xref: /openbmc/linux/net/ipv4/tcp.c (revision f4356947)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 
461 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 	sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465 
466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 	struct sk_buff *skb = tcp_write_queue_tail(sk);
469 
470 	if (tsflags && skb) {
471 		struct skb_shared_info *shinfo = skb_shinfo(skb);
472 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473 
474 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 			tcb->txstamp_ack = 1;
477 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 	}
480 }
481 
482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 	if (tcp_epollin_ready(sk, target))
485 		return true;
486 	return sk_is_readable(sk);
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	__poll_t mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	u8 shutdown;
502 	int state;
503 
504 	sock_poll_wait(file, sock, wait);
505 
506 	state = inet_sk_state_load(sk);
507 	if (state == TCP_LISTEN)
508 		return inet_csk_listen_poll(sk);
509 
510 	/* Socket is not locked. We are protected from async events
511 	 * by poll logic and correct handling of state changes
512 	 * made by other threads is impossible in any case.
513 	 */
514 
515 	mask = 0;
516 
517 	/*
518 	 * EPOLLHUP is certainly not done right. But poll() doesn't
519 	 * have a notion of HUP in just one direction, and for a
520 	 * socket the read side is more interesting.
521 	 *
522 	 * Some poll() documentation says that EPOLLHUP is incompatible
523 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 	 * all. But careful, it tends to be safer to return too many
525 	 * bits than too few, and you can easily break real applications
526 	 * if you don't tell them that something has hung up!
527 	 *
528 	 * Check-me.
529 	 *
530 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 	 * our fs/select.c). It means that after we received EOF,
532 	 * poll always returns immediately, making impossible poll() on write()
533 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 	 * if and only if shutdown has been made in both directions.
535 	 * Actually, it is interesting to look how Solaris and DUX
536 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 	 * then we could set it on SND_SHUTDOWN. BTW examples given
538 	 * in Stevens' books assume exactly this behaviour, it explains
539 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
540 	 *
541 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 	 * blocking on fresh not-connected or disconnected socket. --ANK
543 	 */
544 	shutdown = READ_ONCE(sk->sk_shutdown);
545 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 		mask |= EPOLLHUP;
547 	if (shutdown & RCV_SHUTDOWN)
548 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
549 
550 	/* Connected or passive Fast Open socket? */
551 	if (state != TCP_SYN_SENT &&
552 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
553 		int target = sock_rcvlowat(sk, 0, INT_MAX);
554 		u16 urg_data = READ_ONCE(tp->urg_data);
555 
556 		if (unlikely(urg_data) &&
557 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
558 		    !sock_flag(sk, SOCK_URGINLINE))
559 			target++;
560 
561 		if (tcp_stream_is_readable(sk, target))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(shutdown & SEND_SHUTDOWN)) {
565 			if (__sk_stream_is_writeable(sk, 1)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (__sk_stream_is_writeable(sk, 1))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (READ_ONCE(sk->sk_err) ||
595 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
596 		mask |= EPOLLERR;
597 
598 	return mask;
599 }
600 EXPORT_SYMBOL(tcp_poll);
601 
602 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	int answ;
606 	bool slow;
607 
608 	switch (cmd) {
609 	case SIOCINQ:
610 		if (sk->sk_state == TCP_LISTEN)
611 			return -EINVAL;
612 
613 		slow = lock_sock_fast(sk);
614 		answ = tcp_inq(sk);
615 		unlock_sock_fast(sk, slow);
616 		break;
617 	case SIOCATMARK:
618 		answ = READ_ONCE(tp->urg_data) &&
619 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
620 		break;
621 	case SIOCOUTQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 			answ = 0;
627 		else
628 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
629 		break;
630 	case SIOCOUTQNSD:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) -
638 			       READ_ONCE(tp->snd_nxt);
639 		break;
640 	default:
641 		return -ENOIOCTLCMD;
642 	}
643 
644 	return put_user(answ, (int __user *)arg);
645 }
646 EXPORT_SYMBOL(tcp_ioctl);
647 
648 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
649 {
650 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
651 	tp->pushed_seq = tp->write_seq;
652 }
653 
654 static inline bool forced_push(const struct tcp_sock *tp)
655 {
656 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
657 }
658 
659 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
660 {
661 	struct tcp_sock *tp = tcp_sk(sk);
662 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
663 
664 	tcb->seq     = tcb->end_seq = tp->write_seq;
665 	tcb->tcp_flags = TCPHDR_ACK;
666 	__skb_header_release(skb);
667 	tcp_add_write_queue_tail(sk, skb);
668 	sk_wmem_queued_add(sk, skb->truesize);
669 	sk_mem_charge(sk, skb->truesize);
670 	if (tp->nonagle & TCP_NAGLE_PUSH)
671 		tp->nonagle &= ~TCP_NAGLE_PUSH;
672 
673 	tcp_slow_start_after_idle_check(sk);
674 }
675 
676 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
677 {
678 	if (flags & MSG_OOB)
679 		tp->snd_up = tp->write_seq;
680 }
681 
682 /* If a not yet filled skb is pushed, do not send it if
683  * we have data packets in Qdisc or NIC queues :
684  * Because TX completion will happen shortly, it gives a chance
685  * to coalesce future sendmsg() payload into this skb, without
686  * need for a timer, and with no latency trade off.
687  * As packets containing data payload have a bigger truesize
688  * than pure acks (dataless) packets, the last checks prevent
689  * autocorking if we only have an ACK in Qdisc/NIC queues,
690  * or if TX completion was delayed after we processed ACK packet.
691  */
692 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
693 				int size_goal)
694 {
695 	return skb->len < size_goal &&
696 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
697 	       !tcp_rtx_queue_empty(sk) &&
698 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
699 	       tcp_skb_can_collapse_to(skb);
700 }
701 
702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 	      int nonagle, int size_goal)
704 {
705 	struct tcp_sock *tp = tcp_sk(sk);
706 	struct sk_buff *skb;
707 
708 	skb = tcp_write_queue_tail(sk);
709 	if (!skb)
710 		return;
711 	if (!(flags & MSG_MORE) || forced_push(tp))
712 		tcp_mark_push(tp, skb);
713 
714 	tcp_mark_urg(tp, flags);
715 
716 	if (tcp_should_autocork(sk, skb, size_goal)) {
717 
718 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
719 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 		}
723 		/* It is possible TX completion already happened
724 		 * before we set TSQ_THROTTLED.
725 		 */
726 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 			return;
728 	}
729 
730 	if (flags & MSG_MORE)
731 		nonagle = TCP_NAGLE_CORK;
732 
733 	__tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735 
736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 				unsigned int offset, size_t len)
738 {
739 	struct tcp_splice_state *tss = rd_desc->arg.data;
740 	int ret;
741 
742 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 			      min(rd_desc->count, len), tss->flags);
744 	if (ret > 0)
745 		rd_desc->count -= ret;
746 	return ret;
747 }
748 
749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 	/* Store TCP splice context information in read_descriptor_t. */
752 	read_descriptor_t rd_desc = {
753 		.arg.data = tss,
754 		.count	  = tss->len,
755 	};
756 
757 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759 
760 /**
761  *  tcp_splice_read - splice data from TCP socket to a pipe
762  * @sock:	socket to splice from
763  * @ppos:	position (not valid)
764  * @pipe:	pipe to splice to
765  * @len:	number of bytes to splice
766  * @flags:	splice modifier flags
767  *
768  * Description:
769  *    Will read pages from given socket and fill them into a pipe.
770  *
771  **/
772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 			struct pipe_inode_info *pipe, size_t len,
774 			unsigned int flags)
775 {
776 	struct sock *sk = sock->sk;
777 	struct tcp_splice_state tss = {
778 		.pipe = pipe,
779 		.len = len,
780 		.flags = flags,
781 	};
782 	long timeo;
783 	ssize_t spliced;
784 	int ret;
785 
786 	sock_rps_record_flow(sk);
787 	/*
788 	 * We can't seek on a socket input
789 	 */
790 	if (unlikely(*ppos))
791 		return -ESPIPE;
792 
793 	ret = spliced = 0;
794 
795 	lock_sock(sk);
796 
797 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 	while (tss.len) {
799 		ret = __tcp_splice_read(sk, &tss);
800 		if (ret < 0)
801 			break;
802 		else if (!ret) {
803 			if (spliced)
804 				break;
805 			if (sock_flag(sk, SOCK_DONE))
806 				break;
807 			if (sk->sk_err) {
808 				ret = sock_error(sk);
809 				break;
810 			}
811 			if (sk->sk_shutdown & RCV_SHUTDOWN)
812 				break;
813 			if (sk->sk_state == TCP_CLOSE) {
814 				/*
815 				 * This occurs when user tries to read
816 				 * from never connected socket.
817 				 */
818 				ret = -ENOTCONN;
819 				break;
820 			}
821 			if (!timeo) {
822 				ret = -EAGAIN;
823 				break;
824 			}
825 			/* if __tcp_splice_read() got nothing while we have
826 			 * an skb in receive queue, we do not want to loop.
827 			 * This might happen with URG data.
828 			 */
829 			if (!skb_queue_empty(&sk->sk_receive_queue))
830 				break;
831 			sk_wait_data(sk, &timeo, NULL);
832 			if (signal_pending(current)) {
833 				ret = sock_intr_errno(timeo);
834 				break;
835 			}
836 			continue;
837 		}
838 		tss.len -= ret;
839 		spliced += ret;
840 
841 		if (!timeo)
842 			break;
843 		release_sock(sk);
844 		lock_sock(sk);
845 
846 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 		    signal_pending(current))
849 			break;
850 	}
851 
852 	release_sock(sk);
853 
854 	if (spliced)
855 		return spliced;
856 
857 	return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860 
861 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 				     bool force_schedule)
863 {
864 	struct sk_buff *skb;
865 
866 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
867 	if (likely(skb)) {
868 		bool mem_scheduled;
869 
870 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
871 		if (force_schedule) {
872 			mem_scheduled = true;
873 			sk_forced_mem_schedule(sk, skb->truesize);
874 		} else {
875 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
876 		}
877 		if (likely(mem_scheduled)) {
878 			skb_reserve(skb, MAX_TCP_HEADER);
879 			skb->ip_summed = CHECKSUM_PARTIAL;
880 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
881 			return skb;
882 		}
883 		__kfree_skb(skb);
884 	} else {
885 		sk->sk_prot->enter_memory_pressure(sk);
886 		sk_stream_moderate_sndbuf(sk);
887 	}
888 	return NULL;
889 }
890 
891 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
892 				       int large_allowed)
893 {
894 	struct tcp_sock *tp = tcp_sk(sk);
895 	u32 new_size_goal, size_goal;
896 
897 	if (!large_allowed)
898 		return mss_now;
899 
900 	/* Note : tcp_tso_autosize() will eventually split this later */
901 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
902 
903 	/* We try hard to avoid divides here */
904 	size_goal = tp->gso_segs * mss_now;
905 	if (unlikely(new_size_goal < size_goal ||
906 		     new_size_goal >= size_goal + mss_now)) {
907 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
908 				     sk->sk_gso_max_segs);
909 		size_goal = tp->gso_segs * mss_now;
910 	}
911 
912 	return max(size_goal, mss_now);
913 }
914 
915 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
916 {
917 	int mss_now;
918 
919 	mss_now = tcp_current_mss(sk);
920 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
921 
922 	return mss_now;
923 }
924 
925 /* In some cases, both sendpage() and sendmsg() could have added
926  * an skb to the write queue, but failed adding payload on it.
927  * We need to remove it to consume less memory, but more
928  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
929  * users.
930  */
931 void tcp_remove_empty_skb(struct sock *sk)
932 {
933 	struct sk_buff *skb = tcp_write_queue_tail(sk);
934 
935 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
936 		tcp_unlink_write_queue(skb, sk);
937 		if (tcp_write_queue_empty(sk))
938 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
939 		tcp_wmem_free_skb(sk, skb);
940 	}
941 }
942 
943 /* skb changing from pure zc to mixed, must charge zc */
944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
945 {
946 	if (unlikely(skb_zcopy_pure(skb))) {
947 		u32 extra = skb->truesize -
948 			    SKB_TRUESIZE(skb_end_offset(skb));
949 
950 		if (!sk_wmem_schedule(sk, extra))
951 			return -ENOMEM;
952 
953 		sk_mem_charge(sk, extra);
954 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
955 	}
956 	return 0;
957 }
958 
959 
960 static int tcp_wmem_schedule(struct sock *sk, int copy)
961 {
962 	int left;
963 
964 	if (likely(sk_wmem_schedule(sk, copy)))
965 		return copy;
966 
967 	/* We could be in trouble if we have nothing queued.
968 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
969 	 * to guarantee some progress.
970 	 */
971 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
972 	if (left > 0)
973 		sk_forced_mem_schedule(sk, min(left, copy));
974 	return min(copy, sk->sk_forward_alloc);
975 }
976 
977 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
978 			size_t size, int flags)
979 {
980 	struct bio_vec bvec;
981 	struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, };
982 
983 	if (!(sk->sk_route_caps & NETIF_F_SG))
984 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
985 
986 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
987 
988 	bvec_set_page(&bvec, page, size, offset);
989 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
990 
991 	if (flags & MSG_SENDPAGE_NOTLAST)
992 		msg.msg_flags |= MSG_MORE;
993 
994 	return tcp_sendmsg_locked(sk, &msg, size);
995 }
996 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
997 
998 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
999 		 size_t size, int flags)
1000 {
1001 	int ret;
1002 
1003 	lock_sock(sk);
1004 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1005 	release_sock(sk);
1006 
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL(tcp_sendpage);
1010 
1011 void tcp_free_fastopen_req(struct tcp_sock *tp)
1012 {
1013 	if (tp->fastopen_req) {
1014 		kfree(tp->fastopen_req);
1015 		tp->fastopen_req = NULL;
1016 	}
1017 }
1018 
1019 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1020 			 size_t size, struct ubuf_info *uarg)
1021 {
1022 	struct tcp_sock *tp = tcp_sk(sk);
1023 	struct inet_sock *inet = inet_sk(sk);
1024 	struct sockaddr *uaddr = msg->msg_name;
1025 	int err, flags;
1026 
1027 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1028 	      TFO_CLIENT_ENABLE) ||
1029 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1030 	     uaddr->sa_family == AF_UNSPEC))
1031 		return -EOPNOTSUPP;
1032 	if (tp->fastopen_req)
1033 		return -EALREADY; /* Another Fast Open is in progress */
1034 
1035 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1036 				   sk->sk_allocation);
1037 	if (unlikely(!tp->fastopen_req))
1038 		return -ENOBUFS;
1039 	tp->fastopen_req->data = msg;
1040 	tp->fastopen_req->size = size;
1041 	tp->fastopen_req->uarg = uarg;
1042 
1043 	if (inet->defer_connect) {
1044 		err = tcp_connect(sk);
1045 		/* Same failure procedure as in tcp_v4/6_connect */
1046 		if (err) {
1047 			tcp_set_state(sk, TCP_CLOSE);
1048 			inet->inet_dport = 0;
1049 			sk->sk_route_caps = 0;
1050 		}
1051 	}
1052 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1053 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1054 				    msg->msg_namelen, flags, 1);
1055 	/* fastopen_req could already be freed in __inet_stream_connect
1056 	 * if the connection times out or gets rst
1057 	 */
1058 	if (tp->fastopen_req) {
1059 		*copied = tp->fastopen_req->copied;
1060 		tcp_free_fastopen_req(tp);
1061 		inet->defer_connect = 0;
1062 	}
1063 	return err;
1064 }
1065 
1066 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1067 {
1068 	struct tcp_sock *tp = tcp_sk(sk);
1069 	struct ubuf_info *uarg = NULL;
1070 	struct sk_buff *skb;
1071 	struct sockcm_cookie sockc;
1072 	int flags, err, copied = 0;
1073 	int mss_now = 0, size_goal, copied_syn = 0;
1074 	int process_backlog = 0;
1075 	int zc = 0;
1076 	long timeo;
1077 
1078 	flags = msg->msg_flags;
1079 
1080 	if ((flags & MSG_ZEROCOPY) && size) {
1081 		if (msg->msg_ubuf) {
1082 			uarg = msg->msg_ubuf;
1083 			if (sk->sk_route_caps & NETIF_F_SG)
1084 				zc = MSG_ZEROCOPY;
1085 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1086 			skb = tcp_write_queue_tail(sk);
1087 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1088 			if (!uarg) {
1089 				err = -ENOBUFS;
1090 				goto out_err;
1091 			}
1092 			if (sk->sk_route_caps & NETIF_F_SG)
1093 				zc = MSG_ZEROCOPY;
1094 			else
1095 				uarg_to_msgzc(uarg)->zerocopy = 0;
1096 		}
1097 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1098 		if (sk->sk_route_caps & NETIF_F_SG)
1099 			zc = MSG_SPLICE_PAGES;
1100 	}
1101 
1102 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1103 	    !tp->repair) {
1104 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1105 		if (err == -EINPROGRESS && copied_syn > 0)
1106 			goto out;
1107 		else if (err)
1108 			goto out_err;
1109 	}
1110 
1111 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1112 
1113 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1114 
1115 	/* Wait for a connection to finish. One exception is TCP Fast Open
1116 	 * (passive side) where data is allowed to be sent before a connection
1117 	 * is fully established.
1118 	 */
1119 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1120 	    !tcp_passive_fastopen(sk)) {
1121 		err = sk_stream_wait_connect(sk, &timeo);
1122 		if (err != 0)
1123 			goto do_error;
1124 	}
1125 
1126 	if (unlikely(tp->repair)) {
1127 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1128 			copied = tcp_send_rcvq(sk, msg, size);
1129 			goto out_nopush;
1130 		}
1131 
1132 		err = -EINVAL;
1133 		if (tp->repair_queue == TCP_NO_QUEUE)
1134 			goto out_err;
1135 
1136 		/* 'common' sending to sendq */
1137 	}
1138 
1139 	sockcm_init(&sockc, sk);
1140 	if (msg->msg_controllen) {
1141 		err = sock_cmsg_send(sk, msg, &sockc);
1142 		if (unlikely(err)) {
1143 			err = -EINVAL;
1144 			goto out_err;
1145 		}
1146 	}
1147 
1148 	/* This should be in poll */
1149 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1150 
1151 	/* Ok commence sending. */
1152 	copied = 0;
1153 
1154 restart:
1155 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1156 
1157 	err = -EPIPE;
1158 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1159 		goto do_error;
1160 
1161 	while (msg_data_left(msg)) {
1162 		ssize_t copy = 0;
1163 
1164 		skb = tcp_write_queue_tail(sk);
1165 		if (skb)
1166 			copy = size_goal - skb->len;
1167 
1168 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1169 			bool first_skb;
1170 
1171 new_segment:
1172 			if (!sk_stream_memory_free(sk))
1173 				goto wait_for_space;
1174 
1175 			if (unlikely(process_backlog >= 16)) {
1176 				process_backlog = 0;
1177 				if (sk_flush_backlog(sk))
1178 					goto restart;
1179 			}
1180 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1181 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1182 						   first_skb);
1183 			if (!skb)
1184 				goto wait_for_space;
1185 
1186 			process_backlog++;
1187 
1188 			tcp_skb_entail(sk, skb);
1189 			copy = size_goal;
1190 
1191 			/* All packets are restored as if they have
1192 			 * already been sent. skb_mstamp_ns isn't set to
1193 			 * avoid wrong rtt estimation.
1194 			 */
1195 			if (tp->repair)
1196 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1197 		}
1198 
1199 		/* Try to append data to the end of skb. */
1200 		if (copy > msg_data_left(msg))
1201 			copy = msg_data_left(msg);
1202 
1203 		if (zc == 0) {
1204 			bool merge = true;
1205 			int i = skb_shinfo(skb)->nr_frags;
1206 			struct page_frag *pfrag = sk_page_frag(sk);
1207 
1208 			if (!sk_page_frag_refill(sk, pfrag))
1209 				goto wait_for_space;
1210 
1211 			if (!skb_can_coalesce(skb, i, pfrag->page,
1212 					      pfrag->offset)) {
1213 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1214 					tcp_mark_push(tp, skb);
1215 					goto new_segment;
1216 				}
1217 				merge = false;
1218 			}
1219 
1220 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1221 
1222 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1223 				if (tcp_downgrade_zcopy_pure(sk, skb))
1224 					goto wait_for_space;
1225 				skb_zcopy_downgrade_managed(skb);
1226 			}
1227 
1228 			copy = tcp_wmem_schedule(sk, copy);
1229 			if (!copy)
1230 				goto wait_for_space;
1231 
1232 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1233 						       pfrag->page,
1234 						       pfrag->offset,
1235 						       copy);
1236 			if (err)
1237 				goto do_error;
1238 
1239 			/* Update the skb. */
1240 			if (merge) {
1241 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1242 			} else {
1243 				skb_fill_page_desc(skb, i, pfrag->page,
1244 						   pfrag->offset, copy);
1245 				page_ref_inc(pfrag->page);
1246 			}
1247 			pfrag->offset += copy;
1248 		} else if (zc == MSG_ZEROCOPY)  {
1249 			/* First append to a fragless skb builds initial
1250 			 * pure zerocopy skb
1251 			 */
1252 			if (!skb->len)
1253 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1254 
1255 			if (!skb_zcopy_pure(skb)) {
1256 				copy = tcp_wmem_schedule(sk, copy);
1257 				if (!copy)
1258 					goto wait_for_space;
1259 			}
1260 
1261 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1262 			if (err == -EMSGSIZE || err == -EEXIST) {
1263 				tcp_mark_push(tp, skb);
1264 				goto new_segment;
1265 			}
1266 			if (err < 0)
1267 				goto do_error;
1268 			copy = err;
1269 		} else if (zc == MSG_SPLICE_PAGES) {
1270 			/* Splice in data if we can; copy if we can't. */
1271 			if (tcp_downgrade_zcopy_pure(sk, skb))
1272 				goto wait_for_space;
1273 			copy = tcp_wmem_schedule(sk, copy);
1274 			if (!copy)
1275 				goto wait_for_space;
1276 
1277 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1278 						   sk->sk_allocation);
1279 			if (err < 0) {
1280 				if (err == -EMSGSIZE) {
1281 					tcp_mark_push(tp, skb);
1282 					goto new_segment;
1283 				}
1284 				goto do_error;
1285 			}
1286 			copy = err;
1287 
1288 			if (!(flags & MSG_NO_SHARED_FRAGS))
1289 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1290 
1291 			sk_wmem_queued_add(sk, copy);
1292 			sk_mem_charge(sk, copy);
1293 		}
1294 
1295 		if (!copied)
1296 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1297 
1298 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1299 		TCP_SKB_CB(skb)->end_seq += copy;
1300 		tcp_skb_pcount_set(skb, 0);
1301 
1302 		copied += copy;
1303 		if (!msg_data_left(msg)) {
1304 			if (unlikely(flags & MSG_EOR))
1305 				TCP_SKB_CB(skb)->eor = 1;
1306 			goto out;
1307 		}
1308 
1309 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1310 			continue;
1311 
1312 		if (forced_push(tp)) {
1313 			tcp_mark_push(tp, skb);
1314 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1315 		} else if (skb == tcp_send_head(sk))
1316 			tcp_push_one(sk, mss_now);
1317 		continue;
1318 
1319 wait_for_space:
1320 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1321 		if (copied)
1322 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1323 				 TCP_NAGLE_PUSH, size_goal);
1324 
1325 		err = sk_stream_wait_memory(sk, &timeo);
1326 		if (err != 0)
1327 			goto do_error;
1328 
1329 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1330 	}
1331 
1332 out:
1333 	if (copied) {
1334 		tcp_tx_timestamp(sk, sockc.tsflags);
1335 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1336 	}
1337 out_nopush:
1338 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1339 	if (uarg && !msg->msg_ubuf)
1340 		net_zcopy_put(uarg);
1341 	return copied + copied_syn;
1342 
1343 do_error:
1344 	tcp_remove_empty_skb(sk);
1345 
1346 	if (copied + copied_syn)
1347 		goto out;
1348 out_err:
1349 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1350 	if (uarg && !msg->msg_ubuf)
1351 		net_zcopy_put_abort(uarg, true);
1352 	err = sk_stream_error(sk, flags, err);
1353 	/* make sure we wake any epoll edge trigger waiter */
1354 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1355 		sk->sk_write_space(sk);
1356 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1357 	}
1358 	return err;
1359 }
1360 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1361 
1362 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1363 {
1364 	int ret;
1365 
1366 	lock_sock(sk);
1367 	ret = tcp_sendmsg_locked(sk, msg, size);
1368 	release_sock(sk);
1369 
1370 	return ret;
1371 }
1372 EXPORT_SYMBOL(tcp_sendmsg);
1373 
1374 /*
1375  *	Handle reading urgent data. BSD has very simple semantics for
1376  *	this, no blocking and very strange errors 8)
1377  */
1378 
1379 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 
1383 	/* No URG data to read. */
1384 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1385 	    tp->urg_data == TCP_URG_READ)
1386 		return -EINVAL;	/* Yes this is right ! */
1387 
1388 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1389 		return -ENOTCONN;
1390 
1391 	if (tp->urg_data & TCP_URG_VALID) {
1392 		int err = 0;
1393 		char c = tp->urg_data;
1394 
1395 		if (!(flags & MSG_PEEK))
1396 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1397 
1398 		/* Read urgent data. */
1399 		msg->msg_flags |= MSG_OOB;
1400 
1401 		if (len > 0) {
1402 			if (!(flags & MSG_TRUNC))
1403 				err = memcpy_to_msg(msg, &c, 1);
1404 			len = 1;
1405 		} else
1406 			msg->msg_flags |= MSG_TRUNC;
1407 
1408 		return err ? -EFAULT : len;
1409 	}
1410 
1411 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1412 		return 0;
1413 
1414 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1415 	 * the available implementations agree in this case:
1416 	 * this call should never block, independent of the
1417 	 * blocking state of the socket.
1418 	 * Mike <pall@rz.uni-karlsruhe.de>
1419 	 */
1420 	return -EAGAIN;
1421 }
1422 
1423 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1424 {
1425 	struct sk_buff *skb;
1426 	int copied = 0, err = 0;
1427 
1428 	/* XXX -- need to support SO_PEEK_OFF */
1429 
1430 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1431 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 		if (err)
1433 			return err;
1434 		copied += skb->len;
1435 	}
1436 
1437 	skb_queue_walk(&sk->sk_write_queue, skb) {
1438 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1439 		if (err)
1440 			break;
1441 
1442 		copied += skb->len;
1443 	}
1444 
1445 	return err ?: copied;
1446 }
1447 
1448 /* Clean up the receive buffer for full frames taken by the user,
1449  * then send an ACK if necessary.  COPIED is the number of bytes
1450  * tcp_recvmsg has given to the user so far, it speeds up the
1451  * calculation of whether or not we must ACK for the sake of
1452  * a window update.
1453  */
1454 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1455 {
1456 	struct tcp_sock *tp = tcp_sk(sk);
1457 	bool time_to_ack = false;
1458 
1459 	if (inet_csk_ack_scheduled(sk)) {
1460 		const struct inet_connection_sock *icsk = inet_csk(sk);
1461 
1462 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1463 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1464 		    /*
1465 		     * If this read emptied read buffer, we send ACK, if
1466 		     * connection is not bidirectional, user drained
1467 		     * receive buffer and there was a small segment
1468 		     * in queue.
1469 		     */
1470 		    (copied > 0 &&
1471 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1472 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1473 		       !inet_csk_in_pingpong_mode(sk))) &&
1474 		      !atomic_read(&sk->sk_rmem_alloc)))
1475 			time_to_ack = true;
1476 	}
1477 
1478 	/* We send an ACK if we can now advertise a non-zero window
1479 	 * which has been raised "significantly".
1480 	 *
1481 	 * Even if window raised up to infinity, do not send window open ACK
1482 	 * in states, where we will not receive more. It is useless.
1483 	 */
1484 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1485 		__u32 rcv_window_now = tcp_receive_window(tp);
1486 
1487 		/* Optimize, __tcp_select_window() is not cheap. */
1488 		if (2*rcv_window_now <= tp->window_clamp) {
1489 			__u32 new_window = __tcp_select_window(sk);
1490 
1491 			/* Send ACK now, if this read freed lots of space
1492 			 * in our buffer. Certainly, new_window is new window.
1493 			 * We can advertise it now, if it is not less than current one.
1494 			 * "Lots" means "at least twice" here.
1495 			 */
1496 			if (new_window && new_window >= 2 * rcv_window_now)
1497 				time_to_ack = true;
1498 		}
1499 	}
1500 	if (time_to_ack)
1501 		tcp_send_ack(sk);
1502 }
1503 
1504 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1505 {
1506 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1507 	struct tcp_sock *tp = tcp_sk(sk);
1508 
1509 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1510 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1511 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1512 	__tcp_cleanup_rbuf(sk, copied);
1513 }
1514 
1515 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1516 {
1517 	__skb_unlink(skb, &sk->sk_receive_queue);
1518 	if (likely(skb->destructor == sock_rfree)) {
1519 		sock_rfree(skb);
1520 		skb->destructor = NULL;
1521 		skb->sk = NULL;
1522 		return skb_attempt_defer_free(skb);
1523 	}
1524 	__kfree_skb(skb);
1525 }
1526 
1527 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1528 {
1529 	struct sk_buff *skb;
1530 	u32 offset;
1531 
1532 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1533 		offset = seq - TCP_SKB_CB(skb)->seq;
1534 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1535 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1536 			offset--;
1537 		}
1538 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1539 			*off = offset;
1540 			return skb;
1541 		}
1542 		/* This looks weird, but this can happen if TCP collapsing
1543 		 * splitted a fat GRO packet, while we released socket lock
1544 		 * in skb_splice_bits()
1545 		 */
1546 		tcp_eat_recv_skb(sk, skb);
1547 	}
1548 	return NULL;
1549 }
1550 EXPORT_SYMBOL(tcp_recv_skb);
1551 
1552 /*
1553  * This routine provides an alternative to tcp_recvmsg() for routines
1554  * that would like to handle copying from skbuffs directly in 'sendfile'
1555  * fashion.
1556  * Note:
1557  *	- It is assumed that the socket was locked by the caller.
1558  *	- The routine does not block.
1559  *	- At present, there is no support for reading OOB data
1560  *	  or for 'peeking' the socket using this routine
1561  *	  (although both would be easy to implement).
1562  */
1563 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1564 		  sk_read_actor_t recv_actor)
1565 {
1566 	struct sk_buff *skb;
1567 	struct tcp_sock *tp = tcp_sk(sk);
1568 	u32 seq = tp->copied_seq;
1569 	u32 offset;
1570 	int copied = 0;
1571 
1572 	if (sk->sk_state == TCP_LISTEN)
1573 		return -ENOTCONN;
1574 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1575 		if (offset < skb->len) {
1576 			int used;
1577 			size_t len;
1578 
1579 			len = skb->len - offset;
1580 			/* Stop reading if we hit a patch of urgent data */
1581 			if (unlikely(tp->urg_data)) {
1582 				u32 urg_offset = tp->urg_seq - seq;
1583 				if (urg_offset < len)
1584 					len = urg_offset;
1585 				if (!len)
1586 					break;
1587 			}
1588 			used = recv_actor(desc, skb, offset, len);
1589 			if (used <= 0) {
1590 				if (!copied)
1591 					copied = used;
1592 				break;
1593 			}
1594 			if (WARN_ON_ONCE(used > len))
1595 				used = len;
1596 			seq += used;
1597 			copied += used;
1598 			offset += used;
1599 
1600 			/* If recv_actor drops the lock (e.g. TCP splice
1601 			 * receive) the skb pointer might be invalid when
1602 			 * getting here: tcp_collapse might have deleted it
1603 			 * while aggregating skbs from the socket queue.
1604 			 */
1605 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1606 			if (!skb)
1607 				break;
1608 			/* TCP coalescing might have appended data to the skb.
1609 			 * Try to splice more frags
1610 			 */
1611 			if (offset + 1 != skb->len)
1612 				continue;
1613 		}
1614 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1615 			tcp_eat_recv_skb(sk, skb);
1616 			++seq;
1617 			break;
1618 		}
1619 		tcp_eat_recv_skb(sk, skb);
1620 		if (!desc->count)
1621 			break;
1622 		WRITE_ONCE(tp->copied_seq, seq);
1623 	}
1624 	WRITE_ONCE(tp->copied_seq, seq);
1625 
1626 	tcp_rcv_space_adjust(sk);
1627 
1628 	/* Clean up data we have read: This will do ACK frames. */
1629 	if (copied > 0) {
1630 		tcp_recv_skb(sk, seq, &offset);
1631 		tcp_cleanup_rbuf(sk, copied);
1632 	}
1633 	return copied;
1634 }
1635 EXPORT_SYMBOL(tcp_read_sock);
1636 
1637 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1638 {
1639 	struct tcp_sock *tp = tcp_sk(sk);
1640 	u32 seq = tp->copied_seq;
1641 	struct sk_buff *skb;
1642 	int copied = 0;
1643 	u32 offset;
1644 
1645 	if (sk->sk_state == TCP_LISTEN)
1646 		return -ENOTCONN;
1647 
1648 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1649 		u8 tcp_flags;
1650 		int used;
1651 
1652 		__skb_unlink(skb, &sk->sk_receive_queue);
1653 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1654 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1655 		used = recv_actor(sk, skb);
1656 		if (used < 0) {
1657 			if (!copied)
1658 				copied = used;
1659 			break;
1660 		}
1661 		seq += used;
1662 		copied += used;
1663 
1664 		if (tcp_flags & TCPHDR_FIN) {
1665 			++seq;
1666 			break;
1667 		}
1668 	}
1669 	return copied;
1670 }
1671 EXPORT_SYMBOL(tcp_read_skb);
1672 
1673 void tcp_read_done(struct sock *sk, size_t len)
1674 {
1675 	struct tcp_sock *tp = tcp_sk(sk);
1676 	u32 seq = tp->copied_seq;
1677 	struct sk_buff *skb;
1678 	size_t left;
1679 	u32 offset;
1680 
1681 	if (sk->sk_state == TCP_LISTEN)
1682 		return;
1683 
1684 	left = len;
1685 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1686 		int used;
1687 
1688 		used = min_t(size_t, skb->len - offset, left);
1689 		seq += used;
1690 		left -= used;
1691 
1692 		if (skb->len > offset + used)
1693 			break;
1694 
1695 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1696 			tcp_eat_recv_skb(sk, skb);
1697 			++seq;
1698 			break;
1699 		}
1700 		tcp_eat_recv_skb(sk, skb);
1701 	}
1702 	WRITE_ONCE(tp->copied_seq, seq);
1703 
1704 	tcp_rcv_space_adjust(sk);
1705 
1706 	/* Clean up data we have read: This will do ACK frames. */
1707 	if (left != len)
1708 		tcp_cleanup_rbuf(sk, len - left);
1709 }
1710 EXPORT_SYMBOL(tcp_read_done);
1711 
1712 int tcp_peek_len(struct socket *sock)
1713 {
1714 	return tcp_inq(sock->sk);
1715 }
1716 EXPORT_SYMBOL(tcp_peek_len);
1717 
1718 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1719 int tcp_set_rcvlowat(struct sock *sk, int val)
1720 {
1721 	int cap;
1722 
1723 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1724 		cap = sk->sk_rcvbuf >> 1;
1725 	else
1726 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1727 	val = min(val, cap);
1728 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1729 
1730 	/* Check if we need to signal EPOLLIN right now */
1731 	tcp_data_ready(sk);
1732 
1733 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1734 		return 0;
1735 
1736 	val <<= 1;
1737 	if (val > sk->sk_rcvbuf) {
1738 		WRITE_ONCE(sk->sk_rcvbuf, val);
1739 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1740 	}
1741 	return 0;
1742 }
1743 EXPORT_SYMBOL(tcp_set_rcvlowat);
1744 
1745 void tcp_update_recv_tstamps(struct sk_buff *skb,
1746 			     struct scm_timestamping_internal *tss)
1747 {
1748 	if (skb->tstamp)
1749 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1750 	else
1751 		tss->ts[0] = (struct timespec64) {0};
1752 
1753 	if (skb_hwtstamps(skb)->hwtstamp)
1754 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1755 	else
1756 		tss->ts[2] = (struct timespec64) {0};
1757 }
1758 
1759 #ifdef CONFIG_MMU
1760 static const struct vm_operations_struct tcp_vm_ops = {
1761 };
1762 
1763 int tcp_mmap(struct file *file, struct socket *sock,
1764 	     struct vm_area_struct *vma)
1765 {
1766 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1767 		return -EPERM;
1768 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1769 
1770 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1771 	vm_flags_set(vma, VM_MIXEDMAP);
1772 
1773 	vma->vm_ops = &tcp_vm_ops;
1774 	return 0;
1775 }
1776 EXPORT_SYMBOL(tcp_mmap);
1777 
1778 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1779 				       u32 *offset_frag)
1780 {
1781 	skb_frag_t *frag;
1782 
1783 	if (unlikely(offset_skb >= skb->len))
1784 		return NULL;
1785 
1786 	offset_skb -= skb_headlen(skb);
1787 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1788 		return NULL;
1789 
1790 	frag = skb_shinfo(skb)->frags;
1791 	while (offset_skb) {
1792 		if (skb_frag_size(frag) > offset_skb) {
1793 			*offset_frag = offset_skb;
1794 			return frag;
1795 		}
1796 		offset_skb -= skb_frag_size(frag);
1797 		++frag;
1798 	}
1799 	*offset_frag = 0;
1800 	return frag;
1801 }
1802 
1803 static bool can_map_frag(const skb_frag_t *frag)
1804 {
1805 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1806 }
1807 
1808 static int find_next_mappable_frag(const skb_frag_t *frag,
1809 				   int remaining_in_skb)
1810 {
1811 	int offset = 0;
1812 
1813 	if (likely(can_map_frag(frag)))
1814 		return 0;
1815 
1816 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1817 		offset += skb_frag_size(frag);
1818 		++frag;
1819 	}
1820 	return offset;
1821 }
1822 
1823 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1824 					  struct tcp_zerocopy_receive *zc,
1825 					  struct sk_buff *skb, u32 offset)
1826 {
1827 	u32 frag_offset, partial_frag_remainder = 0;
1828 	int mappable_offset;
1829 	skb_frag_t *frag;
1830 
1831 	/* worst case: skip to next skb. try to improve on this case below */
1832 	zc->recv_skip_hint = skb->len - offset;
1833 
1834 	/* Find the frag containing this offset (and how far into that frag) */
1835 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1836 	if (!frag)
1837 		return;
1838 
1839 	if (frag_offset) {
1840 		struct skb_shared_info *info = skb_shinfo(skb);
1841 
1842 		/* We read part of the last frag, must recvmsg() rest of skb. */
1843 		if (frag == &info->frags[info->nr_frags - 1])
1844 			return;
1845 
1846 		/* Else, we must at least read the remainder in this frag. */
1847 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1848 		zc->recv_skip_hint -= partial_frag_remainder;
1849 		++frag;
1850 	}
1851 
1852 	/* partial_frag_remainder: If part way through a frag, must read rest.
1853 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1854 	 * in partial_frag_remainder.
1855 	 */
1856 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1857 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1858 }
1859 
1860 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1861 			      int flags, struct scm_timestamping_internal *tss,
1862 			      int *cmsg_flags);
1863 static int receive_fallback_to_copy(struct sock *sk,
1864 				    struct tcp_zerocopy_receive *zc, int inq,
1865 				    struct scm_timestamping_internal *tss)
1866 {
1867 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1868 	struct msghdr msg = {};
1869 	struct iovec iov;
1870 	int err;
1871 
1872 	zc->length = 0;
1873 	zc->recv_skip_hint = 0;
1874 
1875 	if (copy_address != zc->copybuf_address)
1876 		return -EINVAL;
1877 
1878 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1879 				  inq, &iov, &msg.msg_iter);
1880 	if (err)
1881 		return err;
1882 
1883 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1884 				 tss, &zc->msg_flags);
1885 	if (err < 0)
1886 		return err;
1887 
1888 	zc->copybuf_len = err;
1889 	if (likely(zc->copybuf_len)) {
1890 		struct sk_buff *skb;
1891 		u32 offset;
1892 
1893 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1894 		if (skb)
1895 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1896 	}
1897 	return 0;
1898 }
1899 
1900 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1901 				   struct sk_buff *skb, u32 copylen,
1902 				   u32 *offset, u32 *seq)
1903 {
1904 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1905 	struct msghdr msg = {};
1906 	struct iovec iov;
1907 	int err;
1908 
1909 	if (copy_address != zc->copybuf_address)
1910 		return -EINVAL;
1911 
1912 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1913 				  copylen, &iov, &msg.msg_iter);
1914 	if (err)
1915 		return err;
1916 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1917 	if (err)
1918 		return err;
1919 	zc->recv_skip_hint -= copylen;
1920 	*offset += copylen;
1921 	*seq += copylen;
1922 	return (__s32)copylen;
1923 }
1924 
1925 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1926 				  struct sock *sk,
1927 				  struct sk_buff *skb,
1928 				  u32 *seq,
1929 				  s32 copybuf_len,
1930 				  struct scm_timestamping_internal *tss)
1931 {
1932 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1933 
1934 	if (!copylen)
1935 		return 0;
1936 	/* skb is null if inq < PAGE_SIZE. */
1937 	if (skb) {
1938 		offset = *seq - TCP_SKB_CB(skb)->seq;
1939 	} else {
1940 		skb = tcp_recv_skb(sk, *seq, &offset);
1941 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1942 			tcp_update_recv_tstamps(skb, tss);
1943 			zc->msg_flags |= TCP_CMSG_TS;
1944 		}
1945 	}
1946 
1947 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1948 						  seq);
1949 	return zc->copybuf_len < 0 ? 0 : copylen;
1950 }
1951 
1952 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1953 					      struct page **pending_pages,
1954 					      unsigned long pages_remaining,
1955 					      unsigned long *address,
1956 					      u32 *length,
1957 					      u32 *seq,
1958 					      struct tcp_zerocopy_receive *zc,
1959 					      u32 total_bytes_to_map,
1960 					      int err)
1961 {
1962 	/* At least one page did not map. Try zapping if we skipped earlier. */
1963 	if (err == -EBUSY &&
1964 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1965 		u32 maybe_zap_len;
1966 
1967 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1968 				*length + /* Mapped or pending */
1969 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1970 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1971 		err = 0;
1972 	}
1973 
1974 	if (!err) {
1975 		unsigned long leftover_pages = pages_remaining;
1976 		int bytes_mapped;
1977 
1978 		/* We called zap_page_range_single, try to reinsert. */
1979 		err = vm_insert_pages(vma, *address,
1980 				      pending_pages,
1981 				      &pages_remaining);
1982 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1983 		*seq += bytes_mapped;
1984 		*address += bytes_mapped;
1985 	}
1986 	if (err) {
1987 		/* Either we were unable to zap, OR we zapped, retried an
1988 		 * insert, and still had an issue. Either ways, pages_remaining
1989 		 * is the number of pages we were unable to map, and we unroll
1990 		 * some state we speculatively touched before.
1991 		 */
1992 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1993 
1994 		*length -= bytes_not_mapped;
1995 		zc->recv_skip_hint += bytes_not_mapped;
1996 	}
1997 	return err;
1998 }
1999 
2000 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2001 					struct page **pages,
2002 					unsigned int pages_to_map,
2003 					unsigned long *address,
2004 					u32 *length,
2005 					u32 *seq,
2006 					struct tcp_zerocopy_receive *zc,
2007 					u32 total_bytes_to_map)
2008 {
2009 	unsigned long pages_remaining = pages_to_map;
2010 	unsigned int pages_mapped;
2011 	unsigned int bytes_mapped;
2012 	int err;
2013 
2014 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2015 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2016 	bytes_mapped = PAGE_SIZE * pages_mapped;
2017 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2018 	 * mapping (some but not all of the pages).
2019 	 */
2020 	*seq += bytes_mapped;
2021 	*address += bytes_mapped;
2022 
2023 	if (likely(!err))
2024 		return 0;
2025 
2026 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2027 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2028 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2029 		err);
2030 }
2031 
2032 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2033 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2034 				      struct tcp_zerocopy_receive *zc,
2035 				      struct scm_timestamping_internal *tss)
2036 {
2037 	unsigned long msg_control_addr;
2038 	struct msghdr cmsg_dummy;
2039 
2040 	msg_control_addr = (unsigned long)zc->msg_control;
2041 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2042 	cmsg_dummy.msg_controllen =
2043 		(__kernel_size_t)zc->msg_controllen;
2044 	cmsg_dummy.msg_flags = in_compat_syscall()
2045 		? MSG_CMSG_COMPAT : 0;
2046 	cmsg_dummy.msg_control_is_user = true;
2047 	zc->msg_flags = 0;
2048 	if (zc->msg_control == msg_control_addr &&
2049 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2050 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2051 		zc->msg_control = (__u64)
2052 			((uintptr_t)cmsg_dummy.msg_control_user);
2053 		zc->msg_controllen =
2054 			(__u64)cmsg_dummy.msg_controllen;
2055 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2056 	}
2057 }
2058 
2059 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2060 static int tcp_zerocopy_receive(struct sock *sk,
2061 				struct tcp_zerocopy_receive *zc,
2062 				struct scm_timestamping_internal *tss)
2063 {
2064 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2065 	unsigned long address = (unsigned long)zc->address;
2066 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2067 	s32 copybuf_len = zc->copybuf_len;
2068 	struct tcp_sock *tp = tcp_sk(sk);
2069 	const skb_frag_t *frags = NULL;
2070 	unsigned int pages_to_map = 0;
2071 	struct vm_area_struct *vma;
2072 	struct sk_buff *skb = NULL;
2073 	u32 seq = tp->copied_seq;
2074 	u32 total_bytes_to_map;
2075 	int inq = tcp_inq(sk);
2076 	int ret;
2077 
2078 	zc->copybuf_len = 0;
2079 	zc->msg_flags = 0;
2080 
2081 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2082 		return -EINVAL;
2083 
2084 	if (sk->sk_state == TCP_LISTEN)
2085 		return -ENOTCONN;
2086 
2087 	sock_rps_record_flow(sk);
2088 
2089 	if (inq && inq <= copybuf_len)
2090 		return receive_fallback_to_copy(sk, zc, inq, tss);
2091 
2092 	if (inq < PAGE_SIZE) {
2093 		zc->length = 0;
2094 		zc->recv_skip_hint = inq;
2095 		if (!inq && sock_flag(sk, SOCK_DONE))
2096 			return -EIO;
2097 		return 0;
2098 	}
2099 
2100 	mmap_read_lock(current->mm);
2101 
2102 	vma = vma_lookup(current->mm, address);
2103 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2104 		mmap_read_unlock(current->mm);
2105 		return -EINVAL;
2106 	}
2107 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2108 	avail_len = min_t(u32, vma_len, inq);
2109 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2110 	if (total_bytes_to_map) {
2111 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2112 			zap_page_range_single(vma, address, total_bytes_to_map,
2113 					      NULL);
2114 		zc->length = total_bytes_to_map;
2115 		zc->recv_skip_hint = 0;
2116 	} else {
2117 		zc->length = avail_len;
2118 		zc->recv_skip_hint = avail_len;
2119 	}
2120 	ret = 0;
2121 	while (length + PAGE_SIZE <= zc->length) {
2122 		int mappable_offset;
2123 		struct page *page;
2124 
2125 		if (zc->recv_skip_hint < PAGE_SIZE) {
2126 			u32 offset_frag;
2127 
2128 			if (skb) {
2129 				if (zc->recv_skip_hint > 0)
2130 					break;
2131 				skb = skb->next;
2132 				offset = seq - TCP_SKB_CB(skb)->seq;
2133 			} else {
2134 				skb = tcp_recv_skb(sk, seq, &offset);
2135 			}
2136 
2137 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2138 				tcp_update_recv_tstamps(skb, tss);
2139 				zc->msg_flags |= TCP_CMSG_TS;
2140 			}
2141 			zc->recv_skip_hint = skb->len - offset;
2142 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2143 			if (!frags || offset_frag)
2144 				break;
2145 		}
2146 
2147 		mappable_offset = find_next_mappable_frag(frags,
2148 							  zc->recv_skip_hint);
2149 		if (mappable_offset) {
2150 			zc->recv_skip_hint = mappable_offset;
2151 			break;
2152 		}
2153 		page = skb_frag_page(frags);
2154 		prefetchw(page);
2155 		pages[pages_to_map++] = page;
2156 		length += PAGE_SIZE;
2157 		zc->recv_skip_hint -= PAGE_SIZE;
2158 		frags++;
2159 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2160 		    zc->recv_skip_hint < PAGE_SIZE) {
2161 			/* Either full batch, or we're about to go to next skb
2162 			 * (and we cannot unroll failed ops across skbs).
2163 			 */
2164 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2165 							   pages_to_map,
2166 							   &address, &length,
2167 							   &seq, zc,
2168 							   total_bytes_to_map);
2169 			if (ret)
2170 				goto out;
2171 			pages_to_map = 0;
2172 		}
2173 	}
2174 	if (pages_to_map) {
2175 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2176 						   &address, &length, &seq,
2177 						   zc, total_bytes_to_map);
2178 	}
2179 out:
2180 	mmap_read_unlock(current->mm);
2181 	/* Try to copy straggler data. */
2182 	if (!ret)
2183 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2184 
2185 	if (length + copylen) {
2186 		WRITE_ONCE(tp->copied_seq, seq);
2187 		tcp_rcv_space_adjust(sk);
2188 
2189 		/* Clean up data we have read: This will do ACK frames. */
2190 		tcp_recv_skb(sk, seq, &offset);
2191 		tcp_cleanup_rbuf(sk, length + copylen);
2192 		ret = 0;
2193 		if (length == zc->length)
2194 			zc->recv_skip_hint = 0;
2195 	} else {
2196 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2197 			ret = -EIO;
2198 	}
2199 	zc->length = length;
2200 	return ret;
2201 }
2202 #endif
2203 
2204 /* Similar to __sock_recv_timestamp, but does not require an skb */
2205 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2206 			struct scm_timestamping_internal *tss)
2207 {
2208 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2209 	bool has_timestamping = false;
2210 
2211 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2212 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2213 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2214 				if (new_tstamp) {
2215 					struct __kernel_timespec kts = {
2216 						.tv_sec = tss->ts[0].tv_sec,
2217 						.tv_nsec = tss->ts[0].tv_nsec,
2218 					};
2219 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2220 						 sizeof(kts), &kts);
2221 				} else {
2222 					struct __kernel_old_timespec ts_old = {
2223 						.tv_sec = tss->ts[0].tv_sec,
2224 						.tv_nsec = tss->ts[0].tv_nsec,
2225 					};
2226 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2227 						 sizeof(ts_old), &ts_old);
2228 				}
2229 			} else {
2230 				if (new_tstamp) {
2231 					struct __kernel_sock_timeval stv = {
2232 						.tv_sec = tss->ts[0].tv_sec,
2233 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2234 					};
2235 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2236 						 sizeof(stv), &stv);
2237 				} else {
2238 					struct __kernel_old_timeval tv = {
2239 						.tv_sec = tss->ts[0].tv_sec,
2240 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2241 					};
2242 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2243 						 sizeof(tv), &tv);
2244 				}
2245 			}
2246 		}
2247 
2248 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2249 			has_timestamping = true;
2250 		else
2251 			tss->ts[0] = (struct timespec64) {0};
2252 	}
2253 
2254 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2255 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2256 			has_timestamping = true;
2257 		else
2258 			tss->ts[2] = (struct timespec64) {0};
2259 	}
2260 
2261 	if (has_timestamping) {
2262 		tss->ts[1] = (struct timespec64) {0};
2263 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2264 			put_cmsg_scm_timestamping64(msg, tss);
2265 		else
2266 			put_cmsg_scm_timestamping(msg, tss);
2267 	}
2268 }
2269 
2270 static int tcp_inq_hint(struct sock *sk)
2271 {
2272 	const struct tcp_sock *tp = tcp_sk(sk);
2273 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2274 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2275 	int inq;
2276 
2277 	inq = rcv_nxt - copied_seq;
2278 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2279 		lock_sock(sk);
2280 		inq = tp->rcv_nxt - tp->copied_seq;
2281 		release_sock(sk);
2282 	}
2283 	/* After receiving a FIN, tell the user-space to continue reading
2284 	 * by returning a non-zero inq.
2285 	 */
2286 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2287 		inq = 1;
2288 	return inq;
2289 }
2290 
2291 /*
2292  *	This routine copies from a sock struct into the user buffer.
2293  *
2294  *	Technical note: in 2.3 we work on _locked_ socket, so that
2295  *	tricks with *seq access order and skb->users are not required.
2296  *	Probably, code can be easily improved even more.
2297  */
2298 
2299 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2300 			      int flags, struct scm_timestamping_internal *tss,
2301 			      int *cmsg_flags)
2302 {
2303 	struct tcp_sock *tp = tcp_sk(sk);
2304 	int copied = 0;
2305 	u32 peek_seq;
2306 	u32 *seq;
2307 	unsigned long used;
2308 	int err;
2309 	int target;		/* Read at least this many bytes */
2310 	long timeo;
2311 	struct sk_buff *skb, *last;
2312 	u32 urg_hole = 0;
2313 
2314 	err = -ENOTCONN;
2315 	if (sk->sk_state == TCP_LISTEN)
2316 		goto out;
2317 
2318 	if (tp->recvmsg_inq) {
2319 		*cmsg_flags = TCP_CMSG_INQ;
2320 		msg->msg_get_inq = 1;
2321 	}
2322 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2323 
2324 	/* Urgent data needs to be handled specially. */
2325 	if (flags & MSG_OOB)
2326 		goto recv_urg;
2327 
2328 	if (unlikely(tp->repair)) {
2329 		err = -EPERM;
2330 		if (!(flags & MSG_PEEK))
2331 			goto out;
2332 
2333 		if (tp->repair_queue == TCP_SEND_QUEUE)
2334 			goto recv_sndq;
2335 
2336 		err = -EINVAL;
2337 		if (tp->repair_queue == TCP_NO_QUEUE)
2338 			goto out;
2339 
2340 		/* 'common' recv queue MSG_PEEK-ing */
2341 	}
2342 
2343 	seq = &tp->copied_seq;
2344 	if (flags & MSG_PEEK) {
2345 		peek_seq = tp->copied_seq;
2346 		seq = &peek_seq;
2347 	}
2348 
2349 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2350 
2351 	do {
2352 		u32 offset;
2353 
2354 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2355 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2356 			if (copied)
2357 				break;
2358 			if (signal_pending(current)) {
2359 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2360 				break;
2361 			}
2362 		}
2363 
2364 		/* Next get a buffer. */
2365 
2366 		last = skb_peek_tail(&sk->sk_receive_queue);
2367 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2368 			last = skb;
2369 			/* Now that we have two receive queues this
2370 			 * shouldn't happen.
2371 			 */
2372 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2373 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2374 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2375 				 flags))
2376 				break;
2377 
2378 			offset = *seq - TCP_SKB_CB(skb)->seq;
2379 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2380 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2381 				offset--;
2382 			}
2383 			if (offset < skb->len)
2384 				goto found_ok_skb;
2385 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2386 				goto found_fin_ok;
2387 			WARN(!(flags & MSG_PEEK),
2388 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2389 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2390 		}
2391 
2392 		/* Well, if we have backlog, try to process it now yet. */
2393 
2394 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2395 			break;
2396 
2397 		if (copied) {
2398 			if (!timeo ||
2399 			    sk->sk_err ||
2400 			    sk->sk_state == TCP_CLOSE ||
2401 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2402 			    signal_pending(current))
2403 				break;
2404 		} else {
2405 			if (sock_flag(sk, SOCK_DONE))
2406 				break;
2407 
2408 			if (sk->sk_err) {
2409 				copied = sock_error(sk);
2410 				break;
2411 			}
2412 
2413 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2414 				break;
2415 
2416 			if (sk->sk_state == TCP_CLOSE) {
2417 				/* This occurs when user tries to read
2418 				 * from never connected socket.
2419 				 */
2420 				copied = -ENOTCONN;
2421 				break;
2422 			}
2423 
2424 			if (!timeo) {
2425 				copied = -EAGAIN;
2426 				break;
2427 			}
2428 
2429 			if (signal_pending(current)) {
2430 				copied = sock_intr_errno(timeo);
2431 				break;
2432 			}
2433 		}
2434 
2435 		if (copied >= target) {
2436 			/* Do not sleep, just process backlog. */
2437 			__sk_flush_backlog(sk);
2438 		} else {
2439 			tcp_cleanup_rbuf(sk, copied);
2440 			sk_wait_data(sk, &timeo, last);
2441 		}
2442 
2443 		if ((flags & MSG_PEEK) &&
2444 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2445 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2446 					    current->comm,
2447 					    task_pid_nr(current));
2448 			peek_seq = tp->copied_seq;
2449 		}
2450 		continue;
2451 
2452 found_ok_skb:
2453 		/* Ok so how much can we use? */
2454 		used = skb->len - offset;
2455 		if (len < used)
2456 			used = len;
2457 
2458 		/* Do we have urgent data here? */
2459 		if (unlikely(tp->urg_data)) {
2460 			u32 urg_offset = tp->urg_seq - *seq;
2461 			if (urg_offset < used) {
2462 				if (!urg_offset) {
2463 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2464 						WRITE_ONCE(*seq, *seq + 1);
2465 						urg_hole++;
2466 						offset++;
2467 						used--;
2468 						if (!used)
2469 							goto skip_copy;
2470 					}
2471 				} else
2472 					used = urg_offset;
2473 			}
2474 		}
2475 
2476 		if (!(flags & MSG_TRUNC)) {
2477 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2478 			if (err) {
2479 				/* Exception. Bailout! */
2480 				if (!copied)
2481 					copied = -EFAULT;
2482 				break;
2483 			}
2484 		}
2485 
2486 		WRITE_ONCE(*seq, *seq + used);
2487 		copied += used;
2488 		len -= used;
2489 
2490 		tcp_rcv_space_adjust(sk);
2491 
2492 skip_copy:
2493 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2494 			WRITE_ONCE(tp->urg_data, 0);
2495 			tcp_fast_path_check(sk);
2496 		}
2497 
2498 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2499 			tcp_update_recv_tstamps(skb, tss);
2500 			*cmsg_flags |= TCP_CMSG_TS;
2501 		}
2502 
2503 		if (used + offset < skb->len)
2504 			continue;
2505 
2506 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2507 			goto found_fin_ok;
2508 		if (!(flags & MSG_PEEK))
2509 			tcp_eat_recv_skb(sk, skb);
2510 		continue;
2511 
2512 found_fin_ok:
2513 		/* Process the FIN. */
2514 		WRITE_ONCE(*seq, *seq + 1);
2515 		if (!(flags & MSG_PEEK))
2516 			tcp_eat_recv_skb(sk, skb);
2517 		break;
2518 	} while (len > 0);
2519 
2520 	/* According to UNIX98, msg_name/msg_namelen are ignored
2521 	 * on connected socket. I was just happy when found this 8) --ANK
2522 	 */
2523 
2524 	/* Clean up data we have read: This will do ACK frames. */
2525 	tcp_cleanup_rbuf(sk, copied);
2526 	return copied;
2527 
2528 out:
2529 	return err;
2530 
2531 recv_urg:
2532 	err = tcp_recv_urg(sk, msg, len, flags);
2533 	goto out;
2534 
2535 recv_sndq:
2536 	err = tcp_peek_sndq(sk, msg, len);
2537 	goto out;
2538 }
2539 
2540 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2541 		int *addr_len)
2542 {
2543 	int cmsg_flags = 0, ret;
2544 	struct scm_timestamping_internal tss;
2545 
2546 	if (unlikely(flags & MSG_ERRQUEUE))
2547 		return inet_recv_error(sk, msg, len, addr_len);
2548 
2549 	if (sk_can_busy_loop(sk) &&
2550 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2551 	    sk->sk_state == TCP_ESTABLISHED)
2552 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2553 
2554 	lock_sock(sk);
2555 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2556 	release_sock(sk);
2557 
2558 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2559 		if (cmsg_flags & TCP_CMSG_TS)
2560 			tcp_recv_timestamp(msg, sk, &tss);
2561 		if (msg->msg_get_inq) {
2562 			msg->msg_inq = tcp_inq_hint(sk);
2563 			if (cmsg_flags & TCP_CMSG_INQ)
2564 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2565 					 sizeof(msg->msg_inq), &msg->msg_inq);
2566 		}
2567 	}
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL(tcp_recvmsg);
2571 
2572 void tcp_set_state(struct sock *sk, int state)
2573 {
2574 	int oldstate = sk->sk_state;
2575 
2576 	/* We defined a new enum for TCP states that are exported in BPF
2577 	 * so as not force the internal TCP states to be frozen. The
2578 	 * following checks will detect if an internal state value ever
2579 	 * differs from the BPF value. If this ever happens, then we will
2580 	 * need to remap the internal value to the BPF value before calling
2581 	 * tcp_call_bpf_2arg.
2582 	 */
2583 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2584 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2585 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2586 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2587 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2588 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2589 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2590 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2591 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2592 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2593 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2594 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2595 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2596 
2597 	/* bpf uapi header bpf.h defines an anonymous enum with values
2598 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2599 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2600 	 * But clang built vmlinux does not have this enum in DWARF
2601 	 * since clang removes the above code before generating IR/debuginfo.
2602 	 * Let us explicitly emit the type debuginfo to ensure the
2603 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2604 	 * regardless of which compiler is used.
2605 	 */
2606 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2607 
2608 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2609 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2610 
2611 	switch (state) {
2612 	case TCP_ESTABLISHED:
2613 		if (oldstate != TCP_ESTABLISHED)
2614 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2615 		break;
2616 
2617 	case TCP_CLOSE:
2618 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2619 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2620 
2621 		sk->sk_prot->unhash(sk);
2622 		if (inet_csk(sk)->icsk_bind_hash &&
2623 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2624 			inet_put_port(sk);
2625 		fallthrough;
2626 	default:
2627 		if (oldstate == TCP_ESTABLISHED)
2628 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2629 	}
2630 
2631 	/* Change state AFTER socket is unhashed to avoid closed
2632 	 * socket sitting in hash tables.
2633 	 */
2634 	inet_sk_state_store(sk, state);
2635 }
2636 EXPORT_SYMBOL_GPL(tcp_set_state);
2637 
2638 /*
2639  *	State processing on a close. This implements the state shift for
2640  *	sending our FIN frame. Note that we only send a FIN for some
2641  *	states. A shutdown() may have already sent the FIN, or we may be
2642  *	closed.
2643  */
2644 
2645 static const unsigned char new_state[16] = {
2646   /* current state:        new state:      action:	*/
2647   [0 /* (Invalid) */]	= TCP_CLOSE,
2648   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2649   [TCP_SYN_SENT]	= TCP_CLOSE,
2650   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2651   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2652   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2653   [TCP_TIME_WAIT]	= TCP_CLOSE,
2654   [TCP_CLOSE]		= TCP_CLOSE,
2655   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2656   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2657   [TCP_LISTEN]		= TCP_CLOSE,
2658   [TCP_CLOSING]		= TCP_CLOSING,
2659   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2660 };
2661 
2662 static int tcp_close_state(struct sock *sk)
2663 {
2664 	int next = (int)new_state[sk->sk_state];
2665 	int ns = next & TCP_STATE_MASK;
2666 
2667 	tcp_set_state(sk, ns);
2668 
2669 	return next & TCP_ACTION_FIN;
2670 }
2671 
2672 /*
2673  *	Shutdown the sending side of a connection. Much like close except
2674  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2675  */
2676 
2677 void tcp_shutdown(struct sock *sk, int how)
2678 {
2679 	/*	We need to grab some memory, and put together a FIN,
2680 	 *	and then put it into the queue to be sent.
2681 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2682 	 */
2683 	if (!(how & SEND_SHUTDOWN))
2684 		return;
2685 
2686 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2687 	if ((1 << sk->sk_state) &
2688 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2689 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2690 		/* Clear out any half completed packets.  FIN if needed. */
2691 		if (tcp_close_state(sk))
2692 			tcp_send_fin(sk);
2693 	}
2694 }
2695 EXPORT_SYMBOL(tcp_shutdown);
2696 
2697 int tcp_orphan_count_sum(void)
2698 {
2699 	int i, total = 0;
2700 
2701 	for_each_possible_cpu(i)
2702 		total += per_cpu(tcp_orphan_count, i);
2703 
2704 	return max(total, 0);
2705 }
2706 
2707 static int tcp_orphan_cache;
2708 static struct timer_list tcp_orphan_timer;
2709 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2710 
2711 static void tcp_orphan_update(struct timer_list *unused)
2712 {
2713 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2714 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2715 }
2716 
2717 static bool tcp_too_many_orphans(int shift)
2718 {
2719 	return READ_ONCE(tcp_orphan_cache) << shift >
2720 		READ_ONCE(sysctl_tcp_max_orphans);
2721 }
2722 
2723 bool tcp_check_oom(struct sock *sk, int shift)
2724 {
2725 	bool too_many_orphans, out_of_socket_memory;
2726 
2727 	too_many_orphans = tcp_too_many_orphans(shift);
2728 	out_of_socket_memory = tcp_out_of_memory(sk);
2729 
2730 	if (too_many_orphans)
2731 		net_info_ratelimited("too many orphaned sockets\n");
2732 	if (out_of_socket_memory)
2733 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2734 	return too_many_orphans || out_of_socket_memory;
2735 }
2736 
2737 void __tcp_close(struct sock *sk, long timeout)
2738 {
2739 	struct sk_buff *skb;
2740 	int data_was_unread = 0;
2741 	int state;
2742 
2743 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2744 
2745 	if (sk->sk_state == TCP_LISTEN) {
2746 		tcp_set_state(sk, TCP_CLOSE);
2747 
2748 		/* Special case. */
2749 		inet_csk_listen_stop(sk);
2750 
2751 		goto adjudge_to_death;
2752 	}
2753 
2754 	/*  We need to flush the recv. buffs.  We do this only on the
2755 	 *  descriptor close, not protocol-sourced closes, because the
2756 	 *  reader process may not have drained the data yet!
2757 	 */
2758 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2759 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2760 
2761 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2762 			len--;
2763 		data_was_unread += len;
2764 		__kfree_skb(skb);
2765 	}
2766 
2767 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2768 	if (sk->sk_state == TCP_CLOSE)
2769 		goto adjudge_to_death;
2770 
2771 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2772 	 * data was lost. To witness the awful effects of the old behavior of
2773 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2774 	 * GET in an FTP client, suspend the process, wait for the client to
2775 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2776 	 * Note: timeout is always zero in such a case.
2777 	 */
2778 	if (unlikely(tcp_sk(sk)->repair)) {
2779 		sk->sk_prot->disconnect(sk, 0);
2780 	} else if (data_was_unread) {
2781 		/* Unread data was tossed, zap the connection. */
2782 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2783 		tcp_set_state(sk, TCP_CLOSE);
2784 		tcp_send_active_reset(sk, sk->sk_allocation);
2785 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2786 		/* Check zero linger _after_ checking for unread data. */
2787 		sk->sk_prot->disconnect(sk, 0);
2788 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2789 	} else if (tcp_close_state(sk)) {
2790 		/* We FIN if the application ate all the data before
2791 		 * zapping the connection.
2792 		 */
2793 
2794 		/* RED-PEN. Formally speaking, we have broken TCP state
2795 		 * machine. State transitions:
2796 		 *
2797 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2798 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2799 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2800 		 *
2801 		 * are legal only when FIN has been sent (i.e. in window),
2802 		 * rather than queued out of window. Purists blame.
2803 		 *
2804 		 * F.e. "RFC state" is ESTABLISHED,
2805 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2806 		 *
2807 		 * The visible declinations are that sometimes
2808 		 * we enter time-wait state, when it is not required really
2809 		 * (harmless), do not send active resets, when they are
2810 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2811 		 * they look as CLOSING or LAST_ACK for Linux)
2812 		 * Probably, I missed some more holelets.
2813 		 * 						--ANK
2814 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2815 		 * in a single packet! (May consider it later but will
2816 		 * probably need API support or TCP_CORK SYN-ACK until
2817 		 * data is written and socket is closed.)
2818 		 */
2819 		tcp_send_fin(sk);
2820 	}
2821 
2822 	sk_stream_wait_close(sk, timeout);
2823 
2824 adjudge_to_death:
2825 	state = sk->sk_state;
2826 	sock_hold(sk);
2827 	sock_orphan(sk);
2828 
2829 	local_bh_disable();
2830 	bh_lock_sock(sk);
2831 	/* remove backlog if any, without releasing ownership. */
2832 	__release_sock(sk);
2833 
2834 	this_cpu_inc(tcp_orphan_count);
2835 
2836 	/* Have we already been destroyed by a softirq or backlog? */
2837 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2838 		goto out;
2839 
2840 	/*	This is a (useful) BSD violating of the RFC. There is a
2841 	 *	problem with TCP as specified in that the other end could
2842 	 *	keep a socket open forever with no application left this end.
2843 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2844 	 *	our end. If they send after that then tough - BUT: long enough
2845 	 *	that we won't make the old 4*rto = almost no time - whoops
2846 	 *	reset mistake.
2847 	 *
2848 	 *	Nope, it was not mistake. It is really desired behaviour
2849 	 *	f.e. on http servers, when such sockets are useless, but
2850 	 *	consume significant resources. Let's do it with special
2851 	 *	linger2	option.					--ANK
2852 	 */
2853 
2854 	if (sk->sk_state == TCP_FIN_WAIT2) {
2855 		struct tcp_sock *tp = tcp_sk(sk);
2856 		if (tp->linger2 < 0) {
2857 			tcp_set_state(sk, TCP_CLOSE);
2858 			tcp_send_active_reset(sk, GFP_ATOMIC);
2859 			__NET_INC_STATS(sock_net(sk),
2860 					LINUX_MIB_TCPABORTONLINGER);
2861 		} else {
2862 			const int tmo = tcp_fin_time(sk);
2863 
2864 			if (tmo > TCP_TIMEWAIT_LEN) {
2865 				inet_csk_reset_keepalive_timer(sk,
2866 						tmo - TCP_TIMEWAIT_LEN);
2867 			} else {
2868 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2869 				goto out;
2870 			}
2871 		}
2872 	}
2873 	if (sk->sk_state != TCP_CLOSE) {
2874 		if (tcp_check_oom(sk, 0)) {
2875 			tcp_set_state(sk, TCP_CLOSE);
2876 			tcp_send_active_reset(sk, GFP_ATOMIC);
2877 			__NET_INC_STATS(sock_net(sk),
2878 					LINUX_MIB_TCPABORTONMEMORY);
2879 		} else if (!check_net(sock_net(sk))) {
2880 			/* Not possible to send reset; just close */
2881 			tcp_set_state(sk, TCP_CLOSE);
2882 		}
2883 	}
2884 
2885 	if (sk->sk_state == TCP_CLOSE) {
2886 		struct request_sock *req;
2887 
2888 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2889 						lockdep_sock_is_held(sk));
2890 		/* We could get here with a non-NULL req if the socket is
2891 		 * aborted (e.g., closed with unread data) before 3WHS
2892 		 * finishes.
2893 		 */
2894 		if (req)
2895 			reqsk_fastopen_remove(sk, req, false);
2896 		inet_csk_destroy_sock(sk);
2897 	}
2898 	/* Otherwise, socket is reprieved until protocol close. */
2899 
2900 out:
2901 	bh_unlock_sock(sk);
2902 	local_bh_enable();
2903 }
2904 
2905 void tcp_close(struct sock *sk, long timeout)
2906 {
2907 	lock_sock(sk);
2908 	__tcp_close(sk, timeout);
2909 	release_sock(sk);
2910 	sock_put(sk);
2911 }
2912 EXPORT_SYMBOL(tcp_close);
2913 
2914 /* These states need RST on ABORT according to RFC793 */
2915 
2916 static inline bool tcp_need_reset(int state)
2917 {
2918 	return (1 << state) &
2919 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2920 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2921 }
2922 
2923 static void tcp_rtx_queue_purge(struct sock *sk)
2924 {
2925 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2926 
2927 	tcp_sk(sk)->highest_sack = NULL;
2928 	while (p) {
2929 		struct sk_buff *skb = rb_to_skb(p);
2930 
2931 		p = rb_next(p);
2932 		/* Since we are deleting whole queue, no need to
2933 		 * list_del(&skb->tcp_tsorted_anchor)
2934 		 */
2935 		tcp_rtx_queue_unlink(skb, sk);
2936 		tcp_wmem_free_skb(sk, skb);
2937 	}
2938 }
2939 
2940 void tcp_write_queue_purge(struct sock *sk)
2941 {
2942 	struct sk_buff *skb;
2943 
2944 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2945 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2946 		tcp_skb_tsorted_anchor_cleanup(skb);
2947 		tcp_wmem_free_skb(sk, skb);
2948 	}
2949 	tcp_rtx_queue_purge(sk);
2950 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2951 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2952 	tcp_sk(sk)->packets_out = 0;
2953 	inet_csk(sk)->icsk_backoff = 0;
2954 }
2955 
2956 int tcp_disconnect(struct sock *sk, int flags)
2957 {
2958 	struct inet_sock *inet = inet_sk(sk);
2959 	struct inet_connection_sock *icsk = inet_csk(sk);
2960 	struct tcp_sock *tp = tcp_sk(sk);
2961 	int old_state = sk->sk_state;
2962 	u32 seq;
2963 
2964 	if (old_state != TCP_CLOSE)
2965 		tcp_set_state(sk, TCP_CLOSE);
2966 
2967 	/* ABORT function of RFC793 */
2968 	if (old_state == TCP_LISTEN) {
2969 		inet_csk_listen_stop(sk);
2970 	} else if (unlikely(tp->repair)) {
2971 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2972 	} else if (tcp_need_reset(old_state) ||
2973 		   (tp->snd_nxt != tp->write_seq &&
2974 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2975 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2976 		 * states
2977 		 */
2978 		tcp_send_active_reset(sk, gfp_any());
2979 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2980 	} else if (old_state == TCP_SYN_SENT)
2981 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2982 
2983 	tcp_clear_xmit_timers(sk);
2984 	__skb_queue_purge(&sk->sk_receive_queue);
2985 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2986 	WRITE_ONCE(tp->urg_data, 0);
2987 	tcp_write_queue_purge(sk);
2988 	tcp_fastopen_active_disable_ofo_check(sk);
2989 	skb_rbtree_purge(&tp->out_of_order_queue);
2990 
2991 	inet->inet_dport = 0;
2992 
2993 	inet_bhash2_reset_saddr(sk);
2994 
2995 	WRITE_ONCE(sk->sk_shutdown, 0);
2996 	sock_reset_flag(sk, SOCK_DONE);
2997 	tp->srtt_us = 0;
2998 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2999 	tp->rcv_rtt_last_tsecr = 0;
3000 
3001 	seq = tp->write_seq + tp->max_window + 2;
3002 	if (!seq)
3003 		seq = 1;
3004 	WRITE_ONCE(tp->write_seq, seq);
3005 
3006 	icsk->icsk_backoff = 0;
3007 	icsk->icsk_probes_out = 0;
3008 	icsk->icsk_probes_tstamp = 0;
3009 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3010 	icsk->icsk_rto_min = TCP_RTO_MIN;
3011 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3012 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3013 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3014 	tp->snd_cwnd_cnt = 0;
3015 	tp->is_cwnd_limited = 0;
3016 	tp->max_packets_out = 0;
3017 	tp->window_clamp = 0;
3018 	tp->delivered = 0;
3019 	tp->delivered_ce = 0;
3020 	if (icsk->icsk_ca_ops->release)
3021 		icsk->icsk_ca_ops->release(sk);
3022 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3023 	icsk->icsk_ca_initialized = 0;
3024 	tcp_set_ca_state(sk, TCP_CA_Open);
3025 	tp->is_sack_reneg = 0;
3026 	tcp_clear_retrans(tp);
3027 	tp->total_retrans = 0;
3028 	inet_csk_delack_init(sk);
3029 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3030 	 * issue in __tcp_select_window()
3031 	 */
3032 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3033 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3034 	__sk_dst_reset(sk);
3035 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3036 	tcp_saved_syn_free(tp);
3037 	tp->compressed_ack = 0;
3038 	tp->segs_in = 0;
3039 	tp->segs_out = 0;
3040 	tp->bytes_sent = 0;
3041 	tp->bytes_acked = 0;
3042 	tp->bytes_received = 0;
3043 	tp->bytes_retrans = 0;
3044 	tp->data_segs_in = 0;
3045 	tp->data_segs_out = 0;
3046 	tp->duplicate_sack[0].start_seq = 0;
3047 	tp->duplicate_sack[0].end_seq = 0;
3048 	tp->dsack_dups = 0;
3049 	tp->reord_seen = 0;
3050 	tp->retrans_out = 0;
3051 	tp->sacked_out = 0;
3052 	tp->tlp_high_seq = 0;
3053 	tp->last_oow_ack_time = 0;
3054 	tp->plb_rehash = 0;
3055 	/* There's a bubble in the pipe until at least the first ACK. */
3056 	tp->app_limited = ~0U;
3057 	tp->rate_app_limited = 1;
3058 	tp->rack.mstamp = 0;
3059 	tp->rack.advanced = 0;
3060 	tp->rack.reo_wnd_steps = 1;
3061 	tp->rack.last_delivered = 0;
3062 	tp->rack.reo_wnd_persist = 0;
3063 	tp->rack.dsack_seen = 0;
3064 	tp->syn_data_acked = 0;
3065 	tp->rx_opt.saw_tstamp = 0;
3066 	tp->rx_opt.dsack = 0;
3067 	tp->rx_opt.num_sacks = 0;
3068 	tp->rcv_ooopack = 0;
3069 
3070 
3071 	/* Clean up fastopen related fields */
3072 	tcp_free_fastopen_req(tp);
3073 	inet->defer_connect = 0;
3074 	tp->fastopen_client_fail = 0;
3075 
3076 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3077 
3078 	if (sk->sk_frag.page) {
3079 		put_page(sk->sk_frag.page);
3080 		sk->sk_frag.page = NULL;
3081 		sk->sk_frag.offset = 0;
3082 	}
3083 	sk_error_report(sk);
3084 	return 0;
3085 }
3086 EXPORT_SYMBOL(tcp_disconnect);
3087 
3088 static inline bool tcp_can_repair_sock(const struct sock *sk)
3089 {
3090 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3091 		(sk->sk_state != TCP_LISTEN);
3092 }
3093 
3094 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3095 {
3096 	struct tcp_repair_window opt;
3097 
3098 	if (!tp->repair)
3099 		return -EPERM;
3100 
3101 	if (len != sizeof(opt))
3102 		return -EINVAL;
3103 
3104 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3105 		return -EFAULT;
3106 
3107 	if (opt.max_window < opt.snd_wnd)
3108 		return -EINVAL;
3109 
3110 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3111 		return -EINVAL;
3112 
3113 	if (after(opt.rcv_wup, tp->rcv_nxt))
3114 		return -EINVAL;
3115 
3116 	tp->snd_wl1	= opt.snd_wl1;
3117 	tp->snd_wnd	= opt.snd_wnd;
3118 	tp->max_window	= opt.max_window;
3119 
3120 	tp->rcv_wnd	= opt.rcv_wnd;
3121 	tp->rcv_wup	= opt.rcv_wup;
3122 
3123 	return 0;
3124 }
3125 
3126 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3127 		unsigned int len)
3128 {
3129 	struct tcp_sock *tp = tcp_sk(sk);
3130 	struct tcp_repair_opt opt;
3131 	size_t offset = 0;
3132 
3133 	while (len >= sizeof(opt)) {
3134 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3135 			return -EFAULT;
3136 
3137 		offset += sizeof(opt);
3138 		len -= sizeof(opt);
3139 
3140 		switch (opt.opt_code) {
3141 		case TCPOPT_MSS:
3142 			tp->rx_opt.mss_clamp = opt.opt_val;
3143 			tcp_mtup_init(sk);
3144 			break;
3145 		case TCPOPT_WINDOW:
3146 			{
3147 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3148 				u16 rcv_wscale = opt.opt_val >> 16;
3149 
3150 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3151 					return -EFBIG;
3152 
3153 				tp->rx_opt.snd_wscale = snd_wscale;
3154 				tp->rx_opt.rcv_wscale = rcv_wscale;
3155 				tp->rx_opt.wscale_ok = 1;
3156 			}
3157 			break;
3158 		case TCPOPT_SACK_PERM:
3159 			if (opt.opt_val != 0)
3160 				return -EINVAL;
3161 
3162 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3163 			break;
3164 		case TCPOPT_TIMESTAMP:
3165 			if (opt.opt_val != 0)
3166 				return -EINVAL;
3167 
3168 			tp->rx_opt.tstamp_ok = 1;
3169 			break;
3170 		}
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3177 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3178 
3179 static void tcp_enable_tx_delay(void)
3180 {
3181 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3182 		static int __tcp_tx_delay_enabled = 0;
3183 
3184 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3185 			static_branch_enable(&tcp_tx_delay_enabled);
3186 			pr_info("TCP_TX_DELAY enabled\n");
3187 		}
3188 	}
3189 }
3190 
3191 /* When set indicates to always queue non-full frames.  Later the user clears
3192  * this option and we transmit any pending partial frames in the queue.  This is
3193  * meant to be used alongside sendfile() to get properly filled frames when the
3194  * user (for example) must write out headers with a write() call first and then
3195  * use sendfile to send out the data parts.
3196  *
3197  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3198  * TCP_NODELAY.
3199  */
3200 void __tcp_sock_set_cork(struct sock *sk, bool on)
3201 {
3202 	struct tcp_sock *tp = tcp_sk(sk);
3203 
3204 	if (on) {
3205 		tp->nonagle |= TCP_NAGLE_CORK;
3206 	} else {
3207 		tp->nonagle &= ~TCP_NAGLE_CORK;
3208 		if (tp->nonagle & TCP_NAGLE_OFF)
3209 			tp->nonagle |= TCP_NAGLE_PUSH;
3210 		tcp_push_pending_frames(sk);
3211 	}
3212 }
3213 
3214 void tcp_sock_set_cork(struct sock *sk, bool on)
3215 {
3216 	lock_sock(sk);
3217 	__tcp_sock_set_cork(sk, on);
3218 	release_sock(sk);
3219 }
3220 EXPORT_SYMBOL(tcp_sock_set_cork);
3221 
3222 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3223  * remembered, but it is not activated until cork is cleared.
3224  *
3225  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3226  * even TCP_CORK for currently queued segments.
3227  */
3228 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3229 {
3230 	if (on) {
3231 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3232 		tcp_push_pending_frames(sk);
3233 	} else {
3234 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3235 	}
3236 }
3237 
3238 void tcp_sock_set_nodelay(struct sock *sk)
3239 {
3240 	lock_sock(sk);
3241 	__tcp_sock_set_nodelay(sk, true);
3242 	release_sock(sk);
3243 }
3244 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3245 
3246 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3247 {
3248 	if (!val) {
3249 		inet_csk_enter_pingpong_mode(sk);
3250 		return;
3251 	}
3252 
3253 	inet_csk_exit_pingpong_mode(sk);
3254 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3255 	    inet_csk_ack_scheduled(sk)) {
3256 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3257 		tcp_cleanup_rbuf(sk, 1);
3258 		if (!(val & 1))
3259 			inet_csk_enter_pingpong_mode(sk);
3260 	}
3261 }
3262 
3263 void tcp_sock_set_quickack(struct sock *sk, int val)
3264 {
3265 	lock_sock(sk);
3266 	__tcp_sock_set_quickack(sk, val);
3267 	release_sock(sk);
3268 }
3269 EXPORT_SYMBOL(tcp_sock_set_quickack);
3270 
3271 int tcp_sock_set_syncnt(struct sock *sk, int val)
3272 {
3273 	if (val < 1 || val > MAX_TCP_SYNCNT)
3274 		return -EINVAL;
3275 
3276 	lock_sock(sk);
3277 	inet_csk(sk)->icsk_syn_retries = val;
3278 	release_sock(sk);
3279 	return 0;
3280 }
3281 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3282 
3283 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3284 {
3285 	lock_sock(sk);
3286 	inet_csk(sk)->icsk_user_timeout = val;
3287 	release_sock(sk);
3288 }
3289 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3290 
3291 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3292 {
3293 	struct tcp_sock *tp = tcp_sk(sk);
3294 
3295 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3296 		return -EINVAL;
3297 
3298 	tp->keepalive_time = val * HZ;
3299 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3300 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3301 		u32 elapsed = keepalive_time_elapsed(tp);
3302 
3303 		if (tp->keepalive_time > elapsed)
3304 			elapsed = tp->keepalive_time - elapsed;
3305 		else
3306 			elapsed = 0;
3307 		inet_csk_reset_keepalive_timer(sk, elapsed);
3308 	}
3309 
3310 	return 0;
3311 }
3312 
3313 int tcp_sock_set_keepidle(struct sock *sk, int val)
3314 {
3315 	int err;
3316 
3317 	lock_sock(sk);
3318 	err = tcp_sock_set_keepidle_locked(sk, val);
3319 	release_sock(sk);
3320 	return err;
3321 }
3322 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3323 
3324 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3325 {
3326 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3327 		return -EINVAL;
3328 
3329 	lock_sock(sk);
3330 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3331 	release_sock(sk);
3332 	return 0;
3333 }
3334 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3335 
3336 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3337 {
3338 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3339 		return -EINVAL;
3340 
3341 	lock_sock(sk);
3342 	tcp_sk(sk)->keepalive_probes = val;
3343 	release_sock(sk);
3344 	return 0;
3345 }
3346 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3347 
3348 int tcp_set_window_clamp(struct sock *sk, int val)
3349 {
3350 	struct tcp_sock *tp = tcp_sk(sk);
3351 
3352 	if (!val) {
3353 		if (sk->sk_state != TCP_CLOSE)
3354 			return -EINVAL;
3355 		tp->window_clamp = 0;
3356 	} else {
3357 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3358 			SOCK_MIN_RCVBUF / 2 : val;
3359 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3360 	}
3361 	return 0;
3362 }
3363 
3364 /*
3365  *	Socket option code for TCP.
3366  */
3367 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3368 		      sockptr_t optval, unsigned int optlen)
3369 {
3370 	struct tcp_sock *tp = tcp_sk(sk);
3371 	struct inet_connection_sock *icsk = inet_csk(sk);
3372 	struct net *net = sock_net(sk);
3373 	int val;
3374 	int err = 0;
3375 
3376 	/* These are data/string values, all the others are ints */
3377 	switch (optname) {
3378 	case TCP_CONGESTION: {
3379 		char name[TCP_CA_NAME_MAX];
3380 
3381 		if (optlen < 1)
3382 			return -EINVAL;
3383 
3384 		val = strncpy_from_sockptr(name, optval,
3385 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3386 		if (val < 0)
3387 			return -EFAULT;
3388 		name[val] = 0;
3389 
3390 		sockopt_lock_sock(sk);
3391 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3392 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3393 								    CAP_NET_ADMIN));
3394 		sockopt_release_sock(sk);
3395 		return err;
3396 	}
3397 	case TCP_ULP: {
3398 		char name[TCP_ULP_NAME_MAX];
3399 
3400 		if (optlen < 1)
3401 			return -EINVAL;
3402 
3403 		val = strncpy_from_sockptr(name, optval,
3404 					min_t(long, TCP_ULP_NAME_MAX - 1,
3405 					      optlen));
3406 		if (val < 0)
3407 			return -EFAULT;
3408 		name[val] = 0;
3409 
3410 		sockopt_lock_sock(sk);
3411 		err = tcp_set_ulp(sk, name);
3412 		sockopt_release_sock(sk);
3413 		return err;
3414 	}
3415 	case TCP_FASTOPEN_KEY: {
3416 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3417 		__u8 *backup_key = NULL;
3418 
3419 		/* Allow a backup key as well to facilitate key rotation
3420 		 * First key is the active one.
3421 		 */
3422 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3423 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3424 			return -EINVAL;
3425 
3426 		if (copy_from_sockptr(key, optval, optlen))
3427 			return -EFAULT;
3428 
3429 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3430 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3431 
3432 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3433 	}
3434 	default:
3435 		/* fallthru */
3436 		break;
3437 	}
3438 
3439 	if (optlen < sizeof(int))
3440 		return -EINVAL;
3441 
3442 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3443 		return -EFAULT;
3444 
3445 	sockopt_lock_sock(sk);
3446 
3447 	switch (optname) {
3448 	case TCP_MAXSEG:
3449 		/* Values greater than interface MTU won't take effect. However
3450 		 * at the point when this call is done we typically don't yet
3451 		 * know which interface is going to be used
3452 		 */
3453 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3454 			err = -EINVAL;
3455 			break;
3456 		}
3457 		tp->rx_opt.user_mss = val;
3458 		break;
3459 
3460 	case TCP_NODELAY:
3461 		__tcp_sock_set_nodelay(sk, val);
3462 		break;
3463 
3464 	case TCP_THIN_LINEAR_TIMEOUTS:
3465 		if (val < 0 || val > 1)
3466 			err = -EINVAL;
3467 		else
3468 			tp->thin_lto = val;
3469 		break;
3470 
3471 	case TCP_THIN_DUPACK:
3472 		if (val < 0 || val > 1)
3473 			err = -EINVAL;
3474 		break;
3475 
3476 	case TCP_REPAIR:
3477 		if (!tcp_can_repair_sock(sk))
3478 			err = -EPERM;
3479 		else if (val == TCP_REPAIR_ON) {
3480 			tp->repair = 1;
3481 			sk->sk_reuse = SK_FORCE_REUSE;
3482 			tp->repair_queue = TCP_NO_QUEUE;
3483 		} else if (val == TCP_REPAIR_OFF) {
3484 			tp->repair = 0;
3485 			sk->sk_reuse = SK_NO_REUSE;
3486 			tcp_send_window_probe(sk);
3487 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3488 			tp->repair = 0;
3489 			sk->sk_reuse = SK_NO_REUSE;
3490 		} else
3491 			err = -EINVAL;
3492 
3493 		break;
3494 
3495 	case TCP_REPAIR_QUEUE:
3496 		if (!tp->repair)
3497 			err = -EPERM;
3498 		else if ((unsigned int)val < TCP_QUEUES_NR)
3499 			tp->repair_queue = val;
3500 		else
3501 			err = -EINVAL;
3502 		break;
3503 
3504 	case TCP_QUEUE_SEQ:
3505 		if (sk->sk_state != TCP_CLOSE) {
3506 			err = -EPERM;
3507 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3508 			if (!tcp_rtx_queue_empty(sk))
3509 				err = -EPERM;
3510 			else
3511 				WRITE_ONCE(tp->write_seq, val);
3512 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3513 			if (tp->rcv_nxt != tp->copied_seq) {
3514 				err = -EPERM;
3515 			} else {
3516 				WRITE_ONCE(tp->rcv_nxt, val);
3517 				WRITE_ONCE(tp->copied_seq, val);
3518 			}
3519 		} else {
3520 			err = -EINVAL;
3521 		}
3522 		break;
3523 
3524 	case TCP_REPAIR_OPTIONS:
3525 		if (!tp->repair)
3526 			err = -EINVAL;
3527 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3528 			err = tcp_repair_options_est(sk, optval, optlen);
3529 		else
3530 			err = -EPERM;
3531 		break;
3532 
3533 	case TCP_CORK:
3534 		__tcp_sock_set_cork(sk, val);
3535 		break;
3536 
3537 	case TCP_KEEPIDLE:
3538 		err = tcp_sock_set_keepidle_locked(sk, val);
3539 		break;
3540 	case TCP_KEEPINTVL:
3541 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3542 			err = -EINVAL;
3543 		else
3544 			tp->keepalive_intvl = val * HZ;
3545 		break;
3546 	case TCP_KEEPCNT:
3547 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3548 			err = -EINVAL;
3549 		else
3550 			tp->keepalive_probes = val;
3551 		break;
3552 	case TCP_SYNCNT:
3553 		if (val < 1 || val > MAX_TCP_SYNCNT)
3554 			err = -EINVAL;
3555 		else
3556 			icsk->icsk_syn_retries = val;
3557 		break;
3558 
3559 	case TCP_SAVE_SYN:
3560 		/* 0: disable, 1: enable, 2: start from ether_header */
3561 		if (val < 0 || val > 2)
3562 			err = -EINVAL;
3563 		else
3564 			tp->save_syn = val;
3565 		break;
3566 
3567 	case TCP_LINGER2:
3568 		if (val < 0)
3569 			tp->linger2 = -1;
3570 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3571 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3572 		else
3573 			tp->linger2 = val * HZ;
3574 		break;
3575 
3576 	case TCP_DEFER_ACCEPT:
3577 		/* Translate value in seconds to number of retransmits */
3578 		icsk->icsk_accept_queue.rskq_defer_accept =
3579 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3580 					TCP_RTO_MAX / HZ);
3581 		break;
3582 
3583 	case TCP_WINDOW_CLAMP:
3584 		err = tcp_set_window_clamp(sk, val);
3585 		break;
3586 
3587 	case TCP_QUICKACK:
3588 		__tcp_sock_set_quickack(sk, val);
3589 		break;
3590 
3591 #ifdef CONFIG_TCP_MD5SIG
3592 	case TCP_MD5SIG:
3593 	case TCP_MD5SIG_EXT:
3594 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3595 		break;
3596 #endif
3597 	case TCP_USER_TIMEOUT:
3598 		/* Cap the max time in ms TCP will retry or probe the window
3599 		 * before giving up and aborting (ETIMEDOUT) a connection.
3600 		 */
3601 		if (val < 0)
3602 			err = -EINVAL;
3603 		else
3604 			icsk->icsk_user_timeout = val;
3605 		break;
3606 
3607 	case TCP_FASTOPEN:
3608 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3609 		    TCPF_LISTEN))) {
3610 			tcp_fastopen_init_key_once(net);
3611 
3612 			fastopen_queue_tune(sk, val);
3613 		} else {
3614 			err = -EINVAL;
3615 		}
3616 		break;
3617 	case TCP_FASTOPEN_CONNECT:
3618 		if (val > 1 || val < 0) {
3619 			err = -EINVAL;
3620 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3621 			   TFO_CLIENT_ENABLE) {
3622 			if (sk->sk_state == TCP_CLOSE)
3623 				tp->fastopen_connect = val;
3624 			else
3625 				err = -EINVAL;
3626 		} else {
3627 			err = -EOPNOTSUPP;
3628 		}
3629 		break;
3630 	case TCP_FASTOPEN_NO_COOKIE:
3631 		if (val > 1 || val < 0)
3632 			err = -EINVAL;
3633 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3634 			err = -EINVAL;
3635 		else
3636 			tp->fastopen_no_cookie = val;
3637 		break;
3638 	case TCP_TIMESTAMP:
3639 		if (!tp->repair)
3640 			err = -EPERM;
3641 		else
3642 			tp->tsoffset = val - tcp_time_stamp_raw();
3643 		break;
3644 	case TCP_REPAIR_WINDOW:
3645 		err = tcp_repair_set_window(tp, optval, optlen);
3646 		break;
3647 	case TCP_NOTSENT_LOWAT:
3648 		tp->notsent_lowat = val;
3649 		sk->sk_write_space(sk);
3650 		break;
3651 	case TCP_INQ:
3652 		if (val > 1 || val < 0)
3653 			err = -EINVAL;
3654 		else
3655 			tp->recvmsg_inq = val;
3656 		break;
3657 	case TCP_TX_DELAY:
3658 		if (val)
3659 			tcp_enable_tx_delay();
3660 		tp->tcp_tx_delay = val;
3661 		break;
3662 	default:
3663 		err = -ENOPROTOOPT;
3664 		break;
3665 	}
3666 
3667 	sockopt_release_sock(sk);
3668 	return err;
3669 }
3670 
3671 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3672 		   unsigned int optlen)
3673 {
3674 	const struct inet_connection_sock *icsk = inet_csk(sk);
3675 
3676 	if (level != SOL_TCP)
3677 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3678 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3679 								optval, optlen);
3680 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3681 }
3682 EXPORT_SYMBOL(tcp_setsockopt);
3683 
3684 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3685 				      struct tcp_info *info)
3686 {
3687 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3688 	enum tcp_chrono i;
3689 
3690 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3691 		stats[i] = tp->chrono_stat[i - 1];
3692 		if (i == tp->chrono_type)
3693 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3694 		stats[i] *= USEC_PER_SEC / HZ;
3695 		total += stats[i];
3696 	}
3697 
3698 	info->tcpi_busy_time = total;
3699 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3700 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3701 }
3702 
3703 /* Return information about state of tcp endpoint in API format. */
3704 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3705 {
3706 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3707 	const struct inet_connection_sock *icsk = inet_csk(sk);
3708 	unsigned long rate;
3709 	u32 now;
3710 	u64 rate64;
3711 	bool slow;
3712 
3713 	memset(info, 0, sizeof(*info));
3714 	if (sk->sk_type != SOCK_STREAM)
3715 		return;
3716 
3717 	info->tcpi_state = inet_sk_state_load(sk);
3718 
3719 	/* Report meaningful fields for all TCP states, including listeners */
3720 	rate = READ_ONCE(sk->sk_pacing_rate);
3721 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3722 	info->tcpi_pacing_rate = rate64;
3723 
3724 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3725 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3726 	info->tcpi_max_pacing_rate = rate64;
3727 
3728 	info->tcpi_reordering = tp->reordering;
3729 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3730 
3731 	if (info->tcpi_state == TCP_LISTEN) {
3732 		/* listeners aliased fields :
3733 		 * tcpi_unacked -> Number of children ready for accept()
3734 		 * tcpi_sacked  -> max backlog
3735 		 */
3736 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3737 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3738 		return;
3739 	}
3740 
3741 	slow = lock_sock_fast(sk);
3742 
3743 	info->tcpi_ca_state = icsk->icsk_ca_state;
3744 	info->tcpi_retransmits = icsk->icsk_retransmits;
3745 	info->tcpi_probes = icsk->icsk_probes_out;
3746 	info->tcpi_backoff = icsk->icsk_backoff;
3747 
3748 	if (tp->rx_opt.tstamp_ok)
3749 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3750 	if (tcp_is_sack(tp))
3751 		info->tcpi_options |= TCPI_OPT_SACK;
3752 	if (tp->rx_opt.wscale_ok) {
3753 		info->tcpi_options |= TCPI_OPT_WSCALE;
3754 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3755 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3756 	}
3757 
3758 	if (tp->ecn_flags & TCP_ECN_OK)
3759 		info->tcpi_options |= TCPI_OPT_ECN;
3760 	if (tp->ecn_flags & TCP_ECN_SEEN)
3761 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3762 	if (tp->syn_data_acked)
3763 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3764 
3765 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3766 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3767 	info->tcpi_snd_mss = tp->mss_cache;
3768 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3769 
3770 	info->tcpi_unacked = tp->packets_out;
3771 	info->tcpi_sacked = tp->sacked_out;
3772 
3773 	info->tcpi_lost = tp->lost_out;
3774 	info->tcpi_retrans = tp->retrans_out;
3775 
3776 	now = tcp_jiffies32;
3777 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3778 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3779 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3780 
3781 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3782 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3783 	info->tcpi_rtt = tp->srtt_us >> 3;
3784 	info->tcpi_rttvar = tp->mdev_us >> 2;
3785 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3786 	info->tcpi_advmss = tp->advmss;
3787 
3788 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3789 	info->tcpi_rcv_space = tp->rcvq_space.space;
3790 
3791 	info->tcpi_total_retrans = tp->total_retrans;
3792 
3793 	info->tcpi_bytes_acked = tp->bytes_acked;
3794 	info->tcpi_bytes_received = tp->bytes_received;
3795 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3796 	tcp_get_info_chrono_stats(tp, info);
3797 
3798 	info->tcpi_segs_out = tp->segs_out;
3799 
3800 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3801 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3802 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3803 
3804 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3805 	info->tcpi_data_segs_out = tp->data_segs_out;
3806 
3807 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3808 	rate64 = tcp_compute_delivery_rate(tp);
3809 	if (rate64)
3810 		info->tcpi_delivery_rate = rate64;
3811 	info->tcpi_delivered = tp->delivered;
3812 	info->tcpi_delivered_ce = tp->delivered_ce;
3813 	info->tcpi_bytes_sent = tp->bytes_sent;
3814 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3815 	info->tcpi_dsack_dups = tp->dsack_dups;
3816 	info->tcpi_reord_seen = tp->reord_seen;
3817 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3818 	info->tcpi_snd_wnd = tp->snd_wnd;
3819 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3820 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3821 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3822 	unlock_sock_fast(sk, slow);
3823 }
3824 EXPORT_SYMBOL_GPL(tcp_get_info);
3825 
3826 static size_t tcp_opt_stats_get_size(void)
3827 {
3828 	return
3829 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3830 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3831 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3832 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3833 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3834 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3835 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3836 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3837 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3838 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3839 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3840 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3841 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3842 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3843 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3844 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3845 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3846 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3847 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3848 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3849 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3850 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3851 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3852 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3853 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3854 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3855 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3856 		0;
3857 }
3858 
3859 /* Returns TTL or hop limit of an incoming packet from skb. */
3860 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3861 {
3862 	if (skb->protocol == htons(ETH_P_IP))
3863 		return ip_hdr(skb)->ttl;
3864 	else if (skb->protocol == htons(ETH_P_IPV6))
3865 		return ipv6_hdr(skb)->hop_limit;
3866 	else
3867 		return 0;
3868 }
3869 
3870 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3871 					       const struct sk_buff *orig_skb,
3872 					       const struct sk_buff *ack_skb)
3873 {
3874 	const struct tcp_sock *tp = tcp_sk(sk);
3875 	struct sk_buff *stats;
3876 	struct tcp_info info;
3877 	unsigned long rate;
3878 	u64 rate64;
3879 
3880 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3881 	if (!stats)
3882 		return NULL;
3883 
3884 	tcp_get_info_chrono_stats(tp, &info);
3885 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3886 			  info.tcpi_busy_time, TCP_NLA_PAD);
3887 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3888 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3889 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3890 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3891 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3892 			  tp->data_segs_out, TCP_NLA_PAD);
3893 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3894 			  tp->total_retrans, TCP_NLA_PAD);
3895 
3896 	rate = READ_ONCE(sk->sk_pacing_rate);
3897 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3898 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3899 
3900 	rate64 = tcp_compute_delivery_rate(tp);
3901 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3902 
3903 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3904 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3905 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3906 
3907 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3908 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3909 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3910 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3911 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3912 
3913 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3914 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3915 
3916 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3917 			  TCP_NLA_PAD);
3918 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3919 			  TCP_NLA_PAD);
3920 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3921 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3922 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3923 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3924 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3925 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3926 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3927 			  TCP_NLA_PAD);
3928 	if (ack_skb)
3929 		nla_put_u8(stats, TCP_NLA_TTL,
3930 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3931 
3932 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3933 	return stats;
3934 }
3935 
3936 int do_tcp_getsockopt(struct sock *sk, int level,
3937 		      int optname, sockptr_t optval, sockptr_t optlen)
3938 {
3939 	struct inet_connection_sock *icsk = inet_csk(sk);
3940 	struct tcp_sock *tp = tcp_sk(sk);
3941 	struct net *net = sock_net(sk);
3942 	int val, len;
3943 
3944 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3945 		return -EFAULT;
3946 
3947 	len = min_t(unsigned int, len, sizeof(int));
3948 
3949 	if (len < 0)
3950 		return -EINVAL;
3951 
3952 	switch (optname) {
3953 	case TCP_MAXSEG:
3954 		val = tp->mss_cache;
3955 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3956 			val = tp->rx_opt.user_mss;
3957 		if (tp->repair)
3958 			val = tp->rx_opt.mss_clamp;
3959 		break;
3960 	case TCP_NODELAY:
3961 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3962 		break;
3963 	case TCP_CORK:
3964 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3965 		break;
3966 	case TCP_KEEPIDLE:
3967 		val = keepalive_time_when(tp) / HZ;
3968 		break;
3969 	case TCP_KEEPINTVL:
3970 		val = keepalive_intvl_when(tp) / HZ;
3971 		break;
3972 	case TCP_KEEPCNT:
3973 		val = keepalive_probes(tp);
3974 		break;
3975 	case TCP_SYNCNT:
3976 		val = icsk->icsk_syn_retries ? :
3977 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3978 		break;
3979 	case TCP_LINGER2:
3980 		val = tp->linger2;
3981 		if (val >= 0)
3982 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3983 		break;
3984 	case TCP_DEFER_ACCEPT:
3985 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3986 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3987 		break;
3988 	case TCP_WINDOW_CLAMP:
3989 		val = tp->window_clamp;
3990 		break;
3991 	case TCP_INFO: {
3992 		struct tcp_info info;
3993 
3994 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
3995 			return -EFAULT;
3996 
3997 		tcp_get_info(sk, &info);
3998 
3999 		len = min_t(unsigned int, len, sizeof(info));
4000 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4001 			return -EFAULT;
4002 		if (copy_to_sockptr(optval, &info, len))
4003 			return -EFAULT;
4004 		return 0;
4005 	}
4006 	case TCP_CC_INFO: {
4007 		const struct tcp_congestion_ops *ca_ops;
4008 		union tcp_cc_info info;
4009 		size_t sz = 0;
4010 		int attr;
4011 
4012 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4013 			return -EFAULT;
4014 
4015 		ca_ops = icsk->icsk_ca_ops;
4016 		if (ca_ops && ca_ops->get_info)
4017 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4018 
4019 		len = min_t(unsigned int, len, sz);
4020 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4021 			return -EFAULT;
4022 		if (copy_to_sockptr(optval, &info, len))
4023 			return -EFAULT;
4024 		return 0;
4025 	}
4026 	case TCP_QUICKACK:
4027 		val = !inet_csk_in_pingpong_mode(sk);
4028 		break;
4029 
4030 	case TCP_CONGESTION:
4031 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4032 			return -EFAULT;
4033 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4034 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4035 			return -EFAULT;
4036 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4037 			return -EFAULT;
4038 		return 0;
4039 
4040 	case TCP_ULP:
4041 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4042 			return -EFAULT;
4043 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4044 		if (!icsk->icsk_ulp_ops) {
4045 			len = 0;
4046 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4047 				return -EFAULT;
4048 			return 0;
4049 		}
4050 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4051 			return -EFAULT;
4052 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4053 			return -EFAULT;
4054 		return 0;
4055 
4056 	case TCP_FASTOPEN_KEY: {
4057 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4058 		unsigned int key_len;
4059 
4060 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4061 			return -EFAULT;
4062 
4063 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4064 				TCP_FASTOPEN_KEY_LENGTH;
4065 		len = min_t(unsigned int, len, key_len);
4066 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4067 			return -EFAULT;
4068 		if (copy_to_sockptr(optval, key, len))
4069 			return -EFAULT;
4070 		return 0;
4071 	}
4072 	case TCP_THIN_LINEAR_TIMEOUTS:
4073 		val = tp->thin_lto;
4074 		break;
4075 
4076 	case TCP_THIN_DUPACK:
4077 		val = 0;
4078 		break;
4079 
4080 	case TCP_REPAIR:
4081 		val = tp->repair;
4082 		break;
4083 
4084 	case TCP_REPAIR_QUEUE:
4085 		if (tp->repair)
4086 			val = tp->repair_queue;
4087 		else
4088 			return -EINVAL;
4089 		break;
4090 
4091 	case TCP_REPAIR_WINDOW: {
4092 		struct tcp_repair_window opt;
4093 
4094 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4095 			return -EFAULT;
4096 
4097 		if (len != sizeof(opt))
4098 			return -EINVAL;
4099 
4100 		if (!tp->repair)
4101 			return -EPERM;
4102 
4103 		opt.snd_wl1	= tp->snd_wl1;
4104 		opt.snd_wnd	= tp->snd_wnd;
4105 		opt.max_window	= tp->max_window;
4106 		opt.rcv_wnd	= tp->rcv_wnd;
4107 		opt.rcv_wup	= tp->rcv_wup;
4108 
4109 		if (copy_to_sockptr(optval, &opt, len))
4110 			return -EFAULT;
4111 		return 0;
4112 	}
4113 	case TCP_QUEUE_SEQ:
4114 		if (tp->repair_queue == TCP_SEND_QUEUE)
4115 			val = tp->write_seq;
4116 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4117 			val = tp->rcv_nxt;
4118 		else
4119 			return -EINVAL;
4120 		break;
4121 
4122 	case TCP_USER_TIMEOUT:
4123 		val = icsk->icsk_user_timeout;
4124 		break;
4125 
4126 	case TCP_FASTOPEN:
4127 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4128 		break;
4129 
4130 	case TCP_FASTOPEN_CONNECT:
4131 		val = tp->fastopen_connect;
4132 		break;
4133 
4134 	case TCP_FASTOPEN_NO_COOKIE:
4135 		val = tp->fastopen_no_cookie;
4136 		break;
4137 
4138 	case TCP_TX_DELAY:
4139 		val = tp->tcp_tx_delay;
4140 		break;
4141 
4142 	case TCP_TIMESTAMP:
4143 		val = tcp_time_stamp_raw() + tp->tsoffset;
4144 		break;
4145 	case TCP_NOTSENT_LOWAT:
4146 		val = tp->notsent_lowat;
4147 		break;
4148 	case TCP_INQ:
4149 		val = tp->recvmsg_inq;
4150 		break;
4151 	case TCP_SAVE_SYN:
4152 		val = tp->save_syn;
4153 		break;
4154 	case TCP_SAVED_SYN: {
4155 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4156 			return -EFAULT;
4157 
4158 		sockopt_lock_sock(sk);
4159 		if (tp->saved_syn) {
4160 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4161 				len = tcp_saved_syn_len(tp->saved_syn);
4162 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4163 					sockopt_release_sock(sk);
4164 					return -EFAULT;
4165 				}
4166 				sockopt_release_sock(sk);
4167 				return -EINVAL;
4168 			}
4169 			len = tcp_saved_syn_len(tp->saved_syn);
4170 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4171 				sockopt_release_sock(sk);
4172 				return -EFAULT;
4173 			}
4174 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4175 				sockopt_release_sock(sk);
4176 				return -EFAULT;
4177 			}
4178 			tcp_saved_syn_free(tp);
4179 			sockopt_release_sock(sk);
4180 		} else {
4181 			sockopt_release_sock(sk);
4182 			len = 0;
4183 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4184 				return -EFAULT;
4185 		}
4186 		return 0;
4187 	}
4188 #ifdef CONFIG_MMU
4189 	case TCP_ZEROCOPY_RECEIVE: {
4190 		struct scm_timestamping_internal tss;
4191 		struct tcp_zerocopy_receive zc = {};
4192 		int err;
4193 
4194 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4195 			return -EFAULT;
4196 		if (len < 0 ||
4197 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4198 			return -EINVAL;
4199 		if (unlikely(len > sizeof(zc))) {
4200 			err = check_zeroed_sockptr(optval, sizeof(zc),
4201 						   len - sizeof(zc));
4202 			if (err < 1)
4203 				return err == 0 ? -EINVAL : err;
4204 			len = sizeof(zc);
4205 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4206 				return -EFAULT;
4207 		}
4208 		if (copy_from_sockptr(&zc, optval, len))
4209 			return -EFAULT;
4210 		if (zc.reserved)
4211 			return -EINVAL;
4212 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4213 			return -EINVAL;
4214 		sockopt_lock_sock(sk);
4215 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4216 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4217 							  &zc, &len, err);
4218 		sockopt_release_sock(sk);
4219 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4220 			goto zerocopy_rcv_cmsg;
4221 		switch (len) {
4222 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4223 			goto zerocopy_rcv_cmsg;
4224 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4225 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4226 		case offsetofend(struct tcp_zerocopy_receive, flags):
4227 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4228 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4229 		case offsetofend(struct tcp_zerocopy_receive, err):
4230 			goto zerocopy_rcv_sk_err;
4231 		case offsetofend(struct tcp_zerocopy_receive, inq):
4232 			goto zerocopy_rcv_inq;
4233 		case offsetofend(struct tcp_zerocopy_receive, length):
4234 		default:
4235 			goto zerocopy_rcv_out;
4236 		}
4237 zerocopy_rcv_cmsg:
4238 		if (zc.msg_flags & TCP_CMSG_TS)
4239 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4240 		else
4241 			zc.msg_flags = 0;
4242 zerocopy_rcv_sk_err:
4243 		if (!err)
4244 			zc.err = sock_error(sk);
4245 zerocopy_rcv_inq:
4246 		zc.inq = tcp_inq_hint(sk);
4247 zerocopy_rcv_out:
4248 		if (!err && copy_to_sockptr(optval, &zc, len))
4249 			err = -EFAULT;
4250 		return err;
4251 	}
4252 #endif
4253 	default:
4254 		return -ENOPROTOOPT;
4255 	}
4256 
4257 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4258 		return -EFAULT;
4259 	if (copy_to_sockptr(optval, &val, len))
4260 		return -EFAULT;
4261 	return 0;
4262 }
4263 
4264 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4265 {
4266 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4267 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4268 	 */
4269 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4270 		return true;
4271 
4272 	return false;
4273 }
4274 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4275 
4276 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4277 		   int __user *optlen)
4278 {
4279 	struct inet_connection_sock *icsk = inet_csk(sk);
4280 
4281 	if (level != SOL_TCP)
4282 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4283 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4284 								optval, optlen);
4285 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4286 				 USER_SOCKPTR(optlen));
4287 }
4288 EXPORT_SYMBOL(tcp_getsockopt);
4289 
4290 #ifdef CONFIG_TCP_MD5SIG
4291 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4292 static DEFINE_MUTEX(tcp_md5sig_mutex);
4293 static bool tcp_md5sig_pool_populated = false;
4294 
4295 static void __tcp_alloc_md5sig_pool(void)
4296 {
4297 	struct crypto_ahash *hash;
4298 	int cpu;
4299 
4300 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4301 	if (IS_ERR(hash))
4302 		return;
4303 
4304 	for_each_possible_cpu(cpu) {
4305 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4306 		struct ahash_request *req;
4307 
4308 		if (!scratch) {
4309 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4310 					       sizeof(struct tcphdr),
4311 					       GFP_KERNEL,
4312 					       cpu_to_node(cpu));
4313 			if (!scratch)
4314 				return;
4315 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4316 		}
4317 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4318 			continue;
4319 
4320 		req = ahash_request_alloc(hash, GFP_KERNEL);
4321 		if (!req)
4322 			return;
4323 
4324 		ahash_request_set_callback(req, 0, NULL, NULL);
4325 
4326 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4327 	}
4328 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4329 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4330 	 */
4331 	smp_wmb();
4332 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4333 	 * and tcp_get_md5sig_pool().
4334 	*/
4335 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4336 }
4337 
4338 bool tcp_alloc_md5sig_pool(void)
4339 {
4340 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4341 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4342 		mutex_lock(&tcp_md5sig_mutex);
4343 
4344 		if (!tcp_md5sig_pool_populated)
4345 			__tcp_alloc_md5sig_pool();
4346 
4347 		mutex_unlock(&tcp_md5sig_mutex);
4348 	}
4349 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4350 	return READ_ONCE(tcp_md5sig_pool_populated);
4351 }
4352 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4353 
4354 
4355 /**
4356  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4357  *
4358  *	We use percpu structure, so if we succeed, we exit with preemption
4359  *	and BH disabled, to make sure another thread or softirq handling
4360  *	wont try to get same context.
4361  */
4362 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4363 {
4364 	local_bh_disable();
4365 
4366 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4367 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4368 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4369 		smp_rmb();
4370 		return this_cpu_ptr(&tcp_md5sig_pool);
4371 	}
4372 	local_bh_enable();
4373 	return NULL;
4374 }
4375 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4376 
4377 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4378 			  const struct sk_buff *skb, unsigned int header_len)
4379 {
4380 	struct scatterlist sg;
4381 	const struct tcphdr *tp = tcp_hdr(skb);
4382 	struct ahash_request *req = hp->md5_req;
4383 	unsigned int i;
4384 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4385 					   skb_headlen(skb) - header_len : 0;
4386 	const struct skb_shared_info *shi = skb_shinfo(skb);
4387 	struct sk_buff *frag_iter;
4388 
4389 	sg_init_table(&sg, 1);
4390 
4391 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4392 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4393 	if (crypto_ahash_update(req))
4394 		return 1;
4395 
4396 	for (i = 0; i < shi->nr_frags; ++i) {
4397 		const skb_frag_t *f = &shi->frags[i];
4398 		unsigned int offset = skb_frag_off(f);
4399 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4400 
4401 		sg_set_page(&sg, page, skb_frag_size(f),
4402 			    offset_in_page(offset));
4403 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4404 		if (crypto_ahash_update(req))
4405 			return 1;
4406 	}
4407 
4408 	skb_walk_frags(skb, frag_iter)
4409 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4410 			return 1;
4411 
4412 	return 0;
4413 }
4414 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4415 
4416 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4417 {
4418 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4419 	struct scatterlist sg;
4420 
4421 	sg_init_one(&sg, key->key, keylen);
4422 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4423 
4424 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4425 	return data_race(crypto_ahash_update(hp->md5_req));
4426 }
4427 EXPORT_SYMBOL(tcp_md5_hash_key);
4428 
4429 /* Called with rcu_read_lock() */
4430 enum skb_drop_reason
4431 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4432 		     const void *saddr, const void *daddr,
4433 		     int family, int dif, int sdif)
4434 {
4435 	/*
4436 	 * This gets called for each TCP segment that arrives
4437 	 * so we want to be efficient.
4438 	 * We have 3 drop cases:
4439 	 * o No MD5 hash and one expected.
4440 	 * o MD5 hash and we're not expecting one.
4441 	 * o MD5 hash and its wrong.
4442 	 */
4443 	const __u8 *hash_location = NULL;
4444 	struct tcp_md5sig_key *hash_expected;
4445 	const struct tcphdr *th = tcp_hdr(skb);
4446 	const struct tcp_sock *tp = tcp_sk(sk);
4447 	int genhash, l3index;
4448 	u8 newhash[16];
4449 
4450 	/* sdif set, means packet ingressed via a device
4451 	 * in an L3 domain and dif is set to the l3mdev
4452 	 */
4453 	l3index = sdif ? dif : 0;
4454 
4455 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4456 	hash_location = tcp_parse_md5sig_option(th);
4457 
4458 	/* We've parsed the options - do we have a hash? */
4459 	if (!hash_expected && !hash_location)
4460 		return SKB_NOT_DROPPED_YET;
4461 
4462 	if (hash_expected && !hash_location) {
4463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4464 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4465 	}
4466 
4467 	if (!hash_expected && hash_location) {
4468 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4469 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4470 	}
4471 
4472 	/* Check the signature.
4473 	 * To support dual stack listeners, we need to handle
4474 	 * IPv4-mapped case.
4475 	 */
4476 	if (family == AF_INET)
4477 		genhash = tcp_v4_md5_hash_skb(newhash,
4478 					      hash_expected,
4479 					      NULL, skb);
4480 	else
4481 		genhash = tp->af_specific->calc_md5_hash(newhash,
4482 							 hash_expected,
4483 							 NULL, skb);
4484 
4485 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4487 		if (family == AF_INET) {
4488 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4489 					saddr, ntohs(th->source),
4490 					daddr, ntohs(th->dest),
4491 					genhash ? " tcp_v4_calc_md5_hash failed"
4492 					: "", l3index);
4493 		} else {
4494 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4495 					genhash ? "failed" : "mismatch",
4496 					saddr, ntohs(th->source),
4497 					daddr, ntohs(th->dest), l3index);
4498 		}
4499 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4500 	}
4501 	return SKB_NOT_DROPPED_YET;
4502 }
4503 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4504 
4505 #endif
4506 
4507 void tcp_done(struct sock *sk)
4508 {
4509 	struct request_sock *req;
4510 
4511 	/* We might be called with a new socket, after
4512 	 * inet_csk_prepare_forced_close() has been called
4513 	 * so we can not use lockdep_sock_is_held(sk)
4514 	 */
4515 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4516 
4517 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4518 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4519 
4520 	tcp_set_state(sk, TCP_CLOSE);
4521 	tcp_clear_xmit_timers(sk);
4522 	if (req)
4523 		reqsk_fastopen_remove(sk, req, false);
4524 
4525 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4526 
4527 	if (!sock_flag(sk, SOCK_DEAD))
4528 		sk->sk_state_change(sk);
4529 	else
4530 		inet_csk_destroy_sock(sk);
4531 }
4532 EXPORT_SYMBOL_GPL(tcp_done);
4533 
4534 int tcp_abort(struct sock *sk, int err)
4535 {
4536 	int state = inet_sk_state_load(sk);
4537 
4538 	if (state == TCP_NEW_SYN_RECV) {
4539 		struct request_sock *req = inet_reqsk(sk);
4540 
4541 		local_bh_disable();
4542 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4543 		local_bh_enable();
4544 		return 0;
4545 	}
4546 	if (state == TCP_TIME_WAIT) {
4547 		struct inet_timewait_sock *tw = inet_twsk(sk);
4548 
4549 		refcount_inc(&tw->tw_refcnt);
4550 		local_bh_disable();
4551 		inet_twsk_deschedule_put(tw);
4552 		local_bh_enable();
4553 		return 0;
4554 	}
4555 
4556 	/* BPF context ensures sock locking. */
4557 	if (!has_current_bpf_ctx())
4558 		/* Don't race with userspace socket closes such as tcp_close. */
4559 		lock_sock(sk);
4560 
4561 	if (sk->sk_state == TCP_LISTEN) {
4562 		tcp_set_state(sk, TCP_CLOSE);
4563 		inet_csk_listen_stop(sk);
4564 	}
4565 
4566 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4567 	local_bh_disable();
4568 	bh_lock_sock(sk);
4569 
4570 	if (!sock_flag(sk, SOCK_DEAD)) {
4571 		WRITE_ONCE(sk->sk_err, err);
4572 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4573 		smp_wmb();
4574 		sk_error_report(sk);
4575 		if (tcp_need_reset(sk->sk_state))
4576 			tcp_send_active_reset(sk, GFP_ATOMIC);
4577 		tcp_done(sk);
4578 	}
4579 
4580 	bh_unlock_sock(sk);
4581 	local_bh_enable();
4582 	tcp_write_queue_purge(sk);
4583 	if (!has_current_bpf_ctx())
4584 		release_sock(sk);
4585 	return 0;
4586 }
4587 EXPORT_SYMBOL_GPL(tcp_abort);
4588 
4589 extern struct tcp_congestion_ops tcp_reno;
4590 
4591 static __initdata unsigned long thash_entries;
4592 static int __init set_thash_entries(char *str)
4593 {
4594 	ssize_t ret;
4595 
4596 	if (!str)
4597 		return 0;
4598 
4599 	ret = kstrtoul(str, 0, &thash_entries);
4600 	if (ret)
4601 		return 0;
4602 
4603 	return 1;
4604 }
4605 __setup("thash_entries=", set_thash_entries);
4606 
4607 static void __init tcp_init_mem(void)
4608 {
4609 	unsigned long limit = nr_free_buffer_pages() / 16;
4610 
4611 	limit = max(limit, 128UL);
4612 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4613 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4614 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4615 }
4616 
4617 void __init tcp_init(void)
4618 {
4619 	int max_rshare, max_wshare, cnt;
4620 	unsigned long limit;
4621 	unsigned int i;
4622 
4623 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4624 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4625 		     sizeof_field(struct sk_buff, cb));
4626 
4627 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4628 
4629 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4630 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4631 
4632 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4633 			    thash_entries, 21,  /* one slot per 2 MB*/
4634 			    0, 64 * 1024);
4635 	tcp_hashinfo.bind_bucket_cachep =
4636 		kmem_cache_create("tcp_bind_bucket",
4637 				  sizeof(struct inet_bind_bucket), 0,
4638 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4639 				  SLAB_ACCOUNT,
4640 				  NULL);
4641 	tcp_hashinfo.bind2_bucket_cachep =
4642 		kmem_cache_create("tcp_bind2_bucket",
4643 				  sizeof(struct inet_bind2_bucket), 0,
4644 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4645 				  SLAB_ACCOUNT,
4646 				  NULL);
4647 
4648 	/* Size and allocate the main established and bind bucket
4649 	 * hash tables.
4650 	 *
4651 	 * The methodology is similar to that of the buffer cache.
4652 	 */
4653 	tcp_hashinfo.ehash =
4654 		alloc_large_system_hash("TCP established",
4655 					sizeof(struct inet_ehash_bucket),
4656 					thash_entries,
4657 					17, /* one slot per 128 KB of memory */
4658 					0,
4659 					NULL,
4660 					&tcp_hashinfo.ehash_mask,
4661 					0,
4662 					thash_entries ? 0 : 512 * 1024);
4663 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4664 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4665 
4666 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4667 		panic("TCP: failed to alloc ehash_locks");
4668 	tcp_hashinfo.bhash =
4669 		alloc_large_system_hash("TCP bind",
4670 					2 * sizeof(struct inet_bind_hashbucket),
4671 					tcp_hashinfo.ehash_mask + 1,
4672 					17, /* one slot per 128 KB of memory */
4673 					0,
4674 					&tcp_hashinfo.bhash_size,
4675 					NULL,
4676 					0,
4677 					64 * 1024);
4678 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4679 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4680 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4681 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4682 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4683 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4684 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4685 	}
4686 
4687 	tcp_hashinfo.pernet = false;
4688 
4689 	cnt = tcp_hashinfo.ehash_mask + 1;
4690 	sysctl_tcp_max_orphans = cnt / 2;
4691 
4692 	tcp_init_mem();
4693 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4694 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4695 	max_wshare = min(4UL*1024*1024, limit);
4696 	max_rshare = min(6UL*1024*1024, limit);
4697 
4698 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4699 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4700 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4701 
4702 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4703 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4704 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4705 
4706 	pr_info("Hash tables configured (established %u bind %u)\n",
4707 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4708 
4709 	tcp_v4_init();
4710 	tcp_metrics_init();
4711 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4712 	tcp_tasklet_init();
4713 	mptcp_init();
4714 }
4715