1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 467 { 468 struct sk_buff *skb = tcp_write_queue_tail(sk); 469 470 if (tsflags && skb) { 471 struct skb_shared_info *shinfo = skb_shinfo(skb); 472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 473 474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 475 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 476 tcb->txstamp_ack = 1; 477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 479 } 480 } 481 482 static bool tcp_stream_is_readable(struct sock *sk, int target) 483 { 484 if (tcp_epollin_ready(sk, target)) 485 return true; 486 return sk_is_readable(sk); 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 __poll_t mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 u8 shutdown; 502 int state; 503 504 sock_poll_wait(file, sock, wait); 505 506 state = inet_sk_state_load(sk); 507 if (state == TCP_LISTEN) 508 return inet_csk_listen_poll(sk); 509 510 /* Socket is not locked. We are protected from async events 511 * by poll logic and correct handling of state changes 512 * made by other threads is impossible in any case. 513 */ 514 515 mask = 0; 516 517 /* 518 * EPOLLHUP is certainly not done right. But poll() doesn't 519 * have a notion of HUP in just one direction, and for a 520 * socket the read side is more interesting. 521 * 522 * Some poll() documentation says that EPOLLHUP is incompatible 523 * with the EPOLLOUT/POLLWR flags, so somebody should check this 524 * all. But careful, it tends to be safer to return too many 525 * bits than too few, and you can easily break real applications 526 * if you don't tell them that something has hung up! 527 * 528 * Check-me. 529 * 530 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 531 * our fs/select.c). It means that after we received EOF, 532 * poll always returns immediately, making impossible poll() on write() 533 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 534 * if and only if shutdown has been made in both directions. 535 * Actually, it is interesting to look how Solaris and DUX 536 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 537 * then we could set it on SND_SHUTDOWN. BTW examples given 538 * in Stevens' books assume exactly this behaviour, it explains 539 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 540 * 541 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 542 * blocking on fresh not-connected or disconnected socket. --ANK 543 */ 544 shutdown = READ_ONCE(sk->sk_shutdown); 545 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 546 mask |= EPOLLHUP; 547 if (shutdown & RCV_SHUTDOWN) 548 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 549 550 /* Connected or passive Fast Open socket? */ 551 if (state != TCP_SYN_SENT && 552 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 553 int target = sock_rcvlowat(sk, 0, INT_MAX); 554 u16 urg_data = READ_ONCE(tp->urg_data); 555 556 if (unlikely(urg_data) && 557 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 558 !sock_flag(sk, SOCK_URGINLINE)) 559 target++; 560 561 if (tcp_stream_is_readable(sk, target)) 562 mask |= EPOLLIN | EPOLLRDNORM; 563 564 if (!(shutdown & SEND_SHUTDOWN)) { 565 if (__sk_stream_is_writeable(sk, 1)) { 566 mask |= EPOLLOUT | EPOLLWRNORM; 567 } else { /* send SIGIO later */ 568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 570 571 /* Race breaker. If space is freed after 572 * wspace test but before the flags are set, 573 * IO signal will be lost. Memory barrier 574 * pairs with the input side. 575 */ 576 smp_mb__after_atomic(); 577 if (__sk_stream_is_writeable(sk, 1)) 578 mask |= EPOLLOUT | EPOLLWRNORM; 579 } 580 } else 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 583 if (urg_data & TCP_URG_VALID) 584 mask |= EPOLLPRI; 585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 586 /* Active TCP fastopen socket with defer_connect 587 * Return EPOLLOUT so application can call write() 588 * in order for kernel to generate SYN+data 589 */ 590 mask |= EPOLLOUT | EPOLLWRNORM; 591 } 592 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 593 smp_rmb(); 594 if (READ_ONCE(sk->sk_err) || 595 !skb_queue_empty_lockless(&sk->sk_error_queue)) 596 mask |= EPOLLERR; 597 598 return mask; 599 } 600 EXPORT_SYMBOL(tcp_poll); 601 602 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 int answ; 606 bool slow; 607 608 switch (cmd) { 609 case SIOCINQ: 610 if (sk->sk_state == TCP_LISTEN) 611 return -EINVAL; 612 613 slow = lock_sock_fast(sk); 614 answ = tcp_inq(sk); 615 unlock_sock_fast(sk, slow); 616 break; 617 case SIOCATMARK: 618 answ = READ_ONCE(tp->urg_data) && 619 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 620 break; 621 case SIOCOUTQ: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 629 break; 630 case SIOCOUTQNSD: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - 638 READ_ONCE(tp->snd_nxt); 639 break; 640 default: 641 return -ENOIOCTLCMD; 642 } 643 644 return put_user(answ, (int __user *)arg); 645 } 646 EXPORT_SYMBOL(tcp_ioctl); 647 648 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 649 { 650 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 651 tp->pushed_seq = tp->write_seq; 652 } 653 654 static inline bool forced_push(const struct tcp_sock *tp) 655 { 656 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 657 } 658 659 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 660 { 661 struct tcp_sock *tp = tcp_sk(sk); 662 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 663 664 tcb->seq = tcb->end_seq = tp->write_seq; 665 tcb->tcp_flags = TCPHDR_ACK; 666 __skb_header_release(skb); 667 tcp_add_write_queue_tail(sk, skb); 668 sk_wmem_queued_add(sk, skb->truesize); 669 sk_mem_charge(sk, skb->truesize); 670 if (tp->nonagle & TCP_NAGLE_PUSH) 671 tp->nonagle &= ~TCP_NAGLE_PUSH; 672 673 tcp_slow_start_after_idle_check(sk); 674 } 675 676 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 677 { 678 if (flags & MSG_OOB) 679 tp->snd_up = tp->write_seq; 680 } 681 682 /* If a not yet filled skb is pushed, do not send it if 683 * we have data packets in Qdisc or NIC queues : 684 * Because TX completion will happen shortly, it gives a chance 685 * to coalesce future sendmsg() payload into this skb, without 686 * need for a timer, and with no latency trade off. 687 * As packets containing data payload have a bigger truesize 688 * than pure acks (dataless) packets, the last checks prevent 689 * autocorking if we only have an ACK in Qdisc/NIC queues, 690 * or if TX completion was delayed after we processed ACK packet. 691 */ 692 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 693 int size_goal) 694 { 695 return skb->len < size_goal && 696 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 697 !tcp_rtx_queue_empty(sk) && 698 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 699 tcp_skb_can_collapse_to(skb); 700 } 701 702 void tcp_push(struct sock *sk, int flags, int mss_now, 703 int nonagle, int size_goal) 704 { 705 struct tcp_sock *tp = tcp_sk(sk); 706 struct sk_buff *skb; 707 708 skb = tcp_write_queue_tail(sk); 709 if (!skb) 710 return; 711 if (!(flags & MSG_MORE) || forced_push(tp)) 712 tcp_mark_push(tp, skb); 713 714 tcp_mark_urg(tp, flags); 715 716 if (tcp_should_autocork(sk, skb, size_goal)) { 717 718 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 719 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 721 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 722 } 723 /* It is possible TX completion already happened 724 * before we set TSQ_THROTTLED. 725 */ 726 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 727 return; 728 } 729 730 if (flags & MSG_MORE) 731 nonagle = TCP_NAGLE_CORK; 732 733 __tcp_push_pending_frames(sk, mss_now, nonagle); 734 } 735 736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 737 unsigned int offset, size_t len) 738 { 739 struct tcp_splice_state *tss = rd_desc->arg.data; 740 int ret; 741 742 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 743 min(rd_desc->count, len), tss->flags); 744 if (ret > 0) 745 rd_desc->count -= ret; 746 return ret; 747 } 748 749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 750 { 751 /* Store TCP splice context information in read_descriptor_t. */ 752 read_descriptor_t rd_desc = { 753 .arg.data = tss, 754 .count = tss->len, 755 }; 756 757 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 758 } 759 760 /** 761 * tcp_splice_read - splice data from TCP socket to a pipe 762 * @sock: socket to splice from 763 * @ppos: position (not valid) 764 * @pipe: pipe to splice to 765 * @len: number of bytes to splice 766 * @flags: splice modifier flags 767 * 768 * Description: 769 * Will read pages from given socket and fill them into a pipe. 770 * 771 **/ 772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 773 struct pipe_inode_info *pipe, size_t len, 774 unsigned int flags) 775 { 776 struct sock *sk = sock->sk; 777 struct tcp_splice_state tss = { 778 .pipe = pipe, 779 .len = len, 780 .flags = flags, 781 }; 782 long timeo; 783 ssize_t spliced; 784 int ret; 785 786 sock_rps_record_flow(sk); 787 /* 788 * We can't seek on a socket input 789 */ 790 if (unlikely(*ppos)) 791 return -ESPIPE; 792 793 ret = spliced = 0; 794 795 lock_sock(sk); 796 797 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 798 while (tss.len) { 799 ret = __tcp_splice_read(sk, &tss); 800 if (ret < 0) 801 break; 802 else if (!ret) { 803 if (spliced) 804 break; 805 if (sock_flag(sk, SOCK_DONE)) 806 break; 807 if (sk->sk_err) { 808 ret = sock_error(sk); 809 break; 810 } 811 if (sk->sk_shutdown & RCV_SHUTDOWN) 812 break; 813 if (sk->sk_state == TCP_CLOSE) { 814 /* 815 * This occurs when user tries to read 816 * from never connected socket. 817 */ 818 ret = -ENOTCONN; 819 break; 820 } 821 if (!timeo) { 822 ret = -EAGAIN; 823 break; 824 } 825 /* if __tcp_splice_read() got nothing while we have 826 * an skb in receive queue, we do not want to loop. 827 * This might happen with URG data. 828 */ 829 if (!skb_queue_empty(&sk->sk_receive_queue)) 830 break; 831 sk_wait_data(sk, &timeo, NULL); 832 if (signal_pending(current)) { 833 ret = sock_intr_errno(timeo); 834 break; 835 } 836 continue; 837 } 838 tss.len -= ret; 839 spliced += ret; 840 841 if (!timeo) 842 break; 843 release_sock(sk); 844 lock_sock(sk); 845 846 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 847 (sk->sk_shutdown & RCV_SHUTDOWN) || 848 signal_pending(current)) 849 break; 850 } 851 852 release_sock(sk); 853 854 if (spliced) 855 return spliced; 856 857 return ret; 858 } 859 EXPORT_SYMBOL(tcp_splice_read); 860 861 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 862 bool force_schedule) 863 { 864 struct sk_buff *skb; 865 866 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 867 if (likely(skb)) { 868 bool mem_scheduled; 869 870 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 871 if (force_schedule) { 872 mem_scheduled = true; 873 sk_forced_mem_schedule(sk, skb->truesize); 874 } else { 875 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 876 } 877 if (likely(mem_scheduled)) { 878 skb_reserve(skb, MAX_TCP_HEADER); 879 skb->ip_summed = CHECKSUM_PARTIAL; 880 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 881 return skb; 882 } 883 __kfree_skb(skb); 884 } else { 885 sk->sk_prot->enter_memory_pressure(sk); 886 sk_stream_moderate_sndbuf(sk); 887 } 888 return NULL; 889 } 890 891 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 892 int large_allowed) 893 { 894 struct tcp_sock *tp = tcp_sk(sk); 895 u32 new_size_goal, size_goal; 896 897 if (!large_allowed) 898 return mss_now; 899 900 /* Note : tcp_tso_autosize() will eventually split this later */ 901 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 902 903 /* We try hard to avoid divides here */ 904 size_goal = tp->gso_segs * mss_now; 905 if (unlikely(new_size_goal < size_goal || 906 new_size_goal >= size_goal + mss_now)) { 907 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 908 sk->sk_gso_max_segs); 909 size_goal = tp->gso_segs * mss_now; 910 } 911 912 return max(size_goal, mss_now); 913 } 914 915 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 916 { 917 int mss_now; 918 919 mss_now = tcp_current_mss(sk); 920 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 921 922 return mss_now; 923 } 924 925 /* In some cases, both sendpage() and sendmsg() could have added 926 * an skb to the write queue, but failed adding payload on it. 927 * We need to remove it to consume less memory, but more 928 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 929 * users. 930 */ 931 void tcp_remove_empty_skb(struct sock *sk) 932 { 933 struct sk_buff *skb = tcp_write_queue_tail(sk); 934 935 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 936 tcp_unlink_write_queue(skb, sk); 937 if (tcp_write_queue_empty(sk)) 938 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 939 tcp_wmem_free_skb(sk, skb); 940 } 941 } 942 943 /* skb changing from pure zc to mixed, must charge zc */ 944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 945 { 946 if (unlikely(skb_zcopy_pure(skb))) { 947 u32 extra = skb->truesize - 948 SKB_TRUESIZE(skb_end_offset(skb)); 949 950 if (!sk_wmem_schedule(sk, extra)) 951 return -ENOMEM; 952 953 sk_mem_charge(sk, extra); 954 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 955 } 956 return 0; 957 } 958 959 960 static int tcp_wmem_schedule(struct sock *sk, int copy) 961 { 962 int left; 963 964 if (likely(sk_wmem_schedule(sk, copy))) 965 return copy; 966 967 /* We could be in trouble if we have nothing queued. 968 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 969 * to guarantee some progress. 970 */ 971 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 972 if (left > 0) 973 sk_forced_mem_schedule(sk, min(left, copy)); 974 return min(copy, sk->sk_forward_alloc); 975 } 976 977 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 978 size_t size, int flags) 979 { 980 struct bio_vec bvec; 981 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, }; 982 983 if (!(sk->sk_route_caps & NETIF_F_SG)) 984 return sock_no_sendpage_locked(sk, page, offset, size, flags); 985 986 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 987 988 bvec_set_page(&bvec, page, size, offset); 989 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 990 991 if (flags & MSG_SENDPAGE_NOTLAST) 992 msg.msg_flags |= MSG_MORE; 993 994 return tcp_sendmsg_locked(sk, &msg, size); 995 } 996 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 997 998 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 999 size_t size, int flags) 1000 { 1001 int ret; 1002 1003 lock_sock(sk); 1004 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1005 release_sock(sk); 1006 1007 return ret; 1008 } 1009 EXPORT_SYMBOL(tcp_sendpage); 1010 1011 void tcp_free_fastopen_req(struct tcp_sock *tp) 1012 { 1013 if (tp->fastopen_req) { 1014 kfree(tp->fastopen_req); 1015 tp->fastopen_req = NULL; 1016 } 1017 } 1018 1019 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1020 size_t size, struct ubuf_info *uarg) 1021 { 1022 struct tcp_sock *tp = tcp_sk(sk); 1023 struct inet_sock *inet = inet_sk(sk); 1024 struct sockaddr *uaddr = msg->msg_name; 1025 int err, flags; 1026 1027 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1028 TFO_CLIENT_ENABLE) || 1029 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1030 uaddr->sa_family == AF_UNSPEC)) 1031 return -EOPNOTSUPP; 1032 if (tp->fastopen_req) 1033 return -EALREADY; /* Another Fast Open is in progress */ 1034 1035 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1036 sk->sk_allocation); 1037 if (unlikely(!tp->fastopen_req)) 1038 return -ENOBUFS; 1039 tp->fastopen_req->data = msg; 1040 tp->fastopen_req->size = size; 1041 tp->fastopen_req->uarg = uarg; 1042 1043 if (inet->defer_connect) { 1044 err = tcp_connect(sk); 1045 /* Same failure procedure as in tcp_v4/6_connect */ 1046 if (err) { 1047 tcp_set_state(sk, TCP_CLOSE); 1048 inet->inet_dport = 0; 1049 sk->sk_route_caps = 0; 1050 } 1051 } 1052 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1053 err = __inet_stream_connect(sk->sk_socket, uaddr, 1054 msg->msg_namelen, flags, 1); 1055 /* fastopen_req could already be freed in __inet_stream_connect 1056 * if the connection times out or gets rst 1057 */ 1058 if (tp->fastopen_req) { 1059 *copied = tp->fastopen_req->copied; 1060 tcp_free_fastopen_req(tp); 1061 inet->defer_connect = 0; 1062 } 1063 return err; 1064 } 1065 1066 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 struct ubuf_info *uarg = NULL; 1070 struct sk_buff *skb; 1071 struct sockcm_cookie sockc; 1072 int flags, err, copied = 0; 1073 int mss_now = 0, size_goal, copied_syn = 0; 1074 int process_backlog = 0; 1075 int zc = 0; 1076 long timeo; 1077 1078 flags = msg->msg_flags; 1079 1080 if ((flags & MSG_ZEROCOPY) && size) { 1081 if (msg->msg_ubuf) { 1082 uarg = msg->msg_ubuf; 1083 if (sk->sk_route_caps & NETIF_F_SG) 1084 zc = MSG_ZEROCOPY; 1085 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1086 skb = tcp_write_queue_tail(sk); 1087 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1088 if (!uarg) { 1089 err = -ENOBUFS; 1090 goto out_err; 1091 } 1092 if (sk->sk_route_caps & NETIF_F_SG) 1093 zc = MSG_ZEROCOPY; 1094 else 1095 uarg_to_msgzc(uarg)->zerocopy = 0; 1096 } 1097 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1098 if (sk->sk_route_caps & NETIF_F_SG) 1099 zc = MSG_SPLICE_PAGES; 1100 } 1101 1102 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1103 !tp->repair) { 1104 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1105 if (err == -EINPROGRESS && copied_syn > 0) 1106 goto out; 1107 else if (err) 1108 goto out_err; 1109 } 1110 1111 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1112 1113 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1114 1115 /* Wait for a connection to finish. One exception is TCP Fast Open 1116 * (passive side) where data is allowed to be sent before a connection 1117 * is fully established. 1118 */ 1119 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1120 !tcp_passive_fastopen(sk)) { 1121 err = sk_stream_wait_connect(sk, &timeo); 1122 if (err != 0) 1123 goto do_error; 1124 } 1125 1126 if (unlikely(tp->repair)) { 1127 if (tp->repair_queue == TCP_RECV_QUEUE) { 1128 copied = tcp_send_rcvq(sk, msg, size); 1129 goto out_nopush; 1130 } 1131 1132 err = -EINVAL; 1133 if (tp->repair_queue == TCP_NO_QUEUE) 1134 goto out_err; 1135 1136 /* 'common' sending to sendq */ 1137 } 1138 1139 sockcm_init(&sockc, sk); 1140 if (msg->msg_controllen) { 1141 err = sock_cmsg_send(sk, msg, &sockc); 1142 if (unlikely(err)) { 1143 err = -EINVAL; 1144 goto out_err; 1145 } 1146 } 1147 1148 /* This should be in poll */ 1149 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1150 1151 /* Ok commence sending. */ 1152 copied = 0; 1153 1154 restart: 1155 mss_now = tcp_send_mss(sk, &size_goal, flags); 1156 1157 err = -EPIPE; 1158 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1159 goto do_error; 1160 1161 while (msg_data_left(msg)) { 1162 ssize_t copy = 0; 1163 1164 skb = tcp_write_queue_tail(sk); 1165 if (skb) 1166 copy = size_goal - skb->len; 1167 1168 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1169 bool first_skb; 1170 1171 new_segment: 1172 if (!sk_stream_memory_free(sk)) 1173 goto wait_for_space; 1174 1175 if (unlikely(process_backlog >= 16)) { 1176 process_backlog = 0; 1177 if (sk_flush_backlog(sk)) 1178 goto restart; 1179 } 1180 first_skb = tcp_rtx_and_write_queues_empty(sk); 1181 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1182 first_skb); 1183 if (!skb) 1184 goto wait_for_space; 1185 1186 process_backlog++; 1187 1188 tcp_skb_entail(sk, skb); 1189 copy = size_goal; 1190 1191 /* All packets are restored as if they have 1192 * already been sent. skb_mstamp_ns isn't set to 1193 * avoid wrong rtt estimation. 1194 */ 1195 if (tp->repair) 1196 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1197 } 1198 1199 /* Try to append data to the end of skb. */ 1200 if (copy > msg_data_left(msg)) 1201 copy = msg_data_left(msg); 1202 1203 if (zc == 0) { 1204 bool merge = true; 1205 int i = skb_shinfo(skb)->nr_frags; 1206 struct page_frag *pfrag = sk_page_frag(sk); 1207 1208 if (!sk_page_frag_refill(sk, pfrag)) 1209 goto wait_for_space; 1210 1211 if (!skb_can_coalesce(skb, i, pfrag->page, 1212 pfrag->offset)) { 1213 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1214 tcp_mark_push(tp, skb); 1215 goto new_segment; 1216 } 1217 merge = false; 1218 } 1219 1220 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1221 1222 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1223 if (tcp_downgrade_zcopy_pure(sk, skb)) 1224 goto wait_for_space; 1225 skb_zcopy_downgrade_managed(skb); 1226 } 1227 1228 copy = tcp_wmem_schedule(sk, copy); 1229 if (!copy) 1230 goto wait_for_space; 1231 1232 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1233 pfrag->page, 1234 pfrag->offset, 1235 copy); 1236 if (err) 1237 goto do_error; 1238 1239 /* Update the skb. */ 1240 if (merge) { 1241 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1242 } else { 1243 skb_fill_page_desc(skb, i, pfrag->page, 1244 pfrag->offset, copy); 1245 page_ref_inc(pfrag->page); 1246 } 1247 pfrag->offset += copy; 1248 } else if (zc == MSG_ZEROCOPY) { 1249 /* First append to a fragless skb builds initial 1250 * pure zerocopy skb 1251 */ 1252 if (!skb->len) 1253 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1254 1255 if (!skb_zcopy_pure(skb)) { 1256 copy = tcp_wmem_schedule(sk, copy); 1257 if (!copy) 1258 goto wait_for_space; 1259 } 1260 1261 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1262 if (err == -EMSGSIZE || err == -EEXIST) { 1263 tcp_mark_push(tp, skb); 1264 goto new_segment; 1265 } 1266 if (err < 0) 1267 goto do_error; 1268 copy = err; 1269 } else if (zc == MSG_SPLICE_PAGES) { 1270 /* Splice in data if we can; copy if we can't. */ 1271 if (tcp_downgrade_zcopy_pure(sk, skb)) 1272 goto wait_for_space; 1273 copy = tcp_wmem_schedule(sk, copy); 1274 if (!copy) 1275 goto wait_for_space; 1276 1277 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1278 sk->sk_allocation); 1279 if (err < 0) { 1280 if (err == -EMSGSIZE) { 1281 tcp_mark_push(tp, skb); 1282 goto new_segment; 1283 } 1284 goto do_error; 1285 } 1286 copy = err; 1287 1288 if (!(flags & MSG_NO_SHARED_FRAGS)) 1289 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1290 1291 sk_wmem_queued_add(sk, copy); 1292 sk_mem_charge(sk, copy); 1293 } 1294 1295 if (!copied) 1296 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1297 1298 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1299 TCP_SKB_CB(skb)->end_seq += copy; 1300 tcp_skb_pcount_set(skb, 0); 1301 1302 copied += copy; 1303 if (!msg_data_left(msg)) { 1304 if (unlikely(flags & MSG_EOR)) 1305 TCP_SKB_CB(skb)->eor = 1; 1306 goto out; 1307 } 1308 1309 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1310 continue; 1311 1312 if (forced_push(tp)) { 1313 tcp_mark_push(tp, skb); 1314 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1315 } else if (skb == tcp_send_head(sk)) 1316 tcp_push_one(sk, mss_now); 1317 continue; 1318 1319 wait_for_space: 1320 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1321 if (copied) 1322 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1323 TCP_NAGLE_PUSH, size_goal); 1324 1325 err = sk_stream_wait_memory(sk, &timeo); 1326 if (err != 0) 1327 goto do_error; 1328 1329 mss_now = tcp_send_mss(sk, &size_goal, flags); 1330 } 1331 1332 out: 1333 if (copied) { 1334 tcp_tx_timestamp(sk, sockc.tsflags); 1335 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1336 } 1337 out_nopush: 1338 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1339 if (uarg && !msg->msg_ubuf) 1340 net_zcopy_put(uarg); 1341 return copied + copied_syn; 1342 1343 do_error: 1344 tcp_remove_empty_skb(sk); 1345 1346 if (copied + copied_syn) 1347 goto out; 1348 out_err: 1349 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1350 if (uarg && !msg->msg_ubuf) 1351 net_zcopy_put_abort(uarg, true); 1352 err = sk_stream_error(sk, flags, err); 1353 /* make sure we wake any epoll edge trigger waiter */ 1354 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1355 sk->sk_write_space(sk); 1356 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1357 } 1358 return err; 1359 } 1360 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1361 1362 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1363 { 1364 int ret; 1365 1366 lock_sock(sk); 1367 ret = tcp_sendmsg_locked(sk, msg, size); 1368 release_sock(sk); 1369 1370 return ret; 1371 } 1372 EXPORT_SYMBOL(tcp_sendmsg); 1373 1374 /* 1375 * Handle reading urgent data. BSD has very simple semantics for 1376 * this, no blocking and very strange errors 8) 1377 */ 1378 1379 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1380 { 1381 struct tcp_sock *tp = tcp_sk(sk); 1382 1383 /* No URG data to read. */ 1384 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1385 tp->urg_data == TCP_URG_READ) 1386 return -EINVAL; /* Yes this is right ! */ 1387 1388 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1389 return -ENOTCONN; 1390 1391 if (tp->urg_data & TCP_URG_VALID) { 1392 int err = 0; 1393 char c = tp->urg_data; 1394 1395 if (!(flags & MSG_PEEK)) 1396 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1397 1398 /* Read urgent data. */ 1399 msg->msg_flags |= MSG_OOB; 1400 1401 if (len > 0) { 1402 if (!(flags & MSG_TRUNC)) 1403 err = memcpy_to_msg(msg, &c, 1); 1404 len = 1; 1405 } else 1406 msg->msg_flags |= MSG_TRUNC; 1407 1408 return err ? -EFAULT : len; 1409 } 1410 1411 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1412 return 0; 1413 1414 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1415 * the available implementations agree in this case: 1416 * this call should never block, independent of the 1417 * blocking state of the socket. 1418 * Mike <pall@rz.uni-karlsruhe.de> 1419 */ 1420 return -EAGAIN; 1421 } 1422 1423 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1424 { 1425 struct sk_buff *skb; 1426 int copied = 0, err = 0; 1427 1428 /* XXX -- need to support SO_PEEK_OFF */ 1429 1430 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1431 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1432 if (err) 1433 return err; 1434 copied += skb->len; 1435 } 1436 1437 skb_queue_walk(&sk->sk_write_queue, skb) { 1438 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1439 if (err) 1440 break; 1441 1442 copied += skb->len; 1443 } 1444 1445 return err ?: copied; 1446 } 1447 1448 /* Clean up the receive buffer for full frames taken by the user, 1449 * then send an ACK if necessary. COPIED is the number of bytes 1450 * tcp_recvmsg has given to the user so far, it speeds up the 1451 * calculation of whether or not we must ACK for the sake of 1452 * a window update. 1453 */ 1454 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1455 { 1456 struct tcp_sock *tp = tcp_sk(sk); 1457 bool time_to_ack = false; 1458 1459 if (inet_csk_ack_scheduled(sk)) { 1460 const struct inet_connection_sock *icsk = inet_csk(sk); 1461 1462 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1463 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1464 /* 1465 * If this read emptied read buffer, we send ACK, if 1466 * connection is not bidirectional, user drained 1467 * receive buffer and there was a small segment 1468 * in queue. 1469 */ 1470 (copied > 0 && 1471 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1472 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1473 !inet_csk_in_pingpong_mode(sk))) && 1474 !atomic_read(&sk->sk_rmem_alloc))) 1475 time_to_ack = true; 1476 } 1477 1478 /* We send an ACK if we can now advertise a non-zero window 1479 * which has been raised "significantly". 1480 * 1481 * Even if window raised up to infinity, do not send window open ACK 1482 * in states, where we will not receive more. It is useless. 1483 */ 1484 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1485 __u32 rcv_window_now = tcp_receive_window(tp); 1486 1487 /* Optimize, __tcp_select_window() is not cheap. */ 1488 if (2*rcv_window_now <= tp->window_clamp) { 1489 __u32 new_window = __tcp_select_window(sk); 1490 1491 /* Send ACK now, if this read freed lots of space 1492 * in our buffer. Certainly, new_window is new window. 1493 * We can advertise it now, if it is not less than current one. 1494 * "Lots" means "at least twice" here. 1495 */ 1496 if (new_window && new_window >= 2 * rcv_window_now) 1497 time_to_ack = true; 1498 } 1499 } 1500 if (time_to_ack) 1501 tcp_send_ack(sk); 1502 } 1503 1504 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1505 { 1506 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1507 struct tcp_sock *tp = tcp_sk(sk); 1508 1509 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1510 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1511 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1512 __tcp_cleanup_rbuf(sk, copied); 1513 } 1514 1515 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1516 { 1517 __skb_unlink(skb, &sk->sk_receive_queue); 1518 if (likely(skb->destructor == sock_rfree)) { 1519 sock_rfree(skb); 1520 skb->destructor = NULL; 1521 skb->sk = NULL; 1522 return skb_attempt_defer_free(skb); 1523 } 1524 __kfree_skb(skb); 1525 } 1526 1527 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1528 { 1529 struct sk_buff *skb; 1530 u32 offset; 1531 1532 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1533 offset = seq - TCP_SKB_CB(skb)->seq; 1534 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1535 pr_err_once("%s: found a SYN, please report !\n", __func__); 1536 offset--; 1537 } 1538 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1539 *off = offset; 1540 return skb; 1541 } 1542 /* This looks weird, but this can happen if TCP collapsing 1543 * splitted a fat GRO packet, while we released socket lock 1544 * in skb_splice_bits() 1545 */ 1546 tcp_eat_recv_skb(sk, skb); 1547 } 1548 return NULL; 1549 } 1550 EXPORT_SYMBOL(tcp_recv_skb); 1551 1552 /* 1553 * This routine provides an alternative to tcp_recvmsg() for routines 1554 * that would like to handle copying from skbuffs directly in 'sendfile' 1555 * fashion. 1556 * Note: 1557 * - It is assumed that the socket was locked by the caller. 1558 * - The routine does not block. 1559 * - At present, there is no support for reading OOB data 1560 * or for 'peeking' the socket using this routine 1561 * (although both would be easy to implement). 1562 */ 1563 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1564 sk_read_actor_t recv_actor) 1565 { 1566 struct sk_buff *skb; 1567 struct tcp_sock *tp = tcp_sk(sk); 1568 u32 seq = tp->copied_seq; 1569 u32 offset; 1570 int copied = 0; 1571 1572 if (sk->sk_state == TCP_LISTEN) 1573 return -ENOTCONN; 1574 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1575 if (offset < skb->len) { 1576 int used; 1577 size_t len; 1578 1579 len = skb->len - offset; 1580 /* Stop reading if we hit a patch of urgent data */ 1581 if (unlikely(tp->urg_data)) { 1582 u32 urg_offset = tp->urg_seq - seq; 1583 if (urg_offset < len) 1584 len = urg_offset; 1585 if (!len) 1586 break; 1587 } 1588 used = recv_actor(desc, skb, offset, len); 1589 if (used <= 0) { 1590 if (!copied) 1591 copied = used; 1592 break; 1593 } 1594 if (WARN_ON_ONCE(used > len)) 1595 used = len; 1596 seq += used; 1597 copied += used; 1598 offset += used; 1599 1600 /* If recv_actor drops the lock (e.g. TCP splice 1601 * receive) the skb pointer might be invalid when 1602 * getting here: tcp_collapse might have deleted it 1603 * while aggregating skbs from the socket queue. 1604 */ 1605 skb = tcp_recv_skb(sk, seq - 1, &offset); 1606 if (!skb) 1607 break; 1608 /* TCP coalescing might have appended data to the skb. 1609 * Try to splice more frags 1610 */ 1611 if (offset + 1 != skb->len) 1612 continue; 1613 } 1614 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1615 tcp_eat_recv_skb(sk, skb); 1616 ++seq; 1617 break; 1618 } 1619 tcp_eat_recv_skb(sk, skb); 1620 if (!desc->count) 1621 break; 1622 WRITE_ONCE(tp->copied_seq, seq); 1623 } 1624 WRITE_ONCE(tp->copied_seq, seq); 1625 1626 tcp_rcv_space_adjust(sk); 1627 1628 /* Clean up data we have read: This will do ACK frames. */ 1629 if (copied > 0) { 1630 tcp_recv_skb(sk, seq, &offset); 1631 tcp_cleanup_rbuf(sk, copied); 1632 } 1633 return copied; 1634 } 1635 EXPORT_SYMBOL(tcp_read_sock); 1636 1637 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1638 { 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 u32 seq = tp->copied_seq; 1641 struct sk_buff *skb; 1642 int copied = 0; 1643 u32 offset; 1644 1645 if (sk->sk_state == TCP_LISTEN) 1646 return -ENOTCONN; 1647 1648 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1649 u8 tcp_flags; 1650 int used; 1651 1652 __skb_unlink(skb, &sk->sk_receive_queue); 1653 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1654 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1655 used = recv_actor(sk, skb); 1656 if (used < 0) { 1657 if (!copied) 1658 copied = used; 1659 break; 1660 } 1661 seq += used; 1662 copied += used; 1663 1664 if (tcp_flags & TCPHDR_FIN) { 1665 ++seq; 1666 break; 1667 } 1668 } 1669 return copied; 1670 } 1671 EXPORT_SYMBOL(tcp_read_skb); 1672 1673 void tcp_read_done(struct sock *sk, size_t len) 1674 { 1675 struct tcp_sock *tp = tcp_sk(sk); 1676 u32 seq = tp->copied_seq; 1677 struct sk_buff *skb; 1678 size_t left; 1679 u32 offset; 1680 1681 if (sk->sk_state == TCP_LISTEN) 1682 return; 1683 1684 left = len; 1685 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1686 int used; 1687 1688 used = min_t(size_t, skb->len - offset, left); 1689 seq += used; 1690 left -= used; 1691 1692 if (skb->len > offset + used) 1693 break; 1694 1695 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1696 tcp_eat_recv_skb(sk, skb); 1697 ++seq; 1698 break; 1699 } 1700 tcp_eat_recv_skb(sk, skb); 1701 } 1702 WRITE_ONCE(tp->copied_seq, seq); 1703 1704 tcp_rcv_space_adjust(sk); 1705 1706 /* Clean up data we have read: This will do ACK frames. */ 1707 if (left != len) 1708 tcp_cleanup_rbuf(sk, len - left); 1709 } 1710 EXPORT_SYMBOL(tcp_read_done); 1711 1712 int tcp_peek_len(struct socket *sock) 1713 { 1714 return tcp_inq(sock->sk); 1715 } 1716 EXPORT_SYMBOL(tcp_peek_len); 1717 1718 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1719 int tcp_set_rcvlowat(struct sock *sk, int val) 1720 { 1721 int cap; 1722 1723 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1724 cap = sk->sk_rcvbuf >> 1; 1725 else 1726 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1727 val = min(val, cap); 1728 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1729 1730 /* Check if we need to signal EPOLLIN right now */ 1731 tcp_data_ready(sk); 1732 1733 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1734 return 0; 1735 1736 val <<= 1; 1737 if (val > sk->sk_rcvbuf) { 1738 WRITE_ONCE(sk->sk_rcvbuf, val); 1739 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1740 } 1741 return 0; 1742 } 1743 EXPORT_SYMBOL(tcp_set_rcvlowat); 1744 1745 void tcp_update_recv_tstamps(struct sk_buff *skb, 1746 struct scm_timestamping_internal *tss) 1747 { 1748 if (skb->tstamp) 1749 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1750 else 1751 tss->ts[0] = (struct timespec64) {0}; 1752 1753 if (skb_hwtstamps(skb)->hwtstamp) 1754 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1755 else 1756 tss->ts[2] = (struct timespec64) {0}; 1757 } 1758 1759 #ifdef CONFIG_MMU 1760 static const struct vm_operations_struct tcp_vm_ops = { 1761 }; 1762 1763 int tcp_mmap(struct file *file, struct socket *sock, 1764 struct vm_area_struct *vma) 1765 { 1766 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1767 return -EPERM; 1768 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1769 1770 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1771 vm_flags_set(vma, VM_MIXEDMAP); 1772 1773 vma->vm_ops = &tcp_vm_ops; 1774 return 0; 1775 } 1776 EXPORT_SYMBOL(tcp_mmap); 1777 1778 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1779 u32 *offset_frag) 1780 { 1781 skb_frag_t *frag; 1782 1783 if (unlikely(offset_skb >= skb->len)) 1784 return NULL; 1785 1786 offset_skb -= skb_headlen(skb); 1787 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1788 return NULL; 1789 1790 frag = skb_shinfo(skb)->frags; 1791 while (offset_skb) { 1792 if (skb_frag_size(frag) > offset_skb) { 1793 *offset_frag = offset_skb; 1794 return frag; 1795 } 1796 offset_skb -= skb_frag_size(frag); 1797 ++frag; 1798 } 1799 *offset_frag = 0; 1800 return frag; 1801 } 1802 1803 static bool can_map_frag(const skb_frag_t *frag) 1804 { 1805 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1806 } 1807 1808 static int find_next_mappable_frag(const skb_frag_t *frag, 1809 int remaining_in_skb) 1810 { 1811 int offset = 0; 1812 1813 if (likely(can_map_frag(frag))) 1814 return 0; 1815 1816 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1817 offset += skb_frag_size(frag); 1818 ++frag; 1819 } 1820 return offset; 1821 } 1822 1823 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1824 struct tcp_zerocopy_receive *zc, 1825 struct sk_buff *skb, u32 offset) 1826 { 1827 u32 frag_offset, partial_frag_remainder = 0; 1828 int mappable_offset; 1829 skb_frag_t *frag; 1830 1831 /* worst case: skip to next skb. try to improve on this case below */ 1832 zc->recv_skip_hint = skb->len - offset; 1833 1834 /* Find the frag containing this offset (and how far into that frag) */ 1835 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1836 if (!frag) 1837 return; 1838 1839 if (frag_offset) { 1840 struct skb_shared_info *info = skb_shinfo(skb); 1841 1842 /* We read part of the last frag, must recvmsg() rest of skb. */ 1843 if (frag == &info->frags[info->nr_frags - 1]) 1844 return; 1845 1846 /* Else, we must at least read the remainder in this frag. */ 1847 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1848 zc->recv_skip_hint -= partial_frag_remainder; 1849 ++frag; 1850 } 1851 1852 /* partial_frag_remainder: If part way through a frag, must read rest. 1853 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1854 * in partial_frag_remainder. 1855 */ 1856 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1857 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1858 } 1859 1860 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1861 int flags, struct scm_timestamping_internal *tss, 1862 int *cmsg_flags); 1863 static int receive_fallback_to_copy(struct sock *sk, 1864 struct tcp_zerocopy_receive *zc, int inq, 1865 struct scm_timestamping_internal *tss) 1866 { 1867 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1868 struct msghdr msg = {}; 1869 struct iovec iov; 1870 int err; 1871 1872 zc->length = 0; 1873 zc->recv_skip_hint = 0; 1874 1875 if (copy_address != zc->copybuf_address) 1876 return -EINVAL; 1877 1878 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1879 inq, &iov, &msg.msg_iter); 1880 if (err) 1881 return err; 1882 1883 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1884 tss, &zc->msg_flags); 1885 if (err < 0) 1886 return err; 1887 1888 zc->copybuf_len = err; 1889 if (likely(zc->copybuf_len)) { 1890 struct sk_buff *skb; 1891 u32 offset; 1892 1893 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1894 if (skb) 1895 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1896 } 1897 return 0; 1898 } 1899 1900 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1901 struct sk_buff *skb, u32 copylen, 1902 u32 *offset, u32 *seq) 1903 { 1904 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1905 struct msghdr msg = {}; 1906 struct iovec iov; 1907 int err; 1908 1909 if (copy_address != zc->copybuf_address) 1910 return -EINVAL; 1911 1912 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1913 copylen, &iov, &msg.msg_iter); 1914 if (err) 1915 return err; 1916 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1917 if (err) 1918 return err; 1919 zc->recv_skip_hint -= copylen; 1920 *offset += copylen; 1921 *seq += copylen; 1922 return (__s32)copylen; 1923 } 1924 1925 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1926 struct sock *sk, 1927 struct sk_buff *skb, 1928 u32 *seq, 1929 s32 copybuf_len, 1930 struct scm_timestamping_internal *tss) 1931 { 1932 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1933 1934 if (!copylen) 1935 return 0; 1936 /* skb is null if inq < PAGE_SIZE. */ 1937 if (skb) { 1938 offset = *seq - TCP_SKB_CB(skb)->seq; 1939 } else { 1940 skb = tcp_recv_skb(sk, *seq, &offset); 1941 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1942 tcp_update_recv_tstamps(skb, tss); 1943 zc->msg_flags |= TCP_CMSG_TS; 1944 } 1945 } 1946 1947 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1948 seq); 1949 return zc->copybuf_len < 0 ? 0 : copylen; 1950 } 1951 1952 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1953 struct page **pending_pages, 1954 unsigned long pages_remaining, 1955 unsigned long *address, 1956 u32 *length, 1957 u32 *seq, 1958 struct tcp_zerocopy_receive *zc, 1959 u32 total_bytes_to_map, 1960 int err) 1961 { 1962 /* At least one page did not map. Try zapping if we skipped earlier. */ 1963 if (err == -EBUSY && 1964 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1965 u32 maybe_zap_len; 1966 1967 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1968 *length + /* Mapped or pending */ 1969 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1970 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1971 err = 0; 1972 } 1973 1974 if (!err) { 1975 unsigned long leftover_pages = pages_remaining; 1976 int bytes_mapped; 1977 1978 /* We called zap_page_range_single, try to reinsert. */ 1979 err = vm_insert_pages(vma, *address, 1980 pending_pages, 1981 &pages_remaining); 1982 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1983 *seq += bytes_mapped; 1984 *address += bytes_mapped; 1985 } 1986 if (err) { 1987 /* Either we were unable to zap, OR we zapped, retried an 1988 * insert, and still had an issue. Either ways, pages_remaining 1989 * is the number of pages we were unable to map, and we unroll 1990 * some state we speculatively touched before. 1991 */ 1992 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1993 1994 *length -= bytes_not_mapped; 1995 zc->recv_skip_hint += bytes_not_mapped; 1996 } 1997 return err; 1998 } 1999 2000 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2001 struct page **pages, 2002 unsigned int pages_to_map, 2003 unsigned long *address, 2004 u32 *length, 2005 u32 *seq, 2006 struct tcp_zerocopy_receive *zc, 2007 u32 total_bytes_to_map) 2008 { 2009 unsigned long pages_remaining = pages_to_map; 2010 unsigned int pages_mapped; 2011 unsigned int bytes_mapped; 2012 int err; 2013 2014 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2015 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2016 bytes_mapped = PAGE_SIZE * pages_mapped; 2017 /* Even if vm_insert_pages fails, it may have partially succeeded in 2018 * mapping (some but not all of the pages). 2019 */ 2020 *seq += bytes_mapped; 2021 *address += bytes_mapped; 2022 2023 if (likely(!err)) 2024 return 0; 2025 2026 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2027 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2028 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2029 err); 2030 } 2031 2032 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2033 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2034 struct tcp_zerocopy_receive *zc, 2035 struct scm_timestamping_internal *tss) 2036 { 2037 unsigned long msg_control_addr; 2038 struct msghdr cmsg_dummy; 2039 2040 msg_control_addr = (unsigned long)zc->msg_control; 2041 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2042 cmsg_dummy.msg_controllen = 2043 (__kernel_size_t)zc->msg_controllen; 2044 cmsg_dummy.msg_flags = in_compat_syscall() 2045 ? MSG_CMSG_COMPAT : 0; 2046 cmsg_dummy.msg_control_is_user = true; 2047 zc->msg_flags = 0; 2048 if (zc->msg_control == msg_control_addr && 2049 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2050 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2051 zc->msg_control = (__u64) 2052 ((uintptr_t)cmsg_dummy.msg_control_user); 2053 zc->msg_controllen = 2054 (__u64)cmsg_dummy.msg_controllen; 2055 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2056 } 2057 } 2058 2059 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2060 static int tcp_zerocopy_receive(struct sock *sk, 2061 struct tcp_zerocopy_receive *zc, 2062 struct scm_timestamping_internal *tss) 2063 { 2064 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2065 unsigned long address = (unsigned long)zc->address; 2066 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2067 s32 copybuf_len = zc->copybuf_len; 2068 struct tcp_sock *tp = tcp_sk(sk); 2069 const skb_frag_t *frags = NULL; 2070 unsigned int pages_to_map = 0; 2071 struct vm_area_struct *vma; 2072 struct sk_buff *skb = NULL; 2073 u32 seq = tp->copied_seq; 2074 u32 total_bytes_to_map; 2075 int inq = tcp_inq(sk); 2076 int ret; 2077 2078 zc->copybuf_len = 0; 2079 zc->msg_flags = 0; 2080 2081 if (address & (PAGE_SIZE - 1) || address != zc->address) 2082 return -EINVAL; 2083 2084 if (sk->sk_state == TCP_LISTEN) 2085 return -ENOTCONN; 2086 2087 sock_rps_record_flow(sk); 2088 2089 if (inq && inq <= copybuf_len) 2090 return receive_fallback_to_copy(sk, zc, inq, tss); 2091 2092 if (inq < PAGE_SIZE) { 2093 zc->length = 0; 2094 zc->recv_skip_hint = inq; 2095 if (!inq && sock_flag(sk, SOCK_DONE)) 2096 return -EIO; 2097 return 0; 2098 } 2099 2100 mmap_read_lock(current->mm); 2101 2102 vma = vma_lookup(current->mm, address); 2103 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2104 mmap_read_unlock(current->mm); 2105 return -EINVAL; 2106 } 2107 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2108 avail_len = min_t(u32, vma_len, inq); 2109 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2110 if (total_bytes_to_map) { 2111 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2112 zap_page_range_single(vma, address, total_bytes_to_map, 2113 NULL); 2114 zc->length = total_bytes_to_map; 2115 zc->recv_skip_hint = 0; 2116 } else { 2117 zc->length = avail_len; 2118 zc->recv_skip_hint = avail_len; 2119 } 2120 ret = 0; 2121 while (length + PAGE_SIZE <= zc->length) { 2122 int mappable_offset; 2123 struct page *page; 2124 2125 if (zc->recv_skip_hint < PAGE_SIZE) { 2126 u32 offset_frag; 2127 2128 if (skb) { 2129 if (zc->recv_skip_hint > 0) 2130 break; 2131 skb = skb->next; 2132 offset = seq - TCP_SKB_CB(skb)->seq; 2133 } else { 2134 skb = tcp_recv_skb(sk, seq, &offset); 2135 } 2136 2137 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2138 tcp_update_recv_tstamps(skb, tss); 2139 zc->msg_flags |= TCP_CMSG_TS; 2140 } 2141 zc->recv_skip_hint = skb->len - offset; 2142 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2143 if (!frags || offset_frag) 2144 break; 2145 } 2146 2147 mappable_offset = find_next_mappable_frag(frags, 2148 zc->recv_skip_hint); 2149 if (mappable_offset) { 2150 zc->recv_skip_hint = mappable_offset; 2151 break; 2152 } 2153 page = skb_frag_page(frags); 2154 prefetchw(page); 2155 pages[pages_to_map++] = page; 2156 length += PAGE_SIZE; 2157 zc->recv_skip_hint -= PAGE_SIZE; 2158 frags++; 2159 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2160 zc->recv_skip_hint < PAGE_SIZE) { 2161 /* Either full batch, or we're about to go to next skb 2162 * (and we cannot unroll failed ops across skbs). 2163 */ 2164 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2165 pages_to_map, 2166 &address, &length, 2167 &seq, zc, 2168 total_bytes_to_map); 2169 if (ret) 2170 goto out; 2171 pages_to_map = 0; 2172 } 2173 } 2174 if (pages_to_map) { 2175 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2176 &address, &length, &seq, 2177 zc, total_bytes_to_map); 2178 } 2179 out: 2180 mmap_read_unlock(current->mm); 2181 /* Try to copy straggler data. */ 2182 if (!ret) 2183 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2184 2185 if (length + copylen) { 2186 WRITE_ONCE(tp->copied_seq, seq); 2187 tcp_rcv_space_adjust(sk); 2188 2189 /* Clean up data we have read: This will do ACK frames. */ 2190 tcp_recv_skb(sk, seq, &offset); 2191 tcp_cleanup_rbuf(sk, length + copylen); 2192 ret = 0; 2193 if (length == zc->length) 2194 zc->recv_skip_hint = 0; 2195 } else { 2196 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2197 ret = -EIO; 2198 } 2199 zc->length = length; 2200 return ret; 2201 } 2202 #endif 2203 2204 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2205 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2206 struct scm_timestamping_internal *tss) 2207 { 2208 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2209 bool has_timestamping = false; 2210 2211 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2212 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2213 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2214 if (new_tstamp) { 2215 struct __kernel_timespec kts = { 2216 .tv_sec = tss->ts[0].tv_sec, 2217 .tv_nsec = tss->ts[0].tv_nsec, 2218 }; 2219 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2220 sizeof(kts), &kts); 2221 } else { 2222 struct __kernel_old_timespec ts_old = { 2223 .tv_sec = tss->ts[0].tv_sec, 2224 .tv_nsec = tss->ts[0].tv_nsec, 2225 }; 2226 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2227 sizeof(ts_old), &ts_old); 2228 } 2229 } else { 2230 if (new_tstamp) { 2231 struct __kernel_sock_timeval stv = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_usec = tss->ts[0].tv_nsec / 1000, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2236 sizeof(stv), &stv); 2237 } else { 2238 struct __kernel_old_timeval tv = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_usec = tss->ts[0].tv_nsec / 1000, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2243 sizeof(tv), &tv); 2244 } 2245 } 2246 } 2247 2248 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2249 has_timestamping = true; 2250 else 2251 tss->ts[0] = (struct timespec64) {0}; 2252 } 2253 2254 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2255 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2256 has_timestamping = true; 2257 else 2258 tss->ts[2] = (struct timespec64) {0}; 2259 } 2260 2261 if (has_timestamping) { 2262 tss->ts[1] = (struct timespec64) {0}; 2263 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2264 put_cmsg_scm_timestamping64(msg, tss); 2265 else 2266 put_cmsg_scm_timestamping(msg, tss); 2267 } 2268 } 2269 2270 static int tcp_inq_hint(struct sock *sk) 2271 { 2272 const struct tcp_sock *tp = tcp_sk(sk); 2273 u32 copied_seq = READ_ONCE(tp->copied_seq); 2274 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2275 int inq; 2276 2277 inq = rcv_nxt - copied_seq; 2278 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2279 lock_sock(sk); 2280 inq = tp->rcv_nxt - tp->copied_seq; 2281 release_sock(sk); 2282 } 2283 /* After receiving a FIN, tell the user-space to continue reading 2284 * by returning a non-zero inq. 2285 */ 2286 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2287 inq = 1; 2288 return inq; 2289 } 2290 2291 /* 2292 * This routine copies from a sock struct into the user buffer. 2293 * 2294 * Technical note: in 2.3 we work on _locked_ socket, so that 2295 * tricks with *seq access order and skb->users are not required. 2296 * Probably, code can be easily improved even more. 2297 */ 2298 2299 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2300 int flags, struct scm_timestamping_internal *tss, 2301 int *cmsg_flags) 2302 { 2303 struct tcp_sock *tp = tcp_sk(sk); 2304 int copied = 0; 2305 u32 peek_seq; 2306 u32 *seq; 2307 unsigned long used; 2308 int err; 2309 int target; /* Read at least this many bytes */ 2310 long timeo; 2311 struct sk_buff *skb, *last; 2312 u32 urg_hole = 0; 2313 2314 err = -ENOTCONN; 2315 if (sk->sk_state == TCP_LISTEN) 2316 goto out; 2317 2318 if (tp->recvmsg_inq) { 2319 *cmsg_flags = TCP_CMSG_INQ; 2320 msg->msg_get_inq = 1; 2321 } 2322 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2323 2324 /* Urgent data needs to be handled specially. */ 2325 if (flags & MSG_OOB) 2326 goto recv_urg; 2327 2328 if (unlikely(tp->repair)) { 2329 err = -EPERM; 2330 if (!(flags & MSG_PEEK)) 2331 goto out; 2332 2333 if (tp->repair_queue == TCP_SEND_QUEUE) 2334 goto recv_sndq; 2335 2336 err = -EINVAL; 2337 if (tp->repair_queue == TCP_NO_QUEUE) 2338 goto out; 2339 2340 /* 'common' recv queue MSG_PEEK-ing */ 2341 } 2342 2343 seq = &tp->copied_seq; 2344 if (flags & MSG_PEEK) { 2345 peek_seq = tp->copied_seq; 2346 seq = &peek_seq; 2347 } 2348 2349 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2350 2351 do { 2352 u32 offset; 2353 2354 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2355 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2356 if (copied) 2357 break; 2358 if (signal_pending(current)) { 2359 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2360 break; 2361 } 2362 } 2363 2364 /* Next get a buffer. */ 2365 2366 last = skb_peek_tail(&sk->sk_receive_queue); 2367 skb_queue_walk(&sk->sk_receive_queue, skb) { 2368 last = skb; 2369 /* Now that we have two receive queues this 2370 * shouldn't happen. 2371 */ 2372 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2373 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2374 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2375 flags)) 2376 break; 2377 2378 offset = *seq - TCP_SKB_CB(skb)->seq; 2379 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2380 pr_err_once("%s: found a SYN, please report !\n", __func__); 2381 offset--; 2382 } 2383 if (offset < skb->len) 2384 goto found_ok_skb; 2385 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2386 goto found_fin_ok; 2387 WARN(!(flags & MSG_PEEK), 2388 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2389 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2390 } 2391 2392 /* Well, if we have backlog, try to process it now yet. */ 2393 2394 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2395 break; 2396 2397 if (copied) { 2398 if (!timeo || 2399 sk->sk_err || 2400 sk->sk_state == TCP_CLOSE || 2401 (sk->sk_shutdown & RCV_SHUTDOWN) || 2402 signal_pending(current)) 2403 break; 2404 } else { 2405 if (sock_flag(sk, SOCK_DONE)) 2406 break; 2407 2408 if (sk->sk_err) { 2409 copied = sock_error(sk); 2410 break; 2411 } 2412 2413 if (sk->sk_shutdown & RCV_SHUTDOWN) 2414 break; 2415 2416 if (sk->sk_state == TCP_CLOSE) { 2417 /* This occurs when user tries to read 2418 * from never connected socket. 2419 */ 2420 copied = -ENOTCONN; 2421 break; 2422 } 2423 2424 if (!timeo) { 2425 copied = -EAGAIN; 2426 break; 2427 } 2428 2429 if (signal_pending(current)) { 2430 copied = sock_intr_errno(timeo); 2431 break; 2432 } 2433 } 2434 2435 if (copied >= target) { 2436 /* Do not sleep, just process backlog. */ 2437 __sk_flush_backlog(sk); 2438 } else { 2439 tcp_cleanup_rbuf(sk, copied); 2440 sk_wait_data(sk, &timeo, last); 2441 } 2442 2443 if ((flags & MSG_PEEK) && 2444 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2445 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2446 current->comm, 2447 task_pid_nr(current)); 2448 peek_seq = tp->copied_seq; 2449 } 2450 continue; 2451 2452 found_ok_skb: 2453 /* Ok so how much can we use? */ 2454 used = skb->len - offset; 2455 if (len < used) 2456 used = len; 2457 2458 /* Do we have urgent data here? */ 2459 if (unlikely(tp->urg_data)) { 2460 u32 urg_offset = tp->urg_seq - *seq; 2461 if (urg_offset < used) { 2462 if (!urg_offset) { 2463 if (!sock_flag(sk, SOCK_URGINLINE)) { 2464 WRITE_ONCE(*seq, *seq + 1); 2465 urg_hole++; 2466 offset++; 2467 used--; 2468 if (!used) 2469 goto skip_copy; 2470 } 2471 } else 2472 used = urg_offset; 2473 } 2474 } 2475 2476 if (!(flags & MSG_TRUNC)) { 2477 err = skb_copy_datagram_msg(skb, offset, msg, used); 2478 if (err) { 2479 /* Exception. Bailout! */ 2480 if (!copied) 2481 copied = -EFAULT; 2482 break; 2483 } 2484 } 2485 2486 WRITE_ONCE(*seq, *seq + used); 2487 copied += used; 2488 len -= used; 2489 2490 tcp_rcv_space_adjust(sk); 2491 2492 skip_copy: 2493 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2494 WRITE_ONCE(tp->urg_data, 0); 2495 tcp_fast_path_check(sk); 2496 } 2497 2498 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2499 tcp_update_recv_tstamps(skb, tss); 2500 *cmsg_flags |= TCP_CMSG_TS; 2501 } 2502 2503 if (used + offset < skb->len) 2504 continue; 2505 2506 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2507 goto found_fin_ok; 2508 if (!(flags & MSG_PEEK)) 2509 tcp_eat_recv_skb(sk, skb); 2510 continue; 2511 2512 found_fin_ok: 2513 /* Process the FIN. */ 2514 WRITE_ONCE(*seq, *seq + 1); 2515 if (!(flags & MSG_PEEK)) 2516 tcp_eat_recv_skb(sk, skb); 2517 break; 2518 } while (len > 0); 2519 2520 /* According to UNIX98, msg_name/msg_namelen are ignored 2521 * on connected socket. I was just happy when found this 8) --ANK 2522 */ 2523 2524 /* Clean up data we have read: This will do ACK frames. */ 2525 tcp_cleanup_rbuf(sk, copied); 2526 return copied; 2527 2528 out: 2529 return err; 2530 2531 recv_urg: 2532 err = tcp_recv_urg(sk, msg, len, flags); 2533 goto out; 2534 2535 recv_sndq: 2536 err = tcp_peek_sndq(sk, msg, len); 2537 goto out; 2538 } 2539 2540 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2541 int *addr_len) 2542 { 2543 int cmsg_flags = 0, ret; 2544 struct scm_timestamping_internal tss; 2545 2546 if (unlikely(flags & MSG_ERRQUEUE)) 2547 return inet_recv_error(sk, msg, len, addr_len); 2548 2549 if (sk_can_busy_loop(sk) && 2550 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2551 sk->sk_state == TCP_ESTABLISHED) 2552 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2553 2554 lock_sock(sk); 2555 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2556 release_sock(sk); 2557 2558 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2559 if (cmsg_flags & TCP_CMSG_TS) 2560 tcp_recv_timestamp(msg, sk, &tss); 2561 if (msg->msg_get_inq) { 2562 msg->msg_inq = tcp_inq_hint(sk); 2563 if (cmsg_flags & TCP_CMSG_INQ) 2564 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2565 sizeof(msg->msg_inq), &msg->msg_inq); 2566 } 2567 } 2568 return ret; 2569 } 2570 EXPORT_SYMBOL(tcp_recvmsg); 2571 2572 void tcp_set_state(struct sock *sk, int state) 2573 { 2574 int oldstate = sk->sk_state; 2575 2576 /* We defined a new enum for TCP states that are exported in BPF 2577 * so as not force the internal TCP states to be frozen. The 2578 * following checks will detect if an internal state value ever 2579 * differs from the BPF value. If this ever happens, then we will 2580 * need to remap the internal value to the BPF value before calling 2581 * tcp_call_bpf_2arg. 2582 */ 2583 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2584 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2585 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2586 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2587 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2588 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2589 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2590 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2591 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2592 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2593 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2594 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2595 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2596 2597 /* bpf uapi header bpf.h defines an anonymous enum with values 2598 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2599 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2600 * But clang built vmlinux does not have this enum in DWARF 2601 * since clang removes the above code before generating IR/debuginfo. 2602 * Let us explicitly emit the type debuginfo to ensure the 2603 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2604 * regardless of which compiler is used. 2605 */ 2606 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2607 2608 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2609 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2610 2611 switch (state) { 2612 case TCP_ESTABLISHED: 2613 if (oldstate != TCP_ESTABLISHED) 2614 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2615 break; 2616 2617 case TCP_CLOSE: 2618 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2619 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2620 2621 sk->sk_prot->unhash(sk); 2622 if (inet_csk(sk)->icsk_bind_hash && 2623 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2624 inet_put_port(sk); 2625 fallthrough; 2626 default: 2627 if (oldstate == TCP_ESTABLISHED) 2628 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2629 } 2630 2631 /* Change state AFTER socket is unhashed to avoid closed 2632 * socket sitting in hash tables. 2633 */ 2634 inet_sk_state_store(sk, state); 2635 } 2636 EXPORT_SYMBOL_GPL(tcp_set_state); 2637 2638 /* 2639 * State processing on a close. This implements the state shift for 2640 * sending our FIN frame. Note that we only send a FIN for some 2641 * states. A shutdown() may have already sent the FIN, or we may be 2642 * closed. 2643 */ 2644 2645 static const unsigned char new_state[16] = { 2646 /* current state: new state: action: */ 2647 [0 /* (Invalid) */] = TCP_CLOSE, 2648 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2649 [TCP_SYN_SENT] = TCP_CLOSE, 2650 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2651 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2652 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2653 [TCP_TIME_WAIT] = TCP_CLOSE, 2654 [TCP_CLOSE] = TCP_CLOSE, 2655 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2656 [TCP_LAST_ACK] = TCP_LAST_ACK, 2657 [TCP_LISTEN] = TCP_CLOSE, 2658 [TCP_CLOSING] = TCP_CLOSING, 2659 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2660 }; 2661 2662 static int tcp_close_state(struct sock *sk) 2663 { 2664 int next = (int)new_state[sk->sk_state]; 2665 int ns = next & TCP_STATE_MASK; 2666 2667 tcp_set_state(sk, ns); 2668 2669 return next & TCP_ACTION_FIN; 2670 } 2671 2672 /* 2673 * Shutdown the sending side of a connection. Much like close except 2674 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2675 */ 2676 2677 void tcp_shutdown(struct sock *sk, int how) 2678 { 2679 /* We need to grab some memory, and put together a FIN, 2680 * and then put it into the queue to be sent. 2681 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2682 */ 2683 if (!(how & SEND_SHUTDOWN)) 2684 return; 2685 2686 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2687 if ((1 << sk->sk_state) & 2688 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2689 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2690 /* Clear out any half completed packets. FIN if needed. */ 2691 if (tcp_close_state(sk)) 2692 tcp_send_fin(sk); 2693 } 2694 } 2695 EXPORT_SYMBOL(tcp_shutdown); 2696 2697 int tcp_orphan_count_sum(void) 2698 { 2699 int i, total = 0; 2700 2701 for_each_possible_cpu(i) 2702 total += per_cpu(tcp_orphan_count, i); 2703 2704 return max(total, 0); 2705 } 2706 2707 static int tcp_orphan_cache; 2708 static struct timer_list tcp_orphan_timer; 2709 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2710 2711 static void tcp_orphan_update(struct timer_list *unused) 2712 { 2713 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2714 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2715 } 2716 2717 static bool tcp_too_many_orphans(int shift) 2718 { 2719 return READ_ONCE(tcp_orphan_cache) << shift > 2720 READ_ONCE(sysctl_tcp_max_orphans); 2721 } 2722 2723 bool tcp_check_oom(struct sock *sk, int shift) 2724 { 2725 bool too_many_orphans, out_of_socket_memory; 2726 2727 too_many_orphans = tcp_too_many_orphans(shift); 2728 out_of_socket_memory = tcp_out_of_memory(sk); 2729 2730 if (too_many_orphans) 2731 net_info_ratelimited("too many orphaned sockets\n"); 2732 if (out_of_socket_memory) 2733 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2734 return too_many_orphans || out_of_socket_memory; 2735 } 2736 2737 void __tcp_close(struct sock *sk, long timeout) 2738 { 2739 struct sk_buff *skb; 2740 int data_was_unread = 0; 2741 int state; 2742 2743 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2744 2745 if (sk->sk_state == TCP_LISTEN) { 2746 tcp_set_state(sk, TCP_CLOSE); 2747 2748 /* Special case. */ 2749 inet_csk_listen_stop(sk); 2750 2751 goto adjudge_to_death; 2752 } 2753 2754 /* We need to flush the recv. buffs. We do this only on the 2755 * descriptor close, not protocol-sourced closes, because the 2756 * reader process may not have drained the data yet! 2757 */ 2758 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2759 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2760 2761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2762 len--; 2763 data_was_unread += len; 2764 __kfree_skb(skb); 2765 } 2766 2767 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2768 if (sk->sk_state == TCP_CLOSE) 2769 goto adjudge_to_death; 2770 2771 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2772 * data was lost. To witness the awful effects of the old behavior of 2773 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2774 * GET in an FTP client, suspend the process, wait for the client to 2775 * advertise a zero window, then kill -9 the FTP client, wheee... 2776 * Note: timeout is always zero in such a case. 2777 */ 2778 if (unlikely(tcp_sk(sk)->repair)) { 2779 sk->sk_prot->disconnect(sk, 0); 2780 } else if (data_was_unread) { 2781 /* Unread data was tossed, zap the connection. */ 2782 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2783 tcp_set_state(sk, TCP_CLOSE); 2784 tcp_send_active_reset(sk, sk->sk_allocation); 2785 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2786 /* Check zero linger _after_ checking for unread data. */ 2787 sk->sk_prot->disconnect(sk, 0); 2788 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2789 } else if (tcp_close_state(sk)) { 2790 /* We FIN if the application ate all the data before 2791 * zapping the connection. 2792 */ 2793 2794 /* RED-PEN. Formally speaking, we have broken TCP state 2795 * machine. State transitions: 2796 * 2797 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2798 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2799 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2800 * 2801 * are legal only when FIN has been sent (i.e. in window), 2802 * rather than queued out of window. Purists blame. 2803 * 2804 * F.e. "RFC state" is ESTABLISHED, 2805 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2806 * 2807 * The visible declinations are that sometimes 2808 * we enter time-wait state, when it is not required really 2809 * (harmless), do not send active resets, when they are 2810 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2811 * they look as CLOSING or LAST_ACK for Linux) 2812 * Probably, I missed some more holelets. 2813 * --ANK 2814 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2815 * in a single packet! (May consider it later but will 2816 * probably need API support or TCP_CORK SYN-ACK until 2817 * data is written and socket is closed.) 2818 */ 2819 tcp_send_fin(sk); 2820 } 2821 2822 sk_stream_wait_close(sk, timeout); 2823 2824 adjudge_to_death: 2825 state = sk->sk_state; 2826 sock_hold(sk); 2827 sock_orphan(sk); 2828 2829 local_bh_disable(); 2830 bh_lock_sock(sk); 2831 /* remove backlog if any, without releasing ownership. */ 2832 __release_sock(sk); 2833 2834 this_cpu_inc(tcp_orphan_count); 2835 2836 /* Have we already been destroyed by a softirq or backlog? */ 2837 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2838 goto out; 2839 2840 /* This is a (useful) BSD violating of the RFC. There is a 2841 * problem with TCP as specified in that the other end could 2842 * keep a socket open forever with no application left this end. 2843 * We use a 1 minute timeout (about the same as BSD) then kill 2844 * our end. If they send after that then tough - BUT: long enough 2845 * that we won't make the old 4*rto = almost no time - whoops 2846 * reset mistake. 2847 * 2848 * Nope, it was not mistake. It is really desired behaviour 2849 * f.e. on http servers, when such sockets are useless, but 2850 * consume significant resources. Let's do it with special 2851 * linger2 option. --ANK 2852 */ 2853 2854 if (sk->sk_state == TCP_FIN_WAIT2) { 2855 struct tcp_sock *tp = tcp_sk(sk); 2856 if (tp->linger2 < 0) { 2857 tcp_set_state(sk, TCP_CLOSE); 2858 tcp_send_active_reset(sk, GFP_ATOMIC); 2859 __NET_INC_STATS(sock_net(sk), 2860 LINUX_MIB_TCPABORTONLINGER); 2861 } else { 2862 const int tmo = tcp_fin_time(sk); 2863 2864 if (tmo > TCP_TIMEWAIT_LEN) { 2865 inet_csk_reset_keepalive_timer(sk, 2866 tmo - TCP_TIMEWAIT_LEN); 2867 } else { 2868 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2869 goto out; 2870 } 2871 } 2872 } 2873 if (sk->sk_state != TCP_CLOSE) { 2874 if (tcp_check_oom(sk, 0)) { 2875 tcp_set_state(sk, TCP_CLOSE); 2876 tcp_send_active_reset(sk, GFP_ATOMIC); 2877 __NET_INC_STATS(sock_net(sk), 2878 LINUX_MIB_TCPABORTONMEMORY); 2879 } else if (!check_net(sock_net(sk))) { 2880 /* Not possible to send reset; just close */ 2881 tcp_set_state(sk, TCP_CLOSE); 2882 } 2883 } 2884 2885 if (sk->sk_state == TCP_CLOSE) { 2886 struct request_sock *req; 2887 2888 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2889 lockdep_sock_is_held(sk)); 2890 /* We could get here with a non-NULL req if the socket is 2891 * aborted (e.g., closed with unread data) before 3WHS 2892 * finishes. 2893 */ 2894 if (req) 2895 reqsk_fastopen_remove(sk, req, false); 2896 inet_csk_destroy_sock(sk); 2897 } 2898 /* Otherwise, socket is reprieved until protocol close. */ 2899 2900 out: 2901 bh_unlock_sock(sk); 2902 local_bh_enable(); 2903 } 2904 2905 void tcp_close(struct sock *sk, long timeout) 2906 { 2907 lock_sock(sk); 2908 __tcp_close(sk, timeout); 2909 release_sock(sk); 2910 sock_put(sk); 2911 } 2912 EXPORT_SYMBOL(tcp_close); 2913 2914 /* These states need RST on ABORT according to RFC793 */ 2915 2916 static inline bool tcp_need_reset(int state) 2917 { 2918 return (1 << state) & 2919 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2920 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2921 } 2922 2923 static void tcp_rtx_queue_purge(struct sock *sk) 2924 { 2925 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2926 2927 tcp_sk(sk)->highest_sack = NULL; 2928 while (p) { 2929 struct sk_buff *skb = rb_to_skb(p); 2930 2931 p = rb_next(p); 2932 /* Since we are deleting whole queue, no need to 2933 * list_del(&skb->tcp_tsorted_anchor) 2934 */ 2935 tcp_rtx_queue_unlink(skb, sk); 2936 tcp_wmem_free_skb(sk, skb); 2937 } 2938 } 2939 2940 void tcp_write_queue_purge(struct sock *sk) 2941 { 2942 struct sk_buff *skb; 2943 2944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2945 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2946 tcp_skb_tsorted_anchor_cleanup(skb); 2947 tcp_wmem_free_skb(sk, skb); 2948 } 2949 tcp_rtx_queue_purge(sk); 2950 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2951 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2952 tcp_sk(sk)->packets_out = 0; 2953 inet_csk(sk)->icsk_backoff = 0; 2954 } 2955 2956 int tcp_disconnect(struct sock *sk, int flags) 2957 { 2958 struct inet_sock *inet = inet_sk(sk); 2959 struct inet_connection_sock *icsk = inet_csk(sk); 2960 struct tcp_sock *tp = tcp_sk(sk); 2961 int old_state = sk->sk_state; 2962 u32 seq; 2963 2964 if (old_state != TCP_CLOSE) 2965 tcp_set_state(sk, TCP_CLOSE); 2966 2967 /* ABORT function of RFC793 */ 2968 if (old_state == TCP_LISTEN) { 2969 inet_csk_listen_stop(sk); 2970 } else if (unlikely(tp->repair)) { 2971 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2972 } else if (tcp_need_reset(old_state) || 2973 (tp->snd_nxt != tp->write_seq && 2974 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2975 /* The last check adjusts for discrepancy of Linux wrt. RFC 2976 * states 2977 */ 2978 tcp_send_active_reset(sk, gfp_any()); 2979 WRITE_ONCE(sk->sk_err, ECONNRESET); 2980 } else if (old_state == TCP_SYN_SENT) 2981 WRITE_ONCE(sk->sk_err, ECONNRESET); 2982 2983 tcp_clear_xmit_timers(sk); 2984 __skb_queue_purge(&sk->sk_receive_queue); 2985 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2986 WRITE_ONCE(tp->urg_data, 0); 2987 tcp_write_queue_purge(sk); 2988 tcp_fastopen_active_disable_ofo_check(sk); 2989 skb_rbtree_purge(&tp->out_of_order_queue); 2990 2991 inet->inet_dport = 0; 2992 2993 inet_bhash2_reset_saddr(sk); 2994 2995 WRITE_ONCE(sk->sk_shutdown, 0); 2996 sock_reset_flag(sk, SOCK_DONE); 2997 tp->srtt_us = 0; 2998 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2999 tp->rcv_rtt_last_tsecr = 0; 3000 3001 seq = tp->write_seq + tp->max_window + 2; 3002 if (!seq) 3003 seq = 1; 3004 WRITE_ONCE(tp->write_seq, seq); 3005 3006 icsk->icsk_backoff = 0; 3007 icsk->icsk_probes_out = 0; 3008 icsk->icsk_probes_tstamp = 0; 3009 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3010 icsk->icsk_rto_min = TCP_RTO_MIN; 3011 icsk->icsk_delack_max = TCP_DELACK_MAX; 3012 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3013 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3014 tp->snd_cwnd_cnt = 0; 3015 tp->is_cwnd_limited = 0; 3016 tp->max_packets_out = 0; 3017 tp->window_clamp = 0; 3018 tp->delivered = 0; 3019 tp->delivered_ce = 0; 3020 if (icsk->icsk_ca_ops->release) 3021 icsk->icsk_ca_ops->release(sk); 3022 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3023 icsk->icsk_ca_initialized = 0; 3024 tcp_set_ca_state(sk, TCP_CA_Open); 3025 tp->is_sack_reneg = 0; 3026 tcp_clear_retrans(tp); 3027 tp->total_retrans = 0; 3028 inet_csk_delack_init(sk); 3029 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3030 * issue in __tcp_select_window() 3031 */ 3032 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3033 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3034 __sk_dst_reset(sk); 3035 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3036 tcp_saved_syn_free(tp); 3037 tp->compressed_ack = 0; 3038 tp->segs_in = 0; 3039 tp->segs_out = 0; 3040 tp->bytes_sent = 0; 3041 tp->bytes_acked = 0; 3042 tp->bytes_received = 0; 3043 tp->bytes_retrans = 0; 3044 tp->data_segs_in = 0; 3045 tp->data_segs_out = 0; 3046 tp->duplicate_sack[0].start_seq = 0; 3047 tp->duplicate_sack[0].end_seq = 0; 3048 tp->dsack_dups = 0; 3049 tp->reord_seen = 0; 3050 tp->retrans_out = 0; 3051 tp->sacked_out = 0; 3052 tp->tlp_high_seq = 0; 3053 tp->last_oow_ack_time = 0; 3054 tp->plb_rehash = 0; 3055 /* There's a bubble in the pipe until at least the first ACK. */ 3056 tp->app_limited = ~0U; 3057 tp->rate_app_limited = 1; 3058 tp->rack.mstamp = 0; 3059 tp->rack.advanced = 0; 3060 tp->rack.reo_wnd_steps = 1; 3061 tp->rack.last_delivered = 0; 3062 tp->rack.reo_wnd_persist = 0; 3063 tp->rack.dsack_seen = 0; 3064 tp->syn_data_acked = 0; 3065 tp->rx_opt.saw_tstamp = 0; 3066 tp->rx_opt.dsack = 0; 3067 tp->rx_opt.num_sacks = 0; 3068 tp->rcv_ooopack = 0; 3069 3070 3071 /* Clean up fastopen related fields */ 3072 tcp_free_fastopen_req(tp); 3073 inet->defer_connect = 0; 3074 tp->fastopen_client_fail = 0; 3075 3076 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3077 3078 if (sk->sk_frag.page) { 3079 put_page(sk->sk_frag.page); 3080 sk->sk_frag.page = NULL; 3081 sk->sk_frag.offset = 0; 3082 } 3083 sk_error_report(sk); 3084 return 0; 3085 } 3086 EXPORT_SYMBOL(tcp_disconnect); 3087 3088 static inline bool tcp_can_repair_sock(const struct sock *sk) 3089 { 3090 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3091 (sk->sk_state != TCP_LISTEN); 3092 } 3093 3094 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3095 { 3096 struct tcp_repair_window opt; 3097 3098 if (!tp->repair) 3099 return -EPERM; 3100 3101 if (len != sizeof(opt)) 3102 return -EINVAL; 3103 3104 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3105 return -EFAULT; 3106 3107 if (opt.max_window < opt.snd_wnd) 3108 return -EINVAL; 3109 3110 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3111 return -EINVAL; 3112 3113 if (after(opt.rcv_wup, tp->rcv_nxt)) 3114 return -EINVAL; 3115 3116 tp->snd_wl1 = opt.snd_wl1; 3117 tp->snd_wnd = opt.snd_wnd; 3118 tp->max_window = opt.max_window; 3119 3120 tp->rcv_wnd = opt.rcv_wnd; 3121 tp->rcv_wup = opt.rcv_wup; 3122 3123 return 0; 3124 } 3125 3126 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3127 unsigned int len) 3128 { 3129 struct tcp_sock *tp = tcp_sk(sk); 3130 struct tcp_repair_opt opt; 3131 size_t offset = 0; 3132 3133 while (len >= sizeof(opt)) { 3134 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3135 return -EFAULT; 3136 3137 offset += sizeof(opt); 3138 len -= sizeof(opt); 3139 3140 switch (opt.opt_code) { 3141 case TCPOPT_MSS: 3142 tp->rx_opt.mss_clamp = opt.opt_val; 3143 tcp_mtup_init(sk); 3144 break; 3145 case TCPOPT_WINDOW: 3146 { 3147 u16 snd_wscale = opt.opt_val & 0xFFFF; 3148 u16 rcv_wscale = opt.opt_val >> 16; 3149 3150 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3151 return -EFBIG; 3152 3153 tp->rx_opt.snd_wscale = snd_wscale; 3154 tp->rx_opt.rcv_wscale = rcv_wscale; 3155 tp->rx_opt.wscale_ok = 1; 3156 } 3157 break; 3158 case TCPOPT_SACK_PERM: 3159 if (opt.opt_val != 0) 3160 return -EINVAL; 3161 3162 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3163 break; 3164 case TCPOPT_TIMESTAMP: 3165 if (opt.opt_val != 0) 3166 return -EINVAL; 3167 3168 tp->rx_opt.tstamp_ok = 1; 3169 break; 3170 } 3171 } 3172 3173 return 0; 3174 } 3175 3176 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3177 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3178 3179 static void tcp_enable_tx_delay(void) 3180 { 3181 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3182 static int __tcp_tx_delay_enabled = 0; 3183 3184 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3185 static_branch_enable(&tcp_tx_delay_enabled); 3186 pr_info("TCP_TX_DELAY enabled\n"); 3187 } 3188 } 3189 } 3190 3191 /* When set indicates to always queue non-full frames. Later the user clears 3192 * this option and we transmit any pending partial frames in the queue. This is 3193 * meant to be used alongside sendfile() to get properly filled frames when the 3194 * user (for example) must write out headers with a write() call first and then 3195 * use sendfile to send out the data parts. 3196 * 3197 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3198 * TCP_NODELAY. 3199 */ 3200 void __tcp_sock_set_cork(struct sock *sk, bool on) 3201 { 3202 struct tcp_sock *tp = tcp_sk(sk); 3203 3204 if (on) { 3205 tp->nonagle |= TCP_NAGLE_CORK; 3206 } else { 3207 tp->nonagle &= ~TCP_NAGLE_CORK; 3208 if (tp->nonagle & TCP_NAGLE_OFF) 3209 tp->nonagle |= TCP_NAGLE_PUSH; 3210 tcp_push_pending_frames(sk); 3211 } 3212 } 3213 3214 void tcp_sock_set_cork(struct sock *sk, bool on) 3215 { 3216 lock_sock(sk); 3217 __tcp_sock_set_cork(sk, on); 3218 release_sock(sk); 3219 } 3220 EXPORT_SYMBOL(tcp_sock_set_cork); 3221 3222 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3223 * remembered, but it is not activated until cork is cleared. 3224 * 3225 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3226 * even TCP_CORK for currently queued segments. 3227 */ 3228 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3229 { 3230 if (on) { 3231 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3232 tcp_push_pending_frames(sk); 3233 } else { 3234 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3235 } 3236 } 3237 3238 void tcp_sock_set_nodelay(struct sock *sk) 3239 { 3240 lock_sock(sk); 3241 __tcp_sock_set_nodelay(sk, true); 3242 release_sock(sk); 3243 } 3244 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3245 3246 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3247 { 3248 if (!val) { 3249 inet_csk_enter_pingpong_mode(sk); 3250 return; 3251 } 3252 3253 inet_csk_exit_pingpong_mode(sk); 3254 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3255 inet_csk_ack_scheduled(sk)) { 3256 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3257 tcp_cleanup_rbuf(sk, 1); 3258 if (!(val & 1)) 3259 inet_csk_enter_pingpong_mode(sk); 3260 } 3261 } 3262 3263 void tcp_sock_set_quickack(struct sock *sk, int val) 3264 { 3265 lock_sock(sk); 3266 __tcp_sock_set_quickack(sk, val); 3267 release_sock(sk); 3268 } 3269 EXPORT_SYMBOL(tcp_sock_set_quickack); 3270 3271 int tcp_sock_set_syncnt(struct sock *sk, int val) 3272 { 3273 if (val < 1 || val > MAX_TCP_SYNCNT) 3274 return -EINVAL; 3275 3276 lock_sock(sk); 3277 inet_csk(sk)->icsk_syn_retries = val; 3278 release_sock(sk); 3279 return 0; 3280 } 3281 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3282 3283 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3284 { 3285 lock_sock(sk); 3286 inet_csk(sk)->icsk_user_timeout = val; 3287 release_sock(sk); 3288 } 3289 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3290 3291 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3292 { 3293 struct tcp_sock *tp = tcp_sk(sk); 3294 3295 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3296 return -EINVAL; 3297 3298 tp->keepalive_time = val * HZ; 3299 if (sock_flag(sk, SOCK_KEEPOPEN) && 3300 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3301 u32 elapsed = keepalive_time_elapsed(tp); 3302 3303 if (tp->keepalive_time > elapsed) 3304 elapsed = tp->keepalive_time - elapsed; 3305 else 3306 elapsed = 0; 3307 inet_csk_reset_keepalive_timer(sk, elapsed); 3308 } 3309 3310 return 0; 3311 } 3312 3313 int tcp_sock_set_keepidle(struct sock *sk, int val) 3314 { 3315 int err; 3316 3317 lock_sock(sk); 3318 err = tcp_sock_set_keepidle_locked(sk, val); 3319 release_sock(sk); 3320 return err; 3321 } 3322 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3323 3324 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3325 { 3326 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3327 return -EINVAL; 3328 3329 lock_sock(sk); 3330 tcp_sk(sk)->keepalive_intvl = val * HZ; 3331 release_sock(sk); 3332 return 0; 3333 } 3334 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3335 3336 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3337 { 3338 if (val < 1 || val > MAX_TCP_KEEPCNT) 3339 return -EINVAL; 3340 3341 lock_sock(sk); 3342 tcp_sk(sk)->keepalive_probes = val; 3343 release_sock(sk); 3344 return 0; 3345 } 3346 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3347 3348 int tcp_set_window_clamp(struct sock *sk, int val) 3349 { 3350 struct tcp_sock *tp = tcp_sk(sk); 3351 3352 if (!val) { 3353 if (sk->sk_state != TCP_CLOSE) 3354 return -EINVAL; 3355 tp->window_clamp = 0; 3356 } else { 3357 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3358 SOCK_MIN_RCVBUF / 2 : val; 3359 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3360 } 3361 return 0; 3362 } 3363 3364 /* 3365 * Socket option code for TCP. 3366 */ 3367 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3368 sockptr_t optval, unsigned int optlen) 3369 { 3370 struct tcp_sock *tp = tcp_sk(sk); 3371 struct inet_connection_sock *icsk = inet_csk(sk); 3372 struct net *net = sock_net(sk); 3373 int val; 3374 int err = 0; 3375 3376 /* These are data/string values, all the others are ints */ 3377 switch (optname) { 3378 case TCP_CONGESTION: { 3379 char name[TCP_CA_NAME_MAX]; 3380 3381 if (optlen < 1) 3382 return -EINVAL; 3383 3384 val = strncpy_from_sockptr(name, optval, 3385 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3386 if (val < 0) 3387 return -EFAULT; 3388 name[val] = 0; 3389 3390 sockopt_lock_sock(sk); 3391 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3392 sockopt_ns_capable(sock_net(sk)->user_ns, 3393 CAP_NET_ADMIN)); 3394 sockopt_release_sock(sk); 3395 return err; 3396 } 3397 case TCP_ULP: { 3398 char name[TCP_ULP_NAME_MAX]; 3399 3400 if (optlen < 1) 3401 return -EINVAL; 3402 3403 val = strncpy_from_sockptr(name, optval, 3404 min_t(long, TCP_ULP_NAME_MAX - 1, 3405 optlen)); 3406 if (val < 0) 3407 return -EFAULT; 3408 name[val] = 0; 3409 3410 sockopt_lock_sock(sk); 3411 err = tcp_set_ulp(sk, name); 3412 sockopt_release_sock(sk); 3413 return err; 3414 } 3415 case TCP_FASTOPEN_KEY: { 3416 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3417 __u8 *backup_key = NULL; 3418 3419 /* Allow a backup key as well to facilitate key rotation 3420 * First key is the active one. 3421 */ 3422 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3423 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3424 return -EINVAL; 3425 3426 if (copy_from_sockptr(key, optval, optlen)) 3427 return -EFAULT; 3428 3429 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3430 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3431 3432 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3433 } 3434 default: 3435 /* fallthru */ 3436 break; 3437 } 3438 3439 if (optlen < sizeof(int)) 3440 return -EINVAL; 3441 3442 if (copy_from_sockptr(&val, optval, sizeof(val))) 3443 return -EFAULT; 3444 3445 sockopt_lock_sock(sk); 3446 3447 switch (optname) { 3448 case TCP_MAXSEG: 3449 /* Values greater than interface MTU won't take effect. However 3450 * at the point when this call is done we typically don't yet 3451 * know which interface is going to be used 3452 */ 3453 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3454 err = -EINVAL; 3455 break; 3456 } 3457 tp->rx_opt.user_mss = val; 3458 break; 3459 3460 case TCP_NODELAY: 3461 __tcp_sock_set_nodelay(sk, val); 3462 break; 3463 3464 case TCP_THIN_LINEAR_TIMEOUTS: 3465 if (val < 0 || val > 1) 3466 err = -EINVAL; 3467 else 3468 tp->thin_lto = val; 3469 break; 3470 3471 case TCP_THIN_DUPACK: 3472 if (val < 0 || val > 1) 3473 err = -EINVAL; 3474 break; 3475 3476 case TCP_REPAIR: 3477 if (!tcp_can_repair_sock(sk)) 3478 err = -EPERM; 3479 else if (val == TCP_REPAIR_ON) { 3480 tp->repair = 1; 3481 sk->sk_reuse = SK_FORCE_REUSE; 3482 tp->repair_queue = TCP_NO_QUEUE; 3483 } else if (val == TCP_REPAIR_OFF) { 3484 tp->repair = 0; 3485 sk->sk_reuse = SK_NO_REUSE; 3486 tcp_send_window_probe(sk); 3487 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3488 tp->repair = 0; 3489 sk->sk_reuse = SK_NO_REUSE; 3490 } else 3491 err = -EINVAL; 3492 3493 break; 3494 3495 case TCP_REPAIR_QUEUE: 3496 if (!tp->repair) 3497 err = -EPERM; 3498 else if ((unsigned int)val < TCP_QUEUES_NR) 3499 tp->repair_queue = val; 3500 else 3501 err = -EINVAL; 3502 break; 3503 3504 case TCP_QUEUE_SEQ: 3505 if (sk->sk_state != TCP_CLOSE) { 3506 err = -EPERM; 3507 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3508 if (!tcp_rtx_queue_empty(sk)) 3509 err = -EPERM; 3510 else 3511 WRITE_ONCE(tp->write_seq, val); 3512 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3513 if (tp->rcv_nxt != tp->copied_seq) { 3514 err = -EPERM; 3515 } else { 3516 WRITE_ONCE(tp->rcv_nxt, val); 3517 WRITE_ONCE(tp->copied_seq, val); 3518 } 3519 } else { 3520 err = -EINVAL; 3521 } 3522 break; 3523 3524 case TCP_REPAIR_OPTIONS: 3525 if (!tp->repair) 3526 err = -EINVAL; 3527 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3528 err = tcp_repair_options_est(sk, optval, optlen); 3529 else 3530 err = -EPERM; 3531 break; 3532 3533 case TCP_CORK: 3534 __tcp_sock_set_cork(sk, val); 3535 break; 3536 3537 case TCP_KEEPIDLE: 3538 err = tcp_sock_set_keepidle_locked(sk, val); 3539 break; 3540 case TCP_KEEPINTVL: 3541 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3542 err = -EINVAL; 3543 else 3544 tp->keepalive_intvl = val * HZ; 3545 break; 3546 case TCP_KEEPCNT: 3547 if (val < 1 || val > MAX_TCP_KEEPCNT) 3548 err = -EINVAL; 3549 else 3550 tp->keepalive_probes = val; 3551 break; 3552 case TCP_SYNCNT: 3553 if (val < 1 || val > MAX_TCP_SYNCNT) 3554 err = -EINVAL; 3555 else 3556 icsk->icsk_syn_retries = val; 3557 break; 3558 3559 case TCP_SAVE_SYN: 3560 /* 0: disable, 1: enable, 2: start from ether_header */ 3561 if (val < 0 || val > 2) 3562 err = -EINVAL; 3563 else 3564 tp->save_syn = val; 3565 break; 3566 3567 case TCP_LINGER2: 3568 if (val < 0) 3569 tp->linger2 = -1; 3570 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3571 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3572 else 3573 tp->linger2 = val * HZ; 3574 break; 3575 3576 case TCP_DEFER_ACCEPT: 3577 /* Translate value in seconds to number of retransmits */ 3578 icsk->icsk_accept_queue.rskq_defer_accept = 3579 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3580 TCP_RTO_MAX / HZ); 3581 break; 3582 3583 case TCP_WINDOW_CLAMP: 3584 err = tcp_set_window_clamp(sk, val); 3585 break; 3586 3587 case TCP_QUICKACK: 3588 __tcp_sock_set_quickack(sk, val); 3589 break; 3590 3591 #ifdef CONFIG_TCP_MD5SIG 3592 case TCP_MD5SIG: 3593 case TCP_MD5SIG_EXT: 3594 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3595 break; 3596 #endif 3597 case TCP_USER_TIMEOUT: 3598 /* Cap the max time in ms TCP will retry or probe the window 3599 * before giving up and aborting (ETIMEDOUT) a connection. 3600 */ 3601 if (val < 0) 3602 err = -EINVAL; 3603 else 3604 icsk->icsk_user_timeout = val; 3605 break; 3606 3607 case TCP_FASTOPEN: 3608 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3609 TCPF_LISTEN))) { 3610 tcp_fastopen_init_key_once(net); 3611 3612 fastopen_queue_tune(sk, val); 3613 } else { 3614 err = -EINVAL; 3615 } 3616 break; 3617 case TCP_FASTOPEN_CONNECT: 3618 if (val > 1 || val < 0) { 3619 err = -EINVAL; 3620 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3621 TFO_CLIENT_ENABLE) { 3622 if (sk->sk_state == TCP_CLOSE) 3623 tp->fastopen_connect = val; 3624 else 3625 err = -EINVAL; 3626 } else { 3627 err = -EOPNOTSUPP; 3628 } 3629 break; 3630 case TCP_FASTOPEN_NO_COOKIE: 3631 if (val > 1 || val < 0) 3632 err = -EINVAL; 3633 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3634 err = -EINVAL; 3635 else 3636 tp->fastopen_no_cookie = val; 3637 break; 3638 case TCP_TIMESTAMP: 3639 if (!tp->repair) 3640 err = -EPERM; 3641 else 3642 tp->tsoffset = val - tcp_time_stamp_raw(); 3643 break; 3644 case TCP_REPAIR_WINDOW: 3645 err = tcp_repair_set_window(tp, optval, optlen); 3646 break; 3647 case TCP_NOTSENT_LOWAT: 3648 tp->notsent_lowat = val; 3649 sk->sk_write_space(sk); 3650 break; 3651 case TCP_INQ: 3652 if (val > 1 || val < 0) 3653 err = -EINVAL; 3654 else 3655 tp->recvmsg_inq = val; 3656 break; 3657 case TCP_TX_DELAY: 3658 if (val) 3659 tcp_enable_tx_delay(); 3660 tp->tcp_tx_delay = val; 3661 break; 3662 default: 3663 err = -ENOPROTOOPT; 3664 break; 3665 } 3666 3667 sockopt_release_sock(sk); 3668 return err; 3669 } 3670 3671 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3672 unsigned int optlen) 3673 { 3674 const struct inet_connection_sock *icsk = inet_csk(sk); 3675 3676 if (level != SOL_TCP) 3677 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3678 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3679 optval, optlen); 3680 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3681 } 3682 EXPORT_SYMBOL(tcp_setsockopt); 3683 3684 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3685 struct tcp_info *info) 3686 { 3687 u64 stats[__TCP_CHRONO_MAX], total = 0; 3688 enum tcp_chrono i; 3689 3690 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3691 stats[i] = tp->chrono_stat[i - 1]; 3692 if (i == tp->chrono_type) 3693 stats[i] += tcp_jiffies32 - tp->chrono_start; 3694 stats[i] *= USEC_PER_SEC / HZ; 3695 total += stats[i]; 3696 } 3697 3698 info->tcpi_busy_time = total; 3699 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3700 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3701 } 3702 3703 /* Return information about state of tcp endpoint in API format. */ 3704 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3705 { 3706 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3707 const struct inet_connection_sock *icsk = inet_csk(sk); 3708 unsigned long rate; 3709 u32 now; 3710 u64 rate64; 3711 bool slow; 3712 3713 memset(info, 0, sizeof(*info)); 3714 if (sk->sk_type != SOCK_STREAM) 3715 return; 3716 3717 info->tcpi_state = inet_sk_state_load(sk); 3718 3719 /* Report meaningful fields for all TCP states, including listeners */ 3720 rate = READ_ONCE(sk->sk_pacing_rate); 3721 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3722 info->tcpi_pacing_rate = rate64; 3723 3724 rate = READ_ONCE(sk->sk_max_pacing_rate); 3725 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3726 info->tcpi_max_pacing_rate = rate64; 3727 3728 info->tcpi_reordering = tp->reordering; 3729 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3730 3731 if (info->tcpi_state == TCP_LISTEN) { 3732 /* listeners aliased fields : 3733 * tcpi_unacked -> Number of children ready for accept() 3734 * tcpi_sacked -> max backlog 3735 */ 3736 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3737 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3738 return; 3739 } 3740 3741 slow = lock_sock_fast(sk); 3742 3743 info->tcpi_ca_state = icsk->icsk_ca_state; 3744 info->tcpi_retransmits = icsk->icsk_retransmits; 3745 info->tcpi_probes = icsk->icsk_probes_out; 3746 info->tcpi_backoff = icsk->icsk_backoff; 3747 3748 if (tp->rx_opt.tstamp_ok) 3749 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3750 if (tcp_is_sack(tp)) 3751 info->tcpi_options |= TCPI_OPT_SACK; 3752 if (tp->rx_opt.wscale_ok) { 3753 info->tcpi_options |= TCPI_OPT_WSCALE; 3754 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3755 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3756 } 3757 3758 if (tp->ecn_flags & TCP_ECN_OK) 3759 info->tcpi_options |= TCPI_OPT_ECN; 3760 if (tp->ecn_flags & TCP_ECN_SEEN) 3761 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3762 if (tp->syn_data_acked) 3763 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3764 3765 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3766 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3767 info->tcpi_snd_mss = tp->mss_cache; 3768 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3769 3770 info->tcpi_unacked = tp->packets_out; 3771 info->tcpi_sacked = tp->sacked_out; 3772 3773 info->tcpi_lost = tp->lost_out; 3774 info->tcpi_retrans = tp->retrans_out; 3775 3776 now = tcp_jiffies32; 3777 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3778 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3779 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3780 3781 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3782 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3783 info->tcpi_rtt = tp->srtt_us >> 3; 3784 info->tcpi_rttvar = tp->mdev_us >> 2; 3785 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3786 info->tcpi_advmss = tp->advmss; 3787 3788 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3789 info->tcpi_rcv_space = tp->rcvq_space.space; 3790 3791 info->tcpi_total_retrans = tp->total_retrans; 3792 3793 info->tcpi_bytes_acked = tp->bytes_acked; 3794 info->tcpi_bytes_received = tp->bytes_received; 3795 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3796 tcp_get_info_chrono_stats(tp, info); 3797 3798 info->tcpi_segs_out = tp->segs_out; 3799 3800 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3801 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3802 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3803 3804 info->tcpi_min_rtt = tcp_min_rtt(tp); 3805 info->tcpi_data_segs_out = tp->data_segs_out; 3806 3807 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3808 rate64 = tcp_compute_delivery_rate(tp); 3809 if (rate64) 3810 info->tcpi_delivery_rate = rate64; 3811 info->tcpi_delivered = tp->delivered; 3812 info->tcpi_delivered_ce = tp->delivered_ce; 3813 info->tcpi_bytes_sent = tp->bytes_sent; 3814 info->tcpi_bytes_retrans = tp->bytes_retrans; 3815 info->tcpi_dsack_dups = tp->dsack_dups; 3816 info->tcpi_reord_seen = tp->reord_seen; 3817 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3818 info->tcpi_snd_wnd = tp->snd_wnd; 3819 info->tcpi_rcv_wnd = tp->rcv_wnd; 3820 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3821 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3822 unlock_sock_fast(sk, slow); 3823 } 3824 EXPORT_SYMBOL_GPL(tcp_get_info); 3825 3826 static size_t tcp_opt_stats_get_size(void) 3827 { 3828 return 3829 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3830 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3831 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3832 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3833 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3834 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3835 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3836 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3837 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3838 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3839 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3840 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3841 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3842 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3844 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3845 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3848 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3849 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3851 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3852 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3854 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3856 0; 3857 } 3858 3859 /* Returns TTL or hop limit of an incoming packet from skb. */ 3860 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3861 { 3862 if (skb->protocol == htons(ETH_P_IP)) 3863 return ip_hdr(skb)->ttl; 3864 else if (skb->protocol == htons(ETH_P_IPV6)) 3865 return ipv6_hdr(skb)->hop_limit; 3866 else 3867 return 0; 3868 } 3869 3870 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3871 const struct sk_buff *orig_skb, 3872 const struct sk_buff *ack_skb) 3873 { 3874 const struct tcp_sock *tp = tcp_sk(sk); 3875 struct sk_buff *stats; 3876 struct tcp_info info; 3877 unsigned long rate; 3878 u64 rate64; 3879 3880 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3881 if (!stats) 3882 return NULL; 3883 3884 tcp_get_info_chrono_stats(tp, &info); 3885 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3886 info.tcpi_busy_time, TCP_NLA_PAD); 3887 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3888 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3889 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3890 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3891 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3892 tp->data_segs_out, TCP_NLA_PAD); 3893 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3894 tp->total_retrans, TCP_NLA_PAD); 3895 3896 rate = READ_ONCE(sk->sk_pacing_rate); 3897 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3898 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3899 3900 rate64 = tcp_compute_delivery_rate(tp); 3901 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3902 3903 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3904 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3905 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3906 3907 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3908 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3909 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3910 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3911 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3912 3913 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3914 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3915 3916 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3917 TCP_NLA_PAD); 3918 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3919 TCP_NLA_PAD); 3920 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3921 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3922 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3923 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3924 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3925 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3926 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3927 TCP_NLA_PAD); 3928 if (ack_skb) 3929 nla_put_u8(stats, TCP_NLA_TTL, 3930 tcp_skb_ttl_or_hop_limit(ack_skb)); 3931 3932 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3933 return stats; 3934 } 3935 3936 int do_tcp_getsockopt(struct sock *sk, int level, 3937 int optname, sockptr_t optval, sockptr_t optlen) 3938 { 3939 struct inet_connection_sock *icsk = inet_csk(sk); 3940 struct tcp_sock *tp = tcp_sk(sk); 3941 struct net *net = sock_net(sk); 3942 int val, len; 3943 3944 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3945 return -EFAULT; 3946 3947 len = min_t(unsigned int, len, sizeof(int)); 3948 3949 if (len < 0) 3950 return -EINVAL; 3951 3952 switch (optname) { 3953 case TCP_MAXSEG: 3954 val = tp->mss_cache; 3955 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3956 val = tp->rx_opt.user_mss; 3957 if (tp->repair) 3958 val = tp->rx_opt.mss_clamp; 3959 break; 3960 case TCP_NODELAY: 3961 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3962 break; 3963 case TCP_CORK: 3964 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3965 break; 3966 case TCP_KEEPIDLE: 3967 val = keepalive_time_when(tp) / HZ; 3968 break; 3969 case TCP_KEEPINTVL: 3970 val = keepalive_intvl_when(tp) / HZ; 3971 break; 3972 case TCP_KEEPCNT: 3973 val = keepalive_probes(tp); 3974 break; 3975 case TCP_SYNCNT: 3976 val = icsk->icsk_syn_retries ? : 3977 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3978 break; 3979 case TCP_LINGER2: 3980 val = tp->linger2; 3981 if (val >= 0) 3982 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 3983 break; 3984 case TCP_DEFER_ACCEPT: 3985 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3986 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3987 break; 3988 case TCP_WINDOW_CLAMP: 3989 val = tp->window_clamp; 3990 break; 3991 case TCP_INFO: { 3992 struct tcp_info info; 3993 3994 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3995 return -EFAULT; 3996 3997 tcp_get_info(sk, &info); 3998 3999 len = min_t(unsigned int, len, sizeof(info)); 4000 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4001 return -EFAULT; 4002 if (copy_to_sockptr(optval, &info, len)) 4003 return -EFAULT; 4004 return 0; 4005 } 4006 case TCP_CC_INFO: { 4007 const struct tcp_congestion_ops *ca_ops; 4008 union tcp_cc_info info; 4009 size_t sz = 0; 4010 int attr; 4011 4012 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4013 return -EFAULT; 4014 4015 ca_ops = icsk->icsk_ca_ops; 4016 if (ca_ops && ca_ops->get_info) 4017 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4018 4019 len = min_t(unsigned int, len, sz); 4020 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4021 return -EFAULT; 4022 if (copy_to_sockptr(optval, &info, len)) 4023 return -EFAULT; 4024 return 0; 4025 } 4026 case TCP_QUICKACK: 4027 val = !inet_csk_in_pingpong_mode(sk); 4028 break; 4029 4030 case TCP_CONGESTION: 4031 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4032 return -EFAULT; 4033 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4034 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4035 return -EFAULT; 4036 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4037 return -EFAULT; 4038 return 0; 4039 4040 case TCP_ULP: 4041 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4042 return -EFAULT; 4043 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4044 if (!icsk->icsk_ulp_ops) { 4045 len = 0; 4046 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4047 return -EFAULT; 4048 return 0; 4049 } 4050 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4051 return -EFAULT; 4052 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4053 return -EFAULT; 4054 return 0; 4055 4056 case TCP_FASTOPEN_KEY: { 4057 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4058 unsigned int key_len; 4059 4060 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4061 return -EFAULT; 4062 4063 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4064 TCP_FASTOPEN_KEY_LENGTH; 4065 len = min_t(unsigned int, len, key_len); 4066 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4067 return -EFAULT; 4068 if (copy_to_sockptr(optval, key, len)) 4069 return -EFAULT; 4070 return 0; 4071 } 4072 case TCP_THIN_LINEAR_TIMEOUTS: 4073 val = tp->thin_lto; 4074 break; 4075 4076 case TCP_THIN_DUPACK: 4077 val = 0; 4078 break; 4079 4080 case TCP_REPAIR: 4081 val = tp->repair; 4082 break; 4083 4084 case TCP_REPAIR_QUEUE: 4085 if (tp->repair) 4086 val = tp->repair_queue; 4087 else 4088 return -EINVAL; 4089 break; 4090 4091 case TCP_REPAIR_WINDOW: { 4092 struct tcp_repair_window opt; 4093 4094 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4095 return -EFAULT; 4096 4097 if (len != sizeof(opt)) 4098 return -EINVAL; 4099 4100 if (!tp->repair) 4101 return -EPERM; 4102 4103 opt.snd_wl1 = tp->snd_wl1; 4104 opt.snd_wnd = tp->snd_wnd; 4105 opt.max_window = tp->max_window; 4106 opt.rcv_wnd = tp->rcv_wnd; 4107 opt.rcv_wup = tp->rcv_wup; 4108 4109 if (copy_to_sockptr(optval, &opt, len)) 4110 return -EFAULT; 4111 return 0; 4112 } 4113 case TCP_QUEUE_SEQ: 4114 if (tp->repair_queue == TCP_SEND_QUEUE) 4115 val = tp->write_seq; 4116 else if (tp->repair_queue == TCP_RECV_QUEUE) 4117 val = tp->rcv_nxt; 4118 else 4119 return -EINVAL; 4120 break; 4121 4122 case TCP_USER_TIMEOUT: 4123 val = icsk->icsk_user_timeout; 4124 break; 4125 4126 case TCP_FASTOPEN: 4127 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4128 break; 4129 4130 case TCP_FASTOPEN_CONNECT: 4131 val = tp->fastopen_connect; 4132 break; 4133 4134 case TCP_FASTOPEN_NO_COOKIE: 4135 val = tp->fastopen_no_cookie; 4136 break; 4137 4138 case TCP_TX_DELAY: 4139 val = tp->tcp_tx_delay; 4140 break; 4141 4142 case TCP_TIMESTAMP: 4143 val = tcp_time_stamp_raw() + tp->tsoffset; 4144 break; 4145 case TCP_NOTSENT_LOWAT: 4146 val = tp->notsent_lowat; 4147 break; 4148 case TCP_INQ: 4149 val = tp->recvmsg_inq; 4150 break; 4151 case TCP_SAVE_SYN: 4152 val = tp->save_syn; 4153 break; 4154 case TCP_SAVED_SYN: { 4155 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4156 return -EFAULT; 4157 4158 sockopt_lock_sock(sk); 4159 if (tp->saved_syn) { 4160 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4161 len = tcp_saved_syn_len(tp->saved_syn); 4162 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4163 sockopt_release_sock(sk); 4164 return -EFAULT; 4165 } 4166 sockopt_release_sock(sk); 4167 return -EINVAL; 4168 } 4169 len = tcp_saved_syn_len(tp->saved_syn); 4170 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4171 sockopt_release_sock(sk); 4172 return -EFAULT; 4173 } 4174 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4175 sockopt_release_sock(sk); 4176 return -EFAULT; 4177 } 4178 tcp_saved_syn_free(tp); 4179 sockopt_release_sock(sk); 4180 } else { 4181 sockopt_release_sock(sk); 4182 len = 0; 4183 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4184 return -EFAULT; 4185 } 4186 return 0; 4187 } 4188 #ifdef CONFIG_MMU 4189 case TCP_ZEROCOPY_RECEIVE: { 4190 struct scm_timestamping_internal tss; 4191 struct tcp_zerocopy_receive zc = {}; 4192 int err; 4193 4194 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4195 return -EFAULT; 4196 if (len < 0 || 4197 len < offsetofend(struct tcp_zerocopy_receive, length)) 4198 return -EINVAL; 4199 if (unlikely(len > sizeof(zc))) { 4200 err = check_zeroed_sockptr(optval, sizeof(zc), 4201 len - sizeof(zc)); 4202 if (err < 1) 4203 return err == 0 ? -EINVAL : err; 4204 len = sizeof(zc); 4205 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4206 return -EFAULT; 4207 } 4208 if (copy_from_sockptr(&zc, optval, len)) 4209 return -EFAULT; 4210 if (zc.reserved) 4211 return -EINVAL; 4212 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4213 return -EINVAL; 4214 sockopt_lock_sock(sk); 4215 err = tcp_zerocopy_receive(sk, &zc, &tss); 4216 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4217 &zc, &len, err); 4218 sockopt_release_sock(sk); 4219 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4220 goto zerocopy_rcv_cmsg; 4221 switch (len) { 4222 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4223 goto zerocopy_rcv_cmsg; 4224 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4225 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4226 case offsetofend(struct tcp_zerocopy_receive, flags): 4227 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4228 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4229 case offsetofend(struct tcp_zerocopy_receive, err): 4230 goto zerocopy_rcv_sk_err; 4231 case offsetofend(struct tcp_zerocopy_receive, inq): 4232 goto zerocopy_rcv_inq; 4233 case offsetofend(struct tcp_zerocopy_receive, length): 4234 default: 4235 goto zerocopy_rcv_out; 4236 } 4237 zerocopy_rcv_cmsg: 4238 if (zc.msg_flags & TCP_CMSG_TS) 4239 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4240 else 4241 zc.msg_flags = 0; 4242 zerocopy_rcv_sk_err: 4243 if (!err) 4244 zc.err = sock_error(sk); 4245 zerocopy_rcv_inq: 4246 zc.inq = tcp_inq_hint(sk); 4247 zerocopy_rcv_out: 4248 if (!err && copy_to_sockptr(optval, &zc, len)) 4249 err = -EFAULT; 4250 return err; 4251 } 4252 #endif 4253 default: 4254 return -ENOPROTOOPT; 4255 } 4256 4257 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4258 return -EFAULT; 4259 if (copy_to_sockptr(optval, &val, len)) 4260 return -EFAULT; 4261 return 0; 4262 } 4263 4264 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4265 { 4266 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4267 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4268 */ 4269 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4270 return true; 4271 4272 return false; 4273 } 4274 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4275 4276 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4277 int __user *optlen) 4278 { 4279 struct inet_connection_sock *icsk = inet_csk(sk); 4280 4281 if (level != SOL_TCP) 4282 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4283 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4284 optval, optlen); 4285 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4286 USER_SOCKPTR(optlen)); 4287 } 4288 EXPORT_SYMBOL(tcp_getsockopt); 4289 4290 #ifdef CONFIG_TCP_MD5SIG 4291 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4292 static DEFINE_MUTEX(tcp_md5sig_mutex); 4293 static bool tcp_md5sig_pool_populated = false; 4294 4295 static void __tcp_alloc_md5sig_pool(void) 4296 { 4297 struct crypto_ahash *hash; 4298 int cpu; 4299 4300 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4301 if (IS_ERR(hash)) 4302 return; 4303 4304 for_each_possible_cpu(cpu) { 4305 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4306 struct ahash_request *req; 4307 4308 if (!scratch) { 4309 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4310 sizeof(struct tcphdr), 4311 GFP_KERNEL, 4312 cpu_to_node(cpu)); 4313 if (!scratch) 4314 return; 4315 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4316 } 4317 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4318 continue; 4319 4320 req = ahash_request_alloc(hash, GFP_KERNEL); 4321 if (!req) 4322 return; 4323 4324 ahash_request_set_callback(req, 0, NULL, NULL); 4325 4326 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4327 } 4328 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4329 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4330 */ 4331 smp_wmb(); 4332 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4333 * and tcp_get_md5sig_pool(). 4334 */ 4335 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4336 } 4337 4338 bool tcp_alloc_md5sig_pool(void) 4339 { 4340 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4341 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4342 mutex_lock(&tcp_md5sig_mutex); 4343 4344 if (!tcp_md5sig_pool_populated) 4345 __tcp_alloc_md5sig_pool(); 4346 4347 mutex_unlock(&tcp_md5sig_mutex); 4348 } 4349 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4350 return READ_ONCE(tcp_md5sig_pool_populated); 4351 } 4352 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4353 4354 4355 /** 4356 * tcp_get_md5sig_pool - get md5sig_pool for this user 4357 * 4358 * We use percpu structure, so if we succeed, we exit with preemption 4359 * and BH disabled, to make sure another thread or softirq handling 4360 * wont try to get same context. 4361 */ 4362 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4363 { 4364 local_bh_disable(); 4365 4366 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4367 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4368 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4369 smp_rmb(); 4370 return this_cpu_ptr(&tcp_md5sig_pool); 4371 } 4372 local_bh_enable(); 4373 return NULL; 4374 } 4375 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4376 4377 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4378 const struct sk_buff *skb, unsigned int header_len) 4379 { 4380 struct scatterlist sg; 4381 const struct tcphdr *tp = tcp_hdr(skb); 4382 struct ahash_request *req = hp->md5_req; 4383 unsigned int i; 4384 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4385 skb_headlen(skb) - header_len : 0; 4386 const struct skb_shared_info *shi = skb_shinfo(skb); 4387 struct sk_buff *frag_iter; 4388 4389 sg_init_table(&sg, 1); 4390 4391 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4392 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4393 if (crypto_ahash_update(req)) 4394 return 1; 4395 4396 for (i = 0; i < shi->nr_frags; ++i) { 4397 const skb_frag_t *f = &shi->frags[i]; 4398 unsigned int offset = skb_frag_off(f); 4399 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4400 4401 sg_set_page(&sg, page, skb_frag_size(f), 4402 offset_in_page(offset)); 4403 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4404 if (crypto_ahash_update(req)) 4405 return 1; 4406 } 4407 4408 skb_walk_frags(skb, frag_iter) 4409 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4410 return 1; 4411 4412 return 0; 4413 } 4414 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4415 4416 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4417 { 4418 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4419 struct scatterlist sg; 4420 4421 sg_init_one(&sg, key->key, keylen); 4422 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4423 4424 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4425 return data_race(crypto_ahash_update(hp->md5_req)); 4426 } 4427 EXPORT_SYMBOL(tcp_md5_hash_key); 4428 4429 /* Called with rcu_read_lock() */ 4430 enum skb_drop_reason 4431 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4432 const void *saddr, const void *daddr, 4433 int family, int dif, int sdif) 4434 { 4435 /* 4436 * This gets called for each TCP segment that arrives 4437 * so we want to be efficient. 4438 * We have 3 drop cases: 4439 * o No MD5 hash and one expected. 4440 * o MD5 hash and we're not expecting one. 4441 * o MD5 hash and its wrong. 4442 */ 4443 const __u8 *hash_location = NULL; 4444 struct tcp_md5sig_key *hash_expected; 4445 const struct tcphdr *th = tcp_hdr(skb); 4446 const struct tcp_sock *tp = tcp_sk(sk); 4447 int genhash, l3index; 4448 u8 newhash[16]; 4449 4450 /* sdif set, means packet ingressed via a device 4451 * in an L3 domain and dif is set to the l3mdev 4452 */ 4453 l3index = sdif ? dif : 0; 4454 4455 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4456 hash_location = tcp_parse_md5sig_option(th); 4457 4458 /* We've parsed the options - do we have a hash? */ 4459 if (!hash_expected && !hash_location) 4460 return SKB_NOT_DROPPED_YET; 4461 4462 if (hash_expected && !hash_location) { 4463 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4464 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4465 } 4466 4467 if (!hash_expected && hash_location) { 4468 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4469 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4470 } 4471 4472 /* Check the signature. 4473 * To support dual stack listeners, we need to handle 4474 * IPv4-mapped case. 4475 */ 4476 if (family == AF_INET) 4477 genhash = tcp_v4_md5_hash_skb(newhash, 4478 hash_expected, 4479 NULL, skb); 4480 else 4481 genhash = tp->af_specific->calc_md5_hash(newhash, 4482 hash_expected, 4483 NULL, skb); 4484 4485 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4486 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4487 if (family == AF_INET) { 4488 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4489 saddr, ntohs(th->source), 4490 daddr, ntohs(th->dest), 4491 genhash ? " tcp_v4_calc_md5_hash failed" 4492 : "", l3index); 4493 } else { 4494 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4495 genhash ? "failed" : "mismatch", 4496 saddr, ntohs(th->source), 4497 daddr, ntohs(th->dest), l3index); 4498 } 4499 return SKB_DROP_REASON_TCP_MD5FAILURE; 4500 } 4501 return SKB_NOT_DROPPED_YET; 4502 } 4503 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4504 4505 #endif 4506 4507 void tcp_done(struct sock *sk) 4508 { 4509 struct request_sock *req; 4510 4511 /* We might be called with a new socket, after 4512 * inet_csk_prepare_forced_close() has been called 4513 * so we can not use lockdep_sock_is_held(sk) 4514 */ 4515 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4516 4517 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4518 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4519 4520 tcp_set_state(sk, TCP_CLOSE); 4521 tcp_clear_xmit_timers(sk); 4522 if (req) 4523 reqsk_fastopen_remove(sk, req, false); 4524 4525 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4526 4527 if (!sock_flag(sk, SOCK_DEAD)) 4528 sk->sk_state_change(sk); 4529 else 4530 inet_csk_destroy_sock(sk); 4531 } 4532 EXPORT_SYMBOL_GPL(tcp_done); 4533 4534 int tcp_abort(struct sock *sk, int err) 4535 { 4536 int state = inet_sk_state_load(sk); 4537 4538 if (state == TCP_NEW_SYN_RECV) { 4539 struct request_sock *req = inet_reqsk(sk); 4540 4541 local_bh_disable(); 4542 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4543 local_bh_enable(); 4544 return 0; 4545 } 4546 if (state == TCP_TIME_WAIT) { 4547 struct inet_timewait_sock *tw = inet_twsk(sk); 4548 4549 refcount_inc(&tw->tw_refcnt); 4550 local_bh_disable(); 4551 inet_twsk_deschedule_put(tw); 4552 local_bh_enable(); 4553 return 0; 4554 } 4555 4556 /* BPF context ensures sock locking. */ 4557 if (!has_current_bpf_ctx()) 4558 /* Don't race with userspace socket closes such as tcp_close. */ 4559 lock_sock(sk); 4560 4561 if (sk->sk_state == TCP_LISTEN) { 4562 tcp_set_state(sk, TCP_CLOSE); 4563 inet_csk_listen_stop(sk); 4564 } 4565 4566 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4567 local_bh_disable(); 4568 bh_lock_sock(sk); 4569 4570 if (!sock_flag(sk, SOCK_DEAD)) { 4571 WRITE_ONCE(sk->sk_err, err); 4572 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4573 smp_wmb(); 4574 sk_error_report(sk); 4575 if (tcp_need_reset(sk->sk_state)) 4576 tcp_send_active_reset(sk, GFP_ATOMIC); 4577 tcp_done(sk); 4578 } 4579 4580 bh_unlock_sock(sk); 4581 local_bh_enable(); 4582 tcp_write_queue_purge(sk); 4583 if (!has_current_bpf_ctx()) 4584 release_sock(sk); 4585 return 0; 4586 } 4587 EXPORT_SYMBOL_GPL(tcp_abort); 4588 4589 extern struct tcp_congestion_ops tcp_reno; 4590 4591 static __initdata unsigned long thash_entries; 4592 static int __init set_thash_entries(char *str) 4593 { 4594 ssize_t ret; 4595 4596 if (!str) 4597 return 0; 4598 4599 ret = kstrtoul(str, 0, &thash_entries); 4600 if (ret) 4601 return 0; 4602 4603 return 1; 4604 } 4605 __setup("thash_entries=", set_thash_entries); 4606 4607 static void __init tcp_init_mem(void) 4608 { 4609 unsigned long limit = nr_free_buffer_pages() / 16; 4610 4611 limit = max(limit, 128UL); 4612 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4613 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4614 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4615 } 4616 4617 void __init tcp_init(void) 4618 { 4619 int max_rshare, max_wshare, cnt; 4620 unsigned long limit; 4621 unsigned int i; 4622 4623 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4624 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4625 sizeof_field(struct sk_buff, cb)); 4626 4627 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4628 4629 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4630 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4631 4632 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4633 thash_entries, 21, /* one slot per 2 MB*/ 4634 0, 64 * 1024); 4635 tcp_hashinfo.bind_bucket_cachep = 4636 kmem_cache_create("tcp_bind_bucket", 4637 sizeof(struct inet_bind_bucket), 0, 4638 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4639 SLAB_ACCOUNT, 4640 NULL); 4641 tcp_hashinfo.bind2_bucket_cachep = 4642 kmem_cache_create("tcp_bind2_bucket", 4643 sizeof(struct inet_bind2_bucket), 0, 4644 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4645 SLAB_ACCOUNT, 4646 NULL); 4647 4648 /* Size and allocate the main established and bind bucket 4649 * hash tables. 4650 * 4651 * The methodology is similar to that of the buffer cache. 4652 */ 4653 tcp_hashinfo.ehash = 4654 alloc_large_system_hash("TCP established", 4655 sizeof(struct inet_ehash_bucket), 4656 thash_entries, 4657 17, /* one slot per 128 KB of memory */ 4658 0, 4659 NULL, 4660 &tcp_hashinfo.ehash_mask, 4661 0, 4662 thash_entries ? 0 : 512 * 1024); 4663 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4664 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4665 4666 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4667 panic("TCP: failed to alloc ehash_locks"); 4668 tcp_hashinfo.bhash = 4669 alloc_large_system_hash("TCP bind", 4670 2 * sizeof(struct inet_bind_hashbucket), 4671 tcp_hashinfo.ehash_mask + 1, 4672 17, /* one slot per 128 KB of memory */ 4673 0, 4674 &tcp_hashinfo.bhash_size, 4675 NULL, 4676 0, 4677 64 * 1024); 4678 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4679 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4680 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4681 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4682 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4683 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4684 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4685 } 4686 4687 tcp_hashinfo.pernet = false; 4688 4689 cnt = tcp_hashinfo.ehash_mask + 1; 4690 sysctl_tcp_max_orphans = cnt / 2; 4691 4692 tcp_init_mem(); 4693 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4694 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4695 max_wshare = min(4UL*1024*1024, limit); 4696 max_rshare = min(6UL*1024*1024, limit); 4697 4698 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4699 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4700 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4701 4702 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4703 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4704 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4705 4706 pr_info("Hash tables configured (established %u bind %u)\n", 4707 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4708 4709 tcp_v4_init(); 4710 tcp_metrics_init(); 4711 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4712 tcp_tasklet_init(); 4713 mptcp_init(); 4714 } 4715