1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/memblock.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sock, wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 /* The TCP header must be at least 32-bit aligned. */ 869 size = ALIGN(size, 4); 870 871 if (unlikely(tcp_under_memory_pressure(sk))) 872 sk_mem_reclaim_partial(sk); 873 874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 875 if (likely(skb)) { 876 bool mem_scheduled; 877 878 if (force_schedule) { 879 mem_scheduled = true; 880 sk_forced_mem_schedule(sk, skb->truesize); 881 } else { 882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 883 } 884 if (likely(mem_scheduled)) { 885 skb_reserve(skb, sk->sk_prot->max_header); 886 /* 887 * Make sure that we have exactly size bytes 888 * available to the caller, no more, no less. 889 */ 890 skb->reserved_tailroom = skb->end - skb->tail - size; 891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 892 return skb; 893 } 894 __kfree_skb(skb); 895 } else { 896 sk->sk_prot->enter_memory_pressure(sk); 897 sk_stream_moderate_sndbuf(sk); 898 } 899 return NULL; 900 } 901 902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 903 int large_allowed) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 u32 new_size_goal, size_goal; 907 908 if (!large_allowed) 909 return mss_now; 910 911 /* Note : tcp_tso_autosize() will eventually split this later */ 912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 914 915 /* We try hard to avoid divides here */ 916 size_goal = tp->gso_segs * mss_now; 917 if (unlikely(new_size_goal < size_goal || 918 new_size_goal >= size_goal + mss_now)) { 919 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 920 sk->sk_gso_max_segs); 921 size_goal = tp->gso_segs * mss_now; 922 } 923 924 return max(size_goal, mss_now); 925 } 926 927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 928 { 929 int mss_now; 930 931 mss_now = tcp_current_mss(sk); 932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 933 934 return mss_now; 935 } 936 937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 938 size_t size, int flags) 939 { 940 struct tcp_sock *tp = tcp_sk(sk); 941 int mss_now, size_goal; 942 int err; 943 ssize_t copied; 944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 945 946 /* Wait for a connection to finish. One exception is TCP Fast Open 947 * (passive side) where data is allowed to be sent before a connection 948 * is fully established. 949 */ 950 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 951 !tcp_passive_fastopen(sk)) { 952 err = sk_stream_wait_connect(sk, &timeo); 953 if (err != 0) 954 goto out_err; 955 } 956 957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 958 959 mss_now = tcp_send_mss(sk, &size_goal, flags); 960 copied = 0; 961 962 err = -EPIPE; 963 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 964 goto out_err; 965 966 while (size > 0) { 967 struct sk_buff *skb = tcp_write_queue_tail(sk); 968 int copy, i; 969 bool can_coalesce; 970 971 if (!skb || (copy = size_goal - skb->len) <= 0 || 972 !tcp_skb_can_collapse_to(skb)) { 973 new_segment: 974 if (!sk_stream_memory_free(sk)) 975 goto wait_for_sndbuf; 976 977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 978 tcp_rtx_and_write_queues_empty(sk)); 979 if (!skb) 980 goto wait_for_memory; 981 982 skb_entail(sk, skb); 983 copy = size_goal; 984 } 985 986 if (copy > size) 987 copy = size; 988 989 i = skb_shinfo(skb)->nr_frags; 990 can_coalesce = skb_can_coalesce(skb, i, page, offset); 991 if (!can_coalesce && i >= sysctl_max_skb_frags) { 992 tcp_mark_push(tp, skb); 993 goto new_segment; 994 } 995 if (!sk_wmem_schedule(sk, copy)) 996 goto wait_for_memory; 997 998 if (can_coalesce) { 999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1000 } else { 1001 get_page(page); 1002 skb_fill_page_desc(skb, i, page, offset, copy); 1003 } 1004 1005 if (!(flags & MSG_NO_SHARED_FRAGS)) 1006 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1007 1008 skb->len += copy; 1009 skb->data_len += copy; 1010 skb->truesize += copy; 1011 sk->sk_wmem_queued += copy; 1012 sk_mem_charge(sk, copy); 1013 skb->ip_summed = CHECKSUM_PARTIAL; 1014 tp->write_seq += copy; 1015 TCP_SKB_CB(skb)->end_seq += copy; 1016 tcp_skb_pcount_set(skb, 0); 1017 1018 if (!copied) 1019 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1020 1021 copied += copy; 1022 offset += copy; 1023 size -= copy; 1024 if (!size) 1025 goto out; 1026 1027 if (skb->len < size_goal || (flags & MSG_OOB)) 1028 continue; 1029 1030 if (forced_push(tp)) { 1031 tcp_mark_push(tp, skb); 1032 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1033 } else if (skb == tcp_send_head(sk)) 1034 tcp_push_one(sk, mss_now); 1035 continue; 1036 1037 wait_for_sndbuf: 1038 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1039 wait_for_memory: 1040 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1041 TCP_NAGLE_PUSH, size_goal); 1042 1043 err = sk_stream_wait_memory(sk, &timeo); 1044 if (err != 0) 1045 goto do_error; 1046 1047 mss_now = tcp_send_mss(sk, &size_goal, flags); 1048 } 1049 1050 out: 1051 if (copied) { 1052 tcp_tx_timestamp(sk, sk->sk_tsflags); 1053 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1054 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1055 } 1056 return copied; 1057 1058 do_error: 1059 if (copied) 1060 goto out; 1061 out_err: 1062 /* make sure we wake any epoll edge trigger waiter */ 1063 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1064 err == -EAGAIN)) { 1065 sk->sk_write_space(sk); 1066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1067 } 1068 return sk_stream_error(sk, flags, err); 1069 } 1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1071 1072 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1073 size_t size, int flags) 1074 { 1075 if (!(sk->sk_route_caps & NETIF_F_SG)) 1076 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1077 1078 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1079 1080 return do_tcp_sendpages(sk, page, offset, size, flags); 1081 } 1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1083 1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1085 size_t size, int flags) 1086 { 1087 int ret; 1088 1089 lock_sock(sk); 1090 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1091 release_sock(sk); 1092 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(tcp_sendpage); 1096 1097 /* Do not bother using a page frag for very small frames. 1098 * But use this heuristic only for the first skb in write queue. 1099 * 1100 * Having no payload in skb->head allows better SACK shifting 1101 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1102 * write queue has less skbs. 1103 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1104 * This also speeds up tso_fragment(), since it wont fallback 1105 * to tcp_fragment(). 1106 */ 1107 static int linear_payload_sz(bool first_skb) 1108 { 1109 if (first_skb) 1110 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1111 return 0; 1112 } 1113 1114 static int select_size(bool first_skb, bool zc) 1115 { 1116 if (zc) 1117 return 0; 1118 return linear_payload_sz(first_skb); 1119 } 1120 1121 void tcp_free_fastopen_req(struct tcp_sock *tp) 1122 { 1123 if (tp->fastopen_req) { 1124 kfree(tp->fastopen_req); 1125 tp->fastopen_req = NULL; 1126 } 1127 } 1128 1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1130 int *copied, size_t size) 1131 { 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct inet_sock *inet = inet_sk(sk); 1134 struct sockaddr *uaddr = msg->msg_name; 1135 int err, flags; 1136 1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1139 uaddr->sa_family == AF_UNSPEC)) 1140 return -EOPNOTSUPP; 1141 if (tp->fastopen_req) 1142 return -EALREADY; /* Another Fast Open is in progress */ 1143 1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1145 sk->sk_allocation); 1146 if (unlikely(!tp->fastopen_req)) 1147 return -ENOBUFS; 1148 tp->fastopen_req->data = msg; 1149 tp->fastopen_req->size = size; 1150 1151 if (inet->defer_connect) { 1152 err = tcp_connect(sk); 1153 /* Same failure procedure as in tcp_v4/6_connect */ 1154 if (err) { 1155 tcp_set_state(sk, TCP_CLOSE); 1156 inet->inet_dport = 0; 1157 sk->sk_route_caps = 0; 1158 } 1159 } 1160 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1161 err = __inet_stream_connect(sk->sk_socket, uaddr, 1162 msg->msg_namelen, flags, 1); 1163 /* fastopen_req could already be freed in __inet_stream_connect 1164 * if the connection times out or gets rst 1165 */ 1166 if (tp->fastopen_req) { 1167 *copied = tp->fastopen_req->copied; 1168 tcp_free_fastopen_req(tp); 1169 inet->defer_connect = 0; 1170 } 1171 return err; 1172 } 1173 1174 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1175 { 1176 struct tcp_sock *tp = tcp_sk(sk); 1177 struct ubuf_info *uarg = NULL; 1178 struct sk_buff *skb; 1179 struct sockcm_cookie sockc; 1180 int flags, err, copied = 0; 1181 int mss_now = 0, size_goal, copied_syn = 0; 1182 bool process_backlog = false; 1183 bool zc = false; 1184 long timeo; 1185 1186 flags = msg->msg_flags; 1187 1188 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1189 if (sk->sk_state != TCP_ESTABLISHED) { 1190 err = -EINVAL; 1191 goto out_err; 1192 } 1193 1194 skb = tcp_write_queue_tail(sk); 1195 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1196 if (!uarg) { 1197 err = -ENOBUFS; 1198 goto out_err; 1199 } 1200 1201 zc = sk->sk_route_caps & NETIF_F_SG; 1202 if (!zc) 1203 uarg->zerocopy = 0; 1204 } 1205 1206 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1207 !tp->repair) { 1208 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1209 if (err == -EINPROGRESS && copied_syn > 0) 1210 goto out; 1211 else if (err) 1212 goto out_err; 1213 } 1214 1215 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1216 1217 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1218 1219 /* Wait for a connection to finish. One exception is TCP Fast Open 1220 * (passive side) where data is allowed to be sent before a connection 1221 * is fully established. 1222 */ 1223 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1224 !tcp_passive_fastopen(sk)) { 1225 err = sk_stream_wait_connect(sk, &timeo); 1226 if (err != 0) 1227 goto do_error; 1228 } 1229 1230 if (unlikely(tp->repair)) { 1231 if (tp->repair_queue == TCP_RECV_QUEUE) { 1232 copied = tcp_send_rcvq(sk, msg, size); 1233 goto out_nopush; 1234 } 1235 1236 err = -EINVAL; 1237 if (tp->repair_queue == TCP_NO_QUEUE) 1238 goto out_err; 1239 1240 /* 'common' sending to sendq */ 1241 } 1242 1243 sockcm_init(&sockc, sk); 1244 if (msg->msg_controllen) { 1245 err = sock_cmsg_send(sk, msg, &sockc); 1246 if (unlikely(err)) { 1247 err = -EINVAL; 1248 goto out_err; 1249 } 1250 } 1251 1252 /* This should be in poll */ 1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1254 1255 /* Ok commence sending. */ 1256 copied = 0; 1257 1258 restart: 1259 mss_now = tcp_send_mss(sk, &size_goal, flags); 1260 1261 err = -EPIPE; 1262 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1263 goto do_error; 1264 1265 while (msg_data_left(msg)) { 1266 int copy = 0; 1267 1268 skb = tcp_write_queue_tail(sk); 1269 if (skb) 1270 copy = size_goal - skb->len; 1271 1272 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1273 bool first_skb; 1274 int linear; 1275 1276 new_segment: 1277 if (!sk_stream_memory_free(sk)) 1278 goto wait_for_sndbuf; 1279 1280 if (process_backlog && sk_flush_backlog(sk)) { 1281 process_backlog = false; 1282 goto restart; 1283 } 1284 first_skb = tcp_rtx_and_write_queues_empty(sk); 1285 linear = select_size(first_skb, zc); 1286 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1287 first_skb); 1288 if (!skb) 1289 goto wait_for_memory; 1290 1291 process_backlog = true; 1292 skb->ip_summed = CHECKSUM_PARTIAL; 1293 1294 skb_entail(sk, skb); 1295 copy = size_goal; 1296 1297 /* All packets are restored as if they have 1298 * already been sent. skb_mstamp_ns isn't set to 1299 * avoid wrong rtt estimation. 1300 */ 1301 if (tp->repair) 1302 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1303 } 1304 1305 /* Try to append data to the end of skb. */ 1306 if (copy > msg_data_left(msg)) 1307 copy = msg_data_left(msg); 1308 1309 /* Where to copy to? */ 1310 if (skb_availroom(skb) > 0 && !zc) { 1311 /* We have some space in skb head. Superb! */ 1312 copy = min_t(int, copy, skb_availroom(skb)); 1313 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1314 if (err) 1315 goto do_fault; 1316 } else if (!zc) { 1317 bool merge = true; 1318 int i = skb_shinfo(skb)->nr_frags; 1319 struct page_frag *pfrag = sk_page_frag(sk); 1320 1321 if (!sk_page_frag_refill(sk, pfrag)) 1322 goto wait_for_memory; 1323 1324 if (!skb_can_coalesce(skb, i, pfrag->page, 1325 pfrag->offset)) { 1326 if (i >= sysctl_max_skb_frags) { 1327 tcp_mark_push(tp, skb); 1328 goto new_segment; 1329 } 1330 merge = false; 1331 } 1332 1333 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1334 1335 if (!sk_wmem_schedule(sk, copy)) 1336 goto wait_for_memory; 1337 1338 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1339 pfrag->page, 1340 pfrag->offset, 1341 copy); 1342 if (err) 1343 goto do_error; 1344 1345 /* Update the skb. */ 1346 if (merge) { 1347 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1348 } else { 1349 skb_fill_page_desc(skb, i, pfrag->page, 1350 pfrag->offset, copy); 1351 page_ref_inc(pfrag->page); 1352 } 1353 pfrag->offset += copy; 1354 } else { 1355 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1356 if (err == -EMSGSIZE || err == -EEXIST) { 1357 tcp_mark_push(tp, skb); 1358 goto new_segment; 1359 } 1360 if (err < 0) 1361 goto do_error; 1362 copy = err; 1363 } 1364 1365 if (!copied) 1366 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1367 1368 tp->write_seq += copy; 1369 TCP_SKB_CB(skb)->end_seq += copy; 1370 tcp_skb_pcount_set(skb, 0); 1371 1372 copied += copy; 1373 if (!msg_data_left(msg)) { 1374 if (unlikely(flags & MSG_EOR)) 1375 TCP_SKB_CB(skb)->eor = 1; 1376 goto out; 1377 } 1378 1379 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1380 continue; 1381 1382 if (forced_push(tp)) { 1383 tcp_mark_push(tp, skb); 1384 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1385 } else if (skb == tcp_send_head(sk)) 1386 tcp_push_one(sk, mss_now); 1387 continue; 1388 1389 wait_for_sndbuf: 1390 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1391 wait_for_memory: 1392 if (copied) 1393 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1394 TCP_NAGLE_PUSH, size_goal); 1395 1396 err = sk_stream_wait_memory(sk, &timeo); 1397 if (err != 0) 1398 goto do_error; 1399 1400 mss_now = tcp_send_mss(sk, &size_goal, flags); 1401 } 1402 1403 out: 1404 if (copied) { 1405 tcp_tx_timestamp(sk, sockc.tsflags); 1406 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1407 } 1408 out_nopush: 1409 sock_zerocopy_put(uarg); 1410 return copied + copied_syn; 1411 1412 do_fault: 1413 if (!skb->len) { 1414 tcp_unlink_write_queue(skb, sk); 1415 /* It is the one place in all of TCP, except connection 1416 * reset, where we can be unlinking the send_head. 1417 */ 1418 tcp_check_send_head(sk, skb); 1419 sk_wmem_free_skb(sk, skb); 1420 } 1421 1422 do_error: 1423 if (copied + copied_syn) 1424 goto out; 1425 out_err: 1426 sock_zerocopy_put_abort(uarg); 1427 err = sk_stream_error(sk, flags, err); 1428 /* make sure we wake any epoll edge trigger waiter */ 1429 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1430 err == -EAGAIN)) { 1431 sk->sk_write_space(sk); 1432 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1433 } 1434 return err; 1435 } 1436 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1437 1438 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1439 { 1440 int ret; 1441 1442 lock_sock(sk); 1443 ret = tcp_sendmsg_locked(sk, msg, size); 1444 release_sock(sk); 1445 1446 return ret; 1447 } 1448 EXPORT_SYMBOL(tcp_sendmsg); 1449 1450 /* 1451 * Handle reading urgent data. BSD has very simple semantics for 1452 * this, no blocking and very strange errors 8) 1453 */ 1454 1455 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1456 { 1457 struct tcp_sock *tp = tcp_sk(sk); 1458 1459 /* No URG data to read. */ 1460 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1461 tp->urg_data == TCP_URG_READ) 1462 return -EINVAL; /* Yes this is right ! */ 1463 1464 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1465 return -ENOTCONN; 1466 1467 if (tp->urg_data & TCP_URG_VALID) { 1468 int err = 0; 1469 char c = tp->urg_data; 1470 1471 if (!(flags & MSG_PEEK)) 1472 tp->urg_data = TCP_URG_READ; 1473 1474 /* Read urgent data. */ 1475 msg->msg_flags |= MSG_OOB; 1476 1477 if (len > 0) { 1478 if (!(flags & MSG_TRUNC)) 1479 err = memcpy_to_msg(msg, &c, 1); 1480 len = 1; 1481 } else 1482 msg->msg_flags |= MSG_TRUNC; 1483 1484 return err ? -EFAULT : len; 1485 } 1486 1487 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1488 return 0; 1489 1490 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1491 * the available implementations agree in this case: 1492 * this call should never block, independent of the 1493 * blocking state of the socket. 1494 * Mike <pall@rz.uni-karlsruhe.de> 1495 */ 1496 return -EAGAIN; 1497 } 1498 1499 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1500 { 1501 struct sk_buff *skb; 1502 int copied = 0, err = 0; 1503 1504 /* XXX -- need to support SO_PEEK_OFF */ 1505 1506 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1508 if (err) 1509 return err; 1510 copied += skb->len; 1511 } 1512 1513 skb_queue_walk(&sk->sk_write_queue, skb) { 1514 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1515 if (err) 1516 break; 1517 1518 copied += skb->len; 1519 } 1520 1521 return err ?: copied; 1522 } 1523 1524 /* Clean up the receive buffer for full frames taken by the user, 1525 * then send an ACK if necessary. COPIED is the number of bytes 1526 * tcp_recvmsg has given to the user so far, it speeds up the 1527 * calculation of whether or not we must ACK for the sake of 1528 * a window update. 1529 */ 1530 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1531 { 1532 struct tcp_sock *tp = tcp_sk(sk); 1533 bool time_to_ack = false; 1534 1535 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1536 1537 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1538 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1539 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1540 1541 if (inet_csk_ack_scheduled(sk)) { 1542 const struct inet_connection_sock *icsk = inet_csk(sk); 1543 /* Delayed ACKs frequently hit locked sockets during bulk 1544 * receive. */ 1545 if (icsk->icsk_ack.blocked || 1546 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1547 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1548 /* 1549 * If this read emptied read buffer, we send ACK, if 1550 * connection is not bidirectional, user drained 1551 * receive buffer and there was a small segment 1552 * in queue. 1553 */ 1554 (copied > 0 && 1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1556 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1557 !icsk->icsk_ack.pingpong)) && 1558 !atomic_read(&sk->sk_rmem_alloc))) 1559 time_to_ack = true; 1560 } 1561 1562 /* We send an ACK if we can now advertise a non-zero window 1563 * which has been raised "significantly". 1564 * 1565 * Even if window raised up to infinity, do not send window open ACK 1566 * in states, where we will not receive more. It is useless. 1567 */ 1568 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1569 __u32 rcv_window_now = tcp_receive_window(tp); 1570 1571 /* Optimize, __tcp_select_window() is not cheap. */ 1572 if (2*rcv_window_now <= tp->window_clamp) { 1573 __u32 new_window = __tcp_select_window(sk); 1574 1575 /* Send ACK now, if this read freed lots of space 1576 * in our buffer. Certainly, new_window is new window. 1577 * We can advertise it now, if it is not less than current one. 1578 * "Lots" means "at least twice" here. 1579 */ 1580 if (new_window && new_window >= 2 * rcv_window_now) 1581 time_to_ack = true; 1582 } 1583 } 1584 if (time_to_ack) 1585 tcp_send_ack(sk); 1586 } 1587 1588 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1589 { 1590 struct sk_buff *skb; 1591 u32 offset; 1592 1593 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1594 offset = seq - TCP_SKB_CB(skb)->seq; 1595 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1596 pr_err_once("%s: found a SYN, please report !\n", __func__); 1597 offset--; 1598 } 1599 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1600 *off = offset; 1601 return skb; 1602 } 1603 /* This looks weird, but this can happen if TCP collapsing 1604 * splitted a fat GRO packet, while we released socket lock 1605 * in skb_splice_bits() 1606 */ 1607 sk_eat_skb(sk, skb); 1608 } 1609 return NULL; 1610 } 1611 1612 /* 1613 * This routine provides an alternative to tcp_recvmsg() for routines 1614 * that would like to handle copying from skbuffs directly in 'sendfile' 1615 * fashion. 1616 * Note: 1617 * - It is assumed that the socket was locked by the caller. 1618 * - The routine does not block. 1619 * - At present, there is no support for reading OOB data 1620 * or for 'peeking' the socket using this routine 1621 * (although both would be easy to implement). 1622 */ 1623 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1624 sk_read_actor_t recv_actor) 1625 { 1626 struct sk_buff *skb; 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 u32 seq = tp->copied_seq; 1629 u32 offset; 1630 int copied = 0; 1631 1632 if (sk->sk_state == TCP_LISTEN) 1633 return -ENOTCONN; 1634 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1635 if (offset < skb->len) { 1636 int used; 1637 size_t len; 1638 1639 len = skb->len - offset; 1640 /* Stop reading if we hit a patch of urgent data */ 1641 if (tp->urg_data) { 1642 u32 urg_offset = tp->urg_seq - seq; 1643 if (urg_offset < len) 1644 len = urg_offset; 1645 if (!len) 1646 break; 1647 } 1648 used = recv_actor(desc, skb, offset, len); 1649 if (used <= 0) { 1650 if (!copied) 1651 copied = used; 1652 break; 1653 } else if (used <= len) { 1654 seq += used; 1655 copied += used; 1656 offset += used; 1657 } 1658 /* If recv_actor drops the lock (e.g. TCP splice 1659 * receive) the skb pointer might be invalid when 1660 * getting here: tcp_collapse might have deleted it 1661 * while aggregating skbs from the socket queue. 1662 */ 1663 skb = tcp_recv_skb(sk, seq - 1, &offset); 1664 if (!skb) 1665 break; 1666 /* TCP coalescing might have appended data to the skb. 1667 * Try to splice more frags 1668 */ 1669 if (offset + 1 != skb->len) 1670 continue; 1671 } 1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1673 sk_eat_skb(sk, skb); 1674 ++seq; 1675 break; 1676 } 1677 sk_eat_skb(sk, skb); 1678 if (!desc->count) 1679 break; 1680 tp->copied_seq = seq; 1681 } 1682 tp->copied_seq = seq; 1683 1684 tcp_rcv_space_adjust(sk); 1685 1686 /* Clean up data we have read: This will do ACK frames. */ 1687 if (copied > 0) { 1688 tcp_recv_skb(sk, seq, &offset); 1689 tcp_cleanup_rbuf(sk, copied); 1690 } 1691 return copied; 1692 } 1693 EXPORT_SYMBOL(tcp_read_sock); 1694 1695 int tcp_peek_len(struct socket *sock) 1696 { 1697 return tcp_inq(sock->sk); 1698 } 1699 EXPORT_SYMBOL(tcp_peek_len); 1700 1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1702 int tcp_set_rcvlowat(struct sock *sk, int val) 1703 { 1704 int cap; 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 cap = sk->sk_rcvbuf >> 1; 1708 else 1709 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1710 val = min(val, cap); 1711 sk->sk_rcvlowat = val ? : 1; 1712 1713 /* Check if we need to signal EPOLLIN right now */ 1714 tcp_data_ready(sk); 1715 1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1717 return 0; 1718 1719 val <<= 1; 1720 if (val > sk->sk_rcvbuf) { 1721 sk->sk_rcvbuf = val; 1722 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1723 } 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(tcp_set_rcvlowat); 1727 1728 #ifdef CONFIG_MMU 1729 static const struct vm_operations_struct tcp_vm_ops = { 1730 }; 1731 1732 int tcp_mmap(struct file *file, struct socket *sock, 1733 struct vm_area_struct *vma) 1734 { 1735 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1736 return -EPERM; 1737 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1738 1739 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1740 vma->vm_flags |= VM_MIXEDMAP; 1741 1742 vma->vm_ops = &tcp_vm_ops; 1743 return 0; 1744 } 1745 EXPORT_SYMBOL(tcp_mmap); 1746 1747 static int tcp_zerocopy_receive(struct sock *sk, 1748 struct tcp_zerocopy_receive *zc) 1749 { 1750 unsigned long address = (unsigned long)zc->address; 1751 const skb_frag_t *frags = NULL; 1752 u32 length = 0, seq, offset; 1753 struct vm_area_struct *vma; 1754 struct sk_buff *skb = NULL; 1755 struct tcp_sock *tp; 1756 int inq; 1757 int ret; 1758 1759 if (address & (PAGE_SIZE - 1) || address != zc->address) 1760 return -EINVAL; 1761 1762 if (sk->sk_state == TCP_LISTEN) 1763 return -ENOTCONN; 1764 1765 sock_rps_record_flow(sk); 1766 1767 down_read(¤t->mm->mmap_sem); 1768 1769 ret = -EINVAL; 1770 vma = find_vma(current->mm, address); 1771 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1772 goto out; 1773 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1774 1775 tp = tcp_sk(sk); 1776 seq = tp->copied_seq; 1777 inq = tcp_inq(sk); 1778 zc->length = min_t(u32, zc->length, inq); 1779 zc->length &= ~(PAGE_SIZE - 1); 1780 if (zc->length) { 1781 zap_page_range(vma, address, zc->length); 1782 zc->recv_skip_hint = 0; 1783 } else { 1784 zc->recv_skip_hint = inq; 1785 } 1786 ret = 0; 1787 while (length + PAGE_SIZE <= zc->length) { 1788 if (zc->recv_skip_hint < PAGE_SIZE) { 1789 if (skb) { 1790 skb = skb->next; 1791 offset = seq - TCP_SKB_CB(skb)->seq; 1792 } else { 1793 skb = tcp_recv_skb(sk, seq, &offset); 1794 } 1795 1796 zc->recv_skip_hint = skb->len - offset; 1797 offset -= skb_headlen(skb); 1798 if ((int)offset < 0 || skb_has_frag_list(skb)) 1799 break; 1800 frags = skb_shinfo(skb)->frags; 1801 while (offset) { 1802 if (frags->size > offset) 1803 goto out; 1804 offset -= frags->size; 1805 frags++; 1806 } 1807 } 1808 if (frags->size != PAGE_SIZE || frags->page_offset) { 1809 int remaining = zc->recv_skip_hint; 1810 1811 while (remaining && (frags->size != PAGE_SIZE || 1812 frags->page_offset)) { 1813 remaining -= frags->size; 1814 frags++; 1815 } 1816 zc->recv_skip_hint -= remaining; 1817 break; 1818 } 1819 ret = vm_insert_page(vma, address + length, 1820 skb_frag_page(frags)); 1821 if (ret) 1822 break; 1823 length += PAGE_SIZE; 1824 seq += PAGE_SIZE; 1825 zc->recv_skip_hint -= PAGE_SIZE; 1826 frags++; 1827 } 1828 out: 1829 up_read(¤t->mm->mmap_sem); 1830 if (length) { 1831 tp->copied_seq = seq; 1832 tcp_rcv_space_adjust(sk); 1833 1834 /* Clean up data we have read: This will do ACK frames. */ 1835 tcp_recv_skb(sk, seq, &offset); 1836 tcp_cleanup_rbuf(sk, length); 1837 ret = 0; 1838 if (length == zc->length) 1839 zc->recv_skip_hint = 0; 1840 } else { 1841 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1842 ret = -EIO; 1843 } 1844 zc->length = length; 1845 return ret; 1846 } 1847 #endif 1848 1849 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1850 struct scm_timestamping *tss) 1851 { 1852 if (skb->tstamp) 1853 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1854 else 1855 tss->ts[0] = (struct timespec) {0}; 1856 1857 if (skb_hwtstamps(skb)->hwtstamp) 1858 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1859 else 1860 tss->ts[2] = (struct timespec) {0}; 1861 } 1862 1863 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1864 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1865 struct scm_timestamping *tss) 1866 { 1867 struct timeval tv; 1868 bool has_timestamping = false; 1869 1870 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1871 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1872 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1873 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1874 sizeof(tss->ts[0]), &tss->ts[0]); 1875 } else { 1876 tv.tv_sec = tss->ts[0].tv_sec; 1877 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1878 1879 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1880 sizeof(tv), &tv); 1881 } 1882 } 1883 1884 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1885 has_timestamping = true; 1886 else 1887 tss->ts[0] = (struct timespec) {0}; 1888 } 1889 1890 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1891 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1892 has_timestamping = true; 1893 else 1894 tss->ts[2] = (struct timespec) {0}; 1895 } 1896 1897 if (has_timestamping) { 1898 tss->ts[1] = (struct timespec) {0}; 1899 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1900 sizeof(*tss), tss); 1901 } 1902 } 1903 1904 static int tcp_inq_hint(struct sock *sk) 1905 { 1906 const struct tcp_sock *tp = tcp_sk(sk); 1907 u32 copied_seq = READ_ONCE(tp->copied_seq); 1908 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1909 int inq; 1910 1911 inq = rcv_nxt - copied_seq; 1912 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1913 lock_sock(sk); 1914 inq = tp->rcv_nxt - tp->copied_seq; 1915 release_sock(sk); 1916 } 1917 return inq; 1918 } 1919 1920 /* 1921 * This routine copies from a sock struct into the user buffer. 1922 * 1923 * Technical note: in 2.3 we work on _locked_ socket, so that 1924 * tricks with *seq access order and skb->users are not required. 1925 * Probably, code can be easily improved even more. 1926 */ 1927 1928 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1929 int flags, int *addr_len) 1930 { 1931 struct tcp_sock *tp = tcp_sk(sk); 1932 int copied = 0; 1933 u32 peek_seq; 1934 u32 *seq; 1935 unsigned long used; 1936 int err, inq; 1937 int target; /* Read at least this many bytes */ 1938 long timeo; 1939 struct sk_buff *skb, *last; 1940 u32 urg_hole = 0; 1941 struct scm_timestamping tss; 1942 bool has_tss = false; 1943 bool has_cmsg; 1944 1945 if (unlikely(flags & MSG_ERRQUEUE)) 1946 return inet_recv_error(sk, msg, len, addr_len); 1947 1948 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1949 (sk->sk_state == TCP_ESTABLISHED)) 1950 sk_busy_loop(sk, nonblock); 1951 1952 lock_sock(sk); 1953 1954 err = -ENOTCONN; 1955 if (sk->sk_state == TCP_LISTEN) 1956 goto out; 1957 1958 has_cmsg = tp->recvmsg_inq; 1959 timeo = sock_rcvtimeo(sk, nonblock); 1960 1961 /* Urgent data needs to be handled specially. */ 1962 if (flags & MSG_OOB) 1963 goto recv_urg; 1964 1965 if (unlikely(tp->repair)) { 1966 err = -EPERM; 1967 if (!(flags & MSG_PEEK)) 1968 goto out; 1969 1970 if (tp->repair_queue == TCP_SEND_QUEUE) 1971 goto recv_sndq; 1972 1973 err = -EINVAL; 1974 if (tp->repair_queue == TCP_NO_QUEUE) 1975 goto out; 1976 1977 /* 'common' recv queue MSG_PEEK-ing */ 1978 } 1979 1980 seq = &tp->copied_seq; 1981 if (flags & MSG_PEEK) { 1982 peek_seq = tp->copied_seq; 1983 seq = &peek_seq; 1984 } 1985 1986 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1987 1988 do { 1989 u32 offset; 1990 1991 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1992 if (tp->urg_data && tp->urg_seq == *seq) { 1993 if (copied) 1994 break; 1995 if (signal_pending(current)) { 1996 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1997 break; 1998 } 1999 } 2000 2001 /* Next get a buffer. */ 2002 2003 last = skb_peek_tail(&sk->sk_receive_queue); 2004 skb_queue_walk(&sk->sk_receive_queue, skb) { 2005 last = skb; 2006 /* Now that we have two receive queues this 2007 * shouldn't happen. 2008 */ 2009 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2010 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2011 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2012 flags)) 2013 break; 2014 2015 offset = *seq - TCP_SKB_CB(skb)->seq; 2016 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2017 pr_err_once("%s: found a SYN, please report !\n", __func__); 2018 offset--; 2019 } 2020 if (offset < skb->len) 2021 goto found_ok_skb; 2022 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2023 goto found_fin_ok; 2024 WARN(!(flags & MSG_PEEK), 2025 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2026 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2027 } 2028 2029 /* Well, if we have backlog, try to process it now yet. */ 2030 2031 if (copied >= target && !sk->sk_backlog.tail) 2032 break; 2033 2034 if (copied) { 2035 if (sk->sk_err || 2036 sk->sk_state == TCP_CLOSE || 2037 (sk->sk_shutdown & RCV_SHUTDOWN) || 2038 !timeo || 2039 signal_pending(current)) 2040 break; 2041 } else { 2042 if (sock_flag(sk, SOCK_DONE)) 2043 break; 2044 2045 if (sk->sk_err) { 2046 copied = sock_error(sk); 2047 break; 2048 } 2049 2050 if (sk->sk_shutdown & RCV_SHUTDOWN) 2051 break; 2052 2053 if (sk->sk_state == TCP_CLOSE) { 2054 /* This occurs when user tries to read 2055 * from never connected socket. 2056 */ 2057 copied = -ENOTCONN; 2058 break; 2059 } 2060 2061 if (!timeo) { 2062 copied = -EAGAIN; 2063 break; 2064 } 2065 2066 if (signal_pending(current)) { 2067 copied = sock_intr_errno(timeo); 2068 break; 2069 } 2070 } 2071 2072 tcp_cleanup_rbuf(sk, copied); 2073 2074 if (copied >= target) { 2075 /* Do not sleep, just process backlog. */ 2076 release_sock(sk); 2077 lock_sock(sk); 2078 } else { 2079 sk_wait_data(sk, &timeo, last); 2080 } 2081 2082 if ((flags & MSG_PEEK) && 2083 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2084 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2085 current->comm, 2086 task_pid_nr(current)); 2087 peek_seq = tp->copied_seq; 2088 } 2089 continue; 2090 2091 found_ok_skb: 2092 /* Ok so how much can we use? */ 2093 used = skb->len - offset; 2094 if (len < used) 2095 used = len; 2096 2097 /* Do we have urgent data here? */ 2098 if (tp->urg_data) { 2099 u32 urg_offset = tp->urg_seq - *seq; 2100 if (urg_offset < used) { 2101 if (!urg_offset) { 2102 if (!sock_flag(sk, SOCK_URGINLINE)) { 2103 ++*seq; 2104 urg_hole++; 2105 offset++; 2106 used--; 2107 if (!used) 2108 goto skip_copy; 2109 } 2110 } else 2111 used = urg_offset; 2112 } 2113 } 2114 2115 if (!(flags & MSG_TRUNC)) { 2116 err = skb_copy_datagram_msg(skb, offset, msg, used); 2117 if (err) { 2118 /* Exception. Bailout! */ 2119 if (!copied) 2120 copied = -EFAULT; 2121 break; 2122 } 2123 } 2124 2125 *seq += used; 2126 copied += used; 2127 len -= used; 2128 2129 tcp_rcv_space_adjust(sk); 2130 2131 skip_copy: 2132 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2133 tp->urg_data = 0; 2134 tcp_fast_path_check(sk); 2135 } 2136 if (used + offset < skb->len) 2137 continue; 2138 2139 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2140 tcp_update_recv_tstamps(skb, &tss); 2141 has_tss = true; 2142 has_cmsg = true; 2143 } 2144 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2145 goto found_fin_ok; 2146 if (!(flags & MSG_PEEK)) 2147 sk_eat_skb(sk, skb); 2148 continue; 2149 2150 found_fin_ok: 2151 /* Process the FIN. */ 2152 ++*seq; 2153 if (!(flags & MSG_PEEK)) 2154 sk_eat_skb(sk, skb); 2155 break; 2156 } while (len > 0); 2157 2158 /* According to UNIX98, msg_name/msg_namelen are ignored 2159 * on connected socket. I was just happy when found this 8) --ANK 2160 */ 2161 2162 /* Clean up data we have read: This will do ACK frames. */ 2163 tcp_cleanup_rbuf(sk, copied); 2164 2165 release_sock(sk); 2166 2167 if (has_cmsg) { 2168 if (has_tss) 2169 tcp_recv_timestamp(msg, sk, &tss); 2170 if (tp->recvmsg_inq) { 2171 inq = tcp_inq_hint(sk); 2172 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2173 } 2174 } 2175 2176 return copied; 2177 2178 out: 2179 release_sock(sk); 2180 return err; 2181 2182 recv_urg: 2183 err = tcp_recv_urg(sk, msg, len, flags); 2184 goto out; 2185 2186 recv_sndq: 2187 err = tcp_peek_sndq(sk, msg, len); 2188 goto out; 2189 } 2190 EXPORT_SYMBOL(tcp_recvmsg); 2191 2192 void tcp_set_state(struct sock *sk, int state) 2193 { 2194 int oldstate = sk->sk_state; 2195 2196 /* We defined a new enum for TCP states that are exported in BPF 2197 * so as not force the internal TCP states to be frozen. The 2198 * following checks will detect if an internal state value ever 2199 * differs from the BPF value. If this ever happens, then we will 2200 * need to remap the internal value to the BPF value before calling 2201 * tcp_call_bpf_2arg. 2202 */ 2203 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2204 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2205 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2206 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2207 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2208 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2209 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2210 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2211 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2212 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2213 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2214 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2215 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2216 2217 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2218 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2219 2220 switch (state) { 2221 case TCP_ESTABLISHED: 2222 if (oldstate != TCP_ESTABLISHED) 2223 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2224 break; 2225 2226 case TCP_CLOSE: 2227 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2228 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2229 2230 sk->sk_prot->unhash(sk); 2231 if (inet_csk(sk)->icsk_bind_hash && 2232 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2233 inet_put_port(sk); 2234 /* fall through */ 2235 default: 2236 if (oldstate == TCP_ESTABLISHED) 2237 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2238 } 2239 2240 /* Change state AFTER socket is unhashed to avoid closed 2241 * socket sitting in hash tables. 2242 */ 2243 inet_sk_state_store(sk, state); 2244 2245 #ifdef STATE_TRACE 2246 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2247 #endif 2248 } 2249 EXPORT_SYMBOL_GPL(tcp_set_state); 2250 2251 /* 2252 * State processing on a close. This implements the state shift for 2253 * sending our FIN frame. Note that we only send a FIN for some 2254 * states. A shutdown() may have already sent the FIN, or we may be 2255 * closed. 2256 */ 2257 2258 static const unsigned char new_state[16] = { 2259 /* current state: new state: action: */ 2260 [0 /* (Invalid) */] = TCP_CLOSE, 2261 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2262 [TCP_SYN_SENT] = TCP_CLOSE, 2263 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2264 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2265 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2266 [TCP_TIME_WAIT] = TCP_CLOSE, 2267 [TCP_CLOSE] = TCP_CLOSE, 2268 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2269 [TCP_LAST_ACK] = TCP_LAST_ACK, 2270 [TCP_LISTEN] = TCP_CLOSE, 2271 [TCP_CLOSING] = TCP_CLOSING, 2272 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2273 }; 2274 2275 static int tcp_close_state(struct sock *sk) 2276 { 2277 int next = (int)new_state[sk->sk_state]; 2278 int ns = next & TCP_STATE_MASK; 2279 2280 tcp_set_state(sk, ns); 2281 2282 return next & TCP_ACTION_FIN; 2283 } 2284 2285 /* 2286 * Shutdown the sending side of a connection. Much like close except 2287 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2288 */ 2289 2290 void tcp_shutdown(struct sock *sk, int how) 2291 { 2292 /* We need to grab some memory, and put together a FIN, 2293 * and then put it into the queue to be sent. 2294 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2295 */ 2296 if (!(how & SEND_SHUTDOWN)) 2297 return; 2298 2299 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2300 if ((1 << sk->sk_state) & 2301 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2302 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2303 /* Clear out any half completed packets. FIN if needed. */ 2304 if (tcp_close_state(sk)) 2305 tcp_send_fin(sk); 2306 } 2307 } 2308 EXPORT_SYMBOL(tcp_shutdown); 2309 2310 bool tcp_check_oom(struct sock *sk, int shift) 2311 { 2312 bool too_many_orphans, out_of_socket_memory; 2313 2314 too_many_orphans = tcp_too_many_orphans(sk, shift); 2315 out_of_socket_memory = tcp_out_of_memory(sk); 2316 2317 if (too_many_orphans) 2318 net_info_ratelimited("too many orphaned sockets\n"); 2319 if (out_of_socket_memory) 2320 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2321 return too_many_orphans || out_of_socket_memory; 2322 } 2323 2324 void tcp_close(struct sock *sk, long timeout) 2325 { 2326 struct sk_buff *skb; 2327 int data_was_unread = 0; 2328 int state; 2329 2330 lock_sock(sk); 2331 sk->sk_shutdown = SHUTDOWN_MASK; 2332 2333 if (sk->sk_state == TCP_LISTEN) { 2334 tcp_set_state(sk, TCP_CLOSE); 2335 2336 /* Special case. */ 2337 inet_csk_listen_stop(sk); 2338 2339 goto adjudge_to_death; 2340 } 2341 2342 /* We need to flush the recv. buffs. We do this only on the 2343 * descriptor close, not protocol-sourced closes, because the 2344 * reader process may not have drained the data yet! 2345 */ 2346 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2347 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2348 2349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2350 len--; 2351 data_was_unread += len; 2352 __kfree_skb(skb); 2353 } 2354 2355 sk_mem_reclaim(sk); 2356 2357 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2358 if (sk->sk_state == TCP_CLOSE) 2359 goto adjudge_to_death; 2360 2361 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2362 * data was lost. To witness the awful effects of the old behavior of 2363 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2364 * GET in an FTP client, suspend the process, wait for the client to 2365 * advertise a zero window, then kill -9 the FTP client, wheee... 2366 * Note: timeout is always zero in such a case. 2367 */ 2368 if (unlikely(tcp_sk(sk)->repair)) { 2369 sk->sk_prot->disconnect(sk, 0); 2370 } else if (data_was_unread) { 2371 /* Unread data was tossed, zap the connection. */ 2372 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2373 tcp_set_state(sk, TCP_CLOSE); 2374 tcp_send_active_reset(sk, sk->sk_allocation); 2375 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2376 /* Check zero linger _after_ checking for unread data. */ 2377 sk->sk_prot->disconnect(sk, 0); 2378 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2379 } else if (tcp_close_state(sk)) { 2380 /* We FIN if the application ate all the data before 2381 * zapping the connection. 2382 */ 2383 2384 /* RED-PEN. Formally speaking, we have broken TCP state 2385 * machine. State transitions: 2386 * 2387 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2388 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2389 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2390 * 2391 * are legal only when FIN has been sent (i.e. in window), 2392 * rather than queued out of window. Purists blame. 2393 * 2394 * F.e. "RFC state" is ESTABLISHED, 2395 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2396 * 2397 * The visible declinations are that sometimes 2398 * we enter time-wait state, when it is not required really 2399 * (harmless), do not send active resets, when they are 2400 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2401 * they look as CLOSING or LAST_ACK for Linux) 2402 * Probably, I missed some more holelets. 2403 * --ANK 2404 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2405 * in a single packet! (May consider it later but will 2406 * probably need API support or TCP_CORK SYN-ACK until 2407 * data is written and socket is closed.) 2408 */ 2409 tcp_send_fin(sk); 2410 } 2411 2412 sk_stream_wait_close(sk, timeout); 2413 2414 adjudge_to_death: 2415 state = sk->sk_state; 2416 sock_hold(sk); 2417 sock_orphan(sk); 2418 2419 local_bh_disable(); 2420 bh_lock_sock(sk); 2421 /* remove backlog if any, without releasing ownership. */ 2422 __release_sock(sk); 2423 2424 percpu_counter_inc(sk->sk_prot->orphan_count); 2425 2426 /* Have we already been destroyed by a softirq or backlog? */ 2427 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2428 goto out; 2429 2430 /* This is a (useful) BSD violating of the RFC. There is a 2431 * problem with TCP as specified in that the other end could 2432 * keep a socket open forever with no application left this end. 2433 * We use a 1 minute timeout (about the same as BSD) then kill 2434 * our end. If they send after that then tough - BUT: long enough 2435 * that we won't make the old 4*rto = almost no time - whoops 2436 * reset mistake. 2437 * 2438 * Nope, it was not mistake. It is really desired behaviour 2439 * f.e. on http servers, when such sockets are useless, but 2440 * consume significant resources. Let's do it with special 2441 * linger2 option. --ANK 2442 */ 2443 2444 if (sk->sk_state == TCP_FIN_WAIT2) { 2445 struct tcp_sock *tp = tcp_sk(sk); 2446 if (tp->linger2 < 0) { 2447 tcp_set_state(sk, TCP_CLOSE); 2448 tcp_send_active_reset(sk, GFP_ATOMIC); 2449 __NET_INC_STATS(sock_net(sk), 2450 LINUX_MIB_TCPABORTONLINGER); 2451 } else { 2452 const int tmo = tcp_fin_time(sk); 2453 2454 if (tmo > TCP_TIMEWAIT_LEN) { 2455 inet_csk_reset_keepalive_timer(sk, 2456 tmo - TCP_TIMEWAIT_LEN); 2457 } else { 2458 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2459 goto out; 2460 } 2461 } 2462 } 2463 if (sk->sk_state != TCP_CLOSE) { 2464 sk_mem_reclaim(sk); 2465 if (tcp_check_oom(sk, 0)) { 2466 tcp_set_state(sk, TCP_CLOSE); 2467 tcp_send_active_reset(sk, GFP_ATOMIC); 2468 __NET_INC_STATS(sock_net(sk), 2469 LINUX_MIB_TCPABORTONMEMORY); 2470 } else if (!check_net(sock_net(sk))) { 2471 /* Not possible to send reset; just close */ 2472 tcp_set_state(sk, TCP_CLOSE); 2473 } 2474 } 2475 2476 if (sk->sk_state == TCP_CLOSE) { 2477 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2478 /* We could get here with a non-NULL req if the socket is 2479 * aborted (e.g., closed with unread data) before 3WHS 2480 * finishes. 2481 */ 2482 if (req) 2483 reqsk_fastopen_remove(sk, req, false); 2484 inet_csk_destroy_sock(sk); 2485 } 2486 /* Otherwise, socket is reprieved until protocol close. */ 2487 2488 out: 2489 bh_unlock_sock(sk); 2490 local_bh_enable(); 2491 release_sock(sk); 2492 sock_put(sk); 2493 } 2494 EXPORT_SYMBOL(tcp_close); 2495 2496 /* These states need RST on ABORT according to RFC793 */ 2497 2498 static inline bool tcp_need_reset(int state) 2499 { 2500 return (1 << state) & 2501 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2502 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2503 } 2504 2505 static void tcp_rtx_queue_purge(struct sock *sk) 2506 { 2507 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2508 2509 while (p) { 2510 struct sk_buff *skb = rb_to_skb(p); 2511 2512 p = rb_next(p); 2513 /* Since we are deleting whole queue, no need to 2514 * list_del(&skb->tcp_tsorted_anchor) 2515 */ 2516 tcp_rtx_queue_unlink(skb, sk); 2517 sk_wmem_free_skb(sk, skb); 2518 } 2519 } 2520 2521 void tcp_write_queue_purge(struct sock *sk) 2522 { 2523 struct sk_buff *skb; 2524 2525 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2526 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2527 tcp_skb_tsorted_anchor_cleanup(skb); 2528 sk_wmem_free_skb(sk, skb); 2529 } 2530 tcp_rtx_queue_purge(sk); 2531 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2532 sk_mem_reclaim(sk); 2533 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2534 tcp_sk(sk)->packets_out = 0; 2535 } 2536 2537 int tcp_disconnect(struct sock *sk, int flags) 2538 { 2539 struct inet_sock *inet = inet_sk(sk); 2540 struct inet_connection_sock *icsk = inet_csk(sk); 2541 struct tcp_sock *tp = tcp_sk(sk); 2542 int old_state = sk->sk_state; 2543 2544 if (old_state != TCP_CLOSE) 2545 tcp_set_state(sk, TCP_CLOSE); 2546 2547 /* ABORT function of RFC793 */ 2548 if (old_state == TCP_LISTEN) { 2549 inet_csk_listen_stop(sk); 2550 } else if (unlikely(tp->repair)) { 2551 sk->sk_err = ECONNABORTED; 2552 } else if (tcp_need_reset(old_state) || 2553 (tp->snd_nxt != tp->write_seq && 2554 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2555 /* The last check adjusts for discrepancy of Linux wrt. RFC 2556 * states 2557 */ 2558 tcp_send_active_reset(sk, gfp_any()); 2559 sk->sk_err = ECONNRESET; 2560 } else if (old_state == TCP_SYN_SENT) 2561 sk->sk_err = ECONNRESET; 2562 2563 tcp_clear_xmit_timers(sk); 2564 __skb_queue_purge(&sk->sk_receive_queue); 2565 tp->copied_seq = tp->rcv_nxt; 2566 tp->urg_data = 0; 2567 tcp_write_queue_purge(sk); 2568 tcp_fastopen_active_disable_ofo_check(sk); 2569 skb_rbtree_purge(&tp->out_of_order_queue); 2570 2571 inet->inet_dport = 0; 2572 2573 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2574 inet_reset_saddr(sk); 2575 2576 sk->sk_shutdown = 0; 2577 sock_reset_flag(sk, SOCK_DONE); 2578 tp->srtt_us = 0; 2579 tp->rcv_rtt_last_tsecr = 0; 2580 tp->write_seq += tp->max_window + 2; 2581 if (tp->write_seq == 0) 2582 tp->write_seq = 1; 2583 icsk->icsk_backoff = 0; 2584 tp->snd_cwnd = 2; 2585 icsk->icsk_probes_out = 0; 2586 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2587 tp->snd_cwnd_cnt = 0; 2588 tp->window_clamp = 0; 2589 tp->delivered_ce = 0; 2590 tcp_set_ca_state(sk, TCP_CA_Open); 2591 tp->is_sack_reneg = 0; 2592 tcp_clear_retrans(tp); 2593 inet_csk_delack_init(sk); 2594 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2595 * issue in __tcp_select_window() 2596 */ 2597 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2598 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2599 __sk_dst_reset(sk); 2600 dst_release(sk->sk_rx_dst); 2601 sk->sk_rx_dst = NULL; 2602 tcp_saved_syn_free(tp); 2603 tp->compressed_ack = 0; 2604 tp->bytes_sent = 0; 2605 tp->bytes_retrans = 0; 2606 tp->duplicate_sack[0].start_seq = 0; 2607 tp->duplicate_sack[0].end_seq = 0; 2608 tp->dsack_dups = 0; 2609 tp->reord_seen = 0; 2610 2611 /* Clean up fastopen related fields */ 2612 tcp_free_fastopen_req(tp); 2613 inet->defer_connect = 0; 2614 2615 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2616 2617 if (sk->sk_frag.page) { 2618 put_page(sk->sk_frag.page); 2619 sk->sk_frag.page = NULL; 2620 sk->sk_frag.offset = 0; 2621 } 2622 2623 sk->sk_error_report(sk); 2624 return 0; 2625 } 2626 EXPORT_SYMBOL(tcp_disconnect); 2627 2628 static inline bool tcp_can_repair_sock(const struct sock *sk) 2629 { 2630 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2631 (sk->sk_state != TCP_LISTEN); 2632 } 2633 2634 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2635 { 2636 struct tcp_repair_window opt; 2637 2638 if (!tp->repair) 2639 return -EPERM; 2640 2641 if (len != sizeof(opt)) 2642 return -EINVAL; 2643 2644 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2645 return -EFAULT; 2646 2647 if (opt.max_window < opt.snd_wnd) 2648 return -EINVAL; 2649 2650 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2651 return -EINVAL; 2652 2653 if (after(opt.rcv_wup, tp->rcv_nxt)) 2654 return -EINVAL; 2655 2656 tp->snd_wl1 = opt.snd_wl1; 2657 tp->snd_wnd = opt.snd_wnd; 2658 tp->max_window = opt.max_window; 2659 2660 tp->rcv_wnd = opt.rcv_wnd; 2661 tp->rcv_wup = opt.rcv_wup; 2662 2663 return 0; 2664 } 2665 2666 static int tcp_repair_options_est(struct sock *sk, 2667 struct tcp_repair_opt __user *optbuf, unsigned int len) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 struct tcp_repair_opt opt; 2671 2672 while (len >= sizeof(opt)) { 2673 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2674 return -EFAULT; 2675 2676 optbuf++; 2677 len -= sizeof(opt); 2678 2679 switch (opt.opt_code) { 2680 case TCPOPT_MSS: 2681 tp->rx_opt.mss_clamp = opt.opt_val; 2682 tcp_mtup_init(sk); 2683 break; 2684 case TCPOPT_WINDOW: 2685 { 2686 u16 snd_wscale = opt.opt_val & 0xFFFF; 2687 u16 rcv_wscale = opt.opt_val >> 16; 2688 2689 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2690 return -EFBIG; 2691 2692 tp->rx_opt.snd_wscale = snd_wscale; 2693 tp->rx_opt.rcv_wscale = rcv_wscale; 2694 tp->rx_opt.wscale_ok = 1; 2695 } 2696 break; 2697 case TCPOPT_SACK_PERM: 2698 if (opt.opt_val != 0) 2699 return -EINVAL; 2700 2701 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2702 break; 2703 case TCPOPT_TIMESTAMP: 2704 if (opt.opt_val != 0) 2705 return -EINVAL; 2706 2707 tp->rx_opt.tstamp_ok = 1; 2708 break; 2709 } 2710 } 2711 2712 return 0; 2713 } 2714 2715 /* 2716 * Socket option code for TCP. 2717 */ 2718 static int do_tcp_setsockopt(struct sock *sk, int level, 2719 int optname, char __user *optval, unsigned int optlen) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 struct inet_connection_sock *icsk = inet_csk(sk); 2723 struct net *net = sock_net(sk); 2724 int val; 2725 int err = 0; 2726 2727 /* These are data/string values, all the others are ints */ 2728 switch (optname) { 2729 case TCP_CONGESTION: { 2730 char name[TCP_CA_NAME_MAX]; 2731 2732 if (optlen < 1) 2733 return -EINVAL; 2734 2735 val = strncpy_from_user(name, optval, 2736 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2737 if (val < 0) 2738 return -EFAULT; 2739 name[val] = 0; 2740 2741 lock_sock(sk); 2742 err = tcp_set_congestion_control(sk, name, true, true); 2743 release_sock(sk); 2744 return err; 2745 } 2746 case TCP_ULP: { 2747 char name[TCP_ULP_NAME_MAX]; 2748 2749 if (optlen < 1) 2750 return -EINVAL; 2751 2752 val = strncpy_from_user(name, optval, 2753 min_t(long, TCP_ULP_NAME_MAX - 1, 2754 optlen)); 2755 if (val < 0) 2756 return -EFAULT; 2757 name[val] = 0; 2758 2759 lock_sock(sk); 2760 err = tcp_set_ulp(sk, name); 2761 release_sock(sk); 2762 return err; 2763 } 2764 case TCP_FASTOPEN_KEY: { 2765 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2766 2767 if (optlen != sizeof(key)) 2768 return -EINVAL; 2769 2770 if (copy_from_user(key, optval, optlen)) 2771 return -EFAULT; 2772 2773 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2774 } 2775 default: 2776 /* fallthru */ 2777 break; 2778 } 2779 2780 if (optlen < sizeof(int)) 2781 return -EINVAL; 2782 2783 if (get_user(val, (int __user *)optval)) 2784 return -EFAULT; 2785 2786 lock_sock(sk); 2787 2788 switch (optname) { 2789 case TCP_MAXSEG: 2790 /* Values greater than interface MTU won't take effect. However 2791 * at the point when this call is done we typically don't yet 2792 * know which interface is going to be used 2793 */ 2794 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2795 err = -EINVAL; 2796 break; 2797 } 2798 tp->rx_opt.user_mss = val; 2799 break; 2800 2801 case TCP_NODELAY: 2802 if (val) { 2803 /* TCP_NODELAY is weaker than TCP_CORK, so that 2804 * this option on corked socket is remembered, but 2805 * it is not activated until cork is cleared. 2806 * 2807 * However, when TCP_NODELAY is set we make 2808 * an explicit push, which overrides even TCP_CORK 2809 * for currently queued segments. 2810 */ 2811 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2812 tcp_push_pending_frames(sk); 2813 } else { 2814 tp->nonagle &= ~TCP_NAGLE_OFF; 2815 } 2816 break; 2817 2818 case TCP_THIN_LINEAR_TIMEOUTS: 2819 if (val < 0 || val > 1) 2820 err = -EINVAL; 2821 else 2822 tp->thin_lto = val; 2823 break; 2824 2825 case TCP_THIN_DUPACK: 2826 if (val < 0 || val > 1) 2827 err = -EINVAL; 2828 break; 2829 2830 case TCP_REPAIR: 2831 if (!tcp_can_repair_sock(sk)) 2832 err = -EPERM; 2833 else if (val == TCP_REPAIR_ON) { 2834 tp->repair = 1; 2835 sk->sk_reuse = SK_FORCE_REUSE; 2836 tp->repair_queue = TCP_NO_QUEUE; 2837 } else if (val == TCP_REPAIR_OFF) { 2838 tp->repair = 0; 2839 sk->sk_reuse = SK_NO_REUSE; 2840 tcp_send_window_probe(sk); 2841 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2842 tp->repair = 0; 2843 sk->sk_reuse = SK_NO_REUSE; 2844 } else 2845 err = -EINVAL; 2846 2847 break; 2848 2849 case TCP_REPAIR_QUEUE: 2850 if (!tp->repair) 2851 err = -EPERM; 2852 else if ((unsigned int)val < TCP_QUEUES_NR) 2853 tp->repair_queue = val; 2854 else 2855 err = -EINVAL; 2856 break; 2857 2858 case TCP_QUEUE_SEQ: 2859 if (sk->sk_state != TCP_CLOSE) 2860 err = -EPERM; 2861 else if (tp->repair_queue == TCP_SEND_QUEUE) 2862 tp->write_seq = val; 2863 else if (tp->repair_queue == TCP_RECV_QUEUE) 2864 tp->rcv_nxt = val; 2865 else 2866 err = -EINVAL; 2867 break; 2868 2869 case TCP_REPAIR_OPTIONS: 2870 if (!tp->repair) 2871 err = -EINVAL; 2872 else if (sk->sk_state == TCP_ESTABLISHED) 2873 err = tcp_repair_options_est(sk, 2874 (struct tcp_repair_opt __user *)optval, 2875 optlen); 2876 else 2877 err = -EPERM; 2878 break; 2879 2880 case TCP_CORK: 2881 /* When set indicates to always queue non-full frames. 2882 * Later the user clears this option and we transmit 2883 * any pending partial frames in the queue. This is 2884 * meant to be used alongside sendfile() to get properly 2885 * filled frames when the user (for example) must write 2886 * out headers with a write() call first and then use 2887 * sendfile to send out the data parts. 2888 * 2889 * TCP_CORK can be set together with TCP_NODELAY and it is 2890 * stronger than TCP_NODELAY. 2891 */ 2892 if (val) { 2893 tp->nonagle |= TCP_NAGLE_CORK; 2894 } else { 2895 tp->nonagle &= ~TCP_NAGLE_CORK; 2896 if (tp->nonagle&TCP_NAGLE_OFF) 2897 tp->nonagle |= TCP_NAGLE_PUSH; 2898 tcp_push_pending_frames(sk); 2899 } 2900 break; 2901 2902 case TCP_KEEPIDLE: 2903 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2904 err = -EINVAL; 2905 else { 2906 tp->keepalive_time = val * HZ; 2907 if (sock_flag(sk, SOCK_KEEPOPEN) && 2908 !((1 << sk->sk_state) & 2909 (TCPF_CLOSE | TCPF_LISTEN))) { 2910 u32 elapsed = keepalive_time_elapsed(tp); 2911 if (tp->keepalive_time > elapsed) 2912 elapsed = tp->keepalive_time - elapsed; 2913 else 2914 elapsed = 0; 2915 inet_csk_reset_keepalive_timer(sk, elapsed); 2916 } 2917 } 2918 break; 2919 case TCP_KEEPINTVL: 2920 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2921 err = -EINVAL; 2922 else 2923 tp->keepalive_intvl = val * HZ; 2924 break; 2925 case TCP_KEEPCNT: 2926 if (val < 1 || val > MAX_TCP_KEEPCNT) 2927 err = -EINVAL; 2928 else 2929 tp->keepalive_probes = val; 2930 break; 2931 case TCP_SYNCNT: 2932 if (val < 1 || val > MAX_TCP_SYNCNT) 2933 err = -EINVAL; 2934 else 2935 icsk->icsk_syn_retries = val; 2936 break; 2937 2938 case TCP_SAVE_SYN: 2939 if (val < 0 || val > 1) 2940 err = -EINVAL; 2941 else 2942 tp->save_syn = val; 2943 break; 2944 2945 case TCP_LINGER2: 2946 if (val < 0) 2947 tp->linger2 = -1; 2948 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2949 tp->linger2 = 0; 2950 else 2951 tp->linger2 = val * HZ; 2952 break; 2953 2954 case TCP_DEFER_ACCEPT: 2955 /* Translate value in seconds to number of retransmits */ 2956 icsk->icsk_accept_queue.rskq_defer_accept = 2957 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2958 TCP_RTO_MAX / HZ); 2959 break; 2960 2961 case TCP_WINDOW_CLAMP: 2962 if (!val) { 2963 if (sk->sk_state != TCP_CLOSE) { 2964 err = -EINVAL; 2965 break; 2966 } 2967 tp->window_clamp = 0; 2968 } else 2969 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2970 SOCK_MIN_RCVBUF / 2 : val; 2971 break; 2972 2973 case TCP_QUICKACK: 2974 if (!val) { 2975 icsk->icsk_ack.pingpong = 1; 2976 } else { 2977 icsk->icsk_ack.pingpong = 0; 2978 if ((1 << sk->sk_state) & 2979 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2980 inet_csk_ack_scheduled(sk)) { 2981 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2982 tcp_cleanup_rbuf(sk, 1); 2983 if (!(val & 1)) 2984 icsk->icsk_ack.pingpong = 1; 2985 } 2986 } 2987 break; 2988 2989 #ifdef CONFIG_TCP_MD5SIG 2990 case TCP_MD5SIG: 2991 case TCP_MD5SIG_EXT: 2992 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 2993 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2994 else 2995 err = -EINVAL; 2996 break; 2997 #endif 2998 case TCP_USER_TIMEOUT: 2999 /* Cap the max time in ms TCP will retry or probe the window 3000 * before giving up and aborting (ETIMEDOUT) a connection. 3001 */ 3002 if (val < 0) 3003 err = -EINVAL; 3004 else 3005 icsk->icsk_user_timeout = val; 3006 break; 3007 3008 case TCP_FASTOPEN: 3009 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3010 TCPF_LISTEN))) { 3011 tcp_fastopen_init_key_once(net); 3012 3013 fastopen_queue_tune(sk, val); 3014 } else { 3015 err = -EINVAL; 3016 } 3017 break; 3018 case TCP_FASTOPEN_CONNECT: 3019 if (val > 1 || val < 0) { 3020 err = -EINVAL; 3021 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3022 if (sk->sk_state == TCP_CLOSE) 3023 tp->fastopen_connect = val; 3024 else 3025 err = -EINVAL; 3026 } else { 3027 err = -EOPNOTSUPP; 3028 } 3029 break; 3030 case TCP_FASTOPEN_NO_COOKIE: 3031 if (val > 1 || val < 0) 3032 err = -EINVAL; 3033 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3034 err = -EINVAL; 3035 else 3036 tp->fastopen_no_cookie = val; 3037 break; 3038 case TCP_TIMESTAMP: 3039 if (!tp->repair) 3040 err = -EPERM; 3041 else 3042 tp->tsoffset = val - tcp_time_stamp_raw(); 3043 break; 3044 case TCP_REPAIR_WINDOW: 3045 err = tcp_repair_set_window(tp, optval, optlen); 3046 break; 3047 case TCP_NOTSENT_LOWAT: 3048 tp->notsent_lowat = val; 3049 sk->sk_write_space(sk); 3050 break; 3051 case TCP_INQ: 3052 if (val > 1 || val < 0) 3053 err = -EINVAL; 3054 else 3055 tp->recvmsg_inq = val; 3056 break; 3057 default: 3058 err = -ENOPROTOOPT; 3059 break; 3060 } 3061 3062 release_sock(sk); 3063 return err; 3064 } 3065 3066 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3067 unsigned int optlen) 3068 { 3069 const struct inet_connection_sock *icsk = inet_csk(sk); 3070 3071 if (level != SOL_TCP) 3072 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3073 optval, optlen); 3074 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3075 } 3076 EXPORT_SYMBOL(tcp_setsockopt); 3077 3078 #ifdef CONFIG_COMPAT 3079 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3080 char __user *optval, unsigned int optlen) 3081 { 3082 if (level != SOL_TCP) 3083 return inet_csk_compat_setsockopt(sk, level, optname, 3084 optval, optlen); 3085 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3086 } 3087 EXPORT_SYMBOL(compat_tcp_setsockopt); 3088 #endif 3089 3090 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3091 struct tcp_info *info) 3092 { 3093 u64 stats[__TCP_CHRONO_MAX], total = 0; 3094 enum tcp_chrono i; 3095 3096 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3097 stats[i] = tp->chrono_stat[i - 1]; 3098 if (i == tp->chrono_type) 3099 stats[i] += tcp_jiffies32 - tp->chrono_start; 3100 stats[i] *= USEC_PER_SEC / HZ; 3101 total += stats[i]; 3102 } 3103 3104 info->tcpi_busy_time = total; 3105 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3106 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3107 } 3108 3109 /* Return information about state of tcp endpoint in API format. */ 3110 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3111 { 3112 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3113 const struct inet_connection_sock *icsk = inet_csk(sk); 3114 unsigned long rate; 3115 u32 now; 3116 u64 rate64; 3117 bool slow; 3118 3119 memset(info, 0, sizeof(*info)); 3120 if (sk->sk_type != SOCK_STREAM) 3121 return; 3122 3123 info->tcpi_state = inet_sk_state_load(sk); 3124 3125 /* Report meaningful fields for all TCP states, including listeners */ 3126 rate = READ_ONCE(sk->sk_pacing_rate); 3127 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3128 info->tcpi_pacing_rate = rate64; 3129 3130 rate = READ_ONCE(sk->sk_max_pacing_rate); 3131 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3132 info->tcpi_max_pacing_rate = rate64; 3133 3134 info->tcpi_reordering = tp->reordering; 3135 info->tcpi_snd_cwnd = tp->snd_cwnd; 3136 3137 if (info->tcpi_state == TCP_LISTEN) { 3138 /* listeners aliased fields : 3139 * tcpi_unacked -> Number of children ready for accept() 3140 * tcpi_sacked -> max backlog 3141 */ 3142 info->tcpi_unacked = sk->sk_ack_backlog; 3143 info->tcpi_sacked = sk->sk_max_ack_backlog; 3144 return; 3145 } 3146 3147 slow = lock_sock_fast(sk); 3148 3149 info->tcpi_ca_state = icsk->icsk_ca_state; 3150 info->tcpi_retransmits = icsk->icsk_retransmits; 3151 info->tcpi_probes = icsk->icsk_probes_out; 3152 info->tcpi_backoff = icsk->icsk_backoff; 3153 3154 if (tp->rx_opt.tstamp_ok) 3155 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3156 if (tcp_is_sack(tp)) 3157 info->tcpi_options |= TCPI_OPT_SACK; 3158 if (tp->rx_opt.wscale_ok) { 3159 info->tcpi_options |= TCPI_OPT_WSCALE; 3160 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3161 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3162 } 3163 3164 if (tp->ecn_flags & TCP_ECN_OK) 3165 info->tcpi_options |= TCPI_OPT_ECN; 3166 if (tp->ecn_flags & TCP_ECN_SEEN) 3167 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3168 if (tp->syn_data_acked) 3169 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3170 3171 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3172 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3173 info->tcpi_snd_mss = tp->mss_cache; 3174 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3175 3176 info->tcpi_unacked = tp->packets_out; 3177 info->tcpi_sacked = tp->sacked_out; 3178 3179 info->tcpi_lost = tp->lost_out; 3180 info->tcpi_retrans = tp->retrans_out; 3181 3182 now = tcp_jiffies32; 3183 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3184 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3185 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3186 3187 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3188 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3189 info->tcpi_rtt = tp->srtt_us >> 3; 3190 info->tcpi_rttvar = tp->mdev_us >> 2; 3191 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3192 info->tcpi_advmss = tp->advmss; 3193 3194 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3195 info->tcpi_rcv_space = tp->rcvq_space.space; 3196 3197 info->tcpi_total_retrans = tp->total_retrans; 3198 3199 info->tcpi_bytes_acked = tp->bytes_acked; 3200 info->tcpi_bytes_received = tp->bytes_received; 3201 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3202 tcp_get_info_chrono_stats(tp, info); 3203 3204 info->tcpi_segs_out = tp->segs_out; 3205 info->tcpi_segs_in = tp->segs_in; 3206 3207 info->tcpi_min_rtt = tcp_min_rtt(tp); 3208 info->tcpi_data_segs_in = tp->data_segs_in; 3209 info->tcpi_data_segs_out = tp->data_segs_out; 3210 3211 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3212 rate64 = tcp_compute_delivery_rate(tp); 3213 if (rate64) 3214 info->tcpi_delivery_rate = rate64; 3215 info->tcpi_delivered = tp->delivered; 3216 info->tcpi_delivered_ce = tp->delivered_ce; 3217 info->tcpi_bytes_sent = tp->bytes_sent; 3218 info->tcpi_bytes_retrans = tp->bytes_retrans; 3219 info->tcpi_dsack_dups = tp->dsack_dups; 3220 info->tcpi_reord_seen = tp->reord_seen; 3221 unlock_sock_fast(sk, slow); 3222 } 3223 EXPORT_SYMBOL_GPL(tcp_get_info); 3224 3225 static size_t tcp_opt_stats_get_size(void) 3226 { 3227 return 3228 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3229 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3230 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3231 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3232 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3233 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3234 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3235 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3236 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3237 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3238 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3239 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3240 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3241 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3242 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3243 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3244 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3245 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3246 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3247 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3248 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3249 0; 3250 } 3251 3252 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3253 { 3254 const struct tcp_sock *tp = tcp_sk(sk); 3255 struct sk_buff *stats; 3256 struct tcp_info info; 3257 unsigned long rate; 3258 u64 rate64; 3259 3260 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3261 if (!stats) 3262 return NULL; 3263 3264 tcp_get_info_chrono_stats(tp, &info); 3265 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3266 info.tcpi_busy_time, TCP_NLA_PAD); 3267 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3268 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3269 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3270 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3271 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3272 tp->data_segs_out, TCP_NLA_PAD); 3273 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3274 tp->total_retrans, TCP_NLA_PAD); 3275 3276 rate = READ_ONCE(sk->sk_pacing_rate); 3277 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3278 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3279 3280 rate64 = tcp_compute_delivery_rate(tp); 3281 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3282 3283 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3284 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3285 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3286 3287 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3288 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3289 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3290 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3291 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3292 3293 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3294 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3295 3296 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3297 TCP_NLA_PAD); 3298 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3299 TCP_NLA_PAD); 3300 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3301 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3302 3303 return stats; 3304 } 3305 3306 static int do_tcp_getsockopt(struct sock *sk, int level, 3307 int optname, char __user *optval, int __user *optlen) 3308 { 3309 struct inet_connection_sock *icsk = inet_csk(sk); 3310 struct tcp_sock *tp = tcp_sk(sk); 3311 struct net *net = sock_net(sk); 3312 int val, len; 3313 3314 if (get_user(len, optlen)) 3315 return -EFAULT; 3316 3317 len = min_t(unsigned int, len, sizeof(int)); 3318 3319 if (len < 0) 3320 return -EINVAL; 3321 3322 switch (optname) { 3323 case TCP_MAXSEG: 3324 val = tp->mss_cache; 3325 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3326 val = tp->rx_opt.user_mss; 3327 if (tp->repair) 3328 val = tp->rx_opt.mss_clamp; 3329 break; 3330 case TCP_NODELAY: 3331 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3332 break; 3333 case TCP_CORK: 3334 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3335 break; 3336 case TCP_KEEPIDLE: 3337 val = keepalive_time_when(tp) / HZ; 3338 break; 3339 case TCP_KEEPINTVL: 3340 val = keepalive_intvl_when(tp) / HZ; 3341 break; 3342 case TCP_KEEPCNT: 3343 val = keepalive_probes(tp); 3344 break; 3345 case TCP_SYNCNT: 3346 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3347 break; 3348 case TCP_LINGER2: 3349 val = tp->linger2; 3350 if (val >= 0) 3351 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3352 break; 3353 case TCP_DEFER_ACCEPT: 3354 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3355 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3356 break; 3357 case TCP_WINDOW_CLAMP: 3358 val = tp->window_clamp; 3359 break; 3360 case TCP_INFO: { 3361 struct tcp_info info; 3362 3363 if (get_user(len, optlen)) 3364 return -EFAULT; 3365 3366 tcp_get_info(sk, &info); 3367 3368 len = min_t(unsigned int, len, sizeof(info)); 3369 if (put_user(len, optlen)) 3370 return -EFAULT; 3371 if (copy_to_user(optval, &info, len)) 3372 return -EFAULT; 3373 return 0; 3374 } 3375 case TCP_CC_INFO: { 3376 const struct tcp_congestion_ops *ca_ops; 3377 union tcp_cc_info info; 3378 size_t sz = 0; 3379 int attr; 3380 3381 if (get_user(len, optlen)) 3382 return -EFAULT; 3383 3384 ca_ops = icsk->icsk_ca_ops; 3385 if (ca_ops && ca_ops->get_info) 3386 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3387 3388 len = min_t(unsigned int, len, sz); 3389 if (put_user(len, optlen)) 3390 return -EFAULT; 3391 if (copy_to_user(optval, &info, len)) 3392 return -EFAULT; 3393 return 0; 3394 } 3395 case TCP_QUICKACK: 3396 val = !icsk->icsk_ack.pingpong; 3397 break; 3398 3399 case TCP_CONGESTION: 3400 if (get_user(len, optlen)) 3401 return -EFAULT; 3402 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3403 if (put_user(len, optlen)) 3404 return -EFAULT; 3405 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3406 return -EFAULT; 3407 return 0; 3408 3409 case TCP_ULP: 3410 if (get_user(len, optlen)) 3411 return -EFAULT; 3412 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3413 if (!icsk->icsk_ulp_ops) { 3414 if (put_user(0, optlen)) 3415 return -EFAULT; 3416 return 0; 3417 } 3418 if (put_user(len, optlen)) 3419 return -EFAULT; 3420 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3421 return -EFAULT; 3422 return 0; 3423 3424 case TCP_FASTOPEN_KEY: { 3425 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3426 struct tcp_fastopen_context *ctx; 3427 3428 if (get_user(len, optlen)) 3429 return -EFAULT; 3430 3431 rcu_read_lock(); 3432 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3433 if (ctx) 3434 memcpy(key, ctx->key, sizeof(key)); 3435 else 3436 len = 0; 3437 rcu_read_unlock(); 3438 3439 len = min_t(unsigned int, len, sizeof(key)); 3440 if (put_user(len, optlen)) 3441 return -EFAULT; 3442 if (copy_to_user(optval, key, len)) 3443 return -EFAULT; 3444 return 0; 3445 } 3446 case TCP_THIN_LINEAR_TIMEOUTS: 3447 val = tp->thin_lto; 3448 break; 3449 3450 case TCP_THIN_DUPACK: 3451 val = 0; 3452 break; 3453 3454 case TCP_REPAIR: 3455 val = tp->repair; 3456 break; 3457 3458 case TCP_REPAIR_QUEUE: 3459 if (tp->repair) 3460 val = tp->repair_queue; 3461 else 3462 return -EINVAL; 3463 break; 3464 3465 case TCP_REPAIR_WINDOW: { 3466 struct tcp_repair_window opt; 3467 3468 if (get_user(len, optlen)) 3469 return -EFAULT; 3470 3471 if (len != sizeof(opt)) 3472 return -EINVAL; 3473 3474 if (!tp->repair) 3475 return -EPERM; 3476 3477 opt.snd_wl1 = tp->snd_wl1; 3478 opt.snd_wnd = tp->snd_wnd; 3479 opt.max_window = tp->max_window; 3480 opt.rcv_wnd = tp->rcv_wnd; 3481 opt.rcv_wup = tp->rcv_wup; 3482 3483 if (copy_to_user(optval, &opt, len)) 3484 return -EFAULT; 3485 return 0; 3486 } 3487 case TCP_QUEUE_SEQ: 3488 if (tp->repair_queue == TCP_SEND_QUEUE) 3489 val = tp->write_seq; 3490 else if (tp->repair_queue == TCP_RECV_QUEUE) 3491 val = tp->rcv_nxt; 3492 else 3493 return -EINVAL; 3494 break; 3495 3496 case TCP_USER_TIMEOUT: 3497 val = icsk->icsk_user_timeout; 3498 break; 3499 3500 case TCP_FASTOPEN: 3501 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3502 break; 3503 3504 case TCP_FASTOPEN_CONNECT: 3505 val = tp->fastopen_connect; 3506 break; 3507 3508 case TCP_FASTOPEN_NO_COOKIE: 3509 val = tp->fastopen_no_cookie; 3510 break; 3511 3512 case TCP_TIMESTAMP: 3513 val = tcp_time_stamp_raw() + tp->tsoffset; 3514 break; 3515 case TCP_NOTSENT_LOWAT: 3516 val = tp->notsent_lowat; 3517 break; 3518 case TCP_INQ: 3519 val = tp->recvmsg_inq; 3520 break; 3521 case TCP_SAVE_SYN: 3522 val = tp->save_syn; 3523 break; 3524 case TCP_SAVED_SYN: { 3525 if (get_user(len, optlen)) 3526 return -EFAULT; 3527 3528 lock_sock(sk); 3529 if (tp->saved_syn) { 3530 if (len < tp->saved_syn[0]) { 3531 if (put_user(tp->saved_syn[0], optlen)) { 3532 release_sock(sk); 3533 return -EFAULT; 3534 } 3535 release_sock(sk); 3536 return -EINVAL; 3537 } 3538 len = tp->saved_syn[0]; 3539 if (put_user(len, optlen)) { 3540 release_sock(sk); 3541 return -EFAULT; 3542 } 3543 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3544 release_sock(sk); 3545 return -EFAULT; 3546 } 3547 tcp_saved_syn_free(tp); 3548 release_sock(sk); 3549 } else { 3550 release_sock(sk); 3551 len = 0; 3552 if (put_user(len, optlen)) 3553 return -EFAULT; 3554 } 3555 return 0; 3556 } 3557 #ifdef CONFIG_MMU 3558 case TCP_ZEROCOPY_RECEIVE: { 3559 struct tcp_zerocopy_receive zc; 3560 int err; 3561 3562 if (get_user(len, optlen)) 3563 return -EFAULT; 3564 if (len != sizeof(zc)) 3565 return -EINVAL; 3566 if (copy_from_user(&zc, optval, len)) 3567 return -EFAULT; 3568 lock_sock(sk); 3569 err = tcp_zerocopy_receive(sk, &zc); 3570 release_sock(sk); 3571 if (!err && copy_to_user(optval, &zc, len)) 3572 err = -EFAULT; 3573 return err; 3574 } 3575 #endif 3576 default: 3577 return -ENOPROTOOPT; 3578 } 3579 3580 if (put_user(len, optlen)) 3581 return -EFAULT; 3582 if (copy_to_user(optval, &val, len)) 3583 return -EFAULT; 3584 return 0; 3585 } 3586 3587 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3588 int __user *optlen) 3589 { 3590 struct inet_connection_sock *icsk = inet_csk(sk); 3591 3592 if (level != SOL_TCP) 3593 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3594 optval, optlen); 3595 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3596 } 3597 EXPORT_SYMBOL(tcp_getsockopt); 3598 3599 #ifdef CONFIG_COMPAT 3600 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3601 char __user *optval, int __user *optlen) 3602 { 3603 if (level != SOL_TCP) 3604 return inet_csk_compat_getsockopt(sk, level, optname, 3605 optval, optlen); 3606 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3607 } 3608 EXPORT_SYMBOL(compat_tcp_getsockopt); 3609 #endif 3610 3611 #ifdef CONFIG_TCP_MD5SIG 3612 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3613 static DEFINE_MUTEX(tcp_md5sig_mutex); 3614 static bool tcp_md5sig_pool_populated = false; 3615 3616 static void __tcp_alloc_md5sig_pool(void) 3617 { 3618 struct crypto_ahash *hash; 3619 int cpu; 3620 3621 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3622 if (IS_ERR(hash)) 3623 return; 3624 3625 for_each_possible_cpu(cpu) { 3626 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3627 struct ahash_request *req; 3628 3629 if (!scratch) { 3630 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3631 sizeof(struct tcphdr), 3632 GFP_KERNEL, 3633 cpu_to_node(cpu)); 3634 if (!scratch) 3635 return; 3636 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3637 } 3638 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3639 continue; 3640 3641 req = ahash_request_alloc(hash, GFP_KERNEL); 3642 if (!req) 3643 return; 3644 3645 ahash_request_set_callback(req, 0, NULL, NULL); 3646 3647 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3648 } 3649 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3650 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3651 */ 3652 smp_wmb(); 3653 tcp_md5sig_pool_populated = true; 3654 } 3655 3656 bool tcp_alloc_md5sig_pool(void) 3657 { 3658 if (unlikely(!tcp_md5sig_pool_populated)) { 3659 mutex_lock(&tcp_md5sig_mutex); 3660 3661 if (!tcp_md5sig_pool_populated) 3662 __tcp_alloc_md5sig_pool(); 3663 3664 mutex_unlock(&tcp_md5sig_mutex); 3665 } 3666 return tcp_md5sig_pool_populated; 3667 } 3668 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3669 3670 3671 /** 3672 * tcp_get_md5sig_pool - get md5sig_pool for this user 3673 * 3674 * We use percpu structure, so if we succeed, we exit with preemption 3675 * and BH disabled, to make sure another thread or softirq handling 3676 * wont try to get same context. 3677 */ 3678 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3679 { 3680 local_bh_disable(); 3681 3682 if (tcp_md5sig_pool_populated) { 3683 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3684 smp_rmb(); 3685 return this_cpu_ptr(&tcp_md5sig_pool); 3686 } 3687 local_bh_enable(); 3688 return NULL; 3689 } 3690 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3691 3692 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3693 const struct sk_buff *skb, unsigned int header_len) 3694 { 3695 struct scatterlist sg; 3696 const struct tcphdr *tp = tcp_hdr(skb); 3697 struct ahash_request *req = hp->md5_req; 3698 unsigned int i; 3699 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3700 skb_headlen(skb) - header_len : 0; 3701 const struct skb_shared_info *shi = skb_shinfo(skb); 3702 struct sk_buff *frag_iter; 3703 3704 sg_init_table(&sg, 1); 3705 3706 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3707 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3708 if (crypto_ahash_update(req)) 3709 return 1; 3710 3711 for (i = 0; i < shi->nr_frags; ++i) { 3712 const struct skb_frag_struct *f = &shi->frags[i]; 3713 unsigned int offset = f->page_offset; 3714 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3715 3716 sg_set_page(&sg, page, skb_frag_size(f), 3717 offset_in_page(offset)); 3718 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3719 if (crypto_ahash_update(req)) 3720 return 1; 3721 } 3722 3723 skb_walk_frags(skb, frag_iter) 3724 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3725 return 1; 3726 3727 return 0; 3728 } 3729 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3730 3731 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3732 { 3733 struct scatterlist sg; 3734 3735 sg_init_one(&sg, key->key, key->keylen); 3736 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3737 return crypto_ahash_update(hp->md5_req); 3738 } 3739 EXPORT_SYMBOL(tcp_md5_hash_key); 3740 3741 #endif 3742 3743 void tcp_done(struct sock *sk) 3744 { 3745 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3746 3747 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3748 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3749 3750 tcp_set_state(sk, TCP_CLOSE); 3751 tcp_clear_xmit_timers(sk); 3752 if (req) 3753 reqsk_fastopen_remove(sk, req, false); 3754 3755 sk->sk_shutdown = SHUTDOWN_MASK; 3756 3757 if (!sock_flag(sk, SOCK_DEAD)) 3758 sk->sk_state_change(sk); 3759 else 3760 inet_csk_destroy_sock(sk); 3761 } 3762 EXPORT_SYMBOL_GPL(tcp_done); 3763 3764 int tcp_abort(struct sock *sk, int err) 3765 { 3766 if (!sk_fullsock(sk)) { 3767 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3768 struct request_sock *req = inet_reqsk(sk); 3769 3770 local_bh_disable(); 3771 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3772 local_bh_enable(); 3773 return 0; 3774 } 3775 return -EOPNOTSUPP; 3776 } 3777 3778 /* Don't race with userspace socket closes such as tcp_close. */ 3779 lock_sock(sk); 3780 3781 if (sk->sk_state == TCP_LISTEN) { 3782 tcp_set_state(sk, TCP_CLOSE); 3783 inet_csk_listen_stop(sk); 3784 } 3785 3786 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3787 local_bh_disable(); 3788 bh_lock_sock(sk); 3789 3790 if (!sock_flag(sk, SOCK_DEAD)) { 3791 sk->sk_err = err; 3792 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3793 smp_wmb(); 3794 sk->sk_error_report(sk); 3795 if (tcp_need_reset(sk->sk_state)) 3796 tcp_send_active_reset(sk, GFP_ATOMIC); 3797 tcp_done(sk); 3798 } 3799 3800 bh_unlock_sock(sk); 3801 local_bh_enable(); 3802 tcp_write_queue_purge(sk); 3803 release_sock(sk); 3804 return 0; 3805 } 3806 EXPORT_SYMBOL_GPL(tcp_abort); 3807 3808 extern struct tcp_congestion_ops tcp_reno; 3809 3810 static __initdata unsigned long thash_entries; 3811 static int __init set_thash_entries(char *str) 3812 { 3813 ssize_t ret; 3814 3815 if (!str) 3816 return 0; 3817 3818 ret = kstrtoul(str, 0, &thash_entries); 3819 if (ret) 3820 return 0; 3821 3822 return 1; 3823 } 3824 __setup("thash_entries=", set_thash_entries); 3825 3826 static void __init tcp_init_mem(void) 3827 { 3828 unsigned long limit = nr_free_buffer_pages() / 16; 3829 3830 limit = max(limit, 128UL); 3831 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3832 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3833 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3834 } 3835 3836 void __init tcp_init(void) 3837 { 3838 int max_rshare, max_wshare, cnt; 3839 unsigned long limit; 3840 unsigned int i; 3841 3842 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3843 FIELD_SIZEOF(struct sk_buff, cb)); 3844 3845 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3846 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3847 inet_hashinfo_init(&tcp_hashinfo); 3848 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3849 thash_entries, 21, /* one slot per 2 MB*/ 3850 0, 64 * 1024); 3851 tcp_hashinfo.bind_bucket_cachep = 3852 kmem_cache_create("tcp_bind_bucket", 3853 sizeof(struct inet_bind_bucket), 0, 3854 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3855 3856 /* Size and allocate the main established and bind bucket 3857 * hash tables. 3858 * 3859 * The methodology is similar to that of the buffer cache. 3860 */ 3861 tcp_hashinfo.ehash = 3862 alloc_large_system_hash("TCP established", 3863 sizeof(struct inet_ehash_bucket), 3864 thash_entries, 3865 17, /* one slot per 128 KB of memory */ 3866 0, 3867 NULL, 3868 &tcp_hashinfo.ehash_mask, 3869 0, 3870 thash_entries ? 0 : 512 * 1024); 3871 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3872 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3873 3874 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3875 panic("TCP: failed to alloc ehash_locks"); 3876 tcp_hashinfo.bhash = 3877 alloc_large_system_hash("TCP bind", 3878 sizeof(struct inet_bind_hashbucket), 3879 tcp_hashinfo.ehash_mask + 1, 3880 17, /* one slot per 128 KB of memory */ 3881 0, 3882 &tcp_hashinfo.bhash_size, 3883 NULL, 3884 0, 3885 64 * 1024); 3886 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3887 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3888 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3889 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3890 } 3891 3892 3893 cnt = tcp_hashinfo.ehash_mask + 1; 3894 sysctl_tcp_max_orphans = cnt / 2; 3895 3896 tcp_init_mem(); 3897 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3898 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3899 max_wshare = min(4UL*1024*1024, limit); 3900 max_rshare = min(6UL*1024*1024, limit); 3901 3902 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3903 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3904 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3905 3906 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3907 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3908 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3909 3910 pr_info("Hash tables configured (established %u bind %u)\n", 3911 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3912 3913 tcp_v4_init(); 3914 tcp_metrics_init(); 3915 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3916 tcp_tasklet_init(); 3917 } 3918