1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static bool tcp_stream_is_readable(struct sock *sk, int target) 479 { 480 if (tcp_epollin_ready(sk, target)) 481 return true; 482 return sk_is_readable(sk); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 u16 urg_data = READ_ONCE(tp->urg_data); 549 550 if (unlikely(urg_data) && 551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE)) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = READ_ONCE(tp->urg_data) && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 692 tcp_skb_can_collapse_to(skb); 693 } 694 695 void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ 765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 ret = -ENOTCONN; 812 break; 813 } 814 if (!timeo) { 815 ret = -EAGAIN; 816 break; 817 } 818 /* if __tcp_splice_read() got nothing while we have 819 * an skb in receive queue, we do not want to loop. 820 * This might happen with URG data. 821 */ 822 if (!skb_queue_empty(&sk->sk_receive_queue)) 823 break; 824 sk_wait_data(sk, &timeo, NULL); 825 if (signal_pending(current)) { 826 ret = sock_intr_errno(timeo); 827 break; 828 } 829 continue; 830 } 831 tss.len -= ret; 832 spliced += ret; 833 834 if (!timeo) 835 break; 836 release_sock(sk); 837 lock_sock(sk); 838 839 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 840 (sk->sk_shutdown & RCV_SHUTDOWN) || 841 signal_pending(current)) 842 break; 843 } 844 845 release_sock(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 tcp_wmem_free_skb(sk, skb); 936 } 937 } 938 939 /* skb changing from pure zc to mixed, must charge zc */ 940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 941 { 942 if (unlikely(skb_zcopy_pure(skb))) { 943 u32 extra = skb->truesize - 944 SKB_TRUESIZE(skb_end_offset(skb)); 945 946 if (!sk_wmem_schedule(sk, extra)) 947 return -ENOMEM; 948 949 sk_mem_charge(sk, extra); 950 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 951 } 952 return 0; 953 } 954 955 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 956 struct page *page, int offset, size_t *size) 957 { 958 struct sk_buff *skb = tcp_write_queue_tail(sk); 959 struct tcp_sock *tp = tcp_sk(sk); 960 bool can_coalesce; 961 int copy, i; 962 963 if (!skb || (copy = size_goal - skb->len) <= 0 || 964 !tcp_skb_can_collapse_to(skb)) { 965 new_segment: 966 if (!sk_stream_memory_free(sk)) 967 return NULL; 968 969 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 970 tcp_rtx_and_write_queues_empty(sk)); 971 if (!skb) 972 return NULL; 973 974 #ifdef CONFIG_TLS_DEVICE 975 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 976 #endif 977 tcp_skb_entail(sk, skb); 978 copy = size_goal; 979 } 980 981 if (copy > *size) 982 copy = *size; 983 984 i = skb_shinfo(skb)->nr_frags; 985 can_coalesce = skb_can_coalesce(skb, i, page, offset); 986 if (!can_coalesce && i >= sysctl_max_skb_frags) { 987 tcp_mark_push(tp, skb); 988 goto new_segment; 989 } 990 if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy)) 991 return NULL; 992 993 if (can_coalesce) { 994 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 995 } else { 996 get_page(page); 997 skb_fill_page_desc(skb, i, page, offset, copy); 998 } 999 1000 if (!(flags & MSG_NO_SHARED_FRAGS)) 1001 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1002 1003 skb->len += copy; 1004 skb->data_len += copy; 1005 skb->truesize += copy; 1006 sk_wmem_queued_add(sk, copy); 1007 sk_mem_charge(sk, copy); 1008 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1009 TCP_SKB_CB(skb)->end_seq += copy; 1010 tcp_skb_pcount_set(skb, 0); 1011 1012 *size = copy; 1013 return skb; 1014 } 1015 1016 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1017 size_t size, int flags) 1018 { 1019 struct tcp_sock *tp = tcp_sk(sk); 1020 int mss_now, size_goal; 1021 int err; 1022 ssize_t copied; 1023 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1024 1025 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1026 WARN_ONCE(!sendpage_ok(page), 1027 "page must not be a Slab one and have page_count > 0")) 1028 return -EINVAL; 1029 1030 /* Wait for a connection to finish. One exception is TCP Fast Open 1031 * (passive side) where data is allowed to be sent before a connection 1032 * is fully established. 1033 */ 1034 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1035 !tcp_passive_fastopen(sk)) { 1036 err = sk_stream_wait_connect(sk, &timeo); 1037 if (err != 0) 1038 goto out_err; 1039 } 1040 1041 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1042 1043 mss_now = tcp_send_mss(sk, &size_goal, flags); 1044 copied = 0; 1045 1046 err = -EPIPE; 1047 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1048 goto out_err; 1049 1050 while (size > 0) { 1051 struct sk_buff *skb; 1052 size_t copy = size; 1053 1054 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1055 if (!skb) 1056 goto wait_for_space; 1057 1058 if (!copied) 1059 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1060 1061 copied += copy; 1062 offset += copy; 1063 size -= copy; 1064 if (!size) 1065 goto out; 1066 1067 if (skb->len < size_goal || (flags & MSG_OOB)) 1068 continue; 1069 1070 if (forced_push(tp)) { 1071 tcp_mark_push(tp, skb); 1072 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1073 } else if (skb == tcp_send_head(sk)) 1074 tcp_push_one(sk, mss_now); 1075 continue; 1076 1077 wait_for_space: 1078 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1079 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1080 TCP_NAGLE_PUSH, size_goal); 1081 1082 err = sk_stream_wait_memory(sk, &timeo); 1083 if (err != 0) 1084 goto do_error; 1085 1086 mss_now = tcp_send_mss(sk, &size_goal, flags); 1087 } 1088 1089 out: 1090 if (copied) { 1091 tcp_tx_timestamp(sk, sk->sk_tsflags); 1092 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1093 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1094 } 1095 return copied; 1096 1097 do_error: 1098 tcp_remove_empty_skb(sk); 1099 if (copied) 1100 goto out; 1101 out_err: 1102 /* make sure we wake any epoll edge trigger waiter */ 1103 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1104 sk->sk_write_space(sk); 1105 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1106 } 1107 return sk_stream_error(sk, flags, err); 1108 } 1109 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1110 1111 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1112 size_t size, int flags) 1113 { 1114 if (!(sk->sk_route_caps & NETIF_F_SG)) 1115 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1116 1117 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1118 1119 return do_tcp_sendpages(sk, page, offset, size, flags); 1120 } 1121 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1122 1123 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1124 size_t size, int flags) 1125 { 1126 int ret; 1127 1128 lock_sock(sk); 1129 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1130 release_sock(sk); 1131 1132 return ret; 1133 } 1134 EXPORT_SYMBOL(tcp_sendpage); 1135 1136 void tcp_free_fastopen_req(struct tcp_sock *tp) 1137 { 1138 if (tp->fastopen_req) { 1139 kfree(tp->fastopen_req); 1140 tp->fastopen_req = NULL; 1141 } 1142 } 1143 1144 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1145 int *copied, size_t size, 1146 struct ubuf_info *uarg) 1147 { 1148 struct tcp_sock *tp = tcp_sk(sk); 1149 struct inet_sock *inet = inet_sk(sk); 1150 struct sockaddr *uaddr = msg->msg_name; 1151 int err, flags; 1152 1153 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1154 TFO_CLIENT_ENABLE) || 1155 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1156 uaddr->sa_family == AF_UNSPEC)) 1157 return -EOPNOTSUPP; 1158 if (tp->fastopen_req) 1159 return -EALREADY; /* Another Fast Open is in progress */ 1160 1161 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1162 sk->sk_allocation); 1163 if (unlikely(!tp->fastopen_req)) 1164 return -ENOBUFS; 1165 tp->fastopen_req->data = msg; 1166 tp->fastopen_req->size = size; 1167 tp->fastopen_req->uarg = uarg; 1168 1169 if (inet->defer_connect) { 1170 err = tcp_connect(sk); 1171 /* Same failure procedure as in tcp_v4/6_connect */ 1172 if (err) { 1173 tcp_set_state(sk, TCP_CLOSE); 1174 inet->inet_dport = 0; 1175 sk->sk_route_caps = 0; 1176 } 1177 } 1178 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1179 err = __inet_stream_connect(sk->sk_socket, uaddr, 1180 msg->msg_namelen, flags, 1); 1181 /* fastopen_req could already be freed in __inet_stream_connect 1182 * if the connection times out or gets rst 1183 */ 1184 if (tp->fastopen_req) { 1185 *copied = tp->fastopen_req->copied; 1186 tcp_free_fastopen_req(tp); 1187 inet->defer_connect = 0; 1188 } 1189 return err; 1190 } 1191 1192 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1193 { 1194 struct tcp_sock *tp = tcp_sk(sk); 1195 struct ubuf_info *uarg = NULL; 1196 struct sk_buff *skb; 1197 struct sockcm_cookie sockc; 1198 int flags, err, copied = 0; 1199 int mss_now = 0, size_goal, copied_syn = 0; 1200 int process_backlog = 0; 1201 bool zc = false; 1202 long timeo; 1203 1204 flags = msg->msg_flags; 1205 1206 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1207 skb = tcp_write_queue_tail(sk); 1208 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1209 if (!uarg) { 1210 err = -ENOBUFS; 1211 goto out_err; 1212 } 1213 1214 zc = sk->sk_route_caps & NETIF_F_SG; 1215 if (!zc) 1216 uarg->zerocopy = 0; 1217 } 1218 1219 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1220 !tp->repair) { 1221 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1222 if (err == -EINPROGRESS && copied_syn > 0) 1223 goto out; 1224 else if (err) 1225 goto out_err; 1226 } 1227 1228 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1229 1230 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1231 1232 /* Wait for a connection to finish. One exception is TCP Fast Open 1233 * (passive side) where data is allowed to be sent before a connection 1234 * is fully established. 1235 */ 1236 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1237 !tcp_passive_fastopen(sk)) { 1238 err = sk_stream_wait_connect(sk, &timeo); 1239 if (err != 0) 1240 goto do_error; 1241 } 1242 1243 if (unlikely(tp->repair)) { 1244 if (tp->repair_queue == TCP_RECV_QUEUE) { 1245 copied = tcp_send_rcvq(sk, msg, size); 1246 goto out_nopush; 1247 } 1248 1249 err = -EINVAL; 1250 if (tp->repair_queue == TCP_NO_QUEUE) 1251 goto out_err; 1252 1253 /* 'common' sending to sendq */ 1254 } 1255 1256 sockcm_init(&sockc, sk); 1257 if (msg->msg_controllen) { 1258 err = sock_cmsg_send(sk, msg, &sockc); 1259 if (unlikely(err)) { 1260 err = -EINVAL; 1261 goto out_err; 1262 } 1263 } 1264 1265 /* This should be in poll */ 1266 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1267 1268 /* Ok commence sending. */ 1269 copied = 0; 1270 1271 restart: 1272 mss_now = tcp_send_mss(sk, &size_goal, flags); 1273 1274 err = -EPIPE; 1275 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1276 goto do_error; 1277 1278 while (msg_data_left(msg)) { 1279 int copy = 0; 1280 1281 skb = tcp_write_queue_tail(sk); 1282 if (skb) 1283 copy = size_goal - skb->len; 1284 1285 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1286 bool first_skb; 1287 1288 new_segment: 1289 if (!sk_stream_memory_free(sk)) 1290 goto wait_for_space; 1291 1292 if (unlikely(process_backlog >= 16)) { 1293 process_backlog = 0; 1294 if (sk_flush_backlog(sk)) 1295 goto restart; 1296 } 1297 first_skb = tcp_rtx_and_write_queues_empty(sk); 1298 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1299 first_skb); 1300 if (!skb) 1301 goto wait_for_space; 1302 1303 process_backlog++; 1304 1305 tcp_skb_entail(sk, skb); 1306 copy = size_goal; 1307 1308 /* All packets are restored as if they have 1309 * already been sent. skb_mstamp_ns isn't set to 1310 * avoid wrong rtt estimation. 1311 */ 1312 if (tp->repair) 1313 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1314 } 1315 1316 /* Try to append data to the end of skb. */ 1317 if (copy > msg_data_left(msg)) 1318 copy = msg_data_left(msg); 1319 1320 if (!zc) { 1321 bool merge = true; 1322 int i = skb_shinfo(skb)->nr_frags; 1323 struct page_frag *pfrag = sk_page_frag(sk); 1324 1325 if (!sk_page_frag_refill(sk, pfrag)) 1326 goto wait_for_space; 1327 1328 if (!skb_can_coalesce(skb, i, pfrag->page, 1329 pfrag->offset)) { 1330 if (i >= sysctl_max_skb_frags) { 1331 tcp_mark_push(tp, skb); 1332 goto new_segment; 1333 } 1334 merge = false; 1335 } 1336 1337 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1338 1339 if (tcp_downgrade_zcopy_pure(sk, skb) || 1340 !sk_wmem_schedule(sk, copy)) 1341 goto wait_for_space; 1342 1343 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1344 pfrag->page, 1345 pfrag->offset, 1346 copy); 1347 if (err) 1348 goto do_error; 1349 1350 /* Update the skb. */ 1351 if (merge) { 1352 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1353 } else { 1354 skb_fill_page_desc(skb, i, pfrag->page, 1355 pfrag->offset, copy); 1356 page_ref_inc(pfrag->page); 1357 } 1358 pfrag->offset += copy; 1359 } else { 1360 /* First append to a fragless skb builds initial 1361 * pure zerocopy skb 1362 */ 1363 if (!skb->len) 1364 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1365 1366 if (!skb_zcopy_pure(skb)) { 1367 if (!sk_wmem_schedule(sk, copy)) 1368 goto wait_for_space; 1369 } 1370 1371 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1372 if (err == -EMSGSIZE || err == -EEXIST) { 1373 tcp_mark_push(tp, skb); 1374 goto new_segment; 1375 } 1376 if (err < 0) 1377 goto do_error; 1378 copy = err; 1379 } 1380 1381 if (!copied) 1382 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1383 1384 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1385 TCP_SKB_CB(skb)->end_seq += copy; 1386 tcp_skb_pcount_set(skb, 0); 1387 1388 copied += copy; 1389 if (!msg_data_left(msg)) { 1390 if (unlikely(flags & MSG_EOR)) 1391 TCP_SKB_CB(skb)->eor = 1; 1392 goto out; 1393 } 1394 1395 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1396 continue; 1397 1398 if (forced_push(tp)) { 1399 tcp_mark_push(tp, skb); 1400 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1401 } else if (skb == tcp_send_head(sk)) 1402 tcp_push_one(sk, mss_now); 1403 continue; 1404 1405 wait_for_space: 1406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1407 if (copied) 1408 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1409 TCP_NAGLE_PUSH, size_goal); 1410 1411 err = sk_stream_wait_memory(sk, &timeo); 1412 if (err != 0) 1413 goto do_error; 1414 1415 mss_now = tcp_send_mss(sk, &size_goal, flags); 1416 } 1417 1418 out: 1419 if (copied) { 1420 tcp_tx_timestamp(sk, sockc.tsflags); 1421 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1422 } 1423 out_nopush: 1424 net_zcopy_put(uarg); 1425 return copied + copied_syn; 1426 1427 do_error: 1428 tcp_remove_empty_skb(sk); 1429 1430 if (copied + copied_syn) 1431 goto out; 1432 out_err: 1433 net_zcopy_put_abort(uarg, true); 1434 err = sk_stream_error(sk, flags, err); 1435 /* make sure we wake any epoll edge trigger waiter */ 1436 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1437 sk->sk_write_space(sk); 1438 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1439 } 1440 return err; 1441 } 1442 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1443 1444 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1445 { 1446 int ret; 1447 1448 lock_sock(sk); 1449 ret = tcp_sendmsg_locked(sk, msg, size); 1450 release_sock(sk); 1451 1452 return ret; 1453 } 1454 EXPORT_SYMBOL(tcp_sendmsg); 1455 1456 /* 1457 * Handle reading urgent data. BSD has very simple semantics for 1458 * this, no blocking and very strange errors 8) 1459 */ 1460 1461 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1462 { 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 1465 /* No URG data to read. */ 1466 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1467 tp->urg_data == TCP_URG_READ) 1468 return -EINVAL; /* Yes this is right ! */ 1469 1470 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1471 return -ENOTCONN; 1472 1473 if (tp->urg_data & TCP_URG_VALID) { 1474 int err = 0; 1475 char c = tp->urg_data; 1476 1477 if (!(flags & MSG_PEEK)) 1478 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1479 1480 /* Read urgent data. */ 1481 msg->msg_flags |= MSG_OOB; 1482 1483 if (len > 0) { 1484 if (!(flags & MSG_TRUNC)) 1485 err = memcpy_to_msg(msg, &c, 1); 1486 len = 1; 1487 } else 1488 msg->msg_flags |= MSG_TRUNC; 1489 1490 return err ? -EFAULT : len; 1491 } 1492 1493 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1494 return 0; 1495 1496 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1497 * the available implementations agree in this case: 1498 * this call should never block, independent of the 1499 * blocking state of the socket. 1500 * Mike <pall@rz.uni-karlsruhe.de> 1501 */ 1502 return -EAGAIN; 1503 } 1504 1505 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1506 { 1507 struct sk_buff *skb; 1508 int copied = 0, err = 0; 1509 1510 /* XXX -- need to support SO_PEEK_OFF */ 1511 1512 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1513 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1514 if (err) 1515 return err; 1516 copied += skb->len; 1517 } 1518 1519 skb_queue_walk(&sk->sk_write_queue, skb) { 1520 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1521 if (err) 1522 break; 1523 1524 copied += skb->len; 1525 } 1526 1527 return err ?: copied; 1528 } 1529 1530 /* Clean up the receive buffer for full frames taken by the user, 1531 * then send an ACK if necessary. COPIED is the number of bytes 1532 * tcp_recvmsg has given to the user so far, it speeds up the 1533 * calculation of whether or not we must ACK for the sake of 1534 * a window update. 1535 */ 1536 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 bool time_to_ack = false; 1540 1541 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1542 1543 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1544 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1545 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1546 1547 if (inet_csk_ack_scheduled(sk)) { 1548 const struct inet_connection_sock *icsk = inet_csk(sk); 1549 1550 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1551 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1552 /* 1553 * If this read emptied read buffer, we send ACK, if 1554 * connection is not bidirectional, user drained 1555 * receive buffer and there was a small segment 1556 * in queue. 1557 */ 1558 (copied > 0 && 1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1560 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1561 !inet_csk_in_pingpong_mode(sk))) && 1562 !atomic_read(&sk->sk_rmem_alloc))) 1563 time_to_ack = true; 1564 } 1565 1566 /* We send an ACK if we can now advertise a non-zero window 1567 * which has been raised "significantly". 1568 * 1569 * Even if window raised up to infinity, do not send window open ACK 1570 * in states, where we will not receive more. It is useless. 1571 */ 1572 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1573 __u32 rcv_window_now = tcp_receive_window(tp); 1574 1575 /* Optimize, __tcp_select_window() is not cheap. */ 1576 if (2*rcv_window_now <= tp->window_clamp) { 1577 __u32 new_window = __tcp_select_window(sk); 1578 1579 /* Send ACK now, if this read freed lots of space 1580 * in our buffer. Certainly, new_window is new window. 1581 * We can advertise it now, if it is not less than current one. 1582 * "Lots" means "at least twice" here. 1583 */ 1584 if (new_window && new_window >= 2 * rcv_window_now) 1585 time_to_ack = true; 1586 } 1587 } 1588 if (time_to_ack) 1589 tcp_send_ack(sk); 1590 } 1591 1592 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1593 { 1594 __skb_unlink(skb, &sk->sk_receive_queue); 1595 if (likely(skb->destructor == sock_rfree)) { 1596 sock_rfree(skb); 1597 skb->destructor = NULL; 1598 skb->sk = NULL; 1599 return skb_attempt_defer_free(skb); 1600 } 1601 __kfree_skb(skb); 1602 } 1603 1604 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1605 { 1606 struct sk_buff *skb; 1607 u32 offset; 1608 1609 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1610 offset = seq - TCP_SKB_CB(skb)->seq; 1611 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1612 pr_err_once("%s: found a SYN, please report !\n", __func__); 1613 offset--; 1614 } 1615 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1616 *off = offset; 1617 return skb; 1618 } 1619 /* This looks weird, but this can happen if TCP collapsing 1620 * splitted a fat GRO packet, while we released socket lock 1621 * in skb_splice_bits() 1622 */ 1623 tcp_eat_recv_skb(sk, skb); 1624 } 1625 return NULL; 1626 } 1627 1628 /* 1629 * This routine provides an alternative to tcp_recvmsg() for routines 1630 * that would like to handle copying from skbuffs directly in 'sendfile' 1631 * fashion. 1632 * Note: 1633 * - It is assumed that the socket was locked by the caller. 1634 * - The routine does not block. 1635 * - At present, there is no support for reading OOB data 1636 * or for 'peeking' the socket using this routine 1637 * (although both would be easy to implement). 1638 */ 1639 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1640 sk_read_actor_t recv_actor) 1641 { 1642 struct sk_buff *skb; 1643 struct tcp_sock *tp = tcp_sk(sk); 1644 u32 seq = tp->copied_seq; 1645 u32 offset; 1646 int copied = 0; 1647 1648 if (sk->sk_state == TCP_LISTEN) 1649 return -ENOTCONN; 1650 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1651 if (offset < skb->len) { 1652 int used; 1653 size_t len; 1654 1655 len = skb->len - offset; 1656 /* Stop reading if we hit a patch of urgent data */ 1657 if (unlikely(tp->urg_data)) { 1658 u32 urg_offset = tp->urg_seq - seq; 1659 if (urg_offset < len) 1660 len = urg_offset; 1661 if (!len) 1662 break; 1663 } 1664 used = recv_actor(desc, skb, offset, len); 1665 if (used <= 0) { 1666 if (!copied) 1667 copied = used; 1668 break; 1669 } 1670 if (WARN_ON_ONCE(used > len)) 1671 used = len; 1672 seq += used; 1673 copied += used; 1674 offset += used; 1675 1676 /* If recv_actor drops the lock (e.g. TCP splice 1677 * receive) the skb pointer might be invalid when 1678 * getting here: tcp_collapse might have deleted it 1679 * while aggregating skbs from the socket queue. 1680 */ 1681 skb = tcp_recv_skb(sk, seq - 1, &offset); 1682 if (!skb) 1683 break; 1684 /* TCP coalescing might have appended data to the skb. 1685 * Try to splice more frags 1686 */ 1687 if (offset + 1 != skb->len) 1688 continue; 1689 } 1690 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1691 tcp_eat_recv_skb(sk, skb); 1692 ++seq; 1693 break; 1694 } 1695 tcp_eat_recv_skb(sk, skb); 1696 if (!desc->count) 1697 break; 1698 WRITE_ONCE(tp->copied_seq, seq); 1699 } 1700 WRITE_ONCE(tp->copied_seq, seq); 1701 1702 tcp_rcv_space_adjust(sk); 1703 1704 /* Clean up data we have read: This will do ACK frames. */ 1705 if (copied > 0) { 1706 tcp_recv_skb(sk, seq, &offset); 1707 tcp_cleanup_rbuf(sk, copied); 1708 } 1709 return copied; 1710 } 1711 EXPORT_SYMBOL(tcp_read_sock); 1712 1713 int tcp_peek_len(struct socket *sock) 1714 { 1715 return tcp_inq(sock->sk); 1716 } 1717 EXPORT_SYMBOL(tcp_peek_len); 1718 1719 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1720 int tcp_set_rcvlowat(struct sock *sk, int val) 1721 { 1722 int cap; 1723 1724 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1725 cap = sk->sk_rcvbuf >> 1; 1726 else 1727 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1728 val = min(val, cap); 1729 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1730 1731 /* Check if we need to signal EPOLLIN right now */ 1732 tcp_data_ready(sk); 1733 1734 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1735 return 0; 1736 1737 val <<= 1; 1738 if (val > sk->sk_rcvbuf) { 1739 WRITE_ONCE(sk->sk_rcvbuf, val); 1740 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1741 } 1742 return 0; 1743 } 1744 EXPORT_SYMBOL(tcp_set_rcvlowat); 1745 1746 void tcp_update_recv_tstamps(struct sk_buff *skb, 1747 struct scm_timestamping_internal *tss) 1748 { 1749 if (skb->tstamp) 1750 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1751 else 1752 tss->ts[0] = (struct timespec64) {0}; 1753 1754 if (skb_hwtstamps(skb)->hwtstamp) 1755 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1756 else 1757 tss->ts[2] = (struct timespec64) {0}; 1758 } 1759 1760 #ifdef CONFIG_MMU 1761 static const struct vm_operations_struct tcp_vm_ops = { 1762 }; 1763 1764 int tcp_mmap(struct file *file, struct socket *sock, 1765 struct vm_area_struct *vma) 1766 { 1767 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1768 return -EPERM; 1769 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1770 1771 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1772 vma->vm_flags |= VM_MIXEDMAP; 1773 1774 vma->vm_ops = &tcp_vm_ops; 1775 return 0; 1776 } 1777 EXPORT_SYMBOL(tcp_mmap); 1778 1779 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1780 u32 *offset_frag) 1781 { 1782 skb_frag_t *frag; 1783 1784 if (unlikely(offset_skb >= skb->len)) 1785 return NULL; 1786 1787 offset_skb -= skb_headlen(skb); 1788 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1789 return NULL; 1790 1791 frag = skb_shinfo(skb)->frags; 1792 while (offset_skb) { 1793 if (skb_frag_size(frag) > offset_skb) { 1794 *offset_frag = offset_skb; 1795 return frag; 1796 } 1797 offset_skb -= skb_frag_size(frag); 1798 ++frag; 1799 } 1800 *offset_frag = 0; 1801 return frag; 1802 } 1803 1804 static bool can_map_frag(const skb_frag_t *frag) 1805 { 1806 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1807 } 1808 1809 static int find_next_mappable_frag(const skb_frag_t *frag, 1810 int remaining_in_skb) 1811 { 1812 int offset = 0; 1813 1814 if (likely(can_map_frag(frag))) 1815 return 0; 1816 1817 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1818 offset += skb_frag_size(frag); 1819 ++frag; 1820 } 1821 return offset; 1822 } 1823 1824 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1825 struct tcp_zerocopy_receive *zc, 1826 struct sk_buff *skb, u32 offset) 1827 { 1828 u32 frag_offset, partial_frag_remainder = 0; 1829 int mappable_offset; 1830 skb_frag_t *frag; 1831 1832 /* worst case: skip to next skb. try to improve on this case below */ 1833 zc->recv_skip_hint = skb->len - offset; 1834 1835 /* Find the frag containing this offset (and how far into that frag) */ 1836 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1837 if (!frag) 1838 return; 1839 1840 if (frag_offset) { 1841 struct skb_shared_info *info = skb_shinfo(skb); 1842 1843 /* We read part of the last frag, must recvmsg() rest of skb. */ 1844 if (frag == &info->frags[info->nr_frags - 1]) 1845 return; 1846 1847 /* Else, we must at least read the remainder in this frag. */ 1848 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1849 zc->recv_skip_hint -= partial_frag_remainder; 1850 ++frag; 1851 } 1852 1853 /* partial_frag_remainder: If part way through a frag, must read rest. 1854 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1855 * in partial_frag_remainder. 1856 */ 1857 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1858 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1859 } 1860 1861 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1862 int flags, struct scm_timestamping_internal *tss, 1863 int *cmsg_flags); 1864 static int receive_fallback_to_copy(struct sock *sk, 1865 struct tcp_zerocopy_receive *zc, int inq, 1866 struct scm_timestamping_internal *tss) 1867 { 1868 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1869 struct msghdr msg = {}; 1870 struct iovec iov; 1871 int err; 1872 1873 zc->length = 0; 1874 zc->recv_skip_hint = 0; 1875 1876 if (copy_address != zc->copybuf_address) 1877 return -EINVAL; 1878 1879 err = import_single_range(READ, (void __user *)copy_address, 1880 inq, &iov, &msg.msg_iter); 1881 if (err) 1882 return err; 1883 1884 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1885 tss, &zc->msg_flags); 1886 if (err < 0) 1887 return err; 1888 1889 zc->copybuf_len = err; 1890 if (likely(zc->copybuf_len)) { 1891 struct sk_buff *skb; 1892 u32 offset; 1893 1894 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1895 if (skb) 1896 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1897 } 1898 return 0; 1899 } 1900 1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1902 struct sk_buff *skb, u32 copylen, 1903 u32 *offset, u32 *seq) 1904 { 1905 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1906 struct msghdr msg = {}; 1907 struct iovec iov; 1908 int err; 1909 1910 if (copy_address != zc->copybuf_address) 1911 return -EINVAL; 1912 1913 err = import_single_range(READ, (void __user *)copy_address, 1914 copylen, &iov, &msg.msg_iter); 1915 if (err) 1916 return err; 1917 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1918 if (err) 1919 return err; 1920 zc->recv_skip_hint -= copylen; 1921 *offset += copylen; 1922 *seq += copylen; 1923 return (__s32)copylen; 1924 } 1925 1926 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1927 struct sock *sk, 1928 struct sk_buff *skb, 1929 u32 *seq, 1930 s32 copybuf_len, 1931 struct scm_timestamping_internal *tss) 1932 { 1933 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1934 1935 if (!copylen) 1936 return 0; 1937 /* skb is null if inq < PAGE_SIZE. */ 1938 if (skb) { 1939 offset = *seq - TCP_SKB_CB(skb)->seq; 1940 } else { 1941 skb = tcp_recv_skb(sk, *seq, &offset); 1942 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1943 tcp_update_recv_tstamps(skb, tss); 1944 zc->msg_flags |= TCP_CMSG_TS; 1945 } 1946 } 1947 1948 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1949 seq); 1950 return zc->copybuf_len < 0 ? 0 : copylen; 1951 } 1952 1953 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1954 struct page **pending_pages, 1955 unsigned long pages_remaining, 1956 unsigned long *address, 1957 u32 *length, 1958 u32 *seq, 1959 struct tcp_zerocopy_receive *zc, 1960 u32 total_bytes_to_map, 1961 int err) 1962 { 1963 /* At least one page did not map. Try zapping if we skipped earlier. */ 1964 if (err == -EBUSY && 1965 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1966 u32 maybe_zap_len; 1967 1968 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1969 *length + /* Mapped or pending */ 1970 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1971 zap_page_range(vma, *address, maybe_zap_len); 1972 err = 0; 1973 } 1974 1975 if (!err) { 1976 unsigned long leftover_pages = pages_remaining; 1977 int bytes_mapped; 1978 1979 /* We called zap_page_range, try to reinsert. */ 1980 err = vm_insert_pages(vma, *address, 1981 pending_pages, 1982 &pages_remaining); 1983 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1984 *seq += bytes_mapped; 1985 *address += bytes_mapped; 1986 } 1987 if (err) { 1988 /* Either we were unable to zap, OR we zapped, retried an 1989 * insert, and still had an issue. Either ways, pages_remaining 1990 * is the number of pages we were unable to map, and we unroll 1991 * some state we speculatively touched before. 1992 */ 1993 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1994 1995 *length -= bytes_not_mapped; 1996 zc->recv_skip_hint += bytes_not_mapped; 1997 } 1998 return err; 1999 } 2000 2001 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2002 struct page **pages, 2003 unsigned int pages_to_map, 2004 unsigned long *address, 2005 u32 *length, 2006 u32 *seq, 2007 struct tcp_zerocopy_receive *zc, 2008 u32 total_bytes_to_map) 2009 { 2010 unsigned long pages_remaining = pages_to_map; 2011 unsigned int pages_mapped; 2012 unsigned int bytes_mapped; 2013 int err; 2014 2015 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2016 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2017 bytes_mapped = PAGE_SIZE * pages_mapped; 2018 /* Even if vm_insert_pages fails, it may have partially succeeded in 2019 * mapping (some but not all of the pages). 2020 */ 2021 *seq += bytes_mapped; 2022 *address += bytes_mapped; 2023 2024 if (likely(!err)) 2025 return 0; 2026 2027 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2028 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2029 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2030 err); 2031 } 2032 2033 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2034 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2035 struct tcp_zerocopy_receive *zc, 2036 struct scm_timestamping_internal *tss) 2037 { 2038 unsigned long msg_control_addr; 2039 struct msghdr cmsg_dummy; 2040 2041 msg_control_addr = (unsigned long)zc->msg_control; 2042 cmsg_dummy.msg_control = (void *)msg_control_addr; 2043 cmsg_dummy.msg_controllen = 2044 (__kernel_size_t)zc->msg_controllen; 2045 cmsg_dummy.msg_flags = in_compat_syscall() 2046 ? MSG_CMSG_COMPAT : 0; 2047 cmsg_dummy.msg_control_is_user = true; 2048 zc->msg_flags = 0; 2049 if (zc->msg_control == msg_control_addr && 2050 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2051 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2052 zc->msg_control = (__u64) 2053 ((uintptr_t)cmsg_dummy.msg_control); 2054 zc->msg_controllen = 2055 (__u64)cmsg_dummy.msg_controllen; 2056 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2057 } 2058 } 2059 2060 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2061 static int tcp_zerocopy_receive(struct sock *sk, 2062 struct tcp_zerocopy_receive *zc, 2063 struct scm_timestamping_internal *tss) 2064 { 2065 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2066 unsigned long address = (unsigned long)zc->address; 2067 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2068 s32 copybuf_len = zc->copybuf_len; 2069 struct tcp_sock *tp = tcp_sk(sk); 2070 const skb_frag_t *frags = NULL; 2071 unsigned int pages_to_map = 0; 2072 struct vm_area_struct *vma; 2073 struct sk_buff *skb = NULL; 2074 u32 seq = tp->copied_seq; 2075 u32 total_bytes_to_map; 2076 int inq = tcp_inq(sk); 2077 int ret; 2078 2079 zc->copybuf_len = 0; 2080 zc->msg_flags = 0; 2081 2082 if (address & (PAGE_SIZE - 1) || address != zc->address) 2083 return -EINVAL; 2084 2085 if (sk->sk_state == TCP_LISTEN) 2086 return -ENOTCONN; 2087 2088 sock_rps_record_flow(sk); 2089 2090 if (inq && inq <= copybuf_len) 2091 return receive_fallback_to_copy(sk, zc, inq, tss); 2092 2093 if (inq < PAGE_SIZE) { 2094 zc->length = 0; 2095 zc->recv_skip_hint = inq; 2096 if (!inq && sock_flag(sk, SOCK_DONE)) 2097 return -EIO; 2098 return 0; 2099 } 2100 2101 mmap_read_lock(current->mm); 2102 2103 vma = vma_lookup(current->mm, address); 2104 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2105 mmap_read_unlock(current->mm); 2106 return -EINVAL; 2107 } 2108 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2109 avail_len = min_t(u32, vma_len, inq); 2110 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2111 if (total_bytes_to_map) { 2112 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2113 zap_page_range(vma, address, total_bytes_to_map); 2114 zc->length = total_bytes_to_map; 2115 zc->recv_skip_hint = 0; 2116 } else { 2117 zc->length = avail_len; 2118 zc->recv_skip_hint = avail_len; 2119 } 2120 ret = 0; 2121 while (length + PAGE_SIZE <= zc->length) { 2122 int mappable_offset; 2123 struct page *page; 2124 2125 if (zc->recv_skip_hint < PAGE_SIZE) { 2126 u32 offset_frag; 2127 2128 if (skb) { 2129 if (zc->recv_skip_hint > 0) 2130 break; 2131 skb = skb->next; 2132 offset = seq - TCP_SKB_CB(skb)->seq; 2133 } else { 2134 skb = tcp_recv_skb(sk, seq, &offset); 2135 } 2136 2137 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2138 tcp_update_recv_tstamps(skb, tss); 2139 zc->msg_flags |= TCP_CMSG_TS; 2140 } 2141 zc->recv_skip_hint = skb->len - offset; 2142 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2143 if (!frags || offset_frag) 2144 break; 2145 } 2146 2147 mappable_offset = find_next_mappable_frag(frags, 2148 zc->recv_skip_hint); 2149 if (mappable_offset) { 2150 zc->recv_skip_hint = mappable_offset; 2151 break; 2152 } 2153 page = skb_frag_page(frags); 2154 prefetchw(page); 2155 pages[pages_to_map++] = page; 2156 length += PAGE_SIZE; 2157 zc->recv_skip_hint -= PAGE_SIZE; 2158 frags++; 2159 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2160 zc->recv_skip_hint < PAGE_SIZE) { 2161 /* Either full batch, or we're about to go to next skb 2162 * (and we cannot unroll failed ops across skbs). 2163 */ 2164 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2165 pages_to_map, 2166 &address, &length, 2167 &seq, zc, 2168 total_bytes_to_map); 2169 if (ret) 2170 goto out; 2171 pages_to_map = 0; 2172 } 2173 } 2174 if (pages_to_map) { 2175 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2176 &address, &length, &seq, 2177 zc, total_bytes_to_map); 2178 } 2179 out: 2180 mmap_read_unlock(current->mm); 2181 /* Try to copy straggler data. */ 2182 if (!ret) 2183 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2184 2185 if (length + copylen) { 2186 WRITE_ONCE(tp->copied_seq, seq); 2187 tcp_rcv_space_adjust(sk); 2188 2189 /* Clean up data we have read: This will do ACK frames. */ 2190 tcp_recv_skb(sk, seq, &offset); 2191 tcp_cleanup_rbuf(sk, length + copylen); 2192 ret = 0; 2193 if (length == zc->length) 2194 zc->recv_skip_hint = 0; 2195 } else { 2196 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2197 ret = -EIO; 2198 } 2199 zc->length = length; 2200 return ret; 2201 } 2202 #endif 2203 2204 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2205 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2206 struct scm_timestamping_internal *tss) 2207 { 2208 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2209 bool has_timestamping = false; 2210 2211 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2212 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2213 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2214 if (new_tstamp) { 2215 struct __kernel_timespec kts = { 2216 .tv_sec = tss->ts[0].tv_sec, 2217 .tv_nsec = tss->ts[0].tv_nsec, 2218 }; 2219 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2220 sizeof(kts), &kts); 2221 } else { 2222 struct __kernel_old_timespec ts_old = { 2223 .tv_sec = tss->ts[0].tv_sec, 2224 .tv_nsec = tss->ts[0].tv_nsec, 2225 }; 2226 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2227 sizeof(ts_old), &ts_old); 2228 } 2229 } else { 2230 if (new_tstamp) { 2231 struct __kernel_sock_timeval stv = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_usec = tss->ts[0].tv_nsec / 1000, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2236 sizeof(stv), &stv); 2237 } else { 2238 struct __kernel_old_timeval tv = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_usec = tss->ts[0].tv_nsec / 1000, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2243 sizeof(tv), &tv); 2244 } 2245 } 2246 } 2247 2248 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2249 has_timestamping = true; 2250 else 2251 tss->ts[0] = (struct timespec64) {0}; 2252 } 2253 2254 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2255 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2256 has_timestamping = true; 2257 else 2258 tss->ts[2] = (struct timespec64) {0}; 2259 } 2260 2261 if (has_timestamping) { 2262 tss->ts[1] = (struct timespec64) {0}; 2263 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2264 put_cmsg_scm_timestamping64(msg, tss); 2265 else 2266 put_cmsg_scm_timestamping(msg, tss); 2267 } 2268 } 2269 2270 static int tcp_inq_hint(struct sock *sk) 2271 { 2272 const struct tcp_sock *tp = tcp_sk(sk); 2273 u32 copied_seq = READ_ONCE(tp->copied_seq); 2274 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2275 int inq; 2276 2277 inq = rcv_nxt - copied_seq; 2278 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2279 lock_sock(sk); 2280 inq = tp->rcv_nxt - tp->copied_seq; 2281 release_sock(sk); 2282 } 2283 /* After receiving a FIN, tell the user-space to continue reading 2284 * by returning a non-zero inq. 2285 */ 2286 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2287 inq = 1; 2288 return inq; 2289 } 2290 2291 /* 2292 * This routine copies from a sock struct into the user buffer. 2293 * 2294 * Technical note: in 2.3 we work on _locked_ socket, so that 2295 * tricks with *seq access order and skb->users are not required. 2296 * Probably, code can be easily improved even more. 2297 */ 2298 2299 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2300 int flags, struct scm_timestamping_internal *tss, 2301 int *cmsg_flags) 2302 { 2303 struct tcp_sock *tp = tcp_sk(sk); 2304 int copied = 0; 2305 u32 peek_seq; 2306 u32 *seq; 2307 unsigned long used; 2308 int err; 2309 int target; /* Read at least this many bytes */ 2310 long timeo; 2311 struct sk_buff *skb, *last; 2312 u32 urg_hole = 0; 2313 2314 err = -ENOTCONN; 2315 if (sk->sk_state == TCP_LISTEN) 2316 goto out; 2317 2318 if (tp->recvmsg_inq) { 2319 *cmsg_flags = TCP_CMSG_INQ; 2320 msg->msg_get_inq = 1; 2321 } 2322 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2323 2324 /* Urgent data needs to be handled specially. */ 2325 if (flags & MSG_OOB) 2326 goto recv_urg; 2327 2328 if (unlikely(tp->repair)) { 2329 err = -EPERM; 2330 if (!(flags & MSG_PEEK)) 2331 goto out; 2332 2333 if (tp->repair_queue == TCP_SEND_QUEUE) 2334 goto recv_sndq; 2335 2336 err = -EINVAL; 2337 if (tp->repair_queue == TCP_NO_QUEUE) 2338 goto out; 2339 2340 /* 'common' recv queue MSG_PEEK-ing */ 2341 } 2342 2343 seq = &tp->copied_seq; 2344 if (flags & MSG_PEEK) { 2345 peek_seq = tp->copied_seq; 2346 seq = &peek_seq; 2347 } 2348 2349 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2350 2351 do { 2352 u32 offset; 2353 2354 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2355 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2356 if (copied) 2357 break; 2358 if (signal_pending(current)) { 2359 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2360 break; 2361 } 2362 } 2363 2364 /* Next get a buffer. */ 2365 2366 last = skb_peek_tail(&sk->sk_receive_queue); 2367 skb_queue_walk(&sk->sk_receive_queue, skb) { 2368 last = skb; 2369 /* Now that we have two receive queues this 2370 * shouldn't happen. 2371 */ 2372 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2373 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2374 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2375 flags)) 2376 break; 2377 2378 offset = *seq - TCP_SKB_CB(skb)->seq; 2379 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2380 pr_err_once("%s: found a SYN, please report !\n", __func__); 2381 offset--; 2382 } 2383 if (offset < skb->len) 2384 goto found_ok_skb; 2385 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2386 goto found_fin_ok; 2387 WARN(!(flags & MSG_PEEK), 2388 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2389 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2390 } 2391 2392 /* Well, if we have backlog, try to process it now yet. */ 2393 2394 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2395 break; 2396 2397 if (copied) { 2398 if (!timeo || 2399 sk->sk_err || 2400 sk->sk_state == TCP_CLOSE || 2401 (sk->sk_shutdown & RCV_SHUTDOWN) || 2402 signal_pending(current)) 2403 break; 2404 } else { 2405 if (sock_flag(sk, SOCK_DONE)) 2406 break; 2407 2408 if (sk->sk_err) { 2409 copied = sock_error(sk); 2410 break; 2411 } 2412 2413 if (sk->sk_shutdown & RCV_SHUTDOWN) 2414 break; 2415 2416 if (sk->sk_state == TCP_CLOSE) { 2417 /* This occurs when user tries to read 2418 * from never connected socket. 2419 */ 2420 copied = -ENOTCONN; 2421 break; 2422 } 2423 2424 if (!timeo) { 2425 copied = -EAGAIN; 2426 break; 2427 } 2428 2429 if (signal_pending(current)) { 2430 copied = sock_intr_errno(timeo); 2431 break; 2432 } 2433 } 2434 2435 if (copied >= target) { 2436 /* Do not sleep, just process backlog. */ 2437 __sk_flush_backlog(sk); 2438 } else { 2439 tcp_cleanup_rbuf(sk, copied); 2440 sk_wait_data(sk, &timeo, last); 2441 } 2442 2443 if ((flags & MSG_PEEK) && 2444 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2445 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2446 current->comm, 2447 task_pid_nr(current)); 2448 peek_seq = tp->copied_seq; 2449 } 2450 continue; 2451 2452 found_ok_skb: 2453 /* Ok so how much can we use? */ 2454 used = skb->len - offset; 2455 if (len < used) 2456 used = len; 2457 2458 /* Do we have urgent data here? */ 2459 if (unlikely(tp->urg_data)) { 2460 u32 urg_offset = tp->urg_seq - *seq; 2461 if (urg_offset < used) { 2462 if (!urg_offset) { 2463 if (!sock_flag(sk, SOCK_URGINLINE)) { 2464 WRITE_ONCE(*seq, *seq + 1); 2465 urg_hole++; 2466 offset++; 2467 used--; 2468 if (!used) 2469 goto skip_copy; 2470 } 2471 } else 2472 used = urg_offset; 2473 } 2474 } 2475 2476 if (!(flags & MSG_TRUNC)) { 2477 err = skb_copy_datagram_msg(skb, offset, msg, used); 2478 if (err) { 2479 /* Exception. Bailout! */ 2480 if (!copied) 2481 copied = -EFAULT; 2482 break; 2483 } 2484 } 2485 2486 WRITE_ONCE(*seq, *seq + used); 2487 copied += used; 2488 len -= used; 2489 2490 tcp_rcv_space_adjust(sk); 2491 2492 skip_copy: 2493 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2494 WRITE_ONCE(tp->urg_data, 0); 2495 tcp_fast_path_check(sk); 2496 } 2497 2498 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2499 tcp_update_recv_tstamps(skb, tss); 2500 *cmsg_flags |= TCP_CMSG_TS; 2501 } 2502 2503 if (used + offset < skb->len) 2504 continue; 2505 2506 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2507 goto found_fin_ok; 2508 if (!(flags & MSG_PEEK)) 2509 tcp_eat_recv_skb(sk, skb); 2510 continue; 2511 2512 found_fin_ok: 2513 /* Process the FIN. */ 2514 WRITE_ONCE(*seq, *seq + 1); 2515 if (!(flags & MSG_PEEK)) 2516 tcp_eat_recv_skb(sk, skb); 2517 break; 2518 } while (len > 0); 2519 2520 /* According to UNIX98, msg_name/msg_namelen are ignored 2521 * on connected socket. I was just happy when found this 8) --ANK 2522 */ 2523 2524 /* Clean up data we have read: This will do ACK frames. */ 2525 tcp_cleanup_rbuf(sk, copied); 2526 return copied; 2527 2528 out: 2529 return err; 2530 2531 recv_urg: 2532 err = tcp_recv_urg(sk, msg, len, flags); 2533 goto out; 2534 2535 recv_sndq: 2536 err = tcp_peek_sndq(sk, msg, len); 2537 goto out; 2538 } 2539 2540 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2541 int *addr_len) 2542 { 2543 int cmsg_flags = 0, ret; 2544 struct scm_timestamping_internal tss; 2545 2546 if (unlikely(flags & MSG_ERRQUEUE)) 2547 return inet_recv_error(sk, msg, len, addr_len); 2548 2549 if (sk_can_busy_loop(sk) && 2550 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2551 sk->sk_state == TCP_ESTABLISHED) 2552 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2553 2554 lock_sock(sk); 2555 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2556 release_sock(sk); 2557 2558 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2559 if (cmsg_flags & TCP_CMSG_TS) 2560 tcp_recv_timestamp(msg, sk, &tss); 2561 if (msg->msg_get_inq) { 2562 msg->msg_inq = tcp_inq_hint(sk); 2563 if (cmsg_flags & TCP_CMSG_INQ) 2564 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2565 sizeof(msg->msg_inq), &msg->msg_inq); 2566 } 2567 } 2568 return ret; 2569 } 2570 EXPORT_SYMBOL(tcp_recvmsg); 2571 2572 void tcp_set_state(struct sock *sk, int state) 2573 { 2574 int oldstate = sk->sk_state; 2575 2576 /* We defined a new enum for TCP states that are exported in BPF 2577 * so as not force the internal TCP states to be frozen. The 2578 * following checks will detect if an internal state value ever 2579 * differs from the BPF value. If this ever happens, then we will 2580 * need to remap the internal value to the BPF value before calling 2581 * tcp_call_bpf_2arg. 2582 */ 2583 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2584 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2585 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2586 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2587 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2588 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2589 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2590 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2591 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2592 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2593 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2594 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2595 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2596 2597 /* bpf uapi header bpf.h defines an anonymous enum with values 2598 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2599 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2600 * But clang built vmlinux does not have this enum in DWARF 2601 * since clang removes the above code before generating IR/debuginfo. 2602 * Let us explicitly emit the type debuginfo to ensure the 2603 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2604 * regardless of which compiler is used. 2605 */ 2606 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2607 2608 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2609 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2610 2611 switch (state) { 2612 case TCP_ESTABLISHED: 2613 if (oldstate != TCP_ESTABLISHED) 2614 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2615 break; 2616 2617 case TCP_CLOSE: 2618 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2619 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2620 2621 sk->sk_prot->unhash(sk); 2622 if (inet_csk(sk)->icsk_bind_hash && 2623 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2624 inet_put_port(sk); 2625 fallthrough; 2626 default: 2627 if (oldstate == TCP_ESTABLISHED) 2628 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2629 } 2630 2631 /* Change state AFTER socket is unhashed to avoid closed 2632 * socket sitting in hash tables. 2633 */ 2634 inet_sk_state_store(sk, state); 2635 } 2636 EXPORT_SYMBOL_GPL(tcp_set_state); 2637 2638 /* 2639 * State processing on a close. This implements the state shift for 2640 * sending our FIN frame. Note that we only send a FIN for some 2641 * states. A shutdown() may have already sent the FIN, or we may be 2642 * closed. 2643 */ 2644 2645 static const unsigned char new_state[16] = { 2646 /* current state: new state: action: */ 2647 [0 /* (Invalid) */] = TCP_CLOSE, 2648 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2649 [TCP_SYN_SENT] = TCP_CLOSE, 2650 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2651 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2652 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2653 [TCP_TIME_WAIT] = TCP_CLOSE, 2654 [TCP_CLOSE] = TCP_CLOSE, 2655 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2656 [TCP_LAST_ACK] = TCP_LAST_ACK, 2657 [TCP_LISTEN] = TCP_CLOSE, 2658 [TCP_CLOSING] = TCP_CLOSING, 2659 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2660 }; 2661 2662 static int tcp_close_state(struct sock *sk) 2663 { 2664 int next = (int)new_state[sk->sk_state]; 2665 int ns = next & TCP_STATE_MASK; 2666 2667 tcp_set_state(sk, ns); 2668 2669 return next & TCP_ACTION_FIN; 2670 } 2671 2672 /* 2673 * Shutdown the sending side of a connection. Much like close except 2674 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2675 */ 2676 2677 void tcp_shutdown(struct sock *sk, int how) 2678 { 2679 /* We need to grab some memory, and put together a FIN, 2680 * and then put it into the queue to be sent. 2681 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2682 */ 2683 if (!(how & SEND_SHUTDOWN)) 2684 return; 2685 2686 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2687 if ((1 << sk->sk_state) & 2688 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2689 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2690 /* Clear out any half completed packets. FIN if needed. */ 2691 if (tcp_close_state(sk)) 2692 tcp_send_fin(sk); 2693 } 2694 } 2695 EXPORT_SYMBOL(tcp_shutdown); 2696 2697 int tcp_orphan_count_sum(void) 2698 { 2699 int i, total = 0; 2700 2701 for_each_possible_cpu(i) 2702 total += per_cpu(tcp_orphan_count, i); 2703 2704 return max(total, 0); 2705 } 2706 2707 static int tcp_orphan_cache; 2708 static struct timer_list tcp_orphan_timer; 2709 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2710 2711 static void tcp_orphan_update(struct timer_list *unused) 2712 { 2713 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2714 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2715 } 2716 2717 static bool tcp_too_many_orphans(int shift) 2718 { 2719 return READ_ONCE(tcp_orphan_cache) << shift > 2720 READ_ONCE(sysctl_tcp_max_orphans); 2721 } 2722 2723 bool tcp_check_oom(struct sock *sk, int shift) 2724 { 2725 bool too_many_orphans, out_of_socket_memory; 2726 2727 too_many_orphans = tcp_too_many_orphans(shift); 2728 out_of_socket_memory = tcp_out_of_memory(sk); 2729 2730 if (too_many_orphans) 2731 net_info_ratelimited("too many orphaned sockets\n"); 2732 if (out_of_socket_memory) 2733 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2734 return too_many_orphans || out_of_socket_memory; 2735 } 2736 2737 void __tcp_close(struct sock *sk, long timeout) 2738 { 2739 struct sk_buff *skb; 2740 int data_was_unread = 0; 2741 int state; 2742 2743 sk->sk_shutdown = SHUTDOWN_MASK; 2744 2745 if (sk->sk_state == TCP_LISTEN) { 2746 tcp_set_state(sk, TCP_CLOSE); 2747 2748 /* Special case. */ 2749 inet_csk_listen_stop(sk); 2750 2751 goto adjudge_to_death; 2752 } 2753 2754 /* We need to flush the recv. buffs. We do this only on the 2755 * descriptor close, not protocol-sourced closes, because the 2756 * reader process may not have drained the data yet! 2757 */ 2758 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2759 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2760 2761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2762 len--; 2763 data_was_unread += len; 2764 __kfree_skb(skb); 2765 } 2766 2767 sk_mem_reclaim(sk); 2768 2769 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2770 if (sk->sk_state == TCP_CLOSE) 2771 goto adjudge_to_death; 2772 2773 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2774 * data was lost. To witness the awful effects of the old behavior of 2775 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2776 * GET in an FTP client, suspend the process, wait for the client to 2777 * advertise a zero window, then kill -9 the FTP client, wheee... 2778 * Note: timeout is always zero in such a case. 2779 */ 2780 if (unlikely(tcp_sk(sk)->repair)) { 2781 sk->sk_prot->disconnect(sk, 0); 2782 } else if (data_was_unread) { 2783 /* Unread data was tossed, zap the connection. */ 2784 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2785 tcp_set_state(sk, TCP_CLOSE); 2786 tcp_send_active_reset(sk, sk->sk_allocation); 2787 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2788 /* Check zero linger _after_ checking for unread data. */ 2789 sk->sk_prot->disconnect(sk, 0); 2790 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2791 } else if (tcp_close_state(sk)) { 2792 /* We FIN if the application ate all the data before 2793 * zapping the connection. 2794 */ 2795 2796 /* RED-PEN. Formally speaking, we have broken TCP state 2797 * machine. State transitions: 2798 * 2799 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2800 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2801 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2802 * 2803 * are legal only when FIN has been sent (i.e. in window), 2804 * rather than queued out of window. Purists blame. 2805 * 2806 * F.e. "RFC state" is ESTABLISHED, 2807 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2808 * 2809 * The visible declinations are that sometimes 2810 * we enter time-wait state, when it is not required really 2811 * (harmless), do not send active resets, when they are 2812 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2813 * they look as CLOSING or LAST_ACK for Linux) 2814 * Probably, I missed some more holelets. 2815 * --ANK 2816 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2817 * in a single packet! (May consider it later but will 2818 * probably need API support or TCP_CORK SYN-ACK until 2819 * data is written and socket is closed.) 2820 */ 2821 tcp_send_fin(sk); 2822 } 2823 2824 sk_stream_wait_close(sk, timeout); 2825 2826 adjudge_to_death: 2827 state = sk->sk_state; 2828 sock_hold(sk); 2829 sock_orphan(sk); 2830 2831 local_bh_disable(); 2832 bh_lock_sock(sk); 2833 /* remove backlog if any, without releasing ownership. */ 2834 __release_sock(sk); 2835 2836 this_cpu_inc(tcp_orphan_count); 2837 2838 /* Have we already been destroyed by a softirq or backlog? */ 2839 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2840 goto out; 2841 2842 /* This is a (useful) BSD violating of the RFC. There is a 2843 * problem with TCP as specified in that the other end could 2844 * keep a socket open forever with no application left this end. 2845 * We use a 1 minute timeout (about the same as BSD) then kill 2846 * our end. If they send after that then tough - BUT: long enough 2847 * that we won't make the old 4*rto = almost no time - whoops 2848 * reset mistake. 2849 * 2850 * Nope, it was not mistake. It is really desired behaviour 2851 * f.e. on http servers, when such sockets are useless, but 2852 * consume significant resources. Let's do it with special 2853 * linger2 option. --ANK 2854 */ 2855 2856 if (sk->sk_state == TCP_FIN_WAIT2) { 2857 struct tcp_sock *tp = tcp_sk(sk); 2858 if (tp->linger2 < 0) { 2859 tcp_set_state(sk, TCP_CLOSE); 2860 tcp_send_active_reset(sk, GFP_ATOMIC); 2861 __NET_INC_STATS(sock_net(sk), 2862 LINUX_MIB_TCPABORTONLINGER); 2863 } else { 2864 const int tmo = tcp_fin_time(sk); 2865 2866 if (tmo > TCP_TIMEWAIT_LEN) { 2867 inet_csk_reset_keepalive_timer(sk, 2868 tmo - TCP_TIMEWAIT_LEN); 2869 } else { 2870 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2871 goto out; 2872 } 2873 } 2874 } 2875 if (sk->sk_state != TCP_CLOSE) { 2876 sk_mem_reclaim(sk); 2877 if (tcp_check_oom(sk, 0)) { 2878 tcp_set_state(sk, TCP_CLOSE); 2879 tcp_send_active_reset(sk, GFP_ATOMIC); 2880 __NET_INC_STATS(sock_net(sk), 2881 LINUX_MIB_TCPABORTONMEMORY); 2882 } else if (!check_net(sock_net(sk))) { 2883 /* Not possible to send reset; just close */ 2884 tcp_set_state(sk, TCP_CLOSE); 2885 } 2886 } 2887 2888 if (sk->sk_state == TCP_CLOSE) { 2889 struct request_sock *req; 2890 2891 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2892 lockdep_sock_is_held(sk)); 2893 /* We could get here with a non-NULL req if the socket is 2894 * aborted (e.g., closed with unread data) before 3WHS 2895 * finishes. 2896 */ 2897 if (req) 2898 reqsk_fastopen_remove(sk, req, false); 2899 inet_csk_destroy_sock(sk); 2900 } 2901 /* Otherwise, socket is reprieved until protocol close. */ 2902 2903 out: 2904 bh_unlock_sock(sk); 2905 local_bh_enable(); 2906 } 2907 2908 void tcp_close(struct sock *sk, long timeout) 2909 { 2910 lock_sock(sk); 2911 __tcp_close(sk, timeout); 2912 release_sock(sk); 2913 sock_put(sk); 2914 } 2915 EXPORT_SYMBOL(tcp_close); 2916 2917 /* These states need RST on ABORT according to RFC793 */ 2918 2919 static inline bool tcp_need_reset(int state) 2920 { 2921 return (1 << state) & 2922 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2923 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2924 } 2925 2926 static void tcp_rtx_queue_purge(struct sock *sk) 2927 { 2928 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2929 2930 tcp_sk(sk)->highest_sack = NULL; 2931 while (p) { 2932 struct sk_buff *skb = rb_to_skb(p); 2933 2934 p = rb_next(p); 2935 /* Since we are deleting whole queue, no need to 2936 * list_del(&skb->tcp_tsorted_anchor) 2937 */ 2938 tcp_rtx_queue_unlink(skb, sk); 2939 tcp_wmem_free_skb(sk, skb); 2940 } 2941 } 2942 2943 void tcp_write_queue_purge(struct sock *sk) 2944 { 2945 struct sk_buff *skb; 2946 2947 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2948 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2949 tcp_skb_tsorted_anchor_cleanup(skb); 2950 tcp_wmem_free_skb(sk, skb); 2951 } 2952 tcp_rtx_queue_purge(sk); 2953 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2954 sk_mem_reclaim(sk); 2955 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2956 tcp_sk(sk)->packets_out = 0; 2957 inet_csk(sk)->icsk_backoff = 0; 2958 } 2959 2960 int tcp_disconnect(struct sock *sk, int flags) 2961 { 2962 struct inet_sock *inet = inet_sk(sk); 2963 struct inet_connection_sock *icsk = inet_csk(sk); 2964 struct tcp_sock *tp = tcp_sk(sk); 2965 int old_state = sk->sk_state; 2966 u32 seq; 2967 2968 if (old_state != TCP_CLOSE) 2969 tcp_set_state(sk, TCP_CLOSE); 2970 2971 /* ABORT function of RFC793 */ 2972 if (old_state == TCP_LISTEN) { 2973 inet_csk_listen_stop(sk); 2974 } else if (unlikely(tp->repair)) { 2975 sk->sk_err = ECONNABORTED; 2976 } else if (tcp_need_reset(old_state) || 2977 (tp->snd_nxt != tp->write_seq && 2978 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2979 /* The last check adjusts for discrepancy of Linux wrt. RFC 2980 * states 2981 */ 2982 tcp_send_active_reset(sk, gfp_any()); 2983 sk->sk_err = ECONNRESET; 2984 } else if (old_state == TCP_SYN_SENT) 2985 sk->sk_err = ECONNRESET; 2986 2987 tcp_clear_xmit_timers(sk); 2988 __skb_queue_purge(&sk->sk_receive_queue); 2989 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2990 WRITE_ONCE(tp->urg_data, 0); 2991 tcp_write_queue_purge(sk); 2992 tcp_fastopen_active_disable_ofo_check(sk); 2993 skb_rbtree_purge(&tp->out_of_order_queue); 2994 2995 inet->inet_dport = 0; 2996 2997 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2998 inet_reset_saddr(sk); 2999 3000 sk->sk_shutdown = 0; 3001 sock_reset_flag(sk, SOCK_DONE); 3002 tp->srtt_us = 0; 3003 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3004 tp->rcv_rtt_last_tsecr = 0; 3005 3006 seq = tp->write_seq + tp->max_window + 2; 3007 if (!seq) 3008 seq = 1; 3009 WRITE_ONCE(tp->write_seq, seq); 3010 3011 icsk->icsk_backoff = 0; 3012 icsk->icsk_probes_out = 0; 3013 icsk->icsk_probes_tstamp = 0; 3014 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3015 icsk->icsk_rto_min = TCP_RTO_MIN; 3016 icsk->icsk_delack_max = TCP_DELACK_MAX; 3017 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3018 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3019 tp->snd_cwnd_cnt = 0; 3020 tp->window_clamp = 0; 3021 tp->delivered = 0; 3022 tp->delivered_ce = 0; 3023 if (icsk->icsk_ca_ops->release) 3024 icsk->icsk_ca_ops->release(sk); 3025 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3026 icsk->icsk_ca_initialized = 0; 3027 tcp_set_ca_state(sk, TCP_CA_Open); 3028 tp->is_sack_reneg = 0; 3029 tcp_clear_retrans(tp); 3030 tp->total_retrans = 0; 3031 inet_csk_delack_init(sk); 3032 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3033 * issue in __tcp_select_window() 3034 */ 3035 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3036 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3037 __sk_dst_reset(sk); 3038 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3039 tcp_saved_syn_free(tp); 3040 tp->compressed_ack = 0; 3041 tp->segs_in = 0; 3042 tp->segs_out = 0; 3043 tp->bytes_sent = 0; 3044 tp->bytes_acked = 0; 3045 tp->bytes_received = 0; 3046 tp->bytes_retrans = 0; 3047 tp->data_segs_in = 0; 3048 tp->data_segs_out = 0; 3049 tp->duplicate_sack[0].start_seq = 0; 3050 tp->duplicate_sack[0].end_seq = 0; 3051 tp->dsack_dups = 0; 3052 tp->reord_seen = 0; 3053 tp->retrans_out = 0; 3054 tp->sacked_out = 0; 3055 tp->tlp_high_seq = 0; 3056 tp->last_oow_ack_time = 0; 3057 /* There's a bubble in the pipe until at least the first ACK. */ 3058 tp->app_limited = ~0U; 3059 tp->rack.mstamp = 0; 3060 tp->rack.advanced = 0; 3061 tp->rack.reo_wnd_steps = 1; 3062 tp->rack.last_delivered = 0; 3063 tp->rack.reo_wnd_persist = 0; 3064 tp->rack.dsack_seen = 0; 3065 tp->syn_data_acked = 0; 3066 tp->rx_opt.saw_tstamp = 0; 3067 tp->rx_opt.dsack = 0; 3068 tp->rx_opt.num_sacks = 0; 3069 tp->rcv_ooopack = 0; 3070 3071 3072 /* Clean up fastopen related fields */ 3073 tcp_free_fastopen_req(tp); 3074 inet->defer_connect = 0; 3075 tp->fastopen_client_fail = 0; 3076 3077 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3078 3079 if (sk->sk_frag.page) { 3080 put_page(sk->sk_frag.page); 3081 sk->sk_frag.page = NULL; 3082 sk->sk_frag.offset = 0; 3083 } 3084 sk_error_report(sk); 3085 return 0; 3086 } 3087 EXPORT_SYMBOL(tcp_disconnect); 3088 3089 static inline bool tcp_can_repair_sock(const struct sock *sk) 3090 { 3091 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3092 (sk->sk_state != TCP_LISTEN); 3093 } 3094 3095 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3096 { 3097 struct tcp_repair_window opt; 3098 3099 if (!tp->repair) 3100 return -EPERM; 3101 3102 if (len != sizeof(opt)) 3103 return -EINVAL; 3104 3105 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3106 return -EFAULT; 3107 3108 if (opt.max_window < opt.snd_wnd) 3109 return -EINVAL; 3110 3111 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3112 return -EINVAL; 3113 3114 if (after(opt.rcv_wup, tp->rcv_nxt)) 3115 return -EINVAL; 3116 3117 tp->snd_wl1 = opt.snd_wl1; 3118 tp->snd_wnd = opt.snd_wnd; 3119 tp->max_window = opt.max_window; 3120 3121 tp->rcv_wnd = opt.rcv_wnd; 3122 tp->rcv_wup = opt.rcv_wup; 3123 3124 return 0; 3125 } 3126 3127 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3128 unsigned int len) 3129 { 3130 struct tcp_sock *tp = tcp_sk(sk); 3131 struct tcp_repair_opt opt; 3132 size_t offset = 0; 3133 3134 while (len >= sizeof(opt)) { 3135 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3136 return -EFAULT; 3137 3138 offset += sizeof(opt); 3139 len -= sizeof(opt); 3140 3141 switch (opt.opt_code) { 3142 case TCPOPT_MSS: 3143 tp->rx_opt.mss_clamp = opt.opt_val; 3144 tcp_mtup_init(sk); 3145 break; 3146 case TCPOPT_WINDOW: 3147 { 3148 u16 snd_wscale = opt.opt_val & 0xFFFF; 3149 u16 rcv_wscale = opt.opt_val >> 16; 3150 3151 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3152 return -EFBIG; 3153 3154 tp->rx_opt.snd_wscale = snd_wscale; 3155 tp->rx_opt.rcv_wscale = rcv_wscale; 3156 tp->rx_opt.wscale_ok = 1; 3157 } 3158 break; 3159 case TCPOPT_SACK_PERM: 3160 if (opt.opt_val != 0) 3161 return -EINVAL; 3162 3163 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3164 break; 3165 case TCPOPT_TIMESTAMP: 3166 if (opt.opt_val != 0) 3167 return -EINVAL; 3168 3169 tp->rx_opt.tstamp_ok = 1; 3170 break; 3171 } 3172 } 3173 3174 return 0; 3175 } 3176 3177 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3178 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3179 3180 static void tcp_enable_tx_delay(void) 3181 { 3182 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3183 static int __tcp_tx_delay_enabled = 0; 3184 3185 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3186 static_branch_enable(&tcp_tx_delay_enabled); 3187 pr_info("TCP_TX_DELAY enabled\n"); 3188 } 3189 } 3190 } 3191 3192 /* When set indicates to always queue non-full frames. Later the user clears 3193 * this option and we transmit any pending partial frames in the queue. This is 3194 * meant to be used alongside sendfile() to get properly filled frames when the 3195 * user (for example) must write out headers with a write() call first and then 3196 * use sendfile to send out the data parts. 3197 * 3198 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3199 * TCP_NODELAY. 3200 */ 3201 void __tcp_sock_set_cork(struct sock *sk, bool on) 3202 { 3203 struct tcp_sock *tp = tcp_sk(sk); 3204 3205 if (on) { 3206 tp->nonagle |= TCP_NAGLE_CORK; 3207 } else { 3208 tp->nonagle &= ~TCP_NAGLE_CORK; 3209 if (tp->nonagle & TCP_NAGLE_OFF) 3210 tp->nonagle |= TCP_NAGLE_PUSH; 3211 tcp_push_pending_frames(sk); 3212 } 3213 } 3214 3215 void tcp_sock_set_cork(struct sock *sk, bool on) 3216 { 3217 lock_sock(sk); 3218 __tcp_sock_set_cork(sk, on); 3219 release_sock(sk); 3220 } 3221 EXPORT_SYMBOL(tcp_sock_set_cork); 3222 3223 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3224 * remembered, but it is not activated until cork is cleared. 3225 * 3226 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3227 * even TCP_CORK for currently queued segments. 3228 */ 3229 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3230 { 3231 if (on) { 3232 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3233 tcp_push_pending_frames(sk); 3234 } else { 3235 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3236 } 3237 } 3238 3239 void tcp_sock_set_nodelay(struct sock *sk) 3240 { 3241 lock_sock(sk); 3242 __tcp_sock_set_nodelay(sk, true); 3243 release_sock(sk); 3244 } 3245 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3246 3247 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3248 { 3249 if (!val) { 3250 inet_csk_enter_pingpong_mode(sk); 3251 return; 3252 } 3253 3254 inet_csk_exit_pingpong_mode(sk); 3255 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3256 inet_csk_ack_scheduled(sk)) { 3257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3258 tcp_cleanup_rbuf(sk, 1); 3259 if (!(val & 1)) 3260 inet_csk_enter_pingpong_mode(sk); 3261 } 3262 } 3263 3264 void tcp_sock_set_quickack(struct sock *sk, int val) 3265 { 3266 lock_sock(sk); 3267 __tcp_sock_set_quickack(sk, val); 3268 release_sock(sk); 3269 } 3270 EXPORT_SYMBOL(tcp_sock_set_quickack); 3271 3272 int tcp_sock_set_syncnt(struct sock *sk, int val) 3273 { 3274 if (val < 1 || val > MAX_TCP_SYNCNT) 3275 return -EINVAL; 3276 3277 lock_sock(sk); 3278 inet_csk(sk)->icsk_syn_retries = val; 3279 release_sock(sk); 3280 return 0; 3281 } 3282 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3283 3284 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3285 { 3286 lock_sock(sk); 3287 inet_csk(sk)->icsk_user_timeout = val; 3288 release_sock(sk); 3289 } 3290 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3291 3292 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3293 { 3294 struct tcp_sock *tp = tcp_sk(sk); 3295 3296 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3297 return -EINVAL; 3298 3299 tp->keepalive_time = val * HZ; 3300 if (sock_flag(sk, SOCK_KEEPOPEN) && 3301 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3302 u32 elapsed = keepalive_time_elapsed(tp); 3303 3304 if (tp->keepalive_time > elapsed) 3305 elapsed = tp->keepalive_time - elapsed; 3306 else 3307 elapsed = 0; 3308 inet_csk_reset_keepalive_timer(sk, elapsed); 3309 } 3310 3311 return 0; 3312 } 3313 3314 int tcp_sock_set_keepidle(struct sock *sk, int val) 3315 { 3316 int err; 3317 3318 lock_sock(sk); 3319 err = tcp_sock_set_keepidle_locked(sk, val); 3320 release_sock(sk); 3321 return err; 3322 } 3323 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3324 3325 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3326 { 3327 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3328 return -EINVAL; 3329 3330 lock_sock(sk); 3331 tcp_sk(sk)->keepalive_intvl = val * HZ; 3332 release_sock(sk); 3333 return 0; 3334 } 3335 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3336 3337 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3338 { 3339 if (val < 1 || val > MAX_TCP_KEEPCNT) 3340 return -EINVAL; 3341 3342 lock_sock(sk); 3343 tcp_sk(sk)->keepalive_probes = val; 3344 release_sock(sk); 3345 return 0; 3346 } 3347 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3348 3349 int tcp_set_window_clamp(struct sock *sk, int val) 3350 { 3351 struct tcp_sock *tp = tcp_sk(sk); 3352 3353 if (!val) { 3354 if (sk->sk_state != TCP_CLOSE) 3355 return -EINVAL; 3356 tp->window_clamp = 0; 3357 } else { 3358 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3359 SOCK_MIN_RCVBUF / 2 : val; 3360 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3361 } 3362 return 0; 3363 } 3364 3365 /* 3366 * Socket option code for TCP. 3367 */ 3368 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3369 sockptr_t optval, unsigned int optlen) 3370 { 3371 struct tcp_sock *tp = tcp_sk(sk); 3372 struct inet_connection_sock *icsk = inet_csk(sk); 3373 struct net *net = sock_net(sk); 3374 int val; 3375 int err = 0; 3376 3377 /* These are data/string values, all the others are ints */ 3378 switch (optname) { 3379 case TCP_CONGESTION: { 3380 char name[TCP_CA_NAME_MAX]; 3381 3382 if (optlen < 1) 3383 return -EINVAL; 3384 3385 val = strncpy_from_sockptr(name, optval, 3386 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3387 if (val < 0) 3388 return -EFAULT; 3389 name[val] = 0; 3390 3391 lock_sock(sk); 3392 err = tcp_set_congestion_control(sk, name, true, 3393 ns_capable(sock_net(sk)->user_ns, 3394 CAP_NET_ADMIN)); 3395 release_sock(sk); 3396 return err; 3397 } 3398 case TCP_ULP: { 3399 char name[TCP_ULP_NAME_MAX]; 3400 3401 if (optlen < 1) 3402 return -EINVAL; 3403 3404 val = strncpy_from_sockptr(name, optval, 3405 min_t(long, TCP_ULP_NAME_MAX - 1, 3406 optlen)); 3407 if (val < 0) 3408 return -EFAULT; 3409 name[val] = 0; 3410 3411 lock_sock(sk); 3412 err = tcp_set_ulp(sk, name); 3413 release_sock(sk); 3414 return err; 3415 } 3416 case TCP_FASTOPEN_KEY: { 3417 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3418 __u8 *backup_key = NULL; 3419 3420 /* Allow a backup key as well to facilitate key rotation 3421 * First key is the active one. 3422 */ 3423 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3424 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3425 return -EINVAL; 3426 3427 if (copy_from_sockptr(key, optval, optlen)) 3428 return -EFAULT; 3429 3430 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3431 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3432 3433 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3434 } 3435 default: 3436 /* fallthru */ 3437 break; 3438 } 3439 3440 if (optlen < sizeof(int)) 3441 return -EINVAL; 3442 3443 if (copy_from_sockptr(&val, optval, sizeof(val))) 3444 return -EFAULT; 3445 3446 lock_sock(sk); 3447 3448 switch (optname) { 3449 case TCP_MAXSEG: 3450 /* Values greater than interface MTU won't take effect. However 3451 * at the point when this call is done we typically don't yet 3452 * know which interface is going to be used 3453 */ 3454 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3455 err = -EINVAL; 3456 break; 3457 } 3458 tp->rx_opt.user_mss = val; 3459 break; 3460 3461 case TCP_NODELAY: 3462 __tcp_sock_set_nodelay(sk, val); 3463 break; 3464 3465 case TCP_THIN_LINEAR_TIMEOUTS: 3466 if (val < 0 || val > 1) 3467 err = -EINVAL; 3468 else 3469 tp->thin_lto = val; 3470 break; 3471 3472 case TCP_THIN_DUPACK: 3473 if (val < 0 || val > 1) 3474 err = -EINVAL; 3475 break; 3476 3477 case TCP_REPAIR: 3478 if (!tcp_can_repair_sock(sk)) 3479 err = -EPERM; 3480 else if (val == TCP_REPAIR_ON) { 3481 tp->repair = 1; 3482 sk->sk_reuse = SK_FORCE_REUSE; 3483 tp->repair_queue = TCP_NO_QUEUE; 3484 } else if (val == TCP_REPAIR_OFF) { 3485 tp->repair = 0; 3486 sk->sk_reuse = SK_NO_REUSE; 3487 tcp_send_window_probe(sk); 3488 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3489 tp->repair = 0; 3490 sk->sk_reuse = SK_NO_REUSE; 3491 } else 3492 err = -EINVAL; 3493 3494 break; 3495 3496 case TCP_REPAIR_QUEUE: 3497 if (!tp->repair) 3498 err = -EPERM; 3499 else if ((unsigned int)val < TCP_QUEUES_NR) 3500 tp->repair_queue = val; 3501 else 3502 err = -EINVAL; 3503 break; 3504 3505 case TCP_QUEUE_SEQ: 3506 if (sk->sk_state != TCP_CLOSE) { 3507 err = -EPERM; 3508 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3509 if (!tcp_rtx_queue_empty(sk)) 3510 err = -EPERM; 3511 else 3512 WRITE_ONCE(tp->write_seq, val); 3513 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3514 if (tp->rcv_nxt != tp->copied_seq) { 3515 err = -EPERM; 3516 } else { 3517 WRITE_ONCE(tp->rcv_nxt, val); 3518 WRITE_ONCE(tp->copied_seq, val); 3519 } 3520 } else { 3521 err = -EINVAL; 3522 } 3523 break; 3524 3525 case TCP_REPAIR_OPTIONS: 3526 if (!tp->repair) 3527 err = -EINVAL; 3528 else if (sk->sk_state == TCP_ESTABLISHED) 3529 err = tcp_repair_options_est(sk, optval, optlen); 3530 else 3531 err = -EPERM; 3532 break; 3533 3534 case TCP_CORK: 3535 __tcp_sock_set_cork(sk, val); 3536 break; 3537 3538 case TCP_KEEPIDLE: 3539 err = tcp_sock_set_keepidle_locked(sk, val); 3540 break; 3541 case TCP_KEEPINTVL: 3542 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3543 err = -EINVAL; 3544 else 3545 tp->keepalive_intvl = val * HZ; 3546 break; 3547 case TCP_KEEPCNT: 3548 if (val < 1 || val > MAX_TCP_KEEPCNT) 3549 err = -EINVAL; 3550 else 3551 tp->keepalive_probes = val; 3552 break; 3553 case TCP_SYNCNT: 3554 if (val < 1 || val > MAX_TCP_SYNCNT) 3555 err = -EINVAL; 3556 else 3557 icsk->icsk_syn_retries = val; 3558 break; 3559 3560 case TCP_SAVE_SYN: 3561 /* 0: disable, 1: enable, 2: start from ether_header */ 3562 if (val < 0 || val > 2) 3563 err = -EINVAL; 3564 else 3565 tp->save_syn = val; 3566 break; 3567 3568 case TCP_LINGER2: 3569 if (val < 0) 3570 tp->linger2 = -1; 3571 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3572 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3573 else 3574 tp->linger2 = val * HZ; 3575 break; 3576 3577 case TCP_DEFER_ACCEPT: 3578 /* Translate value in seconds to number of retransmits */ 3579 icsk->icsk_accept_queue.rskq_defer_accept = 3580 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3581 TCP_RTO_MAX / HZ); 3582 break; 3583 3584 case TCP_WINDOW_CLAMP: 3585 err = tcp_set_window_clamp(sk, val); 3586 break; 3587 3588 case TCP_QUICKACK: 3589 __tcp_sock_set_quickack(sk, val); 3590 break; 3591 3592 #ifdef CONFIG_TCP_MD5SIG 3593 case TCP_MD5SIG: 3594 case TCP_MD5SIG_EXT: 3595 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3596 break; 3597 #endif 3598 case TCP_USER_TIMEOUT: 3599 /* Cap the max time in ms TCP will retry or probe the window 3600 * before giving up and aborting (ETIMEDOUT) a connection. 3601 */ 3602 if (val < 0) 3603 err = -EINVAL; 3604 else 3605 icsk->icsk_user_timeout = val; 3606 break; 3607 3608 case TCP_FASTOPEN: 3609 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3610 TCPF_LISTEN))) { 3611 tcp_fastopen_init_key_once(net); 3612 3613 fastopen_queue_tune(sk, val); 3614 } else { 3615 err = -EINVAL; 3616 } 3617 break; 3618 case TCP_FASTOPEN_CONNECT: 3619 if (val > 1 || val < 0) { 3620 err = -EINVAL; 3621 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3622 TFO_CLIENT_ENABLE) { 3623 if (sk->sk_state == TCP_CLOSE) 3624 tp->fastopen_connect = val; 3625 else 3626 err = -EINVAL; 3627 } else { 3628 err = -EOPNOTSUPP; 3629 } 3630 break; 3631 case TCP_FASTOPEN_NO_COOKIE: 3632 if (val > 1 || val < 0) 3633 err = -EINVAL; 3634 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3635 err = -EINVAL; 3636 else 3637 tp->fastopen_no_cookie = val; 3638 break; 3639 case TCP_TIMESTAMP: 3640 if (!tp->repair) 3641 err = -EPERM; 3642 else 3643 tp->tsoffset = val - tcp_time_stamp_raw(); 3644 break; 3645 case TCP_REPAIR_WINDOW: 3646 err = tcp_repair_set_window(tp, optval, optlen); 3647 break; 3648 case TCP_NOTSENT_LOWAT: 3649 tp->notsent_lowat = val; 3650 sk->sk_write_space(sk); 3651 break; 3652 case TCP_INQ: 3653 if (val > 1 || val < 0) 3654 err = -EINVAL; 3655 else 3656 tp->recvmsg_inq = val; 3657 break; 3658 case TCP_TX_DELAY: 3659 if (val) 3660 tcp_enable_tx_delay(); 3661 tp->tcp_tx_delay = val; 3662 break; 3663 default: 3664 err = -ENOPROTOOPT; 3665 break; 3666 } 3667 3668 release_sock(sk); 3669 return err; 3670 } 3671 3672 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3673 unsigned int optlen) 3674 { 3675 const struct inet_connection_sock *icsk = inet_csk(sk); 3676 3677 if (level != SOL_TCP) 3678 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3679 optval, optlen); 3680 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3681 } 3682 EXPORT_SYMBOL(tcp_setsockopt); 3683 3684 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3685 struct tcp_info *info) 3686 { 3687 u64 stats[__TCP_CHRONO_MAX], total = 0; 3688 enum tcp_chrono i; 3689 3690 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3691 stats[i] = tp->chrono_stat[i - 1]; 3692 if (i == tp->chrono_type) 3693 stats[i] += tcp_jiffies32 - tp->chrono_start; 3694 stats[i] *= USEC_PER_SEC / HZ; 3695 total += stats[i]; 3696 } 3697 3698 info->tcpi_busy_time = total; 3699 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3700 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3701 } 3702 3703 /* Return information about state of tcp endpoint in API format. */ 3704 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3705 { 3706 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3707 const struct inet_connection_sock *icsk = inet_csk(sk); 3708 unsigned long rate; 3709 u32 now; 3710 u64 rate64; 3711 bool slow; 3712 3713 memset(info, 0, sizeof(*info)); 3714 if (sk->sk_type != SOCK_STREAM) 3715 return; 3716 3717 info->tcpi_state = inet_sk_state_load(sk); 3718 3719 /* Report meaningful fields for all TCP states, including listeners */ 3720 rate = READ_ONCE(sk->sk_pacing_rate); 3721 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3722 info->tcpi_pacing_rate = rate64; 3723 3724 rate = READ_ONCE(sk->sk_max_pacing_rate); 3725 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3726 info->tcpi_max_pacing_rate = rate64; 3727 3728 info->tcpi_reordering = tp->reordering; 3729 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3730 3731 if (info->tcpi_state == TCP_LISTEN) { 3732 /* listeners aliased fields : 3733 * tcpi_unacked -> Number of children ready for accept() 3734 * tcpi_sacked -> max backlog 3735 */ 3736 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3737 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3738 return; 3739 } 3740 3741 slow = lock_sock_fast(sk); 3742 3743 info->tcpi_ca_state = icsk->icsk_ca_state; 3744 info->tcpi_retransmits = icsk->icsk_retransmits; 3745 info->tcpi_probes = icsk->icsk_probes_out; 3746 info->tcpi_backoff = icsk->icsk_backoff; 3747 3748 if (tp->rx_opt.tstamp_ok) 3749 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3750 if (tcp_is_sack(tp)) 3751 info->tcpi_options |= TCPI_OPT_SACK; 3752 if (tp->rx_opt.wscale_ok) { 3753 info->tcpi_options |= TCPI_OPT_WSCALE; 3754 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3755 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3756 } 3757 3758 if (tp->ecn_flags & TCP_ECN_OK) 3759 info->tcpi_options |= TCPI_OPT_ECN; 3760 if (tp->ecn_flags & TCP_ECN_SEEN) 3761 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3762 if (tp->syn_data_acked) 3763 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3764 3765 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3766 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3767 info->tcpi_snd_mss = tp->mss_cache; 3768 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3769 3770 info->tcpi_unacked = tp->packets_out; 3771 info->tcpi_sacked = tp->sacked_out; 3772 3773 info->tcpi_lost = tp->lost_out; 3774 info->tcpi_retrans = tp->retrans_out; 3775 3776 now = tcp_jiffies32; 3777 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3778 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3779 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3780 3781 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3782 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3783 info->tcpi_rtt = tp->srtt_us >> 3; 3784 info->tcpi_rttvar = tp->mdev_us >> 2; 3785 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3786 info->tcpi_advmss = tp->advmss; 3787 3788 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3789 info->tcpi_rcv_space = tp->rcvq_space.space; 3790 3791 info->tcpi_total_retrans = tp->total_retrans; 3792 3793 info->tcpi_bytes_acked = tp->bytes_acked; 3794 info->tcpi_bytes_received = tp->bytes_received; 3795 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3796 tcp_get_info_chrono_stats(tp, info); 3797 3798 info->tcpi_segs_out = tp->segs_out; 3799 3800 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3801 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3802 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3803 3804 info->tcpi_min_rtt = tcp_min_rtt(tp); 3805 info->tcpi_data_segs_out = tp->data_segs_out; 3806 3807 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3808 rate64 = tcp_compute_delivery_rate(tp); 3809 if (rate64) 3810 info->tcpi_delivery_rate = rate64; 3811 info->tcpi_delivered = tp->delivered; 3812 info->tcpi_delivered_ce = tp->delivered_ce; 3813 info->tcpi_bytes_sent = tp->bytes_sent; 3814 info->tcpi_bytes_retrans = tp->bytes_retrans; 3815 info->tcpi_dsack_dups = tp->dsack_dups; 3816 info->tcpi_reord_seen = tp->reord_seen; 3817 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3818 info->tcpi_snd_wnd = tp->snd_wnd; 3819 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3820 unlock_sock_fast(sk, slow); 3821 } 3822 EXPORT_SYMBOL_GPL(tcp_get_info); 3823 3824 static size_t tcp_opt_stats_get_size(void) 3825 { 3826 return 3827 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3828 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3829 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3830 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3831 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3832 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3833 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3834 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3835 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3836 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3837 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3838 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3839 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3840 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3841 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3842 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3844 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3846 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3847 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3848 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3849 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3852 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3853 0; 3854 } 3855 3856 /* Returns TTL or hop limit of an incoming packet from skb. */ 3857 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3858 { 3859 if (skb->protocol == htons(ETH_P_IP)) 3860 return ip_hdr(skb)->ttl; 3861 else if (skb->protocol == htons(ETH_P_IPV6)) 3862 return ipv6_hdr(skb)->hop_limit; 3863 else 3864 return 0; 3865 } 3866 3867 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3868 const struct sk_buff *orig_skb, 3869 const struct sk_buff *ack_skb) 3870 { 3871 const struct tcp_sock *tp = tcp_sk(sk); 3872 struct sk_buff *stats; 3873 struct tcp_info info; 3874 unsigned long rate; 3875 u64 rate64; 3876 3877 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3878 if (!stats) 3879 return NULL; 3880 3881 tcp_get_info_chrono_stats(tp, &info); 3882 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3883 info.tcpi_busy_time, TCP_NLA_PAD); 3884 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3885 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3886 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3887 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3888 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3889 tp->data_segs_out, TCP_NLA_PAD); 3890 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3891 tp->total_retrans, TCP_NLA_PAD); 3892 3893 rate = READ_ONCE(sk->sk_pacing_rate); 3894 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3895 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3896 3897 rate64 = tcp_compute_delivery_rate(tp); 3898 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3899 3900 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3901 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3902 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3903 3904 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3905 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3906 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3907 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3908 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3909 3910 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3911 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3912 3913 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3914 TCP_NLA_PAD); 3915 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3916 TCP_NLA_PAD); 3917 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3918 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3919 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3920 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3921 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3922 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3923 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3924 TCP_NLA_PAD); 3925 if (ack_skb) 3926 nla_put_u8(stats, TCP_NLA_TTL, 3927 tcp_skb_ttl_or_hop_limit(ack_skb)); 3928 3929 return stats; 3930 } 3931 3932 static int do_tcp_getsockopt(struct sock *sk, int level, 3933 int optname, char __user *optval, int __user *optlen) 3934 { 3935 struct inet_connection_sock *icsk = inet_csk(sk); 3936 struct tcp_sock *tp = tcp_sk(sk); 3937 struct net *net = sock_net(sk); 3938 int val, len; 3939 3940 if (get_user(len, optlen)) 3941 return -EFAULT; 3942 3943 len = min_t(unsigned int, len, sizeof(int)); 3944 3945 if (len < 0) 3946 return -EINVAL; 3947 3948 switch (optname) { 3949 case TCP_MAXSEG: 3950 val = tp->mss_cache; 3951 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3952 val = tp->rx_opt.user_mss; 3953 if (tp->repair) 3954 val = tp->rx_opt.mss_clamp; 3955 break; 3956 case TCP_NODELAY: 3957 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3958 break; 3959 case TCP_CORK: 3960 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3961 break; 3962 case TCP_KEEPIDLE: 3963 val = keepalive_time_when(tp) / HZ; 3964 break; 3965 case TCP_KEEPINTVL: 3966 val = keepalive_intvl_when(tp) / HZ; 3967 break; 3968 case TCP_KEEPCNT: 3969 val = keepalive_probes(tp); 3970 break; 3971 case TCP_SYNCNT: 3972 val = icsk->icsk_syn_retries ? : 3973 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3974 break; 3975 case TCP_LINGER2: 3976 val = tp->linger2; 3977 if (val >= 0) 3978 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 3979 break; 3980 case TCP_DEFER_ACCEPT: 3981 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3982 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3983 break; 3984 case TCP_WINDOW_CLAMP: 3985 val = tp->window_clamp; 3986 break; 3987 case TCP_INFO: { 3988 struct tcp_info info; 3989 3990 if (get_user(len, optlen)) 3991 return -EFAULT; 3992 3993 tcp_get_info(sk, &info); 3994 3995 len = min_t(unsigned int, len, sizeof(info)); 3996 if (put_user(len, optlen)) 3997 return -EFAULT; 3998 if (copy_to_user(optval, &info, len)) 3999 return -EFAULT; 4000 return 0; 4001 } 4002 case TCP_CC_INFO: { 4003 const struct tcp_congestion_ops *ca_ops; 4004 union tcp_cc_info info; 4005 size_t sz = 0; 4006 int attr; 4007 4008 if (get_user(len, optlen)) 4009 return -EFAULT; 4010 4011 ca_ops = icsk->icsk_ca_ops; 4012 if (ca_ops && ca_ops->get_info) 4013 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4014 4015 len = min_t(unsigned int, len, sz); 4016 if (put_user(len, optlen)) 4017 return -EFAULT; 4018 if (copy_to_user(optval, &info, len)) 4019 return -EFAULT; 4020 return 0; 4021 } 4022 case TCP_QUICKACK: 4023 val = !inet_csk_in_pingpong_mode(sk); 4024 break; 4025 4026 case TCP_CONGESTION: 4027 if (get_user(len, optlen)) 4028 return -EFAULT; 4029 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4030 if (put_user(len, optlen)) 4031 return -EFAULT; 4032 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4033 return -EFAULT; 4034 return 0; 4035 4036 case TCP_ULP: 4037 if (get_user(len, optlen)) 4038 return -EFAULT; 4039 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4040 if (!icsk->icsk_ulp_ops) { 4041 if (put_user(0, optlen)) 4042 return -EFAULT; 4043 return 0; 4044 } 4045 if (put_user(len, optlen)) 4046 return -EFAULT; 4047 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4048 return -EFAULT; 4049 return 0; 4050 4051 case TCP_FASTOPEN_KEY: { 4052 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4053 unsigned int key_len; 4054 4055 if (get_user(len, optlen)) 4056 return -EFAULT; 4057 4058 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4059 TCP_FASTOPEN_KEY_LENGTH; 4060 len = min_t(unsigned int, len, key_len); 4061 if (put_user(len, optlen)) 4062 return -EFAULT; 4063 if (copy_to_user(optval, key, len)) 4064 return -EFAULT; 4065 return 0; 4066 } 4067 case TCP_THIN_LINEAR_TIMEOUTS: 4068 val = tp->thin_lto; 4069 break; 4070 4071 case TCP_THIN_DUPACK: 4072 val = 0; 4073 break; 4074 4075 case TCP_REPAIR: 4076 val = tp->repair; 4077 break; 4078 4079 case TCP_REPAIR_QUEUE: 4080 if (tp->repair) 4081 val = tp->repair_queue; 4082 else 4083 return -EINVAL; 4084 break; 4085 4086 case TCP_REPAIR_WINDOW: { 4087 struct tcp_repair_window opt; 4088 4089 if (get_user(len, optlen)) 4090 return -EFAULT; 4091 4092 if (len != sizeof(opt)) 4093 return -EINVAL; 4094 4095 if (!tp->repair) 4096 return -EPERM; 4097 4098 opt.snd_wl1 = tp->snd_wl1; 4099 opt.snd_wnd = tp->snd_wnd; 4100 opt.max_window = tp->max_window; 4101 opt.rcv_wnd = tp->rcv_wnd; 4102 opt.rcv_wup = tp->rcv_wup; 4103 4104 if (copy_to_user(optval, &opt, len)) 4105 return -EFAULT; 4106 return 0; 4107 } 4108 case TCP_QUEUE_SEQ: 4109 if (tp->repair_queue == TCP_SEND_QUEUE) 4110 val = tp->write_seq; 4111 else if (tp->repair_queue == TCP_RECV_QUEUE) 4112 val = tp->rcv_nxt; 4113 else 4114 return -EINVAL; 4115 break; 4116 4117 case TCP_USER_TIMEOUT: 4118 val = icsk->icsk_user_timeout; 4119 break; 4120 4121 case TCP_FASTOPEN: 4122 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4123 break; 4124 4125 case TCP_FASTOPEN_CONNECT: 4126 val = tp->fastopen_connect; 4127 break; 4128 4129 case TCP_FASTOPEN_NO_COOKIE: 4130 val = tp->fastopen_no_cookie; 4131 break; 4132 4133 case TCP_TX_DELAY: 4134 val = tp->tcp_tx_delay; 4135 break; 4136 4137 case TCP_TIMESTAMP: 4138 val = tcp_time_stamp_raw() + tp->tsoffset; 4139 break; 4140 case TCP_NOTSENT_LOWAT: 4141 val = tp->notsent_lowat; 4142 break; 4143 case TCP_INQ: 4144 val = tp->recvmsg_inq; 4145 break; 4146 case TCP_SAVE_SYN: 4147 val = tp->save_syn; 4148 break; 4149 case TCP_SAVED_SYN: { 4150 if (get_user(len, optlen)) 4151 return -EFAULT; 4152 4153 lock_sock(sk); 4154 if (tp->saved_syn) { 4155 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4156 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4157 optlen)) { 4158 release_sock(sk); 4159 return -EFAULT; 4160 } 4161 release_sock(sk); 4162 return -EINVAL; 4163 } 4164 len = tcp_saved_syn_len(tp->saved_syn); 4165 if (put_user(len, optlen)) { 4166 release_sock(sk); 4167 return -EFAULT; 4168 } 4169 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4170 release_sock(sk); 4171 return -EFAULT; 4172 } 4173 tcp_saved_syn_free(tp); 4174 release_sock(sk); 4175 } else { 4176 release_sock(sk); 4177 len = 0; 4178 if (put_user(len, optlen)) 4179 return -EFAULT; 4180 } 4181 return 0; 4182 } 4183 #ifdef CONFIG_MMU 4184 case TCP_ZEROCOPY_RECEIVE: { 4185 struct scm_timestamping_internal tss; 4186 struct tcp_zerocopy_receive zc = {}; 4187 int err; 4188 4189 if (get_user(len, optlen)) 4190 return -EFAULT; 4191 if (len < 0 || 4192 len < offsetofend(struct tcp_zerocopy_receive, length)) 4193 return -EINVAL; 4194 if (unlikely(len > sizeof(zc))) { 4195 err = check_zeroed_user(optval + sizeof(zc), 4196 len - sizeof(zc)); 4197 if (err < 1) 4198 return err == 0 ? -EINVAL : err; 4199 len = sizeof(zc); 4200 if (put_user(len, optlen)) 4201 return -EFAULT; 4202 } 4203 if (copy_from_user(&zc, optval, len)) 4204 return -EFAULT; 4205 if (zc.reserved) 4206 return -EINVAL; 4207 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4208 return -EINVAL; 4209 lock_sock(sk); 4210 err = tcp_zerocopy_receive(sk, &zc, &tss); 4211 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4212 &zc, &len, err); 4213 release_sock(sk); 4214 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4215 goto zerocopy_rcv_cmsg; 4216 switch (len) { 4217 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4218 goto zerocopy_rcv_cmsg; 4219 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4220 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4221 case offsetofend(struct tcp_zerocopy_receive, flags): 4222 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4223 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4224 case offsetofend(struct tcp_zerocopy_receive, err): 4225 goto zerocopy_rcv_sk_err; 4226 case offsetofend(struct tcp_zerocopy_receive, inq): 4227 goto zerocopy_rcv_inq; 4228 case offsetofend(struct tcp_zerocopy_receive, length): 4229 default: 4230 goto zerocopy_rcv_out; 4231 } 4232 zerocopy_rcv_cmsg: 4233 if (zc.msg_flags & TCP_CMSG_TS) 4234 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4235 else 4236 zc.msg_flags = 0; 4237 zerocopy_rcv_sk_err: 4238 if (!err) 4239 zc.err = sock_error(sk); 4240 zerocopy_rcv_inq: 4241 zc.inq = tcp_inq_hint(sk); 4242 zerocopy_rcv_out: 4243 if (!err && copy_to_user(optval, &zc, len)) 4244 err = -EFAULT; 4245 return err; 4246 } 4247 #endif 4248 default: 4249 return -ENOPROTOOPT; 4250 } 4251 4252 if (put_user(len, optlen)) 4253 return -EFAULT; 4254 if (copy_to_user(optval, &val, len)) 4255 return -EFAULT; 4256 return 0; 4257 } 4258 4259 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4260 { 4261 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4262 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4263 */ 4264 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4265 return true; 4266 4267 return false; 4268 } 4269 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4270 4271 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4272 int __user *optlen) 4273 { 4274 struct inet_connection_sock *icsk = inet_csk(sk); 4275 4276 if (level != SOL_TCP) 4277 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4278 optval, optlen); 4279 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4280 } 4281 EXPORT_SYMBOL(tcp_getsockopt); 4282 4283 #ifdef CONFIG_TCP_MD5SIG 4284 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4285 static DEFINE_MUTEX(tcp_md5sig_mutex); 4286 static bool tcp_md5sig_pool_populated = false; 4287 4288 static void __tcp_alloc_md5sig_pool(void) 4289 { 4290 struct crypto_ahash *hash; 4291 int cpu; 4292 4293 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4294 if (IS_ERR(hash)) 4295 return; 4296 4297 for_each_possible_cpu(cpu) { 4298 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4299 struct ahash_request *req; 4300 4301 if (!scratch) { 4302 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4303 sizeof(struct tcphdr), 4304 GFP_KERNEL, 4305 cpu_to_node(cpu)); 4306 if (!scratch) 4307 return; 4308 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4309 } 4310 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4311 continue; 4312 4313 req = ahash_request_alloc(hash, GFP_KERNEL); 4314 if (!req) 4315 return; 4316 4317 ahash_request_set_callback(req, 0, NULL, NULL); 4318 4319 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4320 } 4321 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4322 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4323 */ 4324 smp_wmb(); 4325 tcp_md5sig_pool_populated = true; 4326 } 4327 4328 bool tcp_alloc_md5sig_pool(void) 4329 { 4330 if (unlikely(!tcp_md5sig_pool_populated)) { 4331 mutex_lock(&tcp_md5sig_mutex); 4332 4333 if (!tcp_md5sig_pool_populated) { 4334 __tcp_alloc_md5sig_pool(); 4335 if (tcp_md5sig_pool_populated) 4336 static_branch_inc(&tcp_md5_needed); 4337 } 4338 4339 mutex_unlock(&tcp_md5sig_mutex); 4340 } 4341 return tcp_md5sig_pool_populated; 4342 } 4343 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4344 4345 4346 /** 4347 * tcp_get_md5sig_pool - get md5sig_pool for this user 4348 * 4349 * We use percpu structure, so if we succeed, we exit with preemption 4350 * and BH disabled, to make sure another thread or softirq handling 4351 * wont try to get same context. 4352 */ 4353 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4354 { 4355 local_bh_disable(); 4356 4357 if (tcp_md5sig_pool_populated) { 4358 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4359 smp_rmb(); 4360 return this_cpu_ptr(&tcp_md5sig_pool); 4361 } 4362 local_bh_enable(); 4363 return NULL; 4364 } 4365 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4366 4367 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4368 const struct sk_buff *skb, unsigned int header_len) 4369 { 4370 struct scatterlist sg; 4371 const struct tcphdr *tp = tcp_hdr(skb); 4372 struct ahash_request *req = hp->md5_req; 4373 unsigned int i; 4374 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4375 skb_headlen(skb) - header_len : 0; 4376 const struct skb_shared_info *shi = skb_shinfo(skb); 4377 struct sk_buff *frag_iter; 4378 4379 sg_init_table(&sg, 1); 4380 4381 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4382 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4383 if (crypto_ahash_update(req)) 4384 return 1; 4385 4386 for (i = 0; i < shi->nr_frags; ++i) { 4387 const skb_frag_t *f = &shi->frags[i]; 4388 unsigned int offset = skb_frag_off(f); 4389 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4390 4391 sg_set_page(&sg, page, skb_frag_size(f), 4392 offset_in_page(offset)); 4393 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4394 if (crypto_ahash_update(req)) 4395 return 1; 4396 } 4397 4398 skb_walk_frags(skb, frag_iter) 4399 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4400 return 1; 4401 4402 return 0; 4403 } 4404 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4405 4406 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4407 { 4408 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4409 struct scatterlist sg; 4410 4411 sg_init_one(&sg, key->key, keylen); 4412 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4413 4414 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4415 return data_race(crypto_ahash_update(hp->md5_req)); 4416 } 4417 EXPORT_SYMBOL(tcp_md5_hash_key); 4418 4419 /* Called with rcu_read_lock() */ 4420 enum skb_drop_reason 4421 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4422 const void *saddr, const void *daddr, 4423 int family, int dif, int sdif) 4424 { 4425 /* 4426 * This gets called for each TCP segment that arrives 4427 * so we want to be efficient. 4428 * We have 3 drop cases: 4429 * o No MD5 hash and one expected. 4430 * o MD5 hash and we're not expecting one. 4431 * o MD5 hash and its wrong. 4432 */ 4433 const __u8 *hash_location = NULL; 4434 struct tcp_md5sig_key *hash_expected; 4435 const struct tcphdr *th = tcp_hdr(skb); 4436 struct tcp_sock *tp = tcp_sk(sk); 4437 int genhash, l3index; 4438 u8 newhash[16]; 4439 4440 /* sdif set, means packet ingressed via a device 4441 * in an L3 domain and dif is set to the l3mdev 4442 */ 4443 l3index = sdif ? dif : 0; 4444 4445 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4446 hash_location = tcp_parse_md5sig_option(th); 4447 4448 /* We've parsed the options - do we have a hash? */ 4449 if (!hash_expected && !hash_location) 4450 return SKB_NOT_DROPPED_YET; 4451 4452 if (hash_expected && !hash_location) { 4453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4454 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4455 } 4456 4457 if (!hash_expected && hash_location) { 4458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4459 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4460 } 4461 4462 /* check the signature */ 4463 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4464 NULL, skb); 4465 4466 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4468 if (family == AF_INET) { 4469 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4470 saddr, ntohs(th->source), 4471 daddr, ntohs(th->dest), 4472 genhash ? " tcp_v4_calc_md5_hash failed" 4473 : "", l3index); 4474 } else { 4475 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4476 genhash ? "failed" : "mismatch", 4477 saddr, ntohs(th->source), 4478 daddr, ntohs(th->dest), l3index); 4479 } 4480 return SKB_DROP_REASON_TCP_MD5FAILURE; 4481 } 4482 return SKB_NOT_DROPPED_YET; 4483 } 4484 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4485 4486 #endif 4487 4488 void tcp_done(struct sock *sk) 4489 { 4490 struct request_sock *req; 4491 4492 /* We might be called with a new socket, after 4493 * inet_csk_prepare_forced_close() has been called 4494 * so we can not use lockdep_sock_is_held(sk) 4495 */ 4496 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4497 4498 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4499 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4500 4501 tcp_set_state(sk, TCP_CLOSE); 4502 tcp_clear_xmit_timers(sk); 4503 if (req) 4504 reqsk_fastopen_remove(sk, req, false); 4505 4506 sk->sk_shutdown = SHUTDOWN_MASK; 4507 4508 if (!sock_flag(sk, SOCK_DEAD)) 4509 sk->sk_state_change(sk); 4510 else 4511 inet_csk_destroy_sock(sk); 4512 } 4513 EXPORT_SYMBOL_GPL(tcp_done); 4514 4515 int tcp_abort(struct sock *sk, int err) 4516 { 4517 if (!sk_fullsock(sk)) { 4518 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4519 struct request_sock *req = inet_reqsk(sk); 4520 4521 local_bh_disable(); 4522 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4523 local_bh_enable(); 4524 return 0; 4525 } 4526 return -EOPNOTSUPP; 4527 } 4528 4529 /* Don't race with userspace socket closes such as tcp_close. */ 4530 lock_sock(sk); 4531 4532 if (sk->sk_state == TCP_LISTEN) { 4533 tcp_set_state(sk, TCP_CLOSE); 4534 inet_csk_listen_stop(sk); 4535 } 4536 4537 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4538 local_bh_disable(); 4539 bh_lock_sock(sk); 4540 4541 if (!sock_flag(sk, SOCK_DEAD)) { 4542 sk->sk_err = err; 4543 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4544 smp_wmb(); 4545 sk_error_report(sk); 4546 if (tcp_need_reset(sk->sk_state)) 4547 tcp_send_active_reset(sk, GFP_ATOMIC); 4548 tcp_done(sk); 4549 } 4550 4551 bh_unlock_sock(sk); 4552 local_bh_enable(); 4553 tcp_write_queue_purge(sk); 4554 release_sock(sk); 4555 return 0; 4556 } 4557 EXPORT_SYMBOL_GPL(tcp_abort); 4558 4559 extern struct tcp_congestion_ops tcp_reno; 4560 4561 static __initdata unsigned long thash_entries; 4562 static int __init set_thash_entries(char *str) 4563 { 4564 ssize_t ret; 4565 4566 if (!str) 4567 return 0; 4568 4569 ret = kstrtoul(str, 0, &thash_entries); 4570 if (ret) 4571 return 0; 4572 4573 return 1; 4574 } 4575 __setup("thash_entries=", set_thash_entries); 4576 4577 static void __init tcp_init_mem(void) 4578 { 4579 unsigned long limit = nr_free_buffer_pages() / 16; 4580 4581 limit = max(limit, 128UL); 4582 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4583 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4584 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4585 } 4586 4587 void __init tcp_init(void) 4588 { 4589 int max_rshare, max_wshare, cnt; 4590 unsigned long limit; 4591 unsigned int i; 4592 4593 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4594 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4595 sizeof_field(struct sk_buff, cb)); 4596 4597 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4598 4599 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4600 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4601 4602 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4603 thash_entries, 21, /* one slot per 2 MB*/ 4604 0, 64 * 1024); 4605 tcp_hashinfo.bind_bucket_cachep = 4606 kmem_cache_create("tcp_bind_bucket", 4607 sizeof(struct inet_bind_bucket), 0, 4608 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4609 SLAB_ACCOUNT, 4610 NULL); 4611 4612 /* Size and allocate the main established and bind bucket 4613 * hash tables. 4614 * 4615 * The methodology is similar to that of the buffer cache. 4616 */ 4617 tcp_hashinfo.ehash = 4618 alloc_large_system_hash("TCP established", 4619 sizeof(struct inet_ehash_bucket), 4620 thash_entries, 4621 17, /* one slot per 128 KB of memory */ 4622 0, 4623 NULL, 4624 &tcp_hashinfo.ehash_mask, 4625 0, 4626 thash_entries ? 0 : 512 * 1024); 4627 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4628 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4629 4630 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4631 panic("TCP: failed to alloc ehash_locks"); 4632 tcp_hashinfo.bhash = 4633 alloc_large_system_hash("TCP bind", 4634 sizeof(struct inet_bind_hashbucket), 4635 tcp_hashinfo.ehash_mask + 1, 4636 17, /* one slot per 128 KB of memory */ 4637 0, 4638 &tcp_hashinfo.bhash_size, 4639 NULL, 4640 0, 4641 64 * 1024); 4642 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4643 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4644 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4645 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4646 } 4647 4648 4649 cnt = tcp_hashinfo.ehash_mask + 1; 4650 sysctl_tcp_max_orphans = cnt / 2; 4651 4652 tcp_init_mem(); 4653 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4654 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4655 max_wshare = min(4UL*1024*1024, limit); 4656 max_rshare = min(6UL*1024*1024, limit); 4657 4658 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4659 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4660 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4661 4662 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4663 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4664 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4665 4666 pr_info("Hash tables configured (established %u bind %u)\n", 4667 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4668 4669 tcp_v4_init(); 4670 tcp_metrics_init(); 4671 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4672 tcp_tasklet_init(); 4673 mptcp_init(); 4674 } 4675