1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/memblock.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 461 { 462 struct sk_buff *skb = tcp_write_queue_tail(sk); 463 464 if (tsflags && skb) { 465 struct skb_shared_info *shinfo = skb_shinfo(skb); 466 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 467 468 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 469 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 470 tcb->txstamp_ack = 1; 471 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 472 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 473 } 474 } 475 476 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 477 int target, struct sock *sk) 478 { 479 return (tp->rcv_nxt - tp->copied_seq >= target) || 480 (sk->sk_prot->stream_memory_read ? 481 sk->sk_prot->stream_memory_read(sk) : false); 482 } 483 484 /* 485 * Wait for a TCP event. 486 * 487 * Note that we don't need to lock the socket, as the upper poll layers 488 * take care of normal races (between the test and the event) and we don't 489 * go look at any of the socket buffers directly. 490 */ 491 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 492 { 493 __poll_t mask; 494 struct sock *sk = sock->sk; 495 const struct tcp_sock *tp = tcp_sk(sk); 496 int state; 497 498 sock_poll_wait(file, sock, wait); 499 500 state = inet_sk_state_load(sk); 501 if (state == TCP_LISTEN) 502 return inet_csk_listen_poll(sk); 503 504 /* Socket is not locked. We are protected from async events 505 * by poll logic and correct handling of state changes 506 * made by other threads is impossible in any case. 507 */ 508 509 mask = 0; 510 511 /* 512 * EPOLLHUP is certainly not done right. But poll() doesn't 513 * have a notion of HUP in just one direction, and for a 514 * socket the read side is more interesting. 515 * 516 * Some poll() documentation says that EPOLLHUP is incompatible 517 * with the EPOLLOUT/POLLWR flags, so somebody should check this 518 * all. But careful, it tends to be safer to return too many 519 * bits than too few, and you can easily break real applications 520 * if you don't tell them that something has hung up! 521 * 522 * Check-me. 523 * 524 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 525 * our fs/select.c). It means that after we received EOF, 526 * poll always returns immediately, making impossible poll() on write() 527 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 528 * if and only if shutdown has been made in both directions. 529 * Actually, it is interesting to look how Solaris and DUX 530 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 531 * then we could set it on SND_SHUTDOWN. BTW examples given 532 * in Stevens' books assume exactly this behaviour, it explains 533 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 534 * 535 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 536 * blocking on fresh not-connected or disconnected socket. --ANK 537 */ 538 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 539 mask |= EPOLLHUP; 540 if (sk->sk_shutdown & RCV_SHUTDOWN) 541 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 542 543 /* Connected or passive Fast Open socket? */ 544 if (state != TCP_SYN_SENT && 545 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 546 int target = sock_rcvlowat(sk, 0, INT_MAX); 547 548 if (tp->urg_seq == tp->copied_seq && 549 !sock_flag(sk, SOCK_URGINLINE) && 550 tp->urg_data) 551 target++; 552 553 if (tcp_stream_is_readable(tp, target, sk)) 554 mask |= EPOLLIN | EPOLLRDNORM; 555 556 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 557 if (sk_stream_is_writeable(sk)) { 558 mask |= EPOLLOUT | EPOLLWRNORM; 559 } else { /* send SIGIO later */ 560 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 561 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 562 563 /* Race breaker. If space is freed after 564 * wspace test but before the flags are set, 565 * IO signal will be lost. Memory barrier 566 * pairs with the input side. 567 */ 568 smp_mb__after_atomic(); 569 if (sk_stream_is_writeable(sk)) 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } 572 } else 573 mask |= EPOLLOUT | EPOLLWRNORM; 574 575 if (tp->urg_data & TCP_URG_VALID) 576 mask |= EPOLLPRI; 577 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 578 /* Active TCP fastopen socket with defer_connect 579 * Return EPOLLOUT so application can call write() 580 * in order for kernel to generate SYN+data 581 */ 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 585 smp_rmb(); 586 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 587 mask |= EPOLLERR; 588 589 return mask; 590 } 591 EXPORT_SYMBOL(tcp_poll); 592 593 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 594 { 595 struct tcp_sock *tp = tcp_sk(sk); 596 int answ; 597 bool slow; 598 599 switch (cmd) { 600 case SIOCINQ: 601 if (sk->sk_state == TCP_LISTEN) 602 return -EINVAL; 603 604 slow = lock_sock_fast(sk); 605 answ = tcp_inq(sk); 606 unlock_sock_fast(sk, slow); 607 break; 608 case SIOCATMARK: 609 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 610 break; 611 case SIOCOUTQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 616 answ = 0; 617 else 618 answ = tp->write_seq - tp->snd_una; 619 break; 620 case SIOCOUTQNSD: 621 if (sk->sk_state == TCP_LISTEN) 622 return -EINVAL; 623 624 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 625 answ = 0; 626 else 627 answ = tp->write_seq - tp->snd_nxt; 628 break; 629 default: 630 return -ENOIOCTLCMD; 631 } 632 633 return put_user(answ, (int __user *)arg); 634 } 635 EXPORT_SYMBOL(tcp_ioctl); 636 637 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 638 { 639 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 640 tp->pushed_seq = tp->write_seq; 641 } 642 643 static inline bool forced_push(const struct tcp_sock *tp) 644 { 645 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 646 } 647 648 static void skb_entail(struct sock *sk, struct sk_buff *skb) 649 { 650 struct tcp_sock *tp = tcp_sk(sk); 651 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 652 653 skb->csum = 0; 654 tcb->seq = tcb->end_seq = tp->write_seq; 655 tcb->tcp_flags = TCPHDR_ACK; 656 tcb->sacked = 0; 657 __skb_header_release(skb); 658 tcp_add_write_queue_tail(sk, skb); 659 sk->sk_wmem_queued += skb->truesize; 660 sk_mem_charge(sk, skb->truesize); 661 if (tp->nonagle & TCP_NAGLE_PUSH) 662 tp->nonagle &= ~TCP_NAGLE_PUSH; 663 664 tcp_slow_start_after_idle_check(sk); 665 } 666 667 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 668 { 669 if (flags & MSG_OOB) 670 tp->snd_up = tp->write_seq; 671 } 672 673 /* If a not yet filled skb is pushed, do not send it if 674 * we have data packets in Qdisc or NIC queues : 675 * Because TX completion will happen shortly, it gives a chance 676 * to coalesce future sendmsg() payload into this skb, without 677 * need for a timer, and with no latency trade off. 678 * As packets containing data payload have a bigger truesize 679 * than pure acks (dataless) packets, the last checks prevent 680 * autocorking if we only have an ACK in Qdisc/NIC queues, 681 * or if TX completion was delayed after we processed ACK packet. 682 */ 683 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 684 int size_goal) 685 { 686 return skb->len < size_goal && 687 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 688 !tcp_rtx_queue_empty(sk) && 689 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 690 } 691 692 static void tcp_push(struct sock *sk, int flags, int mss_now, 693 int nonagle, int size_goal) 694 { 695 struct tcp_sock *tp = tcp_sk(sk); 696 struct sk_buff *skb; 697 698 skb = tcp_write_queue_tail(sk); 699 if (!skb) 700 return; 701 if (!(flags & MSG_MORE) || forced_push(tp)) 702 tcp_mark_push(tp, skb); 703 704 tcp_mark_urg(tp, flags); 705 706 if (tcp_should_autocork(sk, skb, size_goal)) { 707 708 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 709 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 710 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 711 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 712 } 713 /* It is possible TX completion already happened 714 * before we set TSQ_THROTTLED. 715 */ 716 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 717 return; 718 } 719 720 if (flags & MSG_MORE) 721 nonagle = TCP_NAGLE_CORK; 722 723 __tcp_push_pending_frames(sk, mss_now, nonagle); 724 } 725 726 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 727 unsigned int offset, size_t len) 728 { 729 struct tcp_splice_state *tss = rd_desc->arg.data; 730 int ret; 731 732 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 733 min(rd_desc->count, len), tss->flags); 734 if (ret > 0) 735 rd_desc->count -= ret; 736 return ret; 737 } 738 739 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 740 { 741 /* Store TCP splice context information in read_descriptor_t. */ 742 read_descriptor_t rd_desc = { 743 .arg.data = tss, 744 .count = tss->len, 745 }; 746 747 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 748 } 749 750 /** 751 * tcp_splice_read - splice data from TCP socket to a pipe 752 * @sock: socket to splice from 753 * @ppos: position (not valid) 754 * @pipe: pipe to splice to 755 * @len: number of bytes to splice 756 * @flags: splice modifier flags 757 * 758 * Description: 759 * Will read pages from given socket and fill them into a pipe. 760 * 761 **/ 762 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 763 struct pipe_inode_info *pipe, size_t len, 764 unsigned int flags) 765 { 766 struct sock *sk = sock->sk; 767 struct tcp_splice_state tss = { 768 .pipe = pipe, 769 .len = len, 770 .flags = flags, 771 }; 772 long timeo; 773 ssize_t spliced; 774 int ret; 775 776 sock_rps_record_flow(sk); 777 /* 778 * We can't seek on a socket input 779 */ 780 if (unlikely(*ppos)) 781 return -ESPIPE; 782 783 ret = spliced = 0; 784 785 lock_sock(sk); 786 787 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 788 while (tss.len) { 789 ret = __tcp_splice_read(sk, &tss); 790 if (ret < 0) 791 break; 792 else if (!ret) { 793 if (spliced) 794 break; 795 if (sock_flag(sk, SOCK_DONE)) 796 break; 797 if (sk->sk_err) { 798 ret = sock_error(sk); 799 break; 800 } 801 if (sk->sk_shutdown & RCV_SHUTDOWN) 802 break; 803 if (sk->sk_state == TCP_CLOSE) { 804 /* 805 * This occurs when user tries to read 806 * from never connected socket. 807 */ 808 ret = -ENOTCONN; 809 break; 810 } 811 if (!timeo) { 812 ret = -EAGAIN; 813 break; 814 } 815 /* if __tcp_splice_read() got nothing while we have 816 * an skb in receive queue, we do not want to loop. 817 * This might happen with URG data. 818 */ 819 if (!skb_queue_empty(&sk->sk_receive_queue)) 820 break; 821 sk_wait_data(sk, &timeo, NULL); 822 if (signal_pending(current)) { 823 ret = sock_intr_errno(timeo); 824 break; 825 } 826 continue; 827 } 828 tss.len -= ret; 829 spliced += ret; 830 831 if (!timeo) 832 break; 833 release_sock(sk); 834 lock_sock(sk); 835 836 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 837 (sk->sk_shutdown & RCV_SHUTDOWN) || 838 signal_pending(current)) 839 break; 840 } 841 842 release_sock(sk); 843 844 if (spliced) 845 return spliced; 846 847 return ret; 848 } 849 EXPORT_SYMBOL(tcp_splice_read); 850 851 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 852 bool force_schedule) 853 { 854 struct sk_buff *skb; 855 856 if (likely(!size)) { 857 skb = sk->sk_tx_skb_cache; 858 if (skb) { 859 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 860 sk->sk_tx_skb_cache = NULL; 861 pskb_trim(skb, 0); 862 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 863 skb_shinfo(skb)->tx_flags = 0; 864 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 865 return skb; 866 } 867 } 868 /* The TCP header must be at least 32-bit aligned. */ 869 size = ALIGN(size, 4); 870 871 if (unlikely(tcp_under_memory_pressure(sk))) 872 sk_mem_reclaim_partial(sk); 873 874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 875 if (likely(skb)) { 876 bool mem_scheduled; 877 878 if (force_schedule) { 879 mem_scheduled = true; 880 sk_forced_mem_schedule(sk, skb->truesize); 881 } else { 882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 883 } 884 if (likely(mem_scheduled)) { 885 skb_reserve(skb, sk->sk_prot->max_header); 886 /* 887 * Make sure that we have exactly size bytes 888 * available to the caller, no more, no less. 889 */ 890 skb->reserved_tailroom = skb->end - skb->tail - size; 891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 892 return skb; 893 } 894 __kfree_skb(skb); 895 } else { 896 sk->sk_prot->enter_memory_pressure(sk); 897 sk_stream_moderate_sndbuf(sk); 898 } 899 return NULL; 900 } 901 902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 903 int large_allowed) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 u32 new_size_goal, size_goal; 907 908 if (!large_allowed) 909 return mss_now; 910 911 /* Note : tcp_tso_autosize() will eventually split this later */ 912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 914 915 /* We try hard to avoid divides here */ 916 size_goal = tp->gso_segs * mss_now; 917 if (unlikely(new_size_goal < size_goal || 918 new_size_goal >= size_goal + mss_now)) { 919 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 920 sk->sk_gso_max_segs); 921 size_goal = tp->gso_segs * mss_now; 922 } 923 924 return max(size_goal, mss_now); 925 } 926 927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 928 { 929 int mss_now; 930 931 mss_now = tcp_current_mss(sk); 932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 933 934 return mss_now; 935 } 936 937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 938 size_t size, int flags) 939 { 940 struct tcp_sock *tp = tcp_sk(sk); 941 int mss_now, size_goal; 942 int err; 943 ssize_t copied; 944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 945 946 if (IS_ENABLED(CONFIG_DEBUG_VM) && 947 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 948 return -EINVAL; 949 950 /* Wait for a connection to finish. One exception is TCP Fast Open 951 * (passive side) where data is allowed to be sent before a connection 952 * is fully established. 953 */ 954 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 955 !tcp_passive_fastopen(sk)) { 956 err = sk_stream_wait_connect(sk, &timeo); 957 if (err != 0) 958 goto out_err; 959 } 960 961 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 962 963 mss_now = tcp_send_mss(sk, &size_goal, flags); 964 copied = 0; 965 966 err = -EPIPE; 967 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 968 goto out_err; 969 970 while (size > 0) { 971 struct sk_buff *skb = tcp_write_queue_tail(sk); 972 int copy, i; 973 bool can_coalesce; 974 975 if (!skb || (copy = size_goal - skb->len) <= 0 || 976 !tcp_skb_can_collapse_to(skb)) { 977 new_segment: 978 if (!sk_stream_memory_free(sk)) 979 goto wait_for_sndbuf; 980 981 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 982 tcp_rtx_and_write_queues_empty(sk)); 983 if (!skb) 984 goto wait_for_memory; 985 986 skb_entail(sk, skb); 987 copy = size_goal; 988 } 989 990 if (copy > size) 991 copy = size; 992 993 i = skb_shinfo(skb)->nr_frags; 994 can_coalesce = skb_can_coalesce(skb, i, page, offset); 995 if (!can_coalesce && i >= sysctl_max_skb_frags) { 996 tcp_mark_push(tp, skb); 997 goto new_segment; 998 } 999 if (!sk_wmem_schedule(sk, copy)) 1000 goto wait_for_memory; 1001 1002 if (can_coalesce) { 1003 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1004 } else { 1005 get_page(page); 1006 skb_fill_page_desc(skb, i, page, offset, copy); 1007 } 1008 1009 if (!(flags & MSG_NO_SHARED_FRAGS)) 1010 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1011 1012 skb->len += copy; 1013 skb->data_len += copy; 1014 skb->truesize += copy; 1015 sk->sk_wmem_queued += copy; 1016 sk_mem_charge(sk, copy); 1017 skb->ip_summed = CHECKSUM_PARTIAL; 1018 tp->write_seq += copy; 1019 TCP_SKB_CB(skb)->end_seq += copy; 1020 tcp_skb_pcount_set(skb, 0); 1021 1022 if (!copied) 1023 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1024 1025 copied += copy; 1026 offset += copy; 1027 size -= copy; 1028 if (!size) 1029 goto out; 1030 1031 if (skb->len < size_goal || (flags & MSG_OOB)) 1032 continue; 1033 1034 if (forced_push(tp)) { 1035 tcp_mark_push(tp, skb); 1036 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1037 } else if (skb == tcp_send_head(sk)) 1038 tcp_push_one(sk, mss_now); 1039 continue; 1040 1041 wait_for_sndbuf: 1042 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1043 wait_for_memory: 1044 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1045 TCP_NAGLE_PUSH, size_goal); 1046 1047 err = sk_stream_wait_memory(sk, &timeo); 1048 if (err != 0) 1049 goto do_error; 1050 1051 mss_now = tcp_send_mss(sk, &size_goal, flags); 1052 } 1053 1054 out: 1055 if (copied) { 1056 tcp_tx_timestamp(sk, sk->sk_tsflags); 1057 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1058 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1059 } 1060 return copied; 1061 1062 do_error: 1063 if (copied) 1064 goto out; 1065 out_err: 1066 /* make sure we wake any epoll edge trigger waiter */ 1067 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1068 err == -EAGAIN)) { 1069 sk->sk_write_space(sk); 1070 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1071 } 1072 return sk_stream_error(sk, flags, err); 1073 } 1074 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1075 1076 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1077 size_t size, int flags) 1078 { 1079 if (!(sk->sk_route_caps & NETIF_F_SG)) 1080 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1081 1082 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1083 1084 return do_tcp_sendpages(sk, page, offset, size, flags); 1085 } 1086 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1087 1088 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1089 size_t size, int flags) 1090 { 1091 int ret; 1092 1093 lock_sock(sk); 1094 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1095 release_sock(sk); 1096 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(tcp_sendpage); 1100 1101 void tcp_free_fastopen_req(struct tcp_sock *tp) 1102 { 1103 if (tp->fastopen_req) { 1104 kfree(tp->fastopen_req); 1105 tp->fastopen_req = NULL; 1106 } 1107 } 1108 1109 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1110 int *copied, size_t size, 1111 struct ubuf_info *uarg) 1112 { 1113 struct tcp_sock *tp = tcp_sk(sk); 1114 struct inet_sock *inet = inet_sk(sk); 1115 struct sockaddr *uaddr = msg->msg_name; 1116 int err, flags; 1117 1118 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1119 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1120 uaddr->sa_family == AF_UNSPEC)) 1121 return -EOPNOTSUPP; 1122 if (tp->fastopen_req) 1123 return -EALREADY; /* Another Fast Open is in progress */ 1124 1125 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1126 sk->sk_allocation); 1127 if (unlikely(!tp->fastopen_req)) 1128 return -ENOBUFS; 1129 tp->fastopen_req->data = msg; 1130 tp->fastopen_req->size = size; 1131 tp->fastopen_req->uarg = uarg; 1132 1133 if (inet->defer_connect) { 1134 err = tcp_connect(sk); 1135 /* Same failure procedure as in tcp_v4/6_connect */ 1136 if (err) { 1137 tcp_set_state(sk, TCP_CLOSE); 1138 inet->inet_dport = 0; 1139 sk->sk_route_caps = 0; 1140 } 1141 } 1142 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1143 err = __inet_stream_connect(sk->sk_socket, uaddr, 1144 msg->msg_namelen, flags, 1); 1145 /* fastopen_req could already be freed in __inet_stream_connect 1146 * if the connection times out or gets rst 1147 */ 1148 if (tp->fastopen_req) { 1149 *copied = tp->fastopen_req->copied; 1150 tcp_free_fastopen_req(tp); 1151 inet->defer_connect = 0; 1152 } 1153 return err; 1154 } 1155 1156 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1157 { 1158 struct tcp_sock *tp = tcp_sk(sk); 1159 struct ubuf_info *uarg = NULL; 1160 struct sk_buff *skb; 1161 struct sockcm_cookie sockc; 1162 int flags, err, copied = 0; 1163 int mss_now = 0, size_goal, copied_syn = 0; 1164 bool process_backlog = false; 1165 bool zc = false; 1166 long timeo; 1167 1168 flags = msg->msg_flags; 1169 1170 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1171 skb = tcp_write_queue_tail(sk); 1172 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1173 if (!uarg) { 1174 err = -ENOBUFS; 1175 goto out_err; 1176 } 1177 1178 zc = sk->sk_route_caps & NETIF_F_SG; 1179 if (!zc) 1180 uarg->zerocopy = 0; 1181 } 1182 1183 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1184 !tp->repair) { 1185 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1186 if (err == -EINPROGRESS && copied_syn > 0) 1187 goto out; 1188 else if (err) 1189 goto out_err; 1190 } 1191 1192 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1193 1194 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1195 1196 /* Wait for a connection to finish. One exception is TCP Fast Open 1197 * (passive side) where data is allowed to be sent before a connection 1198 * is fully established. 1199 */ 1200 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1201 !tcp_passive_fastopen(sk)) { 1202 err = sk_stream_wait_connect(sk, &timeo); 1203 if (err != 0) 1204 goto do_error; 1205 } 1206 1207 if (unlikely(tp->repair)) { 1208 if (tp->repair_queue == TCP_RECV_QUEUE) { 1209 copied = tcp_send_rcvq(sk, msg, size); 1210 goto out_nopush; 1211 } 1212 1213 err = -EINVAL; 1214 if (tp->repair_queue == TCP_NO_QUEUE) 1215 goto out_err; 1216 1217 /* 'common' sending to sendq */ 1218 } 1219 1220 sockcm_init(&sockc, sk); 1221 if (msg->msg_controllen) { 1222 err = sock_cmsg_send(sk, msg, &sockc); 1223 if (unlikely(err)) { 1224 err = -EINVAL; 1225 goto out_err; 1226 } 1227 } 1228 1229 /* This should be in poll */ 1230 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1231 1232 /* Ok commence sending. */ 1233 copied = 0; 1234 1235 restart: 1236 mss_now = tcp_send_mss(sk, &size_goal, flags); 1237 1238 err = -EPIPE; 1239 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1240 goto do_error; 1241 1242 while (msg_data_left(msg)) { 1243 int copy = 0; 1244 1245 skb = tcp_write_queue_tail(sk); 1246 if (skb) 1247 copy = size_goal - skb->len; 1248 1249 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1250 bool first_skb; 1251 1252 new_segment: 1253 if (!sk_stream_memory_free(sk)) 1254 goto wait_for_sndbuf; 1255 1256 if (process_backlog && sk_flush_backlog(sk)) { 1257 process_backlog = false; 1258 goto restart; 1259 } 1260 first_skb = tcp_rtx_and_write_queues_empty(sk); 1261 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1262 first_skb); 1263 if (!skb) 1264 goto wait_for_memory; 1265 1266 process_backlog = true; 1267 skb->ip_summed = CHECKSUM_PARTIAL; 1268 1269 skb_entail(sk, skb); 1270 copy = size_goal; 1271 1272 /* All packets are restored as if they have 1273 * already been sent. skb_mstamp_ns isn't set to 1274 * avoid wrong rtt estimation. 1275 */ 1276 if (tp->repair) 1277 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1278 } 1279 1280 /* Try to append data to the end of skb. */ 1281 if (copy > msg_data_left(msg)) 1282 copy = msg_data_left(msg); 1283 1284 /* Where to copy to? */ 1285 if (skb_availroom(skb) > 0 && !zc) { 1286 /* We have some space in skb head. Superb! */ 1287 copy = min_t(int, copy, skb_availroom(skb)); 1288 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1289 if (err) 1290 goto do_fault; 1291 } else if (!zc) { 1292 bool merge = true; 1293 int i = skb_shinfo(skb)->nr_frags; 1294 struct page_frag *pfrag = sk_page_frag(sk); 1295 1296 if (!sk_page_frag_refill(sk, pfrag)) 1297 goto wait_for_memory; 1298 1299 if (!skb_can_coalesce(skb, i, pfrag->page, 1300 pfrag->offset)) { 1301 if (i >= sysctl_max_skb_frags) { 1302 tcp_mark_push(tp, skb); 1303 goto new_segment; 1304 } 1305 merge = false; 1306 } 1307 1308 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1309 1310 if (!sk_wmem_schedule(sk, copy)) 1311 goto wait_for_memory; 1312 1313 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1314 pfrag->page, 1315 pfrag->offset, 1316 copy); 1317 if (err) 1318 goto do_error; 1319 1320 /* Update the skb. */ 1321 if (merge) { 1322 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1323 } else { 1324 skb_fill_page_desc(skb, i, pfrag->page, 1325 pfrag->offset, copy); 1326 page_ref_inc(pfrag->page); 1327 } 1328 pfrag->offset += copy; 1329 } else { 1330 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1331 if (err == -EMSGSIZE || err == -EEXIST) { 1332 tcp_mark_push(tp, skb); 1333 goto new_segment; 1334 } 1335 if (err < 0) 1336 goto do_error; 1337 copy = err; 1338 } 1339 1340 if (!copied) 1341 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1342 1343 tp->write_seq += copy; 1344 TCP_SKB_CB(skb)->end_seq += copy; 1345 tcp_skb_pcount_set(skb, 0); 1346 1347 copied += copy; 1348 if (!msg_data_left(msg)) { 1349 if (unlikely(flags & MSG_EOR)) 1350 TCP_SKB_CB(skb)->eor = 1; 1351 goto out; 1352 } 1353 1354 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1355 continue; 1356 1357 if (forced_push(tp)) { 1358 tcp_mark_push(tp, skb); 1359 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1360 } else if (skb == tcp_send_head(sk)) 1361 tcp_push_one(sk, mss_now); 1362 continue; 1363 1364 wait_for_sndbuf: 1365 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1366 wait_for_memory: 1367 if (copied) 1368 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1369 TCP_NAGLE_PUSH, size_goal); 1370 1371 err = sk_stream_wait_memory(sk, &timeo); 1372 if (err != 0) 1373 goto do_error; 1374 1375 mss_now = tcp_send_mss(sk, &size_goal, flags); 1376 } 1377 1378 out: 1379 if (copied) { 1380 tcp_tx_timestamp(sk, sockc.tsflags); 1381 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1382 } 1383 out_nopush: 1384 sock_zerocopy_put(uarg); 1385 return copied + copied_syn; 1386 1387 do_fault: 1388 if (!skb->len) { 1389 tcp_unlink_write_queue(skb, sk); 1390 /* It is the one place in all of TCP, except connection 1391 * reset, where we can be unlinking the send_head. 1392 */ 1393 if (tcp_write_queue_empty(sk)) 1394 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1395 sk_wmem_free_skb(sk, skb); 1396 } 1397 1398 do_error: 1399 if (copied + copied_syn) 1400 goto out; 1401 out_err: 1402 sock_zerocopy_put_abort(uarg, true); 1403 err = sk_stream_error(sk, flags, err); 1404 /* make sure we wake any epoll edge trigger waiter */ 1405 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1406 err == -EAGAIN)) { 1407 sk->sk_write_space(sk); 1408 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1409 } 1410 return err; 1411 } 1412 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1413 1414 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1415 { 1416 int ret; 1417 1418 lock_sock(sk); 1419 ret = tcp_sendmsg_locked(sk, msg, size); 1420 release_sock(sk); 1421 1422 return ret; 1423 } 1424 EXPORT_SYMBOL(tcp_sendmsg); 1425 1426 /* 1427 * Handle reading urgent data. BSD has very simple semantics for 1428 * this, no blocking and very strange errors 8) 1429 */ 1430 1431 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1432 { 1433 struct tcp_sock *tp = tcp_sk(sk); 1434 1435 /* No URG data to read. */ 1436 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1437 tp->urg_data == TCP_URG_READ) 1438 return -EINVAL; /* Yes this is right ! */ 1439 1440 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1441 return -ENOTCONN; 1442 1443 if (tp->urg_data & TCP_URG_VALID) { 1444 int err = 0; 1445 char c = tp->urg_data; 1446 1447 if (!(flags & MSG_PEEK)) 1448 tp->urg_data = TCP_URG_READ; 1449 1450 /* Read urgent data. */ 1451 msg->msg_flags |= MSG_OOB; 1452 1453 if (len > 0) { 1454 if (!(flags & MSG_TRUNC)) 1455 err = memcpy_to_msg(msg, &c, 1); 1456 len = 1; 1457 } else 1458 msg->msg_flags |= MSG_TRUNC; 1459 1460 return err ? -EFAULT : len; 1461 } 1462 1463 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1464 return 0; 1465 1466 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1467 * the available implementations agree in this case: 1468 * this call should never block, independent of the 1469 * blocking state of the socket. 1470 * Mike <pall@rz.uni-karlsruhe.de> 1471 */ 1472 return -EAGAIN; 1473 } 1474 1475 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1476 { 1477 struct sk_buff *skb; 1478 int copied = 0, err = 0; 1479 1480 /* XXX -- need to support SO_PEEK_OFF */ 1481 1482 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1483 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1484 if (err) 1485 return err; 1486 copied += skb->len; 1487 } 1488 1489 skb_queue_walk(&sk->sk_write_queue, skb) { 1490 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1491 if (err) 1492 break; 1493 1494 copied += skb->len; 1495 } 1496 1497 return err ?: copied; 1498 } 1499 1500 /* Clean up the receive buffer for full frames taken by the user, 1501 * then send an ACK if necessary. COPIED is the number of bytes 1502 * tcp_recvmsg has given to the user so far, it speeds up the 1503 * calculation of whether or not we must ACK for the sake of 1504 * a window update. 1505 */ 1506 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1507 { 1508 struct tcp_sock *tp = tcp_sk(sk); 1509 bool time_to_ack = false; 1510 1511 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1512 1513 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1514 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1515 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1516 1517 if (inet_csk_ack_scheduled(sk)) { 1518 const struct inet_connection_sock *icsk = inet_csk(sk); 1519 /* Delayed ACKs frequently hit locked sockets during bulk 1520 * receive. */ 1521 if (icsk->icsk_ack.blocked || 1522 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1523 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1524 /* 1525 * If this read emptied read buffer, we send ACK, if 1526 * connection is not bidirectional, user drained 1527 * receive buffer and there was a small segment 1528 * in queue. 1529 */ 1530 (copied > 0 && 1531 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1532 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1533 !inet_csk_in_pingpong_mode(sk))) && 1534 !atomic_read(&sk->sk_rmem_alloc))) 1535 time_to_ack = true; 1536 } 1537 1538 /* We send an ACK if we can now advertise a non-zero window 1539 * which has been raised "significantly". 1540 * 1541 * Even if window raised up to infinity, do not send window open ACK 1542 * in states, where we will not receive more. It is useless. 1543 */ 1544 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1545 __u32 rcv_window_now = tcp_receive_window(tp); 1546 1547 /* Optimize, __tcp_select_window() is not cheap. */ 1548 if (2*rcv_window_now <= tp->window_clamp) { 1549 __u32 new_window = __tcp_select_window(sk); 1550 1551 /* Send ACK now, if this read freed lots of space 1552 * in our buffer. Certainly, new_window is new window. 1553 * We can advertise it now, if it is not less than current one. 1554 * "Lots" means "at least twice" here. 1555 */ 1556 if (new_window && new_window >= 2 * rcv_window_now) 1557 time_to_ack = true; 1558 } 1559 } 1560 if (time_to_ack) 1561 tcp_send_ack(sk); 1562 } 1563 1564 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1565 { 1566 struct sk_buff *skb; 1567 u32 offset; 1568 1569 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1570 offset = seq - TCP_SKB_CB(skb)->seq; 1571 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1572 pr_err_once("%s: found a SYN, please report !\n", __func__); 1573 offset--; 1574 } 1575 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1576 *off = offset; 1577 return skb; 1578 } 1579 /* This looks weird, but this can happen if TCP collapsing 1580 * splitted a fat GRO packet, while we released socket lock 1581 * in skb_splice_bits() 1582 */ 1583 sk_eat_skb(sk, skb); 1584 } 1585 return NULL; 1586 } 1587 1588 /* 1589 * This routine provides an alternative to tcp_recvmsg() for routines 1590 * that would like to handle copying from skbuffs directly in 'sendfile' 1591 * fashion. 1592 * Note: 1593 * - It is assumed that the socket was locked by the caller. 1594 * - The routine does not block. 1595 * - At present, there is no support for reading OOB data 1596 * or for 'peeking' the socket using this routine 1597 * (although both would be easy to implement). 1598 */ 1599 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1600 sk_read_actor_t recv_actor) 1601 { 1602 struct sk_buff *skb; 1603 struct tcp_sock *tp = tcp_sk(sk); 1604 u32 seq = tp->copied_seq; 1605 u32 offset; 1606 int copied = 0; 1607 1608 if (sk->sk_state == TCP_LISTEN) 1609 return -ENOTCONN; 1610 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1611 if (offset < skb->len) { 1612 int used; 1613 size_t len; 1614 1615 len = skb->len - offset; 1616 /* Stop reading if we hit a patch of urgent data */ 1617 if (tp->urg_data) { 1618 u32 urg_offset = tp->urg_seq - seq; 1619 if (urg_offset < len) 1620 len = urg_offset; 1621 if (!len) 1622 break; 1623 } 1624 used = recv_actor(desc, skb, offset, len); 1625 if (used <= 0) { 1626 if (!copied) 1627 copied = used; 1628 break; 1629 } else if (used <= len) { 1630 seq += used; 1631 copied += used; 1632 offset += used; 1633 } 1634 /* If recv_actor drops the lock (e.g. TCP splice 1635 * receive) the skb pointer might be invalid when 1636 * getting here: tcp_collapse might have deleted it 1637 * while aggregating skbs from the socket queue. 1638 */ 1639 skb = tcp_recv_skb(sk, seq - 1, &offset); 1640 if (!skb) 1641 break; 1642 /* TCP coalescing might have appended data to the skb. 1643 * Try to splice more frags 1644 */ 1645 if (offset + 1 != skb->len) 1646 continue; 1647 } 1648 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1649 sk_eat_skb(sk, skb); 1650 ++seq; 1651 break; 1652 } 1653 sk_eat_skb(sk, skb); 1654 if (!desc->count) 1655 break; 1656 tp->copied_seq = seq; 1657 } 1658 tp->copied_seq = seq; 1659 1660 tcp_rcv_space_adjust(sk); 1661 1662 /* Clean up data we have read: This will do ACK frames. */ 1663 if (copied > 0) { 1664 tcp_recv_skb(sk, seq, &offset); 1665 tcp_cleanup_rbuf(sk, copied); 1666 } 1667 return copied; 1668 } 1669 EXPORT_SYMBOL(tcp_read_sock); 1670 1671 int tcp_peek_len(struct socket *sock) 1672 { 1673 return tcp_inq(sock->sk); 1674 } 1675 EXPORT_SYMBOL(tcp_peek_len); 1676 1677 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1678 int tcp_set_rcvlowat(struct sock *sk, int val) 1679 { 1680 int cap; 1681 1682 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1683 cap = sk->sk_rcvbuf >> 1; 1684 else 1685 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1686 val = min(val, cap); 1687 sk->sk_rcvlowat = val ? : 1; 1688 1689 /* Check if we need to signal EPOLLIN right now */ 1690 tcp_data_ready(sk); 1691 1692 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1693 return 0; 1694 1695 val <<= 1; 1696 if (val > sk->sk_rcvbuf) { 1697 sk->sk_rcvbuf = val; 1698 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1699 } 1700 return 0; 1701 } 1702 EXPORT_SYMBOL(tcp_set_rcvlowat); 1703 1704 #ifdef CONFIG_MMU 1705 static const struct vm_operations_struct tcp_vm_ops = { 1706 }; 1707 1708 int tcp_mmap(struct file *file, struct socket *sock, 1709 struct vm_area_struct *vma) 1710 { 1711 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1712 return -EPERM; 1713 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1714 1715 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1716 vma->vm_flags |= VM_MIXEDMAP; 1717 1718 vma->vm_ops = &tcp_vm_ops; 1719 return 0; 1720 } 1721 EXPORT_SYMBOL(tcp_mmap); 1722 1723 static int tcp_zerocopy_receive(struct sock *sk, 1724 struct tcp_zerocopy_receive *zc) 1725 { 1726 unsigned long address = (unsigned long)zc->address; 1727 const skb_frag_t *frags = NULL; 1728 u32 length = 0, seq, offset; 1729 struct vm_area_struct *vma; 1730 struct sk_buff *skb = NULL; 1731 struct tcp_sock *tp; 1732 int inq; 1733 int ret; 1734 1735 if (address & (PAGE_SIZE - 1) || address != zc->address) 1736 return -EINVAL; 1737 1738 if (sk->sk_state == TCP_LISTEN) 1739 return -ENOTCONN; 1740 1741 sock_rps_record_flow(sk); 1742 1743 down_read(¤t->mm->mmap_sem); 1744 1745 ret = -EINVAL; 1746 vma = find_vma(current->mm, address); 1747 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1748 goto out; 1749 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1750 1751 tp = tcp_sk(sk); 1752 seq = tp->copied_seq; 1753 inq = tcp_inq(sk); 1754 zc->length = min_t(u32, zc->length, inq); 1755 zc->length &= ~(PAGE_SIZE - 1); 1756 if (zc->length) { 1757 zap_page_range(vma, address, zc->length); 1758 zc->recv_skip_hint = 0; 1759 } else { 1760 zc->recv_skip_hint = inq; 1761 } 1762 ret = 0; 1763 while (length + PAGE_SIZE <= zc->length) { 1764 if (zc->recv_skip_hint < PAGE_SIZE) { 1765 if (skb) { 1766 skb = skb->next; 1767 offset = seq - TCP_SKB_CB(skb)->seq; 1768 } else { 1769 skb = tcp_recv_skb(sk, seq, &offset); 1770 } 1771 1772 zc->recv_skip_hint = skb->len - offset; 1773 offset -= skb_headlen(skb); 1774 if ((int)offset < 0 || skb_has_frag_list(skb)) 1775 break; 1776 frags = skb_shinfo(skb)->frags; 1777 while (offset) { 1778 if (frags->size > offset) 1779 goto out; 1780 offset -= frags->size; 1781 frags++; 1782 } 1783 } 1784 if (frags->size != PAGE_SIZE || frags->page_offset) { 1785 int remaining = zc->recv_skip_hint; 1786 1787 while (remaining && (frags->size != PAGE_SIZE || 1788 frags->page_offset)) { 1789 remaining -= frags->size; 1790 frags++; 1791 } 1792 zc->recv_skip_hint -= remaining; 1793 break; 1794 } 1795 ret = vm_insert_page(vma, address + length, 1796 skb_frag_page(frags)); 1797 if (ret) 1798 break; 1799 length += PAGE_SIZE; 1800 seq += PAGE_SIZE; 1801 zc->recv_skip_hint -= PAGE_SIZE; 1802 frags++; 1803 } 1804 out: 1805 up_read(¤t->mm->mmap_sem); 1806 if (length) { 1807 tp->copied_seq = seq; 1808 tcp_rcv_space_adjust(sk); 1809 1810 /* Clean up data we have read: This will do ACK frames. */ 1811 tcp_recv_skb(sk, seq, &offset); 1812 tcp_cleanup_rbuf(sk, length); 1813 ret = 0; 1814 if (length == zc->length) 1815 zc->recv_skip_hint = 0; 1816 } else { 1817 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1818 ret = -EIO; 1819 } 1820 zc->length = length; 1821 return ret; 1822 } 1823 #endif 1824 1825 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1826 struct scm_timestamping_internal *tss) 1827 { 1828 if (skb->tstamp) 1829 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1830 else 1831 tss->ts[0] = (struct timespec64) {0}; 1832 1833 if (skb_hwtstamps(skb)->hwtstamp) 1834 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1835 else 1836 tss->ts[2] = (struct timespec64) {0}; 1837 } 1838 1839 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1840 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1841 struct scm_timestamping_internal *tss) 1842 { 1843 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1844 bool has_timestamping = false; 1845 1846 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1847 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1848 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1849 if (new_tstamp) { 1850 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1851 1852 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1853 sizeof(kts), &kts); 1854 } else { 1855 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1856 1857 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1858 sizeof(ts_old), &ts_old); 1859 } 1860 } else { 1861 if (new_tstamp) { 1862 struct __kernel_sock_timeval stv; 1863 1864 stv.tv_sec = tss->ts[0].tv_sec; 1865 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1867 sizeof(stv), &stv); 1868 } else { 1869 struct __kernel_old_timeval tv; 1870 1871 tv.tv_sec = tss->ts[0].tv_sec; 1872 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1873 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1874 sizeof(tv), &tv); 1875 } 1876 } 1877 } 1878 1879 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1880 has_timestamping = true; 1881 else 1882 tss->ts[0] = (struct timespec64) {0}; 1883 } 1884 1885 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1886 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1887 has_timestamping = true; 1888 else 1889 tss->ts[2] = (struct timespec64) {0}; 1890 } 1891 1892 if (has_timestamping) { 1893 tss->ts[1] = (struct timespec64) {0}; 1894 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1895 put_cmsg_scm_timestamping64(msg, tss); 1896 else 1897 put_cmsg_scm_timestamping(msg, tss); 1898 } 1899 } 1900 1901 static int tcp_inq_hint(struct sock *sk) 1902 { 1903 const struct tcp_sock *tp = tcp_sk(sk); 1904 u32 copied_seq = READ_ONCE(tp->copied_seq); 1905 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1906 int inq; 1907 1908 inq = rcv_nxt - copied_seq; 1909 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1910 lock_sock(sk); 1911 inq = tp->rcv_nxt - tp->copied_seq; 1912 release_sock(sk); 1913 } 1914 /* After receiving a FIN, tell the user-space to continue reading 1915 * by returning a non-zero inq. 1916 */ 1917 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1918 inq = 1; 1919 return inq; 1920 } 1921 1922 /* 1923 * This routine copies from a sock struct into the user buffer. 1924 * 1925 * Technical note: in 2.3 we work on _locked_ socket, so that 1926 * tricks with *seq access order and skb->users are not required. 1927 * Probably, code can be easily improved even more. 1928 */ 1929 1930 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1931 int flags, int *addr_len) 1932 { 1933 struct tcp_sock *tp = tcp_sk(sk); 1934 int copied = 0; 1935 u32 peek_seq; 1936 u32 *seq; 1937 unsigned long used; 1938 int err, inq; 1939 int target; /* Read at least this many bytes */ 1940 long timeo; 1941 struct sk_buff *skb, *last; 1942 u32 urg_hole = 0; 1943 struct scm_timestamping_internal tss; 1944 bool has_tss = false; 1945 bool has_cmsg; 1946 1947 if (unlikely(flags & MSG_ERRQUEUE)) 1948 return inet_recv_error(sk, msg, len, addr_len); 1949 1950 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1951 (sk->sk_state == TCP_ESTABLISHED)) 1952 sk_busy_loop(sk, nonblock); 1953 1954 lock_sock(sk); 1955 1956 err = -ENOTCONN; 1957 if (sk->sk_state == TCP_LISTEN) 1958 goto out; 1959 1960 has_cmsg = tp->recvmsg_inq; 1961 timeo = sock_rcvtimeo(sk, nonblock); 1962 1963 /* Urgent data needs to be handled specially. */ 1964 if (flags & MSG_OOB) 1965 goto recv_urg; 1966 1967 if (unlikely(tp->repair)) { 1968 err = -EPERM; 1969 if (!(flags & MSG_PEEK)) 1970 goto out; 1971 1972 if (tp->repair_queue == TCP_SEND_QUEUE) 1973 goto recv_sndq; 1974 1975 err = -EINVAL; 1976 if (tp->repair_queue == TCP_NO_QUEUE) 1977 goto out; 1978 1979 /* 'common' recv queue MSG_PEEK-ing */ 1980 } 1981 1982 seq = &tp->copied_seq; 1983 if (flags & MSG_PEEK) { 1984 peek_seq = tp->copied_seq; 1985 seq = &peek_seq; 1986 } 1987 1988 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1989 1990 do { 1991 u32 offset; 1992 1993 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1994 if (tp->urg_data && tp->urg_seq == *seq) { 1995 if (copied) 1996 break; 1997 if (signal_pending(current)) { 1998 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1999 break; 2000 } 2001 } 2002 2003 /* Next get a buffer. */ 2004 2005 last = skb_peek_tail(&sk->sk_receive_queue); 2006 skb_queue_walk(&sk->sk_receive_queue, skb) { 2007 last = skb; 2008 /* Now that we have two receive queues this 2009 * shouldn't happen. 2010 */ 2011 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2012 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2013 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2014 flags)) 2015 break; 2016 2017 offset = *seq - TCP_SKB_CB(skb)->seq; 2018 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2019 pr_err_once("%s: found a SYN, please report !\n", __func__); 2020 offset--; 2021 } 2022 if (offset < skb->len) 2023 goto found_ok_skb; 2024 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2025 goto found_fin_ok; 2026 WARN(!(flags & MSG_PEEK), 2027 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2028 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2029 } 2030 2031 /* Well, if we have backlog, try to process it now yet. */ 2032 2033 if (copied >= target && !sk->sk_backlog.tail) 2034 break; 2035 2036 if (copied) { 2037 if (sk->sk_err || 2038 sk->sk_state == TCP_CLOSE || 2039 (sk->sk_shutdown & RCV_SHUTDOWN) || 2040 !timeo || 2041 signal_pending(current)) 2042 break; 2043 } else { 2044 if (sock_flag(sk, SOCK_DONE)) 2045 break; 2046 2047 if (sk->sk_err) { 2048 copied = sock_error(sk); 2049 break; 2050 } 2051 2052 if (sk->sk_shutdown & RCV_SHUTDOWN) 2053 break; 2054 2055 if (sk->sk_state == TCP_CLOSE) { 2056 /* This occurs when user tries to read 2057 * from never connected socket. 2058 */ 2059 copied = -ENOTCONN; 2060 break; 2061 } 2062 2063 if (!timeo) { 2064 copied = -EAGAIN; 2065 break; 2066 } 2067 2068 if (signal_pending(current)) { 2069 copied = sock_intr_errno(timeo); 2070 break; 2071 } 2072 } 2073 2074 tcp_cleanup_rbuf(sk, copied); 2075 2076 if (copied >= target) { 2077 /* Do not sleep, just process backlog. */ 2078 release_sock(sk); 2079 lock_sock(sk); 2080 } else { 2081 sk_wait_data(sk, &timeo, last); 2082 } 2083 2084 if ((flags & MSG_PEEK) && 2085 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2086 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2087 current->comm, 2088 task_pid_nr(current)); 2089 peek_seq = tp->copied_seq; 2090 } 2091 continue; 2092 2093 found_ok_skb: 2094 /* Ok so how much can we use? */ 2095 used = skb->len - offset; 2096 if (len < used) 2097 used = len; 2098 2099 /* Do we have urgent data here? */ 2100 if (tp->urg_data) { 2101 u32 urg_offset = tp->urg_seq - *seq; 2102 if (urg_offset < used) { 2103 if (!urg_offset) { 2104 if (!sock_flag(sk, SOCK_URGINLINE)) { 2105 ++*seq; 2106 urg_hole++; 2107 offset++; 2108 used--; 2109 if (!used) 2110 goto skip_copy; 2111 } 2112 } else 2113 used = urg_offset; 2114 } 2115 } 2116 2117 if (!(flags & MSG_TRUNC)) { 2118 err = skb_copy_datagram_msg(skb, offset, msg, used); 2119 if (err) { 2120 /* Exception. Bailout! */ 2121 if (!copied) 2122 copied = -EFAULT; 2123 break; 2124 } 2125 } 2126 2127 *seq += used; 2128 copied += used; 2129 len -= used; 2130 2131 tcp_rcv_space_adjust(sk); 2132 2133 skip_copy: 2134 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2135 tp->urg_data = 0; 2136 tcp_fast_path_check(sk); 2137 } 2138 if (used + offset < skb->len) 2139 continue; 2140 2141 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2142 tcp_update_recv_tstamps(skb, &tss); 2143 has_tss = true; 2144 has_cmsg = true; 2145 } 2146 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2147 goto found_fin_ok; 2148 if (!(flags & MSG_PEEK)) 2149 sk_eat_skb(sk, skb); 2150 continue; 2151 2152 found_fin_ok: 2153 /* Process the FIN. */ 2154 ++*seq; 2155 if (!(flags & MSG_PEEK)) 2156 sk_eat_skb(sk, skb); 2157 break; 2158 } while (len > 0); 2159 2160 /* According to UNIX98, msg_name/msg_namelen are ignored 2161 * on connected socket. I was just happy when found this 8) --ANK 2162 */ 2163 2164 /* Clean up data we have read: This will do ACK frames. */ 2165 tcp_cleanup_rbuf(sk, copied); 2166 2167 release_sock(sk); 2168 2169 if (has_cmsg) { 2170 if (has_tss) 2171 tcp_recv_timestamp(msg, sk, &tss); 2172 if (tp->recvmsg_inq) { 2173 inq = tcp_inq_hint(sk); 2174 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2175 } 2176 } 2177 2178 return copied; 2179 2180 out: 2181 release_sock(sk); 2182 return err; 2183 2184 recv_urg: 2185 err = tcp_recv_urg(sk, msg, len, flags); 2186 goto out; 2187 2188 recv_sndq: 2189 err = tcp_peek_sndq(sk, msg, len); 2190 goto out; 2191 } 2192 EXPORT_SYMBOL(tcp_recvmsg); 2193 2194 void tcp_set_state(struct sock *sk, int state) 2195 { 2196 int oldstate = sk->sk_state; 2197 2198 /* We defined a new enum for TCP states that are exported in BPF 2199 * so as not force the internal TCP states to be frozen. The 2200 * following checks will detect if an internal state value ever 2201 * differs from the BPF value. If this ever happens, then we will 2202 * need to remap the internal value to the BPF value before calling 2203 * tcp_call_bpf_2arg. 2204 */ 2205 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2206 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2207 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2208 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2209 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2210 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2211 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2212 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2213 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2214 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2215 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2216 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2217 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2218 2219 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2220 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2221 2222 switch (state) { 2223 case TCP_ESTABLISHED: 2224 if (oldstate != TCP_ESTABLISHED) 2225 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2226 break; 2227 2228 case TCP_CLOSE: 2229 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2230 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2231 2232 sk->sk_prot->unhash(sk); 2233 if (inet_csk(sk)->icsk_bind_hash && 2234 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2235 inet_put_port(sk); 2236 /* fall through */ 2237 default: 2238 if (oldstate == TCP_ESTABLISHED) 2239 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2240 } 2241 2242 /* Change state AFTER socket is unhashed to avoid closed 2243 * socket sitting in hash tables. 2244 */ 2245 inet_sk_state_store(sk, state); 2246 } 2247 EXPORT_SYMBOL_GPL(tcp_set_state); 2248 2249 /* 2250 * State processing on a close. This implements the state shift for 2251 * sending our FIN frame. Note that we only send a FIN for some 2252 * states. A shutdown() may have already sent the FIN, or we may be 2253 * closed. 2254 */ 2255 2256 static const unsigned char new_state[16] = { 2257 /* current state: new state: action: */ 2258 [0 /* (Invalid) */] = TCP_CLOSE, 2259 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2260 [TCP_SYN_SENT] = TCP_CLOSE, 2261 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2262 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2263 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2264 [TCP_TIME_WAIT] = TCP_CLOSE, 2265 [TCP_CLOSE] = TCP_CLOSE, 2266 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2267 [TCP_LAST_ACK] = TCP_LAST_ACK, 2268 [TCP_LISTEN] = TCP_CLOSE, 2269 [TCP_CLOSING] = TCP_CLOSING, 2270 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2271 }; 2272 2273 static int tcp_close_state(struct sock *sk) 2274 { 2275 int next = (int)new_state[sk->sk_state]; 2276 int ns = next & TCP_STATE_MASK; 2277 2278 tcp_set_state(sk, ns); 2279 2280 return next & TCP_ACTION_FIN; 2281 } 2282 2283 /* 2284 * Shutdown the sending side of a connection. Much like close except 2285 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2286 */ 2287 2288 void tcp_shutdown(struct sock *sk, int how) 2289 { 2290 /* We need to grab some memory, and put together a FIN, 2291 * and then put it into the queue to be sent. 2292 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2293 */ 2294 if (!(how & SEND_SHUTDOWN)) 2295 return; 2296 2297 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2298 if ((1 << sk->sk_state) & 2299 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2300 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2301 /* Clear out any half completed packets. FIN if needed. */ 2302 if (tcp_close_state(sk)) 2303 tcp_send_fin(sk); 2304 } 2305 } 2306 EXPORT_SYMBOL(tcp_shutdown); 2307 2308 bool tcp_check_oom(struct sock *sk, int shift) 2309 { 2310 bool too_many_orphans, out_of_socket_memory; 2311 2312 too_many_orphans = tcp_too_many_orphans(sk, shift); 2313 out_of_socket_memory = tcp_out_of_memory(sk); 2314 2315 if (too_many_orphans) 2316 net_info_ratelimited("too many orphaned sockets\n"); 2317 if (out_of_socket_memory) 2318 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2319 return too_many_orphans || out_of_socket_memory; 2320 } 2321 2322 void tcp_close(struct sock *sk, long timeout) 2323 { 2324 struct sk_buff *skb; 2325 int data_was_unread = 0; 2326 int state; 2327 2328 lock_sock(sk); 2329 sk->sk_shutdown = SHUTDOWN_MASK; 2330 2331 if (sk->sk_state == TCP_LISTEN) { 2332 tcp_set_state(sk, TCP_CLOSE); 2333 2334 /* Special case. */ 2335 inet_csk_listen_stop(sk); 2336 2337 goto adjudge_to_death; 2338 } 2339 2340 /* We need to flush the recv. buffs. We do this only on the 2341 * descriptor close, not protocol-sourced closes, because the 2342 * reader process may not have drained the data yet! 2343 */ 2344 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2345 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2346 2347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2348 len--; 2349 data_was_unread += len; 2350 __kfree_skb(skb); 2351 } 2352 2353 sk_mem_reclaim(sk); 2354 2355 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2356 if (sk->sk_state == TCP_CLOSE) 2357 goto adjudge_to_death; 2358 2359 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2360 * data was lost. To witness the awful effects of the old behavior of 2361 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2362 * GET in an FTP client, suspend the process, wait for the client to 2363 * advertise a zero window, then kill -9 the FTP client, wheee... 2364 * Note: timeout is always zero in such a case. 2365 */ 2366 if (unlikely(tcp_sk(sk)->repair)) { 2367 sk->sk_prot->disconnect(sk, 0); 2368 } else if (data_was_unread) { 2369 /* Unread data was tossed, zap the connection. */ 2370 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2371 tcp_set_state(sk, TCP_CLOSE); 2372 tcp_send_active_reset(sk, sk->sk_allocation); 2373 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2374 /* Check zero linger _after_ checking for unread data. */ 2375 sk->sk_prot->disconnect(sk, 0); 2376 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2377 } else if (tcp_close_state(sk)) { 2378 /* We FIN if the application ate all the data before 2379 * zapping the connection. 2380 */ 2381 2382 /* RED-PEN. Formally speaking, we have broken TCP state 2383 * machine. State transitions: 2384 * 2385 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2386 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2387 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2388 * 2389 * are legal only when FIN has been sent (i.e. in window), 2390 * rather than queued out of window. Purists blame. 2391 * 2392 * F.e. "RFC state" is ESTABLISHED, 2393 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2394 * 2395 * The visible declinations are that sometimes 2396 * we enter time-wait state, when it is not required really 2397 * (harmless), do not send active resets, when they are 2398 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2399 * they look as CLOSING or LAST_ACK for Linux) 2400 * Probably, I missed some more holelets. 2401 * --ANK 2402 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2403 * in a single packet! (May consider it later but will 2404 * probably need API support or TCP_CORK SYN-ACK until 2405 * data is written and socket is closed.) 2406 */ 2407 tcp_send_fin(sk); 2408 } 2409 2410 sk_stream_wait_close(sk, timeout); 2411 2412 adjudge_to_death: 2413 state = sk->sk_state; 2414 sock_hold(sk); 2415 sock_orphan(sk); 2416 2417 local_bh_disable(); 2418 bh_lock_sock(sk); 2419 /* remove backlog if any, without releasing ownership. */ 2420 __release_sock(sk); 2421 2422 percpu_counter_inc(sk->sk_prot->orphan_count); 2423 2424 /* Have we already been destroyed by a softirq or backlog? */ 2425 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2426 goto out; 2427 2428 /* This is a (useful) BSD violating of the RFC. There is a 2429 * problem with TCP as specified in that the other end could 2430 * keep a socket open forever with no application left this end. 2431 * We use a 1 minute timeout (about the same as BSD) then kill 2432 * our end. If they send after that then tough - BUT: long enough 2433 * that we won't make the old 4*rto = almost no time - whoops 2434 * reset mistake. 2435 * 2436 * Nope, it was not mistake. It is really desired behaviour 2437 * f.e. on http servers, when such sockets are useless, but 2438 * consume significant resources. Let's do it with special 2439 * linger2 option. --ANK 2440 */ 2441 2442 if (sk->sk_state == TCP_FIN_WAIT2) { 2443 struct tcp_sock *tp = tcp_sk(sk); 2444 if (tp->linger2 < 0) { 2445 tcp_set_state(sk, TCP_CLOSE); 2446 tcp_send_active_reset(sk, GFP_ATOMIC); 2447 __NET_INC_STATS(sock_net(sk), 2448 LINUX_MIB_TCPABORTONLINGER); 2449 } else { 2450 const int tmo = tcp_fin_time(sk); 2451 2452 if (tmo > TCP_TIMEWAIT_LEN) { 2453 inet_csk_reset_keepalive_timer(sk, 2454 tmo - TCP_TIMEWAIT_LEN); 2455 } else { 2456 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2457 goto out; 2458 } 2459 } 2460 } 2461 if (sk->sk_state != TCP_CLOSE) { 2462 sk_mem_reclaim(sk); 2463 if (tcp_check_oom(sk, 0)) { 2464 tcp_set_state(sk, TCP_CLOSE); 2465 tcp_send_active_reset(sk, GFP_ATOMIC); 2466 __NET_INC_STATS(sock_net(sk), 2467 LINUX_MIB_TCPABORTONMEMORY); 2468 } else if (!check_net(sock_net(sk))) { 2469 /* Not possible to send reset; just close */ 2470 tcp_set_state(sk, TCP_CLOSE); 2471 } 2472 } 2473 2474 if (sk->sk_state == TCP_CLOSE) { 2475 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2476 /* We could get here with a non-NULL req if the socket is 2477 * aborted (e.g., closed with unread data) before 3WHS 2478 * finishes. 2479 */ 2480 if (req) 2481 reqsk_fastopen_remove(sk, req, false); 2482 inet_csk_destroy_sock(sk); 2483 } 2484 /* Otherwise, socket is reprieved until protocol close. */ 2485 2486 out: 2487 bh_unlock_sock(sk); 2488 local_bh_enable(); 2489 release_sock(sk); 2490 sock_put(sk); 2491 } 2492 EXPORT_SYMBOL(tcp_close); 2493 2494 /* These states need RST on ABORT according to RFC793 */ 2495 2496 static inline bool tcp_need_reset(int state) 2497 { 2498 return (1 << state) & 2499 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2500 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2501 } 2502 2503 static void tcp_rtx_queue_purge(struct sock *sk) 2504 { 2505 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2506 2507 while (p) { 2508 struct sk_buff *skb = rb_to_skb(p); 2509 2510 p = rb_next(p); 2511 /* Since we are deleting whole queue, no need to 2512 * list_del(&skb->tcp_tsorted_anchor) 2513 */ 2514 tcp_rtx_queue_unlink(skb, sk); 2515 sk_wmem_free_skb(sk, skb); 2516 } 2517 } 2518 2519 void tcp_write_queue_purge(struct sock *sk) 2520 { 2521 struct sk_buff *skb; 2522 2523 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2524 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2525 tcp_skb_tsorted_anchor_cleanup(skb); 2526 sk_wmem_free_skb(sk, skb); 2527 } 2528 tcp_rtx_queue_purge(sk); 2529 skb = sk->sk_tx_skb_cache; 2530 if (skb) { 2531 __kfree_skb(skb); 2532 sk->sk_tx_skb_cache = NULL; 2533 } 2534 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2535 sk_mem_reclaim(sk); 2536 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2537 tcp_sk(sk)->packets_out = 0; 2538 inet_csk(sk)->icsk_backoff = 0; 2539 } 2540 2541 int tcp_disconnect(struct sock *sk, int flags) 2542 { 2543 struct inet_sock *inet = inet_sk(sk); 2544 struct inet_connection_sock *icsk = inet_csk(sk); 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 int old_state = sk->sk_state; 2547 2548 if (old_state != TCP_CLOSE) 2549 tcp_set_state(sk, TCP_CLOSE); 2550 2551 /* ABORT function of RFC793 */ 2552 if (old_state == TCP_LISTEN) { 2553 inet_csk_listen_stop(sk); 2554 } else if (unlikely(tp->repair)) { 2555 sk->sk_err = ECONNABORTED; 2556 } else if (tcp_need_reset(old_state) || 2557 (tp->snd_nxt != tp->write_seq && 2558 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2559 /* The last check adjusts for discrepancy of Linux wrt. RFC 2560 * states 2561 */ 2562 tcp_send_active_reset(sk, gfp_any()); 2563 sk->sk_err = ECONNRESET; 2564 } else if (old_state == TCP_SYN_SENT) 2565 sk->sk_err = ECONNRESET; 2566 2567 tcp_clear_xmit_timers(sk); 2568 __skb_queue_purge(&sk->sk_receive_queue); 2569 if (sk->sk_rx_skb_cache) { 2570 __kfree_skb(sk->sk_rx_skb_cache); 2571 sk->sk_rx_skb_cache = NULL; 2572 } 2573 tp->copied_seq = tp->rcv_nxt; 2574 tp->urg_data = 0; 2575 tcp_write_queue_purge(sk); 2576 tcp_fastopen_active_disable_ofo_check(sk); 2577 skb_rbtree_purge(&tp->out_of_order_queue); 2578 2579 inet->inet_dport = 0; 2580 2581 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2582 inet_reset_saddr(sk); 2583 2584 sk->sk_shutdown = 0; 2585 sock_reset_flag(sk, SOCK_DONE); 2586 tp->srtt_us = 0; 2587 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2588 tp->rcv_rtt_last_tsecr = 0; 2589 tp->write_seq += tp->max_window + 2; 2590 if (tp->write_seq == 0) 2591 tp->write_seq = 1; 2592 icsk->icsk_backoff = 0; 2593 tp->snd_cwnd = 2; 2594 icsk->icsk_probes_out = 0; 2595 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2596 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2597 tp->snd_cwnd = TCP_INIT_CWND; 2598 tp->snd_cwnd_cnt = 0; 2599 tp->window_clamp = 0; 2600 tp->delivered_ce = 0; 2601 tcp_set_ca_state(sk, TCP_CA_Open); 2602 tp->is_sack_reneg = 0; 2603 tcp_clear_retrans(tp); 2604 inet_csk_delack_init(sk); 2605 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2606 * issue in __tcp_select_window() 2607 */ 2608 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2609 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2610 __sk_dst_reset(sk); 2611 dst_release(sk->sk_rx_dst); 2612 sk->sk_rx_dst = NULL; 2613 tcp_saved_syn_free(tp); 2614 tp->compressed_ack = 0; 2615 tp->bytes_sent = 0; 2616 tp->bytes_retrans = 0; 2617 tp->duplicate_sack[0].start_seq = 0; 2618 tp->duplicate_sack[0].end_seq = 0; 2619 tp->dsack_dups = 0; 2620 tp->reord_seen = 0; 2621 tp->retrans_out = 0; 2622 tp->sacked_out = 0; 2623 tp->tlp_high_seq = 0; 2624 tp->last_oow_ack_time = 0; 2625 /* There's a bubble in the pipe until at least the first ACK. */ 2626 tp->app_limited = ~0U; 2627 tp->rack.mstamp = 0; 2628 tp->rack.advanced = 0; 2629 tp->rack.reo_wnd_steps = 1; 2630 tp->rack.last_delivered = 0; 2631 tp->rack.reo_wnd_persist = 0; 2632 tp->rack.dsack_seen = 0; 2633 tp->syn_data_acked = 0; 2634 tp->rx_opt.saw_tstamp = 0; 2635 tp->rx_opt.dsack = 0; 2636 tp->rx_opt.num_sacks = 0; 2637 2638 2639 /* Clean up fastopen related fields */ 2640 tcp_free_fastopen_req(tp); 2641 inet->defer_connect = 0; 2642 2643 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2644 2645 if (sk->sk_frag.page) { 2646 put_page(sk->sk_frag.page); 2647 sk->sk_frag.page = NULL; 2648 sk->sk_frag.offset = 0; 2649 } 2650 2651 sk->sk_error_report(sk); 2652 return 0; 2653 } 2654 EXPORT_SYMBOL(tcp_disconnect); 2655 2656 static inline bool tcp_can_repair_sock(const struct sock *sk) 2657 { 2658 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2659 (sk->sk_state != TCP_LISTEN); 2660 } 2661 2662 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2663 { 2664 struct tcp_repair_window opt; 2665 2666 if (!tp->repair) 2667 return -EPERM; 2668 2669 if (len != sizeof(opt)) 2670 return -EINVAL; 2671 2672 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2673 return -EFAULT; 2674 2675 if (opt.max_window < opt.snd_wnd) 2676 return -EINVAL; 2677 2678 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2679 return -EINVAL; 2680 2681 if (after(opt.rcv_wup, tp->rcv_nxt)) 2682 return -EINVAL; 2683 2684 tp->snd_wl1 = opt.snd_wl1; 2685 tp->snd_wnd = opt.snd_wnd; 2686 tp->max_window = opt.max_window; 2687 2688 tp->rcv_wnd = opt.rcv_wnd; 2689 tp->rcv_wup = opt.rcv_wup; 2690 2691 return 0; 2692 } 2693 2694 static int tcp_repair_options_est(struct sock *sk, 2695 struct tcp_repair_opt __user *optbuf, unsigned int len) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 struct tcp_repair_opt opt; 2699 2700 while (len >= sizeof(opt)) { 2701 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2702 return -EFAULT; 2703 2704 optbuf++; 2705 len -= sizeof(opt); 2706 2707 switch (opt.opt_code) { 2708 case TCPOPT_MSS: 2709 tp->rx_opt.mss_clamp = opt.opt_val; 2710 tcp_mtup_init(sk); 2711 break; 2712 case TCPOPT_WINDOW: 2713 { 2714 u16 snd_wscale = opt.opt_val & 0xFFFF; 2715 u16 rcv_wscale = opt.opt_val >> 16; 2716 2717 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2718 return -EFBIG; 2719 2720 tp->rx_opt.snd_wscale = snd_wscale; 2721 tp->rx_opt.rcv_wscale = rcv_wscale; 2722 tp->rx_opt.wscale_ok = 1; 2723 } 2724 break; 2725 case TCPOPT_SACK_PERM: 2726 if (opt.opt_val != 0) 2727 return -EINVAL; 2728 2729 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2730 break; 2731 case TCPOPT_TIMESTAMP: 2732 if (opt.opt_val != 0) 2733 return -EINVAL; 2734 2735 tp->rx_opt.tstamp_ok = 1; 2736 break; 2737 } 2738 } 2739 2740 return 0; 2741 } 2742 2743 /* 2744 * Socket option code for TCP. 2745 */ 2746 static int do_tcp_setsockopt(struct sock *sk, int level, 2747 int optname, char __user *optval, unsigned int optlen) 2748 { 2749 struct tcp_sock *tp = tcp_sk(sk); 2750 struct inet_connection_sock *icsk = inet_csk(sk); 2751 struct net *net = sock_net(sk); 2752 int val; 2753 int err = 0; 2754 2755 /* These are data/string values, all the others are ints */ 2756 switch (optname) { 2757 case TCP_CONGESTION: { 2758 char name[TCP_CA_NAME_MAX]; 2759 2760 if (optlen < 1) 2761 return -EINVAL; 2762 2763 val = strncpy_from_user(name, optval, 2764 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2765 if (val < 0) 2766 return -EFAULT; 2767 name[val] = 0; 2768 2769 lock_sock(sk); 2770 err = tcp_set_congestion_control(sk, name, true, true); 2771 release_sock(sk); 2772 return err; 2773 } 2774 case TCP_ULP: { 2775 char name[TCP_ULP_NAME_MAX]; 2776 2777 if (optlen < 1) 2778 return -EINVAL; 2779 2780 val = strncpy_from_user(name, optval, 2781 min_t(long, TCP_ULP_NAME_MAX - 1, 2782 optlen)); 2783 if (val < 0) 2784 return -EFAULT; 2785 name[val] = 0; 2786 2787 lock_sock(sk); 2788 err = tcp_set_ulp(sk, name); 2789 release_sock(sk); 2790 return err; 2791 } 2792 case TCP_FASTOPEN_KEY: { 2793 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2794 2795 if (optlen != sizeof(key)) 2796 return -EINVAL; 2797 2798 if (copy_from_user(key, optval, optlen)) 2799 return -EFAULT; 2800 2801 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2802 } 2803 default: 2804 /* fallthru */ 2805 break; 2806 } 2807 2808 if (optlen < sizeof(int)) 2809 return -EINVAL; 2810 2811 if (get_user(val, (int __user *)optval)) 2812 return -EFAULT; 2813 2814 lock_sock(sk); 2815 2816 switch (optname) { 2817 case TCP_MAXSEG: 2818 /* Values greater than interface MTU won't take effect. However 2819 * at the point when this call is done we typically don't yet 2820 * know which interface is going to be used 2821 */ 2822 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2823 err = -EINVAL; 2824 break; 2825 } 2826 tp->rx_opt.user_mss = val; 2827 break; 2828 2829 case TCP_NODELAY: 2830 if (val) { 2831 /* TCP_NODELAY is weaker than TCP_CORK, so that 2832 * this option on corked socket is remembered, but 2833 * it is not activated until cork is cleared. 2834 * 2835 * However, when TCP_NODELAY is set we make 2836 * an explicit push, which overrides even TCP_CORK 2837 * for currently queued segments. 2838 */ 2839 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2840 tcp_push_pending_frames(sk); 2841 } else { 2842 tp->nonagle &= ~TCP_NAGLE_OFF; 2843 } 2844 break; 2845 2846 case TCP_THIN_LINEAR_TIMEOUTS: 2847 if (val < 0 || val > 1) 2848 err = -EINVAL; 2849 else 2850 tp->thin_lto = val; 2851 break; 2852 2853 case TCP_THIN_DUPACK: 2854 if (val < 0 || val > 1) 2855 err = -EINVAL; 2856 break; 2857 2858 case TCP_REPAIR: 2859 if (!tcp_can_repair_sock(sk)) 2860 err = -EPERM; 2861 else if (val == TCP_REPAIR_ON) { 2862 tp->repair = 1; 2863 sk->sk_reuse = SK_FORCE_REUSE; 2864 tp->repair_queue = TCP_NO_QUEUE; 2865 } else if (val == TCP_REPAIR_OFF) { 2866 tp->repair = 0; 2867 sk->sk_reuse = SK_NO_REUSE; 2868 tcp_send_window_probe(sk); 2869 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2870 tp->repair = 0; 2871 sk->sk_reuse = SK_NO_REUSE; 2872 } else 2873 err = -EINVAL; 2874 2875 break; 2876 2877 case TCP_REPAIR_QUEUE: 2878 if (!tp->repair) 2879 err = -EPERM; 2880 else if ((unsigned int)val < TCP_QUEUES_NR) 2881 tp->repair_queue = val; 2882 else 2883 err = -EINVAL; 2884 break; 2885 2886 case TCP_QUEUE_SEQ: 2887 if (sk->sk_state != TCP_CLOSE) 2888 err = -EPERM; 2889 else if (tp->repair_queue == TCP_SEND_QUEUE) 2890 tp->write_seq = val; 2891 else if (tp->repair_queue == TCP_RECV_QUEUE) 2892 tp->rcv_nxt = val; 2893 else 2894 err = -EINVAL; 2895 break; 2896 2897 case TCP_REPAIR_OPTIONS: 2898 if (!tp->repair) 2899 err = -EINVAL; 2900 else if (sk->sk_state == TCP_ESTABLISHED) 2901 err = tcp_repair_options_est(sk, 2902 (struct tcp_repair_opt __user *)optval, 2903 optlen); 2904 else 2905 err = -EPERM; 2906 break; 2907 2908 case TCP_CORK: 2909 /* When set indicates to always queue non-full frames. 2910 * Later the user clears this option and we transmit 2911 * any pending partial frames in the queue. This is 2912 * meant to be used alongside sendfile() to get properly 2913 * filled frames when the user (for example) must write 2914 * out headers with a write() call first and then use 2915 * sendfile to send out the data parts. 2916 * 2917 * TCP_CORK can be set together with TCP_NODELAY and it is 2918 * stronger than TCP_NODELAY. 2919 */ 2920 if (val) { 2921 tp->nonagle |= TCP_NAGLE_CORK; 2922 } else { 2923 tp->nonagle &= ~TCP_NAGLE_CORK; 2924 if (tp->nonagle&TCP_NAGLE_OFF) 2925 tp->nonagle |= TCP_NAGLE_PUSH; 2926 tcp_push_pending_frames(sk); 2927 } 2928 break; 2929 2930 case TCP_KEEPIDLE: 2931 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2932 err = -EINVAL; 2933 else { 2934 tp->keepalive_time = val * HZ; 2935 if (sock_flag(sk, SOCK_KEEPOPEN) && 2936 !((1 << sk->sk_state) & 2937 (TCPF_CLOSE | TCPF_LISTEN))) { 2938 u32 elapsed = keepalive_time_elapsed(tp); 2939 if (tp->keepalive_time > elapsed) 2940 elapsed = tp->keepalive_time - elapsed; 2941 else 2942 elapsed = 0; 2943 inet_csk_reset_keepalive_timer(sk, elapsed); 2944 } 2945 } 2946 break; 2947 case TCP_KEEPINTVL: 2948 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2949 err = -EINVAL; 2950 else 2951 tp->keepalive_intvl = val * HZ; 2952 break; 2953 case TCP_KEEPCNT: 2954 if (val < 1 || val > MAX_TCP_KEEPCNT) 2955 err = -EINVAL; 2956 else 2957 tp->keepalive_probes = val; 2958 break; 2959 case TCP_SYNCNT: 2960 if (val < 1 || val > MAX_TCP_SYNCNT) 2961 err = -EINVAL; 2962 else 2963 icsk->icsk_syn_retries = val; 2964 break; 2965 2966 case TCP_SAVE_SYN: 2967 if (val < 0 || val > 1) 2968 err = -EINVAL; 2969 else 2970 tp->save_syn = val; 2971 break; 2972 2973 case TCP_LINGER2: 2974 if (val < 0) 2975 tp->linger2 = -1; 2976 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2977 tp->linger2 = 0; 2978 else 2979 tp->linger2 = val * HZ; 2980 break; 2981 2982 case TCP_DEFER_ACCEPT: 2983 /* Translate value in seconds to number of retransmits */ 2984 icsk->icsk_accept_queue.rskq_defer_accept = 2985 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2986 TCP_RTO_MAX / HZ); 2987 break; 2988 2989 case TCP_WINDOW_CLAMP: 2990 if (!val) { 2991 if (sk->sk_state != TCP_CLOSE) { 2992 err = -EINVAL; 2993 break; 2994 } 2995 tp->window_clamp = 0; 2996 } else 2997 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2998 SOCK_MIN_RCVBUF / 2 : val; 2999 break; 3000 3001 case TCP_QUICKACK: 3002 if (!val) { 3003 inet_csk_enter_pingpong_mode(sk); 3004 } else { 3005 inet_csk_exit_pingpong_mode(sk); 3006 if ((1 << sk->sk_state) & 3007 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3008 inet_csk_ack_scheduled(sk)) { 3009 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3010 tcp_cleanup_rbuf(sk, 1); 3011 if (!(val & 1)) 3012 inet_csk_enter_pingpong_mode(sk); 3013 } 3014 } 3015 break; 3016 3017 #ifdef CONFIG_TCP_MD5SIG 3018 case TCP_MD5SIG: 3019 case TCP_MD5SIG_EXT: 3020 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3021 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3022 else 3023 err = -EINVAL; 3024 break; 3025 #endif 3026 case TCP_USER_TIMEOUT: 3027 /* Cap the max time in ms TCP will retry or probe the window 3028 * before giving up and aborting (ETIMEDOUT) a connection. 3029 */ 3030 if (val < 0) 3031 err = -EINVAL; 3032 else 3033 icsk->icsk_user_timeout = val; 3034 break; 3035 3036 case TCP_FASTOPEN: 3037 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3038 TCPF_LISTEN))) { 3039 tcp_fastopen_init_key_once(net); 3040 3041 fastopen_queue_tune(sk, val); 3042 } else { 3043 err = -EINVAL; 3044 } 3045 break; 3046 case TCP_FASTOPEN_CONNECT: 3047 if (val > 1 || val < 0) { 3048 err = -EINVAL; 3049 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3050 if (sk->sk_state == TCP_CLOSE) 3051 tp->fastopen_connect = val; 3052 else 3053 err = -EINVAL; 3054 } else { 3055 err = -EOPNOTSUPP; 3056 } 3057 break; 3058 case TCP_FASTOPEN_NO_COOKIE: 3059 if (val > 1 || val < 0) 3060 err = -EINVAL; 3061 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3062 err = -EINVAL; 3063 else 3064 tp->fastopen_no_cookie = val; 3065 break; 3066 case TCP_TIMESTAMP: 3067 if (!tp->repair) 3068 err = -EPERM; 3069 else 3070 tp->tsoffset = val - tcp_time_stamp_raw(); 3071 break; 3072 case TCP_REPAIR_WINDOW: 3073 err = tcp_repair_set_window(tp, optval, optlen); 3074 break; 3075 case TCP_NOTSENT_LOWAT: 3076 tp->notsent_lowat = val; 3077 sk->sk_write_space(sk); 3078 break; 3079 case TCP_INQ: 3080 if (val > 1 || val < 0) 3081 err = -EINVAL; 3082 else 3083 tp->recvmsg_inq = val; 3084 break; 3085 default: 3086 err = -ENOPROTOOPT; 3087 break; 3088 } 3089 3090 release_sock(sk); 3091 return err; 3092 } 3093 3094 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3095 unsigned int optlen) 3096 { 3097 const struct inet_connection_sock *icsk = inet_csk(sk); 3098 3099 if (level != SOL_TCP) 3100 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3101 optval, optlen); 3102 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3103 } 3104 EXPORT_SYMBOL(tcp_setsockopt); 3105 3106 #ifdef CONFIG_COMPAT 3107 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3108 char __user *optval, unsigned int optlen) 3109 { 3110 if (level != SOL_TCP) 3111 return inet_csk_compat_setsockopt(sk, level, optname, 3112 optval, optlen); 3113 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3114 } 3115 EXPORT_SYMBOL(compat_tcp_setsockopt); 3116 #endif 3117 3118 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3119 struct tcp_info *info) 3120 { 3121 u64 stats[__TCP_CHRONO_MAX], total = 0; 3122 enum tcp_chrono i; 3123 3124 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3125 stats[i] = tp->chrono_stat[i - 1]; 3126 if (i == tp->chrono_type) 3127 stats[i] += tcp_jiffies32 - tp->chrono_start; 3128 stats[i] *= USEC_PER_SEC / HZ; 3129 total += stats[i]; 3130 } 3131 3132 info->tcpi_busy_time = total; 3133 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3134 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3135 } 3136 3137 /* Return information about state of tcp endpoint in API format. */ 3138 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3139 { 3140 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3141 const struct inet_connection_sock *icsk = inet_csk(sk); 3142 unsigned long rate; 3143 u32 now; 3144 u64 rate64; 3145 bool slow; 3146 3147 memset(info, 0, sizeof(*info)); 3148 if (sk->sk_type != SOCK_STREAM) 3149 return; 3150 3151 info->tcpi_state = inet_sk_state_load(sk); 3152 3153 /* Report meaningful fields for all TCP states, including listeners */ 3154 rate = READ_ONCE(sk->sk_pacing_rate); 3155 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3156 info->tcpi_pacing_rate = rate64; 3157 3158 rate = READ_ONCE(sk->sk_max_pacing_rate); 3159 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3160 info->tcpi_max_pacing_rate = rate64; 3161 3162 info->tcpi_reordering = tp->reordering; 3163 info->tcpi_snd_cwnd = tp->snd_cwnd; 3164 3165 if (info->tcpi_state == TCP_LISTEN) { 3166 /* listeners aliased fields : 3167 * tcpi_unacked -> Number of children ready for accept() 3168 * tcpi_sacked -> max backlog 3169 */ 3170 info->tcpi_unacked = sk->sk_ack_backlog; 3171 info->tcpi_sacked = sk->sk_max_ack_backlog; 3172 return; 3173 } 3174 3175 slow = lock_sock_fast(sk); 3176 3177 info->tcpi_ca_state = icsk->icsk_ca_state; 3178 info->tcpi_retransmits = icsk->icsk_retransmits; 3179 info->tcpi_probes = icsk->icsk_probes_out; 3180 info->tcpi_backoff = icsk->icsk_backoff; 3181 3182 if (tp->rx_opt.tstamp_ok) 3183 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3184 if (tcp_is_sack(tp)) 3185 info->tcpi_options |= TCPI_OPT_SACK; 3186 if (tp->rx_opt.wscale_ok) { 3187 info->tcpi_options |= TCPI_OPT_WSCALE; 3188 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3189 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3190 } 3191 3192 if (tp->ecn_flags & TCP_ECN_OK) 3193 info->tcpi_options |= TCPI_OPT_ECN; 3194 if (tp->ecn_flags & TCP_ECN_SEEN) 3195 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3196 if (tp->syn_data_acked) 3197 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3198 3199 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3200 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3201 info->tcpi_snd_mss = tp->mss_cache; 3202 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3203 3204 info->tcpi_unacked = tp->packets_out; 3205 info->tcpi_sacked = tp->sacked_out; 3206 3207 info->tcpi_lost = tp->lost_out; 3208 info->tcpi_retrans = tp->retrans_out; 3209 3210 now = tcp_jiffies32; 3211 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3212 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3213 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3214 3215 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3216 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3217 info->tcpi_rtt = tp->srtt_us >> 3; 3218 info->tcpi_rttvar = tp->mdev_us >> 2; 3219 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3220 info->tcpi_advmss = tp->advmss; 3221 3222 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3223 info->tcpi_rcv_space = tp->rcvq_space.space; 3224 3225 info->tcpi_total_retrans = tp->total_retrans; 3226 3227 info->tcpi_bytes_acked = tp->bytes_acked; 3228 info->tcpi_bytes_received = tp->bytes_received; 3229 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3230 tcp_get_info_chrono_stats(tp, info); 3231 3232 info->tcpi_segs_out = tp->segs_out; 3233 info->tcpi_segs_in = tp->segs_in; 3234 3235 info->tcpi_min_rtt = tcp_min_rtt(tp); 3236 info->tcpi_data_segs_in = tp->data_segs_in; 3237 info->tcpi_data_segs_out = tp->data_segs_out; 3238 3239 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3240 rate64 = tcp_compute_delivery_rate(tp); 3241 if (rate64) 3242 info->tcpi_delivery_rate = rate64; 3243 info->tcpi_delivered = tp->delivered; 3244 info->tcpi_delivered_ce = tp->delivered_ce; 3245 info->tcpi_bytes_sent = tp->bytes_sent; 3246 info->tcpi_bytes_retrans = tp->bytes_retrans; 3247 info->tcpi_dsack_dups = tp->dsack_dups; 3248 info->tcpi_reord_seen = tp->reord_seen; 3249 unlock_sock_fast(sk, slow); 3250 } 3251 EXPORT_SYMBOL_GPL(tcp_get_info); 3252 3253 static size_t tcp_opt_stats_get_size(void) 3254 { 3255 return 3256 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3257 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3258 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3259 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3260 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3261 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3262 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3263 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3264 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3265 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3266 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3267 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3268 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3269 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3270 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3272 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3275 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3276 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3277 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3278 0; 3279 } 3280 3281 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3282 { 3283 const struct tcp_sock *tp = tcp_sk(sk); 3284 struct sk_buff *stats; 3285 struct tcp_info info; 3286 unsigned long rate; 3287 u64 rate64; 3288 3289 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3290 if (!stats) 3291 return NULL; 3292 3293 tcp_get_info_chrono_stats(tp, &info); 3294 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3295 info.tcpi_busy_time, TCP_NLA_PAD); 3296 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3297 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3298 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3299 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3300 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3301 tp->data_segs_out, TCP_NLA_PAD); 3302 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3303 tp->total_retrans, TCP_NLA_PAD); 3304 3305 rate = READ_ONCE(sk->sk_pacing_rate); 3306 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3307 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3308 3309 rate64 = tcp_compute_delivery_rate(tp); 3310 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3311 3312 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3313 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3314 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3315 3316 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3317 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3318 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3319 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3320 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3321 3322 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3323 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3324 3325 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3326 TCP_NLA_PAD); 3327 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3328 TCP_NLA_PAD); 3329 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3330 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3331 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3332 3333 return stats; 3334 } 3335 3336 static int do_tcp_getsockopt(struct sock *sk, int level, 3337 int optname, char __user *optval, int __user *optlen) 3338 { 3339 struct inet_connection_sock *icsk = inet_csk(sk); 3340 struct tcp_sock *tp = tcp_sk(sk); 3341 struct net *net = sock_net(sk); 3342 int val, len; 3343 3344 if (get_user(len, optlen)) 3345 return -EFAULT; 3346 3347 len = min_t(unsigned int, len, sizeof(int)); 3348 3349 if (len < 0) 3350 return -EINVAL; 3351 3352 switch (optname) { 3353 case TCP_MAXSEG: 3354 val = tp->mss_cache; 3355 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3356 val = tp->rx_opt.user_mss; 3357 if (tp->repair) 3358 val = tp->rx_opt.mss_clamp; 3359 break; 3360 case TCP_NODELAY: 3361 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3362 break; 3363 case TCP_CORK: 3364 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3365 break; 3366 case TCP_KEEPIDLE: 3367 val = keepalive_time_when(tp) / HZ; 3368 break; 3369 case TCP_KEEPINTVL: 3370 val = keepalive_intvl_when(tp) / HZ; 3371 break; 3372 case TCP_KEEPCNT: 3373 val = keepalive_probes(tp); 3374 break; 3375 case TCP_SYNCNT: 3376 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3377 break; 3378 case TCP_LINGER2: 3379 val = tp->linger2; 3380 if (val >= 0) 3381 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3382 break; 3383 case TCP_DEFER_ACCEPT: 3384 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3385 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3386 break; 3387 case TCP_WINDOW_CLAMP: 3388 val = tp->window_clamp; 3389 break; 3390 case TCP_INFO: { 3391 struct tcp_info info; 3392 3393 if (get_user(len, optlen)) 3394 return -EFAULT; 3395 3396 tcp_get_info(sk, &info); 3397 3398 len = min_t(unsigned int, len, sizeof(info)); 3399 if (put_user(len, optlen)) 3400 return -EFAULT; 3401 if (copy_to_user(optval, &info, len)) 3402 return -EFAULT; 3403 return 0; 3404 } 3405 case TCP_CC_INFO: { 3406 const struct tcp_congestion_ops *ca_ops; 3407 union tcp_cc_info info; 3408 size_t sz = 0; 3409 int attr; 3410 3411 if (get_user(len, optlen)) 3412 return -EFAULT; 3413 3414 ca_ops = icsk->icsk_ca_ops; 3415 if (ca_ops && ca_ops->get_info) 3416 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3417 3418 len = min_t(unsigned int, len, sz); 3419 if (put_user(len, optlen)) 3420 return -EFAULT; 3421 if (copy_to_user(optval, &info, len)) 3422 return -EFAULT; 3423 return 0; 3424 } 3425 case TCP_QUICKACK: 3426 val = !inet_csk_in_pingpong_mode(sk); 3427 break; 3428 3429 case TCP_CONGESTION: 3430 if (get_user(len, optlen)) 3431 return -EFAULT; 3432 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3433 if (put_user(len, optlen)) 3434 return -EFAULT; 3435 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3436 return -EFAULT; 3437 return 0; 3438 3439 case TCP_ULP: 3440 if (get_user(len, optlen)) 3441 return -EFAULT; 3442 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3443 if (!icsk->icsk_ulp_ops) { 3444 if (put_user(0, optlen)) 3445 return -EFAULT; 3446 return 0; 3447 } 3448 if (put_user(len, optlen)) 3449 return -EFAULT; 3450 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3451 return -EFAULT; 3452 return 0; 3453 3454 case TCP_FASTOPEN_KEY: { 3455 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3456 struct tcp_fastopen_context *ctx; 3457 3458 if (get_user(len, optlen)) 3459 return -EFAULT; 3460 3461 rcu_read_lock(); 3462 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3463 if (ctx) 3464 memcpy(key, ctx->key, sizeof(key)); 3465 else 3466 len = 0; 3467 rcu_read_unlock(); 3468 3469 len = min_t(unsigned int, len, sizeof(key)); 3470 if (put_user(len, optlen)) 3471 return -EFAULT; 3472 if (copy_to_user(optval, key, len)) 3473 return -EFAULT; 3474 return 0; 3475 } 3476 case TCP_THIN_LINEAR_TIMEOUTS: 3477 val = tp->thin_lto; 3478 break; 3479 3480 case TCP_THIN_DUPACK: 3481 val = 0; 3482 break; 3483 3484 case TCP_REPAIR: 3485 val = tp->repair; 3486 break; 3487 3488 case TCP_REPAIR_QUEUE: 3489 if (tp->repair) 3490 val = tp->repair_queue; 3491 else 3492 return -EINVAL; 3493 break; 3494 3495 case TCP_REPAIR_WINDOW: { 3496 struct tcp_repair_window opt; 3497 3498 if (get_user(len, optlen)) 3499 return -EFAULT; 3500 3501 if (len != sizeof(opt)) 3502 return -EINVAL; 3503 3504 if (!tp->repair) 3505 return -EPERM; 3506 3507 opt.snd_wl1 = tp->snd_wl1; 3508 opt.snd_wnd = tp->snd_wnd; 3509 opt.max_window = tp->max_window; 3510 opt.rcv_wnd = tp->rcv_wnd; 3511 opt.rcv_wup = tp->rcv_wup; 3512 3513 if (copy_to_user(optval, &opt, len)) 3514 return -EFAULT; 3515 return 0; 3516 } 3517 case TCP_QUEUE_SEQ: 3518 if (tp->repair_queue == TCP_SEND_QUEUE) 3519 val = tp->write_seq; 3520 else if (tp->repair_queue == TCP_RECV_QUEUE) 3521 val = tp->rcv_nxt; 3522 else 3523 return -EINVAL; 3524 break; 3525 3526 case TCP_USER_TIMEOUT: 3527 val = icsk->icsk_user_timeout; 3528 break; 3529 3530 case TCP_FASTOPEN: 3531 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3532 break; 3533 3534 case TCP_FASTOPEN_CONNECT: 3535 val = tp->fastopen_connect; 3536 break; 3537 3538 case TCP_FASTOPEN_NO_COOKIE: 3539 val = tp->fastopen_no_cookie; 3540 break; 3541 3542 case TCP_TIMESTAMP: 3543 val = tcp_time_stamp_raw() + tp->tsoffset; 3544 break; 3545 case TCP_NOTSENT_LOWAT: 3546 val = tp->notsent_lowat; 3547 break; 3548 case TCP_INQ: 3549 val = tp->recvmsg_inq; 3550 break; 3551 case TCP_SAVE_SYN: 3552 val = tp->save_syn; 3553 break; 3554 case TCP_SAVED_SYN: { 3555 if (get_user(len, optlen)) 3556 return -EFAULT; 3557 3558 lock_sock(sk); 3559 if (tp->saved_syn) { 3560 if (len < tp->saved_syn[0]) { 3561 if (put_user(tp->saved_syn[0], optlen)) { 3562 release_sock(sk); 3563 return -EFAULT; 3564 } 3565 release_sock(sk); 3566 return -EINVAL; 3567 } 3568 len = tp->saved_syn[0]; 3569 if (put_user(len, optlen)) { 3570 release_sock(sk); 3571 return -EFAULT; 3572 } 3573 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3574 release_sock(sk); 3575 return -EFAULT; 3576 } 3577 tcp_saved_syn_free(tp); 3578 release_sock(sk); 3579 } else { 3580 release_sock(sk); 3581 len = 0; 3582 if (put_user(len, optlen)) 3583 return -EFAULT; 3584 } 3585 return 0; 3586 } 3587 #ifdef CONFIG_MMU 3588 case TCP_ZEROCOPY_RECEIVE: { 3589 struct tcp_zerocopy_receive zc; 3590 int err; 3591 3592 if (get_user(len, optlen)) 3593 return -EFAULT; 3594 if (len != sizeof(zc)) 3595 return -EINVAL; 3596 if (copy_from_user(&zc, optval, len)) 3597 return -EFAULT; 3598 lock_sock(sk); 3599 err = tcp_zerocopy_receive(sk, &zc); 3600 release_sock(sk); 3601 if (!err && copy_to_user(optval, &zc, len)) 3602 err = -EFAULT; 3603 return err; 3604 } 3605 #endif 3606 default: 3607 return -ENOPROTOOPT; 3608 } 3609 3610 if (put_user(len, optlen)) 3611 return -EFAULT; 3612 if (copy_to_user(optval, &val, len)) 3613 return -EFAULT; 3614 return 0; 3615 } 3616 3617 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3618 int __user *optlen) 3619 { 3620 struct inet_connection_sock *icsk = inet_csk(sk); 3621 3622 if (level != SOL_TCP) 3623 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3624 optval, optlen); 3625 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3626 } 3627 EXPORT_SYMBOL(tcp_getsockopt); 3628 3629 #ifdef CONFIG_COMPAT 3630 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3631 char __user *optval, int __user *optlen) 3632 { 3633 if (level != SOL_TCP) 3634 return inet_csk_compat_getsockopt(sk, level, optname, 3635 optval, optlen); 3636 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3637 } 3638 EXPORT_SYMBOL(compat_tcp_getsockopt); 3639 #endif 3640 3641 #ifdef CONFIG_TCP_MD5SIG 3642 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3643 static DEFINE_MUTEX(tcp_md5sig_mutex); 3644 static bool tcp_md5sig_pool_populated = false; 3645 3646 static void __tcp_alloc_md5sig_pool(void) 3647 { 3648 struct crypto_ahash *hash; 3649 int cpu; 3650 3651 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3652 if (IS_ERR(hash)) 3653 return; 3654 3655 for_each_possible_cpu(cpu) { 3656 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3657 struct ahash_request *req; 3658 3659 if (!scratch) { 3660 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3661 sizeof(struct tcphdr), 3662 GFP_KERNEL, 3663 cpu_to_node(cpu)); 3664 if (!scratch) 3665 return; 3666 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3667 } 3668 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3669 continue; 3670 3671 req = ahash_request_alloc(hash, GFP_KERNEL); 3672 if (!req) 3673 return; 3674 3675 ahash_request_set_callback(req, 0, NULL, NULL); 3676 3677 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3678 } 3679 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3680 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3681 */ 3682 smp_wmb(); 3683 tcp_md5sig_pool_populated = true; 3684 } 3685 3686 bool tcp_alloc_md5sig_pool(void) 3687 { 3688 if (unlikely(!tcp_md5sig_pool_populated)) { 3689 mutex_lock(&tcp_md5sig_mutex); 3690 3691 if (!tcp_md5sig_pool_populated) { 3692 __tcp_alloc_md5sig_pool(); 3693 if (tcp_md5sig_pool_populated) 3694 static_branch_inc(&tcp_md5_needed); 3695 } 3696 3697 mutex_unlock(&tcp_md5sig_mutex); 3698 } 3699 return tcp_md5sig_pool_populated; 3700 } 3701 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3702 3703 3704 /** 3705 * tcp_get_md5sig_pool - get md5sig_pool for this user 3706 * 3707 * We use percpu structure, so if we succeed, we exit with preemption 3708 * and BH disabled, to make sure another thread or softirq handling 3709 * wont try to get same context. 3710 */ 3711 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3712 { 3713 local_bh_disable(); 3714 3715 if (tcp_md5sig_pool_populated) { 3716 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3717 smp_rmb(); 3718 return this_cpu_ptr(&tcp_md5sig_pool); 3719 } 3720 local_bh_enable(); 3721 return NULL; 3722 } 3723 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3724 3725 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3726 const struct sk_buff *skb, unsigned int header_len) 3727 { 3728 struct scatterlist sg; 3729 const struct tcphdr *tp = tcp_hdr(skb); 3730 struct ahash_request *req = hp->md5_req; 3731 unsigned int i; 3732 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3733 skb_headlen(skb) - header_len : 0; 3734 const struct skb_shared_info *shi = skb_shinfo(skb); 3735 struct sk_buff *frag_iter; 3736 3737 sg_init_table(&sg, 1); 3738 3739 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3740 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3741 if (crypto_ahash_update(req)) 3742 return 1; 3743 3744 for (i = 0; i < shi->nr_frags; ++i) { 3745 const struct skb_frag_struct *f = &shi->frags[i]; 3746 unsigned int offset = f->page_offset; 3747 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3748 3749 sg_set_page(&sg, page, skb_frag_size(f), 3750 offset_in_page(offset)); 3751 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3752 if (crypto_ahash_update(req)) 3753 return 1; 3754 } 3755 3756 skb_walk_frags(skb, frag_iter) 3757 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3758 return 1; 3759 3760 return 0; 3761 } 3762 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3763 3764 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3765 { 3766 struct scatterlist sg; 3767 3768 sg_init_one(&sg, key->key, key->keylen); 3769 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3770 return crypto_ahash_update(hp->md5_req); 3771 } 3772 EXPORT_SYMBOL(tcp_md5_hash_key); 3773 3774 #endif 3775 3776 void tcp_done(struct sock *sk) 3777 { 3778 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3779 3780 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3781 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3782 3783 tcp_set_state(sk, TCP_CLOSE); 3784 tcp_clear_xmit_timers(sk); 3785 if (req) 3786 reqsk_fastopen_remove(sk, req, false); 3787 3788 sk->sk_shutdown = SHUTDOWN_MASK; 3789 3790 if (!sock_flag(sk, SOCK_DEAD)) 3791 sk->sk_state_change(sk); 3792 else 3793 inet_csk_destroy_sock(sk); 3794 } 3795 EXPORT_SYMBOL_GPL(tcp_done); 3796 3797 int tcp_abort(struct sock *sk, int err) 3798 { 3799 if (!sk_fullsock(sk)) { 3800 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3801 struct request_sock *req = inet_reqsk(sk); 3802 3803 local_bh_disable(); 3804 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3805 local_bh_enable(); 3806 return 0; 3807 } 3808 return -EOPNOTSUPP; 3809 } 3810 3811 /* Don't race with userspace socket closes such as tcp_close. */ 3812 lock_sock(sk); 3813 3814 if (sk->sk_state == TCP_LISTEN) { 3815 tcp_set_state(sk, TCP_CLOSE); 3816 inet_csk_listen_stop(sk); 3817 } 3818 3819 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3820 local_bh_disable(); 3821 bh_lock_sock(sk); 3822 3823 if (!sock_flag(sk, SOCK_DEAD)) { 3824 sk->sk_err = err; 3825 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3826 smp_wmb(); 3827 sk->sk_error_report(sk); 3828 if (tcp_need_reset(sk->sk_state)) 3829 tcp_send_active_reset(sk, GFP_ATOMIC); 3830 tcp_done(sk); 3831 } 3832 3833 bh_unlock_sock(sk); 3834 local_bh_enable(); 3835 tcp_write_queue_purge(sk); 3836 release_sock(sk); 3837 return 0; 3838 } 3839 EXPORT_SYMBOL_GPL(tcp_abort); 3840 3841 extern struct tcp_congestion_ops tcp_reno; 3842 3843 static __initdata unsigned long thash_entries; 3844 static int __init set_thash_entries(char *str) 3845 { 3846 ssize_t ret; 3847 3848 if (!str) 3849 return 0; 3850 3851 ret = kstrtoul(str, 0, &thash_entries); 3852 if (ret) 3853 return 0; 3854 3855 return 1; 3856 } 3857 __setup("thash_entries=", set_thash_entries); 3858 3859 static void __init tcp_init_mem(void) 3860 { 3861 unsigned long limit = nr_free_buffer_pages() / 16; 3862 3863 limit = max(limit, 128UL); 3864 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3865 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3866 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3867 } 3868 3869 void __init tcp_init(void) 3870 { 3871 int max_rshare, max_wshare, cnt; 3872 unsigned long limit; 3873 unsigned int i; 3874 3875 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3876 FIELD_SIZEOF(struct sk_buff, cb)); 3877 3878 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3879 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3880 inet_hashinfo_init(&tcp_hashinfo); 3881 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3882 thash_entries, 21, /* one slot per 2 MB*/ 3883 0, 64 * 1024); 3884 tcp_hashinfo.bind_bucket_cachep = 3885 kmem_cache_create("tcp_bind_bucket", 3886 sizeof(struct inet_bind_bucket), 0, 3887 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3888 3889 /* Size and allocate the main established and bind bucket 3890 * hash tables. 3891 * 3892 * The methodology is similar to that of the buffer cache. 3893 */ 3894 tcp_hashinfo.ehash = 3895 alloc_large_system_hash("TCP established", 3896 sizeof(struct inet_ehash_bucket), 3897 thash_entries, 3898 17, /* one slot per 128 KB of memory */ 3899 0, 3900 NULL, 3901 &tcp_hashinfo.ehash_mask, 3902 0, 3903 thash_entries ? 0 : 512 * 1024); 3904 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3905 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3906 3907 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3908 panic("TCP: failed to alloc ehash_locks"); 3909 tcp_hashinfo.bhash = 3910 alloc_large_system_hash("TCP bind", 3911 sizeof(struct inet_bind_hashbucket), 3912 tcp_hashinfo.ehash_mask + 1, 3913 17, /* one slot per 128 KB of memory */ 3914 0, 3915 &tcp_hashinfo.bhash_size, 3916 NULL, 3917 0, 3918 64 * 1024); 3919 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3920 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3921 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3922 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3923 } 3924 3925 3926 cnt = tcp_hashinfo.ehash_mask + 1; 3927 sysctl_tcp_max_orphans = cnt / 2; 3928 3929 tcp_init_mem(); 3930 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3931 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3932 max_wshare = min(4UL*1024*1024, limit); 3933 max_rshare = min(6UL*1024*1024, limit); 3934 3935 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3936 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3937 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3938 3939 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3940 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3941 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3942 3943 pr_info("Hash tables configured (established %u bind %u)\n", 3944 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3945 3946 tcp_v4_init(); 3947 tcp_metrics_init(); 3948 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3949 tcp_tasklet_init(); 3950 } 3951