EFAULT;
3684 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3685 		if (!icsk->icsk_ulp_ops) {
3686 			if (put_user(0, optlen))
3687 				return -EFAULT;
3688 			return 0;
3689 		}
3690 		if (put_user(len, optlen))
3691 			return -EFAULT;
3692 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3693 			return -EFAULT;
3694 		return 0;
3695 
3696 	case TCP_FASTOPEN_KEY: {
3697 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3698 		struct tcp_fastopen_context *ctx;
3699 		unsigned int key_len = 0;
3700 
3701 		if (get_user(len, optlen))
3702 			return -EFAULT;
3703 
3704 		rcu_read_lock();
3705 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3706 		if (ctx) {
3707 			key_len = tcp_fastopen_context_len(ctx) *
3708 					TCP_FASTOPEN_KEY_LENGTH;
3709 			memcpy(&key[0], &ctx->key[0], key_len);
3710 		}
3711 		rcu_read_unlock();
3712 
3713 		len = min_t(unsigned int, len, key_len);
3714 		if (put_user(len, optlen))
3715 			return -EFAULT;
3716 		if (copy_to_user(optval, key, len))
3717 			return -EFAULT;
3718 		return 0;
3719 	}
3720 	case TCP_THIN_LINEAR_TIMEOUTS:
3721 		val = tp->thin_lto;
3722 		break;
3723 
3724 	case TCP_THIN_DUPACK:
3725 		val = 0;
3726 		break;
3727 
3728 	case TCP_REPAIR:
3729 		val = tp->repair;
3730 		break;
3731 
3732 	case TCP_REPAIR_QUEUE:
3733 		if (tp->repair)
3734 			val = tp->repair_queue;
3735 		else
3736 			return -EINVAL;
3737 		break;
3738 
3739 	case TCP_REPAIR_WINDOW: {
3740 		struct tcp_repair_window opt;
3741 
3742 		if (get_user(len, optlen))
3743 			return -EFAULT;
3744 
3745 		if (len != sizeof(opt))
3746 			return -EINVAL;
3747 
3748 		if (!tp->repair)
3749 			return -EPERM;
3750 
3751 		opt.snd_wl1	= tp->snd_wl1;
3752 		opt.snd_wnd	= tp->snd_wnd;
3753 		opt.max_window	= tp->max_window;
3754 		opt.rcv_wnd	= tp->rcv_wnd;
3755 		opt.rcv_wup	= tp->rcv_wup;
3756 
3757 		if (copy_to_user(optval, &opt, len))
3758 			return -EFAULT;
3759 		return 0;
3760 	}
3761 	case TCP_QUEUE_SEQ:
3762 		if (tp->repair_queue == TCP_SEND_QUEUE)
3763 			val = tp->write_seq;
3764 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3765 			val = tp->rcv_nxt;
3766 		else
3767 			return -EINVAL;
3768 		break;
3769 
3770 	case TCP_USER_TIMEOUT:
3771 		val = icsk->icsk_user_timeout;
3772 		break;
3773 
3774 	case TCP_FASTOPEN:
3775 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3776 		break;
3777 
3778 	case TCP_FASTOPEN_CONNECT:
3779 		val = tp->fastopen_connect;
3780 		break;
3781 
3782 	case TCP_FASTOPEN_NO_COOKIE:
3783 		val = tp->fastopen_no_cookie;
3784 		break;
3785 
3786 	case TCP_TX_DELAY:
3787 		val = tp->tcp_tx_delay;
3788 		break;
3789 
3790 	case TCP_TIMESTAMP:
3791 		val = tcp_time_stamp_raw() + tp->tsoffset;
3792 		break;
3793 	case TCP_NOTSENT_LOWAT:
3794 		val = tp->notsent_lowat;
3795 		break;
3796 	case TCP_INQ:
3797 		val = tp->recvmsg_inq;
3798 		break;
3799 	case TCP_SAVE_SYN:
3800 		val = tp->save_syn;
3801 		break;
3802 	case TCP_SAVED_SYN: {
3803 		if (get_user(len, optlen))
3804 			return -EFAULT;
3805 
3806 		lock_sock(sk);
3807 		if (tp->saved_syn) {
3808 			if (len < tp->saved_syn[0]) {
3809 				if (put_user(tp->saved_syn[0], optlen)) {
3810 					release_sock(sk);
3811 					return -EFAULT;
3812 				}
3813 				release_sock(sk);
3814 				return -EINVAL;
3815 			}
3816 			len = tp->saved_syn[0];
3817 			if (put_user(len, optlen)) {
3818 				release_sock(sk);
3819 				return -EFAULT;
3820 			}
3821 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3822 				release_sock(sk);
3823 				return -EFAULT;
3824 			}
3825 			tcp_saved_syn_free(tp);
3826 			release_sock(sk);
3827 		} else {
3828 			release_sock(sk);
3829 			len = 0;
3830 			if (put_user(len, optlen))
3831 				return -EFAULT;
3832 		}
3833 		return 0;
3834 	}
3835 #ifdef CONFIG_MMU
3836 	case TCP_ZEROCOPY_RECEIVE: {
3837 		struct tcp_zerocopy_receive zc;
3838 		int err;
3839 
3840 		if (get_user(len, optlen))
3841 			return -EFAULT;
3842 		if (len < offsetofend(struct tcp_zerocopy_receive, length))
3843 			return -EINVAL;
3844 		if (len > sizeof(zc)) {
3845 			len = sizeof(zc);
3846 			if (put_user(len, optlen))
3847 				return -EFAULT;
3848 		}
3849 		if (copy_from_user(&zc, optval, len))
3850 			return -EFAULT;
3851 		lock_sock(sk);
3852 		err = tcp_zerocopy_receive(sk, &zc);
3853 		release_sock(sk);
3854 		if (len == sizeof(zc))
3855 			goto zerocopy_rcv_sk_err;
3856 		switch (len) {
3857 		case offsetofend(struct tcp_zerocopy_receive, err):
3858 			goto zerocopy_rcv_sk_err;
3859 		case offsetofend(struct tcp_zerocopy_receive, inq):
3860 			goto zerocopy_rcv_inq;
3861 		case offsetofend(struct tcp_zerocopy_receive, length):
3862 		default:
3863 			goto zerocopy_rcv_out;
3864 		}
3865 zerocopy_rcv_sk_err:
3866 		if (!err)
3867 			zc.err = sock_error(sk);
3868 zerocopy_rcv_inq:
3869 		zc.inq = tcp_inq_hint(sk);
3870 zerocopy_rcv_out:
3871 		if (!err && copy_to_user(optval, &zc, len))
3872 			err = -EFAULT;
3873 		return err;
3874 	}
3875 #endif
3876 	default:
3877 		return -ENOPROTOOPT;
3878 	}
3879 
3880 	if (put_user(len, optlen))
3881 		return -EFAULT;
3882 	if (copy_to_user(optval, &val, len))
3883 		return -EFAULT;
3884 	return 0;
3885 }
3886 
3887 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3888 		   int __user *optlen)
3889 {
3890 	struct inet_connection_sock *icsk = inet_csk(sk);
3891 
3892 	if (level != SOL_TCP)
3893 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3894 						     optval, optlen);
3895 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3896 }
3897 EXPORT_SYMBOL(tcp_getsockopt);
3898 
3899 #ifdef CONFIG_COMPAT
3900 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3901 			  char __user *optval, int __user *optlen)
3902 {
3903 	if (level != SOL_TCP)
3904 		return inet_csk_compat_getsockopt(sk, level, optname,
3905 						  optval, optlen);
3906 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3907 }
3908 EXPORT_SYMBOL(compat_tcp_getsockopt);
3909 #endif
3910 
3911 #ifdef CONFIG_TCP_MD5SIG
3912 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3913 static DEFINE_MUTEX(tcp_md5sig_mutex);
3914 static bool tcp_md5sig_pool_populated = false;
3915 
3916 static void __tcp_alloc_md5sig_pool(void)
3917 {
3918 	struct crypto_ahash *hash;
3919 	int cpu;
3920 
3921 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3922 	if (IS_ERR(hash))
3923 		return;
3924 
3925 	for_each_possible_cpu(cpu) {
3926 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3927 		struct ahash_request *req;
3928 
3929 		if (!scratch) {
3930 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3931 					       sizeof(struct tcphdr),
3932 					       GFP_KERNEL,
3933 					       cpu_to_node(cpu));
3934 			if (!scratch)
3935 				return;
3936 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3937 		}
3938 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3939 			continue;
3940 
3941 		req = ahash_request_alloc(hash, GFP_KERNEL);
3942 		if (!req)
3943 			return;
3944 
3945 		ahash_request_set_callback(req, 0, NULL, NULL);
3946 
3947 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3948 	}
3949 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3950 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3951 	 */
3952 	smp_wmb();
3953 	tcp_md5sig_pool_populated = true;
3954 }
3955 
3956 bool tcp_alloc_md5sig_pool(void)
3957 {
3958 	if (unlikely(!tcp_md5sig_pool_populated)) {
3959 		mutex_lock(&tcp_md5sig_mutex);
3960 
3961 		if (!tcp_md5sig_pool_populated) {
3962 			__tcp_alloc_md5sig_pool();
3963 			if (tcp_md5sig_pool_populated)
3964 				static_branch_inc(&tcp_md5_needed);
3965 		}
3966 
3967 		mutex_unlock(&tcp_md5sig_mutex);
3968 	}
3969 	return tcp_md5sig_pool_populated;
3970 }
3971 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3972 
3973 
3974 /**
3975  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3976  *
3977  *	We use percpu structure, so if we succeed, we exit with preemption
3978  *	and BH disabled, to make sure another thread or softirq handling
3979  *	wont try to get same context.
3980  */
3981 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3982 {
3983 	local_bh_disable();
3984 
3985 	if (tcp_md5sig_pool_populated) {
3986 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3987 		smp_rmb();
3988 		return this_cpu_ptr(&tcp_md5sig_pool);
3989 	}
3990 	local_bh_enable();
3991 	return NULL;
3992 }
3993 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3994 
3995 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3996 			  const struct sk_buff *skb, unsigned int header_len)
3997 {
3998 	struct scatterlist sg;
3999 	const struct tcphdr *tp = tcp_hdr(skb);
4000 	struct ahash_request *req = hp->md5_req;
4001 	unsigned int i;
4002 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4003 					   skb_headlen(skb) - header_len : 0;
4004 	const struct skb_shared_info *shi = skb_shinfo(skb);
4005 	struct sk_buff *frag_iter;
4006 
4007 	sg_init_table(&sg, 1);
4008 
4009 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4010 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4011 	if (crypto_ahash_update(req))
4012 		return 1;
4013 
4014 	for (i = 0; i < shi->nr_frags; ++i) {
4015 		const skb_frag_t *f = &shi->frags[i];
4016 		unsigned int offset = skb_frag_off(f);
4017 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4018 
4019 		sg_set_page(&sg, page, skb_frag_size(f),
4020 			    offset_in_page(offset));
4021 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4022 		if (crypto_ahash_update(req))
4023 			return 1;
4024 	}
4025 
4026 	skb_walk_frags(skb, frag_iter)
4027 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4028 			return 1;
4029 
4030 	return 0;
4031 }
4032 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4033 
4034 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4035 {
4036 	struct scatterlist sg;
4037 
4038 	sg_init_one(&sg, key->key, key->keylen);
4039 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
4040 	return crypto_ahash_update(hp->md5_req);
4041 }
4042 EXPORT_SYMBOL(tcp_md5_hash_key);
4043 
4044 #endif
4045 
4046 void tcp_done(struct sock *sk)
4047 {
4048 	struct request_sock *req;
4049 
4050 	/* We might be called with a new socket, after
4051 	 * inet_csk_prepare_forced_close() has been called
4052 	 * so we can not use lockdep_sock_is_held(sk)
4053 	 */
4054 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4055 
4056 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4057 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4058 
4059 	tcp_set_state(sk, TCP_CLOSE);
4060 	tcp_clear_xmit_timers(sk);
4061 	if (req)
4062 		reqsk_fastopen_remove(sk, req, false);
4063 
4064 	sk->sk_shutdown = SHUTDOWN_MASK;
4065 
4066 	if (!sock_flag(sk, SOCK_DEAD))
4067 		sk->sk_state_change(sk);
4068 	else
4069 		inet_csk_destroy_sock(sk);
4070 }
4071 EXPORT_SYMBOL_GPL(tcp_done);
4072 
4073 int tcp_abort(struct sock *sk, int err)
4074 {
4075 	if (!sk_fullsock(sk)) {
4076 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4077 			struct request_sock *req = inet_reqsk(sk);
4078 
4079 			local_bh_disable();
4080 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4081 			local_bh_enable();
4082 			return 0;
4083 		}
4084 		return -EOPNOTSUPP;
4085 	}
4086 
4087 	/* Don't race with userspace socket closes such as tcp_close. */
4088 	lock_sock(sk);
4089 
4090 	if (sk->sk_state == TCP_LISTEN) {
4091 		tcp_set_state(sk, TCP_CLOSE);
4092 		inet_csk_listen_stop(sk);
4093 	}
4094 
4095 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4096 	local_bh_disable();
4097 	bh_lock_sock(sk);
4098 
4099 	if (!sock_flag(sk, SOCK_DEAD)) {
4100 		sk->sk_err = err;
4101 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4102 		smp_wmb();
4103 		sk->sk_error_report(sk);
4104 		if (tcp_need_reset(sk->sk_state))
4105 			tcp_send_active_reset(sk, GFP_ATOMIC);
4106 		tcp_done(sk);
4107 	}
4108 
4109 	bh_unlock_sock(sk);
4110 	local_bh_enable();
4111 	tcp_write_queue_purge(sk);
4112 	release_sock(sk);
4113 	return 0;
4114 }
4115 EXPORT_SYMBOL_GPL(tcp_abort);
4116 
4117 extern struct tcp_congestion_ops tcp_reno;
4118 
4119 static __initdata unsigned long thash_entries;
4120 static int __init set_thash_entries(char *str)
4121 {
4122 	ssize_t ret;
4123 
4124 	if (!str)
4125 		return 0;
4126 
4127 	ret = kstrtoul(str, 0, &thash_entries);
4128 	if (ret)
4129 		return 0;
4130 
4131 	return 1;
4132 }
4133 __setup("thash_entries=", set_thash_entries);
4134 
4135 static void __init tcp_init_mem(void)
4136 {
4137 	unsigned long limit = nr_free_buffer_pages() / 16;
4138 
4139 	limit = max(limit, 128UL);
4140 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4141 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4142 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4143 }
4144 
4145 void __init tcp_init(void)
4146 {
4147 	int max_rshare, max_wshare, cnt;
4148 	unsigned long limit;
4149 	unsigned int i;
4150 
4151 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4152 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4153 		     sizeof_field(struct sk_buff, cb));
4154 
4155 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4156 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4157 	inet_hashinfo_init(&tcp_hashinfo);
4158 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4159 			    thash_entries, 21,  /* one slot per 2 MB*/
4160 			    0, 64 * 1024);
4161 	tcp_hashinfo.bind_bucket_cachep =
4162 		kmem_cache_create("tcp_bind_bucket",
4163 				  sizeof(struct inet_bind_bucket), 0,
4164 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4165 
4166 	/* Size and allocate the main established and bind bucket
4167 	 * hash tables.
4168 	 *
4169 	 * The methodology is similar to that of the buffer cache.
4170 	 */
4171 	tcp_hashinfo.ehash =
4172 		alloc_large_system_hash("TCP established",
4173 					sizeof(struct inet_ehash_bucket),
4174 					thash_entries,
4175 					17, /* one slot per 128 KB of memory */
4176 					0,
4177 					NULL,
4178 					&tcp_hashinfo.ehash_mask,
4179 					0,
4180 					thash_entries ? 0 : 512 * 1024);
4181 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4182 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4183 
4184 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4185 		panic("TCP: failed to alloc ehash_locks");
4186 	tcp_hashinfo.bhash =
4187 		alloc_large_system_hash("TCP bind",
4188 					sizeof(struct inet_bind_hashbucket),
4189 					tcp_hashinfo.ehash_mask + 1,
4190 					17, /* one slot per 128 KB of memory */
4191 					0,
4192 					&tcp_hashinfo.bhash_size,
4193 					NULL,
4194 					0,
4195 					64 * 1024);
4196 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4197 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4198 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4199 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4200 	}
4201 
4202 
4203 	cnt = tcp_hashinfo.ehash_mask + 1;
4204 	sysctl_tcp_max_orphans = cnt / 2;
4205 
4206 	tcp_init_mem();
4207 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4208 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4209 	max_wshare = min(4UL*1024*1024, limit);
4210 	max_rshare = min(6UL*1024*1024, limit);
4211 
4212 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4213 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4214 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4215 
4216 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4217 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4218 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4219 
4220 	pr_info("Hash tables configured (established %u bind %u)\n",
4221 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4222 
4223 	tcp_v4_init();
4224 	tcp_metrics_init();
4225 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4226 	tcp_tasklet_init();
4227 	mptcp_init();
4228 }
4229