xref: /openbmc/linux/net/ipv4/tcp.c (revision ecba1060)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 
268 #include <net/icmp.h>
269 #include <net/tcp.h>
270 #include <net/xfrm.h>
271 #include <net/ip.h>
272 #include <net/netdma.h>
273 #include <net/sock.h>
274 
275 #include <asm/uaccess.h>
276 #include <asm/ioctls.h>
277 
278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279 
280 struct percpu_counter tcp_orphan_count;
281 EXPORT_SYMBOL_GPL(tcp_orphan_count);
282 
283 int sysctl_tcp_mem[3] __read_mostly;
284 int sysctl_tcp_wmem[3] __read_mostly;
285 int sysctl_tcp_rmem[3] __read_mostly;
286 
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 EXPORT_SYMBOL(sysctl_tcp_rmem);
289 EXPORT_SYMBOL(sysctl_tcp_wmem);
290 
291 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
293 
294 /*
295  * Current number of TCP sockets.
296  */
297 struct percpu_counter tcp_sockets_allocated;
298 EXPORT_SYMBOL(tcp_sockets_allocated);
299 
300 /*
301  * TCP splice context
302  */
303 struct tcp_splice_state {
304 	struct pipe_inode_info *pipe;
305 	size_t len;
306 	unsigned int flags;
307 };
308 
309 /*
310  * Pressure flag: try to collapse.
311  * Technical note: it is used by multiple contexts non atomically.
312  * All the __sk_mem_schedule() is of this nature: accounting
313  * is strict, actions are advisory and have some latency.
314  */
315 int tcp_memory_pressure __read_mostly;
316 
317 EXPORT_SYMBOL(tcp_memory_pressure);
318 
319 void tcp_enter_memory_pressure(struct sock *sk)
320 {
321 	if (!tcp_memory_pressure) {
322 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
323 		tcp_memory_pressure = 1;
324 	}
325 }
326 
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /*
330  *	Wait for a TCP event.
331  *
332  *	Note that we don't need to lock the socket, as the upper poll layers
333  *	take care of normal races (between the test and the event) and we don't
334  *	go look at any of the socket buffers directly.
335  */
336 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
337 {
338 	unsigned int mask;
339 	struct sock *sk = sock->sk;
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	sock_poll_wait(file, sk->sk_sleep, wait);
343 	if (sk->sk_state == TCP_LISTEN)
344 		return inet_csk_listen_poll(sk);
345 
346 	/* Socket is not locked. We are protected from async events
347 	 * by poll logic and correct handling of state changes
348 	 * made by other threads is impossible in any case.
349 	 */
350 
351 	mask = 0;
352 	if (sk->sk_err)
353 		mask = POLLERR;
354 
355 	/*
356 	 * POLLHUP is certainly not done right. But poll() doesn't
357 	 * have a notion of HUP in just one direction, and for a
358 	 * socket the read side is more interesting.
359 	 *
360 	 * Some poll() documentation says that POLLHUP is incompatible
361 	 * with the POLLOUT/POLLWR flags, so somebody should check this
362 	 * all. But careful, it tends to be safer to return too many
363 	 * bits than too few, and you can easily break real applications
364 	 * if you don't tell them that something has hung up!
365 	 *
366 	 * Check-me.
367 	 *
368 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
369 	 * our fs/select.c). It means that after we received EOF,
370 	 * poll always returns immediately, making impossible poll() on write()
371 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
372 	 * if and only if shutdown has been made in both directions.
373 	 * Actually, it is interesting to look how Solaris and DUX
374 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
375 	 * then we could set it on SND_SHUTDOWN. BTW examples given
376 	 * in Stevens' books assume exactly this behaviour, it explains
377 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
378 	 *
379 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
380 	 * blocking on fresh not-connected or disconnected socket. --ANK
381 	 */
382 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
383 		mask |= POLLHUP;
384 	if (sk->sk_shutdown & RCV_SHUTDOWN)
385 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
386 
387 	/* Connected? */
388 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
389 		int target = sock_rcvlowat(sk, 0, INT_MAX);
390 
391 		if (tp->urg_seq == tp->copied_seq &&
392 		    !sock_flag(sk, SOCK_URGINLINE) &&
393 		    tp->urg_data)
394 			target--;
395 
396 		/* Potential race condition. If read of tp below will
397 		 * escape above sk->sk_state, we can be illegally awaken
398 		 * in SYN_* states. */
399 		if (tp->rcv_nxt - tp->copied_seq >= target)
400 			mask |= POLLIN | POLLRDNORM;
401 
402 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
403 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
404 				mask |= POLLOUT | POLLWRNORM;
405 			} else {  /* send SIGIO later */
406 				set_bit(SOCK_ASYNC_NOSPACE,
407 					&sk->sk_socket->flags);
408 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
409 
410 				/* Race breaker. If space is freed after
411 				 * wspace test but before the flags are set,
412 				 * IO signal will be lost.
413 				 */
414 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
415 					mask |= POLLOUT | POLLWRNORM;
416 			}
417 		}
418 
419 		if (tp->urg_data & TCP_URG_VALID)
420 			mask |= POLLPRI;
421 	}
422 	return mask;
423 }
424 
425 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	int answ;
429 
430 	switch (cmd) {
431 	case SIOCINQ:
432 		if (sk->sk_state == TCP_LISTEN)
433 			return -EINVAL;
434 
435 		lock_sock(sk);
436 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
437 			answ = 0;
438 		else if (sock_flag(sk, SOCK_URGINLINE) ||
439 			 !tp->urg_data ||
440 			 before(tp->urg_seq, tp->copied_seq) ||
441 			 !before(tp->urg_seq, tp->rcv_nxt)) {
442 			struct sk_buff *skb;
443 
444 			answ = tp->rcv_nxt - tp->copied_seq;
445 
446 			/* Subtract 1, if FIN is in queue. */
447 			skb = skb_peek_tail(&sk->sk_receive_queue);
448 			if (answ && skb)
449 				answ -= tcp_hdr(skb)->fin;
450 		} else
451 			answ = tp->urg_seq - tp->copied_seq;
452 		release_sock(sk);
453 		break;
454 	case SIOCATMARK:
455 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
456 		break;
457 	case SIOCOUTQ:
458 		if (sk->sk_state == TCP_LISTEN)
459 			return -EINVAL;
460 
461 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
462 			answ = 0;
463 		else
464 			answ = tp->write_seq - tp->snd_una;
465 		break;
466 	default:
467 		return -ENOIOCTLCMD;
468 	}
469 
470 	return put_user(answ, (int __user *)arg);
471 }
472 
473 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
474 {
475 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
476 	tp->pushed_seq = tp->write_seq;
477 }
478 
479 static inline int forced_push(struct tcp_sock *tp)
480 {
481 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
482 }
483 
484 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
485 {
486 	struct tcp_sock *tp = tcp_sk(sk);
487 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
488 
489 	skb->csum    = 0;
490 	tcb->seq     = tcb->end_seq = tp->write_seq;
491 	tcb->flags   = TCPCB_FLAG_ACK;
492 	tcb->sacked  = 0;
493 	skb_header_release(skb);
494 	tcp_add_write_queue_tail(sk, skb);
495 	sk->sk_wmem_queued += skb->truesize;
496 	sk_mem_charge(sk, skb->truesize);
497 	if (tp->nonagle & TCP_NAGLE_PUSH)
498 		tp->nonagle &= ~TCP_NAGLE_PUSH;
499 }
500 
501 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
502 				struct sk_buff *skb)
503 {
504 	if (flags & MSG_OOB)
505 		tp->snd_up = tp->write_seq;
506 }
507 
508 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
509 			    int nonagle)
510 {
511 	struct tcp_sock *tp = tcp_sk(sk);
512 
513 	if (tcp_send_head(sk)) {
514 		struct sk_buff *skb = tcp_write_queue_tail(sk);
515 		if (!(flags & MSG_MORE) || forced_push(tp))
516 			tcp_mark_push(tp, skb);
517 		tcp_mark_urg(tp, flags, skb);
518 		__tcp_push_pending_frames(sk, mss_now,
519 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
520 	}
521 }
522 
523 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
524 				unsigned int offset, size_t len)
525 {
526 	struct tcp_splice_state *tss = rd_desc->arg.data;
527 	int ret;
528 
529 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
530 			      tss->flags);
531 	if (ret > 0)
532 		rd_desc->count -= ret;
533 	return ret;
534 }
535 
536 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
537 {
538 	/* Store TCP splice context information in read_descriptor_t. */
539 	read_descriptor_t rd_desc = {
540 		.arg.data = tss,
541 		.count	  = tss->len,
542 	};
543 
544 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
545 }
546 
547 /**
548  *  tcp_splice_read - splice data from TCP socket to a pipe
549  * @sock:	socket to splice from
550  * @ppos:	position (not valid)
551  * @pipe:	pipe to splice to
552  * @len:	number of bytes to splice
553  * @flags:	splice modifier flags
554  *
555  * Description:
556  *    Will read pages from given socket and fill them into a pipe.
557  *
558  **/
559 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
560 			struct pipe_inode_info *pipe, size_t len,
561 			unsigned int flags)
562 {
563 	struct sock *sk = sock->sk;
564 	struct tcp_splice_state tss = {
565 		.pipe = pipe,
566 		.len = len,
567 		.flags = flags,
568 	};
569 	long timeo;
570 	ssize_t spliced;
571 	int ret;
572 
573 	/*
574 	 * We can't seek on a socket input
575 	 */
576 	if (unlikely(*ppos))
577 		return -ESPIPE;
578 
579 	ret = spliced = 0;
580 
581 	lock_sock(sk);
582 
583 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
584 	while (tss.len) {
585 		ret = __tcp_splice_read(sk, &tss);
586 		if (ret < 0)
587 			break;
588 		else if (!ret) {
589 			if (spliced)
590 				break;
591 			if (sock_flag(sk, SOCK_DONE))
592 				break;
593 			if (sk->sk_err) {
594 				ret = sock_error(sk);
595 				break;
596 			}
597 			if (sk->sk_shutdown & RCV_SHUTDOWN)
598 				break;
599 			if (sk->sk_state == TCP_CLOSE) {
600 				/*
601 				 * This occurs when user tries to read
602 				 * from never connected socket.
603 				 */
604 				if (!sock_flag(sk, SOCK_DONE))
605 					ret = -ENOTCONN;
606 				break;
607 			}
608 			if (!timeo) {
609 				ret = -EAGAIN;
610 				break;
611 			}
612 			sk_wait_data(sk, &timeo);
613 			if (signal_pending(current)) {
614 				ret = sock_intr_errno(timeo);
615 				break;
616 			}
617 			continue;
618 		}
619 		tss.len -= ret;
620 		spliced += ret;
621 
622 		if (!timeo)
623 			break;
624 		release_sock(sk);
625 		lock_sock(sk);
626 
627 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
628 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
629 		    signal_pending(current))
630 			break;
631 	}
632 
633 	release_sock(sk);
634 
635 	if (spliced)
636 		return spliced;
637 
638 	return ret;
639 }
640 
641 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
642 {
643 	struct sk_buff *skb;
644 
645 	/* The TCP header must be at least 32-bit aligned.  */
646 	size = ALIGN(size, 4);
647 
648 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
649 	if (skb) {
650 		if (sk_wmem_schedule(sk, skb->truesize)) {
651 			/*
652 			 * Make sure that we have exactly size bytes
653 			 * available to the caller, no more, no less.
654 			 */
655 			skb_reserve(skb, skb_tailroom(skb) - size);
656 			return skb;
657 		}
658 		__kfree_skb(skb);
659 	} else {
660 		sk->sk_prot->enter_memory_pressure(sk);
661 		sk_stream_moderate_sndbuf(sk);
662 	}
663 	return NULL;
664 }
665 
666 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
667 				       int large_allowed)
668 {
669 	struct tcp_sock *tp = tcp_sk(sk);
670 	u32 xmit_size_goal, old_size_goal;
671 
672 	xmit_size_goal = mss_now;
673 
674 	if (large_allowed && sk_can_gso(sk)) {
675 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
676 				  inet_csk(sk)->icsk_af_ops->net_header_len -
677 				  inet_csk(sk)->icsk_ext_hdr_len -
678 				  tp->tcp_header_len);
679 
680 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
681 
682 		/* We try hard to avoid divides here */
683 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
684 
685 		if (likely(old_size_goal <= xmit_size_goal &&
686 			   old_size_goal + mss_now > xmit_size_goal)) {
687 			xmit_size_goal = old_size_goal;
688 		} else {
689 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
690 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
691 		}
692 	}
693 
694 	return max(xmit_size_goal, mss_now);
695 }
696 
697 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
698 {
699 	int mss_now;
700 
701 	mss_now = tcp_current_mss(sk);
702 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
703 
704 	return mss_now;
705 }
706 
707 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
708 			 size_t psize, int flags)
709 {
710 	struct tcp_sock *tp = tcp_sk(sk);
711 	int mss_now, size_goal;
712 	int err;
713 	ssize_t copied;
714 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
715 
716 	/* Wait for a connection to finish. */
717 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
718 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
719 			goto out_err;
720 
721 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
722 
723 	mss_now = tcp_send_mss(sk, &size_goal, flags);
724 	copied = 0;
725 
726 	err = -EPIPE;
727 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
728 		goto out_err;
729 
730 	while (psize > 0) {
731 		struct sk_buff *skb = tcp_write_queue_tail(sk);
732 		struct page *page = pages[poffset / PAGE_SIZE];
733 		int copy, i, can_coalesce;
734 		int offset = poffset % PAGE_SIZE;
735 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
736 
737 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
738 new_segment:
739 			if (!sk_stream_memory_free(sk))
740 				goto wait_for_sndbuf;
741 
742 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
743 			if (!skb)
744 				goto wait_for_memory;
745 
746 			skb_entail(sk, skb);
747 			copy = size_goal;
748 		}
749 
750 		if (copy > size)
751 			copy = size;
752 
753 		i = skb_shinfo(skb)->nr_frags;
754 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
755 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
756 			tcp_mark_push(tp, skb);
757 			goto new_segment;
758 		}
759 		if (!sk_wmem_schedule(sk, copy))
760 			goto wait_for_memory;
761 
762 		if (can_coalesce) {
763 			skb_shinfo(skb)->frags[i - 1].size += copy;
764 		} else {
765 			get_page(page);
766 			skb_fill_page_desc(skb, i, page, offset, copy);
767 		}
768 
769 		skb->len += copy;
770 		skb->data_len += copy;
771 		skb->truesize += copy;
772 		sk->sk_wmem_queued += copy;
773 		sk_mem_charge(sk, copy);
774 		skb->ip_summed = CHECKSUM_PARTIAL;
775 		tp->write_seq += copy;
776 		TCP_SKB_CB(skb)->end_seq += copy;
777 		skb_shinfo(skb)->gso_segs = 0;
778 
779 		if (!copied)
780 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
781 
782 		copied += copy;
783 		poffset += copy;
784 		if (!(psize -= copy))
785 			goto out;
786 
787 		if (skb->len < size_goal || (flags & MSG_OOB))
788 			continue;
789 
790 		if (forced_push(tp)) {
791 			tcp_mark_push(tp, skb);
792 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
793 		} else if (skb == tcp_send_head(sk))
794 			tcp_push_one(sk, mss_now);
795 		continue;
796 
797 wait_for_sndbuf:
798 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
799 wait_for_memory:
800 		if (copied)
801 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
802 
803 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
804 			goto do_error;
805 
806 		mss_now = tcp_send_mss(sk, &size_goal, flags);
807 	}
808 
809 out:
810 	if (copied)
811 		tcp_push(sk, flags, mss_now, tp->nonagle);
812 	return copied;
813 
814 do_error:
815 	if (copied)
816 		goto out;
817 out_err:
818 	return sk_stream_error(sk, flags, err);
819 }
820 
821 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
822 		     size_t size, int flags)
823 {
824 	ssize_t res;
825 	struct sock *sk = sock->sk;
826 
827 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
828 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
829 		return sock_no_sendpage(sock, page, offset, size, flags);
830 
831 	lock_sock(sk);
832 	TCP_CHECK_TIMER(sk);
833 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
834 	TCP_CHECK_TIMER(sk);
835 	release_sock(sk);
836 	return res;
837 }
838 
839 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
840 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
841 
842 static inline int select_size(struct sock *sk)
843 {
844 	struct tcp_sock *tp = tcp_sk(sk);
845 	int tmp = tp->mss_cache;
846 
847 	if (sk->sk_route_caps & NETIF_F_SG) {
848 		if (sk_can_gso(sk))
849 			tmp = 0;
850 		else {
851 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
852 
853 			if (tmp >= pgbreak &&
854 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
855 				tmp = pgbreak;
856 		}
857 	}
858 
859 	return tmp;
860 }
861 
862 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
863 		size_t size)
864 {
865 	struct sock *sk = sock->sk;
866 	struct iovec *iov;
867 	struct tcp_sock *tp = tcp_sk(sk);
868 	struct sk_buff *skb;
869 	int iovlen, flags;
870 	int mss_now, size_goal;
871 	int err, copied;
872 	long timeo;
873 
874 	lock_sock(sk);
875 	TCP_CHECK_TIMER(sk);
876 
877 	flags = msg->msg_flags;
878 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
879 
880 	/* Wait for a connection to finish. */
881 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
882 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
883 			goto out_err;
884 
885 	/* This should be in poll */
886 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
887 
888 	mss_now = tcp_send_mss(sk, &size_goal, flags);
889 
890 	/* Ok commence sending. */
891 	iovlen = msg->msg_iovlen;
892 	iov = msg->msg_iov;
893 	copied = 0;
894 
895 	err = -EPIPE;
896 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
897 		goto out_err;
898 
899 	while (--iovlen >= 0) {
900 		int seglen = iov->iov_len;
901 		unsigned char __user *from = iov->iov_base;
902 
903 		iov++;
904 
905 		while (seglen > 0) {
906 			int copy = 0;
907 			int max = size_goal;
908 
909 			skb = tcp_write_queue_tail(sk);
910 			if (tcp_send_head(sk)) {
911 				if (skb->ip_summed == CHECKSUM_NONE)
912 					max = mss_now;
913 				copy = max - skb->len;
914 			}
915 
916 			if (copy <= 0) {
917 new_segment:
918 				/* Allocate new segment. If the interface is SG,
919 				 * allocate skb fitting to single page.
920 				 */
921 				if (!sk_stream_memory_free(sk))
922 					goto wait_for_sndbuf;
923 
924 				skb = sk_stream_alloc_skb(sk, select_size(sk),
925 						sk->sk_allocation);
926 				if (!skb)
927 					goto wait_for_memory;
928 
929 				/*
930 				 * Check whether we can use HW checksum.
931 				 */
932 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
933 					skb->ip_summed = CHECKSUM_PARTIAL;
934 
935 				skb_entail(sk, skb);
936 				copy = size_goal;
937 				max = size_goal;
938 			}
939 
940 			/* Try to append data to the end of skb. */
941 			if (copy > seglen)
942 				copy = seglen;
943 
944 			/* Where to copy to? */
945 			if (skb_tailroom(skb) > 0) {
946 				/* We have some space in skb head. Superb! */
947 				if (copy > skb_tailroom(skb))
948 					copy = skb_tailroom(skb);
949 				if ((err = skb_add_data(skb, from, copy)) != 0)
950 					goto do_fault;
951 			} else {
952 				int merge = 0;
953 				int i = skb_shinfo(skb)->nr_frags;
954 				struct page *page = TCP_PAGE(sk);
955 				int off = TCP_OFF(sk);
956 
957 				if (skb_can_coalesce(skb, i, page, off) &&
958 				    off != PAGE_SIZE) {
959 					/* We can extend the last page
960 					 * fragment. */
961 					merge = 1;
962 				} else if (i == MAX_SKB_FRAGS ||
963 					   (!i &&
964 					   !(sk->sk_route_caps & NETIF_F_SG))) {
965 					/* Need to add new fragment and cannot
966 					 * do this because interface is non-SG,
967 					 * or because all the page slots are
968 					 * busy. */
969 					tcp_mark_push(tp, skb);
970 					goto new_segment;
971 				} else if (page) {
972 					if (off == PAGE_SIZE) {
973 						put_page(page);
974 						TCP_PAGE(sk) = page = NULL;
975 						off = 0;
976 					}
977 				} else
978 					off = 0;
979 
980 				if (copy > PAGE_SIZE - off)
981 					copy = PAGE_SIZE - off;
982 
983 				if (!sk_wmem_schedule(sk, copy))
984 					goto wait_for_memory;
985 
986 				if (!page) {
987 					/* Allocate new cache page. */
988 					if (!(page = sk_stream_alloc_page(sk)))
989 						goto wait_for_memory;
990 				}
991 
992 				/* Time to copy data. We are close to
993 				 * the end! */
994 				err = skb_copy_to_page(sk, from, skb, page,
995 						       off, copy);
996 				if (err) {
997 					/* If this page was new, give it to the
998 					 * socket so it does not get leaked.
999 					 */
1000 					if (!TCP_PAGE(sk)) {
1001 						TCP_PAGE(sk) = page;
1002 						TCP_OFF(sk) = 0;
1003 					}
1004 					goto do_error;
1005 				}
1006 
1007 				/* Update the skb. */
1008 				if (merge) {
1009 					skb_shinfo(skb)->frags[i - 1].size +=
1010 									copy;
1011 				} else {
1012 					skb_fill_page_desc(skb, i, page, off, copy);
1013 					if (TCP_PAGE(sk)) {
1014 						get_page(page);
1015 					} else if (off + copy < PAGE_SIZE) {
1016 						get_page(page);
1017 						TCP_PAGE(sk) = page;
1018 					}
1019 				}
1020 
1021 				TCP_OFF(sk) = off + copy;
1022 			}
1023 
1024 			if (!copied)
1025 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
1026 
1027 			tp->write_seq += copy;
1028 			TCP_SKB_CB(skb)->end_seq += copy;
1029 			skb_shinfo(skb)->gso_segs = 0;
1030 
1031 			from += copy;
1032 			copied += copy;
1033 			if ((seglen -= copy) == 0 && iovlen == 0)
1034 				goto out;
1035 
1036 			if (skb->len < max || (flags & MSG_OOB))
1037 				continue;
1038 
1039 			if (forced_push(tp)) {
1040 				tcp_mark_push(tp, skb);
1041 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1042 			} else if (skb == tcp_send_head(sk))
1043 				tcp_push_one(sk, mss_now);
1044 			continue;
1045 
1046 wait_for_sndbuf:
1047 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1048 wait_for_memory:
1049 			if (copied)
1050 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1051 
1052 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1053 				goto do_error;
1054 
1055 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1056 		}
1057 	}
1058 
1059 out:
1060 	if (copied)
1061 		tcp_push(sk, flags, mss_now, tp->nonagle);
1062 	TCP_CHECK_TIMER(sk);
1063 	release_sock(sk);
1064 	return copied;
1065 
1066 do_fault:
1067 	if (!skb->len) {
1068 		tcp_unlink_write_queue(skb, sk);
1069 		/* It is the one place in all of TCP, except connection
1070 		 * reset, where we can be unlinking the send_head.
1071 		 */
1072 		tcp_check_send_head(sk, skb);
1073 		sk_wmem_free_skb(sk, skb);
1074 	}
1075 
1076 do_error:
1077 	if (copied)
1078 		goto out;
1079 out_err:
1080 	err = sk_stream_error(sk, flags, err);
1081 	TCP_CHECK_TIMER(sk);
1082 	release_sock(sk);
1083 	return err;
1084 }
1085 
1086 /*
1087  *	Handle reading urgent data. BSD has very simple semantics for
1088  *	this, no blocking and very strange errors 8)
1089  */
1090 
1091 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1092 {
1093 	struct tcp_sock *tp = tcp_sk(sk);
1094 
1095 	/* No URG data to read. */
1096 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1097 	    tp->urg_data == TCP_URG_READ)
1098 		return -EINVAL;	/* Yes this is right ! */
1099 
1100 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1101 		return -ENOTCONN;
1102 
1103 	if (tp->urg_data & TCP_URG_VALID) {
1104 		int err = 0;
1105 		char c = tp->urg_data;
1106 
1107 		if (!(flags & MSG_PEEK))
1108 			tp->urg_data = TCP_URG_READ;
1109 
1110 		/* Read urgent data. */
1111 		msg->msg_flags |= MSG_OOB;
1112 
1113 		if (len > 0) {
1114 			if (!(flags & MSG_TRUNC))
1115 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1116 			len = 1;
1117 		} else
1118 			msg->msg_flags |= MSG_TRUNC;
1119 
1120 		return err ? -EFAULT : len;
1121 	}
1122 
1123 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1124 		return 0;
1125 
1126 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1127 	 * the available implementations agree in this case:
1128 	 * this call should never block, independent of the
1129 	 * blocking state of the socket.
1130 	 * Mike <pall@rz.uni-karlsruhe.de>
1131 	 */
1132 	return -EAGAIN;
1133 }
1134 
1135 /* Clean up the receive buffer for full frames taken by the user,
1136  * then send an ACK if necessary.  COPIED is the number of bytes
1137  * tcp_recvmsg has given to the user so far, it speeds up the
1138  * calculation of whether or not we must ACK for the sake of
1139  * a window update.
1140  */
1141 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1142 {
1143 	struct tcp_sock *tp = tcp_sk(sk);
1144 	int time_to_ack = 0;
1145 
1146 #if TCP_DEBUG
1147 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1148 
1149 	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1150 #endif
1151 
1152 	if (inet_csk_ack_scheduled(sk)) {
1153 		const struct inet_connection_sock *icsk = inet_csk(sk);
1154 		   /* Delayed ACKs frequently hit locked sockets during bulk
1155 		    * receive. */
1156 		if (icsk->icsk_ack.blocked ||
1157 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1158 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1159 		    /*
1160 		     * If this read emptied read buffer, we send ACK, if
1161 		     * connection is not bidirectional, user drained
1162 		     * receive buffer and there was a small segment
1163 		     * in queue.
1164 		     */
1165 		    (copied > 0 &&
1166 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1167 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1168 		       !icsk->icsk_ack.pingpong)) &&
1169 		      !atomic_read(&sk->sk_rmem_alloc)))
1170 			time_to_ack = 1;
1171 	}
1172 
1173 	/* We send an ACK if we can now advertise a non-zero window
1174 	 * which has been raised "significantly".
1175 	 *
1176 	 * Even if window raised up to infinity, do not send window open ACK
1177 	 * in states, where we will not receive more. It is useless.
1178 	 */
1179 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1180 		__u32 rcv_window_now = tcp_receive_window(tp);
1181 
1182 		/* Optimize, __tcp_select_window() is not cheap. */
1183 		if (2*rcv_window_now <= tp->window_clamp) {
1184 			__u32 new_window = __tcp_select_window(sk);
1185 
1186 			/* Send ACK now, if this read freed lots of space
1187 			 * in our buffer. Certainly, new_window is new window.
1188 			 * We can advertise it now, if it is not less than current one.
1189 			 * "Lots" means "at least twice" here.
1190 			 */
1191 			if (new_window && new_window >= 2 * rcv_window_now)
1192 				time_to_ack = 1;
1193 		}
1194 	}
1195 	if (time_to_ack)
1196 		tcp_send_ack(sk);
1197 }
1198 
1199 static void tcp_prequeue_process(struct sock *sk)
1200 {
1201 	struct sk_buff *skb;
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 
1204 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1205 
1206 	/* RX process wants to run with disabled BHs, though it is not
1207 	 * necessary */
1208 	local_bh_disable();
1209 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1210 		sk_backlog_rcv(sk, skb);
1211 	local_bh_enable();
1212 
1213 	/* Clear memory counter. */
1214 	tp->ucopy.memory = 0;
1215 }
1216 
1217 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1218 {
1219 	struct sk_buff *skb;
1220 	u32 offset;
1221 
1222 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1223 		offset = seq - TCP_SKB_CB(skb)->seq;
1224 		if (tcp_hdr(skb)->syn)
1225 			offset--;
1226 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1227 			*off = offset;
1228 			return skb;
1229 		}
1230 	}
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * This routine provides an alternative to tcp_recvmsg() for routines
1236  * that would like to handle copying from skbuffs directly in 'sendfile'
1237  * fashion.
1238  * Note:
1239  *	- It is assumed that the socket was locked by the caller.
1240  *	- The routine does not block.
1241  *	- At present, there is no support for reading OOB data
1242  *	  or for 'peeking' the socket using this routine
1243  *	  (although both would be easy to implement).
1244  */
1245 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1246 		  sk_read_actor_t recv_actor)
1247 {
1248 	struct sk_buff *skb;
1249 	struct tcp_sock *tp = tcp_sk(sk);
1250 	u32 seq = tp->copied_seq;
1251 	u32 offset;
1252 	int copied = 0;
1253 
1254 	if (sk->sk_state == TCP_LISTEN)
1255 		return -ENOTCONN;
1256 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1257 		if (offset < skb->len) {
1258 			int used;
1259 			size_t len;
1260 
1261 			len = skb->len - offset;
1262 			/* Stop reading if we hit a patch of urgent data */
1263 			if (tp->urg_data) {
1264 				u32 urg_offset = tp->urg_seq - seq;
1265 				if (urg_offset < len)
1266 					len = urg_offset;
1267 				if (!len)
1268 					break;
1269 			}
1270 			used = recv_actor(desc, skb, offset, len);
1271 			if (used < 0) {
1272 				if (!copied)
1273 					copied = used;
1274 				break;
1275 			} else if (used <= len) {
1276 				seq += used;
1277 				copied += used;
1278 				offset += used;
1279 			}
1280 			/*
1281 			 * If recv_actor drops the lock (e.g. TCP splice
1282 			 * receive) the skb pointer might be invalid when
1283 			 * getting here: tcp_collapse might have deleted it
1284 			 * while aggregating skbs from the socket queue.
1285 			 */
1286 			skb = tcp_recv_skb(sk, seq-1, &offset);
1287 			if (!skb || (offset+1 != skb->len))
1288 				break;
1289 		}
1290 		if (tcp_hdr(skb)->fin) {
1291 			sk_eat_skb(sk, skb, 0);
1292 			++seq;
1293 			break;
1294 		}
1295 		sk_eat_skb(sk, skb, 0);
1296 		if (!desc->count)
1297 			break;
1298 	}
1299 	tp->copied_seq = seq;
1300 
1301 	tcp_rcv_space_adjust(sk);
1302 
1303 	/* Clean up data we have read: This will do ACK frames. */
1304 	if (copied > 0)
1305 		tcp_cleanup_rbuf(sk, copied);
1306 	return copied;
1307 }
1308 
1309 /*
1310  *	This routine copies from a sock struct into the user buffer.
1311  *
1312  *	Technical note: in 2.3 we work on _locked_ socket, so that
1313  *	tricks with *seq access order and skb->users are not required.
1314  *	Probably, code can be easily improved even more.
1315  */
1316 
1317 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1318 		size_t len, int nonblock, int flags, int *addr_len)
1319 {
1320 	struct tcp_sock *tp = tcp_sk(sk);
1321 	int copied = 0;
1322 	u32 peek_seq;
1323 	u32 *seq;
1324 	unsigned long used;
1325 	int err;
1326 	int target;		/* Read at least this many bytes */
1327 	long timeo;
1328 	struct task_struct *user_recv = NULL;
1329 	int copied_early = 0;
1330 	struct sk_buff *skb;
1331 	u32 urg_hole = 0;
1332 
1333 	lock_sock(sk);
1334 
1335 	TCP_CHECK_TIMER(sk);
1336 
1337 	err = -ENOTCONN;
1338 	if (sk->sk_state == TCP_LISTEN)
1339 		goto out;
1340 
1341 	timeo = sock_rcvtimeo(sk, nonblock);
1342 
1343 	/* Urgent data needs to be handled specially. */
1344 	if (flags & MSG_OOB)
1345 		goto recv_urg;
1346 
1347 	seq = &tp->copied_seq;
1348 	if (flags & MSG_PEEK) {
1349 		peek_seq = tp->copied_seq;
1350 		seq = &peek_seq;
1351 	}
1352 
1353 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1354 
1355 #ifdef CONFIG_NET_DMA
1356 	tp->ucopy.dma_chan = NULL;
1357 	preempt_disable();
1358 	skb = skb_peek_tail(&sk->sk_receive_queue);
1359 	{
1360 		int available = 0;
1361 
1362 		if (skb)
1363 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1364 		if ((available < target) &&
1365 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1366 		    !sysctl_tcp_low_latency &&
1367 		    dma_find_channel(DMA_MEMCPY)) {
1368 			preempt_enable_no_resched();
1369 			tp->ucopy.pinned_list =
1370 					dma_pin_iovec_pages(msg->msg_iov, len);
1371 		} else {
1372 			preempt_enable_no_resched();
1373 		}
1374 	}
1375 #endif
1376 
1377 	do {
1378 		u32 offset;
1379 
1380 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1381 		if (tp->urg_data && tp->urg_seq == *seq) {
1382 			if (copied)
1383 				break;
1384 			if (signal_pending(current)) {
1385 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1386 				break;
1387 			}
1388 		}
1389 
1390 		/* Next get a buffer. */
1391 
1392 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1393 			/* Now that we have two receive queues this
1394 			 * shouldn't happen.
1395 			 */
1396 			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1397 				printk(KERN_INFO "recvmsg bug: copied %X "
1398 				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1399 				break;
1400 			}
1401 			offset = *seq - TCP_SKB_CB(skb)->seq;
1402 			if (tcp_hdr(skb)->syn)
1403 				offset--;
1404 			if (offset < skb->len)
1405 				goto found_ok_skb;
1406 			if (tcp_hdr(skb)->fin)
1407 				goto found_fin_ok;
1408 			WARN_ON(!(flags & MSG_PEEK));
1409 		}
1410 
1411 		/* Well, if we have backlog, try to process it now yet. */
1412 
1413 		if (copied >= target && !sk->sk_backlog.tail)
1414 			break;
1415 
1416 		if (copied) {
1417 			if (sk->sk_err ||
1418 			    sk->sk_state == TCP_CLOSE ||
1419 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1420 			    !timeo ||
1421 			    signal_pending(current))
1422 				break;
1423 		} else {
1424 			if (sock_flag(sk, SOCK_DONE))
1425 				break;
1426 
1427 			if (sk->sk_err) {
1428 				copied = sock_error(sk);
1429 				break;
1430 			}
1431 
1432 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1433 				break;
1434 
1435 			if (sk->sk_state == TCP_CLOSE) {
1436 				if (!sock_flag(sk, SOCK_DONE)) {
1437 					/* This occurs when user tries to read
1438 					 * from never connected socket.
1439 					 */
1440 					copied = -ENOTCONN;
1441 					break;
1442 				}
1443 				break;
1444 			}
1445 
1446 			if (!timeo) {
1447 				copied = -EAGAIN;
1448 				break;
1449 			}
1450 
1451 			if (signal_pending(current)) {
1452 				copied = sock_intr_errno(timeo);
1453 				break;
1454 			}
1455 		}
1456 
1457 		tcp_cleanup_rbuf(sk, copied);
1458 
1459 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1460 			/* Install new reader */
1461 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1462 				user_recv = current;
1463 				tp->ucopy.task = user_recv;
1464 				tp->ucopy.iov = msg->msg_iov;
1465 			}
1466 
1467 			tp->ucopy.len = len;
1468 
1469 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1470 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1471 
1472 			/* Ugly... If prequeue is not empty, we have to
1473 			 * process it before releasing socket, otherwise
1474 			 * order will be broken at second iteration.
1475 			 * More elegant solution is required!!!
1476 			 *
1477 			 * Look: we have the following (pseudo)queues:
1478 			 *
1479 			 * 1. packets in flight
1480 			 * 2. backlog
1481 			 * 3. prequeue
1482 			 * 4. receive_queue
1483 			 *
1484 			 * Each queue can be processed only if the next ones
1485 			 * are empty. At this point we have empty receive_queue.
1486 			 * But prequeue _can_ be not empty after 2nd iteration,
1487 			 * when we jumped to start of loop because backlog
1488 			 * processing added something to receive_queue.
1489 			 * We cannot release_sock(), because backlog contains
1490 			 * packets arrived _after_ prequeued ones.
1491 			 *
1492 			 * Shortly, algorithm is clear --- to process all
1493 			 * the queues in order. We could make it more directly,
1494 			 * requeueing packets from backlog to prequeue, if
1495 			 * is not empty. It is more elegant, but eats cycles,
1496 			 * unfortunately.
1497 			 */
1498 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1499 				goto do_prequeue;
1500 
1501 			/* __ Set realtime policy in scheduler __ */
1502 		}
1503 
1504 		if (copied >= target) {
1505 			/* Do not sleep, just process backlog. */
1506 			release_sock(sk);
1507 			lock_sock(sk);
1508 		} else
1509 			sk_wait_data(sk, &timeo);
1510 
1511 #ifdef CONFIG_NET_DMA
1512 		tp->ucopy.wakeup = 0;
1513 #endif
1514 
1515 		if (user_recv) {
1516 			int chunk;
1517 
1518 			/* __ Restore normal policy in scheduler __ */
1519 
1520 			if ((chunk = len - tp->ucopy.len) != 0) {
1521 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1522 				len -= chunk;
1523 				copied += chunk;
1524 			}
1525 
1526 			if (tp->rcv_nxt == tp->copied_seq &&
1527 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1528 do_prequeue:
1529 				tcp_prequeue_process(sk);
1530 
1531 				if ((chunk = len - tp->ucopy.len) != 0) {
1532 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1533 					len -= chunk;
1534 					copied += chunk;
1535 				}
1536 			}
1537 		}
1538 		if ((flags & MSG_PEEK) &&
1539 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1540 			if (net_ratelimit())
1541 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1542 				       current->comm, task_pid_nr(current));
1543 			peek_seq = tp->copied_seq;
1544 		}
1545 		continue;
1546 
1547 	found_ok_skb:
1548 		/* Ok so how much can we use? */
1549 		used = skb->len - offset;
1550 		if (len < used)
1551 			used = len;
1552 
1553 		/* Do we have urgent data here? */
1554 		if (tp->urg_data) {
1555 			u32 urg_offset = tp->urg_seq - *seq;
1556 			if (urg_offset < used) {
1557 				if (!urg_offset) {
1558 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1559 						++*seq;
1560 						urg_hole++;
1561 						offset++;
1562 						used--;
1563 						if (!used)
1564 							goto skip_copy;
1565 					}
1566 				} else
1567 					used = urg_offset;
1568 			}
1569 		}
1570 
1571 		if (!(flags & MSG_TRUNC)) {
1572 #ifdef CONFIG_NET_DMA
1573 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1574 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1575 
1576 			if (tp->ucopy.dma_chan) {
1577 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1578 					tp->ucopy.dma_chan, skb, offset,
1579 					msg->msg_iov, used,
1580 					tp->ucopy.pinned_list);
1581 
1582 				if (tp->ucopy.dma_cookie < 0) {
1583 
1584 					printk(KERN_ALERT "dma_cookie < 0\n");
1585 
1586 					/* Exception. Bailout! */
1587 					if (!copied)
1588 						copied = -EFAULT;
1589 					break;
1590 				}
1591 				if ((offset + used) == skb->len)
1592 					copied_early = 1;
1593 
1594 			} else
1595 #endif
1596 			{
1597 				err = skb_copy_datagram_iovec(skb, offset,
1598 						msg->msg_iov, used);
1599 				if (err) {
1600 					/* Exception. Bailout! */
1601 					if (!copied)
1602 						copied = -EFAULT;
1603 					break;
1604 				}
1605 			}
1606 		}
1607 
1608 		*seq += used;
1609 		copied += used;
1610 		len -= used;
1611 
1612 		tcp_rcv_space_adjust(sk);
1613 
1614 skip_copy:
1615 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1616 			tp->urg_data = 0;
1617 			tcp_fast_path_check(sk);
1618 		}
1619 		if (used + offset < skb->len)
1620 			continue;
1621 
1622 		if (tcp_hdr(skb)->fin)
1623 			goto found_fin_ok;
1624 		if (!(flags & MSG_PEEK)) {
1625 			sk_eat_skb(sk, skb, copied_early);
1626 			copied_early = 0;
1627 		}
1628 		continue;
1629 
1630 	found_fin_ok:
1631 		/* Process the FIN. */
1632 		++*seq;
1633 		if (!(flags & MSG_PEEK)) {
1634 			sk_eat_skb(sk, skb, copied_early);
1635 			copied_early = 0;
1636 		}
1637 		break;
1638 	} while (len > 0);
1639 
1640 	if (user_recv) {
1641 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1642 			int chunk;
1643 
1644 			tp->ucopy.len = copied > 0 ? len : 0;
1645 
1646 			tcp_prequeue_process(sk);
1647 
1648 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1649 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1650 				len -= chunk;
1651 				copied += chunk;
1652 			}
1653 		}
1654 
1655 		tp->ucopy.task = NULL;
1656 		tp->ucopy.len = 0;
1657 	}
1658 
1659 #ifdef CONFIG_NET_DMA
1660 	if (tp->ucopy.dma_chan) {
1661 		dma_cookie_t done, used;
1662 
1663 		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1664 
1665 		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1666 						 tp->ucopy.dma_cookie, &done,
1667 						 &used) == DMA_IN_PROGRESS) {
1668 			/* do partial cleanup of sk_async_wait_queue */
1669 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1670 			       (dma_async_is_complete(skb->dma_cookie, done,
1671 						      used) == DMA_SUCCESS)) {
1672 				__skb_dequeue(&sk->sk_async_wait_queue);
1673 				kfree_skb(skb);
1674 			}
1675 		}
1676 
1677 		/* Safe to free early-copied skbs now */
1678 		__skb_queue_purge(&sk->sk_async_wait_queue);
1679 		tp->ucopy.dma_chan = NULL;
1680 	}
1681 	if (tp->ucopy.pinned_list) {
1682 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1683 		tp->ucopy.pinned_list = NULL;
1684 	}
1685 #endif
1686 
1687 	/* According to UNIX98, msg_name/msg_namelen are ignored
1688 	 * on connected socket. I was just happy when found this 8) --ANK
1689 	 */
1690 
1691 	/* Clean up data we have read: This will do ACK frames. */
1692 	tcp_cleanup_rbuf(sk, copied);
1693 
1694 	TCP_CHECK_TIMER(sk);
1695 	release_sock(sk);
1696 	return copied;
1697 
1698 out:
1699 	TCP_CHECK_TIMER(sk);
1700 	release_sock(sk);
1701 	return err;
1702 
1703 recv_urg:
1704 	err = tcp_recv_urg(sk, msg, len, flags);
1705 	goto out;
1706 }
1707 
1708 void tcp_set_state(struct sock *sk, int state)
1709 {
1710 	int oldstate = sk->sk_state;
1711 
1712 	switch (state) {
1713 	case TCP_ESTABLISHED:
1714 		if (oldstate != TCP_ESTABLISHED)
1715 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1716 		break;
1717 
1718 	case TCP_CLOSE:
1719 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1720 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1721 
1722 		sk->sk_prot->unhash(sk);
1723 		if (inet_csk(sk)->icsk_bind_hash &&
1724 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1725 			inet_put_port(sk);
1726 		/* fall through */
1727 	default:
1728 		if (oldstate == TCP_ESTABLISHED)
1729 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1730 	}
1731 
1732 	/* Change state AFTER socket is unhashed to avoid closed
1733 	 * socket sitting in hash tables.
1734 	 */
1735 	sk->sk_state = state;
1736 
1737 #ifdef STATE_TRACE
1738 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1739 #endif
1740 }
1741 EXPORT_SYMBOL_GPL(tcp_set_state);
1742 
1743 /*
1744  *	State processing on a close. This implements the state shift for
1745  *	sending our FIN frame. Note that we only send a FIN for some
1746  *	states. A shutdown() may have already sent the FIN, or we may be
1747  *	closed.
1748  */
1749 
1750 static const unsigned char new_state[16] = {
1751   /* current state:        new state:      action:	*/
1752   /* (Invalid)		*/ TCP_CLOSE,
1753   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1754   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1755   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1756   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1757   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1758   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1759   /* TCP_CLOSE		*/ TCP_CLOSE,
1760   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1761   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1762   /* TCP_LISTEN		*/ TCP_CLOSE,
1763   /* TCP_CLOSING	*/ TCP_CLOSING,
1764 };
1765 
1766 static int tcp_close_state(struct sock *sk)
1767 {
1768 	int next = (int)new_state[sk->sk_state];
1769 	int ns = next & TCP_STATE_MASK;
1770 
1771 	tcp_set_state(sk, ns);
1772 
1773 	return next & TCP_ACTION_FIN;
1774 }
1775 
1776 /*
1777  *	Shutdown the sending side of a connection. Much like close except
1778  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1779  */
1780 
1781 void tcp_shutdown(struct sock *sk, int how)
1782 {
1783 	/*	We need to grab some memory, and put together a FIN,
1784 	 *	and then put it into the queue to be sent.
1785 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1786 	 */
1787 	if (!(how & SEND_SHUTDOWN))
1788 		return;
1789 
1790 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1791 	if ((1 << sk->sk_state) &
1792 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1793 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1794 		/* Clear out any half completed packets.  FIN if needed. */
1795 		if (tcp_close_state(sk))
1796 			tcp_send_fin(sk);
1797 	}
1798 }
1799 
1800 void tcp_close(struct sock *sk, long timeout)
1801 {
1802 	struct sk_buff *skb;
1803 	int data_was_unread = 0;
1804 	int state;
1805 
1806 	lock_sock(sk);
1807 	sk->sk_shutdown = SHUTDOWN_MASK;
1808 
1809 	if (sk->sk_state == TCP_LISTEN) {
1810 		tcp_set_state(sk, TCP_CLOSE);
1811 
1812 		/* Special case. */
1813 		inet_csk_listen_stop(sk);
1814 
1815 		goto adjudge_to_death;
1816 	}
1817 
1818 	/*  We need to flush the recv. buffs.  We do this only on the
1819 	 *  descriptor close, not protocol-sourced closes, because the
1820 	 *  reader process may not have drained the data yet!
1821 	 */
1822 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1823 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1824 			  tcp_hdr(skb)->fin;
1825 		data_was_unread += len;
1826 		__kfree_skb(skb);
1827 	}
1828 
1829 	sk_mem_reclaim(sk);
1830 
1831 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1832 	 * data was lost. To witness the awful effects of the old behavior of
1833 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1834 	 * GET in an FTP client, suspend the process, wait for the client to
1835 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1836 	 * Note: timeout is always zero in such a case.
1837 	 */
1838 	if (data_was_unread) {
1839 		/* Unread data was tossed, zap the connection. */
1840 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1841 		tcp_set_state(sk, TCP_CLOSE);
1842 		tcp_send_active_reset(sk, GFP_KERNEL);
1843 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1844 		/* Check zero linger _after_ checking for unread data. */
1845 		sk->sk_prot->disconnect(sk, 0);
1846 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1847 	} else if (tcp_close_state(sk)) {
1848 		/* We FIN if the application ate all the data before
1849 		 * zapping the connection.
1850 		 */
1851 
1852 		/* RED-PEN. Formally speaking, we have broken TCP state
1853 		 * machine. State transitions:
1854 		 *
1855 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1856 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1857 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1858 		 *
1859 		 * are legal only when FIN has been sent (i.e. in window),
1860 		 * rather than queued out of window. Purists blame.
1861 		 *
1862 		 * F.e. "RFC state" is ESTABLISHED,
1863 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1864 		 *
1865 		 * The visible declinations are that sometimes
1866 		 * we enter time-wait state, when it is not required really
1867 		 * (harmless), do not send active resets, when they are
1868 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1869 		 * they look as CLOSING or LAST_ACK for Linux)
1870 		 * Probably, I missed some more holelets.
1871 		 * 						--ANK
1872 		 */
1873 		tcp_send_fin(sk);
1874 	}
1875 
1876 	sk_stream_wait_close(sk, timeout);
1877 
1878 adjudge_to_death:
1879 	state = sk->sk_state;
1880 	sock_hold(sk);
1881 	sock_orphan(sk);
1882 
1883 	/* It is the last release_sock in its life. It will remove backlog. */
1884 	release_sock(sk);
1885 
1886 
1887 	/* Now socket is owned by kernel and we acquire BH lock
1888 	   to finish close. No need to check for user refs.
1889 	 */
1890 	local_bh_disable();
1891 	bh_lock_sock(sk);
1892 	WARN_ON(sock_owned_by_user(sk));
1893 
1894 	percpu_counter_inc(sk->sk_prot->orphan_count);
1895 
1896 	/* Have we already been destroyed by a softirq or backlog? */
1897 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1898 		goto out;
1899 
1900 	/*	This is a (useful) BSD violating of the RFC. There is a
1901 	 *	problem with TCP as specified in that the other end could
1902 	 *	keep a socket open forever with no application left this end.
1903 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1904 	 *	our end. If they send after that then tough - BUT: long enough
1905 	 *	that we won't make the old 4*rto = almost no time - whoops
1906 	 *	reset mistake.
1907 	 *
1908 	 *	Nope, it was not mistake. It is really desired behaviour
1909 	 *	f.e. on http servers, when such sockets are useless, but
1910 	 *	consume significant resources. Let's do it with special
1911 	 *	linger2	option.					--ANK
1912 	 */
1913 
1914 	if (sk->sk_state == TCP_FIN_WAIT2) {
1915 		struct tcp_sock *tp = tcp_sk(sk);
1916 		if (tp->linger2 < 0) {
1917 			tcp_set_state(sk, TCP_CLOSE);
1918 			tcp_send_active_reset(sk, GFP_ATOMIC);
1919 			NET_INC_STATS_BH(sock_net(sk),
1920 					LINUX_MIB_TCPABORTONLINGER);
1921 		} else {
1922 			const int tmo = tcp_fin_time(sk);
1923 
1924 			if (tmo > TCP_TIMEWAIT_LEN) {
1925 				inet_csk_reset_keepalive_timer(sk,
1926 						tmo - TCP_TIMEWAIT_LEN);
1927 			} else {
1928 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1929 				goto out;
1930 			}
1931 		}
1932 	}
1933 	if (sk->sk_state != TCP_CLOSE) {
1934 		int orphan_count = percpu_counter_read_positive(
1935 						sk->sk_prot->orphan_count);
1936 
1937 		sk_mem_reclaim(sk);
1938 		if (tcp_too_many_orphans(sk, orphan_count)) {
1939 			if (net_ratelimit())
1940 				printk(KERN_INFO "TCP: too many of orphaned "
1941 				       "sockets\n");
1942 			tcp_set_state(sk, TCP_CLOSE);
1943 			tcp_send_active_reset(sk, GFP_ATOMIC);
1944 			NET_INC_STATS_BH(sock_net(sk),
1945 					LINUX_MIB_TCPABORTONMEMORY);
1946 		}
1947 	}
1948 
1949 	if (sk->sk_state == TCP_CLOSE)
1950 		inet_csk_destroy_sock(sk);
1951 	/* Otherwise, socket is reprieved until protocol close. */
1952 
1953 out:
1954 	bh_unlock_sock(sk);
1955 	local_bh_enable();
1956 	sock_put(sk);
1957 }
1958 
1959 /* These states need RST on ABORT according to RFC793 */
1960 
1961 static inline int tcp_need_reset(int state)
1962 {
1963 	return (1 << state) &
1964 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1965 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1966 }
1967 
1968 int tcp_disconnect(struct sock *sk, int flags)
1969 {
1970 	struct inet_sock *inet = inet_sk(sk);
1971 	struct inet_connection_sock *icsk = inet_csk(sk);
1972 	struct tcp_sock *tp = tcp_sk(sk);
1973 	int err = 0;
1974 	int old_state = sk->sk_state;
1975 
1976 	if (old_state != TCP_CLOSE)
1977 		tcp_set_state(sk, TCP_CLOSE);
1978 
1979 	/* ABORT function of RFC793 */
1980 	if (old_state == TCP_LISTEN) {
1981 		inet_csk_listen_stop(sk);
1982 	} else if (tcp_need_reset(old_state) ||
1983 		   (tp->snd_nxt != tp->write_seq &&
1984 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1985 		/* The last check adjusts for discrepancy of Linux wrt. RFC
1986 		 * states
1987 		 */
1988 		tcp_send_active_reset(sk, gfp_any());
1989 		sk->sk_err = ECONNRESET;
1990 	} else if (old_state == TCP_SYN_SENT)
1991 		sk->sk_err = ECONNRESET;
1992 
1993 	tcp_clear_xmit_timers(sk);
1994 	__skb_queue_purge(&sk->sk_receive_queue);
1995 	tcp_write_queue_purge(sk);
1996 	__skb_queue_purge(&tp->out_of_order_queue);
1997 #ifdef CONFIG_NET_DMA
1998 	__skb_queue_purge(&sk->sk_async_wait_queue);
1999 #endif
2000 
2001 	inet->dport = 0;
2002 
2003 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2004 		inet_reset_saddr(sk);
2005 
2006 	sk->sk_shutdown = 0;
2007 	sock_reset_flag(sk, SOCK_DONE);
2008 	tp->srtt = 0;
2009 	if ((tp->write_seq += tp->max_window + 2) == 0)
2010 		tp->write_seq = 1;
2011 	icsk->icsk_backoff = 0;
2012 	tp->snd_cwnd = 2;
2013 	icsk->icsk_probes_out = 0;
2014 	tp->packets_out = 0;
2015 	tp->snd_ssthresh = 0x7fffffff;
2016 	tp->snd_cwnd_cnt = 0;
2017 	tp->bytes_acked = 0;
2018 	tcp_set_ca_state(sk, TCP_CA_Open);
2019 	tcp_clear_retrans(tp);
2020 	inet_csk_delack_init(sk);
2021 	tcp_init_send_head(sk);
2022 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2023 	__sk_dst_reset(sk);
2024 
2025 	WARN_ON(inet->num && !icsk->icsk_bind_hash);
2026 
2027 	sk->sk_error_report(sk);
2028 	return err;
2029 }
2030 
2031 /*
2032  *	Socket option code for TCP.
2033  */
2034 static int do_tcp_setsockopt(struct sock *sk, int level,
2035 		int optname, char __user *optval, int optlen)
2036 {
2037 	struct tcp_sock *tp = tcp_sk(sk);
2038 	struct inet_connection_sock *icsk = inet_csk(sk);
2039 	int val;
2040 	int err = 0;
2041 
2042 	/* This is a string value all the others are int's */
2043 	if (optname == TCP_CONGESTION) {
2044 		char name[TCP_CA_NAME_MAX];
2045 
2046 		if (optlen < 1)
2047 			return -EINVAL;
2048 
2049 		val = strncpy_from_user(name, optval,
2050 					min(TCP_CA_NAME_MAX-1, optlen));
2051 		if (val < 0)
2052 			return -EFAULT;
2053 		name[val] = 0;
2054 
2055 		lock_sock(sk);
2056 		err = tcp_set_congestion_control(sk, name);
2057 		release_sock(sk);
2058 		return err;
2059 	}
2060 
2061 	if (optlen < sizeof(int))
2062 		return -EINVAL;
2063 
2064 	if (get_user(val, (int __user *)optval))
2065 		return -EFAULT;
2066 
2067 	lock_sock(sk);
2068 
2069 	switch (optname) {
2070 	case TCP_MAXSEG:
2071 		/* Values greater than interface MTU won't take effect. However
2072 		 * at the point when this call is done we typically don't yet
2073 		 * know which interface is going to be used */
2074 		if (val < 8 || val > MAX_TCP_WINDOW) {
2075 			err = -EINVAL;
2076 			break;
2077 		}
2078 		tp->rx_opt.user_mss = val;
2079 		break;
2080 
2081 	case TCP_NODELAY:
2082 		if (val) {
2083 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2084 			 * this option on corked socket is remembered, but
2085 			 * it is not activated until cork is cleared.
2086 			 *
2087 			 * However, when TCP_NODELAY is set we make
2088 			 * an explicit push, which overrides even TCP_CORK
2089 			 * for currently queued segments.
2090 			 */
2091 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2092 			tcp_push_pending_frames(sk);
2093 		} else {
2094 			tp->nonagle &= ~TCP_NAGLE_OFF;
2095 		}
2096 		break;
2097 
2098 	case TCP_CORK:
2099 		/* When set indicates to always queue non-full frames.
2100 		 * Later the user clears this option and we transmit
2101 		 * any pending partial frames in the queue.  This is
2102 		 * meant to be used alongside sendfile() to get properly
2103 		 * filled frames when the user (for example) must write
2104 		 * out headers with a write() call first and then use
2105 		 * sendfile to send out the data parts.
2106 		 *
2107 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2108 		 * stronger than TCP_NODELAY.
2109 		 */
2110 		if (val) {
2111 			tp->nonagle |= TCP_NAGLE_CORK;
2112 		} else {
2113 			tp->nonagle &= ~TCP_NAGLE_CORK;
2114 			if (tp->nonagle&TCP_NAGLE_OFF)
2115 				tp->nonagle |= TCP_NAGLE_PUSH;
2116 			tcp_push_pending_frames(sk);
2117 		}
2118 		break;
2119 
2120 	case TCP_KEEPIDLE:
2121 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2122 			err = -EINVAL;
2123 		else {
2124 			tp->keepalive_time = val * HZ;
2125 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2126 			    !((1 << sk->sk_state) &
2127 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2128 				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2129 				if (tp->keepalive_time > elapsed)
2130 					elapsed = tp->keepalive_time - elapsed;
2131 				else
2132 					elapsed = 0;
2133 				inet_csk_reset_keepalive_timer(sk, elapsed);
2134 			}
2135 		}
2136 		break;
2137 	case TCP_KEEPINTVL:
2138 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2139 			err = -EINVAL;
2140 		else
2141 			tp->keepalive_intvl = val * HZ;
2142 		break;
2143 	case TCP_KEEPCNT:
2144 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2145 			err = -EINVAL;
2146 		else
2147 			tp->keepalive_probes = val;
2148 		break;
2149 	case TCP_SYNCNT:
2150 		if (val < 1 || val > MAX_TCP_SYNCNT)
2151 			err = -EINVAL;
2152 		else
2153 			icsk->icsk_syn_retries = val;
2154 		break;
2155 
2156 	case TCP_LINGER2:
2157 		if (val < 0)
2158 			tp->linger2 = -1;
2159 		else if (val > sysctl_tcp_fin_timeout / HZ)
2160 			tp->linger2 = 0;
2161 		else
2162 			tp->linger2 = val * HZ;
2163 		break;
2164 
2165 	case TCP_DEFER_ACCEPT:
2166 		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2167 		if (val > 0) {
2168 			/* Translate value in seconds to number of
2169 			 * retransmits */
2170 			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2171 			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2172 				       icsk->icsk_accept_queue.rskq_defer_accept))
2173 				icsk->icsk_accept_queue.rskq_defer_accept++;
2174 			icsk->icsk_accept_queue.rskq_defer_accept++;
2175 		}
2176 		break;
2177 
2178 	case TCP_WINDOW_CLAMP:
2179 		if (!val) {
2180 			if (sk->sk_state != TCP_CLOSE) {
2181 				err = -EINVAL;
2182 				break;
2183 			}
2184 			tp->window_clamp = 0;
2185 		} else
2186 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2187 						SOCK_MIN_RCVBUF / 2 : val;
2188 		break;
2189 
2190 	case TCP_QUICKACK:
2191 		if (!val) {
2192 			icsk->icsk_ack.pingpong = 1;
2193 		} else {
2194 			icsk->icsk_ack.pingpong = 0;
2195 			if ((1 << sk->sk_state) &
2196 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2197 			    inet_csk_ack_scheduled(sk)) {
2198 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2199 				tcp_cleanup_rbuf(sk, 1);
2200 				if (!(val & 1))
2201 					icsk->icsk_ack.pingpong = 1;
2202 			}
2203 		}
2204 		break;
2205 
2206 #ifdef CONFIG_TCP_MD5SIG
2207 	case TCP_MD5SIG:
2208 		/* Read the IP->Key mappings from userspace */
2209 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2210 		break;
2211 #endif
2212 
2213 	default:
2214 		err = -ENOPROTOOPT;
2215 		break;
2216 	}
2217 
2218 	release_sock(sk);
2219 	return err;
2220 }
2221 
2222 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2223 		   int optlen)
2224 {
2225 	struct inet_connection_sock *icsk = inet_csk(sk);
2226 
2227 	if (level != SOL_TCP)
2228 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2229 						     optval, optlen);
2230 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2231 }
2232 
2233 #ifdef CONFIG_COMPAT
2234 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2235 			  char __user *optval, int optlen)
2236 {
2237 	if (level != SOL_TCP)
2238 		return inet_csk_compat_setsockopt(sk, level, optname,
2239 						  optval, optlen);
2240 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2241 }
2242 
2243 EXPORT_SYMBOL(compat_tcp_setsockopt);
2244 #endif
2245 
2246 /* Return information about state of tcp endpoint in API format. */
2247 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2248 {
2249 	struct tcp_sock *tp = tcp_sk(sk);
2250 	const struct inet_connection_sock *icsk = inet_csk(sk);
2251 	u32 now = tcp_time_stamp;
2252 
2253 	memset(info, 0, sizeof(*info));
2254 
2255 	info->tcpi_state = sk->sk_state;
2256 	info->tcpi_ca_state = icsk->icsk_ca_state;
2257 	info->tcpi_retransmits = icsk->icsk_retransmits;
2258 	info->tcpi_probes = icsk->icsk_probes_out;
2259 	info->tcpi_backoff = icsk->icsk_backoff;
2260 
2261 	if (tp->rx_opt.tstamp_ok)
2262 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2263 	if (tcp_is_sack(tp))
2264 		info->tcpi_options |= TCPI_OPT_SACK;
2265 	if (tp->rx_opt.wscale_ok) {
2266 		info->tcpi_options |= TCPI_OPT_WSCALE;
2267 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2268 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2269 	}
2270 
2271 	if (tp->ecn_flags&TCP_ECN_OK)
2272 		info->tcpi_options |= TCPI_OPT_ECN;
2273 
2274 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2275 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2276 	info->tcpi_snd_mss = tp->mss_cache;
2277 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2278 
2279 	if (sk->sk_state == TCP_LISTEN) {
2280 		info->tcpi_unacked = sk->sk_ack_backlog;
2281 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2282 	} else {
2283 		info->tcpi_unacked = tp->packets_out;
2284 		info->tcpi_sacked = tp->sacked_out;
2285 	}
2286 	info->tcpi_lost = tp->lost_out;
2287 	info->tcpi_retrans = tp->retrans_out;
2288 	info->tcpi_fackets = tp->fackets_out;
2289 
2290 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2291 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2292 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2293 
2294 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2295 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2296 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2297 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2298 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2299 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2300 	info->tcpi_advmss = tp->advmss;
2301 	info->tcpi_reordering = tp->reordering;
2302 
2303 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2304 	info->tcpi_rcv_space = tp->rcvq_space.space;
2305 
2306 	info->tcpi_total_retrans = tp->total_retrans;
2307 }
2308 
2309 EXPORT_SYMBOL_GPL(tcp_get_info);
2310 
2311 static int do_tcp_getsockopt(struct sock *sk, int level,
2312 		int optname, char __user *optval, int __user *optlen)
2313 {
2314 	struct inet_connection_sock *icsk = inet_csk(sk);
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 	int val, len;
2317 
2318 	if (get_user(len, optlen))
2319 		return -EFAULT;
2320 
2321 	len = min_t(unsigned int, len, sizeof(int));
2322 
2323 	if (len < 0)
2324 		return -EINVAL;
2325 
2326 	switch (optname) {
2327 	case TCP_MAXSEG:
2328 		val = tp->mss_cache;
2329 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2330 			val = tp->rx_opt.user_mss;
2331 		break;
2332 	case TCP_NODELAY:
2333 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2334 		break;
2335 	case TCP_CORK:
2336 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2337 		break;
2338 	case TCP_KEEPIDLE:
2339 		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2340 		break;
2341 	case TCP_KEEPINTVL:
2342 		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2343 		break;
2344 	case TCP_KEEPCNT:
2345 		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2346 		break;
2347 	case TCP_SYNCNT:
2348 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2349 		break;
2350 	case TCP_LINGER2:
2351 		val = tp->linger2;
2352 		if (val >= 0)
2353 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2354 		break;
2355 	case TCP_DEFER_ACCEPT:
2356 		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2357 			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2358 		break;
2359 	case TCP_WINDOW_CLAMP:
2360 		val = tp->window_clamp;
2361 		break;
2362 	case TCP_INFO: {
2363 		struct tcp_info info;
2364 
2365 		if (get_user(len, optlen))
2366 			return -EFAULT;
2367 
2368 		tcp_get_info(sk, &info);
2369 
2370 		len = min_t(unsigned int, len, sizeof(info));
2371 		if (put_user(len, optlen))
2372 			return -EFAULT;
2373 		if (copy_to_user(optval, &info, len))
2374 			return -EFAULT;
2375 		return 0;
2376 	}
2377 	case TCP_QUICKACK:
2378 		val = !icsk->icsk_ack.pingpong;
2379 		break;
2380 
2381 	case TCP_CONGESTION:
2382 		if (get_user(len, optlen))
2383 			return -EFAULT;
2384 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2385 		if (put_user(len, optlen))
2386 			return -EFAULT;
2387 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2388 			return -EFAULT;
2389 		return 0;
2390 	default:
2391 		return -ENOPROTOOPT;
2392 	}
2393 
2394 	if (put_user(len, optlen))
2395 		return -EFAULT;
2396 	if (copy_to_user(optval, &val, len))
2397 		return -EFAULT;
2398 	return 0;
2399 }
2400 
2401 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2402 		   int __user *optlen)
2403 {
2404 	struct inet_connection_sock *icsk = inet_csk(sk);
2405 
2406 	if (level != SOL_TCP)
2407 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2408 						     optval, optlen);
2409 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2410 }
2411 
2412 #ifdef CONFIG_COMPAT
2413 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2414 			  char __user *optval, int __user *optlen)
2415 {
2416 	if (level != SOL_TCP)
2417 		return inet_csk_compat_getsockopt(sk, level, optname,
2418 						  optval, optlen);
2419 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2420 }
2421 
2422 EXPORT_SYMBOL(compat_tcp_getsockopt);
2423 #endif
2424 
2425 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2426 {
2427 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2428 	struct tcphdr *th;
2429 	unsigned thlen;
2430 	unsigned int seq;
2431 	__be32 delta;
2432 	unsigned int oldlen;
2433 	unsigned int mss;
2434 
2435 	if (!pskb_may_pull(skb, sizeof(*th)))
2436 		goto out;
2437 
2438 	th = tcp_hdr(skb);
2439 	thlen = th->doff * 4;
2440 	if (thlen < sizeof(*th))
2441 		goto out;
2442 
2443 	if (!pskb_may_pull(skb, thlen))
2444 		goto out;
2445 
2446 	oldlen = (u16)~skb->len;
2447 	__skb_pull(skb, thlen);
2448 
2449 	mss = skb_shinfo(skb)->gso_size;
2450 	if (unlikely(skb->len <= mss))
2451 		goto out;
2452 
2453 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2454 		/* Packet is from an untrusted source, reset gso_segs. */
2455 		int type = skb_shinfo(skb)->gso_type;
2456 
2457 		if (unlikely(type &
2458 			     ~(SKB_GSO_TCPV4 |
2459 			       SKB_GSO_DODGY |
2460 			       SKB_GSO_TCP_ECN |
2461 			       SKB_GSO_TCPV6 |
2462 			       0) ||
2463 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2464 			goto out;
2465 
2466 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2467 
2468 		segs = NULL;
2469 		goto out;
2470 	}
2471 
2472 	segs = skb_segment(skb, features);
2473 	if (IS_ERR(segs))
2474 		goto out;
2475 
2476 	delta = htonl(oldlen + (thlen + mss));
2477 
2478 	skb = segs;
2479 	th = tcp_hdr(skb);
2480 	seq = ntohl(th->seq);
2481 
2482 	do {
2483 		th->fin = th->psh = 0;
2484 
2485 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2486 				       (__force u32)delta));
2487 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2488 			th->check =
2489 			     csum_fold(csum_partial(skb_transport_header(skb),
2490 						    thlen, skb->csum));
2491 
2492 		seq += mss;
2493 		skb = skb->next;
2494 		th = tcp_hdr(skb);
2495 
2496 		th->seq = htonl(seq);
2497 		th->cwr = 0;
2498 	} while (skb->next);
2499 
2500 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2501 		      skb->data_len);
2502 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2503 				(__force u32)delta));
2504 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2505 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2506 						   thlen, skb->csum));
2507 
2508 out:
2509 	return segs;
2510 }
2511 EXPORT_SYMBOL(tcp_tso_segment);
2512 
2513 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2514 {
2515 	struct sk_buff **pp = NULL;
2516 	struct sk_buff *p;
2517 	struct tcphdr *th;
2518 	struct tcphdr *th2;
2519 	unsigned int len;
2520 	unsigned int thlen;
2521 	unsigned int flags;
2522 	unsigned int mss = 1;
2523 	unsigned int hlen;
2524 	unsigned int off;
2525 	int flush = 1;
2526 	int i;
2527 
2528 	off = skb_gro_offset(skb);
2529 	hlen = off + sizeof(*th);
2530 	th = skb_gro_header_fast(skb, off);
2531 	if (skb_gro_header_hard(skb, hlen)) {
2532 		th = skb_gro_header_slow(skb, hlen, off);
2533 		if (unlikely(!th))
2534 			goto out;
2535 	}
2536 
2537 	thlen = th->doff * 4;
2538 	if (thlen < sizeof(*th))
2539 		goto out;
2540 
2541 	hlen = off + thlen;
2542 	if (skb_gro_header_hard(skb, hlen)) {
2543 		th = skb_gro_header_slow(skb, hlen, off);
2544 		if (unlikely(!th))
2545 			goto out;
2546 	}
2547 
2548 	skb_gro_pull(skb, thlen);
2549 
2550 	len = skb_gro_len(skb);
2551 	flags = tcp_flag_word(th);
2552 
2553 	for (; (p = *head); head = &p->next) {
2554 		if (!NAPI_GRO_CB(p)->same_flow)
2555 			continue;
2556 
2557 		th2 = tcp_hdr(p);
2558 
2559 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2560 			NAPI_GRO_CB(p)->same_flow = 0;
2561 			continue;
2562 		}
2563 
2564 		goto found;
2565 	}
2566 
2567 	goto out_check_final;
2568 
2569 found:
2570 	flush = NAPI_GRO_CB(p)->flush;
2571 	flush |= flags & TCP_FLAG_CWR;
2572 	flush |= (flags ^ tcp_flag_word(th2)) &
2573 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2574 	flush |= th->ack_seq ^ th2->ack_seq;
2575 	for (i = sizeof(*th); i < thlen; i += 4)
2576 		flush |= *(u32 *)((u8 *)th + i) ^
2577 			 *(u32 *)((u8 *)th2 + i);
2578 
2579 	mss = skb_shinfo(p)->gso_size;
2580 
2581 	flush |= (len - 1) >= mss;
2582 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2583 
2584 	if (flush || skb_gro_receive(head, skb)) {
2585 		mss = 1;
2586 		goto out_check_final;
2587 	}
2588 
2589 	p = *head;
2590 	th2 = tcp_hdr(p);
2591 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2592 
2593 out_check_final:
2594 	flush = len < mss;
2595 	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2596 			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2597 
2598 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2599 		pp = head;
2600 
2601 out:
2602 	NAPI_GRO_CB(skb)->flush |= flush;
2603 
2604 	return pp;
2605 }
2606 EXPORT_SYMBOL(tcp_gro_receive);
2607 
2608 int tcp_gro_complete(struct sk_buff *skb)
2609 {
2610 	struct tcphdr *th = tcp_hdr(skb);
2611 
2612 	skb->csum_start = skb_transport_header(skb) - skb->head;
2613 	skb->csum_offset = offsetof(struct tcphdr, check);
2614 	skb->ip_summed = CHECKSUM_PARTIAL;
2615 
2616 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2617 
2618 	if (th->cwr)
2619 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2620 
2621 	return 0;
2622 }
2623 EXPORT_SYMBOL(tcp_gro_complete);
2624 
2625 #ifdef CONFIG_TCP_MD5SIG
2626 static unsigned long tcp_md5sig_users;
2627 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2628 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2629 
2630 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2631 {
2632 	int cpu;
2633 	for_each_possible_cpu(cpu) {
2634 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2635 		if (p) {
2636 			if (p->md5_desc.tfm)
2637 				crypto_free_hash(p->md5_desc.tfm);
2638 			kfree(p);
2639 			p = NULL;
2640 		}
2641 	}
2642 	free_percpu(pool);
2643 }
2644 
2645 void tcp_free_md5sig_pool(void)
2646 {
2647 	struct tcp_md5sig_pool **pool = NULL;
2648 
2649 	spin_lock_bh(&tcp_md5sig_pool_lock);
2650 	if (--tcp_md5sig_users == 0) {
2651 		pool = tcp_md5sig_pool;
2652 		tcp_md5sig_pool = NULL;
2653 	}
2654 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2655 	if (pool)
2656 		__tcp_free_md5sig_pool(pool);
2657 }
2658 
2659 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2660 
2661 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2662 {
2663 	int cpu;
2664 	struct tcp_md5sig_pool **pool;
2665 
2666 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2667 	if (!pool)
2668 		return NULL;
2669 
2670 	for_each_possible_cpu(cpu) {
2671 		struct tcp_md5sig_pool *p;
2672 		struct crypto_hash *hash;
2673 
2674 		p = kzalloc(sizeof(*p), GFP_KERNEL);
2675 		if (!p)
2676 			goto out_free;
2677 		*per_cpu_ptr(pool, cpu) = p;
2678 
2679 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2680 		if (!hash || IS_ERR(hash))
2681 			goto out_free;
2682 
2683 		p->md5_desc.tfm = hash;
2684 	}
2685 	return pool;
2686 out_free:
2687 	__tcp_free_md5sig_pool(pool);
2688 	return NULL;
2689 }
2690 
2691 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2692 {
2693 	struct tcp_md5sig_pool **pool;
2694 	int alloc = 0;
2695 
2696 retry:
2697 	spin_lock_bh(&tcp_md5sig_pool_lock);
2698 	pool = tcp_md5sig_pool;
2699 	if (tcp_md5sig_users++ == 0) {
2700 		alloc = 1;
2701 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2702 	} else if (!pool) {
2703 		tcp_md5sig_users--;
2704 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2705 		cpu_relax();
2706 		goto retry;
2707 	} else
2708 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2709 
2710 	if (alloc) {
2711 		/* we cannot hold spinlock here because this may sleep. */
2712 		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2713 		spin_lock_bh(&tcp_md5sig_pool_lock);
2714 		if (!p) {
2715 			tcp_md5sig_users--;
2716 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2717 			return NULL;
2718 		}
2719 		pool = tcp_md5sig_pool;
2720 		if (pool) {
2721 			/* oops, it has already been assigned. */
2722 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2723 			__tcp_free_md5sig_pool(p);
2724 		} else {
2725 			tcp_md5sig_pool = pool = p;
2726 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2727 		}
2728 	}
2729 	return pool;
2730 }
2731 
2732 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2733 
2734 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2735 {
2736 	struct tcp_md5sig_pool **p;
2737 	spin_lock_bh(&tcp_md5sig_pool_lock);
2738 	p = tcp_md5sig_pool;
2739 	if (p)
2740 		tcp_md5sig_users++;
2741 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2742 	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2743 }
2744 
2745 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2746 
2747 void __tcp_put_md5sig_pool(void)
2748 {
2749 	tcp_free_md5sig_pool();
2750 }
2751 
2752 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2753 
2754 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2755 			struct tcphdr *th)
2756 {
2757 	struct scatterlist sg;
2758 	int err;
2759 
2760 	__sum16 old_checksum = th->check;
2761 	th->check = 0;
2762 	/* options aren't included in the hash */
2763 	sg_init_one(&sg, th, sizeof(struct tcphdr));
2764 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2765 	th->check = old_checksum;
2766 	return err;
2767 }
2768 
2769 EXPORT_SYMBOL(tcp_md5_hash_header);
2770 
2771 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2772 			  struct sk_buff *skb, unsigned header_len)
2773 {
2774 	struct scatterlist sg;
2775 	const struct tcphdr *tp = tcp_hdr(skb);
2776 	struct hash_desc *desc = &hp->md5_desc;
2777 	unsigned i;
2778 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2779 				       skb_headlen(skb) - header_len : 0;
2780 	const struct skb_shared_info *shi = skb_shinfo(skb);
2781 
2782 	sg_init_table(&sg, 1);
2783 
2784 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2785 	if (crypto_hash_update(desc, &sg, head_data_len))
2786 		return 1;
2787 
2788 	for (i = 0; i < shi->nr_frags; ++i) {
2789 		const struct skb_frag_struct *f = &shi->frags[i];
2790 		sg_set_page(&sg, f->page, f->size, f->page_offset);
2791 		if (crypto_hash_update(desc, &sg, f->size))
2792 			return 1;
2793 	}
2794 
2795 	return 0;
2796 }
2797 
2798 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2799 
2800 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2801 {
2802 	struct scatterlist sg;
2803 
2804 	sg_init_one(&sg, key->key, key->keylen);
2805 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2806 }
2807 
2808 EXPORT_SYMBOL(tcp_md5_hash_key);
2809 
2810 #endif
2811 
2812 void tcp_done(struct sock *sk)
2813 {
2814 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2815 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2816 
2817 	tcp_set_state(sk, TCP_CLOSE);
2818 	tcp_clear_xmit_timers(sk);
2819 
2820 	sk->sk_shutdown = SHUTDOWN_MASK;
2821 
2822 	if (!sock_flag(sk, SOCK_DEAD))
2823 		sk->sk_state_change(sk);
2824 	else
2825 		inet_csk_destroy_sock(sk);
2826 }
2827 EXPORT_SYMBOL_GPL(tcp_done);
2828 
2829 extern struct tcp_congestion_ops tcp_reno;
2830 
2831 static __initdata unsigned long thash_entries;
2832 static int __init set_thash_entries(char *str)
2833 {
2834 	if (!str)
2835 		return 0;
2836 	thash_entries = simple_strtoul(str, &str, 0);
2837 	return 1;
2838 }
2839 __setup("thash_entries=", set_thash_entries);
2840 
2841 void __init tcp_init(void)
2842 {
2843 	struct sk_buff *skb = NULL;
2844 	unsigned long nr_pages, limit;
2845 	int order, i, max_share;
2846 
2847 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2848 
2849 	percpu_counter_init(&tcp_sockets_allocated, 0);
2850 	percpu_counter_init(&tcp_orphan_count, 0);
2851 	tcp_hashinfo.bind_bucket_cachep =
2852 		kmem_cache_create("tcp_bind_bucket",
2853 				  sizeof(struct inet_bind_bucket), 0,
2854 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2855 
2856 	/* Size and allocate the main established and bind bucket
2857 	 * hash tables.
2858 	 *
2859 	 * The methodology is similar to that of the buffer cache.
2860 	 */
2861 	tcp_hashinfo.ehash =
2862 		alloc_large_system_hash("TCP established",
2863 					sizeof(struct inet_ehash_bucket),
2864 					thash_entries,
2865 					(num_physpages >= 128 * 1024) ?
2866 					13 : 15,
2867 					0,
2868 					&tcp_hashinfo.ehash_size,
2869 					NULL,
2870 					thash_entries ? 0 : 512 * 1024);
2871 	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2872 	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2873 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2874 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2875 	}
2876 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2877 		panic("TCP: failed to alloc ehash_locks");
2878 	tcp_hashinfo.bhash =
2879 		alloc_large_system_hash("TCP bind",
2880 					sizeof(struct inet_bind_hashbucket),
2881 					tcp_hashinfo.ehash_size,
2882 					(num_physpages >= 128 * 1024) ?
2883 					13 : 15,
2884 					0,
2885 					&tcp_hashinfo.bhash_size,
2886 					NULL,
2887 					64 * 1024);
2888 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2889 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2890 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2891 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2892 	}
2893 
2894 	/* Try to be a bit smarter and adjust defaults depending
2895 	 * on available memory.
2896 	 */
2897 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2898 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2899 			order++)
2900 		;
2901 	if (order >= 4) {
2902 		tcp_death_row.sysctl_max_tw_buckets = 180000;
2903 		sysctl_tcp_max_orphans = 4096 << (order - 4);
2904 		sysctl_max_syn_backlog = 1024;
2905 	} else if (order < 3) {
2906 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2907 		sysctl_tcp_max_orphans >>= (3 - order);
2908 		sysctl_max_syn_backlog = 128;
2909 	}
2910 
2911 	/* Set the pressure threshold to be a fraction of global memory that
2912 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2913 	 * memory, with a floor of 128 pages.
2914 	 */
2915 	nr_pages = totalram_pages - totalhigh_pages;
2916 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2917 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2918 	limit = max(limit, 128UL);
2919 	sysctl_tcp_mem[0] = limit / 4 * 3;
2920 	sysctl_tcp_mem[1] = limit;
2921 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2922 
2923 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2924 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2925 	max_share = min(4UL*1024*1024, limit);
2926 
2927 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2928 	sysctl_tcp_wmem[1] = 16*1024;
2929 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2930 
2931 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2932 	sysctl_tcp_rmem[1] = 87380;
2933 	sysctl_tcp_rmem[2] = max(87380, max_share);
2934 
2935 	printk(KERN_INFO "TCP: Hash tables configured "
2936 	       "(established %d bind %d)\n",
2937 	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2938 
2939 	tcp_register_congestion_control(&tcp_reno);
2940 }
2941 
2942 EXPORT_SYMBOL(tcp_close);
2943 EXPORT_SYMBOL(tcp_disconnect);
2944 EXPORT_SYMBOL(tcp_getsockopt);
2945 EXPORT_SYMBOL(tcp_ioctl);
2946 EXPORT_SYMBOL(tcp_poll);
2947 EXPORT_SYMBOL(tcp_read_sock);
2948 EXPORT_SYMBOL(tcp_recvmsg);
2949 EXPORT_SYMBOL(tcp_sendmsg);
2950 EXPORT_SYMBOL(tcp_splice_read);
2951 EXPORT_SYMBOL(tcp_sendpage);
2952 EXPORT_SYMBOL(tcp_setsockopt);
2953 EXPORT_SYMBOL(tcp_shutdown);
2954